
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Wearable Android™

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Wearable Android™

Android Wear & Google Fit App
Development

Sanjay M. Mishra

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per‐copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750‐8400, fax (978) 750‐4470, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201)
748‐6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762‐2974, outside the United States at (317) 572‐3993 or fax
(317) 572‐4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Android is a trademark of Google Inc.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Library of Congress Cataloging‐in‐Publication Data:

Mishra, Sanjay.
Wearable Android™ : Android wear & Google Fit app development / Sanjay M. Mishra.
   pages  cm
  Includes bibliographical references and index.
  ISBN 978-1-119-05110-7 (pbk.)
1.  Wearable computers.  2.  Mobile apps.  I.  Title.
  QA76.592.M57 2015
  004.167–dc23

	 2015011300

Cover Image courtesy of iStockphoto © ava09

Set in 10/12pt Times by SPi Global, Pondicherry, India

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1

1  2015

www.allitebooks.com

www.copyright.com
http://www.wiley.com/go/permissions
www.wiley.com
http://www.allitebooks.org

Contents

About the Author	 xv
About This Book	 xvii
Acknowledgments	 xxiii

Part I  Wearable Computing: Introduction and Background� 1

1	 Wearables: Introduction� 3

1.1	 Wearable Computing� 3
1.2	 Wearable Computers and Technology� 3
1.3	 “Wearables”� 4
1.4	 The word: “Wearables”� 4
1.5	 Wearables and Smartphones� 5
1.6	 Wearable Light, Glanceable Interactions� 5
1.7	 Smartphone Dependency, Inconveniences� 5
1.8	 Wearable Interaction� 6
1.9	 User’s Real‐world Context� 6
1.10	 Variety of Wearable Devices� 6

1.10.1	 Smart Watches� 6
1.10.2	 Fitness Sensors� 7
1.10.3	 Smart Jewelry� 7

www.allitebooks.com

http://www.allitebooks.org

vi� Contents

1.11	 Android Wear and Google Fit� 7
1.11.1	 Device / Hardware Purchases� 7

References and Further Reading� 8

2	 Wearable Computing Background and Theory� 9

2.1	 Wearable Computing History� 9
2.1.1	 Wearable Computing Pioneers� 10
2.1.2	 Academic Research at Various Universities� 11

2.2	 Internet of Things (IoT) and Wearables� 11
2.2.1	 Machine to Machine (M2M)� 13

2.3	 Wearables’ Mass Market Enablers� 13
2.3.1	 “ARM‐ed” revolution� 14

2.3.1.1	 ARM alternatives� 14
2.3.2	 System on Chip (SoC)� 14
2.3.3	 Human Dependence on Computing� 15
2.3.4	 Smartphone extensions� 15
2.3.5	 Sensors� 15

2.3.5.1	 Micro‐Electro‐Mechanical Systems (MEMS) Sensors� 16
2.4	 Human–Computer Interface and Human–Computer Relationship� 16

2.4.1	 Human–Computer Interface: over the years� 16
2.4.2	 Human Computer Interaction (HCI): Demand and Suggest� 17

2.4.2.1	 Demand Paradigm� 17
2.4.2.2	 Suggest Paradigm� 18
2.4.2.3	 Demand or Suggest?� 18
2.4.2.4	 Demand and Suggest: A Healthy Balance� 18

2.4.3	 Evolution of the Human–Computer Relationship� 18
2.5	 A Multi‐Device World� 19

2.5.1	 Spatial Scope of Computing: Devices near and Devices far� 19
2.5.2	 Body Area Network (BAN)� 19
2.5.3	 Personal Area Network (PAN)� 20
2.5.4	 Home Area Network (HAN)� 21
2.5.5	 Automobile Network� 21

2.5.5.1	 Controller Area Network (CAN)� 21
2.5.6	 Near‐Me Area Network (NAN)� 21
2.5.7	 Campus Area Network� 22
2.5.8	 Metro Area Network� 22
2.5.9	 Wide Area Network� 22
2.5.10	 Internet� 22
2.5.11	 Interplanetary Network� 23

2.6	 Ubiquitous Computing� 23
2.7	 Collective, Synergistic Computing Value� 23

2.7.1	 Importance of the User Centricity and the User Context� 23
2.7.2	 Distributed Intelligent Personal Assistant� 24

2.8	 Bright and Cloudy: Cloud‐based Intelligent Personal Agent� 24
2.8.1	 Google / Cloud‐Based Intelligent Personal Agent� 24

www.allitebooks.com

http://www.allitebooks.org

Contents� vii

2.9	 Leveraging Computer Vision� 25
2.9.1	 Enhanced Computer Vision / Subtle Change Amplification� 25

2.10	 IoT and Wearables: Unnatural and over the top?� 26
2.10.1	 Human History of Tool Use and Computation� 27
2.10.2	 Communication Networks in Nature� 27
2.10.3	 Consumption of Power: by computational systems,

biological and artificial� 28
2.11	 Security and Privacy Issues� 28

2.11.1	 Use Awareness and complete end‐to‐end Transparency� 29
2.11.2	 User Control and Choice� 30
2.11.3	 User Access to Collected Data and Erasure capability� 30
2.11.4	 Device side, transit, and cloud side protection:

Data Anonymization� 30
2.11.5	 Practical Considerations: User Centricity� 30

2.11.5.1	 OpenID� 31
2.12	 Miscellaneous� 31

2.12.1	 PhoneBloks: Waste Reduction� 31
2.12.1.1	 Project “Ara”� 31

2.12.2	 Google Cardboard: inexpensive Virtual Reality� 32
References and Further Reading� 32

Part II  Foundation Android� 35

3	 Android Fundamentals / Hello Lollipop� 37

3.1	 Android: Introduction� 37
3.2	 Linux: “*nix” or Unix‐like OS� 38

3.2.1	 Unix� 38
3.2.2	 Open Source� 39
3.2.3	 GNU / Free Software Foundation� 39

3.2.3.1	 Free as in Freedom: GNU Public License� 40
3.2.4	 Apache Software Foundation: Apache Software License� 41

3.3	 Linux: yesterday and today� 41
3.4	 Unix System Architecture� 41

3.4.1	 Unix Processes� 42
3.4.1.1	 Linux Processes� 42
3.4.1.2	 Android Processes� 42
3.4.1.3	 Process Tree� 42
3.4.1.4	 Unix Interprocess Communication (IPC)� 43
3.4.1.5	 Remote Procedure Calls (RPC)� 44

3.4.2	 Unix Kernel� 44
3.4.2.1	 Linux Kernel� 44

3.5	 Java� 44
3.5.1	 Java Origins� 45
3.5.2	 Java Platform: Language, JVM� 45

www.allitebooks.com

http://www.allitebooks.org

viii� Contents

3.5.3	 Java memory: Heap, Stack, and native� 45
3.5.4	 Security Policy: Permissions� 46

3.6	 Apache Harmony� 46
3.7	 Android OS and platform� 47

3.7.1	 Android Kernel� 47
3.7.2	 Android Open Source Project (AOSP)� 50

3.7.2.1	 Android Framework� 50
3.7.3	 Android Development� 50

3.7.3.1	 Android SDK� 51
3.7.3.2	 Android NDK� 51

3.7.4	 Android Runtime Environment� 51
3.7.4.1	 Dalvik Virtual Machine� 52
3.7.4.2	 ART (Android Runtime)� 52
3.7.4.3	 Zygote� 52
3.7.4.4	 System Server: Android System Services� 53

3.7.5	 Android Interface Definition Language (AIDL)� 53
3.8	 Setting up your Android Development Environment� 54

3.8.1	 Installing Java SDK version 7 (JDK 1.7)
from Sun Microsystems / Oracle� 54

3.8.2	 Installing Android SDK from Google� 56
3.8.3	 Installing Build Tools (gradle and ant)� 63
3.8.4	 Setting up environment variables

(Java, Android SDK, gradle and ant)� 63
3.8.5	 Android (Lollipop) Development Device setup� 64

3.8.5.1	 Creating a new Android project (classic / ant)� 65
3.8.5.2	 Creating a new Android project (new / gradle)� 71

3.8.6	 Installing Android Studio “IDE”� 72
3.8.7	 Android Studio: Hello World App� 76
3.8.8	 Configuring Android Studio� 81

3.9	 Android “Classic” project tree and build system� 82
3.10	 Android “New” Build System� 82
3.11	 Managing Java Installations� 83

3.11.1	 Avoid sudo apt‐get / rpm style installation� 83
3.11.2	 Maintain discrete Java JDK versions� 83
3.11.3	 Set JAVA_HOME in your .profile� 84
3.11.4	 Project‐wise JAVA_HOME� 84
3.11.5	 IDE independent build� 84

3.12	 Managing Android SDK installation and updates� 84
3.12.1	 Update your Android SDK often� 84
3.12.2	 Target your App to the latest SDK / API level� 85
3.12.3	 Be sure to specify a minimum SDK / API

level for your App� 85
3.13	 Code Samples: Android Lollipop� 85
References and Further Reading� 85

www.allitebooks.com

http://www.allitebooks.org

Contents� ix

4	 Android SDK� 87

4.1	 Software Components, in general� 87
4.2	 Android Application Development Model� 88

4.2.1	 DEX file format� 88
4.2.2	 APK file� 88
4.2.3	 Android Project Build Process� 90
4.2.4	 APK installation and execution� 90

4.2.4.1	 Application main thread / UI thread� 91
4.3	 Android SDK API� 91

4.3.1	 Android Application Manifest (AndroidManifest.xml)� 92
4.3.2	 Android API package Overview� 92

4.4	 Android’s Four Fundamental Components� 93
4.4.1	 Android Project Artifacts� 94

4.5	 Activity� 94
4.5.1	 Activity life cycle� 96

4.6	 Service� 98
4.7	 BroadcastReceiver� 100
4.8	 ContentProvider� 100
4.9	 Intent� 101

4.9.1	 Intent Action and Data� 104
4.9.1.1	 Intent Extras� 104
4.9.1.2	 Intent Flags� 104

4.9.2	 Explicit Intents� 105
4.9.3	 Implicit Intents� 105
4.9.4	 Intent Filter� 105
4.9.5	 Intent Resolution� 106
4.9.6	 Intent Use Cases� 106

4.9.6.1	 Starting Activities� 106
4.9.6.2	 Starting Services� 106
4.9.6.3	 Delivering Broadcasts� 106

4.10	 android package, sub‐packages� 107
4.11	 dalvik package, sub‐packages� 107
4.12	 java and javax package, sub‐packages� 108
4.13	 org package, sub‐packages� 108
4.14	 Sample code in this book� 109
References and Further Reading� 109

5  Android Device Discovery and Communication� 111

5.1	 Android Interconnectivity� 111
5.2	 Advertisement and Discovery� 112
5.3	 Bluetooth� 112

5.3.1	 Bluetooth Low Energy (LE)� 112
5.3.2	 Bluetooth Generic Attribute Profiles (GATT)� 112
5.3.3	 Android support for Bluetooth LE� 113

x� Contents

5.4	 Wi‐Fi Peer‐to‐Peer (Wi‐Fi Direct)� 113
5.4.1	 Android Wi‐Fi Direct / P2P API� 114

5.5	 Zero Configuration Networking (zeroconf)� 114
5.5.1	 Android Network Service Discovery (NSD)� 115

5.6	 Near Field Communication (NFC)� 115
5.7	 Universal Serial Bus (USB)� 116

5.7.1	 USB On‐The‐Go (USB OTG)� 116
References and Further Reading� 116

Part III  Android Wear Platform and SDK� 119

6	 Android Wear Platform� 121

6.1	 Android Wear� 121
6.2	 Android Wear Platform: Android Wear OS,

Wear Devices, and Wear API� 122
6.2.1	 Android Wear OS� 122
6.2.2	 Android Wear Devices� 122
6.2.3	 Android Wear API and Wear Apps� 123

6.3	 Android Notifications and Android Wear� 123
6.3.1	 Android 5.0 (Lollipop) Notifications� 124

6.4	 Notification Settings and Control� 126
6.4.1	 Sound and Notification and Priority Notification� 126
6.4.2	 Notification Configuration and Control� 129
6.4.3	 Locked Screen and Notifications� 131

6.4.3.1	 Notification Access� 134
6.4.4	 Interruptions� 135

6.5	 App Notification Strategy� 136
6.6	 Google Now and Android Wear� 137
6.7	 Android Wear Devices: Getting Started� 138

6.7.1	 Android SDK Wear Platform updates� 138
6.7.2	 Procuring an Android Wear device� 139

6.7.2.1	 Using Android Emulator with Wear AVD� 140
6.7.3	 Pairing and Enabling Developer Mode� 145

6.7.3.1	 Unboxing your Wear device� 145
6.7.3.2	 Pairing your Handheld device with

your Wear device� 145
6.7.3.3	 Enabling Developer Mode and Debugging

Settings on your Wear device� 150
6.7.3.4	 Enabling Wear ADB Debugging and

Debug over Bluetooth� 153
6.8	 Wear Debugging and Android SDK� 155

6.8.1	 Wear Debugging via USB� 155
6.8.2	 Wear Debugging via Bluetooth� 158

Contents� xi

6.9	 Peeking under the hood of your Wear Device� 161
6.10	 Engaging your Android Wear device via Notifications� 163

6.10.1	 Engaging Android Wear via Notification Sync� 163
6.10.2	 Wear Extended Notifications� 163

6.11	 Android Wear Targeted Apps� 165
6.12	 Hello Wear World: Writing our first Wear App� 165
References and Further Reading� 168

7	 Android Wear API� 169

7.1	 Google Services and Google Play Services� 169
7.1.1	 GoogleApiClient class� 171

7.2	 Android Wear Network� 173
7.3	 Android Wear API, in depth� 173

7.3.1	 Wear API: wearable package� 174
7.3.1.1	 Node interface� 174
7.3.1.2	 WearableListenerService� 174
7.3.1.3	 DataEvent� 175
7.3.1.4	 MessageEvent� 175

7.3.2	 Wearable class� 176
7.3.3	 NodeApi� 177
7.3.4	 DataApi� 177

7.4	 DataItem, DataMapItem, and DataMap� 178
7.4.1	 DataItem� 178
7.4.2	 DataMapItem� 180
7.4.3	 DataMap� 180

7.5	 PutDataRequest and PutDataMapRequest� 180
7.5.1	 PutDataRequest� 180
7.5.2	 PutDataMapRequest� 180

7.6	 Asset and DataItemAsset� 182
7.6.1	 Asset class� 182
7.6.2	 DataItemAsset interface� 182

7.7	 MessageApi� 183
7.8	 Wearable UI Library� 184
7.9	 Wear Interaction Design� 185
7.10	 Accessing Sensors� 186
7.11	 Production Wear Apps� 187
References and Further Reading� 187

Part IV  Google Fit Platform and SDK� 189

8	 Google Fit Platform� 191

8.1	 Google Fit Platform Overview� 191
8.2	 Google Fit Core Concepts� 192

xii� Contents

8.3	 Fit Data Types� 192
8.4	 Fit Data Store (Storage)� 193
8.5	 Sensors� 193
8.6	 Permissions, User Consent� 194

8.6.1	 Permission Groups, Fitness Scopes� 194
8.6.1.1	 Activity Scope� 194
8.6.1.2	 Body Scope� 194
8.6.1.3	 Location Scope� 194

8.7	 Google Fit: Developer Responsibilities� 195
8.7.1	 Developer Terms and Conditions� 195
8.7.2	 Developer Branding Guidelines� 195

8.8	 Procuring Sensor Peripherals� 195
8.9	 Hello Fit: hands‐on example� 195

8.9.1	 Google Play Services library project, dependency� 196
8.9.2	 Using the SHA1 fingerprint of the keystore� 198
8.9.3	 Google Developer’s Console Activating Fit API� 200
8.9.4	 Creating the Android App� 202

8.10	 Google’s Fit App� 211
8.11	 Google Settings App� 211
References and Further Reading� 212

9	 Google Fit API� 213

9.1	 Google Fit API� 213
9.2	 Google fit main package (com.google.android.gms.fitness)� 213

9.2.1	 Fitness class� 214
9.2.2	 FitnessActivities class� 216
9.2.3	 FitnessStatusCodes class� 216
9.2.4	 BleApi interface� 217
9.2.5	 SensorsApi� 218
9.2.6	 RecordingApi� 219
9.2.7	 SessionsApi� 220
9.2.8	 HistoryApi� 221
9.2.9	 ConfigApi� 222

9.3	 data sub‐package� 223
9.3.1	 Device� 223
9.3.2	 BleDevice� 223
9.3.3	 DataSource� 224
9.3.4	 DataType� 225
9.3.5	 DataPoint� 225
9.3.6	 Field� 227
9.3.7	 Value� 228
9.3.8	 Subscription� 228
9.3.9	 DataSet� 229
9.3.10	 Session� 230
9.3.11	 Bucket� 230

Contents� xiii

9.4	 request sub‐package� 231
9.4.1	 StartBleScanRequest� 232
9.4.2	 BleScanCallback� 233
9.4.3	 SensorRequest� 233
9.4.4	 DataSourcesRequest� 233
9.4.5	 OnDataPointListener� 234
9.4.6	 DataReadRequest� 234
9.4.7	 DataDeleteRequest� 235
9.4.8	 SessionInsertRequest� 236
9.4.9	 SessionReadRequest� 236
9.4.10	 DataTypeCreateRequest� 236

9.5	 result sub‐package� 236
9.5.1	 BleDevicesResult� 237
9.5.2	 DataSourcesResult� 238
9.5.3	 ListSubscriptionsResult� 238
9.5.4	 DataReadResult� 238
9.5.5	 SessionReadResult� 239
9.5.6	 SessionStopResult� 239
9.5.7	 DataTypeResult� 239

9.6	 service sub‐package� 240
9.6.1	 FitnessSensorService� 242
9.6.2	 FitnessSensorServiceRequest� 242
9.6.3	 SensorEventDispatcher interface� 243

References and Further Reading� 243

Part V  Real‐World Applications� 245

10	 Real‐World Applications� 247

10.1	 Real‐World Applications� 247
10.2	 Handheld Application Extension� 247
10.3	 Home Automation� 247

10.3.1	 Home Entertainment� 248
10.3.2	 Gaming� 248

10.4	 Wearables at the Workplace� 248
10.5	 Fitness, Health, and Medical� 248

10.5.1	 Predictive and Proactive Consumer Health� 249
10.5.2	 Wearables for Medical Professionals� 249
10.5.3	 Wearables and Remote Medical Diagnostics� 249

10.6	 Industrial Manufacturing� 250
10.7	 Civic, Government, and Democracy� 250
References and Further Reading� 250

Index	 251

About the Author

Sanjay Mahapatra Mishra began programming in C on various flavors of Unix in the early
1990s. By the late 1990s, he started appreciating the Linux operating system while also
learning and using the Java® programming language.

Over the years, he has developed diverse software systems spanning Web applications
and services, messaging, VOIP, telephony, NoSQL databases, as well as mobile and
embedded platforms.

He has worked for companies such as Intertrust, Eyecon Technologies, CallSource,
nVoc (formerly Sandcherry, Inc.), and Starz Entertainment Group.

Sanjay has a deep interest in and appreciation of C, Java, Linux, GNU, and open‐source
platforms. He possesses five Sun Microsystems Certifications since 1998 as Java programmer,
Java developer, Java platform architect, Java enterprise architect, and Java Web service
developer.

Sanjay earned a bachelor’s degree in electrical engineering from the University of Poona
(Pune) in India, and has a Google+ profile at https://plus.google.com/+SanjayMishra369/.

https://plus.google.com/+SanjayMishra369/

Wearable computing is the paradigm that entails lightweight, miniature computers that
are worn much like clothing such that the user and the computer can interact at any time,
as needed. “Wearable” is short for wearable computing device. Almost every day, the
consumer, technology, and business news tell us about new and innovative wearable tech-
nology products such as smart watches, fitness sensors, smart shirts, belts, contact lenses,
and more. We live in exciting times, because “wearables” are poised to find a useful and
interesting place in our daily lives. In the long run, wearable technology shows potential in
diverse arenas ranging from consumer, fitness, home automation, work, and more. A few
of us modern human “pioneers” have already commenced to find value in wearables. Much
like the motor car long ago and the smartphone in recent memory, many innovations start
out as being “unnecessary” but convenient; but before long, some catch on and even reach
that tipping point after which they are perceived as “necessities.” Wearable technology is
an interesting intersection of fashion, fitness, efficiency, productivity, and more. A diversity
of Android Wear and Google Fit devices from a diversity of major manufacturers and brand
names have commenced to arrive in the mass consumer marketplace. Consumers are likely
to find Android Wear and Google Fit‐based devices and associated Apps engaging and
exciting. Software developers will likely find developing Apps for Android Wear and
Google Fit, exciting and challenging in about equal measure.

This Book

This is an “introductory” book on the “new and future looking” topic of wearables in the
Android™1 and Google ecosystem. This is a technical book on wearable Computing and
application software development, specifically for the Android Wear and Google Fit
platforms, which were both released in 2014.

About This Book

1  Android is a trademark of Google Inc.

xviii� About This Book

Target Audience

This book has been written for a range of reading audiences including wearable enthusiasts,
technologists, and software developers. The hands‐on‐development sections covered in this
book are particularly aimed at Android and Java software developers who are interested in
Android Wear and Google Fit App development. Prior experience with the Java program-
ming language is somewhat of a prerequisite for engaging with the substantial development
and hands‐on sections in this book. Prior experience with Android development is ideal; yet
this book does concisely cover the basics of Android software development, including the
setting up and configuration of an Android 5 (Lollipop) development environment from
scratch. It covers the basics of Android platform and also lists resources needed for deeper
exploration in that arena. This book will help readers understand the new Gradle and
Android Studio‐based build system.

What This Book Covers

This book covers relevant history and background about the general subject of wearable
computing, before heading into the world of Android software development. Wearables
represent a unique category of devices; and therefore, a distinct approach to software
development and interaction design is applicable.

Many developers, including myself, can sometimes be quite impatient about diving
right into installing the relevant development tools and commencing writing software
from the get‐go. Yet, the uniqueness, newness, and novelty of wearables, as well as the
fast‐paced evolution in the arena of the consumer’s computing ecosystem, make the
case of adequate coverage of the background and theory. In general, neither technology
nor a useful consumer software application exists in a vacuum or silo. A useful consumer
application typically needs to factor in and leverage the overall ecosystem for its user
facing functionality as well as its system‐level architecture. This book progressively
covers the history, core concepts, and background on wearable computing—as a
foundation for understanding the unique aspects of wearable application design and
development. It covers many recent developments in the overall ecosystem of personal
computing, cloud‐based computing, and intelligent personal assistant‐based technol-
ogies, as these have some direct or indirect relevance for designing and developing
wearable applications.

This book covers the Android Wear and Google Fit platforms in the Google ecosystem
and includes the setting up of a suitable development environment and getting connected to
hardware devices in order to write your first applications targeted for these platforms. This
book is based on and covers the latest version of the Android platforms at the time of
writing, namely, Android 5 (Lollipop).

This book provides a brief coverage of the Android SDK and the new Android 5
build system, which is based on Android Studio 1.0 IDE and Gradle. Android Studio
is derived from the leading IntelliJ IDEA® IDE from JetBrains®. Android Studio is
available at the Android developer website: https://developer.android.com/sdk. Gradle

www.allitebooks.com

https://developer.android.com/sdk
http://www.allitebooks.org

About This Book� xix

is a cross‐platform project build tool in the same vein as Ant or Maven—which are
tools that developers typically use for building software projects.

What This Book Does Not Cover

This book does not attempt to provide any comparative analysis of wearable offerings from
outside of the Android and Google ecosystem; nor does it cover or acknowledge the
existence of such competing offerings—this is by no means a reflection on the merits of
other platforms and their offerings.

This book does not cover Google Glass™, which is a head‐mounted display developed
by Google and available to consumers since 2014 under an “explorer” program. Google
Glass is a “wearable” device and platform that is distinct from the Google Fit and the
Android Wear platforms.

The base Android platform SDK is rather elaborate, and this book provides a brief over-
view and some useful links and resources on basic Android development. While this book has
two chapters dedicated to the Android platform and SDK, this book may not adequately
serve as an independent, stand‐alone reference book on the entire Android platform and SDK.

How This Book Is Structured

This book is sectioned into five parts and has ten chapters.

Part I provides an introduction to wearable computing including background, history,
and theory. It covers diverse topics and concepts some of which potentially influence
wearable application and interaction design.
Part II covers the Android platform from the ground up including its relationships with
Linux and Java. It also covers the setting up of Android 5 (Lollipop) development envi-
ronment using the new Android build system and Android Studio 1.0. It also covers the
topics of interdevice communication and device discovery in a multidevice world.
Part III covers the Android Wear platform and API, as well as the setting up of an
Android Wear device for writing Android Wear Apps.
Part IV covers the Google Fit platform and API, including setting up of a fitness sensor
device for writing Google Fit Apps.
Part V provides a brief overview of some areas of applicability of wearable technology.

Hardware and Software Requirements

The Android SDK and Java SDK (JDK) are available for all the major operating system (OS)
platforms. The sample code and Apps developed for this book are OS agnostic. The hands‐
on steps, labs, and sample code for this book (and for that matter this book in its entirety)
were written and developed on Ubuntu—a Linux distribution from Canonical Ltd.

xx� About This Book

Ubuntu is free, fun to work with, and especially useful for Android development.
Android is a Linux‐based OS under the covers and therefore shares some OS concepts
and equivalent commands with other *nix platforms. Therefore, getting familiar with
Linux as your development platform for Android software development is aligned with
attaining, in the long run, a deeper understanding of Android. The use of a *nix (Unix
family) OS is suggested but is optional. Any Linux distribution or Mac® OS X makes
excellent choices for Android App development. For one, you will not need to install
an USB driver for each Android device model that you develop and test on—which
typically happens to be the case for a MS Windows®‐based Android development
environment.

The hands‐on labs and sample code in this book will be truly useful after acquiring at
least an Android Wear/smart watch device and optionally also a Bluetooth low energy
(LE) fitness sensor device of your choice. Real hardware devices are essential in order
to get a sense of their real‐world characteristics and behavior. Wearables are, after all,
fundamentally about real‐world interactions and behavior. Some software development
may be possible using emulators and virtual devices; they can be useful to some degree,
as they can provide you an indicative and approximate sense of the device’s attributes,
during the early stages of development.

At the time of writing, an Android Wear smart watch can be purchased for less than
US $200. Many Android Wear devices have fitness sensors for the heart rate and step
counting. You may choose an Android Wear smart watch that has more fitness sensors.
You may also acquire a Bluetooth smart (LE) fitness sensor device that supports a stan-
dard Bluetooth LE GATT profile. The cost of a Bluetooth smart (LE) heart rate monitor
can be less than US $60.

The Google Play Store™ (https://play.google.com/store), which sells Android‐related
hardware, is a perfect source for purchasing Android Wear devices. In case you would like to
purchase a Bluetooth smart (LE) fitness peripheral device, New Egg (www.newegg.com) or
Amazon www.amazon.com can be helpful.

The source code in this book has been developed using the following devices:

Samsung Gear Live (An Android Wear device)
Zephyr HxM Smart Heart Rate Monitor (A Bluetooth smart/LE device)

It is not necessary that you acquire devices identical to the above.

Usage of Terms

The term “App” or “app” is used often in this book and means software Application. App
is already a dictionary word, with the meaning of Application. And the meaning of Application
in this book is in the context of software Application. The terms App and software
Application have been used interchangeably.

The term “wearable,” also used frequently in this book, refers to a wearable computing
device and/or a wearable application.

https://play.google.com/store
http://www.newegg.com
http://www.amazon.com

About This Book� xxi

Conventions

The following are the typographical conventions used this book:

Bold—has been used when introducing a major term or to emphasize a term.
Italic—has been used to indicate literal terms such as Home icon or Settings as well as
terms that go together such as Google Fit as one unit. Italic has also been used for class
and package names and code snippets.
Italic bold—has been used to emphasize terms as covered in the Italic section, especially
at the time of their initial introduction.
Constant width—has been used for commands that are to be typed literally.

Diagrams Used in This Book

Some of the diagrams used in this book are covered by the Creative Commons License
and have been attributed accordingly to their original creators. Still, other diagrams used in
this book are from the public domain. The rest of the diagrams used in this book have been
created by the author. The technical software class diagrams included in this book were
created using MagicDraw© from www.nomagic.com. These class diagrams are somewhat
informal and do not follow strict UML notation—as they include additional method details,
comments, and such.

Third‐Party, Online References

The third‐party, online references and links listed in this book may change over time and
are not in the control of the author or the publisher. Despite this shortcoming, they have
been listed due to their relevance to the topics covered in this book.

Website

This book has one dedicated website, with an index to all the online resources associated
with this book. This website has two domain names: wearableandroidbook.com and
wearbook.io for convenient access. There is trend toward using .io in the domain name
to represent input/output (I/O).

Source Code

The entire source code associated with this book is available online at the aforementioned
website. The source code has not been included in the contents of this book, other than as
nominal code snippets.

http://www.nomagic.com
http://wearableandroidbook.com
http://wearbook.io

xxii� About This Book

Errata

I have made every effort to proofread and verify every aspect of this book as much as
possible. Several book reviewers have graciously read and validated various aspects of this
book’s contents. Nonetheless, should any errors, typos, or ambiguity be detected after
publication, the errata will be available at the aforementioned website.

Trademarks and Copyrights

Android, Google Play Store, Dalvik Virtual machine, Google Glass, Nexus, Open Handset
Alliance, ChromeOS, and ChromeBook are the registered trademarks of Google, Inc.
Android Wear is a version of Google’s Android operating system designed for smartwatches
and other wearables. Google Fit is a health‐tracking platform developed by Google for the
Android operating system. Ubuntu is the registered trademark of Canonical Ltd. All other
trademarks are the property of their respective owners.

References and Further Reading

Creative Commons License. http://creativecommons.org/licenses/

Public Domain. http://en.wikipedia.org/wiki/Public_domain

http://creativecommons.org/licenses/
http://en.wikipedia.org/wiki/Public_domain

I am grateful for the casual and noncompetitive home and school environment during the
early years of my life, thanks to my parents Sabita and Prafulla and also my teachers at
Loyola High School in the city of Poona (Pune), India.

I am also grateful for the influence of and encouragement from several supervisors,
coworker, and friends over the years: Suresh Joshi at the Software Engineering and
Design Company, India, and Manny Bhangui at Citibank, India, had great technical
insight and style, which inspired me during the early years of my professional work
experience in the 1990s. Maureen A. McGee and Bobbie Pitzner both at AT&T in Short
Hills, NJ, were highly encouraging when I was a newly arrived immigrant in the United
States. Jeff Lutz at Boldtech Systems in Colorado was highly supportive professionally
and personally during the brief period of our working together and beyond. Jon Ford at
Sandcherry/nVoc and Linda Gonzalez at the Starz Entertainment Group were both in
their own ways, highly insightful and encouraging, during my time at these respective
companies. I would also like to thank Richard Steel, Uday Natra, Martin Wills,
Li Wang, Chris Butler and Rob Nevitt for their collaboration and friendship.

I am especially grateful to Nathan Blair, for his meticulous and valuable feedback in
reviewing this book. Nathan wrote his first program in BASIC on a TRS‐80 under the
guidance of his grandmother and quickly discovered that programming and computers
were his passion. Since then, he has worked on a wide variety of platforms and languages.
Nathan has bachelor’s and master’s degrees in computer science and currently lives in the
Denver area in Colorado.

I would like to thank Rudi Cilibrasi for the inspiration and insight that I gained from
our long conversations during the year 2012. I would also like to thank Rudi very much
for his valuable suggestions and the public recommendation for this book. Rudi Cilibrasi
is a computer scientist who explores math, machine learning, and networking through

Acknowledgments

xxiv� Acknowledgments

programming and amiable interactions with friends. Rudi develops phylogenetic tree
reconstruction algorithms based on mitochondrial DNA and machine translation algo-
rithms for natural human languages based on the World Wide Web.

I would also like to thank Franz Zemen for his valuable feedback on the initial section
of this book.

Last but not the least, I would like to thank my editor Brett Kurzman and the rest of
Wiley team for their valuable trust and effort in making my first book possible.

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

This section provides history and background on Wearable computing. It includes a range of
topics including the human–computer interaction paradigm, the spatial scope of computing,
ubiquitous computing, and so on. Wearable devices represent a unique device form factor,
and Wearable applications somewhat require a distinct interaction paradigm. Developing
applications for Wearable entails some fundamental differences in the interaction and design
compared to other platforms such as phone, Web, and desktop. Wearables typically coexist
in an ecosystem of cloud‐based computing and a multitude of devices that a given user
may interact with.

Part I  Wearable Computing: Introduction and
Background

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 1  Wearables: Introduction

1.1  Wearable Computing

In general, a computer or computing device is characterized by the presence of a central
processing unit (CPU) within it. The CPU is the crucial hardware that carries out the
instructions of computer programs. Wearable Computing is the paradigm that entails
lightweight, miniature computers that can be worn on the body such that the user and the
computer can interact at any time as needed, with minimal overhead and impact on the
user’s real‐world physical activities. Examples of such real‐world physical activities are
gardening, jogging, rafting, carrying a child, walking a dog, and so on. It can be harder and
inconvenient to engage in many such real‐world physical activities while also holding a
phone or having to bring it out of the pocket or handbag frequently.

1.2  Wearable Computers and Technology

A Wearable Computer is a body‐borne, miniature computing device, which the user has
opportunity for constant access to and interaction with—with minimal impact to the user’s
real‐world activities. Wearable Computers have historically been used for the last few
decades in niche and specialized segments such as space, military, academic, medical,
industrial, and so on. Wearables have also been the subject of academic research since
decades. Many of the technological innovations from the academic and niche arenas are
starting to be seen today in the nascent consumer Wearable segment.

4� Wearables: Introduction

1.3  “Wearables”

Wearable Computers or simply “wearables” are today no longer limited to the abovemen-
tioned niche segments; they have commenced to make their way into the mass consumer
market. Wearables are available to consumers in various shapes and forms including smart
watches, clothing, belts, shoes, jewelry, athletic and fitness sensors, and so on.

The calculator watch and similar products introduced in the 1980s may be considered to
be instances of simple wearables. Wearables in today’s world can be quite sophisticated
due to the synergistic integration of various information such as the user’s current contex-
tual information or context with the Internet cloud‐based intelligent agents. Mobile devices
and wearables to a greater extent can provide valuable signals from which the user’s
“context” can be inferred. This real‐world “context” refers to where the user is currently
located, what the user is currently engaged in, and so on.

Wearable technology and modern human–computer interaction trends aim to make
computing less intrusive on the user’s real‐world experience. Today, value can be derived,
not from computing devices in isolation but rather from the synergistic combination and
collaboration between devices and sensors in a networked and “ubiquitous” computing
ecosystem. Ubiquitous computing is the concept wherein computing is accessible
everywhere and at all times, via any device.

Much like Bluetooth headsets reduced the intrusiveness of smartphones while having phone
conversations and simultaneously engaging in various activities, wearables such as smart
watches aim to make it easier for users to engage in their diverse real‐world activities while
simultaneously maintaining “light,” “glanceable” interactions with the online digital world.

Wearables have commenced to make an entry into the mass consumer market, due to the
convergence of numerous factors. The modern human has now commenced to wear one or
more computing devices on their person that are always on and ready and close at hand.
This is a trend that is unlikely to go the way of some outdated fashion, anytime soon. The
implications are huge, and the applications of Wearable technology have tremendous
potential. Much like the motor car of long ago, and the smartphone in more recent memory,
many innovations start out as being “unnecessary” but convenient; but before long, some
catch on and even reach that tipping point after which they are perceived as a “necessity.”

Wearable technology lies at this interesting intersection of fashion, fitness, home
automation, efficiency, productivity, and more. Some of the limitations of the smartphone
in terms of their intrusiveness toward the user’s real‐world activities make the case for
wearable devices such as smart watches.

1.4  The word: “Wearables”

The word “wearables”—short for Wearable computer and technology—has been used for
several decades mostly in academic and technical publications. Today, the arrival of devices
to the consumer market has started to make it a commonly used word. Currently, the
dictionary word “wearable” is an adjective meaning “capable of being worn.” In this book,
we will use the term “wearable” as a noun to denote a wearable computing device. The
chances are that once this word gathers adequate mass usage—sooner or later and likely

www.allitebooks.com

http://www.allitebooks.org

Smartphone Dependency, Inconveniences� 5

sooner than later—the major dictionaries of the English language will begin to acknowledge
the use of this word “wearable” as a noun to denote the concept of “a wearable computer or
device.” “Wearables” are thus computing devices that are intended to be convenient to wear
and comfortable to interact with, while we go about our choice of real‐world activities.

1.5  Wearables and Smartphones

Wearables are typically not a replacement for smartphones or tablets—rather wearables
typically complement and augment smartphones and tablets. Wearables are somewhat of a
natural progression and extension of the smartphones and the useful smart “Apps” that
reside and run on them, which have become an indispensable part of our daily lives. Some
smartphone Apps have adequately demonstrated their usefulness and ability to serve as our
own intelligent personal agent, always ready and available to help us in the many dimen-
sions of our daily toil and strife of work and family, fitness and health, entertainment, edu-
cation, and more.

Wearables as do smartphones often have sensors, which can help in determination of the
user’s current context. However, wearables—by virtue of being worn on the person—have
more intimate sensor access including biological parameters such as heart rate, skin con-
ductivity, body temperature, and so on, thereby making them useful for fitness and produc-
tivity applications and so on.

1.6  Wearable Light, Glanceable Interactions

Wearables support the ideal that users can more easily continue to pay adequate attention
to their physical activities and environment, while also keeping up to date with the online
world via lightweight, minimally intrusive interactions. Wearables are intended to help us
engage better with our real‐world activities that tend to change from moment to moment,
in free and full flow. Wearables aim to make it easy for you to keep in touch with the
physical world and environment and also be on top of those important, informational
electronic updates, acknowledgments, and lightweight actions that need to be performed in
real time.

1.7  Smartphone Dependency, Inconveniences

Fundamentally, we as consumers use personal computing devices because we derive some
value from them. At the same time, using any computing device tends to distract and detract
from our real‐world activities. The more we recognize and appreciate the benefits of our smart-
phones and Apps that run on them, the more they become an integral part of our daily lives;
and the more we tend to experience the inconvenience, overhead, and inelegance of having to
frequently dig our phones out of our pockets and handbags or holding our phones in our hands
for extended periods of time and under inconvenient circumstances—such that our almost
perceptual use of our phones can tend to interfere with our various real‐world activities.

6� Wearables: Introduction

The greater our need to keep connected with the networked world, for reasons of family,
work, entertainment, and more, the more we are likely to benefit from a more elegant and
less intrusive “wearable” model of the human–computer interaction. The wearable model
aims to reduce the distractive and constraining effect on the user in “the here and now.”

1.8  Wearable Interaction

The more trivial the nature of an electronic interaction, the more likely that the wearable
will suffice. The more complex your electronic activity or task (say, something substantial
such as writing a marketing plan, preparing a report, watching a movie, etc.), the more
likely that you will benefit from a larger computing device such as a smartphone, a tablet,
a Chromebook™, or a netbook computer. Smart watches typically support simple “outbound”
communication using voice and simple touch menus and simple “inbound” context‐based
suggestions and cards.

1.9  User’s Real‐world Context

The user context is a broad term that includes location awareness and real‐world activity
recognition. It is about where a user is and what activity a user is engaged in, at any given
time. Smartphones often come with various sensors such as accelerometers, gyroscope,
and so on, which Apps can access and leverage in order to make an intelligent determina-
tion of the user’s real‐world context such as driving, running, hiking, at work, at home, and
so on. Apps have recently been trending and evolving toward a more user context aware,
proactive, predictive, participatory paradigm of interaction with the user. The user’s real‐
time context awareness is one of the foundations for intelligent agent‐based applications.
Wearables are uniquely qualified to provide accurate and useful insight into the users’
real‐world context due to their various sensors and direct contact with the human body.

1.10  Variety of Wearable Devices

A wide variety of wearables such as smart watches, fitness sensor cuffs and straps, smart
contact lenses, athletic goggles, eye glasses and displays, smart headphones, helmets,
smart clothing, shoes and belts, smart jewelry, and so on have become available in the
consumer market. A few of the most common wearable categories are listed below.

1.10.1  Smart Watches

Smart watches are one of the predominant wearable devices in the consumer market today.
Initially, the rise of the smartphone tended to make the wrist watch practically redundant.
But today, the success and proliferation of the smartphone and our deepening dependence
on them paves the way for smart watches, which offer a less intrusive interface. Smart
watches mostly serve in the role of an extension of the smartphone. Smart watches typi-
cally have one or more mechanisms for interconnectivity such as Bluetooth LE, Wi‐Fi,

Android Wear and Google Fit� 7

USB, and so on. Bluetooth LE is the predominant mechanism for connectivity. Once paired
with a phone, the smart watch can access the network.

1.10.2  Fitness Sensors

Fitness sensors are available in various configurations—some are stand‐alone sensors
mounted on chest straps, wrist bands, and so on. Others are integrated or embedded into
other body‐worn items such as watches, headphones, belts, shoes, goggles, and so on.
Fitness sensors typically provide connectivity via technologies such as Bluetooth LE,
Bluetooth (classic), Wi‐Fi, etc.

1.10.3  Smart Jewelry

Smart jewelry is less of a separate category of wearables and more of a special case of
smart watches and fitness sensors that are encased in elegant and/or expensive metal. There
are a variety of smart jewelry such as bracelets, rings, necklaces, and so on that perform
the function of jewelry in conjunction with the computing functions as in smart watches,
fitness sensors, and activity trackers.

1.11  Android Wear and Google Fit

Android Wear and Google Fit are distinct and collaborative efforts by Google and numerous
partners to bring smart watches and fitness sensors into the mass consumer market in a
user‐centric ecosystem. Android Wear and Google Fit aim to make it easier for App devel-
opers to write Apps that are portable across devices from diverse manufacturers.

Android Wear and Google Fit are separate but closely related platforms. A typical
Android Wear device is the smart watch—which augments the smartphone and provides a
simpler and lighter user interface that allows the user to receive notifications and address
trivial online interactions, in a less intrusive manner. Android Wear devices typically have
a simple screen and can accept voice and touch inputs. The Android Wear watch is concep-
tually an extension of the smartphone. Most Android Wear/smart watch devices have fit-
ness sensors such as heart rate, step counters, and so on.

Google Fit currently works with Bluetooth LE devices such as heart rate monitor or step
counter worn on the body that provides sensor data that their smartphone can access.

While the general subject of Wearable Computing certainly includes medical devices,
particularly Google Fit is a fitness platform and explicitly excludes medical devices and
medical applications. Medical devices and applications are typically regulated by the
country‐specific governmental agencies.

1.11.1  Device / Hardware Purchases

The subject of procurement of an Android Wear device has been covered in Section 6.7.2.
Similarly, the subject of procuring devices for Google Fit development has been covered in
Section 8.8. You may refer to these mentioned sections in advance, in case you would like
to order suitable devices now or at any point.

8� Wearables: Introduction

References and Further Reading

http://en.wikipedia.org/wiki/Wearable_computer

http://en.wikipedia.org/wiki/Wearable_technology

http://www.forbes.com/sites/gilpress/2014/08/22/internet‐of‐things‐by‐the‐numbers‐market‐
estimates‐and‐forecasts

http://spectrum.ieee.org/consumer‐electronics/portable‐devices/wearable‐computers‐will‐
transform‐language

http://en.wikipedia.org/wiki/Head‐up_display

http://www.media.mit.edu/wearables/

http://www.android.com/wear/

https://developers.google.com/fit/

http://en.wikipedia.org/wiki/Accelerometer

http://en.wikipedia.org/wiki/Gyroscope

http://en.wikipedia.org/wiki/Context_awareness

http://en.wikipedia.org/wiki/Wearable_computer
http://en.wikipedia.org/wiki/Wearable_technology
http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts
http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts
http://spectrum.ieee.org/consumer-electronics/portable-devices/wearable-computers-will-transform-language
http://spectrum.ieee.org/consumer-electronics/portable-devices/wearable-computers-will-transform-language
http://en.wikipedia.org/wiki/Head-up_display
http://www.media.mit.edu/wearables/
http://www.android.com/wear/
https://developers.google.com/fit/
http://en.wikipedia.org/wiki/Accelerometer
http://en.wikipedia.org/wiki/Gyroscope
http://en.wikipedia.org/wiki/Context_awareness

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 2  Wearable Computing Background
and Theory

2.1  Wearable Computing History

Depending on how we define the concept of Wearable Computing, how long it has been
around can range from hundreds of years to several decades. At some level, even a wrist
watch can be considered to be a computing device—it computes the time for you and is
always on, ready, and available. But the term computing device or computer is character-
ized today by the existence of a processor (CPU) within—which is missing in the case of,
say, a mechanical watch. At the same time, the earliest computers were mechanical and
electromechanical in nature. All this can make it harder to arrive at one definite answer that
is widely acceptable.

Since the 1980s, the consumer marketplace has certainly seen sophisticated digital watches
with scientific calculation, games, audio, and video capabilities. Nelsonic Industries, a US
company, produced a “game” watch in the 1980s, which served both as a timepiece as
well as an electronic game device. Casio, the Japanese electronic company, offered a
wide variety of digital watch models including the Casio CFX‐400 scientific calculator
watch as well as the Casio Databank CD 40, both of which were introduced in the early to
mid‐1980s (Figure 2-1).

Sophisticated, modern Wearable Computing has certainly been in use in military,
industrial, and research and educational labs since the last few decades. For instance, head-
gear with displays has been used in the arena of military and space applications. Similarly,
head‐mounted displays have been in use by surgeons for performing advanced surgeries.

10� Wearable Computing Background and Theory

Today, the overall cloud‐based ecosystem, economic factors, and also the human/user
expectation from mobile devices have evolved to a point where wearables have great
potential in the mass consumer market.

2.1.1  Wearable Computing Pioneers

There are several individuals who may be credited as pioneers of modern Wearable
Computing. The following is a partial listing of such computer scientists, along with brief
highlights of their contributions.

Edward O. Thorpe and Claude Shannon, both MIT Ph.D. mathematicians, have been
widely credited for designing the first Wearable Computer in the early 1960s. Thorpe
pioneered the application of probability theory in various arenas including hedge fund
techniques in financial markets as well as the mathematics of gambling. Thorne and
Shannon developed the first Wearable Computer and used it as a gambling aid when playing
the game of blackjack, purportedly as a purely academic exercise (at a casino in Las Vegas,
Nevada, where gambling was and continues to be legal). Subsequently, laws in the state of
Nevada were revised to outlaw the use of wearables and other computing devices to predict
the outcomes in betting and gambling.

Steve Mann is a Ph.D. researcher and inventor whose work since the 1980s has
contributed immensely toward modern Wearable Computing technologies. Mann designed
a backpack‐mounted computer to control photographic equipment in the early 1980s while
still in high school. Mann was one of the founders of the Wearable Computing Lab at MIT,
and he continues to be an active contributor in the field of Wearable Computing.

Figure 2-1  Casio CFX‐400 watch manufactured circa 1985. Attribution: By Septagram at en.
wikipedia [Public domain], from Wikimedia Commons.

Internet of Things (IoT) and Wearables� 11

Thad Stamer, a Ph.D. researcher and professor, has been actively contributing to the
field of Wearable Computing and the associated topics of contextual awareness, pattern
recognition, human–computer interaction (HCI), and artificial intelligence since the 1990s.
Stamer was one of the founders of the MIT’s Wearable Computing Project and has a key
role with the Google Glass project.

Edgar Matias and Mike Rucci from the University of Toronto have been credited with
building a wrist computer in the 1990s. Mik Lamming and Mike Flynn at Xerox PARC
demonstrated in the 1990s a wearable device, the Forget‐me‐not, that could record inter-
actions with people and store them for later reference. Alex “Sandy” Pentland, a Ph.D.
computer scientist, is an active faculty member at MIT Media Labs and one of the pioneers
of wearable and data sciences. His work has focused on wearables, human, and social
dynamics using data analytics.

As with any arena of complex technology and research, the knowledge base and
ecosystem have been built based on the contributions from a multitude of dedicated
researchers, professionals, enthusiasts, and hobbyists.

2.1.2  Academic Research at Various Universities

Wearable Computing has been a theoretical subject of academic research for several
decades. A wide variety of pioneering work has been done at the MIT Media Lab, which
focuses on the convergence of technology, multimedia, science, art, and design. HCI and
wearable technologies are some of its core arenas of research. Columbia University too has
pioneered work on augmented reality since the 1990s. Numerous universities continue to
conduct research in the field of Wearable Computing and related fields of virtual reality and
augmented reality. Much of the innovations seen in consumer market wearables today have
originated from the academic research of years and decades ago.

At a fundamental level, Wearable Computing and research has a correlation with both
virtual reality and augmented reality. “Virtual reality” provides the user with a simulated,
unreal, or virtual sensory input.

Augmented reality on the other hand enhances the real world with additional computer‐
generated information such as audio, video, and other data, such that the user’s current
perception of reality is enhanced. Augmented reality provides additional input that overlays
and co‐exists with the user’s real‐time experience of their real‐world environment. Augmented
reality often uses computer vision and object recognition. Using virtual reality, NASA
astronauts can “experience” being at a beach during the long periods of time in space, and
get some relief from the psychological and physical demands of being in space, away from
their home planet. The same astronauts benefit from augmented reality‐based systems that
are typically used while carrying out critical physical missions and maneuvers in space.

2.2  Internet of Things (IoT) and Wearables

The Internet of Things (IoT) may be thought of as an interconnected ecosystem wherein
diverse computing devices, large and small, interconnect, collaborate, and cooperate with
one another. The IoT represents the proliferation of small embedded computing devices
that interconnect with the Internet. “Things” in the IoT include diverse devices such as

12� Wearable Computing Background and Theory

health monitoring sensors, automobile sensors, pet biochips, indoor plant moisture sensors,
home appliances, industrial and smart factories, smart transportation, agriculture‐related
sensors, and so on. There are estimated to be millions of IoT devices today, and according
to market research and forecasts by the Harvard Business Review, 28 billion such IoT‐type
devices are expected to join the IoT by year 2020 (Figure 2-2).

The world of IoT spans the arenas of consumer, industrial, transportation, safety,
farming, and more. Environmental monitoring, infrastructure management, manufacturing
and asset tracking, inventory control, safety monitoring, medical and health care, transport
systems, fleet management, resource optimization and energy management, etc. are some
examples of the application of IoT technology.

A discussion on IoT often brings up the topic of wearables and vice versa. IoT devices
include wearables; some of the devices, that is, “things” in the world of IoT, happen to be
wearable devices. Some wearable devices may interact with non‐wearable IoT devices in
order to share information or instructions depending on the needs of the applications.

Many definitions of IoT devices emphasize the aspect of their direct network addressability
on the Internet, as in an independent IP address directly on the Internet. In practice, however,
it is not necessary for each IoT device to have independent connectivity and addressability
on the Internet. This is because IoT devices typically have access to other local networks,
which in turn have the capability to connect to the Internet. With the cloud serving as an

Figure 2-2  Internet of things. Attribution: “Internet of Things” by Wilgengebroed on Flicker,
licensed under Creative Commons 2.0.

Wearables’ Mass Market Enablers� 13

intermediary, it is possible for IOT devices to connect as client devices to the Internet‐based
cloud endpoints and maintain long‐lived connections over which they can receive data and
commands (without needing to possess their independent IP address directly on the Internet).
Devices worn on the user’s body, for example, have access to the user’s phone via Bluetooth,
which in turn typically has carrier service. Smart thermostats, washers, dryers, refrigerators,
sprinkler systems, etc. in a user’s home connect to the local home network over Wi‐Fi or
wire. Devices in an industrial environment often have a local network. In all these instances,
proximate devices and networks can pair, tether, and interconnect in order for the IoT‐type
devices to bridge the network path to the Internet and connect to Internet cloud‐based end-
points as connected client devices and thereby attain two‐way communication capabilities.

Internet and phone service providers typically have a business model that benefits from
provisioning Internet access for individual devices including IoT devices independently—
with the associated costs to the consumer. There are numerous disadvantages of having
smaller devices directly on the Internet with their own IP address. For one, they are more
susceptible to Internet cyberattacks and hacking. Also, it is typically more expensive to
have to provision and provide direct connectivity for every IoT device independently.
Traditionally, we have had devices within the local network that do not have their own
Internet address, which can remain connected to the Internet all the time—as client devices.
For example, personal computing devices within a local home network connect as client
devices and have the ability to send and receive information.

The use of the cloud as an intermediary helps devices provide remote networked services
without exposing the devices as Internet endpoints. As an example, Google Cloud printers
allows you to print from anywhere over the network, yet the Google Cloud printer is connected
on your local network via which it connects as a client device to Google Cloud on the Internet;
it is not exposed as a device on the Internet with its own public Internet IP address, and yet it
services requests to print documents over the Internet via the cloud as the intermediary.

2.2.1  Machine to Machine (M2M)

The term Machine to Machine is associated with and commonly used along with the term
IoT. M2M and IoT are associated and have significant overlap of concepts and applica-
tions. M2M refers to the direct two‐way connectivity between a computing device and a
“fellow” computing device. In the world of M2M, devices typically have a network address
directly on the Internet, and devices are peers on the network. M2M was originally used in
specialized industrial segments including automation, instrumentation, and process con-
trol. M2M devices are generally characterized by small devices having their own IP address
directly on the Internet.

2.3  Wearables’ Mass Market Enablers

Today, a coincidence of many factors has paved the way for the arrival of wearables to the
mass consumer market. The manufacturing economy of scale has made small powerful
devices more affordable. The human dependence and appreciation of mobile computing
has expanded the possibilities for wearable devices to provide additional value to the users.

14� Wearable Computing Background and Theory

2.3.1  “ARM‐ed” revolution

The ARM family of processors power the vast majority of mobile devices such as mobile
phones, tablets, and small embedded devices including the majority of the IoT devices.
ARM processors also power set‐top boxes, televisions, and netbook computers. The ARM
family processors have typically required significantly less power compared to the x86
family of processors. ARM processors are light, portable, and small in size. The success of
mobile devices has hinged on the availability of low‐cost, lightweight, compact, and power‐
efficient ARM processors. ARM has played a key role in the last many years in the success
of affordable mobile devices that can run on battery power for hours on end.

Over 50 billion ARM processors have been manufactured as of 2014, and this appears
to be only the beginning. The availability of wearable devices hinges for the most part
on the ARM‐based processors and system on chip (SoCs) covered in the next section.
Incidentally, ARM processors have recently made an entry into the market segment of
servers that reside in data centers on the cloud.

ARM Holdings plc is the British company that bears the ARM name and develops the
architecture and design of processors. ARM Holdings licenses the technology to other com-
panies for purposes of production and manufacturing. ARM licensees include companies
such as Qualcomm, Broadcom, Marvel, Freescale, Amtel, Nvidia, Texas Instruments, NXP,
ST Microelectronics, Applied Micro, AMD, Samsung, and Apple. These are the companies
that make ARM processors or chips; some of these companies also manufacture and market
mobile devices as well.

2.3.1.1  ARM alternatives  MIPS from MIPS Technologies, Inc. is an instruction set
that competes with the ARM family of processors. MIPS has been used by embedded and
real‐time Linux‐based operating systems since decades. Android was ported to MIPS in the
year 2009. MIPS Technologies, Inc. was acquired by Imagination Technologies, a UK‐
based processor R&D and licensing company that is widely known for their graphics pro-
cessors. Several prominent companies such as Broadcom offer both MIPS‐ and ARM‐based
processors/SoCs for various market segments.

Intel, which is well known for its highly popular x86 family of processors, has been
working on creating low‐cost and low power consuming x86 family processors known
under monikers such as “Atom,” “Quark,” “Edison,” etc., which are aimed at the IoT and
wearable market segments.

2.3.2  System on Chip (SoC)

Although the CPU is the heart of any computing device, the CPU works not in isolation but
in conjunction with several other key components such as memory, graphics processing
unit (GPU), audio chips, wireless radios (Wi‐Fi, 4G), USB controllers, and so on. A system
on chip (SoC) integrates the CPU with the other key components such as memory, GPU,
USB controller, wireless radio, etc. into a single integrated chip.

While a computer cannot be built based on a single CPU chip alone, it can be built based
on a single SoC chip. In recent years, the trend has been in the direction of SoC‐based

Wearables’ Mass Market Enablers� 15

consumer devices, coincident with the proliferation of mobile devices and the success of
the ARM‐based processors.

The SoC has the advantage of its highly compact size, lower cost, and less wiring. SoCs
have now begun to appear inside larger systems such as netbooks and even server systems.
The limitation of the SoC can be that it is not conducive toward the upgrade or replacement
of individual constituent components, as they have all been integrated upfront.

The mass production and availability of low‐cost wearable devices hinges on the avail-
ability of SoCs in an innovative and competitive market. Today, there are well over 50 SoC
manufacturers who manufacture SoCs based on ARM‐, MIPS‐, or Intel‐based processors.

2.3.3  Human Dependence on Computing

Consumer interaction and dependence on computing started with the personal computer
(PC), but it was the success of the smartphone that deepened this dependency on and
appreciation of computing devices on a more engaging, intimate and somewhat “constant”
basis. Now that the smartphone has become an integral part of most users’ lives and the
value from computing in their daily lives adequately appreciated, there is greater interest
and potential value from the enhanced functions and specialized use cases that wearables
can provide.

2.3.4  Smartphone extensions

In general, smartphones have tended to provide a software solution and a software‐based
replacement for many hardware gadgets. At first, and since well over a decade ago, the
mass adoption of feature phones and later smartphones tended to cause a progressive
decline in the use of hardware devices such as digital watches, alarm clocks, cameras,
scanners, simple level instruments, and so much more. In a way and to some extent, the
introduction of wearables into the consumer computing ecosystem today seems to run
contrary to this trend. Today, our appreciation of and dependence on the smartphone paves
the way for devices such as a wearable smart watch. Users experience some of the limita-
tions of the much utilized smartphone—in terms of their intrusiveness toward the user’s
real‐world activities—and this helps justify wearable devices, some of which aim to
elegantly extend the smartphone and act somewhat like an accessory and extension of the
smartphone. Still other wearables aim to provide specialized functionality such as fitness
sensors and health monitoring.

2.3.5  Sensors

Many smartphones have sensors for motion, position, environment (temperature, pressure,
humidity, and light), and so on. Fitness devices have sensors for fitness‐related parameters
such as heart rate, step counters, etc. Sensors play a key role in the world of wearables and
IoT. The inference of the user’s context and access to fitness readings—which tend to make
wearable applications more useful to consumers—are possible due to the availability of
low‐cost, power‐efficient sensors.

16� Wearable Computing Background and Theory

2.3.5.1  Micro‐Electro‐Mechanical Systems (MEMS) Sensors  Much like compact,
power‐efficient, and economically priced embedded computing devices are made possible
in the consumer market by the availability of a wide variety of SoCs, the compact, power‐
efficient, and economically priced sensors are made possible predominantly by micro‐
electro‐mechanical systems (MEMS) technology. MEMS devices have a size in the range
of 20 micrometers to 1 millimeter and are made up of components that have a size in the
range of 1–100 micrometers (0.001–0.1 millimeters). MEMS devices typically consist of a
central unit as well as micro‐sensors and micro‐actuators that interact with the surround-
ings. MEMS devices can serve the functions of sensors and actuators. MEMS at the smaller
scale merges into nano‐electro‐mechanical systems (NEMS). The nanoscale refers to
structures in the order of 1–100 nanometers. One nanometer is one billionth of a meter.

MEMS technology is found to reside within accelerometers, gyroscopes, touch sensors,
temperature sensors, humidity sensors, microphones, health and medical sensors, inkjet
printers, game controllers, automobiles (dynamic stability control and tire pressure sen-
sors), hard disks (to “park” the head when free fall is detected, in order to protect the disk
and prevent damage and data loss), and much more.

2.4  Human–Computer Interface and Human–Computer Relationship

The Wearable Interaction represents a different flavor of HCI/human–computer interface.
The human–computer interface as well as the human–computer “relationship” has been
evolving over time.

2.4.1  Human–Computer Interface: over the years

The human–computer interface refers to the interaction between human and computer. The
computer receives input data from the human via various mechanisms such as keyboard, soft
keyboard, mouse, touch, gestures, speech, audio, video, vision, and so on. The computer
responds with output data such as screen displays, printouts, audio, video, and more.

Until the 1970s, most of the input and output—the interaction between human and
computer—was mostly based on “punch cards.” A punch card is a thick paper card that
encodes programs and data. Computer scientists, programmers, and operators used a key-
punch, a typewriter‐like device to write data that was fed to the mainframe computer via a
punch card reader. This was the era of the “mainframe” computer that was used in the corpo-
rate, industrial, military, and academic worlds. This punch card‐based interaction kept the use of
computers limited to computer scientists, programmers, and operators and as far as possible
from the consumer. At that time, consumers typically had no interaction with or direct use of
such computers or any computers at all. The advent of the PC era, which began in the late 1970s
and 1980s, changed that model, slowly but profoundly. Incidentally as of 2012, some voting
machines in the United States reportedly used punch card based mainframe computers.

In the PC era of the 1980s through to the recent decade, the computer and the consumer
interacted via the keyboard, monitors, and mouse and to some degree via speakers and micro-
phones. In this PC era, the users’ computer was a located in their home or office, perched on
their desk. Soon, the laptop arrived and was easier to carry around on business and leisure.

Human–Computer Interface and Human–Computer Relationship� 17

In the post‐PC world of today—the era of mobile and cloud—consumers interact with
their mobile computing devices via intuitive mechanisms such as soft keyboards, touch,
gestures, voice, audio, video, and so on. Computing resources on the cloud are also typi-
cally an important part of this interaction; however, these cloud computing resources are
somewhat abstracted out in terms of their location, specification, and power needs. The
consumer cares about the quality of experience and service but typically neither knows nor
particularly cares where the cloud‐based computers that serve their needs physically reside
nor what their specifications of CPU, memory, etc. look like. In retrospect, the PC was not
all that personal since it was not that close at hand, compared to today’s mobile devices
which are close at hand all day and thus are more personal.

2.4.2  Human Computer Interaction (HCI): Demand and Suggest

Two important paradigms in modern human computer interaction (HCI) design are the
“Demand” and “Suggest,” which are covered in this section.

2.4.2.1  Demand Paradigm  In general, the HCI certainly started out in a “Demand”
paradigm wherein the human demands some information or action from the computer,
while the computer provides the information or performs the action in response to the
“Demand.”

The Demand Paradigm has historically been and still is prevalent in the world today.
In the Demand Paradigm, the human is in the driver’s seat and asks the computer for
information, while the computer “dumbly” responds. The Demand model in a way under-
lines this somewhat of a master–slave relationship between human and computer.

Certainly, the human is the master here, and humans created computers to serve and
assist them. Yet, the limitation of the Demand model lies in the fact that the mundane actions
need to be initiated by the human every time and it is somewhat of a “manual” process for a
human to have to remember to initiate something—that might be predictable. It is often pre-
dictable that a certain Demand is highly likely at a certain time and place or context, and in
such a scenario, the human ends up having to ask “manually” for the obvious.

Humans have gotten accustomed to the Demand model, which entails having to
remember to perform various tasks such as monitoring their stock portfolio or keeping
updated about new homes that have arrived on the market during a home search and home
buying project. It can cause fatigue if the human keeps on aggressively demanding
information during a period that the information has not changed (e.g., the stock portfolio
value has been steady; and no new homes arrived on the market during this period of
aggressive “demands”). On the other hand, the human can forget to demand information
and miss out on being updated about changes in the portfolio value or new home arrivals
on the market.

When the user is on the beach or hiking, for instance—in a Demand model—the user
needs to remember to frequently “demand” information such as news for shark attacks,
tides, crimes or violence, fires, or thunderstorms repeatedly and frequently, in order to keep
abreast of real‐world events pertinent to their current activity and context. Many or most
of the demands will tend to return no significant new information, and this is a drawback
of the Demand model.

18� Wearable Computing Background and Theory

2.4.2.2  Suggest Paradigm  In the Suggest paradigm, the human allows the smart and
intelligent agent‐based automation to understand the context, analyze the user’s history
data as well as other relevant general data, and make reasonable inferences in order to pro-
actively provide information or suggestions that have a high likelihood of being useful,
timely, and relevant to the user. In the Suggest model, the user is notified automatically
when the computer, driven by an intelligent agent‐based system, has detected information
and scenarios that justify a suggestion or notification or alarm to the user.

In case of the stock portfolio and home search examples earlier, the intelligent agent
provides suggestions/notifications when something noteworthy and significant has
occurred, such as a change in the stock portfolio beyond a threshold or when a new home
has arrived on market that strongly matches the user’s known search criteria.

2.4.2.3  Demand or Suggest?  In the Demand‐only model, the human on the beach or
on a hike will need to repeatedly search the news manually for any recent shark attacks,
thunderstorms, fires, and so on in order to keep abreast of such information. This can
distract and detract from enjoying their real‐world activities. In contrast to the Demand
model, when the sophisticated Suggest model is in place, the user can relax and enjoy their
real‐world activity and be notified automatically when something noteworthy occurs. This
can be accomplished in various scenarios such as by using the user’s current location (i.e.,
Laguna Beach), the user’s current context (on the beach with family), and automated
scanning for current news and weather about the location, inferring the sentiment (such as
danger), and then making the determination that an alert needs to be pushed out to the user.
Such intelligent agent cloud‐based computing scales well for a large set of users since the
efforts of such computation is often performed, not for an individual user but for a set of
users that are in the “same boat” or beach at a given point in time.

2.4.2.4  Demand and Suggest: A Healthy Balance  Demand and Suggest are not
mutually exclusive; rather, the new Suggest model ideally coexists with the Demand model.
HCI has evolved over these years of mass adoption; it has matured to a point today that a
healthy balance and mix of Demand and Suggest paradigms make an optimal interaction
between human and computer possible. It saves time, is more efficient, and is based ideally
on adaptive algorithms—whenever the user does not enthusiastically consume the routine
suggestions of particular categories, back‐off policies kick in, in order to make them less
frequent.

2.4.3  Evolution of the Human–Computer Relationship

The human–computer relationship has evolved over time in the direction of “progres-
sively deepening intimacy.” For consumers, the computer itself had become smaller in
size and weight, and its shape has become more elegant. From being located on a desk
in front of the human—at arm’s length—the computing devices moved closer by being
perched on human laps and closer still by being housed in human pockets and purses or
held in human hands for extended periods of time. The next step in the progression of this
trend brings us to computing devices that are in contact with the human body for extended
periods of time.

A Multi‐Device World� 19

2.5  A Multi‐Device World

Today, a consumer interacts with a wide variety of personal computing devices. There are
often several computing devices per user in developed and developing nations. Such com-
puting devices are located in varying degrees of proximity. Some devices may be worn on the
body, such as a smart watch or sensor band, while other devices may be carried in the pocket
or handbag. Some devices may be located in the home, some in the automobile, and so on.

2.5.1  Spatial Scope of Computing: Devices near and Devices far

In a world of a multitude of devices, networks, and services that a user interacts with, we
find that there are some computers and networks that reside closer to the user and some
progressively farther away from the user. Proximate networks include interconnected
devices close to the user, while wider networks include a company or college campus, a
citywide metro network, the Internet, and so on.

By organizing and categorizing the devices and networks in this manner and seeing
computing from this perspective, it is easier to see how these various devices and networks
can be made to work together and provide synergistic value.

In Figure 2-3, the smaller circles or ellipses represent devices and networks that are
“proximate”—physically situated nearer to the user—such as the user’s mobile phone,
tablet, and smart watch. The ever‐expanding larger ellipses represent computing resources
such as cloud‐based computing resources that reside farther away from the user, which the
user nonetheless interacts with—via their proximate devices. Not all devices that are spa-
tially closest to the user will necessarily connect to the Internet—which is why we find that
the smallest ellipse is not wholly contained within the larger ones.

In such a nomenclature and categorization, the devices that the user may wear on their
person are denoted as the body area network (BAN), while devices that reside within the
user’s home are denoted as the home area network (HAN).

2.5.2  Body Area Network (BAN)

A Body Area Network (BAN) is a wireless network of wearable computing devices that are
centered around the human body. Such devices may be surface mounted or even embedded
inside the body and are typically connected wirelessly over this BAN to a mobile smart-
phone or tablet device. The mobile devices can collect data from the body‐worn devices

Metro Internet
Interplanetary

Figure 2-3  Spatial scope of computing—devices near, devices far.

20� Wearable Computing Background and Theory

and store such data; they may also, in turn, interconnect the BAN to the Internet. Thus, it is
technically feasible for such body sensor data to be made available for remote monitoring
by medical systems and so on.

Also, consumer fitness sensors and applications can help the user get insight into the
various commonly understood metrics such as temperature, resting heart rate, average
resting heart rate, and so on. Consumers can potentially share their fitness data with their
doctors and health care providers. With the mass consumer usage of bodily fitness sensors
in conjunction with cloud‐based storage, there is potential for the power of large‐scale
computation to provide significant prediction, inferences, and forecasting. There is promise
of a path to the much needed, affordable, and proactive health care—via use of Internet‐
based technology. Medical devices and applications are regulated by particular govern-
mental agencies and need to comply with applicable laws, and these generally vary by
country. Medical devices and applications are distinct from fitness sensor devices and
applications, especially from a legal and regulatory perspective.

Some medical devices and applications merely monitor particular bodily parameters
and are technologically quite similar to fitness devices and applications, but legally, they
are distinct—fitness devices and applications are not regulated by the governmental
agencies, that medical devices and applications are.

Other medical devices and applications regulate, actuate, or control some bodily param-
eters and functions and these are significantly distinct from fitness devices/applications,
which do not control or actuate any bodily function. In this sub‐arena, medical devices and
fitness devices are technologically dissimilar.

The rate at which technology is evolving makes it somewhat difficult for laws and legislation
to catch up or keep up. Legislation can often become the bottleneck in the path of innovation
and progress in the health care arena. There is a lot of promise and potential for a more
fundamental transformation in the delivery, management, and cost‐effectiveness of health care
that leverages the technological advances of lower‐cost sensors, diagnostic software Apps that
can run on generic lower‐cost handheld (phone and tablet) devices, and beyond.

2.5.3  Personal Area Network (PAN)

The personal area network (PAN) is a network of interconnected devices that are centered
around the user’s living space; it includes devices that users carry with them including mo-
bile devices such as smartphones, tablets, Chromebooks, netbooks, etc.; devices on the desk
and devices in the home including home automation; and smart networked devices such as
washers, dryers, refrigerators, and so on. The PAN can be considered to include the BAN,
but it can also be relevant to think of the PAN as distinct from the BAN. In any case, the PAN
and the BAN are spatially proximate and have opportunity for meaningful interconnection.

Bluetooth and IrDA are two of the common technologies that help interconnect the BAN
and the PAN. IrDA has been around since the 1990s and is an industry standard and a set of
protocols that address communication and data transfer over the “last one meter” by using
infrared light. Bluetooth is a set of protocols that addresses wireless communication over
distance of a few feet. Bluetooth Low Energy (LE), also known as Bluetooth Smart, aims to
reduce the power consumption. A recent update to the Bluetooth specifications (version 4.2)
addresses the direct connectivity of Bluetooth Smart devices to the Internet.

A Multi‐Device World� 21

2.5.4  Home Area Network (HAN)

The Home Area Network (HAN) is a local area network (LAN) that interconnects devices
that are within the home or within close proximity to the home. Such a network may
include mobile devices and wired computers, televisions and entertainment devices,
printers, scanners, thermostats, lamps, sprinklers, and so on. Most Internet service pro-
viders provide one IP address for the external network facing router. All the devices within
the network typically have a local private IP address. The router that connects to the Internet
service providers’ network represents the boundary at which the Internet service provider’s
network ends and the home network begins. While the user is at home, the HAN may typ-
ically include the PAN and the BAN.

Network address translation (NAT) is a technique that hides the local IP address of a
device behind a single device such as a router—which may have a public/external IP
address. NAT is closely associated with IP masquerading—wherein one device such as
a router masquerades as several other devices behind it—that have a local private IP address
but appear as a single public/external IP address to the external public network. Such
devices are able to initiate connections to the Internet, but are not directly addressable on
the Internet. Most home networks use a NAT‐based arrangement.

2.5.5  Automobile Network

There are devices and networks associated with our automobiles such as entertainment,
locks, keys, and diagnostics. These form part of the automobile network and may overlap
with the home network, while the automobile is parked within range of the home wireless
network. The PAN and the BAN can become part of this automobile network when the user
is within the vehicle.

2.5.5.1  Controller Area Network (CAN)  There are formal protocols related to
vehicles—a vehicle bus is a specialized internal communications network that intercon-
nects components inside a vehicle (e.g., automobile, bus, train, industrial or agricultural
vehicle, ship, or aircraft). Special requirements for vehicle control such as assurance of
message delivery, nonconflicting messages, minimum time of delivery, and EMF noise
resilience, as well as redundant routing and other characteristics, mandate the use of less
common networking protocols. Protocols include controller area network (CAN), local
interconnect network (LIN), and others. CAN bus is a vehicle bus standard designed to
allow microcontrollers and devices to communicate with each other within a vehicle
without a host computer. CAN bus is a message‐based protocol, designed specifically for
automotive applications but now also used in other areas such as aerospace, maritime,
industrial automation, and medical equipment.

2.5.6  Near‐Me Area Network (NAN)

A near‐me area network (NAN) is a logical communication network that focuses on com-
munication among wireless devices in close proximity. Unlike LANs, in which the devices
are in the same network segment and share the same broadcast domain, the devices in a

22� Wearable Computing Background and Theory

NAN can belong to different proprietary network infrastructures (e.g., different mobile
carriers). So, even though two devices are geographically close, the communication path
between them might, in fact, traverse a long distance, going from a LAN, through the
Internet, and to another LAN. NAN applications focus on two‐way communications among
people within a certain proximity to each other.

2.5.7  Campus Area Network

A campus area network is a network made of LANs that are interconnected within a
geographical area and owned by a single entity such as a corporation or a university. Such
a network typically has various relevant network services.

2.5.8  Metro Area Network

A metro area network is a network that spans a metropolitan area such as an entire city
and is managed by a single, coordinating organization. Most networks are now aligning
with the Ethernet‐based metro Ethernet, which is used to connect subscribers to the
larger networks including the Internet. There is tremendous potential to leverage metro
area networks in many dimensions such as emergency management, community, and
services. At a grand scale, the devices on the network and their activity and location
provide a reflection of the current state, en masse of the human population, pets,
resources, energy conservation, and so on. Such opportunities for efficiency and optimi-
zation of human activity, resources, safety, and so on can help realize the vision of the
“smart city.”

2.5.9  Wide Area Network

A wide area network networks include telecommunication networks that span national and
international boundaries. The Internet, too, can be considered to be a wide area network.

2.5.10  Internet

The Internet is the global, interconnected network of networks that is based on the standard
TCP/IP communication protocol. It consists of millions of public, government, academic,
and business networks linked by a wide range of electronic, wireless, and optic fiber
technologies.

There are two main name spaces in the Internet—the Internet Protocol (IP) address
space and the Domain Name System (DNS) maintained by the Internet Corporation for
Assigned Names and Numbers (ICANN). The technical standardization of the core IPV4
and IPV6 protocols are managed by the Internet Engineering Task Force (IETF), which is
a nonprofit organization.

The modern Internet came into being sometime around the mid‐1980s and initially was
used predominantly in academic institutions. Commercialization occurred in the 1990s.
However, the origins of the modern Internet date back to the 1960s and the research
conducted by the US government as well as UK and France.

Collective, Synergistic Computing Value� 23

2.5.11  Interplanetary Network

Even though an interplanetary, galactic network seems a little like science fiction, an initial
form of such a network already exists—the International Space Station is already connected
to planet earth’s Internet.

A wider interplanetary network requires a specialized set of protocols to address more
of a store and forward approach that handles the delays and interruptions that could range
from minutes to hours in view of the distances. One of such initiatives is the delay‐tolerant
networking (DTN), which is an architecture that endeavors to address technical issues in
heterogeneous networks that lack continuous network connectivity including networks in
space. At the core of DTN is the Bundle Protocol family—very similar to the Internet
Protocol (IP)—which has been designed to account for the delays and disruptions expected
in space communications.

2.6  Ubiquitous Computing

Ubiquitous computing is the computing paradigm of an always available access to computing
resources in a coherent manner from any location and via one or more user‐facing devices.
The mobile era has set the stage for this model of “ubiquitous computing” to come into wide-
spread practice, whereby data and computing is accessible from anywhere and at anytime—
typically subject to network connectivity. Ubiquitous computing emphasizes universal access
to computing as well as collaboration of devices over the network. Ubiquitous computing is
known by other names such as “pervasive computing,” “ambient computing,” and so on.

2.7  Collective, Synergistic Computing Value

We have commenced, since several years, to interact with a wide variety and growing number
of computing devices, via varying mechanisms of interaction. Our interaction with, and the
value derived from computing devices, is (or ideally ought to be) less about interacting with
one particular device and more about how these various devices might work together via
interacting, interconnecting, and collaborating in order to assist us, save time and effort, and
improve efficiency and productivity among many other such dimensions of our lives.

The computing environment, infrastructure, and our mindset has now matured and
evolved to the point of being able to answer the questions of what these multitudes and
groups of computing devices can do for us collectively and collaboratively, rather than
what any particular device can do individually, in isolation.

Wearables can play a key role in such an ecosystem due to their proximity to the user
and/or the physical environment.

2.7.1  Importance of the User Centricity and the User Context

User centricity in conjunction with a user context that transcends the existence or uptime
of any particular device is particularly important and relevant. The transdevice user context
is one of the key foundations of a more interactive, intelligent agent‐based, ubiquitous
model of computing.

24� Wearable Computing Background and Theory

As was the case decades ago, a given user interacted with about one personal device, that
is, on a one‐to‐one basis such that device centricity happened to be mostly coincident with user
centricity. But today, each user interacts with a multitude of devices, that is, on a one‐to‐many
basis, so it becomes important to align with the user‐centric model of data and context.
A device‐centric model tends to become obsolete in a world of many devices per user.

2.7.2  Distributed Intelligent Personal Assistant

An intelligent personal agent performs tasks, autonomously on an ongoing basis, in order to
make human lives more convenient and safer. In a world of a multitude of diverse devices
and in order to serve a user’s needs at all times, the intelligent agent ideally runs not on any
particular device, but as a distributed intelligent agent that runs across collaborating devices,
which are user context aware at all times. The cloud is certainly the ideal candidate for
the “headquarters” for such a distributed intelligent personal agent. The devices that reside
close to the user also have great importance due to their ability to provide sensor signals that
are the basis for the inferences about the user’s current activity, context, and environment.

2.8  Bright and Cloudy: Cloud‐based Intelligent Personal Agent

The foundation of the Suggest model is a sophisticated Intelligent Agent that is aware of
the user’s contexts at all times, watches out for the user’s well‐being at all times, and adapts
its behavior based on learning algorithms. Such an intelligent agent on the cloud gives it a
bird’s‐eye view and much depth and width of perspective.

Given a user who is driving and headed in a certain direction, the cloud‐based intelligent
agent can not only suggest alternate routes when the route ahead has traffic congestion, but
it can also extrapolate all the various possible events such as ongoing car chases, ambulance
paths, hurricanes, and so on that could affect the user’s projected route—in order to make
timely suggestions and recommendations to keep the user safer and on schedule for
appointments and arrival destinations.

Analysis of the user’s current location and context, in the backdrop of the news and
events that occur moment to moment, is a full time job and one that can be best placed in
the hands of this intelligent personal agent that resides primarily on the cloud, so the user
is freed up to contemplate on or engage in matters of deeper significance.

The cloud provides both high‐capacity storage and also tremendous processing power.
The cloud‐based systems can optimize computations for a group of users in the same
“boat” or situation and benefit from the economy of scale. Cloud‐based data centers are
typically located close to sources of electric power, which reduces transmission losses and
improves reliability.

2.8.1  Google / Cloud‐Based Intelligent Personal Agent

Google, as the search engine, initially started out providing us access to information and
knowledge. After having started out providing access to the world’s information, Google
has over the years become a prominent repository of the world’s information. Over time,

www.allitebooks.com

http://www.allitebooks.org

Leveraging Computer Vision� 25

by virtue of mass usage and analysis of patterns and distribution in search terms, Google
Insights acquired deep predictive capabilities. For many years, Google was able to predict
an outbreak of the flu earlier and more accurately than the Centers for Disease Control and
Prevention (CDC).

Google, as the cloud repository of the users’ email, documents, photos, calendar, and
location history stored on Google’s secure cloud infrastructure, has the advantage of the
best data and the best algorithms to create intelligent computing value for the consumers.

2.9  Leveraging Computer Vision

In the backdrop of IoT and an ubiquitous computing environment, there are sensors that can
detect various real‐world parameters of interest. These could include sensors embedded into
the highway road’s surface to detect traffic volume or sensors embedded in farmed land that
detect moisture levels or moisture sensors embedded in the soil within the potted plant in
your living room.

Video and audio sensors include cameras and microphones, which are often IoT devices,
but they can include handheld and wearable devices. Video data from a section of highway
can, for example, be analyzed in order to infer the traffic density without the need for
sensors embedded into the highway road surface. The quality of the road surface can also
be inferred by means of video data from a camera that covers a section of the road.

Computer vision is a field that includes the acquisition and processing of image data
in order to infer relevant information. Computer vision aims to perceive and understand
image data and, to some degree, duplicate the abilities of human vision. Computer vision
algorithms can detect real‐world objects such as human faces and cars in real time and
thereby count cars and people that pass through a section of road or walkway. Some use
cases of sensors embedded into surfaces for acquisition of particular real‐world information
can be addressed via image data and computer vision algorithms. Depending on the
specifics, it may be less expensive and easier to install a camera and a vision‐based system
compared to a multiple specialized embedded sensors.

2.9.1  Enhanced Computer Vision / Subtle Change Amplification

While computer vision started out with the “modest” goal of duplicating human vision,
researchers at the Computer Science and Artificial Intelligence Laboratory (CSAIL) at
MIT, which include Professor William T. Freeman and Michael (Miki) Rubinstein (Ph.D.),
have made progress in the arena of analysis and amplification of subtle motion and color
changes.

Freeman and Rubinstein share with us the big world of small motions and changes in
color, which when detected and amplified can give us “superhuman” vision. Rubinstein—
as part of his Ph.D. research, with Freeman as his advisor—developed methods to extract
and amplify subtle motion and color changes from videos. The beating heart results in the
rhythmic flow of blood in the human body, which causes corresponding subtle, rhythmic
changes in the color of the human skin. These color changes are generally invisible to
human eye. Using the video signal from a regular camera and by detecting these subtle

26� Wearable Computing Background and Theory

color changes via signal processing algorithms, it is possible to infer the heart rate. By
creating a change amplified version of the video, it becomes easy to perceive the heart rate
visually. This is an instance of vision enhancement via color change amplification. The
human breath results in subtle elevation and movement of the chest and stomach area.
Neonatal infants typically need to be monitored for vital signs while minimizing disturbing
or touching them. The subtle motion of the belly after amplification yields a modified video
which makes their breathing and the rate, thereof, visually obvious—without needing to
touch or disturb them. Rubinstein also demonstrates other applications of this technology
such as recreating a conversation by amplifying the movements of a crumpled bag of chips
while a conversation is occurring in the vicinity. By zooming in on small motions of the
crumpled bag and amplifying them in the order of a 100 times and after converting the
motions into sound, the conversation can be constituted. A TED talk by Michael Rubinstein
“A Big World of Small Motions” as well as other videos on this technology is available at:

https://www.youtube.com/watch?v=fenV3W7hQtw

https://www.youtube.com/watch?v=3rWycBEHn3s

Such amplification of subtle motion and color changes can be effectively applied to other
arenas such as industrial, transportation, agricultural, and more. In one approach, a grid of
moisture sensors embedded into the soil in a section of farmland provide useful input that
can be used to time and control the periodicity of watering of the crop. In another approach,
the video feed from a camera that “observes the crop” can be analyzed, and the subtle
motions of the crop such as the swaying motion in the wind or any slight color changes or
wilting can be amplified to detect commencement of crop dehydration and making it more
visible and detectable for timing the watering accordingly.

Thus, the ordinary camera’s video feed can be used to infer and reveal various measurements
indirectly via sophisticated algorithms and computation.

2.10  IoT and Wearables: Unnatural and over the top?

So far in this chapter, we have covered the technological aspects of computing and networks.
It certainly seems that a world with many devices, clouds, IoT, and wearables is unnatural
and represents somewhat of an overdose of technology.

Just how unnatural and over the top is this world of IoT and wearables—smart devices,
smart homes, sensors, intelligent agents, ubiquitous computing, and so on? The answer is
subjective and depends on one’s perspective. This section covers some correlations seen in
nature and human history relating to networks and computation.

At a conceptual level, networks represent paths of transportation or flow of physical
matter, services, and information. Tools represent extensions of biological intelligence and
abilities. Computations involve sensing and recording data of data, analysis, and prediction.
All these concepts are present in nature and not unique to human civilization or computer
science. There is potential value that can be derived from the use of tools and computation,
and there is the choice that one can make individually—to use or not use particular offerings
that come from these technological advancements.

https://www.youtube.com/watch?v=fenV3W7hQtw
https://www.youtube.com/watch?v=3rWycBEHn3s

IoT and Wearables: Unnatural and over the top?� 27

2.10.1  Human History of Tool Use and Computation

What we see today is, probably, merely an acceleration of a trend that was established and
has been in place for tens or hundreds of thousands of years. Although technology has
advanced in recent decades, there is no fundamental shift from our fundamental dependence
on tools and computation to improve our daily lives and even our chances of survival.

Humans and their ancestors have been a tool maker and computational species. Long
ago, tracking the movements of the sun, moon, planets, stars, and constellations helped our
ancestors understand and predict celestial and astronomical cycles and the seasons; build
clocks and calendars; and plan hunting, migration, and planting.

Observations of various patterns and associated predictions were the factor that enhanced
the chances to human survival. Long ago, the rock chip gave human ancestors the compet-
itive edge for survival. Tool use actually caused an increase in brain size and that bigger
brain helped in building the next generation of more sophisticated tools.

The use of tools for hunting helped provide adequate meat more easily, which helped
nourish the brain and improve its size and intelligence and provide more time to think and
ponder and gaze at the skies and create rock art.

Not too much has changed, it would seem, because today it is the silicon “chip” that
gives us the competitive edge, individually and as a species. It extends our memory, helps
us consume, manage, create, and share information. It helps predict many aspects of human
interest such as weather, finances, health, and more, to help us live more comfortably,
safely, and efficiently.

Today, with the highest human population in recorded history inhabiting planet earth,
perhaps the computing ecosystem of wearables, IoT, and artificial intelligence can solve
many of the problems of infrastructure and resource management, energy efficiency, health
monitoring, manufacturing efficiency, city and township management, and so much more.

2.10.2  Communication Networks in Nature

There are numerous examples of networks in nature that enable communication. It turns
out that plants interconnect their roots with other plants—via the “mycelium,” the branching
threadlike, vegetative part of mushrooms (fungi) that grows in the soil—thereby forming a
communication network via which information such as warning signals of pathogen and
aphid attacks are transmitted between plants. Mycelium can be really tiny, and they can
also be quite massive.

Mycelium is useful in nature and to the ecosystem in various roles—including the role
of a communication network. Paul Stamets—the renowned mycologist and author of
Mycelium Running: How Mushrooms Can Help Save the World—shares some of his insight
into the world of mycelium, which form large 2000 plus acre networks in the forests of the
Pacific northwest of the great North American continent. The mycelial network helps the
overall health of the forest by distributing nutrition and information for the overall good of
the forest. The mycelial network thrives in a healthy forest, and it strives to keep the forest
healthy. Stamets points out in his writing and talks on TED (http://www.ted.com) that fungi
are sentient beings that can sense the environment, human presence, and much more and
that the mycelial network makes it possible for particular trees that do not receive adequate

http://www.ted.com

28� Wearable Computing Background and Theory

sunlight to receive nutrition via the mycelial network’s ability to access and transport
needed mineral nutrition.

Similar to the networks in nature, the important foundations of modern human
civilization include the advanced systems for transportation, power transmission, water
distribution, and information superhighway. Computation and communications have an
important place in human civilization and are not necessarily all that artificial in concept.
IoT and wearables have an important role of the sensor–actuator network, which addresses
the sensing and detection, and feedback to the periphery of this network. The periphery of
this computational network is what engages people and their relevant, significant “things”
of interest directly.

2.10.3  Consumption of Power: by computational systems, biological and
artificial

Our computational and artificial “intelligence” is built by, and is an extension of, our human
biological brain. It turns out that the Internet somewhat resembles a massive organism and
also our nervous system by demonstrating self‐healing behavior, adaptation to changes in
the flow of packets based on dynamic changes in available routes, redundant connections,
and so on.

The smartphones and other user‐interacting devices such as IoT and wearables lie on the
periphery of this organism‐like nervous system of the computational Internet.

The human brain comprises less than 3% of the total body weight, yet it accounts for
over 18% of the energy consumption. Much like the human brain has this density of storage
and processing, civilization’s data centers have a density of storage and computational
power as well as the need for massive amounts of energy to power this processing and data
storage.

The subject of the power consumption by the cloud/data centers and the overall
information technology industry has attracted much attention in recent years. It is estimated
that if one were to count the energy consumption that goes into manufacturing the proces-
sors and devices, running the network infrastructure, and the data centers put together,
then as much as 10% of the world’s generated electricity is consumed in powering
information technology.

It turns out that, much like the human brain has tremendous need for power, oxygen,
and nutrition—compared to the rest of the body—the huge computational data centers,
networks, and devices that run human civilization have huge needs of power and energy.
The energy needs of the computational resources to run our human civilization have
perhaps begun to mirror the relative power needs of the human brain with respect to the
human body.

2.11  Security and Privacy Issues

In recent years, mass usage of mobile Apps and associated data collection on the cloud
have brought the issues of security and privacy to the forefront of consumer attention.
IoT and wearable devices raise the issues of security and privacy to an even greater

Security and Privacy Issues� 29

degree, especially if IoT and wearable devices are directly present on the Internet as an
independent device that has its own IP address and/or send data to cloud endpoints
without the user’s knowledge and control. It’s more difficult for an isolated small IoT
device with limited devices to possess an independent IP address and independent
presence on the Internet and also defend and protect itself from malicious attack. As
described earlier in this chapter, it is safer and more cost‐effective for IoT and wearable
devices to act as clients that maintain a secure possibly long‐lived connection to cloud
endpoints in a user‐centric approach that gives the user control over their data. It is also
easier for cloud‐based endpoints to protect and defend themselves from malicious attack
because of their access to computing resources, physical isolation, firewalls, algorithmic
monitoring, and adaptive defenses.

Figure 2-4 shows the relationship between users, IoT devices, generated data, and cloud
endpoints: a given user may own various IoT devices. IoT devices in turn may generate
some form of recorded data and also send such data to various cloud endpoints on the
Internet. IoT devices may also receive some data, instructions, or commands from the
cloud endpoints.

In such a world of a multitude of IoT type smart devices, wherein the user’s various
devices may collect various data and send such data to various cloud end points such that
the user is unaware of what data is collected and who the cloud‐based entities are that store,
analyze, and potentially share such data with their extended partners, is a scenario that has
poor user privacy and control.

It does disservice to the users if their data is collected and stored but not accessible by
the users themselves for their own needs and purposes. It is unfair to the user if they are not
able to opt in or in, per their needs and choices.

In such a backdrop, the following section covers are some of the important principles
that boost user privacy, security, and user control over data.

2.11.1  Use Awareness and complete end‐to‐end Transparency

It is important that users are aware of what data their IoT devices are generating, and to
which cloud‐based endpoints the data is being sent to, as applicable.

User IoT devices

Cloud end points

Generated data
Owns/possesses

0..* 0..*

0..*

Generate

Connects/sends, receives

Figure 2-4  User, IoT devices, generated data, and so on.

30� Wearable Computing Background and Theory

There have been many news reports in the media about household smart gadgets that
record data and send it to the cloud without the user’s knowledge and function like
spyware.

Complete end‐to‐end transparency makes it very clear to the user what data is being
collected and who the data is being sent to, how that data is being used, how securely the
data is stored on the cloud, and if it is shared with external parties.

2.11.2  User Control and Choice

It is important that the users have control over the data collection with the ability to turn off
the data collection per their needs and preferences—as well as the choice to opt in or opt
out of data collection or sharing with external parties.

2.11.3  User Access to Collected Data and Erasure capability

It is important that the user has access to all of their data that is collected and stored on the
cloud. It is also important that the user has the ability to erase the data stored on the cloud
permanently and also export it out in standard open formats of their choice.

2.11.4  Device side, transit, and cloud side protection: Data Anonymization

It is important that the user is aware of what data is collected, who collects and stores it, the
degree of protection that their data enjoys in terms of security on the device side, the
encryption standards used, and the algorithmic protection the cloud side infrastructure
provides in order to protect their data from unauthorized access and cyberattack. Strong
infrastructure boundary protection prevents or reduces the chances of a data breach or
unauthorized access. Strong algorithmic protection detects failed attempts promptly and
intelligently in real time and blocks further attempts by malicious entities.

It’s also important that the stored data be anonymized. Data anonymization is a tech-
nique of encryption and removal of personally identifiable information from sets of
data. Anonymization maintains certain data centered around a random ID, rather than a
identifiable individual. Sensitive data such as passwords, credit card numbers, and social
security numbers need to be stored with strong encryption rather than as “plain text.”
Hashing algorithms such as MD5, which is often used for hashing passwords, is relatively
easy to break. The National Institute of Standards and Technology (NIST) recommends
PBKDF2 for one‐way hashing.

2.11.5  Practical Considerations: User Centricity

It is impractical for users to have login account credentials on a per device and cloud/
website basis—especially in a world of such a multitude of devices and cloud accounts.
It is important that users use strong passwords that are not re‐used across different realms.
At the same time, it is important that users are able to securely access the history data col-
lected on the Internet cloud endpoints and websites, control data access and sharing, and
delete the data if they so desire. One of the solutions to address this problem is OpenID.

Miscellaneous� 31

2.11.5.1  OpenID  OpenID is an open standard and protocol that attempts to consolidate
user’s online identities so that users can log into various websites without having to register
over and over. The OpenID‐enabled website acts as the “relying party,” which depends on
the OpenID provider to authenticate their users. Users select accounts by first choosing an
OpenID provider and the associated credentials.

OpenID providers include major Internet and technology companies such as Google,
Yahoo, Facebook, Microsoft, WordPress, and several more. Such consolidation of the
online identity is useful because the user can have far fewer login accounts with unique and
more secure credentials and remember them more easily. OpenID 2.0 was finalized in
December 2007 and OpenID adoption has been growing.

OpenID is decentralized—it does not rely on a central authority to authenticate a user.
Furthermore, OpenID does not mandate any particular or specific set of authentication
mechanisms—it can work as well with biometric authentication, smart card‐based authen-
tication, user name/passwords, and anything else in the future.

OpenID can be a win–win both for website owners as well as for users, because both can
depend on the OpenID provider to address user authentication. Websites often find it chal-
lenging to maintain the user names and passwords and store them securely on their sites.
Users find it harder to have to remember user names and strong distinct passwords for a
large number of websites. It is important for the users’ security that credentials at each site
or IoT device be unique and complex.

2.12  Miscellaneous

A few miscellaneous topics are covered in this section.

2.12.1  PhoneBloks: Waste Reduction

PhoneBloks is a modular smartphone design concept created by Dutch Designer Dave
Hakkens. “Bloks” are modular components that can be attached to the main board of the
phone. Such “Bloks” can be upgraded and replaced, while retaining the rest of the device.
Since many users end up replacing their entire phone every few years, there is a huge
volume of electronic waste that is generated. By selectively upgrading a functional “Blok”
such as camera, battery, storage, and so on, users can upgrade particular modules without
giving up the entire device, thereby reducing electronic waste. PhoneBloks is an independent
organization with the general mission of electronic waste reduction. More information on
PhoneBloks can be found at https://phonebloks.com.

2.12.1.1  Project “Ara”  Project “Ara” is an initiative from Motorola and Google
that is influenced by, and with some degree of collaboration from, PhoneBloks. Project
Ara aims to create modular smartphones and devices based on kits with modular
components that can be put together like Lego blocks to create devices. Such modular
components include common features such as camera and battery as well as specialized
features such as game controller buttons, sensors, medical devices, receipt printers,
laser pointers, and so on.

https://phonebloks.com

32� Wearable Computing Background and Theory

2.12.2  Google Cardboard: inexpensive Virtual Reality

Google Cardboard is an inexpensive cardboard headset designed by Google that works
along with stereoscopic vision and display software on the Android smartphone—in order
to provide users with 3‐dimensional, virtual reality App experiences. Consumers can fold
their own based on the designs provided by Google or purchase a ready‐made version from
various manufacturers listed on their site. The prices start at about US $15. More information
can be found at https://www.google.com/get/cardboard. Google also has an associated
virtual reality Cardboard SDK that simplifies the development of virtual reality Apps, the
coverage of which is outside of the scope of this book.

References and Further Reading

http://en.wikipedia.org/wiki/Wearable_computer#History

http://en.wikipedia.org/wiki/Mechanical_computer

http://www.media.mit.edu/wearables/

http://en.wikipedia.org/wiki/Casio_Databank

http://en.wikipedia.org/wiki/Calculator_watch

http://en.wikipedia.org/wiki/Nelsonic_Industries#Game_Watches

http://www.media.mit.edu/wearables/lizzy/timeline.html

http://www.cs.virginia.edu/~evans/thorp.pdf

http://www.amazon.com/Beat‐Dealer‐Winning‐Strategy‐Twenty‐One/dp/0394703103

http://en.wikipedia.org/wiki/Alex_Pentland

http://web.media.mit.edu/~sandy/

http://www.forbes.com/forbes/2010/0830/e‐gang‐mit‐sandy‐pentland‐darpa‐sociometers‐
mining‐reality.html

http://en.wikipedia.org/wiki/Punched_card

http://en.wikipedia.org/wiki/Punched_card_input/output

http://en.wikipedia.org/wiki/Mechanical_computer

http://en.wikipedia.org/wiki/Infrared_Data_Association

http://en.wikipedia.org/wiki/ARM_architecture

http://en.wikipedia.org/wiki/MIPS_Technologies

http://en.wikipedia.org/wiki/List_of_system‐on‐a‐chip_suppliers

http://en.wikipedia.org/wiki/Internet_of_Things

https://hbr.org/2014/10/the‐sectors‐where‐the‐internet‐of‐things‐really‐matters

http://en.wikipedia.org/wiki/Machine_to_machine

http://en.wikipedia.org/wiki/Computer_vision

http://en.wikipedia.org/wiki/Microelectromechanical_systems

http://en.wikipedia.org/wiki/Metro_Ethernet

http://en.wikipedia.org/wiki/Delay‐tolerant_networking

http://en.wikipedia.org/wiki/Network_address_translation

https://www.google.com/cloudprint/learn/howitworks.html

https://www.google.com/get/cardboard
http://en.wikipedia.org/wiki/Wearable_computer#History
http://en.wikipedia.org/wiki/Mechanical_computer
http://www.media.mit.edu/wearables/
http://en.wikipedia.org/wiki/Casio_Databank
http://en.wikipedia.org/wiki/Calculator_watch
http://en.wikipedia.org/wiki/Nelsonic_Industries#Game_Watches
http://www.media.mit.edu/wearables/lizzy/timeline.html
http://www.cs.virginia.edu/~evans/thorp.pdf
http://www.amazon.com/Beat-Dealer-Winning-Strategy-Twenty-One/dp/0394703103
http://en.wikipedia.org/wiki/Alex_Pentland
http://web.media.mit.edu/~sandy/
http://www.forbes.com/forbes/2010/0830/e-gang-mit-sandy-pentland-darpa-sociometers-mining-reality.html
http://www.forbes.com/forbes/2010/0830/e-gang-mit-sandy-pentland-darpa-sociometers-mining-reality.html
http://en.wikipedia.org/wiki/Punched_card
http://en.wikipedia.org/wiki/Punched_card_input/output
http://en.wikipedia.org/wiki/Mechanical_computer
http://en.wikipedia.org/wiki/Infrared_Data_Association
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/MIPS_Technologies
http://en.wikipedia.org/wiki/List_of_system-on-a-chip_suppliers
http://en.wikipedia.org/wiki/Internet_of_Things
https://hbr.org/2014/10/the-sectors-where-the-internet-of-things-really-matters
http://en.wikipedia.org/wiki/Machine_to_machine
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Microelectromechanical_systems
http://en.wikipedia.org/wiki/Metro_Ethernet
http://en.wikipedia.org/wiki/Delay-tolerant_networking
http://en.wikipedia.org/wiki/Network_address_translation
https://www.google.com/cloudprint/learn/howitworks.html

References and Further Reading� 33

http://www.gartner.com/newsroom/id/2636073

http://nfc‐forum.org

http://en.wikipedia.org/wiki/Metro_Ethernet

http://en.wikipedia.org/wiki/Delay‐tolerant_networking

http://en.wikipedia.org/wiki/Microelectromechanical_systems

http://www.ncbi.nlm.nih.gov/pubmed/24129903

https://phonebloks.com

https://www.google.com/get/cardboard/

http://www.gartner.com/newsroom/id/2636073
http://nfc-forum.org
http://en.wikipedia.org/wiki/Metro_Ethernet
http://en.wikipedia.org/wiki/Delay-tolerant_networking
http://en.wikipedia.org/wiki/Microelectromechanical_systems
http://www.ncbi.nlm.nih.gov/pubmed/24129903
https://phonebloks.com
https://www.google.com/get/cardboard/

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

This part covers the Android operating system (OS) and Android development platform from
the ground up. Although Android applications are written using the Java programming lan-
guage, the runtime environment that Android applications execute in is not a Java runtime.
Although the Android OS is based on the “Linux” OS, Android is not a standard Linux
“distribution”—there are a number of modifications that are unique to the Android kernel or core
of the OS. Gaining a little insight into Android’s underlying relationship with Linux and
Java, as well as incorporating some of the vocabulary of its underlying building blocks into our
technical dictionary, will go a long way toward understanding Android’s core concepts better.
Such awareness and understanding can be useful in debugging and troubleshooting an Android
application, when the root cause of a particular issue reveals itself from deeper down in the stack.

This section also provides a basic overview of the Android SDK as a foundation for cov-
ering the Android Wear and Google Fit platforms. Android Wear and Google Fit represent
particular subsets of the Android platform. An Android Wear application is an Android
application that is targeted to a particular API level, namely, API level 20, which represents
the Wear platform. A Google Fit application is an Android application that uses the Google
Fit (Fitness) API. In case you already have experience with Android application development
on Android 5.0/Lollipop, you may skip particular topics in this part of the book. In case you
are relatively new to Android development, this part provides an overview of the Android
SDK from the ground up and lists resources for further reading. However, it is possible that
you may need more resources to complement this book’s coverage of the basic Android
platform. This section also covers the topic of interdevice communication, which is relevant
to a world with a multitude of devices and peripherals.

Part II  Foundation Android

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 3  Android Fundamentals / Hello Lollipop

3.1  Android: Introduction

The Android operating system (OS), which powers the majority of the smartphones sold in
the world today, is a relatively new phenomenon. The Android platform was unveiled in
2007 along with the founding of the Open Handset Alliance™ (OHA)—a consortium of
hardware, software, and telecommunications companies. Most of the major semiconductor
manufacturers and handset makers are part of the OHA. The first Android phone was sold
in 2008.

Android can be said to have originated in 2003 at Android Inc., a startup cofounded
by Andy Rubin, then reportedly working on a mobile OS. The phonetic correlation bet-
ween “Android” and “Andy Rubin” is most likely not a coincidence. Google acquired the
22‐month‐old Android Inc. in 2005. Andy Rubin led the development on the Android
platform for about a decade, taking it from nothing to an impressive position, in a
relatively short span of time. Android Inc. continues to be a separate company that is
owned by Google Inc. This separation between Google and Android extends into the
SDKs and API namespaces.

Although Android is a relatively new platform, Android’s origins go way back in
time and have a close connection with the Linux/Unix family of OS as well as the
widely used Java programming language—which are technologies that have been
around since several decades. The Android OS is derived from Linux, a free and “Open
Source” OS.

38� Android Fundamentals / Hello Lollipop

1970 1980 1990

Free BSD

Net BSD

Open BSD

BSD (Berkeley software distribution)

SunOS

Nextstep

GNU

Minix

Commercial UNIX UnixWare

Solaris

HP-UX

AIX

IRIX

GNU/Linux

Darwin

GNU/hurd k16

Mac OS X
Xenix OS

BSD family

Bill Joy

Apple

Linus Torvalds
Richard Stallman

Andrew S. Tanenbaum

Bell labs: Ken Thompson,
Dennis Ritchie, et al.

Sun Microsystems

2000 2010

9.1

6.0.1

5.3

10.8.4

3.10.9

3.2.1

4.4

4.1.4

3.3

10.5

11 11/11

11i v3

7.1 TL1

6.5.30

SGI

IBM

Research UNIX

Microsoft/SCO

Univel/SCOAT&T

System III & V family

Time

Figure 3-1  History of Unix‐like operating systems.

3.2  Linux: “*nix” or Unix‐like OS

Linux, also known as GNU/Linux, is a Unix‐like or “*nix” OS. The *nix family of OS has
historically powered the majority of servers on the Internet. Today, the *nix family of OS
dominates the world of supercomputers as well as mobile devices and small embedded
devices including Wearable and IoT devices. The Unix family of OS has a long and com-
plex history, as detailed below.

3.2.1  Unix

Unix is a multiuser, multiprocessing OS, with strong networking and security. The Unix
OS dates back to the late 1960s: Ken Thompson and Dennis Ritchie at the AT&T Bell Labs
conceived of and commenced implementing the UNIX® OS around the year 1969. Unix
was first released around 1971. Unix had been written initially using assembly language
but was rewritten using the C programming language (for the most part) in 1973. The use
of a higher level language “C” made Unix more portable to diverse platforms and processor
architectures. Due to some antitrust issues at that time, AT&T was forbidden from entering
the computer business and was required to license the Unix source code to anyone who
asked for it. Unix commenced to be used in universities and businesses since the 1970s and
became more widely used since 1980. By the mid‐1980s, AT&T divested itself from Bell
Labs, and Bell Labs was free from any legal obligations regarding selling UNIX® as a

Linux: “*nix” or Unix‐like OS� 39

proprietary product. Since the 1980s and into the 1990s, a multitude of proprietary flavors
of Unix were available from Digital, HP, Sun Microsystems, and IBM—along with the
corresponding computer hardware. UNIX System V was the commercial version of Unix
first releases in 1983, which had four major revisions. System V R4 was the major effort by
the major vendors to collaborate on and unify Unix. Today, various Unix System V OS
continue to be available from IBM, HP, and Oracle® and are currently in use in businesses
and academic institutions, in data centers worldwide.

Figure 3-1 shows a simplified representation of the history of the Unix and Unix‐like,
*nix family of OS, which happens to include Mac OS X®, Solaris®, HP‐UX®, and AIX®.

Though not indicated in the figure, both Apple’s iOS® and Android are also part of the
Unix‐like family of OS. This speaks to the success and longevity of the Unix‐like family of
OS, which has evolved and adapted over the decades in its myriad of flavors, forms, and
brands, on diverse chipsets and device form factors. The device form factor refers to var-
ious aspects of the devices’ physical characteristics, such as screen size and density,
camera, hard buttons, internal components and layout, and more. In the case of Android,
we tend to find a large and wide‐ranging set of device form factors in the market place—
due to the open nature of the platform. Historically, the *nix family OS has supported
diversity of chipsets and server/device form factors.

3.2.2  Open Source

The term Open Source means that the source code is available to users under a license
in which the copyright holder provides others the right to study, modify, and even
distribute the software—compliant with certain licensing terms and conditions. Open
Source software projects are often developed collaboratively, openly, and transparently.
The Open Source model is different from the “proprietary” model where the source code is
under a restrictive copyright and typically unavailable to the users of the software. The Open
Source software tends to spur innovation and can result in cost savings to consumers and
businesses. The Linux OS and the Apache Web server are two classic examples of highly
successful Open Source projects. The Android OS is another such example. The Open
Source nature of the Android OS makes the public release of the vast majority of its source
code inevitable. It also enables the downstream use and modification of Android source
code, consistent with the applicable license terms.

3.2.3  GNU / Free Software Foundation

In the mid‐1980s, Richard Stallman started the GNU project and the Free Software
Foundation (FSF). The FSF is a non‐profit organization that supports the development of
free software. The GNU project is a set of free software development tools and com-
pilers—such as make, gcc, gdb, and glibc (an implementation of the standard C library)—
that have been developed and made publicly available by the FSF. GNU tools are based on
Unix‐like design concepts. GNU is a recursive acronym for “gnu’s not unix”—while
UNIX® was a proprietary OS associated with expensive hardware in the 1980s, GNU’s
original aims were to create a free Unix‐like OS for the relatively inexpensive and highly
popular Intel 8086 family of processors. GNU software is Open Source and covered by

40� Android Fundamentals / Hello Lollipop

the GNU General Public License (GPL) or its variants. The Open Source Linux kernel is
covered by the GPL.

Today, the Linux OS and the Android OS are built using the GNU toolchain. make and
gcc are some of the core programs in the GNU toolchain, and these are used to build these
OS. The box below shows some basic output from these programs and the copyright notice
of the FSF.

While the kernel—as the name suggests—is the very core of the OS, a Linux distribu-
tion is a more usable form of the OS that includes a collection of useful software bundled
around the Linux kernel. There are over 600 Linux distributions, though only a handful are
widely known. Community‐driven Linux distributions include Debian, Slackware, and
Gentoo, while company‐backed distributions include Ubuntu, Fedora, and OpenSUSE.

3.2.3.1  Free as in Freedom: GNU Public License  According to the principles of
the FSF:

“A program is free software if the program’s users have the four essential freedoms:

The freedom to run the program, for any purpose (freedom 0).

The freedom to study how the program works, and change it so it does your computing as you
wish (freedom 1). Access to the source code is a precondition for this.

The freedom to redistribute copies so you can help your neighbor (freedom 2).

The freedom to distribute copies of your modified versions to others (freedom 3). By doing
this you can give the whole community a chance to benefit from your changes. Access to the
source code is a precondition for this.”

~ $ make ‐‐version
GNU Make 3.81
Copyright (C) 2006 Free SoftwareFoundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS
FOR A
PARTICULAR PURPOSE.
This program built for x86_64‐pc‐linux‐gnu

~ $ gcc ‐‐version
gcc (Ubuntu/Linaro 4.8.1‐10ubuntu9) 4.8.1
Copyright (C) 2013 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

Unix System Architecture� 41

Freedom to distribute (freedoms 2 and 3) means you are free to redistribute copies, either
with or without modifications, either gratis or charging a fee for distribution. The only
condition is compliance with the GNU GPL, which mandates that you continue to make the
code with your modifications available under the GNU GPL and to make transparent and
explicit any changes that you may have made. The Linux OS kernel is covered by and
released under the GNU GPL. Due to the transitive nature of the GPL, the Android kernel,
which derives from the Linux kernel, is also covered by the GPL. This is what makes the
Android kernel “Open Source” and covered under a GPL.

3.2.4  Apache Software Foundation: Apache Software License

The Apache License is also an Open Source software license—from the Apache Software
Foundation. It requires preservation of the notice and disclaimer, but it does not require
derivative works or modifications of the software to be distributed using the same license.
The Android Open Source Project (AOSP) commenced by Google, which includes the
Android frameworks and nonkernel portions of Android, is also Open Source but covered
by the Apache Software License.

3.3  Linux: yesterday and today

In the late 1980s, Linus Torvalds, then a young Finnish student, commenced on creating a
free Unix‐like OS for the highly successful and economically priced Intel 80386 processor
of that era. Linux was built using the free GNU complier and tools such as gcc from the
FSF. Torvalds released Linux in the early 1990s under the GNU license, and Linux was
born. Torvalds initiative took off from where the Stallman’s GNU tools and compliers left
off. By the mid‐ to end 1990s, Linux evolved, matured, and was ported successfully to run
on many diverse processor families, with relative ease due to its modular and flexible
design that underwent massive refinement over the years. Today, Linux is a highly
successful and thriving OS that runs on most widely used processors/chipsets on super-
computers and servers that run the most used websites, and also consumer and embedded
devices such as routers, printers, smartphones, tablets, IoT, and Wearables.

Torvalds owns the “Linux” trademark and manages the Linux kernel’s code contribu-
tions, reviews, and merges to this day. The TIME® magazine places Linus Torvalds among
the top 100 most influential people in the world, which includes physicist Albert Einstein,
molecular biologists James Watson and Francis Crick, computer scientist Alan Turing,
moviemaker Steven Spielberg, and singer/songwriter Bob Dylan. Torvalds was placed 17th
in the “TIME 100: The Most Important People of the Century poll” held in 2000. There is
at least one asteroid named after Linus, namely asteroid “9793 Torvalds.”

3.4  Unix System Architecture

Unix is a powerful, multiprocessing, and multiuser OS characterized by features that
include built‐in networking (TCP/IP), persistent system services called “daemons,” and
files modeled as abstractions for devices and objects.

42� Android Fundamentals / Hello Lollipop

3.4.1  Unix Processes

A process is a program in execution—a program that is currently executing. A program
itself consists of object code stored on disk or any type of media. A process is much more
than merely the program’s object code and includes additionally a data section, a set of
resources such as open files and pending signals, an address space, and one or more threads
of execution. Threads of execution, or simply threads, are objects of activity. Linux has a
unique implementation of threads such that the distinction between a thread and a process
is somewhat indistinguishable at a very low level. Each process has an associated process
identifier (PID) and a parent process identifier (PPID).

3.4.1.1  Linux Processes  The ps command is one of the standard commands available
on most *nix systems including Android, and reports a snapshot of the process status, as
the name ps suggests. The following is a partial listing of the output of the ps command on
my Ubuntu Linux development host. We see later about 11 of the 250 odd processes
running on my Ubuntu Linux development host (Figure 3-2A).

3.4.1.2  Android Processes  Figure 3-2B shows a partial listing of running Android
processes, as seen from the output of the ps command. About 15 of the 200 processes
running on a Nexus 7 with the Android version 5 (Lollipop) OS are seen in the diagram.

Each process is associated with a user who “owns” the process, a PID, a PPID, and the
name of the program that’s executing in that process.

As we will be seeing later in this book and in great detail, in the Android world, whenever
an App is started, a process needs to be assigned or started to house and execute the App’s
object code and components. This process is owned typically by a user ID that is distinct
for every App. Each App runs in its own sandbox and is subject to its security context and
permissions model, imposed by the Android OS. Apps that are signed by the same key are
associated with the same OS user ID—as we will cover in more detail shortly.

3.4.1.3  Process Tree  Linux processes are organized in a hierarchy. Each process has a
PPID, except for process 0. The processes at the root of this process are the scheduler

Figure 3-2A  Linux processes on Ubuntu.

Unix System Architecture� 43

(sched), init, and kthreadd, and their process IDs typically are respectively 0, 1, and 2. The
scheduler process (PID 0) is the parent of the init process (PID 1). All the various processes
originate from the init process (PID 1) and ultimately from the scheduler process (PID 0).

Figure 3-3 shows a partial listing of a Linux process tree on Ubuntu. The init process
(PID 1) is the parent of the other processes such as cron, NetworkManager, and bluetoothd,
to name a few.

3.4.1.4  Unix Interprocess Communication (IPC)  Interprocess communication (IPC)
refers to the communication and data exchange between different processes. There are
many mechanisms that help and support IPC. These include pipes, signals, semaphores,
message queues, shared memory, and sockets.

Figure 3-2B  Android processes on Nexus 7, Android 5 (Lollipop).

Figure 3-3  A partial listing of a Linux process tree.

44� Android Fundamentals / Hello Lollipop

3.4.1.5  Remote Procedure Calls (RPC)  A remote procedure call (RPC) is a high‐level
mechanism for IPC and distributed client–server communication, in which the calling
program and the called procedure exist in separate address spaces. The two processes may
reside on the same system (host) or they may be on different systems. RPC is also known
as remote invocation, especially when the software has been written in an object‐oriented
programming language. RPC isolates and abstracts out the transport protocols from the
application logic and makes it easier to write applications. Android has its own distinct and
lightweight mechanism for IPC, as we will cover shortly.

3.4.2  Unix Kernel

The Unix kernel is the core of the OS and consists of the key subsystems for process
management, memory management, device management, network management, concur-
rency and multitasking, scheduling, and so on. The kernel also provides concurrency,
interrupt handling, separation of user space from kernel space, system calls, file descriptor
management, and more (Figure 3-4).

The Unix kernel is intentionally kept small and focused on its core function. Actual
kernel implementations can be based on a monolithic design or a micro/modular design.
A monolithic kernel is a single executable that runs as a process. A microkernel (also
known as modular kernel) entails multiple binaries and multiple processes that carry out
the responsibilities of the kernel.

3.4.2.1  Linux Kernel  The Linux kernel is based on the Unix design principles and is
based on a monolithic design. The Linux kernel is the basis for a large number of Linux
family “*nix” OS. The kernel is covered by the GPL V2 license.

3.5  Java

Java is one of the most popular programming languages today and has millions of developers.
One of its key characteristics is the “write once, run anywhere” approach—developers can
write and compile a program once and run it on other OS platforms. Several aspects and
features of the Java platform have conceptual equivalents in the Android platform.

User space

Kernel space

Hardware
CPU
Memory
Devices

Process management
Memory management
Device management

Applications
Libraries

Figure 3-4  Unix kernel.

Java� 45

3.5.1  Java Origins

Java began as a Sun Microsystems internal project around 1990, headed by James Gosling
who is widely known as the “father of Java.” Java was originally aimed at embedded
devices and set top boxes for televisions. Soon, Java morphed and evolved into a desktop
as well as an Internet and Web programming platform. By the late 1990s, Java had become
a very popular and widely used programming language, which emphasized portable thread-
ing, security, memory management, and garbage collection.

3.5.2  Java Platform: Language, JVM

One of the Java platform’s key characteristics is that there are well‐defined specifica-
tions for the language and the runtime and a separation of specification from the imple-
mentation. There are several Java platforms—Standard Edition, Enterprise Edition,
Micro Edition, Java Card, Embedded, Real time, and more. The Java Standard Edition
is the base Java platform, and there are a multitude of implementations from various
vendors.

The Java Language Specification specifies the Java language, and these specifications
can be found at http://docs.oracle.com/javase/specs. The Java® virtual machine (JVM)
refers to the runtime code execution component and subset of the Java platform. A JVM
instance is a particular implementation’s running process that executes Java bytecode. The
JVM has a multitude of implementations. The list of JVMs is available at http://en.wikipedia.
org/wiki/List_of_Java_virtual_machines and shows a multitude of such implementations.
The JVM includes the garbage collector, which addresses the automated deallocation of
memory.

3.5.3  Java memory: Heap, Stack, and native

The heap is the region of memory where Java objects reside, and it is shared between all
threads within the JVM process. Heap memory may increase or decrease in size while the
program executes. Garbage collection helps free up unused objects occupying the heap.
The JVM parameters ‐Xms and ‐Xmx help you specify the starting and maximum heap
sizes as shown in the snippet below:

In the absence of an explicit setting for the heap size, the JVM uses certain default
values that depend on the system that the program is being run, as well as other JVM flags,
such as client or server mode settings.

Each thread has its own private stack memory, created at the same time that the thread
is created. The default stack size per thread is in the order of around 256K or 512K. The
stack size can be set using the JVM parameter ‐Xss. The JVM stack, much like in languages
like C, holds local variables and partial results associated with method invocation and
returns.

 $ java ‐Xms512m ‐Xmx1024m MyProgram

http://docs.oracle.com/javase/specs
http://en.wikipedia.org/wiki/List_of_Java_virtual_machines
http://en.wikipedia.org/wiki/List_of_Java_virtual_machines

46� Android Fundamentals / Hello Lollipop

Native memory is the memory that is used by the java process; the java process itself is
typically a native, non‐Java‐based program.

3.5.4  Security Policy: Permissions

The Java platform defines permissions that can be granted to a Java application via the
java.policy file. The default java.policy file resides in the lib/security directory under
the JRE installation home. Applications can be executed using custom java.policy files, and
some of the permissions include java.net.NetPermission, java.net.SocketPermission, java.
security.AllPermission, and so on. The permission AllPermission is special in that it
includes and covers everything—as in all the other available permissions such as java.net.
NetPermission, java.net.SocketPermission, and the rest.

In theory, AllPermission should be granted with care. In practice, many Java applications that
are written and used in the real world do not leverage the fine‐grained individual permissions
and use java.security.AllPermission instead. The following snippet shows the java.policy file:

The Android platform, as we’ll be covering shortly, uses an elaborate permission‐based
mechanism, which is conceptually similar to the Java permissions model; however, it has
no equivalent of AllPermission—which means that Android enforces fine‐grained security.
More information on Java security policy and permissions can be found at:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html

http://docs.oracle.com/javase/7/docs/technotes/guides/security/permissions.html

http://docs.oracle.com/javase/tutorial/security/userperm/policy.html

3.6  Apache Harmony

Apache Harmony is a free Open Source Java implementation under Apache License,
commenced around 2005/2006 with significant backing from major companies led by
IBM. Apache Harmony implemented incomplete, near‐complete approximately 98%
implementations of Java versions 5 and 6. The project was abandoned in 2010 after Oracle
acquired Sun Microsystems, and Oracle and IBM joined hands to collaborate on the
OpenJDK project. Android’s App container environment uses the java class libraries from
the free Apache Harmony Java, thereby distancing its runtime container’s java namespace
support from the Java implementation from Sun/Oracle.

$ head $JAVA_HOME/jre/lib/security/java.policy

// Standard extensions get all permissions by default
grant codeBase “file:${{java.ext.dirs}}/*” {
	 permission java.security.AllPermission;
};
// default permissions granted to all domains
….

http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/permissions.html
http://docs.oracle.com/javase/tutorial/security/userperm/policy.html

Android OS and platform� 47

3.7  Android OS and platform

The Android OS comprises of the Android kernel, which has versions for the processor
family such as ARM, MIPS, and x86. Android kernel flavors vary by manufacturer and
device. The manufacturers include Asus, Motorola, LG, Samsung, Texas Instruments, and
so on. The models have code names that differ from the brand names that users see.

The list of kernels is available at source.android.com

https://source.android.com/source/building‐kernels.html#figuring‐out‐which‐
kernel‐to‐build.

When you shell into your Android device, you will likely see a prompt that tells you the
code name of your device.

Referencing the code name from the listing in the link above will tell you that the flo
device has a Qualcomm MSM processor. Referencing /proc/cpuinfo on my device yields
the Qualcomm processor model, as expected:

3.7.1  Android Kernel

Android is a Linux‐based OS with a forked, monolithic kernel that supports the ARM,
MIPS, and x86 processor families. The Android OS aims to provide a processor agnostic,
secure application execution environment. Much like Java popularized the concept of
“write once, run anywhere,” Android too provides a hardware platform agnostic application
development ecosystem.

The Android kernel has been modified to address the unique needs and constraints of
mobile devices such as limited resources (slower smaller CPUs, smaller RAM, lack of swap
space, and battery powered) and intermittent network connectivity. In addition, the Android
OS provided an application execution container environment that executes processor‐
independent Dalvik Executable (DEX) bytecode suitable for running on the Android
Runtime (ART). Android uses the bionic C library as its standard C library, rather than the
GNU C library (glibc). Google developed the bionic C library, as a derivation of Berkeley
Software Distribution’s (BSD) standard C library to cater to the smaller memory footprint
and optimizations for lower‐frequency CPUs.

Unlike other typical OS including other Linux distributions, in the case of Android, the user
and owner of the Android device do have root access. The Android OS and the /system parti-
tion are read only. Although based on the Linux kernel, it has a large list of modifications and
it excludes the GNU C library, which is one of the core components found in Linux distributions.

Thus, Android may be considered to be a Linux distribution or may be not—because
expert opinions are divided. While the Android kernel is derived from GNU Linux, it has

shell@flo:/ $

Hardware: QCT APQ8064 FLO

http://source.android.com
https://source.android.com/source/building-kernels.html#figuring-out-which-kernel-to-build
https://source.android.com/source/building-kernels.html#figuring-out-which-kernel-to-build

48� Android Fundamentals / Hello Lollipop

some unique customizations for mobile devices with limited resources and differing
capabilities. Such a fork is not ideal, and it is likely that at some point in the next few years
the Android kernel changes will get merged back into the Linux kernel.

Some of the Android kernel changes, incorporated additions from third‐party Open
Source projects and internal initiatives, and customizations that are unique to the Android
kernel are listed below, along with a brief description:

Yet Another Flash File System (YAFFS) (incorporated)

Mobile phones typically and predominantly use flash memory and a flash file system is
a file system for storing and retrieving files on flash memory. YAFFS was developed by
Charles Manning for the company Aleph One and released under GPL. The Android
kernel incorporates YAFFS as an addition with respect to the Linux kernel.

Binder (incorporated)

Android does not use the GNU/Linux IPC mechanisms and uses instead the
lighter weight, Binder mechanism from the OpenBinder project. Binder serves as
the low‐level mechanism that supports communication between application
processes and Android’s system services as well as other application processes.
Android has a high‐level Android Interface Definition Language (AIDL), con-
ceptually similar to Java Remote Method Invocation (RMI), which is supported
by Binder at the low level.

Android shared memory (“ashmem”) (added)

Ashmem is the shared memory allocator that allows processes to share the RAM
across processes. One process may create a region of shared memory and share the
corresponding file descriptor with another process. Ashmem is a low‐level feature
that some system server components depend on.

Android Logger (added)

The Android Logger provides system logging and support for Android’s logcat
command. The cat command on *nix systems concatenates files and prints them to
standard output, which by default is your terminal. logcat is a command available on
the Android device and can be executed when you access a shell or terminal in the
device over adb. The following snippet shows the logcat command invoked directly
on the Android device:

shell@flo:/ $ ls ‐l /system/bin/logcat
‐rwxr‐xr‐x root shell 17752 2014‐10‐15 20:47 logcat
shell@flo:/ $ logcat
‐‐‐‐‐‐‐‐‐ beginning of system
I/Vold (177): Vold 2.1 (the revenge) firing up
I/InstallerConnection(541): disconnecting…
I/SystemServer(541): Entered the Android system server!
I/SystemServiceManager(541): Starting com.android.server.pm.Installer

Android OS and platform� 49

The adb command can be invoked on your development machine with various
options and subcommands. Particularly, adb logcat or adb shell logcat has the effect
of giving you access to the connected Android device’s logs from your development
machine. The following snippet shows the output from the logcat command, avail-
able on your development machine while connected to the Android device with
debugging enabled:

Wake locks (added)

The Android system may partially turn off the screen or the CPU when the device is
not actively in use, in order to conserve power. Wake locks are a mechanism that
allows applications to indicate to the Android system that they need the device to stay
on in order to perform some application tasks.

Android alarms (added)
Android has an AlarmManager as one of its system services, which the kernel
supports at the lower level.

Paranoid network security (added)
Android restricts access to network functionality, unless the requesting user ID
belongs to particular groups. This mechanism supports specifying application‐level
permissions that govern access to the network, Bluetooth, and so on.

Android Debug Bridge (“adb”) (added)
The Android Debug Bridge (adb) is a command line tool that is used for debugging.
It has three components—a daemon (adbd), which runs in the background of
the Android device; a server (also adbd); and a client program adb, which runs on the
development machine.

Figure 3-5 shows two adbd processes, one running on my Android device and the other
running on my development machine. These two respective adbd processes connect and

$ adb logcat | head ‐5
‐‐‐‐‐‐‐‐‐ beginning of system
I/Vold (177): Vold 2.1 (the revenge) firing up
I/InstallerConnection(541): disconnecting…
I/SystemServer(541): Entered the Android system server!
I/SystemServiceManager(541): Starting com.android.server.pm.Installer
$
$ adb shell logcat | head ‐5
‐‐‐‐‐‐‐‐‐ beginning of system
I/Vold (177): Vold 2.1 (the revenge) firing up
I/InstallerConnection(541): disconnecting…
I/SystemServer(541): Entered the Android system server!
I/SystemServiceManager(541): Starting com.android.server.pm.Installer
$

50� Android Fundamentals / Hello Lollipop

maintain a debug bridge between your connected Android device and your development
device. The adbd daemon that runs on the Android device is started only if the device
debugging has been enabled via the Android OS Settings. When the adb command is run
on your development machine, it checks to see if the adbd process is already running on
your development machine, and in case it is not, it starts up the adbd daemon.

adb is in the same genre of debugging tools such as gdb (the GNU debugger) and jdb
(the Java debugger that is part of the Java JDK), which have been in existence since decades
in the world of Linux and Java. Therefore, the figure also shows as background information,
the jdb command available on your development machine as part of the Java JDK installa-
tion. Although jdb is not widely used directly, it is often leverages under the covers by
development and debugging tools and Java IDEs. The figure also shows the gdb command,
which is a part of the GNU tools and happens to be installed on my development machine.

3.7.2  Android Open Source Project (AOSP)

The Android Open Source Project “AOSP” consists of the nonkernel part of the Android
OS source code that includes the Android framework. The Android application framework
addresses the App container environment that includes the java.* namespace packages
from Apache Harmony as well as the android.*

While the Android kernel—the core of the Android OS—is covered predominantly by
the GPL, the AOSP—non‐kernel—portion of the source code is covered predominantly
by the Apache Software License.

3.7.2.1  Android Framework  The Android framework consists of the container
environment and infrastructure for Apps to be installed and run, securely and reliably.
It includes the various system services that Apps can avail of and provides the implemen-
tation for the android.*, java.*, and dalvik.* namespaces.

3.7.3  Android Development

Android App development emphasizes the use of the Java programming language and
recommends the use of the Java SDK from Sun/Oracle. The Android build process however
converts the compiled java class files into “dex” files.

Figure 3-5  adbd and adb.

Android OS and platform� 51

3.7.3.1  Android SDK  The Android SDK is a Java‐based SDK and represents the
primary development platform for Android App development. The use of Java in the
development environment and the platform independent ART on the Android device makes
your App independent of the processor architecture of the hardware devices on which your
App will run. One of the advantages of developing Apps for Android is that your App can
usually be built once to run on a diversity of devices from various manufacturers, on diverse
processors. As an App developer, you are generally insulated from having to deal with
whether the device on which your App is running uses an ARM or x86 or MIPS‐based pro-
cessor. The only exception to this is if your App needs to depend on a native C/NDK‐based
library built by you or from some third party.

As a side note, there is an overloading of the term “native” that has crept into common
usage and terminology—you may come across the usage of the term “native” to mean
“native Android” App (built using the Android SDK) versus a cross‐platform HTML5‐
based application that aims to provide a single solution across different mobile and desktop
platforms. Based on the context, you will generally be able to distinguish the intended
meaning of a given instance of usage of this term.

While on the subject of cross‐platform Web applications that can address desktop and
mobile platforms, generally, the more complex an App, the stronger the case for a platform‐
specific App and its associated, engaging user experience. You will find that most prominent
Internet sites and brands struggled with this question and eventually created mobile
platform‐specific Apps that are meant to be downloaded and installed. For implementing
some trivial functionality, perhaps a mobile‐friendly Web application might suffice—with
less of a justification for implementing an App.

With much of the business logic implemented as cloud‐based API, the platform‐specific
client model tends to provide better responsiveness and a more elegant user experience.

3.7.3.2  Android NDK  The Android NDK represents a secondary and niche development
kit that is based on the C programming language. Your expertise in and/or preference for
the C programming language does not make a sound case for using the Android NDK for
App development. Opting to use the Android NDK on an arbitrary basis will tend to make
most Apps unnecessarily complicated and introduce potential problems without any
performance benefits. If your App needs to implement some CPU‐intensive processing
such as signal processing, custom encoding and decoding, and so on, that may make a case
for leveraging the Android NDK to build a native library or write a native App.

More information on the Android NDK is available at https://developer.android.com/
tools/sdk/ndk/index.html.

We will not be covering the installation of the NDK in this book; the references and further
reading section at the end of this chapter provides more information for interested readers.

3.7.4  Android Runtime Environment

In contrast to the Android development time environment, the ART is Dalvik based and
executes DEX code rather than Java bytecode.

This difference between the two environments can introduce complexities—in case you
include libraries in your application from the namespace org.json or org.bouncycastle, for

https://developer.android.com/tools/sdk/ndk/index.html
https://developer.android.com/tools/sdk/ndk/index.html

52� Android Fundamentals / Hello Lollipop

instance, which happen to be part of the Android stack, and there may be some effects from
this. At development time, your code may compile, but during runtime, you may in some
corner case scenarios encounter issues due to differing versions of these libraries, in
resolving some methods that are not available or have differing signatures from their coun-
terpart versions from the Android OS stack. The new Android build system and Android
Studio address these matters elegantly.

3.7.4.1  Dalvik Virtual Machine  The Dalvik virtual machine™ is the process and
virtual machine (VM) that runs Apps. Dalvik is a part of the Android OS. Dalvik is inter-
nally a register‐based VM (vs. the stack‐based Java VM). Dalvik has been optimized for
resource‐constrained hardware such as phones. Dalvik’s unique optimizations include a
register‐based instruction set and faster interpreter speed and the ability of the device to run
multiple instances of the VM efficiently. Dalvik was written from the ground up and is
a “clean‐room” implementation, per Google. A “clean room” is an environment and design
effort that excludes proprietary knowledge of a competitor.

3.7.4.2  ART (Android Runtime)  Dalvik was the original runtime environment—the
part of the OS that executes the application container‐based Apps. ART is the new Android
runtime that was introduced experimentally in the Android KitKat (4.4) release. In Android
KitKat, users could switch the runtime between Dalvik and ART, via Android KitKat’s
Developer Options in Settings. In Android version 5 (Lollipop), ART is the default runtime.
ART offers better application performance, superior garbage collection, and improved
profiling and diagnostics.

3.7.4.3  Zygote  In biology, zygote is the initial cell from which more cells divide and
form. The Android OS runs each App in its own separate VM, within a separate OS process
owned by a distinct OS user ID—for reasons of isolation and security. The actual user ID
does not matter to the App; the actual user ID is used by the OS to enforce security‐related
functions such as keeping each App’s files and data private.

In order to reduce the overhead of “cold” starting a separate VM for each App, Android
has some optimizations in place—the zygote process is initialized at boot time and main-
tains a live VM instance with preloaded and initialized core libraries. zygote’s parent is the
init process. zygote forks new VM instances on demand. zygote is a process and live VM
instance that is initialized during the boot process. The read‐only core Android libraries are
shared across instances and not duplicated per VM instance, which reduces the memory
needs of each VM. The zygote process thus speeds up the start time of Apps.

The box below shows the zygote process listing on an Android device. You can get a
similar listing by running the command adb shell ps | grep zygote on your development
computer after you have set up your Android development environment:

USER	 PID	 PPID  VSIZE	 RSS	 WCHAN PC NAME
root	 195	 1	 1473464 54596	 ffffffff 00000000 S zygote

Android OS and platform� 53

3.7.4.4  System Server: Android System Services  The first process that is forked off
zygote is the system_server process (Figure 3-6A). That’s because even before any App can be
run, the various system services need to be initialized so they can support the needs of Apps.

The system_server process includes a family of “system” services that Apps avail of by
calling the getSystemService() method available in the Context class. These system services
include the ActivityManager, PackageManager, AccountManager, NotificationManager,
PowerManager, WiFiManager, and so on. The Android system server is a part of the
Android framework (Figure 3-6B).

3.7.5  Android Interface Definition Language (AIDL)

Android Interface Definition Language (AIDL) is an interprocess mechanism, in the same
vein as Corba IDL and Java RMI. AIDL much like other IDLs helps define the interface
that clients can communicate with service components using IPC. The Android platform

Figure 3-6A  init, zygote, system_server processes.

Figure 3-6B  Listing of live system_server threads, system services.

54� Android Fundamentals / Hello Lollipop

addresses the marshaling and unmarshaling that is involved in such communication. AIDL
supports several data types off the shelf, which include the primitive types in the Java
programming language, as well as Strings, Lists, and Maps. Applications can define their
own custom data types, and these will need to leverage the Parcelable interface. The android.
os.Parcelable interface is conceptually analogous to the java.io.Serializable interface used
for object serialization in Java. Binder is the low‐level mechanism that supports AIDL.

More details on AIDL, Parcelable, and Binder can be found at:

http://developer.android.com/guide/components/aidl.html

http://developer.android.com/reference/android/os/Parcelable.html

http://developer.android.com/reference/android/os/Binder.html

3.8  Setting up your Android Development Environment

Now that we have covered some of Android’s background and system‐level details, let us
proceed with the setting up of an Android development environment. The Android
development environment is far from monolithic—fundamentally, it uses a combination of
tools provided by a multitude of vendors and entities.

There are four high‐level artifacts that make up your Android development environ-
ment: Java JDK, Android SDK, build tools (gradle and ant), and the IDE (Android Studio).
It is important that you set them up carefully and make a note of the directories where you
install them. Details of the Android SDK and App development are available at https://
developer.android.com.

The Android SDK is available for Linux, Mac®, and Windows® OS. Currently, it requires
Java JDK version 7. Please be guided by the instructions and system requirements for your
specific OS, per the details available at

http://developer.android.com/sdk/index.html#Requirements
as well as
http://developer.android.com/sdk/installing/index.html?pkg=tools.

In case you are using Ubuntu, for versions 13.x and above, you will need to install several
packages using the following three commands: sudo dpkg ‐‐add‐architecture i386, sudo
apt‐get update, and sudo apt‐get install libncurses5:i386 libstdc++6:i386 zlib1g:i386. For
Ubuntu versions 12.x and earlier, you will need to install one package via the command
sudo apt‐get install ia32‐libs. This has been covered in the section “Troubleshooting
Ubuntu” in the “Tool” documentation links provided above. However, in case you see any
references to using sudo apt‐get install for purposes of installing the Java JDK, please
ignore them. The explanation for this is available in the next section.

3.8.1  Installing Java SDK version 7 (JDK 1.7) from Sun Microsystems / Oracle

As a Java developer, you have likely installed numerous versions of the Java SDK as
well as various Java IDEs. Typically, Java developers install the “stand‐alone” Java
SDK (also known as the JDK), which comprises all the basic Java development tools

http://developer.android.com/guide/components/aidl.html
http://developer.android.com/reference/android/os/Parcelable.html
http://developer.android.com/reference/android/os/Binder.html
https://developer.android.com
https://developer.android.com
http://developer.android.com/sdk/index.html#Requirements
http://developer.android.com/sdk/installing/index.html?pkg=tools

Setting up your Android Development Environment� 55

such as javac, javap, javah, and java—the JVM. It’s also ideal to set a JAVA_HOME
environment variable set to the location of the JAVA_SDK installation and to adjust the
PATH variable to include $JAVA_HOME/bin at the very beginning of the PATH. Making
these settings in the ~/.profile or similar file will make these settings consistently avail-
able every time.

After this, the command which java should show you the full path of the java
executable.

The Java JDK is available for download from:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/config‐417990.html

Since Java 7 is not a current release from Oracle (Java 8 is, at the time of writing), you
will find Java 7 listed under “Previous Releases.” Depending on your OS and whether it is
32 bit or 64 bit, you will need to download the appropriate flavor of the Java 7 (JDK 1.7)
binary.

On Linux systems, using the command uname ‐mpio will help you determine whether
your OS is 32 bit or 64 bit. The command man uname provides you with information about
the various uname options (Figure 3-7).

The output of the uname command indicates that my development machine has an
x86_64 OS, which is why I chose the Linux x64 binary (jdk‐7u67‐linux‐x64.tar.gz).

export JAVA_HOME=/opt/jdk1.7
export PATH=$JAVA_HOME/bin:$PATH

~ $ which java
/opt/jdk1.7/bin/java

~ $

Figure 3-7  uname, determining your OS specifics.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/config-417990.html

56� Android Fundamentals / Hello Lollipop

In case you are using Ubuntu, I recommend not using the sudo apt‐get install‐based
approach for installing the Java SDK. Similarly, I recommend not using the rpm format in
case you are using a Linux flavor that works with rpms such as Fedora—for reasons
explained in Section 3.11.

As we saw earlier in this chapter, there are a multitude of Java JDK providers such as
IcedTea, GNU Classpath (GCJ), and many more. The right Java SDK for Android development
needs to come from the source listed in the Android developer documentation. Once you have
your Java SDK installation in place, the next step is to install the Android SDK tools.

3.8.2  Installing Android SDK from Google

The Android SDK is distinct from the Android Studio IDE, much like the Java JDK is dis-
tinct from any Java IDE. In this section, I will cover the installation of the “stand‐alone”
Android SDK first, followed by the installation of Android Studio in a subsequent step.
Android Studio is the official and new IDE for Android development. Android Studio is
based on the JetBrains® IntelliJ IDEA®, which is an excellent IDE for Java development.

Installing and maintaining a stand‐alone Android SDK will help identify what tools
and functions it provides. This approach helps in understanding the Android SDK better
and can make it easier to troubleshoot if something does not work right. It also gives you
more flexibility with using an alternative IDE for Android development. The difference
between the two approaches is marginal. In either case, the end result is that your local
environment will have the Android SDK and the Android Studio IDE working together,
hand in glove. If you feel strongly inclined toward using the “cobundled” Android Studio
and Android SDK, by all means go for it—Section 3.8.4 covers Android Studio.

When you visit the Android SDK home page (http://developer.android.com/sdk/index.
html), you will notice a link to “Other Download Options” under the prominent Android
Studio graphic (Figure 3-8A).

Figure 3-8A  Android SDK home page.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Setting up your Android Development Environment� 57

Clicking on Other Download Options takes you to a page that displays the “stand‐
alone” Android SDK tools and Android Studio as two separate binaries (Figures 3-8B
and 3-8C).

In order to proceed with the download of the stand‐alone Android SDK, you will need to
accept and acknowledge the license agreement for the Android SDK (Figure 3-8D).

Once you have downloaded both the stand‐alone Android SDK (“SDK Tools only”) and
Android Studio separately, you will need to proceed with extracting them in your local
environment.

Figure 3-8B  Android SDK other download options.

Figure 3-8C  Stand‐alone Android SDK and Android Studio downloads.

58� Android Fundamentals / Hello Lollipop

Extracting the Android SDK binary
Once the download of the Android SDK has completed, you can extract it to a location or
your choice such as /opt or ~/opt. You will also need to ensure that you have ownership
of the Android SDK Home directory and its subdirectories. Below are the commands I used
as an indicative reference.

I find it more effective to rename the installation home directory to something simpler
such as androidsdk, rather than the original android‐sdk_r24‐linux. A simpler name is
easier to validate, remember, and type in anytime as needed. I maintain a text file with the
content “android‐sdk_r24‐linux” for future reference.

At this point, you should have the following environment variables in your shell
environment along the lines:

Figure 3-8D  Stand‐alone Android SDK tools license acknowledgment.

cp ~sanjay/Downloads/android‐sdk_r24‐linux.tgz .
tar zxvf android‐sdk_r24‐linux.tgz
mv android‐sdk‐linux androidsdk
chown ‐R sanjay
export ANDROID_HOME=/opt/androidsdk
export PATH=$ANDROID_HOME/tools :$PATH

ANDROID_HOME=/opt/androidsdk
JAVA_HOME=/opt/jdk1.7
PATH=$JAVA_HOME/bin:$ANDROID_HOME/tools :$PATH

Setting up your Android Development Environment� 59

Your shell environment should have both java and android from their respective, correct
installation locations.

Updating your Android SDK
The extracted Android SDK directory tree initially contains a minimal set of content and
tools. In order to be useful, it needs to be updated first. Therefore, the next step is to update
your Android SDK. Typing android on the command line will present you with the Android
SDK Manager screen.

The Android SDK Manager helps manage your local Android SDK installation and keep
it updated by downloading packages and artifacts from the official cloud‐based repositories.
It shows you the state of your local environment with respect to what is available in the cloud
repos, and helps you install and delete packages such as the various tools, API levels,
and extras on your local environment. Each Android version has an associated API level. For
instance, Android 5 (Lollipop) has the corresponding API level of 21 (Figure 3-8E).

In case your development machine is in a network that has a proxy server, you will need
to enter in the proxy server’s details under Tools → Options.

You will find that the Android SDK Manager has three logical sections under
packages:

[tools]

[Various API levels (such as API 21 or Android 5 and so on)]

[extras (such as Google Play Services, Android Support Library, Google USB Driver,
…)]

Figure 3-8E  Android SDK Manager, SDK update.

60� Android Fundamentals / Hello Lollipop

You will also find various revisions of the tools from 17 through 24 and beyond. It would
be best to select all of them for installation.

Similarly, you will find various Android API versions such as API 21 (Android 5)
or higher toward the top, down to API 3 (Android 1.5) at the very bottom. The set that
you select will depend on what versions of Android you intend your Apps to support. If
you are interested in installing a minimal set of packages, then selecting the build and
platform tools Rev 20 onward along with the API level 21 (Android 5/Lollipop) and API
level 20 (Android Wear 4.4W.2) is an essential choice for this book. If you are planning
on writing new Apps targeted at recent versions of Android, a reasonable selection set
would be API 15 (Android 4.0.3) through API 21 (Android 5) and beyond. If you are
expecting to support Apps on Android 2.3.3 (API 10), you should ensure that it is
selected.

With regard to extras, it would be best to select them all in one shot.
You may also decide to select “everything” in all the sections—this will take longer to

download and take up more disk space on your development machine, but other than that it
can’t hurt (Figure 3-8F). Over time, you will find yourself compiling and building a diver-
sity of projects, libraries, and sample code, so having a wider range of versions of tools and
platforms upfront can come in handy in the long run.

Once you have selected the set of packages, you may click on the Install Packages
button that is located toward the bottom of the screen.

You will find that there are various licenses involved that you will need to accept each
of them individually before proceeding further (Figure 3-8G). After the download com-
pletes (Figure 3-8H)—which can take a while depending on the speed of your Internet
connection and the number of packages you have selected—it would be a good idea to exit
the SDK manager and repeat the android command, just to be sure you have downloaded

Figure 3-8F  Selecting packages for installation.

Setting up your Android Development Environment� 61

all of the intended packages. Sometimes you may have missed out on accepting a particular
license, which will cause some of the packages to be left out, in the first pass.

You might have noted references to Android SDK tools, Android platform tools, and
Android build tools in the Android SDK Manager or otherwise. There happen to be separate
corresponding subdirectories under your Android SDK installation directory.

Figure 3-8G  Android SDK license acceptance.

Figure 3-8H  Android SDK—done loading packages.

62� Android Fundamentals / Hello Lollipop

Figure 3-9D  Listing of particular version of build tools.

Figure 3-9A shows the listing of the core Android SDK tools. The core SDK contains
the essential set of tools such as the android command, which are required for Android
development on any platform and API level. You will find useful information about the
Android SDK tools at http://developer.android.com/tools/help/index.html.

Figure 3-9B shows the listing of the “platform” tools. The adb command is the most
commonly used platform tool.

The next category of SDK tools is the “build” tools, which are specific to the Android
version/API level.

Figure 3-9C shows the various versions of the build tools installed on my development
machine. Every time you install or upgrade an Android platform version/API level such as
19 or 21, these tools are potentially updated.

Figure 3-9A  Listing of Android SDK tools in $ANDROID_HOME/tools.

Figure 3-9B  Android SDK “platform” tools in $ANDROID_HOME/platform‐tools.

Figure 3-9C  Listing of Android SDK build tool versions.

http://developer.android.com/tools/help/index.html

Setting up your Android Development Environment� 63

Figure 3-9D shows a particular version of the Android SDK’s build tools. These
tools are typically used via the build process rather than directly. Building an Android
project entails a particular version of the build tools. Over time, the Android project’s
target API level and build tool versions may undergo updates, as we will cover later in
this chapter.

3.8.3  Installing Build Tools (gradle and ant)

Now that you have installed your stand‐alone Android SDK, the next step is to install
Gradle as well as Apache Ant, which are two popular build tools. Apache Ant can be
downloaded from http://ant.apache.org/bindownload.cgi. In case you already have ant
installed on your development machine, that should suffice. You will likely find that
the Android classic build system that is based on ant generally shows no sensitivity
toward the ant version. This book covers both the “classic” and the “new” Android
project structure and build system. The new and improved Android build system is
based on gradle.

The following are useful reference documentation for Android projects and builds:

http://developer.android.com/tools/projects/projects‐cmdline.html

http://tools.android.com

http://tools.android.com/tech‐docs

gradle can be downloaded from https://www.gradle.org. You may find that the Android
new build system shows some sensitivity toward the version of gradle. Please be guided by
the latest information available at the android.com links above. At the time of writing,
I found gradle 2.1 to be a good choice.

I have several versions of gradle under the /opt area. I am able to switch between
various versions as needed in order to support various projects that may have particular
dependency constraints. Maintaining these versions separately under discrete home
directories keeps them isolated and easy enough to switch in or out, as needed. I rec-
ommend avoiding using sudo apt‐get or rpm‐based installs as these get installed at a
system level.

3.8.4  Setting up environment variables (Java, Android SDK, gradle and ant)

Once you have ant and gradle installed, it would be ideal to set some environment vari-
ables in your .profile or equivalent. The following clipping indicates the various environ-
ment variable settings that are in place on my development machine due to entries in my
.profile file with entries such as “export JAVA_HOME=/opt/jdk1.7” and more as shown in
the box below.

ANDROID_HOME=/opt/androidsdk
GRADLE_HOME=/opt/gradle
ANT_HOME=/opt/ant
JAVA_HOME=/opt/jdk1.7

http://ant.apache.org/bindownload.cgi
http://developer.android.com/tools/projects/projects-cmdline.html
http://tools.android.com
http://tools.android.com/tech-docs
https://www.gradle.org
http://android.com

64� Android Fundamentals / Hello Lollipop

You will also need an entry to add $JAVA_HOME/bin, $ANDROID_HOME/tools,
$ANDROID_HOME/platform‐tools, $ANDROID_HOME/build‐tools/21.1.2, $ANT_HOME/
bin, and $GRADLE_HOME/bin to the beginning of your PATH—as shown below.

You will need to set these manually in your current shell by executing your .profile
preceded by the “.” as in “. ~/.profile”.

After this, the commands java ‐version, gradle ‐version, and ant ‐version should all
work and display the expected respective version information (Figure 3-10).

3.8.5  Android (Lollipop) Development Device setup

Once you have your Android development environment setup, you will need to setup your
Android Lollipop device for development and debugging—if you have not done so already.
The detailed instructions are available at http://developer.android.com/tools/device.html.

You will essentially need to access your device’s Android Settings → System → About
(Phone/Tablet/device). Under About (Phone/Tablet/Device), you will find the item Build
number toward the bottom. You will need to tap on Build number seven times. After that,
you will find a new item under Settings, namely, Developer options. Under Developer
options, you will need to check USB debugging. You will then need to connect your Android
device to your development machine using a USB cable.

export PATH=$JAVA_HOME/bin:$ANDROID_HOME/tools:$ANDROID_HOME/platform‐
tools:$ANDROID_HOME/build‐tools/21.1.2:$ANT_HOME/bin:$GRADLE_HOME/bin:$PATH

Figure 3-10  java, gradle, and ant commands, versions.

www.allitebooks.com

http://developer.android.com/tools/device.html
http://www.allitebooks.org

Setting up your Android Development Environment� 65

The steps for enabling debugging on an Android Wear device over USB have been
covered in Section 6.7.2.3. Although the screens vary, the steps for enabling Developer
options and USB debugging via Settings are similar. Also, Section 6.8.1 covers the steps for
plugging in an Android device via the USB cable and diagnosing issues. Please feel free to
refer to these sections if you run into any issues.

In case you intend to use an emulator running a Lollipop Android Virtual Device (AVD),
you can create an AVD using Tools → Manage AVDs. Detailed instructions are available at
https://developer.android.com/tools/devices/managing‐avds.html.

Section 6.7.2.1 in this book happens to cover AVD creation for Wear devices, and
it turns out that the steps for creating an AVD for an Android 5 phone or tablet simply
entail selecting an appropriate Android 5 phone or tablet device in the Device drop
down.

After that, running the adb devices command should list your connected devices.
This next section requires that you can list your connected Android Lollipop device

using the command adb devices, as shown in Figure 3-11.

3.8.5.1  Creating a new Android project (classic / ant)  There is no better way to
verify an Android development environment than writing our first “Hello Lollipop World”
App. It takes just two steps to create an Android App and install it on your device.
The android create project command provides the ability to create a new Android App/
project via the command line.

Whenever you create an Android App, you are required to target it to an Android API
level. The API level represents the version of the Android OS, expressed as a numeric
integer value such as 1 through 21, representing, respectively, Android 1.0 through Android
5.0. The preview for Lollipop code named “L preview” had the API level of “L”—as a
temporary exception to the numeric API level scheme.

The mapping of Android versions, API levels, and code names (such as Lollipop,
Jellybean, etc.) is available at http://developer.android.com/guide/topics/manifest/uses‐
sdk‐element.html.

Figure 3-12 shows a screenshot from the table that you can find toward the bottom of the
page linked above. As you will notice, there are three ways to refer to an Android platform
version; for instance, Android platform version 5.0 has the API level of 21 and the code
name of Lollipop.

Figure 3-11  Lollipop device adb debugging, adb devices.

https://developer.android.com/tools/devices/managing-avds.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html

66� Android Fundamentals / Hello Lollipop

The command android list targets lists the API level targets that have been installed on
your development machine via the Android SDK Manager.

Figure 3-13A shows the initial output of the adb list targets command. The latter portion
of the same output is shown in the next command.

Figure 3-13B shows the latter portion of the output of the adb list targets command. One
of the nuances of the Android SDK is that it maintains a local, relative ID for each platform
API level/target that you have installed via the SDK Manager.

Figure 3-12  Android API levels, code names, and OS versions.

Figure 3-13A  adb list targets, partial/initial output.

Setting up your Android Development Environment� 67

In my local development environment, the output of adb list targets tells me that my
local, relative ID for the API level 21 is id: 17.

Once I have determined the relative/local ID for my target platform of interest (Android
5/Lollipop), I am ready to proceed with creating my first Android App/project.

I created a new directory for my project and proceeded to issue the command as
under:

Figure 3-13B  adb list targets, partial/terminal output.

id: 17 or “Google Inc.:Google APIs:21”
 Name: Google APIs
 Type: Add‐On
 Vendor: Google Inc.
 Revision: 1
 Description: Android + Google APIs
 Based on Android 5.0.1 (API level 21)

…

~projects$ cd 0hellol
~0hellol$ android create project ‐‐path . ‐‐name 0hellol ‐‐package io.wearbook.hellol ‐‐
activity HelloLollipopActivity ‐‐target 17

68� Android Fundamentals / Hello Lollipop

~0hellol$adb shell am start ‐a android.intent.action.MAIN ‐n
 io.wearbook.hellol/.HelloLollipopActivity

You will notice that any Android project needs a package name (which by convention,
you align with an Internet domain name that you own, such as wearbook.io), an Activity
class name, and a target using the relative, local ID (Figure 3-14A).

If the above command executed successfully, you are one step away from installing your
first Android App on your Android device. The command shown below will build
your App and install it to your connected Android Lollipop device (Figure 3-14B).

Once you have successfully built and installed your first App to your Lollipop device,
you can launch your App either by locating the App on your device or simply by launching
a command as under (Figure 3-14C):

The am command helps you automate the starting of your App without having to touch
the screen.

The following are screenshots of the commands above, executed from the command line.

Figure 3-14D shows a screenshot of the “Hello” App running on a Lollipop device. You
may notice that it does have a good resolution and has an “outdated” look. It turns out that
although we have targeted the App to the “current” Android 5 platform, the AndroidManifest.
xml file located in the project’s home directory reveals upon examination that it does not
have a “minimum SDK level” set—therefore, it defaults to “1,” which is the very first
version of Android 1.0. The API and features that an Android App has access to are deter-
mined by the “minimum” and “target” SDK levels.

Figure 3-14A  android create project, ant install.

~0hellol$ ant clean debug install

http://wearbook.io

Setting up your Android Development Environment� 69

By editing the AndroidManifest.xml and adding the line within the manifest element as under:

and repeating the compiling, installing, and running steps will show you a much improved,
high‐resolution look. By setting the minimum SDK level to the Android 5 platform, your
App cannot be installed on a prior version of Android such as 4.4/KitKat.

Figure 3-14C  adb shell am.

Figure 3-14D  Screenshot of the “Hello” App running on a Lollipop tablet.

<uses‐sdk android:minSdkVersion=“21” />

Figure 3-14B  ant install successful.

70� Android Fundamentals / Hello Lollipop

Figure 3-14E shows the editing of AndroidManifest.xml to specify the min SDK level to 21
(Lollipop). By specifying a minimum SDK level of 21, for this “Hello” App, it cannot be
installed or run on Android 4.4 (KitKat). In practice, you will need to choose a minimum SDK
level coincident with the most “ancient” Android platform that you intend your App to support.
Practically, that may correspond to, say, Android 2.3.3 or Android 4.0.3 or Android 4.4. Most
likely, it will not be the very first version of Android released in 2008—which is the default value
that kicks in, in the absence of an explicit value set in your AndroidManifest.xml (Figure 3-14F).

Figure 3-14E  Adding a min SDK level.

Figure 3-14F  Screenshot of the Hello* App with an improved look.

Setting up your Android Development Environment� 71

You may explore the contents of this newly created project tree; it represents a “classic”
Android project tree.

3.8.5.2  Creating a new Android project (new / gradle)  In this section, we will create
a new Android project using the “new” build system that is based on gradle. Once again,
we will use the android create project command with a couple of flags to opt for a gradle‐
based project. This example has been tested to work using gradle 1.12. You may find
version sensitivities using a different version of gradle or the plug‐in version.

The following steps will create a new project, build, install, and run it on your device:

Figure 3-15A shows the android create command in action—with the gradle
options and flag enabled. The gradle installDebug command builds and installs the App
(Figures 3-15B and 3-15C).

android create project ‐‐path . ‐‐name 0hellol ‐‐package io.wearbook.hellolg ‐‐activity
HelloLollipopGradleActivity ‐‐target 17 ‐‐gradle ‐‐gradle‐version 0.11.1

gradle installDebug

adb shell am start ‐a android.intent.action.MAIN ‐n
io.wearbook.hellolg/.HelloLollipopGradleActivity

Figure 3-15A  android create gradle‐based project.

72� Android Fundamentals / Hello Lollipop

3.8.6  Installing Android Studio “IDE”

The Eclipse‐based Android development IDE has been replaced by the new Android Studio
IDE, going forward. This book does not cover Eclipse at all; however, the stand‐alone
Android SDK installation that I covered in the earlier section is an approach that is aligned
with using the command line and also using any IDE, including but not limited to Android
Studio. The command line‐based build is useful and eventually needed for build automation,
continuous integration, configuration management, and testing. Deeper awareness and

Figure 3-15B  adb shell am command, to launch activity.

Figure 3-15C  Hello App’s user interface, built using gradle.

Setting up your Android Development Environment� 73

understanding of the core Android SDK tools can make it easier to switch to a different IDE,
with lesser effort. This book is somewhat IDE agnostic; however, Android Studio is the rec-
ommended and predominantly used IDE in this book. Netbeans (www.netbeans.org) is a
fine Java IDE and has had a plug‐in for Android since some time; recently, support has been
added for gradle‐based Android projects. There is no indication that Android gradle support
is coming to Eclipse anytime soon, but such matters are not easy to predict.

The steps that I took to carry out the installation of Android Studio on my development
machine were straightforward. I downloaded the Linux version of the Android Studio binary
zip archive from http://developer.android.com/sdk/index.html#Other (Figure 3-16A).

I unzipped the archive into /opt and then kicked started Android Studio via the command
below (Figure 3-16B):

(I also noticed that an Android Studio shortcut had been created on my desktop.)

Figure 3-16A  Unzip Android Studio download.

/opt/android‐studio/bin/studio.sh &

Figure 3-16B  Android Studio, welcome screen.

http://www.netbeans.org
http://developer.android.com/sdk/index.html#Other

74� Android Fundamentals / Hello Lollipop

I started Android Studio and was prompted for the Java 7 installation location, as shown
in Figure 3-16C.

I set the appropriate Java JDK location on my local environment, as shown in Figure 3-16D.
I chose the Custom setup as shown in Figure 3-16E

Figure 3-16C  Android Studio, setup—JDK.

Figure 3-16D  Android Studio, setup—setting the JDK installation location.

Setting up your Android Development Environment� 75

Figure 3-16F shows the next screen in the flow, which detects/or lets you set the intended
Android SDK location. It does not download the Android SDK separately; however, it will
run the Android SDK Manager to check if any updates are needed.

Figure 3-16E  Android Studio, setup—standard or custom.

Figure 3-16F  Android Studio, setup—Android SDK location.

76� Android Fundamentals / Hello Lollipop

Figure 3-16G shows a license agreement pertinent to an Android SDK component
update. Android Studio uses the Android SDK Manager to perform updates to the Android
SDK. New Android component updates can become available at any time.

3.8.7  Android Studio: Hello World App

Now that Android Studio has been installed successfully, we are ready to write our first
Android Lollipop App using Android Studio.

After the setup steps we covered in the last section, you will see a screen similar to
Figure 3-17A. It provides you with options for creating a new Android project, opening an
existing one, importing projects, and so on.

When you create a new Android project, you will be guided through several screens to
specify the Activity (which represents a new screen) and set the Android API level/target
for your App.

Figure 3-17B shows the screen where you provide the name, layout, and such
information about the main Activity for your App. This is the screen that is displayed
when your App starts.

Figure 3-16G  Android Studio, setup—Android SDK update, license agreement.

Setting up your Android Development Environment� 77

Figure 3-17A  Android Studio, quick start.

Figure 3-17B  Android Studio, new project’s activity information.

78� Android Fundamentals / Hello Lollipop

Figure 3-17C shows the screen where you provide your new project’s target form factor
and target API information.

Figure 3-17D shows the newly created project. Toward the top left, you will find that
you can access the project’s tree in different modes and browse through the project’s code
and resources.

Figure 3-17C  Android Studio, new project’s target information.

Figure 3-17D  Android Studio, new project.

Setting up your Android Development Environment� 79

Figure 3-17E shows project’s code and resources that can be edited. There is a green
Play/Run App button on the top bar. Clicking on this Run App button will build and run
the App.

Figure 3-17F shows the dialog that pops up upon clicking on the Run App button. After
the project compiles successfully, you will be prompted to choose a connected device to
install and run the App on.

Figure 3-17E  Android Studio, editing and building.

Figure 3-17F  Android Studio, building and running.

80� Android Fundamentals / Hello Lollipop

Figure 3-17G shows the Choose Device dialog, which prompts you to choose the device
on which you would like to install and run your App on.

Figure 3-17H shows the Hello Studio App running on a Nexus 7 device.

Figure 3-17H  Android Studio, App running on device.

Figure 3-17G  Android Studio, choosing a connected device.

Setting up your Android Development Environment� 81

3.8.8  Configuring Android Studio

Android Studio can be customized per your needs—you will find a Configure option at the
bottom of the Quick Start area in the main/initial screen.

Figure 3-18A shows the Configure option toward the bottom of the Quick Start area.

Figure 3-18B  Configure sub options.

Figure 3-18A  Android Studio, configure.

82� Android Fundamentals / Hello Lollipop

Figure 3-18B shows the various options under Configure, such as SDK Manager (which
launches the Android SDK Manager that we are already familiar with) and Settings
(which helps you customize and personalize the code styles, compiler settings, etc.).

Figure 3-18C shows the Settings area for Java code style.
As you get familiar with Android Studio, you will notice several useful features in action

such as its top‐notch UI designer, language/internationalization features and build variants.
Android Studio features and tips are listed at:

https://developer.android.com/sdk/installing/studio‐tips.html

3.9  Android “Classic” project tree and build system

The classic Android project tree is aligned with ant‐based builds. Ant is a cross‐platform
build tool from Apache, which has been used for Java projects since around 2000. You will
find that the ant‐based build is extremely stable and robust. It works reliably across a wide
range of versions of ant. You will typically run into projects, libraries, or legacy projects that
already use the classic project tree and are aligned more closely with the ant‐based build.

3.10  Android “New” Build System

The new Android build system was announced and released as “alpha” around mid‐2013.
At the time of writing in late 2014, the new Android build system has been formally
released along with the release of the Android Studio version 1.0. The new build system

Figure 3-18C  Settings.

https://developer.android.com/sdk/installing/studio-tips.html

Managing Java Installations� 83

addresses many aspects and complexities off the shelf. There are several new concepts that
have been introduced in the new build system including build variants, product flavors, and
build types, which are supported exclusively—at the time of writing—by the new gradle
build system and Android Studio. Going forward, you will certainly find yourself using the
new build system and most likely see the advantages of Android Studio. As it turns out,
gradle is compatible and provides excellent integration with ant.

3.11  Managing Java Installations

As developers, we often need to work on multiple projects that may require differing ver-
sions of the Java SDK. If you have a solution for this situation that already works well for
you, it’s best to stick to that. In this section, I share some ideas on managing the Java part
of your Android SDK environment. Historically, the Android SDK itself has progressively
required versions of the Java SDK such as 1.5, 1.6, and 1.7.

3.11.1  Avoid sudo apt‐get / rpm style installation

I find it useful to use a zip/tar base binary or an installer that creates a discrete installation
directory, whenever possible. Using the sudo apt‐get or rpm‐based installation is really
convenient for installing general tools and utilities that need to be installed system‐wide.
Although you may use sudo apt‐get to install various versions of java, that form of instal-
lation potentially “spreads” the binary contents on a system‐wide basis and is not an ideal
approach for managing your Java installation. Besides, newer versions of Java JDK are
available exclusively from the Oracle Java JDK download page. It is best to get your Java
SDK from the source. Although there do exist mechanisms to manage multiple JDK
versions, it’s not as foolproof as using a discrete JAVA_HOME that points to a location that
contains the entire Java SDK directory tree.

3.11.2  Maintain discrete Java JDK versions

You will find yourself needing different versions of Java for your various projects. I find that
it works best to use discrete Java SDK install locations and name them simply as jdk1.6,
jdk1.7, jdk1.8, and so on (Figure 3-19). Using simple names helps ensure that you can
quickly validate correctness of your PATH setting with just one glance (in contrast to using
the default names that go jdk1.7.0_45_* or something like that). If you need to find out the
exact minor version, the command java ‐version will provide you with that information.

Figure 3-19  Multiple Java JDK versions.

84� Android Fundamentals / Hello Lollipop

Using a discrete location for JAVA_HOME is the simplest and most effective way of
isolating the various versions of JAVA SDK installed in your environment. There are cer-
tainly other effective approaches to managing your Java environment, such as using
symbolic links that use simpler names for the JAVA_HOME.

3.11.3  Set JAVA_HOME in your .profile

I find it useful to set JAVA_HOME in my .profile to the path of JAVA SDK installation that
I intend to use predominantly such as jdk1.7 or otherwise.

3.11.4  Project‐wise JAVA_HOME

I find it useful to create a setenv.sh file with JAVA_HOME and PATH settings according to
the JAVA SDK version dependency for your particular project. This can help quickly over-
ride the setting of JAVA_HOME in your profile. Your build scripts will need to reference
the desired source level of your code such as 1.6, 1.7, 1.8, and so on, which works hand in
hand with the desired tools needed for compilation.

3.11.5  IDE independent build

An IDE independent, pristine build is useful for continuous integration and configuration
management. Such a build is typically based on build tools such as gradle, ant, maven, and
so on. It is a more formal build that improves the reliability and consistency of your build
process and insulates from human errors that can arise if the build is dependent on human
interaction with the IDE’s dialogs and screens during the formal build process.

3.12  Managing Android SDK installation and updates

In the case of server‐side Java applications that have been deployed into production, you
can lock down on your Java version and plan your Java version upgrades with advance
notice. Upgrading the Java version is typically not a top priority from a business per-
spective. The landscape is quite different when it comes to Android applications,
assuming you have a consumer facing Android App that is being distributed via the
Google Play Store. New devices with the lastest Android OS will arrive on the market
place all the time, and in order to stay competitive, App developers will need to embrace
the latest version of the OS and the associated API features and improvements.

3.12.1  Update your Android SDK often

In the case of Android applications, new devices and OS updates on consumer devices do
get released often and on a timeline that is beyond the control of you, the App developer.
Therefore, it behooves you to update your Android SDK often, say, on a weekly basis. You
will find new updates, samples and the latest support libraries, and more. It will also vali-
date that your App continues to compile and work with the latest tools. In case anything
should need refactoring, you will find that the effort will tend to be marginal.

References and Further Reading� 85

3.12.2  Target your App to the latest SDK / API level

Always target your App to the latest API level and test it out on the emulator or physical
device if you have one. This will future proof your App and even get it to run faster and
more efficiently. You will also be able to leverage the latest features and deliver the best
user experience for your users and customers.

3.12.3  Be sure to specify a minimum SDK / API level for your App

As we saw earlier in this chapter, the minimum SDK level defaults to the very first ver-
sion of Android API level 1, which was released in 2008. It limits the features and APIs
that your App can avail of. It is important to strategically choose the minimum SDK/API
level -as in the oldest Android OS version - that you would like to support. Periodically
you may find it meaningful to review and “slide” this level upward/forward to a more
current OS.

3.13  Code Samples: Android Lollipop

The source code for this book (available online as specified in the About this Book section
under Website) is organized into three top‐level directories:

lollipop

wear

fit

The source code under lollipop covers the base Android platform and has the following
project subdirectories:

0hellol 1hellol 2hellostudio

Each project has a README file with relevant build instructions.

References and Further Reading

http://www.openhandsetalliance.com/

http://en.wikipedia.org/wiki/Linux

http://en.wikipedia.org/wiki/IOS

http://www.unix.org/

http://en.wikipedia.org/wiki/Linus_Torvalds

http://en.wikipedia.org/wiki/9793_Torvalds

http://content.time.com/time/specials/packages/article/0,28804,1970858_1970909_1971691,00.
html

http://en.wikipedia.org/wiki/GNU_Project

http://www.openhandsetalliance.com/
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/IOS
http://www.unix.org/
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/9793_Torvalds
http://content.time.com/time/specials/packages/article/0,28804,1970858_1970909_1971691,00.html
http://content.time.com/time/specials/packages/article/0,28804,1970858_1970909_1971691,00.html
http://en.wikipedia.org/wiki/GNU_Project

86� Android Fundamentals / Hello Lollipop

http://en.wikipedia.org/wiki/Berkeley_Software_Distribution

http://en.wikipedia.org/wiki/James_Gosling

http://en.wikipedia.org/wiki/Java_(programming_language)

http://en.wikipedia.org/wiki/Android_(operating_system)

http://www.yaffs.net/

http://en.wikipedia.org/wiki/YAFFS

http://en.wikipedia.org/wiki/OpenBinder

http://elinux.org/Android_Kernel_Features

http://en.wikipedia.org/wiki/APK_(file_format)

http://en.wikipedia.org/wiki/Java_Platform,_Micro_Edition

http://en.wikipedia.org/wiki/Apache_Harmony

http://en.wikipedia.org/wiki/OpenJDK

http://en.wikipedia.org/wiki/OpenBinder

http://www.apache.org/

http://en.wikipedia.org/wiki/GNU_General_Public_License

http://en.wikipedia.org/wiki/GPL_linking_exception

http://en.wikipedia.org/wiki/Free_Java_implementations

http://en.wikipedia.org/wiki/Free_and_open‐source_software

http://en.wikipedia.org/wiki/Comparison_of_open_source_and_closed_source

http://en.wikipedia.org/wiki/GNU_General_Public_License#Version_2

http://en.wikipedia.org/wiki/Interface_description_language

https://android.googlesource.com/

http://en.wikipedia.org/wiki/Berkeley_Software_Distribution
http://en.wikipedia.org/wiki/James_Gosling
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Android_(operating_system)
http://www.yaffs.net/
http://en.wikipedia.org/wiki/YAFFS
http://en.wikipedia.org/wiki/OpenBinder
http://elinux.org/Android_Kernel_Features
http://en.wikipedia.org/wiki/APK_(file_format)
http://en.wikipedia.org/wiki/Java_Platform,_Micro_Edition
http://en.wikipedia.org/wiki/Apache_Harmony
http://en.wikipedia.org/wiki/OpenJDK
http://en.wikipedia.org/wiki/OpenBinder
http://www.apache.org/
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GPL_linking_exception
http://en.wikipedia.org/wiki/Free_Java_implementations
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://en.wikipedia.org/wiki/Comparison_of_open_source_and_closed_source
http://en.wikipedia.org/wiki/GNU_General_Public_License#Version_2
http://en.wikipedia.org/wiki/Interface_description_language
https://android.googlesource.com/

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 4  Android SDK

4.1  Software Components, in general

There will be times when you hear the term “software component” applied to just any application
class or object. Loosely speaking, the terms component, class, and object may be used inter-
changeably. However, there is a more specific, narrow definition and meaning of the term
component that goes over and beyond a class or an object in the object‐oriented paradigm.

Software components are typically characterized by strong interfaces, strong modu-
larity, and strong separation of responsibilities between the application logic and the run-
time “container” environment that houses components. The “container” is an environment
that manages the full life cycle of the components that execute within it. The container is
responsible for loading the component’s class, creating and destroying instances, pooling
instances, injecting application and security contexts, enforcing security, providing and
controlling access to resources and services, and so on. The motivation is to be able to
create reusable building blocks and integrate them into a larger environment or system and
achieve the goal of interoperability and seamless integration.

Whenever software is developed within a component‐based development model, there
is a greater emphasis on understanding the contractual obligations of the application devel-
oper versus the responsibilities of the runtime container provider.

Well‐known component models include JavaBeans®, Enterprise JavaBeans®, Java
Remote Method Invocation (RMI), Servlets®, Corba®, and so on. JavaBeans is one of the
simplest and widely used components. JavaBeans strictly adhere to the well‐defined
contracts with respect to setters, getters, and constructors.

88� Android SDK

4.2  Android Application Development Model

Android application development involves a Java SDK‐based development environment.
Android developers use the Java programming language and the standard Sun Java JDK
from Oracle in order to write Android application source code. However, the runtime ends
up executing Dalvik Executable (DEX) code rather than Java bytecode.

There are many intermediate steps involved in compiling, building, and packaging an
Android application. Firstly, the source code is compiled into Java class files via the Java
JDK tools; after that, the Android SDK tools compile the Java class files into DEX files and
package them into an Android application package (APK).

4.2.1  DEX file format

DEX is a bytecode format that is used to store executable code, and such bytecode is
capable of being executed on an Android runtime virtual machine (VM). The DEX format
is compact and was designed keeping resource constrained, small mobile devices in mind.

Whenever you build any Android project and browse through the intermediate files
within the project’s directory tree, you will typically find a classes.dex file among the
intermediate files. The classes.dex contains the application’s classes in DEX format.

Figure 4-1A shows such a classes.dex file that is typically found within any Android
project’s home directory, after you have successfully built the project. The figure also
shows the dexdump command, which is one of the Android SDK’s build tools and can be used
to verify the checksum of a classes.dex file. You do not need to directly execute such build
tools routinely, because your gradle, ant, or IDE‐based build process takes care of this for you.

4.2.2  APK file

The APK file is the artifact that is created or output from building your Android project,
and it represents your application’s binary. It has the extension of .apk and is meant to be
installed on your Android device. The .apk file is a zip‐compatible archive that contains
your application’s classes.dex file, AndroidManifest.xml file and resources, and binary
content.

The Android application package (.apk) file has the Internet media‐type identifier of:

application/vnd.android.package‐archive

Figure 4-1A  classes.dex and dexdump.

Android Application Development Model� 89

Each APK has exactly one package name associated with it. When you release your
Android application to the Google Play Store, the package name serves as the ID for the
application, and it is publicly visible as in the example below:

https://play.google.com/store/apps/details?id=com.pertino.connect

One of the latter steps in the process involves the signing of the Android APK using a
keystore. While building your application in debug mode, the output APK typically has
debug flags enabled, and it is signed by a debug keystore. While building applications in
release (i.e., production) mode, the debug flags need to be turned off, and the APK will
need to be signed using a release keystore. It is perfectly fine to use a self‐signed certificate
rather than a certificate from a certificate authority for the keystore.

When you release an application to the Google Play Store, all subsequent updates
will need to be made by using the same keystore that was used originally. In case you
lose the original keystore and password, you will not be able to release any updates to
your application on the Google Play Store. It is therefore important to maintain your
keystore carefully for future use.

It is recommended that released APKs be obfuscated. Obfuscation makes the code
unfriendly toward reverse engineering while also making the code more compact. More
information on obfuscation and Android application signing can be found at:

http://developer.android.com/tools/publishing/app‐signing.html

http://developer.android.com/tools/help/proguard.html

Also, there are particular requirements when publishing an application in the Google
Play Store, details of which can be found at:

http://developer.android.com/tools/publishing/preparing.html

http://developer.android.com/distribute/tools/launch‐checklist.html

http://developer.android.com/reference/java/security/KeyStore.html

Figure 4-1B shows an example of the Android APK file that you will find within any
Android project’s home directory, after you have successfully built the project. The figure
shows two versions of the APK file, one that includes the term “unaligned” in its name.
zipalign is an archive alignment and optimization tool that reduces the memory (RAM)
consumed by the running application. zipalign is used in one of the last steps in the build
process, and it is performed after application signing. zipalign is a build tool that is part of
the Android SDK; it is typically used via the build process, rather than directly.

Figure 4-1B  Android apk file.

https://play.google.com/store/apps/details?id=com.pertino.connect
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/publishing/preparing.html
http://developer.android.com/distribute/tools/launch-checklist.html
http://developer.android.com/reference/java/security/KeyStore.html

90� Android SDK

Besides the APK archive, there is the AAR archive, which is the output from building a
library project or module that other Android application projects can depend on.

4.2.3  Android Project Build Process

A simplified version of the Android project build process is depicted in Figure 4-1C, and
more details are available at https://developer.android.com/tools/building/index.html.

4.2.4  APK installation and execution

When your App’s apk file is installed on an Android device, it is stored under an
internal path such as /data/app/* on your device’s file system; the exact location is
controlled by the Android OS. Due to security constraints implemented by Android,
you generally cannot access or even list the installed APK files via the shell environ-
ment, using commands such as adb shell ls. The quickest way to reliably tell if a
package (APK) has been installed is to use the package manager (pm) command: adb
shell pm list packages ‐f. An installed package corresponds to an APK on a 1:1 basis.
The snippet below shows the commands and outputs pertinent to determining if
particular packages have been installed:

When your application is run on a device, it executes within its own isolated, secure
sandbox. Android is at the low level an inherently multi‐user system and runs each appli-
cation in a VM process, under a distinct OS user ID that your application is unaware of, but
internally the Android OS enforces security and permissions on the basis of this internal
OS user ID. This helps keep the private files and data of each application separate and inac-
cessible from other Apps. The Android OS also ensures that the application accesses

Android
project

Compilation
and packaging

Android package (.apk)

.dex
	les

Uncompiled
resources

AndroidManifest.xml

Signing
ADB Devices or

emulator

resources
.arsc

Attribution: Android Developer Documentation at developer.android.com.
Figure 4-1C  Simplified view of Android application build process.

$ adb shell pm list packages ‐f | grep ted
package:/data/app/com.ted.android‐1/base.apk=com.ted.android
$ adb shell pm list packages ‐f | grep pertino
package:/data/app/com.pertino.connect‐1/base.apk=com.pertino.connect

https://developer.android.com/tools/building/index.html

Android SDK API� 91

resources and functions that are consistent with the permissions that have been explicitly
granted to the App by the user. Permissions are granted by the user at install time.

An application runs in a VM within a separate process, and it is isolated from other
Apps—it cannot access the private content of other Apps, and in turn, other Apps cannot
access its private content. The life cycle of the process is managed by the Android OS
depending on the needs of the system.

The Android OS endeavors to enforce the principle of least privilege—Apps can access
only the resources and features that are essential for performing work, consistent with the
permissions that have been granted by the user and no more.

Although Apps live within their secure sandboxed environment, at the same time, there
are mechanisms available that facilitate sharing of data between Apps. It is possible for an
application to share data and content securely with another App or even be invoked from
another App. Also, two Apps that have been signed by the same keystore/certificate (typi-
cally published by the same entity) can share the OS user ID—this is a very deep level of
sharing because all files and content of one application are available to the other App, as
though the two Apps were the same App.

4.2.4.1  Application main thread / UI thread  By default, all the components in an
application run in the same OS process and thread called the “main thread” or “user inter-
face (UI) thread.” When an application component needs to be started, if a process for the
application already exists—because some other component of the same application is
running—then Android utilizes that process and its main tread for executing the current
component.

Long‐running operations should be run in background threads rather than the main
thread. In the interest of a good user experience, the Android system enforces application
responsiveness by providing the user with an Application Not Responding (ANR) dialog
whenever an application UI (Activity) performs lengthy operations on the main/UI thread
and fails to respond to user input for more than 5 seconds. The ANR dialog allows the user
to close and terminate such an application. In the case of BroadcastReceivers that are
background components that engage the main thread of the application in order to handle
system broadcast messages, the Android system enforces a 10 second timeout. More details
on best practices related to ANR are available at http://developer.android.com/training/
articles/perf‐anr.html.

4.3  Android SDK API

The Android SDK reference is available at http://developer.android.com/reference/
packages.html; Figure 4-2A shows a screenshot of a browser accessing the Android SDK
reference documentation.

You will notice that there is an API level setting (toward the top left of the screen) that
you can adjust depending on the API level that is of interest to you. API level 21, which
corresponds to Android 5, is relevant for covering the material in this book.

http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html

92� Android SDK

In conjunction with this online API reference, the following resources will be highly
useful in order to obtain an understanding of the Android platform:

http://developer.android.com/training/index.html

http://developer.android.com/guide/index.html

http://developer.android.com/guide/components/processes‐and‐threads.html

http://developer.android.com/guide/components/tasks‐and‐back‐stack.html

http://developer.android.com/guide/components/fundamentals.html

http://developer.android.com/training/basics/data‐storage/index.html

4.3.1  Android Application Manifest (AndroidManifest.xml)

Every Android application must have a manifest file named AndroidManifest.xml. The
manifest is a key artifact that contains all the metadata about the application including its
package name, the target API level and the minimum API level, security permissions, the
application’s constituent components, and much more: you may, for example, set your
application to be debuggable during development or use the largeHeap flag to request
Android to allocate a larger heap size for running your application. Detailed information
on the Android manifest can be found in the Android Developer documentation at:

http://developer.android.com/guide/topics/manifest/manifest‐intro.html

http://developer.android.com/guide/topics/manifest/application‐element.html

4.3.2  Android API package Overview

At the highest level of the Android package, you will encounter the namespaces android,
dalvik, java, javax, and org. These high‐level packages are shown in Figure 4-2B.

Figure 4-2A  Android API reference.

http://developer.android.com/training/index.html
http://developer.android.com/guide/index.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/tasks-and-back-stack.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/training/basics/data-storage/index.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/application-element.html

Android’s Four Fundamental Components� 93

4.4  Android’s Four Fundamental Components

Android application development is based on a few key high‐level components that consti-
tute the building blocks of any Android application. These four fundamental components
are the Activity, Service, BroadcastReceiver, and ContentProvider. Your application
components that subclass these four high‐level components (or any of their subclasses)
must be declared in your Android application project’s manifest, that is, AndroidManifest.
xml file. The life cycle of these components is managed by the Android runtime. This
strong Android component model helps separate out the responsibilities of the Application
container runtime environment and the application developer.

Figure 4-2C shows the Activity, Service, BroadcastReceiver, and ContentProvider classes
that represent the fundamental Android application components. The Activity and Service
classes implement several interfaces that have not been shown in this high‐level diagram.

The Intent and Application classes have also been included in this diagram. The four
core components are activated by “Intents.” Intents are fundamental to Android application

Figure 4-2B  Android API high level namespaces, sub‐packages.

Figure 4-2C  Android fundamental components.

94� Android SDK

development and runtime application execution. An Intent encapsulates an action to be
performed and optionally also the data associated with the action. Intent Filters help com-
ponents advertise the kinds of intents that they are capable of responding to. You will find
“intent‐filter” elements in the AndroidManifest.xml.

The Application class must be declared in the AndroidManifest.xml in order to be used.
There is often no need to create a subclass of the Application class; however, if you choose
to do so, it will need to be declared in the AndroidManifest.xml.

Activity, Service, and Application reside in the android.app package, while the
BroadcastReceiver, ContentProvider, and Intent reside in the android.content package.

4.4.1  Android Project Artifacts

An Android project consists of the manifest (AndroidManifest.xml), java source files, and
resources (res). Resources in turn include layouts, values, xml, raw, assets, and so on. It is
recommended that strings be externalized and isolated from the application code. Also, the
resource directories can have subdirectories for different form factors and screen resolu-
tions. At runtime, the Android system matches the device’s form factor and screen resolu-
tion to the appropriate flavor of the resource available in your App. You can and will
typically have different flavors of layouts, images, and text that the Android system can
pick at runtime, depending on the device’s characteristics.

Android resources are an important and vast topic, and you will find useful information
in the Android Developer guide at http://developer.android.com/guide/topics/resources/
providing‐resources.html.

4.5  Activity

The Activity is a UI component and represents a user’s interaction “activity” with the appli-
cation. The Android system grants the Activity a window to display its UI within. Any given
application has one or more Activities; typically, one Activity is marked in the manifest as
a main Activity, which is the entry point into the application. Each Activity is intended to
implement a particular user interaction and function. An Activity can start another Activity,
and then terminate itself or not, depending on the application’s flow and needs. The life
cycle of the Activity is completely managed by the Android system. The application code
should never instantiate an Activity; furthermore, it should never pass an Activity’s this
reference to any component whose life cycle is not a slave to that Activity’s life cycle. The
layout of the Activity’s UI is typically externalized as an xml resource file, and is located
under the res/layout tree:

http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/training/basics/activity‐lifecycle/index.html

http://developer.android.com/guide/components/tasks‐and‐back‐stack.html

Running and previously running Activities are organized as a stack, with one Activity
that is in the foreground and interacting with the user, at the top of this Activity stack. A task

http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/training/basics/activity-lifecycle/index.html
http://developer.android.com/guide/components/tasks-and-back-stack.html

Activity� 95

is a collection of such Activities, and the order in which the Activities were run determines
their place in the stack. The device home screen is the starting point of most tasks.

Figure 4-2D shows the Activity stack, which you can access by touching the square,
recent Apps button on Android 5 devices.

Figure 4-3A shows only a minuscule subset of the operations that are available in the
Activity class. The setContentView method sets the Activity’s content to a view that is typi-
cally the compiled equivalent of the xml layout—as shown in the snippet below:

Figure 4-2D  Activity stack.

Figure 4-3A  Activity class, partial listing.

96� Android SDK

The call to setContentView is typically made in the onCreate method, which is a life
cycle callback method that is called when an Activity is created. The Activity life cycle and
callbacks are covered in the next section. An Activity can terminate itself by calling the
finish method.

4.5.1  Activity life cycle

The Activity has a specific life cycle and can exist at any given time, in one of three given
states:

Resumed/Running—The entire Activity is visible in a full screen and has focus. The
Activity has already been created and started and is running in the foreground of the screen.
It is at the top of the Activity stack.

Paused—The Activity has lost focus but is still visible, as it is partially obscured by
some other UI. The Activity is still alive in that its state and member variables are still intact
and it continues to remain attached to the window manager.

Stopped—The Activity is no longer visible, as it is completely obscured by some other
UI. It continues to retain its state and member variables; however, it is no longer connected
to the window manager.

When an Activity is in a paused or stopped state, the Android system may kill its process
or finish off the Activity in order to reclaim OS system resources. When such an Activity
needs to be displayed to the user again, it will need to be restarted, and the application code
will need to ensure that the previous state is restored. SharedPreferences is a mechanism
via which an application can store key–value pairs related to the state. More information on
SharedPreferences, as well as data storage in general, is available at:

http://developer.android.com/reference/android/content/SharedPreferences.html

http://developer.android.com/guide/topics/data/data‐storage.html

Figure 4-3B shows a diagram from the Android developer site that shows Activity states
as well as the callback methods that you may implement according to the needs of your
application’s Activity.

The onCreate method is called when your Activity is created. You will typically
need to override the onCreate method. It is recommended to call super.onCreate first
before implementing any of your Activity’s initialization code that generally includes a
call to setContentView to set the Activity’s content to a layout that defines the UI. The
onCreate and onDestroy methods are the callback hooks into the entire lifetime of the
Activity. Any global resources initialized in the onCreate should ideally be released in
the onDestroy method.

Similarly, the onStart and the onStop methods represent the callback hooks into the
visible lifetime of the Activity. The Activity’s visible lifetime includes the foreground

setContentView(R.layout.main)

http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/guide/topics/data/data-storage.html

Activity� 97

lifetime and the partially visible (paused period) of the Activity. If you register a listener of
some sort in your onStart method, you would ideally unregister it in your onStop method.

The onResume and onPause methods represent the foreground lifetime of an Activity.
Because the Activity can go frequently between the paused and resumed states, these
methods will tend to be called frequently, and the code in these callback methods is
generally lightweight.

One simple, effective way to see your the Activity’s life cycle callbacks in action is to write
a simple Activity and include logging in all the callback method implementations. The doc-
umentation on the android.util.Log class is available at http://developer.android.com/
reference/android/util/Log.html. Once you have installed your application to a device, you

Activity
launched

onCreate()

onStart()

onResume()

onRestart()

onPause()

onStop()

onDestroy()

Activity
running

Activity
Shutdown

App process
killed

User navigates
to the activity

Apps with higher priority
need memory

Another activity comes
into the foreground

The activity is
no longer visible

The activity is finishing or
being destroyed by the system

User navigates
to the activity

User rerurns
to the activity

Attribution: Android Developer Documentation at developer.android.com.
Figure 4-3B  Activity life cycle.

http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/reference/android/util/Log.html

98� Android SDK

Figure 4-4  Service.

can watch the logs as you change the orientation of the device or even simply let it “rest”
until the screen fades or locks due to the idle timeout. You will likely find that there are a lot
more Activity life cycle callbacks occurring than you might have expected. Mastering the
Activity life cycle is one of the foundations of Android application development.

Any Android application runs in one or more OS processes. The OS processes too have
their own life cycle, the details of which are available at:

http://developer.android.com/reference/android/app/Activity.html#ProcessLifecycle

While the Activity is a widely used fundamental UI component, you will typically use
Activities in conjunction with Fragments. Fragments are modular, reusable UI subcompo-
nents that are embedded within Activities. The life cycle of a Fragment is a slave to the life
cycle of its containing Activity. The following are useful references on Fragments:

http://developer.android.com/training/basics/fragments/index.html

http://developer.android.com/guide/components/fragments.html

http://developer.android.com/guide/components/fragments.html#Lifecycle

4.6  Service

A Service is a non‐UI component that can perform operations in the background. For
example, an Activity may start a service to offload potentially long‐running operations such
as network calls or file I/O to a service. Services may be bound or unbound. In the case of
a bound service, other components such as an Activity can invoke method calls on the ser-
vice’s interface after binding to the service. The service interface can be implemented via
AIDL, in which case the service can be called both from external applications and by com-
ponents within the same application. There are a cost and an overhead with implementing
the service interface via AIDL.

http://developer.android.com/reference/android/app/Activity.html#ProcessLifecycle
http://developer.android.com/training/basics/fragments/index.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html#Lifecycle

Service� 99

Figure 4-4 shows a few of the attributes and methods available in the Service class. The
onCreate method is a callback that is called by the Android system, when the service is first
created. The onStartCommand is called by the Android system, every time that a compo-
nent such as an Activity invokes the Context.startService method using an Intent that is
associated with the Service. The onStartCommand returns to the Android system, an int
value that indicates to the Android system how it should manage the behavior of the Service
if its process gets killed. The constant START_STICKY is one of several possible values that
are meant to be returned by the onStartCommand to indicate to the Android system how the
service is to be managed. Particularly, if START_STICKY is returned by onStartCommand
and the process is killed after the service was started, the Android system will try to create
the Service again. This mode is useful for long‐running background Services, such as
music playback. If there were any resources that were created or initialized in the onCreate
method, the same resources should typically be released in the onDestroy callback method.

A Service can be started by calling Context.startService or Context.bindService.
The Context.startService requires an explicit Intent, starting with Android 5. Use of
intent filters is not recommended. Intents and Intent Filters have been covered later in
this chapter.

The Service class itself is not threaded; nor is it inherently a separate process. By default,
it runs in the same process as the rest of the application that it belongs to. The Service thus
runs in the main thread of its containing process, and you will need to implement a separate
thread in the application logic in order to perform long‐running work in order to avoid the
risk of an ANR situation.

Your service class must be declared in the manifest within the <service> element, and
the syntax for this is as follows:

The exported flag attribute governs whether the service can be invoked by external
applications.

Detailed information on services and service element is available at:

http://developer.android.com/guide/components/services.html

http://developer.android.com/guide/topics/manifest/service‐element.html

https://developer.android.com/training/run‐background‐service/create‐service.html

<service name="com.example.PlayerService"
 android:enabled=["true" | "false"]
 android:exported=["true" | "false"]
 android:icon="drawable resource"
 android:isolatedProcess=["true" | "false"]
 android:label="string resource"
 android:permission="string"
 android:process="string" >
 . . .
</service>

http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/topics/manifest/service-element.html
https://developer.android.com/training/run-background-service/create-service.html

100� Android SDK

4.7  BroadcastReceiver

A BroadcastReceiver is a component that can consume a system‐wide broadcast message,
and it does so via its onReceive handler method (Figure 4-5). Your application’s broadcast
receiver component will need to extend BroadcastReceiver and override the onReceive
method. The nature of the broadcast is asynchronous, and its consumption is executed in
the background. However, the Android system considers your application BroadcastReceiver
instance to be active for the duration of execution of the onReceive method, subject to a
maximum of 10 seconds.

Using a LocalBroadcastManager is preferable, as it entails less overhead and increases
security as data will never leave your application when using a local broadcast.

4.8  ContentProvider

ContentProviders are a particular mechanism for storing application data on the Android
device (Figure 4-6).

Most Android applications need to persist application data. At the very least, they may
need to save some settings or application state so as not to lose data when the application
is paused. SharedPreferences are useful for storing key–value pairs, while files can be used
to store arbitrary data. Android includes the SQLite database for storing structured data and
retrieving structured data. ContentProviders help abstract out the underlying mechanism of
storage and support sharing of data between applications while enforcing security con-
straints on the data access. The Android API provides off‐the‐shelf content providers for
calendars, contacts, and media files. You may choose to implement your own content pro-
vider, especially if sharing of the content is relevant. Other advantages of ContentProviders
are that they work well with Sync Adapters (which are useful for keeping content in sync
between device storage and cloud‐based storage) and search suggestions. More details on

Figure 4-5  BroadcastReceiver.

Intent� 101

the general background about Android data persistence, ContentProviders, and Sync
Adapters can be found at:

http://developer.android.com/guide/topics/data/data‐storage.html

http://developer.android.com/guide/topics/providers/content‐providers.html

https://developer.android.com/training/sync‐adapters/index.html

4.9  Intent

The Intent is a very powerful and important construct that is fundamental to Android appli-
cation development and runtime execution. An Intent represents a conceptual definition of
an action or operation that needs to be performed. Intents are involved even before the most
trivial application can be started on your device.

Although the Intent is merely a passive message or data structure, it is used by the
Android platform as a late binding mechanism between different components, which is
why an Intent is so powerful. Intents can be used by one component to start another com-
ponent within the same application or even in a different application. Intents are also used
to receive broadcasts either via declaration in the manifest or via the Context.registerRe-
ceiver method. Intents are intercepted and handled by the Android system at runtime.

In the real world, you may have the intention of lighting up your room, and you may
achieve this by flipping on a light switch. There may be more than one switch in the room,
or you may even have other mechanisms for turning on the lights (such as via using a smart
phone or wearable application to turn a Bluetooth lamp). On the one hand, you have a
conceptual action, and on the other hand, you have one or more concrete mechanisms

Figure 4-6  ContentProvider.

http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/training/sync-adapters/index.html

102� Android SDK

available for invoking that action. Android Intents provide a similar separation of the
abstract action from the concrete component that is to be started via “implicit” Intents—
which we will be covering shortly.

The Intent class resides in the android.content package. The primary attributes of the
Intent are the action (or component’s class name) and the associated data, while the
secondary attributes include categories, MIME type of the data and extras. The compo-
nent’s class name can act as a secondary attribute when used in conjunction with other
attributes. In many instances, setting the component name (fully qualified package and
class name) of the component to be started is adequate information for proceeding further.
When the action name (String) is specified and no component name has been specified, the
Android system attempts to resolve the action to a matching component based on all the
applications that have been installed on the user’s device. The intent filter in the applica-
tion’s manifest declares the Intent actions that a given component has interest in being
associated with.

You may have intents that handle custom actions that are not from among the numerous
generic actions that are predefined as static constants in the Intent class. The Intent
namespace is global so in case you define your own Intent, it is important to ensure unique-
ness by using your application’s package name as a prefix to the action’s name.

The Intent class has several constructors including an empty constructor. Such an empty
Intent will certainly need some attributes to be set—such as an action, component, and pos-
sibly data—before it can be meaningfully used. Other available constructors allow you to
set the action and/or the component class details in one step while instantiating the Intent.
Extras can be set on the Intent using the overloaded putExtra method. There are a large
number of overloaded versions of the putExtra method to cater to different fundamental
and commonly used data types.

Figure 4-7 shows some only a subset of the attributes and methods available in the Intent
class in order to provide a conceptual understanding of the Intent class. The complete
details of are available in the API reference: http://developer.android.com/reference/
android/content/Intent.html.

There are several static final attributes available in the Intent that help define various
types of information:

Standard Activity Actions—These are numerous standard actions associated with
Activities, and only a few have been shown in the diagram such as ACTION_VIEW,
ACTION_DIAL, and ACTION_MAIN. Depending on the particular action, additional
data may be required. For instance, ACTION_DIAL requires associated phone number
data as a uniform resource identifier (URI) (Tel.: 6502752515), which can be parsed
using Uri.parse. We will be covering standard activity actions in detail shortly, in the
section on Implicit Intents.

Standard Broadcast Actions—These are standard actions associated with broad-
casts, which BroadcastReceivers can register for, in order to receive broadcasts. The
Intent action ACTION_BOOT_COMPLETED, for example, represents the comple-
tion of the boot process, when your device boots up. In order to implement a
BroadcastReceiver that has interest in receiving this broadcast intent, you will need

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html

Intent� 103

to declare the android.permission.RECEIVE_BOOT_COMPLETED in the applica-
tion’s manifest file.

Standard Categories—These are secondary attributes that can be associated with
Intents. CATEGORY_LAUNCHER is one such example of a standard category.
CATEGORY_LAUNCHER is used along with ACTION_MAIN in the intent filter of your
main Activity in your application’s manifest—they help declare that the particular
(main) Activity is the entry point of your application and its icon and label are to be
displayed in the application launcher:

Figure 4-7  Intent class diagram, partial listing.

<intent‐filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=“android.intent.category.LAUNCHER” />
</intent‐filter>

104� Android SDK

Standard Extras—These are secondary attributes associated with Intent actions that
can be set on and accessed from the Intent instance. Several EXTRA_* attributes
have been defined such as EXTRA_EMAIL, EXTRA_SUBJECT, and EXTRA_CC,
which are pertinent to sending an email via a standard Activity action ACTION_
SEND. Extras are key–value pairs that are secondary to the Intent data. The Intent
data is defined via an URI (governed by RFC 2396; https://www.ietf.org/rfc/
rfc2396.txt).

Flags—These are secondary attributes that can be set on Intents, which influence how
the Intent is handled by the Android system. Several FLAG_* attributes have been
defined as static final constants.

4.9.1  Intent Action and Data

The Intent as we just covered encapsulates an action and optionally some associated data.
The Intent action ACTION_VIEW is one of the generic intent actions defined as a static
constant in the Intent class. It has the String value of android.intent.action.VIEW. The
Intent ACTION_VIEW must have associated data, in order for it to be meaningful.

As mentioned earlier, the ACTION_DIAL requires the phone number data, in the format
“Tel.: 6502752515.” The intent’s data needs to be set via the setData method. The prefix
“Tel.:” is important in order to work with the Uri.parse method. The ACTION_DIAL only
displays the phone number in a dialer program and does not actually make the call without
the user’s subsequent action. A related intent ACTION_CALL initiates the phone call
directly using the phone number data provided; it requires a permission android.permis-
sion.CALL_PHONE. Thus, the action and data go together when working with Intents. The
action in conjunction with the data and its MIME type governs how the Android system
resolves the (implicit) intent.

4.9.1.1  Intent Extras  An Extra is a Bundle of additional information that can be used
to deliver information to the component that is being started via the Intent. As mentioned
in an earlier section, the ACTION_SEND in conjunction with the extras EXTRA_EMAIL
and EXTRA_SUBJECT can be used to send an email. Such standard extras help interoper-
ability across Apps. When you use an Intent to start a component within your own
application, you will typically use your application’s static final String constants “EXTRA_
SOMETHING” rather than the standard extras.

4.9.1.2  Intent Flags  Intent Flags are secondary Intent attributes that influence the
behavior of the component that is called via the Intent. The FLAG_ACTIVITY_* family of
flags pertain to the behavior of Activities that are launched via Intents via the Context.
startActivity method, while the FLAG_RECEIVER_* family of flags pertain to the Context.
sendBroadcast method call.

As an example, if the FLAG_ACTIVITY_CLEAR_TOP is set on the Intent that is used to
start an Activity, a new instance is not launched if that Activity already happens to be
running in the current task; rather, the existing Activity will be brought to the forefront and
the Intent delivered to it. There are other flags available that facilitate various contrasting
flavors of Activity behavior.

https://www.ietf.org/rfc/rfc2396.txt
https://www.ietf.org/rfc/rfc2396.txt

Intent� 105

4.9.2  Explicit Intents

When you create an Intent without providing/setting any action and explicitly set a fully
qualified class name of the component that you would like to start or invoke, that is an
explicit Intent. The fully qualified class name of the component can be specified via the
Intent’s constructor parameter or via subsequently calling the setter method on the Intent
instance.

Typically, you use explicit intents to start other components within the same App. It is
very common for one Activity to may start another Activity or a Service within the same
application, and explicit Intents are the ideal way to accomplish this.

The explicit Intent is not a separate class in the API—depending on the specifics of how
the Intent is constructed and set up, and particularly if a component or class is set on the Intent
instance explicitly while excluding an action, the intent is considered to be an explicit intent.

Explicit intents are more secure and you should always use an explicit intent when
starting services. Android 5 (API level 21) enforces this principle by throwing an exception
in case you call bindService without an associated explicit intent.

4.9.3  Implicit Intents

When you create an Intent and associate it with an action (String), typically without speci-
fying the fully qualified class name of the component that you would like to start or invoke,
that is an implicit Intent. The action can be specified via the Intent’s constructor parameter
or via subsequently calling the setter method on the Intent instance.

Implicit Intents are usually used in conjunction with the standard generic actions that
have been defined as static constants in the Intent class. ACTION_VIEW (android.intent.
action.VIEW) and ACTION_DIAL (android.intent.action.DIAL) are two such standard
actions that are widely used with Implicit Intents.

4.9.4  Intent Filter

The Android system matches an implicit Intent to identify and target the corresponding
component that needs to be started. One very widely used intent is the ACTION_MAIN
(with the category of CATEGORY_LAUNCHER), which the Android system uses to find
all the main activities of all the Apps installed on the device to populate the application
launcher with their names and icons.

You will find that the most trivial of the Android apps that you have written so far
including our “Hello Lollipop” series in the last chapter has an intent‐filter element in the
application manifest (AndroidManifest.xml) that resembles the following snippet:

<intent‐filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=“android.intent.category.LAUNCHER” />
</intent‐filter>

106� Android SDK

Intents and Intent Filters work closely together. The concept of Intent Filters, the
intent‐filter element in the manifest, and the class IntentFilter are topics for further reading
at the links provided below:

http://developer.android.com/guide/components/intents‐filters.html

http://developer.android.com/guide/topics/manifest/intent‐filter‐element.html

http://developer.android.com/reference/android/content/IntentFilter.html

4.9.5  Intent Resolution

The Android system matches an implicit Intent to the component (Activity) that needs to be
started. This process is referred to as Intent Resolution. The Android system filters and
resolves intents based on the encapsulated action and the associated data and categories.
The data itself consists of the type, scheme, authority, and path.

It is possible that no component matching the implicit intent can be found (based on
what Apps the user has installed on their device), and this can cause a crash. In order to
avoid the crash, you must first ensure that a matching component exists by calling the
method resolveActivity on the Intent, before calling startActivity.

It is also possible that more than one matching component is found. The Android system
provides the user with the ability to choose the appropriate application (such as the choice
of browsers that match the ACTION_VIEW on a Web URL data). The createChooser
method and the ACTION_CHOOSER are associated with providing the calling application
the option to display an alternative application/activity chooser with a customized title,
upon multiple matching components for the Intent.

4.9.6  Intent Use Cases

The following is a summarization and listing of the ways in which Intents can be used.

4.9.6.1  Starting Activities  An Activity can be started using an Intent by calling the
startActivity method available in Context. Data and extras may be set on the Intent.
In the case of an explicit Intent, the Intent encapsulates the name of the Activity
class that needs to be started. In the case of an implicit Intent, the Android system
resolves the intent based on its encapsulated attributes to a matching component or
components.

4.9.6.2  Starting Services  A Service can be started using an Intent via the startService
method available in the Context. Only explicit Intents are to be used in order to start
Services.

4.9.6.3  Delivering Broadcasts  Intents can be used to send broadcasts using the send-
Broadcast method available in the Context. Such a broadcast can be sent within the same
application of between applications. The LocalBroadcastManager is recommended for
sending broadcasts within the same process.

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/topics/manifest/intent-filter-element.html
http://developer.android.com/reference/android/content/IntentFilter.html

dalvik package, sub‐packages� 107

4.10  android package, sub‐packages

The purpose of this section is to provide a bird’s‐eye view of the Android SDK’s high‐level
packages. The vast majority of the Android SDK’s classes and interfaces reside in subpack-
ages under the android namespace. There are two classes that reside directly in the android
package, namely, Manifest and R. The Manifest class has a nested class Manifest.permis-
sion that defines various permissions, and these permissions are universally used via the
AndroidManifest.xml. The R class represents the global resources available to any Android
App. Typically, Apps use resources from the R class that is available within their Apps
package namespace. Apps can use some resources from the global R class, though draw-
able resources should be avoided. Resources from the global R class, if used in your appli-
cation, can cause version dependencies and incompatibilities in your App, so they are best
avoided. If you inadvertently import android.R into any of your application classes, that
can cause the references to your own application’s R attributes to become unresolvable.
More information on the subject of resources is available at:

http://developer.android.com/guide/topics/resources/overview.html

http://developer.android.com/guide/topics/resources/accessing‐resources.html

Figure 4-8 shows the sub‐packages within the android namespace.

4.11  dalvik package, sub‐packages

The sub‐packages and classes under the dalvik namespace represent low‐level functionality
that is seldom used in applications. Yet, they have been included here to emphasize that the
deeper system‐level functionality is centered around “dalvik.”

Figure 4-8  android sub‐package, partial listing.

http://developer.android.com/guide/topics/resources/overview.html
http://developer.android.com/guide/topics/resources/accessing-resources.html

108� Android SDK

Figure 4-10  org sub‐package.

Figure 4-9 shows the sub‐packages within the dalvik namespace.

4.12  java and javax package, sub‐packages

The java sub‐packages are familiar to Java developers and resemble the Java Standard
Edition that has been brought into the Android platform from Apache Harmony project.
The artifacts in this namespace “java” have variations and exclusions—particularly the
Java Swing® API classes have been excluded. The security and cryptographic APIs under
java.* and javax.* leverage Bouncy Castle and OpenSSL. When you are writing your
Android application, it is important to be guided by the API reference documentation at

http://developer.android.com/reference/packages.html.

4.13  org package, sub‐packages

The org namespace contains several external projects such as the apache http client, parsers
for json, and xml.

Figure 4-9  dalvik sub‐package.

http://developer.android.com/reference/packages.html.

References and Further Reading� 109

Figure 4-10 shows the sub‐packages such as apache, json, xml, and so on.

4.14  Sample code in this book

The source code for this book is organized into three top level directories:

lollipop

wear

fit

The source code under lollipop covers the base Android platform and has the following
project subdirectories:

0hellol 1hellol 2hellostudio 3ui 4alarm 5services 6provider 7maps 8notifications
Each project has a README file with relevant build instructions.

References and Further Reading

http://en.wikipedia.org/wiki/Component‐based_software_engineering#Software_component

http://en.wikipedia.org/wiki/Java_servlet

http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

http://www.oracle.com/technetwork/java/javase/tech/index‐jsp‐138781.html

http://en.wikipedia.org/wiki/JavaBeans

https://source.android.com/devices/tech/dalvik/dex‐format.html

http://en.wikipedia.org/wiki/Internet_media_type

https://developer.android.com/tools/building/index.html

http://developer.android.com/tools/help/proguard.html

http://developer.android.com/tools/publishing/app‐signing.html

http://proguard.sourceforge.net/

http://developer.android.com/tools/publishing/app‐signing.html

http://developer.android.com/reference/packages.html

http://developer.android.com/training/index.html

http://developer.android.com/training/articles/perf‐anr.html

http://en.wikipedia.org/wiki/Bouncy_Castle_%28cryptography%29

https://www.bouncycastle.org/

http://en.wikipedia.org/wiki/OpenSSL

https://www.ietf.org/rfc/rfc2396.txt

http://developer.android.com/guide/components/services.html

http://en.wikipedia.org/wiki/Component-based_software_engineering#Software_component
http://en.wikipedia.org/wiki/Java_servlet
http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html
http://en.wikipedia.org/wiki/JavaBeans
https://source.android.com/devices/tech/dalvik/dex-format.html
http://en.wikipedia.org/wiki/Internet_media_type
https://developer.android.com/tools/building/index.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/publishing/app-signing.html
http://proguard.sourceforge.net/
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/reference/packages.html
http://developer.android.com/training/index.html
http://developer.android.com/training/articles/perf-anr.html
http://en.wikipedia.org/wiki/Bouncy_Castle_%28cryptography%29
https://www.bouncycastle.org/
http://en.wikipedia.org/wiki/OpenSSL
https://www.ietf.org/rfc/rfc2396.txt
http://developer.android.com/guide/components/services.html

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 5  Android Device Discovery and
Communication

5.1  Android Interconnectivity

Inter‐device communication has much significance in a world of a multitude of devices and
peripherals that reside in the body area and home area networks. In such a world of a
multitude of devices that a consumer may possess or interact with, it is important that devices
can interconnect conveniently and securely. The specifications and standards that address
this important function are by no means unique to Android; rather, the base Android APIs
typically support common industry standards that boost such interconnectivity between
devices and services.

As users, we have probably seen our devices interact with other devices via various
technologies, such as Near‐Field Communication (NFC), Bluetooth, Wi‐Fi, Wi‐Fi Direct,
etc. As developers, we have written or will end up writing at some point, applications that
leverage these technologies.

Consumers typically find it cumbersome to have to set up network‐based printers,
scanners, TVs, etc. via configuration of technical attributes such as IP addresses, ports, and
so on. Consumers tend to appreciate it when the devices and their associated applications
are self‐configuring and can interconnect with minimal manual steps.

As technologists, it behooves us to make technology easy for general consumers to
use by reducing the manual and cumbersome steps that can potentially act as barriers
to adoption and usage.

112� Android Device Discovery and Communication

5.2  Advertisement and Discovery

Advertisement and discovery are important core concepts that go together; they help
simplify and automate the process for devices to interconnect and work together from the
consumer’s perspective. Associated with advertisement and discovery are the underlying
operations such as scanning, detecting, filtering, pairing, and tethering. The concept of
advertisement and discovery exists in some form or the other in several of the connectivity
standards and technologies.

5.3  Bluetooth

Bluetooth (classic) represents a family of wireless specifications and protocols that
address the exchange of data between wireless devices over short distances, in the order
of a few feet. The Bluetooth standards are managed by the Bluetooth Special Interest
Group. Bluetooth supports advertisement of the devices and the services that they offer.
A service is identified by a standard 128‐bit universally unique identifier (UUID). This
makes it possible for devices to advertise their presence including details such as their
name and the services that they offer. Bluetooth also supports service discovery, which
allows a device to discover other devices and the services that they offer. Bluetooth supports
various protocols such as Point‐to‐Point Protocol, TCP/IP and UDP, Object Exchange
Protocol, and Wireless Application Protocol.

5.3.1  Bluetooth Low Energy (LE)

Bluetooth “Low Energy” (LE)—also known as Bluetooth Smart—is a standard also managed
by the Bluetooth Special Interest Group. Bluetooth LE aims to reduce power consumption
and makes it easier for smaller devices such as fitness sensors to communicate with other
devices. As it turns out, Bluetooth LE is not backward compatible with classic Bluetooth.
Detailed information on Android’s support for Bluetooth and Bluetooth LE can be found at:

http://developer.android.com/guide/topics/connectivity/bluetooth.html

http://developer.android.com/guide/topics/connectivity/bluetooth‐le.html

In order for your application to connect to a Bluetooth device, it will need the android.
permission.BLUETOOTH permission. In order for your application to discover and pair with
Bluetooth devices, it will require the android.permission.BLUETOOTH_ADMIN permission.

5.3.2  Bluetooth Generic Attribute Profiles (GATT)

Bluetooth Attribute Profile (ATT) is a wire application protocol, closely associated with
Generic Attribute Profile (GATT). GATT profiles are standard definitions of data and
services. More information about GATT is available at:

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

http://developer.android.com/guide/topics/connectivity/bluetooth.html
http://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

Wi‐Fi Peer‐to‐Peer (Wi‐Fi Direct)� 113

In late 2014, a new version of the Bluetooth standard, version 4.2, was announced—
which improves upon Bluetooth LE in several aspects—including IPV6 support, direct
Internet connection capability and faster speed. Bluetooth 4.2 offers other useful privacy
features including consumer controls to make a Bluetooth device invisible.

5.3.3  Android support for Bluetooth LE

The base Android API addresses the pairing and tethering of Android Wear devices with
Android handheld devices over Bluetooth. The Google Fit API—covered in Chapters 8 and 9—
has independent, self‐contained support for fitness sensor devices that support Bluetooth LE
and standard GATT profiles. Google Fit inherently supports only Bluetooth LE devices. It is
possible for Google Fit to work with devices that support other connectivity technologies—
Google Fit provides the building blocks for you to create your own software‐based sensor and
make it available to the Google Fit platform. After that, the Google Fit platform can interop-
erate with your custom software sensor via standard Google Fit interfaces, as though it were
a regular hardware sensor.

5.4  Wi‐Fi Peer‐to‐Peer (Wi‐Fi Direct)

Wi‐Fi is a widely used technology, which addresses the interconnectivity needs of local
devices, typically in a home or office. Various Wi‐Fi‐enabled devices such as personal com-
puters, handheld devices, cameras, game consoles, and so on connect to a wireless access
point (cum router), which in turn often provides access to the Internet. Wi‐Fi is already a
widely used and extremely popular technology. The Wi‐Fi Alliance owns the trademark and
manages the Wi‐Fi standard.

Wi‐Fi Direct, also known as Wi‐Fi P2P, is a peer‐to‐peer‐based Wi‐Fi standard
extension (also managed by the Wi‐Fi Alliance) that addresses the subject of direct con-
nectivity between two Wi‐Fi devices, without the need for a intermediate Wi‐Fi access
point. At least one of the devices will need to support Wi‐Fi Direct in order for connec-
tivity to work.

Devices supporting Wi‐Fi Direct typically implement and embed a software‐based
wireless access point and eliminate the need for the physical hardware‐based wireless
access point, which we are typically accustomed to using. Such a software‐based Wi‐Fi
Direct access point can be simple or even quite sophisticated; it can act as a router and
serve as a bridge to the Internet.

Just one sophisticated Wi‐Fi Direct‐enabled device in a local network can provide
connectivity for several legacy Wi‐Fi‐“only” devices and provide them all with Internet con-
nectivity as well.

Wi‐Fi Direct works over Wi‐Fi, which has a better range and faster speed than several
other interconnectivity technologies.

Compared to Bluetooth (classic), Wi‐Fi Direct offers longer connectivity range and
faster speeds. Compared to Bluetooth LE, Wi‐Fi Direct offers a better range. Compared to
NFC technology covered later in this chapter, Wi‐Fi Direct offers a better data transfer rate.

114� Android Device Discovery and Communication

Wi‐Fi Direct’s ability to bridge the path to the Internet for other devices tends to reduce
the need for individual smaller devices to possess independent Internet access. This can
be very useful in a world of a multitude of devices including wearables and IoT devices.

5.4.1  Android Wi‐Fi Direct / P2P API

Android’s Wi‐Fi Direct/P2P API allows Android devices with the appropriate Wi‐Fi Direct
hardware to connect directly to each other over Wi‐Fi, without an intermediate access
point. This API helps your application in discovering, requesting, and connecting to peers
without being connected to the conventional network. Many devices and peripherals such
as cameras, projectors, printers, scanners, and sensors have support for Wi‐Fi Direct. More
information about Android’s support for Wi‐Fi Direct can be found at:

http://developer.android.com/guide/topics/connectivity/wifip2p.html

http://developer.android.com/training/connect‐devices‐wirelessly/nsd‐wifi‐direct.html

5.5  Zero Configuration Networking (zeroconf)

Devices—much like humans in society—can be organized to effectively “meet and greet”
other “peers” devices on the local network and share their (host/device) names and their
“occupations”: the particular services they offer (provide). Zero configuration networking
(zeroconf) is, today, a set of open standards and technologies that makes it easier for devices
and applications to interconnect and interoperate over the local TCP/IP network, with
minimal manual setup and configuration—hence the term “zero configuration.”

Stuart Cheshire who holds a Ph.D. from Stanford University pioneered the ideas behind
zero configuration networking and led its development since the mid‐1990s. Working at
Apple, he authored several IETF RFCs that aim to make this technology an open standard.
Cheshire, along with Daniel Steinberg, has coauthored a book titled Zero Configuration
Networking: The Definitive Guide published by O’Reilly.

Various zeroconf software protocols aim to make it possible for devices and applications
to advertise their existence on the network and discover other services on the network.
Service discovery is the concept and set of protocols that are a part of zeroconf, which
address the automatic discovery of services on the network. Ultimately, zeroconf makes it
easier for consumers to get their devices and applications to interoperate and work together,
without cumbersome manual steps.

Zeroconf is built on top of core technologies such as the assignment of network IP
addresses to networked hosts (devices) on the network, automatic distribution and resolution
of hostnames, and location of network‐based services. Multicast Domain Name Service
(mDNS) is used to resolve hostnames to IP addresses within small networks.

Zeroconf is aimed at local consumer networks, which typically have a limited number
of hosts. Zeroconf was originally released by Apple as Rendezvous, but it was later renamed
to Bonjour®. Zeroconf is platform and vendor agnostic and interoperates across OS
platforms. Avahi is an open‐source GPL‐based implementation of zeroconf for Linux;
implementations on most major platforms are also available.

http://developer.android.com/guide/topics/connectivity/wifip2p.html
http://developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html

Near Field Communication (NFC)� 115

Universal Plug and Play (UPnP) is another standard and set of protocols that supports
zeroconf and addresses detection and discovery of consumer and entertainment devices on
the network. UPnP AV is an extension that addresses the particular needs of audio and
video devices such as TVs, VCRs, CD/DVD players, media servers, set‐top boxes, stereo
systems, and so on. UPnP is also vendor and platform independent. UPnP‐compatible
devices are able to advertise their presence and capabilities on the network, so that other
devices and applications can discover them and avail of their services over the network.

Since several years, it has become common for consumer devices such as printers,
scanners, and TVs to support zeroconf and/or UPnP. As more and more consumer devices
and home appliances including washers and dryers, light bulbs, and so on commence to
join the local IP network, the relevance and potential for zeroconf will tend to increase.

While some health‐ and fitness‐related sensor devices are typically carried around by
the user, others such as a weigh scale, for instance, tend to “reside” within the consumer’s
home. It becomes relevant for a weigh scale to support some form of connectivity such as
Wi‐Fi or Bluetooth, so that the fitness readings (besides being displayed via the weight
scale’s display) can also be available to other applications on devices such as phones,
tablets, netbooks, and so on. Wi‐Fi has a better range than Bluetooth, and Wi‐Fi‐based
connectivity in conjunction with zeroconf can make it easier for the weigh scale’s network
service and readings to be discoverable and accessible over the local IP network.

Zeroconf is thus relevant both for some health‐related sensors and home automation
integration from mobile devices, including phones and smart watches, over the local wired
and wireless IP network.

5.5.1  Android Network Service Discovery (NSD)

Android has support for Network Service Discovery (NSD) which helps your application
detect other devices and services on the local network, which can be useful for file sharing,
gaming, and other applications including home automation and fitness sensor devices that are
part of the consumer’s local network. Details of Android’s support for NSD can be found at:

http://developer.android.com/training/connect‐devices‐wirelessly/nsd.html

5.6  Near Field Communication (NFC)

Near Field Communications (NFC) is a technology that operates over a short range of
about 4 centimeters (cm) or less to initiate a connection between two devices. NFC is
suitable for sharing small payloads such as a visiting card, URLs, credit card payment
information, and so on. Compared to classic Bluetooth, NFC has a shorter range, con-
sumes less power, and operates at slower speeds. Some health and fitness sensors use
NFC‐based connectivity.

NFC has no concept of pairing between devices. NFC communication involves an initi-
ator and a target; the initiator creates the radio‐frequency (RF) field that can power a passive
target called the NFC tag. NFC tags can store data up to 4096 bytes and are typically “read
only,” but they can also be rewritable. NFC tags are used in key fobs and cards.

http://developer.android.com/training/connect-devices-wirelessly/nsd.html

116� Android Device Discovery and Communication

NFC can be used on a peer‐to‐peer communication basis when both sides are powered—
such as two phones. Android Beam®—a feature built into Android—simplifies peer‐to‐
peer communication between two Android devices by initiating communication via tapping
the phones together. The connection is automatically started when two devices are in range
and requires user actions prior to data transmission and exchange.

More information on Android’s support for NFC can be found at:

https://developer.android.com/guide/topics/connectivity/nfc/index.html

5.7  Universal Serial Bus (USB)

Universal Serial Bus (USB) is a technical standard and protocol that addresses intercon-
nectivity between a host device and a peripheral device, via direct physical or wired
connections. A wide variety of computer peripherals and devices such as keyboards,
mouses, printers, scanners, cameras, health monitors, game consoles, mobile devices, and
so on use USB standards for connectivity. Some health monitors and sensors use USB‐based
connectivity.

USB was developed in the mid‐1990s and has been in use for over a decade; there have
been many updates to the versions of the specifications over the years, the most recent—at
the time of writing—being version 3.1. The USB interface addresses both data communi-
cation and the supply of power. The USB host device initiates all communications, while
the USB peripheral/accessory device responds to queries from the host. The USB host can
supply power to the USB peripheral/accessory.

5.7.1  USB On‐The‐Go (USB OTG)

USB On‐The‐Go (USB OTG) is an extension that is part of the USB 2.0 standard that
allows two devices to negotiate which of them will play the role of the USB host. USB
OTG is very useful because a device can act as a peripheral to a larger “host” device at one
time and also act as a host to a typically smaller device at another time. For instance, an
Android phone can serve as a host in USB host mode to an accessory such as a USB
speaker or microphone and power the USB bus to supply power to such an accessory. The
same Android device can serve as a storage peripheral when connected to personal computer
in another situation and get its battery recharged over the USB during this period.

More information on Android’s support for USB host and accessory/peripherals can be
found at: https://developer.android.com/guide/topics/connectivity/usb/index.html

References and Further Reading

https://www.bluetooth.org

http://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group

http://developer.android.com/guide/topics/connectivity/bluetooth.html

https://developer.android.com/guide/topics/connectivity/bluetooth‐le.html

https://developer.android.com/guide/topics/connectivity/nfc/index.html
https://developer.android.com/guide/topics/connectivity/usb/index.html
https://www.bluetooth.org
http://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group
http://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html

References and Further Reading� 117

http://www.bluetooth.com/SiteCollectionDocuments/4‐2/bluetooth4‐2.aspx

http://www.wi‐fi.org

http://www.wi‐fi.org/discover‐wi‐fi/wi‐fi‐direct

http://en.wikipedia.org/wiki/Zero‐configuration_networking

http://en.wikipedia.org/wiki/Stuart_Cheshire

http://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol

http://en.wikipedia.org/wiki/Universal_Plug_and_Play

http://en.wikipedia.org/wiki/Near_field_communication

https://developer.android.com/guide/topics/connectivity/nfc/index.html

http://en.wikipedia.org/wiki/USB

http://www.usb.org

http://en.wikipedia.org/wiki/USB

http://en.wikipedia.org/wiki/USB_On‐The‐Go

http://www.usb.org/developers/docs/

http://www.bluetooth.com/SiteCollectionDocuments/4-2/bluetooth4-2.aspx
http://www.wi-fi.org
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
http://en.wikipedia.org/wiki/Zero-configuration_networking
http://en.wikipedia.org/wiki/Stuart_Cheshire
http://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
http://en.wikipedia.org/wiki/Universal_Plug_and_Play
http://en.wikipedia.org/wiki/Near_field_communication
https://developer.android.com/guide/topics/connectivity/nfc/index.html
http://en.wikipedia.org/wiki/USB
http://www.usb.org
http://en.wikipedia.org/wiki/USB
http://en.wikipedia.org/wiki/USB_On-The-Go
http://www.usb.org/developers/docs/

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

This section covers the Android Wear platform and API, as well as the hands on steps of
connecting and setting up of Android Wear devices for development and debugging.

Part III  Android Wear Platform and SDK

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 6  Android Wear Platform

6.1  Android Wear

Android Wear is the official Wearable flavor of the Android OS from Google, Inc.
designed for smart watches and similar devices. Android Wear was formally announced in
March 2014 and released soon after. Many major hardware vendors, chip makers, and
jewelry designers announced their support, and some of them released Android Wear
devices to the consumer market shortly thereafter. The numerous Android Wear partners
include Samsung, Motorola, LG, HTC, ASUS, Broadcom, Qualcomm, Intel, Fossil, Inc.,
MediaTek, and Imagination Technologies, and the list is growing.

The open nature of the Android platform makes it possible for hobbyists, enthusi-
asts, and businesses to port and extend the Android OS to a wider range of devices
over and above those supported officially. There are innumerable such efforts and one
such endeavor was the WIMM One smart watch from WIMM Labs, which was
released in 2011.

The WIMM One was based on the Android OS version 2.1 code base. Figure 6-1 shows
a WIMM One watch from WIMM Labs, circa 2011. Google, Inc. acquired WIMM Labs
sometime in 2012. Thus, the Android Wear platform appears to have its origins in the
WIMM One smart watch.

122� Android Wear Platform

Figure 6-2A  Square Android Wear device, booting up.

6.2  Android Wear Platform: Android Wear OS, Wear Devices, and Wear API

The Android Wear platform consists of the Wear OS, the Wear devices, and the APIs that
support writing Wear Apps. Wear devices are available in a variety of models from
numerous manufacturers.

6.2.1  Android Wear OS

The Android Wear OS, at the time of writing, runs on ARM and Intel x86 (Atom) family
CPUs. The Android Wear OS is constrained to be lightweight and subsets the standard
Android OS and application runtime environment—meaning that a few of the standard
Android APIs are not available on Android Wear.

6.2.2  Android Wear Devices

Android Wear devices run a full‐fledged OS—the Android Wear OS. Wear devices have the
ability to execute Wear Apps directly on them. Android Wear devices have two standard
shapes: square or round.

Attribution: Wikipedia user Bostwickenator, under Creative Commons Sharealike license 3.0.
Figure 6-1  WIMM One Android‐based smart watch from WIMM Labs, circa 2011.

Android Notifications and Android Wear� 123

Figures 6-2A and 6-2B show a square Android Wear device displaying boot animation
and the Android Wear logo while booting up. Android Wear emphasizes simple computer–
human interaction and interfaces, based on touch and voice. Android Wear supports voice‐
based interactions. “OK Google” is the “hot word” that triggers voice‐based interaction. It
tells your device that you are ready to issue a voice‐based command. There are several
system commands such as “Take a Note,” “Set an Alarm,” and “Take a Picture.” You can
also perform a voice‐based search using your Android Wear device.

Due to the small form factor and limited real estate, interactions are constrained to be
extremely simple, requiring minimal human input. They are also intended to be minimally
intrusive to the user’s attention. Additionally, Android Wear aims to align with fitness,
workout, and health metrics.

6.2.3  Android Wear API and Wear Apps

Android Wear Apps need to be targeted specifically for and run exclusively on the Android Wear
platform (API level 20). Wear Apps have the ability to access the hardware, sensors, GPU, and
services available on the Wear device. Android Wear Apps can access a large subset of the stan-
dard Android API. Particularly, a few packages are unavailable to Wear Apps, as listed below:

android.webkit

android.appwidget

android.print

android.app.backup

android.hardware.usb

This may at first seem like a limitation, but fortunately, Wear devices are typically
tethered to handheld Android devices, and since all Wear Apps released via the Google
Play Store have a corresponding “companion” App on the handheld device, some
limitations can often be bridged by leveraging the companion handheld App.

6.3  Android Notifications and Android Wear

Notifications were introduced minimally in Android version 3 (Honeycomb) and
have had major upgrades in both Android 4.1 (Jellybean) and Android version 5
(Lollipop). Notifications are now a very important part of the Android platform and

Figure 6-2B  Square Android Wear device, showing Wear logo while booting up.

124� Android Wear Platform

aligned with the Suggest paradigm. There is a close association between Notifications
and Android Wear.

Notifications are a mechanism by which Apps that are not currently in the foreground
can inform the user that some new information has arrived or that some event has occurred.
Notifications are managed by the Android OS and the system UI. An App makes the request
to the Android platform to display a Notification, and the Android OS issues the Notification
that the user sees in the system‐wide Notification status bar. In order to see details of the
Notification, the user needs to open the Notification drawer. Both the Notification area and the
Notification drawer are managed by the system. After a user receives a Notification, it can also
serve as an entry point directly into an App’s user interfaces, typically to display finer details
about the new information and offer actions on that information via the App’s user interfaces.
This makes Notifications a strategic entry point into your App and an effective mechanism for
user engagement—if leveraged properly.

Notifications include timely reminders and suggestions based on the user’s current
context. Android users are familiar with the Notification area in the status bar, which is
typically located on the top left of their device’s screen. A missed call, a newly arrived
email, and an upcoming calendar appointment are some examples of Notifications that
users are accustomed to seeing. The Notification system allows users to keep up to date
with information that they are likely to find of interest. Notifications are closely related to
the Suggest model of user interaction. The user may optionally perform actions via the user
interfaces presented by the Notification’s details; therefore, the latter and optional aspect of
the Notification flow can take the user into the Demand model of interaction.

Notifications have various Priority flags in the API—such as default, minimum, and
maximum—that the originating App can set in the application code. The use of the Priority
PRIORITY_MIN flag results in the system UI showing the Notification within the
expanded Notification drawer only whenever the user happens to open it. This approach
is an “opportunistic” and less intrusive flavor of Notifications—wherein nothing is dis-
played in the status bar and information is displayed only within the Notification drawer,
whenever the user happens to opens it. In addition to Priority, a Notification has several
attributes such as a message, an associated icon, an expanded message, and also option-
ally an action that takes the user into the App’s user interface. Other attributes include
flags for indicating whether the Notification is to be on a onetime alert basis or as an
ongoing event.

6.3.1  Android 5.0 (Lollipop) Notifications

The arrival of Android Wear into the Android ecosystem coincides approximately with
the release of the Android 5.0 (Lollipop) platform, which has added new features that
help the user control Notifications and Interruptions. One of the goals of Android Wear
is to enable the user to engage in their real‐world activities better and reduce the over-
heads and Interruptions associated with keeping up with the online world. Coincidentally,
the core Android platform itself has embraced the principle of giving users more control
over Notifications and Interruptions. Notifications have undergone significant changes,

www.allitebooks.com

http://www.allitebooks.org

Android Notifications and Android Wear� 125

and these changes in functionality, user interface, and structure of Notifications represent
somewhat of a departure in design with respect to earlier versions of Android.

Notifications have become more accessible and configurable. The user can choose to
receive Notifications through the device screen lock, with control over whether sensitive
content may or may not be displayed through the locked screen. Heads‐up Notification is
a new format for receiving high‐priority Notifications via a small floating window while
some other Apps are in active use.

Users can receive, dismiss, or act on a heads‐up Notification without leaving the App
they were using. You have likely noticed the heads‐up Notification’s small floating window,
when receiving an incoming call while using any random App on your Android 5 device.
Figure 6-3 shows such a heads‐up Notification about an incoming phone call, which can be
handled without having to leave the App that you are using.

Cloud‐synced Notifications are a mechanism for dismissing a Notification on all
devices after the user has dismissed the Notification on one device.

The visual design has undergone changes consistent with the new material design
theme.

Android 5.0 Notifications also introduce Wearable extensions for Android Wear, which
we will be covering shortly. You will also notice that Notifications for ongoing events and
running services are displayed persistently in the Notification drawer for the duration of the
event. It is very useful for the user to remain aware of both the ongoing events and running
services on their devices, such as an ongoing phone call.

Figure 6-3  Heads‐up Notification.

126� Android Wear Platform

Figure 6-4 shows a Notification drawer on my handheld device with several ongoing
Notifications such as USB debugging and an Android Wear service listening on a TCP
port.

6.4  Notification Settings and Control

The intricate configurations and control that users have over Notifications affect the
behavior of Apps on their handheld devices as well as on the tethered Wear devices. Most
Notifications that are shown on your handheld device will also be shown on your tethered
Wear device. When you dismiss a Notification on your watch, it is also dismissed from
your handheld device. Your handheld device and Wear device can be “muted” indepen-
dently. It is possible for your Wear device to receive Notifications while your phone is
“muted,” depending on the per App Notification Settings that are configurable by the user.

6.4.1  Sound and Notification and Priority Notification

You have likely noticed that Sound and Notifications have been grouped together in the OS
Settings. You will also have noticed that touching the volume control button on your hand-
held Android device shows a Sound and Notification control widget.

Figure 6-5 shows the Sound and Notification quick control widget with the default
settings. The volume control slider controls the volume for Notification alerts. The volume
slider responds both to the hardware volume +/− control buttons as well as to touch. The
Notification control includes the Notification level options: NONE, PRIORITY, and ALL.
The default setting is ALL (seen in Figure 6-5), which results in the Android OS providing

Figure 6-4  Android 5 Notification drawer showing ongoing events or running services.

Notification Settings and Control� 127

ALL Notifications to the user while applying the volume level per the setting in the slider.
The volume control works in conjunction with, but is secondary to, the Notification level
that is set by the user—this will become clearer in just a moment.

Figure 6-5  Sound and Notification, quick control widget—default Notification level ALL.

Figure 6-6A  Sound and Notification, quick control widget—Priority level NONE.

128� Android Wear Platform

Figure 6-6A shows the Notification filter set at NONE, which tells the Android OS that
the user does not want any Notifications for the specified duration. You will notice that the
volume slider has become invisible; this is because—with the Notification level set at
NONE, the user will not receive any Notifications, alerts, phone calls, and calendar
reminders—the volume level is rendered irrelevant.

The icon associated with the Notification level of NONE is a circle with a diagonal line
across it, which is shown on the status bar indicator during the interval that this mode is set
for. This indicator makes the user aware of the current Notification Priority setting.

Figure 6-6B shows the icon for Notification level NONE in the status bar.
Probably the most useful Notification level is the PRIORITY setting. Users who desire

not to be interrupted with routine Notifications can set the Notification level at PRIORITY
along with the desired time duration. This setting tells the Android OS that only those
Notifications set with the Priority flag in the originating App’s application code (and/or
applications and contacts whose Notifications have been marked as Priority in the
Settings—as we will see in the next sections) will get through to the user during the
specified interval while applying the volume level as set in the slider.

Figure 6-7A shows the widget setting at PRIORITY with the duration set at 4 hours—
during which period, only the highest‐priority Notifications will get through to the user.

Also, the five‐pointed star—used as the visual indicator for Priority mode—is displayed
in a Toast and also included in the status bar at the top right of the device.
Figure 6-7B shows the icon for Notification level PRIORITY in the status bar.

Figure 6-6B  Sound and Notification, status indicator for Notification level NONE.

Notification Settings and Control� 129

6.4.2  Notification Configuration and Control

Besides this quick Notification control widget we have just covered, you will find that the
OS/Device Settings have an item, Sound and Notification, that provides access to a wide
range of configuration and control.

Figure 6-7B  Sound and Notification, status bar indicator for PRIORITY.

Figure 6-7A  Sound and Notification, Notification level PRIORITY.

130� Android Wear Platform

Figure 6-8 shows both the Sound and Notification item in Device Settings.

Within Sound and Notifications, there are several subitems of which Notifications and
Interruptions are of special interest. Figure 6-9 shows the subitems under Sound and
Settings. The boolean Pulse Notification Light setting enables the blinking of your device’s
LED when a Notification is received during a time when your devices is idle/sleeping. The
blinking light helps indicate to the user that some new Notification has arrived such as
calendar appointment, email, a missed call, etc.

Figure 6-9  Notifications and Interruptions in Sound and Notification.

Figure 6-8  Sound and Notification in OS Settings.

Notification Settings and Control� 131

6.4.3  Locked Screen and Notifications

In general, users can protect their privacy using the options such as a screen lock—available
under Screen Security in the Security Settings. Related to the screen lock, the item When
Device is Locked under Notifications helps users control the behavior of Notification
delivery while the screen is locked.

Figure 6-10 shows the lock screen privacy options—a user can choose either not to have
any Notifications shown past the locked screen or to have them shown—with or without

Figure 6-10  Notification privacy control options, when device is locked.

Figure 6-11  Postscreen lock setup, Notification options.

132� Android Wear Platform

display of sensitive content. In case of a Notification about a missed call, the details of the
caller and/or the contents of the voice message are examples of sensitive content.

Also, right after users set up their Screen Lock under Security → Settings, they are
presented with Notification‐related options.

Figure 6-11 shows the Notification options offered right after users set up their screen
lock under security, thus giving users complete control of Notification behavior past the
screen lock.

App Notifications is another sub‐item under Notifications and of special interest to us,
because it governs the behavior of any App’s Notification on the user’s Wear device. Under
App Notifications, you will find a listing of all the Apps on your device.

Figure 6-12A shows the App Notifications’ listing of all Apps on my device, organized
alphabetically. The user can access any particular App and exercise complete control over
that App’s Notifications.

Figure 6-12B shows the Notification control options available on a per App basis. Most
significantly, the users have the ability to completely Block Notifications originating from
a particular App. They can also mark the Notifications originating from an App as Priority.
The Priority setting will allow Notifications from the App to flow through when the user
has a Notification level set for their device at Priority. The user can set whether sensitive
content from the App’s Notifications can be displayed through the locked screen. You will
notice on your device that all the App Notification settings have a reasonable, good faith‐
based, neutral setting that allows Apps to send Notifications. Users can control these default
settings in either direction relative to that, per their needs.

Your Wear device will display Notifications based on the individual App’s setting. So
even if your handheld device is set at Notification level NONE (effectively muted), your

Figure 6-12A  App Notifications—listing of Apps on your device.

Notification Settings and Control� 133

Wear device can still vibrate if it has not been muted. Effectively, your handheld device and
your Wear device can be muted independently.

Also, while developing and debugging Wear Apps, you will need to ensure that you do
not inadvertently Block the Android Wear App (Figure 6-12C).

Figure 6-12C  Notification control settings on the Android Wear App.

Figure 6-12B  Notification control on a per App basis.

134� Android Wear Platform

6.4.3.1  Notification Access  Another subitem under Notifications is Notification
Access, which is distinct from App Notifications. Notification Access helps the user control
which Apps can access Notifications posted by the system or by other Apps. Under
Notification Access, you will see a listing of Apps that can potentially access Notifications;
this is not a list of all Apps installed on your device, as was the case for App Notifications
covered in the previous section.

Figure 6-13A shows the list of such Apps on my device, which happens to be the Android
Wear App. You probably enabled Notification Access for the Android Wear App, when

Figure 6-13A  Notification Access—list of Apps with enabled/disabled status.

Figure 6-13B  Notification Access—list of Apps.

Notification Settings and Control� 135

running it for the first time. If you toggle this setting, you will see the kind of notice dialog
that pops up. This is obviously a very powerful setting because the App can access all
Notifications—from all other Apps as well as the Android OS. Users will do well to grant
this access only to Apps that they trust.

Figure 6-13B shows the dialog that reveals the intricacies of allowing Notification
Access for any App. Your App too can access Notification info if it has a good reason to, by
implementing the NotificationListenerService, which resides in the android.service.
notification package.

6.4.4  Interruptions

Another item of relevance to us as developers is the Interruptions item under Sound and
Notification. Interruptions is another layer of control that users can exercise over the intru-
sive aspect that is inherent to Notifications. Users can indicate their downtime days and
times—during which only Priority Interruptions will reach them.

Figure 6-14A shows the various subitems under Interruptions.
Figure 6-14B shows the options under the item When a Notification arrives, namely,

Always Interrupt, Allow Only Priority Interruptions, and Don’t Interrupt.
The user also has the ability to toggle whether Events and reminders and Messages are

to be included in Priority Interruptions.
Figure 6-14C shows the options under Calls/Messages from, namely, Anyone, Starred

contacts only, and Contacts only.
Figure 6-14D shows the item Downtime days, which helps users pick their downtime

days as well as the start time and end time.

Figure 6-14A  Interruptions, subitems.

136� Android Wear Platform

6.5  App Notification Strategy

It behooves any App developer to avoid the casual and frequent use of Notifications. If an
App comes across as being too “aggressive” or “noisy” with regard to Notifications, the
user may find it bothersome and therefore decide to avail of the ability to turn Notifications
off for that App or even uninstall the App altogether. The best strategy with regard to

Figure 6-14C  Interruptions—Calls/Messages from.

Figure 6-14B  Interruptions—When a Notification arrives.

Google Now and Android Wear� 137

Notifications is for Apps to use a conservative approach, possibly coupled with an adaptive
and gradual, “back off” or “accelerate” approach based on analyzing the usage metrics. If
a user has been dismissing an App’s Notification without consuming it, by entering the
App, that’s a sign that the Notification was likely not interesting enough or welcome. Using
such a data‐ and evidence‐based approach can personalize and align the Notification
threshold at the level of positive user engagement. Apps can also present users with the
option to turn Notifications off from within the App so that they do not originate them in
the first place if the user is not interested in them. Oftentimes, it’s a matter not of having
Notifications on or off, but about finding the right quality, level, and category of Notifications
that engages the user positively.

6.6  Google Now and Android Wear

Google Now is an intelligent personal agent or assistant from Google that works in the
background to bring you relevant contextual information, where and when you are most
likely to need it. Google Now emphasizes a voice‐based and hands‐free experience. Google
Now organizes information in the form of simple Info Cards on weather, next appoint-
ments, commute times, parking places, traffic information, boarding passes, stocks quotes,
sports scores, and more.

Google Now emphasizes the Suggest paradigm by making timely and contextually rel-
evant suggestions to the user while also making the Demand‐based voice search and user
input lightweight and convenient. There are strong overlaps of purpose between the Android
Wear platform and Google Now.

Based on the context of where you are, such as an airport, and based on the information
that is available with Google, such as an airline ticket in your recent email, Google Now

Figure 6-14D  Interruptions—Downtime days.

138� Android Wear Platform

provides you a Notification/suggestion card with your boarding pass at the right time and
place—without you having to search for it in your email.

Android Wear includes the Google Now functionality. Android Wear aims to make con-
textually relevant information readily available as you get on with your day, move around
from place to place, and engage in your schedule and various activities. Information can
become relevant based on where you are and what you are engaged in, and these can
change moment to moment.

6.7  Android Wear Devices: Getting Started

It’s always exciting to get new hardware setup, connected and ready for development. We
will now engage in some hands‐on setup of Android Wear devices for development.

6.7.1  Android SDK Wear Platform updates

Some readers may already have had an existing Android SDK setup in their environment,
and if so, it is important to ensure that both the Android Wear platform (API level 20) and
the Android 5.0/Lollipop (API level 21) are available in your local Android SDK environ-
ment. Android Wear requires Android 4.3 and above; however, this book targets the Android
5.0/Lollipop (API level 21) for all the examples and sample code (Figure 6-15).

Running the command android list targets is another way to verify that you
have the Android Wear platform in your Android SDK environment. The output of the
command should show content that includes the Android Wear platform/API level, as
shown in the snippet below:

Figure 6-15  Android SDK Manager, Wear platform API level 20.

Android Wear Devices: Getting Started� 139

6.7.2  Procuring an Android Wear device

There are several Android Wear device models available on the Google Play Store: https://
play.google.com. Figure 6-16 shows several Android Wear devices from ASUS, LG, Sony,
Motorola, and Samsung. The prices, at the time of writing, start at the $199 price point.
Over time, it is likely that the prices will reduce. The product reviews and ratings on the
Play Store may also be useful for choosing a device to purchase.

The following sections cover the steps involved in readying your Android Wear device
for software development.

Figure 6-16  Android Wear devices available on Google Play Store.

id: 7 or “android‐20”
 Name: Android 4.4W.2
 Type: Platform
 API level: 20
 Revision: 2
 Skins: HVGA, QVGA, WQVGA400, WQVGA432, WSVGA, WVGA800
(default), WVGA854, WXGA720, WXGA800, WXGA800‐7in,
AndroidWearRound, AndroidWearSquare, AndroidWearRound,
AndroidWearSquare
Tag/ABIs : android‐wear/armeabi‐v7a, android‐wear/x86

https://play.google.com
https://play.google.com

140� Android Wear Platform

6.7.2.1  Using Android Emulator with Wear AVD  Running the Android Wear
Android Virtual Device (AVD) in the Emulator can be useful in case you do not have a
Wear device.

One way to start the Android SDK Manager is by running the android command from
your command line. Once the Android SDK Manager is started, you can access the Tools
menu under which you will find the Manage AVDs item. Clicking on the Manage AVD will
take you to the Android AVD Manager.

Figure 6-17A shows the AVD Manager screen. Clicking on the Create button on the
right will take you to the Create New AVD screen.

Figure 6-17B shows the Create New AVD screen. You can choose a name of your choice.
You will need to select various options as indicated in the figure. The target will need to be
a current Wear platform—Android Wear 4.4w.2 (API level 20) at the time of writing. After
filling in all the fields, clicking on next will get you to the “result” screen.

Figure 6-17C shows the output result summary info of the AVD creation step. Clicking
on OK will take you back to the AVD Manager main screen. You should see your recently
created Wear AVD.

Figure 6-17D shows the recently created AVD listed. You can select it and click on the
Start button toward the right.

Figure 6-17A  Android Virtual Device (AVD) Manager.

Android Wear Devices: Getting Started� 141

Figure 6-17C  Wear AVD creation result.

Figure 6-17B  Create a new Wear AVD.

142� Android Wear Platform

Figure 6-17E shows the screen indicating a starting emulator. It may take some time to
progress.

Figure 6-17F shows the launch options presented. You may simply go with the default
and click the Launch button.
Figure 6-17G shows the Wear AVD starting. It may take some more time to progress.

Figure 6-17H shows the Wear AVD make further progress toward completing
startup.

Figure 6-17E  Starting your Wear AVD.

Figure 6-17D  Start your Wear AVD.

Android Wear Devices: Getting Started� 143

Figure 6-17I shows the successfully started Wear AVD.
Figure 6-17J shows the step of pairing your handheld device with your running Android

Wear AVD.

Figure 6-17G  Wear AVD screen during boot.

Figure 6-17F  Wear AVD launch options.

Figure 6-17J  Pairing with running emulator.

Figure 6-17H  Wear AVD nearly started.

Figure 6-17I  Wear AVD running.

Android Wear Devices: Getting Started� 145

6.7.3  Pairing and Enabling Developer Mode

Any new Wear device will typically need to be paired with a handheld device. As developers,
we will need to also get our Wear device set up for development and debugging. This
section covers the steps for pairing and enabling developer mode from scratch.

6.7.3.1  Unboxing your Wear device  In case you have already paired and enabled
Developer mode on you Wear device, you may skip this section:

1.	 Unbox your Android Wear device and perform the initial charging and/or other steps
per the manufacturer’s instructions.

2.	 Power up your Android Wear device for the first time, per the manufacturer’s
instruction set. After you boot your Wear device for the first time, you will be pre-
sented with a home screen.

Figure 6-18 shows a home screen watch face with status indicator icons for Notification
Sync status, Pairing status, and the battery level. You will likely observe that if your watch
is idle, the screen dims. Wear devices enter a low‐power, ambient mode when not being
used—in order to conserve battery power. Tapping anywhere on a dim screen will wake up
your watch.

6.7.3.2  Pairing your Handheld device with your Wear device  Once the Android
Wear device boots successfully, you will need to pair the Android Wear device with your
handheld Android phone or tablet device. This can be accomplished by installing and
running Google’s Android Wear App, which is available on the Google Play Store, on your
handheld mobile Android phone or tablet device. A search for keyword “Wear” on the
Google Play App Store should get you results that include the App named Android Wear by
Google, Inc. The link to the Android Wear app is https://play.google.com/store/apps/
details?id=com.google.android.wearable.app.

Once you have installed the Android Wear App, you will need to run it while keeping
both your handheld device and mobile device close together. Bluetooth will need to be

Figure 6-18  Android Wear device watch face, postboot.

https://play.google.com/store/apps/details?id=com.google.android.wearable.app
https://play.google.com/store/apps/details?id=com.google.android.wearable.app

146� Android Wear Platform

turned on in the handheld device via the OS Settings in order to complete the detection and
pairing steps.

Figure 6-19A shows the Android Wear App on its first run.

Several introductory screens will guide you through the steps of detecting your Wear
device and pairing with it from your handheld device (Figure 6-19B).

Figure 6-19B  Android Wear App, introductory screens.

Figure 6-19A  Android Wear App, running on a handheld Android device.

Android Wear Devices: Getting Started� 147

You will notice that Google Now and Google Fit can be integrated with the Android
Wear experience (Figure 6-19C).

It may take a moment for your handheld device to detect your Wear device over
Bluetooth (Figure 6-19D).

Figure 6-19D  Android Wear App, device scan.

Figure 6-19C  Android Wear App, several introductory screens.

148� Android Wear Platform

Once your Wear device is detected and listed, as shown in Figure 6-19E, you can tap on
the Wear device model (such as Gear Live 772A seen in the figure) in order to initiate
connectivity. You should also keep an eye on your Wear device screen for any changes or
display of information.

Figures 6-19F and 6-19G show the progressive screens that you will see during
this process.

Figure 6-19F  Android Wear App, Bluetooth pairing request, pairing code.

Figure 6-19E  Android Wear App, device scan contd.

Android Wear Devices: Getting Started� 149

Figure 6-19H shows the screen that indicates successful pairing.

Figure 6-19H  Android Wear App, paired and connected.

Figure 6-19G  Android Wear App, connecting to your Wear device.

150� Android Wear Platform

Figure 6-19I shows the connected status with my Gear Live device on the top left.
You will also find a gears icon on the top right of the action bar as well as the overflow

menu item on the action bar. The options within the overflow menu are shown in
Figure 6-19I. There are tutorials and demos available here, as well as the ability to discon-
nect from the connected Wear device and so on.

You can only pair your watch with one handheld device at a time. If you have one Wear
device and multiple phones, you can pair your Wear device with a different handheld by
running the Wear App on your handheld, disconnecting from any current Wear device and
using the option: Pair to a new wearable. If you have one Wear device and multiple
phones, you may need to reset your Wear device to the factory settings first based on your
device’s instruction manual, after which you will be able to pair it with a different hand-
held device.

6.7.3.3  Enabling Developer Mode and Debugging Settings on your Wear device 
Once you have paired the handheld device with your Wear device, the next useful step is
enabling the Developer mode and Debugging Settings on your Wear device; this section
covers the steps to accomplish this. Some specifics may vary depending on your Wear
device model. We will also cover some basics of navigation and interaction with the Wear
device that we will be needing to navigate the user interface in order to get debugging
setup.

You will likely notice that the indicator denoting lack of tethered connectivity (cloud
icon, with a line across it) disappears immediately after the successful pairing of the Wear
device with your handheld device. Tapping on the home screen tells your Android Wear
device that the user wishes to “Demand” something and takes you to the Cue Card, which
is very appropriately named—the users are cuing or indicating to the device the specifics

Figure 6-19I  Android Wear App, successful pairing.

Android Wear Devices: Getting Started� 151

of their demand; the Wear device is seeking a cue or indication about the users’ specific
demand or needs.

Figure 6-20A shows the Cue Card with the voice interface, at the bottom of which lies
an expansion icon—an upward pointing arrow. In the absence of any voice input for about
5 seconds, the Cue Card displays the options in this expanded list. You can also touch the
expansion arrow icon to get to the expanded list of actions.

Figure 6-20B shows the expanded list of actions; you will notice that swiping downward
will display more actions. The Settings action, which is of great interest for our needs, lies
toward the bottom of this list of actions. Typically, you do not expect users to visit Settings
very often. Part of good interaction design is to keep actions that are expected to be used
most often more easily accessible, and vice versa.

Figure 6-20C shows the Settings action item. Tapping on Settings will take you to a list
of subitems within Settings.

Figure 6-20D shows a few of the Settings’ sublist of options. As you swipe upward and
traverse down the list, you will see the various Settings items such as Adjust Brightness,
Bluetooth Devices, Always‐On Screen, Airplane Mode, Restart, Reset Device, Change
Watch face, and About. The exact ordering and even some of the items may vary slightly
based on your Wear device model.

Figure 6-20A  Cue Card, initial display of voice interface.

Figure 6-20B  Cue Card, with various options in expanded list.

152� Android Wear Platform

Figure 6-20E shows the About item at the bottom and one more upward swipe will select
and highlight the About item. Touching the About item will take you into the About
subitems.

Figure 6-20F shows the subitems under About within Settings, such as Model, Software
Version, Serial number, Build Number, and so on. They represent system‐level information

Figure 6-20E  Settings, About item.

Figure 6-20D  Inside Settings.

Figure 6-20C  Accessing Settings.

Android Wear Devices: Getting Started� 153

about the device and are of interest to us as developers. Tapping on the Build Number seven
times will enable developer mode on your Wear device.

Figure 6-20G shows the effect of commencing tapping on the Build Number item on my
device (for which Developer mode already happens to already be enabled). If you are doing
this on a new device, you should see an appropriate message indicating that developer mode
just got enabled based on your tapping seven times on the Build Number. As it turns out,
enabling Developer Mode/options by tapping on the Build Number is a onetime step on a given
device. Thereafter, you will have Developer options showing up on your device under Settings;
you can always disable or enable it anytime by using a toggle switch within Developer options.

You must have observed by now that swiping to the right clears the current screen from
the stack and gets you back to the previous screen. You can exit the About screen by swiping
to the right.

Figure 6-20H shows the items under Settings, which now include the newly added
Developer options item—after enabling Developer mode.

6.7.3.4  Enabling Wear ADB Debugging and Debug over Bluetooth  Accessing the
Developer options item will provide you with the options for enabling ADB debugging and
Debug over Bluetooth.

Figure 6-20F  Build number in About Settings.

Figure 6-20G  Tapping on the Build number in About Settings.

154� Android Wear Platform

Figure 6-20I shows the various items under Developer options. The most significant of
these are the ADB Debugging and Debug over Bluetooth items, both of which need to be
enabled for development/debugging purposes.

Figure 6-20J shows that the items ADB Debugging and Debug over Bluetooth have been
enabled.

Figure 6-20I  Developer options.

Figure 6-20J  Developer options—enabling ADB Debugging and Debugging over Bluetooth.

Figure 6-20H  Developer options—item was added after enabling Developer mode.

Wear Debugging and Android SDK� 155

6.8  Wear Debugging and Android SDK

Now that you have enabled Developer mode, ADB debugging, and Debug over Bluetooth
options on your Android Wear device, the next logical step is to get your development
machine, which has the Android SDK environment installed, connected with your Android
Wear device for debugging.

6.8.1  Wear Debugging via USB

Most Android Wear devices have a micro‐USB port, and if your Wear device has one, you
can easily connect your development machine to your Android Wear device using a micro
USB cable—just like how we typically connect our Android phone or tablet devices to our
development machines.

Once your Wear device is connected via USB, issuing the command adb devices
on your development machine’s command line will help verify that your Wear device is
detected by adb.

Figure 6-21A shows the output of the command adb devices, which shows the
serial number of my Gear Live Wear device. The serial number should match the serial
number of your Wear device listed under your device’s Settings.

In case you do not see your Wear device listed, issuing the command adb kill‐
server will cause the adb server running on your development machine to stop. After
that, the command adb devices will cause adb to start, with improved chances that you
will see your Wear device listed. Figure 6-21B shows this sequence of commands.

In case adb does not detect your Wear device, unplug the USB cable from the
development machine side and run the command tail ‐f /var/log/syslog /
var/log/kern.log and then plug the USB cable back into your development machine’s
USB port. Right after that, in a separate command window, run the dmesg command. You
should see some output indicating the status of the USB connection.

Figure 6-21A  adb devices—lists attached Android devices.

Figure 6-21B  adb devices—after adb “restart.”

156� Android Wear Platform

The relevant output of the tail and dmesg commands are listed in the two snippets below:

Another Linux command that can be useful for USB‐related debugging is the lsusb
command, which lists the USB devices connected to your development machine. If ADB
is unable to see your Wear device, you will need to determine whether it is detected at the
lower/operating system level. This will help in pinpointing and resolving the issue. The
same concept applies on any operating system, which has their specific low‐level tools that
help investigate any issues, should they arise.

Figure 6-21C shows the output of the lsusb command, with the listing of my Wear
device highlighted. It shows up with vendor ID 18d1 and vendor name Google,
Inc. This will likely be true for all Android Wear devices because it’s the adb driver that
engages in order to manage the interface for the USB device. On Linux systems, the local

==> /var/log/kern.log <==
Nov 29 13:28:44 acer-ubuntu13 kernel: [20896.774867] usb 3-1: Product: Gear Live
Nov 29 13:28:44 acer-ubuntu13 kernel: [20896.774872] usb 3-1: Manufacturer: Samsung
Nov 29 13:28:44 acer-ubuntu13 kernel: [20896.774876] usb 3-1: SerialNumber: R3AF700RH4E

==> /var/log/syslog <==
Nov 29 13:28:44 acer-ubuntu13 kernel: [20896.774867] usb 3-1: Product: Gear Live
Nov 29 13:28:44 acer-ubuntu13 kernel: [20896.774872] usb 3-1: Manufacturer: Samsung

Nov 29 13:28:44 acer-ubuntu13 kernel: [20896.774876] usb 3-1: SerialNumber: R3AF700RH4E

// Output of dmesg, to be run right after plugging in your Wear device
[21000.160893] usb 3-1: new high-speed USB device number 14 using xhci_hcd
[21000.177673] usb 3-1: New USB device found, idVendor=18d1, idProduct=d002
[21000.177679] usb 3-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[21000.177682] usb 3-1: Product: Gear Live
[21000.177685] usb 3-1: Manufacturer: Samsung

[21000.177687] usb 3-1: SerialNumber: R3AF700RH4E

Figure 6-21C  lsusb command.

Wear Debugging and Android SDK� 157

file /usr/share/hwdata/usb.ids lists the known USB vendor and device, IDs, and
names included therein. You should see an entry for 18d1 Google, Inc. in this file on your
local Linux development machine. In case you are missing the lsusb command, the
command sudo apt‐get install usbutils will install USB utilities including
the lsusb command.

Once you have adb connectivity established, you will be also able to shell into your
Wear device by using the command adb shell. Once you are logged on to your Wear
device, you can check out the kernel version info by using the command cat/proc/
version. You can also query the device’s size and density using the wm command
(Figure 6-21D). The wm command can also be used to emulate a density and size that is
different from its density and size. In this example, we are merely querying these
properties.

Figure 6-21E shows the commands executed (and their outputs) on the Wear device.
While you can adb shell into the device and execute commands after that, you might

find it convenient at times to execute commands on the Wear device from your
development machine using the syntax adb shell <command>. The output of the
command will become available on your development machine for storage or processing
in one shot.

Figure 6-21F shows a command executed using the adb shell <command> approach.
uptime is a common Linux command that tells you how long a host/device has been up
since booting up.

You can also access the Android logging system using the adb logcat command.

Figure 6-21E  Adb shell session.

Figure 6-21D  wm command.

158� Android Wear Platform

Figure 6-21G shows the output of the adb logcat command.
Thus, connecting your Wear device directly to your development machine via a USB

cable is the simpler and easier way to get debugging setup on your device. The Bluetooth‐
based debugging option, which we will cover in the next section, happens to entail a USB
cable‐based connection with your handheld device and many more steps and effort to set up.

6.8.2  Wear Debugging via Bluetooth

Some Android Wear devices may come with wireless charging, and in any case, it is pos-
sible that some Android Wear device models lack a USB port. In case your Android Wear
device lacks a USB port, getting debugging over Bluetooth will become essential. Because
your Wear device is paired and tethered to your handheld Android device, you can debug
your Wear device by connecting your development machine via USB to your handheld
device and using your handheld device as an intermediary between your development
machine and your Wear device.

First of all, if you had been successful or even attempted to get ADB working over USB
directly between your development machine and your Wear device—covered in the earlier
section—it would be best to reboot your Wear device and issue the command adb kill‐
server on your development machine. Because the following steps are quite elaborate
and sensitive, it’s ideal to start form a clean slate of a freshly started adb instance.

You will need to ensure that your Wear device has ADB Debug and Debugging Bluetooth
enabled within Settings → Developer options. (This should already be the case if you kept
up with the steps as described in Section 6.7.3.3 “Enabling Developer Mode and Debugging
Settings on your Wear device.”)

Figure 6-21G  adb logcat.

Figure 6-21F  adb shell‐based command executed directly from development machine.

Wear Debugging and Android SDK� 159

You will also need to ensure that your handheld device has Developer options and USB
debugging enabled—this will likely already be the case, if you have been actively using
your handheld Android device for development (Figure 6-22A).

Next, you will need to verify that your handheld device is paired and tethered to your
Wear device. You can do this by starting the Android Wear App on your handheld device
and verifying that the Wear device is in a connected state.

Figure 6-22B shows the Android Wear App’s screen upon starting it. Firstly, you will
need to confirm that your Android Wear device is in a connected state. The Wear device
name and the state of the connection are displayed on the top left of the screen shown in the
figure. Next, you will need to access this App’s Settings via the gear icons on the top right
of the action bar.

Figure 6-22C shows the subitems under the Android Wear App’s Settings. You will find
that the default state of Debugging over Bluetooth item at the bottom is in an off state. You
will need to enable this option.

Figure 6-22D shows the Debugging over Bluetooth option—soon after turning this
option on, you will find certain connectivity status about the Host and Target show up. The
Target represents your Wear device, while the Host represents your development machine.

Finally, you will need to execute a few commands on the command‐line shell on your
development machine as shown below:

adb forward tcp:<port ‐ any port number greater that 1000> localabstract:/adb‐hub
adb connect localhost:<same port number as above>
adb devices

adb ‐s localhost:<same port number as above>

Figure 6-22A  USB Debugging enabled on handheld device.

160� Android Wear Platform

adb port forwarding is used to set up an arbitrary port on localhost that forward requests
to an abstract endpoint. This sets up a TCP/IP listener port on the local development
machine, which forward requests via the intermediate handheld device to the Wear device.

Figure 6-22E shows the sequence of commands that I used in order to get Bluetooth‐
based debugging setup.

Once set up, you should be able to shell into your Wear device over adb.

Figure 6-22C  Android Wear App’s Settings, default state of Debugging over Bluetooth.

Figure 6-22B  Android Wear App Settings, connected state.

Peeking under the hood of your Wear Device� 161

Also, once Bluetooth forwarding is set up, you will see that both the Host and Target
show the connected status in the Android Wear App Settings under Debugging over
Bluetooth (Figure 6-22F).

6.9  Peeking under the hood of your Wear Device

Now that we have been able to connect from the Development machine to the Wear device,
let us take a quick peek under the covers.

Figure 6-23 shows the zygote and its child processes running on my Wear device. As we
discussed in Chapter 3 on Android fundamentals, all Android Apps are run in virtual
machine processes that are spawned by zygote. Therefore, taking a look at processes whose

Figure 6-22E  adb commands to get Bluetooth debugging setup.

Figure 6-22D  Android Wear App’s Settings, enabling Debugging over Bluetooth.

162� Android Wear Platform

parent process ID is the zygote process’ process ID (PID 0) tells us what Apps are running
on the device. I notice that there is an App running whose package name is com.google.
android.wearable.app. This is the package identical to the Android Wear app that we
installed from the Play Store earlier:

https://play.google.com/store/apps/details?id=com.google.android.wearable.app

This is consistent with the expected behavior wherein the handheld “companion” App
pushes and installs the Wear version of the App onto the Wear device after pairing and
tethering. I also notice that the Tockle App (com.texasgamer.tockle)—which I happened to
have installed from the Play Store on my handheld device—shows up as a running App on
my Wear device. The Tockle App enables control of your phone from your Wear device
including toggling your Wi‐Fi connectivity and other system settings.

Figure 6-23  Wear device zygote child processes.

Figure 6-22F  Host and Target both showing a connected status.

https://play.google.com/store/apps/details?id=com.google.android.wearable.app

Engaging your Android Wear device via Notifications� 163

6.10  Engaging your Android Wear device via Notifications

In the simplest scenario, the user can choose to sync Notifications to the Android Wear
device so that Notifications that are displayed on the handheld device are also displayed on
the Wear device over the tethered connection. Android version Lollipop (version 5) clears
Notifications on all devices when the user clears it on one device. Thus, Notifications that
are synched to Wear devices help engage users with their Wear device, and this represents
the simplest entry‐level engagement of users with their Wear devices. Depending on the
needs of your App, you can engage your App with Wear devices in various ways, at differ-
ent levels of engagement, and these have been covered in this section.

6.10.1  Engaging Android Wear via Notification Sync

Because Notifications can be synced between a user’s handheld device and Wear device, at
the simplest level of engagement, Notifications are presented on the Wear device as well.
This is the simplest form of engagement with Wear devices.

6.10.2  Wear Extended Notifications

The next progressive degree of engagement with Wear entails designing Apps that extend
Notifications to exhibit Wear‐specific user interfaces and behavior. The Android v4 support
library provides the NotificationCompat.WearableExtender class, which supports adding
Wear extensions to Notifications. Using the WearableExtender, you can provide actions
that are specific to Wear. Thus, Notifications can have a different actions and user experi-
ence across the handheld and Wear platforms. On the Wear devices, we need to emphasize
simplicity of interaction.

A quick review of the interaction flow, when receiving a Notification from the Gmail
App, provides a good example of how you might design your App’s extended Notification.

Figure 6-24A shows the receipt of an email. Tapping on the Notification will display the
content of an email (Figure 6-24B).

Figure 6-24B shows the display the content of an email. Swiping right will display the
Archive action on the email item (Figure 6-24C).

Figure 6-24A  Gmail arrival Notification.

164� Android Wear Platform

Figure 6-24C shows the Archive action, and swiping right offers other actions—Reply
(Figure 6-24D).

Figure 6-24D shows the Reply action, and swiping right offers the last action—Open on
handheld device (Figure 6-24E).

Figure 6-24E shows you the option to open the email item on your phone or handheld device.

Figure 6-24C  Archive.

Figure 6-24D  Reply.

Figure 6-24B  Gmail reading an email.

Hello Wear World: Writing our first Wear App� 165

Studying these above Wear‐based user interfaces and interactions can provide you with
ideas for designing your own Wear App.

6.11  Android Wear Targeted Apps

During initial development, Android Wear apps can be directly installed and executed on your
development Android Wear device—your Wear App will need to be targeted specifically for the
Android Wear platform whose API level is 20. An App that has been built for any of the handheld
Android OS versions will but, naturally, fail to install onto an Android Wear device. In
Development/Debug mode, you can directly build and install your Wear App’s apk onto your
Wear device. However, Android Wear devices that do not have the ability to access the Play
Store, particularly the Play Store App, has been excluded from the Android Wear software stack.
Therefore, for purposes of distribution—in order to release a production Wear App to
consumers—you will need to build an Android handheld companion App and embed your Wear
App within its res/raw directory. This is an intricacy that Android Studio handles for you when
you select the target form factor to handheld devices as well as Android Wear (API level 20).

6.12  Hello Wear World: Writing our first Wear App

We will now cover the subject of writing, installing, and executing a simple Wear App on
a Wear device or suitable AVD. Writing your first and simple hello Wear App is fairly easy
once you have your environment set up and working properly. We will be using Android
Studio to do so in this section. Once you open up Android Studio, you will need to create
or Start a new Android Studio project.

Figure 6-25A shows the new project screen, which requires you to enter the name of
your application, the company domain name (or package name in reverse order), and the
project location in your local file system. The next screen helps you select and target the
device form factor.

Figure 6-25B shows the new project’s Form Factor selection screen, which helps you
choose the form factors that the App is intended to run on. In this case, I selected solely
Android Wear platform, because I intend this to be a Wear App, in development mode.

Figure 6-24E  Open on phone.

166� Android Wear Platform

Figure 6-25C shows the new Wear project’s code artifacts, which you can browse and edit.
Figure 6-25D shows some trivial editing of the Wear project’s code artifacts.
Figure 6-25E the step of building your first Wear App by clicking on the green “play” button.

If you have your Android Wear device connected, you will be prompted to choose the
device that your App will be installed on—as shown in Figure 6-25F.

Figure 6-25B  Android App, selecting form factor.

Figure 6-25A  Android Wear new project.

Figure 6-25C  Android Wear project code artifacts.

Figure 6-25D  Android Wear, editing project code artifacts.

Figure 6-25E  Android Wear, building App.

168� Android Wear Platform

Figure 6-25G shows the Hello App running on the Android Wear device.

You may browse though the source tree of your first Wear App and get familiar with its
project’s artifacts.

References and Further Reading

http://en.wikipedia.org/wiki/WIMM_One

http://en.wikipedia.org/wiki/Android_Wear

http://www.android.com/wear

https://developer.android.com/training/building‐wearables.html

https://developer.android.com/reference/packages‐wearable‐support.html

https://support.google.com/androidwear/answer/6056843?hl=en

Figure 6-25F  Android Wear, choose device.

Figure 6-25G  Hello Wear App running on Android Wear device.

http://en.wikipedia.org/wiki/WIMM_One
http://en.wikipedia.org/wiki/Android_Wear
http://www.android.com/wear
https://developer.android.com/training/building-wearables.html
https://developer.android.com/reference/packages-wearable-support.html
https://support.google.com/androidwear/answer/6056843?hl=en

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 7  Android Wear API

7.1  Google Services and Google Play Services

Google Services include a wide range of Google‐powered features and functionalities such
as Maps, Location, Drive, Wallet, Games, Google+, Google Cloud Messaging, Android
Wear, Google Fit, authentication, and more. Information on Google Services is available at
http://developer.android.com/google/index.html.

Both the Android Wear API and the Google Fit API happen to be a part of the Google Play
Services and even though Google Play Services provides a wide range of APIs not limited to
Android Wear or Google Fit, we will begin this chapter by covering Google Play Services.

Google Play Services helps Apps avail of the latest Google‐powered features. Google
Play Services also provides system level features such as a dynamic security provider,
which provides an OpenSSL implementation that can be updated dynamically, thus helping
Apps benefit from timely security patches independently from the OS updates. Google
Play Services are available on most Android devices, but is not part of the Android OS.

There is a Google Play Services App available on the Google Play Store at:

https://play.google.com/store/app/details?id=com.google.android.gsm

Once installed on the user’s device, the Google Play Services App runs various services on
the Android device some of which work closely with corresponding Google services on the
cloud. You will notice that the Google Play Services App has a package name of com.google.
android.gsm. “GSM” is generally considered to be an acronym for Google Services for Mobile.

Apps running on a device can connect as clients to these services running on the device
and communicate via Android’s IPC mechanisms. You may have noticed the Google Play

http://developer.android.com/google/index.html
https://play.google.com/store/app/details?id=com.google.android.gsm

170� Android Wear API

Services App’s services running on your device when accessing Running Apps under your
device’s Settings. The Google Play Services App has an update cycle and versioning that is
mostly independent of the Android OS update cycle and versioning. At the time of writing,
the current version of Google Play Services is at 6.5 per the versioning scheme for the App
that is visible to the end users (Figure 7-1A).

Your App will need to depend on the Google Play Services library project in order to
connect to the Google Play Services App that is running on the device in order to avail of
particular features/APIs.

The Google Play Services library project, which is distinct from, and represents the
client side of, the Google Play Services App, can be found under your Android SDK instal-
lation home at

<ANDROID_HOME>/extras/google/google_play_services/libproject.

This library uses an integer‐based version numbering scheme, which at the time of writing
is at 6587000. This differs from but is related to the 6.5 version scheme that users can see.

Figure 7-1B shows the library version of Google Play Services library project (6587000),
which is the current version at the time of writing.

The Google Play Services App includes Android Services running on your device. The
Google Play Services library helps your App connect to the Google Play Services’ Android

Figure 7‐1A  Google Play Services running on a handheld device.

Figure 7‐1B  Google Play Services library project version.

Google Services and Google Play Services� 171

Services running on your device. Your App connects to the Google Play Services via the
library over AIDL/IPC. The Google Play Services App that is running on your device can
act as a proxy for the Google functionality on the cloud.

Figure 7-2 shows the relationship and interaction between your App, the Google Play
Service client library, the Google Play Services’ running Android Service components, and
the Google Services on the Cloud.

7.1.1  GoogleApiClient class

The GoogleApiClient is the entry point that enables your Apps to make a connection to the
Google Play Services and thereafter avail of particular features/APIs (such as Location,
Maps, Drive, Wallet, Games, Android Wear, Google Fit, and so on). The GoogleApiClient
class provides you with the ability to connect to Google Play Services and perform
synchronous and asynchronous calls to any of the various particular services.

Figure 7-3A shows an overview and partial listing of the GoogleApiClient, which resides
in the package com.google.android.gms.common. The nested GoogleApiClient.Builder

Your app

GoogleApiClient
Google Play Services Library

AIDL/IPC

Google Play Services
Wear, Fit, Maps, ...

Google Services
Cloud

Figure 7‐2  Google Play Services and its relationships with Google Play Services library.

Figure 7‐3A  GoogleApiClient class diagram, partial listing.

172� Android Wear API

class is used to set up the needed API, specify the scope, and register the various connection
callback listeners before build()‐ing the GoogleApiClient instance.

Other related classes in the same package include the ConnectionResult class, which is not
shown in the diagram. The ConnectionResult encapsulates the success or failure of the attempt
at connecting to the Google Play Services. The ConnectionResult also provides useful statues
and constants such as API_UNAVAILABLE, SIGN_IN_REQUIRED, DEVELOPER_ERROR,
and so on, which can be used in the GoogleApiClient.OnConnectionFailedListener imple-
mentation, to determine the reason for the failure when attempting to connect to the Google
Play Services from your App.

Figure 7-3B shows a sequence diagram for accessing a particular feature/API
from Google Play Services—by using the GoogleApiClient.Builder; the Builder pattern
pervades the various Android APIs. The call to addApi() adds the particular feature, while
the call to build() returns an instance of GoogleApiClient. Invoking connect() on the
GoogleApiClient instance connects it to the Google Play Services. After the client is suc-
cessfully connected, the particular feature‐specific APIs that were added earlier will
become available to the App (and the scopes specified earlier will be applicable).

In case an App needs multiple features from Google Play Services, it is possible—in
general—to add multiple APIs and multiple scopes to the same GoogleApiClient by making
multiple calls to addApi() and addScope() before calling connect(). However, particularly

Figure 7‐3B  Sequence diagram GoogleApiClient, accessing particular feature/API.

Android Wear API, in depth� 173

for accessing the Wear API using the GoogleApiClient, it is recommended to use a separate
instance of the GoogleApiClient exclusively for accessing the Wear API via the Wearable
class (covered in the next section). The GoogleApiClient’s attempt to connect will fail if the
Android Wear App is not installed on the device. Appending multiple APIs that include the
Wear API and other APIs into one GoogleApiClient instance can render the other APIs to
become inaccessible, although they are available.

Detailed documentation on Google Play Services is available at

https://developer.android.com/google/play‐services/index.html and

http://developer.android.com/reference/com/google/android/gms/common/package‐
summary.html.

In the year 2014, five versions of Google Play Services (in the series 4.x, 5.x, and 6.x)
were released, along with the introduction of new constructs and updated best practices as
well as deprecation of some classes and interfaces. These changes are generally accompa-
nied by useful documentation and sample code. If you are using Google Play Services in
your App, it is important to keep your App abreast with the latest version of the library and
the associated best practices.

7.2  Android Wear Network

At the center of the Android Wear platform and API lies the concept of the Android
Wear Network, which is a network of devices or “nodes.” The devices on the Android Wear
Network include Wear devices and other devices (such as handheld devices) that the
Wear devices connect to and interact with.

In a world of a multitude of devices, there is a dynamic landscape of devices on this
Wear Network that appears and disappears over time, as devices join and drop off this
network. While servers and computers on a stable wired network are set in a relatively
static landscape, wearable devices (which categorize as a body area network) tend to join
and drop off the wear network more dynamically due to factors such as their fluctuating
proximity to other devices and networks, loss of battery power, and so on. If you happen to
walk away from your desk on which your Android handheld device is placed, while wearing
your smart watch tethered to it, the connectivity between your handheld device and your
wear device is liable to undergo a disruption after some point. In such a backdrop, a given
node may have the need to detect other nodes, send messages to them, or sync some data
across them—in a secure manner that respects the boundaries and separateness of individual
Apps and their data.

7.3  Android Wear API, in depth

The Wear API contains at a high level a Node API, Data API, and Message API. The
package documentation is available at

https://developer.android.com/reference/com/google/android/gms/wearable/package‐
summary.html.

https://developer.android.com/google/play-services/index.html
http://developer.android.com/reference/com/google/android/gms/common/package-summary.html.
http://developer.android.com/reference/com/google/android/gms/common/package-summary.html.
https://developer.android.com/reference/com/google/android/gms/wearable/package-summary.html.
https://developer.android.com/reference/com/google/android/gms/wearable/package-summary.html.

174� Android Wear API

7.3.1  Wear API: wearable package

The Android Wear API’s main package, wearable (com.google.android.gms.wearable),
contains about seven interfaces and 10 classes.

Figure 7-4A shows an overview of the interfaces and classes within the wearable
package, which includes the Wearable class and key interfaces NodeApi, DataApi, and
MessageApi. The NodeApi supports Apps in becoming aware when nodes join and leave
the Wear Network. The DataApi helps read, write, and sync App data between nodes. The
MessageApi helps Apps send transient messages between nodes.

7.3.1.1  Node interface  The Node encapsulates basic information about a device or host
on the Android Wear Network.

Figure 7-4B shows the Node interface diagram. Conceptually, the Node has two
attributes—the display or human readable name (often generated from the Bluetooth device
name) and an identifier string.

7.3.1.2  WearableListenerService  Another key class is the WearableListenerService
that supports Apps in receiving node connectivity events and other events via the DataApi
and MessageApi, which are covered in detail in the next sections.

Figure 7‐4A  Wear API, overview of main wearable package, partial listing.

Figure 7‐4B  Node interface, complete listing.

Android Wear API, in depth� 175

Figure 7-4C shows the class diagram for the WearableListenerService, which
extends android.app.Service. Applications that are interested in receiving node
events or data/message events via the DataApi and MessageApi while in the
background will need to extend this class. There can be only one WearableListenerService
class in your application. Both your Wear App and the companion handheld Apps
will typically implement their own WearableListenerService if each is interested in
keeping updated of changes in the Android Wear Network. As it turns out, the
handheld device that’s paired and tethered to the Wear device is also a node in
the Android Wear Network.

7.3.1.3  DataEvent  The DataEvent is an interface for receiving data changes via the
data change listener in the DataApi or the WearableListenerService.

Figure 7-4D shows the DataEvent (as well as the MessageEvent, which is covered in
the next section). The getDataItem() method provides access to the data item, while
the getType() method specifies whether the data was changed(TYPE_CHANGED) or
deleted(TYPE_DELETED).

7.3.1.4  MessageEvent  The MessageEvent is an interface for receiving messages via
onMessageReceived() in the MessageApi or the WearableListenerService. Figure 7-4D
shows the MessageEvent (along with the DataEvent covered in the previous section). The
MessageEvent’s getData() method returns the payload of the message.

Figure 7‐4C  WearableListenerService, partial listing.

Figure 7‐4D  DataEvent and MessageEvent.

176� Android Wear API

7.3.2  Wearable class

The Wearable class is the main entry point into the Wear API and contains key static
attributes: API, NodeApi, DataApi, and MessageApi. It also contains a nested class
WearableOptions.

Figure 7-5A shows the Wearable class and its attributes and nested class WearableOptions.
The static attribute API is used in invoking the addApi() method while building the
GoogleApiClient instance.

The inner class Wearable.WearableOptions represents the API configuration parameters
for the Wear API.

Figure 7-5B shows the Wearable.WearableOptions inner class, which implements the
Api. piOptions.ApiOptions interface from the com.google.android.gms.common.api package.

Figure 7‐5A  Wearable class diagram.

Figure 7‐5B  Wearable.WearableOptions inner class.

Android Wear API, in depth� 177

7.3.3  NodeApi

The NodeApi interface supports detecting and learning about nodes as they connect and
join the Wear network or disconnect and drop off. The NodeApi can be said to be tuned into
the Node connection and disconnection events on the Wear network. When the NodeApi
detects these Node connection and disconnection events, it delivers them to the Wear Apps,
which have registered interest in these events.

Figure 7-6 shows the class diagram of the NodeApi class and it has the nested interface
NodeApi.NodeListener (which helps your App detect that a peer on the Wear Network has
connected or disconnected), NodeApi.GetConnectedNodesResult (which helps your App
obtain a list of connected nodes on the Wear Network), and NodeApi.GetLocalNodeResult
(which helps your App in accessing the node object which represents “this” device, the
local device that your App is running on).

7.3.4  DataApi

The DataApi interface and its associated family of interfaces and classes provide Apps
with the ability to read, write, and synchronize data across the devices on an Android
Wear network while maintaining the privacy of the data within the App. Fundamentally,
the DataApi provides the put and get functionality in order to read and write data to
the Wear Network. The DataApi works closely with the DataItem, which encapsulates
the data.

Figure 7‐6  NodeApi class diagram.

178� Android Wear API

Figure 7-7 shows a partial listing of the DataApi interface and its inner interfaces DataApi.
DataListener (which can be used to register a listener using the addListener() method), DataApi.
DataItemResult (which can be used to read a single DataItem when using the getDataItem()
family of calls), DataApi.DeleteDataItemsResult (which is used to verify that number of items
deleted upon making the call to deleteDataItems()), and the DataApi.GetFdForAssetResult
(which can be used to obtain the file descriptor of an Asset—a binary blob data covered in
Section 7.6.1 of this chapter—when making the getFdForAsset() family of calls).

Fundamentally, the DataApi provides the ability to add, retrieve, and delete DataItems on the
Android Wear Network. It also provides the ability in the nested DataListener to listen for changes
in the data. The WearableListenerService, which implements the DataApi and was covered
earlier in this chapter, is useful for listening for data changes in the background. Calling the
getDataItems() on booting can help keep up to date with changes while the device was offline.

7.4  DataItem, DataMapItem, and DataMap

DataItem, DataItemMap, and DataMap are closely related, and furthermore, they are all related
to the PutDataRequest and PutDataMapRequest, which are covered in the very next section.

7.4.1  DataItem

A DataItem is an interface that represents the data that needs to be read and written via the
DataApi to the Android Wear network. DataItems are inherently synchronized across all
the nodes in the user’s Android Wear Network. DataItems can be set on a local node even
while that node is not connected to the Wear network. Whenever such a local node gets
connected to the Wear network, the local DataItems that are pending synchronization will
get synchronized.

Figure 7‐7  DataApi and its related interfaces, classes (partial listing).

DataItem, DataMapItem, and DataMap� 179

Each DataItem contains a payload, which is a byte array. The payload is intended to be
small in size—up to about 100 KB—but in practice you must strive to keep your DataItem’s
payload much smaller than this limit. As with all remote procedure calls and interprocess com-
munication, it is best to lean toward the side of being more conservative. Chapter 3 on Android
IPC and AIDL has covered some of these constraints on the size of the payloads when
performing IPC in general. Assets—covered in a subsequent section—are appropriate for
encapsulating larger binary, blob data such as images. Each DataItem is identified by a path or
URI on the Wear network in the format wear://<node_id>/<path>, where node_id represents
the node that created the data, while the path portion of the URI is defined by the application.

A given DataItem remains private to the App that created it. Although the DataItem is a
fundamental block for the persistence and synchronization of data on the Wear network, it
does not have a constructor or Builder—the classes that are used when creating and using
DataItems in the DataApi operations include the PutDataRequest, DataMapItem, and
DataMap; these have been covered in the following sections.

Figure 7-8 shows the DataItem interfaces along with the DataItemMap and DataMap
classes.

The DataItem interface extends the Freezable interface from the com.google.android.
gms.common.data package. The Freezable interface pertains to transforming volatile data
into an immutable representation via its freeze() method. When the application code
receives data change events in the listener such as onDataChanged(), it receives a
DataEventBuffer of data events. When items in this buffer are used outside of the call
scope, freeze() should be invoked on such items.

DataItems are not intended for concurrent modifications and attempting so can result in
inconsistent results. Therefore, it becomes the responsibility of the App to implement its

Figure 7‐8  DataItem, DataItemMap, and DataMap.

180� Android Wear API

concurrent modification strategy. In one approach, only the creator node that originally
created the DataItem may modify the data. There are several other approaches, and it is left
to the App to use a concurrent update strategy for its DataItems.

7.4.2  DataMapItem

The DataMapItem wraps a DataItem like object and is a structured and serializable
representation of a DataItem. The original DataItem is not expected to be modified after
the DataMapItem has been created based on it. Figure 7-8 in the previous section includes
the class diagram of the DataMapItem.

The DataMapItem is closely associated with the PutDataMapRequest and the DataMap
classes, both of which are covered in the following sections.

7.4.3  DataMap

The DataMap provides a key value pair‐based support for storing basic data types such as int,
long, float, double, byte, as well as arrays and Bundles. Figure 7-8 shows some of the methods
available in the DataMap class. While the DataItem works with raw bytes of payload data and
requires serialization and deserialization to be handled in the application code, the DataMap
provides off‐the‐shelf support for storing fundamental data types as well as Bundles. The
DataMap works along with the PutDataMapRequest class, covered in the following section.

7.5  PutDataRequest and PutDataMapRequest

Both the PutDataRequest and PutDataMapRequest are used for creating new DataItems
and adding them to the Android Wear Network by calling the Data API.

7.5.1  PutDataRequest

The PutDataRequest class implements the Parcelable interface and is used to create and
encapsulate new DataItems on the Android Wear Network. It has a static create() method
which supports creating an instance of PutDataRequest with an associated, encapsulated
DataItem instance. The setData() method sets the payload on the encapsulated DataItem
instance. The putAsset() method adds an Asset to the associated DataItem. Once the
PutDataRequest instance has been populated, it can be added to the Android Wear Network
by calling the DataApi’s putDataItem() method.

Figure 7-9 shows class diagram of the PutDataRequest class that shows several of its
available methods. The PutDataRequest is the key class that works with the DataApi in
order to make the request to put/add DataItems to the Android Wear Network.

7.5.2  PutDataMapRequest

The PutDataMapRequest is a useful utility closely associated with and secondary to the
PutDataRequest. The PutDataMapRequest and DataMap classes make it convenient to
sync data to the Android Wear Network by using the serialization and de‐serialization that’s
available off the shelf. The PutDataMapRequest encapsulates a DataMap.

PutDataRequest and PutDataMapRequest� 181

As shown in Figure 7.10, the PutDataMapRequest provides static methods to create its
instance. Once instantiated, the getDataMap() method provides access to the encapsu
lated DataMap. Once the DataMap instance has been set with data as intended, the
asPutDataRequest() method creates a PutDataRequest instance with the encapsulated
data. After that, calling the DataApi’s putDataItem() method makes the request to add the
data to the Android Wear Network. The DataApi does not have a put method that caters to
the PutDataMapRequest directly.

There are far fewer methods in PutDataMapRequest as compared to PutDataRequest,
because it’s the DataMap operations that address the setting of the data.

Figure 7‐9  PutDataRequest class.

Figure 7.10  PutDataMapRequest class diagram.

182� Android Wear API

7.6  Asset and DataItemAsset

Both the Asset and DataItemAsset are similar in that they represent the binary, blob kind
of data.

7.6.1  Asset class

The Asset class represents data that may not yet have been added to the Android Wear
Network (Figure 7-11A).

The Asset class implements the Parcelable interface. The Asset instance can be created
via its static create family of methods. A bitmap can be converted into a byte stream, which
can be used to create an Asset instance using the static createFromBytes() method. The
PutDataRequest covered in the earlier section has a method putAsset(), which can be used
to populate the asset into the request. The DataApi has a putDataItem() method, which can
be used to make the request to add data to the Android Wear Network. Alternatively, the
Asset instance can be added to a DataMap instance via its putAsset() method, and the
PutDataMapRequest can be used to create the PutDataRequest eventually.

The getDigest() method returns a digest—a one way hash of the content—which can be
used to identify the Asset across devices on the Android Wear Network.

Assets can be received/extracted from data change events in the listener callbacks.

7.6.2  DataItemAsset interface

The DataItemAsset is a reference to an Asset after it has been added to the Android Wear
Network as part of a PutDataRequest (Figure 7-11B).

The getId() method returns a unique identifier for the Asset in the Android Wear Network.
The getDataItemKey() returns an identifier for the asset in the context of an existing DataItem.

Figure 7‐11A  Asset class diagram.

MessageApi� 183

7.7  MessageApi

The MessageApi supports sending and receiving short, transient messages privately
between instances of the same App that reside on different nodes in the Android Wear
Network. A given message is private to the App that created it and only receivable on other
instances of the App running on other nodes.

Messages are sent on a fire‐and‐forget basis—messages are delivered only to nodes that
are currently connected to the Android Wear Network. As nodes join and leave the Android
Wear Network, they will miss the messages that were sent during the time they had dropped
off from the Android Wear Network. Therefore, a message pertaining to starting an Intent
on the Wear device from the handheld, or a message pertaining to pausing the handheld
device’s media player, are examples where messages can be useful.

The MessageApi is suitable only for transient, short messages. On the other hand, the
DataApi covered in the earlier section is appropriate for persistence and synchronization of
long‐lived data.

Figure 7-12 show the MessageApi interface and its nested interfaces MessageApi.
SendMessageResult and MessageApi.MessageListener.

Figure 7‐11B  DataItemAsset interface diagram.

Figure 7‐12  MessageApi interface diagram.

184� Android Wear API

The sendMessage() method returns a PendingResult via which the asynchronous call
back onResult() tells you the outcome of the call. The call to getRequestId() on the
MessageApi.SendMessageResult provides a value that is equal to UNKNOWN_REQUEST_
ID in case of failure or the ID of the successfully sent message.

The onMessageReceived() callback on the MessageApi.MessageListener is used for
listening for MessageEvents, which contain the message payload.

The WearableListenerService, which was covered in Section 7.3.1.2, implements the
MessageApi as well as the DataApi. The WearableListenerService is suitable for listening
for events when in the background.

7.8  Wearable UI Library

Android Wear represents a unique form factor, and therefore, Wear Apps are significantly
different from those for the handheld Android devices, both in terms of overall application
design and in terms of user interface (UI).

The Wearable UI library (Figure 7-13A) is a support package that provides UI and sup-
porting component exclusively for Android Wear Apps. It includes classes such as
WearableListView, WatchViewStub, CircledImageView, CardFragment, and so on.

In order to use the Wearable UI library, you will need to ensure that the Extras →
Google Repository Package has been installed via the Android SDK Manager and is up to
date. Additionally, your project’s build.gradle file will need to declare compile “com.
google.android.support:wearable:+” in the dependencies section.

Detailed documentation on the Wearable UI can be found at:

https://developer.android.com/shareables/training/wearable‐support‐docs.zip

https://developer.android.com/training/wearables/ui/layouts.html

Figure 7‐13A  Wearable UI library package overview.

https://developer.android.com/shareables/training/wearable-support-docs.zip
https://developer.android.com/training/wearables/ui/layouts.html

Wear Interaction Design� 185

Figure 7-13B shows the WearableListView, the CircledImageView, and several other
classes in the view sub‐package.

Figure 7-13C shows the WearableCalendarContract, WatchFaceCompanion, and
ConfirmationActivity classes in the provider, companion, and activity sub‐packages,
respectively.

Figure 7-13D shows the WatchFaceService and the WatchFaceStyle in the watchface
sub‐package, respectively.

7.9  Wear Interaction Design

Android Wear Apps are meant to be aware of the user’s current context, physical location,
activity, time of the day, and so on and provide relevant and timely information to the user.
Android Wear is meant to act like a user’s personal assistant. Thus, Wear Apps are meant to
launch automatically and insert relevant cards into the context stream, provide simple,
“glanceable” information, and require minimal interaction. The Wear design principles
focus on not stopping the user and minimize vibration and interruption.

Figure 7‐13B  Wearable UI library view package classes.

Figure 7‐13C  Wearable UI library provider, companion, and activity sub‐packages.

186� Android Wear API

The recommended creative vision and design principles for Android Wear Apps are
covered elegantly at

https://developer.android.com/design/wear/creative‐vision.html

https://developer.android.com/design/wear/principles.html

https://developer.android.com/design/wear/index.html

7.10  Accessing Sensors

Some Android Wear devices have built in GPS sensors, thereby providing the Wear device
with independent location detection capabilities. Location awareness from within the Wear
App can be useful in various contexts including but not limited to fitness. Wear Apps have
direct access to the hardware sensors as well as user physical activities and the services that
run on Wear device. As with any Android device, the PackageManager class provides the
ability to query whether particular features and sensors are available on the device using the
hasSystemFeature() method call.

In case the Wear device does not have a built in GPS and happens not to have an intact
tethered connection to a handheld device (with location enabled), when it makes a call
to access the location, it will encounter an exception and will need to hand that
gracefully.

Since Wear devices are paired and tethered to handheld Android devices, they can
depend on the handheld devices for various nuggets of information as needed. As long as
the tethered connection is intact, a call to access the location on the Wear device from
within the Wear App results in the Android OS determining and providing such information
in the most optimal and power‐efficient manner.

Figure 7‐13D  Wearable UI library watchface package classes.

https://developer.android.com/design/wear/creative-vision.html
https://developer.android.com/design/wear/principles.html
https://developer.android.com/design/wear/index.html

References and Further Reading� 187

7.11  Production Wear Apps

With regard to the release and distribution of your Wear App, Wear devices do not offer the
Google Play Store to the user. Therefore, users cannot browse, list, and install Wear Apps
via their Wear devices directly from the Play Store.

In order to release an Android Wear apk to the Google Play Store, it will need to be
packaged and embedded within the companion handheld App, which will need to be
published to the Google Play Store. The res/raw directory of the handheld App project will
need to contain the Wear App’s Apk. Android Studio takes care of this for you when you
create an App and target it to the handheld and Android Wear platforms simultaneously.

Wear Apps need to be released to the public via their “companion” handheld Apps
published via the Google Play Store. Therefore, it is necessary to build and distribute a
“companion” handheld App—with the Wear apk embedded within it. The embedded Wear
App will be installed to the paired and tethered Wear device via the companion handheld
App. This handheld App can also be useful for supporting the Wear App for accessing the
network and providing it other services and functionality such as GPS and location info.

References and Further Reading

https://developer.android.com/google/auth/api‐client.html

https://developer.android.com/google/play‐services/setup.html

https://developer.android.com/reference/com/google/android/gms/wearable/package‐summary.html

https://developer.android.com/training/building‐wearables.html

https://developer.android.com/training/wearables/ui/layouts.html

https://developer.android.com/shareables/training/wearable‐support‐docs.zip

https://developer.android.com/design/wear/creative‐vision.html

https://developer.android.com/google/auth/api-client.html
https://developer.android.com/google/play-services/setup.html
https://developer.android.com/reference/com/google/android/gms/wearable/package-summary.html
https://developer.android.com/training/building-wearables.html
https://developer.android.com/training/wearables/ui/layouts.html
https://developer.android.com/shareables/training/wearable-support-docs.zip
https://developer.android.com/design/wear/creative-vision.html

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

This section covers the Google Fit platform and API. The user’s ecosystem may include
a multitude of devices, sensors, and Fit applications from a diversity of vendors. In such a
backdrop, Google Fit provides a user centric data repository and common data types in the
interest of interoperability and collaboration. Google Fit applications are aimed at a very
specific segment and are bound by very specific terms and conditions. For one, Google Fit
applications are not intended to be “medical” applications. The Google Fit platform is not
intended to provide biometric functions. There are several developer conditions and
obligations regarding the use of the Google Fit API. This section covers the hands on steps of
connecting a Bluetooth LE fitness sensor and connecting to it from the Google Fit platform.

Part IV  Google Fit Platform and SDK

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 8  Google Fit Platform

8.1  Google Fit Platform Overview

The base Android platform SDK has had since some time the capabilities for accessing
built‐in sensors and connecting with peripherals including fitness sensors via mechanisms
including Bluetooth, Bluetooth LE, and more; these were covered in Chapter 5. Fitness‐
tracking Apps for Android have preceded the release of the Google Fit platform. The
Google Fit platform takes fitness‐tracking Apps to a more sophisticated level—it addresses
the domain from end to end for application developers.

Google Fit is a platform and open ecosystem for fitness and wellness tracking. A mul-
titude of sports & apparel companies, hardware vendors, and prominent App developers
have partnered with Google to collaborate and participate in the Google Fit platform. At
the time of writing, the Google Fit partners include companies such as Nike, HTC, LG,
Withings, Motorola, Noom, Polar, Runstatic, and RunKeeper. Google Fit helps devel-
opers in building sophisticated fitness Apps while giving users complete control over
their data.

Google Fit is user centric and hardware and application vendor independent—such
that fitness readings from diverse sensors can be acquired, categorized, stored, shared,
and analyzed in a collaborative and secure manner. The consumer has complete control
over the sharing of their data; they can also delete the data at any time. The cloud‐based
Google Fit API supports Android via the Fit API while also supporting Web and iOS
clients via a REST API.

192� Google Fit Platform

Figure 8-1 attempts to model the relationships and correlations between Users, handheld
devices, sensors, and Apps. A given user can have multiple devices on their person while
engaging in some real‐world physical activities. The devices on their person may have
hardware sensors as well as Fit Apps installed on them. The real‐world physical activities
that the user engages in can be inferred by the hardware sensors and software stacks. In
such a backdrop, of a multitude of devices and Apps from various vendors, it is important
to have a common data schema in the interest of interoperability and collaboration. It is
also important to organize fitness data in a user‐centric data repository. Not shown in the
diagram—to keep it simple initially—is the sensor data associated with the user that can be
stored on the cloud‐based Fit store.

8.2  Google Fit Core Concepts

The Google Fit API provides applications with the interfaces to access sensor data, record
and store such data, and access history data—all subject to user permission and control.
Google Fit provides important features such as standardized Fit Data Types, Sensor Data
Access and Recording support, cloud Fit data Store (storage), and History data access.

8.3  Fit Data Types

The nature of fitness sensor readings brings up the question of the units of measure:
are the various quantities to be measured in meters or feet, miles or kilometers, counts
per minute or hour, Lbs or Kilograms, … ? Google Fit Data Types are standardized

Figure 8-1  Users, devices, sensors, and fitness Apps.

Sensors� 193

data types that help establish a common data schema and units of measure. Fit Data
types provide an off‐the‐shelf schema that helps App developers jump start App
development and boosts interworkability between Apps and devices from diverse
providers, vendors, and App publishers. A given user may have several fitness sensors
from various manufacturers on their person. The user may also use a multitude of
fitness Apps—perhaps to evaluate them or because particular Apps have a better user
experience or better support for particular fitness activities that they engage in, and
so on. Fit Data types standardize on the units of measure for various quantities such
as heart rate in beats per minute, weight in kilograms, etc. Fit Types happen to be
aligned with metric system, which means that units such as meters and kilograms are
used for storage.

Much like the fundamental data types in programming languages identify and classify
the basic types of data such as int, long, char, byte, float, etc. and define their meanings,
ranges of values that they can hold, and the operations that can be performed on them,
so also the Fit Data types help classify and define relevant fundamental types of data in
the fitness domain, such as height, weight, heartbeat, etc, their associated units of
measure, and so on. Fit data types make it possible for different Apps to interoperate
seamlessly using these standard types.

Thus, Google Fit data types help establish a common data schema that’s usable
across fitness device models and fitness Apps. Google Fit Data types define a class
model that addresses fundamental fitness types such as height, weight, heart rate,
speed, etc.

8.4  Fit Data Store (Storage)

Google Fit Store (Storage) is a cloud service for Fit data storage hosted on Google’s infra-
structure. The Fit Store provides secure data storage and access capabilities for Mobile
Apps and Browser clients alike.

Fit Apps can access data stored in the Fit Store by other Apps, that is, data on the
Fit Store can be shared between different Apps—subject to the user’s approval and
permission. User consent is necessary in order for any Fit App to read or write fitness
data. Access to data is governed by Authorization and Permissions—users can exert
fined grained control over what particular types of fit data an App can access and
whether in read or write mode. The authorization and permissions are implemented
using scopes which leverage the OAuth 2.0 Scope to regulate access from particular
Apps to the Fit Store.

8.5  Sensors

The Sensor API helps Apps access raw sensor data from sensors available in Android
handheld devices, companion devices such as Android Wear smart watches, and
peripheral fitness sensor devices.

194� Google Fit Platform

8.6  Permissions, User Consent

Google Fit Apps require the user’s consent before they become operational and commence
to read and save Google Fit data. There are different categories of data, and Google Fit
provides users with granular control and consent mechanisms. Thus, users have the ability
to allow an App to access fitness data of particular categories in read or write mode.
Google Fit provides a Permissions model and Scope of data access, so that it is transparent
to the user what data—specific sensor readings and history records—a particular fitness
App is accessing.

8.6.1  Permission Groups, Fitness Scopes

Google Fit defines OAuth scopes, which map to permission groups: activity, body, and
location. Each of these permission groups maps to specific data types. When Apps specify
a scope that they work with, Google Fit in turn makes the request of the corresponding
permission to the user. Only after the user’s consent is received, the Fit App is able to do its
work in compliance with the received consent.

Google Fit’s permission mechanism is handled at runtime and the first time that
the Fit App is run. This is slightly different but analogous in concept to the standard
Android Permission mechanism—when an App declares particular permissions such
as “android.permission.RECORD_AUDIO” or the more commonly used “android.
permission.INTERNET” in the application’s AndroidManifest.xml file, these permis-
sions are exposed to the user via the Google Play Store’s catalog prior to installation;
furthermore, after installation, the same permissions—and nothing more—are
granted to the App at run time in the secure, sandboxed environment on the user’s
Android device.

8.6.1.1  Activity Scope  The Activity scope pertains primarily to the data associated
with the type of the user’s physical activity or sport such as basketball, tennis, swimming,
walking, running, cycling, skiing, yoga, gardening, sleeping, and so on. It also includes
calories consumed and such information associated with the activity and its duration. More
information can be found at:

https://developers.google.com/fit/android/authorization#fitness_scopes.

The Google Fit Activity represents physical Activity and is unrelated to the user inter-
face Activity. It’s easy to discriminate between the two based on the context of the
conversation.

8.6.1.2  Body Scope  The Body scope pertains to information about the user’s body
metrics such as heart rate, weight, height, and so on.

8.6.1.3  Location Scope  The Location scope pertains to the user’s physical location,
speed, and so on.

https://developers.google.com/fit/android/authorization#fitness_scopes.

Hello Fit: hands‐on example� 195

8.7  Google Fit: Developer Responsibilities

App developers who build Apps for Google Fit are advised to adhere to certain core values:

Transparency

Make the user aware of what data is being collected and why.

Fitness and wellness purposes only

Do not use the data for purposes other than fitness (such as biometric, medical,
commercial, advertising, etc).

Adherence to user requests

Ensure that user requests such as deletion of their data are honored.

Adherence to Google Fit Developer’s Terms and Conditions and Branding Guidelines

which covers all of the above and more…

8.7.1  Developer Terms and Conditions

The Google Fit Terms and Conditions are available at https://developers.google.com/
fit/terms.

8.7.2  Developer Branding Guidelines

The Google Fit Branding Guidelines are available at https://developers.google.com/
fit/branding.

8.8  Procuring Sensor Peripherals

Your Android Wear device as well as your handheld Android device likely has several
sensors related to fitness including step counters, heart rate monitors, and more. In case you
have a Bluetooth LE sensor for fitness tracking, that would be useful for your Fit
development experiments. You may consider purchasing any Bluetooth LE fitness sensor
that supports a standard Bluetooth Low Energy GATT profile. In case you have a Bluetooth
classic fitness device, that would be useful for writing a software sensor.

8.9  Hello Fit: hands‐on example

Now that we have somewhat familiarized ourselves with the Google Fit platform and its
ground rules, we are ready to write our simple “Hello Fit” App. The corresponding project
hellofit is available in its entirety, as part of sample code for this book. This project was
created manually and uses the classic, ant‐based project tree, while the rest of the Fit
samples that make up the sample code for this chapter use the gradle‐based project tree. As
an Android developer, you will likely inherit and need to maintain existing projects or
leverage prominent library projects that happen to be aligned with the classic project tree.
Therefore, it is virtually essential at this time to be proficient in both these project structures.
(Android Studio is my default choice of IDE for Android development and does a great job

https://developers.google.com/fit/terms
https://developers.google.com/fit/terms
https://developers.google.com/fit/branding
https://developers.google.com/fit/branding

196� Google Fit Platform

of creating a new project and managing the dependencies between “modules”—modules is
a recently introduced term. There are various types of modules such as Android Application,
Library, Test, and so on. Most of this book was written before the term modules became a
formally defined term.)

When creating a Google Fit App, there are several setup steps and prerequisites including
using the application’s signing keystore’s SHA1 certificate fingerprint and the application’s
package name to enable the Fit API via the Google Developer Console. Also, Fit projects
have a compile time dependency on the Google Play Services library project.

The Hello Fit App accesses fitness data from available sensors using the SensorsApi. It
registers interest in data points of data types heart rate bpm, speed, and cumulative steps.
You may change these data types per your interests and to match the sensors that you have
available. The details of the Google Fit API are covered in the next chapter.

8.9.1  Google Play Services library project, dependency

All Google Fit projects depend on the Google Play Services library project, which is part
of the Extras that are available in your Android SDK installation.

Figure 8-2A shows the Extras section in the Android SDK Manager which includes the
Google Play Services library project with it’s installation status indicator in my local
development environment. You will need to ensure that Google Play Services has been
installed and is up to date in your local development environment before proceeding further.

I copied over the Google Play Services library project into a projects/external area in my
home directory, so as to avoid working within the Android SDK installation tree. The
following snippet shows the steps that built the Google Play Services library project via the

Figure 8-2A  Extras: Google Play Services.

Hello Fit: hands‐on example� 197

command line. The target of 17 is a relative target that happens to represent API level 21
(Android 5.0) in my local installation.

Figure 8-2B shows the setup of the play services library project. Any classic Android
project tree can be enabled for building via ant by executing the android update project
command.

Figure 8-2C shows the successful building of the Google Play Services library project.
In case you are using a gradle‐based build, you will need to declare the dependency

on Google Play Services via an entry in the App’s gradle.properties as shown in the
snippet below:

You will need to update this version to the latest version, which at the time of writing
happens to be 6.5.87.

$ cp ‐r /opt/androidsdk/extras/google/google_play_services/libproject/google‐play‐services_lib/.
$ mv google‐play‐services_lib google‐play‐services
$ cd google‐play‐services/
$ android list targets
…
$ android update project ‐‐path . ‐‐target 17
$ cat projects.properties
	 # Project target.
	 target=Google Inc.:Google APIs:21
	 android.library=true
$ ant clean debug

Figure 8-2B  Updating play services library project.

dependencies {
 …
 compile ’ com.google.android.gsm:play‐services:6.5.87’

}

198� Google Fit Platform

8.9.2  Using the SHA1 fingerprint of the keystore

You will need to determine the SHA1 fingerprint of the certificate that your Fit App will be signed
with. During development, Android applications are signed by the debug keystore by default.
The debug keystore is located at ~/.android/debug.keystore. The keystore password is “android”:

You may also create a keystore for your Fit App, suitable for using for a release version;
the snippet below shows the steps that this entails:

In either case, you must be sure to use the SHA1 fingerprint of the keystore that you will
be using to sign your App.

$ keytool ‐genkey ‐v ‐keystore wearbookfit.keystore ‐alias wearbookfitCert ‐keyalg
RSA ‐keysize 3072 ‐validity 50000
…
$ keytool ‐list ‐v ‐keystore wearbookfit.keystore

…

Figure 8-2C  Building play services library project.

$ keytool ‐list ‐keystore ~/.android/debug.keystore
	 Enter keystore password:
	 Keystore type: JKS
	 Keystore provider: SUN
	 Your keystore contains 1 entry
	 androiddebugkey, Sep 14, 2014, PrivateKeyEntry,

Certificate fingerprint (SHA1):

9E:EB:6B:61:31:62:D7:80:5E:DE:0D:86:2D:B0:4F:4F:F9:CF:20:D9

Hello Fit: hands‐on example� 199

Figures 8-3A and 8-3B show the commands I used to create the keystore, which I will
use for signing the Hello Fit App.

Figure 8-3C shows the command for listing the SHA1 fingerprint.

Figure 8-3A  Keytool—creating a keystore.

Figure 8-3B  Keytool—creating a keystore, continued.

Figure 8-3C  Keytool listing.

200� Google Fit Platform

8.9.3  Google Developer’s Console Activating Fit API

Keeping the SHA1 fingerprint information readily available and after having ascertained
the package name of the Hello Fit app (io.wearbook.hellofit), I proceeded to sign into the
Google Developer Console at https://console.developers.google.com.

Figure 8-4A shows the wearbookfit project that I created. I chose Android as the
application type and entered in the SHA1 fingerprint and package name as shown in
Figure 8-4B.

Figure 8-4B  Google Developer Console, SHA1 fingerprint and package name.

Figure 8-4A  Google Developer Console, wearbookfit project.

https://console.developers.google.com

Hello Fit: hands‐on example� 201

Figure 8-4C shows the enabling of the Fitness API.
Figure 8-4D shows terms and Google Fit terms of service that will need to be accepted

before proceeding further.

Figure 8-4C  Google Developer Console, enabling Fitness API.

Figure 8-4D  Google Developer Console, Fitness API terms.

202� Google Fit Platform

Figure 8-4E shows the Console with the Android client now authorized and setup for
Google Fit.

8.9.4  Creating the Android App

My next step was to create a new Android project with the package name of io.wearbook.
hellofit, coincident with the package name specified in the Google Developer Console. I
carried out the initial steps manually rather than through an IDE.

I created a directory hellofit for the project and used the android create project command.
After creating the project, I added a line in the project.properties file to reference the library
project as shown in the snippet below:

Google Play Services are versioned, and the application referencing the Google Play
Services library project needs to specify the version. I added the following snippet into the
AndroidManifest.xml file within the application element:

I copied the version.xml file from res/values in the Google Play Services library project into
res/values within the hellofit project. The contents of version.xml is shown in the snippet below:

 $ cat project.properties
target=Google Inc.:Google APIs:21
android.library.reference.1=../external/google‐play‐services

Figure 8-4E  Google Developer Console, Fitness API setup complete.

<meta‐data android:name=“com.google.android.gms.version”

 android:value=“@integer/google_play_services_version” />

Hello Fit: hands‐on example� 203

The following snippet shows the contents of ant.properties, which contains the refer-
ences to the keystore that I will be using for this project:

The following snippet represents the steps that I executed to create the project:

After making the changes shown earlier, the project built successfully:

The next step was to edit the HelloFitActivity to access the Fitness API via the
GoogleApiClient. The following snippet shows the initialization of the GoogleApiClient:

~/projects/hellofit $ cat ant.properties
key.store=./wearbookfit.keystore
key.alias=wearbookfitCert
key.store.password=****
key.alias.password=****

$ mkdir hellofit
$ cd hellofit/
$ android list targets
$ android create project ‐‐path . ‐‐name hellofit ‐‐target 17 ‐‐package
io.wearbook.hellofit ‐‐activity HelloFitActivity

$ ant clean release install

private void initGoogleApiClient() {
 this.googleApiClient = new GoogleApiClient.Builder(this)
 .addApi(Fitness.API)
 .addScope(new Scope(Scopes.FITNESS_BODY_READ))
 .addScope(new Scope(Scopes.FITNESS_LOCATION_READ))
 .addScope(new Scope(Scopes.FITNESS_ACTIVITY_READ))
 .addConnectionCallbacks(
 new GoogleApiClient.ConnectionCallbacks() {

<?xml version=“1.0” encoding=“utf‐8”?>
<resources>
 <integer name=“google_play_services_version”>6587000</integer>
</resources>

204� Google Fit Platform

Once upon connecting the GoogleApiClient, I scanned for Bluetooth LE devices as
shown below:

The BleScanCallback is an abstract class, which has methods onDeviceFound and
onScanStopped. The following snipped shows my concrete implementation class that
extends BleScanCallback:

PendingResult<Status> pendingResult = Fitness.BleApi.startBleScan(
 googleApiClient,
 new StartBleScanRequest.Builder()
 .setDataTypes(DataType.TYPE_HEART_RATE_BPM)
 .setBleScanCallback(bleScanCallback)

 .build());

class MyBleScanCallbackAndHelper extends BleScanCallback {

 @Override
 public void onDeviceFound(BleDevice device) {
 Log.d (TAG, “MyBleScanCallback:onDeviceFound found device=” + device) ;

 bleDeviceFound = device ; // add to list of devices TODO

 PendingResult<Status> pendingResult =
 Fitness.BleApi.claimBleDevice(googleApiClient, device);
 addContentToView(“MyBleScanCallback:onDeviceFound foundBleDevice=” + device);

 Status status = pendingResult.await() ;
 // resolve unsuccessful status here
 Log.d (TAG, “MyBleScanCallback:onDeviceFound status=” + status) ;
 // error checks to be done here …
 registerDataSourceListener(DataType.TYPE_HEART_RATE_BPM);

 }

 @Override
 public void onScanStopped() {
 Log.d (TAG, “MyBleScanCallback:onDeviceFound found device=” + device) ;
 }

 void releaseDevice (BleDevice device) {
 Fitness.BleApi.unclaimBleDevice(googleApiClient, device);

 }

Hello Fit: hands‐on example� 205

I also registered several data types with an OnDataPointListener.

Figure 8-5A shows the opening of the hellofit project using NetBeans, which recog-
nized the Android classic project tree and hence displayed the “a” icon seen in the figure.

Figure 8-5B shows the HelloFitActivity early in the editing process.

Figure 8-5A  Editing Hello Fit project.

Figure 8-5B  Editing Hello Fit project, continued.

206� Google Fit Platform

Figure 8-5C shows the HelloFitActivity in an advanced stage of editing.

Figure 8-5D shows the running of the ant build and install target from the IDE.

Before you attempt to run a Fit app that accesses the SensorApi, you will need to place
your Android Wear device and peripheral sensor devices within a few feet from the hand-
held device that has Fit app installed. It does not hurt to pair the sensor/peripheral device
with your handheld device.

After installing the Hello Fit App on my Android handheld device, I strapped on my
Zephyr Heart Rate Monitor and wore my Android Wear smart watch device since it has a
few sensors.

Figure 8-5C  Editing Hello Fit project, done.

Figure 8-5D  Build, install Hello Fit.

Hello Fit: hands‐on example� 207

Figure 8-5E shows my Zephyr heart rate monitor visible to my handheld Android
device. I subsequently paired the heart rate monitor (not shown in the figure). After that, I
started the Hello Fit App.

Figure 8-6A shows the Hello Fit app requesting an account to be selected or added.

Figure 8-5E  Zephyr Heart Rate Monitor.

Figure 8-6A  Hello Fit—choose account.

208� Google Fit Platform

Figure 8-6B shows the user the scope of the access to fitness data. After I accepted the
application’s access to the specified scopes, the activity HelloFitActivity was displayed.

Figure 8-6C shows the HelloFitActivity with the steps data point. After I walked around
a few steps, I found the step counts incrementing.

Figure 8-6B  Hello Fit—permissions.

Figure 8-6C  Hello Fit—user interface.

Hello Fit: hands‐on example� 209

Figures 8-6D, 8-6E, and 8-6F show the HelloFitActivity with several increments of the
steps data points. Android Wear devices have a step counter and so do several models of
handheld devices.

Figure 8-6D  Hello Fit—user interface, continued.

Figure 8-6E  Hello Fit—user interface, data points.

210� Google Fit Platform

So far, I did not have success in detecting the heart rate monitor. I verified that I had
paired my handheld device with the Zephyr Heart Rate Monitor. After rebooting my
Android handheld device and also disconnecting and reconnecting the Zephyr Heart Rate
Monitor’s chest strap, I had some success. Subsequently, I found that the heart rate sensor
was not detected by the App consistently.

Figure 8-6G  Hello Fit—user interface, heart rate data type.

Figure 8-6F  Hello Fit—user interface, data points, continued.

Google Settings App� 211

Figure 8-6G shows the Zephyr Heart Rate Monitor detected by the Hello Fit app. The
logs snippets show a few of the steps pertaining to the successful scanning and detection of
the data source corresponding to the Zephyr Heart Rate Monitor device:

The Hello Fit App used the BleApi and the SensorsApi and used classes from the data,
request, and result packages. Data points from the heart rate monitor—at the time of
writing—failed to be detected by the App because my attempt to claim the device failed.
OnDeviceFound appears to be the appropriate place to attempt claiming the device. All the
same, I also tried invoking the claim call in the onScanStopped callback by retaining the
bleDevice instance as a member variable in the Activity; but that did not help either.

8.10  Google’s Fit App

The Google Fit App from Google is available on the Google Play Store at

https://play.google.com/store/apps/details?id=com.google.android.apps.fitness.

Among other features and functionality, the Google Fit App lists the other Google Fit
Apps that connect to the Fit Store and denotes them as “third‐party, connected” Apps. More
details of the Google Fit App can be understood by installing the App on your device and
studying it thoroughly. The role of the Google Fit App does not appear at this time to be
central to commencing Fit development. This could change over time so stay tuned.

8.11  Google Settings App

Google Settings—which is an App available on Android 5 devices with Google Play
Installed—helps you manage settings for the Google services and applications. Particularly,
the Google Settings App provides access to Google Fit settings. More information on
Google Settings and Managing your Google Fit settings is available at

https://support.google.com/accounts/answer/3118621?hl=en&ref_topic=3100928
https://support.google.com/accounts/answer/6098255

MyBleScanCallbackAndHelper:onDeviceFound found device=BleDevice{name=Zephyr
HXM200008158, address=78:A5:04:81:AF:F9,
dataTypes=[DataType{com.google.heart_rate.bpm[bpm(f)]}],
supportedProfiles=[org.bluetooth.profile.heart_rate]}
…

findDataSources onResult() DataSource{raw:Zephyr HXM200008158:Device{:Zephyr
HX�M200008158:78:A5:04:81:AF:F9::0:1}:Zephyr HXM200008158:DataType

{com.google.heart_rate.bpm[bpm(f)]}}

https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://support.google.com/accounts/answer/3118621?hl=en&ref_topic=3100928
https://support.google.com/accounts/answer/6098255

212� Google Fit Platform

References and Further Reading

https://developers.google.com/fit/overview

http://en.wikipedia.org/wiki/Google_Fit

https://developers.google.com/fit/branding

https://developers.google.com/fit/terms

http://developer.android.com/google/play‐services/setup.html

https://developers.google.com/fit/android/get‐started

https://developer.android.com/tools/projects/index.html

https://developers.google.com/fit/overview
http://en.wikipedia.org/wiki/Google_Fit
https://developers.google.com/fit/branding
https://developers.google.com/fit/terms
http://developer.android.com/google/play-services/setup.html
https://developers.google.com/fit/android/get-started
https://developer.android.com/tools/projects/index.html

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 9  Google Fit API

9.1  Google Fit API

The Google Fit API (also referred to simply as the Fit API) resides in the namespace com.
google.android.gms.fitness and is available as part of Google Play Services. Any Google
Fit App has a dependency on the Google Play Services App being installed on the device
that it is running on.

9.2  Google fit main package (com.google.android.gms.fitness)

The Google Fit API documentation is available at https://developers.google.com/fit/
android/reference and is a useful reference when reading this chapter.

In all, the main package fitness and its sub‐packages contain about eight high‐level
interfaces and 30 high‐level classes. The main package fitness contains four sub‐packages:
data, service, request, and result. The fitness package itself contains the interfaces
SensorsApi, BleApi (Bluetooth Low Energy API), SensorsApi, RecordingApi, HistoryApi,
and SessionsApi, as well as the classes Fitness, FitnessActivities, and FitnessStatusCodes.

Figure 9-1 shows the classes and interfaces within the main fitness package, as well as
the sub‐packages data, request, result, and service.

https://developers.google.com/fit/android/reference
https://developers.google.com/fit/android/reference

214� Google Fit API

9.2.1  Fitness class

The Fitness class is the entry point into the Google Fit API. In order for a Fit App to con-
nect to the Fit API, a Google user account is required on the device. The Fit App needs to
specify the scope depending on the data and mode of access desired by the App. The
GoogleApiClient uses the user account and scope information to get the OAuth tokens on
behalf of the App, which ensures that only Apps with the necessary permissions can access
specific data in the right mode of read or write—after explicit user consent.

An instance of Fitness is obtained via using the GoogleApiClient’s Builder, adding the
Fitness API, specifying the Google account, and adding the scope. The following snippet
in the user interface Activity’s onCreate() method shows how the Activity can connect the
GoogleApiClient with the Fitness API added and enabled:

You will notice that the Google Fit App needs to add the “Fitness” API in order to access
Google Fit. The main package is named fitness, and the Fitness class is the entry point into
the Google Fit API. Therefore, the Fit API is sometimes also referred to as the Fitness API.

The user interface Activity that needs to access the Fit API will typically need to
implement several listeners such as the GoogleApiClient’s ConnectionCallbacks and
OnConnectionFailedListener as well as OnDataPointListener from the Fit API.

Figure 9-1  Google Fit’s fitness package, high‐level overview.

googleApiClient = new GoogleApiClient.Builder(this)
	 .addApi (Fitness.API)
	 .useDefaultAccount()
	 .addScope(new Scope (Scopes.FITNESS))
	 .addOnConnectionCallbacks(this)
	 .addOnConnectionFailedListener(this)
	 .build();
googleApiClient.connect();

Google fit main package (com.google.android.gms.fitness)� 215

Figure 9-2 shows a partial listing of the attributes and methods available in the Fitness
class.

At runtime, the Fit API will become available only after the GoogleApiClient instance
has connected successfully. After connecting successfully, the various specific APIs within
the Fitness API such as BleApi, SensorsApi, SessionsApi, RecordingApi, HistoryApi, and
ConfigApi can all be accessed via the Fitness class.

The Fitness class defines several ACTION families of Intents as static attributes that
support collaboration between different Fit Apps. The ACTION_VIEW defines an Intent to
view fitness data, while the ACTION_TRACK pertains to tracking a fitness activity; the
ACTION_VIEW_GOAL defines an Intent to view a fitness goal. Associated with these
actions/Intents are several extras, that is, Bundles of additional information that can be
accessed via the call to Intent.getExtras(); a Bundle is a mapping between a key and a
value. The Fitness class defines extras for the start time (EXTRA_START_TIME) and end
time (EXTRA_END_TIME). Based on the particular action/Intent, there are particular
relevant extras. The action ACTION_VIEW_GOAL, for instance, has the attribute of mim-
eType, the EXTRA_START_TIME and EXTRA_END_TIME and DataSource.EXTRA_
DATA_SOURCE. Because these Intents are intended for collaboration between Apps, it is
important to standardize on the names of extras using static final attributes. When you use
extras with Intents within the same app too, it is a good programming practice to define the
value of the key as a static final constant so that different components within your App can
access the extra using the static final constant, rather than hard‐coded values, which can be
error prone.

The Fitness class also defines several SCOPEs for physical activity, body, and location,
in read and write mode.

Figure 9-2  Fitness class, partial listing.

216� Google Fit API

9.2.2  FitnessActivities class

The FitnessActivities class provides an elaborate set of public static final String constants
that denote real‐world physical activities such as BASEBALL, BIKING, RUNNING,
WALKING, TENNIS, SWIMMING, SQUASH, MARTIAL_ARTS, DANCING, GARDENING,
SLEEP, MEDITATION, and many more.

Figure 9-3 shows a few of the constants representing physical activities and sports. These
constants are used in Sessions and DataTypes, which we will be covering in the next sections.

9.2.3  FitnessStatusCodes class

The FitnessStatusCodes class defines about 18 constants that represent the result of requests
made to the Google Fit API. The FitnessStatusCodes help in pinpointing the exception,
error, or conflict when making a request to the Google Fit API. The request sub‐package,
which is covered in the next few sections contains various types of requests pertaining to
Bluetooth LE (Ble), sensors, sessions, and so on. The result sub‐package contains various
types of corresponding results, which encapsulate the result data as well as the status. The
App making the request needs to get the status in order to confirm that the request was
successful or address the issue before making the attempt again.

Figure 9-4 shows a few of the constants available in the FitnessStatusCodes class.

Figure 9-3  FitnessActivities class, with a few constants listed.

Figure 9-4  FitnessStatusCodes class, with a few constants listed.

Google fit main package (com.google.android.gms.fitness)� 217

9.2.4  BleApi interface

The BleApi is accessible via the static attribute available in the Fitness class. Prior to
accessing BleApi, the GoogleApiClient must have connected successfully.

The BleApi provides functionality for scanning, claiming, and using Bluetooth Low
Energy (Ble) Fitness devices. Many Bluetooth LE devices accept connections readily
without the need for pairing. The concept of claiming a fitness device ensures that Google
Fit apps connect only with fitness devices that the user owns and per the user’s inten-
tions. The user needs to explicitly claim a device before it can be used by Google Fit in
the sequential flow of scan/detect, claim, and use. Once a device is claimed, its data
sources become available via the SensorsApi and the RecordingApi. Also, the App should
use Google Fit to connect to the device rather than connect directly with the device (by
using the base Android API’s android.bluetooth.* sub‐packages and classes).

Figure 9-5 shows the BleApi interface with its methods related to scanning, claiming,
and listing Bluetooth LE devices.

The scan process is closely associated with StartBleScanRequest and the BleScanCallback
both of which reside in the request package and have been covered in more detail in the
next sections.

The following code snippet shows the creation of a scan request by using the
StartBleScanRequest and the BleScanCallback classes. There must be at least one data type
associated with the StartBleScanRequest:

Figure 9-5  BleApi.

PendingResult <Status> r = Fitness.BleApi.startBleScan (
	 googleApiClient, new StartBleScanRequest.Builder()
	 .setDataTypes (DataType.TYPE_HEART_RATE_BPM)
	 .setBleScanCallback(bleScanCallback)

	 .build()) ;

218� Google Fit API

The scan is asynchronous, and the BleScanCallback supports finding devices via the
scan. Devices that are found can be claimed; however, any active Bluetooth scan operations
should be stopped prior to claiming a device. The PendingResult has callbacks that can help
the App determine the success or failure of the call.

The BleApi requires that Bluetooth is enabled in order for its methods to work. The
FitnessStatusCode.DISABLED_BLUETOOTH represents the condition that Bluetooth is
not enabled. Apps can address this by using the startResolutionForResult() method on the
Status(com.google.gms.common.api). This starts the appropriate Intent that requires user
interaction to resolve the condition. The PendingResult, which is used in all the BleApi
method calls, is used in calls to the Google Play Services API.

9.2.5  SensorsApi

The SensorsApi provides access to live, real‐time streams of sensor data from hardware
sensors on the local device and companion devices. The SensorsApi is available as a static
attribute on the Fitness class.

Figure 9-6 shows the methods available in the SensorsApi interface. The SensorsApi
provides methods to add and remove listeners for sensor data. The add method whose
parameters include a PendingIntent parameter is useful for slower sampling of sensor data.
This method adds a PendingIntent listener to a sensor data source. Once the call to add
succeeds, the PendingIntent’s callback will provide access to new sensor data, every time
new data arrives. The application can extract the DataPoint (which encapsulates a sensor
value and a timestamp) from the intent. DataPoint resides in the data package, which we
will be covering shortly. There is another flavor of the add method whose parameters
include an OnDataPointListener. This method is more appropriate for faster sampling rates
using a live listener in the foreground. After the add succeeds, new DataPoints in the data
stream are delivered to the specified listener.

Figure 9-6  SensorsApi.

Google fit main package (com.google.android.gms.fitness)� 219

The following snippet shows an example of adding a sensor request:

The listeners need to be removed when the UI Activity is paused, stopped, or destroyed;
and added again when the UI Activity resumes or restarts. The remove methods are used for
removing the listener from the sensor data source. The findDataSources() method is used
to find all available data sources for the specified data types. It is not necessary to call this
method if your application is interested in getting the best available data of the specified
data type, irrespective of the source, which may often be the case.

9.2.6  RecordingApi

The RecordingApi supports the collection, that is, recording of sensor data into the Google
Fit Store in the background, in a low power consuming, always‐on mode. The RecordingApi
provides methods to subscribe to a given data type. Subscriptions persist device restarts and
work in the background, irrespective of whether the subscribing App is running or not.
Subscribing to a data type requires the user’s permission and consent, and the user can
subsequently revoke such permission via the Google Play Services’ settings.

Figure 9-7 shows the methods in the RecordingApi, which include subscribe, unsub-
scribe, and listSubscriptions.

PendingResult <Status> r = Fitness.SensorsApi.add (googleApiClient,
	 new SensorRequest.Builder()
	 .setDataType (DataType.TYPE_HEART_RATE_BPM)
	 .setSamplingDelay (2, TimeUnit.MINUTES)

	 .build(), myOnDataPointListener);

Figure 9-7  RecordingApi.

220� Google Fit API

The following code snippet shows the use of the SensorsApi to subscribe to a
data type:

The RecordingApi, like the SensorsApi, becomes available only after a device has
been successfully claimed via the BleApi. Unlike the SensorsApi, the RecordingApi
does not deliver any live sensor data to the application. An App can have both a
SensorsApi‐based listener running and a RecordingApi‐based subscription at the
same time.

9.2.7  SessionsApi

The SessionsApi is useful for creating and managing sessions of user’s physical
activity. A session represents a time interval during which a user engages in physical
activity. A Session has a user‐readable name such as “Morning Run,” a start time and
associated data that is stored in the Fit Store. All the data within the time range is
implicitly associated with the session. Session data is stored in a shareable manner and
can be queried.

Figure 9-8 shows the methods in the SessionsApi interface. Once a session is started
using the startSession method, session data can be stored in the Google Fit Store using the

PendingResult <Status> r = Fitness.RecordingApi.subscribe (googleApiClient ,
 DataType.TYPE_HEART_RATE_BPM) ;

Figure 9-8  SessionsApi.

Google fit main package (com.google.android.gms.fitness)� 221

insertSession method using a SessionInsertRequest; also, any data that is inserted using the
HistoryApi during the duration of the session will be associated with the session. Thus,
insertSession and the HistoryApi methods represent two ways by which session data can be
stored into the Google Fit Store.

Once session data has been stored in the Google Fit Store, it can be retrieved by using
the readSession method. The stopSession will terminate the session. The session also
terminates upon the end of its duration when its end time has been reached. The register-
ForSessions method allows the application to be notified of session’s start and end events,
via the PendingResult. The inner class SessionsApi.ViewIntentBuilder is useful for display-
ing detailed session data stored in the Google Fit Store.

The setting of the start time for the session is mandatory, while the end time is optional.
The stopSession method available in the SessionsApi allows an application to stop a session.
The following code snippet shows the use of the SessionsApi to start a new session of
20 minute duration:

After your App has created a session, you can insert the session and its associated data
into the Google Fit Store. Your App can also read session data subsequently. There are
Session Start and End intents that your App can register a broadcast listener for, in order to
handle session starts and ends.

9.2.8  HistoryApi

The HistoryApi supports inserting, reading, and deleting data in the Google Fit Store. The
HistoryApi also supports insertion of data that was collected outside of Google Fit, which
can be useful if some readings were entered manually by the user or imported from a device
that is not supported by Google Fit. The HistoryApi enables your App to perform bulk
operations on the fitness store: inserting, deleting, and reading fitness data.

long startTime = System.currentTimeMillis() ;
long endTime = startTime + 20*60*1000 ;
Session joggingSession = new Session.Builder()
	 .setName(“Morning Jog”)
	 . setStartTimeMillis (startTime,
	 TimeUnit.MILLISECONDS)
	 .setEndTime (endTime)
	 .build() ;
PendingResult <Status> r = Fitness.SessionsApi.startSession (googleApiClient,

	 joggingSession) ;

222� Google Fit API

Figure 9-9 shows the methods available on the HistoryApi interface. The insertData
method is useful for inserting data that was collected outside of Google Fit, including data
entered manually by the user and/or bulk data. The readData method is useful for reading
historical data.

9.2.9  ConfigApi

The ConfigApi is useful for accessing settings in Google Fit as well as creating and access-
ing custom data types.

Figure 9-10 shows the methods available in the ConfigApi. The readDataType method
is useful for retrieval of shareable data types added by other App or a custom data type
added by your App. The createCustomDataType supports making a request to create a new
data type and adding it to the Google Fit platform. The disableFit method supports disabling
the App from Google Fit. Apps should provide users with the Disconnect from Google Fit
option in the App’s settings. Disconnecting from Google Fit revokes the OAuth permis-
sions and removes all the sensor registrations and recording subscriptions.

Figure 9-9  HistoryApi.

Figure 9-10  ConfigApi.

data sub‐package� 223

9.3  data sub‐package

The data sub‐package has the fully qualified package name of com.google.android.gms.
fitness.data and has about 11 classes (Figure 9-11A).

9.3.1  Device

The Device class represents an integrated device such as a handheld device or an Android
Wear device that can hold sensors. The Device class encapsulates the manufacturer and
model information, which can help in identifying the source of sensor data and distinguish-
ing between two similar sensors such as heart rate monitors on two different devices. The
Device class is also useful in distinguishing between the data patterns from similar sensors
on different types of devices such as accelerometer data from a smart watch versus a hand-
held device.

Figure 9-11B shows some of the main attributes and methods available in the Device
class. There are several constants for the Device type such as TYPE_WATCH, TYPE_
CHEST_STRAP, TYPE_SCALE, TYPE_PHONE, TYPE_TABLET, and TYPE_UNKNOWN.

9.3.2  BleDevice

The BleDevice class represents a Bluetooth LE device that advertises information about its
onboard sensors (such as heart rate monitor, step counter, and so on).

Figure 9-11A  data package.

224� Google Fit API

Figure 9-11C shows the BleDevice class that has methods for getting the device name,
the Fit data types supported by the device, and the Bluetooth Generic Attribute Profile
(GATT). More information can be found at

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx and
https://developer.bluetooth.org/gatt/Pages/GATT‐Specification‐Documents.aspx.

9.3.3  DataSource

A DataSource represents a unique source of sensor data and can expose the raw data that’s com-
ing from a particular hardware sensor on the host device or a peripheral device. A DataSource
can also expose data derived from merging or transforming data from other data sources.

Figure 9-11C  BleDevice class, partial listing.

Figure 9-11B  Device class, partial listing.

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx
https://developer.bluetooth.org/gatt/Pages/GATT-Specification-Documents.aspx

data sub‐package� 225

Figure 9-11D shows the methods and attributes available in the DataSource class. A
DataSource instance contains information that uniquely identifies it such as the hardware
device and the App that collected or transformed the data. There can be multiple DataSources
for the same DataType, which mirrors the reality that there can be multiple sensors for the
same data types and fields such as heart rate, step counters, and so on.

Apps can access the data stream from a DataSource in near real time by registering an
OnDataPointListener or via making queries at periodic intervals.

9.3.4  DataType

The DataType class defines the representation of the data, which is independent of how the
data was acquired, the sensor that was used, and so on. The DataType is the schema for a
stream of data that can be collected and inserted into and queried from the Fit Store. A
DataType contains one of more fields. Each field has a name and a format. The format indi-
cates whether it is an int or a float denoted by FORMAT_INT_32 and FORMAT_FLOAT,
respectively.

Each DataType has a unique namespaced name, for example, com.google.heart_rate.
bpm is the namespaced name for the Java attribute TYPE_HEART_RATE_BPM defined in
the DataType class (Figure 9-11E).

9.3.5  DataPoint

A DataPoint holds at least one field and a value representing a single data point in a data
type’s stream from a particular data source (Figure 9-11F). Every DataPoint that is stored
to or retrieved from Google Fit has an associated DataSource. Each DataSource in turn
contains information of the sensor device and/or App that has collected or transformed
the data.

Figure 9-11D  DataSource class, partial listing.

226� Google Fit API

Each DataPoint holds at least one field and the value of data, as well as a timestamp.
Optionally, a Data point may also contain a start time. The exact semantics and combination
of field data depends on the particular data type. Some data points represent an instanta-
neous reading, such as location, speed, and heart rate beats per minute. Other data points
represent aggregate data, such as heart rate summary.

DataPoint instances are created by making a call to the static method DataPoint.create(),
which requires a data source as the method call argument. Recall that each data source has
an associated data type and each data type has associated fields.

Figure 9-11F  DataPoint class, partial listing.

Figure 9-11E  DataType class, partial listing.

data sub‐package� 227

When a DataPoint is instantiated, it contains all the appropriate l‐values for the
fields associated with the data type, but the r‐values (values of data or content) have not
been set. In other words, initially, all the “l‐values” are present and the appropriate r‐
values and timestamp will need to be set. “l‐values” represent the variable name, while
“r‐values” represent the content or data that’s set into a given variable (l‐value). The
concept of l‐values and r‐values is used in computer science as well as in programming
languages.

The snippet below shows the setting of the r‐value of a field in a DataPoint instance:

The getDataSource method returns the DataSource for the DataPoint. The call to
getOriginalDataSource returns the original data source, which can—in the case of trans-
formed or merged data—be different from the data source returned by the getDataSource
method.

9.3.6  Field

The Field class represents one dimension of a data type and has a name and a format. The
data type DataType.TYPE_LOCATION_SAMPLE, for example, has four fields: latitude,
longitude, altitude, and accuracy.

As an illustration of the concept of l‐values and r‐values, the l‐values in my shell
environment are ANDROID_HOME, ANT_HOME, JAVA_HOME, and so on, while the
r‐values are the data that these variables have been set to such as /opt/androidsdk/sdk.
l‐values can exist with empty r‐values (eg. NOTHING_HOME):

$ env | grep HOME
	 ANDROID_HOME=/opt/androidsdk/sdk
	 GRADLE_HOME=/opt/tools/gradle
	 ANT_HOME=/opt/tools/ant
	 MAVEN_HOME=/opt/tools/maven
	 JAVA_HOME=/opt/jdk1.7
	 HOME=/home/sanjay

	 NOTHING_HOME=

dataPoint.getValue(0).setInt (anIntValue)

228� Google Fit API

Figure 9-11G shows the Field class with some of the static constants defined therein.
The Field names are not namespaced, they are unique within the data type. Some fields
such as FIELD_CONFIDENCE and FIELD_ACCURACY are secondary to their primary
accompanying Field.

9.3.7  Value

The Value class is a holder for a single field in a DataPoint. Depending on the DataType of
the DataPoint, a Value instance is created for each Field, but it has not been set with the
data (r‐value). The isSet method indicates whether a value has been set on the Value in-
stance. Figure 9-11F shows the Value class along with the DataPoint.

9.3.8  Subscription

The Subscription class encapsulates the data source and data type of a subscription (Figure
9-11H). The concept of subscription is associated with background collection of sensor
data, which we covered in the section on the RecordingApi.

Figure 9-11G  Field class, partial listing.

data sub‐package� 229

The Subscription class is not instantiated directly, rather the calls to the RecordingApi’s
subscribe and listSubscriptions method and associated callbacks provide access to the
Subscription instances that are contained within the ListSubscriptionsResult class.

9.3.9  DataSet

The DataSet represents a fixed set of DataPoints in a DataType’s stream from a particular
DataSource. Typically, a DataSet contains DataPoints at fixed interval boundaries. A
DataSet can be used both for batch data insertions and for reads (Figure 9-11I).

The DataSet class has a static create method that needs a DataSource instance as the
parameter and returns an instance of DataSet. Once you have an instance of DataSet,
calling the createDataPoint method yields an instance of DataPoint. After setting values on
the DataPoint instance, the DataSet’s add method facilitates adding a data point to the set.
The addAll method facilitates adding multiple data point instances in one call.

Figure 9-11I  DataSet.

Figure 9-11H  Subscription class.

230� Google Fit API

9.3.10  Session

The Session class represents a workout session or period of physical activity—it has a
user‐visible name, a start time, a unique identifier, and some associated data. It has an
associated start time that is mandatory. It also has an optional description that can be
used by the user to provide some description or notes associated with the session. The
Session supports storing, retrieving, and analyzing user‐visible groups of data organized
and aggregated in a relevant manner. A Session can be instantiated via the static inner
Builder class.

Figure 9-11J shows the Session class and its inner static Builder class. Session.Builder
supports the creation of Session instances. The session name and start time are mandatory
fields. The identifier, description, and activity are optional. Before actually calling the build
method to obtain a Session instance, you would need to call at the very least the setName
and setStartTimeMillis methods—in order to ensure that the mandatory fields have been
populated.

9.3.11  Bucket

A Bucket represents aggregate data over an interval of time using one of several possible
bucketing strategies such as time interval, activity type, a session or an activity segment.
Accordingly, any Bucket instance has a bucket type that can be one of TYPE_TIME,
TYPE_ACTIVITY, TYPE_SESSION, or TYPE_ACTIVITY_SEGMENT. A Bucket must
have a start time and an end time—for all types of Buckets. A Bucket may be setup to con-
tain speed and heart rate summary over a time interval. A Bucket may coincide with a
session, via using the bucketing strategy of TYPE_SESSION, but that does not always have
to be the case.

Figure 9-11K shows the Bucket class that has no constructor or builder class. The Bucket
is not instantiated by application code directly; rather, the DataReadRequest in the request
sub‐package has a bucketBy* family of methods in its Builder class, which allow your
application to specify the particular criteria for computing the bucket. In turn, the
DataReadResult from the result package has a getBucket, which facilitates access of bucket
instances from the application code.

Figure 9-11J  Session class.

request sub‐package� 231

9.4  request sub‐package

The request sub‐package has the fully qualified package name of com.google.android.gms.
fitness.request and contains about nine classes and one interface.

Figure 9-12A shows the various requests, callback, and listener available in the request
sub‐package.

The Google Fit API calls pertaining to Bluetooth LE scans, sensors, data sources,
sessions, and so on follow an asynchronous, nonblocking mode of calls. The request sub‐
package has a complementary result sub‐package, and individual request classes from the
request sub‐package typically have a corresponding result class in the result sub‐package.
Both the request and result sub‐packages depend on the data sub‐package.

Figure 9-11K  Bucket class.

Figure 9-12A  request sub‐package.

232� Google Fit API

9.4.1  StartBleScanRequest

The StartBleScanRequest class encapsulates a request to start a scan for a Bluetooth LE
device based on the data type. The StartBleScanRequest is useful for invoking the startBl-
eScan method available in the BleApi. The StartBleScanRequest and for that matter all the
request family of classes implement the android.os.Parcelable interface.

Figure 9-12B shows the StartBleScanRequest class and its static inner Builder class.
The StartBleScanRequest.Builder class allows your application to set the data types, the
scan timeout, and the BleScanCallback instance in order to build an instance of the
StartBleScanRequest:

After you have created an instance of the StartBleScanRequest, you will typically
invoke the startBleScan method in the BleApi, as shown in the snippet below:

StartBleScanRequest myScanRequest =
	 new StartBleScanRequest.Builder()
	 .setDataTypes(DataType.TYPE_HEART_RATE_BPM)
	 .setBleScanCallback (myBleScanCallback)
	 .build() ;

Figure 9-12B  StartBleScanRequest class.

PendingResult <Status> r = Fitness.BleApi.startBleScan (
	 googleApiClient, myScanRequest) ;

request sub‐package� 233

9.4.2  BleScanCallback

The BleScanCallback is an abstract class that is associated with the BleApi and the
StartBleScanRequest. Figure 9-12B shows the BleScanCallback and its abstract methods.
Your application will need to extend this abstract class and implement the onDeviceFound
and the onScanStopped methods.

9.4.3  SensorRequest

The SensorRequest class is used to request real‐time data of a particular data type from a
particular data source. It also lets you specify the accuracy mode, sampling rate, fastest
reporting rate, delivery latency, and so on. Greater accuracy and more frequent sampling
generally come at the cost of higher power consuming and faster draining of the battery.
The SensorRequest class provides constants for the accuracy mode.

Figure 9-12C shows the attributes and methods of the SensorRequest class and its static
inner SensorRequest.Builder class, which provides methods to build a SensorRequest
instance after specifying the data source, data type, accuracy mode, sampling rate,
maximum delivery latency, and so on. The delivery latency is the time delay between the
time of origination of data at the sensor source and the receipt of the data update within
component made the request for the data.

9.4.4  DataSourcesRequest

The DataSourcesRequest class represents a request to find Google Fit data sources that
match specified criteria. Recall that a data source is a source of sensor data that can expose
raw data from a hardware sensor or expose derived, transformed, or merged data.

Figure 9-12C  SensorRequest class.

234� Google Fit API

Figure 9-12D shows the DataSourcesRequest and its inner static Builder class. The
DataSourcesRequest is closely associated with the SensorsApi’s findDataSources method.

9.4.5  OnDataPointListener

The OnDataPointListener interface is useful for registering for receiving live updates from
a DataSource, which are delivered as DataPoints.

Figure 9-12E shows the OnDataListener interface that has one method onDataPoint.
The OnDataListener is associated with the SensorApi.

9.4.6  DataReadRequest

The DataReadRequest represents a request to read data from the Fit Store based on speci-
fied criteria and is associated with the HistoryApi. The DataReadRequest must specify at
least one data source or data type and a time range. In order to request read access to
aggregate data, the request should additionally specify the bucketing strategy. Recall from
the section on the Bucket that the Bucket class defines Bucket types of session, activity type,
activity segment, and time and contains aggregate data of one or more data types.

Figure 9-12F shows the DataRequestRequest class and its static inner Builder class,
consistent with the pattern we have seen for the various other request family classes.

The snippet below shows an example of creating a simple DataReadRequest by setting
the time range and data type using the Builder:

DataReadRequest myReadRequest =
 new DataReadRequest.Builder()
 .setTimeRange (startMillis, endMillis, TimeUnit.MILLISECONDS)
 .read (DataType.TYPE_HEART_RATE_BPM)
 .build() ;

Figure 9-12D  DataSourcesRequest class.

Figure 9-12E  OnDataPointListener interface.

request sub‐package� 235

The HistoryApi’s readData method takes in a DataReadRequest instance as a parameter.

9.4.7  DataDeleteRequest

The DataDeleteRequest is used to specify the criteria for deleting history data. The
DataDeleteRequest must specify the time interval, and it may be the data type or data source.

Figure 9-12G shows the DataDeleteRequest and its static inner Builder class.

Figure 9-12F  DataReadRequest.

Figure 9-12G  DataDeleteRequest.

236� Google Fit API

The DataDeleteRequest’s deleteAllData method merely indicates whether all the data
types are marked for deletion. This correlates to whether the Builder’s deleteAllData was
invoked prior to building the DataDeleteRequest instance.

9.4.8  SessionInsertRequest

The SessionInsertRequest is used to inserting a session and associated aggregate DataPoints
or DataSets into the Fit Store. The SessionInsertRequest is closely associated with the
SessionsApi’s insertSession method and is useful for bulk upload of previously recorded
sessions or for storing data from outside of Google Fit.

9.4.9  SessionReadRequest

The SessionReadRequest is used for reading session data from the Fit Store. The time
interval and the data types are parameters that can be specified in the Builder in order to
create a SessionReadRequest instance. The SessionReadRequest is closely associated with
the SessionsApi’s readSession method.

9.4.10  DataTypeCreateRequest

The DataTypeCreateRequest is used for creating an application specific, custom data type
in the Fit Store. Such a data type should not duplicate an existing standard/public data
type. The data of this custom data type will be private to the App that created it. The data
type’s name should reside in the namespace of its application’s package name. The
DataTypeCreateRequest is associated with the ConfigApi’s createCustomDataType
method.

9.5  result sub‐package

The result sub‐package contains about seven “result family” classes, each of which has a
correlation with a corresponding “request family” class from the request package and/or
a particular Fit API call. For instance, the DataReadResult class has a correlation with
the DataReadRequest and the HistoryApi’s readData API call. The naming conventions
also make such correlations between the request, result, and data quite obvious in most
cases. We will be covering these result classes and their correlations individually in this
section. The package summary for the result sub‐package happens to list these correla-
tions as well:

https://developer.android.com/reference/com/google/android/gms/fitness/result/
package‐summary.html

Figure 9-13A shows the various classes in the result package, and these classes rep-
resent the results or responses to requests and API calls. The result sub‐package and the
request sub‐package both depend on the data sub‐package. All the classes in the result
package implement the Result interface from com.google.android.gms.common.api

https://developer.android.com/reference/com/google/android/gms/fitness/result/package-summary.html
https://developer.android.com/reference/com/google/android/gms/fitness/result/package-summary.html

result sub‐package� 237

as well as the Parcelable interface, though this detail has not been depicted in the
diagram.

9.5.1  BleDevicesResult

The BleDevicesResult class represents the result of a call to the BleApi’s listClaimedBleDe-
vice method. The BleDevicesResult class, like the other classes in the result sub‐package,
implements both the Result interface from the Google Play Services API’s common.api
sub‐package and Parcelable from the android.os package.

Figure 9-13B shows the BleDevicesResult class and its overloaded getClaimedDevices
methods. It also has methods such as getStatus from the Result interface that it implements.
BleDevicesResult implements both the Result and Parcelable interfaces, as do all the
classes in this package. However, this detail has not been repeated in subsequent diagrams
of result classes.

Figure 9-13A  result package.

Figure 9-13B  BleDevicesResult class.

238� Google Fit API

9.5.2  DataSourcesResult

The DataSourcesResult class is associated with the SensorApi’s findDataSources method
and the DataSourcesRequest class from the request package.

Figure 9-13C shows the DataSourcesResult class and its overloaded getDataSources
methods.

9.5.3  ListSubscriptionsResult

The ListSubscriptionsResult class has a correlation with the RecordingApi’s listSubscrip-
tion method as well as Subscription, which in turn is associated with the data source and
data type.

Figure 9-13D shows the ListSubscriptionsResult class with its getSubscriptions and
overloaded getSubscriptions methods.

9.5.4  DataReadResult

The DataReadResult is associated with the HistoryApi’s readData method as well as the
DataReadRequest.

Figure 9-13E shows the methods available in the DataReadResult including the
overloaded getDataSet method. The call to getBuckets will be relevant if the original
request had specified a bucketing strategy via any of the bucketBy methods available in the
DataReadRequest.Builder. The getBuckets method will return an empty list in case there is
no data available or if a failure is encountered.

Figure 9-13C  DataSourcesResult class.

Figure 9-13D  ListSubscriptionsResult class.

result sub‐package� 239

9.5.5  SessionReadResult

The SessionReadResult is associated with the SessionsApi’s readSession method and
SessionReadRequest. The SessionReadResult contains the sessions and associated data that
matched the criteria that were specified while building the SessionReadRequest.

Figure 9-13F shows the SessionReadResult class including its getSessions method and
the overloaded getDataSet methods. The DataSet in turn contains DataPoints, which we
covered in the earlier sections.

9.5.6  SessionStopResult

The SessionStopResult is associated with the stopSession method available in the
SessionsApi. The stopSession method requires the session identifier as a String parameter.
There is no request class that correlates with the SessionStopResult.

Figure 9-13G shows the SessionStopResult class and its getSessions method that returns
a list of sessions that were stopped.

9.5.7  DataTypeResult

The DataTypeResult class is associated with the ConfigApi’s readDataType method, which
is useful for retrieval of shareable data types or private, custom data types defined in your
App. The readDataType method accepts a String parameter with the name of the data type.
There is no corresponding request class associated with the DataTypeResult.

Figure 9-13E  DataReadResult class.

Figure 9-13F  SessionReadResult class.

Figure 9-13G  SessionStopResult class.

240� Google Fit API

Applications require user permission in order to access a shareable data type. In case the
application is missing such permission, it will need to address the received status code of
FitnessStatusCodes.NEED_OUTH_PERMISSIONS by using the Activity’s startResolu-
tionForResult, which will get the Android platform to start the appropriate Intent that will
solicit the user’s consent.

Just in case an App attempts to read some other App’s custom data type—which hap-
pens to be private to the other App—the calling App will encounter an error status code of
FitnessStatusCodes.INCONSISTENT_DATA_TYPE. There is no resolution for this because
it is not meant to be allowed that the custom data types defined by one App are accessed by
another App.

Figure 9-13H shows the DataTypeResult class that has a getDataType method. The
getStatus method that the DataTypeResult class implements by virtue of implementing the
Result interface has been shown only in the initial diagrams in this result series and partic-
ularly in Figure 9-13B (BleDevicesResult) in some detail.

9.6  service sub‐package

The Google Fit platform has built‐in support for local hardware fitness sensors on Android
handheld devices and Android Wear devices. The Google Fit platform also has support for
peripheral Bluetooth LE (Smart) devices that support standard GATT profiles. Bluetooth
LE is an interconnectivity technology that is widely used and particularly pertinent to fit-
ness sensors and peripheral devices. Bluetooth LE however is not backward compatible
with the “standard” or “classic” Bluetooth technology. And both classic Bluetooth and
Bluetooth LE are themselves only one of several interconnectivity technologies for periph-
erals that are available today. Thus, the Google Fit platform currently provides off‐the‐shelf
support for fitness peripheral devices, limited to those that support Bluetooth LE‐based
interconnectivity.

You may just possibly have the need for your Google Fit App to work with non‐
Bluetooth LE fitness sensors (the most obvious example of this is classic Bluetooth fitness
sensors). Although this happens to be a scenario that the Google Fit platform does not
address off the shelf, the service package provides the APIs that can help your App work
with a sensor that does not support Bluetooth LE and expose it to the Google Fit platform.
Once exposed as a software sensor‐based Google Fit sensor, from that point forward, it can
be accessed via the standard SensorsApi.

In another scenario, your application’s algorithm can analyze and interpret raw sensor
data from an Android device’s accelerometer or image data from an Android device’s
camera, in order to implement a software‐based step counter or a heart rate monitor,

Figure 9-13H  DataTypeResult class.

service sub‐package� 241

respectively. With the human finger placed on a phone’s camera for instance, the image
data captured over a period of say 1 minute can be analyzed and interpreted to determine a
heart rate reading—microscopic movements of the finger cause patterns of color changes
in a repeating cycle, the periodicity of which if interpreted correctly will tend to coincide
with the heart rate. We have covered computer vision‐based sensors in Chapter 2. The raw
data in such cases does not directly constitute fitness data, but the software‐based algorithm
can analyze and interpret such raw data to compute or infer fitness data readings such as the
heart rate and more. This is another scenario that the Google Fit platform does not support
off the shelf; however, service package’s API can be useful to expose such software
application‐based sensor data to the Google Fit platform.

Thus, the service sub‐package will be useful for implementing third‐party software‐
based sensors that are exposed to and compatible with the Google Fit platform in scenarios
such as:

1.	 You would like your Google Fit App to support a fitness sensor hardware device that
uses a connectivity technology other than Bluetooth LE and expose such data to the
Google Fit platform.

2.	 You would like to write a software‐based sensor that uses more fundamental, raw sensor,
or image data to compute fitness data and expose such data to the Google Fit platform.

Chapter 5 covered several interconnectivity and discovery technologies that have a cor-
relation with implementing custom software sensors. Just in case you had skipped that
chapter and are interested in exploring implementing a custom third‐party Google Fit sen-
sor, now is a good time to revisit Chapter 5.

If you already have live sensor data that is compatible off the shelf with the Google Fit
platform, you will be less likely to need to implement your own software‐based sensor.

Figure 9-14 shows the FitnessSensorService and FitnessSensorServiceRequest classes
and the one interface in the service sub‐package.

Figure 9-14  service sub‐package.

242� Google Fit API

9.6.1  FitnessSensorService

The FitnessSensorService helps your application to expose a software‐based sensor to the
Google Fit platform. After that, other Apps can claim the software‐based sensor “device”
and use it via the SensorsApi’s standard interfaces.

The FitnessSensorService is abstract and extends the abstract android.app.Service.
Your application’s service implementation will need to extend FitnessSensorService
and implement the abstract methods including onFindDataSources, onRegister, and onUn-
register from the FitnessSensorService hierarchy as well as the onBind and life cycle
methods from the Service hierarchy. Registration is on the basis of the data source. As long
as there is an active registration for a data source, your service must publish DataPoints at
the requested sampling rate and batch interval using the dispatcher.

Your service will naturally need an entry in the application’s AndroidManifest.xml.
The exported flag will need to be set to true as it is expected to be exposed to the Google
Fit platform and interact with external Apps. Furthermore, the service’s entry in the
manifest will need to declare a mime type filter based on the Google Fit data type (stan-
dard or shareable) that it supports. Below is a snippet of such an entry in the AndroidManifest.
xml file:

The Google Fit platform will bind to your service and remain bound as long as there is
an active registration or subscription for the sensor service. The Google Fit platform
manages the life cycle of your service.

9.6.2  FitnessSensorServiceRequest

The FitnessSensorRequest encapsulates the request for registering for sensor events from
your service implementation, which includes the data source, batch interval, sampling rate,
and dispatcher to publish data to. You will notice that the FitnessSensorServiceRequest
does not have any Builder and does not reside in the request package along with the request
family classes that we covered earlier. Apps that are interested in receiving sensor data do
not instantiate or use the FitnessSensorServiceRequest, rather they use the SensorApi in the
standard way. The Google Platform acts as the intermediary between Apps that desire to
subscribe to data sources, and this is achieved via the intent‐filter mechanism declared in
the manifest.

<service android:name=“io.wearbook.fitness.HeartrateSensorService”
	 android:exported=“true”>
  <intent‐filter>
	 <action android:name=“com.google.android.gms.fitness.service.FitnessSensorService” />
	 <data android:mimeType=“vnd.google.fitness.data_type/com.google.heart_rate.bpm” />
  </intent‐filter>
</service>

References and Further Reading� 243

9.6.3  SensorEventDispatcher interface

The SensorEventDispatcher is used by the FitnessSensorService implementation to
dispatch or push events out to the Google Fit platform. Your implementation of the
FitnessSensorService is the intermediary between the sensor and the Google Fit platform.
The publish methods in the SensorEventDispatcher help your service publish individual
DataPoints as well as a batch of DataPoints.

References and Further Reading

https://developers.google.com/fit/

https://developers.google.com/fit/android/reference

http://developer.android.com/reference/com/google/android/gms/fitness/package‐summary.html

https://developers.google.com/fit/android/data‐type

http://tools.ietf.org/html/rfc6749

http://en.wikipedia.org/wiki/Value_(computer_science)

http://developer.android.com/reference/com/google/android/gms/common/api/Result.html

http://developer.android.com/reference/com/google/android/gms/common/api/Status.html

https://developers.google.com/fit/
https://developers.google.com/fit/android/reference
http://developer.android.com/reference/com/google/android/gms/fitness/package-summary.html
https://developers.google.com/fit/android/data-type
http://tools.ietf.org/html/rfc6749
http://en.wikipedia.org/wiki/Value_(computer_science)
http://developer.android.com/reference/com/google/android/gms/common/api/Result.html
http://developer.android.com/reference/com/google/android/gms/common/api/Status.html

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

This section has one short chapter that provides an overview of the possibilities for useful
Wearable applications in the real world, from a long‐term and broad perspective.

Part V  Real‐World Applications

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Chapter 10  Real‐World Applications

10.1  Real‐World Applications

Wearable devices and applications are not intended to increase the amount of information
that a user needs to consume, rather they are meant to make the consumption of such
information easier. Given that there are tasks and actions that a user needs to carry out,
Wearable devices and applications can it make more convenient for the user to do so.

10.2  Handheld Application Extension

Given an existing handheld application, there will likely be a small subset of the functionality
that makes a compelling case for extension into the Wearable platform. Probably, the most
important and time‐sensitive notifications in the handheld application represent what will
likely be beneficial for extending to the Wearable flavor of the application.

10.3  Home Automation

Many home appliances and accessories such as washers, dryers, toasters, thermostats, light
bulbs, and so on have commenced to include network connectivity via Bluetooth, Wi‐Fi,
and so on. Home appliance manufacturers have commenced to recognize the advantages of
making their devices network enabled and service oriented—based on inter‐operable and

248� Real‐World Applications

open standard‐based technologies, rather than proprietary mechanisms. Wearable and other
IoT devices in the consumer arena can tend to feed off one another and provide incremental
value to the consumer, by their ease of inter‐interoperability.

The presence of more “smart” networked devices in the consumer’s network brings up
the opportunity for interaction and control via Wearable/smart watch‐based applications.
Consumers tend to appreciate being able to control their home appliances via their Wearable/
smart watches and receive relevant notifications as well.

10.3.1  Home Entertainment

Several entertainment, media, video, audio systems, and accessories have various forms of
connectivity such as wired or wireless connectivity, Bluetooth, and so on. Wearable applica-
tions that interact with and facilitate control over entertainment systems can be very useful.

10.3.2  Gaming

Wearable devices such as smart watches with sensor‐based applications have potential in
gaming, as do accessories like Wearable bands and vests with sensors. Smart watches with
relevant sensors create opportunity for Wearable applications that transform a generic
smart watch to a game console by detecting and processing motion, orientation, balance,
and so on. Consumers tend to prefer a generic hardware device, which in conjunction with
quality software applications transforms the generic device into a specialized gaming
device for the duration that they are engaged in playing games. This also tends to make the
game more available and lowers the overall price of the game.

10.4  Wearables at the Workplace

Wearables at the work have many obvious use cases. For one, busy executives need to remain
focused on real‐world activities, such as a business meeting, while also keeping up to date
about other important updates (with minimal overhead, via glanceable interactions). Glancing
at a watch is less intrusive and more polite.

In case of mobile field staff who work with tools and/or handle real‐world workloads,
there are many scenarios where the Wearable can prove more useful than a handheld
device—via glanceable information updates and action‐based interactions for acknowledg-
ments and statuses.

10.5  Fitness, Health, and Medical

The medical “triage” of heart rate, temperature, and blood pressure, which are typically
measured at a doctor’s office or hospital, can be measured by consumers themselves as part
of their fitness data—at various times of the day and upon engaging in different activities.
Although Google Fit, for instance, currently excludes medical applications, in the long
term, there are likely to be changes to the laws that are more accommodating toward
consumer‐based devices and applications that serve a function that overlaps with formal
medical sensor devices and applications. While the cost of health care has been rising, the

Fitness, Health, and Medical� 249

cost of consumer electronics and generic software that can measure certain health‐related
parameters is falling. Many manufacturers of fitness sensor devices also happen to manu-
facture medical devices. With more consumers interested in, and with the ability to measure
and store their own fitness parameters via cost‐effective means, it is possible and even
likely that these two worlds (of formal medical records and consumer’s own fitness records)
will not remain isolated for very long. This opens the door to innovation and opportunity in
the arena of fitness, health, and medical applications.

10.5.1  Predictive and Proactive Consumer Health

In the long run, the collection of fitness and health data has the potential to help provide a
proactive and predictive approach toward health care and management. With many param-
eters such as weight, heart rate, blood pressure, etc. collected routinely on a periodic and
frequent basis, there is opportunity to analyze their trends over a period of time and gain some
useful insights.

Advances in nano‐technology are beginning to make it practicable for ingested probe
pills/nano‐bots to probe the human body for diagnostic information and communicate with
their Wearable and handheld devices to collect advanced diagnostic data, while users go
about their normal daily schedules. Using both routine and advanced sensor data, in
conjunction with data analysis and prediction algorithms, it is likely that doctor’s visits will
be based upon dynamic recommendations rather than on some fixed, periodic schedule.

10.5.2  Wearables for Medical Professionals

Head‐mounted displays have been used in medicine and surgery for reality augmentation and
training. These have been based on custom hardware and software, which is typically more
expensive. With the arrival of consumer Wearables including Google Glass, there is opportunity
for new applications that can provide cost‐effective augmented reality solutions that address
some of the use cases in the medical arena. Vision‐based systems (as covered in Section 2.9.1)
have introduced innovative sensing and measurement mechanisms for bodily parameters.

10.5.3  Wearables and Remote Medical Diagnostics

In some developing nations with limited resources and few medical doctors, remote
monitoring using Wearable, IoT, and handheld devices is already in use today—mobile
field staff deliver basic health care with remote assistance from centrally located systems,
doctors, and hospitals. Sensor, handheld, and Wearable devices help in the acquisition of
body parameters. Such innovation stems from absolute necessity.

In developed nations and depending on the particular country specific laws governing
medical practice and standard practices, the particulars may vary. Oftentimes in developed
countries, remote monitoring has been in use for patients with special needs and those
needing long‐term monitoring. With regard to the delivery of basic health care, many
developed nations have a more conventional and conservative approach. However,
health care costs keep rising, and many routine doctor’s visits turn out to be unnecessary or
avoidable. The leveraging of consumer wearables and generic monitoring devices for
purposes of medical purposes can help reduce health care costs. It can also be aligned with

250� Real‐World Applications

the predictive and proactive approach covered in Section 10.5.1. There has been much
work done in the field of mobile device‐based remote diagnostics and screening, more
details of which can be found at

http://miter.mit.edu/articlesana‐providing‐hope‐healthcare‐through‐mobile‐technology/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149792/

10.6  Industrial Manufacturing

Wearables have potential use in industrial manufacturing of specialized components in
automobile, aerospace, and other industries. Much like in the case of devices for medical
professionals, consumer Wearable devices with innovative software have the potential to
provide cost‐effective augmented reality solutions for industrial manufacturing.

10.7  Civic, Government, and Democracy

Wearables have been in use in law enforcement, and consumer Wearable devices with inno-
vative software solutions have the potential to provide cost‐effective augmented reality
solutions in this arena. IoT devices have applicability in the management of civic infra-
structure and resources.

In the representative form of government—commonly in existence today—citizens get
to choose their representatives at election time; after the election is over, citizens depend on
their representative to make decisions on their behalf. Direct democracy is a form of
democracy in which citizens get to vote directly on all issues and policies. The growth of
ubiquitous computing and technology makes it easier to implement “Direct democracy” in
practice. Direct democracy allows the entire citizenry to participate in government directly
to the degree that they would individually care to. Direct democracy can coexist with the
representative form of government; however, the votes on issues that come straight from
the citizenry directly might become difficult to ignore.

References and Further Reading

http://en.wikipedia.org/wiki/Google_Contact_Lens

http://en.wikipedia.org/wiki/Head‐mounted_display

http://www.cnn.com/2015/01/29/tech/mci‐nanobots‐eth

http://web.mit.edu/zacka/www/moca.html

http://miter.mit.edu/articlesana‐providing‐hope‐healthcare‐through‐mobile‐technology/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149792/

http://en.wikipedia.org/wiki/Direct_democracy

http://en.wikipedia.org/wiki/Demoex

http://www.cnet.com/news/wearable‐book‐lets‐readers‐feel‐the‐fiction/

http://miter.mit.edu/articlesana-providing-hope-healthcare-through-mobile-technology/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149792/
http://en.wikipedia.org/wiki/Google_Contact_Lens
http://en.wikipedia.org/wiki/Head-mounted_display
http://www.cnn.com/2015/01/29/tech/mci-nanobots-eth
http://web.mit.edu/zacka/www/moca.html
http://miter.mit.edu/articlesana-providing-hope-healthcare-through-mobile-technology/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149792/
http://en.wikipedia.org/wiki/Direct_democracy
http://en.wikipedia.org/wiki/Demoex
http://www.cnet.com/news/wearable-book-lets-readers-feel-the-fiction/

Wearable Android™: Android Wear & Google Fit App Development, First Edition. Sanjay M. Mishra.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Index

Note: Page numbers in italics refer to Figures; those in bold to Tables.

accelerometer, 6, 16, 223, 240
action bar, 150, 159
actions, 5, 17, 68, 71, 82, 94, 97, 101–6, 116,

124, 150, 151, 159, 163, 164, 215, 242,
247, 248

Activity, 53, 67, 68, 71, 72, 76, 77, 91, 93,
94–9, 102–6, 185, 194, 203, 205, 206,
208, 209, 211, 214, 219, 230, 240

ActivityManager, 53
ADB debugging and Debugging over

Bluetooth, 154
advertisement, 112
AIDL see Android Inferface Definition

Language (AIDL)
AlarmManager, 49
alarms, 15, 18, 49, 109, 123
Alex “Sandy” Pentland, 11
am (command)/activity manager (command),

68, 69, 71, 72
Android

Android AIDL, 48, 53–4, 98, 171, 171, 179
Android APK/APK, 88–91, 165, 187

Android Application Development, 35, 47,
88–91, 93, 98, 101

Android application manifest/manifest/
AndroidManifest.xml, 92, 105

Android, Inc., 37
Android IPC, 43, 44, 48, 53, 169, 171, 179
Android Open Source Project (AOSP), 41, 50
Android OS, 35, 37, 39, 40, 42, 47–54, 65,

66, 84, 85, 90–91, 96, 98, 121, 122, 124,
126, 128, 135, 165, 169, 170, 186, 232, 237

Android platform, 7, 35, 37, 44, 46, 47–54,
61, 62, 64, 65, 66, 67, 68–70, 85, 92, 101,
108, 109, 121–68, 173, 187, 191, 240

Android project, 63, 65–72, 73, 76, 82, 88,
89, 90, 94, 197, 202

Android Runtime (ART), 47, 51–3
Android Runtime Virtual Machine/Android

Virtual Machine, Android VM, 52, 88, 90,
91, 161

Android SDK, 35, 51, 54, 56–64, 66, 72, 73,
75, 76, 82–5, 87–109, 138, 138–9, 140,
155–61, 170, 184, 196

252� Index

Android (cont’d)
Android Studio IDE, 56, 72
Android Wear API, 122–3, 169–90
Android Wear App, 35, 122, 123, 133, 133,

134, 145, 146–50, 150, 159, 160, 160, 161,
162, 165–8, 168, 173, 175, 177, 184–7

Android Wear OS, 122
Android Debug Bridge (adb/ADB)

am (command), 68, 69, 71, 72
connect (command), 159
debugging, 49, 50, 65, 153–4, 155,

158, 161
devices (command), 65, 65, 155, 155, 159
logcat (command), 48, 49, 157, 158
pm (command), 90
shell (command), 48, 49, 52, 68, 69, 71, 72,

90, 157, 157, 158
Android Inferface Definition Language

(AIDL), 48, 53–4, 98, 171, 171, 179
AndroidManifest.xml, Android manifest,

manifest
largeHeap flag, 92

Android Open Source Project (AOSP),
41, 50

Andy Rubin, 37
ANR see Application Not Responding (ANR)
AOSP see Android Open Source Project

(AOSP)
Apache ANT (ant), 54, 63–4, 64, 65–71, 82,

83, 84, 88, 195, 197, 203, 206, 227
Apache Harmony, 46, 50, 108
Apache License, 41, 46
Apache Software Foundation, 41
Apache Software License, 41, 50
API Level, 35, 59, 60, 62, 63, 65, 66, 67, 76,

 85, 91, 92, 105, 123, 138, 139, 140,
165, 197

APK file, 88–90
Apple, 14, 38, 39, 114
Application Binary Interface (ABI), 139
Application Not Responding (ANR), 91, 99
Ara/Project Ara, 31
ARM, 14, 15, 47, 51, 122
armeabi, 139
ARM Holdings plc, 14
ashmem, 48
Asset (class), 12, 94, 178, 179, 180, 182, 183
augmented reality, 11, 249, 250
authentication, 31, 169

automation
home automation, 4, 20, 115, 247–8
industrial automation, 21

automobile, 12, 16, 19, 21, 250
automobile network, 21
Avahi, 114

BAN see body area network (BAN)
Berkley Software Distribution (BSD), 38, 47
Binder, 48, 54
biology, 5, 26, 28, 52
BleApi, 204, 211, 213, 215, 217–18, 220,

232, 233, 237
BleDevice, 204, 211, 223–4, 224, 237,

237, 240
BleDevicesResult (class), 237, 237, 240
BleScanCallback (class), 204, 211, 217, 218,

232, 233
Bluetooth, 4, 6, 7, 13, 20, 43, 49, 101, 111,

112–13, 115, 145, 147, 148, 151, 153–4,
154, 155, 158–61, 161, 174, 189, 191,
195, 204, 211, 213, 216, 217, 217, 218,
223, 224, 231, 232, 240, 241, 247, 248

Bluetooth LE/Bluetooth Smart, 6, 7, 20, 112,
113, 189, 191, 195, 204, 216, 217, 223,
231, 232, 240, 241

Bluetooth Special Interest Group (BSIG), 112
body area network (BAN), 19–21, 173
Broadcom, 14, 121
BSD see Berkley Software Distribution (BSD)
bucket (class), 230, 231, 234, 238
build number, 64, 152, 153, 153
bundle, 23, 40, 104, 180, 215

Cardboard (Google Cardboard), 32
Casio, 9, 10
Casio Databank CD 40, 9
central processing unit (CPU), 3, 9, 14, 17,

44, 47, 49, 51, 122
certificate

authority, 89
self signed, 89

civic, 250
class

class loading, 87
classes.dex, 88, 88
Claude Shannon, 10
ConfigApi, 215, 222, 222, 236, 239
container, 46, 47, 50, 52, 87, 93

Index� 253

Corba, 53, 87
Cue Card, 150, 151, 151

Dalvik
executable, 47, 88
package, 107, 108

Dalvik Executable (DEX), 47, 50, 88, 88, 90
dalvik package, 107, 108
DataApi, 174, 175, 176, 177–84, 178
DataDeleteRequest, 235, 235–6
DataEvent, 175, 175, 179
DataItem, 175, 177, 178–80, 179, 182
DataItemAsset, 182, 183
DataMap, 178–82, 179
DataMapItem, 178–80
DataPoint, 218, 225–9, 226, 234, 236, 239,

242, 243
DataReadRequest, 230, 234–6, 235, 238
DataSet, 229, 229, 236, 239
DataSource, 211, 215, 224–5, 225, 227, 229, 234
DataSourcesRequest, 233–4, 234, 238
DataType, 204, 211, 216, 217, 219, 220,

225–9, 226, 227–9, 234
DataTypeCreateRequest, 236
debugging

debugging settings, 150–153, 158
Demand/Demand model/Demand paradigm,

17, 18, 124, 137, 150
developer mode, 145–54, 154, 155, 158
developer options, 52, 64, 65, 153, 154, 154,

158, 159
device, 3, 9, 38, 88, 111, 121, 169, 192, 213, 247
Device (class), 223, 224
DEX see Dalvik Executable (DEX)
DEX file format, 88
discovery, 112, 114, 115, 241

Edgar Matias, 11
emulator/Android Emulator, 65, 85, 90,

140–144, 142, 144
entertainment, 5, 6, 21, 115, 248
explicit Intents, 105, 106
explorer/“explorer” program, xviii
Extra(s)/extra(s)/Intent Extra(s), 102, 104

Field (class), 227–8, 228
Fitness (class), 214–5, 215, 217, 218
FitnessActivities (class), 213, 216, 216
FitnessSensorService (abstract class), 242

FitnessSensorServiceRequest (class), 241, 242
FitnessStatusCodes (class), 213, 216, 216, 240
flo, 47, 48
Flynn, M., 11
Freeman, W.T., 25
Freescale, 14
Free Software Foundation (FSF), 39–41

Gaming, 115, 248
glibc, 39, 47
GNU

tools, 39, 40, 41, 50
GNU C, 47
GNU Linux, 38, 38, 47–8
GNU Public License (GPL), 40–41, 44, 48,

50, 114
Google

Google Cardboard, 32–3
Google Developer’s Console, 196, 200–202,

200–202
Google Now, 137–8, 147
Google Play Store, 84, 89, 123, 139, 145,

169, 187, 194, 211
Google Services, 169–73, 171, 211
Google Services for Mobile (GSM), 169
Google Settings App, 211–12

GoogleApiClient (class), 171, 171–3, 172
Google Fit/Fit

Activity Scope, 194
Body Scope, 194
Fit API, 113, 169, 191, 192, 196, 213–43
Fit Data Store, 192, 193
Fit Data Types, 192–3, 242
Location Scope, 194

Google Play Services
library, 171, 171, 196
library project, 170, 170, 196–8, 197, 198, 202

Gosling, J., 45
Government, 7, 20, 22, 250
GPL see GNU Public License (GPL)
GPL V2 see GPL Version 2 (GPL V2)
GPL Version 2 (GPL V2), 44
Gradle, 54, 63–4, 64, 71, 71–2, 72, 73, 83, 84,

88, 195, 197, 227

heap
largeHeap, 92

HistoryApi, 213, 215, 221–2, 234, 235, 236, 238
home area network (HAN), 19, 21, 111

254� Index

human computer interaction (HCI), 4, 6,
11, 17–18

human computer relationship, 16–18

Implicit intent, 102, 104–6
industrial, 3, 9, 12, 13, 16, 21, 26, 250
Info Card, 137
Intel, 14, 15, 39–41, 121, 122
Intent

ACTION_BOOT_COMPLETED, 102
ACTION_DIAL, 102, 104, 105
ACTION_MAIN, 102, 103, 105
ACTION_SEND, 104
ACTION_VIEW, 102, 104, 105, 106, 215
CALL_PHONE, 104
EXTRA_CC, 104
EXTRA_EMAIL, 104
extras, 102, 104
EXTRA_SUBJECT, 104
implicit intents, 102, 105
resolution, 106
standard Activity Actions, 102
standard Broadcast Actions, 102–4
standard Categories, 103

Intent resolution, 106
Internet, 11–13, 19, 19–23, 28–31, 38, 45, 51,

60, 68, 88, 113, 114, 194
Internet of Things (IoT), 11–15, 25, 26–9, 29,

31, 38, 41, 114, 248–50
Inter Process Communication (IPC), 43, 44,

53, 169
Interruptions

downtime, 135, 137
IP Address, 12, 13, 21, 22, 29, 111, 114
IPC see Inter Process Communication (IPC)
IPV6, 22, 113

Java
Java bytecode, 45, 51, 88
Java Card, 45
Java class file, 50, 88
Java Enterprise Edition (Java EE), 45
Java JNI, 45–6
Java Language Specification (JLS), 45
Java Memory, 45–6
Java Micro Edition (Java ME), 45
Java platform, 44–6
Java Remote Method Invocation (RMI),

48, 53, 87

Java runtime, 35
Java Runtime Environment (JRE),

45, 46
Java Software Development Kit (Java SDK/

Java JDK), 50, 54–6, 74, 83–4, 88
Java Standard Edition (Java SE), 45, 108
Java Virtual Machine (JVM), 45

JavaBeans, 87
JAVA_HOME (environment variable), 55,

58, 63, 64
java package, 108
javax package, 108
JDK 1.7, 54–6
JSON, 108, 109

kernel, 40, 41, 44, 44, 47–50, 156, 157
keystore, 89, 91, 196, 198–9, 203
keytool, 198, 199

Lamming, M., 11
layout, 39, 76, 94, 95, 96
licensing, licenses, 14, 39, 60
lifecycle, 94, 98
Linus Torvalds (Linus, Torvalds), 38, 41
Linux

distributions, 40, 47
Interprocess Communication (IPC), 48
kernel, 40, 41, 44, 47, 48
processes, 42, 42, 43, 43
process tree, 42–3

localization, 12, 13, 21, 59, 67, 74, 113, 114,
138, 157, 178, 196, 240

Location, 169, 171, 186, 194, 203, 227
Location Services, 114, 169, 171, 186, 187
locks, 21, 84, 98, 125, 131, 131–5
Log, android.util.Log class, 97
logcat, adb logcat, 49, 157, 158, 158
logging, 48, 97, 157
Lollipop, 37–85, 105, 109, 123–6, 138, 163
lsusb, command, 156, 156, 157

Machine to Machine (M2M), 13
main thread, 91, 99
manifest, Android Manifest, 68, 69, 70, 88, 90,

92, 93, 94, 105–7, 194, 202, 242
Mann, S., 10
Marvel, 14
medical, 3, 7, 12, 16, 20, 21, 31, 248–50
memory management, 44, 44, 45

Index� 255

Message, 21, 43, 91, 100, 101, 124, 132, 135,
136, 153, 173–5, 183, 184

MessageApi, 174–6, 183, 183–4
MessageEvent, 175, 175, 184
Michael(Miki) Rubinstein, 25, 26
Micro Electro Mechanical Systems (MEMS), 16
MIME (types), 102, 104, 215, 242
MIPS, 14, 15, 47, 51
MIPS Technologies, 14
MIT Media Lab, MIT, 10, 11, 25
Multicast Domain Name Service (mDNS), 114
multi‐threading, 42
mycelium, 27

NASA, 11
NDK, 51
Near Field Communication (NFC), 111, 113,

115–16
Nelsonic Industries, 9
Network Service Discovery (NSD), 115
Nexus, 42, 43, 80
NFC see Near Field Communication (NFC)
Node (interface), 174, 174
NodeApi (interface), 174, 176, 177, 177
Notification

Notification Access, 134, 134–5
Notifications

Cloud‐synced Notifications, 125
Extended Notifications, 163–5
Heads‐up Notifications, 125, 125
Sound and Notifications, 126–30, 135

NSD see Network Service Discovery (NSD)

“OK Google”, 123
onCreate, 96, 97, 99, 214
onDataChanged, 179
OnDataPointListener, 205, 214, 218, 219, 225,

234, 234
onPause, 97, 97
onStart, 96, 97, 97
onStop, 96, 97, 97
OpenID, 30, 31
org package, 108–9

pairing, 112, 113, 115, 143, 144, 145–55, 150,
162, 217

PAN see personal area network (PAN)
Parcelable, 54, 180, 182, 232, 237
PATH (environment variable), 55, 58, 64

personal area network (PAN), 20, 21
PhoneBloks, 31
priority

priority interruptions, 135
process

Android process, 42, 43, 99
Linux process, 42, 42, 43, 43

punch card, 16
PutDataMapRequest, 178, 180–182, 181
PutDataRequest, 178, 179–82, 181
putExtra, 102

Qualcomm, 14, 47, 121
Quick Start, 81, 81

reality augmentation, 249
RecordingApi, 213, 215, 217, 219, 219–20,

228, 229, 238
Remote Method Invocation (RMI), 48, 53, 87
request sub‐package, 216, 230–236, 231
res (resources)

directory, 94, 165, 187
REST, 191
result sub‐package, 216, 231, 236–40
RMI see Remote Method Invocation (RMI)
root, 27, 42, 47, 48, 52
rpm/RPM package manager, 56, 63, 83
Rubinstein, Michael(Miki), 25, 26
Rucci, M., 11
running (running state), 28, 45, 49, 51, 65, 68,

69, 79, 80, 96, 104, 125, 140, 143, 144,
145, 146, 150, 155, 161, 162, 168, 170,
170, 171, 177, 183, 219, 220

Samsung, 14, 47, 121, 139, 156
scanning, 18, 112, 147–8, 211, 217, 218,

231, 232
security, 28–31, 38, 42, 45, 46, 49, 52, 87, 90,

92, 100, 108, 131, 132, 169
self signed, self signed certificate, self signed

keystore, 89
sensor, 4, 11, 112, 123, 186, 191, 216, 248
SensorEventDispatcher (interface), 243
SensorRequest, 219, 233, 233
SensorsApi, 196, 211, 213, 215, 217–20, 218,

234, 240, 242
Service/Android Service, 48, 49, 53, 98, 98–9,

106, 126, 135, 169–73, 175, 242
Servlet(s), 87

256� Index

Session (class), 230, 230
SessionInsertRequest (class), 221, 236
SessionReadRequest (class), 236, 239
SessionsApi, 213, 215, 220, 220–221, 236, 239
setContentView, 95, 96
settings, Android Settings

Developer Options, 52, 64, 65, 153, 154,
154, 158, 159

SHA1, 196, 198–200
Software Component, 87
spatial scope of computing, 19, 19
Stack

Activity stack, 94, 95, 96
Stamets, P., 27
StartBleScanRequest, 204, 217, 232, 232, 233
startService, 99, 106
START_STICKY, 99
stopped (state), 96
Subscription (class), 228–9, 229
sudo, 54
sudo apt‐get, 54, 56, 63, 83, 157
suggest, paradigm, 18, 124, 137
Swing, Java Swing, 108
System on Chip (SoC), 14–16

tablet, 5, 6, 14, 19, 20, 41, 64, 65, 69, 115,
145, 155, 223

target
targeting, 60, 63, 65–8, 66–7, 71, 78, 78, 85,

92, 105, 115, 123, 138, 140, 159, 161,
162, 187, 197, 202, 203, 206

wear targeted apps, 165
wear targets, 165

task, 6, 17, 24, 44, 49, 94–5, 104, 247
tethering, 112, 113, 162
Texas Instruments, 14, 47
Thad Stamer, 11
this, this reference, 94
Thorpe, E.O., 10
timestamp, 218, 226, 227
TimeUnit, 219, 221, 234

Universal Plug and Play (UPnP), 115
Universal Serial Bus (USB), 7, 14, 59, 64, 65,

116, 126, 155–9
Unix, 37–44
UNIX®, 38, 39
UPnP.see Universal Plug and Play (UPnP)
USB‐On The Go/USB‐OTG, 116

Value (class), 228
value/computing value

synergistic computing value, 19, 23
Virtual Machine (VM), 52, 88, 90, 91, 161
vision/computer vision, 11, 25–6, 241, 249
voice, 6, 7, 17, 123, 132, 137, 151
voice based command, 123
voice interface, 151

wake locks, 49
watch, watches, 4, 6–7, 9, 10, 15, 19, 24, 98,

115, 121, 122, 126, 145, 150, 151, 173,
193, 206, 223, 248

WearableListenerService (interface), 174–5,
175, 178, 184

Wearable UI library, 184–5, 184–6
wearable, wearables, 3, 9, 38, 101, 114, 121,

173, 247
application, 15, 101, 248
class, 173, 174, 176, 176
device, 4, 6–7, 11–15, 25, 28, 29, 173,

247–50
package, 174, 174

Wear/Android Wear
Wear API, 122–3, 169–87
Wear debugging, 155–61
Wear debugging and debug over Bluetooth,

153–5, 154
Wear Debugging via Bluetooth, 158–61
Wear debugging via USB, 155–8
Wear Interaction design, 185–6

Wi‐Fi, 6, 7, 13, 14, 111, 115, 162, 247
Wi‐Fi Direct/Wi‐Fi P2P, 113–14
WIMM Labs, company, 121, 122
WIMM One, smart watch, 121, 122
workplace, 248

x86, 14, 40, 47, 51, 55, 122, 139
Xerox, 11

Yahoo, 31
Yet Another Flash File System (YAFFS), 48

Zephyr, Zephyr Heart Rate Monitor, 206, 207,
210, 211

Zero Configuration Networking/zeroconf,
114–15

zipalign, 89
zygote, 52, 53, 53, 161, 162, 162

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Contents
	About the Author
	About This Book
	Acknowledgments
	Part I
Wearable Computing: Introduction and Background
	Chapter 1 Wearables: Introduction
	1.1 Wearable Computing
	1.2 Wearable Computers and Technology
	1.3 “Wearables”
	1.4 The word: “Wearables”
	1.5 Wearables and Smartphones
	1.6 Wearable Light, Glanceable Interactions
	1.7 Smartphone Dependency, Inconveniences
	1.8 Wearable Interaction
	1.9 User’s Real-world Context
	1.10 Variety of Wearable Devices
	1.10.1 Smart Watches
	1.10.2 Fitness Sensors
	1.10.3 Smart Jewelry

	1.11 Android Wear and Google Fit
	1.11.1 Device / Hardware Purchases

	References and Further Reading

	Chapter 2 Wearable Computing Background and Theory
	2.1 Wearable Computing History
	2.1.1 Wearable Computing Pioneers
	2.1.2 Academic Research at Various Universities

	2.2 Internet of Things (IoT) and Wearables
	2.2.1 Machine to Machine (M2M)

	2.3 Wearables’ Mass Market Enablers
	2.3.1 “ARM-ed” revolution
	2.3.1.1 ARM alternatives

	2.3.2 System on Chip (SoC)
	2.3.3 Human Dependence on Computing
	2.3.4 Smartphone extensions
	2.3.5 Sensors
	2.3.5.1 Micro-Electro-Mechanical Systems (MEMS) Sensors

	2.4 Human–Computer Interface and Human–Computer Relationship
	2.4.1 Human–Computer Interface: over the years
	2.4.2 Human Computer Interaction (HCI): Demand and Suggest
	2.4.2.1 Demand Paradigm
	2.4.2.2 Suggest Paradigm
	2.4.2.3 Demand or Suggest?
	2.4.2.4 Demand and Suggest: A Healthy Balance

	2.4.3 Evolution of the Human–Computer Relationship

	2.5 A Multi-Device World
	2.5.1 Spatial Scope of Computing: Devices near and Devices far
	2.5.2 Body Area Network (BAN)
	2.5.3 Personal Area Network (PAN)
	2.5.4 Home Area Network (HAN)
	2.5.5 Automobile Network
	2.5.5.1 Controller Area Network (CAN)

	2.5.6 Near-Me Area Network (NAN)
	2.5.7 Campus Area Network
	2.5.8 Metro Area Network
	2.5.9 Wide Area Network
	2.5.10 Internet
	2.5.11 Interplanetary Network

	2.6 Ubiquitous Computing
	2.7 Collective, Synergistic Computing Value
	2.7.1 Importance of the User Centricity and the User Context
	2.7.2 Distributed Intelligent Personal Assistant

	2.8 Bright and Cloudy: Cloud-based Intelligent Personal Agent
	2.8.1 Google / Cloud-Based Intelligent Personal Agent

	2.9 Leveraging Computer Vision
	2.9.1 Enhanced Computer Vision / Subtle Change Amplification

	2.10 IoT and Wearables: Unnatural and over the top?
	2.10.1 Human History of Tool Use and Computation
	2.10.2 Communication Networks in Nature
	2.10.3 Consumption of Power: by computational systems, biological and artificial

	2.11 Security and Privacy Issues
	2.11.1 Use Awareness and complete end-to-end Transparency
	2.11.2 User Control and Choice
	2.11.3 User Access to Collected Data and Erasure capability
	2.11.4 Device side, transit, and cloud side protection: Data Anonymization
	2.11.5 Practical Considerations: User Centricity
	2.11.5.1 OpenID

	2.12 Miscellaneous
	2.12.1 PhoneBloks: Waste Reduction
	2.12.1.1 Project “Ara”

	2.12.2 Google Cardboard: inexpensive Virtual Reality

	References and Further Reading

	Part II
Foundation Android
	Chapter 3 Android Fundamentals / Hello Lollipop
	3.1 Android: Introduction
	3.2 Linux: “*nix” or Unix-like OS
	3.2.1 Unix
	3.2.2 Open Source
	3.2.3 GNU / Free Software Foundation
	3.2.3.1 Free as in Freedom: GNU Public License
	3.2.4 Apache Software Foundation: Apache Software License

	3.3 Linux: yesterday and today
	3.4 Unix System Architecture
	3.4.1 Unix Processes
	3.4.1.1 Linux Processes
	3.4.1.2 Android Processes
	3.4.1.3 Process Tree
	3.4.1.4 Unix Interprocess Communication (IPC)
	3.4.1.5 Remote Procedure Calls (RPC)

	3.4.2 Unix Kernel
	3.4.2.1 Linux Kernel

	3.5 Java
	3.5.1 Java Origins
	3.5.2 Java Platform: Language, JVM
	3.5.3 Java memory: Heap, Stack, and native
	3.5.4 Security Policy: Permissions

	3.6 Apache Harmony
	3.7 Android OS and platform
	3.7.1 Android Kernel
	3.7.2 Android Open Source Project (AOSP)
	3.7.2.1 Android Framework

	3.7.3 Android Development
	3.7.3.1 Android SDK
	3.7.3.2 Android NDK

	3.7.4 Android Runtime Environment
	3.7.4.1 Dalvik Virtual Machine
	3.7.4.2 ART (Android Runtime)
	3.7.4.3 Zygote
	3.7.4.4 System Server: Android System Services

	3.7.5 Android Interface Definition Language (AIDL)

	3.8 Setting up your Android Development Environment
	3.8.1 Installing Java SDK version 7 (JDK 1.7) from Sun Microsystems / Oracle
	3.8.2 Installing Android SDK from Google
	3.8.3 Installing Build Tools (gradle and ant)
	3.8.4 Setting up environment variables (Java, Android SDK, gradle and ant)
	3.8.5 Android (Lollipop) Development Device setup
	3.8.5.1 Creating a new Android project (classic / ant)
	3.8.5.2 Creating a new Android project (new / gradle)

	3.8.6 Installing Android Studio “IDE”
	3.8.7 Android Studio: Hello World App
	3.8.8 Configuring Android Studio

	3.9 Android “Classic” project tree and build system
	3.10 Android “New” Build System
	3.11 Managing Java Installations
	3.11.1 Avoid sudo apt-get / rpm style installation
	3.11.2 Maintain discrete Java JDK versions
	3.11.3 Set JAVA_HOME in your .profile
	3.11.4 Project-wise JAVA_HOME
	3.11.5 IDE independent build

	3.12 Managing Android SDK installation and updates
	3.12.1 Update your Android SDK often
	3.12.2 Target your App to the latest SDK / API level
	3.12.3 Be sure to specify a minimum SDK / API level for your App

	3.13 Code Samples: Android Lollipop
	References and Further Reading

	Chapter 4 Android SDK
	4.1 Software Components, in general
	4.2 Android Application Development Model
	4.2.1 DEX file format
	4.2.2 APK file
	4.2.3 Android Project Build Process
	4.2.4 APK installation and execution
	4.2.4.1 Application main thread / UI thread

	4.3 Android SDK API
	4.3.1 Android Application Manifest (AndroidManifest.xml)
	4.3.2 Android API package Overview

	4.4 Android’s Four Fundamental Components
	4.4.1 Android Project Artifacts

	4.5 Activity
	4.5.1 Activity life cycle

	4.6 Service
	4.7 BroadcastReceiver
	4.8 ContentProvider
	4.9 Intent
	4.9.1 Intent Action and Data
	4.9.1.1 Intent Extras
	4.9.1.2 Intent Flags

	4.9.2 Explicit Intents
	4.9.3 Implicit Intents
	4.9.4 Intent Filter
	4.9.5 Intent Resolution
	4.9.6 Intent Use Cases
	4.9.6.1 Starting Activities
	4.9.6.2 Starting Services
	4.9.6.3 Delivering Broadcasts

	4.10 android package, sub-packages
	4.11 dalvik package, sub-packages
	4.12 java and javax package, sub-packages
	4.13 org package, sub-packages
	4.14 Sample code in this book
	References and Further Reading

	Chapter 5 Android Device Discovery and Communication
	5.1 Android Interconnectivity
	5.2 Advertisement and Discovery
	5.3 Bluetooth
	5.3.1 Bluetooth Low Energy (LE)
	5.3.2 Bluetooth Generic Attribute Profiles (GATT)
	5.3.3 Android support for Bluetooth LE

	5.4 Wi-Fi Peer-to-Peer (Wi-Fi Direct)
	5.4.1 Android Wi-Fi Direct / P2P API

	5.5 Zero Configuration Networking (zeroconf)
	5.5.1 Android Network Service Discovery (NSD)

	5.6 Near Field Communication (NFC)
	5.7 Universal Serial Bus (USB)
	5.7.1 USB On-The-Go (USB OTG)

	References and Further Reading

	Part III
Android Wear Platform and SDK
	Chapter 6 Android Wear Platform
	6.1 Android Wear
	6.2 Android Wear Platform: Android Wear OS, Wear Devices, and Wear API
	6.2.1 Android Wear OS
	6.2.2 Android Wear Devices
	6.2.3 Android Wear API and Wear Apps

	6.3 Android Notifications and Android Wear
	6.3.1 Android 5.0 (Lollipop) Notifications

	6.4 Notification Settings and Control
	6.4.1 Sound and Notification and Priority Notification
	6.4.2 Notification Configuration and Control
	6.4.3 Locked Screen and Notifications
	6.4.3.1 Notification Access

	6.4.4 Interruptions

	6.5 App Notification Strategy
	6.6 Google Now and Android Wear
	6.7 Android Wear Devices: Getting Started
	6.7.1 Android SDK Wear Platform updates
	6.7.2 Procuring an Android Wear device
	6.7.2.1 Using Android Emulator with Wear AVD

	6.7.3 Pairing and Enabling Developer Mode
	6.7.3.1 Unboxing your Wear device
	6.7.3.2 Pairing your Handheld device with your Wear device
	6.7.3.3 Enabling Developer Mode and Debugging Settings on your Wear device
	6.7.3.4 Enabling Wear ADB Debugging and Debug over Bluetooth

	6.8 Wear Debugging and Android SDK
	6.8.1 Wear Debugging via USB
	6.8.2 Wear Debugging via Bluetooth

	6.9 Peeking under the hood of your Wear Device
	6.10 Engaging your Android Wear device via Notifications
	6.10.1 Engaging Android Wear via Notification Sync
	6.10.2 Wear Extended Notifications

	6.11 Android Wear Targeted Apps
	6.12 Hello Wear World: Writing our first Wear App
	References and Further Reading

	Chapter 7
Android Wear API
	7.1 Google Services and Google Play Services
	7.1.1 GoogleApiClient class

	7.2 Android Wear Network
	7.3 Android Wear API, in depth
	7.3.1 Wear API: wearable package
	7.3.1.1 Node interface
	7.3.1.2 WearableListenerService
	7.3.1.3 DataEvent
	7.3.1.4 MessageEvent

	7.3.2 Wearable class
	7.3.3 NodeApi
	7.3.4 DataApi

	7.4 DataItem, DataMapItem, and DataMap
	7.4.1 DataItem
	7.4.2 DataMapItem
	7.4.3 DataMap

	7.5 PutDataRequest and PutDataMapRequest
	7.5.1 PutDataRequest
	7.5.2 PutDataMapRequest

	7.6 Asset and DataItemAsset
	7.6.1 Asset class
	7.6.2 DataItemAsset interface

	7.7 MessageApi
	7.8 Wearable UI Library
	7.9 Wear Interaction Design
	7.10 Accessing Sensors
	7.11 Production Wear Apps
	References and Further Reading

	Part IV
Google Fit Platform and SDK
	Chapter 8
Google Fit Platform
	8.1 Google Fit Platform Overview
	8.2 Google Fit Core Concepts
	8.3 Fit Data Types
	8.4 Fit Data Store (Storage)
	8.5 Sensors
	8.6 Permissions, User Consent
	8.6.1 Permission Groups, Fitness Scopes
	8.6.1.1 Activity Scope
	8.6.1.2 Body Scope
	8.6.1.3 Location Scope

	8.7 Google Fit: Developer Responsibilities
	8.7.1 Developer Terms and Conditions
	8.7.2 Developer Branding Guidelines

	8.8 Procuring Sensor Peripherals
	8.9 Hello Fit: hands-on example
	8.9.1 Google Play Services library project, dependency
	8.9.2 Using the SHA1 fingerprint of the keystore
	8.9.3 Google Developer’s Console Activating Fit API
	8.9.4 Creating the Android App

	8.10 Google’s Fit App
	8.11 Google Settings App
	References and Further Reading

	Chapter 9
Google Fit API
	9.1 Google Fit API
	9.2 Google fit main package (com.google.android.gms.fitness)
	9.2.1 Fitness class
	9.2.2 FitnessActivities class
	9.2.3 FitnessStatusCodes class
	9.2.4 BleApi interface
	9.2.5 SensorsApi
	9.2.6 RecordingApi
	9.2.7 SessionsApi
	9.2.8 HistoryApi
	9.2.9 ConfigApi

	9.3 data sub-package
	9.3.1 Device
	9.3.2 BleDevice
	9.3.3 DataSource
	9.3.4 DataType
	9.3.5 DataPoint
	9.3.6 Field
	9.3.7 Value
	9.3.8 Subscription
	9.3.9 DataSet
	9.3.10 Session
	9.3.11 Bucket

	9.4 request sub-package
	9.4.1 StartBleScanRequest
	9.4.2 BleScanCallback
	9.4.3 SensorRequest
	9.4.4 DataSourcesRequest
	9.4.5 OnDataPointListener
	9.4.6 DataReadRequest
	9.4.7 DataDeleteRequest
	9.4.8 SessionInsertRequest
	9.4.9 SessionReadRequest
	9.4.10 DataTypeCreateRequest

	9.5 result sub-package
	9.5.1 BleDevicesResult
	9.5.2 DataSourcesResult
	9.5.3 ListSubscriptionsResult
	9.5.4 DataReadResult
	9.5.5 SessionReadResult
	9.5.6 SessionStopResult
	9.5.7 DataTypeResult

	9.6 service sub-package
	9.6.1 FitnessSensorService
	9.6.2 FitnessSensorServiceRequest
	9.6.3 SensorEventDispatcher interface

	References and Further Reading

	Part V
Real-World Applications
	Chapter 10 Real-World Applications

	10.1 Real-World Applications
	10.2 Handheld Application Extension
	10.3 Home Automation
	10.3.1 Home Entertainment
	10.3.2 Gaming

	10.4 Wearables at the Workplace
	10.5 Fitness, Health, and Medical
	10.5.1 Predictive and Proactive Consumer Health
	10.5.2 Wearables for Medical Professionals
	10.5.3 Wearables and Remote Medical Diagnostics

	10.6 Industrial Manufacturing
	10.7 Civic, Government, and Democracy
	References and Further Reading

	Index
	EULA

