

Unsupervised	Learning	with	R

Table	of	Contents

Unsupervised	Learning	with	R

Credits

About	the	Author

Acknowledgments

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Welcome	to	the	Age	of	Information	Technology

The	information	age

Data	mining

Machine	learning

Supervised	learning

Unsupervised	learning

Information	theory

Entropy

Information	gain

Data	mining	methodology	and	software	tools

CRISP-DM

Benefits	of	using	R

Summary

2.	Working	with	Data	–	Exploratory	Data	Analysis

Exploratory	data	analysis

Loading	a	dataset

Basic	exploration	of	the	dataset

Exploring	data	by	basic	visualization

Histograms

Barplots

Boxplots

Special	visualizations

Exploring	relations	in	data

Exploration	by	end-user	interfaces

Loading	data	into	Rattle

Basic	exploration	of	dataset	in	Rattle

Exploring	data	by	graphs	in	Rattle

Exploring	relations	in	data	using	Rattle

Summary

3.	Identifying	and	Understanding	Groups	–	Clustering	Algorithms

Transforming	data

Rescaling	data

Recenter

Scale	[0-1]

Median/MAD

Natural	log

Imputation	of	missing	data

Zero/Missing

Mean	imputation

Fundamentals	of	clustering	techniques

The	K-Means	clustering

Defining	the	number	of	clusters

Defining	the	cluster	K-Mean	algorithm

Alternatives	for	plotting	clusters

Hierarchical	clustering

Clustering	distance	metric

Linkage	methods

Hierarchical	clustering	in	R

Hierarchical	clustering	with	factors

Tips	for	choosing	a	hierarchical	clustering	algorithm

Plotting	alternatives	for	hierarchical	clustering

Clustering	by	end-user	interfaces

Summary

4.	Association	Rules

Fundamentals	of	association	rules

Representation

Exploring	the	association	rules	model

Plotting	alternatives	for	association	rules

Association	rules	by	end-user	tool

Summary

5.	Dimensionality	Reduction

The	curse	of	dimensionality

Feature	extraction

Principal	component	analysis

Additional	visual	support	for	PCA

Advanced	tools	for	plotting	PCA

Hierarchical	clustering	on	principal	components

Principal	components	analysis	by	user	interfaces

Summary

6.	Feature	Selection	Methods

Feature	selection	techniques

Expert	knowledge-based	techniques

Feature	ranking

Subset	selection	techniques

Embedded	methods

Wrapper	methods

Filter	methods

Summary

A.	References

Chapter	1,	Welcome	to	the	Age	of	Information	Technology

Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis

Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering	Algorithms

Chapter	4,	Association	Rules

Chapter	5,	Dimensionality	Reduction

Chapter	6,	Feature	Selection	Methods

Index

Unsupervised	Learning	with	R

Unsupervised	Learning	with	R
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1251115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-709-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Erik	Rodríguez	Pacheco

Reviewers

Nicholas	A.	Yager

Nicolas	Turenne

Commissioning	Editor

Dipika	Gaonkar

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Merwyn	D’souza

Technical	Editor

Namrata	Patil

Copy	Editor

Imon	Biswas

Project	Coordinator

Nikhil	Nair

Proofreader

Safis	Editing

Indexer

Tejal	Soni

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Erik	Rodríguez	Pacheco	works	as	a	manager	in	the	business	intelligence	unit	at	Banco
Improsa	in	San	José,	Costa	Rica,	where	he	holds	11	years	of	experience	in	the	financial
industry.	He	is	currently	a	professor	of	the	business	intelligence	specialization	program	at
the	Instituto	Tecnológico	de	Costa	Rica’s	continuing	education	programs.	Erik	is	an
enthusiast	of	new	technologies,	particularly	those	related	to	business	intelligence,	data
mining,	and	data	science.	He	holds	a	bachelor’s	degree	in	business	administration	from
Universidad	de	Costa	Rica,	a	specialization	in	business	intelligence	from	the	Instituto
Tecnológico	de	Costa	Rica,	a	specialization	in	data	mining	from	Promidat	(Programa
Iberoamericano	de	Formación	en	Minería	de	Datos),	and	a	specialization	in	business
intelligence	and	data	mining	from	Universidad	del	Bosque,	Colombia.	He	is	currently
enrolled	in	an	online	specialization	program	in	data	science	from	Johns	Hopkins
University.

He	has	served	as	the	technical	reviewer	of	R	Data	Visualization	Cookbook	and	Data
Manipulation	with	R	-	Second	Edition,	both	from	Packt	Publishing.

He	can	be	reached	at	https://www.linkedin.com/in/erikrodriguezp.

https://www.linkedin.com/in/erikrodriguezp

Acknowledgments
The	author	of	this	book	is	not	the	creator	of	any	of	the	packages,	functions,	or	programs
used	in	any	of	the	examples,	he	is	only	a	facilitator.

For	that	reason,	I	would	like	to	sincerely	thank	the	developers	of	R	and	R	packages,	who
have	contributed	so	generously	to	the	growing	of	the	R	open	source	community.	In	this
book,	we	used	many	packages.	Sometimes,	the	definitions	of	these	packages,	in	order	to
be	respectful	to	the	authors,	are	written	literally.	The	Appendix	at	the	end	of	the	book
contains	all	sources	as	special	thanks	to	the	authors.

I	would	like	to	thank	my	data	mining	professor	PhD	Oldemar	Rodriguez	Rojas,	who
inspired	me	and	taught	me	so	much.

I	would	also	like	to	thank	my	publisher,	Packt	Publishing,	for	giving	me	the	opportunity	to
work	on	this	book.	I	would	like	to	thank	all	the	technical	reviewers	and	content
development	editors	at	Packt	Publishing	for	their	informative	comments	and	suggestions.

I	would	like	to	thank	Felix	Alpizar	Lobo	and	Irene	Gallegos	Gurdian	from	Banco	Improsa
for	all	their	support	and	mentoring.

Finally,	I	would	like	to	thank	my	amazing	wife,	Silvia,	without	her	encouragement,
support,	and	patience,	this	book	would	not	have	been	possible.

About	the	Reviewer
Nicholas	A.	Yager	is	a	biostatistician	and	software	developer	researching	statistical
genomics,	image	analysis,	and	infectious	disease	epidemiology.	With	an	education	in
biochemistry	and	biostatistics,	his	experience	analyzing	cutting-edge	genomics	data	and
simulating	complex	biological	systems	has	given	him	an	in-depth	understanding	of
scientific	computing	and	data	analysis.	Currently,	Nicholas	works	for	a	personalized
medicine	company,	designing	medical	informatics	systems	for	next-generation
personalized	cancer	tests.	Apart	from	this	book,	Nicholas	has	reviewed	Mastering
Rstudio:	Develop,	Communicate,	and	Collaborate	with	R,	Julian	Hillebrand,	Maximilian
H.	Nierhoff,	Packt	Publishing.

I	would	like	to	thank	my	friends,	Lauren	and	Matt,	and	my	mentor,	Dr.	Gregg	Hartvigsen,
for	their	help	with	this	book.

Nicolas	Turenne	is	a	PhD	in	computer	science	and	a	research	fellow	at	the	French
National	Institute	for	Agricultural	Research	(INRA).	He	is	also	in	the	Interdisciplinary
Laboratory	Sciences	Innovations	Societies	(LISIS),	UMR	1326	at	Paris-Est	University.

He	is	an	expert	in	data	mining	and	knowledge	discovery	from	text	databases	using
stochastic	and	relational	models;	applications	of	which	are	life	sciences,	security,	and
social	media	analysis.

He	has	written	books	such	as	Knowledge	Needs	and	Information	Extraction:	Towards	an
Artificial	Consciousness	in	March	2013	by	Wiley-ISTE	and	Analyse	de	données	textuelles
sous	R,	which	will	be	published	in	January	2016	by	ISTE.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Currently,	the	amount	of	information	we	are	able	to	produce	is	increasing	exponentially.	In
the	past,	data	storage	was	very	expensive.	However,	today,	new	technologies	make	it
cheaper	to	store	this	information.	So	we	are	able	to	generate	massive	amounts	of	data,
which	it	is	also	feasible	to	store.	This	means	that	we	are	immersed	in	a	universe	of	data,	of
which	we	are	not	able	to	exploit	the	vast	majority.

Among	these	large	deposits	of	data	storage	there	is	valuable	knowledge,	but	it	is	hidden
and	difficult	to	identify	using	traditional	methods.

Fortunately,	new	technologies	such	as	artificial	intelligence,	machine	learning,	and	the
management	of	databases	converge	with	other	disciplines	that	are	more	traditional	such	as
statistics	or	mathematics	to	create	the	means	to	locate,	extract,	or	even	construct	this
valuable	information	from	raw	data.

This	convergence	of	knowledge	areas	gives	rise	to,	for	example,	very	important	subfields
such	as	supervised	learning	and	unsupervised	learning,	both	derived	from	machine
learning.

Both	subfields	contain	a	large	quantity	of	tools	to	enhance	the	use	of	stored	data	so	that	it
is	possible	to	generate	knowledge	about	the	data	and	extract	it	in	a	human-interpretable
way.

In	this	book,	you	will	learn	how	to	implement	some	of	the	most	important	concepts	of
unsupervised	learning	directly	in	the	R	console,	one	of	the	best	tools	for	a	data	scientist,
through	practical	examples	using	more	than	40	R	packages	and	a	lot	of	useful	functions.

Considering	the	wide	range	of	techniques	and	knowledge	related	to	unsupervised	learning,
this	book	is	not	intended	to	be	in	any	way	exhaustive.	However,	it	contains	some	valuable
knowledge	and	main	techniques	to	introduce	the	reader	to	the	study	and	implementation	of
this	important	sub	field	of	machine	learning.

What	this	book	covers
Chapter	1,	Welcome	to	the	Age	of	Information	Technology,	aims	at	introducing	the	reader
to	the	unsupervised	learning	context	and	explains	the	relation	between	unsupervised	and
supervised	learning	in	the	context	of	data	mining.	It	also	provides	the	reader	with	an
introduction	to	the	key	concepts	of	information	theory.

Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis,	is	about	some	techniques	for
exploratory	data	analysis	such	as	summarization,	manipulation,	correlation,	and	data
visualization.	An	adequate	knowledge	of	data,	by	exploration,	is	essential	in	order	to	apply
unsupervised	learning	algorithms	correctly.	This	assertion	is	true	for	any	effort	in	data
mining,	not	just	for	unsupervised	learning.

Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering	Algorithms,	teaches	the
readers	about	one	of	the	most	used	techniques	in	unsupervised	learning,	clustering.
Identifying	groups	can	help	discover	and	explain	some	patterns	hidden	in	data.	It	is
frequently	the	answer	for	multiple	problems	in	many	industries	or	contexts.	Finding
clusters	can	help	uncover	relationships	in	data,	which	can	in	turn	be	used	to	support	future
decisions.

Chapter	4,	Association	Rules,	covers	another	grouping	technique,	the	association	rules.
The	association	process	makes	groups	of	observations	and	attempts	to	discover	links	or
associations	between	different	attributes	of	groups.	This	association	becomes	rules,	which
can	in	turn	be	used	to	support	future	decisions.

Chapter	5,	Dimensionality	Reduction,	aims	to	explain	some	dimensionality	reduction
techniques.	In	machine	learning,	this	concept	is	the	process	of	reducing	the	number	of
random	variables	considered,	and	it	can	be	subdivided	into	feature	selection	and
extraction.	The	key	is	to	reduce	the	number	of	dimensions,	but	preserve	most	parts	of	the
information.

Chapter	6,	Feature	Selection	Methods,	explains	some	techniques	for	feature	selection,	also
known	as	variable	selection	or	attribute	selection.	The	key	point	is	to	choose	a	subset	of
relevant	features	of	variables	for	modeling	and	not	to	use	features	that	seem	to	be
redundant,	considering	correlation	to	simplify	model	construction.

Appendix,	References,	provides	a	list	of	links	referenced	in	the	book,	which	are	sorted
chapter-wise.	Given	the	amount	of	package	and	functions	used	in	this	book,	it	is	very
difficult	to	cite	references	and	authors	within	the	text	of	each	chapter,	as	it	would	appear
intermittent	for	the	reader.

What	you	need	for	this	book
You	need	to	download	R	to	follow	the	examples.	You	can	download	and	install	R	using
the	CRAN	website	available	at	http://cran.r-project.org/.	All	the	code	was	written	using
RStudio.	RStudio	is	an	integrated	development	environment	(IDE)	for	R	and	can	be
downloaded	from	http://www.rstudio.com/products/rstudio/.	Many	of	the	examples	are
created	using	R	packages,	and	they	are	discussed	in	their	respective	sections.

http://cran.r-project.org/
http://www.rstudio.com/products/rstudio/

Who	this	book	is	for
This	book	is	intended	for	professionals	who	are	interested	in	data	analysis	using
unsupervised	learning	techniques,	as	well	as	data	analysts,	statisticians,	and	data	scientists
seeking	to	learn	to	use	R	to	apply	data	mining	techniques.	Knowledge	of	R,	machine
learning,	and	mathematics	would	help,	but	are	not	a	strict	requirement.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:

A	block	of	code	is	set	as	follows:

#	Clean	the	Work	Space

rm(list	=	ls(all	=	TRUE))

#	Read	the	iris.csv	file

Iris	<-	read.table("iris.csv",	header	=	TRUE,	

sep	=	",",dec	=	".",	row.names	=	1)

In	R	it	is	a	general	practice	to	use	<-	for	assignment	instead	of	the	=	sign.

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“We	can	also	use	the
Summary	of	dataset	option	for	exploratory	data	analysis:”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Welcome	to	the	Age	of
Information	Technology
Machine	learning	is	one	of	the	disciplines	that	is	most	frequently	used	in	data	mining	and
can	be	subdivided	into	two	main	tasks:	supervised	learning	and	unsupervised	learning.
This	book	will	concentrate	mainly	on	unsupervised	learning.

So,	let’s	begin	this	journey	right	from	the	start.	This	particular	chapter	aims	to	introduce
you	to	the	unsupervised	learning	context.	We	will	begin	by	explaining	the	concept	of	data
mining	and	mentioning	the	main	disciplines	that	we	use	in	data	mining.

Next,	we	will	provide	a	high-level	introduction	of	some	key	concepts	about	information
theory.	Information	theory	studies	the	transmission,	processing,	utilization,	and	even
extraction	of	information	and	has	been	successfully	applied	in	the	data	mining	context.

Additionally,	we	will	introduce	CRISP	DM	because	it	is	important	to	use	a	specialized
methodology	for	management	knowledge	discovery	projects.

Finally,	we	will	introduce	the	software	tools	that	we	will	use	in	this	book,	mentioning
some	of	the	reasons	why	they	are	highly	recommended.

In	brief,	we	will	cover	the	following	topics:

The	data	mining	concepts
Machine	learning

Supervised	learning
Unsupervised	learning

Information	Theory

Entropy
Information	gain

CRISP-DM
Benefits	of	using	R

The	information	age
At	present,	the	amount	of	data	we	are	able	to	produce,	transmit,	and	store	is	growing	at	an
unprecedented	rate.	Within	these	large	volumes	of	information,	we	can	find	deposits	of
valuable	knowledge	to	be	extracted.	However,	the	main	problem	is	to	find	such
information	and	it	is	reasonable	to	say	that	it	will	become	increasingly	difficult.

Eric	Emerson	Schmidt,	who	was	the	chief	executive	of	Google	warned:

“Between	the	origin	of	the	Earth	and	2003	five	Exabytes	of	information	were
created;	today	that	amount	is	created	every	two	weeks…”

In	this	context,	it	is	easy	to	understand	that	it	is	virtually	impossible	to	identify	these
deposits	of	knowledge	by	manual	methods,	and	this	makes	it	necessary	to	resort	to
specialized	disciplines	such	as	data	mining.

Data	mining
The	term	began	to	be	used	in	the	’80s	by	database	developers.	Data	mining	can	be	defined
as	the	process	of	discovery	of	new	and	meaningful	relationships	by	exploring	large
volumes	of	information.

Data	mining,	as	an	oriented	knowledge	discovery	process,	uses	various	disciplines,	such
as	mathematics,	statistics,	artificial	intelligence,	databases,	pattern	recognition,	or	machine
learning.	Indeed,	sometimes	some	of	these	terms	are	considered	synonymous,	which	is	in
fact	incorrect.	Rather,	there	is	an	overlap	of	these	disciplines.

The	following	diagram	illustrates	some	disciplines	involved	in	the	process	of	data	mining:

Machine	learning
Machine	learning	is	a	subfield	of	computer	science,	and	is	defined	as	the	study	and
creation	of	algorithms	that	are	able	to	learn,	in	the	context	of	this	book,	from	the
relationships	between	the	information	contained	in	a	dataset.

In	general	terms,	machine	learning	can	be	divided	into	several	categories;	the	two	most
common	ones	are	supervised	learning	and	unsupervised	learning.

Supervised	learning
This	is	a	task	of	machine	learning,	which	is	executed	by	a	set	of	methods	aimed	to	infer	a
function	from	the	training	data.

Normally,	the	training	data	is	composed	of	a	set	of	observations.	Each	observation
possesses	a	diverse	number	of	variables	named	predictors,	and	one	variable	that	we	want
to	predict,	also	known	as	labels	or	classes.	These	labels	or	classes	represent	the	teachers
because	the	models	learn	from	them.

The	ultimate	aim	of	the	function	created	by	the	model	is	the	extrapolation	of	its	behavior
towards	new	observations,	that	is,	prediction.	This	prediction	corresponds	to	the	output
value	of	a	supervised	learning	model	that	could	be	numeric,	as	in	the	case	of	a	regression
problem;	or	a	class,	as	in	the	case	of	classification	problems.

To	explain	the	process	of	supervised	learning,	we	can	resort	to	the	following	diagram:

For	reference,	some	examples	of	supervised	learning	models	are:

Regression	models
Neural	networks
Support	vector	machines
Random	forests
Boosting	algorithms

We	can	divide	the	process	into	two	stages	Modeling	and	Predicting:

In	the	modeling	stage,	we	start	with	raw	data	that	will	be	used	to	train	the	model.	The
following	is	the	definition	of	the	variables	used	to	build	the	model,	as	it	is	possible	to
reduce	the	number	or	transform	them.

We	proceed	to	train	the	model,	and	finally	carry	out	the	evaluation.	It	is	important	to	note
that	training,	construction,	and	validation	of	the	model	form	an	iterative	process	aimed	at
achieving	the	best	possible	model,	which	means	we	may	need	to	return	to	a	previous	step
to	make	adjustments.

The	second	stage	is	the	prediction.	We	already	have	the	model	and	a	number	of	new
observations.	Using	the	model	that	we	built	and	tested,	a	prediction	for	new	data	is
executed	and	the	results	are	generated.

Unsupervised	learning
The	unsupervised	learning	objective	of	this	book	is	a	machine	learning	task	that	aims	to
describe	the	associations	and	patterns	in	relation	to	a	set	of	input	variables.	The
fundamental	difference	from	supervised	learning	is	that	input	data	has	no	class	labels,	so	it
has	no	variables	to	predict	and	rather	tries	to	find	data	structures	by	their	relationship.

We	could	say	that	unsupervised	learning	aims	to	simulate	the	human	learning	process,
which	implies	learning	without	explicit	supervision,	that	is,	without	a	teacher	as	is	the
case	with	supervised	learning.

In	unsupervised	learning,	we	can	also	speak	of	two	stages:	Modeling	and	profiting:

In	the	modeling	phase,	we	take	the	input	data	and	proceed	to	apply	techniques	of	feature
selection	or	feature	extraction.	Once	we	define	the	most	convenient	variables,	we	proceed
to	choose	the	best	method	of	unsupervised	learning	to	solve	the	problem	at	hand.	For
example,	it	could	be	a	problem	of	clustering	or	association	rules.

After	choosing	the	method,	we	proceed	to	build	the	model	and	execute	an	iterative	tuning
process	until	we	are	satisfied	with	the	results.

In	contrast	to	supervised	learning,	in	which	the	model	value	is	derived	mostly	from
prediction,	in	unsupervised	learning,	the	findings	obtained	during	the	modeling	phase
could	be	enough	to	fulfill	the	purpose,	in	which	case,	the	process	would	stop.	For
example,	if	the	objective	is	to	make	a	customer	group,	once	done,	the	modeling	phase	will
have	an	idea	of	the	existing	groups,	and	that	could	be	the	goal	of	the	analysis.

Assuming	that	the	model	was	subsequently	used,	there	is	a	second	stage,	which	is	when
we	have	the	model	and	want	to	exploit	it	again.	We	will	receive	new	data	and	use	the
model	that	we	built	to	run	on	them	and	get	results.

Throughout	this	book,	we	will	explain	in	greater	depth,	many	aspects	of	unsupervised
learning.

Information	theory
Information	theory	studies	the	transmission,	processing,	utilization,	and	even	extraction	of
information	and	has	been	successfully	applied	in	the	data	mining	context.

Information	theory,	also	known	as	the	mathematical	theory	of	communication	or	the
mathematical	information	theory	is	a	theory	proposed	by	Claude	E.	Shannon	and	Warren
Weaver	in	the	late	1940s.

Information	theory	is	a	concept	that	has	been	extrapolated	to	other	contexts	and	is	widely
used	in	relation	to	machine	learning	and	unsupervised	learning.	Considering	that	in	several
examples	of	this	book,	some	concepts	will	be	mentioned.	In	this	regard,	we	will	explain
them	in	this	section.

Information	theory	defines	the	degree	of	dependence	between	two	variables	based	on	the
concept	of	mutual	information;	that	is,	the	information	that	is	common	between	two
variables	and	therefore,	it	can	be	considered	a	measure	of	the	reduction	of	uncertainty
about	the	value	of	a	variable	once	we	know	the	other.

In	relation	to	the	above,	there	are	two	important	concepts	that	we	want	to	clarify:	the
entropy	and	information	gain.

Entropy
Entropy,	also	known	as	the	information	media,	gives	the	mean	value	of	the	information	by
a	variable.	It	can	be	considered	a	measure	of	uncertainty,	because	it	is	a	measure	of	how
pure	or	impure	a	variable	is.	The	entropy	ranges	from	0	when	all	instances	of	a	variable
have	the	same	value,	to	1	when	there	exists	an	equal	number	of	instances	of	each	value.

Formally,	the	entropy	can	be	defined	with	the	help	of	the	following	formula:

Explaining	the	mathematical	concepts	of	information	theory	is	beyond	the	scope	of	this
book.	However,	considering	its	importance,	we	will	explain	the	concept	of	entropy	and
information	gain	using	an	example:

Suppose	we	have	the	following	dataset	consisting	of	four	variables	(Color,	Size,	Shape,
and	Result)	and	16	observations:

Considering	it	contains	16	instances:	9	TRUE	and	7	FALSE,	we	proceed	to	apply	the
formula	of	entropy	as	follows:

The	entropy	for	the	example	is	0.9887,	which	makes	much	sense	because	7/16	and	9/16	is
almost	a	coin	flip;	hence,	the	entropy	is	close	to	1.

Information	gain
When	we	are	trying	to	decide	the	relevance	of	an	attribute,	we	can	examine	the
information	gain	associated	with	the	variable.	Information	gains	are	usually	a	good
measure	to	decide	the	relevance	of	an	attribute.	It	is	a	measure	related	to	entropy	and	can
be	defined	as	the	expected	reduction	in	entropy	caused	by	a	partitioning	of	features.	In
general	terms,	the	expected	information	gain	is	the	change	in	information	entropy.

We	can	calculate	the	expected	entropy	of	each	possible	attribute.	In	other	words,	the
degree	to	which	the	entropy	would	change.

Continuing	with	the	example,	we	consider	the	variable	size	and	proceed	to	the	calculation
of	information	gain.

We	want	to	calculate	the	information	gain	(entropy	reduction),	that	is,	the	reduction	in
uncertainty	using	the	feature	size.

The	first	thing	to	do	is	calculate	the	entropy	of	each	subset	of	the	variable:

Then	we	must	add	the	entropies	calculated	according	to	the	proportion	of	observations.	In
the	example,	both	Size	=	Small	and	Size	=	Large	contain	eight	observations:

As	the	information	gained	by	definition	is	the	change	from	entropy:

So,	we	gained	0.1059	bits	of	information	about	the	dataset	by	choosing	the	size	feature.

Data	mining	methodology	and	software
tools
To	conclude	this	introductory	chapter,	we	consider	it	important	to	note	two	additional
points:	a	suggested	methodology	for	data	mining	projects	and	some	important	aspects	of
the	software	that	we	use	in	this	book.

CRISP-DM
CRISP-DM	is	an	acronym	for	Cross	Industry	Standard	Process	for	Data	Mining.
Although	it	is	a	process	model	for	data	mining	projects	in	general,	it	is	a	good	framework
to	use	in	unsupervised	learning	projects.	It	is	not	the	only	existing	standard,	but	currently,
is	the	most	often	used.

CRISP-DM,	is	divided	into	4	levels	of	abstraction	organized	hierarchically	in	tasks
ranging	from	the	most	general	level	to	the	most	specific	cases	and	organizes	the
development	of	a	data	mining	project,	in	a	series	of	six	phases:

CRISP-DM
Stages Purpose

Business
understanding

This	aims	to	understand	the	project	objectives	and	requirements	from	a	business	perspective	and
convert	this	knowledge	into	a	data	mining	problem.

Data
understanding

This	pretends	to	get	familiar	with	data,	to	identify	quality	problems,	and	to	get	first	insights	into	the
data.

Data
preparation

This	covers	all	activities	to	construct	the	final	dataset	to	feed	into	the	modeling	tool.	The	data
preparation	phase	might	include	tasks	such	as	attribute	selection,	data	transformation,	data	cleaning,	and
any	other	task	considered	necessary.

Modeling The	modeling	techniques	are	selected,	calibrated,	and	applied.

Evaluation
Before	proceeding	to	the	final	deployment	of	the	model,	it	is	important	to	perform	a	more	thorough
evaluation,	reviewing	the	steps	executed	for	its	construction,	and	to	be	sure	it	properly	achieves	the
business	objectives.

Deployment This	is	the	exploitation	phase	of	the	project.

These	phases	interact	in	an	ordered	process,	as	shown	in	the	following	diagram:

We	will	not	delve	into	an	explanation	of	each	of	these	phases.	Instead,	we	simply	suggest
the	methodology	as	a	framework.	However,	if	you	want	to	investigate	further,	there	is
much	information	available	online.

Benefits	of	using	R
This	book	is	based	entirely	on	the	use	of	R—a	tool	that	was	originally	developed	by
Robert	Gentleman	and	Ross	Ihaka	from	the	Department	of	Statistics	at	the	University	of
Auckland	in	1993.	Its	current	development	is	the	responsibility	of	the	R	Development
Core	Team.

There	are	many	tools	for	data	mining,	so	let’s	take	a	look	at	a	few	of	the	benefits	of	using
R:

R	is	Free!	And	not	just	free,	R	is	open	source	software.
It	is	probably	the	most	used	tool	for	the	scientific	community	to	carry	out	research,
and	certainly	the	most	used	by	professionals	working	in	data	mining.
Perhaps	one	of	the	best	features	it	has	is	a	giant	collaborative	repository	called
CRAN,	which	currently	has	more	than	7,300	packages	for	many	different	purposes.
Very	few	applications	have	this	diversity.
It	has	a	very	active	community	along	with	multiple	forums	where	we	can	discuss	our
queries	with	others	and	solve	our	problems.
R	has	great	capacities	for	information	visualization.
And	a	huge	so	on…

Summary
In	this	chapter,	we	have	contextualized	the	concept	of	unsupervised	learning	relative	to
machine	learning,	supervised	learning,	and	the	theory	of	information.

In	addition,	we	presented	a	methodology	for	data	mining	project	management.	Finally,	we
presented	the	software	we	plan	to	use	throughout	the	chapters	of	this	book.

In	the	next	chapter,	we	will	explain	some	exploratory	techniques	and	thus	proceed	to
execute	the	next	step	in	the	CRISP-DM	methodology.

Chapter	2.	Working	with	Data	–
Exploratory	Data	Analysis
This	chapter	aims	to	explain	and	apply	some	techniques	for	exploratory	data	analysis:
summarization,	manipulation,	correlation,	and	data	visualization.	An	adequate	knowledge
of	data	by	exploration	is	essential	in	order	to	apply	unsupervised	learning	algorithms
correctly.	This	asseveration	is	true	not	only	for	unsupervised	learning	but	also	for	any
efforts	invested	in	data	mining.

In	the	context	of	the	methodology	suggested	in	Chapter	1,	Welcome	to	the	Age	of
Information	Technology,	under	the	CRISP-DM	section,	once	we	have	finalized	the
business	understanding	phase,	it	implies	that	we	are	clear	about	the	context	of	the	problem
and	objectives	pursued.	It	is	then	that	we	enter	the	second	phase—the	understanding	of	the
data—and	we	will	do	this	through	exploratory	analysis	techniques.

As	we	have	seen	in	the	previous	chapter,	R	is	a	versatile	programming	language	as	far	as
data	management	is	concerned;	in	this	chapter,	we	will	explain	some	of	the	potential	in
relation	to	data	exploration.

In	this	chapter,	will	cover	the	following	aspects:

Importance	of	the	exploratory	analysis
Loading	data	into	R
Basic	exploration	of	a	dataset
Exploration	of	data	using	visualizations
Exploring	relations	between	data
Exploration	by	end-user	interfaces

Exploratory	data	analysis
In	any	project	aimed	at	knowledge	discovery,	the	exploratory	analysis	of	the	data	should
not	be	underestimated.	It’s	a	very	important	phase	and	it	is	necessary	for	us	to	dedicate	a
lot	of	time	on	this.

For	anyone	who	has	worked	with	data,	the	use	of	a	methodology	might	help	to	easily
understand	what	I	mean	by	exploratory	analysis	intuitively.	However,	before	we	get	to	a
definition,	I	would	like	to	explain	it	with	an	analogy:

In	an	editorial	process,	as	is	the	creation	of	this	book,	I	develop	and	propose	a	lot	of
material	such	as:	concepts,	topics,	examples,	code,	in	short,	plenty	of	information.	In	fact,
much	of	this	information	will	not	be	used	in	the	published	version	of	the	book,	indeed,	and
it	is	likely	that	the	finished	version	of	the	book	does	not	match	the	order	in	which	it	was
developed.	This	would	be	the	equivalent	of	raw	data	in	a	process	of	knowledge	discovery
such	as	unsupervised	learning.

The	process	continues	and	the	data	enters	the	editing	stage,	in	which	several	actors	will
understand,	refine,	and	verify	the	consistency	and	presentation	of	them.	Exploratory	data
analysis	is	what	happens	during	the	editing	phase	and	allows	us	to	understand	the	relations
between	variables	to	identify	initial	problems	with	the	data	and	also	to	determine	if	the
original	data	requires	any	transformation.

In	short,	the	data	begins	to	tell	us	a	story,	and	to	tell	this	story,	we	can	make	use	of
visualization	techniques,	summarization,	transformation,	and	handling	of	data.	In	this	task,
the	statistical	techniques	play	an	important	role,	as	well	as	specialized	software	tools	that
facilitate	our	work.

Loading	a	dataset
Loading	the	data	of	the	work	in	any	tool	is	the	first	approach	we	will	have	to	carry	out
(assuming	that	we	don’t	help	with	the	data	collection	phase).

Even	though	the	exploratory	analysis	techniques	do	not	require,	in	a	strict	sense,	the
application	of	computational	tools,	it´s	reasonable	to	think	that,	in	modern	times,	it	will	be
used.	On	this	basis,	the	first	thing	that	we	need	to	do	is	to	load	the	data	that	we	intend	to
explore	in	our	working	tool:	for	the	purposes	of	this	book,	R	for	statistical	computation
and	graphics.

This	book	is	not	intended	to	be	an	introductory	course	to	R,	and	there	is	a	lot	of	very	good
literature	to	learn	about	R.	However,	for	your	convenience,	we	will	review	some	important
basic	aspects	required	to	continue	with	this	book.

Before	loading	the	data,	it	is	important	to	define	a	working	directory	according	to	our
needs.	This	will	allow	us	to	work	in	an	orderly	manner	and,	besides,	the	project	files	will
be	in	the	place	we	want.

Let	us	proceed	to	upload	the	data	to	the	R	console:

#	Check	the	current	working	directory

getwd()

[1]	"C:/Unsupervised	Learning"

#	Assign	the	chosen	working	directory

setwd("C:/Unsupervised	Learning/Chapter	02")

#	Verifying	the	chosen	working	directory

getwd()

[1]	"C:/Unsupervised	Learning/Chapter	02"

#	Getting	the	file	names	contained	in	directory

dir()

[1]	"iris.csv"

Note
As	the	reader,	you	will	probably	know,	in	R	code,	the	comments	are	preceded	by	a	#
character.	Also,	when	you	find	this	character	within	parentheses	[#],	this	is	an	indicator
that	the	line	is	a	result	or	a	response	to	the	user	from	the	R	console.	In	the	previous
example,	the	dir()	command	is	an	order	that	the	user	makes	to	the	console	and	the
console	responds	with	[1]	iris.csv.	The	number	1	corresponds	to	the	line	number	and
the	phrase	iris.csv	is	the	result,	in	this	case	the	name	of	the	file	found	in	the	directory.

The	Iris.csv	file	contains	the	information	from	a	dataset	widely	used	for	learning
process	in	statistics	or	data	mining.	It	comes	preloaded	with	R,	but	in	order	to	exemplify	a
load	of	data,	let’s	add	it	to	the	console	from	a	comma-separated	file:

#	Clean	the	Work	Space

rm(list	=	ls(all	=	TRUE))

#	Read	the	iris.csv	file

Iris	<-	read.table("iris.csv",	header	=	TRUE,	sep	=	",",	

				dec	=	".",	row.names	=	1)

#	verifying	the	object	class

class(Iris)	

[1]	"data.frame"

Note
About	dataset	Iris:	This	famous	(Fisher’s	or	Anderson’s)	Iris	dataset	gives	the
measurements	in	centimeters	of	the	variables	sepal	length	and	width,	and	petal	length	and
width,	respectively,	for	50	flowers	from	each	of	the	three	species	of	Iris.	The	species	are
Iris	setosa,	versicolor,	and	virginica.

At	this	point,	we	have	a	data	frame	named	Iris	loaded	in	R,	which	is	merely	a	copy	of	the
data	that	was	inside	the	iris.csv	file	and	we	have	loaded	it	using	the	read.table
function.

Something	very	important	to	keep	in	mind	is	that	R	can	load	data	from	almost	any	source
and	file	type	normally	used.	For	example,	using	the	previous	example,	if	the	file	that	was
just	loaded	was	in	excel	format	and	not	a	comma-separated	file,	we	could	load	it	using	the
package	XL	Connect:

#	Load	or	Install	the	library	XL	Connect

suppressWarnings(suppressMessages(if	(!require(XLConnect))	

install.packages("XLConnect")))

library("XLConnect")

#	Loads	or	creates	a	Microsoft	Excel	workbook	for

#	further	manipulation.

IrisXls	=	loadWorkbook("iris.xls")

#	Reads	data	from	worksheets	of	a	workbook.

IrisXls	=	readWorksheet(IrisXls,	sheet	=	"Sheet1")

Continuing	to	explore	other	data	sources	is	beyond	the	scope	of	this	book.	However,	we
want	to	let	you	know	that	the	connectivity	of	R	is	extensive.	With	just	a	little	research	and
you	can	find	excellent	tutorials	about	it.

Tip
If	you	don´t	want	to	load	the	dataset	iris	again	from	the	comma-separated	file,	it	should
be	sufficient	to	execute	the	next	instruction	in	the	R	console,	before	running	the	examples
that	requires	the	Iris	object:

Iris	<-iris

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Basic	exploration	of	the	dataset
At	this	point,	we	have	loaded	the	data	into	the	R	environment.	This	is	the	first	major	step,
but	we	do	not	know	much	about	this	data	yet.	We	will	begin	to	gain	initial	understanding
through	some	instructions	to	summarize	the	information.

Deliberately,	we	have	left	graphic	versions	for	a	later	section	of	the	chapter.	In	this
section,	the	examples	that	we	will	do	to	return	numbers	and	text;	which,	by	the	way	are
equally	important	tools	as	compared	to	their	graphic	expressions.

As	a	first	step,	directly	from	the	console	of	R,	we	can	begin	verifying	the	basic	features	of
the	Iris	dataset	that	we	just	loaded,	for	example	its	size:

#	Retrieve	or	set	the	dimension	of	an	object

dim(Iris)	

[1]	150			5

The	instruction	dim	(Iris)	returns	the	dimension	of	an	object;	in	this	case,	it	indicates
that	the	object	type	data.frame	Iris	that	we	loaded	from	iris.csv	has	150	register	with	5
variables,	150	rows,	and	5	columns	of	data.

In	addition	to	the	instruction	dim,	we	may	also	use	another	function	to	check	the	size	in
rows	and	columns	of	the	object	in	a	separate	way,	that	is,	by	counting	the	number	of	rows
and	number	of	columns:

#nrow	and	ncol	return	the	number	of	rows	or	columns	

nrow(Iris)	

[1]	150

ncol(Iris)

[1]	5

This	can	help	us	in	dimensioning	the	size	and	shape	of	the	dataset,	which	are	the	two
important	aspects	for	us	to	determine	how	manageable	it	will	be	and	how	we	can	handle	it.

This	is	the	first	approach	but	we	need	more	information.

In	order	to	move	forward	in	the	exploration,	we	can	review	its	structure	in	more	detail	by
using	another	function,	str():

#	Compactly	Display	the	Structure	of	an	Arbitrary	R	Object

str(Iris)

#	The	next	block	of	code	is	a	console	response	to	str

	'data.frame':	150	obs.	of		5	variables:

$	Sepal.Length:	num	5.1	4.9	4.7	4.6	5	5.4	4.6	5	4.4	4.9…

$	Sepal.Width	:	num	3.5	3	3.2	3.1	3.6	3.9	3.4	3.4	2.9	3.1…

$	Petal.Length:	num	1.4	1.4	1.3	1.5	1.4	1.7	1.4	1.5	1.4	1.5…

$	Petal.Width	:	num	0.2	0.2	0.2	0.2	0.2	0.4	0.3	0.2	0.2	0.1…

$	Species	:	Factor	w/	3	levels	"setosa","versicolor",..:	1

			1	1	1	1	1	1	1	1	1…

This	instruction	gives	us	additional	information	about	the	structure	of	the	Iris	object,	for
example:

We	can	verify	that	Iris	is	an	object	of	type	data.frame,	which	has	150	observations	with	5
variables	each,	and	which	also	shows	us	the	names	of	those	variables	and	(something	to
which	we	must	pay	close	attention	now)	the	data	type	that	stores	each	variable.

At	this	point,	we	have	a	better	knowledge	of	the	loaded	data	from	Iris.csv,	and	also,	if
we	pay	attention	to	the	data	type	for	each	variable,	we	can	determine	whether	any	error
has	occurred	in	the	information	loading.	Considering	that	the	variables	Sepal.Length,
Sepal.Width,	Petal.Length,	Petal.Width	correspond	to	measurements	in	centimeters,
we	know	their	type	must	be	numeric	or	num	as	reflected	in	the	str	function.

Considering	this	type	of	error	happens	frequently,	we	will	simulate	an	incorrect	loading	of
data	to	allow	you	to	be	clear	about	how	you	can	notice	and	correct	this	problem	in	the
early	stages	of	exploration.

We	will	reload	the	iris.csv	data	file	wrongly,	using	the	following	instruction:

#	Read	incorrectly	the	iris.csv	file

BadIris	<-	read.table("iris.csv",	header	=	TRUE,	sep	=	",",	

				dec	=	",",	row.names	=	1)

class(BadIris)

Notice	that	the	code	we’re	using	is	almost	identical	to	the	original	code	that	we	used
earlier	to	read	and	load	data	to	data.frame	Iris.	However,	if	you	observe	carefully,	we
have	mistaken	(on	purpose)	the	decimal	separator	dec	=	","	indicating	a	comma	instead
of	a	decimal	point	as	would	have	been	correct:

#	Compactly	Display	the	Structure	of	an	Arbitrary	R	Object

str(BadIris)

	'data.frame':	150	obs.	of		5	variables:

	$	Sepal.Length:	Factor	w/	35	levels	"4.3","4.4","4.5"	...

	$	Sepal.Width	:	Factor	w/	23	levels	"2","2.2","2.3",...

	$	Petal.Length:	Factor	w/	43	levels	"1","1.1","1.2",..

	$	Petal.Width	:	Factor	w/	22	levels	"0.1","0.2","0.3",...

	$	Species					:	Factor	w/	3	levels	"setosa","versicolor",..:	1	1	1	1	1	1	1	

1	1	1…

Everything	looks	very	similar.	We	have	a	data	frame	of	150	observations	with	5	variables
each,	whose	names	are	Sepal.Length,	Sepal.Width,	Petal.Length,	Petal.Width.
However,	we	actually	simulated	making	a	mistake,	using	an	incorrect	decimal	separator	in
the	instruction	for	the	data	load.

As	you	may	have	noticed,	the	data	types	of	variables	have	changed,	even	though	we	know
that	these	variables	store	information	about	measurements	in	centimeters,	the	instruction
str(BadIris)	indicates	that	the	data	type	of	those	variables	is	Factor,	the	type	assigned

to	indicate	that	the	stored	data	corresponds	to	a	qualitative	variable.

In	short,	although	the	data	looks	structurally	similar	and	looks	like	numbers	at	first	sight,
the	data	type	is	the	best	indicator	to	verify	it,	and	in	this	example,	the	type	of	the	loaded
data	does	not	match	what	is	expected	from	the	Iris	dataset.

If	it	had	not	been	a	simulated	mistake,	at	this	point,	the	right	decision	would	be	to	reload
the	data,	correcting	the	problem	of	the	decimal	separator	and	verifying	through	the	str
function	that	data	types	associated	to	the	variables	correspond	to	the	numeric	type,	since
any	exploration	that	we	could	do	about	them	in	their	current	status	would	be	useless.

Tip
Considering	its	efficiency,	the	str()	command	is	very	safe	to	use,	although	we	are
working	with	a	very	large	dataset.

We	will	return	to	our	example	with	data	properly	loaded	in	the	data.frame	Iris.

When	we	have	reviewed	the	structure	of	the	data,	it	may	be	valuable	to	see	how	it	behaves
with	regards	to	the	initial	portion	and	the	final	portion.

The	first	look	at	the	values	could	help	us	to	know	whether	the	data	was	loaded	properly	or
whether	it	has	obvious	problems,	and	for	this	we	will	use	the	functions	head	and	tail:

#	head	returns	the	first	parts	of	a	vector,	matrix,	table,

#	data	frame	or	function

head(Iris[1:4],5)	

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

1										5.1									3.5										1.4									0.2

2										4.9									3.0										1.4									0.2

3										4.7									3.2										1.3									0.2

4										4.6									3.1										1.5									0.2

5										5.0									3.6										1.4									0.2

#	tail	returns	the	last	parts	of	a	vector,	matrix,	table,

#	data	frame	or	function

tail(Iris[1:4],5)

				Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

146										6.7									3.0										5.2									2.3

147										6.3									2.5										5.0									1.9

148										6.5									3.0										5.2									2.0

149										6.2									3.4										5.4									2.3

150										5.9									3.0										5.1									1.8

The	instructions	head	and	tail	can	receive	as	parameters	the	amount	of	lines	above	or
below	the	dataset	that	we	want	to	see.	In	our	example	we	have	used	five	lines.

Notice	also	that	through	the	instruction	Iris	[1:	4]	we	are	indicating	to	R	that	we	only
require	rows	1	to	4	to	be	displayed,	namely,	numeric	variables.

This	consideration	does	not	relate	only	to	the	use	of	functions	head	or	tail.	We	only	want

to	show	that	they	can	use	portions	of	the	dataset	as	required,	while	both	arguments	are
completely	optional.

Apparently,	there	is	no	data	problem,	considering	there	are	no	information	with
unexpected	formats	either	at	the	beginning	or	the	final.

Also,	we	can	see	that	apparently,	the	variables	possess	appropriate	types	according	the	str
function,	we	can	conclude	that	the	data	was	well	loaded	and	at	least	has	no	visible
impurities,	and	we	also	have	a	visual	idea	of	the	form	and	content	of	the	dataset.

Another	important	aspect	that	we	recommend	is	to	explore	the	recount,	for	example,
Setosa	=	50	and	versicolor	=	50.	This	will	give	us	an	idea	of	whether	they	are	missing
observations,	assuming,	of	course,	that	we	are	aware	of	the	number	of	observations	that
should	have	our	working	dataset.	In	our	case,	we	know	that	the	Iris	data	should	have	50
observations	of	each	type	and	it	is	something	that	should	be	validated.

To	make	this	validation,	it	is	possible	to	use	the	table()	function	to	build	a	table	quickly:

#"table"	uses	the	cross-classifying	factors	to	build	a	contingency	table	of	

the	counts	at	each	combination	of	factor	levels

names(Iris)	#	Return	the	columns	Names	for	Information

[1]	"Sepal.Length"	"Sepal.Width"		"Petal.Length"

[4]	"Petal.Width"		"Species"

table(Iris$Species)	#	Build	the	table

setosa	versicolor		virginica

50									50									50

The	preceding	table	indicates	that	the	dataset	has	50	plants	from	each	of	three	types	of
flower,	a	total	of	150	observations,	which	matches	what	we	knew	previously	about	the	Iris
dataset.	If	this	is	not	the	case	and	the	table	had	a	different	distribution	of	observations,
there	is	a	high	probability	we	would	have	a	loading	data	error	or	an	error	in	the	file	source
of	the	information,	the	iris.csv.

The	previous	example	may	seem	very	simple	and	could	lead	you	to	undervalue	the
usefulness	of	the	table()	function.	Suppose	we	are	interested	in	a	table	with	the
frequency	of	the	Sepal.Width	variable,	you	could	use	the	following	instruction	to	set	up:

#	Return	the	columns	Names	for	reference

names(Iris)	

[1]	"Sepal.Length"	"Sepal.Width"		"Petal.Length"	"Petal.Width"		"Species"	

				

#	Build	the	table	grouping	observations	by	sepal	width

as.data.frame(table(Iris$Sepal.Width))

			Var1	Freq

1					2				1

2			2.2				3

3			2.3				4

4			2.4				3

5			2.5				8

6			2.6				5

7			2.7				9

8			2.8			14

9			2.9			10

10				3			26

11		3.1			11

12		3.2			13

13		3.3				6

14		3.4			12

15		3.5				6

This	table	corresponds	to	a	frequency	table	that	groups	the	observations	according	to	the
amount	of	centimeters	in	Sepal.Width	and	gives	us	information	for	better	understanding
of	the	dataset.

For	example,	we	can	see	that	there	is	a	higher	density	of	observations	between	2.8	and
3.2	cm	in	relation	to	the	lower	grades.

Note
The	use	of	the	as.data.frame	instruction	is	not	indispensable.	In	the	example,	it	is	used
to	force	the	result	to	behave	as	an	object	of	type	data.frame,	which	has	the	advantage	that
the	resulting	grids	are	displayed	vertically.

Continuing	with	the	exploration	of	the	Iris	dataset,	we	can	use	other	functions	to	meet	the
distribution	and	position	of	the	data	that	is	in	it.	To	do	this,	there	is	a	very	interesting
function	called	summary:

#	Generic	function	used	to	produce	result	summaries	of	the

#	results	of	various	model	fitting	functions

summary(Iris)

		Sepal.Length				Sepal.Width					Petal.Length		

	Min.			:4.300			Min.			:2.000			Min.			:1.000		

	1st	Qu.:5.100			1st	Qu.:2.800			1st	Qu.:1.600		

	Median	:5.800			Median	:3.000			Median	:4.350		

	Mean			:5.843			Mean			:3.057			Mean			:3.758		

	3rd	Qu.:6.400			3rd	Qu.:3.300			3rd	Qu.:5.100		

	Max.			:7.900			Max.			:4.400			Max.			:6.900		

		

Petal.Width										Species		

	Min.			:0.100			setosa				:50		

	1st	Qu.:0.300			versicolor:50		

	Median	:1.300			virginica	:50		

	Mean			:1.199																		

	3rd	Qu.:1.800																		

	Max.			:2.500

This	function	displays	important	information	about	the	distribution	of	data.	In	the	case	of
the	numeric	variables,	it	details	the	minimum	value,	maximum	value,	the	arithmetic	mean,
the	first	and	third	quartiles,	the	median,	and	implicitly	interquartile	range.	In	the	case	of
qualitative	variables	or	factors,	as	is	the	case	of	the	species	variable,	the	function	shows	a
count	for	each	of	the	available	categories	or	factors.

Now,	we	can	say	that	we	know	the	Iris	dataset	better,	but	if	we	go	a	little	beyond	the	basic
R	package,	we	could	use	some	very	interesting	libraries	for	that	additional	important
information	for	exploration,	or,	at	least,	to	represent	other	forms	of	summarization	of	the
information.	For	example:

The	package	Hmisc	contains	many	functions	useful	for	data	analysis,	high-level	graphics,
utility	operations,	functions	for	computing	sample	size	and	power,	importing	and
annotating	datasets,	imputing	missing	values,	advanced	table	making,	variable	clustering,
character	string	manipulation,	conversion	of	R	objects	to	LaTeX	code,	and	recoding
variables.

The	following	is	an	example	using	the	Hmisc	package:

#	describe"	determines	whether	the	variable	type

#	and	prints	a	concise	statistical	summary

#	according	to	each.

suppressWarnings(

										suppressMessages(if

suppressWarnings(suppressMessages(if	(!require(Hmisc))	

install.packages("Hmisc")))

library("Hmisc")

describe(Iris)

The	output	will	be	as	follows:

This	function	returns	a	table	with	information	for	each	variable.	In	the	example	shown,

describe()	for	numeric	variables,	shows	the	recount	of	observations,	the	number	of	null
values,	the	amount	of	unique	values,	the	five	lower	values,	the	five	highest	values,	the
mean,	median	and	percentile	5,	10,	25,	50,	75,	90,	95th.	In	the	case	of	qualitative
variables,	for	example	the	variable	species,	the	function	showing	the	number	of	missing
values,	the	number	of	unique	values,	the	overall	count,	and	the	percentage	distribution	for
each	factor.

Another	very	useful	function	for	generating	numerical	data	summarization	is	basicStats.
We	need	to	install	the	package	fBasics.	The	following	is	an	example	on	R	console:

#	"fBasics"	Returns	a	data	frame	with	the	following	entries	and	row	names:	

nobs,	NAs,	Minimum,	Maximum	,	1.	Quartile,	3.	Quartile,	Mean,	Median,	Sum,	

SE	Mean,	LCL	Mean,	UCL	Mean,	Variance,	Stdev,	Skewness,	Kurtosis.

#	Load	or	install	the	package	

suppressWarnings(

										suppressMessages(if

																										(!require(fBasics))

																										install.packages("fBasics")))

	library("fBasics")

#	Apply	the	function	to	all	variables

	lapply(Iris[1:4][,c(1:4)],	basicStats)

$Sepal.Length

															X…X.i

nobs								150.000000

NAs											0.000000

Minimum							4.300000

Maximum							7.900000

1.	Quartile			5.100000

3.	Quartile			6.400000

Mean										5.843333

Median								5.800000

Sum									876.500000

SE	Mean							0.067611

LCL	Mean						5.709732

UCL	Mean						5.976934

Variance						0.685694

Stdev									0.828066

Skewness						0.308641

Kurtosis					-0.605813

$Sepal.Width

															X…X.i

nobs								150.000000

NAs											0.000000

Minimum							2.000000

Maximum							4.400000

1.	Quartile			2.800000

3.	Quartile			3.300000

Mean										3.057333

Median								3.000000

Sum									458.600000

SE	Mean							0.035588

LCL	Mean						2.987010

UCL	Mean						3.127656

Variance						0.189979

Stdev									0.435866

Skewness						0.312615

Kurtosis						0.138705

To	conclude	with	the	summarization	functions,	we	can	make	use	of	the	stat.desc()
function	of	the	pastecs	library:

#stat.desc	Compute	a	table	giving	various	descriptive	statistics	about	the	

variables	in	a	data	frame

suppressWarnings(

										suppressMessages(if

																										(!require(pastecs))

																										install.packages("pastecs")))

	library("pastecs")

		

	stat.desc(Iris[1:4])

The	output	will	be	as	follows:

The	package	stat.desc	returns	some	basic	statistics:

The	number	of	values	(nbr.val),	the	number	of	null	values	(nbr.null),	the	number	of
missing	values	(nbr.na),	the	minimal	value	(min),	the	maximum	value	(max),	the	range
(range,	that	is,	max-min),	and	the	sum	of	all	non-missing	values	(sum).

Additionally,	it	returns	various	descriptive	statistics:	the	median	(median),	the	mean
(mean),	the	standard	error	(SE.mean),	the	confidence	interval	(CI.mean),	the	variance	(var),
the	standard	deviation	(std.dev),	and	the	variation	coefficient	(coef.var).

Exploring	data	by	basic	visualization
In	the	first	part	of	this	chapter,	we	covered	some	functions	in	R	to	perform	exploratory
data	analysis.	However,	as	you	will	have	noticed,	we	did	not	cover	the	graphic	mode
topic.	Graphical	analysis	is	very	important	because	most	people	understand	information
better	with	the	help	of	a	layout	display.

It	is	important	to	differentiate	between	exploratory	and	final	visualizations.	The	first	ones
are	usually	simple	graphics	and	are	made	very	quickly.	Generally,	they	are	created	for	our
own	understanding	about	information.	On	the	other	hand,	the	final	visualizations	are	those
that	are	constructed	for	presentation	and	thus	take	much	more	work	and	details

For	exploratory	visualizations,	the	base	module	of	R	is	usually	enough,	while	for	final
visualizations,	we	could	take	advantage	of	specialized	packages	like	ggplot2	or	lattice.

Histograms
A	histogram	is	a	graphical	representation	of	the	distribution	of	a	numeric	variable	and	a
very	useful	chart	when	you	want	to	observe	and	try	to	understand	the	full	distribution	of
the	data.	The	information	is	displayed	in	the	form	of	bars,	where	the	surface	of	each	bar	is
proportionate	to	the	frequency	of	the	values	represented.

In	R,	we	can	build	a	histogram	as	follows:

#	Set	an	array	of	two	plots	in	one	column

par(mfrow	=	c(2,	1),	mar	=	c(4,	4,	2,	1))

#	Build	a	Histogram	of	Sepal.Length

hist(Iris$Sepal.Length)

#	Build	the	same	Histogram	but	setting	brakes	to	50

hist(Iris$Sepal.Length,breaks=50)

By	default,	the	hist	function	automatically	sets	the	number	of	categories	or	bars,	in	the
histogram,	depending	on	the	density	of	the	data.	However,	if	you	wish	to	modify	that

feature,	you	can	use	the	parameter	breaks,	as	we	did	in	the	previous	example.

R	is	very	powerful	with	regard	to	the	manipulation	that	can	be	carried	out	in	the	graphs	we
build.	For	example,	in	the	preceding	histogram,	it	could	be	sufficient	for	an	exploration
graphic,	however,	it	may	not	be	adequate	for	a	final	graph.

For	example,	the	following	is	a	better	version	of	the	previous	histogram:

par(mfrow	=	c(1,	1),	mar	=	c(4,	4,	2,	1))

#	Prepare	data

x	<-	rbind(data.frame(dat	=	Iris[,][,	"Sepal.Length"],	

				grp	=	"All"))

#	Build	a	basic	histogram

hs	<-	hist(x[x$grp	==	"All",	1],	main	=	"",	xlab	=	"Sepal.Length",	

				ylab	=	"Frequency",	col	=	"grey90",	ylim	=	c(0,	

								31),	breaks	=	"fd",	border	=	TRUE)

#	Plot	a	density	function

dens	<-	density(x[x$grp	==	"All",	1],	na.rm	=	TRUE)

y	<-	max(hs$counts)/max(dens$y)

lines(dens$x,	dens$y	*	y,	type	=	"l",	col	=	colorspace::rainbow_hcl(3)[3])

#	Adding	a	Rug	to	histogram

rug(x[x$grp	==	"All",	1])

#	Adding	a	Title

title(main	=	"Distribution	of	Sepal	Length",	sub	=	paste("Unsupervised	

Learning",	

				format(Sys.time(),	"%Y-%b-%d")))

Even	better,	we	can	use	a	specialized	package	for	achieving	better	quality,	which	is
important	if	we	make	a	final	graphic,	for	example:

#Load	or	install	the	packages	ggplot2	and	dplyr

suppressWarnings(suppressMessages(if	(!require(ggplot2))	

install.packages("ggplot2")))

suppressWarnings(suppressMessages(if	(!require(dplyr))	

install.packages("dplyr")))

library("ggplot2")

library("dplyr")

#Prepare	inputs	for	the	histogram

x	<-	range(with(Iris,	select(Iris[,],	Sepal.Length)))

y	<-	(x[2]	-	x[1])/nclass.FD(with(Iris,	Iris[,	

]$Sepal.Length))

#Build	the	histogram

object	<-	ggplot(with(Iris,	select(Iris[,	

],	Sepal.Length,	Species)),	aes(x	=	Sepal.Length))	+	

				geom_histogram(aes(y	=	..density..),	

								binwidth	=	y,	fill	=	"grey",	colour	=	"black")	+	

				geom_density(aes(colour	=	Species))	+	

				xlab("Sepal.Length")	+	ggtitle("Distribution	of	Sepal.Length\nby	

Species")	+	

				labs(colour	=	"",	y	=	"Density")

#Print	de	object

print(object)

Using	these	libraries	we	can	get	a	much	better	graphic	finish,	but,	besides	that,	it	is
considered	good	practice	to	show	comparisons.	In	the	following	chart,	a	histogram	is
constructed,	but	all	three	types	are	compared	in	relation	to	the	plotted	variable,	in	this	case
Sepal.Length:

Barplots
Bar	charts	are	used	to	perform	simple	comparisons;	for	example,	they	are	useful	to
represent	categorical	data.	As	in	the	histogram,	the	length	of	the	bars	is	proportional	to	the
variable	data	being	represented.

In	the	following	example,	we	will	alter	the	size	of	the	working	set	data	to	appreciate	a
difference	between	the	bars.

In	the	console	of	R,	we	can	build	a	bar	graph	as	follows:

#	This	section	of	code	changes	the	size	of	the	Iris

#	dataset	only.		

#	This	is	done	by	a	sample

to	obtain	reproducible	results

set.seed(42)

#	Making	sample

nobs	<-	nrow(Iris)		#	150	observations	

sample	<-	train	<-	sample(nrow(Iris),	0.7	*	nobs)		#	105	observations

Iris.Sample	<-	(Iris[sample,])

#	Load	or	install	the	gplots	package

suppressWarnings(suppressMessages(if	(!require(gplots))	

install.packages("gplots")))

library("gplots")

#	Preparing	data

x	<-	rbind(summary(na.omit(Iris.Sample$Species)))

ord	<-	order(x[1,],	decreasing	=	TRUE)

#	Build	the	barplot

bp	<-	barplot2(x[,	ord],	beside	=	TRUE,	ylab	=	"Frequency",	

				xlab	=	"Species",	ylim	=	c(0,	44),	col	=	colorspace::rainbow_hcl(4))

text(bp,	x[,	ord]	+	3,	x[,	ord])

#	Adding	a	title

title(main	=	"Distribution	of	Species	(Sample)")

Boxplots
Boxplots	are	representations	based	on	quartiles,	like	the	histogram,	and	their	function	is	to
display	a	set	of	data.	They	consist	of	a	rectangle	(box)	and	two	arms	(whiskers).

Boxplots	provide	information	about	the	minimum	values,	maximum	values,	quartiles,	the
distribution	skewness,	and,	very	importantly,	the	existence	of	outliers	in	the	distribution.

An	outlier	is	an	observation	point	that	is	remote	from	other	observations.	If	Q1	and	Q3	are
the	lower	and	upper	quartiles,	respectively,	then	we	can	define	an	outlier	to	be	any
observation	outside	the	range:

Where	k	is	a	non-negative	constant,	generally	k=	1.5	is	used	for	a	slight	atypical	and	k=3
is	used	for	get	an	extreme	atypical.

We	can	create	a	boxplot	in	R	as	follows:

#	Build	the	boxplot	from	Sepal.Length	by	species

boxplot(Sepal.Length	~	Species,	data	=	Iris,	ylab	=	"Sepal	Length	

(cm)",main	=	"Iris	Data	Set",	boxwex	=	0.5,	col	=	

colorspace::rainbow_hcl(4))

In	the	preceding	chart,	we	can	see	a	lower	outlier	in	virginica	plant	type.	However,	the

chart	itself	does	not	show	us	the	detail	of	outlier,	only	its	representation	in	the	plane.

With	the	following	trick,	we	can	draw	observations	on	the	outliers:

#	Load	or	install	the	package	car

suppressWarnings(suppressMessages(if	(!require(car))	

install.packages("car")))

library("car")

#	Identify	the	Outliers	and	save	them	in	object

#	named	Outliers

Outliers	<-	(Boxplot(Sepal.Length	~	Species,	data	=	Iris,	

				id.method	=	"y",	col	=	colorspace::rainbow_hcl(4)))

#	Consult	the	outliers	detected

Outliers

[1]	"107"

Iris[Outliers,1:4]

				Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

107										4.9									2.5										4.5									1.7

As	can	be	observed,	the	outlier	is	located	on	the	observation	identified	by	number	107	in
the	dataset,	whose	value	is	4.9	for	Sepal.Length.

If	you	want	to	check	it,	we	can	separate,	in	the	data,	which	observations	correspond	to	the
virginica	species	and	generate	a	summary:

#	Subset	the	data	set	by	species=	Virginica

virginica<-Iris[which(Iris$Species=='virginica'),]

#	Summarization	by	Sepal.Length

summary(virginica$Sepal.Length)

			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.	

		4.900			6.225			6.500			6.588			6.900			7.900	

The	value	found	in	row	107	corresponds	to	an	outlier	because	in	this	type	of	plant,	these
variable	values	are	much	higher,	in	fact	4.9	is	the	minimum	value.

Finally,	if	we	want	to	generate	a	boxplot	for	filing	a	final	chart,	with	more	quality
finishing,	we	can	use	the	ggplot2	library:

#	Load	or	install	the	package	ggplot2

suppressWarnings(suppressMessages(if	(!require(ggplot2))	

install.packages("ggplot2")))

library("ggplot2")

#	Build	the	Box	Plot	for	Sepal.Width

p	<-	ggplot(with(Iris,	Iris[,]),	aes(y	=	Sepal.Width))

p	<-	p	+	geom_boxplot(aes(x	=	"All"),	notch	=	TRUE,	

				fill	=	"grey")

p	<-	p	+	stat_summary(aes(x	=	"All"),	fun.y	=	mean,	

				geom	=	"point",	shape	=	8)

p	<-	p	+	geom_boxplot(aes(x	=	Species,	fill	=	Species),	

				notch	=	TRUE)

p	<-	p	+	stat_summary(aes(x	=	Species),	fun.y	=	mean,	

				geom	=	"point",	shape	=	8)

p	<-	p	+	xlab("Species\n\nUnsupervised	Learning")

p	<-	p	+	ggtitle("Distribution	of	Sepal.Width\nby	Species")

p	<-	p	+	theme(legend.position	=	"none")

print(p)

Special	visualizations
This	is	not	a	book	about	visualizations.	However,	visualizations	are	an	indispensable	tool
for	exploratory	analysis,	which,	itself,	is	an	essential	stage	in	a	process	of	unsupervised
learning.

Given	the	above,	it	is	considered	important	to	at	least	introduce	a	library	that	will	be	very
useful	for	both	kinds	of	visualizations:	the	exploration	plots	used	in	the	exploration	phase
and	for	the	final	plots	used	in	the	presentation	of	results,	the	lattice	library.

To	make	it	easy	for	you,	determine	the	lattice	potential.	We	will	work	in	this	example	with
a	different	dataset	that	comes	with	R,	the	state.x77	dataset:

#	"state.x77"	=	matrix	with	50	rows	and	8	columns

#	giving	some	#	statistics	in	the	respective

#	columns.		In	this	example:

#	Income:	per	capita	income	(1974)	and	HS	Grad:

#	percent	high-#	school	graduates	(1970)

#	Clean	the	environment	for	work

rm(list	=	ls(all	=	TRUE))

#	Load	or	install	the	package	lattice

suppressWarnings(suppressMessages(if	(!require(lattice))	

install.packages("lattice")))

library("lattice")

#	Build	a	data	frame	from	state.x77	adding

#	state.name	and	state.region	columns

state	<-	data.frame(state.x77,	state.name	=	dimnames(state.x77)[[1]],	

				state.region	=	state.region)

#	Check	the	head	of	data	set

head(state)

#	Build	the	XY	Plot	by	HS.Grad	and	Income	grouping	by	state

xyplot(HS.Grad	~	Income	|	state.region,	data	=	state,	

				groups	=	state.name,	panel	=	function(x,	y,	subscripts,	

								groups)	ltext(x	=	x,	y	=	y,	label	=	groups[subscripts],	

								cex	=	1,	fontfamily	=	"HersheySans"))

This	graphic	is	very	interesting	because	it	allows	us	to	relate	two	variables	separately	for
four	regions,	and	locate	the	name	of	the	state	in	the	corresponding	quadrant,	which
summarizes	a	lot	of	information.	Furthermore,	the	level	of	the	visual	quality	of	the	lattice
library	allows	us	to	use	it	to	build	exploratory	visualizations	or	to	build	final
visualizations.

In	addition	to	the	large	number	of	options	contained	in	the	lattice	library,	we	can	also
use	a	resource	base	package	R.	It	could	be	be	interesting	to	build	Scatterplot	Matrices,	as
long	as	the	dataset	is	not	too	complex.

#A	matrix	of	scatterplots	is	produced

pairs(Iris[1:3],	main	=	"Anderson's	Iris	Data—3	species",

pch	=	c(21),		cex	=	2,bg	=	c("red","green3","blue")[unclass(iris$Species)])		

This	graphics	array	can	be	interesting	because	it	compares,	at	the	same	time,	the	behavior
of	all	the	combinations	of	variables	separately	for	each	type	of	observation.

Exploring	relations	in	data
Analyzing	the	correlation	between	variables	is	a	fundamental	aspect	in	the	exploration
phase.	We	need	to	consider	that	many	models	necessarily	assume	independence	of
variables	and	determine	the	magnitude	and	direction	in	which	they	relate.

The	correlation	is	a	statistical	technique	that	aims	to	indicate	the	strength	and	direction	of
the	relationship	between	two	variables,	determining	whether	one	systematically	varies
depending	on	the	other.

R	has	functions	for	calculating	a	correlation	matrix	between	variables:

#	Create	the	data.frame	Iris

data(iris)

Iris<-iris

#	Load	or	Install	the	library	Ellipse

suppressWarnings(suppressMessages(if	(!require(ellipse))	

install.packages("ellipse")))

library("ellipse")

#	Build	the	correlations	Matrix

corr	<-	cor(Iris[,	-5])

#	Print	the	correlations	Matrix

corr

													Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

Sepal.Length				1.0000000		-0.1175698				0.8717538			0.8179411

Sepal.Width				-0.1175698			1.0000000			-0.4284401		-0.3661259

Petal.Length				0.8717538		-0.4284401				1.0000000			0.9628654

Petal.Width					0.8179411		-0.3661259				0.9628654			1.0000000

Note
Note	that	the	correlation	coefficient	varies	between	–1	and	1,	wherein	the	first	implies	a
perfect	inverse	correlation	and	the	second	a	perfect	direct	correlation.

About	their	interpretation,	the	diagonal	of	the	matrix	is	always	1	because	that	is	where
each	variable	row	intersects	with	mirror	columns.

Each	variable	in	the	rows	that	are	calculated	correlate	with	the	variables	in	the	columns.
For	example,	if	we	need	to	know	the	correlation	between	Petal.Width	and	Petal.Length,
we	have	to	look	at	the	intersection	row	4	and	column	4	of	the	table,	storing	a	correlation	of
0.9628654,	implying	a	very	high	positive	correlation.

In	the	Iris	dataset,	as	you	would	expect,	there	are	strong	correlations.

Analyzing	the	correlation	table	is	interesting	but,	it	is	also	possible,	and	sometimes	very
useful,	to	work	with	a	graphic	expression,	for	example:

#	Load	or	install	the	library	ellipse

suppressWarnings(suppressMessages(if	(!require(ellipse))	

install.packages("ellipse")))

library("ellipse")

#	Build	the	correlations	Matrix

corr	<-	cor(Iris[,	1:4])

#	Colour	the	ellipses	to	emphasize	the	differences.

colors	<-	c("#A50F15",	"#DE2D26",	"#FB6A4A",	"#FCAE91",	

				"#FEE5D9",	"white",	"#EFF3FF",	"#BDD7E7",	"#6BAED6",	

				"#3182BD",	"#08519C")

#	Plot	the	correlation	matrix	by	ellipses

plotcorr(corr,	col	=	colors)

The	plotcorr	function	plots	a	correlation	matrix	using	ellipse-shaped	glyphs	for	each
entry.	The	ellipse	represents	a	level	curve	of	the	density	of	a	bivariate	normal	with	the
matching	correlation.

You	can	also	use	the	library	corrplot,	which	is	personally	my	favorite,	because	it	has
many	options	for	displaying	correlation	matrices:

#	Load	or	install	the	package	corrplot

suppressWarnings(suppressMessages(if	(!require(corrplot))	

install.packages("corrplot")))

library("corrplot")

#	Set	a	color	Palette

col	<-	colorRampPalette(c("#BB4444",	"#EE9988",	"#FFFFFF",	

				"#77AADD",	"#4477AA"))

#	Plot	the	correlation	Matrix

corrplot(corr,	method	=	"pie",	shade.col	=	NA,	tl.col	=	"black",	

				tl.srt	=	45,	col	=	col(200),	addCoef.col	=	"black",	

				order	=	"AOE")

Exploration	by	end-user	interfaces
So	far	we	have	seen	and	implemented	some	exploration	tools	from	the	R	console.	As	an
additional	value,	we	will	show	you,	very	briefly,	the	exploration	of	data	by	using	a	tool
that	brings	together	many	features	related	to	data	mining	from	R,	Togaware	Rattle.

To	enter	Rattle,	we	need	to	have	previously	installed	it.	Subsequently	you	need	to	type	the
following	commands	from	the	console:

#	Set	language	to	English

Sys.setenv(LANGUAGE="en")

#Load	Rattle	Package

suppressWarnings(suppressMessages(library(rattle)))

#	Load	visual	interface

rattle()	

Note
For	more	details	about	Rattle,	for	example,	aspects	of	installation	or	use,	there	is	much
information	available	online.	Also,	you	can	consult	the	book	written	by	its	creator,
Graham	J.	Williams,	Data	Mining	with	Rattle	and	R,	Springer.

Loading	data	into	Rattle
Rattle	does	not	demand	interaction	with	the	console.	It’s	a	good	way	to	begin	to	use	R	or	it
can	help	us	to	make	a	quick	analysis	of	regular	sized	datasets.

To	load	the	Iris	dataset	from	Rattle:

1.	 In	the	Data	menu,	using	the	file	selector,	we	look	for	the	iris.csv	file.
2.	 We	assign	the	field	separator	and	decimal	separator	so	that	it	matches	with	the

working	dataset.
3.	 We	press	the	Execute	button	in	the	results	window,	and,	as	a	result,	variables	are

loaded	and	the	data	type	is	displayed.
4.	 In	order	to	visualize	the	data,	we	can	use	the	View	button.

This	can	be	seen	in	the	following	screenshot:

Basic	exploration	of	dataset	in	Rattle
The	basic	exploration	options	are	found	in	the	Explore	|	Summary	menu.	We	simply
select	the	different	options	and	press	the	Execute	button.	This	can	be	seen	in	the	following
screenshot:

Exploring	data	by	graphs	in	Rattle
The	options	for	data	exploration	using	graphs	are	found	in	the	Explore	|	Distributions
menu.	We	simply	select	the	different	options	and	press	the	Execute	button.	Rattle
proceeds	to	generate	histograms	or	boxplots	displays.	This	can	be	seen	in	the	following
screenshot:

Exploring	relations	in	data	using	Rattle
The	options	for	correlation	analysis	are	located	in	the	Explore	|	Correlations	menu.	We
simply	select	the	different	options	and	press	the	Execute	button,	and	Rattle	proceeds	to
generate	summarizations	and	visualizations.	This	can	be	seen	in	the	following	screenshot:

Summary
In	this	chapter,	we	discussed	the	importance	of	exploratory	data	analysis.	We	covered
some	of	the	basic	data	mining	techniques.	We	began	with	loading	data	into	the	R
environment	and	subsequently	turned	to	the	basics	of	summarization.	From	there,	we
moved	to	the	construction	of	exploratory	visualizations,	ending	with	correlation	analysis
and	graphic	expression.

Additionally,	we	briefly	mentioned	a	visual	interface	tool,	as	it	can	be	used	as	a	support
for	making	a	quick	analysis	without	having	to	interact	with	the	R	console	directly.

The	content	of	this	chapter	is	not	intended	to	be	exhaustive	or	exclusive.	There	are	many
approaches,	tools,	and	techniques	that	can	be	used	in	the	exploratory	phase	of	analysis.
However,	we	hope	that	it	will	help	you	to	create	a	style	or	at	least	know	about	the	different
tools	available.

In	the	next	chapter,	we	will	learn	about	one	of	the	most	used	techniques	in	unsupervised
learning—the	clustering	analysis.	Identifying	groups	can	discover	and	help	to	explain
some	patterns	hiding	in	data;	and	it	is	frequently	the	solution	for	many	problems.

Chapter	3.	Identifying	and	Understanding
Groups	–	Clustering	Algorithms
This	chapter	aims	to	explain	one	of	the	most	used	techniques	in	unsupervised	learning,	the
Clustering	Analysis.	Identifying	groups	can	uncover	and	help	to	explain	some	patterns
hiding	in	data	and	it	is	frequently	the	answer	for	multiple	problems	in	many	industries	or
contexts.	Finding	clusters	can	help	to	uncover	relationships	in	data,	which	can,	in	turn,	be
used	to	support	future	decisions.

It	is	considered	an	unsupervised	learning	technique	since	its	objective	is	to	find
relationships	between	study	variables,	but	not	the	relations	that	these	variables	may	have
in	relation	to	a	target	variable.

Typically,	the	application	of	clustering	techniques	involves	five	phases:	developing	a
working	dataset,	preprocessing	and	standardization	of	data,	finding	clusters	in	the	data,
interpreting	those	clusters,	and	finding	conclusions.

In	terms	of	this	book,	we	have	to	start	at	stage	two,	since	these	kinds	of	techniques	are
heavily	influenced	by	the	state	of	the	data,	and	so	it	is	important	to	give	them	some
treatment	in	most	cases,	for	example,	rescaling	variables,	or	dealing	with	missing	values,
which	are	aspects	that	greatly	affect	the	outcome.

As	we	have	seen	in	previous	chapters,	R	is	a	programming	language	that	is	very	versatile
with	regard	to	data	management	and	has	a	wide	range	of	packages	for	modeling.	In	this
chapter,	we	will	discuss	some	of	their	potential	in	relation	to	cluster	analysis.

We	will	cover	the	following	topics:

Transforming	data
K-Means	clustering
Hierarchical	clustering
Clustering	by	end-user	tools

Transforming	data
Actually,	it	is	normal	for	us	to	spend	a	lot	of	time	dealing	with	data.	In	fact,	when	data	is
good,	the	construction	of	models	that	will	respond	to	our	problems	becomes	easier.

Indeed,	while	all	models	have	adjustable	parameters	to	improve	performance,	we	must
always	consider	that	an	improvement	in	the	data	usually	has	a	positive	impact	on	desired
outcomes.

Considering	that	clustering	models	work	with	distances,	they	are	especially	influenced	by
the	data	that	we	use.	Therefore,	we	have	included	this	section	of	the	book,	although	the
aspects	discussed	below	can	be	applied	to	many	different	models.

Moreover,	it	makes	sense	to	take	a	look	at	this	topic	after	the	exploration	techniques	that
we	saw	in	Chapter	2,	Working	with	Data:	Exploratory	Data	Analysis,	and,	as	usual,	in	the
exploratory	phase,	the	need	for	transformation	is	detected.

Rescaling	data
Whichever	model	we	use	will	assume	different	things	about	the	data.	In	the	case	of
clustering	models,	it	is	very	important	that	data,	from	the	different	numerical	variables,
expressed	on	a	similar	scale.	When	distances	are	calculated,	if	the	units	are	very	different,
we	cannot	get	proper	results.	For	example,	if	we	are	doing	an	analysis	related	to	a	group	of
people	and	we	have,	among	other	data,	the	dollar	income	and	age	of	the	subjects,	a
variable	such	as	income	could	overshadow	the	age	variable.	For	analysis,	20	years	of	age
may	be	more	important	than	a	$10,000	income.	However,	when	compared	both	by
measure	of	distances,	a	clustering	model	might	underestimate	the	importance	of	age.

In	order	to	mitigate	the	problem	of	the	scale	of	the	data,	we	can	use	methods	of
standardization.	The	standardization	is	the	process	of	adjusting	the	data	to	a	specific	range,
for	example,	between	0	and	1	or	between	–1	and	1.	The	following	graph	visually	explains
what	would	happen	in	a	transformation	between	0	and	1:

Looking	at	the	previous	figure,	the	value	before	being	transformed	is	located	between	a
minimum	and	a	maximum	value.	A	normalization	process	between	0-1	takes	place	and
these	become	the	new	limits:	a	minimum	value	of	0	and	a	maximum	value	of	1.	The	new
data	is	not	specified	in	the	original	unit	of	measurement	but	still	maintains	relationships
and	proportionality	between	them.

There	are	several	techniques	for	normalization;	we	will	see	some	in	the	following
sections.

Recenter
The	recenter	performs	a	standard	z-score	transformation.	The	variable’s	mean	value	is
subtracted	from	each	value	and	each	one	is	then	divided	by	the	standard	deviation.	The
resulting	variable	will	have	a	mean	of	0	and	a	standard	deviation	of	1:

Let’s	see	how	we	can	make	a	normalization	of	this	kind	in	R.	For	this,	we	will	work	with	a
new	dataset,	which	is	located	in	the	following	package	of	CRAN:

Package:	ElemStatLearn
Dataset:	Prostate
Description:

Data	to	examine	the	correlation	between	the	level	of	prostate-specific	antigens	and
the	number	of	clinical	measures	in	men	who	are	about	to	receive	a	radical
prostatectomy.

Features:	lcavol	log	cancer	volume,	lweight	log	prostate	weight,	age	in	years,	lbph
log	of	the	amount	of	benign	prostatic	hyperplasia,	svi	seminal	vesicle	invasion,	lcp
log	of	capsular	penetration,	gleason	a	numeric	vector,pgg45	percent	of	Gleason	score
4	or	5,	lpsa	response

#	Load	dataset	from	csv	file

#data	<-	read.table("prostate.csv",	header	=	TRUE,	#sep	=	",",	#dec	=	

".",row.names=1)	

#	Load	dataset	from	package	in	CRAN

	suppressWarnings(

									suppressMessages(if

																										(!require(ElemStatLearn))

																	install.packages("ElemStatLearn")))

	library("ElemStatLearn")

#	Create	a	data.frame	named	data

	

data(prostate)

data<-prostate[1:9]

Note
For	convenience,	in	the	following	examples,	we	will	be	working	only	with	the	first	four
variables	of	the	dataset,	by	indexing	instructions	like	the	following:
data	[1:	4]

Once	the	data	is	loaded,	we	can	use	the	library	scale	to	implement	a	normalization	of
them.	Scale:	Scaling	and	Centering	of	Matrix-like	Objects:

	#	Show	the	head	of	dataset	Before	Recenter

	

	head(data[1:4])

						lcavol		lweight	age						lbph

1	-0.5798185	2.769459		50	-1.386294

2	-0.9942523	3.319626		58	-1.386294

3	-0.5108256	2.691243		74	-1.386294

4	-1.2039728	3.282789		58	-1.386294

5		0.7514161	3.432373		62	-1.386294

6	-1.0498221	3.228826		50	-1.386294

The	previous	code	shows	the	original	dataset	for	the	four	selected	variables.	As	shown,	the
differences	of	scale	are	important,	especially	in	the	case	of	the	variable	age:

	#	Using	the	scale	function	to	recenter	data

	recenter<-as.data.frame(scale(data[1:4]))

	#	Show	the	head	of	dataset	After	Recenter	

	

	head(recenter)

						lcavol				lweight								age						lbph

1	-1.6373556	-2.0062118	-1.8624260	-1.024706

2	-1.9889805	-0.7220088	-0.7878962	-1.024706

3	-1.5788189	-2.1887840		1.3611634	-1.024706

4	-2.1669171	-0.8079939	-0.7878962	-1.024706

5	-0.5078745	-0.4588340	-0.2506313	-1.024706

6	-2.0361285	-0.9339546	-1.8624260	-1.024706

After	transformation,	the	variables	are	not	expressed	in	their	original	scales,	for	example,
age	no	longer	displays	a	number	of	years.

To	make	it	interesting	while	performing	a	test,	we	can	confirm	that	the	transformation
does	not	affect	the	relationship	between	the	variables:

	#	comparing	correlations	

	

	#	Data	before	transformation	

cor(data[1:4])

											lcavol			lweight							age						lbph

lcavol		1.0000000	0.2805214	0.2249999	0.0273497

lweight	0.2805214	1.0000000	0.3479691	0.4422644

age					0.2249999	0.3479691	1.0000000	0.3501859

lbph				0.0273497	0.4422644	0.3501859	1.0000000

#	Data	after	transformation

cor(recenter)

											lcavol			lweight							age						lbph

lcavol		1.0000000	0.2805214	0.2249999	0.0273497

lweight	0.2805214	1.0000000	0.3479691	0.4422644

age					0.2249999	0.3479691	1.0000000	0.3501859

lbph				0.0273497	0.4422644	0.3501859	1.0000000

It	may	be	considered	a	good	practice	to	keep	the	original	values	(before	transforming)
within	the	dataset.	This	can	be	done	in	many	ways,	and	one	way	is	as	follows:

	#	Transform	variables	by	rescaling.	

	#	Rescale	lcavol

	data[["RRC_lcavol"]]	<-	data[["lcavol"]]

	

	#	Recenter	and	rescale	data

									data[["RRC_lcavol"]]	<-

																	scale(data[["lcavol"]])[,1]

	

	#	Rescale	lweight

									data[["RRC_lweight"]]	<-	data[["lweight"]]

									

	#	Recenter	and	rescale	data

									data[["RRC_lweight"]]	<-

																	scale(data[["lweight"]])[,1]

									

	#	Show	the	original	and	recenter	together

	head(data[c('lcavol','RRC_lcavol','lweight',

													'RRC_lweight')])

						lcavol	RRC_lcavol		lweight	RRC_lweight

1	-0.5798185	-1.6373556	2.769459		-2.0062118

2	-0.9942523	-1.9889805	3.319626		-0.7220088

3	-0.5108256	-1.5788189	2.691243		-2.1887840

4	-1.2039728	-2.1669171	3.282789		-0.8079939

5		0.7514161	-0.5078745	3.432373		-0.4588340

6	-1.0498221	-2.0361285	3.228826		-0.9339546

Scale	[0-1]
Another	method	for	make	transformation	is	the	Scale	[0-1]:	just	rescale	the	original	values
into	the	0-1	range.	This	is	done	by	subtracting	the	minimum	value	from	the	variable’s
value	for	each	observation	and,	then,	dividing	by	the	difference	between	the	minimum	and
the	maximum	values:

If	we	want	to	implement	this	transformation	method,	we	can	use	the	reshape	package,	in
particular	the	rescaler	function:

	#	Transform	variables	by	rescaling.	

	

	#Loading	or	installing	package	reshape

	suppressWarnings(

									suppressMessages(if

																										(!require(reshape,	quietly=TRUE))

																	install.packages("reshape")))

	library("reshape")

	

	#	Rescaling	data	to	Scale	[0-1]	using	reshape

	

dataR01<-rescaler(data,	"range")

	#	Comparing	original	vs	scaled

	tail(data[1:4])

					lcavol		lweight	age							lbph

92	2.532903	3.677566		61		1.3480732

93	2.830268	3.876396		68	-1.3862944

94	3.821004	3.896909		44	-1.3862944

95	2.907447	3.396185		52	-1.3862944

96	2.882564	3.773910		68		1.5581446

97	3.471966	3.974998		68		0.4382549

	tail(dataR01[1:4])

						lcavol			lweight								age						lbph

92	0.7507582	0.5415392	0.52631579	0.7365109

93	0.8082970	0.6241964	0.71052632	0.0000000

94	1.0000000	0.6327240	0.07894737	0.0000000

95	0.8232309	0.4245640	0.28947368	0.0000000

96	0.8184160	0.5815911	0.71052632	0.7930944

97	0.9324629	0.6651870	0.71052632	0.4914484

Again,	the	variables	change	the	scales	at	which	they	are	expressed.	However,	as	has	been
seen,	this	does	not	change	the	relationship	between	the	variables.

Median/MAD
Median/MAD	is	a	robust	version	of	the	standard	recenter	transform.

The	median	value	is	subtracted	from	each	value,	and	each	is	then	divided	by	the	median
absolute	deviation.	The	resulting	variable	will	have	a	median	of	0.

It	is	better	for	outliers	than	the	normal	z-score:

The	function	is	included	in	the	reshape	package	and	its	use	is	very	similar	to	the	previous
example:

	#	Transform	variables	by	rescaling.	

	#Loading	or	installing	package	reshape

	suppressWarnings(

									suppressMessages(if

																										(!require(reshape,	quietly=TRUE))

																	install.packages("reshape")))

	library("reshape")

	#	Rescaling	data	to	Scale	[0-1]	using	reshape

	dataMAD<-rescaler(data,	"robust")

	

	#	Comparing	original	vs	scaled

	head(data[1:4])

						lcavol		lweight	age						lbph

1	-0.5798185	2.769459		50	-1.386294

2	-0.9942523	3.319626		58	-1.386294

3	-0.5108256	2.691243		74	-1.386294

4	-1.2039728	3.282789		58	-1.386294

5		0.7514161	3.432373		62	-1.386294

6	-1.0498221	3.228826		50	-1.386294

	head(dataMAD[1:4])

						lcavol				lweight								age							lbph

1	-1.5809071	-2.2720412	-2.5293403	-0.6744908

2	-1.9041761	-0.8075634	-1.1803588	-0.6744908

3	-1.5270909	-2.4802427		1.5176042	-0.6744908

4	-2.0677635	-0.9056190	-1.1803588	-0.6744908

5	-0.5425101	-0.5074446	-0.5058681	-0.6744908

6	-1.9475220	-1.0492620	-2.5293403	-0.6744908

Natural	log
Transformation	using	logarithms	is	useful	when	the	dataset	contains	variables	whose
distribution	has	a	high	skewness	level	(asymmetry).	A	good	example	is	the	income	of	a
group	of	people:	If	we	imagine	a	histogram	of	income,	considering	that	most	people	earn
less	money	and	a	few	earn	much	more,	that	distribution	would	have	a	substantial
skewness,	caused	by	these	outliers.

It	is	important	to	consider	that	this	type	of	transformation	can	cause	infinite	values	that
should	be	posteriorly	recoded.

Let’s	see	how	this	transformation	can	be	applied	in	R:

	#	LogN	transformation	for	Age	

	dataLogN	<-	log(data$age)

	#	Replace	Inf's

	dataLogN[dataLogN	==	-Inf]	<-	NA

	#	Comparing	original	vs	scaled

	

head(data$age)

[1]	50	58	74	58	62	50

head(dataLogN)

[1]	3.912023	4.060443	4.304065	4.060443	4.127134	3.912023

Imputation	of	missing	data
The	data	imputation	is	the	process	through	which	we	proceed	to	replace	missing	values	in
the	dataset	for	other	values	that	make	sense.	However,	it	is	very	important	to	understand
that	there	are	not	always	valid	treatments	for	missing	values.	Missing	values	exist	for
many	reasons;	understanding	these	reasons	and	having	knowledge	of	the	data	is	what
allows	providing	appropriate	treatment.

Zero/Missing
This	uses	a	constant	value	to	replace	each	missing	value	in	the	selected	variable(s).

For	example,	this	can	be	a	good	choice	if	missing	values	are	likely	to	indicate	a	0.

	#	we	will	create	a	new	variable	for	imputation	

	data[["Sons"]]	<-	round(data$age/10,0)-3

	data$Sons[data$Sons==4]<-NA

	

	#	Finding	the	missing	data	in	dataset

	

	NewData<-(data[c('age','Sons','lcavol','lweight')])

	head(NewData[!complete.cases(NewData),],10)

			age	Sons					lcavol		lweight

3			74			NA	-0.5108256	2.691243

14		67			NA		1.4770487	2.998229

16		66			NA		1.5411591	3.061052

17		70			NA	-0.4155154	3.516013

18		66			NA		2.2884862	3.649359

20		70			NA		0.1823216	3.825375

25		69			NA		0.3852624	3.667400

26		68			NA		1.4469190	3.124565

28		67			NA	-0.4004776	3.865979

29		67			NA		1.0402767	3.128951

	

	#	Zero/Missing	Imputation

	data$Sons[is.na(data$Sons)]	<-	0

		

	#	checking	missing	values

	head(data[!complete.cases(data),])

	[1]	lcavol		lweight	age					lbph				svi					lcp					gleason	

	<0	rows>	(or	0-length	row.names)

This	kind	of	imputation	works	well	in	a	case	in	which,	for	example,	after	conducting	an
investigation,	we	determined	that	the	missing	values	in	the	number	of	children	actually
indicated	that	these	people	had	no	children,	in	which	case,	to	replace	missing	values	by
zero	is	correct.

Mean	imputation
The	mean	imputation	uses	the	mean	of	the	variable	to	replace	each	missing	value.

An	important	aspect	to	consider	is	that	this	kind	of	imputation	is	not	always	recommended

as	it	could	change	the	variables	distribution	and,	hence,	result	in	poor	models.

Note
Instead	of	using	the	media,	it	is	also	possible	to	use	the	median	or	the	mode.	However,	this
should	be	used	very	carefully	since	this	kind	of	transformation	changes	the	distribution	of
variables.

The	following	is	an	example	of	how	the	imputation	of	the	mean	values	is	performed	to
replace	missing	values:

	#	we	will	create	some	missing	values	in	Age

	data(prostate)

	data<-prostate[1:9]

	data$age[data$age==68]<-NA

	

	#searching	the	missing	data	in	dataset

	NewData<-(data[c('age','lcavol','lweight')])

	head(NewData[!complete.cases(NewData),],10)

			age			lcavol		lweight

26		NA	1.446919	3.124565

39		NA	2.660959	4.085136

42		NA	1.442202	3.682610

48		NA	1.163151	4.035125

51		NA	1.091923	3.993603

54		NA	2.127041	4.121473

67		NA	2.022871	3.878466

76		NA	3.141130	3.263849

91		NA	3.246491	4.101817

93		NA	2.830268	3.876396

	

#	Mean	Imputation	in	Age

	data$age[is.na(data$age)]	<-	round(mean(data$age,	na.rm=TRUE),0)

	head(data[!complete.cases(data),],10)

[1]	lcavol		lweight	age					lbph				svi					lcp					gleason		

<0	rows>	(or	0-length	row.names)

Finally,	as	an	alternative	to	the	imputation	of	missing	data,	if	we	have	enough	data,	we	can
decide	to	delete	the	data	with	missing	values.	It’s	a	valid	approach	and	possibly	the	most
frequently	used.

Fundamentals	of	clustering	techniques
Clustering	is	based	on	the	concepts	of	similarity	and	distance,	while	proximity	is
determined	by	a	distance	function.	It	allows	the	generation	of	clusters	where	each	of	these
groups	consists	of	individuals	who	have	common	features	with	each	other.

Overall,	the	analysis	of	clusters	is	similar	to	the	classification	models,	with	the	difference
that	the	groups	are	not	preset.	The	goal	is	to	perform	a	partition	of	data	into	clusters	that
can	be	disjoint	or	not.

An	important	point	in	clustering	techniques	is	that	the	groups	are	not	given	a	priori	and
this	implies	that	the	person	doing	the	analysis	should	support	the	interpretation	of	the
groups	found.

There	are	many	methods,	and	the	most	popular	are	based	on	Hierarchical	Classification
and	dynamic	clouds	or	K-Means.

The	K-Means	clustering
In	very	general	terms,	the	K-Means	algorithm	aims	to	partition	a	set	of	observations	into
clusters	so	that	each	observation	belongs	to	the	cluster	that	possesses	the	nearest	mean.

Although	it	is	a	computationally	difficult	problem,	there	are	very	efficient
implementations	to	quickly	find	the	local	optimum.	In	an	optimization	problem,	the
optimum	is	the	value	that	maximizes	or	minimizes	the	condition	that	we	are	looking	for.

Given	a	set	of	observations	(X1,	X2,	…,	XN),	K-Means	clustering	aims	to	partition	the	N
observations	into	K	(≤	N)	sets	S	=	{S1,	S2,	…,	Sk}	so	as	to	minimize	the	within-cluster
sum	of	squares	(WCSS):

The	intention	of	this	book	is	not	to	enter	in	deep	mathematical	detail;	however,	it	is
important	to	understand	the	standard	algorithm,	assuming	that	we	are	seeking	to	create
three	clusters,	that	is,	k	=	3:

The	method	of	Forgy	and	Random	partition	are	the	most	common	initialization
approaches.	Forgy	chooses	k	observations	from	the	data	and	uses	these	as	the	initial
means.	The	method	first	assigns	a	cluster	to	each	observation	at	random,	then	proceeds	to
the	update	phase,	thereby	computing	the	initial	mean	to	become	the	centroid	of	the
cluster’s	randomly	assigned	points.	The	assignment	phase	is	also	referred	to	as	the

expectation	phase,	and	the	update	phase	as	the	maximization	phase,	making	this	algorithm
a	variant	of	the	generalized	expectation	maximization	algorithm.

In	R,	there	are	several	packages	that	allow	us	to	use	K-Means.	The	following	is	an
implementation	using	the	Iris	dataset,	which	we	already	worked	in	the	previous	chapter:

	#	K	Means

	#	Load	the	Iris	dataset	(see	chapter	2	for	details)

		Iris<-iris

	

	#	Show	the	head	of	numerical	section	of	dataset

	head(Iris[1:4])

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

1										5.1									3.5										1.4									0.2

2										4.9									3.0										1.4									0.2

3										4.7									3.2										1.3									0.2

4										4.6									3.1										1.5									0.2

5										5.0									3.6										1.4									0.2

6										5.4									3.9										1.7									0.4

	

	#	Build	the	K-Means	standard	model

	set.seed(42)

KM.Iris<-kmeans(Iris[1:4],	3,iter.max=1000,

algorithm	=	c("Forgy"))

At	this	point,	we	have	created	a	model	for	K-Means	clustering	and	that	is	stored	in	the
KM.Iris	object.	We	can	see	some	information	about	the	outcome:

	#	Get	some	information	about	the	model	built

	#	Size	of	clusters

	

KM.Iris$size

[1]	62	38	50

	

	#	Centers	of	clusters	three	clusters	by	variable

	KM.Iris$centers

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

1					5.901613				2.748387					4.393548				1.433871

2					6.850000				3.073684					5.742105				2.071053

3					5.006000				3.428000					1.462000				0.246000

	

#	Table	with	Clusters	recounts	by	species

		table(Iris$Species,KM.Iris$cluster)

												

														1		2		3

		setosa						0		0	50

		versicolor	48		2		0

		virginica		14	36		0

We	must	remember	that	clustering	is	not	a	method	for	classification.	In	fact,	we	should	not
know	the	species	mapped	in	the	Iris	dataset.	For	teaching	purposes,	they	are	compared
here	to	see	how	the	clustering	model	works.

Based	on	the	numerical	data	of	Iris,	model	K-Means	builds	three	groups,	as	we	indicated,
and	then	proceeds	to	classify	each	observation,	in	one	of	those	groups.	All	of	the	type
Setosa	were	assigned	to	group	3,	most	of	the	plants	in	group	2	are	type	Virginica,	and
group	1	has	had	assigned	all	plants	type	Versicolor	and	part	of	plants	type	Virginica.

It	is	interesting	to	plot	the	result.	This	allows	for	a	better	appreciation	of	the	information,
so	we	must	reduce	the	dataset	to	be	represented	in	two	dimensions:

#	Translate	into	a	two	dimensions	using	

#	Multidimensional	scaling.

Iris.dist	<-	dist(Iris[1:4])

Iris.mds	<-	cmdscale(Iris.dist)

#	Plot	points	in	2	dimensional	space

#	Open	a	multiple	plots	array

par(mfrow	=	c(1,	2))

#	Load	or	install	the	package	scatterplot3d

suppressWarnings(

								suppressMessages(if

																									(!require(scatterplot3d,	quietly=TRUE))

																install.packages("scatterplot3d")))

library("scatterplot3d	")

#	Set	the	characters	points	to	1,2,3	numbers

chars	<-	c("1",	"2",	"3")[as.integer(iris$Species)]

#	Plot	a	3d	Graphic	

g3d=scatterplot3d(Iris.mds,pch=chars)

g3d$points3d(Iris.mds,col=KM.Iris$cluster,pch=chars)

#	Plot	a	2d	Graphic	

plot(Iris.mds,	col	=	KM.Iris$cluster,	pch	=	chars,	xlab	=	"Index",	ylab	=	

"Y")

The	graphic	expression	of	clusters	can	help	to	evaluate	whether	the	result	makes	sense.	If
we	determine	that	it	does,	we	can	also	include	the	results	of	cluster	analysis	in	the	original
dataset.	Then	we	can	work	on	R	or	also	export	it	to	other	tools:

	#	Add	cluster	to	original	dataset

	Iris.Cluster<-cbind(Iris,KM.Iris[1])

	

	head(Iris.Cluster[3:6])

	Petal.Length	Petal.Width	Species	cluster

1										1.4									0.2		setosa							3

2										1.4									0.2		setosa							3

3										1.3									0.2		setosa							3

4										1.5									0.2		setosa							3

5										1.4									0.2		setosa							3

6										1.7									0.4		setosa							3

The	K-Means	function	requires	that	we	properly	define	two	important	parameters:	the
number	of	clusters	that	it	is	convenient	to	use	and	the	type	of	the	function	algorithm	to	be
used	to	establish	the	optimum.

Defining	the	number	of	clusters
One	of	the	most	frequent	questions	in	relation	to	the	use	of	K-Means	is	the	definition	of
the	number	of	clusters	to	be	used.	Considering	the	impact	that	this	can	have	on	the
outcome	of	the	analysis	we	do,	we	will	dedicate	part	of	this	chapter	to	make	some
recommendations	about	how	to	set	this	parameter.

Remember	that	the	goal	of	the	clustering	algorithm	is	to	minimize	the	within-cluster	sum
of	squares.

We	can	make	a	first	approximation	using	current	computational	capacity.	You	can	create	a
repeating	cycle	or	loop	that	generates	a	large	amount	of	K-Means	models,	in	which,	on
each	iteration,	the	value	of	K	is	increased	by	1.

The	location	of	the	elbow	in	the	resulting	plot	suggests	a	suitable	number	of	clusters	for
the	K-Means:

#	30	K	Means	Loop

InerIC	=	rep(0,	30)

for	(k	in	1:30)	{

				set.seed(42)

				groups	=	kmeans(Iris[1:4],	k)

				InerIC[k]	=	groups$tot.withinss

}

plot(InerIC,	col	=	"blue",	type	=	"b")

abline(v	=	4,	col	=	"black",	lty	=	3)

text(4,	60,	"4	Clusters",	col	=	"black",	adj	=	c(0,	

				-0.1),	cex	=	0.7)

The	preceding	graph	works	for	a	visual	approach.	At	this	point,	we	can	approximate	the
amount	of	appropriate	clusters,	and	there	would	be	between	three	and	four	clusters,	which,
at	first,	seems	to	make	sense,	given	what	we	know	of	the	Iris	dataset.

We	can	use	many	other	methods	individually;	however,	I	recommend	the	use	of	a	package
that	integrates	30	methods	to	determine	the	optimal	number	of	clusters,	the	NbClust
package:

The	NbClust	package	provides	30	indices	for	determining	the	number	of	clusters	and
proposes	to	the	user	the	best	clustering	scheme	from	the	different	results	obtained	by
varying	all	combinations	of	number	of	clusters,	distance	measures,	and	clustering
methods.

The	package	decided	by	voting	considers	all	indices	on	a	count,	as	the	number	of	clusters
that	each	method	chosen	as	the	best	option,	so	that	the	number	of	clusters	having	more
frequently,	that	is,	who	receives	more	votes,	it	is	considered	the	best	option.

It’s	a	great	way	to	compare	indices,	and	if	we	do	not	want	to	use	the	package’s
recommendation,	we	can	reach	our	own	conclusions	when	using	the	information	that	it
generates.

In	the	following	we	find	the	suggested	amount	of	clusters,	directly	in	R,	using	the	NbClust
package:

#	Load	or	install	the	NbClust	Package

suppressWarnings(suppressMessages(if	(!require(NbClust,	

				quietly	=	TRUE))	install.packages("NbClust")))

library("NbClust")

#	Load	the	dataset	Iris	and	assign	the	numerical

#	variables	to	a	new	data	frame	'data'.

Iris	<-	iris

data	<-	Iris[,	-5]

#	Find	the	best	number	of	clusters	using	all

#	indices

Best	<-	NbClust(data,	diss	=	NULL,	distance	=	"euclidean",	

				min.nc	=	2,	max.nc	=	15,	method	=	"complete",	index	=	"alllong")

By	default,	once	finalized,	the	NbClust	package	offers	a	summary	of	the	main	results	of
the	vote	of	the	30	indices:

*	Among	all	indices:

*	2	proposed	2	as	the	best	number	of	clusters	

*	15	proposed	3	as	the	best	number	of	clusters	

*	5	proposed	4	as	the	best	number	of	clusters	

*	1	proposed	6	as	the	best	number	of	clusters	

*	1	proposed	14	as	the	best	number	of	clusters	

*	3	proposed	15	as	the	best	number	of	clusters	

																			*****	Conclusion	*****

	*	According	to	the	majority	rule,	the	best	number	of	

clusters	is		3		

An	important	thing	to	note	in	the	preceding	example	is	that	we	use	a	wide	range	of
clusters	when	we	use	the	NbClust	function:	min.nc	=	2,	max.nc	=	15.	This	causes	a
more	distributed	voting.	However,	in	this	case,	55	percent	of	indices	vote	for	three
clusters,	which	we	know	is	right	for	the	Iris	dataset.

The	package	also	has	some	graphical	indices.

The	Hubert	index	is	a	graphical	method	for	determining	the	number	of	clusters,	and	in	a
Hubert	index	plot,	we	seek	a	knee	that	corresponds	to	a	significant	increase	of	the	value	of
the	measure:

The	D	index	is	a	graphical	method	for	determining	the	number	of	clusters.	In	the	D	index
plot,	we	seek	a	significant	knee	that	corresponds	to	a	significant	increase	of	the	value	of
the	measure:

In	addition	to	the	default	information,	NbClust	stores	valuable	information	in	the	object
being	created.	In	our	example,	we	call	that	object	as	Best.	For	example,	if	we	want	to	see
the	exact	count	of	the	vote	for	each	index,	we	could	create	a	table	whose	rows	show	the
choice	of	each	index	in	relation	to	the	number	of	clusters:

	#Build	a	table	with	results	of	indices

table(names(Best$Best.nc[1,]),

							Best$Best.nc[1,])

										

													0	1	2	3	4	6	14	15

		Ball							0	0	0	1	0	0		0		0

		Beale						0	0	0	1	0	0		0		0

		CCC								0	0	0	1	0	0		0		0

		CH									0	0	0	0	1	0		0		0

		Cindex					0	0	0	1	0	0		0		0

		DB									0	0	0	1	0	0		0		0

		Dindex					1	0	0	0	0	0		0		0

		Duda							0	0	0	0	1	0		0		0

		Dunn							0	0	0	0	0	0		0		1

		Frey							0	1	0	0	0	0		0		0

		Friedman			0	0	0	0	1	0		0		0

		Gamma						0	0	0	0	0	0		1		0

		Gap								0	0	0	1	0	0		0		0

		Gplus						0	0	0	0	0	0		0		1

		Hartigan			0	0	0	1	0	0		0		0

If	you	do	not	want	to	make	a	table	and	prefer	visual	support,	we	could	make	a	frequency
graph	with	the	count:

#	sets	1x2	grid	for	Plotting

par(mfrow	=	c(1,	2))

#	Making	Graph	of	recounts

hist(Best$Best.nc[1,],	

					breaks	=	max(na.omit(Best$Best.nc[1,])))

barplot(table(Best$Best.nc[1,]))

Looking	at	the	preceding	chart,	we	can	quickly	see	that	most	of	the	indices	proposed	three
clusters	as	the	best	alternative	for	the	Iris	dataset.

Defining	the	cluster	K-Mean	algorithm
Clustering	models	generated	by	K-Means	can	use	several	different	algorithms	and	that

affects	the	overall	outcome	of	the	analysis.	Considering	that	not	all	datasets	are	equal,	it	is
important	to	test	the	algorithms	to	determine	which	one	fits	best.

We	won’t	explain	each	algorithm	in	depth,	but	we	will	explain	how	we	can	choose
between	them,	in	a	practical	way:

##	Choosing	between	4	algorithms

#	Set	vectors	for	storing	results

Hartigan	<-	0

Lloyd	<-	0

Forgy	<-	0

MacQueen	<-	0

#	to	make	it	reproducible

set.seed(42)

#	Running	500	KMeans	with	3	clusters	and	1000	max

#	iterations	for	each	method

for	(i	in	1:500)	{

				KM	<-	kmeans(Iris[1:4],	3,	iter.max	=	1000,	algorithm	=	"Hartigan-

Wong")

				Hartigan	<-	Hartigan	+	KM$betweenss

				KM	<-	kmeans(Iris[1:4],	3,	iter.max	=	1000,	algorithm	=	"Lloyd")

				Lloyd	<-	Lloyd	+	KM$betweenss

				KM	<-	kmeans(Iris[1:4],	3,	iter.max	=	1000,	algorithm	=	"Forgy")

				Forgy	<-	Forgy	+	KM$betweenss

				KM	<-	kmeans(Iris[1:4],	3,	iter.max	=	1000,	algorithm	=	"MacQueen")

				MacQueen	<-	MacQueen	+	KM$betweenss

}

#	Build	a	data	frame	with	results

Methods	<-	c("Hartigan-Wong",	"Lloyd",	"Forgy",	"MacQueen")

Results	<-	as.data.frame(round(c(Hartigan,	Lloyd,	Forgy,	

				MacQueen)/500,	2))

Results	<-	cbind(Methods,	Results)

names(Results)	<-	c("Method",	"Betweenss")

Results

The	data	frame	Results	stores	the	averages	betweenss,	calculated	as	a	result	of	500
iterations.	Considering	that	the	intention	is	to	maximize	the	betweenss,	then,	the	best
algorithm	could	be	Hartingan	-	Wong:

	Results

									Method	Betweenss

1	Hartigan-Wong				591.14

2									Lloyd				588.47

3									Forgy				589.62

4						MacQueen				589.67

Alternatives	for	plotting	clusters
In	addition	to	traditional	charts,	we	can	use	special	alternatives	for	cluster	analysis.	These
variants	will	help	in	the	analysis	of	groups	and	also	in	the	presentation	of	results:

par(mfrow	=	c(1,	1))

#	Load	Iris	Data

Iris<-iris

#	K-Means	Clustering	with	3	clusters

KM	<-kmeans(Iris[1:4],	3,	iter.max	=	1000,	algorithm	=	"Hartigan-Wong")

#	Load	or	install	the	library	Cluster

suppressWarnings(

								suppressMessages(if

																									(!require(cluster,	quietly=TRUE))

																install.packages("cluster")))

					library("cluster")

#	Cluster	Plot	against	1st	2	principal	components

clusplot(Iris[1:4],	KM$cluster,	color=TRUE,	shade=TRUE,

									labels=2,	lines=1,main='Cluster	Analysis	for	Iris')

Another	interesting	alternative	is	to	use	“Silhouettes”	graphics	through	which	each	cluster
is	represented,	based	on	the	comparison	of	“tightness”	and	“separation”:

#	Load	or	Install	packages

suppressWarnings(suppressMessages(if	(!require(HSAUR,	

				quietly	=	TRUE))	install.packages("HSAUR")))

suppressWarnings(suppressMessages(if	(!require(cluster,	

				quietly	=	TRUE))	install.packages("cluster")))

library("HSAUR")

library("cluster")

#	K-Means	Clustering	with	3	clusters

KM	<-	kmeans(Iris[1:4],	3,	iter.max	=	1000,	algorithm	=	"Hartigan-Wong")

#	Dissimilarity	Matrix	Calculation

diss	<-	daisy(Iris[1:4])

dE2	<-	diss^2

#	silhouette	Calculation

obj	<-	silhouette(KM$cl,	dE2)

#	Making	a	silhouette	Plot

plot(obj,	col	=	c("red",	"green",	"blue"))

Note
If	you	want	to	delve	into	the	construction	and	interpretation	of	silhouette	graphics,	refer	to
the	article	at	http://www.sciencedirect.com/science/article/pii/0377042787901257.

http://www.sciencedirect.com/science/article/pii/0377042787901257

Hierarchical	clustering
Another	one	of	the	most	used	methods	for	clustering	analysis	is	the	Hierarchical
Clustering	Analysis	(HCA).	This	method,	as	its	name	suggests,	aims	to	build	a	hierarchy
of	clusters	and	generally	this	is	done	in	two	ways:

Agglomerative	methods:	This	method	uses	a	bottom	up	approach	in	which	each
observation	begins	in	its	own	clusters	and	pairs	of	cluster	are	merged	as	one	moves
up	the	Hierarchical	structure.
Divisive	methods:	This	method	uses	a	top-down	approach	in	which	each	of	the
observations	begin	in	one	cluster	and	split	recursively	as	one	moves	up	the
Hierarchical	structure.

The	agglomerative	methods,	using	a	recursive	algorithm	that	follows	the	next	phases:

Find	the	two	closest	points	in	the	dataset
Link	these	points	and	consider	them	as	a	single	point
The	process	starts	again,	now	using	the	new	dataset	that	contains	the	new	point

This	methodology	requires	measuring	the	distance	between	points.	The	aim	is	that	the
measured	distances	between	observations	of	the	same	cluster	are	as	small	as	possible	and
the	distances	between	clusters	are	as	large	as	possible.

In	a	hierarchical	clustering,	there	are	two	very	important	parameters	in	relation	to	the
above:	the	distance	metric	and	the	linkage	method.

Clustering	distance	metric
Defining	closeness	is	a	fundamental	aspect.	If	you	don’t	use	a	metric	for	distance	that
makes	sense	with	your	dataset,	it	is	quite	possible	that	you	won´t	get	any	useful
information	from	your	cluster	analyses.

A	measure	of	dissimilarity	is	that	which	defines	clusters	that	will	be	combined	in	the	case
of	agglomerative	method,	or	that,	in	the	case	of	divisive	clustering	method,	when	these	are
to	be	divided.

The	main	measures	of	distance	are	as	follows:

Distance
Metric Definition

Euclidean
Distance Usual	square	distance	between	the	two	vectors	(2	norm)

Maximum
Distance Maximum	distance	between	two	components	of	x	and	y	(supremum	norm)

Manhattan
Distance Absolute	distance	between	the	two	vectors	(1	norm)

Canberra
Distance

It	is	a	weighted	version	of	L1	(Manhattan)	distance.	sum(|x_i	-	y_i|	/	|x_i	+	y_i|).	Terms	with	zero
numerator	and	denominator	are	omitted	from	the	sum	and	treated	as	if	the	values	were	missing

Binary
Distance

The	vectors	are	regarded	as	binary	bits,	so	non-zero	elements	are	on	and	zero	elements	are	off.	The
distance	is	the	proportion	of	bits	in	which	only	one	is	on	among	those	in	which	at	least	one	is	on

Pearson
Distance

Also	named	not	centered	Pearson

sum(x_i	y_i)	/	sqrt	[sum(x_i^2)	sum(y_i^2)]

Correlation Also	named	Centered	Pearson	1	-	corr(x,y)

Spearman
Distance Compute	a	distance	based	on	rank.	sum	(d_i^2)	where	d_i	is	the	difference	in	rank	between	x_i	and	y_i

Linkage	methods
The	linkage	methods	determine	how	the	distance	between	two	clusters	is	defined.	A
linkage	rule	is	necessary	for	calculating	the	inter-cluster	distances.

It	is	important	to	try	several	linkage	methods	to	compare	their	results.	Depending	on	the
dataset,	some	methods	may	work	better.	The	following	is	a	list	of	the	most	common
linkage	methods:

Linkage
Methods Definition

Single
Linkage

The	distance	between	two	clusters	is	the	minimum	distance	between	an	observation	in	one	cluster	and	an
observation	in	the	other	cluster.	A	good	choice	when	clusters	are	obviously	separated.

Complete
Linkage

The	distance	between	two	clusters	is	the	maximum	distance	between	an	observation	in	one	cluster	and	an
observation	in	the	other	cluster.	It	can	be	sensitive	to	outliers.

Average
Linkage

The	distance	between	two	clusters	is	the	mean	distance	between	an	observation	in	one	cluster	and	an
observation	in	the	other	cluster.

Centroid
Linkage The	distance	between	two	clusters	is	the	distance	between	the	cluster	centroids	or	means.

Median
Linkage

The	distance	between	two	clusters	is	the	median	distance	between	an	observation	in	one	cluster	and	an
observation	in	the	other	cluster.	It	reduces	the	effect	of	outliers.

Ward
Linkage

The	distance	between	two	clusters	is	the	sum	of	the	squared	deviations	from	points	to	centroids.	Try	to
minimize	the	within-cluster	sum	of	squares.	It	can	be	sensitive	to	outliers.

McQuitty
Linkage

When	two	clusters	A	and	B	are	be	joined,	the	distance	to	new	cluster	C	is	the	average	of	distances	of	A	and
B	to	C.	So,	the	distance	depends	on	a	combination	of	clusters	instead	of	individual	observations	in	the
clusters.

Hierarchical	clustering	in	R
There	are	many	implementations	of	hierarchical	clustering	in	R.	The	following	is	an
example	of	how	you	could	build	a	model	directly	from	the	console.

For	the	following	example,	we	will	use	a	dataset	of	UC	Irvine	Machine	Learning
Repository,	the	Zoo	Dataset.	It	contains	100	animals	and	17	features	for	each	one.

The	aim	of	the	example	is	to	build	a	model	based	on	hierarchical	clustering,	in	which

animals	are	classified	by	their	characteristics.

Note
The	UCI	Machine	Learning	Repository	is	a	collection	of	databases,	domain	theories,	and
data	generators	that	are	used	by	the	machine	learning	community	for	the	empirical
analysis	of	machine	learning	algorithms.	The	archive	was	created	as	an	ftp	archive	in	1987
by	David	Aha	and	fellow	graduate	students	at	UC	Irvine;	refer	to
http://archive.ics.uci.edu/ml/index.html.

The	first	thing	to	do	is	get	the	data,	and	since	these	are	published	on	a	website,	we	will
take	the	opportunity	to	show	how	it	is	possible	to	make	a	direct	extraction	of	data
published	on	a	web	page:

#	Reading	Data	from	UCI	Repository	Online

animals	<-	read.table("https://archive.ics.uci.edu/ml/machine-learning-

databases/zoo/zoo.data",	

				sep	=	",",	header	=	F,	col.names	=	c("animal",	

								"hair",	"feathers",	"eggs",	"milk",	"airbone",	

								"aquatic",	"predator",	"toothed",	"backbone",	

								"breathes",	"venomous",	"fins",	"legs",	"tail",	

								"domestic",	"catsize",	"type"),	fill	=	FALSE,	

				strip.white	=	T)

#	Doing	some	data	preparation

animals	<-	animals[,	-18]

animals	<-	animals[-27,]

animals	<-	animals[-29,]

animal.names	<-	animals[,	1]

animals	<-	data.frame(row.names	=	animal.names,	animals[2:17])

#	Verifying	the	top	of	data	loaded

head(animals[1:7],	5)

									hair	feathers	eggs	milk	airbone	aquatic	predator

aardvark				1								0				0				1							0							0								1

antelope				1								0				0				1							0							0								0

bass								0								0				1				0							0							1								1

bear								1								0				0				1							0							0								1

boar								1								0				0				1							0							0								1

In	the	preceding	example,	we	loaded	data	directly	from	a	web	page.	That’s	just	an	added
value.	It	is	also	possible	to	load	data	from	a	comma	separated	file,	as	you	know:

animals	<-	read.csv("file:///C:/Unsupervised	Learning/Chapter	

03/animals.csv",	

				na.strings	=	c(".",	"NA",	"",	"?"),	strip.white	=	TRUE,	

				encoding	=	"UTF-8")

Continuing	the	example,	we	can	try	to	approximate	an	appropriate	amount	of	clusters.
However,	this	is	only	a	reference,	as	the	hierarchical	clustering	was	not	a	prior

http://archive.ics.uci.edu/ml/index.html.

classification	of	the	number	of	groups.

To	do	this,	you	can	use	the	NbClust	package:

#	Find	the	best	number	of	clusters	using	all	indices

suppressWarnings(suppressMessages(if	(!require(NbClust,	

				quietly	=	TRUE))	install.packages("NbClust")))

library("NbClust")

#	Index	only	numerical	data

data	<-	animals[1:16]

#	define	the	indexes	for	work

ind	<-	c("kl",	"ch",	"hartigan",	"cindex",	"db",	"silhouette",	

				"duda",	"pseudot2",	"ratkowsky",	"ball",	"ptbiserial",	

				"gap",	"frey",	"gamma",	"gplus",	"dunn",	"sdindex",	

				"sdbw")

clusters	<-	0

#	Loop	for	test	each	index

for	(i	in	1:length(ind))	{

				Best	<-	NbClust(data,	diss	=	NULL,	distance	=	"binary",	

								min.nc	=	2,	max.nc	=	5,	method	=	"complete",	

								index	=	ind[i])

				

				clusters[i]	<-	Best$Best.nc[1]

}

#	Results

table(clusters)

clusters

1	2	3	4	5	

1	4	2	3	8	

We	can	try	to	use	five	clusters,	and	then	make	a	visual	validation	to	determine,	if
appropriate,	by	constructing	a	dendrogram:

#	Load	or	Install	packages	for	HClust

suppressWarnings(suppressMessages(if	(!require(amap,	

				quietly	=	TRUE))	install.packages("amap")))

library("amap")

#	Model	the	Hierarchical	Clustering

hclust	<-	hclusterpar(na.omit(dist(data),	method	=	"euclidean",	link	=	

"average",	nbproc	=	3))

#	Generate	a	dendrogram	plot.

#	Load	or	Install	packages	for	plotting

suppressWarnings(suppressMessages(if	(!require(cba))	

install.packages("cba")))

library("cba")

#	Plotting	Dendrogram

plot(hclust,	main	=	"",	sub	=	"",	xlab	=	"")

title(main	=	"Cluster	Dendrogram	animals")

#	Add	in	rectangles	to	show	clusters.

rect.hclust(hclust,	k	=	5,	border="blue")

By	using	an	agglomerative	hierarchical	clustering	algorithm,	we	have	classified	the
animals	in	the	dataset	based	on	the	classification	of	16	variables.

As	you	can	see,	in	the	preceding	dendrogram,	animals	are	grouped	in	a	very	coherent	way,
based	on	their	characteristics.

Note
Dendrograms	are	tree	structured	charts	used	to	visualize	the	result	of	a	hierarchical
clustering	model.	The	result	of	a	clustering	is	presented	either	as	the	distance	or	the
similarity	between	the	clustered	rows	or	columns,	depending	on	the	selected	distance
measure.

Suppose	now	we	want	to	make	an	analysis	and	we	have	validated	the	number	of	clusters
for	this	analysis	as	five	groups	of	animals.	However,	we	do	not	have	a	classification	done
yet.	What	we	did	was	cut	five	groups	in	the	Dendrogram	but	only	visually.

The	information	we’ve	been	working	on	in	this	example	was	stored	in	an	object	of	type
data.frame	called	animals.	We	will	create	a	new	column	with	the	group	number	that
corresponds	to	each	animal:

	#	Cut	dendrogram	in	K=5

	group<-cutree(hclust,	k	=	5)

	

	#	Create	a	New	data.frame	with	cluster

	

	clusters<-(cbind(animals,group))

	

	#Verify	the	cluster	sizes

		table(clusters[17])

		1		2		3		4		5	

		38	23	26	10		2	

	

	#	viewing	some	data

	tail(clusters[12:17])

								fins	legs	tail	domestic	catsize	group

vulture				0				2				1								0							1					3

wallaby				0				2				1								0							1					3

wasp							0				6				0								0							0					4

wolf							0				4				1								0							1					1

worm							0				0				0								0							0					2

wren							0				2				1								0							0					3

If	you	want	to	see	some	additional	information	of	the	clustering	model	that	we	built
recently,	you	can	use	two	functions	that	give	us	some	interesting	information.

For	example,	if	we	want	to	know	what	Centroids	are	suggested	to	our	model	of	clustering
according	to	each	group	and	variable,	we	can	use	the	centers.hclust	function	available
in	Togaware	Rattle:

	#	List	the	suggested	cluster	centers	for	each	cluster

	

	suppressWarnings(

									suppressMessages(if

																										(!require(rattle,	quietly=TRUE))

																	install.packages("rattle")))

library(rattle)

	#Generate	a	matrix	of	centers	from	a	hierarchical	cluster.

	centers<-as.data.frame(centers.hclust(animals,	hclust,	5))

	centers[1:5]

								hair		feathers						eggs						milk			airbone

1	0.81578947	0.0000000	0.2105263	0.8157895	0.0000000

2	0.04347826	0.0000000	0.8260870	0.1304348	0.0000000

3	0.23076923	0.7692308	0.7692308	0.2307692	0.6923077

4	0.40000000	0.0000000	1.0000000	0.0000000	0.6000000

5	0.00000000	0.0000000	0.5000000	0.0000000	0.0000000

The	result	is	a	matrix	in	which	the	left	is	the	number	of	clusters	and	columns	for	each	of
the	variables,	with	the	centers	suggested.

We	can	get	more	information	about	these	clusters	using	the	fpc	package,	specifically	the
cluster.stats	function:

Note
cluster.stats	returns	a	list	object	containing	the	components	n,	cluster.number,
cluster.size,	min.cluster.size,	noisen,	diameter,	average.distance,
median.distance,	separation,	average.toother,	separation.matrix,
average.between,	average.within,	n.between,	n.within,	within.cluster.ss,
clus.avg.silwidths,	avg.silwidth,	g2,	g3,	pearsongamma,	dunn,	entropy,	wb.ratio,
ch,	and	corrected.rand.

	suppressWarnings(

									suppressMessages(if

																										(!require(fpc,	quietly=TRUE))

																	install.packages("fpc")))

	cluster.stats(dist(animals),	cutree(hclust,	5))

library("fpc")

$cluster.number

[1]	5

$cluster.size

[1]	38	23	26	10		2

$diameter

[1]	3.464102	3.000000	3.316625	2.645751	2.449490

$average.distance

[1]	1.602666	1.859203	1.848438	1.555814	2.449490

$median.distance

[1]	1.414214	2.000000	1.732051	1.732051	2.449490

$separation

[1]	1.000000	2.236068	2.000000	1.000000	2.236068

$average.toother

[1]	3.862762	4.579942	3.512338	4.577540	5.912404

$separation.matrix

									[,1]					[,2]					[,3]					[,4]					[,5]

[1,]	0.000000	4.000000	2.000000	1.000000	3.162278

[2,]	4.000000	0.000000	2.236068	6.000000	8.124038

[3,]	2.000000	2.236068	0.000000	4.358899	6.324555

[4,]	1.000000	6.000000	4.358899	0.000000	2.236068

[5,]	3.162278	8.124038	6.324555	2.236068	0.000000

$ave.between.matrix

									[,1]					[,2]					[,3]					[,4]					[,5]

[1,]	0.000000	4.757177	3.186985	3.379948	4.776153

[2,]	4.757177	0.000000	3.269283	6.559047	8.355525

[3,]	3.186985	3.269283	0.000000	4.700056	6.550575

[4,]	3.379948	6.559047	4.700056	0.000000	2.951741

[5,]	4.776153	8.355525	6.550575	2.951741	0.000000

The	example	shows	just	some	of	the	statistics.	The	cluster.stats	function	may	generate
more.

Hierarchical	clustering	with	factors
As	mentioned	in	clustering	techniques	based	on	similarity	and	distance,	these	concepts	are
traditionally	associated	with	numerical	variables.	Hence,	clustering	techniques	are	used
for	numeric	variables.

However,	it	is	very	likely	that,	at	some	point,	you	will	find	a	problem	that	ought	to
consider	a	qualitative	variable.	We	will	look	at	a	way	to	do	this	directly	in	the	R	console	in
the	following.

We	will	work	with	a	new	dataset,	which	is	located	in	the	following	package	of	CRAN:

Package:	ElemStatLearn
Dataset:	SAheart:	South	African	Hearth	Disease	Data
Description:

A	retrospective	sample	of	males	in	a	high-risk	heart-disease	region	of	the	Western
Cape,	South	Africa.

Features:	sbp	systolic	blood	pressure,	tobacco	cumulative	tobacco	(kg),ldl	low
density	lipoprotein	cholesterol,	adiposity	a	numeric	vector,	famhist	family	history
of	heart	disease,	type-A	behavior,	obesity	a	numeric	vector,	alcohol	current	alcohol
consumption,	age	at	onset,	chd	response,	coronary	heart	disease.

	#	Load	dataset	from	package	in	CRAN

	suppressWarnings(

									suppressMessages(if

																										(!require(ElemStatLearn))

																	install.packages("ElemStatLearn")))

library("ElemStatLearn")

	data(SAheart)

	#Compactly	Display	the	Structure	

	str(SAheart)

'data.frame':	462	obs.	of		10	variables:

	$	sbp						:	int		160	144	118	170	134	132	142	114	114	132…

	$	tobacco		:	num		12	0.01	0.08	7.5	13.6	6.2	4.05	4.08	0	0…

	$	ldl						:	num		5.73	4.41	3.48	6.41	3.5	6.47	3.38	4.59	3.83	

	$	adiposity:	num		23.1	28.6	32.3	38	27.8…

	$	famhist		:	Factor	w/	2	levels	"Absent","Present":	2	1	2	2	2	

	$	typea				:	int		49	55	52	51	60	62	59	62	49	69…

	$	obesity		:	num		25.3	28.9	29.1	32	26…

	$	alcohol		:	num		97.2	2.06	3.81	24.26	57.34…

	$	age						:	int		52	63	46	58	49	45	38	58	29	53…

	$	chd						:	int		1	1	0	1	1	0	0	1	0	1…

As	can	be	seen,	when	we	checked	the	structure	of	the	dataset,	it	included	a	qualitative
variable	(factor).	This	variable	is	very	important	to	identify	the	groups	as	it	relates	to
family	history	of	heart	disease.

One	solution	might	be	to	apply	a	transformation	on	this	variable.	However,	we	want	to
show	a	function	to	calculate	a	distance	matrix.	even	in	mixed	dataset,	the	daisy	function:

daisy:	Computes	all	the	pairwise	distances	between	observations	in	the	dataset.	The
original	variables	may	be	of	mixed	types.	In	that	case,	or	whenever	metric	=	"gower"	is
set,	a	generalization	of	Gower’s	formula.	Also	known	as	Gower’s	coefficient	(1971),
expressed	as	a	dissimilarity.	This	implies	that	a	particular	standardization	will	be	applied
to	each	variable,	and	the	distance	between	two	units	is	the	sum	of	all	the	variable	specific
distances:

#	Distances	Matrix

suppressWarnings(

								suppressMessages(if

																									(!require(cluster))

																install.packages("cluster")))

library("cluster")

diss<-suppressWarnings(daisy(SAheart,	metric	=	"gower"))

With	the	statement	above,	we	can	create	a	distance	matrix,	which	is	stored	in	the
data.frame	"diss",	and	we	will	use	this	to	make	a	hierarchical	clustering:

#	Model	the	Hierarchical	Clustering

suppressWarnings(h.factor	<-	hclusterpar(na.omit(diss,method="complete",	

nbproc=3)))

plot(h.factor,	hang	=	-1,main="Cluster	Dendrogram")

rect.hclust(h.factor,	k=4,border="blue")

Once	we	have	validated	the	number	of	clusters	with	which	we	want	to	work,	we	proceed
to	integrate	the	original	data	and	clusters	in	a	new	dataset:

#Insert	the	cluster	number	in	a	new	dataset

group<-cutree(h.factor,	k	=	4)

Cluster<-cbind(SAheart,group)

table(Cluster$group)

Tips	for	choosing	a	hierarchical	clustering	algorithm
As	we	have	seen,	hierarchical	clustering	models	have	several	different	algorithms,	and
even	though	each	has	theoretical	aspects	that	help	to	understand	when	it	is	convenient	to
use	them,	sometimes	it	may	be	easier	just	to	check	them	all:

#	Load	or	Install	package	dendextend

suppressWarnings(suppressMessages(if	(!require(dendextend,	quietly	

=TRUE))install.packages("dendextend")))

library("dendextend")

#	Load	dataset	Iris

data(iris)

Iris	<-	iris

#	Create	an	object	for	storing	dendrograms

irisdendlist	<-	dendlist()

#	Vector	with	different	link	methods

methods	<-	c(

								"ward.D",	"single",	"complete",	"average",

								"mcquitty",	"median","centroid","ward.D2")

#	Loop	for	create	and	store	the	8	methods

for	(i	in	seq_along(methods))	{

								hciris	<-	hclust(dist(Iris[1:4]),	method	=	methods[i])

								irisdendlist	<-

															dendlist(irisdendlist,	as.dendrogram(hciris))

}

names(irisdendlist)	<-	methods

#	Listing	the	dendrograms	created	irisdendlist

Using	the	preceding	code,	iteratively	we	create	a	hierarchical	clustering	model	for	each	of
the	algorithms.	These	models	are	stored	in	an	object	similar	to	a	list	object	containing	the
resulting	dendrograms:

	#	listing	the	dendrograms	created

									irisdendlist

$ward.D

'dendrogram'	with	2	branches	and	150	members	total,	at	height	199.6205	

$single

'dendrogram'	with	2	branches	and	150	members	total,	at	height	1.640122	

$complete

'dendrogram'	with	2	branches	and	150	members	total,	at	height	7.085196	

$average

'dendrogram'	with	2	branches	and	150	members	total,	at	height	4.062683	

$mcquitty

'dendrogram'	with	2	branches	and	150	members	total,	at	height	4.497283	

$median

'dendrogram'	with	2	branches	and	150	members	total,	at	height	2.82744	

$centroid

'dendrogram'	with	2	branches	and	150	members	total,	at	height	2.994307	

$ward.D2

'dendrogram'	with	2	branches	and	150	members	total,	at	height	32.44761	

Now,	we	can	calculate	the	cophenetic	correlation	between	each	dendrogram	created	using
cor.dendlist.

Note
The	cophenetic	correlation	coefficient	is	a	measure	of	how	faithfully	a	dendrogram
preserves	the	pairwise	distances	between	the	original	unmodeled	data	points.

#	Calculate	the	cophenetic	correlation

cor	<-	round(cor.dendlist(irisdendlist),	2)

#	Load	or	Install	package	corrplot

suppressWarnings(suppressMessages(if	(!require(corrplot,	

				quietly	=	TRUE))	install.packages("corrplot")))

library(corrplot)

#	Plotting	the	correlations

col	<-	colorRampPalette(c("#BB4444",	"#EE9988",	"#FFFFFF",	

				"#77AADD",	"#4477AA"))

corrplot(cor,	method	=	"shade",	shade.col	=	NA,	tl.col	=	"black",	

				tl.srt	=	45,	col	=	col(200),	addCoef.col	=	"black",	

				order	=	"AOE")

As	can	be	appreciated,	considering	the	correlation	factors,	all	methods	are	similar	except
for	the	complete.	Considering	their	low	correlation,	we	could	discard	complete	and	we
can	use	a	method	with	higher	correlation.

We	may	also	use	the	fcb	package,	in	particular	the	cluster.stats	function,	to	compare
methods	for	various	indices	and	decide	which	method	is	better.	For	example,	the	following
code	shows	the	comparison	of	three	of	them:

Within.cluster:	A	generalization	of	the	within	clusters	sum	of	squares	(k-means
objective	function),	which	is	obtained	if	d	is	a	Euclidean	distance	matrix
Average.between:	Average	distance	between	clusters
Average.within:	Average	distance	within	clusters

#	Load	dataset	Iris

data(iris)

Iris	<-	iris

#	Make	a	distances	matrix

dismatrix	<-	dist(Iris[1:4])

#	Load	or	Install	package	fpc

suppressWarnings(suppressMessages(if	(!require(fpc,	

				quietly	=	TRUE))	install.packages("fpc")))

library("fpc")

#	Vector	with	diferent	link	methods

methods	<-	c("ward.D",	"single",	"complete",	"average",	

				"mcquitty",	"median",	"centroid",	"ward.D2")

#	Loop	for	calculate	the	cluster	stats

within.cluster	<-	0

average.between	<-	0

average.within	<-	0

for	(i	in	1:length(methods))	{

				hciris	<-	hclust(dismatrix,	method	=	methods[i])

				group	<-	cutree(hciris,	k	=	3)

				stats	<-	cluster.stats(dismatrix,	group)

				

				within.cluster[i]	<-	stats$within.cluster.ss

				average.between[i]	<-	stats$average.between

				average.within[i]	<-	stats$average.within}

#	Show	results

data.frame(methods,	within.cluster,	average.between,	

				average.within)

			methods	within.cluster	average.between	average.within

1			ward.D							79.44538								3.400545						0.9296792

2			single						142.47937								4.008126						1.2728123

3	complete							89.52501								3.451052						1.0155770

4		average							79.44538								3.400545						0.9296792

5	mcquitty							79.54151								3.408377						0.9334433

6			median							86.96761								3.365954						0.9782928

7	centroid						142.47937								4.008126						1.2728123

8		ward.D2							79.29713								3.400042						0.9306286

Plotting	alternatives	for	hierarchical	clustering
Until	now,	we	have	not	seen	many	alternatives	for	building	graphs	to	represent	HCA.
However,	there	are	some	good	options	that	allow	us	to	go	beyond	the	classic	dendrograms.

A	first	resource	that	we	can	use	is	changing	the	chart	settings	in	a	traditional	dendrogram:

#	Load	data	from	Iris	file	to	R

Iris	<-	read.table("iris.csv",	header	=	TRUE,	sep	=	",",	

				dec	=	".",	row.names	=	1)

#	To	make	a	reproducible	Sample

set.seed(100)

ind	<-	sample(1:dim(Iris)[1],	50)

Sample	<-	iris[ind,]

Sample$Species	<-	NULL

dismatrix	<-	dist(Sample)

#	Build	the	clustering	model

hciris	<-	hclust(dismatrix,	method	=	"complete")

#	plot	dendrogram

plot(hciris,	labels	=	Iris$Species[ind],	col	=	"blue",	

				col.main	=	"darkgreen",	col.lab	=	"darkgreen",	

				col.axis	=	"darkgreen",	lwd	=	2,	lty	=	3,	sub	=	"",	

				hang	=	-1,	axes	=	FALSE)

#	add	Y	axis

axis(side	=	2,	at	=	seq(0,	400,	100),	col	=	"black",	

				labels	=	FALSE,	lwd	=	2)

It	is	even	possible	to	alter	the	shape	of	the	nodes	and	the	color	of	the	labels	in	a
dendrogram	if	we	use	the	dendrapply	function:

Iris	<-	read.table("iris.csv",	header	=	TRUE,	sep	=	",",	

				dec	=	".",	row.names	=	1)

#	To	make	a	reproducible	Sample

set.seed(100)

ind	<-	sample(1:dim(Iris)[1],	50)

Sample	<-	iris[ind,]

Sample$Species	<-	NULL

dismatrix	<-	dist(Sample)

#	Build	the	clustering	model

hciris	<-	hclust(dismatrix,	method	=	"complete")

#	Set	labels	colors

labelColors	<-	c("#CDB380",	"#036564",	"#EB6841")

#	cut	dendrogram	in	3	clusters

cluster	<-	cutree(hciris,	3)

hciris	<-	as.dendrogram(hciris)

#	function	to	get	color	label

nodes	<-	function(n)	{

				if	(is.leaf(n))	{

								a	<-	attributes(n)

								labCol	<-	labelColors[cluster[which(names(cluster)	==	

												a$label)]]

								attr(n,	"nodePar")	<-	c(a$nodePar,	lab.col	=	labCol)

				}

				n}

#	Apply	a	Function	to	All	Nodes	of	a	Dendrogram

Dendro	=	dendrapply(hciris,	nodes)

plot(Dendro,	main	=	"New	Dendrogram",type	=	"triangle")

Considering	that	a	dendrogram	is	a	representation	based	on	a	tree,	you	may	also	use	a
phylogenetic	tree.	This	kind	of	chart	is	a	branching	diagram	or	tree	showing	the	inferred
evolutionary	relationships	among	various	entities.

One	way	to	construct	a	Phylogenetic	tree	in	R	is	using	the	package	ape.	This	package
provides	functions	for	reading	and	manipulating	phylogenetic	trees	and	DNA	sequences,
computing	DNA	distances,	estimating	trees	with	distance-based	methods,	and	a	range	of
methods	for	comparative	analyses	and	analysis	of	diversification.	Functionalities	are	also
provided	for	programming	new	phylogenetic	methods.

The	following	is	a	possible	implementation	of	the	use	of	this	package	in	R:

Iris	<-	read.table("iris.csv",	header	=	TRUE,	sep	=	",",	

				dec	=	".",	row.names	=	1)

#	To	make	a	reproducible	Sample

set.seed(100)

ind	<-	sample(1:dim(Iris)[1],	50)

Sample	<-	iris[ind,]

Sample$Species	<-	NULL

dismatrix	<-	dist(Sample)

#	Load	or	Install	package	ape

suppressWarnings(suppressMessages(if	(!require(ape,	

				quietly	=	TRUE))	install.packages("ape")))

library("ape")

#	Build	clustering	model

hciris	<-	hclust(dismatrix,	method	=	"complete")

#	cutting	dendrogram	in	3	clusters

clusters	=	cutree(hciris,	3)

#	Convert	to	phylo	object

hciris	<-	as.phylo(hciris)

#	Plot

color	=	c("red",	"blue",	"darkgreen")

plot(as.phylo(hciris),	type	=	"fan",	cex	=	log(Iris$Sepal.Width),	

				tip.color	=	color[clusters])

The	preceding	chart	serves	the	same	function	as	a	dendrogram,	showing	the	separation	of
observations	hierarchically	and	identifying	clusters.

We	use	two	interesting	tricks:	Firstly,	by	the	attribute	tip.color	=	color	[clusters],
we	separate	the	color	clusters	and	this	is	an	important	visual	aid.

Secondly,	we	can	play	with	the	size	of	the	headers,	and	as	you	may	notice,	the	size	of	the
numbers	representing	each	observation	is	not	the	same	for	each.	Using	the	attribute	cex	=
log	(Iris	$	Sepal.Width)	we	tell	R	that	the	size	of	the	labels	will	depend	on	the
Sepal.Width	variable,	thus	adding	a	new	dimension	to	the	graphic	information.

Clustering	by	end-user	interfaces
Using	Toware	Rattle,	it	is	possible	to	cluster	analysis	without	the	need	to	interact	directly
with	R.	For	that,	you	must	have	the	data	loaded	and	transformed	into	this	tool,	both	of
which	were	explained	at	the	end	of	Chapter	2,	Working	with	Data:	Exploratory	Data
Analysis.	So,	we	will	avoid	explaining	that	part	again	here.	Then,	we	will	see	Rattle’s
clustering	options:

In	the	Cluster	menu,	simply	select	the	Type	label	type	clustering	analysis	that	we	require.
In	the	preceding	screenshot,	we	have	chosen	K-Means,	and	to	do	so,	Rattle	requires
knowledge	of	the	number	of	clusters.	Considering	that	we	are	working	with	the	Iris
dataset,	we	choose	three	clusters	and	press	the	Execute	button:

Rattle	automatically	generates	some	statistics	of	the	clusters	created,	and	if	we	press	the
Data	or	Discriminant	buttons,	it	proceeds	to	generate	some	graphs	of	clusters	created.	In
addition,	the	Stats	button	generates	further	details.

If,	on	the	contrary,	we	want	to	work	with	hierarchical	clustering,	then,	in	the	Cluster
menu,	select	the	Hierarchical	option.	We	proceed	to	indicate	the	distance	type	we	will	use
and	the	Linkage	method,	and	finally	click	the	Execute	button:

Rattle	will	proceed	to	automatically	create	a	hierarchical	clustering	model:

We	can	set	the	number	of	clusters	that	we	see	fit,	and	then	pressing	the	dendrogram
button,	we	will	get	a	traditional	dendrogram,	or	we	can	generate	two	additional	charts
using	the	Plot	Data	and	Discriminant	Plot	button.	Finally,	we	can	also	generate
additional	statistics	for	clusters	created	by	the	Stats	button.

Finally,	if	we	want	to	export	these	results,	we	can	go	through	the	Evaluate	menu:

We	check	the	options	K	Means	and	hclust	and	press	the	Execute	button,	and	Rattle	will
assign	to	each	observation	in	the	dataset	the	cluster	number	according	to	the	K-Means	and
according	to	the	hierarchical	clustering.

Summary
In	this	chapter,	we	explained	what	we	consider	relevant	aspects	in	relation	to	one	of	the
known	techniques	in	unsupervised	learning:	cluster	analysis.

We	began	by	explaining	the	need	to	perform	transformations	in	the	data	and	some
techniques	to	do	so,	and	then	we	turned	to	the	fundamental	aspects	of	clustering	analysis,
starting	with	K-Means	and	ending	with	the	hierarchical	clustering.

Additionally,	we	provided	an	alternative	for	handling	qualitative	variables	in	mixed
datasets,	and	some	tips	for	choosing	the	appropriate	algorithm	as	well	as	some	options	for
plotting	hierarchical	clustering.

In	the	next	chapter,	we	will	learn	about	another	grouping	technique,	the	association	rules.
The	association	process	makes	groups	of	observations	and	attempts	to	discover	links	or
associations	between	different	attributes	of	group.	These	associations	become	rules	that
can,	in	turn,	be	used	to	support	future	decisions.

Chapter	4.	Association	Rules
This	chapter	aims	to	explain	another	grouping	technique,	association	rules.	The
association	process	makes	groups	of	observations	and	attempts	to	discover	links	or
associations	between	different	attributes	of	groups.	These	associations	become	rules	which
can	in	turn	be	used	to	support	future	decisions.

Association	rules	can	be	applied	in	many	situations	but	are	commonly	used	in	retail
transactions.	Its	use	became	popular	in	selling	books	online.	These	businesses	started	to
collect	information	about	the	reading	habits	of	their	customers	and,	using	association
analysis,	they	were	able	to	identify	groups	of	books	that	consumers	with	similar	interests
might	buy.

These	analyses	allow	us	to	create	models	of	recommendation;	one	of	the	unsupervised
learning	techniques	most	commonly	used	today.	For	example,	who	is	not	familiar	with
some	of	these	famous	lines	seen	on	major	online	stores?

“Your	recently	viewed	items	and	featured	recommendations…”

“Customers	who	bought	this	item	also	bought…”

“Frequently	bought	together…”

In	this	chapter,	we	will	cover	the	following	aspects:

Fundamentals	of	association	rules
Representation
Measures	in	association	rules
Exploring	the	association	rules	model
Plotting	alternatives
Association	rules	by	end-user	tools

Fundamentals	of	association	rules
In	the	context	of	data	mining	and	machine	learning,	association	rules	are	used	to	discover
patterns	that	occur	within	a	given	dataset.

Association	analysis	identifies	relationships	between	observations	and	variables	from	a
dataset.	These	relationships	are	expressed	by	a	set	of	rules	that	indicate	groups	of	items
that	tend	to	be	associated	with	others.

Usually,	the	association	analysis	is	performed	on	large	datasets,	that	is	ones	which	contain
a	large	number	of	registers,	generally	transactional,	with	at	least	one	indicator	to
differentiate	them,	for	example	an	invoice	number.

Representation
In	order	to	be	able	to	identify	relationships	between	items,	it	is	necessary	to	use	a	system
of	representation	for	the	rules.	Suppose	that	in	a	dataset	we	have	several	sales	transactions,
each	of	these	transactions	consists	of	a	set	of	sold	items	and	every	item	sold	in	a
transaction	can	be	identified	by	a	code,	which	in	our	example	is	a	letter	of	the	alphabet.

Considering	the	preceding	information,	a	transaction	of	six	articles	could	be	represented	as
follows:

The	purpose	is	to	identify	items	that	appear	together	in	a	number	of	transactions.	Look	at
how	a	rule	is	built	in	a	visual	manner:

In	the	preceding	figure,	we	can	see	a	transaction	of	three	items	{A,C,F}.	If	we	determine
that	there	is	a	relationship	between	them,	we	can	express	it	by	an	association	rule	of	the
form	A,F	è	C	and	the	interpretation	would	be	as	follows:

When	the	items	A	and	F	appear	together	in	the	same	transaction,	then	typically,	so	does
the	item	C.

Association	rule	models	build	a	large	number	of	these	kinds	of	rules.	As	we	saw,	every
rule	is	composed	by	two	different	sets	of	items,	also	known	as	itemsets,	in	the	preceding
example:

The	rule	can	be	divided	into	two	parts,	to	the	left	would	be	the	antecedent	or	LHS	of	the
rule	and	at	the	right	side	the	consequent	or	RHS	of	the	rule.

Next,	we	develop	an	example	of	association	rules	directly	in	the	R	console,	using	the
arules	package.	In	the	words	of	its	author:

arules:	Mining	Association	Rules	and	Frequent	Itemsets

“It	provides	the	infrastructure	for	representing,	manipulating	and	analyzing
transaction	data	and	patterns	(frequent	itemsets	and	association	rules).	It	also
provides	interfaces	to	C	implementations	of	the	association	mining	algorithms
Apriori	and	Eclat.”

The	data	that	we	use	in	this	example	is	included	in	the	arules	package.

The	dataset	contains	one	month’s	worth	of	real	transaction	data	from	a	typical	local
grocery	outlet.	It	contains	9835	transactions	and	169	categories.

This	dataset	is	provided	for	arules	by	Michael	Hahsler,	Kurt	Hornik,	and	Thomas
Reutterer.

#Loading	or	installing	package	arules

suppressWarnings(

								suppressMessages(if

																									(!require(arules,	quietly=TRUE))

																install.packages("arules")))

library(arules)

#Loading	data	from	arules	package

data(Groceries)

Groceries

transactions	in	sparse	format	with

	9835	transactions	(rows)	and

	169	items	(columns)

For	the	purposes	of	this	example,	the	simplest	way	to	load	data	is	to	call	the	dataset	that
will	be	used	from	the	arules	package	as	shown	in	the	preceding	code.

However,	we	will	also	make	the	load	from	a	comma-separated	file,	since	it	requires	a
different	instruction	because	it	is	a	transaction	dataset.	In	order	to	clarify	the	original
shape	of	the	dataset,	we	can	see	in	the	following,	the	first	10	transactions	included	in	the
original	file,	separated	by	commas:

Now,	we	need	to	convert	this	data	into	a	transaction	dataset:

#Loading	data	from	csv	file

path<-"file:///C:/Unsupervised	Learning/Chapter	04/Groceries.csv"	#	Set	

your	Path	Here

Transactions<-read.transactions(path,	sep	=	",")

Transactions

transactions	in	sparse	format	with

	9835	transactions	(rows)	and

	169	items	(columns)

We	want	to	stress	that	the	instruction	to	load	data	used	earlier	is	different	because
read.transactions	is	a	special	instruction	to	load	data	from	comma-separated	files	and
convert	them	to	the	class	transactions,	which	is	the	kind	of	data	that	we	will	require
when	working	with	models	of	association	rules.

The	Transactions	class	represents	transaction	data	used	to	mine	itemsets	or	rules.	It	is	a
direct	extension	of	the	class	itemMatrix	used	to	store	a	binary	incidence	matrix,	item
labels,	and,	optionally,	transaction	IDs	and	user	IDs.

#	verify	the	object's	class

class(Transactions)

[1]	"transactions"

attr(,"package")

[1]	"arules"

Henceforth,	we	work	with	the	data	loaded	from	the	comma-separated	file,	which	is	the
Transactions	object.

The	object	that	stores	data	is	of	the	kind	transactions,	which	as	we	saw,	is	a	special
format	to	make	associative	analysis.	Basically,	it	creates	an	object	of	the	type	list	that
contains	spaces	to	store	each	transaction	separately.	On	this	object,	we	can	make	some
initial	exploratory	analysis.	For	example,	see	the	first	five	transactions	loaded:

#	List	the	first	5	transactions

inspect(Transactions[1:5])

		items																					

1	{citrus	fruit,												

			margarine,															

			ready	soups,													

			semi-finished	bread}					

2	{coffee,																		

			tropical	fruit,										

			yogurt}																		

3	{whole	milk}														

4	{cream	cheese	,											

			meat	spreads,												

			pip	fruit,															

			yogurt}																		

5	{condensed	milk,										

			long	life	bakery	product,

			other	vegetables,								

			whole	milk}

Suppose	we	are	not	sure	about	the	type	of	items	that	make	up	our	work	dataset,	the	next
instruction	can	list	the	different	items,	which	in	our	example	are	the	products	available.
We	observe	how	to	list	the	top	10	products	included:

#	list	the	items	of	dataset

items<-as.data.frame(itemLabels(Transactions))

colnames(items)	<-	"Item"

head(items,10)				

Item

1				abrasive	cleaner

2				artif.sweetener

3				baby	cosmetics

4				baby	food

5				bags

6				baking	powder

7				bathroom	cleaner

8				beef

9				berries

10			beverages

It	is	also	possible	to	generate	a	summary	of	the	transaction	file	that	we	just	created.	This
will	give	us	some	preliminary	information:

We	can	observe	the	most	common	items,	such	as	the	two	most	purchased	items	that	are
whole	milk,	appearing	in	2513	purchases,	and	other	vegetables,	appearing	in	1903
purchases.	Another	important	fact	is	the	size	distribution	of	the	itemsets.	In	this	case,	the
number	of	items	purchased	in	each	transaction.

If	we	want	to	explore	the	frequency	of	some	articles	in	specific,	it	is	possible	to	extract
some	information	individually.	For	example,	suppose	we	want	to	consult	the	transactions
ranging	from	8	to	10	in	the	R	console,	in	absolute	amounts	as	well	as	in	percentage	terms
of	the	total	transactions:

#	Check	absolute	and	relative	frequency						

itemFrequency(Transactions[,	8:10],type	=	"absolute")

	

						beef			berries	beverages	

						516							327							256	

round(itemFrequency(Transactions[,	8:10],type	=	"relative")*100,2)

			beef			berries	beverages	

						5.25						3.32						2.60

We	can	also	produce	a	chart	of	frequencies	and	filter	to	consider	only	items	with	a
minimum	percentage	of	support	or	considering	a	top	x	of	items,	which	is	quite	useful	in
analyzing	the	items	that	are	most	important	in	relation	to	their	frequency:

#	plot	the	frequency	of	items

par(mfrow	=	c(1,	2))

itemFrequencyPlot(Transactions,	topN	=	10,col="darkgreen")

itemFrequencyPlot(Transactions,	support	=	0.1,col="darkred")

The	chart	on	the	left	shows	the	top	10	most	common	items	in	the	transactions	dataset,
while	the	chart	on	the	right	shows	the	items	whose	relative	importance	is	at	least	10%.

If	we	want	to	further	explore	the	relationship	between	the	different	items	of	our
transaction	file,	it	is	possible	to	calculate	a	distance	matrix	between	them	and	even	build	a
dendrogram	to	explore	these	relationships:

#	Compute	and	returns	distances	for	binary	data	in	a	matrix

x	<-	dissimilarity(Transactions,	which	=	"items")

x[is.na(x)]	<-	1	#	get	rid	of	missing	values

#	Hierarchical	cluster	analysis	on	a	set	of	dissimilarities

hcd<-hclust(x)

par(mfrow	=	c(1,	1))

plot(hcd,	cex=.6)

Given	the	size	of	the	resulting	dendrogram,	for	space-saving	purposes	the	preceding	figure
is	a	part	of	the	complete	dendrogram.

Now	that	we	have	done	some	exploring	on	transactions,	we	will	build	a	model	based	on
association	rules	using	the	apriori	function	included	in	the	arules	package:

apriori:	Mine	frequent	itemsets,	association	rules	or	association	hyper	edges	using	the
Apriori	algorithm.	The	Apriori	algorithm	employs	level-wise	search	for	frequent	itemsets.

#	Build	apriori	model	with	Min	Support	as	0.001	

#	and	confidence	as	0.8.

rules	<-	apriori	(Transactions,	

parameter	=	list(supp	=	0.001,	conf	=	0.8))

rules

set	of	410	rules

We	have	already	created	our	model.	However,	at	this	point	we	will	stop	at	the	example	in
order	to	explain	some	important	theoretical	concepts	relating	to	measures	in	association
rules.

In	these	types	of	models,	many	rules	are	constructed.	Hence,	in	order	to	achieve	a	greater
benefit	from	them,	we	must	use	measures	of	significance	and	interest	on	the	rules,
determining	which	ones	are	interesting	and	which	to	discard.

The	three	most	important	measure	parameters	on	an	analysis	of	association	rules	are	the
support,	the	confidence	and	the	lift:

Measure Definition

Defined	as	the	proportion	of	transactions	in	the	database	which	contain	the	itemset.	How	often	the	items

Support appear	together	from	amongst	all	of	the	transactions.

Typically,	we	use	small	values	for	the	support.

Confidence

It	is	a	measure	of	how	often	one	item	X	appears	whenever	another	item	Y	appears	in	a	transaction;	it	is	a
conditional	probability:

Confidence	(X→Y)	=	P(Y|X)	=	P(X	U	Y)/P(X)

Typically,	we	use	large	values	for	confidence

Lift

Is	the	increased	likelihood	of	X	being	in	a	transaction	if	Y	is	included	in	the	transaction.	If	one	rule	had	a
lift	of	1,	it	would	imply	that	the	probability	of	occurrence	of	the	antecedent	and	that	of	the	consequent	are
independent	of	each	other.	If	the	lift	is	>	1	it	would	imply	that	those	two	occurrences	are	dependent	on	one
another	and	useful	for	predicting	in	future	datasets

Returning	to	our	example,	we	built	the	model	using	0.001	Min	Support	and	confidence	as
0.8.	With	these	parameters,	we	obtained	410	rules.	However,	in	order	to	illustrate	the
sensitivity	of	the	model	to	these	two	parameters,	we	will	see	what	happens	if	we	increase
the	support	or	lower	the	confidence	level:

#	Build	apriori	model	with	Min	Support	as	0.002	

#	and	confidence	as	0.8.

rules2	<-	apriori	(Transactions,	

parameter	=	list(supp	=	0.002,	conf	=	0.8))	

#	Build	apriori	model	with	Min	Support	as	0.002	

and	confidence	as	0.6.

rules3	<-	apriori	(Transactions,	

parameter	=	list(supp	=	0.001,	conf	=	0.6))	

rules2

set	of	11	rules	

rules3

set	of	2918	rules

In	the	first	case,	we	increase	the	minimum	support	of	0.001	to	0.002	and	model	rules	went
from	410	to	only	11.	In	the	other	case	we	decrease	the	minimum	confidence	level	to	0.6
and	the	number	of	model	rules	went	from	410	to	2918.	In	the	first	case,	using	a	high	level
of	support	can	make	the	model	lose	interesting	rules	and	in	the	second	case,	using	a	low
confidence	level	increases	the	number	of	rules	to	quite	an	extent	and	many	will	not	be
useful.

The	proper	use	of	these	two	parameters	greatly	affects	the	outcome	of	the	model	rules	of
association,	as	it	is	very	sensitive	to	both.

Exploring	the	association	rules	model
When	we	worked	with	the	transaction	file,	we	saw	that	it	is	stored	in	a	special	kind	of
object,	which	makes	the	models	work	in	a	similar	way.	This	type	of	model	is	stored	in	a
special	object	and	its	exploration	also	involves	the	use	of	specific	commands.

Returning	to	our	example,	using	the	first	version	of	the	model,	which	we	store	in	the
rules	object,	we	can	perform	an	initial	exploration	by	the	summary	function:

#	Summary	report	of	rules

summary(rules)

set	of	410	rules

rule	length	distribution	(lhs	+	rhs):sizes

		3			4			5			6	

	29	229	140		12	

			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.	

				3.0					4.0					4.0					4.3					5.0					6.0	

summary	of	quality	measures:

				support										confidence								lift					

	Min.			:0.00102			Min.			:0.80			Min.			:	3.1		

	1st	Qu.:0.00102			1st	Qu.:0.83			1st	Qu.:	3.3		

	Median	:0.00122			Median	:0.85			Median	:	3.6		

	Mean			:0.00125			Mean			:0.87			Mean			:	4.0		

	3rd	Qu.:0.00132			3rd	Qu.:0.91			3rd	Qu.:	4.3		

	Max.			:0.00315			Max.			:1.00			Max.			:11.2		

mining	info:

									data	transactions	support	confidence

	Transactions										9835			0.001								0.8

This	function	gives	us	information	about	the	model	that	we	built.	For	example,	the	size	of
rules,	depending	on	the	number	of	items	that	contain	these	rules.	In	this	case,	most	of	the
rules	have	3	and	4	items,	but	there	are	some	rules	that	have	up	to	6.	In	addition,	the
summary	model	provides	us	with	the	main	statistics	related	to	the	support,	lift	and
confidence.

Although	we	know	that	our	model	has	410	rules,	we	still	have	not	seen	any.	We	can
observe	the	rules	that	have	been	built	and	stored	in	the	model.	For	example,	we	will
extract	the	first	5	model	rules:

#	look	at	the	first	five	rules	

inspect(rules[1:5])

		lhs																	rhs												support	confidence	lift

1	{liquor,																																																		

			red/blush	wine}	=>	{bottled	beer}		0.0019							0.90	11.2

2	{cereals,																																																	

			curd}											=>	{whole	milk}				0.0010							0.91		3.6

3	{cereals,																																																	

			yogurt}									=>	{whole	milk}				0.0017							0.81		3.2

4	{butter,																																																		

			jam}												=>	{whole	milk}				0.0010							0.83		3.3

5	{bottled	beer,																																												

			soups}										=>	{whole	milk}				0.0011							0.92		3.6

An	interpretation	of	rule	number	one	is:	if	someone	buys	liquor	and	red/blush	wine,	they
are	90%	likely	to	buy	bottled	beer	too.

In	the	preceding	code,	we	list	the	first	5	rules	in	the	model.	However,	these	rules	are	not
ordered	by	any	criteria	of	magnitude.	Let’s	see	how	we	can	extract	information	ordered	by
some	criteria	such	as	the	level	of	confidence:

#	order	rules	by	confidence

rules<-sort(rules,	by="confidence",	decreasing=TRUE)

#	look	at	the	first	five	rules

inspect(rules[1:5])

		lhs																					rhs										support	confidence	lift

1	{rice,																																																						

			sugar}														=>	{whole	milk}		0.0012										1		3.9

2	{canned	fish,																																															

			hygiene	articles}			=>	{whole	milk}		0.0011										1		3.9

3	{butter,																																																				

			rice,																																																						

			root	vegetables}				=>	{whole	milk}		0.0010										1		3.9

4	{flour,																																																					

			root	vegetables,																																											

			whipped/sour	cream}	=>	{whole	milk}		0.0017										1		3.9

5	{butter,																																																				

			domestic	eggs,																																													

			soft	cheese}								=>	{whole	milk}		0.0010										1		3.9

This	time,	the	five	rules	we	extracted	from	the	model	are	ordered	according	to	their	level
of	confidence.	In	fact,	the	five	rules	have	a	confidence	of	100.	However,	if	we	extract
more	rules,	the	confidence	level	will	drop	gradually.

If	we	want	to	sort	the	rules	by	other	criteria	such	as	lift	or	support,	we	only	need	to	modify
the	previously	used	code	indicating	on	the	parameter	by.

(by	=	"lift"	or	by	=	"support")

Another	way	we	can	interact	with	the	model	is	generating	subsets	of	specific	rules,
allowing	us	to	do	analysis	on	items	of	interest.	For	example,	suppose	we	are	particularly
interested	in	making	a	promotion	relating	to	the	sale	of	yogurt,	we	could	create	a	subset	of
rules	concerning	these	products	in	this	way:

#	Subset	the	rules

#	finding	subsets	of	rules	that	precede	yogurt	purchases

yogurt	<-	subset(rules,	subset	=	rhs	%pin%	"yogurt")

	

#	Order	by	confidence

yogurt<-sort(yogurt,	by="confidence",	decreasing=TRUE)

	

#	inspect	top	5

	inspect(yogurt[1:5])

		lhs																					rhs						support	confidence	lift

1	{butter,																																																

			cream	cheese	,																																									

			root	vegetables}				=>	{yogurt}		0.0010							0.91		6.5

2	{butter,																																																

			sliced	cheese,																																									

			tropical	fruit,																																								

			whole	milk}									=>	{yogurt}		0.0010							0.91		6.5

3	{cream	cheese	,																																									

			curd,																																																		

			other	vegetables,																																						

			whipped/sour	cream}	=>	{yogurt}		0.0010							0.91		6.5

4	{butter,																																																

			other	vegetables,																																						

			tropical	fruit,																																								

			white	bread}								=>	{yogurt}		0.0010							0.91		6.5

5	{pip	fruit,																																													

			sausage,																																															

			sliced	cheese}						=>	{yogurt}		0.0012							0.86		6.1

The	preceding	code	shows	us	the	items	that	the	customers	bought	before	purchasing
yogurt.	If	we	wished	to	verify	the	opposite	situation,	that	is,	what	items	the	customers
might	buy	who	have	previously	bought	yogurt,	we	only	have	to	modify	the	code	like	this:

#	Subset	the	rules

yogurt	<-	subset(rules,	subset	=	lhs	%pin%	"yogurt")

#	Order	by	confidence

yogurt<-sort(yogurt,	by="confidence",	decreasing=TRUE)

#	inspect	top	5

inspect(yogurt[15:19])

		lhs																					rhs										support	confidence	lift

1	{butter,																																																				

			domestic	eggs,																																													

			tropical	fruit,																																												

			yogurt}													=>	{whole	milk}		0.0012							0.92		3.6

2	{cream	cheese	,																																													

			other	vegetables,																																										

			pip	fruit,																																																	

			yogurt}													=>	{whole	milk}		0.0011							0.92		3.6

3	{curd,																																																						

			domestic	eggs,																																													

			tropical	fruit,																																												

			yogurt}													=>	{whole	milk}		0.0011							0.92		3.6

4	{butter,																																																				

			domestic	eggs,																																													

			root	vegetables,																																											

			yogurt}													=>	{whole	milk}		0.0011							0.92		3.6

5	{domestic	eggs,																																													

			tropical	fruit,																																												

			whipped/sour	cream,																																								

			yogurt}													=>	{whole	milk}		0.0011							0.92		3.6

An	important	point	of	these	models	is	that	they	always	have	some	level	of	redundancy,
that	is,	rules	that	mean	the	same	for	the	purposes	of	analysis.	One	way	to	deal	with	them	is
to	simply	exclude	them,	which	can	be	done	from	the	console	as	follows:

#	Subset	and	delete	redundants

subset	<-	is.subset(rules,	rules)

subset[lower.tri(subset,	diag=T)]	<-	NA

redundant	<-	colSums(subset,	na.rm=T)	>=	1

pruned	<-	rules[!redundant]

rules.pruned<-pruned

rules

set	of	410	rules	

rules.pruned

set	of	330	rules

Following	the	preceding	procedure,	80	rules	which	are	redundant	are	located	and
excluded.

Plotting	alternatives	for	association	rules
Although	the	rules	are	easy	to	interpret	without	using	graphical	tools,	it	is	sometimes
interesting	to	use	visual	tools.	A	very	good	package	to	plot	models	based	on	the	analysis
of	association	rules	is	arulesViz	because	it	has	a	variety	of	specialized	graphics.

arulesViz:	For	help	visualizing	association	rules	and	frequent	itemsets	there	is	an
Extends	package	for	arules	with	various	visualization	techniques	for	association	rules
and	itemsets.	The	package	also	includes	several	interactive	visualizations	for	rule
exploration.

Let’s	see	how	we	can	build	a	map	of	rules	in	R:

#Loading	or	installing	package	arulesViz

suppressWarnings(

								suppressMessages(if

																									(!require(arulesViz,	quietly=TRUE))

																install.packages("arulesViz")))

library(arulesViz)

rules	<-	apriori(Transactions,	parameter	=	list(supp	=	0.001,	conf	=	0.8))

rules<-sort(rules,	by="confidence",	decreasing=TRUE)

#	Subset	and	delete	redundants

subset	<-	is.subset(rules,	rules)

subset[lower.tri(subset,	diag=T)]	<-	NA

redundant	<-	colSums(subset,	na.rm=T)	>=	1

pruned	<-	rules[!redundant]

rules.pruned<-pruned

plot(rules.pruned[1:10],method="graph",interactive=TRUE))

Association	rules	by	end-user	tool
To	this	point,	we	have	explored	models	based	on	association	rules	using	R	console.
However,	we	consider	it	appropriate	to	mention	an	alternative	that	does	not	require	using
the	console	directly.

To	do	this,	we	will	again	use	the	togaware	rattle.	It	can	be	loaded	by	the	following
instruction:

#	Set	language	to	English

Sys.setenv(LANGUAGE="en")

#Load	Rattle	Package

suppressWarnings(suppressMessages(library(rattle)))

#	Load	visual	interface

rattle()

The	data	is	loaded	from	the	Data	menu,	and	we	proceed	to	use	the	file	selector	and	seek
the	dataset	Groceries	that	we	have	been	using:

Once	you	have	loaded	the	data,	we	access	the	Associate	menu	and	indicate	a	level	of
support	of	0.001	and	a	minimum	confidence	level	of	0.8	and	press	the	Execute	button:

The	rattle	builds	the	model	a	priori,	along	with	association	rules.	However,	the	exploration
we	can	do	with	this	tool	is	very	limited.

Summary
In	this	chapter,	we	went	through	the	aspects	that	we	considered	relevant	in	relation	to
models	based	on	association	rules;	one	of	the	techniques	more	broadly	known	in	the	field
of	unsupervised	learning	and	perhaps	one	of	the	pillar	techniques	in	data	mining.

We	started	with	the	theoretical	foundations,	their	representation,	and	some	measures	that
we	know	for	proper	application.	Later,	we	built	a	model	in	R	and	explored	the	specialized
functions	for	it.	You	learned	how	to	navigate	the	model,	eliminate	redundant	rules,	and
work	with	rules	on	segments	of	interest.	We	illustrated	the	use	of	packages	to	graph
models	based	on	rules	and,	finally,	we	mentioned	an	alternative	type	of	end-user	interface
for	working	with	association	rules	models.

In	the	next	chapter,	we	will	study	the	concept	of	dimensionality	reduction	and	its
importance	in	building	models	for	unsupervised	learning.

Chapter	5.	Dimensionality	Reduction
This	chapter	aims	to	explain	some	dimensionality	reduction	techniques	in	machine
learning.	This	concept	refers	to	the	process	of	reducing	the	number	of	random	variables
considered	and	can	be	subdivided	in	feature	selection	and	feature	extraction.	The	key	is	to
reduce	the	number	of	dimensions,	while	preserving	most	parts	of	the	information.

In	this	chapter,	we	will	cover	feature	extraction	techniques,	while	feature	selection	will	be
approached	in	the	next	chapter.

These	kinds	of	techniques	aim	to	solve	the	problem	of	dimensionality,	which	refers	to	the
inconveniences	associated	with	multivariate	data	analysis	when	the	dimensionality,	that	is
the	number	of	variables,	is	too	large.

The	problem	of	dimensionality	implies	that,	given	a	fixed	number	of	cases,	there	is	a
maximum	number	of	attributes	beyond	which	the	efficiency	of	models	is	degraded	rather
than	improved.	In	the	knowledge	discovery	process,	more	is	not	always	better,	and	this
often	gives	better	results	focused	on	a	few	variables	that	explain	most	of	the	information
that	will	answer	our	problem.

In	this	chapter,	we	will	cover	the	following	aspects:

The	problem	of	high	dimensionality
Alternatives	to	mitigate	the	effects	of	the	curse	of	dimensionality
Principal	Component	Analysis	(PCA):	Concept	construction	and	graphical	analysis
Hierarchical	clustering	on	PCA
PCA	by	user	interfaces

The	curse	of	dimensionality
The	curse	of	dimensionality,	sometimes	referred	to	as	the	Hughes	effect,	is	a	term	often
used	to	refer	to	the	phenomena	occurring	in	mathematics	and	statistics,	when	we	try	to
analyze	and	organize	data	in	multidimensional	spaces.

These	phenomena	occur	in	various	fields	including	numerical	analysis,	combinatory
sampling,	machine	learning,	and	data	mining.	They	have	a	common	cause:	when	the
dimensionality	increases,	the	volume	of	space	increases	exponentially,	causing	the
available	data	to	become	scattered;	this	is	problematic	for	any	method	that	requires
statistical	significance.	The	reason	for	this	is	that	the	result	to	be	statistically	significant	as
the	variables	increase,	the	required	data	grows	exponentially.

For	example,	in	the	context	of	machine	learning,	the	curse	of	dimensionality	can	mean	a
serious	inconvenience	in	solving	problems	that	involve	optimization	or	use	of	distances,	as
these	tend	to	grow	with	increasing	dimensionality,	that	is,	data	is	increasingly	more
dispersed.	This	implies	that	when	the	number	of	dimensions	increases,	finding	“things”	or
measuring	their	size	and	shape	becomes	increasingly	complex.

Suppose	we	have	a	clustering	problem,	as	discussed	in	Chapter	3,	Identifying	and
Understanding	Groups:	Clustering	Algorithms,	and	we	want	to	group	them	by	their
distances.	Imagine	a	square	that	represents	the	2D	feature	space,	the	features	that	we	will
use	to	group	together.	The	average	of	this	space	is	the	center	of	the	square,	and	all
observations	are	inside	a	circle	that	is	inscribed	in	the	square.

The	observations	that	do	not	fall	within	this	circle	are	closer	to	the	corners	of	the	search
space	than	to	its	center.	This	observation	is	like	an	outlier	and	it	is	hard	to	group	them	in
clusters.	Clustering	is	easier	if	most	observations	fall	inside	the	inscribed	circle:

On	the	left	we	can	see	the	square,	circle,	and	observations	before	a	cluster	analysis	and	to
the	right	we	see	a	possible	result	of	grouping	observations.

Now,	the	preceding	example	is	based	on	a	two-dimensional	space,	but	let’s	see	what
would	happen	if	both	the	square	and	the	circle	coexist	in	a	plane	of	higher	dimensionality.

By	increasing	the	dimension	of	the	square,	it	becomes	an	n-dimensional	hypercube.
Furthermore,	the	circle	becomes	an	n-dimensional	hypersphere.	The	hypersphere	has	a
very	interesting	behavior	that	helps	us	better	understand	the	curse	of	dimensionality.

The	volume	of	the	inscribed	hypersphere	of	dimension	d	and	with	radius	0.5	can	be
calculated	with	the	following	formula:

We	will	proceed	to	calculate	the	volume	in	several	dimensions	to	observe	the	effect	of
increasing	the	dimensionality.	For	ease,	we	can	do	it	directly	in	the	R	console,	using	the
package	SphericalCubature.

In	the	words	of	its	author:

“SphericalCubature	is	a	package	that	defines	several	methods	to	integrate	functions
over	the	unit	sphere	and	ball	in	n-dimensional	Euclidean	space.	Routines	for
converting	to/from	multivariate	polar/spherical	coordinates	are	also	provided.”

#	Loading	or	installing	package	'SphericalCubature'

suppressWarnings(suppressMessages(if	(!require(SphericalCubature,	quietly	=	

TRUE))	install.packages("SphericalCubature")))

library(SphericalCubature)

#	Set	radius	to	0.5

r	<-	0.5

#	20	Dimensions	Loop

Dimensions	=	rep(0,	20)

SphereVol	<-	Dimensions

for	(k	in	0:20)	{

				n	<-	k

				

				SphereVol[k]	=	ballVolume(k	-	1,	R	=	r)

}

plot(SphereVol,	col	=	"blue",	type	=	"b",	ylab	=	"volume	of	the	

hypersphere",	

				xlab	=	"Dimensions")

The	preceding	figure	shows	how	the	volume	of	the	hypersphere	changes	when	the
dimensionality	increases	and	tends	to	reach	zero;	as	the	dimensionality	tends	to	reach
infinity,	the	hypersphere	shrinks	to	insignificance.	For	this	reason,	distance	metrics	start
losing	their	effectiveness	in	measuring	the	dissimilarity	in	highly	dimensional	spaces.

In	general,	data	mining	algorithms	tend	to	degrade	in	performance	and	usefulness	as
dimensionality	increases.

Feature	extraction
Dimensionality	reduction	includes	a	set	of	techniques	to	help	deal	with	the	problem	of	the
curse	of	dimensionality.	These	techniques	are	aimed	at	reducing	the	number	of	variables
to	be	considered	by	the	models	we	build,	generally	falling	into	feature	selection	and
feature	extraction.

In	the	context	of	machine	learning,	the	term	feature	extraction	is	associated	with
techniques	that	seek	to	build	a	dataset	derived	and	transformed	from	the	original	data.

One	of	the	best	known	and	most	used	techniques	to	reduce	the	dimensionality	is	Principal
Components	Analysis	or	PCA.

Principal	component	analysis
Principal	component	analysis	(PCA)	is	a	technique	to	reduce	the	dimensionality	of	a
dataset,	in	fact,	it	is	one	of	the	most	well	known	and	widely	used.	This	technique	finds	the
causes	that	explain	the	variability	of	a	dataset	and	lists	them	in	the	order	of	their
importance.

The	PCA	searches	for	a	projection	where	the	data	is	best	represented	in	terms	of	the	least
squares.	It	performs	a	linear	transformation	to	obtain	a	new	coordinate	system	in	which
the	largest	variance	is	considered	as	the	principal	component,	the	second	largest	variance
as	the	second	principal	component,	and	so	on.

New	components	are	not	specified	in	the	original	measurement	units	as	they	are	a	linear
combination	of	the	original	variables.	Moreover,	the	PCA	eliminates	the	correlations
between	them,	while	the	new	variables,	that	are	the	principal	components,	are	independent
from	one	another.

An	advantage	of	principal	component	analysis	as	a	dimensionality	reduction	method	is
that	it	preserves	the	characteristics	of	the	dataset	that	contribute	most	to	its	variance.
Another	advantage	connected	with	reduced	dimensions	is	that	the	behavior	of	the	dataset
is	easier	to	observe	in	2D	and	3D	systems,	which	makes	it	more	interpretable	by	humans.

In	general	terms,	there	are	two	ways	in	which	you	can	calculate	the	principal	components:

Using	a	correlation	matrix:	for	data	which	is	not	dimensionally	uniform	about	the
magnitude	of	the	variables.
Using	a	covariance	matrix:	for	data	that	is	dimensionally	uniform	about	the
magnitude	of	the	variables	and	have	similar	mean	values.

Even	though	the	mathematical	aspects	of	the	technique	are	interesting,	explaining	it	in
depth	is	beyond	the	scope	of	this	book,	which	has	a	more	applied	approach.

However,	we	are	interested	in	the	general	understanding	of	the	technique	and	its
application.	Therefore,	we	will	develop	an	example	to	clarify	the	importance	of	principal
component	analysis	and	how	we	can	use	R	to	perform	this	analysis.

In	this	example,	we	use	data	about	the	performance	of	some	students	in	five	classes:
Maths,	Science,	English,	History,	and	Sports.	Each	of	these	subjects	is	as	a	dimension,	that
is,	we	will	work	with	a	dataset	of	five	dimensions:

For	didactic	purposes,	we	decided	to	use	few	observations,	and	we	will	work	with	the
qualifications	of	10	students	in	the	aforementioned	subjects.

As	always,	the	first	thing	to	do	is	to	load	the	data	from	the	source	to	an	R	console:

#	Principal	Components	Example:	Students	Performance

#	Load	the	data

#	Set	your	Path	Here:

path	<-	"file:///C:/Unsupervised	Learning/Students.csv"

Students	<-	read.csv(path,	sep	=	";",	dec	=	",",	na.strings	=	c(".",	

				"NA",	"",	"?"),	strip.white	=	TRUE,	encoding	=	"UTF-8",	

				row.names	=	1)

										Maths	Science	English	History	Sports

Rosa								7.0					6.5					9.2					8.6				8.0

Denis							7.5					9.4					7.3					7.0				7.0

Edgar							7.6					9.2					8.0					8.0				7.5

Yeison						5.0					6.5					6.5					7.0				9.0

Silvia						6.0					6.0					7.8					8.9				7.3

Arturo						7.8					9.6					7.7					8.0				6.5

Elizabeth			6.3					6.4					8.2					9.0				7.2

Erik								7.9					9.7					7.5					8.0				6.0

Dante							6.0					6.0					6.5					5.5				8.7

Sasha							6.8					7.2					8.7					9.0				7.0

Once	we	have	the	data	loaded	into	R,	we	can	run	a	principal	component	analysis	on
quantitative	variables	in	the	dataset,	along	the	example.	We	will	show	various	ways	to	do
so	and	we	will	use	different	packages	to	offer	a	wide	range	of	alternatives.

To	better	understand	what	happens	when	we	make	the	principal	component	analysis	in	R,
we	can	observe	the	following	chart:

The	input	variables	are	the	results	of	students	in	each	of	the	subjects	mentioned	above,
that	is	the	original	variables.	When	you	run	the	PCA,	changes	will	take	place	in	the	input
data	and	synthetic	variables	are	created.	These	new	variables	are	the	components	that	will
be	the	model	output.

We	will	calculate	the	principal	components	by	two	approaches:	The	SVD	or	Singular
value	decomposition	(preferred	for	numeric	accuracy)	and	by	an	alternative	approach	to
determine	the	eigenvalues	of	the	covariance	matrix.

Continuing	the	example,	we	will	use,	as	first	choice,	the	princomp	function	integrated	in
the	stats	package.

In	the	words	of	its	author:

“princomp	performs	a	principal	components	analysis	on	the	given	numeric	data
matrix	and	returns	the	results	as	an	object	of	class	“princomp”.	The	calculation	is
done	using	eigens	on	the	correlation	or	covariance	matrix.”

#	Principal	Components	Analysis	using	princomp

PCA	<-	princomp(na.omit(Students),	scale	=	TRUE,	center	=	TRUE,	tol	=	0)

#	Check	the	created	object

PCA

Call:

princomp(x	=	na.omit(Students),	scale	=	TRUE,	center	=	TRUE,	

				tol	=	0)

Standard	deviations:

				Comp.1					Comp.2					Comp.3					Comp.4					Comp.5	

1.87037681	1.33918427	0.52039936	0.38878066	0.08780771	

	5		variables	and		10	observations.

Generally,	the	PCA	results	should	consist	of	a	set	of	eigenvalues,	the	principal
components,	and	a	matrix	with	loadings	or	correlations	between	variables	and	these
components.

Using	the	eigenvalues,	we	can	get	information	about	the	variability	in	the	dataset.	The
scores	give	us	information	about	the	structure	of	the	observations,	and	the	loadings	or
correlations	allow	you	to	get	a	sense	of	the	relationships	between	variables,	as	well	as
their	associations	with	the	extracted	principal	components.

Let’s	see	how	we	can	obtain	this	information	on	the	console:

#	loadings	for	first	3	components

	

unclass(PCA$loadings[,1:3])

												Comp.1					Comp.2						Comp.3

Maths			-0.4554991	-0.0301873		0.47296282

Science	-0.7730822		0.3366382	-0.04147109

English	-0.1117975	-0.5349732		0.62844982

History	-0.1416005	-0.7479026	-0.35163283

Sports			0.4028835		0.2005213		0.50595602

#	Principal	Components	aka	scores	(first	3	components)	

PCA$scores[,1:3]

															Comp.1					Comp.2						Comp.3

Rosa							0.76471745	-1.5817637		1.11186219

Denis					-1.66887794		1.3919656		0.09067929

Edgar					-1.57822841		0.2994960		0.48752985

Yeison					2.60701317		1.3202040	-0.46230941

Silvia					1.43877557	-1.3356687	-0.67985389

Arturo				-2.34790534		0.3880845	-0.12895699

Elizabeth		0.89372557	-1.5189012	-0.38893244

Erik						-2.64984571		0.4254636	-0.46447580

Dante						2.62959083		2.1833951		0.40705140

Sasha					-0.08896518	-1.5722752		0.02740580

Something	very	important	to	note	is	that	we	can	generate	information	about	the
importance	of	the	principal	components:

summary(PCA)

Importance	of	components:

																							Comp.1	Comp.2	Comp.3	Comp.4	Comp.5

Standard	deviation					1.870		1.339		0.5203	0.3887	0.0878

Proportion	of	Variance	0.611		0.313		0.0473	0.0264	0.0013

Cumulative	Proportion		0.611		0.924		0.9722	0.9986	1.0000

As	we	can	see	in	the	preceding	table,	the	cumulative	proportion	of	variance	accounted	for
each	component	reaching	92%	in	the	second	component.

This	means	that	92%	of	the	behavior	of	the	dataset	is	now	explained	in	component	1	and
component	2,	while	the	other	components	can	be	easily	discarded	from	the	analysis
without	much	loss	of	information.

Now,	if	we	want	to	minimize	the	loss	of	information,	we	could	work	with	the	first	3
components,	which	would	achieve	97%	representation	of	the	data.

It	is	possible	to	evaluate	the	quality	of	the	representation	of	the	principal	components	to
determine	which	accounts	for	the	largest	amount	of	information:

#	Display	a	plot	showing	the	relative	importance	of	the	components.

plot(PCA,	main="",col="darkgreen")

title(main="Principal	Components	Importance	for	Students")

As	shown	in	the	following	graph,	the	first	two	components	are	those	that	explain	most	of
the	variance	of	the	dataset:

Whether	principal	component	analysis	is	well	suited	to	the	data	being	analyzed,	that	is
whether	the	first	components	collect	enough	information,	is	something	you	can	represent
graphically.

For	graphical	presentation	of	principal	components,	there	are	several	options.	We	will	use
the	first	alternative,	biplots:

A	biplot	is	an	enhanced	use	of	a	scatterplot,	both	points	and	vectors,	to	represent
structure.	The	axes	of	a	biplot	are	a	pair	of	main	components.	These	axes	are	drawn	in
black	and	are	labeled	PC1,	and	PC.	Let’s	see	how	to	build	a	biplot	on	R:

#	Display	a	plot	showing	the	two	principal

#	components	Set	the	components	to	plot

components	<-	c(1,	2)

#	Plot

biplot(PCA,	main	=	"",	choices	=	components)

title(main	=	"Principal	Components	Analysis	for	Students")

Biplots	are	useful	charts	in	multivariate	representations.	The	prefix	bi	refers	to	the	overlap
of	individuals	and	variables	in	the	same	representation.	Individuals	are	represented	as
points	in	the	plane	and	variables	are	shown	as	arrows	with	respect	to	the	axes.	The
interpretation	of	a	biplot	is	based	on	simple	geometric	concepts,	such	as	the	angles
between	the	variables	representing	its	correlation,	and	distance	between	individuals
representing	their	similarity.

As	we	mentioned	when	using	the	function	princomp,	the	calculation	is	done	using	Eigen
on	the	correlation	or	covariance	matrix.	If	we	want	to	take	a	different	approach,	it	is
possible	using	SVD,	using	the	prcomp	function.

In	the	words	of	its	author:

“prcomp	performs	a	principal	components	analysis	on	the	given	data	matrix	and
returns	the	results	as	an	object	of	class	“prcomp”.	The	calculation	is	done	by	a
singular	value	decomposition	of	the	(centered	and	possibly	scaled)	data	matrix,	not

by	using	eigen	on	the	covariance	matrix.	This	is	generally	the	preferred	method	for
numerical	accuracy.”

As	an	alternative	to	the	princomp	function,	you	can	use	the	function	prcomp.	Actually,	the
use	of	both	are	very	similar.	Let’s	look	at	how	to	do	it	in	the	console	of	R:

#	Load	the	data

path<-"file:///C:/Unsupervised	Learning/Students.csv"	#	Set	your	Path	Here

Students<-read.csv(path,	sep=";",	dec=",",	na.strings=c(".",	"NA",	"",	

"?"),strip.white=TRUE,	encoding="UTF-8",	row.names=1)

Students

#	Principal	Components	Analysis	using	prcomp

PCA2	<-	prcomp(na.omit(Students),	scale=TRUE,							center=TRUE,	tol=0)

	

#Check	the	created	object	

PCA2

Standard	deviations:

[1]	1.70095552	1.27618589	0.58872409	0.35016062	0.09429419

	#	Principal	Components	Analysis	using	prcomp

	PCA2	<-	prcomp(na.omit(Students),	scale=TRUE,	center=TRUE,	tol=0)

	

	#	Check	the	created	object	

	PCA2

Standard	deviations:

[1]	1.70095552	1.27618589	0.58872409	0.35016062	0.09429419

Rotation:

												PC1						PC2						PC3						PC4					PC5

Maths			-0.5266	-0.27049		0.43820	-0.26121	-0.6238

Science	-0.4249	-0.50807		0.04049		0.67362		0.3253

English	-0.3591		0.56208		0.56227	-0.07008		0.4837

History	-0.3526		0.58648	-0.39418		0.44664	-0.4204

Sports			0.5373		0.09374		0.57862		0.52305	-0.3067

#	Summarizes	the	importance	of	the	components	found.

	

summary(PCA2)

Importance	of	components:

																										PC1				PC2					PC3					PC4					PC5

Standard	deviation					1.7010	1.2762	0.58872	0.35016	0.09429

Proportion	of	Variance	0.5786	0.3257	0.06932	0.02452	0.00178

Cumulative	Proportion		0.5786	0.9044	0.97370	0.99822	1.00000

Considering	that	the	two	graphs	viewed	for	PCA	are	implemented	by	the	princomp
function,	apply	them	in	the	same	way	for	the	prcomp	function,	and	we	will	not	repeat	them
here.

If	we	go	a	little	beyond	the	basic	packages	that	are	installed	with	R,	we	can	choose	to	use
FactoMineR.	This	is	a	highly	recommended	package	for	multivariate	exploratory	analysis

in	general.	In	fact,	it	is	my	favorite	because	it	creates	more	explanatory	graphics.

FactoMineR:	Multivariate	exploratory	data	analysis	and	data	mining	with	R.	The	methods
proposed	in	this	package	are	exploratory	multivariate	methods,	such	as	principal
component	analysis,	correspondence	analysis,	or	clustering.

Using	the	data	from	the	student	example,	we	will	create	a	principal	components	analysis,
this	time	using	the	PCA	function	from	the	package	FactoMiner.

PCA:	Performs	Principal	Component	Analysis	(PCA)	with	supplementary	individuals,
supplementary	quantitative	variables,	and	supplementary	categorical	variables.

Here	is	an	implementation	directly	on	the	console	of	R:

The	first	thing	to	do	is	install	the	package	and	load	the	data	that	we	will	use:

#Loading	or	installing	package	"FactoMiner"

suppressWarnings(

								suppressMessages(if

																									(!require(FactoMineR,	quietly=TRUE))

																install.packages("FactoMineR")))

library(FactoMineR)

#	Load	dataset	students

path<-"file:///C:/Unsupervised	Learning/Students.csv"	#	Set	your	Path	Here

Students	<-	read.table(path,	header=TRUE,	

		sep=";",	na.strings="NA",	dec=",",	row.names=1,	strip.white=TRUE)

Students.PCA<-Students[,	c("Maths",	"Science",	"English",	"History",	

		"Sports")]

Once	we	have	loaded	the	data,	we	can	generate	the	principal	component	analysis	using	the
PCA	function	included	in	the	package	FactoMiner:

#	Build	the	PCA	in	FactoMiner

res<-PCA(Students.PCA	,	scale.unit=TRUE,	ncp=5,	graph	=	FALSE)

res

Results	for	the	Principal	Component	Analysis	(PCA)

The	analysis	was	performed	on	10	individuals,	described	by	5	variables

*The	results	are	available	in	the	following	objects:

			name															description																										

1		"$eig"													"eigenvalues"																								

2		"$var"													"results	for	the	variables"										

3		"varcoord"							"coord.	for	the	variables"											

4		"varcor"									"correlations	variables	-	dimensions"

5		"varcos2"								"cos2	for	the	variables"													

6		"varcontrib"					"contributions	of	the	variables"					

7		"$ind"													"results	for	the	individuals"								

8		"indcoord"							"coord.	for	the	individuals"									

9		"indcos2"								"cos2	for	the	individuals"											

10	"indcontrib"					"contributions	of	the	individuals"			

11	"$call"												"summary	statistics"																	

12	"$call$centre"					"mean	of	the	variables"														

13	"$call$ecart.type"	"standard	error	of	the	variables"				

14	"$call$row.w"						"weights	for	the	individuals"								

15	"$call$col.w"						"weights	for	the	variables"

One	of	the	many	qualities	of	FactoMiner	is	that	it	provides	much	information	in	the
preceding	code.	We	proceeded	to	build	a	PCA	and	store	the	results	in	an	object	called	res.
This	object	is	very	special,	as	its	type	is	PCA	-	List,	which	means	that	our	models	are
stored	inside	with	15	additional	elements	of	information.	Some	of	the	most	important	are:

Name	in	list	of
results Includes

eig
A	matrix	containing	all	the	eigenvalues,	the	percentage	of	variance	and	the	cumulative	percentage	of
variance

var
A	list	of	matrices	containing	all	the	results	for	the	active	variables	(coordinates,	correlation	between
variables	and	axes,	square	cosine,	contributions)

ind
A	list	of	matrices	containing	all	the	results	for	the	active	individuals	(coordinates,	square	cosine,
contributions)

call A	list	with	a	summary	of	statistics

Let’s	see	how	this	information	can	be	accessed	from	the	console	of	R:

#	getting	information	from	PCA	Model

	

#	Matrix	containing	all	the	eigenvalues

res$eig

													eigenvalue									%	variance	cum.									%	variance

comp	1					2.893249673				57.8649935												57.86499

comp	2					1.628650425	 				32.5730085												90.43800

comp	3					0.346596049	 				6.9319210												97.36992

comp	4					0.122612460				2.4522492												99.82217

comp	5					0.008891393	 				0.1778279												100.00000

The	eigenvalues	correspond	to	the	amount	of	the	variation	explained	by	each	principal
component.	They	are	large	for	the	first	component	and	small	for	the	subsequent
components.

A	component	with	an	eigenvalue	greater	than	1	indicates	that	the	component	accounts	for
more	variance	than	accounted	for	by	one	of	the	original	variables	in	the	standardized	data.
This	can	be	used	as	a	cutoff	point	to	determine	the	number	of	principal	components	to
retain.

Looking	at	the	cumulative	variance,	the	results	are	similar	with	respect	to	those	found	with
the	above	packages.	In	the	second	principal	component,	90%	of	the	explained	variance	is
reached	and	97%	in	the	third.	If	we	prefer	to	observe	it	graphically,	we	can	build	a
screeplot	from	the	R	console.

A	screeplot	displays	the	eigenvalues	associated	with	a	component	in	descending	order
versus	the	number	of	the	component	or	factor.	You	can	use	screeplots	in	principal

components	analysis	to	visually	assess	which	components	or	factors	explain	most	of	the
variability	in	the	data,	that	is	it	helps	us	to	determine	how	many	components	should	be
retained:

#	Plot	the	eigenvalues

barplot(res$eig[,	2],	names.arg=1:nrow(res$eig),	

							main	=	"Variances	by	Component",

							xlab	=	"Principal	Components",

							ylab	=	"%	of	variances",

							col	="steelblue")

#	Add	connected	line	segments	to	the	plot

lines(x	=	1:nrow(res$eig),	res$eig[,	2],	

						type="b",	pch=19,	col	=	"red")

One	category	of	information	to	which	we	must	pay	attention	is	Cos2	as	it	helps	us	to
determine	the	quality	of	representation	of	variables	in	the	map	of	factors.	For	example,	if
we	want	to	know	that	so	well	it	is	represented	each	of	the	variables	for	the	first	two
principal	components,	we	could	do	the	following	in	the	R	console:

#	Getting	Cos2	or	quality	of	variables	on	the	factor	map

cos2<-resvarcos2[,1:2]

Total<-apply(cos2,	1,	sum)

cos2<-cbind(cos2,Total)

x<-	c("Comp.1","Comp.2","Total")

cos2<-	as.data.frame(round(cos2*100,2))

colnames(cos2)	<-	c("Comp.1","Comp.2","Total")

cos2

								Comp.1	Comp.2	Total

Maths				80.25		11.92	92.16

Science		52.24		42.04	94.29

English		37.32		51.45	88.77

History		35.99		56.02	92.01

Sports			83.53			1.43	84.96

When,	in	the	preceding	table,	cos2	of	a	variable	is	close	to	100,	its	representation	on	the
map	of	factors	is	excellent,	and	the	cutoff	must	be	defined	depending	on	the	degree	of
tolerance	of	the	person	making	the	analysis,	by	reference,	above	60	is	a	good	value.

Continuing	the	example,	other	information	that	we	can	generate	from	our	PCA	model	is
the	contribution	of	each	variable:

#	Variable	contributions

round(resvarcontrib,2)

								Dim.1	Dim.2	Dim.3	Dim.4	Dim.5

Maths			27.74		7.32	19.20		6.82	38.92

Science	18.06	25.81		0.16	45.38	10.59

English	12.90	31.59	31.62		0.49	23.40

History	12.44	34.40	15.54	19.95	17.68

Sports		28.87		0.88	33.48	27.36		9.41

Note
A	variable’s	contributions	in	the	determination	of	a	given	principal	component	are:
(var.cos2	*	100)	/	(total	cos2	of	the	component)

We	previously	verified	the	quality	of	the	representation	of	the	variables,	it	is	possible	to
check	the	quality	of	representation	of	individuals	with	Cos2.	In	fact,	this	is	very	important
because	individuals	who	are	poorly	represented	may	be	excluded	from	the	graphical
analysis:

#	Getting	Cos2	or	quality	of	individuals	on	the	factor	map

cos2<-resindcos2[,1:2]

Total<-apply(cos2,	1,	sum)

cos2<-cbind(cos2,Total)

x<-	c("Comp.1","Comp.2","Total")

cos2<-	as.data.frame(round(cos2*100,2))

colnames(cos2)	<-	c("Comp.1","Comp.2","Total")

cos2

										Comp.1	Comp.2	Total

Rosa								2.23		67.04	69.27

Denis						13.99		84.84	98.83

Edgar						51.45		13.61	65.06

Yeison					93.69			0.64	94.33

Silvia						8.41		65.64	74.05

Arturo					73.27		26.20	99.47

Elizabeth			0.19		88.61	88.80

Erik							67.36		27.09	94.45

Dante						80.88		13.76	94.65

Sasha						30.86		67.79	98.64

In	our	example,	Arturo	is	represented	in	99.47%	within	the	map	of	factors,	while	Edgar
gets	the	lowest	level	of	representation	with	65.06%.	As	the	purpose	of	this	example,	we
are	working	with	a	minimum	level	of	representation	of	60.	It	is	not	necessary	to	exclude
individuals	from	analysis.

The	same	way	as	with	variables,	it	is	possible	to	know	the	level	of	contribution	of	each
individual	to	each	principal	component:

#		Contributions	of	Individuals

round(resindcontrib,2)

										Dim.1	Dim.2	Dim.3	Dim.4	Dim.5

Rosa							0.36	19.29	41.46		0.25		0.01

Denis						1.53	16.49		0.61		0.04	17.12

Edgar						3.47		1.63	11.41	21.75	22.96

Yeison				34.78		0.42		4.21	37.47		4.39

Silvia					0.83	11.45	20.13		1.98	17.12

Arturo				10.09		6.41		0.47		0.36		0.72

Elizabeth		0.02	13.13		7.39		1.13		0.19

Erik						13.99		9.99		8.48		3.19		0.34

Dante					31.98		9.67		5.81	33.41		1.61

Sasha						2.95	11.51		0.02		0.42	35.53

Additional	visual	support	for	PCA
We	have	seen	how	it	is	possible	to	generate	biplot	graphics.	However,	this	type	of
graphics	has	serious	limitations	when	the	number	of	observations	increases,	and	they
become	very	confusing	and	difficult	to	interpret.

We	will	now	see	an	alternative,	the	factor	maps	for	PCA	models:

#Loading	or	installing	package	FactoMineR

suppressWarnings(

								suppressMessages(if

																									(!require(FactoMineR,	quietly=TRUE))

																install.packages("FactoMineR")))

library(FactoMineR)

#	Load	dataset	students

path<-"file:///C:/Unsupervised	Learning/Students.csv"	#	Set	your	Path	Here

Students	<-	read.table(path,	header=TRUE,	

		sep=";",	na.strings="NA",	dec=",",	row.names=1,	strip.white=TRUE)

Students.PCA<-Students[,	c("Maths",	"Science",	"English",	"History",	

		"Sports")]

#	Build	the	PCA	in	FactoMiner

res<-PCA(Students.PCA	,	scale.unit=TRUE,	ncp=5,	graph	=	FALSE)

#	Plot	for	variables

plot.PCA(res,	axes=c(1,	2),	choix="var",	new.plot=TRUE,	col.var="#ff0000",	

		col.quanti.sup="blue",	label=c("var",	"quanti.sup"),	lim.cos2.var=0,	

		title="Variables	Factor	Map")

This	code	builds	a	map	of	factors	for	the	variables	of	our	PCA	from	students,	and	contains
a	circle	of	correlations	in	which	all	variables	are	represented:

The	correlation	circle	has	a	scale	from	-1	to	1	and	is	useful	to	compare	the	first	two
principal	components	in	relation	to	variables.	The	variance	explained	by	these
components,	that	is	the	level	at	which	the	graph	represents	the	reality	of	the	entire	dataset,
is	the	sum	of	the	percentages	in	the	diagram:	57.86%	+	32.57%.	This	means	that	the	chart
reflects	90.43%	of	the	variance	in	the	data.

In	the	circle	of	correlations,	each	variable	is	displayed	as	an	arrow,	the	angles	between
these	arrows	indicate	the	level	of	correlation	between	them.	For	example,	if	in	comparing
the	two	variables,	the	angle	between	them	is	very	small,	as	is	the	case	with	English	and
History,	which	implies	that	there	is	a	positive	correlation,	that	is,	the	marks	obtained	by
students	in	these	subjects	behave	similarly	and	vary	in	the	same	direction.

Furthermore,	while	comparing	two	variables,	if	the	angle	is	too	large,	such	as	in	the	case
of	math	and	sports,	it	implies	that	there	is	a	negative	correlation.	That	is,	increasing
performance	in	math,	the	performance	in	sports	tends	to	decrease.

The	circle	of	correlations	also	provides	information	on	the	quality	of	the	representation	of
variables.	Considering	that	correlation	behaves	similar	to	the	cosine,	the	variables	best
represented	will	be	those	with	correlations	close	to	1	and	-1,	which	is,	whose	arrows
approach	the	border	of	the	circle.

Individuals	can	also	be	represented	graphically,	FactoMineR	allows	us	to	build	a	map	of
factors,	such	as	the	following:

#	Plot	for	individuals

plot.PCA(res,	axes=c(1,	2),	choix="ind",	habillage="none",	

		col.ind="#0000ff",	col.ind.sup="blue",	col.quali="magenta",	

label=c("ind","ind.sup",	"quali"),new.plot=TRUE,	title="	Individuals	Factor	

Map")

All	individuals	are	represented	on	the	map	of	factors.	It	should	be	emphasized	that	it	is
recommended	to	not	represent	individuals	whose	square	cosines	indicates	that	they	will
not	be	properly	represented	in	the	plane	of	the	components	chosen.	Similar	individuals
tend	to	form	clusters	on	the	map	of	factors.

Even	though	we	analyzed	the	two	possible	graphical	outputs	of	PCA,	an	intuitive	but
interesting	trick	is	to	overlap	the	two	charts:

As	shown	in	the	preceding	chart,	to	the	left,	three	groups	of	individuals	are	visually
detected.	These	groups	of	individuals	may	be	related	to	variable	groups	to	the	right	and
you	can	analyze	them	together:

Group	number	1,	consisting	of	individuals	Yeison	and	Dante	is	impacted	positively	by	the
results	in	sports.	That	is,	these	individuals	are	good	athletes.	Noting	the	correlation	of
variables,	we	can	say	that	they	are	not	as	good	in	science	and	math	as	they	are	inversely
correlated	variables.

Group	number	2,	consisting	of	individuals	Silvia,	Elizabeth,	Rosa,	and	Sasha,	groups
individuals	with	good	performance	in	English	and	History,	though	they	are	not	great	at
sports	but,	at	least,	they	are	not	the	worst	because	they	are	located	on	the	axis	dividing	the
quadrants.

Finally,	group	number	3,	consisting	of	individuals	Edgar,	Arturo,	Erik,	and	Denis,	behaves
in	a	manner	contrary	to	group	1	because	it	contains	individuals	who	are	good	at	science
and	math,	but	not	at	sports.

Advanced	tools	for	plotting	PCA
We	have	explained	two	types	of	graphs	for	analysis	of	main	components:	the	biplots	and
maps	of	individual	factors	and	variables.	There	is	a	specialized	package	called	factoextra
that	allows	us	to	enhance	the	maps	of	factors	and	individuals:

factoextra	provides	some	easy-to-use	functions	to	extract	and	visualize	the	output	of
Principal	Component	Analysis	(PCA),	Correspondence	Analysis	(CA),	and	Multiple
Correspondence	Analysis	(MCA).

As	a	first	step,	we	must	install	the	package.	This	time,	the	installation	is	a	little	different
because	factoextra	is	not	published	in	the	CRAN	and	we	must	install	it	from	a	project	site
in	GitHub	(https://github.com/kassambara/factoextra).	In	order	to	do	this,	we	need	to
install	an	additional	package	called	devtools,	which	contains	utilities	for	package
development	in	R,	we	must	also	have	previously	installed	FactoMiner:

#Loading	or	installing	packages

suppressWarnings(

								suppressMessages(if

																									(!require(devtools,	quietly=TRUE))

																install.packages("devtools")))

suppressWarnings(

								suppressMessages(if

																									(!require(stringi,	quietly=TRUE))

																install.packages("stringi")))

suppressWarnings(

								suppressMessages(if

																									(!require(Rcpp,	quietly=TRUE))

																install.packages("Rcpp")))

#Loading	or	installing	package	"factoextra"

library("devtools")

install_github("kassambara/factoextra")

Note
Since	it	is	an	external	resource	to	CRAN,	the	installation	of	factoextra	might	give	you
some	problems.	After	installing	devtools	using	the	instruction:	install_github
(Kassambara	/	factoextra)	,	whether	or	not	the	console	indicates	that	R	cannot	find	a
particular	package,	it	is	necessary	to	install	it	and	run	the	installation	instructions	again,	as
many	times	as	necessary.

Once	the	required	packages	are	installed,	we	can	make	some	enhanced	graphics	through
the	functions	included	in	factoextra.	For	example,	it	is	much	easier	to	generate	a	screeplot.
Its	graphic	quality	is	higher	and	requires	less	code:

library(factoextra)

#	Visualize	eigenvalues/variances

fviz_screeplot(res,addlabels=TRUE)

https://github.com/kassambara/factoextra

It	is	also	possible	to	plot	the	circle	of	correlations,	adding	interesting	features	for	analysis.
For	example,	consider	a	circle	of	correlation	for	which	we	use	a	gradient	color	to	indicate
the	level	of	contribution	of	each	variable:

#	Control	variable	colors	using	their	contributions

#	Use	gradient	color

library(ggplot2)

p<-fviz_pca_var(res,	col.var="contrib")

suppressWarnings(p+scale_color_gradient2

																	(low="red",high="blue",midpoint	=	90)

																	+theme_minimal())

An	important	aspect	of	the	factoextra	package	is	considering	that	it	uses	the	library
ggplot2	to	add	great	graphic	possibilities.	The	package	inherited	one	of	the	problems	in
ggplot2,	and	it	is	not	easy	to	create	multiplots.

This	is	an	important	feature	in	many	occasions;	however,	to	resolve	this,	you	can	use	a
costumed	function.

In	the	following	example,	we	will	plot	the	contributions	of	variables	and	individuals	to	the
first	two	principal	components	using	a	2x1	multiplot	using	factoextra:

#	Multiple	plot	function

multiplot	<-	function(...,	plotlist=NULL,	file,	cols=1,	layout=NULL)	{

		library(grid)

		#	Make	a	list	from	the…	arguments	and	plotlist

		plots	<-	c(list(...),	plotlist)

		numPlots	=	length(plots)

		#	If	layout	is	NULL,	then	use	'cols'	to	determine	layout

		if	(is.null(layout))	{

				#	Make	the	panel

				#	ncol:	Number	of	columns	of	plots

				#	nrow:	Number	of	rows	needed,	calculated	from	#	of	cols

				layout	<-	matrix(seq(1,	cols	*	ceiling(numPlots/cols)),

																				ncol	=	cols,	nrow	=	ceiling(numPlots/cols))}

	if	(numPlots==1)	{

				print(plots[[1]])	}	

else	{#	Set	up	the	page

				grid.newpage()

				pushViewport(viewport(layout	=	grid.layout(nrow(layout),	

ncol(layout))))

				#	Make	each	plot,	in	the	correct	location

				for	(i	in	1:numPlots)	{

						#	Get	the	i,j	matrix	positions	of	the	regions	that	contain	this	

subplot

						matchidx	<-	as.data.frame(which(layout	==	i,	arr.ind	=	TRUE))

						print(plots[[i]],	vp	=	viewport(layout.pos.row	=	matchidx$row,

																																						layout.pos.col	=	matchidx$col))

				}	}	}

#	Variable	contributions	on	axes	1	+	2

p1<-fviz_contrib(res,	choice="var",	axes	=	1:2)

#	Individuals	contributions	on	axes	1	+	2

p2<-fviz_contrib(res,	choice="ind",	axes	=	1:2)

multiplot(p1,	p2,cols=2)

As	can	be	seen,	both	graphs	are	presented	in	the	same	row,	next	to	each	other.	If	you	do
not	use	the	custom	function,	the	R	console	will	graph	individually.

To	conclude	this	section,	we	will	see	a	final	example.	To	develop	it,	we	will	quickly	build
a	PCA	on	the	Iris	dataset	(we	have	already	worked	with	this	data	in	previous	chapters).
The	reason	for	this	is	that	we	will	need	more	data	so	that	the	example	can	be	appreciated

correctly:

data(iris)

resIris	<-	prcomp(iris[,	-5],		scale	=	TRUE)

#	Add	Color	by	groups

p	<-	fviz_pca_ind(resIris,	geom	=	"point",

				habillage=iris$Species,	addEllipses=TRUE,

				ellipse.level=	0.90)+	theme_minimal()

p

The	interesting	thing	about	this	chart	is	that	it	provides	similar	functionality	to	the	circle	of
correlation,	with	the	advantage	that	it	is	possible	to	identify	the	class	of	individuals	by
ellipses,	in	this	case	representing	the	type	of	plant.

Hierarchical	clustering	on	principal	components
Now	that	we’ve	seen	some	generalities	with	respect	to	principal	component	analysis,	we
will	combine	this	knowledge	with	what	we	developed	in	Chapter	3,	Identifying	and
Understanding	Groups:	Clustering	Algorithms,	when	we	learned	to	build	agglomerative
hierarchical	clustering	on	the	original	variables	of	the	Iris	dataset.	In	this	section	we	will
do	it	using	synthetic	variables	that	we	built	by	principal	components	analysis.

For	this	example,	we	will	again	use	the	Iris	dataset	to	build	a	principal	component	analysis
and	then,	we	will	carry	out	a	hierarchical	clustering	on	the	principal	components,	using	the
HCPC	function,	which	is	a	part	of	the	package	FactoMiner.

In	the	words	of	its	author:

“HCPC:	Hierarchical	Clustering	on	Principle	Components	performs	an
agglomerative	hierarchical	clustering	on	results	from	a	factor	analysis.	Results
include	paragons,	description	of	the	clusters,	and	graphics.”

#	Load	data	from	Iris.csv

directory<-c("C:/Unsupervised	Learning/Chapter	03/iris.csv")

Iris	<-	read.table(directory,header=TRUE,	sep=",",	

																			na.strings="NA",	dec=".",	strip.white=TRUE)

#	Load	FactoMiner

suppressWarnings(

								suppressMessages(if

																									(!require(FactoMineR,	quietly=TRUE))

																install.packages("FactoMineR")))

#	Build	the	PCA

Iris.PCA<-Iris[,	c("X",	"Sepal.Length",	"Sepal.Width",	

"Petal.Length","Petal.Width")]

	res<-PCA(Iris.PCA	,	scale.unit=TRUE,	ncp=5,	graph	=	FALSE)

	

#	Build	the	Hierarchical	Clustering

	suppressWarnings(res.hcpc<-HCPC(res	,nb.clust=-1,

																																	consol=TRUE,min=1,max=3,graph=FALSE))

At	this	point,	the	clustering	on	the	principal	components	has	already	been	done.	We	can
check	the	number	of	observations	in	each	cluster	that	has	been	defined:

#	Check	the	clusters	size

	table(res.hcpc$data.clust[,ncol(res.hcpc$data.clust),drop=F])

1		2		3	

50	53	47

In	addition,	the	function	can	generate	several	graphs	related	to	hierarchical	clustering
models	that	we	built:

par(mfrow	=	c(1,	2))

		#	plots	a	factor	map,	individuals	colored	by	cluster

	plot.HCPC(res.hcpc,	choice="map",draw.tree=FALSE)

	#	Build	plots	of	inertia	gains.

	plot.HCPC(res.hcpc,	choice="bar")

In	the	chart	below,	to	the	left	we	can	see	the	map	of	factors	for	individuals.	We	can
identify	three	clusters	by	color.	On	the	right,	we	find	a	bar	chart	summarizing	the	Inter-
Cluster	inertia	gains	that	can	be	used	as	support	to	know	where	to	prune	the	dendrogram,
that	is,	how	many	groups	use:

We	can	also	generate	the	dendrogram,	bottom-left,	and	an	interesting	plot	that	mixes	a
map	of	factors	with	a	tree	in	which	you	can	find	the	clusters	identified	as	follows:

		par(mfrow	=	c(1,	2))

		#	Plots	the	tree

	plot.HCPC(res.hcpc,	choice="tree",rect=TRUE,

											tree.barplot=FALSE,t.level="all")

	#	Plots	the	same	factor	map,	individuals	colored	by	cluster,	the	tree	

above

	plot.HCPC(res.hcpc,	choice="3D.map",

											angle=60,ind.names=FALSE,centers.plot=TRUE)

Principal	components	analysis	by	user	interfaces
Sometimes	it	is	useful	to	use	end-user	tools,	either	because	we	don’t	have	programming
knowledge	to	R,	or	simply	because	they	save	time.	The	FactoMiner	package	has	a	version
integrated	with	the	end	user	tool	Rcommander:

Rcommander	or	Rcmdr	is	a	visual	user	interface	for	working	with	R,	using	input
commands.	It	is	a	very	good	alternative	to	start	learning	R	without	the	need	to	write
programming	code	directly.

The	Rcmdr	package	is	a	standard	R	package,	and	it	installs	and	is	loaded	in	the	normal
manner:

#	Install	Rcmd

install.packages("Rcmdr")

The	original	installation	of	Rcmdr	does	not	include	FactoMiner.	We	need	to	install	it	later
using	the	following	statement:

#	Install	FactoMiner	GUI

	source("http://factominer.free.fr/install-facto.r")

Note
Depending	on	the	operating	system	that	we	use,	the	installation	of	Factominer	and
Rcmmdr	may	be	different,	or	it	could	give	rise	to	some	problems.	If	you	experience	any
complications,	you	will	find	more	information	on	their	official	websites:
http://factominer.free.fr/	and	http://www.rcommander.com/.

To	load	the	Rcmdr	package	once	it	is	installed,	simply	enter	the	following	command:

#Set	language	to	English

	Sys.setenv(LANGUAGE="en")

#Load	Rcmdr

	library(Rcmdr)

The	preceding	statement	loads	the	user	interface	Rcomdr,	which	should	already	be
integrated	with	the	plugin	FactoMiner.	The	first	thing	to	do	is	load	the	data	using	the
menu:	Factominer	“Import	data	from	textfile”

http://factominer.free.fr/
http://www.rcommander.com/

Once	the	data	is	loaded,	the	options	for	the	analysis	of	principal	components	and	other
things	is	enabled.	Using	the	menu:	FactoMiner:	Principal	Components	Analysis,	we	can
even	request	to	conduct	a	clustering	on	the	PCA:

If	we	talk	about	tools	for	end-user	interfaces,	in	addition	to	integration	of	the	tools	that	we
have	seen,	it	is	very	interesting	to	know	the	FactoShiny	package:

FactoShiny	performs	factorial	analysis	with	a	menu	and	draws	graphs	interactively;
thanks	to	FactoMiner	and	a	Shiny	application. This	package	minimizes	interaction	with
the	console.	We	must	load	the	data	to	the	R	environment	as	we	have	seen.	Then	it	is	only
necessary	to	use	a	function	that	will	receive	the	loaded	data	as	parameter.	For	example:

#Load	data	in	a	data.frame	named	Iris

suppressWarnings(

								suppressMessages(if

																									(!require(Factoshiny,	quietly=TRUE))

																install.packages("Factoshiny")))

#Load	data	in	a	data.frame	named	Iris

directory<-c("C:/Unsupervised	Learning/Chapter	03/iris.csv")

Iris	<-	read.table(directory,header=TRUE,	sep=",",	

																			na.strings="NA",	dec=".",	strip.white=TRUE)

#Performs	Principal	Component	Analysis	(PCA)	a	Shiny	application.

PCAshiny(Iris)	

After	this	is	done,	FactoShiny	is	displayed	on	our	web	browser,	in	which	we	interact
through	menu	options.	For	example,	the	Data	menu:

We	can	also	use	the	Summary	of	dataset	option	for	exploratory	data	analysis:

Alternatively,	interact	with	graphs	and	data	obtained	from	the	analysis	of	main
components:

Summary
In	this	chapter,	we	began	by	reviewing	the	concept	of	dimensionality	reduction.	We	saw
that	its	importance	is	mainly	in	datasets	of	high	dimensionality.	The	quality	of	the	models
tend	to	worsen	due	to	what’s	known	as	the	curse	of	dimensionality,	which	was	explained
through	an	example.	Next,	we	discussed	some	possibilities	to	mitigate	the	negative	effects
of	high	dimensionality.	This	was	done	by	feature	selection	techniques	and	feature
extraction.	We	concentrated	on	the	latter	by	analyzing	the	most	widely	used	technique,
PCA.

As	an	added	value,	we	detail	the	use	of	a	specialized	package	to	enhance	graphics	for	PCA
analysis.	The	package	factoextra	exemplifies	some	extended	possibilities	for	this	kind	of
graphics.	Later,	we	linked	what	was	previously	learned	in	the	third	chapter	with	this
chapter,	by	building	agglomerative	hierarchical	clustering	on	Principal	Components
Analysis.	Finally,	we	ended	the	chapter	showing	some	options	regarding	PCA	using	end-
user	interfaces.

In	the	next	chapter,	we	will	see	how	to	combat	the	curse	of	dimensionality	from	another
angle,	using	feature	selection	techniques	that	do	not	affect	changes	in	the	data,	and	will
instead	apply	techniques	to	discern	which	variables	do	not	add	value	in	a	dataset	and	the
omission	of	which	contributes	to	modeling	of	higher	quality.

Chapter	6.	Feature	Selection	Methods
In	the	previous	chapter,	we	discussed	the	problems	faced	while	working	with	high-
dimensional	datasets,	sometimes	called	the	curse	of	dimensionality.	In	this	regard,	we
commented	on	how	there	are	two	ways	to	deal	with	the	problem:	by	methods	of
dimensionality	reduction,	and	through	feature	selection	methods;	in	this	chapter,	we	will
focus	on	the	latter.

This	chapter	aims	to	explain	some	techniques	for	feature	selection,	also	known	as	variable
selection	or	attribute	selection.	Feature	selection	is	the	process	of	selecting	a	subset	of
relevant	features	for	use	in	model	construction.

The	key	point	is	to	choose	a	subset	of	relevant	features	of	variables	for	modeling	and	to
not	use	features	that	prove	to	be	redundant	considering	their	correlation	to	simplifying
model	construction.

Most	advances	and	developments	in	relation	to	feature	selection	have	been	made	in	the
field	of	supervised	learning,	for	classifiers-based	models.	By	contrast,	in	the	field	of
unsupervised	learning,	deciding	which	variables	we	will	use	is	a	complex	issue.

In	this	chapter,	we	will	be	covering	the	following	aspects:

The	concept	of	feature	selection
The	most	commonly	used	techniques:

Expert	knowledge-based
Feature	ranking
Subset	selection	techniques
Embedded	methods
Wrapper	methods
Filter	methods

Feature	selection	techniques
Feature	selection	techniques	do	not	modify	the	original	representation	of	the	variables,
since	only	a	subset	out	of	them	is	selected.	These	techniques	preserve	the	original
semantics	of	the	variables,	offering	the	advantage	of	interpretability.

Unsupervised	feature	selection	algorithms	assume	that	no	classifiers	are	available	for	the
dataset.	For	this	reason,	the	aim	changes	from	identifying	features	relevant	to	making	a
prediction,	to	finding	the	features	that	contribute	the	most	information	to	the	dataset.

We	can	generalize	the	benefit	of	performing	feature	selection	into	three	major	aspects:

They	help	us	to	reduce	the	effects	of	the	curse	of	dimensionality,	that	is,	to	improve
the	performance	of	our	models
They	reduce	the	time	and	resources	required	to	process	our	models
They	help	models	to	be	easier	to	interpret

Whatever	the	benefit	that	we	are	seeking,	it	is	possible	to	use	a	variety	of	methods	to
perform	feature	selection.	For	example:	expert	knowledge-based	techniques,	feature
ranking	techniques,	and	subset	selection	techniques,	as	seen	in	the	following	hierarchy:

Expert	knowledge-based	techniques
Beginning	with	the	simplest	option,	and	very	often	the	most	powerful,	resorting	to	expert
knowledge	may	be	the	first	approach,	that	is,	a	person	with	enough	knowledge	of	the
problem	may	be	the	first	filter.	The	reason	for	this	is	that	there	may	exist	aspects	of	the
problem	and	the	data,	which	could	escape	numerical	approximations.	For	example,	an
expert	in	the	data	may	suggest	excluding	certain	variables,	considering	functional	aspects
that,	otherwise,	we	could	not	know	of.

Feature	ranking
Feature	ranking	is	a	technique	aimed	at	supporting	expert	knowledge,	and	consists	of
defining	a	scoring	criteria,	calculating	the	performance	of	each	variable	individually	and
listing	them	in	descending	order.	This	method	does	not	determine	the	cutoff	point;	the	user
should	define	the	level	from	which	the	variables	are	excluded.

For	example,	suppose	we	have	a	dataset	of	14	variables.	The	first	step	is	to	proceed	to
define	a	qualification	criterion	for	each	variable.	This	could	be	an	approach	based	on
correlation,	for	example	the	Pearson	correlation	coefficient.	Also,	assume	that	we	want	to
use	only	the	best	five	variables:

Subsequently,	a	validation	can	be	performed	to	compare	the	performance	of	clustering
with	all	data	versus	a	model	that	uses	only	the	data	selected	by	ranking	variables.

To	apply	the	concept	directly	on	the	R	console,	the	following	is	a	possible	example,	using
the	package	FSelector.

FSelector	is	a	package	containing	functions	for	selecting	attributes	from	a	given	dataset.

Regarding	the	data	for	this	example,	we	use	the	dataset	BostonHousing.

This	is	housing	data	for	506	census	tracts	of	Boston	from	the	1970	census.	The	dataframe
BostonHousing	contains	the	original	data	by	Harrison	and	Rubinfeld	(1979).	More	details
about	this	dataset	can	be	found	in	the	mlbench	package.

As	usual,	the	first	step	is	to	install	and	load	the	packages	in	the	R	environment	along	with
the	necessary	data:

#Loading	or	installing	package	

suppressWarnings(

								suppressMessages(if

																									(!require(FSelector,	quietly=TRUE))

																install.packages("FSelector")))

library(FSelector)

#	Loading	Data

path<-"file:///C:/Unsupervised	Learning/Chapter	06/BostonHousing.csv"	#	Set	

your	Path	Here

Dataset<-read.csv(path,	sep	=	",",	dec	=	".",row.names	=	1)

Dataset<-Dataset[-4]	

str(Dataset)

head(Dataset)

The	data	is	successfully	loaded	and	contains	13	numeric	variables.

The	FSelector	package	contains	a	variety	of	different	algorithms	to	rank	the	variables.
Continuing	with	the	example,	we	will	use	the	correlation	coefficient	as	a	unit	of	valuation:

#	Making	the	scores

Scores	<-	linear.correlation(medv~.,	Dataset)

Scores

								attr_importance

crim										0.3883046

zn												0.3604453

indus									0.4837252

nox											0.4273208

rm												0.6953599

age											0.3769546

dis											0.2499287

rad											0.3816262

tax											0.4685359

ptratio							0.5077867

b													0.3334608

lstat									0.7376627

In	the	previous	table,	we	can	observe	a	list	that	contains	one	row	for	each	of	the	variables
on	the	left	and	the	score	on	the	right.	This	is	the	ranking	table	and,	in	order	to	make	the
decision,	we	need	to	define	the	cutoff.	For	the	purposes	of	this	example,	suppose	we	want
to	use	the	top	5	most	representative	variables.	We	could	do	this	visually	because	there	are
few	variables,	but	in	a	higher	dimensional	dataset,	it	is	helpful	to	use	the	cutoff.k
function	included	in	the	FSelector	package:

#	cutoff.k:	The	algorithms	select	a	subset	from	a	ranked	

#	attributes.

#	Choosing	Variables	by	cutoff

Subset	<-	cutoff.k(Scores,	5)

as.data.frame(Subset)

[1]	"lstat"			"rm"						"ptratio"	"indus"			"tax"

The	variables	that	we	should	choose,	according	to	the	rule	that	we	define	for	this	example,
are:	"lstat",	"rm",	"ptratio",	"indus",	and	"tax".

We	could	also	set	the	cutoff	as	a	percentage.	Let’s	see	how	to	indicate	that	we	want	to
work	with	40%	of	the	best	variables,	which	logically	comes	to	the	same	conclusion:

Subset2	<-cutoff.k.percent(Scores,	0.4)

as.data.frame(Subset2)

[1]	"lstat"			"rm"						"ptratio"	"indus"			"tax"		

We	observe	what	happens	if,	instead	of	making	the	score	for	the	correlation	coefficient,
we	used	an	entropy-based	approach.	The	information	gain	will	be	as	follows:

#	Making	the	scores

Scores2	<-	information.gain(medv~.,	Dataset)

#	Choosing	Variables	by	cutoffSubset	<-	cutoff.k(Scores2,	5)

Subset3	<-	cutoff.k(Scores2,	5)

as.data.frame(Subset3)

[1]	"lstat"			"rm"						"nox"					"indus"			"ptratio"

Using	the	new	approach,	we	reached	a	similar	but	not	identical	result.	There	are	four
variables	that	persist,	however	one	is	replaced	when	using	the	new	scoring	method.	The
selection	of	the	scoring	method	greatly	affects	the	result.	It	is	recommended	to	study	and
test	various	algorithms	to	determine	which	fits	best.

Subset	selection	techniques
In	contrast	to	ranking	methods,	which	only	classify	the	variables	individually	according	to
the	criteria	chosen	by	the	user,	subset	selection	techniques	can	automatically	determine	the
size	of	the	feature	subset.

These	techniques	typically	use	a	quality	measure	of	variables,	in	conjunction	with	a
heuristic	search	method,	which	aims	to	find	the	smallest	possible	subset	of	variables
without	causing	a	reduction	in	performance.	It	can	be	subdivided	into	wrapper	methods,
filter	methods,	and	embedded	methods.

Embedded	methods
Often,	models	already	have	capabilities	for	feature	selection.	An	embedded	method	of
feature	selection	is	one	where	the	feature	selection	is	native	to	the	model.	An	example	of
such	solutions	is	the	ewkm	function,	which	is	a	part	of	the	wskm	package.

In	the	words	of	its	author:

"ewkm	is	an	entropy	weighted	k-means	which	means	that	it	is	a	weighted	subspace
clustering	algorithm	that	is	well	suited	to	high	dimensional	data.	Weights	are
calculated	as	the	importance	of	a	variable	with	regard	to	cluster	membership.”

In	the	following	code,	we	develop	a	simple	use	example	in	the	R	console.	We	use	the	Iris
dataset,	for	the	purposes	of	its	comparison	with	the	traditional	k-means	model,	as
discussed	in	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering	Algorithms:

#Loading	or	installing	package	

suppressWarnings(

								suppressMessages(if

																									(!require(wskm,	quietly=TRUE))

																install.packages("wskm")))

library(wskm)

set.seed(2)

model	<-	ewkm(iris[1:4],	3,	lambda=2,	maxiter=1000)

#	Load	or	install	packages

suppressWarnings(

								suppressMessages(if

																									(!require(cluster,	quietly=TRUE))

																install.packages("cluster")))

library("cluster")

#	Cluster	Plot	against	1st	2	principal	components

clusplot(iris[1:4],	model$cluster,	color=TRUE,	shade=TRUE,

									labels=2,	lines=1,main='Cluster	Analysis	for	Iris')

Weights	are	calculated	for	each	variable	and	cluster.	They	are	a	measure	of	the	relative
importance	of	each	variable	with	regards	to	the	membership	of	the	observations	to	that
cluster.	The	weights	are	incorporated	into	the	distance	function,	typically	reducing	the
distance	for	more	important	variables.

Weights	remain	stored	in	the	model	and	we	can	check	them	as	follows:

#	Show	the	stored	weights	

round(model$weights*100,2)

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width

1									3.62								2.25								36.28							57.86

2									0.07							31.77									0.21							67.96

3									0.10							16.78									0.10							83.02

Wrapper	methods
Such	methods	are	based	on	selecting	a	subset	of	features	and	using	heuristic	search
algorithms.	One	of	the	major	disadvantages	of	these	methods	is	that	in	datasets	with	many
variables,	they	require	significant	processing	time	due	to	their	complexity.

These	methods	are	generally	associated	with	supervised	learning,	but	it	is	possible	to	use
them	in	unsupervised	learning	too.	For	example,	in	clustering,	the	inclusion	of	noise
variables	can	degrade	the	final	model.

In	the	following	diagram,	we	can	observe	a	wrapper	approach	for	unsupervised	learning:

The	package	clustvarsel	contains	an	implementation	of	such	methods	to	model-based
clustering.

In	the	words	of	its	author:

"clustvarsel	is	a	function	which	implements	variable	selection	methodology	for
model-based	clustering	and	allows	to	find	the	(locally)	optimal	subset	of	variables	in
a	dataset	that	has	the	group/cluster	information.	A	greedy	or	headlong	search	can	be
used,	either	in	a	forward-backward	or	backward-forward	direction,	with	or	without
sub-sampling	at	the	hierarchical	clustering	stage	for	starting	Mclust	models.”

For	the	following	example,	we	use	a	synthetic	dataset,	consisting	of	five	variables,	where
deliberately	only	the	first	two	have	utility	for	clustering	analysis.	The	others	should	be
excluded	by	the	method:

#Loading	data	from	csv	file

path<-"file:///C:/Unsupervised	Learning/Chapter	06/syntheticdata.csv"	#	Set	

your	Path	Here

Dataset<-read.csv(path,	sep	=	",",	dec	=	".",row.names	=	1)

head(Dataset)

											X1									X2										X3										X4							X5

1	-0.71807482	-0.1137642	-1.02888833		0.45394435	1.725742

2		3.75019220		3.3638854		3.43319075	-2.12665936	2.469371

3	-0.44627119	-0.6971258		2.25009635		4.21566323	1.063453

4		0.08522441		0.1547583		0.09926313		0.07124757	1.691745

5		4.36181004		2.0209057		4.06428491		0.41207853	1.462167

6	-0.52709715		1.2428107	-0.75457360		0.99417826	2.209369

After	loading	the	dataset,	we	proceed	to	load	the	required	packages	and	generate	an
estimation	of	the	optimal	subset	of	variables	using	clustvarsel,	applying	the	greedy
sequential	fo	rward	search	algorithm:

suppressWarnings(

								suppressMessages(if

																									(!require(clustvarsel,	quietly=TRUE))

																install.packages("clustvarsel")))

library(clustvarsel)

suppressWarnings(

								suppressMessages(if

																									(!require(mclust,	quietly=TRUE))

																install.packages("mclust")))

library(mclust)

								

#	sequential	forward	greedy	search	(default)

out	=	clustvarsel(Dataset,	G	=	1:5)

out

The	selection	algorithm	indicates	that	the	subset	we	use	for	the	clustering	model	is
composed	of	variables	X1	and	X2	and	that	other	variables	should	be	rejected.	Having
identified	the	variables	that	we	use,	we	proceed	to	build	the	clustering	model:

	#	Clustering	produced	by	the	selected	variables

	Subset1	=	Dataset[,out$subset]

	mod	=	Mclust(Subset1,	G	=	1:5)

	summary(mod)

--

Gaussian	finite	mixture	model	fitted	by	EM	algorithm	

--

Mclust	EEV	(ellipsoidal,	equal	volume	and	shape)	model	with	2	components:

	log.likelihood			n			df							BIC							ICL

							-727.074		200		9						-1501.833	-1509.327

Clustering	table:

		1			2	

107		93	

plot(mod,c("classification"))

Note
The	package	clustvarsel	has	an	alternate	search	method,	namely	The	headlong	search.
Furthermore,	an	important	advantage	can	be	executed	by	parallel	processing	in	a	simple
way	using	the	parameter	para	llel	=	TRUE.

Filter	methods
Filter	methods	evaluate	the	feature	subsets	not	by	running	a	model	on	them,	but	rather	by
applying	some	sort	of	metric.	Some	types	of	conventional	metrics	are:

Dependency	metrics:	These	have	the	ability	to	predict	one	feature	from	another	one.
For	example,	the	correlation.
Information	metrics:	They	compare	the	information	gain	of	individual	features.	For
example,	entropy	or	information	gain.
Distance	metrics:	These	aid	in	the	effective	separation	of	the	features.

Next	is	an	example	of	how	we	can	apply	a	filtering	process	in	R	to	remove	redundancy	by
correlation,	using	the	dataset	BostonHousing	presented	earlier.

We	use	the	findCorrelation	function	included	in	the	caret	package.

findCorrelation	is	a	function	that	searches	through	a	correlation	matrix	and	returns	a
vector	of	integers	corresponding	to	the	columns,	to	remove	or	reduce	pair-wise
correlations.

#	Loading	Data

path<-"file:///C:/Unsupervised	Learning/Chapter	06/BostonHousing.csv"	#	Set	

your	Path	Here

Dataset<-read.csv(path,	sep	=	",",	dec	=	".",row.names	=	1)

Dataset<-Dataset[-4]	

head(Dataset,3)

#Loading	or	installing	package							

suppressWarnings(

								suppressMessages(if

																									(!require(caret,	quietly=TRUE))

																install.packages("caret")))

library(caret)

suppressWarnings(

								suppressMessages(if

																									(!require(corrplot,	quietly=TRUE))

																install.packages("corrplot")))

library(corrplot)

#	calculate	correlation	matrix

correlationMatrix	<-	cor(Dataset)

#	find	attributes	that	are	highly	correlated

highlyCorrelated	<-	findCorrelation(correlationMatrix,	cutoff=0.75)

#	highly	correlated	attributes

highlyCorrelated

names(Dataset[,highlyCorrelated])

[1]	"indus"	"tax"			"nox"

The	variables	that	have	a	higher	correlation	to	0.75	are	indus,	tax,	and	nox.	We	can
remove	them	and	compare	the	results	graphically	as	follows:

#	Redundant	Features	Removed

Dataset2<-Dataset[-highlyCorrelated]

#comparing	graphically

par(mfrow	=	c(1,	2))

corrplot(correlationMatrix,	order	=	"hclust")

corrplot(cor(Dataset2),	order	=	"hclust")

The	graph	on	the	left	corresponds	to	the	correlation	matrix	of	the	original	dataset	and	the
graph	on	the	right	corresponds	to	the	dataset	once	we	have	removed	the	redundant
variables.

Summary
In	this	chapter,	we	began	by	reviewing	the	concept	of	feature	selection,	its	importance	and
the	need	to	include	it	in	unsupervised	learning	processes.	You	learned	that	expert
knowledge	can	be	a	valuable	alternative	and	that	we	can	enrich	it	by	applying	less
empirical	techniques	such	as	feature	ranking	or	various	subset	selection	techniques.

Dear	reader,	here	ends	our	little	journey	through	the	wide	world	of	unsupervised	learning.
Thank	you	very	much	for	your	company.	I	sincerely	hope	that	it	was	helpful	to	you.	This
book	is	intended	to	be	a	modest	introduction.	We	encourage	you	to	go	ahead	and	continue
learning	so	that	you	can	refine	and	improve	what	you	have	learned	with	us.

Appendix	A.	References
The	author	of	this	book	is	not	the	creator	of	any	of	the	packages,	functions,	or	programs
used	in	each	of	the	examples;	I	am	only	a	facilitator.	For	that	reason,	I	would	like	to
sincerely	thank	the	developers	of	R	and	the	R	Packages,	who	have	contributed	so
generously	to	the	growing	of	the	R	open	source	community.	In	this	book,	we	use	many
packages	and	sometimes	the	definitions	of	these	packages.	In	order	to	be	respectful	to	the
authors,	they	are	written	verbatim.

This	appendix	provides	a	list	of	links	referenced	in	the	book,	which	are	sorted	chapter-
wise.

Hyperlinks	provide	a	gateway	to	extensive	literature	that	can	be	accessed	on	the	Internet.
They	provide	information	above	and	beyond	what	one	finds	in	a	single	article,	book,	blog,
or	other	media	formats.	However,	when	one	writes	a	book,	the	links	provided	in	the
printed	book	are	useful	to	only	those	readers	who	would	go	to	any	lengths	to	find
information,	but	for	others,	these	links	are	irksome,	frustrating,	and	almost	useless.	They
are	of	course	useful	in	online	formats	such	as	e-books.

In	order	to	conform	to	page-count	limits	set	by	the	publishers	and	yet	provide	guidance	to
the	readers,	there	is	no	better	way	than	publishing	a	list	of	links	that	is	sorted	chapter-wise
and	placed	in	a	location	that	is	easy	to	access.	This	appendix	is	an	attempt	to	do	just	that.
However,	some	essential	information	is	used	in	the	book	in	some	chapters.

Chapter	1,	Welcome	to	the	Age	of
Information	Technology
About	R:

https://www.r-project.org/

https://www.r-project.org/

Chapter	2,	Working	with	Data	–
Exploratory	Data	Analysis
Iris	Dataset:	Edgar	Anderson’s	Iris	Data:

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/iris.html

XLConnect:	Excel	Connector	for	R:

https://cran.r-project.org/web/packages/XLConnect/index.html

Hmisc:	Harrell	Miscellaneous:

https://cran.r-project.org/web/packages/Hmisc/index.html

fBasics:	Rmetrics	-	Markets	and	Basic	Statistics:

https://cran.r-project.org/web/packages/fBasics/index.html

pastecs:	Package	for	Analysis	of	Space-Time	Ecological	Series:

https://cran.r-project.org/web/packages/pastecs/index.html

ggplot2:	An	Implementation	of	the	Grammar	of	Graphics:

https://cran.r-project.org/web/packages/ggplot2/index.html

dplyr:	A	Grammar	of	Data	Manipulation:

https://cran.r-project.org/web/packages/dplyr/index.html

gplots:	Various	R	programming	tools	for	plotting	data:

https://cran.r-project.org/web/packages/gplots/index.html

car:	Companion	to	Applied	Regression:

https://cran.r-project.org/web/packages/car/index.html

lattice:	Trellis	graphics	for	R:

https://cran.r-project.org/web/packages/lattice/index.html

ellipse:	Functions	for	drawing	ellipses	and	ellipse-like	confidence	regions:

https://cran.r-project.org/web/packages/ellipse/index.html

corrplot:	Visualization	of	a	correlation	matrix:

https://cran.r-project.org/web/packages/corrplot/index.html

rattle:	Graphical	User	Interface	for	Data	Mining	in	R:

https://cran.r-project.org/web/packages/rattle/index.html

http://rattle.togaware.com/

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/iris.html
https://cran.r-project.org/web/packages/XLConnect/index.html
https://cran.r-project.org/web/packages/Hmisc/index.html
https://cran.r-project.org/web/packages/fBasics/index.html
https://cran.r-project.org/web/packages/pastecs/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/gplots/index.html
https://cran.r-project.org/web/packages/car/index.html
https://cran.r-project.org/web/packages/lattice/index.html
https://cran.r-project.org/web/packages/ellipse/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/rattle/index.html
http://rattle.togaware.com/

Chapter	3,	Identifying	and	Understanding
Groups	–	Clustering	Algorithms
ElemStatLearn:	Data	Sets,	Functions,	and	examples	from	The	Elements	of	Statistical
Learning,	Data	Mining,	Inference,	and	Prediction	by	Trevor	Hastie,	Robert	Tibshirani,
and	Jerome	Friedman:

https://cran.r-project.org/web/packages/ElemStatLearn/index.html

http://statweb.stanford.edu/~tibs/ElemStatLearn/

reshape:	Flexibly	reshape	data:

https://cran.r-project.org/web/packages/reshape/index.html

scatterplot3d:	3D	Scatter	plot:

https://cran.r-project.org/web/packages/scatterplot3d/index.html

NbClust:	Determining	the	Best	Number	of	Clusters	in	a	Data	Set:

https://cran.r-project.org/web/packages/NbClust/index.html

cluster:	“Finding	Groups	in	Data”:	Cluster	Analysis	Extended	Rousseeuw	et	al:

https://cran.r-project.org/web/packages/cluster/index.html

HSAUR:	A	Handbook	of	Statistical	Analyses	Using	R	(1st	Edition):

https://cran.r-project.org/web/packages/HSAUR/index.html

amap:	Another	Multidimensional	Analysis	Package:

https://cran.r-project.org/web/packages/amap/index.html

cba:	Clustering	for	Business	Analytics:

https://cran.r-project.org/web/packages/cba/index.html

rattle:	Graphical	User	Interface	for	Data	Mining	in	R:

https://cran.r-project.org/web/packages/rattle/index.html

http://rattle.togaware.com/

fpc:	Flexible	Procedures	for	Clustering:

https://cran.r-project.org/web/packages/fpc/index.html

dendextend:	Extending	R’s	Dendrogram	Functionality:

https://cran.r-project.org/web/packages/dendextend/index.html

corrplot:	Visualization	of	a	correlation	matrix:

https://cran.r-project.org/web/packages/corrplot/index.html

ape:	Analyses	of	Phylogenetics	and	Evolution:

https://cran.r-project.org/web/packages/ElemStatLearn/index.html
http://statweb.stanford.edu/~tibs/ElemStatLearn/
https://cran.r-project.org/web/packages/reshape/index.html
https://cran.r-project.org/web/packages/scatterplot3d/index.html
https://cran.r-project.org/web/packages/NClust/index.html
https://cran.r-project.org/web/packages/cluster/index.html
https://cran.r-project.org/web/packages/HSAUR/index.html
https://cran.r-project.org/web/packages/amap/index.html
https://cran.r-project.org/web/packages/cba/index.html
https://cran.r-project.org/web/packages/rattle/index.html
http://rattle.togaware.com/
https://cran.r-project.org/web/packages/fpc/index.html
https://cran.r-project.org/web/packages/dendextend/index.html
https://cran.r-project.org/web/packages/corrplot/index.html

https://cran.r-project.org/web/packages/ape/index.html

https://cran.r-project.org/web/packages/ape/index.html

Chapter	4,	Association	Rules
arules:	Mining	Association	Rules	and	Frequent	Itemsets:

https://cran.r-project.org/web/packages/arules/index.html

arulesViz:	Visualizing	Association	Rules	and	Frequent	Itemsets:

https://cran.r-project.org/web/packages/arulesViz/index.html

https://cran.r-project.org/web/packages/arules/index.html
https://cran.r-project.org/web/packages/arulesViz/index.html

Chapter	5,	Dimensionality	Reduction
SphericalCubature:	Numerical	integration	over	spheres	and	balls	in	n-dimensions;
multivariate	polar	coordinates:

https://cran.r-project.org/web/packages/SphericalCubature/index.html

FactoMineR:	Multivariate	Exploratory	Data	Analysis	and	Data	Mining:

https://cran.r-project.org/web/packages/FactoMineR/index.html

http://factominer.free.fr/

devtools:	Tools	to	Make	Developing	R	Packages	Easier:

https://cran.r-project.org/web/packages/devtools/index.html

stringi:	Character	String	Processing	Facilities:

https://cran.r-project.org/web/packages/stringi/index.html

Rcpp:	Seamless	R	and	C++	integration:

https://cran.r-project.org/web/packages/Rcpp/index.html

factoextra:	Visualization	of	the	outputs	of	a	multivariate	analysis:

https://github.com/kassambara/factoextra

Rcmdr:	R	Commander:

https://cran.r-project.org/web/packages/Rcmdr/index.html

http://www.rcommander.com/

Factoshiny:	Perform	factorial	analysis	from	FactoMineR	with	a	Shiny	application:

https://cran.r-project.org/web/packages/Factoshiny/index.html

https://cran.r-project.org/web/packages/SphericalCubature/index.html
https://cran.r-project.org/web/packages/FactoMineR/index.html
http://factominer.free.fr/
https://cran.r-project.org/web/packages/devtools/index.html
https://cran.r-project.org/web/packages/stringi/index.html
https://cran.r-project.org/web/packages/Rcpp/index.html
https://github.com/kassambara/factoextra
https://cran.r-project.org/web/packages/Rcmdr/index.html
http://www.rcommander.com/
https://cran.r-project.org/web/packages/Factoshiny/index.html

Chapter	6,	Feature	Selection	Methods
FSelector:	Selecting	attributes:

https://cran.r-project.org/web/packages/FSelector/index.html

wskm:	Weighted	k-Means	Clustering:

https://cran.r-project.org/web/packages/wskm/index.html

cluster:	“Finding	Groups	in	Data”:	Cluster	Analysis	Extended	Rousseeuw	et	al:

https://cran.r-project.org/web/packages/cluster/index.html

clustvarsel:	Variable	Selection	for	Model-Based	Clustering:

https://cran.r-project.org/web/packages/clustvarsel/index.html

mclust:	Normal	Mixture	Modelling	for	Model-Based	Clustering,	Classification,	and
Density	Estimation:

https://cran.fhcrc.org/web/packages/mclust/index.html

https://cran.r-project.org/web/packages/FSelector/index.html
https://cran.r-project.org/web/packages/wskm/index.html
https://cran.r-project.org/web/packages/cluster/index.html
https://cran.r-project.org/web/packages/clustvarsel/index.html
https://cran.fhcrc.org/web/packages/mclust/index.html

Index
A

advanced	tools,	for	plotting	PCA
about	/	Advanced	tools	for	plotting	PCA

agglomerative	methods
about	/	Hierarchical	clustering

amap
URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

ape
URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

arules
URL	/	Chapter	4,	Association	Rules

arulesViz
URL	/	Chapter	4,	Association	Rules

association	rules
fundamentals	/	Fundamentals	of	association	rules
representation	/	Representation
plotting	alternatives	/	Plotting	alternatives	for	association	rules
by	end-user	tool	/	Association	rules	by	end-user	tool

association	rules	model
exploring	/	Exploring	the	association	rules	model

B
barplots

about	/	Barplots
basic	visualization

data,	exploring	by	/	Exploring	data	by	basic	visualization
biplot

about	/	Principal	component	analysis
boxplots

about	/	Boxplots
creating	/	Boxplots

C
car

URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis
cba

URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

classes
about	/	Supervised	learning

cluster
URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms,	Chapter	6,	Feature	Selection	Methods

clustering,	by	end-user	interfaces
about	/	Clustering	by	end-user	interfaces

clustering	techniques
fundamentals	/	Fundamentals	of	clustering	techniques
K-Means	Clustering	/	The	K-Means	clustering
hierarchical	clustering	/	Hierarchical	clustering

cluster	K-Mean	algorithm
defining	/	Defining	the	cluster	K-Mean	algorithm

clusters
plotting,	alternatives	/	Alternatives	for	plotting	clusters

clustvarsel
about	/	Wrapper	methods
URL	/	Chapter	6,	Feature	Selection	Methods

conventional	metrics
dependency	metrics	/	Filter	methods
information	metrics	/	Filter	methods
distance	metrics	/	Filter	methods

correlation	matrix
used,	for	calculating	principal	components	/	Principal	component	analysis

Correspondence	Analysis	(CA)
about	/	Advanced	tools	for	plotting	PCA

corrplot
URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis,	Chapter	3,
Identifying	and	Understanding	Groups	–	Clustering	Algorithms

covariance	matrix
used,	for	calculating	principal	components	/	Principal	component	analysis

CRAN
about	/	Benefits	of	using	R

CRISP-DM
about	/	CRISP-DM
business	understanding	/	CRISP-DM
data	understanding	/	CRISP-DM

data	preparation	/	CRISP-DM
modeling	/	CRISP-DM
evaluation	/	CRISP-DM
deployment	/	CRISP-DM

curse	of	dimensionality
about	/	The	curse	of	dimensionality

D
data

exploring,	by	basic	visualization	/	Exploring	data	by	basic	visualization
relations,	exploring	in	/	Exploring	relations	in	data,	Exploring	relations	in	data
using	Rattle
exploring,	by	end-user	interfaces	/	Exploration	by	end-user	interfaces
loading,	into	Rattle	/	Loading	data	into	Rattle
exploring,	in	Rattle	/	Basic	exploration	of	dataset	in	Rattle
exploring	by	graphs,	in	Rattle	/	Exploring	data	by	graphs	in	Rattle
transforming	/	Transforming	data
rescaling	/	Rescaling	data

data	mining
about	/	Data	mining

data	mining	methodology
about	/	Data	mining	methodology	and	software	tools

dataset
loading	/	Loading	a	dataset
exploring	/	Basic	exploration	of	the	dataset

dendextend
URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

devtools
about	/	Advanced	tools	for	plotting	PCA
URL	/	Chapter	5,	Dimensionality	Reduction

distance	metric
about	/	Hierarchical	clustering
Euclidean	Distance	/	Clustering	distance	metric
Maximum	Distance	/	Clustering	distance	metric
Manhattan	Distance	/	Clustering	distance	metric
Canberra	Distance	/	Clustering	distance	metric
Binary	Distance	/	Clustering	distance	metric
Pearson	Distance	/	Clustering	distance	metric
Correlation	/	Clustering	distance	metric
Spearman	Distance	/	Clustering	distance	metric

divisive	methods
about	/	Hierarchical	clustering

dplyr
URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis

E
ElemStatLearn

URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

ellipse
URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis

embedded	methods,	subset	selection	techniques
about	/	Embedded	methods

end-user	interfaces
data,	exploring	by	/	Exploration	by	end-user	interfaces

entropy
about	/	Entropy

ewkm
about	/	Embedded	methods

expert	knowledge-based	techniques
about	/	Expert	knowledge-based	techniques

exploratory	data	analysis
about	/	Exploratory	data	analysis

F
factoextra

about	/	Advanced	tools	for	plotting	PCA
reference	link	/	Advanced	tools	for	plotting	PCA
URL	/	Chapter	5,	Dimensionality	Reduction

Factominer
reference	link	/	Principal	components	analysis	by	user	interfaces

FactoMineR
URL	/	Chapter	5,	Dimensionality	Reduction

Factoshiny
URL	/	Chapter	5,	Dimensionality	Reduction

fBasics
URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis

feature	extraction
about	/	Feature	extraction

feature	ranking
about	/	Feature	ranking

feature	selection	techniques
about	/	Feature	selection	techniques
benefits	/	Feature	selection	techniques

filter	methods,	subset	selection	techniques
about	/	Filter	methods

fpc
URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

FSelector
URL	/	Chapter	6,	Feature	Selection	Methods

G
ggplot2

URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis
gplots

URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis

H
HCPC	function

about	/	Hierarchical	clustering	on	principal	components
hierarchical	clustering

about	/	Hierarchical	clustering
distance	metric,	clustering	/	Clustering	distance	metric
linkage	methods	/	Linkage	methods
in	R	/	Hierarchical	clustering	in	R
with	factors	/	Hierarchical	clustering	with	factors
tips,	for	selecting	/	Tips	for	choosing	a	hierarchical	clustering	algorithm
plotting	alternatives	/	Plotting	alternatives	for	hierarchical	clustering
on	principal	components	/	Hierarchical	clustering	on	principal	components

Hierarchical	Clustering	Analysis	(HCA)
about	/	Hierarchical	clustering

histogram
about	/	Histograms
building	/	Histograms

Hmisc
URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis

HSAUR
URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

I
imputation	missing	data

about	/	Imputation	of	missing	data
Zero/Missing	/	Zero/Missing
mean	imputation	/	Mean	imputation

information	age
about	/	The	information	age

information	gain
about	/	Information	gain

information	theory
about	/	Information	theory

Iris	Dataset
URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis

Iris	dataset
about	/	Loading	a	dataset

K
K-Means	Clustering

about	/	The	K-Means	clustering
clusters	number,	defining	/	Defining	the	number	of	clusters

L
labels

about	/	Supervised	learning
lattice

URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis
linkage	method

about	/	Hierarchical	clustering
linkage	methods

about	/	Linkage	methods
Single	Linkage	/	Linkage	methods
Complete	Linkage	/	Linkage	methods
Average	Linkage	/	Linkage	methods
Centroid	Linkage	/	Linkage	methods
Median	Linkage	/	Linkage	methods
Ward	Linkage	/	Linkage	methods
McQuitty	Linkage	/	Linkage	methods

M
machine	learning

about	/	Machine	learning
supervised	learning	/	Supervised	learning
unsupervised	learning	/	Unsupervised	learning

mclust
URL	/	Chapter	6,	Feature	Selection	Methods

mean	imputation
about	/	Mean	imputation

Median/MAD
about	/	Median/MAD

Multiple	Correspondence	Analysis	(MCA)
about	/	Advanced	tools	for	plotting	PCA

N
natural	log

about	/	Natural	log
NbClust

URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

normalization	techniques
recenter	/	Recenter
Scale	[0-1]	/	Scale	[0-1]
Median/MAD	/	Median/MAD
natural	log	/	Natural	log

P
pastecs

URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis
plotting	alternatives,	for	association	rules	/	Plotting	alternatives	for	association	rules
Principal	component	analysis	(PCA)

about	/	Principal	component	analysis
visual	support	/	Additional	visual	support	for	PCA
advanced	tools,	for	plotting	/	Advanced	tools	for	plotting	PCA
by	user	interfaces	/	Principal	components	analysis	by	user	interfaces

Principal	Component	Analysis	(PCA)
about	/	Principal	component	analysis,	Advanced	tools	for	plotting	PCA

principal	components
calculating	/	Principal	component	analysis
calculating,	correlation	matrix	used	/	Principal	component	analysis
calculating,	covariance	matrix	used	/	Principal	component	analysis

princomp
about	/	Principal	component	analysis

R
R

benefits	/	Benefits	of	using	R
URL	/	Chapter	1,	Welcome	to	the	Age	of	Information	Technology

Rattle
data,	loading	into	/	Loading	data	into	Rattle
data,	exploring	in	/	Basic	exploration	of	dataset	in	Rattle
data,	exploring	by	graphs	/	Exploring	data	by	graphs	in	Rattle
relations,	exploring	in	data	/	Exploring	relations	in	data	using	Rattle
URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis,	Chapter	3,
Identifying	and	Understanding	Groups	–	Clustering	Algorithms

Rcmdr
URL	/	Chapter	5,	Dimensionality	Reduction

Rcmmdr
reference	link	/	Principal	components	analysis	by	user	interfaces

Rcpp
URL	/	Chapter	5,	Dimensionality	Reduction

recenter
about	/	Recenter

relations
exploring,	in	data	/	Exploring	relations	in	data,	Exploring	relations	in	data	using
Rattle

reshape
URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

S
Scale	[0-1]

about	/	Scale	[0-1]
scatterplot3d

URL	/	Chapter	3,	Identifying	and	Understanding	Groups	–	Clustering
Algorithms

silhouette	graphics
reference	link	/	Alternatives	for	plotting	clusters

singular	value	decomposition	(SVD)
about	/	Principal	component	analysis

software	tools,	data	mining
CRISP-DM	/	CRISP-DM

special	visualizations
about	/	Special	visualizations

SphericalCubature
about	/	The	curse	of	dimensionality

stringi
URL	/	Chapter	5,	Dimensionality	Reduction

subset	selection	techniques
about	/	Subset	selection	techniques
embedded	methods	/	Embedded	methods
wrapper	methods	/	Wrapper	methods
filter	methods	/	Filter	methods

supervised	learning
about	/	Supervised	learning
models	/	Supervised	learning
modeling	stage	/	Supervised	learning
predicting	stage	/	Supervised	learning

T
teachers

about	/	Supervised	learning

U
UCI	Machine	Learning	Repository

reference	link	/	Hierarchical	clustering	in	R
unsupervised	learning

about	/	Unsupervised	learning

V
visual	support,	on	PCA

about	/	Additional	visual	support	for	PCA

W
within-cluster	sum	of	squares	(WCSS)

about	/	The	K-Means	clustering
wrapper	methods,	subset	selection	techniques

about	/	Wrapper	methods
wskm

URL	/	Chapter	6,	Feature	Selection	Methods

X
XLConnect

URL	/	Chapter	2,	Working	with	Data	–	Exploratory	Data	Analysis

	Unsupervised Learning with R
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Welcome to the Age of Information Technology
	The information age
	Data mining
	Machine learning
	Supervised learning
	Unsupervised learning
	Information theory
	Entropy
	Information gain
	Data mining methodology and software tools
	CRISP-DM
	Benefits of using R
	Summary
	2. Working with Data – Exploratory Data Analysis
	Exploratory data analysis
	Loading a dataset
	Basic exploration of the dataset
	Exploring data by basic visualization
	Histograms
	Barplots
	Boxplots
	Special visualizations
	Exploring relations in data
	Exploration by end-user interfaces
	Loading data into Rattle
	Basic exploration of dataset in Rattle
	Exploring data by graphs in Rattle
	Exploring relations in data using Rattle
	Summary
	3. Identifying and Understanding Groups – Clustering Algorithms
	Transforming data
	Rescaling data
	Recenter
	Scale [0-1]
	Median/MAD
	Natural log
	Imputation of missing data
	Zero/Missing
	Mean imputation
	Fundamentals of clustering techniques
	The K-Means clustering
	Defining the number of clusters
	Defining the cluster K-Mean algorithm
	Alternatives for plotting clusters
	Hierarchical clustering
	Clustering distance metric
	Linkage methods
	Hierarchical clustering in R
	Hierarchical clustering with factors
	Tips for choosing a hierarchical clustering algorithm
	Plotting alternatives for hierarchical clustering
	Clustering by end-user interfaces
	Summary
	4. Association Rules
	Fundamentals of association rules
	Representation
	Exploring the association rules model
	Plotting alternatives for association rules
	Association rules by end-user tool
	Summary
	5. Dimensionality Reduction
	The curse of dimensionality
	Feature extraction
	Principal component analysis
	Additional visual support for PCA
	Advanced tools for plotting PCA
	Hierarchical clustering on principal components
	Principal components analysis by user interfaces
	Summary
	6. Feature Selection Methods
	Feature selection techniques
	Expert knowledge-based techniques
	Feature ranking
	Subset selection techniques
	Embedded methods
	Wrapper methods
	Filter methods
	Summary
	A. References
	Chapter 1, Welcome to the Age of Information Technology
	Chapter 2, Working with Data – Exploratory Data Analysis
	Chapter 3, Identifying and Understanding Groups – Clustering Algorithms
	Chapter 4, Association Rules
	Chapter 5, Dimensionality Reduction
	Chapter 6, Feature Selection Methods
	Index

