
Vue on
Rails

End-to-End Guide to Building Web
Apps Using Vue.js and Rails
—
Bryan Lim
Richard LaFranchi

www.allitebooks.com

http://www.allitebooks.org

Vue on Rails
End-to-End Guide to Building

Web Apps Using Vue.js
and Rails

Bryan Lim
Richard LaFranchi

www.allitebooks.com

http://www.allitebooks.org

Vue on Rails

ISBN-13 (pbk): 978-1-4842-5115-7		 ISBN-13 (electronic): 978-1-4842-5116-4
https://doi.org/10.1007/978-1-4842-5116-4

Copyright © 2019 by Bryan Lim and Richard LaFranchi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: Chris Nelson
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484251157.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Bryan Lim
Singapore, Singapore

Richard LaFranchi
Boulder, CO, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5116-4
http://www.allitebooks.org

To Chloé, future engineer.

—Richard

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Part I: Start Your Engines – The Technology���������������������������������1

Chapter 1: Introduction���3

Getting Started���3

Hello Vue���4

Hello Vue on Rails���5

Our Motivation from the Beginning��6

Who Should Read This Book?���7

Objectives of This Book��7

When the Price Is Right��8

Resources: Framework Versions, Downloads, Tutorials, and More������������������������9

Tool Versions and Source Code��9

Cheatsheets��10

Useful Resources for Vue on Rails Projects��10

Tools for Visual Studio��11

Tools for VS Code��12

Tools for Atom Editor and Sublime Text��13

Who to Follow?���13

About the Authors���xi

About the Technical Reviewer��xiii

Acknowledgments���xv

www.allitebooks.com

http://www.allitebooks.org

vi

Getting Your Priorities Right: Vue First vs. Rails First���14

Healthy Tradeoff – The Right Price���16

Failing the Single-Page Application Litmus Test���17

KPI – Keeping Programmer Insanely Happy���17

Wrap-up and the Next Step��18

Chapter 2: Nuts and Bolts of Vue on Rails���19

Attributes of a Modern Web App��19

What Are the Attributes of a Modern Web App?���20

Inherent Nature of Vue.js��20

The Goodness Test��21

Asset Management��22

Tools���22

Should You Remove Your Old Pipe?��23

Getting Started with Webpacker���24

Scaffolding Vue on Rails Projects��25

Rails First Approach: Putting Ruby on Rails before Vue���������������������������������������27

The Yes/No Answering Robot – Version 1���27

Evaluating the Rails-Only Approach���29

Vue First Approach: Putting Vue before Ruby on Rails���30

The Yes/No Answering Robot – Version 2���30

Evaluating the Vue-First Approach���33

A Good Balance: Vue as a First-Class Citizen of Rails��34

The Yes/No Answering Robot – Version 3���35

Creating Version 3��36

Evaluating the Vue as a First-Class Citizen of Rails Approach������������������������37

Reusability: A Powerful Proposition of the Vue Component����������������������������38

Reactivity: Data-Binding and Virtual DOM of Vue��39

Wrap-up and the Next Step��39

Table of ContentsTable of Contents

vii

Chapter 3: Model, Vue, and Controller���41

The Vue Instance and Other Vue Properties���41

The Vue Lifecycle��42

el – The Main Selector of a Vue Instance���44

Props vs. Data��45

Data��46

Directives���47

@click – The Method Invoker���48

Computed Properties, Watchers, and Methods��48

Class and Style Binding���50

Plugins���51

Mixins��52

Building Vue Components��53

Generating Vue Components for Your Vue on Rails Project����������������������������53

Using x-template to Load Your Vue Component��54

Communication Between Vue Components in a Rails Project������������������������56

Registering Components��60

Passing Data from Vue to Server���60

With HTTP Client���62

Routing with Vue Router within a Rails Project��64

Creating the Router File��65

Initializing vue-router���66

Using <router-link>��67

Routing Parameters��68

Redirect or Alert��69

Points to Ponder���71

Table of ContentsTable of Contents

viii

Managing State of a Rails View Using Vuex���71

Introduction��72

The Trouble with Vuex and Other State Management Tools����������������������������72

Why Should We Manage States?��72

Getting Started with Vuex���73

Vuex Rails Plugin��74

Passing Data from Server to Vue���76

Using Action Cable as a push technology���77

A Simple Polling���78

Wrap-up and the Next Step��79

Part II: Hands on the Wheels – Tutorials�������������������������������������81

Chapter 4: Real-World Applications Through Short Tutorials��������������83

Specific-Page Vue Inside Rails Products��84

Specific-Page Vue��86

Specific-Page Vue with Turbolinks���89

Nested Form with form-for Component���90

Application Template of Vue on Rails Products��94

The Template��94

Options of Vue on Rails Application Template���95

Vue UI Compatibility in Rails Products���97

Manual Enabling of Vue UI in Rails Products��99

Server-Side Rendering of Vue Components in Rails Products���������������������������100

Scaffolding SSR Components in Rails Products���101

Manual Configuration of SSR Vue Components in Rails Products����������������103

Internationalization���105

Using Vue on Rails 118n���107

Table of ContentsTable of Contents

ix

Simple State Management of Vue Components Inside Rails Products��������������110

Simple State Example��111

Scaffolding Simple State Management in Vue on Rails��������������������������������112

Wrap-up and the Next Step��113

Chapter 5: Making a Real-Time Two-Player Game with
Action Cable��115

Domain���117

The GameChannel��118

The Controllers���119

Listing Games��121

Creating a Game��122

Game Time���123

Joining a Game��125

Drawing the Tic Tac Toe Board���125

Placing a Piece���130

Accessing Action Cable from Vue���131

Wrap-up and the Next Step��132

Chapter 6: Building an Image-Cropping Tool with Vue and
Active Storage���135

The Avatar��136

The User Profile��137

Vue Cropper Component��139

Loading the Image���144

Panning the Image���146

Scaling the Image��147

ImageMagick Processing���149

Wrap-up and the Next Step��151

Table of ContentsTable of Contents

x

Part III: Turbo Charge – Production Ready�������������������������������153

Chapter 7: Testing, Deployment, and Troubleshooting�����������������������155

Testing Approaches��155

TDD – To Drive or Not to Drive?��156

What about RSpec and BDD?���157

General Testing Guidelines���157

System Tests��158

Vue Test Utilities and Jest���160

Heroku – The Ninja Deployment��165

Heroku vs. Virtual Private Server��166

Continuous Integration and Deployment��167

Troubleshooting Common Issues of Vue on Rails���173

Wrap-up and the Final Step���182

Chapter 8: Conclusion – Finishing the Race��������������������������������������183

Vue is Not Without Guilt���184

Ruby on Rails Isn’t the Top in Class Either���185

Where Do You Go from Here?���185

Appendix A: The MIT License (MIT) for vuejs.org Content
Used in This Book��187

Index��189

Table of ContentsTable of Contents

xi

About the Authors

Bryan Lim is a web developer and contributor to open source projects

like Webpacker and Vue on Rails project. He has a bachelor’s degree in

computing and a master’s degree in business analytics from National

University of Singapore. He also runs a Singapore-based software

consultancy firm called Tada. You may find his Vue components,

Rubygems and other open-source work on his personal website

(ytbryan.com) and his Github (@ytbryan).

Richard LaFranchi is a Senior Software Engineer at Charter

Communications and works on internal testing tools for the organization.

He has a bachelor’s degree in civil engineering from the University of

Colorado, Boulder, and is currently pursuing a master’s in computer

science at Colorado State University. He first developed a passion for

web development in 2011, and he publishes many Vue/Rails open source

tutorials and projects on his GitHub (@rlafranchi).

https://ytbryan.com

xiii

About the Technical Reviewer

Matt is a Senior Software Engineer from Germany, interested in thoughtful

software concepts with a sense of joy and elegance and a beautiful design

under the hood. In the last decade of his professional career, he saw many

questionable solutions inside enterprises. Vue.js and Rails are different

frameworks with the special power of supportive and helpful communities

behind. You can follow him on his Github or Twitter (@m5o).

xv

The authors would like to recognize all developers and engineers who have

committed their time to supporting open source software. The list is vast,

but the most notable in the Vue and Rails communities are listed here:

•	 Evan You – Vue creator

•	 Yukihiro Matsumoto – Ruby creator

•	 David Heinemeier Hansson (DHH) – Ruby on Rails

creator

•	 Aaron Patterson – Ruby on Rails core team

•	 Sarah Drasner – Vue core team

•	 Chris Fritz – Vue core team

Acknowledgments

Start Your Engines –
The Technology
Chapter 1. Introduction
Chapter 2. Nuts and Bolts of Vue on Rails
Chapter 3. Model, Vue, and Controller

PART I

3© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4_1

CHAPTER 1

Introduction
How do you know so much about computer? I did not, it was
the first one.

—Grace Hopper

This chapter is an introduction to the world of Vue and Rails – two open

source web frameworks that focus on developer happiness. In this chapter,

we will take a closer look at why we write this book, some of the priorities

when developing Vue on Rails project, and what are the available tools for

Vue on Rails development.

�Getting Started
Ruby on Rails developers tend to have a love–hate relationship with

JavaScript, but the community is beginning to embrace JavaScript. In

2014, a JavaScript framework Vue.js was created. Vue’s entry into the

development world changes how we do frontend, just like how Rails

changed web development in 2004. This book contains our research on

how to make this marriage of Vue and Rails work to stand the test of time.

So, the question arises, how do I integrate frontend technologies with

Ruby on Rails? Do I build a single-page application or do I use JavaScript

only when necessary? Why should a web developer use Vue.js or Ruby on

Rails? (Chapter 2) If I am using Vue.js, how do I scaffold a Vue component

in Ruby on Rails? (Chapter 2) How do I configure my Vue.js in a Ruby on

https://twitter.com/CodeWisdom/status/822474523480092674?ref_src=twsrc^tfw|twcamp^tweetembed|twterm^822474523480092674&ref_url=https://medium.com/media/36faab7760216bd3ede507443c73717f?postId=7c2fe1b2e79a

4

Rails project? How do I save time and doing these with the least amount of

time? (Chapter 4)

We will take a closer look at each question in the subsequent topics

and chapters.

�Hello Vue
It has never been a better time to be a web developer.

The Web is getting faster than ever. HTTP/2 is coming which means

data can be transmitted on the Web a whole lot faster. Faster and better

build tools like parcel.js push the limit for configuration-less and fast

bundling of web assets. Parcel.js announced its support for Vue.js recently.

Faster applications and web servers like NGINX Unit may get integrated

to Ruby on Rails soon. The Web is also getting decentralized with peer-

browsing technology and peer-to-peer protocol. One such P2P browser is

the beaker browser project. Firefox has also included the decentralizing

peer-to-peer protocol in its latest release.

Being a web developer means that we have more control over

the destiny of our software application as a craftsman or as a small

development team.

Just like how Rails revolutionized web development in 2004, Vue.js is

the new kid on the block that changes the way we design and code modern

UIs on the Web. Vue shows us that it does not need to be convoluted or

introduce a new templating design over HTML to make web page reactive.

The following code example presents a simple two-way binding

through a data variable “message”:

<div id="app">

 {{ message }}

</div>

var app = new Vue ({

 el: '#app',

Chapter 1 Introduction

5

 data: {

 message: 'Hello Vue!'

 }

})

Plain and simple at its beautiful core.

The straightforward syntax of Vue gives rise to a form of clarity that

is needed in today's convoluted JavaScript environment. This JavaScript

convolution refers to the complication added via JavaScript into the

HTML and CSS layers. As web app grows, this complication increases.

And Vue.js fixes this convolution through the encapsulation of each

JavaScript responsibility in the form of Vue component and its component

architecture. Each component holds a single responsibility, and this will

be further demonstrated in Chapter 2. Furthermore, you will be delighted

to find such obvious syntax sprinkled throughout the Vue.js framework,

making web programming fun and easy.

And if the Vue core library is not impressive enough, Vue, like Ruby on

Rails, puts good communication as its top priority. Vue.js just announced

the launch of the cookbook for Vue.js which emphasizes in-depth and

focused examples of each aspect of Vue.js. Vue.js also comes with a great

community, clear documentation, dynamic tools, and library ecosystem,

some of which we outline later in this chapter. All batteries are included.

Now, it’s up to the web developers to figure out how to make these two

great frameworks work together.

�Hello Vue on Rails
But it takes two to tango or two hands to clap. A Vue on Rails integration is

only possible with the blessings from both frameworks. Fortunately, both

frameworks are built in ways that lend themselves to such integration.

For its part, Ruby on Rails has a big tent philosophy by welcoming

other frameworks to integrate with it via project Webpacker.

Chapter 1 Introduction

6

On the other hand, Vue.js is both backend agnostic and progressive

in its kernel. This means that a developer can choose to integrate part

of its features without adopting wholesale. This makes Vue.js extremely

powerful and versatile.

Vue on Rails is a modern web architecture that ships meaning default

configuration and component generator to ease component creation. It

embraces Turbolinks and treats Vue as a first-class entity. Each component

within such architecture has its own component tests and features. Vue

on Rails represents a movement where the future of web application

development is hopeful without the complexity of a convoluted architecture.

�Our Motivation from the Beginning
Around early 2016, I was trying out Vue.js in some of my side projects and

research on how to integrate it effectively into my Ruby on Rails projects.

I find Vue to be approachable, and because of its progressive nature, it is a

versatile framework to work with.

At the same time in 2016, Richard started writing tutorials on Vue.

js and Ruby on Rails on his blog. And later on, he announced his plan of

writing a book on Vue.js and Ruby on Rails. I thought to myself that it will

be a good opportunity to reach out to him in case he needs a co-author. To

my surprise, Richard was planning to message me.

This Vue on Rails book is written because of our love for web

programming and web applications.

Vue.js with Ruby on Rails is complimentary and lightweight and

forms the current best tools to build the next version of your modern web

application. Vue.js can be easily added to legacy Rails projects that want to

modernize their application. And it can be done without an entire rewrite

of the application.

This book encompasses the next stage of our research on Vue.js and

Ruby on Rails so that others may benefit from the union of these two great

frameworks, its tools and library ecosystem and its community.

Chapter 1 Introduction

7

Vue on Rails book also represents the value of freedom. The freedom

that two authors from two different parts of the world can be writing on

two open source technologies that will change the way we make things on

the Internet moving forward.

Vue on Rails will liberalize the way you make your web application in a

sustainable way.

�Who Should Read This Book?
This book is written for the ordinary web developer concerning about the

best web technology to build a modern web application, doing all these

without compromising on their happiness at work.

Vue on Rails book also is written for project managers and technical

leads evaluating the next tools to add to your arsenal of technologies in

their workplace.

For existing Rails developers who are looking for an approachable

Javascript framework that are progressive and fit into your technology

stack and team.

For existing Vue developers who are looking beyond the Node

community, Ruby on Rails opens you a new world of Ruby and Rails

community.

�Objectives of This Book
Vue on Rails approach offers a complete end-to-end solution to create

modern web applications with a modern UI flow.

This book aims to save you hundreds of hours learning how to

integrate Vue.js and Ruby on Rails, with meaning default configuration

and useful generators to scaffold your component parts, Jest tests, Vue-UI

compatibility, and more.

Furthermore, this book will focus on some concepts like Rails-first

Vue-first class approach and specific-page vue technique vs. single-page

Chapter 1 Introduction

8

application and demonstrates various integrations of Vue.js with Ruby on

Rails’s technology like Action Cable or Rails’ API.

Vue on Rails book aims to cover both the beginner topics of Vue on

Rails while dropping wisdom that may delight intermediate or advanced

folks on web app development. This book emphasizes on component-

based architecture which we think is the next frontier for modern web user

interface.

This book is guided by the following principles:

•	 Choosing convention over configuration

•	 Optimizing for programmer's happiness

•	 Picking simple over complex (when the price is right)

You may notice two of the principles coming from Ruby on Rails’

doctrine (https://rubyonrails.org/doctrine/), while the last one is

inspired by Occam’s razor. The Rails doctrine is a set of nine principles that

set the direction and foundation of Ruby on Rails as a web development

framework. This book took a leaf from the doctrine Finally, we hope that

this book to be more illuminating than informative to you on your Vue on

Rails learning journey.

Recommendation T o read more about the Ruby on Rails doctrine
https://rubyonrails.org/doctrine/ and Occam’s razor
www.math.ucr.edu/home/baez/physics/General/occam.html

�When the Price Is Right
The price of developing an application gets expensive overtime due to the

overcrowding impact of your convoluted code. Developer productivity

decreased and the time taken to add new feature or fix existing bug

increases. There may also be too many components residing inside your

Chapter 1 Introduction

https://rubyonrails.org/doctrine/
https://rubyonrails.org/doctrine/
http://www.math.ucr.edu/home/baez/physics/General/occam.html

9

Rails project. As the developers allow certain parts of their Rails project

to grow and increase in importance, the price of that component will also

increase. Therefore, we need a better way to arrange existing components

as well as maintaining the total cost and health of your entire project.

These will be covered in Chapter 2 and Chapter 7 through testing.

In Vue on Rails, we call such important component a first-class

component. Somewhat like a first-class citizen ought to be in his/her own

country.

�Resources: Framework Versions,
Downloads, Tutorials, and More
This book comes with free hands-on code and cheatsheets that you may be

interested to use for the next Vue on Rails project. This section identifies the

key tools, cheatsheets, and where you can find them. Both Vue and Rails are

great frameworks with good documentation, great community, awesome

tutorial, and webcast that set them apart from other web frameworks. This

section also references some of the particularly useful resources.

�Tool Versions and Source Code
This book will contain code examples and tutorial that uses the following

version of each tool:

•	 Ruby 2.5.3 https://github.com/ruby/ruby

•	 Rails 5.2.1 https://github.com/rails/rails

•	 Webpacker 3.5 https://github.com/rails/webpacker

•	 Node.js https://github.com/nodejs/node

•	 Babel https://github.com/babel/babel

Chapter 1 Introduction

https://github.com/ruby/ruby
https://github.com/rails/rails
https://github.com/rails/webpacker
https://github.com/nodejs/node
https://github.com/babel/babel

10

•	 Vue 2.5.16 https://github.com/vuejs/vue

•	 Webpack 4 www.github.com/webpack/webpack

•	 Yarn 1.2.1 https://github.com/yarnpkg/yarn

•	 Vue on Rails http://github.com/vueonrails/

vueonrails

We are also using VS Code for writing code.

To download the hands-on code:

•	 https://github.com/vueonrails/code-examples

�Cheatsheets
Get up to speed with each framework with the help of cheatsheets:

•	 Vue.js cheatsheet https://www.vuemastery.com/vue-

cheat-sheet

•	 Ruby on Rails cheatsheet http://staff.um.edu.mt/

alexiei.dingli/IntroductionToWS/Lectures/ruby-

on-rails-cheat-sheet-v1.pdf

•	 Vue on Rails cheatsheet http://github.com/

vueonrails/cheatsheet

�Useful Resources for Vue on Rails Projects
The following resources all are well worth referencing:

•	 Official Vue.js guide – The official Vue.js documentation

to jumpstart your frontend development using Vue.js

https://vuejs.org/v2/guide/

•	 Official Vue.js cookbook – The cookbook provides

examples for common and interesting use cases

https://vuejs.org/v2/cookbook

Chapter 1 Introduction

https://github.com/vuejs/vue
https://www.github.com/webpack/webpack
https://github.com/yarnpkg/yarn
http://github.com/vueonrails/vueonrails
http://github.com/vueonrails/vueonrails
https://github.com/vueonrails/code-examples
https://www.vuemastery.com/vue-cheat-sheet
https://www.vuemastery.com/vue-cheat-sheet
http://staff.um.edu.mt/alexiei.dingli/IntroductionToWS/Lectures/ruby-on-rails-cheat-sheet-v1.pdf
http://staff.um.edu.mt/alexiei.dingli/IntroductionToWS/Lectures/ruby-on-rails-cheat-sheet-v1.pdf
http://staff.um.edu.mt/alexiei.dingli/IntroductionToWS/Lectures/ruby-on-rails-cheat-sheet-v1.pdf
http://github.com/vueonrails/cheatsheet
http://github.com/vueonrails/cheatsheet
https://vuejs.org/v2/guide/
https://vuejs.org/v2/cookbook

11

•	 Official Rails guide – The official Ruby on Rails

documentation to jumpstart your web development

using the favorite ruby web framework http://guides.

rubyonrails.org

•	 A list of awesome Vue resources – A GitHub repository

about Vue.js resources https://github.com/vuejs/

awesome-vue

•	 Stackoverflow questions on Vue and Rails https://

stackoverflow.com/questions/tagged/vue.js+ruby-

on-rails

•	 Vue components – Repositories of components

https://vuecomponents.com

•	 Official Vue-curated components – A list of curated

components from Vue https://curated.vuejs.org

•	 Vue toolbox – Another curated list of components

http://www.vuetoolbox.com

•	 A GitHub search for Vue things https://github.com/

search?o=desc&q=vue&s=stars&type=Repositories

�Tools for Visual Studio
Visual Studio is a development editor and environment from Microsoft. It

is the precursor of Visual Studio Code and it is written in the following:

•	 Vue.js pack 2017 – A Visual Studio extension that

contains HTML intellisense and code snippets for

the Vue.js JavaScript Library https://marketplace.

visualstudio.com/items?itemName=MadsKristensen.

VuejsPack-18329

Chapter 1 Introduction

http://guides.rubyonrails.org
http://guides.rubyonrails.org
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://stackoverflow.com/questions/tagged/vue.js+ruby-on-rails
https://stackoverflow.com/questions/tagged/vue.js+ruby-on-rails
https://stackoverflow.com/questions/tagged/vue.js+ruby-on-rails
https://vuecomponents.com
https://curated.vuejs.org
http://www.vuetoolbox.com
https://github.com/search?o=desc&q=vue&s=stars&type=Repositories
https://github.com/search?o=desc&q=vue&s=stars&type=Repositories
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.VuejsPack-18329
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.VuejsPack-18329
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.VuejsPack-18329

12

�Tools for VS Code
VS Code is a code editor made by Microsoft. It is the most popular code

editor with a customized theme and plugins platform.

Read more at https://code.visualstudio.com. To download
VS Code, https://code.visualstudio.com/Download

•	 <Insert Our Vue on Rails extensions> https://github.

com/vueonrails/vueonrails-extensionpack

•	 Sarah’s Vue.js extensions – A collection of extension

for working with Vue development in VS Code

editor https://marketplace.visualstudio.com/

items?itemName=sdras.vue-vscode-extensionpack

•	 Vetur – Vue tooling for VS Code editor. It includes

syntax highlighting, snippet, autocompletion, error

checking, and more. This is a must-have extension

https://marketplace.visualstudio.com/

items?itemName=octref.vetur

•	 Vue 2 Snippets – A popular VS Code extension that

include Vue2 code snippet https://marketplace.

visualstudio.com/items?itemName=hollowtree.vue-

snippets

•	 Vue VS Code snippet – A VS Code extension

that helps you to write less with code snippet

https://marketplace.visualstudio.com/

items?itemName=sdras.vue-vscode-snippets

Chapter 1 Introduction

https://code.visualstudio.com
https://code.visualstudio.com/Download
https://github.com/vueonrails/vueonrails-extensionpack
https://github.com/vueonrails/vueonrails-extensionpack
https://marketplace.visualstudio.com/items?itemName=sdras.vue-vscode-extensionpack
https://marketplace.visualstudio.com/items?itemName=sdras.vue-vscode-extensionpack
https://marketplace.visualstudio.com/items?itemName=octref.vetur
https://marketplace.visualstudio.com/items?itemName=octref.vetur
https://marketplace.visualstudio.com/items?itemName=hollowtree.vue-snippets
https://marketplace.visualstudio.com/items?itemName=hollowtree.vue-snippets
https://marketplace.visualstudio.com/items?itemName=hollowtree.vue-snippets
https://marketplace.visualstudio.com/items?itemName=sdras.vue-vscode-snippets
https://marketplace.visualstudio.com/items?itemName=sdras.vue-vscode-snippets

13

�Tools for Atom Editor and Sublime Text
Atom Editor is a code editor made by GitHub. Read more at https://atom.

io. Sublime Text is another popular code editor that is similar with Atom

Editor but was created much earlier. Read more at http://sublimetext.com/

•	 Vue Format https://atom.io/packages/vue-format

•	 Language Vue https://atom.io/packages/language-

vue

•	 Vue Syntax Highlight https://github.com/vuejs/vue-

syntax-highlight

�Who to Follow?
A list of people to follow for continuous learning of Vue on Rails beyond

this book

Ruby on Rails

•	 David Heinemeier Hansen – The creator of Ruby on

Rails https://github.com/dhh

•	 Gaurav Tiwari – The maintainer of Webpacker project

https://github.com/gauravtiwari

•	 Javan Makhmali – A Rails veteran, contributor of

webpacker project and the creator of various popular

repo like trix, stimulusjs, whenever rubygem https://

github.com/javan

•	 The full list of Rails core team and alumni https://

github.com/orgs/rails/people

Chapter 1 Introduction

https://atom.io
https://atom.io
http://sublimetext.com/
https://atom.io/packages/vue-format
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://github.com/vuejs/vue-syntax-highlight
https://github.com/vuejs/vue-syntax-highlight
https://github.com/dhh
https://github.com/gauravtiwari
https://github.com/javan
https://github.com/javan
https://github.com/orgs/rails/people
https://github.com/orgs/rails/people

14

Vue.js

•	 Evan You – The creator of Vue.js http://github.com/

yyx990803

•	 Edd Yerburgh – A Vue core team member and expert in

Vue testing https://github.com/eddyerburgh

•	 Chris Fritz – A Vue core team member and a Vue

veteran https://github.com/chrisvfritz

•	 Guilaume Chau – A Vue core team member https://

github.com/akryum

•	 Pine – A Vue core team member and creator of vetur

https://github.com/octref

•	 The full list of Vue.js core team and alumni https://

github.com/orgs/vuejs/people

For further questions, you may also reach out to the authors:

•	 Richard LaFranchi https://github.com/rlafranchi

•	 Bryan Lim http://github.com/ytbryan

�Getting Your Priorities Right: Vue First vs.
Rails First
This section focuses on the priorities of Vue on Rails projects. To get the

web application development right, we need to get its priorities right

first because all priorities lead to a certain development outcome. This is

especially true when there are two great frameworks residing in a single web

project structure. This section will explore some questions that will set you

on the correct path while you get started in making your Vue on Rails app.

Chapter 1 Introduction

http://github.com/yyx990803
http://github.com/yyx990803
https://github.com/eddyerburgh
https://github.com/chrisvfritz
https://github.com/akryum
https://github.com/akryum
https://github.com/octref
https://github.com/orgs/vuejs/people
https://github.com/orgs/vuejs/people
https://github.com/rlafranchi
http://github.com/ytbryan

15

The right priorities for your web application:

•	 Maintainability of the web application project

•	 Efficient of the web application

•	 Security of the web application

•	 Within team budget of the web application

development

•	 Maximizing programmer happiness

•	 Minimal complexity of the code base

•	 Design architecture extensibility of the web application

•	 User interface and usability of the web application

And this list can go on endlessly as you expand on each expectation.

But what are the important priorities? Which architecture will support

the most priorities in the web application moving forward? Identifying

the “right” priorities does not mean balancing all of them. It is to

deliberately choose a healthy number of these targets while maximizing a

programmer's happiness.

Every project has different requirements and features. But there is a

common feature and requirement found in all project that forms part of

the priorities. Every project differs from the others, but one thing stands

out in common: the need to have users for the web application.

Some reasonable Vue on Rails questions you may have in mind

include:

•	 How do you structure your Vue on Rails project?

•	 How do you test your Vue code?

•	 How do you use the best features of Vue inside Ruby on

Rails project?

Chapter 1 Introduction

16

•	 How do you have the best security on my Vue on Rails

projects?

•	 How do you have an extensible architecture that is not

over complex?

•	 How can you achieve a modern UI?

•	 How do you achieve all these without making too big a

tradeoff?

•	 Regarding tradeoff, what is the right price?

�Healthy Tradeoff – The Right Price
Tradeoffs are common during development of a software. If you can

make a set of healthy tradeoffs, you are on the right path to successful

completion of your web application. In the case of Vue on Rails, two

crossroads are met, and we must decide. They are namely the Vue on

Rails’ project structure and the choice of router, that is, whether to use Vue

routing or Rails routing.

A project structure is the way files and folders are organized in a

project repository. There is a fine balance between project structure and

organization, and sometimes tradeoffs are required to get the right balance

of following a structure and keeping things simple. Model View, Controller

architecture has stood the test of time. We think that JavaScript sprinkles

are just components. The risk is that calling it component will make it so

big that they might be too big to become a liability. But a wheel is never the

main component of a car. But the car cannot move forward if one of the

wheels broke down. Therefore, there is a natural constraint to prevent any

component to become too big and become the product itself.

Single-page application has no such constraints on project structure,

so you often find thousands of boilerplate examples of JavaScript projects

that don’t follow any conventions or standards.

Chapter 1 Introduction

17

�Failing the Single-Page Application Litmus Test
Single-page application (SPA) is an architecture choice where the code is

divided into frontend user interface and a backend API. SPA gets its name

by having a single-page load at the start with subsequent user interaction

causing further addition in resources onto the web page. SPA requires a

bigger development team with at least two groups of developers: frontend

and backend right from the start.

SPA is commonly compared with the monolithic architecture that

Rails is famous for. A monolithic architecture is an architecture where all

services live in a single code base. Many organizations have adopted a

service-oriented architecture in recent years, but we believe that this may

be a mistake for small businesses and development teams. Vue on Rails

purposefully chose to continue the monolithic path because of its ease of

usage for the developers. It is more sustainable for smaller development

team without big enterprise budget.

�KPI – Keeping Programmer Insanely Happy
We cannot do all these without a backend as great as Rails with a Rails

core team that is dedicated to developer happiness. We also cannot do this

without a frontend that is focus on the similar pursuit of happiness without

overly dominating in the way you control your user interface. The Vue on

Rails approach follows the happy list, which also applies to our daily lives

outside of programming.

•	 Tons of family time

•	 Remote work

•	 Enough sleep

•	 Manageable and maintainable web app

•	 Insane amount of programmer happiness

Chapter 1 Introduction

18

Flip each item on the happy list and you will get Keep Programmer

Insane. We oppose the 80-hour work week that many in the startup culture

have adopted, because we believe it is counterproductive and just causes

developer burnout and ultimate failure of a project.

�Wrap-up and the Next Step
With two great web frameworks in one, Vue on Rails is standing firm in this

modern world of web development. Programmers can benefit from tools

and shortcuts from both Vue and Rails world to tackle their endless pursuit

of development in this capitalist world.

For a Vue on Rails project, what should be the right architecture?

Should we adopt a Vue-first or Rails-first approach? The answer to this

question forms the premise and the overall approach of this book. We

will be examining and taking a closer look at several topics like asset

management in the new Ruby on Rails and single-page application vs.

monolithics architecture and evaluate thedifferent approaches to integrate

Vue into Rails. These topics set the foundation of discussion for later

chapters of this book.

Chapter 1 Introduction

19© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4_2

CHAPTER 2

Nuts and Bolts of Vue
on Rails

A user interface should be so simple that a beginner in an
emergency can understand it within ten seconds.

—Ted Nelson

This chapter covers the attributes of a modern web application, the nature

of Vue.js, choices in managing assets on Ruby on Rails, and the approaches

towards integrating Vue into Ruby on Rails project. We will walk through a

few examples of how to approach a Vue integration with Ruby on Rails and

compare this to the traditional Ruby on Rails approach.

�Attributes of a Modern Web App
A web application is one that uses web technologies, namely, HTML, CSS,

and JavaScript, as the building blocks of a final software product. A web app

requires some form of web-rendering technology like an Internet browser,

a WebView, or any future rendering technology to display its final product.

Web apps offer the benefits of cross-platform development where a

small code base can be reused across different software platforms like

MacOS, Window, Linux, mobile iOS, and Android. This translates into cost

saving in development budget and developer productivity at its best.

https://twitter.com/CodeWisdom/status/507603598876753921

20

Further, some native iPhone and Android apps use a web app to form

part of its entire technology stack. A mixture of web and native features

within an app is called a hybrid app.

A modern web app is simply one that is using the latest–greatest web

technology and is up to date with most web standards and best practices.

�What Are the Attributes of a Modern Web App?
The mainstream understanding of a modern web application includes the

following attributes, which we can back up by highlighting some attributes

that Vue.js naturally inherits.

•	 Cross platform

•	 Compliance with major web browsers and web

protocol

•	 Simple and concise code base

•	 Clean and loosely coupled architecture

•	 Ease of testing

•	 Flexible configurationModern UI flow that is responsive

and fluid

•	 Fast loading

•	 Intuitive

�Inherent Nature of Vue.js
Vue.js naturally fulfills the preceding attributes, and we can highlight some

of the reasons why it is a great library to use in the modern Web.

	 1.	 Vue is highly compatible with modern web

browsers. This also means it works across platforms

and compliant with major web protocol.

Chapter 2 Nuts and Bolts of Vue on Rails

21

	 2.	 Vue is fast and small in size.

	 3.	 Since Vue is only a library for building a user

interface and is highly progressive, it can integrate

well with any other full-web framework without

creating a complex code base or architecture.

	 4.	 Vue ships with testing utilities.

	 5.	 Vue allows dynamic and responsive design.

	 6.	 Vue has the following: reactive system, data binding,

virtual-DOM management, state management, and

more.

	 7.	 Vue allows a component-based architecture to be

integrated with any framework.

	 8.	 Vue code is intuitive to developers, so naturally it

helps with building an intuitive user experience.

�The Goodness Test
In the world of web technology, the contemporary is temporary. The modern

becomes old in a year time. What we find lacking in a modern web application

are similar attributes that we find in the modest and old antique furniture or

old wine. The older the better. A lack of modesty in a user interface is also an

unfortunate part of a modern web application where every web app aims to

be overly responsive in nature. Are the preceding attributes truly a set of good

gauge to define a good modern web application? Is it consistently good? Does

it feel good? Is there evidence from the structure that it is good?

What makes a modern web application good is its ability to solve today’s

real-world problems in a manner that is intuitive as possible to its users.

On top of intuition, web applications must behave as expected, so actions

produce the expected results, and it must perform quickly. In reality, the

users of an application determine the Goodness Test, but as developers

Chapter 2 Nuts and Bolts of Vue on Rails

22

we want to deliver that in a way that is simple, so the tools that allow us

to do this determine the Goodness Test from a developer’s perspective.

Bringing in a library such as Vue into the Ruby on Rails world opens up an

opportunity to revisit the tools we use for asset management that is how to

manage static content such as images, CSS, fonts, and JavaScript.

�Asset Management
Asset management is how we manage static files such as images, CSS,

Javascript, and font files in a web application. For traditional MVC

frameworks, the tools used for asset management plays an important role

to faciliate the development of a modern web application. In this section,

we look at some of these tools and their roles in Ruby on Rails.

�Tools
Ruby on Rails uses the asset pipeline and sprockets to manage assets; we

will discuss this along with Webpack and the integration of Webpack into

Ruby on Rails using the Webpacker gem.

�Asset Pipeline

The asset pipeline is an internal framework of Ruby on Rails to manage

Javascript, stylesheets, images, and other assets. It is powered by the

sprockets-rails gem. The purpose of the asset pipeline is to streamline

the build process for static assets using one simple command.

rake assets:precompile

The asset pipeline has traditionally used sprockets which is a tool for

compiling scss/sass files into CSS, managing the digest hashes for assets

for cache busting, and using minifying/uglifying assets along with some

compression techniques such as gzip.

Chapter 2 Nuts and Bolts of Vue on Rails

23

It allows assets in your application to be automatically combined

with assets from other gems. For example, jQuery-rails includes a copy of

jquery.js and enables AJAX features in Rails views.

�Webpack

Webpack is a module bundler for the Web that is deemed to be the

future for web framework using JavaScript. Rails started a project called

Webpacker, a thin wrapper around webpack together with a JavaScript

package installer called Yarn, to help programmers build JavaScript app on

Ruby on Rails.

�Webpacker

Webpacker is a wrapper around webpack and yarn. It makes it easy to use

the JavaScript pre-processor and bundler ability of webpack to manage

application-like JavaScript in Rails.

It co-exists with the asset pipeline, as the primary purpose for webpack

is app-like JavaScript, not images, CSS, or even JavaScript Sprinkles

(that all continues to live in app/assets). However, it is possible to use

Webpacker for CSS, images, and fonts assets as well, in which case you may

not even need the asset pipeline. This is mostly relevant when exclusively

using component-based JavaScript frameworks.

�Should You Remove Your Old Pipe?
Since Webpacker is created to co-exist with your sprockets asset pipeline.

The answer is not yet; there is no need to remove the asset pipeline

especially for legacy applications that you want to start integrating Vue

into. There may be a point where Ruby on Rails abandons sprockets, so

Chapter 2 Nuts and Bolts of Vue on Rails

24

it might be required to migrate assets to Webpacker in future versions.

For new applications, we recommend starting with Webpacker for asset

management.

Our advice is not to move towards Webpacker for your entire

assets immediately, but allow Webpacker to manage the assets of your

component while leaving the rest of your assets to assets pipeline.

Webpacker is a major shift in how to manage assets, since legacy Rails

applications use a lot of gems that assume use of the asset pipeline and

sprockets, whereas Webpacker uses yarn where packages are retrieved

from npmjs.org. So it is important to consider the nature of your

application and how to proceed with asset management. We’ll discuss how

to use Webpacker using tools we have develop to make Vue integration

seamless.

�Getting Started with Webpacker
Webpacker is a wrapper around webpack and yarn. It makes it easy to use

the JavaScript pre-processor and bundler ability of webpack to manage

application-like JavaScript in Rails.

It co-exists with the asset pipeline, as the primary purpose for webpack

is app-like JavaScript, not images, CSS, or even JavaScript Sprinkles

(that all continues to live in app/assets). However, it is possible to use

Webpacker for CSS, images, and fonts assets as well, in which case you may

not even need the asset pipeline. This is mostly relevant when exclusively

using component-based JavaScript frameworks.

Webpacker is essential for the approach we will follow throughout this

book. It allows scaffolding of new Vue component and allows embedding

of the component onto Rails views. The latest Webpacker ships with

webpack 4.x and latest babel. This means we will enjoy free performance

upgrade of webpack including the split chunk api and other benefits. You

are encouraged to use Webpacker 4 in Ruby on Rails moving forward.

Chapter 2 Nuts and Bolts of Vue on Rails

http://npmjs.org

25

�Installing Webpacker

Installing Webpacker is as simple as adding it to your Gemfile and running

a couple of commands.

	 1.	 #At Gemfile

gem 'webpacker'

	 2.	 Install webpacker and its dependencies:

bundle install

rails webpacker:install

	 3.	 Install Vue and its basic dependencies:

rails webpacker:install:vue

Now that you are up and running with Webpacker, we’ll discuss the

vueonrails gem and how to use it for Vue component scaffolding.

�Scaffolding Vue on Rails Projects
Often times we need a simple and easy way to scaffold Vue component

and its dependencies onto Ruby on Rails project. In this section, the

vueonrails Ruby gem will be used to scaffold a Vue on Rails project with

all its necessary configuration and dependencies we will need for a single

component.

	 1.	 Add the vueonrails gem onto your Gemfile as well

as the webpacker gem if it is not already there.

gem 'vueonrails'

gem 'webpacker'

Chapter 2 Nuts and Bolts of Vue on Rails

26

	 2.	 Next, set up the project with an install generator:

bundle install

yarn install

rails webpacker:install

rails webpacker:install:vue

rails vue:setup

This runs rails webpacker:install and

rails webpacker:install:vue and adds other

dependencies like Vuex, Vue_component helpers, to

your arsenal of tools.

	 3.	 Now generate a Vue component called home:

rails generate vue home

	 4.	 Let us create a Rails view using the controller

generator:

rails generate controller pages home

	 5.	 Now, add the component pack tag along with

the stylesheet pack tag to app/vies/layouts/

application.html.erb:

<%= javascript_pack_tag "home" %>

<%= stylesheet_pack_tag "home" %>

	 6.	 You can run http://localhost:3000/pages/home

to see your Vue component on a Rails page after

starting the dev server:

rails server

Chapter 2 Nuts and Bolts of Vue on Rails

27

Using the Vue component scaffold, you can have a Vue component on

your Rails project the quick and easy way. If you find these steps tedious,

we made an application template that will get you up to speed in a single

command. The template is available at https://vueonrails.com/vue and

the command creates a new Vue on Rails-ready application.

rails new app -m https://vueonrails.com/vue -d postgresql

�Rails First Approach: Putting Ruby on Rails
before Vue
Consider the following simple example of a Yes/No answering robot. In

this example, we will use only Ruby on Rails and its provided jQuery to

build this example.

�The Yes/No Answering Robot – Version 1
Follow these steps for our version 1 example:

	 1.	 Let’s create an empty Rails project:

rails new v1_robot

rails generate scaffold pages

rails db:migrate

	 2.	 Next, copy and paste the following to app/views/

pages/index.html.erb:

<%= form_tag("/pages/search", method: "get", remote:

true) do %>

 �<%= label_tag(:q, "Please ask a yes or no question.

For example: Is the sky blue?") %>

 <%= text_field_tag(:q) %>

Chapter 2 Nuts and Bolts of Vue on Rails

https://vueonrails.com/vue

28

 <%= submit_tag("Search") %>

<% end %>

<div id="result"></div>

	 3.	 Add the search action to the pages controller in app/

controllers/pages_controller.rb

def search

 @answer = ((rand(10)%2) == 1) ? "Yes" : "No"

end

	 4.	 Use JS format to respond at app/views/pages/

search.js.erb:

$("result").text("<%= escape_javascript(@answer) %>");

	 5.	 Add the following JavaScript to app/assets/

javascript/pages.js:

$(document).ready(function() {

 $("#q").on("input", function() {

 question()

 })

})

function question(){

 �$("#result").val = 'Waiting for you to stop

typing...'

 getAnswer()

}

function getAnswer(){

 if ($("#q").val().indexOf('?') === -1) {

 �$("#result").text('Questions usually contain a

question mark. :)')

Chapter 2 Nuts and Bolts of Vue on Rails

29

 return

 }

 $("#result").text('Thinking...')

}

So we’ve created a new Rails app that takes in a simple form that takes

a question and randomly returns an answer of Yes or No. The answer is

returned without re-rendering the page using the search endpoint with a

js format. We add some JavaScript to add some client side validation for

ensuring the question contains a question mark and inform the user that

the robot is thinking about an answer while the answer is fetched from the

backend. Next, we will evaluate this approach.

�Evaluating the Rails-Only Approach
The patching of functionality via jQuery works. But can JavaScript be

treated as a first-class asset than some working patchwork? As the app

becomes bigger, the patchwork may lead to a “JavaScript soup” where

JavaScript becomes more like a liability than a liberty of the web view.

Updating virtual DOM is cheaper than DOM. While jQuery is a DOM

library, this approach did not leverage on the development of the virtual

DOM. There is also a lack of data binding, reactivity, and other things

including state management. These issues may become obvious as the

answering robot becomes more complex.

Can a Vue-first approach solve some of the problems that Ruby on

Rails and jQuery is limited to? Will Vue.js displace jQuery? What are some

of the features that a Vue-first approach offer? We will evaluate a Vue-first

approach in the next section.

Chapter 2 Nuts and Bolts of Vue on Rails

30

�Vue First Approach: Putting Vue before
Ruby on Rails
In this section, we will be using a Vue-first approach with a single-page

application and a Ruby on Rails API application:

•	 It will be a single-page application where a web page is

created so that it adds or subtracts dynamically through

user interaction instead of rendering the same web

page via the server. We will use vue-cli to generate the

single-page application.

•	 We will be reusing the backend from Rails-only

approach for simplicity sake.

�The Yes/No Answering Robot – Version 2
Follow these steps for our version 2 example:

	 1.	 Let’s install vue-cli:

yarn install vue-cli

	 2.	 Now, let’s create a project called v2_robot:

vue create v2_robot

	 3.	 Next, create the following src/robot/robot.vue:

<template>

 <div>

 <label>Please ask a yes or no question.

 For example: Is the sky blue? </label>

 <input v-model="question">

 <button>Search</button>

Chapter 2 Nuts and Bolts of Vue on Rails

31

 <p>{{ answer }}</p>

 </div>

</template>

	 4.	 Create the following src/robot/robot.js. Axios is

used as an HTTP client to communicate with the

Ruby on Rails API backend.

 // import _ from 'lodash'

 import axios from 'axios'

 export default {

 data: function () {

 return {

 question: "",

 answer: ""

 }

 },

 watch: {

 question: function () {

 this.answer = 'Waiting for you to stop typing...'

 this.getAnswer()

 }

 },

 methods: {

 getAnswer: _.debounce(

 function () {

 if (this.question.indexOf('?') === -1) {

 �this.answer = 'Questions usually contain a

question mark. :)'

 return

 }

Chapter 2 Nuts and Bolts of Vue on Rails

32

 this.answer = 'Thinking...'

 var vm = this

 axios.get('https://yesno.wtf/api')

 .then(function (response) {

 �vm.answer = _.capitalize(response.data.

answer)

 })

 .catch(function (error) {

 �vm.answer = 'Error! Could not reach the

API. ' + error

 })

 },

 500

)

 }

}

	 27.	 Search endpoint in a JSON format:

def search

 answer = ((rand(10)%2) == 1) ? “Yes” : “No”

 render json: {answer: answer}

end

	 28.	 Start the vue-cli server:

vue serve

	 29.	 At a separate terminal, start your Ruby on Rails API

server:

rails server

	 30.	 Visit http://localhost:8080 to see your Vue app.

Chapter 2 Nuts and Bolts of Vue on Rails

33

�Evaluating the Vue-First Approach
There are both favorable and unfavorable aspects to the Vue-first

approach. Let’s consider both the pros and the cons.

Pros:

•	 Having an unobtrusive reactivity by leveraging on an

asynchronous virtual DOM update

•	 Having clear separation of client and server

responsibilities. Useful for a big team with a sizable

budget

•	 Making it desirable for teams with dedicated frontend

and backend developers

•	 Having more room to build a complex and dedicated

user interface

•	 Having a simple and clean syntax. Not reinventing the

wheel but reusing the HTML syntax

•	 Allowing component-based architecture for code

reusing

•	 Being extremely progressive in nature. Allow

incremental improvement of the user interface

•	 Making it useful for existing applications that require or

already expose an API

Cons:

•	 Juggling with two project directories (Vue-cli and Rails)

can be a pain.

•	 Abandoning Ruby on Rails helpers. For instance, form

helpers becoming obsolete.

Chapter 2 Nuts and Bolts of Vue on Rails

34

•	 Abandoning Ruby on Rails router becomes obsolete in

favor of Vue Router.

•	 Lacking a clear and supported interface for interacting

with Ruby on Rails.

•	 Having a component-based structure is not always

straightforward and may add complexity to the

application.

This approach will generate a more dynamic answering robot since

Vue.js is reactive; the web page does not require a web page refresh.

Moreover, there is an increase in supporting libraries from two

ecosystems. This may be a double-edged sword as more tools do not mean

getting more work done.

This approach increases the complexity by having to juggle two project

structures that are bind by a loosely coupled JSON API. There is also a

need to relearn routing in a Vue.js application if you are a Ruby on Rails

developer.

All in all, the rabbit hole of diving into Vue.js with a single-page

application making Ruby on Rails a backend only solution is too risky.

Is Vue-first with Rails API the best way to build a web application?

Could there be an easier way to integrate Vue.js without going to juggling

two projects structures for one web application product? Let’s find out in

the next section.

�A Good Balance: Vue as a First-Class
Citizen of Rails
We want to achieve the best of both worlds and do what works. In this

section we’ll use an approach that uses Webpacker and streamlines Vue

integration.

Chapter 2 Nuts and Bolts of Vue on Rails

35

�The Yes/No Answering Robot – Version 3
If you are not satisfied with either the Vue-first or Rails-only approach, we

share the same sentiment.

In this version of the Yes/No answer robot, we will use Rails’

Webpacker to deliver a Vue-first class and Rails-first approach to building

a web application. The idea is to follow Ruby on Rails conventions and the

traditional MVC pattern (2-1a) and take advantage of Vue for components

of the application that requires interactive elements (2-1b).

View

Controller
Presenter

Model

View

Controller
Presenter

Model

Components

Figure 2-1.  Traditional MVC pattern (left) and MVC with
components in the view layer (right)

Vue on Rails project shouldn’t be about conquering every web page

with a single-page application. It should start with conquering each

component and trying to reuse them on the relevant web page.

Webpacker is an efficient way to divide a web page into important

components and let Vue do the heavy lifting for a more complex interface.

Webpacker also provides a clean and clear interface for Vue.js to

interact with Ruby on Rails, and it ships with some basic configuration of

Vue Webpacker configuration.

Chapter 2 Nuts and Bolts of Vue on Rails

36

�Creating Version 3
Let’s get started in making version 3 of the Yes/No answering robot.

	 1.	 Initialize a new rails app with the Vue webpack

integration.

rails new v3_robot --webpack=vue

	 2.	 Next, at your terminal, run the following:

rails g scaffold pages

rails db:migrate

	 3.	 Then, create the following app/javascript/robot.

vue to the same JavaScript code in the previous

section. Change import App from '../app.vue' to

import App from '../robot.vue':

//app/javascript/search.js

import Vue from 'vue'

import App from '../robot.vue' #change this

document.addEventListener('DOMContentLoaded', () => {

 const el = document.body.appendChild(document.

createElement('search'))

 const app = new Vue({

 el,

 render: h => h(App)

 })

 console.log(app)

})

Chapter 2 Nuts and Bolts of Vue on Rails

37

	 4.	 Next, at your app/views/pages/index.html.erb,

replace the entire page with the following code:

<!-- app/views/pages/index.html.erb -->

<%= javascript_pack_tag "robot" %>

	 5.	 At your terminal, run this

rails server

	 6.	 Please visit http://localhost:3000/pages to see

the robot.

�Evaluating the Vue as a First-Class Citizen
of Rails Approach
Like other approaches, this one also has its pros and cons, though as we’ll

see it is more favorable overall.

Pros

•	 Having access to both Vue.js and Ruby on Rails

ecosystem in your toolbelt

•	 Enjoying the clean interface of webpacker and

separation of concern of frontend component and

backend API

•	 Enjoying the best of Vue – True unobtrusive reactivity

and asynchronous virtual DOM update

•	 Enjoying component-based architecture on top of the

model view-controller framework

•	 Retaining the Ruby on Rails helpers for programmers’

happiness

Chapter 2 Nuts and Bolts of Vue on Rails

38

•	 Having a simpler architecture than a single-page

application architecture

•	 Having the ease of upgrading and maintaining on both

Vue and Rails

Cons

•	 Having a monolithic application may not be suitable

for a big development team.

•	 Having a Vue component delivered through Webpacker

may result in tight coupling when compared to a single-

page application with total separation of frontend/

backend responsibility.

•	 Having too many Vue components may complicate the

Rails’ view.

This is a completely different approach where we do not do a surgical

procedure on Ruby on Rails or Vue to make them work together. Rather,

through Webpacker, we deliver the best of Vue on top of the Ruby on

Rails model view-controller architecture. This architecture allows us to

follow traditional Rails conventions but allows us to take advantage of the

simplicity of Vue and add in components when plain old JavaScript may be

too bloated for what you are trying to accomplish.

The caveat is that we assume a small team of 2-4 developers for a small-

to medium-sized web application. But this approach may not be desirable

for a smaller team or a single programmer where resources are limited.

�Reusability: A Powerful Proposition of the Vue
Component
Most web pages do not need a complex UI. Not all pages will have a

full-fledged calendar or text editor, to begin with. But when you need

a complex interface, a component-based architecture will help.

Chapter 2 Nuts and Bolts of Vue on Rails

39

A component-based architecture diversifies the Rails views towards

modern user interface with the support of Rails API.

Each component packs all the Vue.js goodness into a manageable

object. And each component is a Vue instance. It allows reusable code by

extending HTML code. Furthermore, Vue component allows you to enjoy

access to a Vue’s lifecycle and reactive nature of Vue.js and, above all, have

all these in a progressive and reusable manner.

All in all, Vue component offers a systematic way to organize complex

user interface into a component object. Programmers can then use this

approach to conquer complex page that requires modern UI by dividing

them into multiple components and managing them separately without

needing to build a single-page application.

�Reactivity: Data-Binding and Virtual DOM of Vue
Since each Vue component packs the full features of Vue, it inherits the

reactivity system, data binding, and virtual DOM management of Vue.

Reactivity system is one of the reasons why Vue component can turn a

boring and static web page into life. It gives the responsiveness and fluidity

of a modern web page. Vue brings in some flavor to sections of a Ruby on

Rails application that follows conventional routing. It allows us to make an

application more interactive and easy to use than your standard resources

that you might see from scaffolding a resource in a Rails app.

�Wrap-up and the Next Step
We’ve discussed how to approach a Vue on Rails application from an

architecture perspective by demonstrating a few examples. We determined

that using a Vue as a first-class citizen approach that uses Webpacker is

an ideal scenario and will dive deeper into this approach throughout the

book.

Chapter 2 Nuts and Bolts of Vue on Rails

40

There are other features of Vue like validation, internationalization,

plugin system, directives, state management, and more. You can also see a

list of all the features supported by Vue on Rails at the end of this book.

In the next section, we will examine a way to quickly scaffold Vue

component onto Ruby on Rails project and other essential parts of a

modern web application.

Chapter 2 Nuts and Bolts of Vue on Rails

41© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4_3

CHAPTER 3

Model, Vue,
and Controller

Requirements are not architecture. Requirements are not
design, nor are they user interface. Requirements are needs.

—Hunt and Thomas

This chapter kickstarts your Vue knowledge by covering the essential

parts of Vue.js. It starts with the most common Vue features, which are

divided into two categories: common core features and tools features. It

then transitions to Vue components on Rails project and covers various

approaches to passing data within a Vue on Rails project.

�The Vue Instance and Other Vue Properties
This section is a look into how we can extend the Rails-first Vue first-

class approach to empower Rails views with some independent Vue

components. It is not about how we can replace .vue files with the

html.erb files in a Rails project, but rather it should be seen as a way of

https://twitter.com/CodeWisdom/status/155320238378987520

42

extending existing Rails architecture and embrace Vue and its components

to add some flavor to our applications.

This section aims to cover the Vue instance and its features. The

Vue instance is a global JavaScript object the offers everything that Vue

framework offers. It is important to start with the lifecycle of a Vue instance

to understand how Vue works.

�The Vue Lifecycle
Figure 3-1 shows a very good diagram from the Vue documentation

(https://vuejs.org/v2/guide/instance.html#Lifecycle-Diagram) that

explains the lifecycle of a Vue instance.

Chapter 3 Model, Vue, and Controller

https://vuejs.org/v2/guide/instance.html#Lifecycle-Diagram

43

new Vue()

Init
Events & Lifecycle

Init
injections & reactivity

Has
“el” option?

Create vm.$el
and replace
“el” with it

NO

NO

YES

YES

beforeCreate

beforeMount

beforeUpdate

beforeDestroy

destroyed Destroyed

updated

mounted

Created

* template compilation is performend ahead-of-time if using
a build step, e.g. single-file components

Virtual DOM
re-render
and patch

when data
changes

when data
vm.$destroy()

is called

Mounted

when
vm.$mount(el)

is called
Has

“template” option?

Teardown
watchers, child

components and
events listeners

Compile template
into

render function.

Compile el’s
outerHTML

as template.

Figure 3-1.  The Vue instance lifecycle (© Yuxi Evan You. Used under
the MIT License; see Appendix A)

Chapter 3 Model, Vue, and Controller

44

There are eight lifecycle hooks that one can use for the Vue instance.

Any hook that begins with before respectively happens before the next

lifecycle hook. The hooks are:

•	 beforeCreate

•	 created – Vue instance is initialized

•	 beforeMount

•	 mounted – Vue template is inserted into the DOM

•	 beforeUpdate

•	 updated – Data in a Vue instance has changed

•	 beforeDestroy

•	 destroyed – The Vue instance is destroyed, so no

longer available in the DOM and any watchers or event

listeners are torn down.

�el – The Main Selector of a Vue Instance
The el property is used to define which HTML element we want to bind

the Vue instance to. It can be set to the same as the id attribute of the

element we wish to bind it to. The following code demonstrates the use of

the el property:

Vue.new({

 el: "#identifier"

})

In order for the el property to work, there needs to be an html element

with the corresponding id attribute such as the following.

<div id="identifier"></div>

Chapter 3 Model, Vue, and Controller

45

If this reminds you of jQuery’s selector, you are not alone. Note that

Vue also uses refs to select each component. Therefore, you can use

this.$refs.something to reach out to the “something” component in any

.vue file in a Vue on Rails project. In order to access refs, it is important to

add the ref attribute to the components or HTML elements that you need

to access as shown here:

<div ref="something"></div>

�Props vs. Data
Props (short for properties) are simply accessible data of the parent

components by children components. When a parent’s props change, the

child’s props will change too. The following code declares a prop called

something.

Vue.component('some-component', {

 props: {

 something: Object

 }

})

We can pass down a value to the preceding component in the

following HTML where myObject is a declared object in the parent

component.

<some-component :something="myObject"></some-component>

Props have the following characteristics:

•	 One-way binding

•	 Downwards reactivity (child to parent’s property)

Chapter 3 Model, Vue, and Controller

46

The important concept to understand about props is that props

enforce one-way data flow from parent to child, so if a child component

has the potential to change the value of the prop, the parent will not be

aware of the change. In this case it is important to use vm.$emit. More info

about one-way data flow can be found in the Vue docs at https://vuejs.

org/v2/guide/components-props.html#One-Way-Data-Flow

�Data
Vue’s data, as its name suggested, is data residing in any Vue component

and can be reused within a .vue single-file component. Vue’s data has the

following characteristics:

•	 Vue’s data is two-way binding.

•	 Vue’s data is reactive (due to binding).

•	 Vue’s data has getter and setters.

The following code demonstrates how to increment a data value.

Vue.new({

 data: function() {

 return {

 something: 10

 }

 },

 methods: {

 increment: function() {

 something = this.data.something + 1

 }

 }

})

Chapter 3 Model, Vue, and Controller

https://vuejs.org/v2/guide/components-props.html#One-Way-Data-Flow
https://vuejs.org/v2/guide/components-props.html#One-Way-Data-Flow

47

Two-way binding of data attributes is accomplished by using the

v-model directive on html input elements, for example:

<input type="number" v-model="something"/>

�Directives
Vue’s directives are special markup token on HTML code that acts on DOM

elements. Vue has built in directives that you should be familiar with such

as the two-way binding helper v-model, but it is important to be aware

that it is possible to create your own custom directives. It is similar to

HTML attributes. There are four types of directives, namely, empty, literal,

multiple, and custom directives.

The directive syntax is as the following:

<div v-custom-directive=" "></div>

Directives are initialized in JavaScript like so:

Vue.directive('custom-directive', {

 inserted: function(el) {

 //...

 }

})

Directives are often used when you want to share similar behavior

across many HTML elements. An example of a good use case might be

when you want to create a custom tooltip or info box applied to different

elements. Directives also help with integrating third-party libraries that

don’t use Vue such as Bootstrap or other libraries that potentially rely on

jQuery.

Chapter 3 Model, Vue, and Controller

48

�@click – The Method Invoker
The @click event handler provides an easy way to invoke the methods in a

Vue instance. The long form is v-on:click. Take the following example of

an alert dialog “Hello, Vue” when the button is clicked.

<button @click="say_hello">Hello</button>

export default {

 data: function () {

 return {

 message: "Hello something!",

 }

 },

 methods: {

 say_hello: function(e) {

 alert("Hello, Vue")

 }

 }

}

�Computed Properties, Watchers,
and Methods
It is important to understand the difference between computed properties,

watchers, and methods. Computed properties are useful for display

purposes, for example, if you want to combine two data attributes or

compute the sum or average of a list of numbers, where those values

might be dynamic. Watchers are defined under the watch property of

a Vue instance. A watch method can be defined for each data attribute

that we want to track changes for. The following example simply logs the

value of the message data attribute every time it changes. It also contains

Chapter 3 Model, Vue, and Controller

49

a computed property that calculates the length of the message string. It

also includes a click() method which toggles the class list of the element

clicked. We will talk a bit more about CSS class and style binding in the

next section.

<template>

 <div id="" @click="click" ref=”something”>

 {{ message }} Is {{ messageLength }} characters long

 <input type=”text” v-model=”message”/>

 </div>

</template>

<script>

export default {

 computed: function () {

 messageLength: function() {

 return this.message.length;

 }

 },

 watch: {

 message: function(val) {

 console.log(val);

 }

 },

 methods: {

 click: function() {

 this.$refs.something.classList.toggle('hello')

 }

 }

}

</script>

Chapter 3 Model, Vue, and Controller

50

�Class and Style Binding
As its name suggest, we can control the CSS of an HTML element using the

style and class attributes. Vue provides a way to use an object for binding

CSS class names or CSS to the style attribute where values are props or

data variables. For example:

<div :style="{width: width + 'px', height: height + 'px'}">

This can start to get complicated if you need to bind more than just

a couple of style properties. If you are into toggling class/style, I will

recommend using toggling a class using this method:

<template>

 <div ref="something" @click="click"

 id="app"><p>{{ message }}</p></div>

</template>

<script>

export default {

 data: function () {

 return {

 message: "Hello Vue!"

 }

 },

 methods: {

 click: function() {

 this.$refs.something.classList.toggle('hello')

 }

 }

}

</script>

Chapter 3 Model, Vue, and Controller

51

Excessive usage of class and style binding may cause your Vue’s data to

be bloated. Hence, be sure to namespace your class’s or style’s data binder.

Alternatively, you could simply toggle classes using the toggleClass()

method provided by vuejs rubygem. It belongs to the vue-on-rails.js

library and is demonstrated in the following code.

<script>

export default {

 methods: {

 click: function() {

 toggleClass('toggle')

 }

 }

}

</script>

�Plugins
Vue plugins are great ways to add extra global functionalities to Vue

instance. All Vue components will inherit these functionalities. Vue

documentation does not recommend overloading the Vue instance and

plugins help us to avoid this. The Vuex Rails Plugin is one example of a

plugin that the authors have developed to streamline state management as

it applies to Rails applications. Usage of the plugin is discussed later in this

chapter. We will show basic usage of a generic plugin in the following text.

To use plugins, simply import and use them as shown as follows.

import Plugins from 'plugins'

Vue.use(Plugins)

If you like to pass in extra options into plugins, you can pass in a hash

as options.

Vue.use(Plugins, {someOption:true, anotherOption: false})

Chapter 3 Model, Vue, and Controller

52

�Mixins
Mixins allow us to create reusable functionalities in Vue components.

Code gets executed in mixins first before the Vue component’s code, so

if you define the same method in a component as in the mixin, then the

components method will override the mixin’s method. They can use the

same structure as a Vue component and are great for keeping things DRY

(Do not Repeat Yourself). For example, Vue documentation provides a

simple example as the following, which simply logs “hello from mixin!” for

any component that uses the mixin.1

// define a mixin object

var myMixin = {

 created: function () {

 this.hello()

 },

 methods: {

 hello: function () {

 console.log('hello from mixin!')

 }

 }

}

// define a component that uses this mixin

var Component = Vue.extend({

 mixins: [myMixin]

})

var component = new Component() // => "hello from mixin!"

1�© Yuxi Evan You. Used under the MIT License, see Appendix A.

Chapter 3 Model, Vue, and Controller

53

In the next section, we learn about building independent Vue

component and how separation of concerns can assist you in your next

Vue on Rails project.

Note T his book does not cover in-depth creation of plugins or
mixins. You may read more about the creation of plugins in the Vue
documentation at https://vuejs.org/v2/guide/plugins.
html and https://vuejs.org/v2/guide/mixins.html

�Building Vue Components
In this section, we will dive into how to integrate Vue components into a

Rails application. We will discuss the following topics:

•	 Component generation using generators from the

vueonrails gem

•	 The option to use an x-template as a component

template

•	 Communication between components

•	 Global and local component registration

�Generating Vue Components for Your Vue
on Rails Project
The vueonrails gem comes packed with helpful generators for creating

Vue components in your Vue on Rails project as demonstrated by a simple

command.

rails g vue something

Chapter 3 Model, Vue, and Controller

https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/plugins.html
https://vuejs.org/v2/guide/mixins.html

54

The command generates the following files in your project:

create app/javascript/packs/something.js

create app/javascript/parts/something/something.vue

create app/javascript/parts/something/something.js

create app/javascript/parts/something/something.css

Note  You do not need to follow the separation of concern. You
would use the option --single or -s to generate a single-file
component with its corresponding pack.

The following command demonstrates the generation of a single-file

component:

rails g vue something --single

The command creates the following files. The .vue file encapsulates all

the CSS and JS in a single file:

create app/javascript/packs/something.js

create app/javascript/parts/something.vue

�Using x-template to Load Your Vue Component
A good way to get started with Vue components in your Rails project is to

use an x-template. This eliminates the dependency on Webpacker and

having to manage assets in multiple places if your application still depends

on the asset pipeline. It is as simple as loading in the CDN link for Vue. For

example:

<%= javascript_include_tag: "https://cdn.jsdelivr.net/npm/

vue@2.6.10/dist/vue.js" %>

Chapter 3 Model, Vue, and Controller

55

In this case, the Vue instance is managed using the asset pipeline, and

the template will live in your views.

// app/assets/javascripts/pages.js

var XComponent = Vue.component('x-component', {

 template: '#x-component',

 data: function() {

 return {

 message: 'Hello x-template!'

 }

 }

});

// initialize the Vue instance - example that supports

turbolinks

document.addEventListener('turbolinks:load', () => {

 var app = new Vue({

 el: '#app',

 components: { XComponent }

 });

});

The template is embedded within a <script> tag with a type attribute

that defines it as an x-template. Vue component templates could even

be separated out into Rails partials for ease of reuse throughout the

application.

<!-- app/views/pages/index.html -->

<div id="app">

 <x-component></x-component>

</div>

<script type="text/x-template" id="x-component">

 <div>

Chapter 3 Model, Vue, and Controller

56

 <p>{{ message }}</p>

 </div>

</script>

The downside to using this approach is that you can’t take advantage of

single-file components and CSS support using Vue loader as well as taking

advantage of a modular approach with Webpacker. Using x-template is a

good way to get started with Vue in legacy Rails applications by using the

existing asset pipeline. For new projects, we recommend using Webpacker

from the start.

�Communication Between Vue Components
in a Rails Project
The concept of one-way down communication between parent and

child components is an important concept to grasp, which we previously

discussed. However, what if you need to communicate a change to a

component that doesn’t have this direct relationship? That task is not as

trivial. Also, how does this apply to a Rails environment?

Let’s take the example of flash alerts in Rails. Typically, flash notices

and alerts are set on the server using flash[:notice] = 'Notice' and the

template for these alerts live in partial and rendered on the server side if

any notices exist. In the situation where flash is used widely throughout an

existing application, we can create a Vue instance that supports this as well.

Let’s say we want to create a toast notification that can be called from

any Vue component with the app. This example will use a few simple

buttons that live in a separate Vue instance and will demonstrate how a

server-side flash can also be displayed on page load.

Webpacker will be used to take advantage of CSS support, and the

instance will be appended to the document body.

Chapter 3 Model, Vue, and Controller

57

// app/javascript/parts/flash/flash.vue

<template>

 <div id="flash">

 �<div class="toast" v-for="message in messages"

:class="[message[0]]">

 <p>{{ message[1] }}</p>

 </div>

 </div>

</template>

Flash messages can be rendered from the server on data attributes and

can be called when the flash component is mounted.

<div id="flashData"

 data-notice="<%= flash[:notice] %>"

 data-error="<%= flash[:error] %>"

 data-warning="<%= flash[:warning] %>">

</div>

<!-- or by using a content tag -->

<%= content_tag "div", nil, id: "flashData", data: {

 notice: flash[:notice],

 error: flash[:error],

 warning: flash[:warning]

} %>

// app/javascript/parts/flash/flash.js

export default {

 data: function() {

 return {

 messages: [],

 counter: 0

 }

 },

Chapter 3 Model, Vue, and Controller

58

 mounted() {

 var flashFromServer = document.getElementById('flashData');

 this.notice(flashFromServer.dataset.notice);

 this.error(flashFromServer.dataset.error);

 this.warn(flashFromServer.dataset.warning);

 },

 methods: {

 notice(msg) {

 this.toastMsg('notice', msg)

 },

 error(msg) {

 this.toastMsg('error', msg)

 },

 warn(msg) {

 this.toastMsg('warning', msg)

 },

 toastMsg(type, msg) {

 this.counter++

 this.messages.push([type, `${msg} (#${this.counter})`])

 var vm = this

 setTimeout(function() {

 vm.messages.shift()

 }, 3000)

 }

 }

};

Now, for any component within our application, we can access the

component’s methods directly by defining the instance globally on the

window.

Chapter 3 Model, Vue, and Controller

59

// definition in the entry point

var FlashVM = new Vue(Flash)

window.FlashVM = FlashVM

// usage

FlashVM.notice('Notice')

There are alternatives for communication between components such

as using a global event bus. This method consists of having a single Vue

instance that is responsible for emitting and receiving messages.

// receiver in another component

 EventBus.$on('flash', function(data) {

 this.notice(data.message)

 })

// emitter from one component

 EventBus.$emit('flash', { message: 'Notice' })

Another option is to use a global event listener.

//receiver

 var vm = this

 document.addEventListener('receive', function() {

 vm.interesting()

 }, false)

//emitter

 var event = document.createEvent('Event')

 event.initEvent('receive', true, true)

 document.dispatchEvent(event)

The event bus and listener options can quickly make the application

fairly convoluted with a more complex application. In this scenario, using

Vuex may be a better solution for more robust state management.

Chapter 3 Model, Vue, and Controller

60

�Registering Components
In this section we will take a look at two methods for registering

components, namely, global and local registration.

�Global Registration of Component

Registering a component globally means that the resultant global

component is accessible by all of the other components. This is

accomplished through the Vue.component method.

import ComponentName from 'component.vue'

Vue.component('component-tag', ComponentName) // <component-tag>

�Local Registration of Component

Registering a component locally means it is only accessible by the local

components and its children only.

<template>

 <component-tag></component-tag>

</template>

import ComponentName from 'component.vue'

export default {

components: {'component-tag': ComponentName}

}

�Passing Data from Vue to Server
This section will discuss how to pass data from the Vue frontend to the

server in the most effective way with a focus on developer happiness.

Chapter 3 Model, Vue, and Controller

61

If you are using Rails view, without .vue, you can still embed v-model

into Rails view, and they will work fine. This is provided if you follow the

setup found in Chapter 2.

To submit data from the Vue side to the server side, we can use an

HTML form to submit a post request. In the next example, we will use a

form component to generate a HTML component. The form component is

called vue_form_for.

Note T he vueonrails gem ships with a form component in
the form of plugins called vue-form-for available at http://
github.com/vueonrails/vue-form-for. It is inspired by Rails’
view helper to generate HTML forms. To see how to use vue-form-
for, read on.

The following shows an example of vue-form-for usage.

import FormFor from 'vue-form-for'

Vue.use(FormFor)

<!— Use this in .vue files -->

<form-for>

 <label-tag for="name"/>

 <text-field for="name"/>

 <submit-tag/>

</form-for>

You can also use v-model in Rails form by doing the following:

<%= form.text_field :something, ':value': "textfield" %>

This generates an input form that has a binding to the <textfield>

variable inside Vue instance.

Chapter 3 Model, Vue, and Controller

http://github.com/vueonrails/vue-form-for
http://github.com/vueonrails/vue-form-for

62

The vueonrails gem provides an option to include a form when

generating a component demonstrated by the following command:

vue g somecomponent --form

�With HTTP Client
Another way to send data from the Vue side to the server side is using a

HTTP client. Writing ES6 gives you shorter function syntax and binding to

this. The new function syntax is called the arrow function.

axios.get(this.onComponentMountedURL)

 .then((response) => {

 this.onComponentMounted = response

 })

var application_instance = this

 if(application_instance.onComponentUpdatedURL != ""){

 axios.get(application_instance.onComponentUpdatedURL)

 .then(function (response) {

 application_instance.onComponentUpdatedURL = response

 })

}

A shorter and lighter axios request is helpful when you need to

sprinkle axios requests throughout your Vue components.

Most Vue components request data loading at the beginning. Use

the vue-autorequest plugin to further trim off those loading requests of

your every Vue-component, making your components less bloated. To get

started, simply register the plugin using the following.

import AutoRequest from 'vue-autorequest'

Vue.use(AutoRequest)

Chapter 3 Model, Vue, and Controller

63

And the following demonstrates usage of vue-autorequest within a

component:

<script>

export default {

 data(): function(){

 return {

 onComponentCreatedURL: "" //set the url here #1

 }

},

 watch: {

 onComponentCreated(response){

 // receive data from here

 }

 }

}

</script>

Note T ogether with base components, vue-autorequest is
imported automatically when the vueonrails gem is included in the
Gemfile. Run the rails vue:setup to complete the initialization.

�Retiring vue-resource and Using Axios

Since Vue 2.0, the Vue team has stopped recommending vue-resource as

the default HTTP client. Instead, axios has been picked because it provides

a very simple API for making HTTP requests. Therefore, we recommend

using axios over vue-resource for your Vue on Rails project.

Axios is created by Matt Zabriskie, and the Vue core team has

recommended axios as the HTTP client for Vue.js.

Chapter 3 Model, Vue, and Controller

64

In the next section, we discuss how to route a Rails project with a vue-

router. There is an example project to demonstrate the capability of vue-

router.

�Routing with Vue Router within a Rails
Project
You may download a copy of the Vue Router with Rails-API from http://

github.com/TBA/TBA. This section covers how to use Vue Router within

a Rails project. Vue Router is the Vue way of routing HTTP request in a

project generated using vue-cli.

In this book, we choose to favor the Rails router over Vue Router in a

Vue on Rails project. The benefits are listed in Chapter 2. We would like

to provide an example of using Vue Router for those who may decide

on taking the SPA route or at least help in the process of choosing an

architecture for an application.

We will demonstrate how you would translate routes for a blog

application (e.g., defining resources :posts in your config.rb file) to Vue

Router. You can start by creating a new app, adding the vue-router npm

package, and running the scaffold.

rails new vue_router --webpack=vue

cd vue_router

yarn add vue-router

yarn install

rails generate scaffold post title:string body:text --api

rails db:migrate

This setup will require the root path to point to a single file, but all of

the HTML will be handled by Vue components and routing, and redirects

will be handled on the client side by the Vue Router.

Chapter 3 Model, Vue, and Controller

http://github.com/TBA/TBA
http://github.com/TBA/TBA

65

Create an index.html file that includes the default Javascript pack for

Vue (<%= javascript_pack_tag "hello_vue" %>) and point root to this

route.

config/routes.rb

root to: "posts#index"

�Creating the Router File
The router file will live in app/javascripts/router.js and will contain

the configuration required for Vue Router. One problem with Vue Router

is that there aren’t any conventions followed for defining typical routes in

a similar manner to the Rails resources method. Each route will need to be

defined individually, but we will try to follow Rails conventions.

Under Rails’ conventions, a route will be defined for the posts index,

show, new, and edit routes, and corresponding components will live in the

app/javascripts/posts folder.

import VueRouter from 'vue-router'

import Posts from 'posts/Posts'

import Post from 'posts/Post'

import NewPost from 'posts/NewPost'

import EditPost from 'posts/EditPost'

const routes = [

 { path: '/posts', component: Posts },

 { path: '/posts/new', component: NewPost },

 { path: '/posts/:id', component: Post, name: 'post' },

 �{ path: '/posts/:id/edit', component: EditPost, name: 'edit_

post' }

]

Chapter 3 Model, Vue, and Controller

66

const router = new VueRouter({

 routes

})

export default router

�Initializing vue-router
vue-router is imported and initialized in our pack file along with the

configuration defined previously.

import Vue from 'vue'

import VueRouter from 'vue-router'

Vue.use(VueRouter)

import router from '../router'

import App from '../app.vue'

document.addEventListener('DOMContentLoaded', () => {

 const el = document.body.appendChild(document.

createElement('hello'))

 const app = new Vue({

 el,

 router,

 render: h => h(App)

 })

 console.log(app)

})

This makes the router instance available throughout the application

as this.$router which allows for dynamic routing. This will also

make this.$route available which is important for accessing route

parameters, which we will discuss further. Make sure to look at the official

documentation [1] to discover Vue’s routing capabilities.

Chapter 3 Model, Vue, and Controller

67

We need to make sure to insert the <router-view> tag appropriately.

In the example, we insert it into app.vue, but in a more robust application,

you will need to think about the template of your application and where to

place them.

<template>

 <div id="app">

 <router-view></router-view>

 </div>

</template>

In the example, we don’t have a base route defined (/), so our app

component immediately redirects to the posts path when created.

this.$router.push() is used to dynamically change routes. This is

basically equivalent to the Rails method redirect_to.

created: function () {

 this.$router.push('/posts')

}

�Using <router-link>
<router-link> is the equivalent of link_to in Ruby on Rails. The tag

only requires a to attribute which can take the path of the route or an

object containing other information such as the name of the route and

parameters.

In our Post component, we can demonstrate how to link to different

routes with or without parameters. The Read More and Edit links require

an id as a parameter.

<template>

 <li v-for="post in posts">

Chapter 3 Model, Vue, and Controller

68

 {{ post.title }}

 �<router-link :to="{ name: 'post', params: { id: post.id

}}">Read More</router-link>

 �| <router-link :to="{ name: 'edit_post', params: { id:

post.id }}">Edit</router-link>

 �|

Delete

 <router-link to="/posts/new">New Post</router-link>

</template>

�Routing Parameters
Accessing routing parameter is simple. As discussed before, we have access

to this.$route. Parameters are accessed simply through this.$route.

params.

For example, in our Post component, we want to fetch the content for

a particular post id and similarly when editing an existing post. We can do

this when the component is mounted using axios. In our example, http is

an instance of axios.

mounted: function () {

 var vm = this

 http.get(`/posts/${this.$route.params.id}.json`)

 .then(function (res) {

 vm.post = res.data

 })

Chapter 3 Model, Vue, and Controller

69

 .catch(function (err) {

 alert(err)

 })

}

�Redirect or Alert
In Ruby on Rails projects, when a form is submitted it’s common to

redirect on a successful response or render when a model’s validations do

not pass.

In our example using Vue Router, the client side interacts with the Rails

backend using JSON endpoints, so we don’t have access to redirects or

rendering, just response status codes and JSON responses.

So a form submission for a new post will need to handle any errors on

the client side. In the example, we will simply alert the error response in

case it happens. In a robust application, you will want to inform your users

in a more visually appealing manner, such as a bootstrap alert or other

methods.

On a successful creation of a new post, we simply redirect to the path

for the created post using this.$router.push(). Here is the full example

of our NewPost component.

<template>

 <div>

 <h1>New Post</h1>

 <form @submit.prevent="createPost()">

 <label for="title">Title</label>

 �<input type="text" v-model="post.title" name="title"

id="title">

 <label for="body">Body</label>

 �<textarea name="body" id="body" v-model="post.body">

</textarea>

Chapter 3 Model, Vue, and Controller

70

 <input type="submit" value="Save Post">

 </form>

 <router-link to="/posts">« Back to Posts</router-link>

 </div>

</template>

<script>

import http from '../http'

export default {

 data: function() {

 return {

 post: {

 title: ",

 body: "

 }

 }

 },

 methods: {

 createPost: function() {

 var vm = this

 http.post('/posts.json', { post: this.post })

 .then(function(res) {

 vm.$router.push(`/posts/${res.data.id}`)

 })

 .catch(function(err) {

 alert(err)

 })

 }

 }

}

</script>

Chapter 3 Model, Vue, and Controller

71

Since it is a new post that we are creating, we actually can’t route to it

until it is successfully created. We use the id from the response to include

in our route. If an error occurs (response code of 4XX or 5XX), then we

alert the response in the browser.

�Points to Ponder
We will not be using Vue Router in Vue on Rails projects. Continuing to use

Rails routing allows us to maintain the conventions of Rails and stick with

a traditional MVC pattern. This allows us to be more flexible with Vue and

use it in scenarios or in particular controllers where it makes sense. Using

Rails router also promotes many battle-tested strategies in Rails view like

Rails Helpers, Partial, etc.

All in all, Rails router allows for better performance in a Vue on Rails

project, in contrast to a single-page application (SPA). With an SPA, it

results in bloated asset files, but a particular page or view may only need a

small portion of the code loaded.

In the next section, this book will explore controlling state of a Rails

view using Vuex, a simple state management plugin for Vue.

�Managing State of a Rails View Using Vuex
This section demonstrates the usage of Vuex – a state management system

on Vue components inside a Rails project.

You see, component’s data is the key that open doors between

individual and independent components. As you build bigger apps, data

between each component parts become important. The simplest data

management is in the form of an empty hash.

var data = {}

Chapter 3 Model, Vue, and Controller

72

But as the data grows bigger, you want to have an easy way to control this

variable data that has transformed into variable bigger_data.

Vuex is the recommended heavy-weight solution to manage your data

between each Vue component as your data gets bigger and messier.

�Introduction
States are representations of the app at different timing. This means that

managing states or having a good strategy to deal with them can be very

useful in making your modern web application.

�The Trouble with Vuex and Other State
Management Tools
Most state management tools are just bloated with theory and heavy-laden

principle like the single source of truth (SSOT). SSOT sounds poetic on

paper, but a technology is usually not meant for long-term programmers’

happiness or pragmatic approach. Design patterns used around central

state management tend to be convoluted and hard to understand for those

not familiar with the concept, so it makes it a tough learning curve for

most. Taking Vuex for example, to be able to change, you need to define a

getter, an action, and a mutation.

�Why Should We Manage States?
States are also relevant when each component talks to each other. States

are important for communication as

•	 A temporary data representation of a component

•	 A useful communication channel among components

•	 Persistent storage of the data presentation among

components

Chapter 3 Model, Vue, and Controller

73

The point about persistent storage is controversial as one may argue a

database is a better tool to be doing that. This is why Stimulus is taking a

different approach when comes to state management. Stimulus takes the

states and attaches them onto the HTML elements. This approach means

that Stimulus does not manage states but continuously replaces the entire

HTML with the baked-in states of the web component.

The DOM is also centralized and singular. The difference is that a

state manager stores numbers and string in a neatly organized way for

programmers, while a DOM’s sole purpose is to display design on the web

with a secondary purpose to represent states.

For instance, consider a clinic counter; clicking the count button will

increment the number by one. Each action causes the representative to

increment, thereby reflected in the displayed number. Simple and elegant.

Do you really need Vuex or any of the state management all the time?

Is there an easier way to deal with states? Ruby on Rails will be shipping

stimulus.js which abandons state management entirely by storing all the

states in the HTML itself. We will provide an overview of using Vuex in

a Vue on Rails project and lead into a plugin that we have developed to

abstract away a lot of the concepts and to make it easier to hook Vuex into

the Rails backend by following conventions.

�Getting Started with Vuex
Let’s start by installing Vuex:

yarn add vuex

If you are using the vuejs gem, the installation is done for you. The

following shows you how to scaffold a Vue component with Vuex:

vue generate <component_name> --vuex

Chapter 3 Model, Vue, and Controller

74

Note T he vueonrails gem ships with the vuex-rails-plugin
that offers a painless mapping of Rails resources to Vuex modules.

�Vuex Rails Plugin
Vuex is often not very trivial to use for developers who are not familiar with

similar state management tools and is a hard problem to get right. The

Vuex Rails plugins attempts to simplify this problem for developers and

easily maps Rails resources to Vuex state and abstracts away common code

that is created when using Vuex.

The plugin works well if Rails conventions are followed particularly

when resources are scaffolded and supported a JSON format. A more in-

depth example of using the plugin can be found in our hands-on tutorial

for the Tic Tac Toe app in Chapter 5. Here we can demonstrate simple

usage.

�Configuring the Plugin

A plugin needs to be initialized for each resource that you want to map, so

for example if you have posts and categories defined as resources in Rails,

then it can be initialized like so.

// store.js

import Vuex from 'vuex'

import Vue from 'vue'

Vue.use(Vuex)

import VuexRailsPlugin from 'vuex-rails-plugin/src/

VuexRailsPlugin'

export default new Vuex.Store({

 // ...

 plugins: [

Chapter 3 Model, Vue, and Controller

75

 VuexRailsPlugin('posts'),

 VuexRailsPlugin('categories')

]

})

�Start Using Vuex Rails Plugins

Under the hood, the Vuex Rails plugin allows you to call common CRUD

actions from your Vue components and performs a lot of the grunt work

such as making the web request to the backend and mutating Vuex state

appropriately to keep in sync with the backend.

A simple example is fetching a list of posts or calling the posts#index

action. Vuex actions and state can be used inside components using

mapState and mapActions.

// posts.vue

<template>

 <li v-for="post in posts">{{ post.title }}

</template>

<script>

import { mapState, mapActions } from 'vuex'

export default {

 // ...

 created() {

 �this.getPosts({ page: 1, limit: 10 }) // ex. with

parameters

 },

 computed: {

 ...mapState('posts', {

 posts: state => state.all

Chapter 3 Model, Vue, and Controller

76

 })

 },

 methods: {

 ...mapActions('posts', {

 �getPosts: 'getAll' // possible actions - getAll, get,

create, update, destroy

 })

 }

}

</script>

See the README for vuex-rails-plugin showing all actions that are

supported (https://github.com/rlafranchi/vuex-rails-plugin). The

plugin may not solve problems for more complex state management, but

it still works side by side with Vuex, so you can always create custom Vuex

modules, actions, mutations, etc.

The next section discusses handling scenarios that need data in a

real-time or near real-time manner and will cover polling and using Action

Cable.

�Passing Data from Server to Vue
This section focuses on passing data and information from the server

to the Vue frontend or your Vue components inside a Rails project.

Sometimes, your web application requires real-time or frequent updates

to its interface. This will require you to push the data from the server to the

frontend. In this section, we will explore two ways to pass data from server

to Vue: Action Cable and simple polling.

Also, check out the hands-on tutorial on Action Cable of Vue on Rails

in Chapter 5 where you learn to create a two-player, real-time game.

Chapter 3 Model, Vue, and Controller

https://github.com/rlafranchi/vuex-rails-plugin

77

�Using Action Cable as a push technology
Another method is to use Action Cable like web-socket to push data from

the server side to the Vue side of things. There will be a full example of

Action Cable in our Chapter 5 hands-on tutorial. We will show the basics

here on how to install and configure Action Cable on the frontend and

backend.

On the frontend, we can add the actioncable package to our installed

packages.

yarn add actioncable

An easy way to get Action Cable working with Vue is to initialize the

consumer as a Vue prototype in your entry point, which allows us to use

cable within our Vue components as this.$cable. By default, Rails serves

Action Cable sockets at the /cable path.

import Vue from 'vue'

import App from '../app.vue'

import ActionCable from 'actioncable'

Vue.prototype.$cable = ActionCable.createConsumer('/cable')

Now in our app we can subscribe to the appropriate channel for our

component.

// app.vue

export default {

 data: function () {

 return {

 message: 'Waiting for messages...'

 }

 },

 created: function () {

 const vm = this

Chapter 3 Model, Vue, and Controller

78

 this.$cable.subscriptions.create(

 { channel: 'NotificationsChannel' },

 {

 received: function (data) {

 vm.message = data.message

 }

 }

);

 }

}

Action Cable is supported out of the box on the Rails backend, so it is

just a matter of creating a channel for broadcasting messages.

class NotificationsChannel < ApplicationCable::Channel

 def subscribed

 stream_from "notifications_channel"

 end

end

#For instance

ActionCable.server.broadcast "notifications_channel", message:

"Hello ActionCable!"

�A Simple Polling
Last, but not least, a simple polling will be a good way to keep data in

sync from the Vue side to server side. This is not a push technology or a

Javascript hack but a consistent request to the endpoint for new data.

<script>

 function doWork(){

 console.log("doing work")

 }

Chapter 3 Model, Vue, and Controller

79

 setInterval(doWork, 1000) //every 1000 miliseconds

</script>

Note  setInterval() needs to be cleared using
clearInterval() when a Vue component is destroyed; otherwise
a new interval will be created each time that a component is
initialized causing potential performance problems.

�Wrap-up and the Next Step
In this chapter we learned about the basics of Vue and the Vue lifecycle,

Vue components, how to route your Vue on Rails application, using Vuex

for state management, and passing data between Rails and Vue. In the next

part, this book will explore some real-world hands-on tutorials. You will

get to integrate Action Cable, active storage, nested form, and specific-page

Vue of a Vue on Rails project. The first chapter in the next part starts with

some short tutorials. Let’s go.

Chapter 3 Model, Vue, and Controller

Hands on the
Wheels – Tutorials
Chapter 4. Real-World Applications Through Short Tutorials
Chapter 5. Making a Real-Time Two-Player Game with Action Cable
Chapter 6. Building an Image-Cropping Tool with Vue and Active
Storage

PART II

83© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4_4

CHAPTER 4

Real-World
Applications Through
Short Tutorials

I also really care about the approachability part of Vue, which
is rooted in the belief that technology should be enabling more
people to build things

—Evan You

We learn best by learning through examples. In this chapter, we provide

real-world examples to illustrate certain points.

The vueonrails gem comes with Ruby and JavaScript methods that

allow us to enable a concept that we like to call specific-page Vue. We will

demonstrate how to use specific-page Vue with and without Turbolinks in

the first tutorial.

We previously discussed form-for Vue helpers and will dive deeper

into its usage as it applies to nested forms in the second tutorial in this

chapter and how we can tie our forms into the backend. We will then

investigate certain topics like configuration using application template,

Vue-UI compatibility, internationalization, simple state management, and

even server-side rendering.

84

Note  As mentioned earlier in the book, source code for most code
examples and tutorials is available at the vueonrails organizational
GitHub account at https://github.com/vueonrails/code-
examples. You can also reach out to the authors, Bryan (http://
github.com/ytbryan) or Richard (https://github.com/
rlafranchi).

�Specific-Page Vue Inside Rails Products
Specific-page Vue allows developers to choose a specific Vue component

to display on a specific Rails view. Similar to page-specific JavaScript

that executes JavaScript for each page as if it behaves like a single-page

application (SPA), a specific-page Vue (SPV) executes its Vue component

and its corresponding JavaScript on a page much the same way.

The javascript_pack_tag for application.js is where all your component

packs can be consolidated and delivered onto your Rails view. It is the

new asset pipeline for your Rails product, therefore treating it as the single

pipeline.

Rails 6 will ship with a single javascript_pack_tag as the default

javascript pipeline on the main app/views/layout/application.

html.erb. javascript_pack_tag is responsible to import each Vue

components into the final Rails application.

<%= javascript_pack_tag 'application','data-turbolinks-track':

'reload' %>

The alternative to SPV is to sprinkle Webpacker javascript_pack_tag

on each Rails view. This will result in multiple javascript_pack_tag

instances on multiple Rails views.

<%= javascript_pack_tag 'component' %>

Chapter 4 Real-World Applications Through Short Tutorials

https://github.com/vueonrails/code-examples
https://github.com/vueonrails/code-examples
http://github.com/ytbryan
http://github.com/ytbryan
https://github.com/rlafranchi
https://github.com/rlafranchi

85

SPV on Rails is a refuge to the SPA exodus that you may be having in

your company. An SPA has the unhealthy constraint on small business

and small team where the JavaScript application is loaded once and gain

full responsibility of what happens next throughout the entire web app

lifecycle.

The following highlights the difficulty of the SPA approach:

•	 Budget required for frontend and backend dichotomy

which contributes to a larger starting team size, usually

at an early stage of the product lifecycle.

•	 The complexity of SPA isn’t worthwhile for most

projects. This is especially so if you are working in a

small- to medium-sized team.

•	 Dividing teams into frontend and backend creates

siloes that tend not to retain cross-functional

knowledge.

•	 It is far more laborious to build a robust SPA than a

monolithic SPV on Rails app due to bigger required

team and unnecessary overhead in code.

The following highlights the proposition of specific-page Vue with

monolithic Rails architecture:

•	 Smaller team required to ship a majestic monolithic

Rails with SPV and single-file components.

•	 Scalable approach towards completion of final product.

•	 The Vue components/parts are sprinkled across the

Rails views.

Chapter 4 Real-World Applications Through Short Tutorials

86

•	 Scalability depends on completion of components

instead of completion of entire frontend or

backend.

•	 Large components can be broken down into

multiple smaller components using single-file

components.

While single-page application dominates the mind space of the

frontend development, many developers have come out to discuss that a

monolithic application is easier to manage. Can we ship with something

that behaves like page-specific application while enjoying the MVC clean

separation of concerns? We would like to propose the SPV approach which

allows us to get the benefits of an SPA such as a responsive and reactive

UX. In this scenario we can choose where we want to incorporate Vue.

�Specific-Page Vue
Let’s start off with an empty Rails project by running the following

application template:

rails new app --webpack=vue

Note  You will need to add vueonrails and Webpacker inside Gemfile.
Run bundle exec bundle install to get all its dependencies.

The following assumes that we have already set up a Rails project

using the tools that we have previously mentioned. We can generate

a component and modify the entry point slightly. The following code

demonstrates an entry point or a pack tag that initializes an SPV. It only

loads the Vue instance on the pages/index.html view.

Chapter 4 Real-World Applications Through Short Tutorials

87

import Vue from 'vue'

import App from '../parts/something/tab_component.vue'

import {isView} from 'vueonrails'

document.addEventListener('DOMContentLoaded', () => {

 if(isView('pages#index')){

 document.body.appendChild(document.createElement('hello'))

 const app = new Vue({

 render: h => h(App)

 }).$mount('hello')

 console.log({app})

 }

})

Make note of the isView() function; this is a helper method provided

by the vueonrails gem that allows us to load a Vue instance only on

specific pages. Let's say we have a different instance that we want to load

on the pages/second.html view. We can also add the following to the

same pack file:

if(isView('pages#second)){

 document.body.appendChild(document.createElement('hello'))

 const app = new Vue({

 render: h => h(App)

 }).$mount('hello')

 console.log({app})

 }

In order for SPV to work, the application.html.erb layout file needs

to be modified appropriately to add a class to the body of the layout. For

this, we can use the specific_page_vue helper and modify the body tag

appropriately.

Chapter 4 Real-World Applications Through Short Tutorials

88

<%= content_tag :body, class: specific_page_vue do %>

 <%= yield %>

 <% end %>

Here is the full content of the application.html.erb layout file

 <!DOCTYPE html>

<html>

 <head>

 <title>SpecificPageVue</title>

 <%= csrf_meta_tags %>

 <%= csp_meta_tag %>

 �<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

 �<%= javascript_include_tag 'application', 'data-turbolinks-

track': 'reload' %>

�<%= javascript_pack_tag 'application', 'data-turbolinks-

track': 'reload' %>

 </head>

 <%= content_tag :body, class: specific_page_vue do %>

 <%= yield %>

 <% end %>

</html>

This example assumes that //= require "turbolinks" was removed

from the application.js file. In order for Turbolinks to work with SPV, we

need to make some small changes which is demonstrated in the next

section.

Chapter 4 Real-World Applications Through Short Tutorials

89

�Specific-Page Vue with Turbolinks
Specific-page Vue works great with the Turbolinks. This section uses the

same layout file that we showed in the previous section and assumes

you have Turbolinks installed. Make sure that Turbolinks is loaded in the

application.js file.

//= require turbolinks

In order for Turbolinks to work with Vue, we need to install the vue-

turbolinks package.

yarn add vue-turbolinks

Create a Turbolinks-compatible tab component.

import Vue from 'vue/dist/vue.esm'

import App from '../parts/tab_component/tab_component.vue'

import Tabs from 'vue-tabs-component';

import {isView} from 'vueonrails'

import TurbolinksAdapter from 'vue-turbolinks'

Vue.use(Tabs);

Vue.use(TurbolinksAdapter)

document.addEventListener('turbolinks:load', () => {

 if(isView('pages#index')){

 document.body.appendChild(document.createElement('hello'))

 const app = new Vue({

 render: h => h(App)

 }).$mount('hello')

 console.log({app})

 }

})

Chapter 4 Real-World Applications Through Short Tutorials

90

Create a second Turbolinks-compatible tab component.

import Vue from 'vue/dist/vue.esm'

import App from '../parts/table/table.vue'

import {isView} from 'vueonrails'

import TurbolinksAdapter from 'vue-turbolinks'

Vue.use(TurbolinksAdapter)

document.addEventListener('turbolinks:load', () => {

 if(isView('pages#second')){

 document.body.appendChild(document.createElement('hello'))

 const app = new Vue({

 render: h => h(App)

 }).$mount('hello')

 console.log({app})

 }

})

The important difference to note between using Turbolinks is that

Turbolinks listens for the turbolinks:load event where normally without

Turbolinks we would use the DOMContentLoaded event. Turbolinks offers

the benefit of avoiding page loads in the browser and seamless transitions

between pages. This allows us to create a great user experience in the

transition between pages in our Rails products that use Vue and those that

don't.

�Nested Form with form-for Component
vue-form-for is a Vue component that mimics the form-for and form-

with of Rails. It generates HTML form code that makes it possible to post

forms to the Rails backend. A Vue form component enables reactivity and

has better integration with other Vue libraries like Vuex, Vue UI, or Vue

Chapter 4 Real-World Applications Through Short Tutorials

91

devtool. Form-for uses XMLHttpRequest to request data, and this means

there is no other HTTP dependencies like axios.

<form-for> adds Vue-powered forms into Rails architecture. How do

we created nested attributes to create advanced forms in modern Rails?

In this section, we will use form-for to create nested forms to submit a

list of student names and the subjects they are taking. A nested form is one

that accepts two models or more.

First, we generate our first model student:

rails g scaffold student name:string

Then let’s generate a second model subject:

rails g model subjects name:string subject_id:integer

student:references

Note that we are using reference for classroom. This will be useful for

database relationship and migration of data.

Next, let’s edit the model association as shown in the following code:

class Student < ApplicationRecord

 has_many :subjects

 accepts_nested_attributes_for :subjects

end

class Subjects < ApplicationRecord

 belongs_to :student, optional: true

end

Let’s create a Vue form using form-for, label-tag, text-field, and

submit-tag:

<template>

 <form-for model="student">

 <div class="field">

 <label-tag for="name">Name</label-tag>

Chapter 4 Real-World Applications Through Short Tutorials

92

 <text-field for="name"></text-field>

 </div>

 <fields-for model="subjects" >

 <label-tag for="name">Subject</label-tag>

 <text-field for="name"></text-field>

 </fields-for>

 <div class="actions">

 <submit-tag></submit-tag>

 </div>

 </form-for>

</template>

Next, let’s update our student controller:

controllers/student_controller.rb

def new

 @student = Student.new

 @student.subjects.build

end

...

private

def show_params

 params.require(:show).permit(:name,

 :students_attributes => [:name]

)

end

<template>

 <form-for model="">

 <fields-for model="<%= @something %>">

 <text-field for="name">

 <text-field for="address">

Chapter 4 Real-World Applications Through Short Tutorials

93

 </fields-for>

 </form-for>

</template>

Now, here’s the part where we will be tempted to use the erb form.

If you switch to Vue component, you will have better integration with

other Vue libraries. In Figure 4-1, the Vue Devtool shows that Vue 2.6.10 is

detected and the FormFor component is displayed.

Figure 4-1.  Using the Vue Devtool with Firefox browser 67.0.4

The full project can be downloaded from GitHub by running the

following command:

git clone http://github.com/ytbryan/simple_form

bundle exec bundle install

bundle exec rails server

Chapter 4 Real-World Applications Through Short Tutorials

94

Optionally, you can speed up the rendering of your Vue component by

running the webpack-dev-server in your development environment. Open

another tab in your terminal and run the following command:

./bin/webpack-dev-server

�Application Template of Vue on Rails
Products
Next, we have an application template that Ruby on Rails ships by default.

According to Rails’ guide, an application template is simple Ruby files

containing DSL for adding gems, initializers, etc. to your freshly created

Rails project or an existing Rails project.

�The Template
The application template jump starts your Rails product with new

default and popular tools that gives you a good starting point with your

development process. It also allows developers to customize your Rails

products to be ready for everything what Vue has to offer.

Such automatic customization gives developers a better starting point

and helps to skip mind-numbing configuration of Jest test, single file

component, simple state management, Vue UI, internationalization, and

even server-side rendering which we will explore in this chapter.

An example of the application template that is designed for latest

Webpacker and Vue can be found at https://github.com/vueonrails/

vueonrails/blob/master/lib/installs/setup.rb

Add the following code to the Gemfile and run bundle exec bundle

install:

gem 'vueonrails'

Chapter 4 Real-World Applications Through Short Tutorials

https://github.com/vueonrails/vueonrails/blob/master/lib/installs/setup.rb
https://github.com/vueonrails/vueonrails/blob/master/lib/installs/setup.rb

95

To complete the setup via the Vue on Rails application template, run

the following command at the terminal:

rails vue:setup

�Options of Vue on Rails Application Template
The following sections describe some optional tools that you can enable

when invoking the application template. You can enable the tools by

passing in some options during invocation. For example, rails new app

-m="https://vueonrails.com/vue" --option where --option is the

preset option name. By default, these options are disabled to ship you a

lightweight default setting.

�Administrate

Administrate is a Rails engine that adds powerful admin dashboard to your

Rails product. With Administrate, you can manage your data and models at

the backend with ease. This option will install Administrate as the default

admin system for your Vue on Rails projects.

The full command is

Rails new app --m="https://vueonrails.com/vue" --admin

�Whenever

Whenever is a scheduler for your Cron job. With Whenever, you can run

your tasks in a timely fashion. This option will install Whenever as the

default automated system for your Vue on Rails projects.

The full command is

rails new app --m="https://vueonrails.com/vue" --whenever

Chapter 4 Real-World Applications Through Short Tutorials

https://vueonrails.com/vue

96

�Bootstrap

Bootstrap is a popular style framework for web application. Your Rails

product will be styled with in a professional outlook. This option will install

bootstrap as the default template for your Vue on Rails projects.

The full command is

rails new app --m="https://vueonrails.com/vue" --bootstrap

�Foundation

Foundation is a frontend framework for web application. Foundation

styles your rails products in a professional way. This option will install

foundation as the default template for your Vue on Rails projects.

The full command is

rails new app --m https://vueonrails.com/vue --foundation

�Font Awesome

Font Awesome is an icon and font toolkit based on CSS and LESS. Your

rails products will look more professional with the icons and fonts from

Font Awesome. This option will install Font Awesome as the default

template for your Vue on Rails projects.

The full command is

rails new app --m https://vueonrails.com/vue --fontawesome

�Sidekiq

Sidekiq is a popular background progressing system. You can process

thousands of jobs and tasks easily with Sidekiq. This option will install

Sidekiq as the default background worker for your Vue on Rails projects.

Chapter 4 Real-World Applications Through Short Tutorials

97

The full command with Sidekiq is

rails new app --m https://vueonrails.com/vue --sidekiq

�Devise

Devise is an authentication system for Rails products. Devise saves you

time to setup the authentication and authorization system in your Rails

products. This option will install devise as the authentication system for

your Vue on Rails projects.

The full command with Devise option is

rails new app --m https://vueonrails.com/vue --devise

�Livereload

Livereload is an auto-refresher for your web application. With Livereload,

the browser gets refreshed when you save a file. This option will install

Livereload as a development auto-refresher for your Vue on Rails projects.

The full command with Livereload option is

rails new app --m https://vueonrails.com/vue --livereload

�Vue UI Compatibility in Rails Products
Vue UI is the official graphical interface to create, manage, and develop

Vue projects. While we are shipping Rails products, we can leverage on

Vue UI to better manage our Vue dependencies before releasing the final

product into production. Figure 4-2 shows the Vue UI with a list of project

JavaScript dependencies.

Chapter 4 Real-World Applications Through Short Tutorials

98

Figure 4-3 shows the Vue UI with the project tasks.

Figure 4-3.  The task page of Vue UI. You can execute or stop project
tasks. Vue on Rails gem ships with five default project tasks. One of the
tasks is to start the Rails server from Vue UI.

Figure 4-2.  The project dependencies of Vue UI. You can manage,
update, install, or remove your Vue and Javascript dependencies
within the project dependencies

Chapter 4 Real-World Applications Through Short Tutorials

99

The Vue UI support is enabled when the developer run the vue:setup

or when they invoke the application template with the -m option

�Manual Enabling of Vue UI in Rails Products
Sometimes, you may wish to have fine control over the codes that are

added into your project. This means developers want to manually add the

configuration code instead of relying on an automatic generator.

To enable Vue UI manually, simply add the following configuration

code to the package.json at the root project of your Rails product.

 "scripts": {

 "yarn test": "jest",

 "yarn install": "yarn install --check-files",

 �"rails assets:precompile": "yarn install --check-files;

rails assets:precompile",

 "rails server": "rails server",

 "webpack-dev-server": "./bin/webpack-dev-server"

 },

 "jest": {

 "moduleFileExtensions": [

 "js",

 "vue"

],

 "moduleNameMapper": {

 "^@/(.*)$": "<rootDir>/app/javascript/parts/$1"

 },

 "transform": {

 "^.+\\.js$": "<rootDir>/node_modules/babel-jest",

 ".*\\.(vue)$": "<rootDir>/node_modules/vue-jest"

 },

Chapter 4 Real-World Applications Through Short Tutorials

100

 "transformIgnorePatterns": [

 "node_modules/(?!(vueonrails)/)"

],

 "testPathIgnorePatterns": [

 "<rootDir>/config/webpack/"

],

 "snapshotSerializers": [

 "<rootDir>/node_modules/jest-serializer-vue"

]

 },

�Server-Side Rendering of Vue Components
in Rails Products
Server-side rendering (SSR) is a technique to process the HTML first on

your server before delivering it to client’s browser to be displayed. Most of

the time, SSR web pages are faster and have a lower time-to-content.

With faster web page and lower time-to-content, SSR web pages tend

to have better user experience. On top of that, SSR content is search engine

optimized (SEO)-friendly when compared to the client-side rendered

web page. However there are also other concerns and constraints which

you can read more at https://ssr.vuejs.org/#what-is-server-side-

rendering-ssr

In this section, we will demonstrate a method to scaffold a server

rendering component and possibly render a hello world using server

rendering.

Chapter 4 Real-World Applications Through Short Tutorials

https://ssr.vuejs.org/#what-is-server-side-rendering-ssr
https://ssr.vuejs.org/#what-is-server-side-rendering-ssr

101

�Scaffolding SSR Components in Rails Products
To generate a component with a SSR option, please run the following

command:

rails vue:ssr

The rails vue:ssr command will generate a list of configurations and

server-side rendering dependencies that can be found in the next section

on manual configuration of server-side rendering.

You will need to scaffold a Rails view so that you can embed the SSR

Vue component. In this case, we will generate “pages” via the scaffold

generator:

rails generate scaffold pages

rails db:migrate

Let’s embed the following code to the app/views/pages/index.html.

erb :

<%= render_vue_component('VueComponent.js', :name => 'Hypernova

The Renderer') %>

To run the Rails server first and follow by running node with the server-

side rendering script:

rails server

node ssr

The finished text “Hello world” is server rendered as shown in Figure 4-4.

Figure 4-4.  Server-rendered “hello world” by the Hypernova gem

Chapter 4 Real-World Applications Through Short Tutorials

102

You can generate further a server-side-rendered component with Vue

generator followed by a --ssr option:

rails g vue <NAME> --ssr

The SSR component that will be generated by the --ssr option:

console.log("Hello, component")

const Vue = require("vue")

const renderVue = require("hypernova-vue").renderVue

const component = Vue.extend({

 template: '<h1>hello, component </h1>'

})

module.exports = renderVue("component.js", component)

If the name of the render_vue is wrong, a development warning

like the one in Figure 4-5 will appear on the browser with an error

ReferenceError: Component “<name>” not registered. Therefore, the

name of the component at ssr.js should match that of the component at

app/javascripts/ssr/<name>.js.

Figure 4-5.  A Rails view with ReferenceError: Component
“wrongcomponent.js” not registered, produced by the Hypernova gem

Chapter 4 Real-World Applications Through Short Tutorials

103

�Manual Configuration of SSR Vue Components
in Rails Products
This section introduces the configuration and manual changes required

to enable SSR Vue components in Rails products. To get started with

configuring server-side rendering manually, follow these steps:

	 1.	 Setup gem dependencies at Gemfile:

gem 'hypernova'

please run bundle

	 2.	 Install the npm dependencies:

yarn add hypernova hypernova-vue vue-server-renderer

	 3.	 Add the following code to app/controllers/

application_controller.rb:

require 'hypernova'

class ApplicationController < ActionController::Base

 around_action :hypernova_render_support

end

	 4.	 Add the following code to app/helpers/

application_helper.rb:

require 'hypernova'

module ApplicationHelper

 def ssr_vue(id, name)

 render_react_component(id, name: name)

 end

end

Chapter 4 Real-World Applications Through Short Tutorials

104

	 5.	 Add the following code to config/initializer/

hypernova.rb:

require 'hypernova'

require 'hypernova/plugins/development_mode_plugin'

Hypernova.add_plugin!(DevelopmentModePlugin.new)

Hypernova.configure do |config|

 config.host = "0.0.0.0"

 config.port = 7777 # The port where the

node service is listening

end

	 6.	 Add the following server.js to the root Rails

project:

var hypernova = require('hypernova/server');

hypernova({

 devMode: true,

 getComponent(name) {

 console.log("The component name is -> " + name)

 if (name === 'VueComponent.js') {

 return require('./app/javascript/ssr/component.

js')

 }

 return null;

 },

 port: 7777,

});

Chapter 4 Real-World Applications Through Short Tutorials

105

	 7.	 Create a component.js file at app/javascript/ssr/

component.js with the following code:

console.log("hello vue")

const Vue = require("vue")

const renderVue = require("hypernova-vue").renderVue

const MyComponentX = Vue.extend({

 template: '<h1>hello world</h1>'

})

module.exports = renderVue("VueComponent.js",

MyComponentX)

	 8.	 You will need a Rails view to embed your SSR Vue

component. To generate a Rails view like pages, run

rails generate scaffold pages at app/pages/

index.html.erb:

<%= ssr_vue('VueComponent.js', :name => 'Hypernova

The Renderer') %>

Once you have manually edited all of the preceding configuration, you

should have server-side rendering in your Rails product.

�Internationalization
Rails ship with a default internationalization library called i18n. It uses

the config/locales/en.yml file to translate languages into different

languages. In order to generate new languages, we create new .yml file as

shown in Figure 4-6.

Chapter 4 Real-World Applications Through Short Tutorials

106

There are several internationalization packages in Vue community.

The one that Vue on Rails ships by default is vue-i18n (https://kazupon.

github.io/vue-i18n/), which is created and maintained by the Vue core

team member, Kazuya Kawaguchi. By default, Vue on Rails extends

vue-i18n to all its Vue components.

To point out the obvious difference, Rails’ i18n uses .yml files, while

Vue’s vue-i18n uses .json files for internationalization purposes. Vue on

Rails bridges the two i18n frameworks (Rails’ i18n and Vue’s vue-i18n) by

converting one format to another in an amiable way. This makes it easy to

reuse them within a Vue component.

Figure 4-6.  The English YML locale file that resides in config/locales

Chapter 4 Real-World Applications Through Short Tutorials

https://kazupon.github.io/vue-i18n/
https://kazupon.github.io/vue-i18n/

107

To convert .yml files into .json files, simply run the rails

vue:translate command at the root directory of the project.

This way, developers simply focus on building yml locales files within

the app/config/locales directory since the json files will be based on

a single source of truth (which is the yml files). This approach ensures

minimal extra work required to make two i18n systems play nice with each

other and keep themselves in sync.

�Using Vue on Rails 118n
Let’s get into action and try out Vue on the Rails’ i18n example. We start by

cloning the following repository:

git clone https://github.com/ytbryan/hello_robot.git

bundle

Once we have the cloned project and run bundle in it, we observe that

all the Rails locale files reside in config/locales/*.yml locales for this

example (see Figure 4-7).

Chapter 4 Real-World Applications Through Short Tutorials

108

Figure 4-7.  Rails’ locales residing in config/locales/*.yml

Next, let’s translate these .yml files into .json files so that Vue i18n

can utilize them. We run rails vue:translate to generate the new

json locales. You will observe the new json locales generated at app/

javascript/packs/locales/*.json (see Figure 4-8).

Chapter 4 Real-World Applications Through Short Tutorials

109

Next, let’s make sure the npm dependencies are up to date and then

run the Rails server:

yarn install

rails server

Next we refresh the web page, and hello robot will be loaded with 20

locales of hellos (see Figure 4-9). This is because the yml locales are now

translated to json locales.

Figure 4-8.  Vue’s locales residing in app/javascript/packs/locales/*.
json

Chapter 4 Real-World Applications Through Short Tutorials

110

You can set up the internationalization support of Vue components in

Rails products via the following command:

rails vue:i18n

�Simple State Management of Vue
Components Inside Rails Products
Sometimes, you would like your Vue component to remember the last

timestamp or the last action of your users. It will be ideal if the Vue

component can compute that automatically and store it efficiently among

the components of the same page. This is where simple state management

comes in handy. Vue ships with an official state management library, Vuex,

Figure 4-9.  The finished component of hello robot in French

Chapter 4 Real-World Applications Through Short Tutorials

111

which may be heavyweight for a simple component that requires simple

state managing. Developer may prefer to adopt a simple state management

that they may be able to roll up themselves. Let’s explore simple state

through an example repo.

�Simple State Example
We will try to add a simple shared state among three components. Any

changes to the shared state will be propagated to the other components.

These changes do not require to communicate to the backend. All of

these state changes are achieved without big tool like Vuex. Let’s clone the

simple state example from GitHub and update the dependencies.

git clone http://github.com/ytbryan/simple_state

bundle exec yarn install

bundle exec bundle install

Let's run the rails server to view a simple state example.

rails server

Try to click the buttons and observe how the shared state

changes among the Vue components.

Figure 4-10 shows the example repo.

Chapter 4 Real-World Applications Through Short Tutorials

112

Figure 4-10.  The finished component of a simple state example repo

�Scaffolding Simple State Management in Vue
on Rails
The Vue on Rails gem ships with scaffolders and a simple store.js for state

management. Sometimes, we want certain components to have shared

state or we want to manually modify the store.js. To generate simple

state support in Rails products, run the following command of Vue on

Rails:

rails vue:store

To manually edit the store.js, use the following code and create a file

at app/javascript/packs/store.js:

// Generated by Vue on Rails https://github.com/vueonrails/

vueonrails

// A simple state management as described in https://vuejs.org/

v2/guide/state-management.html

var store = {

 debug: true,

 state: {

Chapter 4 Real-World Applications Through Short Tutorials

113

 message: "Hello from Simple Store!"

 },

 setMessageAction(newValue) {

 �if (this.debug) console.log("setMessageAction triggered

with", newValue);

 this.state.message = newValue;

 },

 clearMessageAction() {

 �if (this.debug) console.log("clearMessageAction

triggered");

 this.state.message = "";

 }

};

export default store;

To generate a Vue component with simple state support, use the

following command where <NAME> is the name of your V

rails g vue <NAME> --state

�Wrap-up and the Next Step
And this concludes our short tutorial section of the book. Through

these tutorials, we hope that you have learned how to setup the Vue on

Rails project with configuration, create a nested Vue form, speed up

your Vue on Rails product with server-side rendering, and even add

simple state management to your Vue components and learned the

internationalization of Vue components. To keep up to date with the latest

features of Vue on Rails gem, you can follow the Vue on Rails GitHub repo

at http://github.com/vueonrails/vueonrails. In the next chapter, we

will dive into a more in-depth tutorial and show you how to build a real-

time two-player game using Action Cable and Vue.

Chapter 4 Real-World Applications Through Short Tutorials

http://github.com/vueonrails/vueonrails

115© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4_5

CHAPTER 5

Making a Real-Time
Two-Player Game
with Action Cable

A happy programmer is a productive programmer. That's why
we optimize for happiness and you should too. Don't just pick
tools and practices based on industry standards or perfor-
mance metrics. Look at the intangibles: Is there passion, pride,
and craftsmanship here? Would you truly be happy working
in this environment eight hours a day?

—David Heinemeier Hansson

Action Cable was released in version 5 of Ruby on Rails and was one of the

main features of this release. Most tutorials around Action Cable revolve

around building a chat app, but here we are going to demonstrate another

use – the two-player game. The underlying technology of Action Cable is

Websockets, which is a tough concept to grasp at first for those who are

used to the normal request and response flow of the HTTP protocol. In

brief, Websockets are almost the opposite of HTTP requests; instead of the

client making the request, the server sends data to the client or browser

when it needs to. The client just needs to send one request to listen in on

these events.

116

In this tutorial for a two-player Tic Tac Toe game (see Figure 5-1), you’ll

realize that Action Cable is very easy to implement and in fact was the

simplest part of building Tic Tac Toe. The tougher part was the design and

ensuring game logic and rules are enforced properly, so this tutorial will

be as much about software design as it is about Action Cable. Using Action

Cable in a two-player game is important because you want to be able to

broadcast updates from the server to the player’s browser so that they can

act when it is their turn. Action Cable allows us to do this without the need

for polling the server or the need to refresh the page.

Figure 5-1.  The home page for the Tic Tac Toe app

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

117

Note T he complete source code for the tutorial can be found at
https://github.com/vueonrails/code-examples/tree/
master/tic_tac_toe and full demo can be seen at https://
vue-on-rails-tic-tac-toe.herokuapp.com

�Domain
The domain model consists of three models – Game, Player, and

GamesPlayer. GamesPlayer is a many-to-many association between Games

and Players. This basic design can be applied to all sorts of two-player

games with few modifications. The GamesPlayer model stores a piece

attribute (X or O), and we can define a couple validations to ensure there

will be at most two players who have joined a game.

validates_inclusion_of :piece, in: ['X', 'O']

validates_uniqueness_of :piece, scope: [:game, :player]

The Game model has a board attribute which stores the board serialized

as a JSON array of board pieces in the database (e.g., ["X", "O", "", "",

"", "", "", "", ""]). Along with the appropriate has_many associations,

the Game model also defines the following methods:

•	 x – A helper that returns the player who is currently

joined as X

•	 o – A helper that returns the player who is currently

joined as O

•	 status – Returns the status of the game:

•	 waiting – Is returned until both players have joined

the game

•	 playing – Board is not filled and there is no winner

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

https://github.com/vueonrails/code-examples/tree/master/tic_tac_toe
https://github.com/vueonrails/code-examples/tree/master/tic_tac_toe
https://vue-on-rails-tic-tac-toe.herokuapp.com
https://vue-on-rails-tic-tac-toe.herokuapp.com

118

•	 over – Game is over and there is a winner

•	 tied – Returned when the board is full and there is

no winner

•	 place(piece, position) – Method that validates

whether or not a board placement is valid for the

following conditions:

•	 Position on the board is not already taken by

another piece.

•	 The piece being played is the correct turn (we

assume that x always goes first).

•	 The game is not already over or tied.

�The GameChannel
In order to broadcast updates to a game, we can define an Action Cable

channel, and the definition is the following.

class GameChannel < ApplicationCable::Channel

 def subscribed

 stream_from "game_channel_#{params[:game_id]}"

 end

end

The only parameter needed is the game_id, and we can define an

after_commit hook to broadcast updates to a game. The game will be

broadcasted to the players currently playing the game along with any

onlookers who want to watch the action. ActionController provides a

handy render function so that we can ensure consistency of the format

broadcasted to the requests that are fetched.

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

119

class Game < Application Record

 after_commit :broadcast

 # ...

 private

 def broadcast

 �game_json = GamesController.render 'games/show.json',

assigns: { game: self }

 �ActionCable.server.broadcast("game_channel_#{id}", game_

json)

 end

end

�The Controllers
The Game needs to support the following actions and we can provide

those actions in a conventional manner for the most part. A Player is

created for the session if it does not already exist, and we keep track of the

current player by storing the player_id in the session.

•	 games#index – Lists games.

•	 games#create – Creates a Game.

•	 games#show – Shows the Game including its board.

•	 players#show – Gets the info for the current player (id,

name).

•	 games_players#create – Joins a Game (as X or O).

•	 games_players#update – Player plays their turn.

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

120

One action that needs further discussing is the update action for

GamesPlayersController. We use this action to ensure that the current

player is the one requesting the update to prevent cheating and the proper

piece is placed in the position requested.

ex. put /games_players/123.json { position: 3 }

def update

 @games_player = current_player

.games_players

.find(params[:id])

 if @games_player.move(params[:position])

 render :show, status: :ok, location: @games_player

 else

 render json: { errors: @games_player.game.errors },

 status: :unprocessable_entity

 end

end

Note the move method that is being called, which in turn calls the place

method we described previously. This ensures that the correct piece will

be used to attempt to place in the board at the desired position and will

return false if any of the validations failed.

def move(position)

 game.place(piece, position)

end

Now that we have discussed the basic design, it’s time for the fun part

of using Vue to make game play interactive and real time. We will use the

Vuex Rails Plugin to manage state and define a Games, Game, and Board

components.

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

121

�Listing Games
The only routes that need to support an html format are the games#index

and games#show actions. The Games and Game components are initialized

on these routes, respectively, and Turbolinks is used for navigation

between the two. To ensure good performance, the JSON format for

fetching games defaults to a limit of 10, and a “Load More” button is used

for incrementing the limit by 10. Using the Vuex Rails Plugin allows us to

do this in a simple manner. We won’t go too deep into the html for the

list, since it is just a simple table that lists a smaller version of the board,

the game status, players, and a button link to view the game. Later we will

discuss how to get real-time updates for the game list without a refresh.

The complete code for the game list can be found under the directory app/

javascript/parts/games/.

// app/javascript/parts/games/games.vue

<button

 class="btn btn-outline-dark"

 @click="loadMore()"

 :disabled="!anyMore">

 {{ anyMore ? 'Load More' : '...No More'}}

</button>

// app/javascript/parts/games/games.js

data: function() {

 return {

 limit: 10,

 anyMore: true

 }

},

created: function() {

 this.getGames()

},

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

122

methods: {

 // ...

 loadMore() {

 const currentCount = this.games.length

 this.limit += 10

 const vm = this

 this.getGames({limit: this.limit})

 .then(res => {

 const newCount = this.games.length

 if (newCount === currentCount) {

 vm.anyMore = false

 }

 })

 .catch(err => {

 console.error(err)

 })

 }

 }

�Creating a Game
Creating a game doesn’t require any fields, so it is just a simple button

that calls the newGame() method, which performs the create action and

redirects to the created game and board. We can use Turbolinks to perform

this after we get the response and know the id of the created game.

<!— app/javascript/parts/games/games.vue -->

<button class="btn btn-outline-dark" @click="newGame()">New

Game</button>

// app/javascript/parts/games/games.js

methods: {

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

123

 // ...

 newGame() {

 this.createGame()

 .then(res => {

 Turbolinks.visit(`/games/${res.data.id}`)

 })

 .catch(err => { console.error(err) })

 }

}

�Game Time
The game page simply shows two buttons, one for players to join as X and

one for players to join as O and the interactive board. Also, depending on

the state of the game, the buttons are disabled accordingly, so for example

if two players have already joined a game, both buttons will be disabled to

a third onlooker. Also, an alert shows when the game is completed and tells

the players if they have won, lost, or tied. We also show some text to tell

you whether you are playing the game.

// app/javascript/parts/game/game.vue

<template>

 <div class="row" v-if="game">

 <div class="col col-12 pb-2">

 <div class="d-flex justify-content-around">

 <button

 class="btn btn-outline-dark m-2"

 @click="join('X')"

 :disabled="isPlayingThisGame() ||

 game.status != 'waiting'">

 �{{ game.x ? (playingAs('X') ? 'You are' : game.x.name

+ ' is') + ' Playing' : 'Play'}} as X

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

124

 </button>

 �<div class="alert alert-info" v-if="game.status ===

'tied'">Tied Game</div>

 <div

 class="alert"

 �:class="{'alert-success': game.winner.id ==

currentPlayer.id,

 �'alert-danger': game.winner.id !=

currentPlayer.id}"

 v-if="game.winner && isPlayingThisGame()">

 �{{ game.winner.id == currentPlayer.id ? 'You Win' :

'You Lose' }}

 </div>

 <button

 class="btn btn-outline-dark m-2"

 @click="join('O')"

 �:disabled="isPlayingThisGame() || game.status !=

'waiting'">

 �{{ game.o ? (playingAs('O') ? 'You are' : game.o.name

+ ' is') + ' Playing' : 'Play'}} as O

 </button>

 </div>

 <div class="d-flex justify-content-center">

 <board

 :game="game"

 :width="400"

 :myPiece="myPiece()">

 </board>

 </div>

 </div>

 </div>

</template>

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

125

�Joining a Game
The buttons described previously call the join(piece) method,

which simply uses the Vuex Rails plugin to call the create action on

GamesPlayers. Once joined, a player may act if it is their turn.

join(piece) {

 const vm = this

 this.createGamesPlayer({game_id: this.game_id, piece: piece})

 .then(res => {

 vm.getGame(vm.game_id)

 })

 .catch(err => {

 alert(vm.error.errors)

 })

}

�Drawing the Tic Tac Toe Board
The Board component is an SVG (created with the help of https://

vectr.com) which is essentially is a Tic Tac Toe board with all the Xs and

Os drawn in each position in the board (see Figure 5-2). We can then use

Vue to hide or show the correct pieces accordingly based on the state of

the game. vectr.com generates each element of the board with a unique

id, so these ids need to be mapped in correct order. In order to show a

lighter version of the pieces upon moussing over a particular position, we

also define invisible <rect> elements for each position towards the end

of the SVG. These elements will keep track of the current position and

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

https://vectr.com
https://vectr.com
http://vectr.com

126

handle click events when a player decides to place their X or O. The Board

component also accepts a width prop and the full code lives under app/

javascript/parts/board/.

Figure 5-2.  SVG of Tic Tac Toe Board showing all elements

The following code shows the template for the Tic Tac Toe board

with all the Xs and Os and the appropriate SVG attributes to display the

appropriate pieces based on the state of the game.

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

127

<!-- app/javascript/parts/board/board.vue -->

<template>

 <svg xmlns=http://www.w3.org/2000/svg

 xmlns:xlink="http://www.w3.org/1999/xlink

 version="1.1"

 preserveAspectRatio="xMidYMid meet"

 viewBox="0 0 600 600"

 :width="width"

 :height="width"

 @mouseleave="currentPosition = null"

 v-if="game && game.board">

 <def>

 <!— Unique element definitions with ids generated here —>

 </defs>

 <g>

 <!-- Squares for visibly showing the borders—>

 <g v-for="(squareIds, position) in squareSvgIds">

 <use

 :xlink:href="squareIds[0]"

 opacity="1"

 fill="#ffffff"

 fill-opacity="1"/>

 <g :clip-path="'url(' + squareIds[1] + ')'">

 <use

 :xlink:href="squareIds[0]"

 opacity="1"

 fill-opacity="0"

 stroke="#000000"

 stroke-width="12"

 stroke-opacity="1" />

 </g>

 </g>

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

128

 <!-- Os -->

 <g v-for="(svgIds, position) in oSvgIds"

 v-if="game.board[position] === 'O' ||

 (game.board[position] === " &&

 currentPosition === position &&

 myPiece === 'O')">

 <use

 :xlink:href="svgIds[0]"

 opacity="1"

 fill="#ffffff"

 fill-opacity="1" />

 <g :clip-path="'url(' + svgIds[1] + ')'">

 <use

 :xlink:href="svgIds[0]"

 opacity="1"

 fill-opacity="0"

 �:stroke="game.board[position] === " ? '#999999' :

'#000000'"

 stroke-width="70"

 stroke-opacity="1" />

 </g>

 </g>

 <!-- Xs -->

 <g v-for="(svgId, position) in xSvgIds"

 v-if="game.board[position] === 'X' ||

 (game.board[position] === " &&

 currentPosition === position &&

 myPiece === 'X')">

 <use

 :xlink:href="svgId" opacity="1"

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

129

 �:fill="game.board[position] === " ? '#999999' :

'#000000'"

 fill-opacity="1" />

 </g>

 �<!-- invisible elements to handle mouse enter events and

click —>

 <template v-for="position in [0,1,2,3,4,5,6,7,8]">

 <rect

 :x="(position % 3) * 200"

 :y="position <= 2 ? 0 : (position <= 5 ? 200 : 400)"

 width="200"

 height="200"

 v-on:mouseenter="currentPosition = position"

 fill="transparent" @click="play(position)"/>

 </template>

 </g>

 </svg>

</template>

And of course in order to determine which piece to show, the Board

component takes a myPiece prop, which can be X, O, or null. The null is

necessary to ensure that any onlookers who aren’t playing the game can’t

see or place any pieces when moving their mouse. Figure 5-3 shows how

we show a lightened color of the player’s piece while hovering over the

appropriate position. We can set the color of the pieces using the fill=""

attribute on the appropriate SVG element.

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

130

�Placing a Piece
As we described early, placing a piece on the board calls the update

action on GamesPlayers and in the preceding Board template we call

the play(position) function on the appropriate <rect> element. The

function calls the appropriate action and alerts any validations errors

such as an out of turn move. You’ll notice that the getGame() function is

commented out. This is because we can subscribe to the GameChannel and

will discuss this more in the next section.

Figure 5-3.  Tic Tac Toe board with placed pieces and a position
shown when moussing over, but not placed yet

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

131

play(position) {

 const vm = this

 if (this.game.board[position] != ") { return }

 const gp = this.game

 .games_players

 .find(gPlayer => gPlayer.piece === this.myPiece)

 this.updateGamesPlayer({

 id: gp.id,

 game_id: this.game.id,

 position: position

 })

 .then(res => {

 // this.getGame(vm.game.id)

 })

 .catch(err => {

 console.error(err)

 alert(vm.error ? vm.error.board : 'Something Went Wrong')

 })

}

�Accessing Action Cable from Vue
As we mentioned in Chapter 3, we can easily create an Action Cable

consumer and define it as a prototype on Vue, which allows us to access

the consumer in any Vue instance or component. Be sure to add the

actioncable npm package – yarn add actionable.

// app/packs/hello_vue.js

import Vue from 'vue'

import ActionCable from 'actioncable'

Vue.prototype.$cable = ActionCable.createConsumer()

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

132

Subscribing to updates for a particular game is initialized in the

created lifecycle hook and is really as simple as committing to the games/

UPDATE action provided by the Vuex Rails plugin.

// app/javascript/parts/game/game.js

created() {

 const vm = this

 this.channel = this.$cable.subscriptions.create({

 channel: 'GameChannel',

 game_id: this.game_id}, {

 received: function(data) {

 const item = JSON.parse(data)

 vm.$store.commit('games/UPDATE', { item })

 }

 })

}

Wait... Isn’t there more? Nope, that is pretty much the gist of it. The

subscription waits for any updates broadcasted by the server, and we parse

the data when it is received and commit it to Vuex. Oh wait, there is one

more step to ensure that we remove the subscription in the destroyed()

lifecycle hook. This will ensure we unsubscribe from the channel when we

don’t need it anymore.

destroyed() {

 this.$cable.subscriptions.remove(this.channel)

}

�Wrap-up and the Next Step
Besides some thought put into displaying the Game Board and ensuring

players see the appropriate state for a Tic Tac Toe game, you can see

how simple it is to use both normal HTTP requests and web socket

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

133

subscriptions to keep backend state in sync with the browser. A lot of this is

made possible if conventions are followed and data formats are consistent.

Next, we will dive into Active Storage and how to build an interactive

cropping tool for images.

Chapter 5 Making a Real-Time Two-Player Game with Action Cable

135© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4_6

CHAPTER 6

Building an Image-
Cropping Tool
with Vue and Active
Storage

You want to enjoy life, don't you? If you get your job done
quickly and your job is fun, that's good isn't it? That's the pur-
pose of life, partly. Your life is better.

—Yukihiro Matsumoto

As developers, we often look to third-party libraries for solutions to

problems that aren’t easily solved or problems that we are not familiar

with. This can be advantageous if we need to build a quick prototype, but

there are downsides to this approach such as:

•	 Needing to rely on support for the library.

•	 Implementing with technologies such as Vue and Rails

may not be straightforward.

136

•	 Customization can sometimes be difficult.

•	 Bloat of a library may include unneeded/unwanted

features or behavior.

Support is typically not an issue with libraries like Vue and Ruby on

Rails because of the overwhelming community support, but it can be an

issue with many JavaScript libraries. One feature common in web apps is

an image-cropping tool, which there are certainly a few libraries out there

that accomplish this. In this tutorial, we will roll our own image cropper

using Vue and integrate it with direct uploads and the latest feature in Rails

as of version 5.2 which is Active Storage. The biggest advantage of rolling

your own is the learning experience, and that’s what we will do in this

chapter.

�The Avatar
The avatar is one of the most common features in social media and

other types of web applications. Often you would need to prepare a good

image for yourself ahead of time because it is common for applications to

automatically crop your avatar. This tutorial will show you how to build

an interactive cropper with two basic goals in mind. It will accept any size

image and allow you to pan and scale the image so that the area that is

cropped is easily customized for the user.

It can be accomplished by supporting an original size uploaded image,

allowing the user to pan the image to the appropriate location and a range

slider to allow them to scale the image appropriately. Once these bounds

are defined, the original image and bounds can be saved and processed as

a variant as supported by Active Storage.

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

137

Active storage help and dependencies T his tutorial requires the
web_processing ruby gem and activestorage npm package to
be installed. More info and documentation about Active Storage can
be found at https://edgeguides.rubyonrails.org/active_
storage_overview.html

�The User Profile
The demo application will consist of a simple profile edit page shown

at the edit action for Users (see Figure 6-1). An erb form will be used to

demonstrate how we can build a Vue cropper component and embed

the cropper within the form so the appropriate form fields are applied.

The User model consists of three fields – name, avatar, and avatar_

crop. The avatar field will be the reference to the original size image,

and avatar_crop is a string of the cropped geometry in the format of

widthxheight+xoffset+yoffset which we will demonstrate how to

generate this in the Vue cropper component and how to use the active

storage variant helper to display it later in this chapter.

class User < ApplicationRecord

 has_one_attached :avatar

end

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

https://edgeguides.rubyonrails.org/active_storage_overview.html
https://edgeguides.rubyonrails.org/active_storage_overview.html

138

The form for the user will use Rails helpers to demonstrate how we

can continue to use erb and spice things up a bit with some fancy Vue

components. Inside the form is an element with a cropper id which we will

mount the cropper Vue component to. Another important field to note is

the active storage field helper, which is a file field with direct_upload:

true option. All this option does is add a data-direct-upload-url

attribute to the field so we know where to submit the image file.

<h1>Profile</h1>

<%= form_for @user do |f| %>

 <div class="form-group">

 <%= f.label :name %>

 <%= f.text_field :name, class: 'form-control' %>

 </div>

 <div class="form-group">

 <%= f.label :avatar %>

 �<%= f.file_field :avatar, direct_upload: true, accept:

"image/*" %>

Figure 6-1.  The Edit Page for the User Profile

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

139

 <div id="cropper"></div>

 </div>

 <%= f.submit class: 'btn btn-outline-dark' %>

<% end %>

Direct uploads D irect uploads is a feature supported by Active
Storage that allows you to save some server resources by having
image and file uploads go directly from a user’s browser to a cloud
object storage service such as Amazon S3.

�Vue Cropper Component
The cropper component will use the DirectUpload module provided by

the activestorage npm package to upload the image directly when a file is

added to the input. Just like we used SVG in the Tic Tac Toe tutorial, we will

also use an SVG to display a simple square that shows the area of the image

to be cropped along with a few elements to show some padding with some

slight transparency. <rect> SVG elements are a simple way to display such

shapes and note that they take x,y,width, and height attributes where x and

y are offsets from the top-left corner of an SVG. The SVG will be a square

400 x 400 with the cropped area being 300 x 300 with an x and y offset of 50

to center the cropped area (see Figure 6-2).

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

140

The dimensions are defined as data attributes on the component

but will remain static for the purposes of this demo. In theory, it could

also support resizing the cropping area, but that is outside the scope of

this tutorial. It is important to note the data attributes defined on the

component as seen in the following code and found in app/javascript/

parts/cropper/cropper.js.

data: function() {

 return {

 directUploadUrl: null, // url used in direct uploads

Figure 6-2.  Bunny Cropper (Photo source: Pixabay, used under the
Pixabay License1)

1�License: https://pixabay.com/service/license/. Image: https://pixabay.
com/photos/bunny-rabbit-easter-pet-animal-1149060/

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

https://pixabay.com/service/license/
https://pixabay.com/photos/bunny-rabbit-easter-pet-animal-1149060/
https://pixabay.com/photos/bunny-rabbit-easter-pet-animal-1149060/

141

 fileField: null, // the original active storage file input

 file: null, // the file object loaded

 blobSrc: null, // the image data for displaying the image

 blobSignedId: null, // id returned from direct upload

 name: null, // User's Name

 x: 50, // x offset for cropping area

 y: 50, // y offset for cropping area

 width: 300, // width of the cropping area

 height: 300, // height of the cropping area

 image_width: null, // actual width of the loaded image

 image_height: null, // actual height of the loaded image

 image_x: 0, // x offset of the image updated on panning

 image_y: 0, // y offset of the image updated on panning

 scale: 1, // image scale – adjusted to fit when loaded

 dragging: false // true when actively panning

 }

}

The complete Vue Cropper template found in app/javascript/parts/

cropper/cropper.vue is shown in the following code. We will go

into more detail about each element in this chapter and how we

use Vue to make the elements interactive.

<template>

 <div id="cropper" v-if="blobSrc && image_width && image_

height">

 <div class="form-group">

 <label for="imageScale">Image Scale</label>

 <input

 type="range"

 min="10"

 max="100"

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

142

 v-model="imageScale"

 name="imageScale"

 id="imageScale">

 �<p class="text-muted">{{ this.imageScale }}% size of

original image</p>

 </div>

 <div class="dropper">

 <svg

 width="400"

 height="400"

 @mousemove="pan($event)"

 @scroll="zoomImage($event)">

 <image

 :xlink:href="blobSrc"

 :x="image_x"

 :y="image_y"

 :width="scaledWidth"

 :height="scaledHeight">

 </image>

 �<!-- BEGIN elements for showing darker background

outside cropped area -->

 <rect

 x="0"

 y="0"

 :width="x"

 height="400"

 fill="#000000"

 fill-opacity="0.5"/>

 <rect

 :x="x"

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

143

 y="0"

 :width="width"

 :height="y"

 fill="#000000" fill-opacity="0.5"/>

 <rect

 :x="x"

 :y="y + height"

 :width="width"

 :height="400 - y - height"

 fill="#000000"

 fill-opacity="0.5"/>

 <rect

 :x="x + width"

 y="0"

 :width="400 - x - width"

 height="400"

 fill="#000000"

 fill-opacity="0.5"/>

 <!-- END -->

 <!-- allows panning image -->

 <rect

 :x="x"

 :y="y"

 :width="width"

 :height="height"

 fill="#FFFFFF"

 fill-opacity="0"

 :class="dragging ? 'grabbing' : 'grab'"

 @mousemove="pan($event)"

 @mousedown="dragging = true"

 @mouseup="dragging = false"

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

144

 @mouseleave="dragging = false"/>

 </svg>

 </div>

 �<!-- hidden fields to reference direct upload image and

area to crop-->

 �<input type="hidden" name="user[avatar]"

:value="blobSignedId">

 �<input type="hidden" name="user[avatar_crop]"

:value="croppedGeometry">

 </div>

</template>

�Loading the Image
In the mounted() lifecycle hook of the Cropper component, we search for

the avatar file input and listen for changes. When a file is added, we call

the fileAdded() function defined in methods in the component as seen in

the following code. The function first grabs the file from the event, creates

a new upload using the DirectUpload module, loads the image source, sets

the image height and width, sets the scale of the image to fit the SVG size,

sets the blobSrc attribute to the data of the image, sets the blobSignedId

to that of the response of the direct upload, and then removes the input

field. Once a file is loaded, we see the cropping tool along with a range

slider for scaling the image as seen in Figure 6-3.

Figure 6-3.  The Range Slider for scaling images

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

145

// looking for the file input field when the component is

mounted

mounted: function() {

 this.fileField = document.querySelector('input[type="file"]')

 this.directUploadUrl = this.fileField.dataset.directUploadUrl

 this.name = this.fileField.name

 this.fileField.onchange = this.fileAdded

}

// Method called when file is loaded into the input.

fileAdded(event) {

 const vm = this

 this.file = event.target.files[0]

 if (this.file) {

 �const upload = new DirectUpload(this.file, this.

directUploadUrl)

 upload.create((error, blob) => {

 if (error) {

 console.error(error)

 alert(error.toString())

 } else {

 console.debug(blob)

 const image = new Image()

 image.onload = function() {

 vm.image_width = image.width

 vm.image_height = image.height

 if (vm.image_height > 400) {

 vm.scale = 400 / vm.image_height

 }

 }

 image.src = URL.createObjectURL(this.file)

 vm.blobSrc = image.src

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

146

 vm.blobSignedId = blob.signed_id

 vm.fileField.value = null

 vm.fileField.name = null

 vm.fileField.remove()

 }

 })

 }

}

�Panning the Image
Panning the image requires a bit of CSS to show the grab and grabbing

cursor along with a few mouse events. We set the dragging attribute to

true on @mousedown and set it to false on @mouseup or @mouseleave. The

@mouseleave event is necessary so that there isn’t unexpected behavior if

the mouse is held and moved outside the cropping area. The @mousemove

event calls the pan() function and simply updates the image_x and

image_y fields based on the movement of the mouse as seen in in the

following code.

<!-- The cropping area SVG element that supports panning -->

<rect

 :x="x"

 :y="y"

 :width="width"

 :height="height"

 fill="#FFFFFF"

 fill-opacity="0"

 :class="dragging ? 'grabbing' : 'grab'"

 @mousemove="pan($event)"

 @mousedown="dragging = true"

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

147

 @mouseup="dragging = false"

 @mouseleave="dragging = false"/>

The pan() method simply updates the x and y attributes for the image

as shown in the following code.

// app/javascript/parts/cropper.js

pan(evt) {

 if (this.dragging) {

 this.image_x += evt.movementX

 this.image_y += evt.movementY

 }

}

�Scaling the Image
When the image is loaded into the Cropper, we scaled it down if needed

to fit the bounds of the 400 x 400 SVG. We also allow the tool to change the

scale of the image using a range slider. The slider is based on percentage of

the original size of the image, so we define a computed property to convert

the scale attribute percentage to decimal and vice versa. The scale attribute

is then used to show the correct size of the image in view. When the slider

is moved back and forth, the image is then scaled appropriately. Figure 6-4

illustrates image scaling.

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

148

The input field for the range slider and the computed property are

shown in the following code:

<input

 type="range"

 min="10"

 max="100"

 v-model="imageScale"

 name="imageScale"

 id="imageScale">

// app/javascript/parts/cropper.js

imageScale: {

 get: function() {

 return parseInt(this.scale ∗ 100)
 },

Figure 6-4.  Demonstration of scaling an image (Photo source:
Pixabay)

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

149

 set: function(newVal, oldVal) {

 this.scale = newVal / 100

 }

}

�ImageMagick Processing
We mentioned earlier that we would use the avatar_crop attribute to store

the image geometry we want to use. To get it in the correct format, we can

define it as a computed property and bind it to a value on a hidden input

field. When the form is submitted, the dimensions are saved, and we can

apply the geometry as a variant when displaying the avatar. The computed

method, input field, and avatar link can be seen in the following code.

The croppedGeometry() computed property returns a string in the

proper format used by ImageMagick.

croppedGeometry: function() {

 const scaledWidth = parseInt(this.width / this.scale)

 const scaledHeight = parseInt(this.height / this.scale)

 �const scaledXOffset = this.x - parseInt(this.image_x / this.

scale)

 �const scaledYOffset = this.y - parseInt(this.image_y / this.

scale)

 �return `${scaledWidth}x${scaledHeight}+${scaledXOffset}+${sca

ledYOffset}`

}

Next, we see the hidden input field for the image geometry which

binds the previous computed property to its value attribute.

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

150

<input

 type="hidden"

 name="user[avatar_crop]"

 :value="croppedGeometry">

Finally, we can display the avatar at various sizes using the saved

geometry. An example is shown in Figure 6-5.

<%= image_tag(@user.avatar.variant(crop: @user.avatar_crop,

resize: '100x100')) %>

Figure 6-5.  Displaying a thumbnail of the upload profile picture
(Photo source: Pixabay)

And that concludes the image-cropping tutorial. We can see how to

achieve a very effective cropping tool with very little effort and avoid the

frontend development emergency off ramp, and it was a lot of fun in the

process.

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

151

�Wrap-up and the Next Step
That concludes our hands-on part of the book. We find it best to learn by

example and hope that these tutorials provided a lot of insight into what

can be accomplished with Vue and Ruby on Rails. In the next chapter,

we shift our gears to turbo mode for your Vue on Rails project with

deployment, testing, and troubleshooting without losing your mind.

Chapter 6 Building an Image-Cropping Tool with Vue and Active Storage

Turbo Charge –
Production Ready
Chapter 7. Testing, Deployment, and Troubleshooting
Chapter 8. Conclusion – Finishing the Race

PART III

155© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4_7

CHAPTER 7

Testing, Deployment,
and Troubleshooting
This chapter contains three small chapters in one, namely, Testing,

Deployment, and Troubleshooting. They do not aim to be complete guides

for these topics but to provide the essentials for those who are starting this

journey and how they apply to a Vue on Rails approach.

�Testing Approaches
The software testing world is a whole discipline in itself apart from the

development world. Large companies have dedicated QA/QC departments

to offload the burden from engineers. The theory is that engineers spend

the time doing what they do best – engineering. But what if you work on

a small team or project? What if you are a one-human shop? You’ll have

to make some tradeoffs depending on the type of project you are working

on and the consequences that could happen if a severe bug is introduced.

Could one of your customers lose money? Is sensitive information at risk

if the project is hacked? Is it a software system that could potentially cause

human injury? Or even worse – death?

There are tradeoffs for everything, but the main goal in software testing

is to catch bugs before they are released, and the best way to do this is to

maintain a suite of regression tests so that bugs aren’t introduced after

156

implementing a new feature. We’ll talk about how to do that in a Vue

on Rails approach with the idea of keeping it simple and will be geared

towards low-consequence projects where your small team may or may

not have the time and money to spend on testing. If you work on a high-

consequence project, make sure you have the budget for a proper QA/

QC cycle before releasing. That being said, a low-consequence project

doesn’t mean you have to produce a low-quality product. There is a good

balance between development and testing that aligns with the Vue on Rails

approach of keeping things with Vue’s simplicity and the conventions of

Rails.

�TDD – To Drive or Not to Drive?
TDD or test-driven development is a development process that encourages

writing tests first before writing the actual code for the software. The idea

is to write a test for a feature or a test that reproduces an existing bug in

the software, make sure the test fails as expected, then write the code that

makes the test pass, and finally refactor code if necessary and make sure

the test still passes.

In my experience I have seen many developers and product managers

argue about the benefits of TDD. First, stop arguing about it. Every

developer and team is different, some do strictly TDD, some do it on

occasion, and some not at all. We’ll leave that decision up to your team. I

find TDD to be useful in scenarios that are not very straightforward and a

solution is not easily attained. The test first approach could help jumpstart

the problem-solving process in certain scenarios. TDD is often considered

as a way to drive correctness of code from developers’ perspective.

Chapter 7 Testing, Deployment, and Troubleshooting

157

�What about RSpec and BDD?
An extension of TDD called behavior-driven development or BDD is a

different way of looking at testing from a user’s or stakeholder’s perspective

and created in a way that all parties involved in a project can understand.

RSpec is a testing framework inspired by BDD that is widely adopted in

the Ruby on Rails community. BDD and the decision to use RSpec should

up to your team as well. If Rails testing that is supported out of the box is

sufficient for the project, then there is not much need to use RSpec.

�General Testing Guidelines
Regardless of the testing styles you choose to adopt, here is a list of general

guidelines that we recommend for testing:

•	 Unit test methods that aren’t trivial in the business

model.

•	 Write at least one integration test for get actions show/

index.

•	 Write two tests for create/update actions. One for

success/and one that fails on validation errors also

known as the happy path vs. dark path.

•	 Write system tests/e2e tests for core features.

•	 If bugs occur, write a test integration/or unit to

reproduce it and fix the bug.

•	 System tests will catch a lot of bugs on the Vue side, but

it may also help to write unit tests for Vue components.

•	 UI/browser tests can be fragile so don’t overdo it.

More time will be spent fixing fragile tests than actual

development.

Chapter 7 Testing, Deployment, and Troubleshooting

158

�System Tests
System tests are important in environments that integrate Vue and Rails

because it provides an end-to-end solution to testing the integration of

the two technologies. The latest version of Rails supports system tests out

of the box. System tests are essentially a wrapper around Capybara for

writing clean and simple tests that interact directly with the browser using

helper methods such as click_on, fill_in, and assert_selector. Before

system tests were integrated into the Rails framework, configuration was

necessary for this to work, and JavaScript was not supported out of the box.

We will demonstrate an example for testing our two-player Tic Tac Toe

game that we built in Chapter 5. This is a unique situation because we’ll

need to have multiple browser sessions to be able to test a game from start

to end. Luckily Capybara has a use_session method just for this purpose.

The test starts a new game in the main browser session and joins as X. In

the other session, the other player joins the game created and plays as O.

A series of pieces are placed and we swap between sessions and play until

the game is over.

require "application_system_test_case"

class MultiSessionsTest < ApplicationSystemTestCase

 test "visiting the index" do

 visit root_path

 click_on "New Game"

 click_on "Play as X"

 assert_text "You are Playing as X"

 Capybara.using_session :o do

 visit root_path

 click_on "Go to Board", match: :first

 click_on "Play as O"

 assert_text "You are Playing as O"

 end

Chapter 7 Testing, Deployment, and Troubleshooting

159

 x_positions = [0, 4, 8]

 o_positions = [1, 3]

 while x_positions.length > 0

 x_pos = x_positions.shift

 play(x_pos)

 assert_piece(x_pos, :X)

 if o_positions.length > 0

 o_pos = o_positions.shift

 Capybara.using_session :o do

 assert_piece(x_pos, :X)

 play(o_pos)

 assert_piece(o_pos, :O)

 end

 assert_piece(o_pos, :O)

 end

 end

 assert_text "You Win"

 Capybara.using_session :o do

 assert_text "You Lose"

 end

 end

end

So, the preceding code covers a happy path of a game from start

to end with one winner and one loser. We’ve defined a couple helper

methods – play and assert_piece. The play method clicks on the

appropriate board position and assert_piece checks that the appropriate

piece has been played. For this to work, we also need to define an id

attribute on the related SVG element such as “X5” denoting that an X is

Chapter 7 Testing, Deployment, and Troubleshooting

160

visible in the fifth board index. Helper methods can be defined in the

ApplicationSystemTestCase class since all our test cases for system tests

extend from that class.

What about other scenarios such as a tied game? Or a different board

configuration? We could create a few helper methods to cover these

scenarios in a system test, but it is not the best approach. Each system

test adds a bit of overhead to the time it takes to run your test suite. These

scenarios would be better covered in a typical Rails unit test. If there is a

UI scenario that needs to be covered, we could also use Jest and Vue test

utilities to create a unit for a particular Vue component. This leads us into

the discussion of such testing tools and frameworks that we can use for

unit testing Vue components.

�Vue Test Utilities and Jest
When unit testing Vue components, it is easy to get carried away with

testing lots of edge cases just like it can be with system tests. So, it is

important to think about the important pieces of a component. Take

the Board component in the Tic Tac Toe game, for example. It would

be unrealistic to test every possible board configuration, and we aren’t

necessarily even interested in that since a game object is passed down as

a prop. The important part of the component is testing that when a player

clicks on a certain board position, it results in the appropriate action being

called; in this case, it is the Vuex action for games_players/UPDATE. The

vue-test-utils documentation has some good examples on testing Vuex

action, so we will follow those guidelines for testing this scenario.

Documentation  Vue test utilities and Jest have great documentation
and can be found respectively at https://vue-test-utils.
vuejs.org and https://jestjs.io

Chapter 7 Testing, Deployment, and Troubleshooting

https://vue-test-utils.vuejs.org
https://vue-test-utils.vuejs.org
https://jestjs.io

161

�Generating a Vue Unit Test

The vuejs gem includes the option to generate a test when you generate a

component. The following commands will check if Vue testing is setup for

your Rails project and generate a component that includes a test file.

rails vue:test

rails generate vue something --test

This will generate a scaffold of a very simple test along with the

component that is generated. The test is generated at the path app/

javascript/test/something.test.js. The following test code is

generated.

import { shallowMount } from '@vue/test-utils'

import App from '@/some.vue'

describe('some.vue', () => {

 it('render hello some', () => {

 const message = "Hello some!"

 const wrapper = shallowMount(App)

 expect(wrapper.find('#some').text()).toBe(message)

 })

})

To run all your *.test.js files that live in app/javascript/, simply

run the following command:

yarn test

This runs any test that matches the *.test.js pattern with app/

javascript.	

Chapter 7 Testing, Deployment, and Troubleshooting

162

�Testing the Tic Tac Toe Board Component

The following example uses the Jest mockImplementation() method,

which returns a promise. We can create a few unit tests that cover the

following:

•	 A simple test that ensures an SVG element is rendered

•	 A test that ensures the games_players/update Vuex

action is called for an empty board position

•	 A test for checking that the games_player/update Vuex

action is not called when a position has already been

played

A lot of examples take advantage of the great documentation about

testing Vuex in the official vue-test-utils documentation. The examples

trigger the position click action by finding the first <rect> element in the

Board component.

import { shallowMount, createLocalVue } from '@vue/test-utils'

import Board from './board.vue'

import Vuex from 'vuex'

const localVue = createLocalVue()

localVue.use(Vuex)

describe('Board', () => {

 let actions

 let store

 beforeEach(() => {

 actions = {

 update: jest.fn().mockImplementation(cb => cb)

 }

Chapter 7 Testing, Deployment, and Troubleshooting

163

 store = new Vuex.Store({

 state: {},

 modules: {

 games_players: {

 namespaced: true,

 state: {

 all: [],

 current: null,

 error: null

 },

 actions

 }

 }

 })

 })

 test('renders an svg', () => {

 const wrapper = shallowMount(Board, { store, localVue })

 expect(wrapper.contains('svg'))

 })

 test('calls games_players update action', () => {

 const wrapper = shallowMount(Board, { store, localVue })

 wrapper.setProps({

 myPiece: 'X',

 width: 400,

 game: {

 id: 1,

 board: [",'O','X',",",",",","],

 games_players: [

 {

 id: 1,

 game_id: 1,

Chapter 7 Testing, Deployment, and Troubleshooting

164

 player_id: 1,

 piece: 'X'

 },

 {

 id: 2,

 game_id: 1,

 player_id: 2,

 piece: 'O'

 }

]

 }

 })

 wrapper.find('rect').trigger('click')

 expect(actions.update).toHaveBeenCalled()

 })

 test('does not call games_players update action for existing

piece', () => {

 const wrapper = shallowMount(Board, { store, localVue })

 wrapper.setProps({

 myPiece: 'X',

 width: 400,

 game: {

 id: 1,

 board: ['X','O',",",",",",","],

 games_players: [

 {

 id: 1,

 game_id: 1,

 player_id: 1,

 piece: 'X'

 },

Chapter 7 Testing, Deployment, and Troubleshooting

165

 {

 id: 2,

 game_id: 1,

 player_id: 2,

 piece: 'O'

 }

]

 }

 })

 wrapper.find('rect').trigger('click')

 expect(actions.update).not.toHaveBeenCalled()

 })

})

�Heroku – The Ninja Deployment
This simple command has been a developer’s dream come true.

git push heroku master

For most small- to medium-sized projects, we recommend Heroku

as a platform for publishing applications, especially if you don’t have

the resources for a dedicated DevOps team or system admin. The Ninja

command covers the basics, and Heroku now supports Webpacker and will

build our necessary Vue component assets along with any assets handled

by sprockets. You’ll still need to think about how to handle migrations and

will need to think about Redis addons to support background jobs and

Action Cable if needed by your application.

Chapter 7 Testing, Deployment, and Troubleshooting

166

�Heroku vs. Virtual Private Server
There are plenty of cloud providers that offer virtual private servers (VPS)

such as Digital Ocean, Amazon Web Services, Google Cloud, and many

other providers. A VPS is a server that runs in a virtual environment on

shared physical hardware. Hardware is maintained by the cloud provider,

so swapping out bad disks, CPUs, etc. VPS providers often give you the

choice of which operating system you would like to run with different

flavors of Linux such as CentOS or Ubuntu. This may be a viable option for

developers who also like to get into the nitty gritty of system administration

or have more resources to support maintenance and monitoring of the

servers. Be sure to weigh in on all the tradeoffs of this approach. We have

listed the advantages and disadvantages of each option for you to evaluate.

Heroku advantages:

•	 Ninja deployment in one command

•	 Third-party addon support such as Redis support

•	 Automated SSL certificates for hobby level

•	 No time consumed by system monitoring and

administration

Heroku disadvantages:

•	 Expensive for large-scale projects (some may argue that

cost is offset by not needing some large ops team)

•	 Less control over the environment

VPS advantages:

•	 More control of the environment. So control over

networking and firewalls if you need a private

environment.

•	 Inexpensive (as little as $5/month for basic VPS).

Chapter 7 Testing, Deployment, and Troubleshooting

167

•	 Learning how to setup NGINX/Apache along with

a production Ruby environment using Passenger or

Unicorn is a good learning experience and a very

valuable skill.

•	 Learning how to setup and administer a database such

as Postgres or MySQL is also a valuable skill.

VPS disadvantages:

•	 Setting up a Rails-ready production environment takes

time.

•	 Deployments can be automated using tools such as

Capistrano, but configuring Capistrano is often non-

trivial.

•	 Overhead of maintaining and monitoring a server such

as monitoring memory, CPU, and disk usage. Some

cloud providers offer automatic scaling, but other

service providers may not.

�Continuous Integration and Deployment
Whether we are using Heroku or a VPS, we can take advantage of various

continuous integration services such as Travis CI to combine and

automate our test, build, and deploy process. This will come in handy

especially if we want our application to support different browsers. If

you are developing in Chrome on a Mac, how do you know if our Vue

components are supported on Firefox on a PC? A great service for this is

BrowserStack and provides the ability to test various browsers on multiple

operating systems. We can ensure our testing phase passes before the

application is deployed to production. Also, if we need a finer grained

release management, then we can choose only to deploy when a release

is tagged in our git repo or under other conditions. We will demonstrate

Chapter 7 Testing, Deployment, and Troubleshooting

168

how to set up Travis CI to include a custom test and deploy process which

integrates with BrowserStack and Heroku. To get started you’ll want to sign

up for accounts at travis-ci.org and browserstack.com.

�Travis CI

Travis CI is a popular continuous integration tool that easily integrates

with GitHub and other tools such as BrowserStack. Travis CI has some

great documentation on getting started, so we won’t go into too much

detail, but will show a .travis.yml configuration file which we can use to

perform the following CI process in three stages:

•	 Testing stage which runs our unit and integration tests

including our Vue unit tests

•	 A staging deployment phase which gets our latest code

up to our Heroku staging environment

•	 A BrowserStack phase which runs our system tests

against our Heroku staging URL

The following is an example Travis CI yaml configuration file.

language: ruby

rvm:

- 2.5.5

cache:

 - bundler

 - yarn

env:

 secure: # use travis encrypt

before_script: bin/yarn

jobs:

 include:

 - stage: test

Chapter 7 Testing, Deployment, and Troubleshooting

169

 name: Rails Unit/Integration Tests

 script: bin/rails test

 - name: Jest Unit Tests

 script: bin/yarn test

 - stage: deploy staging

 deploy:

 provider: heroku

 app: vueonrails-ci-staging

 run: bin/rails db:migrate

 strategy: git

 api_key:

 secure: # … use travis encrypt

 - stage: test staging

 name: firefox

 script: TASK_ID=0 bin/rails test:system

 - name: chrome

 script: TASK_ID=1 bin/rails test:system

 - name: safari

 script: TASK_ID=2 bin/rails test:system

 - name: internet explorer

 script: TASK_ID=3 bin/rails test:system

This configuration allows us to perform multiple tasks in parallel

within the three stages we mentioned. Running our Rails unit and

integration tests along with the Heroku deployment are straightforward

as long as we encrypt and add our api key for Heroku using the travis

encrypt command. Using BrowserStack to run our system tests against

multiple browsers is not as trivial. This stage is broken up into four tasks,

one for each browser. Next, we’ll discuss how to configure BrowserStack to

work properly.

Chapter 7 Testing, Deployment, and Troubleshooting

170

�BrowserStack

BrowserStack has the capability to run its tests against our local test server,

but ideally, we want to run the tests against our staging environment on

Heroku to test an environment as close as possible to production. System

tests use Capybara under the hood, so we can simply set our app host for

Capybara in our test/test_helper.rb file.

Capybara.app_host = 'https://staging-app.herokuapp.com:443'

You’ll notice that our Travis CI configuration for the BrowserStack

stage includes a TASK_ID variable in the command. Our code for setting up

BrowserStack uses this value to determine which browser to run against.

We can define a config/browserstack.yml file which includes this

configuration.

server: "hub-cloud.browserstack.com"

common_caps:

 "browserstack.debug": true

browser_caps:

 -

 browser: firefox

 -

 browser: chrome

 -

 browser: safari

 -

 browser: internet explorer

We can now setup a custom Capybara driver that uses the TASK_ID to

select the appropriate browser to run against.

TASK_ID = (ENV['TASK_ID'] || 0).to_i

Chapter 7 Testing, Deployment, and Troubleshooting

171

CONFIG = YAML.load(File.read(Rails.root.join("config",

"browserstack.yml")))

CONFIG['user'] = ENV['BROWSERSTACK_USERNAME'] || CONFIG['user']

CONFIG['key'] = ENV['BROWSERSTACK_ACCESS_KEY'] || CONFIG['key']

Capybara.register_driver :browserstack do |app|

 �Capybara.app_host = 'https://vueonrails-ci-staging.herokuapp.

com:443'

 �@caps = CONFIG['common_caps'].merge(CONFIG['browser_caps']

[TASK_ID])

 Capybara::Selenium::Driver.new(app,

 :browser => :remote,

 �:url => "http://#{CONFIG['user']}:#{CONFIG['key']}@#{CONFIG

['server']}/wd/hub",

 :desired_capabilities => @caps

)

end

You’ll notice that the code uses BROWSERSTACK_USERNAME and

BROWSERSTACK_ACCESS_KEY environment variables. We can encrypt these

values to include in our travis config file using the travis cli, for example.

travis encrypt BROWSERSTACK_USERNAME=...

Finally, we just need to update our test/application_system_

test_case.rb to inform Rails to use the Browserstack server by using the

driven_by method.

class ApplicationSystemTestCase <

ActionDispatch::SystemTestCase

 driven_by :browserstack

end

Chapter 7 Testing, Deployment, and Troubleshooting

172

And that about wraps things up for using Travis CI to automate a lot of

tasks that we often see in development environment that moves a quick

pace and quick iterations. Let’s see how our tests performed in the Travis

CI dashboard (see Figure 7-1)

Figure 7-1.  Travis CI results dashboard

DOH! ... always causing problems IE. Good thing we didn’t deploy

it to production. Note that our Travis CI configuration doesn’t include a

deployment process to production, but this can be easily done by adding

another deployment stage once all previous stages have completed in a

similar manner to our staging deployment. Following a good process for

Chapter 7 Testing, Deployment, and Troubleshooting

173

getting your app into production isn’t always clear especially for small

development teams that also need to do their own DevOps, so we wanted to

make the testing and deployment phase of a project straightforward and hope

you appreciate our approach which aligns with our philosophy of simplicity.

�Troubleshooting Common Issues of Vue
on Rails
In this section, we explore some common and sometimes thorny issues

of Vue on Rails projects that you may stumble upon. If you need further

help, you could list it on stackoverflow.com as Vue on Rails or you could

always list an issue at the Webpacker project (http://github.com/rails/

Webpacker). Each of the following issues is covered in this section.

	 1.	 In a Vue on Rails project with Webpacker, can I

import the Vue on Rails project into Vue UI?

	 2.	 In a Vue on Rails project with Webpacker, how do I

change the compile path from app/javascript/packs

to something else?

	 3.	 In a Vue on Rails project with Webpacker, how do I

use embedded Ruby (Erb) inside your Webpacker

project?

	 4.	 How do I fix the error “Cannot find module <name_

of_module>”?

	 5.	 How do I solve an error that says “TypeError:

undefined is not an object (evaluating ‘options.

components’)”?

	 6.	 In a Vue on Rails project with Webpacker, how

do I disable fingerprinting to create Vue.js widget

component?

Chapter 7 Testing, Deployment, and Troubleshooting

http://github.com/rails/Webpacker
http://github.com/rails/Webpacker

174

	 7.	 How do I solve the following Vue error: “Did you

register the component correctly? For recursive

components, make sure to provide the name option.”

	 8.	 Is there a way to use npm instead of yarn as the

default package manager?

	 9.	 For Vue on Rails project with Webpacker, how do I

manage Node and Rails environments?

	 10.	 For Vue on Rails projects with Webpacker, is there a

way to bypass the IE 11 issues on Windows?

	 11.	 For Vue on Rails projects with Webpacker, shouldn’t

package X be in the dependencies instead of

devDependencies?

	 12.	 How do I solve this Heroku error: “No default

language could be detected for this app”?

	 13.	 How do I solve this Heroku error: “App not

compatible with buildpack”?

This chapter assumes your Vue on Rails uses Webpacker as the default

Webpack manager.

1. In a Vue on Rails project with Webpacker, can I import the Vue
on Rails project into Vue UI?

Vue UI is a web application that you can run to manage Vue projects and

is a feature of vue-cli. To make Vue on Rails compatible with Vue UI, you

will need to add the @vue/cli-service package into devdependencies of

package.json:

yarn add @vue/cli-service --dev

Chapter 7 Testing, Deployment, and Troubleshooting

175

With the Vue UI installed, you can import the Vue on Rails project

by clicking Import > Go to the Vue on Rails project and click Import this

project.

2. In a Vue on Rails project with Webpacker, how do I change
the compile path from app/javascript/packs to something else?

You may wish to use a different directory to store your Vue components or

javascript. You can change the directory name or the path at Webpacker.yml.

3. In a Vue on Rails project with Webpacker, how do I use embedded
Ruby (Erb) inside your Webpacker project?

Sometimes, you want to use erb inside your Vue component. To do so,

please install the erb dependencies into your Webpacker setup:

rails webpacker:install:erb

4. How do I fix the error “Cannot find module <name_of_module>”?

This error is telling you that Webpack cannot find the <name_of_module>

module. Hence, we need to add it via yarn. Run the following command to

fix it:

yarn add <name_of_module>

Chapter 7 Testing, Deployment, and Troubleshooting

176

5. How do I solve an error that says “TypeError: undefined is not
an object (evaluating ‘options.components’)”?

This error is telling you that Webpack cannot find the <name_of_module>

module. Hence, we need to add it via yarn. Run the following command to

fix it:

yarn add <name_of_module>

6. In a Vue on Rails project with Webpacker, how do I disable
fingerprinting to create Vue.js widget component?

This answer is written by Ross Kaffenberger, an active contributor of

Webpacker project on the Webpacker project. The following Webpack plugin

helps to produce non-digest assets that do not contain fingerprinting.

(https://github.com/rails/webpacker/issues/1310#issuecomment-

369721304)

// Custom Webpack plugin

// Emits assets with hashed filenames as non-digest filenames

as well

//

// Adding to end of plugins list ensures that all previously

emitted hashed

// assets will be registered prior to executing the

NonDigestAssetsPlugin.

function NonDigestAssetsPlugin() {}

const CHUNKHASH_REGEX = /(-[a-z0-9]{20}\.{1}){1}/;

Chapter 7 Testing, Deployment, and Troubleshooting

https://github.com/rails/webpacker/issues/1310#issuecomment-369721304
https://github.com/rails/webpacker/issues/1310#issuecomment-369721304

177

NonDigestAssetsPlugin.prototype.apply = function(compiler) {

 compiler.plugin('emit', function(compilation, callback) {

 // Explore each compiled asset in build output:

�Object.entries(compilation.assets).forEach(function([filename,

asset]) {

 if (!CHUNKHASH_REGEX.test(filename)) return;

 // only for filenames matching CHUNKHASH_REGEX

 �const nonDigestFilename = filename.replace(CHUNKHASH_

REGEX, '.');

 compilation.assets[nonDigestFilename] = asset;

 });

 callback();

 });

};

module.exports = NonDigestAssetsPlugin;

7. How do I solve the following Vue error: “Did you register the
component correctly? For recursive components, make sure to provide
the name option.”

This error is pointing to two questions. First, did you register the

component correctly?

components: {

 'i-tabs' : Tabs,

 'i-tab-pane': Tabpane

 }

Chapter 7 Testing, Deployment, and Troubleshooting

178

Second, did you provide the name option in your recursive

component?

name: 'Tabpane'

8. Is there a way to use npm instead of yarn as the default package
manager?
For new Rails projects, we can add a flag to the command to bypass yarn

and use npm.

rails new npm_app --webpack --skip-yarn

Now you can install npm packages using the npm install command.

9. For Vue on Rails project with Webpacker, how do I manage Node
and Rails environments?

Rails uses RAILS_ENV and Node traditionally uses NODE_ENV

environment variables to manage whether an app is in development or

production. A pull request was merged to ensure these two variables are

reconciled.

See https://github.com/rails/webpacker/pull/1511

10. For Vue on Rails projects with Webpacker, is there a way to bypass
the IE 11 issues on Windows?

IE 11 issues may be caused the UgligyJs plugin not using a downgraded

version of ECMA. Try configuring with the following code.

const environment = require('./environment')

Chapter 7 Testing, Deployment, and Troubleshooting

https://github.com/rails/webpacker/pull/1511

179

environment.plugins.get("UglifyJs").options.uglifyOptions.ecma

= 5

module.exports = environment.toWebpackConfig()

module.exports = NonDigestAssetsPlugin;

11. For Vue on Rails projects with Webpacker, shouldn’t package X
be in the dependencies instead of devDependencies?

The answer lies in how Webpacker works. Webpacker produces

JavaScript code called packs that can be embedded into Rails view via the

javascript_pack_tag. This requires certain development dependencies

to be in the dependencies of package.json.

For further discussion or research, please visit the following links:

https://github.com/rails/webpacker/issues/1212

https://github.com/rails/webpacker/issues/1178

12. How do I solve this Heroku error: “No default language could
be detected for this app”?

If you see the following error message from Heroku console, you need to

install the relevant buildpack.

remote: Compressing source files... done.

remote: Building source:

remote:

remote: ! No default language could be detected for this

app.

remote: HINT: This occurs when Heroku cannot detect

the buildpack to use for this application automatically.

Chapter 7 Testing, Deployment, and Troubleshooting

https://github.com/rails/webpacker/issues/1212
https://github.com/rails/webpacker/issues/1178

180

remote: See https://devcenter.heroku.com/articles/

buildpacks

remote:

remote: ! Push failed

remote: Verifying deploy...

remote:

remote: ! Push rejected to page-specific-vue-turbolinks.

remote:

To https://git.heroku.com/page-specific-vue-turbolinks.git

 ! [remote rejected] master -> master (pre-receive hook

declined)

error: failed to push some refs to 'https://git.heroku.com/

page-specific-vue-turbolinks.git'

Run the following commands to properly configure the buildpacks for

the project.

heroku buildpacks:clear

heroku buildpacks:set heroku/nodejs

heroku buildpacks:add heroku/ruby

See https://github.com/rails/webpacker/issues/739#

issuecomment-327546884

13. How do I solve this Heroku error: “App not compatible
with buildpack”?

When deploying to Heroku, you may see the following error in the output.

This means that a package.json file was not found in the app.

Counting objects: 16871, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (13035/13035), done.

Chapter 7 Testing, Deployment, and Troubleshooting

https://github.com/rails/webpacker/issues/739#issuecomment-327546884
https://github.com/rails/webpacker/issues/739#issuecomment-327546884

181

Writing objects: 100% (16871/16871), 17.27 MiB | 1.19 MiB/s,

done.

Total 16871 (delta 2944), reused 16834 (delta 2933)

remote: Compressing source files... done.

remote: Building source:

remote:

remote: -----> App not compatible with buildpack: https://

buildpack-registry.s3.amazonaws.com/buildpacks/heroku/nodejs.

tgz

remote: Node.js: package.json not found in application

root

remote:

remote: More info: https://devcenter.heroku.com/

articles/buildpacks#detection-failure

remote:

remote: ! Push failed

remote: Verifying deploy...

remote:

remote: ! Push rejected to page-specific-vue-turbolinks.

remote:

To https://git.heroku.com/page-specific-vue-turbolinks.git

 ! [remote rejected] master -> master (pre-receive hook

declined)

error: failed to push some refs to 'https://git.heroku.com/

page-specific-vue-turbolinks.git'

To solve this problem, make sure that Webpacker is installed and

a package.json file exists and also that the necessary buildpacks are

installed on Heroku using the following commands.

rails webpacker:install

heroku buildpacks:add heroku/nodejs

heroku buildpacks:add heroku/ruby

Chapter 7 Testing, Deployment, and Troubleshooting

182

�Wrap-up and the Final Step
This concludes the testing, deployment, and troubleshooting chapter of

our book. We’ve shown you how to go from the development phase to a

well-tested and deployed production quality application using various

testing tools and continuous integration methods. We move on to the final

chapter to conclude our book and leave you with some words of wisdom.

Chapter 7 Testing, Deployment, and Troubleshooting

183© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4_8

CHAPTER 8

Conclusion –
Finishing the Race
We hope that you had the light switch moment while reading this book.

Web programming is complex but it does not need to be complicated

or convoluted. The pursuit of developer happiness and maintainability

productivity is endless. But the pursuit can be painless too.

Vue on Rails is not a swiss army knife for all solution. It is a start to an

endless pursue to apply a simple approach to web development. This is

accomplished through standing firm on two open source giants Rails and

Vue.

The race has only just begun. The work of web programmers is

endless as the web standard continues to evolve. Vue on Rails represents

a movement that promotes cross pollination of developer-friendly

frameworks that can only happen because we are standing on the shoulder

of open source web giants.

We realize that technologies change at a fast pace and a solution

that works today may not be ideal in the future. Even though we believe

a Vue on Rails approach is a great combination, a lot of the concepts we

discuss hope to open developers’ eyes to similar approaches with different

technologies such as other MVC frameworks like Django, Java Spring, or

.NET Core. I think the best advice is to constantly question an approach

184

taken to solve a problem. If you keep doing things the same way, it might

get the job done, but then you will never learn a potentially better way that

will make your life easier.

�Vue is Not Without Guilt
In the past year, Vue 2 has performed very well, in terms of adoption, and

comes very close to a corporate-funded React JavaScript framework. In

this regard, we feel that Vue has won the race by using an MIT License and

is supported by the community rather than influenced largely by a single

corporation.

But Vue 2 is not without guilt. For instance, compared to Rails’ latest

JavaScript approach, Stimulus, Vue 2 is slow and more opinionated in how

a developer should approach the frontend. Learning from history, any

framework that deviates from the web standard will also not stand the test

of a thousand developers’ pokes.

Stimulus is also closer to Vanilla JavaScript than Vue itself. Version 1.1

of Stimulus ships with a tiny minified build size of 30kb and carry no extra

batteries like state management. Stimulus is twice as fast in rendering

speed than Vue and loads less overhead than Vue.js.

With the early review of Vue 3, we see that the performance is fixed and

comes with additional benefits like a more modular Vue.js. This means

that you can enjoy a smaller Vue.js if you do not use certain aspect of Vue.

For instance, if you do not use the transition classes of Vue.js, you can

exclude it when you download Vue 3. Vue 3 is faster, smaller, and better in

many ways.

Vue 3  Read more about Evan You’s plan for Version 3 of Vue.js at
https://tinyurl.com/VuePoint and his presentation on Vue 3:
https://tinyurl.com/Vue3Pres.

Chapter 8 Conclusion – Finishing the Race

https://tinyurl.com/VuePoint
https://tinyurl.com/Vue3Pres

185

�Ruby on Rails Isn’t the Top in Class Either
Ruby on Rails may suffer from performance inadequacy when compared

to other web frameworks due to its Ruby language. Ruby language isn’t the

fastest in the league and that’s fine. This is also why the 3 x 3 effort to speed

up Ruby the programming language by the Ruby core team is a godsend.

Another famous effort is the ruby-like language Crystal that may have

an impact on Rails in the future. Imagine switching out Ruby and having a

plugin to reconcile any difference in syntax to enjoy the high-speed railway

of concurrency.

Rails and its favorite programming language Ruby 3  Read more
on how Ruby has been fast enough at https://tinyurl.com/
RubyFast and Ruby 3x3 at https://blog.heroku.com/ruby-
3-by-3/.

�Where Do You Go from Here?
Regardless of technology changes in the future, we hope to offer some

advice that will stand the test of time:

•	 If you find yourself performing a lot of repetitive tasks,

take some time to automate those tasks using the best

tools available.

•	 Choose simplicity over complexity and convention over

configuration.

•	 Focus on building a great product for your customers.

Chapter 8 Conclusion – Finishing the Race

https://tinyurl.com/RubyFast
https://tinyurl.com/RubyFast
https://blog.heroku.com/ruby-3-by-3/
https://blog.heroku.com/ruby-3-by-3/

186

Don’t forget to stay in touch! Here are some ways to stay up to date in

the Vue on Rails world:

•	 Read Vue news https://news.vuejs.org/

•	 Read Ruby on Rails news https://weblog.

rubyonrails.org/news/

•	 Become a watcher on the vueonrails gem to keep

up to date on improvements https://github.com/

vueonrails/vueonrails

•	 Follow @ytbryan and @rlafranchi on GitHub

Chapter 8 Conclusion – Finishing the Race

https://news.vuejs.org/
https://weblog.rubyonrails.org/news/
https://weblog.rubyonrails.org/news/
https://github.com/vueonrails/vueonrails
https://github.com/vueonrails/vueonrails

187© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4

APPENDIX A

�The MIT License (MIT)
for vuejs.org Content
Used in This Book
Copyright (c) 2013-present Yuxi Evan You

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the “Software”),

to deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or

sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT

SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

https://doi.org/10.1007/978-1-4842-5116-4

189© Bryan Lim and Richard LaFranchi 2019
B. Lim and R. LaFranchi, Vue on Rails, https://doi.org/10.1007/978-1-4842-5116-4

Index

A
Action cable

frontend, 77
Rails backend, 78
Vue prototype, 77
web-socket, 77

activestorage npm package,
137, 139

Application template
administrate, 95
automatic customization, 94
bootstrap, 96
development process, 94
devise, 97
font awesome icon, 96
foundation, 96
Livereload, 97
rails project, creation, 94
Sidekiq, 96, 97
webpacker, 94
Whenever scheduler, 95

Arrow function, 62
Asset management, 22–24
Asset pipeline, 22–24
Atom editor, 13
Avatar, 136
Axios, 63

B
Behavior-driven development

(BDD), 157
BrowserStack, 170–173

C
Cheatsheets, 9, 10
Class/style binding

toggling class, 50
vue-on-rails.js library, 51

@click event handler, 48
click() method, 49
Computed properties, 48–49
Continuous integration services,

167–168
croppedGeometry() property, 149
Cropper component, 139–144
Custom test, 168

D
Devise, authentication system, 97

E
el property, 44, 45

https://doi.org/10.1007/978-1-4842-5116-4

190

F
fileAdded() function, 144
Foundation, 96
Fragile tests, 157

G
GameChannel, 118, 119
Game time, 123, 124
getGame() function, 130
Global event bus, 59

H
Heroku vs. virtual private server,

166, 167
Hybrid app, 20

I
Image-cropping tool

avatar, 136
JavaScript libraries, 136
loading image, 144, 146
panning the image, 146, 147
prototype approaches, 135
scaling, 147–149
user profile, 137–139

ImageMagick processing, 149, 150
Image scaling, 147–149
Internationalization library,

105–107
isView() function, 87

J
join(piece) method, 125

K
Keeping programmer insanely

(KPI), 17, 18

L
Lifecycle hook, 44, 132
Listing games, 121, 122
Livereload, 97

M
MIT License (MIT), 187
Mixins, 52, 53
Modern web application, 19

attributes, 20
cross-platform development, 19
goodness test, 22
hybrid app, 20
Ruby on Rails, 22
use, 20, 21

Monolithic rails architecture, 85, 86
mounted() lifecycle, 144

N, O
Nested form, Vue component,

90–94
newGame() method, 122
Ninja deployment, 165

INDEX

191

P, Q
pan() method, 147
Panning the image, 146–147
Properties vs. data, 45, 46

R
Rails first approach

functionality, 29
version 1, 27–29

Rails-first Vue first-class
approach, 41–42

Reactivity system, 39
Resources, 10, 11
Router

file creation, 65, 66
initialization, 66, 67
parameter, 68, 69
redirect/alert, 69, 71
<router-link>, 67, 68
SPA, 71
vue-router npm package, 64

Routing parameter, 68–69
Ruby on Rails doctrine, 13

S
Search engine optimized (SEO), 100
Server-side rendering (SSR), 100

i18n Vue, 107–110
internationalization library,

105–107
manual configuration, 101,

103–105

scaffolders, 101, 102
SEO friendly, 100
web pages, 100

Sidekiq, 96–97
Simple polling, 78–79
Simple state management

GitHub, 111, 112
scaffolders, 112, 113
timestamp, 110
Vuex, 110

Single-page application (SPA), 3,
17, 84

Single source of truth (SSOT), 72
Specific-page Vue (SPV)

application template, 86
components, 84
monolithic rails architecture, 85
pages/index.html view, 86
pages/second.html view, 87
SPA approach, 85
Turbolinks, 89, 90
web app lifecycle, 85

SSR, see Server-side rendering (SSR)
Sublime text, 13
System tests, 158–160

T
Test-driven development

(TDD), 156
Testing approaches

general guidelines, 157
low-consequence project, 156
regression tests, 155

Index

192

RSpec and BDD, 157
software testing, 155
system tests, 158–160
TDD, 156
test utilities and jest, 160
Vue unit test, 161

Tic Tac Toe board component,
162–165

toggleClass() method, 51
Tool versions, 9, 10
Tradeoffs, 16
Travis CI, 168, 169
Troubleshooting, 173–181
Two-player game

action cable
chat app, 115
consumer, 131, 132
software design, 116
Vuex rails plugin, 132
websockets, 115

controllers, 119, 120
creation, 122, 123
domain model, 117, 118
game channel, 118, 119
listing games, 121, 122
Tic Tac Toe game, 116, 125–130

U
UI compatibility, Vue, 97–99
User profile, 137–139

V
Virtual DOM, 29
Virtual private servers

(VPS), 166
Visual Studio Code, 11

tools, 12
Vue

components (see Vue
components)

data
characteristics, 46
v-model directive, 47

data variable, 4
directives, 47
JavaScript environment, 5
lifecycle, 42, 43
manual enabling, 99, 100
objectives, 7, 8
pass data, server, 60, 62

HTTP client, 62
peer-to-peer protocol, 4
plugins, 51
on Rails, 5, 6
router (see Router)
web application, 6

Vue components
flash notices/alerts, 56–59
global registration, 60
local registration, 60
Vue on Rails project, 53, 54
x-template, 54–56

Testing approaches (cont.)

INDEX

193

Vue Devtool, 93
Vue first approach

advantages, 33
application, 30
disadvantages, 33
single-page application, 34
version 2, 30–32

Vue first vs. Rails first
KPI, 17, 18
requirement, 15
SPA, 17
tradeoffs, 16
web application, 15

Vue-first/Rails-only approach
advantages, 37, 38
disadvantages, 38
MVC pattern, 35
reactivity, 39
reusability, 38, 39
version 3, 36, 37
webpacker, 35

Vue on Rails, 6, 183
MIT license, 184
MVC frameworks, 183
projects, 25–27

vue-resource, 63
Vuex

installation, 73
manage states, 72, 73
rails plugin

configuration, 74
posts#index action, 75, 76

state management tools, 72

W, X, Y, Z
Watch method, 48, 49
Webpack, 23
Webpacker, 23

approach, 24
asset pipeline, 24
installation, 25

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Part I: Start Your Engines – The Technology
	Chapter 1: Introduction
	Getting Started
	Hello Vue
	Hello Vue on Rails

	Our Motivation from the Beginning
	Who Should Read This Book?
	Objectives of This Book
	When the Price Is Right

	Resources: Framework Versions, Downloads, Tutorials, and More
	Tool Versions and Source Code
	Cheatsheets
	Useful Resources for Vue on Rails Projects
	Tools for Visual Studio
	Tools for VS Code
	Tools for Atom Editor and Sublime Text
	Who to Follow?

	Getting Your Priorities Right: Vue First vs. Rails First
	Healthy Tradeoff – The Right Price
	Failing the Single-Page Application Litmus Test
	KPI – Keeping Programmer Insanely Happy

	Wrap-up and the Next Step

	Chapter 2: Nuts and Bolts of Vue on Rails
	Attributes of a Modern Web App
	What Are the Attributes of a Modern Web App?
	Inherent Nature of Vue.js
	The Goodness Test

	Asset Management
	Tools
	Asset Pipeline
	Webpack
	Webpacker

	Should You Remove Your Old Pipe?
	Getting Started with Webpacker
	Installing Webpacker

	Scaffolding Vue on Rails Projects
	Rails First Approach: Putting Ruby on Rails before Vue
	The Yes/No Answering Robot – Version 1
	Evaluating the Rails-Only Approach

	Vue First Approach: Putting Vue before Ruby on Rails
	The Yes/No Answering Robot – Version 2
	Evaluating the Vue-First Approach

	A Good Balance: Vue as a First-Class Citizen of Rails
	The Yes/No Answering Robot – Version 3
	Creating Version 3
	Evaluating the Vue as a First-Class Citizen of Rails Approach
	Reusability: A Powerful Proposition of the Vue Component
	Reactivity: Data-Binding and Virtual DOM of Vue

	Wrap-up and the Next Step

	Chapter 3: Model, Vue, and Controller
	The Vue Instance and Other Vue Properties
	The Vue Lifecycle

	el – The Main Selector of a Vue Instance
	Props vs. Data
	Data
	Directives
	@click – The Method Invoker
	Computed Properties, Watchers, and Methods
	Class and Style Binding
	Plugins
	Mixins
	Building Vue Components
	Generating Vue Components for Your Vue on Rails Project
	Using x-template to Load Your Vue Component
	Communication Between Vue Components in a Rails Project
	Registering Components
	Global Registration of Component
	Local Registration of Component

	Passing Data from Vue to Server
	With HTTP Client
	Retiring vue-resource and Using Axios

	Routing with Vue Router within a Rails Project
	Creating the Router File
	Initializing vue-router
	Using <router-link>
	Routing Parameters
	Redirect or Alert
	Points to Ponder

	Managing State of a Rails View Using Vuex
	Introduction
	The Trouble with Vuex and Other State Management Tools
	Why Should We Manage States?
	Getting Started with Vuex
	Vuex Rails Plugin
	Configuring the Plugin
	Start Using Vuex Rails Plugins

	Passing Data from Server to Vue
	Using Action Cable as a push technology
	A Simple Polling

	Wrap-up and the Next Step

	Part II: Hands on the Wheels – Tutorials
	Chapter 4: Real-World Applications Through Short Tutorials
	Specific-Page Vue Inside Rails Products
	Specific-Page Vue
	Specific-Page Vue with Turbolinks

	Nested Form with form-for Component
	Application Template of Vue on Rails Products
	The Template
	Options of Vue on Rails Application Template
	Administrate
	Whenever
	Bootstrap
	Foundation
	Font Awesome
	Sidekiq
	Devise
	Livereload

	Vue UI Compatibility in Rails Products
	Manual Enabling of Vue UI in Rails Products
	Server-Side Rendering of Vue Components in Rails Products
	Scaffolding SSR Components in Rails Products
	Manual Configuration of SSR Vue Components in Rails Products
	Internationalization
	Using Vue on Rails 118n

	Simple State Management of Vue Components Inside Rails Products
	Simple State Example
	Scaffolding Simple State Management in Vue on Rails

	Wrap-up and the Next Step

	Chapter 5: Making a Real-Time Two-Player Game with Action Cable
	Domain
	The GameChannel
	The Controllers
	Listing Games
	Creating a Game
	Game Time
	Joining a Game
	Drawing the Tic Tac Toe Board
	Placing a Piece
	Accessing Action Cable from Vue
	Wrap-up and the Next Step

	Chapter 6: Building an Image-Cropping Tool with Vue and Active Storage
	The Avatar
	The User Profile
	Vue Cropper Component
	Loading the Image
	Panning the Image
	Scaling the Image
	ImageMagick Processing
	Wrap-up and the Next Step

	Part III: Turbo Charge – Production Ready
	Chapter 7: Testing, Deployment, and Troubleshooting
	Testing Approaches
	TDD – To Drive or Not to Drive?
	What about RSpec and BDD?
	General Testing Guidelines
	System Tests
	Vue Test Utilities and Jest
	Generating a Vue Unit Test
	Testing the Tic Tac Toe Board Component

	Heroku – The Ninja Deployment
	Heroku vs. Virtual Private Server
	Continuous Integration and Deployment
	Travis CI
	BrowserStack

	Troubleshooting Common Issues of Vue on Rails
	Wrap-up and the Final Step

	Chapter 8: Conclusion – Finishing the Race
	Vue is Not Without Guilt
	Ruby on Rails Isn’t the Top in Class Either
	Where Do You Go from Here?

	Appendix A: The MIT License (MIT) for vuejs.org Content Used in This Book
	Index

