
[1]

www.allitebooks.com

http://www.allitebooks.org

Unreal Engine Game
Development Blueprints

Discover all the secrets of Unreal Engine and
create seven fully functional games with the help
of step-by-step instructions

Nicola Valcasara

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Unreal Engine Game Development Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-777-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Nicola Valcasara

Reviewer
Martin Pernica

Commissioning Editor
Edward Bowkett

Acquisition Editor
Shaon Basu

Content Development Editor
Adrian Raposo

Technical Editor
Suwarna Patil

Copy Editor
Vibha Shukla

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nicola Valcasara is a freelance game developer and cofounder of Deuxality
Games Ltd. He is an expert programmer, specializing in mobile development,
with a strong passion for games and technology. He started to work in the game
industry in 2012, after winning the first prize at the Microsoft Rapid2D competition
for young developers.

He has also been a reviewer of Unreal Engine Android Game Development,
Packt Publishing.

My first thanks goes to my friends. Darroch, for your omnipresent
optimism and for the great artist that you are, Pelo, for being my
tester and a valid reviewer of the book content, Mene, for your bike
and genuine friendship, and thank you all to be always there to
support me with my choices.

A thank you to my family, a safe haven where I find peace in the bad
periods of my life. Thank you, mum, even if you don't approve my
career, you are always in my life with your reassuring presence.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Martin Pernica is a game developer with a focus on rendering and physics. He
started programming on old PCs very young age, and after this, he started working
mainly as a web developer for companies. After some years of web development,
Martin switched to the game development industry and started his own game
studio. He is also teaching his own courses in the local university about mobile, web,
and game development. He always tries to look under the hood of problems and
challenges, and then solve and optimize them, which is his passion.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Unreal Blueprints 1

What is Blueprint? 2
Types of Blueprints 3

Level Blueprints 3
Blueprint class 4
Data-Only Blueprint 4
Blueprint Interface 5
Blueprint Macro Library 6

Knowing the environment 6
Creating a project 6
Creating your first Blueprint class 8

Menu bar 11
Toolbar 12
Viewport 13
Component panel 14
Detail panel 16
My Blueprint panel 17
Graph editor 18

Types of variables and data 20
Nodes 23
Pins 25
Blueprint debugging 26

Blueprint debugger tab 28
Compiler result 28

Visual Studio 28
Creating the project solution 29
Add a new class from the editor 31

Summary 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Tic-Tac-Toe 33
What do we need? 33
Preparing the game 34

Clean the unnecessary items and scripts 36
The symbols – create the O and the X 40
Creating a new material for the symbols 45

Writing our Blueprints 49
Turn-based mechanics 50
Set Static Mesh via Blueprint 51
Working with arrays 53
Creating a macro 54
UI using text render 58
Custom events 60
Format text 63
Score 65
Game flow 67

Summary 68
Chapter 3: C++ Code – PAC-MAN 71

Preparing the game 72
Creating the project 73
Transparent materials 76
The maze 76

Designing the maze 78
Applying a material to multiple surfaces 81

The code 84
Class Wizard 86
Collectable 88
Player character 96

Movements 96
Collisions 101
Winning or losing the game 103
Dead 104
C++ class to Blueprint class 105

Enemies 106
Enemy Pawn 107
Enemy AI 112
Navigation mesh 115

Game mode 117
User Interface 122
Collisions – custom presets and types 125

Summary 126

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: UFO Run - Play with the Environment Effects 129
Particle system 129

Cascade 130
Modules 131
Emitters 131
Level of detail 132
The Cascade interface 132

UMG 133
Widget Blueprint 134
HUD class 135

The game 136
Blocking volumes 137
The menu camera 139
Wizard Blueprint 140
Import a custom font 142
Buttons 143
Click events 144
Set the default camera 145
HUD class 147
Player controller class 148
Start button 150
In-game screen 152
Property binding 153
Switch user interface 155

Collectables 156
Materials 156
Particle system 157

Required 158
Spawn 159
LifeTime 159
Initial size 159
Initial velocity 159
Color Over Life 159
Size over life 160
Cylinder 160
Acceleration 161

Blueprint script 161
Spawn volume 162

Components 162
Random point function 163
Actor reference 165

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Gameplay 166
Prepare the needed references 166
The player controller class 167
StartGame 168

The useFuel event 169
Spawn Collectable function 169
Update 170
Collect Item 170
The gameOver event 171

Summary 171
Chapter 5: Top-Down Shooter 173

Animations 173
Skeleton 174
Persona 175
Animation Sequence 177

Additive animations 177
Blending animation 177

Animation poses 177
Animation Blueprints 178

The game 179
Cleaning the unnecessary files 181
Adjust the imported files 182
Skeletal Mesh retarget 183
Animations 185

Aim Offset 186
Blend Space 190
Animation Blueprint – AnimGraph 191
Animation Notifies 196

Inputs 197
Player movements 198
Aim logic 199

Rotate To Aim 199
Set Aim angle 200

Gate 201
Start and stop shooting events 202
Flip the player 204
Weapon 205

Socket 205
Weapon Blueprint class 207
Animation reloading 209
Bullet 211
Player character weapon slots 212
Weapon collectables 214
Mono-use weapon 214

Table of Contents

[v]

Spawner 216
Custom component 218

Animation Blueprint – EventGraph 219
Enemies 222

Pawn 222
AI 223

Game Mode 224
User interface 226

Summary 228
Chapter 6: A Platform Maze 229

Ragdoll physics 230
Destructible meshes 232
Physics constraint 236
Matinee 240

Curve Editor 242
Track View 243
Create a Matinee 244

Fake platform corridor 247
Blueprint Function Library 251

Kill and respawn a player ragdoll 252
Create and use a function library 255

Door trigger volume 256
Doors within Matinee 257
Doors within Blueprint 259

Killer objects 263
The game 265

Don't fall 265
Rolling stones 266
The falling path 268
Wrecking balls 271

Summary 274
Chapter 7: An Open World Survival Game 277

Landscapes 277
Manage mode 279
Sculpt mode 280
Landscape material 282
Paint tool 287
Foliage 289

Day-Night cycle 290
Collectables and items 295

Blueprint structures 295

Table of Contents

[vi]

Superclasses 296
Extending the superclass 299
Crafting handler 302
Implementing the Blueprint Interface 302
Super item interaction 304

Inventory system 306
The inventory button 307
The inventory craft button 308
Main user interface 309

Main setup and visibility 310
Design the UI 312
Prepare the cookbook 314
Receipe button bindings 315
Add objects to the inventory 317
Remove and use items 319
Drop item – character side 320
Craft items logic 320
Inventory button logic 322
Item details and buttons 323

Summary 324
Index 325

[vii]

Preface
This book will help you learn how to develop wonderful games using Unreal Engine
4 and its Blueprint Visual Scripting.

Discover all the secrets of this engine and create seven fully functional games with
step-by-step instructions. In this book, you will learn the secrets of Blueprint; from
the single node to the most complex function. Whether you are a beginner or an
expert programmer, this guide will introduce you to this world and show you the
infinite possibilities that this engine can offer by developing seven exciting and fully
functional games.

What this book covers
Chapter 1, Getting Started with Unreal Blueprints, introduces you to the Unreal Engine
editor and Blueprint graph. We will create the first project on both Unreal Engine
and Visual Studio 2013.

Chapter 2, Tic-Tac-Toe, covers a simple game: a player versus player, classic board
game. You will learn how to the create a Blueprint graph with nodes and wires.

Chapter 3, C++ Code – PAC-MAN, explains the creation of a classic coin-up game only
using the C++ code. You will learn how to communicate between Visual Studio and
UE4 in this chapter.

Chapter 4, UFO Run - Play with the Environment Effects, explains the particle effect
system and user interface tools by creating an action game, starting from a template
offered by the engine.

Chapter 5, Top-Down Shooter, helps you to play with animations and create an
artificial intelligence by customizing the assets that are offered by the marketplace.

Preface

[viii]

Chapter 6, A Platform Maze, explains how to use Matinee to create short cinematic
clips or move objects around a level. Use the physics to handle ragdolls and
destructible objects.

Chapter 7, An Open World Survival Game, creates huge worlds with the terrain
manipulation tools that are offered by the engine, populate them with object using
the brush tools, and give them a life by creating an inventory system using the
knowledge learned during the book.

What you need for this book
You will require the following software:

• Unreal Engine 4 (at least version 4.8)
• Visual Studio 2013

A knowledge of basic C++ is recommended; however, not required. Some generic
knowledge of the game programming terminology could be useful; however,
not necessary.

Who this book is for
This book is ideal for intermediate-level developers who know how to use
Unreal Engine and want to go through a series of projects that will further
develop their expertise. A working knowledge of C++ is a must.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive".

Preface

[ix]

A block of code is set as follows:

#pragma once

#include "GameFramework/Actor.h"
#include "Collectable.generated.h"

UCLASS()
class PACMAN_API ACollectable : public AActor
{
 GENERATED_BODY()

public:
 // Sets default values for this actor's properties
 ACollectable();

 // Called when the game starts or when spawned
 virtual void BeginPlay() override;

 // Called every frame
 virtual void Tick(float DeltaSeconds) override;
};

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Click on
the Blueprints button in the Level Editor toolbar."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[x]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/7777OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/7777OT_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/7777OT_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with
Unreal Blueprints

Welcome! If you have arrived here, it is because you want to look at Blueprints in
depth and learn all its secrets, from the simplest node to the most complex code
extension. This is an introductory chapter. Here, you will take your first steps in
Blueprint, you will create your first project, and start with the editor, learning its
interfaces and its tools.

In this chapter, we will cover the following:

• What is Blueprint?
• Different types of data, nodes and Blueprint
• Knowing the environment
• Debugging your Blueprints
• Creating a visual studio solution

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Unreal Blueprints

[2]

What is Blueprint?
Blueprint is a high level, visual scripting system that provides an intuitive,
node-based interface that can be used to create any type of script events in the Unreal
editor. The tools that are provided can be used by level designers, artists, and any
non-programmer person, to quickly create and iterate gameplay (or even create
entire games) without ever needing to write a line of the code:

For those of you coming from UE3, Blueprint is the evolution of Kismet. It inherits
most of the strong keys of the Kismet system, adding the full range of concepts and
tools that are generally only available to programmers.

Through the use of Blueprints, anyone can virtually prototype, implement, or modify
any gameplay element. Here, we are going to discover how to create most of them.
The following is a list of common uses that are covered by this guide:

• Games: Sets up game rules and tweaks gameplay conditions
• Players: Creates variants with different meshes and materials, or allows

character customization
• Cameras: Changes the camera dynamically during play
• Inputs: Handles the inputs that are passed by the player
• Items: Includes weapons, pickups, triggers, and so on
• Environment: Creates randomized props or procedurally generated items

Chapter 1

[3]

In order to understand Blueprint, we first need to understand its structure. The
following image is an extremely simplistic graph that shows where Blueprint is
collocated in a game and who are its parent and child:

Each of these elements can have multiple children and each element has its different
type and behavior.

Types of Blueprints
There are four main types of Blueprint, each one has a specific purpose and is useful
in a specific situation. We will learn how to choose the correct one while studying the
examples of this guide; however, in the meantime, let's take a look at them in order
to understand their differences.

Level Blueprints
A Level Blueprint is a specialized type of Blueprint that, as the name suggests, acts
as a level-wide event graph. A level Blueprint is created by default for each of your
levels and can be edited only in the Level Blueprint Editor. This is the only type that
cannot be created and there is only one Level Blueprint for each level.

In this Blueprint file we handle the level flow: we can control events, Matinee, and
sequences of actions in the form of Function Calls or Flow Control operations.

Getting Started with Unreal Blueprints

[4]

To open the Level Blueprint for the purpose of editing, click on the Blueprints button
in the Level Editor toolbar and select Open Level Blueprint, as follows:

Blueprint class
A Blueprint class, simply called Blueprint, is the most used type and you will become
familiar with it during this guide. This type allows the content creator to easily add
functionality on top of any existing gameplay classes. A Blueprint class extends a
parent (either a code parent or another Blueprint class) and can be edited with a
visual editor. Any Blueprint class that is created in the editor can be found in Content
Browser and can be added to the map as an instance, like any other type of Actor.

The following are the most common Parent Classes that are used when creating a
new Blueprint:

• Actor: It is an object that can be placed or spawned in the world
• Pawn: It is an Actor that can be possessed and it receives input from a

Controller (which can be a user or an Artificial Intelligence)
• Character: It is a Pawn that includes the ability to walk, run, jump, and so on
• PlayerController: It is an Actor that is responsible for controlling a Pawn
• Game Mode: It defines the game rules, scores, and any aspect of a game type

Data-Only Blueprint
Data-only Blueprints are basically Blueprint classes without the node graph. They
contain all the properties and components that are inherited from its parent and
allow the user to tweak properties or set items with variations without needing to
find these properties in a big node graph.

Chapter 1

[5]

A data-only Blueprint doesn't allow you to add new elements; however, it can be
converted in a Blueprint class with just one click, if required:

Blueprint Interface
A Blueprint Interface is similar to an interface in general programming. It allows
different types of object to share a common information setup. It is a collection of one
or more functions (declarations only, no implementations) that can be added to other
Blueprints. A Blueprint Interface needs to be added to a Blueprint class in order to
work, and a Blueprint class that has implemented an interface can have and use all of
its functions.

A Blueprint Interface can be made in the editor; however, it has limitations as it
cannot do the following:

• Add new variables
• Edit graphs
• Add components

Getting Started with Unreal Blueprints

[6]

A good example to understand an interface is that a player, a tree, and a concrete
wall are three completely different objects but all of them can receive a projectile
shot by a weapon. Instead of creating a different function for all of them, an interface
can help us by creating a function called onReceiveDamage that is shared (however,
implemented differently) by all of them.

Blueprint Macro Library
A Blueprint Macro Library is a container that holds a collection of Macros or graphs
that can be placed as nodes in other Blueprints. They are very handy as they can
store the commonly used sequences of nodes with inputs and outputs for execution
and data transfer.

Knowing the environment
Let's take a look at Unreal Engine 4 and its editor. I am assuming that you have
already installed the engine and visual studio 2013 on your machine; therefore, I will
skip the process of registering, downloading, and installing the engine. If this is not
the case, you can go to the epic website (www.unrealengine.com), sign up for free
and get your copy by following their instructions with a couple of easy steps.

Creating a project
Open the Unreal Engine Launcher. Under the Library section, choose the version of
the engine that you prefer, and launch it, as follows:

www.unrealengine.com

Chapter 1

[7]

The Unreal Project browser will open. By default, you will see the Projects screen.
Here, you can see your projects and the samples that you downloaded from the
Marketplace. For our purpose, we want to create a brand new and empty project.
Under the New Project section, you can choose between the Blueprint or C++
projects in a list of built-in templates:

Due to the nature of Blueprint, the code and Blueprint live happily together. These
choices are different in only one way: the C++ project will also create the visual
studio solution for your project but each of those choices will generate the same
Uproject and the needed files to launch the editor.

Due to this harmony between Blueprint and code, if you choose to create a project
from the Blueprint section you can, at any time, generate its C++ project: the engine
will create the Visual Studio solution as soon as you add your first code class from
the editor (File | Add Code to Project).

Getting Started with Unreal Blueprints

[8]

Choose a Blank Blueprint project, name it and choose a location (the default is
C://Users/Your Name/Documents/Unreal Projects/). Before creating the project
you can also set three main aspects of it: the general graphic quality, the device target
(mobile, pc, console), and if you want to you can include the Unreal Engine Starter
Content in it (the Starter Content contains some useful general purpose assets such
as primitive meshes, particle effects, materials, and so on).

For our purpose, we can leave those settings as is and click Create Project.

Creating your first Blueprint class
Welcome to the Unreal Engine 4 editor. You will now see the example map opened
and ready for your input in front of you. We are not creating anything fancy right
now: we will only explore the user interface of Blueprint and start to learn the basic
commands and shortcuts in Blueprint.

There are two ways to create a Blueprint class: from Content Browser or from the
top tool bar. The toolbar Blueprint button gives you quick access to the existing
modifiable Blueprint classes and you can access to the Level Blueprint only from
here. Be aware that from here you can only create the Blueprint class. If you want to
create, for example, Blueprint Macro Library, you need to use the Add New button
from the Content Browser:

Chapter 1

[9]

The Add New button and its equivalent mouse command (right-click in the Content
Browser), will open a pop-up menu with all the assets that you can create in the
engine, as follows:

Most of the asset needed for you projects can be created in the editor. We are now
focusing on Blueprint; however, it is worth specifying what we can create from this
menu and what needs to be created with an external software:

Can be created in Unreal Editor: Needs to be created using an external software:
Game Levels
Materials
Particle Systems
Cinematic Sequences
Blueprint Scripts
AI Navigation Meshes
Pre-calculated Light Maps
Level Lights

Static Meshes
Skeletal Meshes
Skeletal Animations
Textures
Sounds (WAVs)
IES Light Profiles
Nvidia APEX files (APB and APX)

During studying the examples written in this book, we will see some of them, such
as particle systems, navigation meshes, and materials, and some external assets, such
as meshes and textures.

Getting Started with Unreal Blueprints

[10]

About the Static Meshes, it is possible to create them in the editor using
the Binary Space Partitioning (BSP) brushes; however, it is a tedious
process and worth only when talking about simple shapes such as walls
or stairs. A dedicated software such as the freeware Blender or the more
famous 3ds Max or Maya can surely do a better job in less time.

Navigate to Add New | Blueprints | Blueprint Class, as follows:

Here, we will choose the Parent Class of our Blueprint script. The editor shows
us the Common Classes (we already saw them when previously talking about
Blueprint classes); however, the list of parents that we can use is potentially
unlimited. If you click on All Classes, in the left-hand side corner at the bottom, you
can see a very long list containing all the objects that are available at that moment as
a parent for your Blueprint.

Click on Actor and call it BP_Introduction.

It is very important, even for a small project, to name your
assets/scripts in a smart manner from the very beginning using
a suffix in order to recognize and immediately find the required
file even between hundreds of files.

Chapter 1

[11]

Double-click on the BP_Introduction file to open it and we will finally arrive at our
Blueprint Editor:

As you can see from the preceding image, the Blueprint Editor is divided into several
panels. Each panel is independent; this means that they can be moved, resized,
deleted, and duplicated in order to have a workspace that fits your choice.

Let's take a closer look at all of these sections in the following:

Menu bar
Menu Bar has the following options:

• File: You can manage your Blueprint files from here. You can save and
import other assets in the session, and manage source control. There is also a
section dedicated to Blueprint, where you can compile, refresh, and compare
your Blueprint revision in source control.

• Edit: This is a typical edit menu. It can undo, redo, and modify history. You
can also search for something in your Blueprint or change the editor settings
and preferences.

• Asset: Go here to open Content Browser or to check the references viewer of
any of your assets.

• View: View preferences can be set by this menu. Change the pin visibility or
set the zoom.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Unreal Blueprints

[12]

• Debug: Here, you can set the brake points and the watches for your
Blueprint. We will go through the Blueprint debugging later in this chapter.

• Window: If you accidentally close one of these tabs or you want to open
another tab, you can do this going in this menu. All the Blueprint Editor
specific tabs are contained. It is also possible to save or load a custom
layout here.

• Help: You can find useful information about Blueprint here or directly
through the epic forum and Wiki.

Toolbar
The toolbar is displayed at the left-hand side top of the Blueprint Editor. Its buttons
provide easy access to the common commands that are needed when editing
Blueprints. This is a dynamic bar, which means that it provides different buttons,
depending on which mode is active and which Blueprint type you are currently
editing, as follows:

• Compile: Every time you modify the script and want to run it, you need to
compile. This button changes, depending on the state of your script. It shows
if there is an error or a warning and if the script need to be recompiled.

• Save: It saves the current Blueprint.
• Find in CB: It shows Content Brower and highlights the selected Blueprint.
• Search: It finds references to functions, events, variables, or pins in the

current script.
• Class Settings: It opens the Blueprint properties Details panel. These settings

usually belong to the parent class of Blueprint. You can add Blueprint
Interfaces to the Blueprint class here.

• Class Defaults: It shows the default properties in the detail panel. Here, you
can change the default properties of the new instances of this class.

• Simulation: It starts the game in simulation mode.
• Play / Stop / Pause: It manages the execution of the game in the selected

environment such as mobile, standalone, and custom viewport.
• Possess/Eject: It switches from Simulate in editor to play in editor mode.
• Debug Filter: If you have two or more instances of this class in the game, you

can choose which one to debug here.

Chapter 1

[13]

Viewport
In Viewport, you can view and manipulate your Blueprint's components:

By default, you have a three-dimensional perspective view of your object. You can
manipulate the settings of the Viewport using the buttons on the top-left corner. The
first button allows you to switch between Perspective and the orthographic view,
the second one sets how you see the object if it is Lit (rendered with light), Unlit
(rendered without light) or in simple Wireframe instead.

The right-hand top series of buttons gives you some useful tools in order to
manipulate your object:

• Select and translate / rotate / scale object: If one of these is selected, the
corresponding three axis images appear on the pivot point of the object and
you are allowed to move, rotate, or scale the object in one or all its axis.

• Toggle Coordinate System: This button toggles the coordinate system
between world and the local (object-related) system.

• Surface snapping: This button toggles surface snapping, it enables an object
to snap in a surface when possible.

• Snap to the grid: This button toggles whenever the object snap to the grid
or not.

• Snap size: This button sets the accuracy of the snapping.
• Rotation snapping: This button toggles the snap through a rotation grid.
• Rotation size: This button sets the rotation-snap angle.
• Scale snapping: This button toggles snapping object through a scale grid.
• Scale size: This button sets the scale snap value.
• Camera Speed: This button sets the speed of the camera when it is moving in

the viewport with values between 1 to 8.

Getting Started with Unreal Blueprints

[14]

Component panel
In the Components panel, you can find all the components of your Blueprint that
are shown in a hierarchy form. A component is a piece of functionality that can be
added to an Actor. Components cannot exist by themselves; however, when added
to an Actor, the Actor will have access to the component and use the functionality
provided by it:

In this panel, you can add/remove and manage your components. Each component
has its own specific purpose and combining them allows you to create almost
anything that you need.

CapsuleComponent, for example, provides collision geometry to the Actor.
MovementComponent controls the movement, AudioComponent enables
the Actor to emit sound, and so on.

Components added in the component list can also be assigned to instance variables,
providing them access in the graphs editor.

Chapter 1

[15]

In order to add a component to Blueprint, you can click on the Add Component
button and select the component from its menu, as shown in the following image:

Components can also be added by dragging and dropping them from Content
Browser in the Components panel.

Each component is placed at the location of the instance by default. However, they
can be transformed, rotated, and scaled if necessary in either the Details panel or the
Viewport, as we saw earlier.

Getting Started with Unreal Blueprints

[16]

Detail panel
The Details panel contains information, utilities, and functions that are specific to the
current selection in the Viewport or the content panel.

It contains all the editable properties of the selected object (such as the Transform
parameters to move, rotate, and scale it):

At the very top, you find the search filter. This allows you to quickly find the
property that you need (very handy when you have a long list of properties).

Chapter 1

[17]

The Property Matrix button will open the Property Matrix grid. It is a special tool
that allows easy bulk editing and value comparison for a large number of objects
or Actors. It displays a configurable set of properties for a collection of objects as
columns in a table view that can be sorted on any column. The Property Matrix
grid also provides a standard property editor that displays all the properties for the
current selection set in the table view.

The display filter icon allows you to filter the properties according to your need.

Some properties have three buttons. They allow you to open the selected property in
Content Browser, attach the property from the selected one in Content Browser, or
revert the property to default:

My Blueprint panel
The My Blueprint panel shows all the Graphs, Functions, Macros, Variables, and
Event Dispatchers contained in your Blueprint, including component instance
variables that are added in the component list or variables that are created by
promoting a value to a variable in the graph editor.

By default, your Blueprint contains one EventGraph and one ConstructionScript for
your Functions but you can add any Graph, Variable, or function you might need
by the Add New button:

Getting Started with Unreal Blueprints

[18]

Graph editor
The graph editor panel is the heart of the Blueprint system. It is here that you will
create your network of nodes and thanks to their wires, your game lives:

First of all, this table gives you some handy shortcuts for your movements in the
graph.

A smart usage of these shortcuts can save a lot of time
when developing your projects. Try to memorize this
table and always use the shortcuts when possible.

Control Action
Right-click + Drag Pans the graph
Mouse Scroll Zooms the graph
Right-click Opens context menu
Click on node Selects the node
Click + Drag in the empty space Selects the nodes in the marquee select box
Ctrl + Click + Drag in the empty space Toggles selection of the nodes in the marquee

select box

Chapter 1

[19]

Control Action
Shift + Click + Drag in the empty space Adds the nodes in the marquee select box to the

current selection
Click + Drag on node Moves node

Click + Drag from pin to pin Wires the pins together
Ctrl + Click + Drag from pin to pin Moves the wires from the origin pin to the

destination pin
Click + Drag from pin to the empty
space

Brings up the context menu, showing only
relevant nodes. Wires the original pin to a
compatible pin on the created node

Click + Drag + C on the empty space Adds a comment box containing the selected
nodes

To add a new node to the graph, you can use the two methods explained in the
table (right-click on the empty space or drag any pin from an existing node) and you
can also drag and drop any asset from Content Browser to the graph editor. It will
automatically add the corresponding node to the graph, as follows:

Getting Started with Unreal Blueprints

[20]

You can also drag and drop any Variables from the My Blueprint panel to the graph
in order to automatically add its correspondent getter or setter (by selecting the
desired node from the pop-up window that appears or by holding control for a getter
or Alt for a setter) as shown in the following image:

You can find the same behavior seen in the Blueprint graph editor exhibited in the
Construction Script Editor and in the Macros Graph Editor.

Let's now check the graph editor in deep: which variables are accepted and what are
the nodes and pins that we just introduced.

Types of variables and data
Under Unreal, there are different types of variables: typical data types, such
as Boolean, Integer, Float, and so on, and more complex reference types, such
as objects, Actors, and custom classes. Each type has a unique color for easy
identification, as shown in the following table:

Variable type Color Example Description

Boolean Red Boolean represents
true/false data.

Chapter 1

[21]

Variable type Color Example Description

Byte Dark
Green

Numbers from 0
to 255. This is the
smallest data type in
terms of spaces; only
1 byte of memory.

Integer Cyan

Integer values
(number without
decimals). Ranges
from -32,768 to 32,767.
Used to store values
such as ammo, lives,
and collected items.

Float Light
Green

Float values (numbers
with decimals).
More accurate than
integers as it has a
precision of seven
digits and is used, for
example, to store the
radius of a sphere,
or the damage taken
by an enemy, or any
value that should
contain decimal
numbers.

Name Violet

Name is the
lightweight system
for using string. It
is case-insensitive
and cannot be
manipulated.
Similar to the byte, it
is the smallest data
type when talking
about text and is used
to store keywords and
indices.

Getting Started with Unreal Blueprints

[22]

Variable type Color Example Description

String Magenta

String is the only
string class that
allows manipulation.
It is more expensive
than the other two
text data; however,
strings can be
searched, modified,
and compared against
other strings.

Text Pink

Text represents a
display string. It is
used to store object
descriptions, times,
numbers, and any
formatted text. It
is typically used
in a table for the
localization system
and cannot be
manipulated.

Vector Yellow

Vector contains
an array of three
float values and is
typically used to
store positions on
three-dimensional
space (XYZ) or color
information (RGB).

Rotator Purple

This is similar to
Vector, it stores an
array of three float
values that contains
the rotation of an
object in a three-
dimensional space (in
the order: Roll, Pitch,
and Yaw).

Transform Orange

Transform combines
translation, rotation,
and scale of a three-
dimensional object.

Chapter 1

[23]

Apart from these default data types, there are tons of other custom data types and
we will see how to create our custom ones further in this book. These types can be
regrouped in five categories, as follows:

• Structure: Struct (value) types. A structure is a container of custom variables.
It is used to group related variables in a single entity in order to simplify data
combining and data management.

• References to objects or Actors: As the name suggests, these data types are
references of any object/actor in the game. They are useful when we want to
communicate between two different Blueprint classes.

• References to interfaces: They are the same as object pointers; however, they
are referred to as interfaces objects.

• References to classes: Similar to object references, this type of variable
contains references to a class. The main difference is that this type points to
the default class, while the object reference points to a single instance of this
particular class in the game.

• Enumeration: An enumerator is basically a byte variable that, instead of
numbers, has a human-readable list of names. It can be used to store any
kind of object state or type (Game States, tree types, weapon types, player
states, and so on).

Nodes
A node is an object that can perform a unique function, such as variable holder,
event, math calculation, flow control operation, and so on. However, the way in
which nodes are created and used is common to all nodes. This helps the user during
the process of the graph creation.

Getting Started with Unreal Blueprints

[24]

A node has a common layout that we can find in any kind of node that we create,
as follows:

In the preceding image, we can notice the following: on the top we find his name and
a symbol. Name, symbol, and color are self-explanatory and help the user to identify
the node's behavior quickly, even if it is the first time that he is using it. In the
preceding image, f means function, typically with a blue background, and the title
suggests that this node is a function that will Add Camera Component to a target
when called.

On the left-hand side of the node, we find the INPUT pins, and on the right-hand
side, we find the OUTPUT pins. We can find nodes with only input (or output) pins;
however, their position is unequivocal, as follows:

Chapter 1

[25]

Pins
There are two main types of pins, execution pins and data pins, as follows:

Execution pins are used to connect nodes together in order to create a flow of
execution. A node is executed when its input execution pin is activated by another
node. Once execution of the node completes, it activates its output execution pin
to continue the flow of execution. Usually, there is only a single input and output
execution pin (as functions only have one entry point and one exit point); however,
other types of nodes can have multiple input or output execution pins, allowing
different behavior depending on which pin is activated. For example, Timeline has
multiple input execution pins to call Play, Stop, Reverse, and so on, and multiple
output pins in order to call a custom function each time when each time loop
is finished.

Data pins are used to put the data in a node or receive data from a node. Data pins
are type-specific and can be wired to variables or other data pins of the same type.
Unreal helps us to recognize the different types of variable, not only with the name,
but also with its color. Their color is unique and common in all the tools of Unreal,
not only in Blueprint. As execution pins, data pins are also displayed as an outline
when not wired to anything and solid when wired.

Getting Started with Unreal Blueprints

[26]

Blueprint debugging
When developing your Blueprints, you will soon find that at times something is not
working as you expected. To diagnose these problems, Unreal Engine 4 gives you a
powerful debugger system that allows you to see your Blueprint script flow in real
time, as follows:

When you play or simulate in the editor, you can see the pulsating active wires as
your script gets executed in your graph editor.

The debugger system is attached to the first instance of your Blueprint class that the
editor finds in your level (alphabetic order) as soon as you play or simulate your
game. If you have more than one instance and you want to specify which one to
debug, you can select it from the toolbar.

You can set a Breakpoint in a node: when added you can play your game and when
the simulation reaches that node, the game will pause and jump to that node in your
graph so that you can step through your script to see where the issues are occurring.

Chapter 1

[27]

To add a Breakpoint to your Blueprint, right-click on any execution node and
choose Add breakpoint. You can also toggle the Breakpoint of a selected node
by pressing F9:

When a Breakpoint has been added to a node, a red circle will appear in the left-hand
top corner of the node. This means that, as soon as the gameplay reaches that node,
the game will pause and focus on this node.

Another debugging feature is Watch Values. You can set any variable in your
Blueprint to be able to see any variation of it in real time while the game is running.
This is an important tool that helps you to find any logical error due to wrong
calculations and human mistakes.

To set a value to be watched, right-click on a variable in your graph and select Watch
this value. A floating text bubble will appear above of the variable, showing the
value of this variable being changed while the game is executed, as follows:

Getting Started with Unreal Blueprints

[28]

Blueprint debugger tab
From the Window tab, in the menu bar, you can open Blueprint Debugger. This
panel shows all the watched variables or Breakpoint assigned. You can add multiple
Blueprint debugger tabs by holding Shift and clicking on Actor in your scene:

The lower section of the debugger is called Execution Trace, this will become
populated as soon as you play or simulate in the editor and show all the executed
commands in the order in which they were issued (the top one as the most recent).

Compiler result
The last panel in the debug section is the compiler result. This will show all the compiler
errors or warnings that occur when compiled with your script. Each line contains a
message about the issue and a direct link to the node that causes the problem.

Visual Studio
You learned how to use the Unreal Engine 4 (UE4) editor and the basics of
Blueprints. Now is time to go through the core of the engine. Code! Let's take a
look at Visual Studio and get ready to comprehend lines of code together while we
create our Blueprint scripts. In the examples provided in this book, you will often see
different approaches to the same simulation. The goal of this guide is to teach you
to not only be able to decide when Blueprint is useful, but also be able to write some
lines of code.

Chapter 1

[29]

Creating the project solution
We created our project as a Blueprint empty project, now we need to create our
Visual Studio solution for it. Open your project folder through Explorer. You should
have a situation similar to the following screenshot:

Unreal Engine provides you a C++ wizard that helps you in this process. Locate
.uproject (usually the name of your project.uproject). Right-click on Generate
Visual Studio project files. The UnrealBuildTool file should start and you should
see your folder slightly changed at the end of the process, as follows:

If this solution doesn't work, you can generate the project solution directly from the
editor. Under the menu bar, navigate to File | Generate Visual Studio Project. If it
still doesn't work, remember that the engine will generate a project solution as soon
as you add a C++ class to the project in case there isn't any Visual Studio project.

Getting Started with Unreal Blueprints

[30]

Let's have a brief look at these folders, as shown in the following:

• Binaries: It contains executable or other files that are created during compiling.
• Config: Configuration files are used to set values that control engine and

game default behavior.
• Content: It holds all the content of the game, including asset packages

and maps.
• Intermediate: It contains temporary files that are generated during the

building of the engine or game.
• Saved: It contains autosaves, configuration (same *.ini of Config folder)

files, and log files. Here, you can find crash logs, hardware information, and
swarm options and data.

• Source: It contains all the source files for the game divided in to object class
definitions (.h files) and object class implementation (.cpp files).

Now, we can open the project solution by double-clicking the .sln file or under File
| Open Visual Studio Project through the editor:

One of the problem of UE3 was that whenever you wrote or modified your
unrealScripts to test and see your modifications in the engine, you were obligated
to restart the editor, losing a certain amount of time due to closing and opening it a
hundred times during the development.

Chapter 1

[31]

On UE4, this is not needed anymore. You can compile your script directly within
the editor, and each modification you make on both side (Code or Engine) is
automatically updated.

Add a new class from the editor
To add a new class from the editor, we can navigate to File | New C++ Class… from
the menu bar. A pop-up window similar to the Blueprint one will appear where the
editor will ask you to choose the parent class.

Notice that here you can choose to not have a parent for your
class, which is different from the Blueprint class, where it
needed to have a parent class.

When you choose a parent, you need to specify a name for it and its path (keep all
your code under the Source folder). The C++ wizard will add a header and a C++
file for you and, when finished, will ask you whether you want to immediately edit
that file:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Unreal Blueprints

[32]

For any other parent class that you choose, except none, the wizard will add the most
used functions for you on the new class together with the constructor. By default,
you will find your class ready to be implemented with the BeginPlay function and
the Tick functions:

Now that you know how to create your classes, you are ready to write your own
code. We will see what to write and how to debug from Visual Studio in detail in
the next chapters.

Summary
Now, you should be able to create a project in UE4 and its Visual Studio solution.
You know exactly what Blueprint is and how to read the Blueprint classes written by
someone else or found in the Epic examples. You are able to create your own classes
and start experimenting with nodes and wires.

In the next chapter, we are going to use what we studied here to create our first
game. We will also see how different Blueprint classes communicate among each
other and how to use BPS Brushes to create simple environments.

[33]

Tic-Tac-Toe
In this chapter, we are going to create our first game starting from an UE4 template
and using Blueprint classes. As a first project, we will create a tic-tac-toe clone. This
simple project allows you to focus only on the logic of Blueprints, without being
worried about level design, graphic or any other aspect of game developing. We will
need some basic meshes by the way, and for our purpose we are going to use the
BSP brushes.

In this chapter, we will cover the following:

• BSP brushes
• Direct Blueprint class communication
• Static Meshes via Blueprint
• Variable array
• Blueprint Macro
• Text render via Blueprint
• Custom events

What do we need?
Anyone knows how tic-tac-toe works: it is a 1vs1 game that is played in a 3 x 3
grid, where the goal is to create a sequence of three symbols of the same type in a
horizontal, vertical, or diagonal row. The game is turn-based, where each player can
place his symbol (typically O or X) anywhere in the grid.

This game has a huge history and many people have written books and programs
talking about it. We will be a part of them, discovering how even the simplest game
can be complicated when talking about computer games.

Tic-Tac-Toe

[34]

In order to create this game, we need the following:

• A static camera that is always pointing to the grid
• A 3 x 3 grid that is made by nine individual square Static Mesh
• Two Symbols: O and X
• A user interface showing which player can make his move and the state of

the game
• A game logic: a controller for the grid state and a turn handler

Preparing the game
Finally, we arrive at creating our first game! Open the launcher, select the latest
version of the engine and start a new project. We are going to use the Puzzle
template under the Blueprint section. Call it TicTacToe, leave the other settings,
such as Desktop/Console, Maximum Quality and With Starter Content, as default
and click Create Project:

Chapter 2

[35]

This is a simple template showing how the engine can be used for a puzzle game.
If you click on play form the toolbar, a 3 x 3 grid (exactly what we need!) will show
up, and you can interact with the pieces of the grid by clicking on them; they will
change color and there is a rudimental UI showing you a counter of the pieces
that are touched:

Click on the PuzzleBP folder in the Content Browser. Let's see what this template
offers us. You should be able to recognize some of those elements as we discussed
them in the previous chapter.

• Blueprints. This is the core of the game. It contains four Blueprint classes:
 ° PuzzleBlock: This is the single block of the grid. It handles the touch

events inherit themselves and contains the Static Mesh of the block.
 ° BuzzleBlock Grid: This handles the events about the game grid. In

this class, the grid is created as soon as the game is launched and the
score is updated here.

 ° PuzzleGame Mode: This is the Game Mode data only Blueprint
class. As seen in the introduction chapter, here we can set the default
classes for this game.

Tic-Tac-Toe

[36]

 ° PuzzlePlayer Controller: This is similar to the game mode and is the
player controller class. Here, you can set the default settings of your
player controller (the object that is directly controlled by the player).
Here, you can control the player inputs, set its camera manager,
and in a more complex game example, set a default life, equipment,
spells, and so on.

• Maps: Here, we can store our maps. As you can imagine now, there is only
the puzzle template map.

• Meshes: Here, the meshes and materials needed for this template are stored.
At the moment, in this folder you can find there is the Cube Material, a Cube
Mesh (for the floor) and the PuzzleBlock grid Mesh (with rounded edges).

• Tutorial: You can find some useful dynamic tutorial files here. You can
double-click on them and a pop-up window will guide you through the
template. Feel free to watch or delete those files as we don't need them in
our game.

Clean the unnecessary items and scripts
The files contained in this template are perfect for our purpose; however, we need to
clean them a little bit before adding our nodes and wires.

Open PuzzleBlock and go to its Event Graph:

Chapter 2

[37]

You can see that this graph is pretty simple. As soon as this object is clicked or
touched, use a Branch node to compare a variable (Is Active). If true, then do
nothing; if false, then set Is Active to True with a SET node (in this way, we will
avoid firing the followed events every time the player clicks on this block again) and
change the material of BlockMesh using a Set Material node. At the end, add the
score calling a custom event, Add Score, in the Grid class.

We can remove everything after the SET node. Also, remove the comment box. You
will now have a situation similar to the following:

Compile, save, and close it. Now open the PuzzleBlockGrid class and go to its
event graph.

The editor automatically saves after every 10 minutes. You can modify
the frequency of it under Edit | Editor Preferences and the General
section under Loading & Saving.
Here, it is unnecessary; however, get used to compiling your class
every time you make any modifications. Otherwise, you will be unable
to see these modifications when you play or simulate your game.

Tic-Tac-Toe

[38]

Things are starting to get interesting now. You can see two different sections: a
spawn blocks section and a score handler section. The score section contains the
custom event that we saw on the block class: it takes the score integer variable and
adds one using an Addition node. When done, it uses a Set Text(String) node.
This last node uses a string variable that you can find on the viewport as target and
the result of a BuildString(int) node that combines the word score with the Score
variable as the value, as we cannot use integers in a string before converting it:

Select everything from this section and delete it. Also delete the Score variable from
My Blueprint window. You will notice that there is also a Score Text variable that
cannot be deleted from this window. This is because it is a reference of a render text
component. You can go to the Components window and delete Score Text from there.

Let's take a look at the spawn blocks section. Don't be afraid of all these Xs and %s,
this section basically takes the size of the grid and creates a corresponding series of
PuzzleBlock.

In detail, as soon as the game starts, it launches a ForLoop node that takes the
number of blocks that need to be created (calculated from the size variable of the grid
with a simple multiplication node) as input. Each loop spawns a PuzzleBlock with
the SpawnActor node that has a position calculated by the script and a reference of
the PuzzleBlock script as input.

Notice how the SpawnActor node automatically adds an input
node for the grid reference as soon as we set our custom to
class Actor.

Chapter 2

[39]

The position is calculated by mathematical operations:

• X coordinate: (Index % Size) * Block Spacing
• Y coordinate: (Index / Size) * Block Spacing

For those of you who don't know what % (or mod) means, it is the
modulo operation. It finds the reminder after the division of a number
by another. In our case, we are using it to calculate the column number
of our grid. The size of the grid doesn't matter. For this calculation, the
result of Index % Size is always an integer number between 0 and the
size value. For example, 6 % 3 = 0, 7 % 3 = 1, 8 % 3 = 2, and 9 % 3 = 0.

We can leave this code as it is. However, we know the exact size of our grid so let's
simplify this script: Remove the Size variable nodes and the first section of the script,
as shown in the following:

Now, on the LastIndex field of the ForLoop node, put 8 (Size*Size) -1 and on the
modulo and division node write 3. We can now safely remove the variable size
from the MyBlueprint window.

Tic-Tac-Toe

[40]

We are done with this script for the moment. If you followed the instructions
correctly, you will have a situation as shown in the following:

Save, close and return to the main window.

The symbols – create the O and the X
We are going to use the BPS brushes to create our two symbols. Let's first see what
they are and how to use them.

BSP brush is a wonderful tool that is useful to create quick and basic mesh-like walls,
floors or stairs; however, even if it is theoretically possible to create any complex
shape with these brushes, I would strongly advice you to use external tools that can
do this job better and use the built-in engine tool only for rudimental shapes or quick
testing purposes.

Chapter 2

[41]

This tool can be found in the Modes panel in the top left corner of the main window:

From there, you can simple drag and drop the selected shape in the viewport and,
once added, modify its parameters, such as transform (a group of parameters that
contains position, rotation, and scale of an object), aspect, material, behaviors,
and so on.

We will work directly in the main scene; therefore, even if it is possible to work with
everything in position, I prefer to have a clean space in order to move around my
object easily without being worried about touching something that I don't want
to (and avoid having some objects that cover the view of my object while working
on it).

Tic-Tac-Toe

[42]

On the right-hand top of the editor, you can see World Outliner. Here, you can see
all the objects contained in your level. You can organize in folders or groups and
with the help of the eye icon to the left of each item, you can toggle their visibility.
Let's close the eyes of what we don't need:

Chapter 2

[43]

From the BPS panel, drag and drop a cube in your viewport. Once added, you have
access to its properties, located in the Details panel. From there, set its location to the
center of the scene (0,0,0) and its dimension as X=230, Y=30 and Z =30 in the Brush
Settings section. If you want, you can drag and drop a cube mesh from the content
browser at the bottom of your brush as a reference for its dimensions. We want an X
not a +; therefore, set the Z rotation of your brush to 45 degrees:

To create the other bar of our X, use Ctrl + W to duplicate it (or right-click and Edit
| Duplicate) with the selected brush. And set its transform again to be 0,0,0 and the
rotation to -45 degree.

Tic-Tac-Toe

[44]

Now, we have our wonderful X but it is still a simple brush. We need to convert this
creation in a Mesh to order for it to be manipulated by our scripts. Select both of
the sections of the X and click on Create Static Mesh in the Details panel under the
Brush Settings. If you don't see it, click on the Advanced options at the bottom of the
brush section (it's the small arrow at end of the brush section. The advanced options
are hidden by default):

The editor will ask where do you want to save the new mesh, select PuzzleBP |
Meshes and call it SM_Symbol_X. After this process, you can see that the brushes
are gone and your symbol is now labelled as single Static Mesh actor. You can now
remove it from your scene. We will use them dynamically in our Blueprint.

Chapter 2

[45]

For the O, the process is similar. Drag and drop a Cylinder BPS at the scene and
move it to 0. You will immediately notice that it is actually not a cylinder; it is more
of a hexagon. This is due to the sides of this shape that are set by default to 8. Change
it to 32 and you will immediately notice that the brush becomes more rounded and
nice. Resize it to a height of 30 and radius of 100 in order to fit it in our block:

Now, let's drill a hole in our shape. Duplicate the circle, reposition it to 0 and set the
brush type to Substractive under the Brush Settings. The mesh disappears. This is
because the two brushes have the same size. Set the radius to 70 and you will finally
see our O symbol.

Select the two brushes and create a Static Mesh as we did for X, and call it
SM_Symbol_O:

Creating a new material for the symbols
You can see that the two created symbols have a gray squared pattern on them.
This is because there is no material applied. We are now going to create our custom
materials: two simple plain color materials will be enough for our game.

Go to the Content Browser and create a new folder in our PuzzleBP folder and call
it Materials. In order to add a new material, click on Add New | Material (or Add
New | Materials and Textures | Material with the selected new folder if this option
is unavailable for the default choices).

Tic-Tac-Toe

[46]

Call it M_Symbol_Red and double-click on it to open the editor:

This section will not be explained in detail as it works in a similar manner to
Blueprint. It has a grid-based interface where you can add any node, available on
the Palette panel, to the Materials node (it is in the centre of the screen). You can see
a live preview on the top left of the screen and through the toolbar you have some
tools to debug and statistics about your material.

The main difference with a Blueprint class is that instead of starting from a node and
developing further indefinitely, here every node is added before the main node. In
the Details panel, you will notice how many possibilities that node can offer.

Chapter 2

[47]

Here is one example of a realistic water material:

In order to add a color, we use a Constant3Vector node. Right click on the empty
space in the Grid panel. You can easily find the node that you want by typing it in
the input field:

Tic-Tac-Toe

[48]

From that node, you can pick any color that you want by double-clicking on the
colored square or from the Details panel. Choose a nice red from the color picker
panel that appears and click OK when you are happy with your choice. You can
even write your hexadecimal color code or pick a color from any of the pixels that
you have in your window with the eye dropper.

Connect the output pin of this node to the Base Color. You can now see that the
sphere has become red in the preview. We want a glossy color with a little bit of
reflection. In order to do that, we need to remove Roughness from the surface and
set it so that it is little bit Metallic.

Add a constant node, set its value to 0, and connect it to the roughness pin.
It immediately starts to glow. Now, in order to make it shinier, add another
Constant node, set its value to 0.1, and connect it to the Metallic pin.

These two parameters accept values between 0 and 1 (0 = no effect and 1 = full effect)
and when set are used by the algorithm of the main material node to create the
desired effect.

The end result should be something as follows:

Save and duplicate it in order to create the black material. Call it M_Symbol_Black,
and the only parameter that you need to change is the Base Color to a plain black
(Hexadecimal code 00000000).

Chapter 2

[49]

In order to assign these materials to our symbols, double-click on one of them and
under the level of details (Details panel | LOD0) section, assign our material to
the material 0 field by dragging and dropping it from the Content Browser or by
clicking on the menu on the right-hand side of the preview:

Now that we have our two symbols and the code is clean, we are ready to implement
our logic in the Blueprint classes.

Writing our Blueprints
Now, we need to add some logic to this project. In order to achieve the tic-tac-toe
mechanics and develop speaking, we need to do the following:

• Handle a turn-based mechanic
• Know when someone wins
• Show the state of the game
• Store a winning counter for each player
• Handle the restart

Tic-Tac-Toe

[50]

Turn-based mechanics
Open PuzzleBlock and PuzzleBlockGrid Blueprints as we are going to frequently
switch between them.

First of all, we need to know which player has to move: the X or the O. In order
to achieve this, also since this is a two-player game, we can use a simple Boolean
variable that is stored on the PuzzleBlock grid class and grant it accessibility through
the single block class.

Go to the grid class and add a new variable, call it IsX, and give its type as Boolean.
From now, for our convenience, player 1 is always X and player 2 is O. Add Tooltip
from the Details panel such as is player 1 and leave the other parameters as default:

Now, in order to check which player is playing from our block class, we use a direct
Blueprint communication. If you go to the block class, you will notice that we have a
variable called Owning Grid. This is an object reference to our grid. From there, we
can access any variable or function that is stored on our grid.

To access the Is X variable, drag the Owning Grid variable in the Event Graph and
click get. This is the getter that points to our grid class. To find the IsX variable, pull
out the output node of the getter and search it in the popup window that appears as
soon as you release the mouse button. You can see that the wizard shows you two
options: the getter and the setter; choose the getter.

Chapter 2

[51]

We can now use this variable in a Branch node. This node accepts a Boolean variable
as input and has two execution pins for both of its conditions. Connect the input
execution pin to the last node of our existent script and the variable pin on our Is X
variable. We are now ready to add the correct symbol to our block:

Set Static Mesh via Blueprint
To dynamically add the symbol on our Actor, we can use the set Static Mesh node
that refers to an existing empty Static Mesh Component previously positioned
inside the block object. This empty Static Mesh will act as placeholder for our
symbol and store a position that is based on the block location.

Note that this is a good solution for this case; however, it is
not the best one when talking about bigger projects. Each
component, even if it is empty, uses memory and it should be
added and used only when needed.

Tic-Tac-Toe

[52]

On our block class, under the Components panel, with the DummyRoot component
that is selected, navigate to Add Component | Static Mesh and call it Placeholder.
Use the viewport window to move it a little above the block mesh (my transform
location is 0,0,70) and make sure that it has none on the Static Mesh properties under
the Details panel:

Create a getter of Placeholder in Event Graph, as we did for the Owning Grid, and
create two Set Static Mesh nodes. Connect the Placeholder reference at the target
input pin of both of them and under the New Mesh field, set our O and X symbol.

Now, we can connect the True pin of our last Branch node to the X mesh node and
the False pin to the O node:

Chapter 2

[53]

If you compile and play the game now, you will be able to see our symbols spawning
as soon as we click on the grid. However, as you may notice, they are all the same
symbol. This is because the game doesn't know that this game is turn-based and
at this moment the players are always seen as player 1 (due to Is X variable).

Fix this issue is easy: We need to connect the Is X variable with a NOT node as soon
as we spawn our mesh:

Connect the SET execution node of this piece to both the set mesh nodes and if you
try to run it now, you will see that each time you click on a PuzzleBlock, the symbol
spawned changes.

Working with arrays
In order to check when a player wins, we need to have an array of all the blocks and
their state. We can use that array to iterate through its elements in order to find out if
there is a winner.

In Blueprint, any type of variable can be promoted to be an array. On the right-hand
side of the Variable type of the Details panel, there is a little button that, if clicked,
creates an array of the selected type.

In our Grid class, create a new variable and call it BlockArray, as Type for this
variable search our PuzzleBlock under the object reference section and select it. Now
click on the Array button and you will notice that the variable has a different icon
now and is ready to be populated. To achieve this, we can use the return value of the
SpawnActor node of our spawn block section.

Tic-Tac-Toe

[54]

Drag the output execute pin of that node and search add item to array. We will use
our array variable as an input array and connect its Return Value as item:

Now, we need to store a variable that indicates the state of the block. We use
a byte variable for that. A block can have three statuses: 0 = none, 1 = player1
and 2 = player2. This variable will be used when we check the array and will
help the code to quickly identify which player owns that block.

On the block class, add a new variable of type byte and call it BlockState. Give it
a default value, 0, and add a couple of setter that points to this new variable on our
EventGraph before setting our static Meshes. Obviously, set it to 1 for player 1 and 2
for player 2.

Creating a macro
To find the winner, we need to iterate through all the possible winning combinations
(3 rows + 3 columns + 2 diagonals) and check whether the selected combination has
the same state. If it has the same state (and not a null state) we have a winner.

To make our life easier and keep the EventGraph clean, we will write a couple
of macros.

Chapter 2

[55]

A macro, as we saw in the first chapter, is a collection of nodes compiled in a single
individual unit that can be called anywhere (however, only in its parent Blueprint
class if it is not in a Macro Library) like any other node.

We will create two macros. The first one will compare a block state with a byte
variable and return true if is the same and false if otherwise. We need to make this
comparison 24 times on our next macro and have every required node regrouped in
a single node helps a lot.

The second macro takes a byte input (the player number), compares all the
combinations, and returns true if there is a winning combination and false
if otherwise.

Let's create the first macro. Go to the My Blueprint panel of the Grid class and add a
new macro by clicking the + button. Call it isOwner and open it:

We immediately notice that there are input and output nodes ready and, on the
Details panel, a section where we can add our input and output pins. Add two
inputs: the first one is of type integer called BlockIndex and the second one is
called Player. About the output, create a Boolean variable and call it IsOwner.

Tic-Tac-Toe

[56]

Now, we need to add a GetArray node in order to find the indexed block: set the
reference of our Block Array variable as array, and our nearly created Block Index
variable as an index. From that node, we can now get its Block State variable and
compare it with the macro Player variable. Add an equal (byte) node, connect
the two input pins with the corresponding variable and finally close the macro
connecting the last pin to the output node:

Save, close, and create a new macro. Call it CheckIfWin and open it. Now, we only
need an input of type byte called Player and an output of type Boolean called Win.

The idea of this node is that if the player is the owner of all of the blocks that
compose any of the eight combinations, it will return true, and false if otherwise.

Connect the input node to the three isOwner macros and give them the value of
the first column as block index: 0, 1, and 2. Connect all the output pins to an And
(Boolean) node (you need to click on the Add pin in order to have the three required
input pins). This node returns true if all of the input values are true.

As the last step, connect the result to or (Boolean) and the result of this node to the
output node of the macro. An OR node will return true if one or more of the inputs
is true:

Chapter 2

[57]

Now, this is the index table of our array that represents our grid. Try to create the
other seven combinations on your own (in the preceding picture, I've already added
the other seven combination on the or node):

The result is an amazing amount of wires and repetitive nodes, it could be improved
using functions and other optimizations; however, it is fine for our purpose:

Tic-Tac-Toe

[58]

UI using text render
We have a winning handler; however, so far, we have nothing that can show the
game state to the player. There are different ways to implement a UI, the most used
and completely under Unreal is surely the Unreal Motion Graphics (UMG) and its
widget Blueprint. We will see this wonderful tool in the next chapter.

For now, let's create our UI using TextRenderer components in our Blueprint class.
We don't need the buttons, animations, or any complex UI at the moment; therefore,
for a quick and easy implementation, some text components that are handled by our
Blueprint class are perfect.

The UI that we will create is composed by the following:

• A game state: This text will show the different states of a game, when a
player is winning, and which one of the players has to make a move.

• Two win counters: This text will show the cumulative number of winnings
by the players.

• Two tooltips: This is just a static text showing that to which player does the
score belongs.

Go on the Viewport Window of our grid Blueprint and, under the components panel,
add five TextRenderer components as the child of the DefaultSceneRoot.

A TextRenderer, like any other component, can be moved in the viewport and
referenced in Blueprint. Under the Details panel, you can find the Text section. Here,
you can set text, font, size, and alignment similar to a normal text label. All these
properties can be manipulated in Blueprint and we will use the Text property to
show the score and game state.

The default properties that you need to set are as follows:

• Text Renderer 1:
 ° Variable Name: TextPlayer1Tooltip
 ° Location: -600,400,0
 ° Text: Player 1
 ° Text render Color: Black
 ° World Size: 72

Chapter 2

[59]

• Text Renderer 2:
 ° Variable Name: TextPlayer2Tooltip
 ° Location: -600,-1000,0
 ° Rotation: 0,90,0
 ° Text: Player 1
 ° Text render Color: Red
 ° World Size: 72

• Text Renderer 3:
 ° Variable Name: TextPlayer1Wins
 ° Location: -600,400,0
 ° Text: "0"
 ° Text render Color: Black
 ° World Size: 144

• Text Renderer 4:
 ° Variable Name: TextPlayer2Wins
 ° Location: -600,-1000,0
 ° Text: "0"
 ° Text render Color: Red
 ° World Size: 144

• Text Renderer 5:
 ° Variable Name: TextGameState
 ° Location: 230,-300,0
 ° Text: Game State
 ° World Size: 48

All of them have a horizontal alignment center and are rotated by 90 degrees on
the Y axis.

Tic-Tac-Toe

[60]

The final result should be something similar to the following:

If you run the game, you should see these text fitting perfectly around the grid. Let's
go back to the code and give these texts some dynamism.

Custom events
We have our macro to check whether someone is winning and we have our text that
can show it. Now, the problem is when to check whether someone wins and how to
use that macro properly?

The idea is to call the checkIfWin macro after every move from the Block script and
refresh the Game State Text Render, based on the result of the macro.

To call our macro, we use custom event. A custom event has the same property of
any other Event node, with the main difference being that we can add our input pins
as we did for the macros. It can be called anywhere in the Blueprint class owner and,
thanks to a reference, form anywhere in other classes.

Chapter 2

[61]

On our Grid class, right-click on EventGraph and search for the custom node. Add it
and call it OnMoveEnds. As you notice, the events usually start with On... (OnClick,
OnTouch, and so on), this is because an event is usually raised when something
specific happens in the game. In our case, we want to raise it on a player movement
end. Under the Input section, add an Input pin of the byte type and call it player.
Notice how this pin is an Output pin on the node that is already created.

Why? That is because an event needs to have a Caller and a Handler in order to work.
The following example may help you: think of the custom event as a bridge that
connects two roads that have a start and an end, and think of a truck as the game flow
of our game, and the road as our wires. When the truck reaches a bridge, it carries its
content from one side of the road to the other, maintaining its information from the
start to the end point, and for a brief period of time, without touching the ground.

This is basically what a custom event does; it connect two nodes without using wires,
carrying information needed at the arrival node during the crossing:

Now implement what we want the event to handle. The idea is to check whether the
output player is the winner. If it is, stop the game, show who wins, and update the
score. If not, keep playing and show who needs to move.

Tic-Tac-Toe

[62]

First, connect the event to a Branch node and the player with our CheckIfWin
custom macro. The result of the macro will be the Branch input:

Now, we have the starting point of our custom event; we need to call it in order to
activate it. Go to the block class and extend the execute node of the last Set Node.
You will find the On Move Ends event.

Add it and put the grid reference as Target and our Block State variable as the
player. Now, the event is called for every end of a movement as we wanted:

Chapter 2

[63]

Format text
Now, we need to dynamically modify text renderer. In order to do this, we use a
node called Format Text. This special node allows us to format a text with as many
input nodes as we want, adding them in between a string in the order that we prefer.

It uses pointers that are surrounded by the {} delimiters in order to build the text and
it returns a clean custom text that is built with our inputs.

Add a format text on our grid graph and, on the format field, write player {player}
wins! Notice how the node automatically adds the input node player for us:

As its player input, we will convert the byte value of the player variable with a text
one and use the result of this node as Value input for a Set Text node.

Extend the true output pin of Branch and add a Set Text that refers to our Text
Game State component, connect the correct pins, and now we can finally see,
if we test it, when and which player wins!

Tic-Tac-Toe

[64]

Now, we need to handle the false condition of the branch, or practically speaking,
when no one wins and the game state needs to show who needs to move.

We have multiple possibilities to achieve that. We need to think in a more general
way and, if we do that, we discover that is not only here that we need to show which
player needs to move, but also at the very beginning of the game. If not, the players
will start the game and won't know whose turn it is to move.

A custom event will be something that perfectly fits our needs. Create another
custom event called OnRefreshMoveText and use that event to set the two states:
player 1 moves or player 2 moves.

The steps of the game win state are the same. The main difference is that we use the
Is X variable instead of the player state to find out who needs to move:

Chapter 2

[65]

Now, we call this event in two places in our code; on the OnMoveEnds event,
connected to the False exec pin of Branch and after the creation of our block array,
at the end of the spawn blocks section:

Score
We need to handle the score now. We can use OnMoveEnds to refresh it but first of
all we need two integer variables that store the two players winning.

On the grid class, add two variables and call them Player1Score and Player2Score
and be sure their default value is set to 0.

Now the idea is that when a player wins, check whether the player is 1 or 2, add 1 to
the corresponding score and refresh its textRenderer.

Tic-Tac-Toe

[66]

Connect Branch to the Set Text (TextGameState) node. As a condition, we will
evaluate the player variable of the event with an equal (byte) node. Add it to the
player output variable and connect its output at the input of the last Branch that
we created:

Now, for each result of the branch node, we need to get the player score variable,
add 1 to its value, convert the integer value to a string, and set the string value to a
set Text node that refers its corresponding TextPlayerScore value:

Chapter 2

[67]

Game flow
If you test the game, you will immediately notice that, at the moment, you can see
the player who has to move, and which player wins. However, as soon as someone
wins, you are still able to click on the grid, and there is no way to start a new match.

We need to create our game flow that can handle the restart in order to have a fully
potential game.

First, we need a method that cleans our symbols from our array and make them
touchable again. As the only moment where a match needs to restart is when
someone wins, we can attach our restart code when the score refreshes.

The restart in this case is simple: for each element in the block array, set IsActive to
false, remove the mesh symbol, and set the BlockState variable to 0.

First, create a custom event in the block class and call it OnRestart. In this event,
connect the needed nodes in order to handle the single block reset state:

Tic-Tac-Toe

[68]

Secondly, on the grid class, create a ForEachLoop node. Set the target as the grid
reference array and on the output execution pin of the loop body, call the OnRestart
method with the array element as the target. With the ForLoop node, we will call
the OnRestart method for each of the elements that is contained on the array. Now,
connect both of the Set Text final nodes of our score to the input Exec pin:

Summary
In this chapter, you have created a fully functional pvp game based on tic-tac-toe
mechanics. At the moment, the game is playable and handles all the basics of the
game; however, there is a lot of improvement that we can implement in our code.

With the information given to you in this chapter, try to write your own code that
improves the game that you just created. There are plenty of choices and it depends
on you. Here's some suggestions of what you can do with the elements that you have:

• Improve the CheckIfWin macro. This macro can be done with only nine calls
to the isOwner macro.

• Handle the draw. Yes, it could happen that no one wins the match as no
other moves are possible. Implement this on the CheckIfWin macro.

Use a variable to store the number of blocks clicked on
the grid. If a match reaches the max number of blocks, it
means that no other moves are possible.

Chapter 2

[69]

• Wait for a player input before cleaning the grid. A player will like to see how
he loses or wins the match.

Delay the grid cleaning using a delay node or clean
the grid only after an input from the player.

• Create a macro that handles the game state text. We used a lot of Set text
nodes on our grid class, try to create a macro that unifies the win condition
and the turn string.

The macro has the player and the Is X variable as
input and a string variable as output.

• Create two buttons using the block mesh and our symbols in order to let the
player choose the symbol to start the game with.

Create a brand new Blueprint class so that a player's click affects
the Is X variable of the grid. Use another variable that handles
the menu and running state.

In the next chapter, we will get our hands dirty with some code. We will improve this
game by adding a basic AI and changing the UI with a much better Widget Blueprint
UI system, and we will see how to communicate between code and Blueprint.

[71]

C++ Code – PAC-MAN
In this chapter, you are going learn how to write a code in UE4. Blueprint, as we
saw in the previous chapters, is a wonderful tool that allows you to manage almost
everything that you need for your project. Almost, yes, as even the most complex
and complete tools have their limits and, at the moment, writing a code remains the
only way to produce games with 100% freedom for exactly what, where, and how
you want it.

In this chapter, we will cover the following:

• Creating a class
• Compiling and debugging a code
• Communicating between Blueprint and code
• Discussing navigation Meshes
• Discussing simple artificial intelligence
• Discussing collision type and preset
• Discussing player input

UE4 is different from its precursor UE3 that used its own scripting language
(UnrealScript). UE4 allows you to write your code in native C++. This should be
easy for those of you who already know this language and will make life easier for
those of you who are starting to learn the programming languages.

This chapter will focus primarily on the code. It requires a basic knowledge of C++.
Don't worry if you are not a programmer, the main focus of this book is to teach you
how to use Blueprint correctly, not how to program. Feel free to move ahead with
the book if you find yourself lost in this chapter, we won't talk about C++ in the
future chapters.

www.allitebooks.com

http://www.allitebooks.org

C++ Code – PAC-MAN

[72]

Preparing the game
As a game for this project, we are going to recreate the famous PAC-MAN. This is a
simple game that can introduce us to some important behaviors in a game: collisions,
movements, collectables, and enemies!

PAC-MAN, for those of you who don't know this game, is probably the most
famous arcade game of all time. Released on 1980 and developed by Namco, it is
recognized as being the longest running video game franchises from the golden
age of arcade video games:

The game is quite simple: the player guides PAC-MAN through a maze, eating the
dots along his path. When all the the dots are eaten, PAC-MAN is taken to the next
stage. There are four threats that roam the maze trying to catch PAC-MAN. If an
enemy comes in contact with PAC-MAN, PAC-MAN dies and the player loses a life,
only to respawn after a brief period of time on his respawn point. Enemies can be
eaten by PAC-MAN, thanks to some power-ups that are positioned around the map.

We are going to create this game in 3D, using basic shapes from the editor and a
top-down view camera.

Chapter 3

[73]

Let's check what we need as the assets for this game:

• PAC-MAN character: A yellow sphere
• Enemies: Four colored cylinders
• Maze: A collection of walls built using BSP brushes
• Dots: Little yellow spheres
• Power ups: Little red spheres
• Materials: Five plain color material (yellow, red, blue, pink, orange) and a

transparent blue material that is used when the enemies are vulnerable and
can be destroyed by PAC-MAN

Creating the project
None of the templates of UE4 can help us here. Therefore, through the launcher,
create a new empty C++ basic project, call it PacMan and click on Create Project
as follows:

C++ Code – PAC-MAN

[74]

You have now opened a Visual Studio project and the Unreal Editor in the
default scene with the chairs. Let's create a new level by navigating to File | New
Level, choose the default scene (the one with a plane and the light) and save it as
Level1.umap.

To keep everything in order, my advice is to create a folder section in the root of
Content Browser and call the assets Levels, Materials, Blueprints, and so on,
and move all the correct assets there.

The original PAC-MAN was built with 255 levels. Of course, we are going to build
just the first one, not all of those levels:

When you create your maps, you probably want to open one of them
by default when you open the editor. You can set the default map
by navigating to Edit | Project Settings and changing the Default
Maps under the Maps&Modes section.

Chapter 3

[75]

Now, create the four materials in the exact same way as we did in the previous chapter.

As mentioned earlier, the colors that we need are yellow, pink, orange, red, and blue.
Call them as follows:

• M_PacMan_Yellow

• M_Enemy_Blue

• M_Enemy_Red

• M_Enemy_Orange

• M_Enemy_Pink

C++ Code – PAC-MAN

[76]

Transparent materials
The transparent material for the vulnerable enemies is quite easy. In the Material
section of the Details panel, change Blend Mode to Translucent. You will
immediately notice that the preview changes and the Opacity channel is now
available. Connect a constant node to it and set it to 0.25. The higher this value is, the
less transparent the material becomes:

The maze
For the maze, we again use the BSP brushes. It is a tedious process as we need to
draw all the single walls one by one; however, with my suggestions, you will surely
find it easier.

If you still don't want to waste your time designing the maze, you can download the
level from here: (www.nicolavalcasara.it/packt). Here, you can find the .umap
file with the maze that we are going to create.

Before starting to mess around with BSP, it is always good practice to write down
some rules about what you are going to create. In this case, as the maze is based on
a square grid, we set a single square side to be 100 u (units) and walls to be of 100 u
height x 10 u width.

Chapter 3

[77]

There are no special rules about the maze design. We only need
to remember to set an enemy spawn point (usually in the middle
of the map) and design a maze without exit points.

The original PAN-MAN, as you can see from the previous image, uses a square grid
of 10 x 10 cells (simplifying only with the walkable zones). For this level we are going
to copy the same layout, keeping the camera fixed on top of the maze.

The following image shows you a smart way to design your levels. Print a square
grid, keeping in mind the rules that we discussed earlier, and draw your maze with a
pencil. When you are ready, just translate what you drew in the editor:

Never underestimate math! A nice pre-calculated level that is
designed using set rules is an easier and faster way to draw than a
level that is drawn by hand with objects positioned by eyes. Try to
notice how this rule is applied in any game that you play, even the
most recent ones. Above all, our brains will immediately notice if
something is not symmetrical, giving us the signal that something
is wrong.

C++ Code – PAC-MAN

[78]

Designing the maze
Open the Level Editor that we created earlier and switch the viewport to show all
the four views (top, left, front, and perspective) using the maximize or restore this
viewport button on the top right-hand corner of it.

If you want, you can use only one of them or switch between
them using the Alt + G, H, J or K shortcut.

I prefer this setting when I need to place new objects. The four viewports together
provide no room for mistakes or misplaced objects:

The floor of the maze needs to be, as said, 10 x 10 cells of 100 u each. Let's measure
how big the default plane is in order to check whether we can use it.

To measure anything in the editor, you can use middle mouse button + drag on each
of the top, front, or left viewport windows. This immediately gives you a number (in
unreal units) denoting the exact distance between these two points.

As you can notice, the square is 1,000 x 1,000 u and it is exactly what we need for the
maze. Nice. We can immediately start to build our walls.

Chapter 3

[79]

Make sure that the plane is at 0 on the z coordinate and add a cube BSP brush on top
of it. Let's start at the borders. Set the dimension of the brush to X:10, Y:1,000, and
Z:10. The location will be -500 for X, 0 for Y, and half of this height for Z (50):

Now, instead of creating new cubes for each piece of wall, we can duplicate what we
just did and move it to the correct place. In order to duplicate an object, select and
drag the object around while pressing Alt.

Only change X of the duplicated wall to 500, all the other properties remain the same.

C++ Code – PAC-MAN

[80]

Now, duplicate the wall twice, rotate them by 90 degrees on the z axis and position
them on the other sides of the perimeter of the plane. Now, we have a nice plane that
is surrounded by perfectly positioned walls:

You should be able to replicate all the walls by yourself, just remember that the cell
section is 100 units and the wall is 10 u thick. The final result should be something
like the following image:

Chapter 3

[81]

Nice; however, it is quite dull to see all those gray outlines everywhere. This is
because we have not applied any material yet. Applying material on a BPS brush
is not as straightforward as it was when we applied the Static Mesh in the previous
chapter. The editor doesn't view BSP as a single object, but rather as a collection of
surfaces. A cube, as you know, has six different surfaces. Following the rules of the
editor, we can have six different materials for each section of wall; however, this is
not exactly what we want.

You will then wonder: why not convert the whole maze to a single giant Static
Mesh, as we did for the tic-tac-toe symbols? In this way, we can apply a single
material for the whole object all at once.

This is not a bad idea, yet, it is not a good solution either. If you remember, I
recommended avoiding the BPS brushes in order to create your Static Mesh. There
are issues with this method (especially, lighting ones) and Epic is still working on
finding a good solution. At the moment, leave BSP as it is, without conversions.

Applying a material to multiple surfaces
Even if it sounds like a simple operation, selecting multiple surfaces is not so
straightforward. When talking about BPS brushes, there are two different types
of selection:

• Brush selection
• Surface selection

A brush selection occurs when you click on the vertex of a brush, or select it from the
world outliner, or when you select more than one brush with the multiple selection
from viewport. This enables the transform and the Brush Settings in the Details panel:

C++ Code – PAC-MAN

[82]

On the other hand, a surface selection appears by directly clicking on the surface of the
brush. This enables the Surface Material and the Geometry section to appear in the
Details panel:

You can select more than one surface together using Ctrl + left–click;
however, be careful as it is easy to miss clicking a surface and lose
the selection.

To select all the surfaces of our maze, we can select all the
surfaces by hand by clicking them or use Gemeotry Select Tool.

Select one wall and, on the Details panel, navigate to Select | Select matching
materials. In this way, all the surfaces that are without a material are automatically
selected and ready to be modified together.

Chapter 3

[83]

Drag and drop a material from Content Browser in Element 0 if it is Surface
Materials, or directly click on the Material itself to show the menu. If you added
Starter Content when creating the project, you can find some interesting wall
materials, if not, just create a material on your own and add it. I used M_Basic_Wall
and M_Basic_Floor for this, and the result is as shown in the following:

Better, isn't it? However, there is still something that is unfinished in this maze. If
you notice, all the corners show a little overlap. You can leave this as it is or, if you
want everything to be perfect, just add 10 (the thickness of the wall that causes this
ugly result) to all the vertical or horizontal walls.

Unfortunately, this will cause another issue. In some parts of
the maze, some of the walls will have a distance of only 95 u
instead of 100 u. However, we can live with this.

C++ Code – PAC-MAN

[84]

The code
We are done with the editor, for now. It is time to open our Visual Studio project and
add the logic of the game.

C++ code in UE4 is called assisted C++, meaning that there are a lot of features and
conventions that help people to write fully working classes in minutes, even without
code experience.

Open the Visual Studio project by double-clicking the .sln file in the root folder of
the project or navigate to File | Open Visual Studio from the editor.

You will see that some files are already present in Solution Explorer. Let's take a
look at these files:

Chapter 3

[85]

First, you will notice that there are two projects in your solution. The first one is the
whole engine source code. You will usually never touch it as it is easy to make a
mistake owing to the complexity of the engine, and you should not change anything
in it unless you are an expert. Also, there is a whole company that is updating that
code frequently, improving it at least once a month.

The second project is our game. The root folder is Games. Typically, it just contains
our game project and you should be able to create a whole new solution project for
each game that you are making. However, if you want, this is where you can add
new game projects.

In this folder, you will find the following:

• Config: All the .ini files go here. The .ini files are program configuration
files that are used to set values for properties that will be initialized when
the project is loaded. Configuration is determined by key-value pairs that are
arranged in sections. One or more values can be associated with a given key.
Here are stored by default the editor, engine and game preferences are stored
by default.

• External Dependencies: This folder is added by Visual Studio. It contains
the headers of the classes that are detected to be in use at some point in the
code. Do not modify anything in this folder.

• Source: This is the root folder of the code of the game. This is the folder
where all the headers and the classes that we create will go.

• YourProject.UProject: This is the descriptor file of the project. It contains
information such as the file version, engine version, name, and so on. It is
automatically updated and there is usually no need to modify it manually.

The Source folder, as you can see, already contains some of the classes, as follows:

• PacMan.Build.cs: This class is created by UnrealBuildTool (UBT), the
tool that manages the process of building the engine source code across the
numerous possible build configurations. This class controls how the engine is
built, including options to define module dependencies, additional libraries,
included paths, and so on. If you open it, you can see which modules are
used by default in our game (Core, Engine, InputCore, and CoreUObject) and
the online module and the Slate UI under comment.

• PacMan: This is the entry point of the application, this is the first class that
will be seen when you build the project and from here you set the needed
game modules and the engine itself. It is very rare that this file will need any
modifications as compared with the engine or the .cs files.

C++ Code – PAC-MAN

[86]

• PacManGameMode: This is the game mode class. This is the only class that is
also visible on the editor at the moment.

• PacMan.Target.cs and PacManEditor.target.cs: Like build.cs, these
two files are used to determine how to build the project, specifically,
the game and the editor respectively. You can see from the Solution
configuration, that there are two choices for each build setting: Debug/Debug
editor, Development/Development Editor and so on.

Class Wizard
Let's create our first class using the engine Wizard. Navigate to File | New C++
Class....A window appears that is very similar to the ones that appear when we add a
new Blueprint class and choose the parent of our class. Let's select Actor and click Next.

Call it Collectable (yes, this will be the dot that the PAC-MAN needs to eat) and
click on Public. Notice how the Wizard will autofill the correct paths for us, adding
the Public and Private subfolders for our header and cpp files:

A public class is the class that can be accessed by different modules,
while a private class can be accessed only in the module that we
select in the Wizard window.

Chapter 3

[87]

As there is only one module (PAC-MAN) and we will be using it in this game,
it doesn't really matter what we choose and we would have all the classes in the
root folder; however, it is a good practice to subdivide headers and code in a
well-organized manner with a subfolder like Unreal recommends.

Click on Create Class and go back to Visual Studio. Notice how the two files are
created and already have some functions implemented.

Check the header to see what the editor has added for us, as shown in the following:

#pragma once

#include "GameFramework/Actor.h"
#include "Collectable.generated.h"

UCLASS()
class PACMAN_API ACollectable : public AActor
{
 GENERATED_BODY()

public:
 // Sets default values for this actor's properties
 ACollectable();

 // Called when the game starts or when spawned
 virtual void BeginPlay() override;

 // Called every frame
 virtual void Tick(float DeltaSeconds) override;
};

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

You will immediately see two lines in which our parent is referred: the inclusion of
the Actor header and the ACollectable class that extends AActor.

UCLASS() is the special keyword that allows us to see and
handle this class in the editor.

http://www.packtpub.com
http://www.packtpub.com/support

C++ Code – PAC-MAN

[88]

The syntax for any new class in UE4 is as follows:

UCLASS()
Class NameModule_API NameClass : (extends OtherClass)
{
 GENERATED_BODY()
};

There are three class methods added by default, as shown in the following:

• ACollectable(): This is the constructor of the class. Here, the default
values of variables are initialized and references are added to other
classes or components.

• BeginPlay(): This is the initializer. This function is called when the class is
called/created during the gameplay. Here, we can set the starting behavior
of the class or handle an event in the game.

• Tick(deltaSeconds): This is the Tick function, it is a typical function that
you can find almost everywhere when talking about game development. It
can have different names such as Update (like in Unity), Loop, MainLoop, and
so on. Basically, it always follows the same principle—called before every
frame update during gameplay.

The DeltaSeconds parameter (or DeltaTime) is the time elapsed since the game
was last update. This concept was introduced in order to remove the effects of lag
on computers that try to handle complex graphics or a lot of code. This is done by
adding up the speed of objects so that they will eventually move at the same speed,
regardless of the lag.

Collectable
A collectable object is an object that, as the name suggests, can be collected by
another object. It is composed of a collision component and a graphic element
and it usually performs an event when touched.

Our collectable is the easiest type of collectable. It doesn't spawn, it is simply
destroyed when collected and sits where it is positioned, doing nothing, until
the player touches it.

Having said this, let's start removing the useless functions from the collectable class
that we just created. Delete the BeginPlay() and Tick() functions from the .h and
.cpp files.

Chapter 3

[89]

Now, we need to add the two components needed for our collectable, as follows:

• Static Mesh component
• Collision Sphere component

Let's declare them in the header file on top of the public keyword:

USphereComponent* BaseCollisionComponent;
UstaticMeshComponent* CollectableMesh;

We just created two pointers for two components. They still aren't visible in
the editor. For them to be visible in the editor, we need to set UPROPERTY before
declaring them.

The UProperty variables are declared using the standard C++ syntax with additional
descriptors, such as variable specifiers and metadata that is placed above the
declaration. The syntax is as follows:

UPROPERTY([specifier, specifier, ...], [meta(key=value, key=value,
...)])
Type VariableName;

There are different specifiers for many of your requirements. However, in this case,
we want the previously mentioned components to be editable from the editor in
order to modify them. If needed mesh, size, or any other property can be specified
here to be seen and edited within the editor. The final result is as shown in the
following code:

UPROPERTY(EditDefaultsOnly, Category = Collectable)
USphereComponent* BaseCollisionComponent;

UPROPERTY(EditDefaultsOnly, Category = Collectable)
UStaticMeshComponent* CollectableMesh;

Any property can be categorized and, as you see here, we added the Collectable
category. They are automatically sorted in the editor.

Now, another variable is needed. We know that PAC-MAN can collect two types
of pills—the basic yellow ones and a special one that makes the enemies vulnerable
for a short period of time. To achieve this behavior, we use a simple Boolean
variable. Like the other properties, we want it to be editable in the editor. Add the
following lines:

UPROPERTY(EditAnywhere, Category = Collectable)
bool bIsSuperCollectable;

C++ Code – PAC-MAN

[90]

The final heading looks as follows:

#pragma once

#include "GameFramework/Actor.h"
#include "Collectable.generated.h"

UCLASS()
class PACMAN_API ACollectable : public AActor
{
 GENERATED_BODY()

public:
 // initializer of the class.
 // Witout the objectInitializer argument from 4.7
 ACollectable();

 UPROPERTY(EditDefaultsOnly, Category = Collectable)
 USphereComponent* BaseCollisionComponent;

 UPROPERTY(EditDefaultsOnly, Category = Collectable)
 UStaticMeshComponent* CollectableMesh;

 UPROPERTY(EditAnywhere, Category = Collectable)
 bool bIsSuperCollectable;
};

Now, let's implement them in the cpp file. Open Collectable.cpp and set the tick
event frame (PrimaryActorTick.bCanEveryTick) to false. We don't really need
to do this but any performance improvement, even the smallest, is important to
any game.

Collisions in the engine are disabled by default. Add this line under the line that we
just modified in order to enable the collision to be called by the script:

SetActorEnableCollision(true);

Now, set the collision component with the following line:

BaseCollisionComponent =
 CreateDefaultSubobject<USphereComponent>(TEXT
 ("BaseCollisionComponent"));

Chapter 3

[91]

CreateDefaultSubobject is a method that takes a type class and an input name and
adds the type component, if valid, as a component of our class. We will do the same
for the Static Mesh and attach it as a child of the collision component:

CollectableMesh =
 CreateDefaultSubobject<UStaticMeshComponent>
 (TEXT("CollectableMesh"));
CollectableMesh->AttachTo(BaseCollisionComponent);

Now, you can compile the code by clicking on the Compile button from the toolbar
of the editor and, when finished, you can see this class appearing in Content
Browser with a little white sphere. This class is now usable as a parent when creating
a new Blueprint class, as we saw in the previous chapter. By doing this, you will
be able to modify the components that we created in our code and add as many
instances as you want in the level.

We can go further. We already know that the mesh will always be a sphere and we
can set the collision size directly on the code as it is a static object.

With the help of the code, we can find references to any object on Content Browser
using the ConstructorHelpers struct. To find a reference of any of our object in
Content Browser, we can right-click on the object that we want a reference for and
click on Copy Reference. The code should be as follows:

static ConstructorHelpers::FObjectFinder<UStaticMesh>
 Sphere(TEXT("StaticMesh'/Engine/BasicShapes/Sphere.Sphere'"));

With this reference, we can simply set the Static Mesh of the component by using the
following code:

If(Sphere.Succeeded())
 CollectableMesh->SetStaticMesh(Sphere.Object);

Every time you retrieve an object from Content Browser, it's good
to check whether the object is found by calling the Succeeded()
method before assigning it.

We can also set the mesh and collision sizes to fit the game. Remember that with
EditDefaultsOnly, we can modify the parameters if required in the editor as well.
However, writing them here in the code will save some time in the future:

CollectableMesh->SetWorldScale3D(FVector(0.3,0.3,0.3);
BaseCollisionComponent->SetSphereRadius(16);

C++ Code – PAC-MAN

[92]

Ok, we are finished with this object for now. It is time to use it in the editor and start
populating the level. Just for your reference, the complete code is as follows:

#include "PacMan.h"
#include "Collectable.h"

// Sets default values
ACollectable::ACollectable()
{
 // disable the tick call
 PrimaryActorTick.bCanEverTick = false;

 //enable collisions
 SetActorEnableCollision(true);

 //initialize the collision sphere component
 BaseCollisionComponent =
 CreateDefaultSubobject<USphereComponent>
 (TEXT("BaseCollisionComponent"));

 //initialize the mesh for the collectable and attach to the root
 CollectableMesh = CreateDefaultSubobject<UStaticMeshComponent>
 (TEXT("CollectableMesh"));
 CollectableMesh->AttachTo(BaseCollisionComponent);

 // find a reference to the sphere mesh and set it
 static ConstructorHelpers::FObjectFinder<UStaticMesh>
 Sphere(TEXT("StaticMesh'/Engine/BasicShapes/Sphere.Sphere'"));
If (Sphere.Succeeded())
 CollectableMesh->SetStaticMesh(Sphere.Object);

 // set the default parameters of the collectable
 CollectableMesh->SetWorldScale3D(FVector(0.3, 0.3, 0.3));
 BaseCollisionComponent->SetSphereRadius(16);
}

Chapter 3

[93]

Back to the editor, we can see that after compiling under the C++ classes from the
content browser, the Collectable class has a sphere mesh on it and the size fits
the maze spaces perfectly when added on the stage. The only thing that needs to
be added in the editor is the material, which can be of two types: the standard ones
yellow and the special red ones:

Adding a material to this collectable is the same process used for the symbols in the
previous chapter. From the Details panel, just click the Collectable mesh component,
search for our M_PacMan_Yellow material under Material 0, and set it to the same.
Now, duplicate the whole object in order to have one of them in each cell.

Use the different viewports to position the collectables correctly
and make sure that every position is a multiple of 50 u and
exactly in the center of the cell.

C++ Code – PAC-MAN

[94]

You should end with a maze full of collectables everywhere, as shown in the
following image:

Chapter 3

[95]

There are obviously some spaces where the collectables shouldn't stay, and we need
to convert four of them to special collectables.

First, remove the one at the bottom to the left and the four collectables in the enemy
spawn point. These are places where the enemies and player will spawn. We don't
want a collectable there!

Second, choose four collectables from anywhere on the map, considering that they
should allow, the player to create a strategy while moving through the maze. For
these collectables, change the material to a different one (I used M_Enemy_Red;
however, you can create another if you desire) and set the Is Super Collectable
Boolean variable to true by clicking on the instance from the Details panel. As you
will notice, by setting UPROPERTY to EditAnywhere, we can find it exactly where we
want it—under the Collectable category:

With all the collectables in position, we are now ready to create the hero of our game.

C++ Code – PAC-MAN

[96]

Player character
The character is one of the most important objects needed in a game. The player
interacts with the elements of the game through the character, which has a lot of
behaviors. In our game, the character needs to be able to move, eat the collectables,
die or kill enemies, and be responsible of winning or losing the game.

Let's start by adding a new class from the Wizard, call it PacManCharacter and
choose Character as its parent.

Movements
First, let's implement the movement of the character. In order to achieve this, we
override the SetupPlayerInputComponent method and through it, we will bind the
keys that a player can use.

By binding a key, the code will call a function whenever the player hits the
corresponding key. There are two different types of input binding on Unreal: action
and axis. An action rises whenever a bind event occurs (touch the screen, press a
key, release a key, and so on), and it can have either one of the two values—true
or false; on the other hand, the axis shows a value range (usually between -1 and
1) besides the true/false action. For example, this is used to determine the exact
value of the throttle on a joystick.

Before binding anything, we need to set the input keys from the editor. The editor
allows different kinds of input, right from the simple keyboard button to the Microsoft
Kinect Gesture. We can set them by navigating to Edit | Project Settings | Input.

Chapter 3

[97]

For our game, we want to be able to control the movement of our PAC-MAN using
the arrows keys and also control the x axis and the y axis movement. On the Axis
Mappings section, double-click on the + button in order to add an axis control, and
rename these two axes as MoveX and MoveY. For each group that is created, add
two key values by clicking on the + button. For the x axis, search for the keyboard
Left key | and keyboard Right |, setting their values at -1 and 1 respectively. Use the
Up and Down keys for the MoveY axis, again with the -1 and 1 values respectively:

As we are here, we can also add the action value to control the game flow. We want
the player to be able to stop, restart, or create a new game.

Add the three Action Mappings, call them NewGame, Pause, and Restart
respectively, and set three letters key to the mapping: N, P, and R. From the Action
Mappings section, you can also set the action to only perform if a combination of
keys is pressed (for example, ctrl + selected key).

With this setup, we are now able to handle the keys actions from the code. On
PacManCharacter.cpp, find the SetupPlayerInputComponent function and add the
following lines after the super method:

// bind the input from the player
InputComponent->BindAxis("MoveX", this,
 &APacManCharacter::MoveXAxis);
InputComponent->BindAxis("MoveY", this,
 &APacManCharacter::MoveYAxis);

C++ Code – PAC-MAN

[98]

InputComponent->BindAction("NewGame", IE_Pressed, this,
 &APacManCharacter::NewGame);
InputComponent->BindAction("Pause", IE_Pressed,this,
 &APacManCharacter::Pause);
InputComponent->BindAction("Restart", IE_Pressed, this,
 &APacManCharacter::RestartGame);

We obviously need to declare these functions on the header in order to use them;
therefore, go back to the header, and on the private section add them, as follows:

private:

// movement handlers
void MoveXAxis(float AxisValue);
void MoveYAxis(float AxisValue);

// key events
void NewGame();
void Pause();
void RestartGame();

Notice how the axis binding functions have a float value parameter.
This is the parameter that is returned from the axis input. In this
case, it can return only -1 or 1; however, if the input is a joystick, the
returned value is between these values and not necessarily exactly
these numbers.

We now receive inputs from the keyboard and have a function that handles the key
that is pressed. We can now use these functions to set the velocity of the player. In
order to do this, we can store the read AxisValue read from the Keyboard Inputs in
a vector variable. And, thanks to the AddMovementInput character method, we can
move the player around:

FVector CurrentVelocity;// the current velocity of the player

We can now implement the axis function, as shown in the following:

void APacManCharacter::MoveXAxis(float AxisValue)
{
 CurrentVelocity.X = AxisValue;
 AddMovementInput(CurrentVelocity);

}

void APacManCharacter::MoveYAxis(float AxisValue)
{
 CurrentVelocity.Y = AxisValue;
 AddMovementInput(CurrentVelocity);
}

Chapter 3

[99]

This is the simplest way to add control for our character. There are plenty of methods
and functions that are available to manipulate character movements; however, with
this simple setup, you will have a simple moving object straightaway. It can also be
improved by changing some variables from the editor. We will take a further look at
them in the Chapter 5, Top-Down Shooter.

Now, let's implement the three game flow keys that we added to our character. In
order to use them properly, we need to create a game state enumerator. This will
allow us to switch between the different states of a game (playing, in pause, game
over, win, and so on) and more importantly, enable us to have a single state for each
moment of the gameplay.

Open the PacManGameState.h file and just after the #include statements at the very
beginning, create a new enumerator, as follows:

enum class EGameState : short
{
 EMenu,
 EPlaying,
 EPause,
 EWin,
 EGameOver
};

Now, this is a little tricky. We want to know the state of the game from the other
classes as well; however, we have to make sure that this variable is modified from
nowhere except the game state class.

We can modify the state from other places; however, not before checking it with a
dedicated function. This is how getter and setter work.

Add the following lines on the public section of the header:

public:
// getter of the game state
EGameState GetCurrentState() const;

// setter of the game state that handle further operations
void SetCurrentState(EGameState value);

Then, declare the state in the private section:

private:
EGameState CurrentState;

C++ Code – PAC-MAN

[100]

Implement them in the C++ class as shown. As you can see, they simply set or return
the value of our currentState private enumerator:

void APacManGameMode::SetCurrentState(EGameState value)
{
 currentState = value;
}
EGameState APacManGameMode::GetCurrentState()
{
 return currentState;
}

Now that we have the game state code handler, we can go back to the character and
complete the game flow functions as we did earlier.

The idea is to simply change the game state of the GameMode class when pressing the
binded keys. It is quite simple to achieve this. We need to create a reference to our
game mode and call the SetCurrentState() function through the referenced variable.

On the header of the character, under the private declarations, add the following lines:

APacManGameMode* GameMode; // pointer to the game mode

The game mode heading needs to be included at the very beginning of the file:

#include "PacManGameMode.h"

We will initialize the GM variable by casting it to our game mode class on the
BeginPlay() function, as follows:

GameMode =
 Cast<APacManGameMode>(UGameplayStatics::GetGameMode(this));

Now, we are ready to change the game state or read its state whenever we want. The
three functions for the game flow look similar to the following:

void APacManCharacter::NewGame()
{
 if (GameMode ->GetCurrentState() == EGameState::EMenu) {
 GameMode ->SetCurrentState(EGameState::EPlaying);
 }
}

// toggle the pause. action fired only between playing and pause state
void APacManCharacter::Pause()
{

Chapter 3

[101]

 if (GameMode ->GetCurrentState() == EGameState::EPlaying) {
 GameMode ->SetCurrentState(EGameState::EPause);
 }
 else if (GameMode ->GetCurrentState() == EGameState::EPause){
 GameMode ->SetCurrentState(EGameState::EPlaying);
 }
}

// restart the game
void APacManCharacter::RestartGame()
{
 GetWorld()->GetFirstPlayerController()->
 ConsoleCommand(TEXT("RestartLevel"));
}

As you can see, NewGame and Pause switch the game state. The only one that doesn't
need changes to its state is RestartGame. It simply uses a hacked method that forces
the whole stage to restart by using ConsoleCommand.

Collisions
The player can move as it has a handler for the different states and receives the
correct input for a game flow. The next step is to add collision events to it in order to
make it receptive of the other objects in the level.

As mentioned, collisions are disabled by default. Therefore, let's set our actor
to handle the collisions as we did for the collectable. On the initializer, add the
following line:

SetActorEnableCollision(true);

Let's analyze what collisions are supposed to do. When colliding with a collectable,
the player is supposed to destroy the collectable object, check whether it was the last
collectable in order to win the level and whether it was a super collectable in order
to debilitate the enemies. When colliding with an enemy, the player is supposed
to either die or kill it if the enemy is weakened by then. The most important thing,
which is not mentioned in the code, is that with collisions enabled, our PAC-MAN is
able to walk around the maze and hit the walls. Without collisions, the player would
just pass through the floor and fall.

C++ Code – PAC-MAN

[102]

To achieve the collision, we add a delegate to the OnComponentBeginOverlap
method and attach it to the collision component of our character. A delegate allows
us to call the member functions on other C++ objects in a generic and type-safe way.
In this particular case, when the character collides with something, we can raise the
collision event in that collided object without being obligated to know exactly which
object it is.

The following are the delegated method arguments:

Void DelegateFunction(class AActor* otherActor, class UComponent*
 otherComponent, int32 OtherBodyIndex, bool bFromSweep, const
 FHitResult& SweepResult);

It looks complex; however, on analyzing it, we know that it just has useful
information about the collision detection. The sequence of properties is the follow:

• The actor that it collides with
• The specific component hit
• The index of the body that is hit
• Whether the hit is from a sweep
• The sweep result (useful for calculating bouncing behaviors)

The last two arguments are optional; therefore, our functions look as shown in
the following:

UFUNCTION()
void OnCollision(class AActor* OtherActor, class
 UPrimitiveComponent* OtherComp, int32 OtherBodyIndex);

This should be added on the header in the private section.

Now, add the delegate to our collision component. This code is added on the
BeginPlay method:

// set the handler of the collision
GetCapsuleComponent()->OnComponentBeginOverlap.AddDynamic(this,
 &APacManCharacter::OnCollision);

Let's implement the OnCollision function:

void APacManCharacter::OnCollision(class AActor* OtherActor, class
UPrimitiveComponent* OtherComp, int32 OtherBodyIndex, bool bFromSweep,
const FHitResult & SweepResult)
{
 // enter on deeper check only if playing
 if (GameMode->GetCurrentState() == EGameState::EPlaying)

Chapter 3

[103]

 {
 // check if is a true collectable
 if (OtherActor->IsA(ACollectable::StaticClass()))
 {
 // in any case, destroy that collectable!
 OtherActor->Destroy();
 }
 }
}

This is a good starting point for our collision method and it is pretty easy to
understand. When the player collides with something, firstly, check whether we are
in the EPlaying state. If yes, check what is the collider, and if it is a collectable then
destroy it.

Winning or losing the game
The win/loss mechanism is very simple. If all the collectables at the scene are
eaten/finished, then we win. If PAC-MAN loses all the lives, then we lose.

To handle the winning condition, we do the following: as soon as the game starts,
count how many collectables are in the levels and store it in the player controller.
Every time the player collects one of them, decrease that variable, and if that value
reaches 0, set the game state to win.

Handling the losing condition is very similar: store the number of lives of the player
in a variable and decrease that value every time the player is hit by an enemy. If that
value reaches 0, set the game state to lose.

Let's start by adding these two variables in the header of PacManCharacter:

uint8 CollectablesToEat; // total collectables in order to win
uint8 Lives; // player total lives

The win handler can be achieved with just a line of code. In the OnCollision
function, just after the cast to the collectable object, add the following:

if (--collectablesToEat == 0) {
 GameMode->SetCurrentState(EGameState::EWin); }

With the double minus math symbol before the name of the variable, we decrease its
value by one before evaluating it, and change the game state to Win when that value
reaches 0.

C++ Code – PAC-MAN

[104]

In order to count a certain object in a level, we use an iterator. This special function
counts all the objects of a certain type in a given world. If used in a loop, it is easy to
count them. The function should be added in the BeginPlay() function, and it looks
as shown in the following:

// find out how many collectables the player need to eat in order to
win
for (TActorIterator<ACollectable> CollectableItr(GetWorld());
 CollectableItr; ++CollectableItr)
{
 collectablesToEat++;
}

Dead
The lose condition is not exactly like the win one. There is a middle step called
Dead. A player dies when an enemy hits it. Before respawning, we need to decrease
the number of lives by one, and if the player has enough lives, he can return to the
spawn point and continue the venture.

We need a Kill function and a vector variable to remember where the player starts.
Add them to the header:

FVector StartPoint; // the start point of the player
void Kill();

Set the start point as the actor location at BeginPlay and implement the Kill
function, as shown in the following:

// inside the BeginPlay() Function
StartPoint = GetActorLocation(); // simple get the player location
Lives = 3; // set the full life when start

// kill function
void APacManCharacter::Kill()
{
 if (--lives == 0) {
 GameMode->SetCurrentState(EGameState::EGameOver);
 }
 Else {
 SetActorLocation(StartPoint);
 }
}

Chapter 3

[105]

C++ class to Blueprint class
We are now done with the code for the character. Now, we can complete it by adding
a mesh and adjusting this aspect to fit the game.

Go back to the editor and compile the code. Everything should compile without any
error. If you receive any error, go back to the previous sections and check the code.
If you still don't succeed, remember that you can find all the source code and the
games on www.nicolavalcasara.it/packt.

We are going to create a Blueprint class that inherits from the PacManCharacter
class that we just created. You can do it by creating a new Blueprint class and
searching for our class as parent.

Create a Blueprint folder and name this new Blueprint class BP_PacMan. You
should be at a familiar place now. We are going to build PAC-MAN by using a
simple sphere as the body and two other little spheres as eyes, just to see where the
character is headed towards.

From the Components panel, add a new Static Mesh component and set its mesh as
the default Shape_Sphere. Move it a little lower in order to be in the middle of the
collision capsule and change its material to our M_PacMan_Yellow.

Add two other spheres as children of the the first one, set them to a dark material,
and positon and scale them down to be like the eyes of our PAC-MAN.

Be sure that the eyes are facing the correct direction,
which is shown by the big blue arrow.

The whole object needs to be resized to a 0.8 scale and CapsuleComponent needs to
be resized as well. Set its half height property to 60 and its radius to 40 on the Shape
section of the Details panel.

www.nicolavalcasara.it/packt

C++ Code – PAC-MAN

[106]

The final result should be as follows:

Enemies
After the good guy, there needs to be the bad guy too. We have four of them! The
process of making an enemy is similar to the main character: we will create a class
extending ACharacter and the required functions in it. The only difference is that
while we control the PAC-MAN character directly, the enemies need to have their
own brains that tell them how to move and what to do.

This is called artificial intelligence (AI) and there is a dedicated parent that can be
used exactly for this called AIController.

Create two new C++ classes: the first one called Enemy that extends ACharacter and
the second one called AIEnemy that extends AAIController. Set them as public
similar to the other classes.

Chapter 3

[107]

Enemy Pawn
Let's start with the enemy character class. We will use a simple colored cylinder
as mesh. The components that are used are the same as that of the other object: a
capsule used for the collision and a Static Mesh used as a graphic element. The idea
of this object is that the enemy will continue to walk randomly through the maze
and, if the enemy becomes vulnerable, it needs to run quickly to its house in order to
recover its life; whereas if it is normal, it will need to kill the player.

We will use two functions to swap between vulnerability and a timer that handles
how long the enemy can be killed by the player.

The only variable that we want to be editable in the editor is the Static Mesh. This
will allow us to change the color of each individual enemy that is positioned in the
map, the other behaviors and variables are all handled in the code. The following is
the header of the Enemy class:

#pragma once

#include "GameFramework/Character.h"
#include "AIEnemy.h"
#include "PacManCharacter.h"
#include "Enemy.generated.h"

UCLASS()
class PACMAN_API AEnemy : public ACharacter
{
 GENERATED_BODY()

public:
 // Sets default values for this character's properties
 AEnemy();

 // Called when the game starts or when spawned
 virtual void BeginPlay() override;

 // called when colliding with something
 UFUNCTION()
 void OnCollision(class AActor* OtherActor, class
 UPrimitiveComponent* OtherComp, int32 OtherBodyIndex, bool
 bFromSweep, const FHitResult & SweepResult);

 // make it editable in the editor in order to set its starting
 material
 UPROPERTY(EditDefaultsOnly, Category = Body)

C++ Code – PAC-MAN

[108]

 UStaticMeshComponent* EnemyBody;

 void SetVulnerable();
 void SetInvulnerable();

 void SetMove(bool MoveIt);
 void Kill();
 void Rearm();

 bool bIsDead;

private:

 bool bIsVulnerable;

 FTimerHandle TimerVulnerable;

 class UMaterialInterface* DefaultMaterial;
 class UMaterialInterface* VulnerableMaterial;

};

As you can see, apart from the functions that we have already seen, there is a timer
(the FTimerHandle type) and two UMaterialInterface that we use to store the two
different materials of the enemy.

Let's implement this in the cpp class.

In the constructor function, we create the enemy object, adding the mesh and
setting its size and material. The only new thing that you can notice here is the
AIControllerClass call. In that last line, we tell the editor that this character
will be controlled by AIController:

#include "PacMan.h"
#include "Enemy.h"

AEnemy::AEnemy()
{
 SetActorEnableCollision(true);

 // construct the object with meshes, sizes and everything needed
 GetCapsuleComponent()->SetCapsuleRadius(40.0f);
 GetCapsuleComponent()->SetCapsuleHalfHeight(50.0f);

 // add a cylinder shape to the enemy and set its size
 static ConstructorHelpers::FObjectFinder<UStaticMesh>CylinderObj
 (TEXT("'/Game/StarterContent/Shapes/Shape_Cylinder'"));

Chapter 3

[109]

 EnemyBody = CreateDefaultSubobject<UStaticMeshComponent>
 (TEXT("Body"));
 EnemyBody->StaticMesh = CylinderObj.Object;
 EnemyBody->SetRelativeScale3D(FVector(0.7f, 0.7f, 1.0f));
 EnemyBody->AttachTo(RootComponent);

 // set the vulnerable material, same for all the enemies
 static ConstructorHelpers::FObjectFinder<UMaterial>VulnerableMat
 (TEXT("'/Game/Materials/M_Enemy_Vulnerable'"));
 VulnerableMaterial = VulnerableMat.Object;

 // set our custom AI class as controller
 AIControllerClass = AAIEnemy::StaticClass();
}

In the initializer, we simply store the actual enemy material and bind the collision
event when something overlaps with our collider:

void AEnemy::BeginPlay()
{
 Super::BeginPlay();

 // store its material for when he respawn
 DefaultMaterial = EnemyBody->GetMaterial(0);

 // add the collision handler
 GetCapsuleComponent()->OnComponentBeginOverlap.AddDynamic
 (this, &AEnemy::OnCollision);
}

The SetMove function will handle the pause/resume state. This is called from the
GameMode class. When called, depending on the value of MoveIt, we will stop or
restore the movement of the enemy:

// called from game mode when paused or restored
void AEnemy::SetMove(bool moveIt)
{
 // need to cast the AI class and call two public functions from
 here
 // if false move to its location in order to stop movements
 AAIEnemy* AI = Cast<AAIEnemy>(AIControllerClass);

 if (bMoveIt) { AI->SearchNewPoint(); }
 else{ AI->StopMove(); }

}

C++ Code – PAC-MAN

[110]

Movements and behaviors are handled by the AI class.

In this class, we have only movements or object-relative properties to set. In the Kill
and Rearm function, we only want to change its speed and refresh its state:

void AEnemy::Kill()
{
 // don't kill twice
 if (bIsDead) return;

 // if is not dead, kill and modify its speed
 // the enemy will go fast at his house in order to respawn
 bIsDead = true;
 GetCharacterMovement()->MaxWalkSpeed = 300.0f;
}

// set invulnerable and restore its original speed
void AEnemy::Rearm()
{
 bIsDead = false;
 GetCharacterMovement()->MaxWalkSpeed = 150.0f;

 if (bIsVulnerable) { SetInvulnerable(); }
}

The SetVulnerable and SetInvulnerable functions are called from the
PacManCharacter class and they change the material of the enemy and start or clear
the vulnerability timer:

// when player eat a super collectable, set all the enemies vulnerable
for a certain period of time
void AEnemy::SetVulnerable()
{
 // set/reset a timer
 GetWorldTimerManager().SetTimer(TimerVulnerable, this,
&AEnemy::SetInvulnerable, 10.0f, false);

 // simple return if is already vulnerable
 if (bIsVulnerable) { return; }

 bIsVulnerable = true;

 // change its material with the transparent one

Chapter 3

[111]

 EnemyBody->SetMaterial(0, VulnerableMaterial);

 // make the enemy run slower
 GetCharacterMovement()->MaxWalkSpeed = 50.0f;
}

// when timer ends, clear it and restore the enemy invulnerability
void AEnemy::SetInvulnerable()
{
 // simple clear the timer
 GetWorldTimerManager().ClearTimer(TimerVulnerable);

 bIsVulnerable = false;

 // restore the original material
 EnemyBody->SetMaterial(0, DefaultMaterial);

 // restore the original walk speed
 GetCharacterMovement()->MaxWalkSpeed = 150.0f;
}

This is where the collisions are handled. In our case, the enemy simply kills the
player or dies, depending on its vulnerability:

// when colliding with an enemy
void AEnemy::OnCollision(class AActor* OtherActor, class
 UPrimitiveComponent* OtherComp, int32 OtherBodyIndex, bool
 bFromSweep, const FHitResult & SweepResult)
{
 if (OtherActor->IsA(APacManCharacter::StaticClass()))
 {
 // check whenever the pawn is vulnerable or not
 // simple kill it if is vulnerable
 if (bIsVulnerable) { Kill(); }
 else
 {
 // or kill the player instead if not
 APacManCharacter* PacMan =
 Cast<APacManCharacter>(OtherActor);
 PacMan->Kill();
 }
 }
}

C++ Code – PAC-MAN

[112]

Enemy AI
The AIController class is a special class that handles the decisions that a pawn
should take in different situations. This is based on state machine mechanics, where
every state corresponds to an action, and the end of every state corresponds to a new
call, depending on the object that it controls.

The AI of our enemy is really simple. Like zombies, they simply walk around, without
thinking about where they are going or where the player is on the map. When they
are vulnerable, they simply know that they need to return home and they don't care if
they eat a player or not, they just keep walking. The header will be as follows:

#pragma once

#include "AIController.h"
#include "Enemy.h"
#include "AIEnemy.generated.h"

/**
 *
 */
UCLASS()
class PACMAN_API AAIEnemy : public AAIController
{
 GENERATED_BODY()

public:

 AAIEnemy();

 void Possess(class APawn* InPawn) override;

 virtual void OnMoveCompleted(FAIRequestID RequestID,
 EPathFollowingResult::Type Result) override;

 void SearchNewPoint();
 void GoHome();
 void Rearm();
 void StopMove();

private:

 class AEnemy* Bot;
 FVector HomeLocation;
 FTimerHandle TimerDead;
};

Chapter 3

[113]

As you can see, the BeginPlay or Tick functions aren't here. There is only a Possess
function. This can be considered as the BeginPlay function and it is called whenever
this AI class controls something. We override the OnMoveComplete state of the AI in
order to control what to do next when the pawn ends a move, and we use a timer to
count how long the pawn needs to stay dead before returning to walk around the map.

Following is the cpp class. As it only handles the movement, it is pretty simple to
understand. It saves its original location when possessed and starts its behavior. An
infinite loop will run; every time the enemy reaches the set point, it needs to find
another one and keep walking:

#include "AIEnemy.h"

AAIEnemy::AAIEnemy() {}

// when possessed store its location and start to move around
void AAIEnemy::Possess(class APawn* InPawn)
{
 Super::Possess(InPawn);

 Bot = Cast<AEnemy>(InPawn);

 HomeLocation = Bot->GetActorLocation();
 SearchNewPoint();
}

// simple return to the home location and start a timer for the
 deadh
void AAIEnemy::GoHome()
{
 MoveToLocation(HomeLocation);
 GetWorldTimerManager().SetTimer(timer_Dead, this,
 &AAIEnemy::Rearm, 5.0f, false);
}

// call the timer and return to walk
void AAIEnemy::Rearm()
{
 GetWorldTimerManager().ClearTimer(timer_Dead);
 Bot->Rearm();
}

// when the pawn ends a move, return to move if is not dead

C++ Code – PAC-MAN

[114]

void AAIEnemy::OnMoveCompleted(FAIRequestID RequestID,
 EPathFollowingResult::Type Result)
{
 if (!Bot->bIsDead) { SearchNewPoint(); }
}

// stop the pawn movements
void AAIEnemy::StopMove()
{
 StopMovement();

}

The only function that is new here is SearchNewPoint. In order to move in Unreal, a
pawn uses Navigation Mesh. Write it as shown in the following code and take a look
in the editor to see what a navigation mesh is:

// in order to find a new point we search if there is a navigation
mesh active and
// when found, we simple call the GetRandomPointInRadius function from
the NavMesh
void AAIEnemy::SearchNewPoint()
{
 UNavigationSystem* NavMesh =
 UNavigationSystem::GetCurrent(this);
 if (NavMesh)
 {
 const float SearchRadius = 10000.0f;
 FNavLocation RandomPt;
 const bool bFound = NavMesh->GetRandomPointInRadius
 (Bot->GetActorLocation(), SearchRadius, RandomPt);
 if (bFound)
 {
 MoveToLocation(RandomPt.Location);
 }
 }
}

Chapter 3

[115]

Navigation mesh
The definition of a navigation mesh states: an abstract data structure used in artificial
intelligence applications to aid agents in pathfinding through complicated spaces.

At this moment, our enemy is actually blind. It cannot see the environment around
itself and obviously it doesn't know where the walls are. One solution for its
movement could be to create a loop where the enemy is constantly trying to reach
a random point but when it hits a wall, it stops and searches another point to reach.
However, there is a smarter way.

Unreal Engine helps us with the Navigation Mesh Bounds volume. This mode can
be placed in the level like any other volume and when positioned, it automatically
traces a walkable map for our pawns. Locate it on the modes panel and drag it in
the level.

Position it at the center of the maze, change the size to 1,000 x 1,000, which is the
same as the maze, and set the height to just 10 units. Move it in a way that it just
covers the floor as shown in the picture. In this way, we don't have to worry about
the collectables or other static objects that can disturb the calculation of the mesh:

As our cell space is too small, we also need to change the setting on the nav
calculation preferences. Navigate to Edit | Project Settings and click on the
Navigation Mesh section. Here, you can set all your preferences for the navigation
mesh that are generated by the engine. What we need to do is decrease the Cell Size
to a smaller value; therefore, set it to 5.

C++ Code – PAC-MAN

[116]

Now, you should be able to see the result of the calculation when you toggle its
visibility by hitting the P key or by navigating to Show | Navigation on the viewport
window. The highlighted green part is where your pawn will be able to walk:

Chapter 3

[117]

Game mode
We have a character; however, if you start playing right now, you can see that
nothing happens. Our PAC-MAN doesn't appear and you can only float around
the level in God Mode.

Let's fix the camera first. For the game, we need a single static camera that shows the
top view of the maze. From the modes panel, add a camera in the level and position
it at the 0,0,1000 coordinates. Rotate by -90 degrees on the x and y axis and, when
you select the camera preview, you can see the maze in its entirety.

For this chapter, we want to keep the camera as simple as possible. We will play
around with this in Chapter 5, Top-Down Shooter. Now, in order to use this camera by
default, go to the Details panel and set Player 0 on the Auto Player Activation section:

C++ Code – PAC-MAN

[118]

Also, let's add the player start object on the lower left-hand side corner of the maze.
This key object will be the spawn point for the player. When there's only one Player
Start object, the player will automatically spawn from there as soon as the game starts:

When positioning, keep an eye on the sphere collision. It doesn't need
to overlap the floor and, in case you position it wrongly, the editor will
warn you about it (with a Bad Size label in your object) and the player
could be stuck between the floor or could fall forever.

Chapter 3

[119]

While we are in the editor, we can also add the four enemies. Simply drag the four
C++ enemy classes in the level and position them in the middle of the maze. As we
did for the collectables, just change their default mesh material. The result will be
as follows:

Now, we need to set the default player pawn for the game (our PAC-MAN). When
creating the project, UE4 automatically created a customizable Game Mode class.
It is not set by default; therefore, we need to tell the engine to use it instead of the
default empty one. Navigate to Edit | Project Settings and on the Maps & Modes
section, set the default game mode as our PacManGameMode.

About the code, the class created by the engine is completely empty. We need to
declare the constructor and set the default pawn as our Blueprint class in it using the
constructor helper and a reference to it, as follows:

// in PacManGameMode.cpp
// there is no initializer by default, we need to add one
APacManGameMode::APacManGameMode()
{
 //search our custom pacman and set as default pawn if founded
 static ConstructorHelpers::FClassFinder<APawn>
PlayerPawnOb(TEXT("Blueprint'/Game/BP_PacMan'"));
 if (PlayerPawnOb.Class != NULL)
 {
 DefaultPawnClass = PlayerPawnOb.Class;

C++ Code – PAC-MAN

[120]

 }
}

// in PacManGameMode.h
// at very beginning under the public: section
APacManGameMode();

In the game mode, we will also store the global functions and variables about the
enemies. Here, we will create a reference to all of them and from there, we will
change their state in one single call, depending on whether the call is coming from
the player controller or from a change in the game state.

On the header, add these variables and functions, as follows:

void SetEnemyVulnerable();

private:
 EGameState currentState;

 TArray<class AEnemy*> Enemies;
 Class APlayerController* PlayerController;

Now, we use the same function that we did for the collectables in order to populate
the enemies array. In this case, an array is useful as, most of the time in our game, the
enemies will change their state all together.

Override the BeginPlay() function and add the following lines after the constructor:

void APacManGameMode::BeginPlay()
{
 Super::BeginPlay();

 // set to be on menu state as soon as the game start
 SetCurrentState(EGameState::EMenu);

 // find the first player controller and set it to our pc
 reference
 PlayerController = GetWorld()->GetFirstPlayerController();

 // find the ghosts in the scene and store them to our array
 for (TActorIterator<AEnemy> enemyIt(GetWorld());enemyIt; ++
 enemyIt)
 {
 AEnemy * enemy = Cast< AEnemy >(* enemyIt);
 if (enemy){ Enemies.Add(enemy); }
 }
}

Chapter 3

[121]

We find the iterator once again in the SetEnemyVulnerable function and while
handling the change of state:

// iterate all the enemies and make them vulnerable
void APacManGameMode::SetEnemyVulnerable()
{
 for (auto Iter(Enemies.CreateIterator()); Iter; Iter++) {
 (*Iter)->setVulnerable();
 }
}

void APacManGameMode::SetCurrentState(EGameState value)
{
 currentState = value;

 // for each enemy inside the level, use a switch case to handle
 the new state

for (auto Iter(Enemies.CreateIterator()); Iter; Iter++) {
 switch (value)
 {
 case EGameState::EPlaying: // if start playing, initialize the
enemies

 (*Iter)->SetMove(true);

 break;

 case EGameState::EGameOver:
 (*Iter)->Destroy();
 break;

 // same of gameover.
 case EGameState::EWin:
 (*Iter)->Destroy();
 break;

 case EGameState::EPause:

 (*Iter)->SetMove(false);
 break;

 default:

C++ Code – PAC-MAN

[122]

 // nothing
 break;
 }
}

Now, only the UI is missing and soon we will be able to test the game.

User Interface
For this game, we will use a simple text-based user interface, similar to what we did
in the previous chapter. We want to only show the basic information on the screen,
without any buttons or fancy animations. In order to achieve that, we will create a
class that extends the HUD class. This class is responsible for showing the information
that is needed on screen.

It has a main function called DrawHUD. This function, like Tick, is called every frame
Update. In this function, we will switch the game state and refresh the screen with
the player's lives and the game state.

To draw the text, we use the DrawText function. It accepts strings, Unreal font, size,
color, and position as arguments of it. It is pretty intuitive to handle a UI this way
and it can be useful even for simple debugging purposes.

Create a new class and call it PacManHud. Its header can be left as it is. Now, we
just have to add a font property as reference. We use the default engine font called
RobotoDistanceField as font; however, you can create your own font in the editor
if you prefer:

#pragma once

#include "GameFramework/HUD.h"
#include "PacManHUD.generated.h"

/**
 *
 */
UCLASS()
class PACMAN_API APacManHUD : public AHUD
{
 GENERATED_BODY()

 APacManHUD();

 UPROPERTY()

Chapter 3

[123]

 UFont* HUDFont;

 virtual void DrawHUD() override;
};

We will now implement the function as shown in the following. First, with the
constructor helper, we find the font that we need and set it appropriately:

APacManHUD::APacManHUD()
{
 static FObjectFinder<UFont>HUDFontOb
 (TEXT("/Engine/EngineFonts/RobotoDistanceField"));
if (HUDFontOb.Object != NULL) {
 HUDFont = HUDFontOb.Object; }
}

In the DrawHUD main function, at every call, we check the screen dimension from
the canvas, and depending on the game state, we show a different string using the
DrawText method:

void APacManHUD::DrawHUD()
{
 FVector2D ScreenDimension = FVector2D
 (Canvas->SizeX, Canvas->SizeY);

 Super::DrawHUD();

 class APacManGameMode * GameMode =
 Cast<AFooManGameMode>(UGameplayStatics::GetGameMode(this));
 switch (GameMode->GetCurrentState())
 {
 // show a simple menu text
 case EGameState::EMenu:
 {
 DrawText(TEXT("Welcome to Pac Man! \n\n N to start a new game
 \n P to pause the game"), FColor::White, 50, 50, HUDFont);
 }
 break;

 // show the lifes remains
 case EGameState::EPlaying:
 {
 // get the lives and set them
 APacManCharacter* PacMan = Cast<APacManCharacter>
 (UGameplayStatics::GetPlayerPawn(this, 0));
 if (PacMan)

C++ Code – PAC-MAN

[124]

 {
 FString LivesString = TEXT("Lives: ") +
 FString::FromInt(PacMan->lives);
 DrawText(LivesString, FColor::Black, 50, 50, HUDFont);
 }
 }
 break;

 // show a gameover text
 case EGameState::EGameOver:
 {
 DrawText(TEXT("GAME OVER! \n\n R to restart"),
 FColor::White, 50, 50, HUDFont);
 }
 break;

 //show that the game is in paused
 case EGameState::EPause:
 {
 DrawText(TEXT("pause"), FColor::White, 50, 50, HUDFont);
 }
 break;

 // show a win text
 case EGameState::EWin:
 {
 DrawText(TEXT("YOU WIN! \n\n R for another match ;)"),
 FColor::White, 50, 50, HUDFont);
 }
 break;
 default:
 // nothing
 break;
 }
}

The last thing to do with the code (I promise that after this, we are finally going to
test the game) is to add this HUD class to the default HUD in the GameMode class as we
did for playerCharacter. Add the following line above the DefaultPawnClass
initialization:

HUDClass = APacManHUD::StaticClass;

Chapter 3

[125]

Collisions – custom presets and types
Finally, back to the editor, if you compile and run the game right now, you will
notice that you can move your PAC-MAN character around. If you have already
added the enemies, they will start moving as well; however, both of the player and
the enemy are blocked by the collectables, instead of the collectables disappearing.

This is because we haven't set our collisions types yet and the engine, by default, sets
the new objects to block everything else.

Every object and most of its components has a collision channel, where it is decided
how the object should respond to external stimulations. We are going to modify the
object that we created in order to only respond to these stimulations on the capsule
collider and ignore everything else.

Navigate to Edit | Project Settings | Collision. From there, you can set new
channels and create a preset for your object. We want to create three different
channels and three different presets referring to them, as follows:

• The Enemy (which blocks, by default, and can interact only with the player,
completely ignoresing the collectables and itself)

• The Player (which blocks, by default, and overlaps with collectables
and enemies)

• The Collectable (which interacts only with the player)

Create three new channels on the Object Channels section by clicking the New
Object Channel button with the settings that we just discussed, as follows:

C++ Code – PAC-MAN

[126]

Now, extend the Preset section by clicking on the little arrow near its name. Here,
you can see and edit all the different presets and also, of course, add new presets.
Click on New and create three new elements, as follows:

Save and build. If you have done everything correctly, you will be able to play a fully
enjoyable PAC-MAN clone game.

Summary
I hope you enjoyed this chapter; however, I can understand if some of you found
it a bit tedious and difficult to handle. I wanted to focus on the code part of Unreal
Engine, but don't worry, the next chapters will be easier and more enjoyable.

Like the other chapters, after my guidance, I will give you some tasks that you
should try to implement on your own to improve the final product, as follows:

• Add a door to the enemy spawn point that only allows the enemies to
pass through. Use BSP volumes, transparent material, and play with
collision preset.

• Create a Level 2. Hint: we didn't see the level transitions so far; therefore, just
create another maze near the first one and teleport the player there when he
finishes the first one.

Chapter 3

[127]

• Make the enemies smarter. Play with the MoveToLocation button and the
player position.

• Improve the HUD. Try to also show how many collectables need to be
founded or the countdown till the enemies respawn.

• Add a score, use your imagination. A score could depend on the enemy hit,
the collectables taken, or even new types of collectables that can have timers
or can move around.

In the next chapter, we will go back to Blueprint, discovering the way to create
wonderful user interfaces thanks to Blueprint widgets, and also creating our first
particle system.

[129]

UFO Run - Play with the
Environment Effects

I hope you survived through the last chapter, maybe it was too complicating and
confusing for some of you. As I promised, in this and the future chapters, we will
not use any code, just the engine and its tools.

The aim of this chapter is to learn about the fundamental tools of the engine and the
common elements that are used in video games and, following the style of the book,
create an entire game using the tools that you just learned about. In this chapter, we
will focus on the following important parts of a game:

• Particle system and particle effects
• Unreal Motion Graphic UI Designer (UMG)
• UI Blueprint wizard
• HUD

Before creating the game, let's introduce the two new main concepts of the game; the
particle system and the UMG tools.

Particle system
A particle system, for those of you that don't know, is a technique in computer
graphics that uses a large number of very small graphic objects to simulate a
certain kind of fuzzy phenomena, which is otherwise very hard to reproduce with
conventional rendering techniques. Examples of particles could be fire, explosion,
smoke, waterfall, spark and so on.

UFO Run - Play with the Environment Effects

[130]

Having said that, you can imagine how essential it is to know how to create and
manipulate particle systems (pfx from now) in your projects. A few well-made pfx
around the level can drastically change a scene from static and boring to dynamic
and enjoyable.

UE4 has a robust and extremely powerful particle system creation tool called Cascade.

Cascade
Cascade is a fully integrated and modular particle effects editor. It offers real-time
feedback and modular effects editing, allowing fast and easy creation of even the
most complex effects.

Particle systems are also very closely related to the various materials and textures
that are applied to each particle. The primary job of the particle system itself is to
control the behavior of the particles, while the specific look and feel of the particle
system as a whole is often controlled by the materials.

Cascade offers a modularly designed particle system to the users. That means that
when you create a new particle in the editor, only a few bones property and default
behavior modules are created.

It is your choice to decide which module to use and in what order, this is to avoid
the calculation of unnecessary properties. Each module is relative in itself and can be
easily added, removed, and copied, making intricate setup very easy to achieve:

Chapter 4

[131]

Modules
When you create a particle system, a few modules are added by default, as shown in
the following:

• Required: This module and the next one are the only permanent modules
that cannot be removed. This contains the minimum required properties that
are necessary for a particle system in order to work.

• Spawn: This module contains information about how a particle will spawn if
in burst or linearly.

• Lifetime: This module controls how long a single particle lasts, it can live
forever, at a constant time, or simple random.

• Initial Size: This module controls the scale of a particle at the moment
of its spawning.

• Initial Velocity: This module is of the same size, it controls the velocity.
• Color Over Life: This module contains the properties to change/control the

color/alpha of the single particle during its lifetime.

However, there are hundreds of modules that you can use in your particle emitter.

Emitters
A particle system is formed by a collection of particle emitters. Each emitter works
as an individual element with its own modules and behavior and can be activated or
deactivate singularly at any time.

A particle emitter, regardless of the type, is a sprite emitter at the start. You can change
the type by adding type data modules to it and choosing between one of them:

• Sprite emitter: This is the default and most used type. Particles are emitted
as polygonal sprites that always face the camera.

• AnimTrail Data: This is used to create trails.
• Beam Data: This is used to create lasers, lightning, and similar effects. They

have a start and end point that can be set by Blueprint or script dynamically.
• GPU Sprites: These are a special type of particle. The runtime calculation is

handled by the GPU, allowing the number of possible particles to be several
hundred thousand.

• Mesh Data: This emitter will emit polygonal meshes instead of emitting sprites.
• Ribbon Data: This emitter produces a string of particles that are attached end

to end from a ribbon that trails behind a moving emitter.

www.allitebooks.com

http://www.allitebooks.org

UFO Run - Play with the Environment Effects

[132]

Level of detail
As you can image, a particle system can easily become very expensive to calculate
and it is important to consider the value of calculating the particles from which the
player is too far away or adequately appreciate.

The UE4 uses an easy setup for this, the LOD system. This system allows you to set up
the custom distance ranges at which your particle system will automatically simplify.
For each range, you can set a custom property for any module or emitter such as
lower values, enable/disable certain modules, and so on. There is no limit to the level
of detail that you can have, usually two or three levels are more than enough.

You will soon see how important it is to set your LODs. Maybe
for small projects you will not notice the difference; however, for
medium or big games, it can lead to a difference from an enjoyable
to a horrible and laggish game.

The Cascade interface
Now that you know the basic concept of particle system, let's take a look at the
Cascade tool and its interface. When you open any particle system in the editor, the
engine automatically opens Cascade as it opens the Blueprint class interface for any
Blueprint file, as shown in the following screenshot:

Chapter 4

[133]

Let's take a look at the different sections of the Cascade Interface:

• Menu bar: On the very top, you have the familiar menu bar, where you can
load, save, find any asset that you need, and personalize your window view.

• Toolbar: The Toolbar, like Blueprint, has the most used functions that you
could use when creating your particle system. It contains a large part that is
dedicated to the LODs, some useful functions such as save, undo and redo,
restart the particle effect preview, show the bounds, change the background
color, and create the thumbnail of the particle preview based on what is
shown from the preview camera.

• Viewport panel: It is on the left-hand top corner, just above the toolbar. It
shows the current particle system (including all emitters that are active at
that moment).

• Emitters panel: This is where you can add, select, and work with the
various particle modules and emitters that control particle system's look and
behavior. Each column represents a single particle emitter, its top contains
the emitter name, type, and buttons that control the whole emitter behaviour.
Right-click on this panel to open a context-sensitive menu.

• Details panel: Like the Details panel of Blueprint, this panel contains the
detailed property of the selected module or emitter.

• Curve Editor: Here, you can adjust any value that needs to change during the
life of a particle or across the life of an emitter.

UMG
As mentioned in the previous chapters, UE4 has a very powerful tool that helps
the users to create and handle all the UI elements of a game: Unreal Motion
Graphic (UMG).

At the core of UMG are Widgets, which are a series of premade functions that can
be used to construct your interface (buttons, checkboxes, sliders, progress bar, and
so on). They can be edited in a specialized Widget Blueprint, which is divided into
two tabs for construction: a Designer tab for the visual layout of the interface and a
Graph tab that provides the functionality behind the Widget.

UFO Run - Play with the Environment Effects

[134]

Widget Blueprint
The main tool when talking about UMG is the Widget Blueprint. Let's take a deeper
look at it:

• Menu bar: On top of it we find our familiar menu bar. It is the same menu
bar that we can find in any Blueprint class.

• Tool bar: This is a simplified version of the Blueprint class toolbar from
where you can save, compile, and play your game.

• Editor Mode: This is on the right-hand side of the toolbar and it switches the
Widget Blueprint editor between designer and graph modes.

• Palette: This panel contains a list of Widget that can be dragged in the
visual designer. They are divided into categories and they inherit the
content from UWidget.

• Hierarchy: This is similar to the Content panel of a Blueprint class, it
contains the parenting structure of the user Widget.

• Visual Designer: This is the main panel where a visual representation of the
layout is shown. Here, you can set up the UI by adding or moving around
the Widgets.

• Details panel: As usual, this displays the details and properties of the
selected item.

• Animations: Here, you can add animations to your UI by creating the
keyframe states of any Widgets.

Chapter 4

[135]

HUD class
The Heads-up display (HUD) class is a Blueprint class that handles all the user
interfaces in your game. While a Widget Blueprint contains a single graphic layout,
the HUD is responsible to handle the different Widgets that you can have for your
game, such as Main Menu, In-game UI, Leaderboards, and so on.

It is not necessary to use the Widget Blueprint as you saw in the previous chapter
that an UI can only be handled by the HUD class. However, it becomes really useful,
if not essential, to set it when talking about bigger projects.

An HUD class is a part of the essential items that are needed to
run your game. Just to remind you that they are The Game Mode
(GM), the Default Pawn, the PlayerController (PC), the Game
State and the HUD class.

You can create the HUD class by extending it like any other Blueprint class and you
can set your custom HUD by navigating to Edit | Project Settings | Maps & Modes,
as follows:

I know that only talking about the theory does not make it easy to understand;
however, don't worry, we are now going to create our game, looking in detail
at these two tools.

UFO Run - Play with the Environment Effects

[136]

The game
For this chapter, we are going to extend the flying template of UE4. The final result
will be a beat-the-time game where the player will fly around the level, trying to
collect as many collectables as possible before the time ends. There will be a menu
with buttons, particle system for the player and collectables, and a user interface
that shows the score. We will also implement a power bar that increases when a
collectable is collected and decreases when the player uses its boost.

Without further ado, let's open the launcher and create a new project, starting from
the flying Blueprint template. Call it UFO_Run and, as usual, leave the other settings
as the default:

What you will see once it opens is a stylized city, a nice sky and a pawn character
that is ready to be used. The gameplay of the template allows you to fly around with
your ship, move using the arrow keys, and accelerate/decelerate using spacebar or
other keys (you can check the key binding of the level by navigating to Edit | Project
Settings | Input).

Chapter 4

[137]

The movement and the input keys are perfect for our purpose, the map as well is big
enough and, even if not graphically pleasing, it fits our needs well:

Blocking volumes
The first thing that we notice while playing is that the player can easily leave the
playing area and float in the empty space around the map. We will want to limit the
movement of our player in order to be inside certain bounds. Usually, this purpose
is achieved on adding physical elements around the map; however, it was not rare to
find these bounds being represented by invisible walls, especially in old games.

Under the Volumes section of the Modes panel, we can find exactly what we need;
Blocking Volume. A Blocking Volume serves as a collision shape through which
the objects are not intended to pass. You can choose which type of objects will be
allowed to pass using the collision properties (this is similar to how we set the
PAC-MAN collisions) and can be positioned, scaled, and moved around the map
as we did for the BSP volumes:

UFO Run - Play with the Environment Effects

[138]

We want to create a perimeter around the entire level, including a roof above the
city. When creating a blocking volume, you can choose among some brushes in order
to create a shape that fits your needs better. For our purpose, we can see the entire
map as a giant box; we could create four box volumes as walls on its perimeter and a
fifth box volume for the roof.

It will certainly work; however, it is not a smart solution. A nice and clear solution is
to create a single box volume with a hole in it and position the entire map in the hole.

Drag and drop Blocking Volume in your map and search for the Hollow property,
under the Brush Settings from the Details panel. If you set it, you will notice that the
editor immediately creates a smaller second box volume in the first one to represent
the hollow space. With just a couple of clicks, we created our giant cage for the entire
map. Now, you only need to change its size in order to fit the map and we can go
ahead with the game.

Sometimes it could happen, especially with high speed objects,
that the blocking volume doesn't work properly. In this case,
most of the time, it is enough to change the Wall Thickness
property to a higher value in order to fix the problem.

Chapter 4

[139]

The menu camera
A menu is typically composed of buttons, text information about what is in the
screen, and a static background image. Lately, thanks to the new technology and
resources, the menu and the UI elements have started to be more dynamic, adding
animations and 3D elements to it.

As background for our menu, we are going to show the top view of the whole city
using a second camera actor, instead of a static image. Position a new camera actor
anywhere in your level and rename it menuCamera.

Now we need to move it in a suitable position. There are two ways to smartly move
a camera around; the first one is to manually pilot the camera in the desired position
and the second one is to move around in the viewport and, when you find a good
spot, snap the camera actor to that point.

They are both good alternatives and both of them are easy to use. To pilot a camera,
right-click on the object and select Pilot 'CameraActor' (or Ctrl + Shift + P). Move
with the arrows and mouse, and then, click on the eject button on the left-hand top
corner of the viewport:

The second method is even simpler. Just right-click on the camera object from your
point in the viewport (if you cannot reach the camera, remember that you can always
find all the objects in the scene from the World Outliner panel) and select Snap
Object to View.

These two methods work for any other object in your level; however,
they surely give their best when talking about cameras.

UFO Run - Play with the Environment Effects

[140]

The following image shows exactly that second method:

Wizard Blueprint
Let's finally create the UI. In the Blueprint folder of the project, right-click and
navigate to User Interface | Widget Blueprint. Call it UI_Menu and open it.

Chapter 4

[141]

What you see here is a two-dimensional canvas for your UI. The underlined
rectangle in the scene represents the resolution that you are actually using in the
project and what is actually seen by the user. You can easily switch to different
resolutions using the Screen Size button and you can even set up a custom
Dots per inch (DPI) scale curve if required:

The greatest feature of this tool is that you don't need to worry about how your UI is
seen in different resolutions (one of the common problems when developing a game)
as the engine will automatically fit itself according to your setup.

Let's start by adding a text to the canvas. From Palette, drag a Text Widget (from the
Common category) to the canvas. This will be the title of our game, therefore, under
the Details panel, change its Text property from the content section to Ufo Run!.

The Slot section controls the position and size of any Widget in the canvas. The first
field is Anchors. This is an important property and it is the point in the canvas that
the object refers to for the resolution-position calculation. In this case, we want to set
the anchor as a center point at the top. By clicking on it, you will see all the different
anchors that are possible for the canvas.

When using anchors, you can even offset it by dragging the anchor symbol directly
in the canvas.

UFO Run - Play with the Environment Effects

[142]

In order to always be centered on the screen, the easiest way is to set the position of
the Widget (with a centered anchor) to be at half the size of its axis. With this setting,
you can test it by changing the screen size and notice how the title is always perfectly
in the middle of the screen:

Import a custom font
The default Arial could be boring and you would soon want to use your fonts in
the UI. The editor doesn't allow the direct usage of traditional font files such as
TrueType Format (TFF) or OpenType Format (OTF) but its own font asset file.
There is a handy font editor tool in the engine, where you can import your font and
create family and subfamily for your font (for example, the same font can have a
family for its bold, italic, light, and dark style as its subfamily).

To create a font asset, we first need to have its text file. You can use one of your
default system, create one on your own using an external tool, or download one
from the Internet community. I found www.dafont.com really useful and full of
freeware content.

If you like to use the same asset that I'm using here, remember
that you can find this and all the other files of any project that
we are developing at www.nicolavalcasara.it/packt.

www.dafont.com
www.nicolavalcasara.it/packt

Chapter 4

[143]

Once you have the font, return to Content Browser and add a new font from User
Interface | Font. Call it GameFont and open it.

Pretty intuitive. There are only two panels here; a Composite Font panel, where you
can import and set the different families and the familiar Details panel.

Import your custom font to Default Font Family by clicking on the three dots, leave
everything else as it is and you have created your first basic custom font! Now, you
can go back to the UI and use it straightaway in the title of the game:

Buttons
It is time to add some control here. The main menu will have two buttons: a START
game and an EXIT game button. Drag the two button Widget to the UI menu use
a center-center anchor and position/resize them to fit the screen and position one
above and one under the anchor.

You will immediately notice that there isn't a Text field in the properties. This is
because, by definition, a button is just a button—a clickable/touchable item that
answers to an input. To add text on them, simply drag a text Widget in the button
itself. The engine will automatically set the text as a child and fit it in the centre of
the button.

UFO Run - Play with the Environment Effects

[144]

Add the Start and Exit text to them and the following image should be the final result:

Click events
From the button Widget, you can add events in order to handle when a button is
clicked, pressed, or released. They work like any other Blueprint event and simply
click the + button on the Details panel of the button of the event that you want to
handle to add them.

Implement the OnClicked event for both the buttons and let's implement the
Exit button for now. For the exit, we only need a single node: an Execute Console
Command node with, as Command Exit. This node allows you to send console
command to the game.

The console is made available by pressing the ` key in any
of your running projects.

Chapter 4

[145]

There is quite a long list of commands that can be sent to the engine and this node
allows a direct communication between Blueprint and the engine:

Set the default camera
If you run the project right now, you can see that nothing changes. The UI doesn't
show up and the game looks exactly the same as it did in the beginning. This is
because we didn't initialize the Widget, we didn't set which camera is to be used,
and, most importantly, there is a pawn in the scene that is being possessed by the
player controller as soon as the game starts.

First, remove Flying Pawn from the scene. We want that our player is initialized
only after clicking the start button.

After doing that, we want to use the camera that we previously added as the default
one. We can set it using the Level Blueprint class and a node called Set View Target
With Blend.

This node is used to change the view target between two target actors. As a
parameter, it accepts a blend time and type and the node automatically blends the
transition between the two cameras, nice and smooth. For the node, we will use the
Player controller as Target and the camera Actor that we previously placed as the
new target.

UFO Run - Play with the Environment Effects

[146]

To have a direct reference to any of the actors in a scene, you can simply select the
desired object, go to the Level Blueprint, and on right-clicking, you can see the
Create a reference to… option:

Now, search for the Set View Target with Blend node (if you don't see it, you
can remove the Contex Sensitive option on the right-hand top of the menu) and
connect it to Event BeginPlay. Set the Blend Time to 0 and that's it. We don't want
a smooth transition from an empty camera to ours, we simply want an immediate
jump to our camera.

Chapter 4

[147]

To get a reference to the player controller, search for the Get Player Controller node
and set the index to 0 (there is only one player in this game, therefore, the 0 index
will always be our PC):

Now, if you run the game, you can see that the camera is correct; however, it is still
missing the UI. We can fix it in a second.

HUD class
As said in the beginning, we need two different UI Widget Blueprint classes and to
handle the transition between them, we need to set an HUD class. In this game, this
class will simply switch between the UI Widget according to the state of the game.

From Content Browser, add a new Blueprint class and choose HUD as parent. Call it
GameHUD and open it.

UFO Run - Play with the Environment Effects

[148]

From the Event BeginPlay node, search for Create Widget and connect it. This node
will take a Widget class and create an instance of it that is ready to be placed in the
viewport. We can immediately set the return value to viewport; however, as we need
it in the future, we can promote the output pin to a variable. Right-click on Return
Value and select promote to variable. Then, connect the final output to an Add to
Viewport node:

Yet nothing happens when you try to play. This is because this HUD is not set on our
Game Mode class. Search for the FlyingGameMode class in Content Browser. Open
it and search for the Classes section in the Details panel. Set the HUD class to be
our GameHUD and Default Pawn to None (as discussed, we don't want a pawn to
immediately spawn when click Play). Now, once we click PLAY, we finally see our
UI and if you try to click EXIT, you will be able to close the game as expected.

Player controller class
We need to create a player controller class that will handle various things in our
game, such as the score and the energy of our Ufo. A PC class is also useful when we
need to store references to the persistent objects in the scene. Level Blueprint is the
only place where you can have references to any object in the scene; however, you
are not allowed to directly reference the Level Blueprint from a class Blueprint. This
would prevent you from using it in different maps. This is where a PC is helpful.

When a player clicks start the dynamic of the action that we want is the following:
remove the UI menu, gently slide the camera to the player spawn point, switch the
camera to our pawn camera, and start the game.

To do this, we first need a physical spawn point target for the view blend node and
we need to be able to access it anywhere in our Blueprint scripts.

Chapter 4

[149]

On the Modes panel, search for a Target Point Actor and place it where the player
pawn was:

Now, create a new Blueprint class and select Player Controller as parent. Call it PC
(PlayerController)and open it. For now, we simply need to add a new variable of the
target point type and call it TargetStart. Change it to Editable and add Tooltip to it
(similar to what we did in the tic-tac-toe game):

UFO Run - Play with the Environment Effects

[150]

Now, go back to the Level Blueprint class and we are now able to initialize this
variable by casting the Player Controller to the PC class.

After the view target blend node, search for the Cast to PC node, connect the Get
Player Controller node to the Object input pin and simply set the Target Start
variable in the As PC output to be our reference for the target point:

As a last thing, remember to set this Player Controller class in the classes section of
the Game Mode. Now, you can access this Actor from anywhere in your Blueprint
classes and we can go ahead to add the behavior of the start button.

Start button
Back to the UI_Menu wizard, we now have all the elements required to complete
the start event. First, you need to remove the Widget from the scene. You can use the
Remove from Parent node with the self variable as Target. We do this to the first
node as we don't want anything on the screen during a camera transition.

Now, search for the Set View Target With Blend node and connect Player
Controller as Target and the Target Start Actor from the PC class that we created as
new target. This is pretty simple. Just add Cast To PC before connecting the target
and use a get node for the referenced object:

Chapter 4

[151]

Add a Blend Time of three seconds and leave a linear blend function. If you play
now and try to click start, you can immediately see a smooth movement of the
camera from the starting point to the point where the pawn should appear.

We can now spawn our player using a SpawnActor class node. Add this node after
the blend one, search for the Flying Pawn Blueprint class, use GetActorLocation
as Spawn Transform on the Target Start and convert the vector result into a
transform variable.

Doing this, a pawn will spawn; however, not as expected. This is because the graph
flow doesn't wait till the end of the blend transition and executes all the nodes as
soon as it can.

To avoid this problem, just add a Delay node of the same amount of time as the
blend time between the blend and spawn and you can finally see the transition and
the spawning working perfectly when played:

UFO Run - Play with the Environment Effects

[152]

You have a main menu that handles the game start and a player that can fly around
at the right time in order to search for collectables. It is time to add the second UI
Widget for the In-Game state and our gameplay elements.

In-game screen
Create a second Widget Blueprint and call it UI_InGame. This interface will show
two progress bars for TIME and ENERGY and a text that updates the number of
collectables that are collected during the game.

Let's start by adding these wizard position two Progress Bar wizard and three Text
wizard using the correct anchor for each element according to what you learned, as
shown in the following:

The Progress Bar accepts a percent value from 0 to 1 and allows different color or
image for both the fill or the empty state. I set a background color with 0 value in its
alpha channel in order to just have a single bar showing on the screen without any
background.

Chapter 4

[153]

Property binding
One of the most useful aspects of UMG is the ability to bind properties of your
Widgets to Functions or Properties in the Blueprint. By binding a property to a
function or a property variable in your Blueprint, it will reflect in the Widget anytime
this function is called or a property is updated.

Let's create the properties that will bind on the Widget in the Player controller. We
need three float public variables, called energy, time, and score.

Before binding, it is also better to store a PC reference directly in the UI wizard. For
this, we use Event Construct of the Wizard Blueprint. This event is similar to the
Event BeginPlay and it is called when the UI is initialized at the scene.

To get a reference of the PC, do what we did in the Level Blueprint; get the player
controller, cast to our PC, and promote the As PC output pin to variable:

UFO Run - Play with the Environment Effects

[154]

Now, with the reference that is just created, return to the designer window and click
the Score text. In the Details panel, under the content Text place, navigate to Bind
| Create Binding. A new function will be added and bound to this variable, all you
need to do is get the score variable from the PC reference, convert it to text, and set it
in the input node of the output function that was just created:

For the Time and the Energy bar is even simpler. We don't need to implement any
function, we need to simply bind the corresponding variable of our PC:

Chapter 4

[155]

Switch user interface
It is now time to show this interface in the game. From the HUD class, create a
custom event called BeginLevel and copy what we did earlier for the menu. The
only difference is that target is the UI_InGame class instead of UI_Menu:

Now, we can call fire this event exactly when the pawn is spawned in the level. We
can use the onClick event and add the call just after the SpawnActor node.

To have a reference to HUD, we need to get the player controller, from it Get HUD,
cast to our GameHUD, and finally call the BeginLevel event:

The game will show the new Widget correctly. It is the time to create the collectable
and finally work with particles.

UFO Run - Play with the Environment Effects

[156]

Collectables
Create a new Blueprint class and call it BP_Collectable. We will use a sphere static
mesh as a collectable in this game, we will add an aura around it for it to be easily
localized by the player and add some fancy particles that go up in the aura.

First, simply add a Static Mesh in the components, set it to be a Sphere Mesh and
replace it with the default root component. This will be the item that receives
collisions by the player, therefore, set the collision of the mesh as OverlapAll. All
the further components need to be set as NoCollision.

Add another Static Mesh to the root one, set it as Cylinder mesh and change its
z scale to a higher number. This will be the aura of the object, therefore, it should
surround the sphere, starting just under it and going up as much as it can.

Materials
We now create two materials for the sphere and the cylinder. The cylinder will be
a simple translucent material, you can use the one that we used for the ghost or
recreate another on your own.

For the collectable itself, we don't want a boring static color, we want something
attractive. Therefore, let's do some math to see if we can create a fancy sphere that
shines intermittently.

The idea is to use the time that is passed as input for a Sine node that gives us a
changing value between -1 and 1. Use this result in ConstantBiasScale that converts
-1/1 in a more useful value that scaled according to our setting, Multiply it with a
color and apply it to Base Color and Emissive Color of our material node:

Chapter 4

[157]

Set the nodes as shown in the preceding image. The Sine period is 1, the BiasScale
node uses this formula to create the output: (input+bias)*scale. Set the bias to be 2 (so
that the final emissive value will not be less than 0) and a scale of 5 (in order to give
enough shine for it to be seen in the material). The end result will be a wonderful
shiny material.

Go back to the Blueprint class and apply these materials to the two meshes.

Particle system
Before creating a particle system, we need a material as the required field of the
particle emitter needs a material to show. A material for the particle is usually a
translucent blend type with the Unlit shading model. For our object, we want to
use a colored texture that goes up following the translucent cylinder.

Search for a star image on the Internet or import the Star.png file from the asset
folder that you will find at www.nicolavalcasara.it/packt to Content Browser by
dragging and dropping or by navigating to File | Import.

Now, create a new material and call it M_Collectable_PFX. First of all, in the Material
section of the material node, change Blend Mode to Additive (in order to completely
dissolve the background color of the texture) and Shading Model as Unlit (in order to
have the material completely not responding to external light sources).

www.nicolavalcasara.it/packt

UFO Run - Play with the Environment Effects

[158]

Search for the Texture Sample node and add it to the graph and set the texture to
the image that we just imported. You could now just connect the RGB pin in the
Emissive Color and the Alpha pin in the Opacity and the material is ready to be
used by a particle system; however, as we want to change its color, we need another
node. Search for the Particle Color node, multiply its nodes with the texture as this
image and we have the material ready:

You can finally go to Content Browser and add a new particle system. Call it
M_Collectable_PFX and open it. We use a single emitter for this particle. The
modules used are shown in order as follows:

Required
Here, we set Material as the M_Collectable_PFX material that we just created.
Nothing else changes in the required setting.

Chapter 4

[159]

Spawn
We want a higher rate of spawn, therefore, change the rate constant distribution
value to a value around 100. We don't want to use higher numbers because of the
CPU-expensive calculations. If you desire to use a higher number, you should
also add the TypeData module called GPUSprite to use the GPU directly for the
calculations. Leave the other settings as they are, we don't need a Burst spawn and
the Rate Scale needs to stay at 1.

LifeTime
We need our particles to reach at least half of the cylinder before disappearing.
Change the constant lifetime field to three seconds.

Initial size
Initial size depends on the texture that you used; change this value when we are
finished with the other modules and you have a better preview of the whole system.
If you use the same image as I did, you can set it to have a constant size of five for
each axis.

Initial velocity
Remove this module, we don't use an initial velocity.

Color Over Life
In the Color Over Life module, we can set how the particle changes its color during its
lifetime. In the constant curve of the Distribution field, you can see two points. Each
point has an in value (the time in a single particle life where the color will change), an
out value (the effective color), and a few other setting for smooth transition.

UFO Run - Play with the Environment Effects

[160]

We want to have a shiny blue color at the beginning, which fades to a bright white
before disappearing. At point 0, set an in value of 0.1 and out value as R: 2, G: 2,
B: 15. You will see something strange now. Usually an RGB color single value is
between 0 and 1 for traditional plain color. If any of these values are higher than 0,
the color immediately becomes a combination of white and the desired color, which
is adjustable thanks to the saturation field:

The other point is easier: in value set as 3 (the arrival point of the particle) and out
value as plain white (R:1, G:1, B:1).

Size over life
It has the same principle as the Color Over Life module. It has two points by default
and the properties are very similar. Just set the point 0 to a scale of 1 when spawning,
which grows till it is five times its original size at the end of the particle life.

Cylinder
This module can be found in the location section. It sets the starting location of the
particle to be on a cylinder surface. You can leave everything as default. If you see
that the particles are too close, you can change the start radius field.

Chapter 4

[161]

Acceleration
Acceleration is used instead of the initial velocity module. This module allows a
more dynamic movement, where we can set a minimum and maximum range for the
random acceleration. Just set the Z field to a positive number between 100 and 500,
as follows:

Save it and you can now add this particle in the Blueprint class of the collectable.
Position it under the sphere, scale it to fit the object correctly, and admire your
beautiful final result.

Blueprint script
The script needed for this object is not much. We need to destroy when hit by the
player and fire an event that is stored in the player controller.

Open the Blueprint file BP_collectable, search for the ActorBeginOverlap event and
add it to its the event graph.

This node has an output pin containing the information of the actor that hit it. We
can use this to cast to our Flying Pawn and, if successful, simply destroy itself.

UFO Run - Play with the Environment Effects

[162]

Now, in the Player Controller class, add a custom event called Collect Item (as a
placeholder, we will implement it the second time) and, back to the Collectable class,
call it by casting our PC class as we did multiple other times:

Now, you can manually insert as many instances of this class as you want. You can
even start to fly around and collect them; however, placing the collectable manually
is tedious and not fun. We want the collectable to spawn randomly around the map,
being delayed randomly during the time and not altogether. To achieve this, we need
to create a custom volume that will handle the random spawn.

Spawn volume
A random spawn can sound easy to handle; however, you will soon see how hard
it can be to achieve a not-so-random result. We have a huge map with static objects
and a three-dimensional environment. We want to find a random point at a fixed
distance from the object above it in the whole game map that is not in a mesh, or in
the middle of the floor, or high in the sky.

Components
Let's proceed step by step. First, create a new Blueprint class by extending an Actor
class. Change the default root component to a Box Collision component. This will be
the bounds volume that is used to calculate the random point.

No other components are needed for this class. The representation, when placed in
the level, is like any other volume; a fully transparent box that can be adjusted to fit
any dimension / position / rotation.

Chapter 4

[163]

When having more than one volume around the level, the line color
around the box is sometimes not enough. There is a component
called Billboard that can help you to easily find your volumes. It
shows a two-dimensional image in the center of the volume, which is
completely invisible to the player; however, useful for the developer.

Random point function
Getting a random number is achieved using the get Random Point in Bounding
Box node. On giving it an Origin point and a box extension, this node will return a
random vector point in the range of the box.

Knowing this, we can use getter of the Box component to get the Actor location
(as origin) and, thanks to the Get Scaled Box Extent node, we can get the three
dimensions of the box (scaled) to use as Box Extent and calculate our random vector:

The next problem to be solved is that if we apply this volume to cover the whole
map, how can we be sure that the random is not in a building? To solve this, we use
Raycasts. This method simply traces a ray from a desired point to a desired location
and, if the ray hits something (and it is something that can be hit) it returns with the
information of the object that is hit by the ray.

In this way, we can place the volume to cover the whole ceiling of the map and, from
the random location, use a Raycast from it and down on the z axis as direction and,
from the hit result, use hit location to spawn anything that we want.

UFO Run - Play with the Environment Effects

[164]

A Raycast can be achieved using the LineTraceByChannel node. This will be the
execution node of our function. We set the random point as Start and the random
point subtracted by 10000 (it should give us enough units to pass through the whole
world) as End on the z axis:

Finally, break the Out Hit node in order to find the impact point and offset it to find
our not-so-random point that is ready to accept our collectable.

The whole script will go to a function in the SpawnVolume class. To add a new
function, just press the + button from the function section of the My Blueprint
panel. This works similarly to the macros that we saw in Chapter 2, Tic-Tac-Toe. It
has an enter and exit node, both with the possibility to add input and output pins as
required. For this function, we don't need any input pin, only an output pin on the
exit node that returns the Transform variable of the Random Location:

Chapter 4

[165]

Now, simply connect them with the correct nodes we just did as shown in the
following image and the script is completed. You can now add the volume to the
scene. The volume needs to cover the whole sky on the top of the map. The Z scale
doesn't matter as long as it doesn't touch any building roofs:

Actor reference
The player controller will handle the spawning system of the collectables, therefore,
it is essential to have a reference to it. From the Level Blueprint, use the same node
that we used to set the Target Point, get a local reference to the volume in the scene,
and simply set it on our PC (of course, you need to create the object variable in the
PC first):

UFO Run - Play with the Environment Effects

[166]

Gameplay
It is time to complete this project, merging together what we did so far and adding
the gameplay scripts.

The game mechanic of the game expected:

• A timer that goes down each second
• An energy that is used by the player when accelerating the ship and a ship

that can accelerate only if it has enough energy
• A score that increases each time an item is collected
• A game over that is shown when the player ends its time
• The possibility to restart the game as many times as the player desires
• Collectables that spawn periodically

For GameOver, we can create a third UI window that shows the score and the button
of the main menu; however, let's keep it simple. We can connect a second event
called GameOver on an HUD class BeginPlay event. This will be called by the PC
when the game is over and it simply shows the menu together with the ingame UI.
Not so pretty but fast and useful:

Prepare the needed references
In order to communicate between the player pawn and player controller, the easiest
way is to set a reference variable on both classes. The logical place where these
references should be set is on the BeginPlay event of Flying Pawn.

Chapter 4

[167]

To understand it better: the player controller class is unique each time the game
start. The Flying Pawn is an Actor that can be destroyed and replaced by other
instances of it during the game's life. Setting both PC and Pawn references at this
point in that class allows you to always have the correct reference, as follows:

The player controller class
This is where all the magic happens. Here, we already have the two required
variables: the target start reference and the spawn volume reference. We need to
add a PlayerPawn variable (of the Flying Pawn type, for the reference that we just
discussed) and two other float variables: TimeScale and GameLength. Most of them
are public and to make sure, just double check whether you have them, as shown in
the following image:

Now, let's create the required events.

UFO Run - Play with the Environment Effects

[168]

StartGame
The StartGame event is fired from Flying Pawn at its spawn in the game. Here, we
reset the UI variables (Energy, Time, and Score) and create the two main timers of
the game.

A timer node is, as the name suggests, a timer that will call an event (or a function)
at the end of its life. It can remotely call functions, can be looped, and you can set as
many timers as you want. Just keep it in mind that everything consumes resources,
therefore, when you set a timer, remember to have a place where the timer can
be removed.

The first timer handles the end of the game and calls its function just once. A second
timer is looped each second and calls the main update function of the game each
second a new collectable is spawn and the time left is refreshed.

We use the following three variables for the time management for this reason:

• GameLength: This value shows the time (in seconds) for which the game
lasts. It is a constant variable and is used to adjust the game length easily
without any calculations.

• Time: This is the value bound to the progress bar. It will contain a value
between 0 and 1.

• TimeScale: This is the result of 1/GameLenght and it is the amount that will
decrease in the Time variable:

Chapter 4

[169]

The useFuel event
This method simply decreases by a fixed variable of the Energy value. It will be
called for each frame that the player is accelerating:

Spawn Collectable function
I chose to add a function that handles the spawning of a collectable as this function
will be called from two different events: when the game updates and when a player
collects an item.

Thanks to the Get Random Location function of Spawn Volume, this function is
really easy to implement. Just spawn an object at the random location:

UFO Run - Play with the Environment Effects

[170]

Update
This event, thanks to the functions that are created, is short and easy. Simply call the
spawn function, decrease the time by the timescale, and that's it:

Collect Item
This event is called by the BP_Collectable class. Each time it is called, the score is
increased and also a little bit amount of energy is added to the ship. We want to add
the energy only if necessary and not overcharge the progress bar with useless values:

Chapter 4

[171]

The gameOver event
For gameOver, we want the following in order:

• Clear the update timer. It is not needed anymore.
• Destroy the pawn. As this is not needed, it ends its playing time.
• Destroy all the collectables left at the scene: This is achieved with the help of

the Get All Actors of Class node. This node returns an array of all the objects
of the specified class found in a level. With this array, we loop all the items
and can destroy them.

• Call the gameOver event of the HUD class, as follows:

That's it! Compile the whole project, save, and play it. Everything should work
as described and, when the time is over, the ship should disappear, showing you
only the main menu with the score. Also, thanks to the behavior of the start point
target, you can notice how the camera smoothly moves in the correct position
independently on where you end the previous run.

Summary
It is hard to explain all these concepts and at the same time, create a whole game
without using lot of words and pages. I wish I had more space to show you more
about particle systems and UI; however, at the same time, I hope you correctly
understood all the steps of this chapter and are now able to create your own particle
system, choosing between different modules and achieving the result that you have
in your mind.

UFO Run - Play with the Environment Effects

[172]

As usual, here is some homework for you:

• Spot the missing behavior: You should notice that there is something
missing when you play the game. We created the fuel variable and the code
that handles it; however, we never actually implemented its usage in the
game. The fix is pretty easy; check Flying Pawn, the nodes needed are an
AND boolean and a branch.

• More time: Instead of increasing the energy, try to change the behavior of the
collectable item to add a little bit of time (or both energy and time) when one
of them is collected.

• A game over UI: Try to create a new UI that handles the gameOver screen;
keep using the menu UI as we did for our game over and just switch the
inScreen with a new screen Widget that shows only the score and a text.

• Create an exhaust particle for the ship: A texture is not needed. When
creating, don't think about the movement of the particle. Remember that each
single particle has its own life with duration, size and so on. If the particle
system doesn't move in the preview, it doesn't necessarily mean that when its
attached to a moving object, its aspect will change.

In the next chapter, you will learn how to create a shooter game. We will manipulate
a mannequin by creating our own animations and see how a pawn can be controlled
by artificial intelligence.

[173]

Top-Down Shooter
In this chapter we are going to create one of the most interesting and popular types
of video game, especially on the mobile market: a top-down shooter. This kind of
game is characterized by a fixed view from above the player, which shows the action
around it from a top-down perspective.

This technique, also called bird's eye view or helicopter view, has being used in a
lot of types of games such as role-playing game (RPG) (Final Fantasy series), action
Grand Theft Auto (GTA), and Adventures (the Legend of Zelda), and lately it is being
adopted in mobile games thanks to the possibility of creating a really interesting
environment even with the typical limitations of the portable devices.

A top-down shooter gameplay is usually a frenetic action game, where the player
needs to survive as long as they can as the continuous waves of enemies attack. The
top-down perspective is perfect for those games. A player can see far around them,
giving a perfect immersion into the problem of being surrounded and constantly
in danger.

In this chapter, you will learn:

• Animation Blueprint
• Aim offset and blending animation
• State machines

Animations
It is assumed that you already have knowledge about basic 3D animation concepts
such as Skeletal Meshes, Bones, Frames, Rigs, and so on. We aren't going to create
new animations from a mesh, but we will work with them so, if you don't know
anything about them, I suggest you to take a break from this guide to find out more
about those concepts using Google or Wikipedia.

Top-Down Shooter

[174]

The animation system of UE4 can be divided into three main tools: Persona, Skeleton,
and Animation Sequences. These tools, combined together, give you the ability to
manipulate and control your Skeletal Meshes. You can play and blend animations
within an Animation Sequence, create customized moves using AnimMontages, create
complex facial expression with MorphTarget, and do much more.

Skeleton
Skeleton is a hierarchy of bone locations and rotations used to deform a Skeletal
Mesh. The difference between a traditional 3D environment is that Skeleton in
UE4 are abstracted from Skeletal Meshes in their own assets, and this means that
animations are applied to the Skeleton rather than the Skeletal Mesh. In this way,
multiple Skeletal Meshes can share the same animations:

In the preceding screenshot, you can see the Skeleton Tree on the left and the
familiar Details panel on the right. Here, you have full control of your Skeleton.
You can modify the root position of any single bone and check your modifications
from the preview viewport panel. The preview panel has the same tools of any other
preview window of the engine, with functions to toggle visibility of different aspects
of the Skeleton or the preview zone itself.

Chapter 5

[175]

Persona
Persona is the main toolset for animation editing of the Engine. From there, you
will be able to edit Skeletons, Skeletal Meshes, AnimationSequences, and so on.
Although a deeper manipulation is available inside the other tools, here you can
preview your Animation Sequences, set BlendSpaces and Montages, control sockets,
and do much more:

As you can see from the preceding image, this window is similar to the Skeleton
window but there are three additional panels. On the right-hand side, you have
an Asset panel, which shows you all the Animation Sequences, BlendSpaces, and
AimOffset files relative to that skeleton. From that panel, you can simply double-click
on one of the files to see its preview and manipulate it in the other two panels.

Just above the preview, you can see the Anim Sequence Editor. This panel provides
functionality for previewing and editing the selected Animation Sequence. From here,
you can add animation notification events (or Notifies). They allow camera effects,
particle effects, sounds, or custom events to be triggered on a specified frame.

From here, you can also add Curves, which is useful when you want to change, for
example, a variable value dynamically during the animation.

Top-Down Shooter

[176]

At the bottom, you can see the frames of the animations, loop the entire animation,
or stop it on an exact frame:

In the bottom-left corner, there is the Anim Asset Details panel. This is a
context-sensitive property editor (exactly like the Details panel) that allows
you to change setting on various animation assets, such as Anim Sequences,
Blend Spaces, AnimMontage, and so on:

Chapter 5

[177]

Animation Sequence
An Animation Sequence is a single animation asset that can be played on a Skeletal
Mesh. It contains keyframes that specify the position, rotation, and scale of a bone
at a specific point in time. The animation is generated by playing in sequence all the
keyframes, blending between them to make the animation smoother.

When opening an Animation Sequence, the Persona window will be opened and any
modification in a single animation sequence will be made there.

When talking about Animation Sequences, there are three different ways to use them.

Additive animations
An animation can be used as absolute or additive at any time. The system performs
the appropriate calculations to convert the data to offset when necessary. This makes
the system much more flexible than that of previous versions of the engine, since you
don't have to specify beforehand that an animation is to be considered additive.

An additive animation can be used when you have two specific animations and
you want to merge them smoothly. For example, when you have a walking loop
animation and you want to modify the walking loop with the hands of your
character opened. With Unreal, the only thing you need to do is to create the hand
open pose and use that pose as additive animation at the walking loop.

Blending animation
Blending animation is the most used type of animation you will see. Animations
can be blended together to create more complex final poses through the use of
Blend Nodes and Blend Spaces. This type of animation allows you to populate
your animation asset by reusing the single sequences instead of having a dedicated
sequence for each situation. For example, you can blend between run and shoot to be
able to aim and shoot at a target while running, walking, or crouching.

Animation poses
An Animation pose is essentially a snapshot of the Skeleton, including the position and
rotation of all of its bones. Think of a pose as what you see if you pause the playback of
an animation. Poses are useful to create addictive animations or aim offset.

Top-Down Shooter

[178]

Animation Blueprints
An Animation Blueprint is a special Blueprint class that, like any other Blueprint
class, uses graphs to control the animation of a Skeletal Mesh. It can perform
blending of animations, directly control the bones of the Skeleton, and output a final
pose for a Skeletal Mesh in each frame.

Each Skeletal Mesh, in order to be animated, must have an instance of an Animation
Blueprint associated to it. The Animation Blueprint, through its graph, can access to
the properties of the owner (that can be a pawn or any other Actor) of the Skeletal
Mesh and uses those values to deliver the correct final pose of the skeleton:

There are two main components in an Animation Blueprint that work in conjunction
to create the final animation for each frame: the Event Graph and the Anim Graph.

The Event Graph is a standard graph like any other Blueprint class. It uses a
collection of special animation-related events to initiate sequences of nodes. The
typical usage of the Event Graph is to check the values of the controlled pawn and
update the corresponding values of Blend Spaces or other blend nodes to drive
animation within the Anim Graph.

The Anim Graph is used to evaluate a final pose for the Skeletal Mesh for the current
frame. By default, each Animation Blueprint has a single AnimGraph, which can
have animation nodes placed within it to sample AnimationSequences, perform
animation blend, or control bone transforms using skeletalControl.

Chapter 5

[179]

The game
As usual, after a brief theoretical introduction, let's use what I explained and create
a game. For this project we use the TopDown Blueprint template, but we also need
some external assets.

UE4 recognises a vast amount of files extensions, from .fbx for a 3D object (almost
any 3D software can create an FBX asset file either from an internal exporter or
external plugin) to the .wav audio file, from the .bmp texture to the .wmv video file
created by an online tool.

For this game, we need a bunch of animations contained in the Unreal Animation
Starter Pack and a couple of weapon 3D models. If you are an artist you can use
your own models, but my advice is to use the files suggested here for 100 percent
compatibility with what I'm going to teach you.

The Animation Starter Pack is a free package released by the Epic team and it can be
found directly from the MARKETPLACE section of the launcher at https://www.
unrealengine.com/marketplace:

This package is compatible with the mannequin used on the template and contains a
vast amount of useful animations for a shooter-type game, such as aim, reload, die,
crouch, and so on.

https://www.unrealengine.com/marketplace
https://www.unrealengine.com/marketplace

Top-Down Shooter

[180]

When you buy a package from the marketplace, as soon as it is downloaded, you can
find it in the Vault section of your Library and it can be added at any of your projects
by clicking on Add To Project button. A popup window appears and shows you all
the projects compatible with the package. When you select them, even if your project is
open, you immediately have that package available in your Content Browser.

The external files are slightly different to import but the process is very simple
and intuitive.

We are going to import a weapon model for our main character. It can be found, like
always, at www.nicolavalcasara.it/packt. As soon as you download it, you can
import it into the editor by dragging and dropping that file into the Content Browser
(wait a couple of seconds before releasing the mouse, it takes a little bit of time for
the editor to process the file and recognize it). You can also right-click and select
import to…:

Chapter 5

[181]

A context-sensitive popup appear showing the different settings that can be applied
to the imported file. In our case, we are importing an FBX file. Because an FBX is a
complex file that contains usually animations and materials instead of only a simple
mesh here we can choose what to import, and how.

The steps to prepare our project are as follows:

• Create a new project from the TopDown Blueprint template, call it TD_Game,
leave the other settings as default, and launch it.

• Download the Animation Starter Pack from the unreal marketplace and add
it to your project.

• Import the ak47.fbx file into your project. Leave the FBX settings as defaults
and create the corresponding folders for the imported files (meshes and
materials). You will notice that the mesh just imported is shown to you as a
white plain mesh, even if the materials are correctly linked. Don't worry, we
will soon fix this problem.

Cleaning the unnecessary files
A clean and tidy project can be developed faster and is surely more enjoyable than a
messy project, so let's do some cleaning on this project.

About the map, the default one is fine for our project; just remove the top-down
template text from the floor.

On the template, you can find some Blueprint script in the controller. Since we
will hardly modify the code, simply create a new Blueprint class extending from
PlayerController and remove the existing TopDownController. When you remove
this file, the editor gives you the possibility to choose to replace the file that references
it (in this case, the TopDownGameMode file). If you don't succeed in retargeting the file,
delete and manually set the controller of the Game Mode to our new controller.

Let's now go inside the Animation extension package and remove all the animations
that we don't need. The player will be able to walk, run, aim, shoot, and reload.

Before deleting take a look at those files. You can easily identify the different kinds of
animation thanks to the colored underlines:

• Green: Animation Sequence
• Light Orange: BlendSpace
• Dark Orange: Animation Blueprint
• Blue: Blueprint class

Top-Down Shooter

[182]

Let's delete every animation sequence for crouch, prone, jump, jog, and hit. Remove
the Blend Spaces relative to those animations too. The showcase map is useless, so is
the Blueprint class for this mannequin and its Animation Blueprint. We don't need
this mannequin as well, as we will soon discuss how to redirect animation. For the
moment, your folder should look like this:

You should have only Animation Sequences in this folder. You can now move all
of them inside the animation folder of your project. From that folder, remove the
TopDown_Anim_Blueprint file; we will create a new one when the time comes.

Adjust the imported files
When you import a file into the editor, especially complex ones such as .fbx files, it
is often necessary to adjust them to be correctly used in your game. As you already
noticed, the weapon imported lack of texture. This is a common issue and easy to fix.

Open one of its materials (wood or metal). There is only a none node connected to
the base color. We simply need to change the none node to a Texture Sample one
and that's it. Search for this node and search for the T_AK47 material in the Texture
field from the Details panel. Apply to the base color and do the same to the other
material. The mesh is already waiting for this material, so you should immediately
notice the correct texture applied to it as soon as you save:

Chapter 5

[183]

From this starting point, you can play with Metallic, Roughness, or the other pins as
we did in the previous chapters to give your weapon a more realistic view. The mesh
UV mapping will apply the correct piece to your object.

Skeletal Mesh retarget
You might want to use the same animation you created with a Skeletal Mesh
of another model or, like in our case, you want to unify all the animation to the
same target.

At the moment, we have two copies of the same mannequin (one from the template
and the other from the animation package), and that will be a problem when we want
to create the Animation Blueprint. An Animation Blueprint can work only on a single
Skeletal Mesh. Because we need to blend, for example, the walk without weapon and
walk with weapon animation, we need to have the same reference mesh.

Top-Down Shooter

[184]

When you retarget an animation, you are saying: use this skeleton inside the other
model. The engine will create a copy of the same animation based on the new model,
but as you can imagine, the models can be slightly different (even if they're usually
humanoids). A goblin, for example, is different from an elf. When changing model
after retarget, you can adjust the bones position using the Retarget Manager, a
tool available from the skeleton window that allows you to fit the skeleton to
the new model:

In our case, we have the same model. So, we have to simply switch between them.
Go to your animation folder and select all the TopDown animations files (four files),
right-click, select Retarget Anim Asset, and go to Duplicate Anim Assets and
retarget.

Chapter 5

[185]

In this window, you can see a preview of the actual model and the final target. Just
select the correct UE4_Mannequin_Skeleton file and click on Select. If you don't see
the Skeletal Mesh, just uncheck the Show Only Compatible Skeletons option:

Now, you are free to delete the original four animations you just retargeted and
replace the existing files under the Mesh folder with UE4_Mannequin one. Remove the
(now useless) AnimStarterPack folder and prepare to animate it.

Animations
It's time to plan our game to see what is needed in terms of animations. The
gameplay consists of a typical shoot 'em all: the player needs to shoot as much as
they can at the infinite waves of enemies. The enemies can be killed with the weapon
but the player must move around constantly because the enemies never end and
never stop chasing the player.

The environment is a flat plane, with some random tall obstacles useful to avoid the
attack. It doesn't contain slopes, doors, or jumpable obstacles.

Considering this and seeing what animations sequences we have available, we can
implement the following:

• Aim offset: An animation offset that allows the animation to aim the correct
point to use as addictive animation at the final pose

• BlendSpace idle-walk while aiming: We already have an idle-walk-run
Blend Space without aiming, but the player surely will need to shoot
while moving

• Animation Blueprint: The animGraph of our player can use a single State
Machine that goes through idle-move-shoot-reload steps according to the
player controller

Top-Down Shooter

[186]

Aim Offset
When talking about AimOffset and BlendSpaces, the engine allows you to choose
between one or two-dimensional sequences depending on how you want to interact
with it. A two-dimensional Blend Space, for example, can take the direction and the
speed of the character in order to create a correct moving result. A single dimension,
for example, can take only the speed of a falling object to modify its shapes.

A typical two-dimensional AimOffset for our character take the pitch and the yaw
degrees to calculate a final pose, but it is not what we need. Because we are watching
it from the top-down perspective, we can use a single dimensional offset and take
only the yaw of the player, irrespective of whether they are looking down or up. The
following screenshot explains the concept:

From the preceding screenshot, you can see that 0 is the point where the player is
aiming in the pose shown. By creating the offset, we will rotate only the upper part
of the body by calculating the angle between the 0 point and the aiming cursor (in
our case, the mouse position). This screenshot also shows how a pitch calculation is
hard to find and useless.

To create an aim offset, we need to create three additive poses for our character. If
you search in the available sequences, you will notice that we have an Aim_Space_
Ironsight sequence. On opening it, you will see that it loops between all the possible
aiming positions. It's a good starting point to extrude the poses that we need.

Chapter 5

[187]

Create a new folder and call it AIM_Offset. Copy the Aim_Space_Ironsight
sequence inside that folder, duplicate it two times (by using Ctrl + w, or by using
right-click and selecting duplicate), and rename those three sequences: Aim_Center,
Aim_Right, Aim_Left.

Now, open Aim_Center in Persona and stop the preview from the Animation
Notification panel:

From any of your sequences, you can extrude a pose. Here, we want to find the
frame where the model is aiming at its center and generate an additive pose for the
aim offset. The center point is easy, drag the red rectangle from the frame bar to the
Frame 0. Notice how the preview is updated instantly while dragging.

Now that we found our frame, we can delete all the others frames by right-clicking
on the red rectangle and selecting remove from frame 1 to frame 87:

You should get an empty frame bar with a single key on it. If you play, you can see
how (logically) the mannequin doesn't move at all.

Top-Down Shooter

[188]

Now, we need to set this pose to be additive. From the Anim Asset Details panel,
find the Additive Settings section and choose Mesh Space as Additive Anim
Type, choose Selected Animation by Frame as Base Pose Type, and search for
Idle_Rifle_Ironsights as Base pose Animation. We are basically telling the system
that whenever this pose is used, it has to calculate the addition based on the bone
transformation of the first frame of the idle with weapon animation:

Chapter 5

[189]

Repeat the same process with Aim_Right (frame 35) and Aim_Left (frame 62). When
cleaning frames from a middle point, there is a second step but the process is the
same: first remove frames 0 to frame x and then remove from frame 0 to end of clip.

With these three poses, from the Content Browser, right-click and go to Animations
| Aim Offset 1D.

The window that appears is different only in the Animation Notification panel. This
new panel has a Parameters section where you can set your dimension values (axis
name, starting point, and ending point of the dimension) and a single line graph
where you can drag poses or sequences that you want to be executed according to
the value of the dimension parameter.

Set the parameter name to Angle and Range to be -90 to 90. Apply Parameter
Changes and notice how the graph changes:

You will soon see the meaning of all this. From the Asset browser on your right, drag
the Aim_Center pose and drop it on the center of the graph line. Do the same for
Aim_Right and Aim_Left, positioning them on the end points of the line. Now, you
can move your mouse around the line to check the result of the blended offset.

Top-Down Shooter

[190]

The mannequin moves its torso to the left and the right, but it is not embracing a
gun! This is because we didn't set the preview base animation of AimOffset. Fix this
by going to the Details panel and setting the Idle_Rifle_Ironsigh sequence in the
Additive Settings section. The AimOffset is done and ready to be implemented in
our future Blueprint:

Blend Space
We now need to create a Blend Space to handle the animation between an idle aim
and a walking aim. A two-dimensional BlendSpace is what we need. The x dimension
will be the 360 direction of the character and the y dimension will be its speed.

Right-click on the Content Browser and go to Animations | Blend Space. Set our
mannequin, name it Idle_Walk_IronSight, and set the Preview Base Pose to be
Idle_rifle_ironsights.

Chapter 5

[191]

About the parameter, name the x axis Direction and give it a range from -180 to
180. The y axis will have the name Speed and a range from 0 to 200. Click on Apply
Parameter Changes and notice how the graph is a 4 x 4 grid.

When the speed is 0, it means that the player is not moving but aiming at something.
You can drag the Idle_rifle_Ironsigh sequence to all the five intersection bottom
points of the graph. We need to do it for all the intersections because we want to be
sure that the animation is not moving at all at 0 speed, irrespective of the direction.

To figure out the correct sequences, try to think about the image we saw for the aim
offset angles. If the direction is 0, it means the player is moving forward and if the
direction is nearby 180 or -180, the player is walking backward. Similarly, for the
90 and -90 degrees, the player is moving to their left or their right.

Drag the Walk_Bwd_Rifle_Ironsights sequence to the top corners of the graph, the
Walk_Forward_Rifle_ironsights sequence to the top-center, and Walk_Rt_Rifle_
Ironsights and Walk_Lt_Rifle_Ironsight to the 90 degrees intersections:

Animation Blueprint – AnimGraph
It's time to create the Blueprint file that will handle the animation. In the Blueprint
folder, right-click and go to animation | Animation Blueprint. From that popup
window, you can select a parent class for your animation. Like a normal Blueprint
class, you can have a main Animation Blueprint that handle the basic movement
of a character and create extension of that class that will handle only the different
animations for different characters.

Top-Down Shooter

[192]

Select AnimInstance (the basic class) and our mannequin, and name it AnimBP.

Opening the file will immediately show you the AnimGraph, with the final Animation
Pose node waiting for the result input pin to be connected with a State Machine.

A State Machine is a special node and provides a graphical way to break the
animation of your Skeletal Mesh into a series of states. These states are then
governed by Transition Rules that control how to blend from one state to another.
This tool simplifies the design process for animations. You can create a graph that
easily controls how your character can flow between the types of animations without
having to create a complex Blueprint network.

Thanks to a State Machine, it is really easy to create and handle an animation flow.
To create a new State Machine, right-click anywhere in AnimGraph and search for
Add New State Machine…. Call it Locomotion and connect to the Final Animation
Pose node:

Now, double-click on the Locomotion node to open the State Machine. This special
graph is made by the logic block, each one contains a single sequence or a blended
sequence. What we need is an idle/move state that can move from and to a shooting
state and that can handle a reloading state.

Before creating our states, let's add the variables that will be used by them. From My
Blueprint panel, add these variables:

• Speed: Float
• Direction: Float
• Angle: Float
• isReloading: Boolean
• isShooting: Boolean

Chapter 5

[193]

To add a new state, drag the new arrow from the Locomotion State Machine, click on
Add state, and name it Idle/Run:

The Idle/Run state will be the entry point of the State Machine. The animation will
use this node without a Transition Rule by default as soon as the model spawns on
the level.

Open the state you created. Notice how every state node you create has a final
animation pose. You can connect a single animation sequence to this node or connect
a complex result from a Blend Space and other animations. This Final Animation
Pose is basically the same node of the AnimGraph and any animation connected
here directly affects that final result of the root. For example, you connect the Idle
sequence on the Idle state. If the actual state is Idle, the Final pose of the animGraph
will be the Idle loop animation.

For our state, we want to use TopDown_IdleRun_2D, a default BlendSpace that takes
as a parameter a speed value and blends the animation according to it.

Top-Down Shooter

[194]

When inside animGraph, you can simply search for the exact name of a sequence/
BlendSpace and add it as a graph node. Search for it and add to Final Animation
Pose. Now, simply get the Speed variable we created and connect it to the animation
BlendSpace:

If you compile, you can see that the preview now is changed and the mannequin is
now in idle animation. From the default value inside the AnimPreview editor, you
can change the speed to check if the state you created works as expected.

We can go ahead and connect a new state to the idle one. To do this, simply click
on the Idle/Run node, drag out a new state, call it Shooting, and notice the type of
graph the editor created. The wire is not, like Blueprint, a straight line that connects
two nodes. It's a unidirectional arrow, with a symbol on top of it. This is a transition
wire and it is a special arrow that handles how two states are connected. Here, you
can set the rules to handle when and how a state will change:

Double-click on the symbol at the top of the arrow to set the Transition Rule. In our
case, we want that the state should change from idle to shooting and vice versa based
on the isShooting variable.

Chapter 5

[195]

From Idle to Shooting, simply get the isShooting value; from Shooting to Idle, use
a NOT node to find when the player is not shooting:

You can create as many Transition Rules you want by dragging and connecting the
two states node borders.

About the Shooting state, it is time to use the two animations we created before.
Take Idle_Walk_IronSight, connect the result to Aim_Offset_Ironsight, add the
corresponding variables, and connect the end to the Final Animation Pose:

Compile and enjoy the result. Everything works smoothly and according to the
input values.

There is a known incongruence between the template mannequin
and the Animation package root bone that makes a blend between
those two unpleasant. To hotfix this problem, under the blend
settings of the transition rule from idle to shooting, change the
duration field from 0.2 to 0 seconds.

Top-Down Shooter

[196]

As last, handle the Reloading state. Create the same transition we did before, use
isReloading instead of Shooting and connect it from entry to the shooting state:

Inside the reloading state, we simply want to Play Reload_Rifle_Ironsights sequence
and blend it with the direction the player was aiming on the Aim_Offset_Ironsigh:

Animation Notifies
All those variables are updated each frame from the evenGraph and their values
are handled by the player controller. There is a variable that can't be handled by the
controller: IsReloading. How will a player know when an animation ends playing?
(In this case, when it ends to reload the weapon?). It's here that an animation notify
can help. From Persona, we can set a notify to be fired on an exact frame that says to
any listener (in this case, the animation Blueprint) that an animation ends.

Open Reload_Rifle_Ironsights, right-click on frame 62 in the Notifies panel, and go
to add Notify | New Notify…. Name it Reloaded. It should appear correctly on the
time frame like this:

Chapter 5

[197]

With this setup, we can go back to our Animation Blueprint. Within EventGraph,
we can simply search for the Reload event and use it like any other nodes within
Blueprint:

Compile and check if it works correctly. On selecting isShooting and isReloading
as true, the animation should automatically return to the shooting state as soon as
the reloading animation ends.

Inputs
For our game, we need to change the default input values. The player will move the
character using the WASD or the arrow keys, aim and shoot with the mouse, and they
have the option to equip/unequip and choose between two weapons by using the 1 or
2 keys. Go to Edit | Project Settings and create the following actions and axis:

Top-Down Shooter

[198]

Player movements
It's time to implement some logic in our project. We can start by handling the
movement of the character. Like most of the logic of a player, this will be handled by
the player controller.

It's good practice to use the player character (or pawn) to store
and handle only the pawn-related information such as health,
equipped weapon, speed, and so on, and handle all the logic of
it with a player controller class. This leads to a better reusability
of the code and a cleaned and ordered workflow.

Open the TD_Controller Blueprint class and enable the cursor and the mouse
events from the mouse interface section. Then, open the full Blueprint editor
and insert the movement event nodes: InputAxis MoveForward and InputAxis
MoveRight.

We saw a similar event in the previous chapters: those events are fired in each frame
the event occurs (in this case, one of the move key is pressed and held). When a key
is pressed, we want to add a movement input (remember to uncheck the contex-
sensitive option if you don't find the node) with the player pawn as target and a
direction vector up (1,0,0) or right vector (0,1,0) as direction, correctly scaled by the
axis value. With these nodes, we have a walking character that faces the direction it's
pointing and moves correctly in the four directions:

Chapter 5

[199]

This setup doesn't allow acceleration or a clear passage between
walk and run because the value is always 0 or 1. You can make the
transition smoother by multiplying the created vector by a custom
float value and play with the character movement properties.

Aim logic
At the moment, the pawn is rotating automatically by facing the direction of the
movement (still without animation but we will fix that soon). This behavior - check
and apply throughout is fine if the player is not shooting. As soon as a player
embraces a weapon, we want to be able to aim at the mouse position and to keep
aiming the mouse while moving.

To achieve this result, we will create two functions. The first one physically rotates
the character to the cursor position and stores a reference to its rotation. The second
one updates on every tick an angle value based on the cursor position and the
rotation of the player.

Rotate To Aim
Inside the player controller class, create a new function and call it RotateToAim. This
function simply rotates the character to face the cursor. To find the cursor location,
we use Get Hit Result Under Cursor by Channel:

Top-Down Shooter

[200]

This node checks whether the player hit a traced object and returns a hit result; it is
similar to the raycast node we saw in other chapters. Thanks to this node, we can get
the exact position of the cursor and we can use the Find Look At Rotation node to
get the exact rotation to apply to our character to face the cursor:

Before changing the rotation, break the rotation and nullify pitch and roll. We only
want to rotate the player by its yaw:

Set Aim angle
The set Aim angle function is similar to the preceding one, the only difference is
that it doesn't rotate the Actor but it refreshes a stored variable that will be used in
the animation Blueprint. We use Get Hit Result Under Cursor, we find the rotation
toward the cursor and we subtract the actual actor rotation to find by how many
degrees we need to rotate our AimOffset.

Chapter 5

[201]

Create a new float variable and call it LookAngle, create a new function, call it
SetLookAngle, and copy the same nodes we used before, applying the modifications
we just discussed. The final result should be something like this:

Gate
We now need the ability to control whenever a player is firing or is simply moving.
To do this, we use a Gate node.

A Gate node is used as a way to open and close a stream of execution. The Enter
input takes in execution pulses and the current state of the gate (open or close)
determines whether those pulses pass out of the Exit output or not.

In our case, we use the player controller tick as the Enter input, the Pressed Fire
button as Enter, and the Released Fire button as Exit. As soon as the player hits Fire,
the RotateToAim function is called. Until the player stops firing, the execution node
is called and the lookAngle is updated with the SetAimAngle function:

Top-Down Shooter

[202]

Start and stop shooting events
This gate is a good starting point but there is still some work to do. First, as you
notice, as soon as you move after clicking fire, the player returns to face the direction
where it is moving and there isn't a place where to communicate to the animation
what we are doing.

Create two custom events, call them StartFire and StopFire, and connect them to
InputAction Fire. Fire just before the Gate:

It is much cleaner than before and it gives you the possibility to implement nodes a
second time without needing to move around everything.

On the start and stop fire, first we want to toggle the autorotation. This is achievable
thanks to the set orientation to movement node of the character movement
component of the player pawn.

Chapter 5

[203]

To get a component of another Blueprint class, we can cast to the correct class our
pawn or (and it's preferable this way if you need to cast multiple times components
in your Blueprint) create a casted reference of that class on the BeginPlay event:

Character Reference is of the type TopDownCharacter Blueprint class. With this
way, we don't need to cast anymore during the gameplay and we are now able to
get any component of the topdown character pawn.

Get the Character movement component, search for Orient Rotation to Movement
node, and apply it to the stop and start fire like this:

Top-Down Shooter

[204]

About the animation, we need to set a Boolean value here that will be used by the
animation. Just create it, call isShooting, and set true or false on the according
event. Lastly, remember to reconnect the Rotate To Aim node at the end of the Start
Fire event:

Flip the player
If you return to when we created the AimOffset, you will notice that is handled
only from -90 to 90 degrees from the point 0. This is because, as a humanoid player,
it cannot rotate its torso all the way around to cover 360 degrees all around it. This
means that when we start to fire, we are able to cover only half of the space available.

This is a common problem in this kind of game and usually the solution is a
compromise between realism and practice. Most of these games simply don't care
and rotate the whole mesh constantly to face the cursor. The ideal solution is to
blend an animation between the left and right aim pose, but, because the action is so
frenetic that this kind of animation will barely notice, a rotation of 180 degrees when
the angle exceeds a certain value is more than enough.

First, create a function called FlipPlayer and set its rotation after adding 180
degrees to its yaw. It's an easy function and the final result should look like this:

Chapter 5

[205]

Secondly, implement this function just after setting Look Angle. If the angle
calculated is more than 90 degrees, then flip the player:

Weapon
The weapon in our game is an Actor object that can be collected and dropped, can be
attached to our pawn thanks to a Socket, and can handle the spawn of bullet objects.
We will create a super class weapon that can be used as a parent to create different
types of weapons for your games.

Socket
First, let's talk about socket. A socket is a special object that can be placed as child of
any bone of a Skeletal Mesh. It has its own translation properties (location, rotation,
and scale), it is totally invisible to the player, and it can be used to attach a mesh
to another object. Because the socket is attached within a bone, it will follow the
animations automatically without needing to use additional calculations.

For our game, we need two sockets: one in the hand of the player when it is aiming,
and one on the shoulders when the weapon is in the inventory. To create the first
socket, open UE4_Mannequin skeleton and locate the Hand_R bone from the
Skeleton Tree.

Top-Down Shooter

[206]

Right-click and select Add Socket. Call it ArmedSocket and that's it; you have a socket
ready to accept a mesh. You can add a preview mesh to the socket you created by
right-clicking on it and selecting Add Preview Asset. This is really useful when you
want to adjust the socket properties to fit the mesh you know will be added there.
Search for the AK47 mesh and adjust the values of the socket to something like this:

Repeat the process for the secondary weapon by adding a new socket at the
Clavicle_R bone, call it WeaponBack, and adjust its values to something like this:

Chapter 5

[207]

The weapon meshes here are only available inside the preview. If you run the
project, you will not see them until we will attach them by code.

Weapon Blueprint class
Create a new Blueprint class extending Actor and call it Weapon. A weapon can
be collected from the floor and needs to have a reference point for the bullets. On
Viewport, add a Sphere collider component, a Skeletal Mesh component, and an
Arrow component. Make the Sphere collider as root, change the collision type to
generate overlap events, and set collision preset as overlap all.

The Skeletal Mesh as you can image is our AK-47. Position it inside the Sphere
collider and disable its collision. The arrow needs to be moved on the fire point of
the mesh, with the big red arrow pointing forward from the weapon. The result is
something like this:

We need the following variables:

• MaxAmmo: Float and public; the maximum amount of ammo available for
this weapon

• Loader: Float and Public; the actual number of bullets available. This and the
previous variable are public to be used within the HUD

• FireRate: Float; the fire rate (in seconds) of the weapon
• IsReloading: Boolean; used to stop fire while the weapon is reloading

Top-Down Shooter

[208]

The fire will be handled by two custom events and a Fire Function. The events will
be called by the player controller and they simply start and stop an infinite timer
based to the Fire Rate:

When called by the timer, the Fire function uses the SpawnActor node from the
Arrow location:

On this function, before firing the bullet, we need to check if there are bullets
available in the loader and if not, we set the Fire to unavailable until the player
has reloaded it.

Chapter 5

[209]

Because the player could want to keep the button Fire pushed even when reloading,
we add an AND condition to the check this value together with the weapon loader
to prevent an accidental and unwanted bullet spawned until the weapon is ready to
shoot again:

Animation reloading
Remember that we need to update the variables used by the animation as well.
So add two new custom events, OutOfAmmo and Reloaded, inside the player
controller. These two events toggle the player input movements (to prevent it from
moving while the reloading animation is playing) and update the Is Reloading
controller variable:

Top-Down Shooter

[210]

In the preceding screenshot, you can see a Reloaded event called to the Character
Reference. This event is needed to tell the character that the animation has ended
and its weapon can be topped up. This chain of events is called a bubble chain and
is often used when a single event needs to be fired inside different classes, each one
with its own variables to update and actions to call.

In this case, the weapon used by the player stops to fire and communicates to the
controller to end the ammo, the controller tells the animation Blueprint that it needs
to start the reloading animation. As soon as the sequence ends, the controller can
re-enable the input movements and communicate to the character that it can start to
fire, and the character closes the loop by communicating to its weapon to topup its
loader and fire again.

This is the event called inside our player character:

The Weapon variable is a Weapon class variable; it is used to store the actual
equipped weapon. We will implement it soon.

This is the last part of the chain, the top-up event inside the weapon class. It simply
restores the maximum ammo available for the selected weapon and resets the Is
Reloading variable:

Chapter 5

[211]

Bullet
As bullet, we use a sphere Static Mesh with a glowing material. The code for our
bullet is really easy: just a single node DestroyActor. When it hits something, we
will handle the damage taken directly within the enemy classes.

Create a new Blueprint class extending from an Actor and call it bullet. On the
viewport, add a Sphere collision (OverlapAll) and a Static Mesh component
(SimpleSphere). Then, create a new material for it with a plain color for the base
color and a multiplied version of the same color for the emissive field. This is similar
to what we did for the collectables in the previous chapters.

For the bullet physics behaviour, Unreal offers a dedicated component: Projectile
Movement. This component will add realistic bullet behaviour to your Actor,
such as acceleration, gravity, direction, and so on.

Add this component and change its Speed to 1500, gravity to 0, and check if the
direction is a forward vector (1,0,0). This should be the final result:

On the event graph, just add this node and that's it for the bullet. As soon as this
Actor is spawned into the scene, the ProjectileMovement component will take care
of its movements:

Top-Down Shooter

[212]

Save and set this class to the SpawnActor node of the weapon class. The last thing to
do is to communicate to the player controller that the weapon is out of ammo. Add
these nodes inside the fire weapon function, just after the isReloading variable is set:

Player character weapon slots
We want to be able to collect the weapons we find around the level; we should be able
to carry two of them and switch between them with the input keys we set earlier.

This behaviour is handled inside the player character (it's the character pawn that
carries the weapons, not the controller). From this class, we will control whether
there is space for a new weapon, when a weapon is equipped or dropped, and the
code to equip them by the player inputs.

Go to the player character class and add these variables:

• WeaponSlot1: This is a weapon class and the first slot of the inventory
• WeaponSlot2: This is a weapon class and the second slot of the inventory
• WeaponEquipped: This is a weapon class and the actual equipped weapon
• IsCollected: This is Boolean and used with the collect function when a new

weapon is found

First, when a player presses the equip key, we want to check if the corresponding
slot has a weapon. If yes, switch the weapon in the slot with the equipped one and
attach the weapon mesh to the socket we created earlier.

Chapter 5

[213]

To do this, we use the AttachActorToComponent node. This node accept as input
a Target actor (the weapon, a parent actor (our character mesh component), and a
socket name for where to place the new actor (in this case, the armedSocket socket):

This event is for key 1, and key 2 is exactly the same. Simply use the WeaponSlot2
variable. The IsValid node will check if the input object is a valid object; in this way,
we can easily know if there is a weapon in this slot.

The second function we need here is to handle whenever a collected weapon can be
stored into a slot or not. Create a new function and call it Collect.

Set an input weapon class variable (the collected weapon that needs to be stored) and
an output Boolean result that will say to the caller if the weapon is collected. Thanks
to a couple of IsValid nodes casted to the slots, populate the output variable and the
corresponding slot. Remember that if you create an output value on a function, you
always need to cover all the possible cases of the nodes inside this function:

Explaining this graph: check if in the slot one there is actually a weapon (using an
IsValid node), if yes, go ahead and check the second one. If both exist, simply return
false. If there is a free slot, set the collected weapon on the slot and return true.

Top-Down Shooter

[214]

Weapon collectables
Now that we have implemented a little inventory, we can create the events that
handle whenever a player collects a new object. Go back to the weapon class and
extend the ActorBeginOverlap method. From there, we can call the character
Collect function. If it returns true, move the weapon Actor to the back socket of the
mesh using the AttachActorToComponent method we used earlier and specify the
socket as WeaponBack:

Mono-use weapon
When creating different types of weapon, you might want to make them with only
a fixed amount of ammo and without the possibility to top them up. Implementing
this behaviour is easy. Within the weapon class, add a new variable and call it
SelfDestory. This variable, if set to True, as soon as the player ends its ammo on the
fire function. It will destroy the Actor and call the stop shooting event without the
possibility to recover it.

Chapter 5

[215]

On the fire function, add a new branch node immediately after ending the ammo
like this:

The Destroy It function simply destroys the Actor and calls the stop shooting event:

Top-Down Shooter

[216]

Spawner
The spawner is usually a place where a random collectable object is spawned in the
level. It's an essential object for a shooter because it is the only place where a player
usually can top up their weapons or heal themselves.

We are going to create a generic spawner, which is placeable anywhere in the
level that can accept an array of objects and that can be reusable or customizable
for your needs.

Create a new Blueprint class, extending Actor and call it Spawner.

Only a Cylinder mesh is used as platform visible for the player and an arrow
component that will store the location where the object will be spawned.

The variables needed are two: an array of classes called Spawnable objects and
a Boolean variable called ObjectExist used to know whenever an object can be
spawned or not:

We don't care about collisions; they are handled by the spawned object itself and the
only logic to be implemented is to start a looped timer as soon as the spawned object
is activated. At its loop call, it takes a random object from the array and spawns it in
the correct position (if it can).

Chapter 5

[217]

So, set a timer with a delay of 30 seconds on Event BeginPlay and toggle the
Looping variable:

To get a random item from an array, use a get node with as index a random integer
number between 0 and the length of the array like this:

Connect the result to a SpawnActor node only if an object don't exist:

Top-Down Shooter

[218]

We can now add a little bit of dynamism and add a RotatingMovement component
to the spawned Actor. A rotating movement component is a special component that
rotates the Actor and it is attached to each frame by the rotation rate set on its details.
This makes the spawned object easier to notice by the player.

Custom component
The ObjectExist variable raises a question: how can we change this variable when
the player collects the spawned object? We could add a reference for each spawner
on the level to the character, and loop all of them to find the owner. But it is a very
expensive way and not good practice.

An easier solution is to create a custom component to attach to the spawned object
that will simply contain a reference to the owner.

In this way, when a player collects something, it simply checks if the object collected
has this component and changes the objectExist variable.

Create a new Blueprint class, extend ActorComponent, and call it
SpawnerComponent. This object has an Owner Variable of type Spawner class and
two functions: SetOwner (called from the spawner whenever this component is
attached and a ResetSpawner (called from the player whenever it collects an object
that has this component attached):

With this component, you can go back to the spawner object and add this node just
after the spawn node:

Chapter 5

[219]

With this setup, for any object that you want to be spawned into the spawner, you
can use Get Component by Class. If this component is found, call the corresponding
function.

In our case, because we only have the weapon object that will be spawned, we
want to destroy Rotating Movement Component and reset the spawner of
SpawnerComponent:

Animation Blueprint – EventGraph
At this point of the project, it is time to finally see the animation in action by
completing eventGraph of the Animation Blueprint with some communication nodes.

Top-Down Shooter

[220]

We have all the elements needed inside the player controller, ready to be collected by
the Animation Blueprint. First, create a handy function inside the player controller
called Get Parameters. It simply returns the value of aiming, look angle, and reloads
whenever it is called. It looks like this:

Now, open the Animation Blueprint and go to its eventGraph. First, create a setter
for those three values we just made the getter for:

On the main graph, we use the Event Blueprint Update Animation event to get those
references and update them, along with the direction and the speed of the player.

To calculate the movement speed, we simply take the vector instant velocity length:

Chapter 5

[221]

After calculating the speed (we will see soon why we calculate it first instead of
calculating it together with the other values), we can cast the pawn owner to our
controller and get/set the parameters. Lastly, we calculate the direction of the player
by using the Calculate Direction node, with Base Rotation and Velocity of the pawn
as input:

Everything needed for the animation is in place. Compile it and test it. You can finally
see your player animating nicely when moving around and if you hit fire, you should
see the animation changing and the player aiming correctly (yes, without a weapon at
the moment but will it be fixed soon) at the mouse position, rotating the torso as the
AimOffset wants and flipping its direction when exceeding a certain angle.

About the aiming without weapon issue, add another check at the InputAction Fire
event of the player controller. Enable the fire only if a weapon is actually equipped:

Now, place a spawner object anywhere within the level and try to collect a spawned
weapon (remember to add the weapon class to the spawner array), equip it by the
equip key, and shoot around. Now, we only need an enemy to shoot at!

Top-Down Shooter

[222]

Enemies
Because we are still learning and we did a lot so far in this chapter, the enemies
for this project will have a zombie-style brain, without a weapon to shoot through
the player. They will slowly chase the player forever and when near enough, they
explode -- hurting the player.

The Skeletal Meshes used will be the same mannequin used by the player, and the
animation blueprint can be reused by the enemy.

When developing enemies, you can see them like player characters but instead of being
controlled by a player controller (that is controlled by the inputs of the player) they are
controlled by an AI controller (that is controlled by a logic sequences of actions).

Pawn
So, let's start to create a new Blueprint class by extending Character Actor and calling
it Enemy. Set SK_Mannequin as Skeletal Mesh, with our Animation Blueprint as
Animation Blueprint Generated Class and, to make it slightly different from the
player itself, apply on Element 0 of Materials, a modified copy of the original one
with the BodyColor changed to another color:

For our enemy, we need to handle two different collision events: the first one, within
the capsule, is used when the enemy is hit by a bullet. The second one, used by a
bigger sphere collider (the red sphere in the previous image), will handle the impact
with the player and is the responsible for the damage sent to the player.

Chapter 5

[223]

We only need two variables for the enemy: a float Health and a float Strength. The
first one is how much Health the enemy has, and it will be decreased by a fixed
amount when hit by a bullet. The second one is how much damage this pawn will
inflict to the player.

On Event ActorBeginOverlap add those nodes:

When the root component is being overlapped, check if the collider is a bullet,
decrease the health, and destroy if there is no health remaining.

Now, add a sphere collider component to the Actor, chance its collision type to overlap
only the player and add these nodes to the OnComponentBeginOverlap event:

AI
The AI for this enemy is composed by a single main node: as soon as the pawn
spawns into the level and is updated on each tick, call the SimpleMoveToLocation
function.

This node will move the pawn to the goal location (in our case, the player pawn
location) using the NavMesh to find the shortest route and automatically avoiding
obstacles.

Top-Down Shooter

[224]

We don't need to create a NavMesh like we did in the previous chapter, because the
template already has it but if you accidentally delete it, it shouldn't be a problem for
you to recreate one.

Create a new Blueprint class extending AIController and call it AI_Enemy_
Controller. The only code that needs to be added to the EventGraph is the following:

Lastly, return to the EnemyPawn class and on the Pawn section from the Details
panel, set on Auto Possess AI: placed in world or spawned and set the AI you just
created as AI Controller Class.

Game Mode
The game mode will be a wave-based one. Every 60 seconds, a new, increased number
of enemies will spawn into the level, making the life of the player each minute harder.

First, place four Target points (you can find them in the Modes panel) in the four
corners of the level. Those will be the spawn points for our enemies.

Now, open the GameMode class of the level. We want to get a reference for all the
target points inside the level and store them into an array as soon as the game starts.
After doing that, call a custom event that takes care to create a new wave of enemies,
and lastly we want to set an infinite timer that will call a new wave every 60 seconds:

Chapter 5

[225]

The new wave event will multiply the wave variable by five and use this value in a
ForLoop node to spawn, with a delay of 1 second, the number of enemies calculated
from a random point of the Target points array:

The SpawnEnemy event will find a random point (with the same method we used
earlier for the Spawner class) and spawn an enemy:

Top-Down Shooter

[226]

Launching now, the game should show you an almost complete game. You can
run around, collect weapons, and hit the enemies that spawn around you and that
chases you forever. We only need a HUD that shows us some information of what
we are doing.

User interface
The information that we want to show is as follows: the player life, the ammo of the
weapon we are using, and the wave we reached.

Remembering what we did in the previous chapter, create a new Blueprint Widget
and call it UI_Game. Add four text widgets and a progress bar Widget to create a
result like this:

Health and Wave are two static texts. The other three Widgets will be updated when
needed.

Chapter 5

[227]

About the health bar, bind the percent value of its progress section with a function
that checks the player character's health and divides its value by 100. (It is supposed
to have a maximum health value of 100. Change the percentage scale with the
maximum amount of health if you change the player life.):

The ammo text bind will check if the player has a weapon equipped and if yes, it
uses the Format Text node to create the string: Ammo: actual ammo remains/max
ammo:

The Wave bind is the easiest one. It simply reads the wave variable of the game
mode class and converts it into a text value:

As practice, here are some suggestions to improve this project.

Top-Down Shooter

[228]

Summary
As usual, here are some suggestions to improve this game:

• GameOver? Yes, like the other chapter, it is missing a piece here also. This
time it is the GameOver state of the player. Implement it by checking when
a player reaches a value less than 0 on their health and managing this state
with a Widget or simply restarting the game.

• Buttons? Try to create a menu similar to the one in the previous chapter that
handles the start/pause events.

• New Weapons! Even if simple, the weapon class we created is really
powerful; by using this class as parent, you can create dozens of new
weapons without being worried to recreate the logic of fire/equip.

• Different walking speed while shooting! Play with the CharacterMovement
component and the start shoot event of the controller.

If you follow everything correctly, you can now play and enjoy a typical top-down
shooter. In this chapter, I gave you all the basic aspects of this kind of game. By
tweaking the variables and changing the mesh with better ones, you could have
amazing results with relatively less work.

In the next chapter, we will focus on the environment. In this chapter, we focused on
player animations and behaviors. In the next one, we will see how to create dynamic
objects such as doors, traps, and other items useful for a platform-type game.

[229]

A Platform Maze
In this chapter, we are going to see some new aspects of a game development. We
will create a maze with plenty of traps, where the player needs to use his skills to
reach the final destination.

You will learn about modular and reusable elements to create, like in a puzzle, any
kind of game level you want by simply positioning them:

• Matinee and cinematics
• Ragdoll
• Destructible elements
• Trigger volumes
• Blueprint Function Library
• Timelines

This game uses the third-person Blueprint template and some of the assets of the
starter content. This chapter doesn't have a strict guideline but is divided into
sections, each one of them covers a different specific tool or technique. So, without
further ado, let's start.

A Platform Maze

[230]

Ragdoll physics
In computer physics engines, ragdoll physics is a type of procedural animation that
is often used as a replacement for traditional static death animations. A ragdoll is a
collection of multiple rigid bodies (each of which is ordinarily tied to a bone in our
Skeletal Mesh) tied together by joints that restrict their movement. When the player
dies, each rigid body collapses to the ground and thanks to its constraints the death
looks realistic.

This is the ragdoll of our familiar mannequin, and it actually looks quite dead.

This technique is improving year by year thanks to the new technologies, and there
are games that use it in a non-traditional way, such as the FlatOut series, where you
can control the dead mannequin while flying, or Rag Doll Kung Fu, where you control
one part of the body and the rest follows along.

In Unreal Engine, achieving ragdoll physics is really simple. Any object can be set to
answer at the physic stimulations, as long as that object has Physics Asset.

Chapter 6

[231]

For our mannequin, we need to set the physics asset because the default skeleton
mesh doesn't have one. Open Persona and set the Physics Asset under the Physics
section of Mesh Details:

Now, any time we want to convert the player into a ragdoll, we simple have to call
the Set Simulate Physics node on the correspondent Blueprint event like this:

A Platform Maze

[232]

Destructible meshes
A destructible mesh, as the name suggests and different from a simple destroy object
node, is a mesh that can be divided into smaller pieces and each piece is treated by
the engine on its own.

This new function, added on the new version of unreal engine, allows the developers
to convert any simple mesh into a destructible one. An intuitive editor gives you a
deep control over the destruction of the mesh, allowing you to choose the number of
fractures, the resistance of the object, spread of the destruction, and so on.

To create a destructible mesh, select the desired mesh from the content browser
(if you don't have one, create it using a BSP brush or choose one by navigating to
StarterContent | Shapes), right-click on it, and select Create Destructible Mesh:

Chapter 6

[233]

A new file is created in the same folder with the name NameMesh_DM. Double-click
on that file to open the destructible mesh editor:

The editor is divided into the following sections:

• Menu bar: This is the familiar menu bar, where you can customize the aspect
of the tool, navigate to and from the content browser to change mesh, and
save/load other assets.

• ToolBar: This is another familiar element. From here, you can fracture the
mesh according to your settings, import an external file for the chunks, and
(thanks to the Explode Amount slider) watch a preview of it.

• Destructible Settings panel: This is the main setting panel. From here, you
can set damage and debris parameters, set the material of the chunks, add
flags conditions, and so on.

• Chunk parameters panel: This panel is available when you select a single
chunk. It allows deeper settings for the individual piece.

• Fracture Settings: This decides how the mesh will be fractured by the tool.

Let's now investigate the main properties of this tool:

• Damage Threshold: This is the amount of damage needed at a single chunk
to be fractured.

• Damage Spread: This specifies how the damage is propagated to the
destructible Actor.

A Platform Maze

[234]

• Enable Impact Damage: If enabled, the destructible mesh takes damage
on colliding.

• Debris lifetime: This is time (in seconds) that a chunk will be destroyed
after being separated from the other chunks. Ensure that you enable the flag
Debris Timeout and set the correct debris Depth.

• Damage Cap: Set a limit of damage that can be applied to a chunk. This is
useful for preventing the entire destructible from getting pulverized by a
very large application of damage.

• Accumulate damage: If set, chunks will remember damage applied to them
(by default, only a single damage must exceed the threshold to break the
mesh).

• Particle System: This will set a particle system to spawn when a chunk
breaks.

• Sound: Same of the Particle System property: set a sound to play when a
chunk breaks.

• Material: This will set the material per level of detail.
• Cell Site Count: This is the number of chunks that will be generated during

the fracture process.

A destructible mesh usually doesn't need to be controlled by a Blueprint class; its
customizations make this a wonderful component to be placed as is in your scene.

If you need to control that mesh destruction, for example, by a trigger, you may
need to create a Blueprint class dedicated to it. Let's create a Blueprint with the
destructible mesh we just created. Create a new Blueprint class and choose Actor
as parent.

Chapter 6

[235]

Add a component and search for destructible. Make it the root component and under
the Destructible component from the Details panel, search for Shape_Cube_DM:

We are now able to control this component like any other component on the Event
Graph. We can use the Apply Damage node, launched by Custom_Event and
with as Target Destructible Component. In this example, when the event is called,
Damage Amount (bigger than the threshold of the destructible mesh) is applied to
our component. We use the center of the component as Hit Location, we choose the
direction where the chunks will move as impulse, and Impulse Strength will control
the strength of the explosion:

A Platform Maze

[236]

You can test this by using the event begin play. The following images show the result
of the previous nodes on three different phases of the break:

Physics constraint
A physics constraint is a joint that allows you to connect two Actors or component
together and also apply limits or forces on them.

UE4 has a very flexible and data-driven constraint system that allows you to
make many different types of joints simply by changing some options. With these
components, you are able to create many different objects such as swinging balls,
wheels, and gears mechanisms, or simply keep a physics body in a general area.

Chapter 6

[237]

You can create a Physics Constraint within the scene using Physics Constraint Actor
from the Modes panel, or using Physics Constraint Component within a Blueprint
class. They are basically the same object with the same properties. The Actor has three
prefab settings (ball and socket, hinge, prismatic), but they are only a preset of common
usage of the constraint—nothing that can't be reproduced in the Blueprint class:

A Platform Maze

[238]

Let's take a look at the properties of this component:

• Component Name 1 and Component Name 2: These are the two
Actor/Components where the constraints will be applied. If placed inside
the level, a list of usable Actors will be provided. If used within a Blueprint
class, you need to set the exact same name of the component manually.

• Constrain Bone: If the object/component is a skeletal mesh, you can set a
specific bone to apply the constraint.

• Projection: Enable this setting to prevent your two objects from looking
detached when moving too fast. This will project all bodies so they still
appear attached to each other.

• Linear Limits and Angular Limits: This will set movement limits on the
three axes.

• Linear Motor and Angular Motor: Enable these parameters to add a constant
motor to the constraint. A linear motor try to move the constraint to the set
vector, the angular motor try to spin the constraint by the given rotation.
Both can be driven by velocity or position.

There are plenty of objects that can be made using constraint. Let's now create a
wrecking ball to test it with a destructible mesh.

Create a new Blueprint class using Actor as parent and call it WreckingBall.

Use a billboard as root of this class. This is a simple 2D image that is visible only on
the editor and useful to keep track of the objects inside your levels. The secondary
function of this billboard is to be the primary component of our constraint.

Chapter 6

[239]

Add Sphere and enable Simulate Physics (when using constraint, one of the
components must be physic in order to work). Search for a PhysicConstraint
component and position it just above the billboard. Set the first component as the
billboard and second component as our Sphere. In Viewport, you can see a red and
a blue rectangle showing the constrained components:

That's it. To test it, you can add it to your scene just near the player and when hit by
the player, the ball should start swinging.

At the moment, it is just a floating ball, surely not so realistic without a chain
attached to it. The ideal solution is to create a Skeletal Mesh with an external editor
and attach two components at the first and the last bone of it, but we can achieve
something acceptable even only within Unreal.

A chain is a series of metal rings connected together. We can replicate this object by
using a series of cylinders connected together with physic constraint. Four joints are
enough to give at our wrecking ball a slightly more realistic behavior.

A Platform Maze

[240]

Add four cylinders and four physic constraint. Connect them in order
(constraint-cylinder-constraint-…-sphere), being careful to add at least 2 cm of
space between the cylinders. If you attach them too close, they will not move.
Be careful to check that all the components simulate physic and have a block
collision set:

Test again and notice how the joints work in a slightly better, realistic way. As said
before, a rope/chain made with a skeleton by an external program is surely better
but, without it this solution is more than acceptable.

Matinee
The ability to create cinematic sequences or even dynamic elements within the engine
is covered by the Matinee animation tool. This system allows you to manipulate the
properties of an object over time and its framework is based on keyframes (like any
animation or video editing software such as Flash, Maya, and so on) where each key
positioned within its timeline represent a value of an Actor in the level:

Chapter 6

[241]

Let's take a look at the interface:

• Menu bar: At the very top, we find the menu bar. From here, you can
import/export the Matinee or part of it, manipulate keys and sections,
toggle and customize the viewport.

• Toolbar: From this toolbar, you can find buttons to preview the Matinee
(such as play, loop, reverse, or playback speed) and buttons to navigate
through the sequence.

• Curve Editor: This editor allows you to graphically visualize and edit
the animations curves used by the tracks in the sequencer. Tracks that
have animation curves that can be edited in the Curve Editor in Matinee
have a toggle button on the right side. Clicking on this button will send that
track's curve information to this panel, where the curve will become visible
and editable.

• Track View: The track view contains a list of all the folders, groups, and
tracks contained within the Matinee sequence and shows their keyframe
information on a timeline where they can be edited.

It is worth explaining the curve editor and the track view.

A Platform Maze

[242]

Curve Editor
Curve Editor is composed of a toolbar, a track list, and a graph editor:

The toolbar is divided into three sections: the first one allows you to Fit, Pan, and
Zoom the graph curves as per your needs. The second one has buttons that allow
you to manipulate the interpolation mode of the curves. The last section is used to
create and manipulate tabs group for your curves.

The track list displays all the curve tracks currently loaded into the current tab:

A track contains the name of the property associated with it and a series of buttons
that can be used to toggle the visibility of each single value within the graph.

In this example, the track is controlling the movement of a platform and the colors
are corresponding to the vector X (red), Y (green), and Z (blue).

Chapter 6

[243]

The graph editor is a graphical representation of the curve with the time along the
horizontal axis and the property value along the vertical axis. Keys along the curve are
displayed as points that can be selected and manipulated to visually edit the curve:

This image shows the movement of the platform during a 5-second period. It has
three keyframes that control how the values will change on all the three axis.

Track View
Track view is divided into: group tabs, groups, track list, and a timeline.

The group tab, found at very top of the panel, shows all the group that exist in the
current Matinee sequence. Group tabs are handy way of organizing groups and
tracks based on their functions. This is useful in complex sequences, like those
used to create in-game cinematics, you will do best to make use of these tabs as
the number of groups and tracks in the sequence can quickly add up and become
unwieldy to navigate. You can create your own custom tabs in addition to those
provided by default to further organize your groups and tracks based on any criteria
you choose.

The group and track list, situated on the top-left corner of the panel, shows all the
groups and tracks in the currently selected group tab. In this case, there is a group
called Platform that contains a Movement track.

A Platform Maze

[244]

The black rectangle on the bottom left is a timeline info panel that displays
information about the timeline, including the current location of the time
cursor and the total length of the scene.

The timeline goes together with the graph editor of the curve panel; it contains all the
keyframes of all the tracks in the sequence. From there, you control the loop section
(available only in the preview of the Matinee and represented by the green triangles)
and the actual sequence length (represent by the red triangle).

Create a Matinee
Let's create our first Matinee, a moving object. Add a cube anywhere in the scene and
open the Matinee editor.

To create a Matinee sequence, you can use the Matinee button in the toolbar or drag
the Matinee Actor inside the scene from the Modes panel.

In order to create a new track, we first need to create a group. To add a group,
right-click from the Tracks panel and select Add New Empty Group:

Chapter 6

[245]

Call it Cube and hit enter. If you right-click on the newly created group, you can see
all the possible tracks you can create inside it:

We now need to assign which Actor will be affected by the Matinee. If you have an
Actor selected while creating a new group, that Actor is automatically assigned to it
but if we didn't select the cube actor, we can add it a second time.

A Platform Maze

[246]

Select the Cube from your level, right-click on the Cube group, select Actors, and
select Add Selected Actors:

Now, you can add new movement track on its group tab and start to play with
its movements.

To add a new keyframe, move the selection inside the timeline and position it at
the desired second. When ready, hit enter and you should see the keyframe added
thanks to the red triangle and the time (in seconds) written above it:

In the timeline details, you can see a red dot with written the name of the key.
Similarly, in the level viewport, a red advice script is saying that now you can
adjust the key movement you just created. Move around the cube and notice how
automatically a yellow line shows the path that your Actor will follow:

Chapter 6

[247]

You can add as many keyframes as you want, and you can freely modify rotation
and location of your object. To modify the single value curve, you must enable the
curve editor by clicking on the little gray button at the right-hand side of the track.

By default, only the location curves are shown on the graph. If you want to
individually modify rotation and location, you must split your track by right
clicking on the Movement track and selecting Split Rotation and Location:

Fake platform corridor
Let's create a corridor using some destructible mesh we discussed before. The idea is
to create a long corridor composed of a lot of tiles where some of them are fake and
will break as soon as the player steps on them.

The easiest way is to create a simple tile mesh, create a destructible one from it, and
position the single tiles one by one inside the level. We want to be smarter than this
and use Blueprint to our advantage.

We will create a Blueprint class that contains a single row of static tiles and as soon
as the game starts, swap a random tile with destructible ones.

A Platform Maze

[248]

Using BSP brushes, create a tile frame of 200 x 200 x 20 with a hole of 180 x 180 and a
plain tile of 180 x 180 x 20 like this (I used the material M_Plains_Floor_Block):

We create the tile in this way for a practical reason. When a destructible mesh is
destroyed, it sends a force signal around its corner, and without a border, this signal
inevitabily touch the other destructible meshes, starting an endless chain until all the
other meshes along the corridor will be destroyed.

Now, we must add a collision box around the big tile. When you create a mesh using
a BSP brush, there aren't collision bounds on it. You can create a custom collision
using the editor from the mesh window. Open the tile you just created and from the
menu bar, go to Collision | Add Box Simplified Collision:

Chapter 6

[249]

This will create a collision box (it is highlighted in green in the preceding screenshot)
around the mesh. You can move and scale this box by clicking on his border.

Create a destructible mesh from this tile. We want to enable the impact damage
and have a damage threshold of a very low value. Leave all the other properties as
default ones. In this way, the meshes will break completely as soon as the player
touches them.

Create a new Blueprint class starting from Actor and use a billboard as root
component. Position the meshes we created in a row of three elements like this:

At the moment, all the meshes are static ones—a perfectly stable row of tiles. We
now need to set on the graph editor the code to swap one of those platforms with a
destructible one.

On the Graph Editor, add a new function and call it ConvertToDestrucible. Add
an input pin of type Static Mesh. This input node will be the mesh to swap, with this
value we can find the location where the destructible component will be. As soon as
the component is placed, we can destroy the original one.

To add a component by Blueprint, you can use the Add Destructible Component
node and set the right mesh from the Details panel. This node needs a Target
reference and Relative Transform. By default, the component is attached as a
child of the root component but you can attach manually by toggling the Manual
Attachment option.

A Platform Maze

[250]

Be sure to get Relative Transform and not the world transform. A
relative one is referenced to the root component transform, a world one
is relative to the whole world. In this case, by simplifying the values,
the relative location of the first tile on the left is (-1,0,0) but a world
location could be anything. A wrong choice of this getter could result in
disappearing meshes without apparent reasons.

The code will look like this:

To choose randomly which tile to swap, we use a Switch node. This flow node has
an input value and depending on this value, we will launch the corresponding
execution node. This is a very useful node when you have multiple choices but need
only one to be executed.

Attach a Switch on Int node to the BeginPlay event, add three output pins by
clicking on Add pin, and connect the input to a Random Integer in Range node:

Chapter 6

[251]

It's usually a good practice to connect the default output pin as well. This output is
executed if none of the conditions of the selection pin are confirmed but in this case,
we are sure that a number between 0 and 2 will arrive so we don't need to connect it.

In the output, we can now call the ConvertToDestructible function, using the tiles
as input:

Blueprint Function Library
Because there are plenty of objects on this game that can damage the player, it's
useful to create a universal component that can be set into any of your objects in a
few steps and that contains any kind of common function you need.

A Blueprint Function Library is exactly what we can use for this purpose: it's a
collection of static functions that provide utility functionality not tied to a particular
gameplay object. These libraries can be grouped into logical function sets.

We could put the function to kill the player into a library, and access this function on
any object that has to kill the player when a particular condition rises. A ball, a spear,
or a projectile are all different elements but all have one big purpose: kill the player.

Actually, there's already an element that can be used (but not
for our purpose): the Kill Z volume. This volume essentially
destroys any Actor that enters (including the player) and is usually
positioned at the very bottom of an open space or anywhere you
want to destroy the elements that fall down into it.

A Platform Maze

[252]

Let's first create the kill and respawn events on our Blueprint player and when ready,
create a common callable function.

Kill and respawn a player ragdoll
The killing process on our game must be different from a simple destroy Actor.
Because the player could die lots of times before reaching the end of the maze and
because the typical death is caused by being hit by something, we would like to use
a ragdoll that shows a player falling dead and respawn it on the starting point after a
short period of time.

To achieve this, we can simulate the physic of the mesh on death and on respawn,
we can remove the simulation and reset the Actor to the original location.

The default player pawn is composed by a collision capsule with a skeletal mesh as
child and a camera that follows the capsule movements. When playing with ragdolls,
there are some consequences that must be considered and solved. First, because we
modify the physic only on the mesh and not the parent, those two elements will
become separated and must be attached when respawning. Second, because the
camera is following the capsule (and that is correct), when the player is dead the
ragdoll could move around far from the capsule collider. We need to find a way to
refresh correctly the focus of the camera.

Let's open the ThirdPersonCharacter class and on the Event Graph, create two
custom events, Kill and Respawn, and three new variables, SpawnLocation (of type
vector), SpawnTransform (of type Transform), and IsDead (of type Boolean).

On the Event BeginPlay, store the actual Relative Transform of the mesh and the
location of the Actor:

We can store only the original vector location of the whole Actor, but we must have
the whole relative (of the capsule) transform of the mesh in order to reset it.

Chapter 6

[253]

Now, in order to partially solve the natural detachment of the mesh from the
capsule, instead of simulating the whole mesh, we could use Set All Bodies Below
Simulate Physics. This node simulates only the bodies of the children of the selected
one. In this way, if we select the pelvis node of the Skeletal Mesh, we will have the
root bone still attached to the capsule and not simulating:

Now that the mesh is a ragdoll, we can continue by disabling the inputs from the
player, start a timer for our Respawn function, and set the Boolean Is Dead as true:

A Platform Maze

[254]

The Respawn event has a few more aspects to take care of. First, just reverse the
simulation and restore the inputs:

Now, the mesh needs to be reattached to the capsule. To achieve this, we use an
AttachTo node. This node takes an object and attaches it to a Target input. You can
specify a socket to attach it and Attach Type if you want to specify which transform
will be parented:

Chapter 6

[255]

Lastly, we can reset the position and rotation of both of the objects by using the
variables we stored and reset the Is Dead condition:

For the Actor, we set a manual rotation of (0,0,0). If your player is positioned with a
different rotation, you could store it as we did for the location.

Now, let's solve the last issue. We use the Is Dead variable in the Tick function.
When the player is dead, we can temporarily swap the focus of the camera to the
mesh instead of the capsule:

Create and use a function library
To create a function library, right-click on the Content Browser and go to Blueprint
| Blueprint Function Library. From this Graph Editor, you can create as many
functions as you need. The only restriction is that they must be static methods.

A Platform Maze

[256]

Name the file Common_Functions and add the first function to the graph that, when
rised, will take care to call the Kill event we created before.

That's it. From anywhere in other Blueprint classes, if you want to kill the player,
simply search for this function and add it on the desired node:

Door trigger volume
Another common element of a game are blocking objects such as doors that block
the passage of the player until a condition (which can be a button press, solving a
puzzle, or simply going near the player) is raised.

There are two ways to create a door Actor. The first one is using Matinee and Level
Blueprint, and it is easier to create but the Actor cannot be replicated. Good if you
have only a few doors in your level or if the door itself contains more than one
element that needs to be animated.

Chapter 6

[257]

If you expect to have several doors on your level and their movement is a simple
translation, you could create them within a Blueprint class and a timeline.

Let's see both of these methods. There is no right one: it depends on your project and
the environment required.

Doors within Matinee
Inside your level, using box meshes, create a wall with a hole and fit the hole with a
door (in this case, another simple cube):

A Platform Maze

[258]

Create a Matinee exactly how we did earlier, with a single movement track on the z
axis of the cube object:

We want to open this door when the player is nearby and close it when they are
far away. We can simply use a trigger box volume and the OnBeginOverlap and
OnEndOverlap events. The code, because both Matinee and trigger box are within
the scene, must be written inside the Level Blueprint.

So, first create a trigger box volume around the door and then open Level Blueprint.
From there, browse the world outliner until you find the Matinee you created. Select
it and from Level Blueprint, right-click and create a reference to it.

Chapter 6

[259]

Do the same for the trigger box but instead of creating a reference, browse the events
until you find the two we need, and add them:

The last step is simple: play the Matinee on begin overlap and reverse the Matinee on
end overlap:

Doors within Blueprint
Create a new Blueprint class extending an Actor and call it Door_BP. As components,
we need a trigger box and a cube with an arrow component to easily find the enter
direction of the door.

A Platform Maze

[260]

Position them as shown in the following screenshot. Take particular attention to
set the dimension of the trigger box. It must cover the whole door movement. If the
door moves up (like in this case), the trigger must be as high as the final movement
of the door:

Instead of a Matinee, here we will use a Lerp Vector node and a timeline.

A lerp (or Linear Interpolation) function is a function that gives two inputs, and
calculates a final value interpolated between those two inputs based on an alpha
input. The alpha is a value between 0 and 1, and the result of this function is alpha
=0 result=input 1, alpha=1 result=input 2.

For example, think of a straight line 10 meters long and it takes you 1 second to
run across it. At time 0, you will be at 0 meters, you will reach 5 meters after half a
second, and you reach the end of the line after the whole second.

If we combine this lerp function with the start and the end location of the door as
input and a timer as alpha controller, we can create a smooth door movement.

Chapter 6

[261]

Create two vector variables on the event graph. Set the first one at (0,0,0) and the
second one at an higher location (0,0,100), and connect them on a Lerp Vector node:

A timeline is a special node that allows for simple time-based animation to be
quickly designed and played back based on in-game events. Timelines are somewhat
like simple Matinee sequences in that they allow simple values to be animated and
events to be fired off over time.

To create a timeline, simply add it as a normal node. A timeline can be edited
directly inside the Blueprint editor by double clicking on the timeline in the
graph tab, and its editor is similar to the Curve Editor of the Matinee:

A Platform Maze

[262]

From the preceding window, you can add a desired track (float, vector, event, or
color) by using the buttons on the top. The graph opened has the time (in seconds)
on the x axis and the result value is on the y axis.

Add a float track and name it EndValue.

Like the Matinee, we can control the final value on this graph by adding keyframes.
To add a keyframe, use Shift + left click on the red line (the final value curve).

Add two keyframes. The first one at time and value 0, and the second at time 1.5 and
value 1. You will have a straight line. You can change the key interpolation to have
a smoother movement by right clicking on a node and changing it with the desired
one. Select user for our curve. The final result is a door that opens and closes slower
than its middle movement:

Now, connect the EndValue of the timeline to the Alpha value of the lerp one.

The output Update pin of the timeline can now be connected to a
SetRelativeLocation node of Door, with the result of the lerp node as new location:

Chapter 6

[263]

We call the Play timeline when a player overlaps the volume and reverse it when the
player goes out of the volume:

Killer objects
Let's add some dangerous objects for the player. The first one is an easier version of
the KillZ volume. Create a new Blueprint extending an Actor and call it KillVolume.
Add a box collision on the Viewport and extend its onActorBeginOverlap method
with the KillPlayer function we created earlier as single node. You can understand
the advantages of the function libraries now:

A Platform Maze

[264]

Duplicate this Blueprint and call it RollingBall. Change the collision box
with a sphere and add a Sphere mesh with enabled physic. Those dangerous
balls will be thrown down a hill ready to kill the player. Don't forget to choose
OverlapOnlyPawn from the Collision Presets dropdown, unless you want
that you player is killed by unwanted collisions:

Duplicate this item and call it Bullet. Make it smaller, remove the physic simulation,
and add a Projectile component. Use the same settings we used in the previous
chapters: Autoactivate, Initial Speed, max force of 2000, and 0 gravity. On the
Event Graph, set to destroy the project after a 5-second delay and when the
projectile stops moving:

We have enough elements now to create a whole game.

Chapter 6

[265]

The game
From the editor, create a new default map by going to File | New level and
replacing the player start with our ThirdPersonCharacter.

The game will be divided into small section, each one with one or more elements of
what we have learnt in this chapter.

Don't fall
In the first section, we use the kill volume. Here, the player must jump to some
static platform without falling. Duplicate the original platform, set it lower than
the original floor, add some cylinder shapes as a path and add the kill volume we
created earlier between the platforms and the floor to recreate something similar
to this:

Use your imagination to make the path you prefer and test it to find the more
balanced way to do it (remember that a very easy game makes a gamer bored soon,
but a very difficult game can be frustrating for even the most hardcore gamers).

A Platform Maze

[266]

Rolling stones
As second section, we use the killing balls: a long stair with lots of those balls rolling
around. Search the stair BSP and position it after the first path. Enlarge it to be as
wide as the corridor and add two blocking BSP on its size to prevent the balls from
falling outside:

To control the behavior of this section, we use a trigger volume and some target
points. The code for this and all the other sections will be written directly within
the Level Blueprint. They are situational triggers and would be useless to create a
dedicated Blueprint class only for one usage.

From the mods panel, add a trigger volume and modify its size to cover the stair.
The idea is to activate the spawner when the player enter in the zone, and deactivate
when it leaves.

For laziness, we could activate everything within the maze
without a flow control (like this trigger). However, be careful as
each dynamic element uses memory and it is easy to consume
all of it for useless behaviors.

Chapter 6

[267]

On top of the stairs, insert five target points. They will be the spawn location for
our spawner:

Open the Level Blueprint. The spawner mechanism is similar to the one we used in
the previous chapter. A timer will call a spawn event that takes a random point from
an array of elements and spawns there our rolling ball.

The first thing to do is to create the array of points. To populate it, we use the
BeginPlay event and a Make Array node, which is connected to the five reference of
the level. The Make Array node can have as many input pins we desire by clicking
on its Add pin button:

A Platform Maze

[268]

The spawn method is exactly the same of the other chapters:

A trigger volume interacts with every object that touches it. To avoid interaction with
the balls involved, cast ThirdPersonCharacter before creating the timer on the begin
and end overlap methods of the trigger volume. To clear the timer, we use the same
output pin of the set timer like this:

The falling path
Let's continue with the next section. For this, we use the fake platforms we created.
We will put them into a dark corridor surrounded by walls, with two doors on its
extremity.

Chapter 6

[269]

Start by adding a series of Blueprint fake platform classes just after the end of
the stairs:

Now, using BPS box brushes, close this section and make two holes on it using the
subtractive type of brush:

A Platform Maze

[270]

The inside is completely dark now. Use Blueprint ceiling lights from Starter Content to
light it up. These are perfect elements to create a nice atmosphere within the tunnel:

To make this section more interesting, we could obligate the player to walk instead
of run, so it must pay more attention to where they step along the tunnel. We put
this code inside the Level Blueprint, using again a trigger volume as excitor for
this event.

We want to modify Max Walk Speed of the Charachter Movement component. Use
half of their speed when they enter the trigger, and restore it when they leave it:

Finally, don't forget to put a kill volume on the bottom of this tunnel or the player
will never die when falling.

Chapter 6

[271]

Wrecking balls
As with the last section, let's implement the wrecking balls we created at beginning
of the chapter. The idea of this section is to have a tight corridor, with moving
wrecking balls ready to push you out of the corridor.

Because there is physic involved those balls don't move forever. We want to spawn
them at a random starting angle and only when the player enters the zone. In this
way, we should leave enough time for the player to run through the corridor without
finding immobile balls along his way.

Create a corridor at the end of the previous section and add some target points on
top of it. Those will be the spawning point of the balls so put them in a way that the
ball component will swing on the player path. Use the object itself and the player
pawn as reference, like on this picture:

A Platform Maze

[272]

On the Level Blueprint, create an array of those target points just after the other
array creation:

You can create multiple references by selecting all the Actors that
you want a reference for, and they are automatically added by
clicking on Create References of… when you right-click on the
Level Blueprint.

With this array of points, you can use a trigger volume to iterate through all of them
with a for loop node. For each element found, spawn a wrecking ball on its transform.

Chapter 6

[273]

To avoid spawning those elements multiple times, use a Boolean variable to store if
they exist in the level before creating them like this:

Now, if we simple spawn the elements on its transform like we did for the rolling
stones, they won't move. This is because, as the ball simulate physic and as we built
this object to be in a relaxed position it act as a real ball that, without stimulation,
will sit there in its position. To solve this issue we can simply rotate the whole
object (rope+ball) before spawning it on the level. This, combined with their physic
simulation, will be enough to let them swing.

We need to modify the X value of the rotator of its transform. We need a few nodes
to reach this value and, when set, another few of them to restore the transform
variable needed to the spawn Actor node.

Find the Actor transform, break the transform, break the location, modify the X
value, rewrite the location, rewrite the transform, and set that value to the final node:

For the roll rotator, we use a math expression node. This special node allows us to
write any math expression directly within the node name and the engine will take
care to create the corresponding math nodes for you.

We want this value to be between 90 and 270 (so the upper side of the corridor). The
math expression will be: 90+(rand()*180) (rand() is a float value between 0 and 1).

A Platform Maze

[274]

To create it, right-click on the Graph Editor, search for Add Math Expression, and
write the expression directly to the node name:

You can check the full expression by double clicking on the node itself. You can also
add input pin value by adding the name of the variable within the expression.

Summary
In this chapter, you saw how easy is to create different elements for a puzzle game
using just a few of and how it is possible to create potentially infinite game sections
by tweaking their settings.

You know now how to manipulate the physic at your advantage, handle triggers in a
dynamic environment, and create fun and reusable dynamic objects.

Chapter 6

[275]

As usual, these are the possible extensions and tweaking for this game:

• We created bullets but we didn't implement in the game. Do it by creating
a new section with shooting turrets around the path. To create them, check
how we create the weapon on the previous chapter and use static meshes to
create the shapes of the turret.

• Create a Matinee that shows the whole maze before the player starts it.
Launch this Matinee on begin play of the Level Blueprint, use triggers within
the level to avoid that matinee being launched multiple times. Swap the
camera with the player one when it ends.

• Create moving platforms. Using Matinee and trigger volumes, try to create
some moving platforms to transport your player between the zones.

In the next chapter, we will see how to create terrains and populate them using object
pools and mod tools. We will also use everything we learned so far to create an open
world framework with an inventory system, tied inside a dynamic user interface and
with a basic crafting system.

[277]

An Open World
Survival Game

Here we are, at the last chapter of this guide. In the previous chapters, we saw most
of the aspects of UE4 and its Blueprint system, and we immediately used what we
learned to create five interesting starting point for beautiful games. I used a simple
approach in this book, why should we change now for this last chapter?

Here, we will look at the last few tools and aspects of a game and we will mix all the
tools covered so far, improving our knowledge about them in order to create a more
complex and variegate world for our games.

In this chapter, we will cover:

• Landscape manipulation
• Foliage
• Blueprint superclasses
• Light manipulation
• Inventory and crafting system

Landscapes
The main element of an open world is actually its landscape. UE4 offers a wonderful
system that enables you to create any kind of terrain for your world (mountains,
valleys, sloped grounds, caves, and holes for lakes or rivers) and easily modify both
its shape and its appearance by using a range of tools.

An Open World Survival Game

[278]

The landscape tools are accessible by the Modes panel by clicking on its icon (it has
an image of a mountain):

It is divided into three main modes:

• Manage: Enables you to create new Landscapes and modify Landscapes
components. This is also where you work with Landscape Gizmos (a tool
that allows you to manipulate volumes of layer data of your landscape to
easily replicate or export).

• Sculpt: The main mode of the Landscape editor. It enables you to modify the
shape of the Landscape by selecting and using specific tools.

• Paint: Enables you to modify the appearance of parts of your Landscape by
painting textures on it, based on the layers defined in the Landscape's material.

Chapter 7

[279]

Although there are external tools dedicated to the creation of heightmap Landscapes
(such as World Machine or Terragen), the engine offers you all the basic tools
to create them. As for the 3D models with the BSP brushes, those tools cannot
completely replace a dedicated software but they are a great starting point.

Manage mode
To create a new Landscape, click on the Manage mode of the Landscape section:

You can immediately see a preview of the Landscape you are creating in your
viewport, shown as a green grid divided in sections.

The properties that you can set are similar to any other Actor (after all, even if big, a
Landscape is still an Actor), so let's check them:

• Create New or Import from File: You can choose whenever you want to
create the Landscape with the engine tools or import a heightmap from an
external file.

• Material: The material assigned to the whole Landscape. You can assign any
kind of material you want at it. We will see soon the perfect type of material
for a Landscape.

• Location, Rotation and Scale: Simply the location, rotation, and scale of the
object within the world.

• Section Size: This property is used for Level Of Details and culling. Smaller
section allows a higher definition of LOD but with and higher CPU cost.

An Open World Survival Game

[280]

• Section Per Component: Another property for the LOD. A component
section 2 x 2 means that is possible that one component could be rendering
four different LODs at once. Usually, higher LOD components are good for
CPU calculation, but be careful because you can run into issues of rendering
too many vertices at once.

• Number of Components: Along with section size, this sets the size of
the Landscape.

• Overall Resolution: The number of vertices the Landscape is using.
• Total Components: The total number of components that will be created for

the Landscape.

For our game, let's leave all the settings as the default ones, click on Fill World, and
Create. A plane will be generated and the engine automatically brings you to the
Sculpt mode:

Sculpt mode
The process of sculpting a Landscape involves using one or more tools that modify
the underlying heightmap. These tools range from the simple Sculpt Tool to other
tools that use complex algorithms to apply interesting effects to create the desired
terrain. Each tool has a set of properties that determine how they affect the Landscape.
Each of these tools can be applied into the viewport by simply left-clicking and
dragging the desired position to raise the heightmap, combined with shift to lower it:

Chapter 7

[281]

At the very top of the Sculpt mode, you can set the aspect. Tool sets the kind of
Sculpt algorithm to use with your brush, Brush sets the appearance and effect of the
brush, and Falloff sets the type of falloff for your brush borders.

Let's take a look at the different tools available:

• Sculpt tool: Raises and lowers the Landscape uniformly within the
brush's influence.

• Smooth tool: Smoothens the Landscape within the brush's influence by
averaging the Z position of the Landscape vertices.

• Flatten tool: Raises and lowers the Landscape in its influence to be the same
Z height as the location where you started using the tool.

• Ramp tool: Creates a ramp between two specified points, adding falloffs
according to the settings.

• Erosion tool: This tool uses a thermal Erosion simulation to adjust the height
of the heightmap. This simulates the transfer of soil from higher elevations to
lower elevations. The larger the difference in elevation, the more Erosion will
occur. This tool also applies a noise effect on top of the erosion.

• Hydro Erosion tool: Similar to the Erosion tool, this uses a hydraulic
Erosion simulation to adjust the height of the heightmap. A noise filter is
used to determine where the initial rain is distributed. Then the simulation
is calculated to determine waterflow from that initial rains as well as
dissolving, water transfer and evaporation.

• Noise tool: Applies a noise filter to the heightmap or layer weight. The
strength determines the amount of noise.

• Retopologize: Similar to the smooth tool, this will push and pull triangles
to smooth the transition of the terrain. However, it will attempt to keep the
basic form of the terrain, minimizing change in the Z direction.

• Visibility tool: Combined with Hole Materials, this tool determines the
visibility and collision of areas of your landscape.

• Selection tool: This tool permits you to lay down a mask on the landscape
to control what you sculpt or paint on more accurately. This allows you to
protect sections of the landscape from editing.

An Open World Survival Game

[282]

Play with these tools to create some cliffs and mountains around the player start. Try to
avoid big differences of height and abuse with the Erosion tools. We are not searching
to create a fully realistic world but a good starting point for future improvements:

Create a terrain with a grid default material is not satisfying, so let's create a
dedicated material for it.

Landscape material
Although any random material can be used with a Landscape Actor, the material
system inside the engine does provide some special Landscape specific material
nodes that can greatly help you to better texture the terrain.

Landscapes use weight blending rather than alpha blending, so the blend factors for
all layers at any location will add up to 1.0. This has the advantage that there is no
order dependence; you can paint any layer at any time and its weight is increased
and the other existing layers are decreased. This allows you to have different aspects
of a terrain (grass, sand, rocks, and so on) in one single material and the paint tool
lets you blend between these layers freely.

Chapter 7

[283]

We are now creating a blending material for our terrain, so we can paint the
different materials wherever we prefer. In the future, you can create a weightmap
to automatically blend the layers based on their weight of the component section
of the landscape.

Create a new material and call it M_Terrain. From the material graph, search and
add the LandscapeLayerBlend node:

Using the + button from the Details panel of the Layers section, you can add new
layers to the blend node. Add three of them and call them Rock, Sand, and Grass,
respectively. Change the blend type of sand and grass to be LB_Height Blend and
set Blend Type of rock as LB_Alpha_Blend.

An Open World Survival Game

[284]

When using multiple layers, it is possible that all the layers painted in a particular
area will simultaneously have a 0 height value and the result is a black spot area
because there is no implicit layer order. We use one of the layers (usually the most
bottom one) to be Alpha blended to avoid this particular issue:

To map the layers of our terrain material, we use another specific node: search and
add the LandscapeLayerCoords node. This node generates UV coordinates that will
be used with the layer blend node to literally paint the different layers.

Chapter 7

[285]

Now we need the textures for the layer. You can use your own textures but if you
don't have one, Starter Content has good textures perfect for our needs—complete
with their normal map. Add three Texture Sample nodes to the graph and search for
T_Rock_Basalt_D, T_Rock_Sandstone_D and T_GroundGrass_D. Connect their UVs
pin to the LandscapeCoords node and the output to the correspondent Layer Blend
pin (the height, when needed, is the alpha channel of a texture) like this:

An Open World Survival Game

[286]

You can connect the output of the Layer Blend node to Base Color of our material.
On the Landscape coordinate system, there is an important parameter that you can
adjust to improve the overall performances of the calculation: Mapping Scale. A
higher value results in a blurred and less detailed texture but will also result in much
faster shading calculations:

Chapter 7

[287]

We can add depth to our material by using the normal map of those textures.
Duplicate the whole nodes from the LandscapeCoords to Layer Blend. You can
change only the textures to their respective normals (T_Rock_Basalt_N, T_Rock_
Sandstone_N and T_GroundGrass_N) and connect the result to the Normal input
pin. As final step, add a constant to the metallic and the roughness to set this
material as less metallic and wet. A basic, multilayer terrain material is complete:

Now, let's go back to the viewport and apply this material to the Landscape. Do it
by clicking on the Landscape from the World Outliner and going to the Landscape
section of its Details panel. The result is a full rock terrain. Don't worry if you
see your terrain divided into a squared grid; this is because the light needs to be
recompiled. Just click on build to solve this issue.

Paint tool
We can now go to the Paint tool of the Landscape panel. You can see that on the
Layer section, we have our three Target Layers labeled as we did on the material
itself. Before you can use them, you need to create layer info for each of them.

An Open World Survival Game

[288]

Every Landscape layer must have a layer info assigned to it in order to be painted.
We use a Weight-Blended info object. This layer, when applied, will decrease the
weight of all other weight-blended layers. To create a layer info, simply click on the
plus (+) button near them and select weight-blended layer (normal). The engine
automatically sets a file and a location for it. Confirm without changing the name for
each of them and this should be the result:

Now, exactly how we did with the Sculpt tools, select one of those layers and paint it
on your terrain.

When you start to paint for the first time a layer, it could happen that the base
material disappears or a whole section of your Landscape is converted into a single
layer. This happens because there is no Paint layer data on the Landscape. To fix this
issue, simply keep painting until you cover the whole area (by enlarging your brush
size example). This issue should disappear and you are now able to paint correctly
and see your modifications.

Chapter 7

[289]

Foliage
Now that we have a Landscape with its hills and mountains, we should add some
typical elements of an open space: trees and rocks. To do this, we could add the
single Static Mesh one by one into the scene, but it is a tedious and long process. The
engine gives you a perfect tool to help you on this process: the Foliage Instanced
Mesh system.

This system allows you to quickly paint or erase sets of Static Meshes on Landscape,
BSP, or other meshes. These meshes are automatically grouped together into batches
that are rendered using hardware instancing, meaning that many instances can be
rendered with only a single draw call (and also allows you to position a lot of them
into the scene with only few steps). You can find this tool beside the Landscape tool
(the icon is a seedling):

The interface is very similar to the Landscape tool; you can choose Brush Size, the
density the meshes create, and where those meshes will be applied. A big Drop
Foliage Here shows you where to drag and drop your meshes and when they are
positioned there, you have access to other settings such as painting scale, offsets,
random rotation, and so on.

An Open World Survival Game

[290]

For this project, I'm using the free example package from SpeedTree (a useful
tool, used to be free on the previous version of the engine, which helps you to
generate trees and natural elements for your game). It can be found at http://www.
speedtree.com/downloads/Free_SpeedTree_Samples_for_UE4.zip.

Once you have chosen the mesh to use in your terrain and set the desired brush,
simply Paint those elements in the Landscape. Any element can be added to your
scene with this method, even collectables or enemies!:

You have the necessary knowledge to create a beautiful world for our game. It is
now time to implement some logic to it.

Day-Night cycle
When talking about open world, one of the first things that pops in our mind is the
necessity to simulate the real-world day and night cycle. UE4 is strong on this point.
With just a few Blueprint nodes and a few changes at a default scene, you can create
a perfect day cycle for your game.

http://www.speedtree.com/downloads/Free_SpeedTree_Samples_for_UE4.zip
http://www.speedtree.com/downloads/Free_SpeedTree_Samples_for_UE4.zip

Chapter 7

[291]

Take a look at the default map of your game. In the world outliner you can find
the two elements that, combined together, are the responsible of the lighting of our
scene: the Light Source and the Sky Sphere.

Light Source, as the name suggests, is responsible for the illumination of the entire
world. It is a directional light. A directional light simulates light that is being emitted
from a source that is infinitely far away. This means that all shadows cast by this
light will be parallel, making this the ideal choice for simulating sunlight.

Sky Sphere is basically a huge Static Mesh and is the responsible for what the
player sees in the background, including the sun planet. You can open the Blueprint
Sky Sphere by clicking on Edit BP_Sky_Sphere. What you will see is a complex
Blueprint class: on its Construction Script, all the nodes needed to populate the
sphere with clouds and sky colors based on the light source rotation and within the
functions, is one function called UpdateSunDirection. This class is perfect as is but
remember that function, we will use it soon.

An Open World Survival Game

[292]

With this brief explanation, the next step is easy: rotate Light Source as you please
and, thanks to the UpdateSunDirection function, change the whole background
aspect of the game. Before doing so, there is something to change in the parameters
of Light Source. By default, it is an unmovable object, so let's change it by clicking on
Movable from its Details panel:

Because it was a static object, it has the property Cast Static Shadows set to true on
its Light parameters. This allows the engine to bake the shadows of the static object
before running the game. This is useful for performances, but not suitable for our
purposes. Set it to false (if you don't find it, remember to extend the properties by
clicking on the little arrow at the bottom of each section, or use the search tool on top
of the panel):

Chapter 7

[293]

There are several ways to achieve our result and, as always, we are going to see the
easiest and practice way: we will use a looped timeline inside the Blueprint level that
dynamically changes Light Source and refreshes the sun direction on each update call.

Open the Level Blueprint and create a new timeline called Day-Night Cycle,
double-click to open it, and add a single float track:

An Open World Survival Game

[294]

The idea is simple: use the length of the timeline as a whole day length (in seconds)
and set a linear output value from 0 to 360 that will be used as angle for the light Actor.

Change the length to an acceptable value (300 seconds is suitable to test it) and create
two keyframes by using Shift + left-click on the red line. The first key will have 0 for
both time and value, and the second one will have the last keyframe (300) as time
and the maximum rotation (360) as value:

This linear setting will give you a cycle with 2.5 minutes of light and 2.5 minutes of
darkness. You can play with the key interpolation of this curve to achieve a better
result if you want, for example, more light during the day and a shorter night. As is,
the day starts at 180 degrees, ends at 360, and has its apex at 270 degrees.

Let's close the timeline and implement it with the needed nodes. Drag a reference of
both Light Source and Sky Sphere inside the Level Blueprint graph. On the update
exec pin of the timeline, we want to call Set Actor Rotation with Light Source as
Target and call UpdateSunDirection of the Sky Sphere. As Actor rotation, we
use the MakeRotator node with its pitch modified as the calculated value from the
timeline. This should be the final result:

Chapter 7

[295]

Nothing more is needed. Six simple nodes and, thanks to the engine, you have
created a complete day-night cycle. Compile, save, and test it. Notice how the sun
moves in the sky and how the whole atmosphere changes according to the time of
the day (sun rise, blue sky, twilight, dark with stars).

Collectables and items
I know, we saw this element more than one time in this book but, hey, this is a very
common element in a lot of games.

In a survival world, you must be able to interact with most of the elements around
you. You want to collect stones, wood, grass, or fruits and be able to craft your tools,
such as axes to cut the trees. You would also want weapons to hunt your food in
order to survive in the hostile environment.

In this section, we will create an inventory system for the objects that can be collected
in the world: we will use a new element (structure) that handles the properties of
our items. We improve our knowledge of Blueprint wizard to populate a useful
and dynamic user interface, and we will see how useful Blueprint Interfaces and
superclasses are when talking about a vast number of different interactive objects
and a crafting system.

Blueprint structures
A Blueprint structure is exactly like a structure of an object-oriented programming
language: a special variable type that allows you to group different variables into one
single name. Each element of a structure can have different types (not necessarily
declared) and they can be used inside an Actor class like any other variable.

By creating a list of common information of an object (such as name, thumbnail,
weight, or price), we will be able to track any information needed from anywhere in
our project.

You can create a new structure by right-clicking in Content Browser, selecting
Blueprint, and selecting Structure. Name it ItemStructure and open it.

An Open World Survival Game

[296]

The interface is poor but it doesn't need to be complicated. It has, on the left, a list of
variables that compose the structureand, on the right, their default values.

The variables that we will need for our structure are as follows:

• ItemName (Text)
• ItemDescription (Text)
• Thumbnail (Texture 2D)
• Collectable (Boolean)
• Eatable (Boolean)
• Consumable (Boolean)

We will use the first information for the inventory UI, the collectable one, to
distinguish which object can be collected (a player can interact with a tree, but surely
he cannot collect it), and the last two Boolean will help us to create a contextualized
menu when we interact with them. For the moment, no other variables are needed
and don't worry if you forgot to add one of them. The structures are fully modifiable
even if they are already implemented into the game logic:

Superclasses
To get the best from our structure, we should use it with a dedicated superclass. This
class will contain the structure and the first common component and logic of any
object into the game. First, let's create a Blueprint class extending Actor and call it
Super_Item.

Chapter 7

[297]

We are sure that any item will have a Collision component for the interaction with
the player and a Static Mesh to display it in the world. Add a collision sphere as root
of the object (a radius of 200 will be enough to contain most of our objects), and an
empty Static Mesh as its child. Now, add a variable and under structure you should
find our ItemStruct. Remember to set it to public (by opening its eye near the name);
otherwise we won't be able to access it from the UI:

Notice how the struct default values are now available at the very beginning of the
Details panel. Switch to the Event Graph and add the common logic of our items: the
collision sphere will determine if a player is nearby the item and, consequently, if it
can be collected when the user interacts with it.

Add a Boolean variable and call it CanBeCollected. This value will be used by
the player class to check if that object can be actually collected. We will toggle this
boolean using the ActorBeginOverlap and ActorEndsOverlap, checking if is the
player object that interact with the collectable and toggling the CanBeCollected
value only if the object IS actually a collectable (read from the Struct values).

An Open World Survival Game

[298]

To access the variable of a structure, you can use the Break node (like we did
for vectors or transforms). In this way, you are able to access the single variable
contained in it. This should be the final result:

In order to interact with an item, the player will use an action key. In order to know
exactly which object a player is interacting with (instead of the call a player has fired
an action to all the objects in the world and checking which one is nearby), we will
use a handy and powerful Blueprint Interface. We already saw it in the previous
chapters and for this project it will be basically the same: an interface with an empty
function named InteractionWithPlayer. This will be used to send and receive
messages between the player and the desired object:

Chapter 7

[299]

I'm not going to explain again the process of creating it, but be sure to create it
correctly and to implement it in our superclass from its class settings.

Extending the superclass
Using our superclass is super easy. Right-click on the Super_Item Blueprint
class and select Create Child Blueprint Class…. Notice how we have the same
components inherited from the parent, our structure inherited form the parent,
and a function pointing the superclass construction on Constructor Script:

We can create as many objects as we want and all of them will have the same basic
properties. We will now create a few common objects of the nature environment.

As meshes, I'm using primitive figures. It would be better to use realistic figures,
but we are now focusing on the logic of the game. You will be able to change those
meshes whenever you want.

An Open World Survival Game

[300]

About the thumbnail of the object, a PNG image of 128 x 128 is enough. The easiest
way to create these images is to take the actual thumbnail from the editor. It's possible
to create a custom thumbnail for an actor by placing it inside the viewport and when
focused by the camera, right-click on it and go to Asset Actions | Capture Thumbnail:

You can simply use a screenshot of the object. You can find the PNGs I'm using for
them at (www.nicolavalcasara.it/packt).

These are the objects that we will use in our project. Create six children of the
superclass according to these parameters:

Children Parameters
Name: BP_Log
Mesh: Shape_Cylinder

www.nicolavalcasara.it/packt

Chapter 7

[301]

Children Parameters
Name: BP_Rock
Mesh: SM_Rock (from
Starter Content)

Name: BP_Fire
Mesh: none
Additional component:
P_Fire, a particle system
component

Name: BP_CampFire
Mesh: Shape_Cylinder
Additional component:
P_Fire, a particle system
component

Name: BP_Apple
Mesh: Shape_Sphere

An Open World Survival Game

[302]

Children Parameters
Name: BP_Grass
Mesh: Shape_Cone

Crafting handler
To handle the possibility of crafting an item, we can add a new variable inside the
item structure. This variable will be an array of super items. It must be populated
before the game starts and each craftable item will contain the super_class needed
for it.

The following screenshot is an example of its usage (the campfire will need a rock, a
log, and a grass item to be crafted):

Implementing the Blueprint Interface
Now that we have some items, it is time to implement the player character logic to
interact with them. Open the FirstPersonCharacter Blueprint class and get rid of all
the useless pieces of code and components: On the viewport, remove the weapon
mesh. On the Construction Script, remove the code that attached the weapon to the
mesh socket. On the event graph, remove completely the whole section about the
firing logic.

Chapter 7

[303]

Now, handle the input keyboard buttons by adding two new Action Mappings from
the project settings: Interact and ToggleInventory:

The logic behind the interaction of the player is the following: whenever a player
presses the Interact button, we want to check what they are pointing at and if it's a
collectable object, send a message to it.

To check what the player is pointing at, we use a LineTraceByChannel node (we
already saw this node in the Chapter 4, UFO Run - Play with the Environment Effects).
To get the points of the line trace, we use CameraManager. This node will return the
camera object that the player is actually using. With this object, we can generate a ray
from its location that goes forward by a number of units.

Add a LineTraceByChannel to the InputActionInteract event. Connect the
GetActorLocation of the camera manager as starting point. As end point, connect the
sum of the ActorLocation with the calculated multiplication of a ForwardVector of
the ActorRotation by a Float value of 5,000 units:

An Open World Survival Game

[304]

You can test it with set the Draw Debut Type and press the interact key around the
level. You should see a red line going from you toward the middle cross point, with
a red square to indicate whenever the ray hit something.

We can now break the OutHit result to find which Actor is hit, and use it to check
if it implements our interface by using the Does Implement Interface node. Lastly,
if the result is True, means we can send it a message to let it know that we are
interacting with it:

This is surely the easiest and fastest way to interact with different objects. It saves
a lot of calculations (we are checking one single element at time) and time on
developing new items.

Super item interaction
The last piece of code to add to our super item is the logic that handles what to do
when the player interacts with it. Our struct contains a variable called Collectable;
we can use it to determine if this item can be transferred to the inventory.

Chapter 7

[305]

Implementing a Blueprint Interface inside your Event Graph is like adding any
other event. Search for our custom function Interaction With Player and add it
to the graph:

Now, we can connect this node to Branch with as input our Collectable variable. To
access at a single variable, you can use the Break ItemStruct node. With this node,
we can access any single variable contained inside the structure:

If the object is a Collectable, we must say to the player controller the class of the
object we are collecting and lastly, destroy the Actor inside the level.

We use the class instead of the reference of the Blueprint Actor because the inventory
we will use is based on classes and because of the crafting system we can't use
references to items that don't exist in the scene.

An Open World Survival Game

[306]

To find a class of an object, we can use the GetClass node connected with Self
reference. First, create a custom event inside the player character that has an input
node of type Super_Item class:

Now, you can complete the function of the super item by calling the Collect Item
event of the player character on the True pin of Branch like this:

Inventory system
Let's now use some Blueprint Widget to create the user interface and the inventory
system. We will need three classes: a main GameUI, Inventory Button, and
Inventory Craft Button.

The main GameUI is what the player will see. It will contain a grid of objects (the
actual inventory), a panel that shows the information of the selected item, and a
cookbook that contains all the items that are available to be crafted.

The Inventory Button is the single button of our inventory and will be just a single
squared button with an image over it.

Chapter 7

[307]

The Inventory Craft Button is similar to the other button, but it also contains the
name of the item that will be crafted and the items needed to the player to craft it.

The inventory button
Create a Blueprint Widget and call it InventoryButton. This object (and all the
Widget that will be added into Canvas Panel dynamically) doesn't need a main
canvas. The aspect (size, anchor, position, and so on) will be determined directly
within the panel where this Widget will be added.

So, remove the original Canvas Panel from this Widget and from Palette add Button
and Image as child of it:

Notice how the options for the position and the anchor setting are disabled. About
the code of this item, we only need to Bind the Brush of the Button and Image into
our Thumbnail whenever an item is added into the inventory.

We need to add two variables inside this Widget: an inventory slot of type integer to
identify which slot this button will occupy and a reference to our main UI panel (we
will add this later).

An Open World Survival Game

[308]

The inventory craft button
Like the other button, this Widget doesn't need Canvas Panel, as will be added
dynamically into the main panel.

As container for our needs we use Grid Panel, a Widget that can be found inside the
Panel section of Palette. This Widget accepts a number of rows and columns and
automatically fits the items within the grid according to their settings.

Add a grid as root Widget. From the Details panel, locate the Fill Rules section.
From there, we can set how many rows and columns we want. From the single
element float value, we can choose a percentage (between 0 and 1) of filling for each
section of the grid.

The aspect of this Widget will have a thumbnail button of the item on its left. On the
right-hand side column, we will have the name of the item, followed by the items
needed to create it. Set the fill rules as follows:

As children of Grid Panel, we use a button (with a child image), text, and a spacer.

Chapter 7

[309]

If not specified, all the children of Grid Panel are set to be the on the first row and
column. You can specify where those elements will be under the Slot properties of
each element. Set their position as described before, use the Span property to set the
button Widget to occupy two rows), and put the spacer at the very bottom of the grid:

This should be the final result. About the variables required, let's add a variable
of type Super_Item (class) and make it public. This will be the item held by this
Widget. As opposed to the other button Widget, the cookbook will have static
objects inside its list so we can use a class to store its information.

Main user interface
On Main UI, we want to insert all the possible information that a player might need.
An ordinated grid to represent the inventory of the items collected by the user, a
section that shows all the possible combinations of objects for crafting, and a section
that shows the details of any single element. Lastly, all of this information must
be handled in a smart manner without interfering too much with the gameplay
of the player.

First, let's create a new Blueprint Widget and call it Game_UI. This Widget must be
always available within the game and must be initialized as soon as the game starts.
The best place to put the handler code for it is within the PlayerCharacter class: we
already have the code that handle the interaction with the items around the level. This
Widget is focused on them and the inventory logically belongs to the single character.

An Open World Survival Game

[310]

Main setup and visibility
Open the PlayerCharacter class. On Event BeginPlay, create the Widget based
on Game UI, add it to the viewport, and set a reference to it directly within the
character class:

Now we want to be able to toggle the view of this Widget somehow. We can use the
key we created earlier to handle it and a Boolean variable that stores whenever a
player is inside the detailed inventory.

By doing this, we must consider the following: we must disable the player
movements and enable the mouse cursor when a player needs to interact with the UI.
At this moment, by default, you don't see the mouse cursor and you use the mouse
to look around inside the level, with a red cross showing where the player is looking.
The easiest way to handle this is to add a flow control for each of the elements that
can be affected by this process: movement, look view, mouse, and cross point.

Chapter 7

[311]

The first three logic codes are contained within the character itself:

The cross point is instead contained within the FirstPersonHUD class. Within this class,
there is an event called ReceiveDrawHUD. This event is called each frame the HUD is
drawn and it simply finds the middle point of the panel and draws a cross there.

Add a flow control as we did for the other pieces of code by casting the In Inventory
variable of the ThirdPersonCharacter:

An Open World Survival Game

[312]

Now, for the main flow of the inventory the idea is that whenever a player hits the
ToggleInventory key, invert the value of the In Inventory variable and toggle the
cursor's view based on that result. Thanks to the flow control we added, a couple of
nodes are enough to handle everything:

Design the UI
It is time to populate the Widget. First, add UniformGridPanel at the very bottom of
the canvas. This Widget automatically takes all its child elements and resizes them
to fill the whole Widget in an uniform manner. We use this as our inventory. It is the
only element of the Main UI that will be always visible by the player, so set its size to
be a small bar that sits on the bottom of the player view.

From Palette now you should find the User Created section available at its bottom
and, inside it, our two inventory custom buttons.

Add 10 Inventory Button Widgets at the uniform panel, set each of them at a single
univocal column, and assign the same value to its Item Slot value (available just above
the Slot property of it). Notice the position and its property in the top-right corner:

Chapter 7

[313]

Now add a second panel inside the main one and call it DetailPanel. Here the
cookbook and item information will go, and this is the panel that is toggled by the
character, thanks to our In Inventory event.

Inside this panel, add a couple of caption text to explain what the player is looking
at (Item Details on the left and CookBook on the right) and populate it with the
following elements:

• Image: The thumbnail of the selected item.
• Text: The description of the selected item.
• Vertical box: The container of the interaction buttons:

 ° A button called Eat
 ° A button called Use
 ° A button called Drop

• Scroll box: The container of the cookbook. It automatically adds a slider
whenever the child number exceeds the dimensions.

An Open World Survival Game

[314]

The positions should be like this:

Prepare the cookbook
First, let's handle the cookbook: we must have somewhere an array of craftable items
in order to populate the scrollbox. Go to the player character and create a variable of
type Super_Item, set it to be an Array, and make it public. After compiling, add all
the items that can be crafted (at this moment only the fire and the campfire) in the
default section of the details property.

In this way, we can know all the craftable items before starting the game. Thanks to
its public set, we can access it from anywhere and we are able to add new recipes
later on the gameplay if, for example, the player finds them around the world.

Let's go back to the GameUI graph. Extend Event Construct, store a reference to the
player character, and populate the scrollbox.

Chapter 7

[315]

To achieve this, we use a ForEachLoop array for each of the elements in the
cookbook variable. For each of them, we create a Widget of type Inventory
Receipe and we add it as child of the scrollbox. Because the Widget doesn't know
automatically, we set its Item Class variable as the looped superItem element:

Receipe button bindings
Now that we have the Inventory Receipe button populated, we can proceed to
create the proper logic and bindings.

We first need a reference to the Main UI Widget on Event Construct of it. This
process should be familiar to you at this point:

Now, we can bind the button image, the item name text, and the item receipe text.
From the designer panel, click on their Bind button near the desired property and
click on create binding.

An Open World Survival Game

[316]

The process for the thumbnail and the name is exactly the same. Get the defaults of
the Item Class variable, break its struct, and take the desired property:

The receipe text is a little bit more complicated. We actually need to iterate through
all the single items of the receipe variable and create a text that contains their names.

Create a local variable (these types of variables start and end their life cycle inside
the selected function) of type text and call it Text Receipe. We use it as a temp
variable for the final string.

Clear this text at beginning of the getter for the binding function and connect the
return node at the Completed pin of an ForEachLoop node:

This will prevent undesired text inside the temp variable before the execution of the
creation loop and return the created text only when the loop ends.

Chapter 7

[317]

As input of this loop, we use the receipe of Item Class (as always, break the struct
to access it). On Loop Body, we use a Format string node with the name of Array
Element as first element and the temp string as the second element:

Add objects to the inventory
We created earlier the super item interaction handler but if you look at that function,
we actually have no possibility to know whenever an item is added on the inventory
or if it fails (because there is no space in the inventory or the player can't collect it).

To solve this problem, we can modify that function by adding an output Boolean
value that will contain the outcome of the process.

Instead of calling the event CollectItem within the character class (that actually
doesn't know the state of the inventory), we can call it directly within the GameUI
thanks to its reference and add the output we need.

On the game UI, create a function and call it AddToInventory. Add one input pin
of type Super_Item and one output of type Boolean. It is time to create the actual
inventory variable: an array of Super_Item classes.

An Open World Survival Game

[318]

The idea of this function is simple. Check the length of the array and if doesn't
exceed the maximum number of slots, add the input class to the inventory. Finally,
call the return node with the Boolean result:

Now, let's go back to the Super_Item Blueprint class. We can replace the existing
call at the CollectItem event to this new function and destroy the Actor only if the
Boolean value is True:

Chapter 7

[319]

Remove and use items
After collecting items, we must be able also to remove them from the inventory.
There are different ways to remove an object: by using it, by crafting it, or by
dropping it. For this reason, we will use two different functions: The first one is
simply to remove the desired item from the inventory. The second one calls a custom
event inside the player character. That event will take care of dropping (spawning an
Actor) the selected item based on its class.

The RemoveItem function is simple. It uses the REMOVE INDEX node. As an index,
we use a variable called SelectedItem of type integer that will be used to store Slot
Selected within the Inventory:

The drop function, when needed, is called before removing the item from the
inventory. It takes the Slot Selected item from the array and calls a CustomFunction
within Player Character:

An Open World Survival Game

[320]

Drop item – character side
The drop function from the player character function will take that SuperItem class
and use it to spawn an Actor within the level. As transform position, we use an
Arrow component added expressly as a placeholder for the position and it is shown
in the following screenshot on the ground level in front of the player:

Craft items logic
To be able to craft an item, the player must have inside its inventory all the needed
items. We can bind this check within the IsEnabled variable of the button of our
recipe. This will gray out the noncraftable items and unlock them as soon as the
needed items are collected.

To achieve this, we use a Boolean local variable and the idea is the following: an
item is, by default, always Craftable. Before returning the IsEnable value, we use a
ForEachLoop node within the inventory array. Whenever an item of the recipe is not
contained inside the inventory, we change the Craftable value to False. In this way,
when the loop ends, we are certain whether the player has all the elements to craft
an item:

Chapter 7

[321]

The next step is to actually handle the crafting of an object. If an InventoryReceipe
button is enabled, it means that the object is Craftable and we can call a custom
function within the main UI, and ensure that we have the needed elements inside
the inventory:

The Craft Item event loops through the receipe array and the Inventory array and,
whenever it finds two equal objects, it removes it from the inventory (we don't want
to be able to craft infinite objects, we must delete the object used).

An Open World Survival Game

[322]

Lastly, it calls the DropItem function we created earlier within the player character (the
unseen part on the left is the get default class | break struct part to get the receipe):

Inventory button logic
We can now complete the logic of the Inventory button by adding the binding of its
thumbnail and the click handler.

The image should be easy for you now; it is exactly the same as the other thumbnail
code we wrote before. The only exception is that we accede to it by the inventory
variable and the Item Slot index instead of using a direct reference:

The click handler is even easier. We want to set the Slot Selected variable of the
main UI to be the same as its Item Slot value. So, we will show the details of the
item in the Details panel based on this value:

Chapter 7

[323]

Item details and buttons
The last section to handle is the details section of the UI. Its image and description
is like we did before but we must add a flow control on the SlotSelected variable
before accessing the inventory index. We want to be able to show details only if there
is actually a real existing item. We can set the selected slot to be any negative value
when deselected and update the item detail only whenever its value is greater than 0:

It is the same situation for the three buttons of the Details panel. Bind their
IsEnabled property to be True only if the SlotSelected is greater than 0 and if,
from its structure, its property is True:

The Drop button is even easier; any object in your inventory should be droppable so
we can ignore the getter of the inventory and set its return value only based on the
first branch.

An Open World Survival Game

[324]

Implementing the last three buttons' click behavior and with the setup that we have,
it is just a matter of calling the right function. The drop-click will simply call the Drop
function followed by the Remove function:

The other two buttons will depend on what you want them to do in your game, but
by now you should be able to work without my help. You could create custom event
inside your player character to handle the eating of a fruit (by creating, for example,
a life bar with a system that will increase by eating a fruit), or send a message to all
the objects around the player whenever they use an object.

Summary
In this last chapter, we saw how to create a realistic environment with the tools that
UE4 offers. We saw how to manipulate the terrains and how to use different types
of brushes to build any kind of you world have in mind. Thanks to the materials and
the light tools, we saw how to give our world the desired atmosphere.

We also built a strong starting point for the inventory of your player, an essential
part for this and many others types of games.

We are at the end of our journey and it's time for me to say goodbye. I guided
you in the first steps of the difficult process of game creation. I hope you enjoyed
reading this guide as much as I enjoyed writing it. I'm sure you now have a better
understanding than before and are willing to continue exploring the vastness of UE4
to explore all its secrets. Everything is in your hands now; use your imagination to
create beautiful environments, use your knowledge to populate it with gameplay
and logics, and use my suggestions to combine the elements together.

Good luck, my friend!

[325]

Index
A
additive animations 177
aim logic, top-down shooter

aim angle, setting 200, 201
character, rotating 199, 200
implementing 199

Animation Blueprint
about 178
Anim Graph 178
Event Graph 178

Animation pose 177
animations

creating 173, 174
Animation Sequence

about 177
additive animations 177
blending animation 177

animations, top-down shooter
aim offset, creating 186-190
Animation Blueprint, creating 191-196
animation notifies, reloading 196, 197
Blend Space, creating 190, 191
creating 185

animation system
Animation Sequence 177
Persona 174-176
Skeleton 174

B
Binary Space Partitioning (BSP) 10
Blender 10
blending animation 177

Blueprint
about 2, 3
compiler result 28
debugging 26
debugging, with Blueprint debugger tab 28

Blueprint class
about 4
Actor 4
Character 4
creating 8-11
Game Mode 4
Pawn 4
PlayerController 4

Blueprint Editor
Components panel 14, 15
Details panel 16, 17
graph editor 18-20
menu bar 11, 12
My Blueprint panel 17
toolbar 12
Viewport 13

Blueprint Function Library
about 251
function library, creating 255, 256
function library, using 255, 256
player ragdoll, killing 252-255
player ragdoll, respawning 252-255

Blueprint Interface 5
Blueprint Macro Library 6
Blueprint, types

Blueprint class 4
Blueprint Interface 5
Blueprint Macro Library 6
Data-Only Blueprint 4
Level Blueprint 3, 4

[326]

BSP brush
used, for creating symbols 40-45

C
Cascade

about 130
interface 132

collectables and items, open world
survival game

adding 295
Blueprint Interface, implementing 302-304
Blueprint structure, creating 295, 296
handler, crafting 302
superclass, extending 299, 300
superclass, implementing 296-299
super item interaction,

implementing 304-306
collectables, UFO Run game

blueprint script 161, 162
creating 156
materials 156
particle system, creating 157, 158

corridor
creating 247-251

D
Data-Only Blueprint 4
data pins 25
data types

about 20-23
enumeration 23
references to classes 23
references to interfaces 23
references to objects or actors 23
structure 23

destructible mesh
about 232
creating 232-236

doors, platform maze
creating 256, 257
creating, within Blueprint 259-263
creating, within Matinee 257-259

Dots per inch (DPI) 141

E
emitters, particle system 131
enemies, top-down shooter

AI, creating 223, 224
creating 222
pawn, creating 222, 223

enemy, PAC-MAN
AI, creating 112-114
creating 106
enemy pawn, creating 107-111
navigation mesh, defining 115

Event Graph 178
execution pins 25

G
gameplay, UFO Run game

collect item event, adding 170
gameOver event, implementing 171
player controller class, adding 167
references, preparing 166, 167
scripting 166
spawn collectable function, adding 169
StartGame event, creating 168
update event, implementing 170
useFuel event, creating 169

H
Heads-up display (HUD) class 135

I
interface, Cascade

Curve Editor 133
Details panel 133
Emitters panel 133
Menu bar 133
Toolbar 133
Viewport panel 133

inventory system, open world survival game
creating 306, 307
inventory button, adding 307
inventory craft button, adding 308, 309
main user interface, creating 309

[327]

K
Kismet 2

L
Landscape Editor

Erosion tool 281
Flatten tool 281
Hydro Erosion tool 281
Noise tool 281
Ramp tool 281
Retopologize tool 281
Sculpt tool 281
Selection tool 281
Smooth tool 281
Visibility tool 281

landscape, open world survival game
creating 277-279
foliage, adding 289, 290
Manage mode, using 279, 280
material, using 282-287
Paint tool, using 287, 288
Sculpt mode, using 280-282

Level Blueprint 3, 4

M
main user interface, open world

survival game
buttons, handling 323
craftable items, adding 314
creating 309
designing 312, 313
drop item, implementing 320
inventory button logic, adding 322
item details, handling 323
items logic, crafting 320, 321
items, removing 319
items, using 319
objects, adding to inventory 317, 318
receipe button bindings,

implementing 315, 316
setting up 310-312
visibility, setting up 310-312

Matinee
about 240, 241

Curve Editor 242, 243
Matinee sequence, creating 244-247
Track View 243, 244

maze, PAC-MAN
creating 76, 77
designing 78-81
material, applying to multiple

surfaces 81-83
modules, particle system 130, 131

N
navigation mesh 115
nodes 23, 24

O
OpenType Format (OTF) 142
open world survival game

collectables and items, adding 295
day-night cycle, creating 290-294
inventory system, creating 306, 307
landscape, creating 277-279

P
PAC-MAN

class, creating 86-88
collectable object, implementing 88-95
collisions, handling 125, 126
enemy, creating 106
game logic, adding 84, 85
game mode, setting 117-122
game, preparing 72, 73
maze, creating 76, 77
player character, adding 96
project, creating 73, 74
transparent materials, creating 76
user interface, creating 122-124

particle system
about 129, 130
Cascade interface 132, 133
emitters 131
level of detail (LOD) system 132
modules 130, 131

Persona 175, 176
physics constraint 236-240

[328]

pins
about 25
data pins 25
execution pins 25

platform maze
doors, creating 256, 257
falling path, creating 268-270
killer objects, adding 263, 264
map, creating 265
rolling stones, adding 266-268
static platform, creating 265
wrecking balls, creating 271-274

player character, PAC-MAN
adding 96
Blueprint class, creating 105
collisions, handling 101, 102
lives, handling 104
losing condition, handling 103
movement, implementing 96-101
winning condition, handling 103

R
ragdoll physics 230, 231

S
Skeleton 174
Slate UI 85
spawner, top-down shooter

creating 216-218
custom component, creating 218, 219

spawn volume, UFO Run game
actor reference, creating 165
components, adding 162
handling 162
random point function, using 163-165

SpeedTree package
URL 290

symbols
creating, BSP brush used 40-45
material, creating 45-49

T
tic-tac-toe

arrays, using 53, 54
custom events, using 60-62

files, clearing 36-40
format text, adding 63, 64
game flow, creating 67
logic, creating 49
macro, creating 54-57
material, creating for symbols 45-49
overview 33, 34
preparing 34-36
score, handling 65, 66
Static Mesh, setting 51-53
symbols, creating 40-45
turn-based mechanic, implementing 50
UI, implementing with text render 58, 59

top-down shooter
aim logic, implementing 199
animations, creating 185
creating 179-181
enemies, creating 222
EventGraph, creating 219-221
game mode, defining 224-226
gate node, using 201
imported files, adjusting 182, 183
inputs, modifying 197
player, flipping 204, 205
player movements, implementing 198, 199
project, cleaning 181, 182
shooting events, starting 202-204
shooting events, stopping 202
Skeletal Mesh, retargeting 183-185
spawner, creating 216-218
user interface, creating 226, 227
weapon, creating 205

TrueType Format (TFF) 142

U
UFO Run game

blocking volumes, using 137, 138
buttons, adding 143, 144
click events, implementing 144, 145
collectables, creating 156
custom font, importing 142, 143
default camera, setting 145-147
gameplay, scripting 166
HUD class, setting 147, 148
in-game screen, creating 152
menu camera, using 139

[329]

player controller class, creating 148-150
project, creating 136, 137
property, binding 153, 154
spawn volume, handling 162
start button, adding 150-152
user interface, creating with Wizard

Blueprint 141, 142
user interface, switching 155

UFO Run game, particle system
acceleration module 161
Color Over Life module 159, 160
creating 157, 158
cylinder module 160
initial size module 159
initial velocity module 159
lifetime module 159
required module 158
size over life module 160
spawn module 159

UI, tic-tac-toe
game state 58
implementing, text render used 58, 59
tooltips 58
win counters 58

UnrealBuildTool (UBT) 85
Unreal Engine 4 (UE4)

about 6
Blueprint class, creating 8-11
Blueprint, debugging 26
data types 20-23
nodes 23, 24
pins 25
project, creating 6, 7
URL 6
variable types 20-23

Unreal Motion Graphics (UMG)
about 58, 133
Heads-up display (HUD) class 135
Widget Blueprint 134

V
variable types

about 20, 23
Boolean 20
Byte 21
Float 21
Integer 21
Name 21
Rotator 22
String 22
Text 22
Transform 22
Vector 22

Visual Studio
about 28
new class, adding 31, 32
project solution, creating 29, 30

W
weapon, top-down shooter

animation, reloading 209, 210
Blueprint class, creating 207-209
bullet, using 211, 212
collecting 214
creating 205
mono-use weapon, creating 214, 215
player character, handling 212, 213
socket, using 205-207

Widget Blueprint
about 134
Animations 134
Details panel 134
Editor Mode 134
Hierarchy 134
Menu bar 134
Palette 134
Tool bar 134
Visual Designer 134

Thank you for buying
Unreal Engine Game
Development Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Unreal Engine Android
Game Development
ISBN: 978-1-78439-436-3 Paperback: 300 pages

Tap into the power of Unreal Engine 4 and create
exciting games for the Android platform

1. Dive straight into making fully functional
Android games with this hands-on guide.

2. Learn about the entire Android pipeline, from
game creation to game submission.

3. Use Unreal Engine 4 to create a first-person
puzzle game.

Blueprints Visual Scripting for
Unreal Engine
ISBN: 978-1-78528-601-8 Paperback: 188 pages

Build professional 3D games with Unreal Engine 4's
Visual Scripting system

1. Take your game designs from inspiration to a
fully playable game that you can share with the
world, without writing a single line of code.

2. Learn to use visual scripting to develop
gameplay mechanics, UI, visual effects,
artificial intelligence, and more.

3. Build a first person shooter from scratch with
step-by-step tutorials.

Please check www.PacktPub.com for information on our titles

UnrealScript Game Programming
Cookbook
ISBN: 978-1-84969-556-5 Paperback: 272 pages

Discover how you can augment your game
development with the power of UnrealScript

1. Create a truly unique experience within UDK
using a series of powerful recipes to augment
your content.

2. Discover how you can utilize the advanced
functionality offered by the Unreal Engine
with UnrealScript.

3. Learn how to harness the built-in AI in UDK to
its full potential.

Unreal Engine Physics Essentials
ISBN: 978-1-78439-490-5 Paperback: 216 pages

Gain practical knowledge of mathematical and
physics concepts in order to design and develop an
awesome game world using Unreal Engine 4

1. Use the Physics Asset Tool within Unreal
Engine 4 to develop game physics objects for
your game world.

2. Explore the Collision mechanics within
Unreal Engine 4 to create advanced,
real-world physics.

3. A step-by-step guide to implementing the
Physics concepts involved in Unreal Engine 4 to
create a working Vehicle Blueprint.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Unreal Blueprints
	What is Blueprint?
	Types of Blueprints
	Level Blueprints
	Blueprint class
	Data-Only Blueprint
	Blueprint Interface
	Blueprint Macro Library

	Knowing the environment
	Creating a project
	Creating your first Blueprint class
	Menu bar
	Toolbar
	Viewport
	Component panel
	Detail panel
	My Blueprint panel
	Graph editor

	Types of variables and data
	Nodes
	Pins
	Blueprint debugging
	Blueprint debugger tab
	Compiler result

	Visual Studio
	Creating the project solution
	Add a new class from the editor

	Summary

	Chapter 2: Tic-Tac-Toe
	What do we need?
	Preparing the game
	Clean the unnecessary items and scripts
	The symbols – create the O and the X
	Creating a new material for the symbols

	Writing our Blueprints
	Turn-based mechanics
	Set Static Mesh via Blueprint
	Working with arrays
	Creating a macro
	UI using text render
	Custom events
	Format text
	Score
	Game flow

	Summary

	Chapter 3: C++ Code – PAC-MAN
	Preparing the game
	Creating the project
	Transparent materials
	The maze
	Designing the maze
	Applying a material to multiple surfaces

	The code
	Class Wizard
	Collectable
	Player character
	Movements
	Collisions
	Winning or losing the game
	Dead
	C++ class to Blueprint class

	Enemies
	Enemy Pawn
	Enemy AI
	Navigation mesh

	Game mode
	User Interface
	Collisions – custom presets and types

	Summary

	Chapter 4: UFO Run - Play with the Environment Effects
	Particle system
	Cascade
	Modules
	Emitters
	Level of detail
	The Cascade interface

	UMG
	Widget Blueprint
	HUD class

	The game
	Blocking volumes
	The menu camera
	Wizard Blueprint
	Import a custom font
	Buttons
	Click events
	Set the default camera
	HUD class
	Player controller class
	Start button
	In-game screen
	Property binding
	Switch user interface

	Collectables
	Materials
	Particle system
	Required
	Spawn
	LifeTime
	Initial size
	Initial velocity
	Color Over Life
	Size over life
	Cylinder
	Acceleration

	Blueprint script

	Spawn volume
	Components
	Random point function
	Actor reference

	Gameplay
	Prepare the needed references
	The player controller class
	StartGame
	The useFuel event
	Spawn Collectable function
	Update
	Collect Item
	The gameOver event

	Summary

	Chapter 5: Top-Down Shooter
	Animations
	Skeleton
	Persona
	Animation Sequence
	Additive animations
	Blending animation

	Animation poses
	Animation Blueprints

	The game
	Cleaning the unnecessary files
	Adjust the imported files
	Skeletal Mesh retarget
	Animations
	Aim Offset
	Blend Space
	Animation Blueprint – AnimGraph
	Animation Notifies

	Inputs
	Player movements
	Aim logic
	Rotate To Aim
	Set Aim angle

	Gate
	Start and stop shooting events
	Flip the player
	Weapon
	Socket
	Weapon Blueprint class
	Animation reloading
	Bullet
	Player character weapon slots
	Weapon collectables
	Mono-use weapon

	Spawner
	Custom component

	Animation Blueprint – EventGraph
	Enemies
	Pawn
	AI

	Game Mode
	User interface

	Summary

	Chapter 6: A Platform Maze
	Ragdoll physics
	Destructible meshes
	Physics constraint
	Matinee
	Curve Editor
	Track View
	Create a Matinee

	Fake platform corridor
	Blueprint Function Library
	Kill and respawn a player ragdoll
	Create and use a function library

	Door trigger volume
	Doors within Matinee
	Doors within Blueprint

	Killer objects
	The game
	Don't fall
	Rolling stones
	The falling path
	Wrecking balls

	Summary

	Chapter 7: An Open World
Survival Game
	Landscapes
	Manage mode
	Sculpt mode
	Landscape material
	Paint tool
	Foliage

	Day-Night cycle
	Collectables and items
	Blueprint structures
	Superclasses
	Extending the superclass
	Crafting handler
	Implementing the Blueprint Interface
	Super item interaction

	Inventory system
	The inventory button
	The inventory craft button
	Main user interface
	Main setup and visibility
	Design the UI
	Prepare the cookbook
	Receipe button bindings
	Add objects to the inventory
	Remove and use items
	Drop item – character side
	Craft items logic
	Inventory button logic
	Item details and buttons

	Summary

	Index

