
SOURCE CODE ONLINE

www.apress.com

 Varghese
W

eb Developm
ent w

ith Go

Web
Development
with Go

Building Scalable Web Apps and
RESTful Services
—
Shiju Varghese

Web Development with Go

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN GO

Web Development with Go takes you on a deep dive into web development using the Go
programming language to build web apps and RESTful services to create reliable and effi cient
so� ware. Web Development with Go provides Go language fundamentals and then moves on to
advanced web development concepts and successful deployment of Go web apps to the cloud.

Web Development with Go will teach you how to develop scalable real-world web apps, RESTful
services, and backend systems with Go. The book starts off by covering Go programming
language fundamentals as a prerequisite for web development. A� er a thorough understanding
of the basics, the book delves into web development using the built-in package, net/http. With
each chapter you’ll be introduced to new concepts for gradually building a real-world web system.

The book further shows you how to integrate Go with other technologies. For example, it
provides an overview of using MongoDB as a means of persistent storage, and provides an
end-to-end REST API sample as well. Developers looking for a full-� edged web development
framework for building web apps will be introduced to Beego. The book then moves on to
demonstrate how to deploy web apps to the cloud using the Google Cloud platform. Finally,
the book introduces Docker, a revolutionary container technology platform for deploying
containerized Go web apps to the cloud.

Web Development with Go provides:

• Fundamentals for building real-world web apps in Go
• Through coverage of prerequisites and practical code examples
• Demo web apps for attaining a deeper understanding of web development
• A reference REST API app which can be used to build scalable real-world backend

services in Go
• A through demonstration of deploying web apps to the Cloud using the Google

Cloud platform, and Docker for deploying Go servers

US $39.99

Shelve in:
Web Development/General

User level:
Beginning–Advanced

9 781484 210536

53999
ISBN 978-1-4842-1053-6

www.allitebooks.com

http://www.allitebooks.org

Web Development
with Go

Building Scalable Web Apps and
RESTful Services

Shiju Varghese

www.allitebooks.com

http://www.allitebooks.org

Web Development with Go

Copyright © 2015 by Shiju Varghese

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1053-6

ISBN-13 (electronic): 978-1-4842-1052-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Celestin John Suresh
Technical Reviewer: Prateek Baheti
Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Nancy Sixsmith
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

I would like to dedicate this book to my parents, the late C.S. Varghese and Rosy Varghese. I would
like to thank them for their unconditional love and life struggles for the betterment of our lives.

I would like to dedicate this book to my lovely wife Rosmi and beautiful daughter Irene Rose.
Without their love and support, this book would not have been possible.

Finally, I would like to dedicate this book to my elder sister Shaijy and younger brother Shinto.

—Shiju Varghese

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author��xv

About the Technical Reviewer��xvii

Introduction���xix

■■Chapter 1: Getting Started with Go��� 1

■■Chapter 2: Go Fundamentals�� 15

■■Chapter 3: User-Defined Types and Concurrency��� 35

■■Chapter 4: Getting Started with Web Development�� 59

■■Chapter 5: Working with Go Templates�� 79

■■Chapter 6: HTTP Middleware�� 99

■■Chapter 7: Authentication to Web Apps�� 121

■■Chapter 8: Persistence with MongoDB��� 141

■■Chapter 9: Building RESTful Services��� 159

■■Chapter 10: Testing Go Applications��� 211

■■Chapter 11: Building Go Web Applications on Google Cloud������������������������������ 251

Index�� 285

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author��xv

About the Technical Reviewer��xvii

Introduction���xix

■■Chapter 1: Getting Started with Go��� 1

Introducing Go��� 1

Minimalistic Language with Pragmatic Design��� 1

A Static Type Language with High Productivity��� 2

Concurrency Is a Built-In Feature at the Language Level�� 2

Go Compiles Programs Quickly��� 3

Go as a General-Purpose Language�� 3

Go Ecosystem�� 4

Installing the Go Tools��� 4

Checking the Installation��� 6

Setting up a Work Environment��� 7

Go Workspace�� 7

GOPATH Environment Variable��� 7

Code Organization Paths��� 7

Writing Go Programs��� 8

Writing a Hello World Program�� 8

Writing a Library�� 9

Testing Go Code��� 11

Using Go Playground��� 12

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

Using Go Mobile�� 13

Go as a Language for Web and Microservices�� 13

Summary��� 14

■■Chapter 2: Go Fundamentals�� 15

Packages��� 15

Package main�� 15

Package Alias�� 16

Function init��� 16

Using a Blank Identifier��� 17

Importing Packages��� 18

Install Third-Party Packages�� 18

Writing Packages��� 19

Go Tool��� 21

Formatting Go Code��� 22

Go Documentation��� 23

Working with Collections��� 24

Arrays�� 24

Slices��� 25

Maps�� 29

Defer, Panic, and Recover�� 31

Defer�� 31

Panic�� 32

Recover�� 32

Error Handling��� 33

Summary��� 34

■■Chapter 3: User-Defined Types and Concurrency��� 35

User-defined Types with Structs��� 35

Creating a Struct Type��� 35

Creating Instances of Struct Types�� 36

Adding Behavior to a Struct Type��� 37

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

Type Composition�� 40

Overriding Methods of Embedded Type��� 43

Working with Interfaces�� 44

Concurrency�� 50

Goroutines��� 50

GOMAXPROCS and Parallelism�� 53

Channels�� 54

Summary��� 58

■■Chapter 4: Getting Started with Web Development�� 59

net/http Package��� 59

Processing HTTP Requests�� 60

ServeMux��� 61

Handler�� 61

Building a Static Web Server��� 61

Creating Custom Handlers�� 63

Using Functions as Handlers��� 64

http.HandlerFunc type��� 64

ServeMux.HandleFunc Function�� 66

DefaultServeMux��� 66

http.Server Struct�� 67

Gorilla Mux�� 69

Building a RESTful API��� 70

Data Model and Data Store�� 72

Configuring the Multiplexer��� 73

Handler Functions for CRUD Operations�� 74

Summary��� 77

www.allitebooks.com

http://www.allitebooks.org

x

■ Contents

■■Chapter 5: Working with Go Templates�� 79

text/template Package�� 79

Working with text/template��� 79

Define Named Templates��� 83

Declaring Variables�� 83

Using Pipes�� 84

Building HTML Views Using html/template��� 84

Building a Web Application�� 85

Summary��� 97

■■Chapter 6: HTTP Middleware�� 99

Introduction to HTTP Middleware�� 99

Writing HTTP Middleware�� 100

How to Write HTTP Middleware��� 101

Writing a Logging Middleware��� 101

Controlling the Flow of HTTP Middleware��� 103

Using Third-Party Middleware��� 106

Using Gorilla Handlers��� 106

Middleware Chaining with the Alice Package��� 108

Using Middleware with the Negroni Package��� 111

Getting Started with Negroni��� 111

Working with a Negroni Middleware Stack��� 115

Sharing Values Among Middleware��� 118

Using Gorilla context�� 118

Setting and Getting Values with Gorilla context��� 118

Summary��� 120

■■Chapter 7: Authentication to Web Apps�� 121

Authentication and Authorization�� 121

Authentication Approaches��� 121

Cookie-Based Authentication�� 122

Token-Based Authentication�� 123

www.allitebooks.com

http://www.allitebooks.org

xi

■ Contents

Authentication with OAuth 2�� 125

Understanding OAuth 2�� 125

Authentication with OAuth 2 using the Goth Package��� 126

Authentication with JSON Web Token��� 131

Working with JWT Using the jwt-go Package�� 131

Using HTTP Middleware to Validate JWT Tokens��� 139

Summary��� 139

■■Chapter 8: Persistence with MongoDB��� 141

Introduction to MongoDB�� 141

Getting Started Using MongoDB�� 142

Introduction to mgo Driver for MongoDB��� 142

Accessing Collections�� 144

CRUD Operations with MongoDB��� 144

Inserting Documents��� 144

Reading Documents�� 149

Updating Documents��� 151

Deleting Documents�� 151

Indexes in MongoDB�� 152

Managing Sessions��� 154

Summary��� 157

■■Chapter 9: Building RESTful Services��� 159

RESTful APIs: the Backbone of Digital Transformation�� 159

API-Driven Development with RESTful APIs�� 160

Go: the Great Stack for RESTful Services�� 160

Go: the Great Stack for Microservice Architecture�� 161

Building RESTful APIs�� 162

Third-Party Packages�� 162

Application Structure��� 162

Data Model�� 164

Resource Modeling for RESTful APIs��� 165

www.allitebooks.com

http://www.allitebooks.org

xii

■ Contents

Adding Route-Specific Middleware��� 167

Setting up the RESTful API Application�� 169

Authentication��� 175

Application Handlers��� 181

JSON Resource Models��� 184

Handlers for the Users Resource��� 185

Registering New Users�� 187

Logging in to the System��� 189

Data Persistence with MongoDB��� 191

JSON Resource Models��� 193

Handlers for the Tasks Resource��� 193

Testing API Operations for the Tasks Resource��� 199

JSON Resource Models��� 202

Go Dependencies Using Godep��� 202

Installing the godep Tool�� 203

Using godep with TaskManager��� 203

Restoring an Application’s Dependencies��� 204

Deploying HTTP Servers with Docker�� 205

Introduction to Docker��� 205

Writing Dockerfile�� 206

Go Web Frameworks��� 208

Summary��� 208

References�� 209

■■Chapter 10: Testing Go Applications��� 211

Unit Testing�� 211

Test-Driven Development (TDD)�� 211

Unit Testing with Go��� 212

Writing Unit Tests��� 213

Getting Test Coverage�� 215

xiii

■ Contents

Skipping Test Cases��� 221

Running Tests Cases in Parallel��� 222

Putting Tests in Separate Packages�� 224

Testing Web Applications��� 228

Testing with ResponseRecorder�� 228

Testing with Server�� 233

BDD Testing in Go�� 236

Behavior-Driven Development (BDD)��� 236

Behavior-Driven Development with Ginkgo��� 236

Summary��� 249

■■Chapter 11: Building Go Web Applications on Google Cloud������������������������������ 251

Introduction to Cloud Computing��� 251

Infrastructure as a Service (IaaS)�� 252

Platform as a Service (PaaS)��� 252

Container as a Service��� 252

Introduction to Google Cloud��� 252

Google App Engine (GAE)��� 254

Cloud Services with App Engine�� 254

Google App Engine for Go�� 255

Go Development Environment��� 256

Building App Engine Applications�� 256

Writing an HTTP Server��� 257

Creating the Configuration File�� 258

Testing the Application in Development Server��� 259

Deploying App Engine Applications into the Cloud�� 261

Creating Hybrid Stand-alone/App Engine applications��� 263

Working with Cloud Native Databases�� 267

Introduction to Google Cloud Datastore��� 267

Working with Cloud Datastore��� 268

xiv

■ Contents

Building Back-end APIs with Cloud Endpoints�� 273

Cloud Endpoints for Go�� 274

Cloud Endpoints Back-end APIs in Go��� 275

Summary��� 282

References�� 283

Index�� 285

xv

About the Author

Shiju Varghese is a solutions architect focused on building highly scalable
Cloud native applications with a special interest in APIs, Microservices,
containerized applications, and distributed systems. He currently
specializes in Go, Google Cloud, and Docker. Shiju is passionate about
building scalable back-end systems and Microservices in Go. He is a
pragmatic minimalist who focuses on real-world practices for architecting
solutions. Shiju worked extensively in C# and Node.js before adopting
Go as the primary technology stack. As a consulting solutions architect,
he provides guidance and solutions for the successful adoption of Go in
enterprises and startups.

xvii

About the Technical Reviewer

Prateek Baheti is a senior application developer at Thoughtworks, a
global software company. He has worked in the test automation space
for the past 3 years and has been a major contributor to the open source
test-automation tool, Gauge (which is primarily written in Golang).
A practitioner of agile software development, Prateek has experience with
building tools and services in Java and Ruby on Rails. He is a polyglot
programmer and a tech enthusiast. Prateek loves traveling, going on long
drives, and spending quality time at home with his family. You can find
him at tech conferences, watching movies, or exploring new restaurants
and breweries.

xix

Introduction

Go, often referred to as Golang, is a general-purpose programming language that was developed at Google in
November 2009.

Several programming languages are available for writing different kinds of software systems, and some
languages have existed for decades. Some mainstream programming languages are evolving by adding new
features in their newer versions, which are released with many new features in each version. Both C# and
Java provide too many features in their language specification.

At the same time, lots of innovations and evolutions are happening for the computer hardware and IT
infrastructure. Software systems are written with feature-rich programming languages, but we can’t leverage
the power of modern computers and IT infrastructures by using them. We are using programming languages
that were created in the era of single-core machines, and now we write applications for multicore machines
using these languages.

Just like everything else, computer programming languages are evolving. Go is an evolutionary
language for writing software systems for modern computers and IT infrastructures using a simple and
pragmatic programming language. On the Go web site at https://golang.org/, Go is defined as follows:
“Go is an open source programming language that makes it easy to build simple, reliable, and efficient
software.”

Go is designed for solving real-world problems instead of academic theories and intellectual thoughts.
Go is a pragmatic programming language that ignores the programming language theory (PLT) that has
evolved in the last three decades; it provides a simple programming model for building efficient software
systems with first-class support for concurrency. Go’s built-in Concurrency feature gives you an exciting
programming experience for writing highly efficient software systems by leveraging concurrency. For every
programming language, there is a design goal. Go is designed to be a simple programming language, and it
excels as a simple and pragmatic language.

Go is the language of choice for building many innovative software systems, including Docker,
Kubernetes, and others. Like Parse MBaaS by Facebook, many existing systems are re-engineering to Go.
I have assisted several organizations to successfully adopt Go, and the adoption process was extremely easy
thanks to Go’s simplicity and pragmatism. I am sure that you will be excited about Go when you develop
real-world software systems.

Go is a general-purpose programming language that can be used to build a variety of software
systems, including networked servers, system-level applications, infrastructure tools, DevOps, native
mobile applications, graphics, the Internet of Things (IoT), and machine learning. Go can be used for
building native mobile applications, and I predict that Go will be a great choice for building native Android
applications in the near future.

Go is a great choice of language for building web applications and back-end APIs. I highly recommend
Go for building massively scalable back-end RESTful APIs. I predict that Go will be the language of choice in
the enterprises for building back-end RESTful APIs, the backbone for building modern business applications
in this mobility era.

In this book, I assume that you have knowledge of at least one programming language and have some
experience in web programming. If you have prior knowledge of Go, it will help you follow along in this
book. If you are completely new to Go, I recommend the following tutorial before you start reading the book:
http://tour.golang.org/welcome/1.

https://golang.org/
http://tour.golang.org/welcome/1

xx

■ Introduction

When you go through the language fundamentals, I recommend accessing the following section of the
Go documentation: https://golang.org/doc/effective_go.html.

The primary focus of this book is web development using the Go programming language. Before diving
into web development, the book quickly goes through language fundamentals and concurrency, but doesn’t
delve too deeply, especially regarding concurrency. You should spend some time exploring concurrency
if you want to effectively leverage it for your real-world applications. I recommend the following resource
for learning more about concurrency and parallelism: http://blog.golang.org/concurrency-is-not-
parallelism.

This book explores various aspects of Go web programming, with a focus on providing practical code.
Chapter 9, “Building RESTful Services,” can help you to start developing real-world APIs in Go.

I have created a GitHub repository for this book at https://github.com/shijuvar/go-web. The
repository provides example code for the book and a few example applications in the near future to help you
build real-world web applications.

https://golang.org/doc/effective_go.html
http://blog.golang.org/concurrency-is-not-parallelism
http://blog.golang.org/concurrency-is-not-parallelism
http://dx.doi.org/10.1007/978-1-4842-1052-9_9
https://github.com/shijuvar/go-web

1

Chapter 1

Getting Started with Go

Everything in this world is evolving, including computers and computer programming languages. Ideas and
approaches for building applications are also evolving, based on past experience. Although highly evolved
modern computers now have many CPU cores (32, 64, 128 and many more), we still cannot leverage the full
power of modern computer hardware by using most of our existing programming languages and tools. Our
programs still run slowly, even in high-powered servers with many CPU cores.

For the last decade, many existing programming languages have been evolving with many new features.
Language authors have been adding these features based on programming language theory (PLT) and other
intellectual thoughts, which make the languages more complex. In today’s computing, many people prefer a
minimalistic and pragmatic approach for writing applications.

Programming languages are used that excel in specific areas. Some programming languages are great
for rapid application development, but would not work well for writing high-performance applications.
Other programming languages are very efficient for writing these high-performance applications, but would
be difficult for writing applications in a productive manner. It would be great if there were a general-purpose
language for developing a variety of applications with a greater level of efficiency, performance, productivity,
and faster compilation time. The Go language meets these criteria.

This chapter shows you why Go is a great programming language for solving modern programming
challenges. You will learn use cases for adopting Go for your next application.

Introducing Go
Go, also referred to as Golang, is a general-purpose programming language, developed by a team at Google
and many contributors from the open source community (http://golang.org/contributors). The
language was announced in November 2009, and the first version was released in December 2012. Go is an
open source project that is distributed under a BSD-style license. The official web site of the Go project is
available at http://golang.org/. It is a statically typed, natively compiled, garbage-collected, concurrent
programming language that mostly belongs to the C family of languages in terms of basic syntax. Let’s look
at some of the features of Go to understand its design principles.

Minimalistic Language with Pragmatic Design
The Go programming language can be simply described in three words: simple, minimal, and pragmatic.
If you look deeply into the language design of Go, you see its simple and minimalistic approach, coupled
with a pragmatic design. You can observe this simplicity with all the Go language features, including the
type system. Today, many programming languages provide too many features that make applications more
complex for developers. The design goal of Go is to be a simple and minimal language that provides all the
necessary features for developing efficient software systems.

http://golang.org/CONTRIBUTORS
http://golang.org/contributors
http://golang.org/

Chapter 1 ■ Getting Started with Go

2

Although Go has fewer language features, productivity is not affected by its pragmatic design. A new Go
programmer can quickly learn the language and can easily start to develop production-quality applications.
Go has simply ignored many language features from the last three decades and focuses on real-world
practices instead of academics and programming language theory (PLT).

From a practical perspective, you might say that Go is an object-oriented programming (OOP)
language. But Go’s object-oriented approach is different from programming languages such as C++, Java,
and C#. Go is not a full-fledged OOP language from an academic perspective. Unlike many existing OOP
languages, Go does not support inheritance and does not even have a class keyword. It uses composition
over inheritance through its simple type system. Go’s interface type design shows its uniqueness when
compared with other object-oriented programming languages.

Is Go an OOP language? The answer is both yes and no. Go language includes all batteries required for
writing applications with an object-oriented approach, but it is not a complete OOP language because it
lacks some traditional OOP features.

■ Note P rogramming language theory (PLT) is a branch of computer science that deals with the design,
implementation, analysis, characterization, and classification of programming languages and their individual
features.

A Static Type Language with High Productivity
Go is a statically typed programming language, with its syntax loosely derived from the C language. Like C
and C++, it compiles natively to machine code, so Just-In-Time (JIT) compilation is not needed to run its
programs. (Programming languages such as Java and C# use JIT compilation to run applications.)

For writing applications, a dynamically typed language provides lots of productivity and expressiveness
because you don’t have to worry about the data types of the variables you use. In dynamically typed
languages, the type of expression is known only at runtime, which provides a greater level of productivity
and expressiveness in the syntax to quickly build applications, especially web applications. But when
working with a dynamic type language, the performance and maintainability of the applications are affected.
Sometimes the debugging experience of an application written in a dynamic type language can be very
difficult due to its lack of type safety. Even today, developers use static type languages to generate code for
their dynamic type languages. For example, JavaScript developers use statically typed languages such as
Microsoft TypeScript for type safety, which finally compiles to JavaScript code.

Although static type languages can provide type safety and performance, working with them can affect
the productivity of application development, and compiling larger programs can take a long time. It would
be great to have a language that provides the power of both static type and dynamic type language to blend
the performance and type safety of a static type language with the productivity of a dynamic type language.

Go is that perfect blend of the power of static type languages and the productivity of dynamic type
languages. Go can be called a modern C language that provides faster compilation than C, coupled with the
productivity of a dynamic type language.

Concurrency Is a Built-In Feature at the Language Level
Computer hardware has evolved to have many CPU cores and more power, but the power of modern
computers cannot be leveraged by using the current programming languages and tools. When production
applications are run on high-powered servers, there are performance problems, even though CPU utilization
is very low. In some programming environments, concurrency and parallelism are available for better
efficiency and performance, but these features are available as a separate library and framework, not as a
built-in feature at the language level, which adds more complexity when you write concurrent applications.

Chapter 1 ■ Getting Started with Go

3

In Go, concurrency is built into the language and is designed for writing high-performance concurrent
applications for modern computers. Concurrency is one of the unique features of the Go language and it is
considered a major selling point. Go’s concurrency is implemented using two unique features: goroutines
and channels. A goroutine is a function that can run concurrently with other goroutines. It is a lightweight
thread of execution in which many goroutines execute in a single thread that enables more program
performance and efficiency. The most important feature of goroutine is that it is managed and executed by
Go runtime. Many programming languages provide support for writing concurrent programs, but they are
limited only to communication and synchronization among the threads being executed. And most of the
existing languages provide support for concurrency through a framework, but not a built-in feature in the
language, so it makes restrictions when concurrency is implemented with these languages.

Go provides channels that enable communication between goroutines and the synchronization of
their executions. With channels, you can send data from one goroutine to another. Channels also provide a
greater level of synchronization between goroutines and ensure that two goroutines are running in a known
state. Concurrency is a major reason for adopting Go as the language for building highly efficient software
systems with greater levels of performance.

Go Compiles Programs Quickly
One of the challenges of writing C and C++ applications is the time needed for compiling programs, which is
very painful for developers when they work on larger C and C++ applications. Go is a language designed for
solving the programming challenges of existing programming environments. Its compiler is very efficient for
compiling programs quickly; a large Go application can be compiled in few seconds, which is attractive to
many C and C++ developers who switch to the Go programming environment.

Go as a General-Purpose Language
Different programming languages are used to develop different kinds of applications. C and C++ have been
widely used for systems programming and for systems in which performance is very critical. At the same
time, working with C and C++ affect the productivity of application development. Some other programming
languages, such as Ruby and Python, offer rapid application development that enables better productivity.
Although the server-side JavaScript platform Node.js is good for building lightweight JSON APIs and
real-time applications, it gets a fail when CPU-intensive programming tasks are executed. Another set of
programming languages is used for building native mobile applications. Programming languages such as
Objective C and Swift are restricted for use only with mobile application development. Various programming
languages are used for a variety of use cases, such as systems programming, distributed computing, web
application development, enterprise applications, and mobile application development.

The greatest practical benefit of using Go is that it can be used to build a variety of applications, including
systems that require high performance, and also for rapid application development scenarios. Although Go
was initially designed as a systems programming language, it is also used for developing enterprise business
applications and powerful back-end servers. Go provides high performance while keeping high productivity
for application development, thanks to its minimalistic and pragmatic design. The Go ecosystem (which
includes Go tooling, the Go standard library, and the Go third-party library) provides essential tools and
libraries for building a variety of Go applications. The Go Mobile project adds support for building native
mobile applications for both Android and iOS platforms, enabling more opportunities with Go.

In the era of cloud computing, Go is a modern programming language that can be used to build
system-level applications; distributed applications; networking programs; games; web apps; RESTful
services; back-end servers; native mobile applications; and cloud-optimized, next-generation applications.
Go is the choice of many revolutionary innovative systems such as Docker and Kubernetes. A majority of
tools on the software containerization ecosystem are being written in Go.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Getting Started with Go

4

■ Note D ocker is a revolutionary software container platform, and Kubernetes is a container cluster manager.
Both are written in Go.

Go Ecosystem
Go is not just a simple programming language; it is also an ecosystem that provides essential tools and
features for writing a variety of efficient software systems. The Go ecosystem contains the following
components:

• Go language

• Go libraries

• Go tooling

Go language provides essential syntax and features that allows you to write your programs. These
programs leverage libraries for reusable pieces of functionality and tooling for formatting code, compiling
code, running tests, installing programs, and creating documentations.

Libraries play a key role in the Go ecosystem because Go is designed to be a modular programming
language for writing highly maintainable and composable applications. Libraries provide reusable pieces
of functionality distributed as packages. You can use packages in Go to write software components in a
modular and reusable manner to be shared across Go programs, and can easily maintain your applications.
The design philosophy of a Go application is to write small pieces of software components through
packages and then compose Go applications with these smaller packages. Libraries are available from the
standard library and third-party libraries. When you install Go packages from the standard library, they
are installed into the Go installation directory. When you install Go, the environment variable GOROOT
will be automatically added to your system for specifying the Go installation directory. The standard
library includes a larger set of packages that provide a wide range of functionality for writing real-world
applications. For example, "net/http", a package from the standard library, can be used to write powerful
web application and RESTful services.

■ Note  For documentation about packages from the standard library, go to http://golang.org/pkg/.

If you need extra functionality not available from the Go standard library, you can leverage third-
party libraries provided by the Go developer community, which is very enthusiastic about developing
and providing many useful third-party Go packages. For example, if you want to work with the MongoDB
database, you can leverage a third-party package called "mgo".

Go tooling is an important component in the Go ecosystem, which provides a number of
tooling-support services: building, testing, and installing Go programs; formatting Go code; creating
documentation; fetching and installing Go packages; and so on.

Installing the Go Tools
It is easy to install Go on your computers. It provides binary distributions for the FreeBSD, Linux, Mac OS X,
and Windows operating systems (OSs); and the 32-bit (386) and 64-bit (amd64) x86 processor architectures.
The binary distributions are available at http://golang.org/dl/. (If a binary distribution is not available for
your combination of OS and architecture, you can install Go from the source.)

http://golang.org/pkg/
http://golang.org/dl/
http://golang.org/doc/install/source

Chapter 1 ■ Getting Started with Go

5

Figure 1-1 shows the installer packages and archived sources for Mac, Windows, and Linux platforms,
which are listed on the download page of the Go web site. Go provides installers for both Mac and Windows
OSs. A package installer is available for Mac X OS that installs the Go distribution to /usr/local/go and puts
the /usr/local/go/bin directory in the PATH environment variable.

In Mac OS, you can also install Go using Homebrew (http://brew.sh/). The following command
installs Go on a Mac OS:

brew install go

An MSI installer is available for the Windows OS that installs Go distribution in c:\Go. The installer
also puts the c:\Go\bin directory in the PATH environment variable. Figure 1-2 shows the package installer
running for Mac OS.

Figure 1-1.  Go binary distributions for multiple OSs

http://brew.sh/

Chapter 1 ■ Getting Started with Go

6

As mentioned earlier, a successful installation of Go sets up the GOROOT environment variable with the
location in which the Go tools are installed: /usr/local/go (or c:\Go under Windows).

You can also install Go tools in a custom location. When you do so, manually configure the environment
variable GOROOT with the location in which you installed the Go tools on your system.

■ Note T he complete instructions for downloading and installing Go tools are available at
http://golang.org/doc/install.

Checking the Installation
You can test the Go installation by typing some Go commands in the terminal window. To verify the
installation of Go tools, open the terminal and type the following command:

go version

Here is the result that shows in a Mac X system:

go version go1.4.1 darwin/amd64

Figure 1-2.  Go installer for Mac OS

http://golang.org/doc/install

Chapter 1 ■ Getting Started with Go

7

Here is the result that shows in a Windows system:

go version go1.4.1 windows/amd64

The following command provides help for Go tools:

go help

Setting up a Work Environment
Go follows some conventions that organize code in a specific way and help to compile, install, and share Go
code more easily. This section discusses how to organize Go code as packages in a workspace.

Go Workspace
Go programs must be kept in a directory hierarchy called a workspace, which is simply a root directory of
the Go programs.

A workspace contains three subdirectories at its root:

• src: This directory contains Go source files organized into packages.

• pkg: This directory contains Go package objects.

• bin: This directory contains executable commands (executable programs).

When you start working with Go, the initial step is to set up a workspace in which Go programs reside.
You must create a directory with three subdirectories for setting up the Go workspace. A Go developer
writes Go programs as packages into the src directory. Go source files are organized into directories called
packages, in which a single directory is used for a single package. You can write two types of packages in Go:

• Packages resulting in executable programs

• Packages resulting in a shared library

The Go tool builds Go packages and installs the resulting binaries into the pkg directory if it is a shared
library, and into the bin directory if it is an executable program. So the pkg and bin directories are used
for storing the output of the packages based on the package type. Keep in mind that you can have multiple
workspaces for your Go programs (Go developers typically use a single workspace for their Go programs).

GOPATH Environment Variable
You write Go programs in the workspace, which you should manually specify so that Go runtime knows the
workspace location. You can set the workspace location by using the GOPATH environment variable. To get
started working with Go, create a workspace and set the GOPATH environment variable.

Code Organization Paths
You write Go programs as packages into the GOPATH src directory. A single directory is used for a single
package. Go is designed to easily work with remote repositories such as GitHub and Google Code. When you
maintain your programs in a remote source repository, use the root of that source repository as your base path.

Chapter 1 ■ Getting Started with Go

8

For example, if you have a GitHub account at github.com/user, it should be your base path. Let’s
say you write a package named "mypackage" at github.com/user; your code organization path will be at
%GOPATH%/src/github.com/user/mypackage. When you import this package to other programs, the path for
importing the package will be github.com/user/mypackage. If you maintain the source in your local system,
you can directly write programs under the GOPATH src directory. Suppose that you write a package named
mypackage on a local system; your code organization path will be at %GOPATH%/src/mypackage, and the path
for importing the package will be mypackage.

Writing Go Programs
Once you create a workspace and set the GOPATH environment variable, you can start working with Go. Let’s
write few simple programs in Go to get started.

Writing a Hello World Program
Let’s start by writing a Hello World program, as shown in Listing 1-1.

Listing 1-1.  Hello World Program in Go

1 package main
2 import "fmt"
3 func main() {
4 fmt.Println("Hello, world")
5 }

Line 1: Go programs are organized as packages, and the package name here is specified as main. If you
name a package main, it has a special meaning in Go: the resulting binary will be an executable program.

Line 2: The "fmt" package, which provides the functionality for format and print data, is imported from
the standard library. The keyword import is used for importing packages.

Line 3: The keyword func is used to define a function. The function main will be the entry point of an
executable program and will be executed when the application runs. The package main will have one main
function.

Line 4 The function Println is provided by the package fmt to print the data. Note that the name of the
Println function started with an uppercase letter. In Go, all identifiers that start with an uppercase letter are
exported to other packages so they will be available to call in other packages.

Let’s compile and run the sample program using the Go tool. Navigate to the package directory and
then type the run command to run the program. Suppose that the location of the package directory is at
github.com/user/hello:

cd $GOPATH/src/github.com/user/hello
go run main.go

The preceding command simply prints the phrase “Hello, world”. The run command compiles the
source and runs the program. You can also use the build and install commands with the Go tool to build
and install Go programs that produce binary executables to be run later.

The build command compiles the package and puts the resulting binary into the package folder:

cd $GOPATH/src/github.com/user/hello
go build

Chapter 1 ■ Getting Started with Go

9

The name of the resulting binary is the same as the directory name. If you write this program in a
directory named hello, the resulting binary will be hello (or hello.exe under Windows). After compiling
the source with the build command, you can run the program by typing the binary name.

The install command compiles the package and installs the resulting binary into the bin directory of
GOPATH:

cd $GOPATH/src/github.com/user/hello
go install

You can run this command from any location on your system:

go install github.com/user/hello

The name of the resulting binary is the same as the directory name. You can now run the program by
typing the binary from the bin directory of GOPATH:

$GOPATH/bin/hello

If you have added $GOPATH/bin to your PATH environment variable, just type the binary name from any
location on your system:

hello

Writing a Library
In Go, you can write two types of programs: executable programs and reusable libraries. The previous
sample program was an executable program. Let’s write a shared library to provide a reusable piece of code
to other programs. Create a package directory at the location $GOPATH/src/github.com/shijuvar/go-web-
book/chapter1/calc.

Listing 1-2 shows a simple package that provides the functionality for adding and subtracting two values.

Listing 1-2.  Shared Library Program in Go

1 package calc
2
3 func Add(x, y int) int {
4 return x + y
5 }
6 func Subtract(x, y int) int {
7 return x - y
8 }

Line 1: The package name is specified as calc. The name of the package and package directory must
be same.

Line 3: A function named Add is defined with the keyword func. The name of this function starts with
an uppercase letter, so the Add function will be exported to other packages. If the name of the function starts
with a lowercase letter, it is not exported to other packages, and accessibility will be limited to the same
package. Unlike programming in C++, Java, and C#, you don’t need to use private and public keywords to
specify the accessibility of identifiers. You can see the simplicity of the Go language throughout the language
features. The Add method takes two integer parameters and returns an integer value.

Line 6: The Subtract function is similar to the Add function, but subtracts values between two integer types.

http://dx.doi.org/10.1007/978-1-4842-1052-9_1

Chapter 1 ■ Getting Started with Go

10

Let’s build and install the package. Navigate to the package directory in the terminal window and type
the following command:

go install

The install command compiles the source and installs the resulting binary into the pkg folder of
GOPATH (see Figure 1-3). In the pkg directory, the calc package will be installed at the location github.com/
shijuvar/go-web-book/chapter1/calc under the platform-specific directory.

The install command behaves a bit differently depending on whether you are creating an executable
program or a reusable library. When you run install for executable programs the resulting binary will
be installed into the bin directory of GOPATH while it will be installed into the pkg directory of GOPATH for
libraries.

Now you can reuse this package from any program residing in the GOPATH. Code reusability in Go is very
easy with packages. You have created your first library package. Let’s reuse the package code from another
executable program (see Listing 1-3).

Listing 1-3.  Reusing the calc Package in a Go Program

1 package main
2
3 import (
4 "fmt"
5 "github.com/shijuvar/go-web-book/chapter1/calc"
6)
7
8 func main() {
9 var x, y int = 10, 5
10 fmt.Println(calc.Add(x, y))
11 fmt.Println(calc.Subtract(x, y))
12 }

Line 1: Create an executable program.
Lines 3 to 6: These lines import the "fmt" package from the standard library and the "calc" package

from your own library. You can use a single import statement to import multiple packages. The path for the
packages from the standard library uses short paths such as the "fmt" package. For your own packages, you
must specify the full path when importing the packages. Using the full path for external packages avoids
name conflicts among packages, and you can use the same name for multiple external packages in which
the package path would be different.

Line 8: The function main, entry point of the package main.

Figure 1-3.  Install command installing calc package into pkg folder

Chapter 1 ■ Getting Started with Go

11

Line 9: Declaring two variables, x and y, with the int data type. Go uses the var keyword to declare
variables in which you can declare multiple variables in a single statement. If you assign values to variables
along with the variable declarations, you can use a shorter statement:

x,y:=10,5

When you use Go’s shorter statement for declaring variables, you don’t need to specify the variable
type because the Go compiler can infer the type, based on the value you assign to the variable. Go provides
the productivity of a dynamically typed language while keeping it as a statically typed language. The Go
compiler can also do type inference with the var statement:

var x,y=10,5

Lines 10 to 11: You call the exported functions of the calc package and reuse the functionality provided
by the library.

To run the program, type the following command from the program directory:

go run main.go

Testing Go Code
The Go ecosystem provides all the essential tools for developing Go applications, including the capability
for testing Go code without leveraging any external library or tool. The “testing” package from the standard
library provides the features for writing automated tests, and Go tooling provides support for running
automated tests. When you develop software systems, writing automated tests for application code is an
important practice to ensure quality and improve maintainability. If your code is covered by tests, you can
fearlessly refactor your application code.

Let’s write some tests for the calc package created in the previous section. You create a source file with
a name ending in _test.go, in which you write tests by adding functions starting with "Test" and taking one
argument of type *testing.T.

In the calc package directory, create a new source file named calc_test.go that contains the code
shown in Listing 1-4.

Listing 1-4.  Testing the calc Package

1 package calc
2
3 import "testing"
4
5 func TestAdd(t *testing.T) {
6 var result int
7 result = Add(15,10)
8 if result!= 25 {
9 t.Error("Expected 25, got ", result)
10 }
11 }
12 func TestSubtract(t *testing.T) {
13 var result int
14 result = Subtract(15,10)

Chapter 1 ■ Getting Started with Go

12

15 if result!= 5 {
16 t.Error("Expected 5, got ", result)
17 }
18 }

Line 1: Specifies the package name as calc.
Line 3: Imports the "testing" package from the standard library, which provides the essential

functionality for writing tests and works with the Go test command.
Line 5: Adds a test named "TestAdd" with signature func (t *testing.T) for verifying the

functionality Add function in the calc package.
Line 12: Adds a test named "TestSubtract" with signature func (t *testing.T) for verifying the

functionality Subtract function in the calc package.
To run the tests with the Go tool, type the following command from the package directory:

go test

The go test command identifies and execute tests in the package files, based on the conventions used
for testing. It will show the following result:

PASS
ok github.com/shijuvar/go-web-book/chapter1/calc 0.310s

Using Go Playground
Go Playground is a tool that allows you to write and run Go programs from your web browser (see Figure 1-4).
By using this tool, you can write and run Go programs without having to install Go on your system.

Figure 1-4.  Go Playground

■ Note T he browser-based Go Playground tool is available at https://play.golang.org/.

Go Playground can also be used to share Go code with other developers. Clicking the Share button
provides a sharable URL for sharing your code with others.

https://play.golang.org/

Chapter 1 ■ Getting Started with Go

13

Using Go Mobile
You already know that Go can be used as a general-purpose programming language for building a variety of
applications. It can also be used for building native mobile applications for both Android and iOS. The Go
Mobile project provides tools and libraries for building native mobile applications. It includes a command-
line tool called gomobile to help you build these applications.

You can follow two development strategies to include Go into your mobile stack:

• Develop native mobile applications entirely written in Go

• Develop SDK applications by generating bindings from a Go package and invoking
them from Java (on Android) and Objective-C (on iOS).

The first strategy is to use Go everywhere in your mobile project by using the packages and tools
provided by Go Mobile. Here you can use Go to develop both Android and iOS applications. In the second
strategy, you can reuse a Go library package from a mobile application without making significant changes
to your existing application. In this strategy, you can share a common code base for both Android and iOS
applications. You can write the common functionality once in Go as a library package and put it to the
platform-specific code by invoking the Go package through bindings.

■ Note  You can find out more about the Go Mobile project at https://github.com/golang/mobile.

Go as a Language for Web and Microservices
The primary focus of this book is web development using Go. In modern computing, a digital transformation
is happening, in which HTTP APIs (often RESTful APIs) are becoming the backbone for web applications,
mobile applications, Big Data solutions, and the Internet of Things (IoT). These web-based APIs, which
are powering the back ends for many modern applications, enable developers to integrate among various
applications.

There has recently been a monolithic architecture approach for developing larger applications, in which
a single application includes all the logical components for running the application. These applications are
very hard to maintain and scale due to tight coupling among various logical components. To solve various
problems found in monolithic application architecture, developers prefer a microservices architectural style,
in which a monolithic application is broken into a suite of small services (microservices), each running as an
independent unit. The independent service pieces communicate by using either RESTful APIs or message
brokers. Go is gradually becoming a preferred language for building RESTful APIs and microservices.

Go may not be the language choice for building traditional web applications in which application
logic and UI rendering logic reside in a server-side application. It is, however, the language choice for
building modern web applications in which an API, often a RESTful API, is developed as the server-side
implementation. By consuming these back-end services, you can build your front-end web applications.
A Single Page Application (SPA) architecture has been widely used for building these web applications. The
back-end services can also be used for building mobile applications.

Go provides an HTTP package that allows you to build high-performance web applications and RESTful
services by leveraging the built-in concurrency mechanism provided by Go. In Go, you can quickly build
an HTTP server with fewer lines of code and start listening at a given HTTP port. By default, each HTTP
request to the web server will be processed concurrently using a goroutine, which is a mechanism in Go to
concurrently run functions independently of other functions. You can run millions of goroutines in a single
server that enables you to build massively scalable web applications and web APIs in Go.

www.allitebooks.com

https://github.com/golang/mobile
http://www.allitebooks.org

Chapter 1 ■ Getting Started with Go

14

The simplicity of Go is also reflected in Go web programming that enables lots of developer
productivity. When you build web-based systems in other programming languages, you may have to use a
full-fledged web framework such as Rails for Ruby, Django for Python, or ASP.NET MVC for C#. In Go, lots of
web frameworks are available as third-party packages. But without using a full-fledged web framework, you
can build highly scalable web systems by simply using built-in Go packages and a few lightweight libraries
available as third-party packages.

■ Note I n Chapter 9, you will learn how to build a scalable web API in Go without using a web framework.

Microservices architecture, in which independently running services have been widely used to
communicate over RESTful APIs, was previously discussed. Go is a great choice for building these RESTful
services and is also becoming the language of choice for building independent services (microservices)
in the microservices architecture because of the simplicity of its language, concurrency capability,
performance, and capability to develop distributed applications.

Microservices architecture is a distributed application architecture, and Go is a great choice for building
distributed systems. Some technologies such as Node.js are great for building lightweight RESTful APIs,
but simply fail when they are used to build distributed applications. Go is the perfect language of choice for
applications with microservices architecture, in which Go can be used for all components of the application
architecture, including small services running as independent units, RESTful services to communicate
among independent services, and message brokers to communicate among independent services using
asynchronous protocols such as AMQP.

Summary
Go is a modern, statically typed, natively compiled, garbage-collected programming language that allows
you to write high-performance applications while enabling a greater level of productivity with its simple
syntax and pragmatic design. In Go, concurrency is a built-in feature at the core language level that
allows you to write highly efficient software systems for modern computers. The Go ecosystem includes
the language, libraries, and tools that provide all the essential features for developing a wide variety of
applications. The Go Mobile project includes packages and tools for building native mobile applications for
Android and iOS. Go is a great programming language for building scalable, web-based, back-end systems
and microservices.

http://dx.doi.org/10.1007/978-1-4842-1052-9_9

15

Chapter 2

Go Fundamentals

Chapter 1 furnished an overview of the Go programming language and discussed how it is different from
other programming languages. In this chapter, you will learn Go fundamentals for writing reusable code
using packages and how to work with arrays and collections. You will also learn Go language fundamentals
such as defer, panic, and recover, and about Go’s unique error-handling capabilities.

Packages
For a Go developer, the design philosophy for developing applications is to develop reusable pieces of
smaller software components and build applications by composing these components. Go provides
modularity, composability, and code reusability through its package ecosystem. Go encourages you to write
maintainable and reusable pieces of code through packages that enable you to compose your applications
with these smaller packages. Go packages are a vital concept that allow you to achieve many of the Go design
principles. Like other features of Go, packages are designed with simplicity and pragmatism.

Go source files are organized into directories called packages, and the name of the package must be the
name of the directory containing the Go source files. You organize Go source files with the .go extension into
directories in which the package name will be same for the source files that belong to a directory. Packages
from the standard library belong to the GOROOT directory, which is the Go installation directory. You write
Go programs in the GOPATH directory as packages that are easily reusable from other packages.

■ Note  The documentation on standard library packages is available at http://golang.org/pkg/.
Visit http://godoc.org/ for documentation on packages of both standard library and third-party libraries.

Package main
In Go, you can write two types of programs: executable programs and a shared library. When you write
executable programs, you must give main as the package name to make the package an executable program:
the package main tells the Go compiler that the package should compile as an executable program. The
executable programs in Go are often referred to as commands in the official Go documentation. The entry
point of the executable program is the main function of the main package; the main function in the package
main is the entry point of the executable program. When you write packages as shared libraries, there are no
main packages or main functions in the package.

http://dx.doi.org/10.1007/978-1-4842-1052-9_1
http://golang.org/pkg/
http://godoc.org/

Chapter 2 ■ Go Fundamentals

16

Listing 2-1 is the code block for package main.

Listing 2-1.  Package main with the main Function

package main

import (
 "fmt"
)

func main() {
 fmt.Println("Hello World!")
}

When you build the preceding program using the Go tool, the Go compiler generates an executable
binary as the output. As mentioned earlier, if you want to build executable programs in Go, you must write a
package main with a function main as the entry point for your programs.

Package Alias
When you write Go packages, you don’t have to worry about package ambiguity; you can even use the same
package names as those of the standard library. When you import your own packages from the GOPATH
location, you refer the full path of the package location to avoid package name ambiguity. You can use two
packages with the same name from two different locations, but you should avoid name ambiguity when
referencing from your programs. The package alias helps you avoid name ambiguity when you reference
multiple packages with the same name.

Listing 2-2 is an example program that uses the package alias to reference packages.

Listing 2-2.  Using the Package Alias to Avoid Name Ambiguity

package main
import (
 mongo "lib/mongodb/db"
 mysql "lib/mysql/db"
)
func main() {
 mongo.Get() //calling method of package "lib/mongodb/db"
 mysql.Get() //calling method of package "lib/mysql/db"
}

Two packages are imported with the same name, db, but they are referenced with different aliases, and
their exported identifiers are accessed using an alias name.

Function init
When you write packages, you may need to provide some initialization logic for the packages, such as
initializing package variables, initializing database objects, and providing some bootstrapping logic for
the packages. The init function, which helps provide initialization logic into packages, is executed at the
beginning of the execution.

Chapter 2 ■ Go Fundamentals

17

Listing 2-3 is an example program that uses the init function to initialize a database session object.

Listing 2-3.  Using the init Function

package db

import (
 "gopkg.in/mgo.v2"
)
var Session *mgo.Session //Database Session object
func init() {
 // initialization code here
 Session, err := mgo.Dial("localhost")
}
func get() {

//logic for get that uses Session object
}
func add() {

//logic for add that uses Session object
}
func update() {

//logic for update that uses Session object
}
func delete() {

//logic for delete that uses Session object
}

In this code block, a MongoDB session object is created in the init function. When you import the
package db into other packages, the function init will be invoked at the beginning of the execution in which
the initialization logic for the package is included. Suppose that you reference the package db from a main
package; the init function will be invoked before the main function executes.

Using a Blank Identifier
In some scenarios, you may need to reference a package to invoke only its init method to execute the
initialization logic in the referenced package, but not to use other identifiers. Suppose that you want the
init function of package db (refer to Listing 2-3) to be invoked from the package main, but not use other
functions. You reference the package db in package main to invoke the init function for initializing the
database session object. The Go compiler shows an error if none of the identifiers of package is referencing
from the package where you imported a package, but not referencing any package identifiers. Keep in mind
that you can’t directly call the init function by explicitly referencing it; it gets automatically invoked when
you reference the packages. When you reference packages, the init functions of these packages will be
invoked at the beginning of the execution.

If you want to reference a package only for invoking its init method, you can use a blank identifier
(_) as the package alias name. The compiler ignores the error of not using the package identifier, but still
invokes the init function, as shown in Listing 2-4.

Chapter 2 ■ Go Fundamentals

18

Listing 2-4.  Using a Blank Identifier (_) to Call Only the init Method

package main
import (

"fmt"
_ "lib/mongodb/db"

)
func main() {
 //implementation here
}

In Listing 2-4, the db package was imported with a package alias as a blank identifier (_). Here you want
the init function of package db to be invoked, but not use other package identifiers.

Importing Packages
Go source files are organized into directories as packages that provide code reusability into other packages.
If you want to reuse package code into other shared libraries and executable programs, you must import
the packages into your programs. You can import packages into your Go programs by using the keyword
import. The statement import tells the Go compiler that you want to reference the code provided by that
particular package. When you import a package into a program, you can reuse all the exported identifiers
of the referenced packages. If you want to export variables, constants, and functions to be used with other
programs, the name of the identifier must start with an uppercase letter. See Listing 2-5.

Listing 2-5.  The import Statement to the imports Package

import (
 "bytes"
 "fmt"
 "unicode"
)

In this listing, the packages bytes, fmt, and unicode are imported. The idiomatic way to import multiple
packages in Go is to write the import statements in an import block, as shown here.

When a package is imported, the Go compiler will search the GOROOT directory and then look for the
GOPATH directory if it can’t find the package in GOROOT. If the Go compiler can’t find a package in either the
GOROOT or GOPATH location, it will generate an error when you try to build your program.

Install Third-Party Packages
The Go developer community is very enthusiastic about providing many useful third-party packages
through code-sharing web sites such as github.com and code.google.com. You can import and reuse
these third-party packages by using the Go tools. The go get command fetches packages from remote
repositories.

The following go get command fetches the third-part package negroni and installs it into the GOPATH
location:

go get github.com/codegangsta/negroni

Chapter 2 ■ Go Fundamentals

19

The go get command fetches the package and dependent packages recursively from the repository
location. Once the package is fetched into the GOPATH, you can import and reuse these packages from all the
programs located in the GOPATH location. In many other developer ecosystems, you have to import these
packages at a project level; you have to install packages for each individual project separately. When you
import a package in Go, you actually import from a common location: the GOPATH pkg directory, so you can
appreciate the simplicity and pragmatism in many of the Go features, including the package ecosystem.

Writing Packages
Let’s write a sample package to reuse with other programs. Listing 2-6 is a simple package that swaps
characters’ case from upper- to lowercase or lower- to uppercase.

Listing 2-6.  Library Package

package strcon

import (
 "bytes"
 "unicode"
)

// Swap characters case from upper to lower or lower to upper.
func SwapCase(str string) string {

 buf := &bytes.Buffer{}

 for _, r := range str {
if unicode.IsUpper(r) {

buf.WriteRune(unicode.ToLower(r))
} else {

buf.WriteRune(unicode.ToUpper(r))
}

 }

 return buf.String()
}

The package is named strcon. The idiomatic way to provide a package name is to give short and simple
lowercase names without underscores or mixed capital letters. The package names of the standard library
are a great reference for naming packages.

Let’s build and install the package strcon to be used with other programs. The package provides a
method named SwapCase that swaps the character case of a string from upper- to lowercase or lower- to
uppercase. Reuse the packages bytes and unicode from the standard library to swap character case. Because
the name of the SwapCase method starts with an uppercase letter, it will be exported to other programs when

Chapter 2 ■ Go Fundamentals

20

this package is referenced package. The SwapCase method iterates through a string and changed the case of
each character:

 for _, r := range str {
if unicode.IsUpper(r) {

buf.WriteRune(unicode.ToLower(r))
} else {

buf.WriteRune(unicode.ToUpper(r))
}

 }

The keyword range allows you to iterate through arrays and collections. By iterating through a string
value, you can extract each character as a value and swap the character case. On the left side of the range
block, you can provide two variables for getting the key and value of each item in the collection. In this
code block, the value for getting the character value is used, but you don’t use the key in the program. In
this context, you can use a blank identifier (_) to avoid compiler errors. It is common practice to use a blank
identifier with range whenever you want to ignore a key or value variable declaration from the left side.

With the following command at the location of the package directory, build the package and install it on
the pkg subdirectory of GOPATH:

go install

Let’s write a sample program to reuse the code of the strconv package (see Listing 2-7).

Listing 2-7.  Reusing the strconv Package in main.go

package main

import (
 "fmt"
 "strcon"
)

func main() {
 s := strconv.SwapCase("Gopher")
 fmt.Println("Converted string is :", s)
}

We import the package strcon to reuse the code for swapping character case in a string. Let’s run the
program by typing the following command in the terminal from the package directory:

go run main.go

You should see the following result when running the program:

gOPHER

Because the program in Listing 2-7 is written in package main, the Go build command generates an
executable binary into the package directory. The Go install command builds the package and installs the
resulting binary into the GOPATH bin subdirectory.

Chapter 2 ■ Go Fundamentals

21

Go Tool
The Go tool is a very important component of the Go ecosystem. In the previous sections, you used the Go
tool to build and run Go programs. In the terminal, type the go command without any parameters to get
documentation on the commands provided by the Go tool.

Here is the documentation on Go commands:

Go is a tool for managing Go source code.

Usage:

go command [arguments]

The commands are:

build compile packages and dependencies
clean remove object files
doc show documentation for package or symbol
env print Go environment information
fix run go tool fix on packages
fmt run gofmt on package sources
generate generate Go files by processing source
get download and install packages and dependencies
install compile and install packages and dependencies
list list packages
run compile and run Go program
test test packages
tool run specified go tool
version print Go version
vet run go tool vet on packages

Use "go help [command]" for more information about a command.

Additional help topics:

c calling between Go and C
buildmode description of build modes
filetype file types
gopath GOPATH environment variable
environment environment variables
importpath import path syntax
packages description of package lists
testflag description of testing flags
testfunc description of testing functions

Use "go help [topic]" for more information about that topic.

For documentation on any specific command type:

go help [command]

Chapter 2 ■ Go Fundamentals

22

Here is the command for getting documentation for the install command:

go help install

Here is the documentation for the install command:

usage: go install [build flags] [packages]

Install compiles and installs the packages named by the import paths,
along with their dependencies.

For more about the build flags, see 'go help build'.
For more about specifying packages, see 'go help packages'.

See also: go build, go get, go clean.

Formatting Go Code
The Go tool provides the fmt command to format Go code. It is a good practice to format Go programs
before committing source files into version control systems. The go fmt command applies predefined styles
to the source code for format source files, which ensures the right placement of curly brackets, ensures the
proper usage of tabs and spaces, and alphabetically sorts package imports. The go fmt command can be
applied at the package level or on a specific source file.

Listing 2-8 shows the import block before applying go fmt.

Listing 2-8.  import Package Block Before go fmt

import (
"log"
"net/http"
"encoding/json"

)

Listing 2-9 shows the import block after applying go fmt:

Listing 2-9.  import Package Block After go fmt

import (
"encoding/json"
"log"
"net/http"

)

The import package block rearranges in an alphabetical order after the go fmt command executes.

■ Note  The idiomatic way of writing the import block is to start with standard library packages in
alphabetical order and follow with custom packages in alphabetical order by using one line space between
standard library packages and custom packages.

Chapter 2 ■ Go Fundamentals

23

Go Documentation
Documentation is a huge part of making software accessible and maintainable. It must be well-written
and accurate, of course, but it must also be easy to write and maintain. Ideally, the documentation should
be coupled to the code so it evolves along with the code. The easier it is for programmers to produce good
documentation, the better the situation for everyone.

Go provides the godoc tool, which provides documentation for Go packages. It parses Go source
code, including comments, and generates documentation as HTML or plain text. In short, the godoc tool
generates the documentation from the comments included in the source files. If you want to access the
documentation from the command prompt, type:

godoc [package]

For example, if you want to get documentation for the fmt package, type the following command in
the terminal:

godoc fmt

This command displays the fmt package documentation onto the terminal.
The godoc tool also provides browsable documentation on a web interface. To access the

documentation through a web-based interface, start the web server provided by the godoc tool. Type the
following command in the terminal:

godoc -http=:3000

This command starts a web server at port 3000, which allows you to access the documentation on the
web browser. You can then easily navigate to the package documentation from both the standard library and
the GOPATH location. See Figure 2-1.

Figure 2-1.  Accessing godoc documentation from a web browser

Chapter 2 ■ Go Fundamentals

24

Working with Collections
When you work with real-world applications, you have to leverage various data structures to manage
application data. When you persist application data into database systems, you might be using the values of
data structure objects that hold the application data. When you read data from databases, you might be putting
the data into various forms of data structures for other uses, such as rendering the user interface. Collections
are the data structures that can hold collections of data structures that include built-in and user-defined types.
Go provides three types of data structures to manage data collections: arrays, slices, and maps.

Arrays
An array is a fixed-length data type that contains the sequence of elements of a single type. An array is
declared by specifying the data type and the length.

Listing 2-10 is a code block that declares an array.

Listing 2-10.  Declaring an Integer Array of Five Elements

var x [5]int

An array x is declared for storing five elements of the int type, so the array x will be composed of five
integer elements.

Listing 2-11 is an example program that declares an array and assigns values.

Listing 2-11.  Declaring an Array and Assigning Values

package main

import (
 "fmt"
)

func main() {
 var x [5]int
 x[0] = 10
 x[1] = 20
 x[2] = 30
 x[3] = 40
 x[4] = 50
 fmt.Println(x)
}

You should see the following output:

[10 20 30 40 50]

You can use an array literal to declare and initialize arrays, as shown in Listing 2-12.

Listing 2-12.  Initializing an Array with an Array Literal

x := [5]int{10, 20, 30, 40, 50}

Chapter 2 ■ Go Fundamentals

25

You can also initialize an array with a multiline statement (see Listing 2-13).

Listing 2-13.  Array Declaration with a Multiline statement

x := [5]int{
 10,
 20,
 30,
 40,
 50,
}

Note that a comma has been added, even after the last element, because Go requires it. Doing
so enables usability benefits such as being able to easily remove or comment one element from the
initialization block without removing a comment.

When you declare arrays using an array literal, you can use ... instead of specifying the length. The
Go compiler can identify the length of the array, based on the elements you have specified in the array
declaration.

Listing 2-14 is a code block that declares and initializes an array with

Listing 2-14.  Initializing an Array with ...

x := [...]int{10, 20, 30, 40, 50}

When arrays are initialized using an array literal, you can initialize values for specific elements.
Listing 2-15 is an example program that assigns values for a specific location.

Listing 2-15.  Initializing Values for Specific Elements

package main

import "fmt"

func main() {
 x := [5]int{2: 10, 4: 40}
 fmt.Println(x)
}

You should see the following output:

[0 0 10 0 40]

In Listing 2-15, a value of 10 is assigned to the third element (index 2) and a value of 40 is assigned to the
fifth element (index 4).

Slices
A slice is a data structure that is very similar to an array, but has no specified length. It is an abstraction built
on top of an array type that provides a more convenient way of working with collections. Unlike regular
arrays, slices are dynamic arrays in which the length of the slices can be changed at a later stage as data
increases or shrinks. Slices are very useful data structures when the number of elements to be stored into a
collection can’t be predicted.

Chapter 2 ■ Go Fundamentals

26

When you develop applications in Go, you often see slices in the code. If you want to read a database
table and put data into a collection type, use slices instead of arrays because you can’t predict the length of
the collection. Slices provide a built-in function called append, which can append elements to a slice quickly.

Listing 2-16 is a code block that declares a nil slice.

Listing 2-16.  Declaring a Nil Slice

var x []int

A slice x is declared without specifying the length. It will create a nil slice of integers with a length of
zero. Because slices are dynamic arrays, you can modify their length later on.

There are several ways to create and initialize slices in Go: you can use the built-in function make or a
slice literal.

Creating a Slice with the make Function
When you declare a slice with the make function, you can explicitly specify the length and capacity of a slice.

Listing 2-17 is a code block that declares a slice with a length of 5 and a capacity of 10.

Listing 2-17.  Specifying Length and Capacity in a Slice with the make Function

x := make([]int, 5,10)

If the slice capacity is not specified, the capacity is the same as the length.
Listing 2-18 is a code block that declares a slice without specifying capacity.

Listing 2-18.  Specifying Length in a Slice with the make Function

 x := make([]int, 5)

ryry

Creating a Slice with Slice Literal
One common approach for creating and initializing a slice is to use a slice literal, which doesn’t require
specifying length within the [] operator. The initial length and capacity are taken from the number of
elements that are initialized.

Listing 2-19 is a code block that declares and initializes a slice by using a slice literal.

Listing 2-19.  Initializing a Slice with a Slice Literal

x:= []int{10, 20, 30, 40, 50}

This code creates and initializes a slice with a length of 5 and a capacity of 5.
When you create a slice with a slice literal, you can also initialize a slice for a specific length without

providing all the elements, as shown in Listing 2-20.

Listing 2-20.  A Slice Initializes for a Specific Length Without Providing Elements

x := []int{4: 0}

Chapter 2 ■ Go Fundamentals

27

This code creates a slice with a length of 5 and a capacity of 5. There is a zero value provided for the
index 4.

You can create empty slices with a slice literal, as shown in Listing 2-21.

Listing 2-21.  Creating an Empty Slice

x:= []int{}

This code creates an empty slice with zero elements of value. Empty slices are useful when you want to
return empty collections from functions.

Slice Functions
Go provides two built-in functions to easily work with slices: append and copy. The append function creates a
new slice by taking an existing slice and appending all the following elements into it.

Listing 2-22 shows an example of append.

Listing 2-22.  Slice with the append Function

package main

import "fmt"

func main() {
 x := []int{10,20,30}
 y := append(x, 40, 50)
 fmt.Println(x, y)
}

You should see the following output:

[10 20 30] [10 20 30 40 50]

The copy function creates a new slice by copying elements from an existing slice into another slice.
Listing 2-23 shows an example of the copy function.

Listing 2-23.  Slice with the copy Function

package main

import "fmt"

func main() {
 x := []int{10, 20, 30}
 y := make([]int, 2)
 copy(y, x)
 fmt.Println(x, y)

}

Chapter 2 ■ Go Fundamentals

28

You should see the following output:

[10 20 30] [10 20]

After running this program, slice x has [10, 20, 30], and slice y has [10, 20]. Because the length of
slice y is 2, it copies the first two elements from slice x. If you specify the length of slice y as 3, it will copy all
three elements from slice x.

Length and Capacity
As discussed in previous sections, a slice has a length and capacity that you can specify when it is declared.
The length of the slice is the number of elements referred to by the slice; the capacity is the number of
elements in the underlying array. A slice can’t hold values beyond its capacity; if you try to add more
elements, a runtime error will occur. A slice can be grown by using the append function. When you add
elements using the append function, it checks to see whether the capacity is sufficient. Otherwise, it
automatically increases the capacity. You can get the length value by using the len function and the capacity
value by using the cap function.

Listing 2-24 illustrates length and capacity.

Listing 2-24.  Slice Length and Capacity

package main

import "fmt"

func main() {
x := make([]int, 2, 5)
x[0] = 10
x[1] = 20
fmt.Println(x)
fmt.Println("Length is", len(x))
fmt.Println("Capacity is", cap(x))
x = append(x, 30, 40, 50)
fmt.Println(x)
fmt.Println("Length is", len(x))
fmt.Println("Capacity is", cap(x))
fmt.Println(x)
x = append(x, 60)
fmt.Println("Length is", len(x))
fmt.Println("Capacity is", cap(x))
fmt.Println(x)

}

In this code, slice x with length as 2 and capacity as 5 is declared. Two more elements are then
appended into slice x. This time, the capacity is sufficient for slice x, but when you try to append one more
element into slice x, the slice automatically grows with more capacity.

Chapter 2 ■ Go Fundamentals

29

When you run the program, you should get the following output:

[10 20]
Length is 2
Capacity is 5
[10 20 30 40 50]
Length is 5
Capacity is 5
[10 20 30 40 50]
Length is 6
Capacity is 12
[10 20 30 40 50 60]

In this output, the slice capacity gets increased to 12 when the append function is used for the
second time.

Iterating Over Slices
Go provides a keyword range, which can be used to iterate over collections. The keyword range iterates over
a collection of elements, which returns two values for each iteration. The first value is the index position of
the element; the second value is a copy of the value contained in the index position.

Listing 2-25 is an example of using range to iterate over a slice.

Listing 2-25.  Iterating Over Slice

package main

import "fmt"

func main() {
 x := []int{10, 20, 30, 40, 50}
 for k, v := range x {

fmt.Printf("Index: %d Value: %d\n", k, v)
 }
}

You should see the following output:

Index: 0 Value: 10
Index: 1 Value: 20
Index: 2 Value: 30
Index: 3 Value: 40
Index: 4 Value: 50

Maps
A map is a data structure that provides an unordered collection of key-value pairs. (A data structure similar
to a map is a hash table or dictionary in other programming languages.) Remember that a map is an
unordered collection, so you can’t predict the data order when it is iterated over the collection.

Chapter 2 ■ Go Fundamentals

30

There are several ways to create and initialize maps in Go. Similar to slices, the built-in function make or
the map literal can be used to create and initialize maps.

Listing 2-26 is an example program that creates and initializes a map and iterates it over the collection.

Listing 2-26.  Creating a Map and Iterating it Over a Collection

package main

import "fmt"

func main() {
 dict := make(map[string]string)
 dict["go"] = "Golang"
 dict["cs"] = "CSharp"
 dict["rb"] = "Ruby"
 dict["py"] = "Python"
 dict["js"] = "JavaScript"
 for k, v := range dict {

fmt.Printf("Key: %s Value: %s\n", k, v)
 }
}

A map named dict is declared, where the string type is specified for the key (type within the []
operator) and value:

dict := make(map[string]string)

Values are assigned to the map with the given key (here the key "go" is for the value "Golang"):

dict["go"] = "Golang"

Finally, iterate over the collection using the range and print key and value of each element in the
collection:

for k, v := range dict {
 fmt.Printf("Key: %s Value: %s\n", k, v)
}

You should see the following output:

Key: cs Value: CSharp
Key: rb Value: Ruby
Key: py Value: Python
Key: js Value: JavaScript
Key: go Value: Golang

■ Note  The data order will vary every time because a map is an unordered collection.

Chapter 2 ■ Go Fundamentals

31

You can access the value of an element from a map by providing the key (see Listing 2-27):

Listing 2-27.  Accessing the Value of an Element from a Map

lan, ok := dict["go"]

When an element is accessed by providing a key, it will return two values: The first value is the result
(the value of the element); the second is a Boolean value that indicates whether the lookup was successful.
Go provides a convenient way to write this, as shown in Listing 2-28.

Listing 2-28.  Accessing the Element Value from a Map in an Idiomatic Way

if lan, ok := dict["go"]; ok {
 fmt.Println(lan, ok)
 }

Defer, Panic, and Recover
Go is a minimalist programming language that comes with essential features to develop applications.
Although minimal, Go provides all the capabilities to develop highly reliable applications. For example, the
language features defer, panic, and recover let you properly clean up your objects by explicitly panicking
your application and then recovering from the panic.

Defer
If you have used try/catch/finally blocks in any programming language such as C# and Java, you may
have used the finally block to clean up the resources that are allocated in a try block. The statements of
a finally block run when the execution flow of control leaves a try statement. This finally block will
invoke even when the flow of control goes to a catch block due to a handled exception. Using defer, you
can implement cleanup code in Go, which is more efficient than using a finally block in other languages.
Though you would primarily use defer for implementing cleanup code, it is not used only for that purpose.
For example, by using conjunction with recover, you regain control from a panicking function.

A defer statement pushes a function call (or a code statement) onto a list. The list of saved “function
calls” is executed after the surrounding function returns. The last added functions are invoked first from the
list of deferred functions. Suppose you add function f1 first, then f2, and finally f3 onto the deferred list; the
order of the execution will be f3, f2, and then f1.

Listing 2-29 is a code block that uses defer to clean up a database session object.

Listing 2-29. Defer Statements for Cleaning up Resources

session, err := mgo.Dial("localhost") //MongoDB Session object
defer session.Close()
c := session.DB("taskdb").C("categories")
//code statements using session object

This code block creates a session object for a MongoDB database. In the next line, the code statement
session.Close() is added onto the deferred list to clean up the resources of the database session object
after returning the surrounding function. You can add any number of code statements and functions onto
the deferred list.

Chapter 2 ■ Go Fundamentals

32

Panic
The panic function is a built-in function that lets you stop the normal flow of control and panic a function.
When you call panic from a function, it stops the execution of the function, any deferred functions are
executed, and the caller function gets a panicking function. Keep in mind that all deferred functions are
executed normally before the execution stops. When developing applications, you will rarely call the panic
function because your responsibility is to provide proper error messages rather than stopping the normal
control flow. But in some scenarios, you may need to call the panic function if there are no possibilities to
continue the normal flow of control. For example, if you can’t connect to a database server, it doesn’t make
any sense to continue executing the application.

Listing 2-30 is the code block that calls panic if there is an error while connecting to a database.

Listing 2-30.  Using the panic Function to Panic a Function

session, err := mgo.Dial("localhost") // Create MongoDB Session object
if err != nil {

panic(err)
}
defer session.Close()

This code block tries to establish a connection to a MongoDB database and create a session object. You
call panic if there is an error while establishing a connection to the database. It stops the execution, and the
caller function gets a panicking function.

Recover
The recover function is a built-in function that is typically used inside deferred functions that regain control
of a panicking function. The recover function is useful only inside deferred functions because the differing
statements are the only way to execute something when a function is panicking.

Listing 2-31 is an example program that demonstrates panic recovery.

Listing 2-31.  Recovering from a Panicking Function Using recover

package main

import "fmt"

func doPanic() {
defer func() {

if e := recover(); e != nil {
fmt.Println("Recover with: ", e)

}
}()
panic("Just panicking for the sake of demo")
fmt.Println("This will never be called")

}

func main() {
fmt.Println("Starting to panic")
doPanic()
fmt.Println("Program regains control after panic recover")

}

Chapter 2 ■ Go Fundamentals

33

In the preceding program, the function doPanic is called from the main function. Inside the function
doPanic, an anonymous function has been added to the deferred list, in which recover is called to regain
control from the panicking function. For the sake of the demo, the panic function is called by providing
a string value. When a function is panicking, any deferred functions are executed. Because the recover
function is called inside the deferred function, control of the program execution is regained. When recover is
called, the value provided by the panic function is received.

■ Note S tatements provided after the panic call in the doPanic function don’t execute, but statements
after the call to the doPanic function in the main function do execute as control is regained from the panicked
function.

You should see the following output:

Starting to panic
Recover with: Just panicking for the sake of demo
Program regains control after panic recover

Error Handling
Error handling in Go is different from that of other programming languages. Most programming languages
use a try/catch block to handle exceptions; in Go, a function can return multiple values. By leveraging this
feature, functions in Go typically return a value of a built-in error type, along with other values returned from
a function. An idiomatic way to return an error value is to provide the value after other values return. When
you look on the standard library packages, you can see that many functions return an error value. So when
you call the functions of standard library packages, you can see whether the error value is nil. If a non-nil
error value returns, you can identify that you are getting an exception. You can use the same approach for Go
functions where you can return multiple values from a function including an error value.

Listing 2-32 is the code block that demonstrates error handling by calling the standard library function.

Listing 2-32.  Error Handling in Go

f, err := os.Open("readme.ext")
if err != nil {
 log.Fatal(err)
}

In this code block, the function Open of the os package is called to open a file. The function Open returns
two values: the File object and the error value. If the function returns a non-nil error value, there is an error,
and the file won’t open. Here the error value is logged if an error occurred.

Listing 2-33 is a custom function that returns multiple values, including an error value.

Listing 2-33.  Defining Functions with an Error Value

func GetById(id string) (models.Task, error) {
 var task models.Task
 // Implementation here
 return task,nil // multiple return values
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Go Fundamentals

34

When you write functions to provide an error value, you can return a nil value if any error has occurred.
The caller function can check whether the error value is nil; if the error value is not nil, the function
receives an error.

Listing 2-34 is the code block that demonstrates how to call a function that provides an error value.

Listing 2-34.  A caller Function Checks the Error Value

task, err:= GetById (“105”)
if err != nil {
 log.Fatal(err)
}
//Implementation here if error is nill

Summary
This chapter discussed Go packages, which are important features in the Go ecosystem. Go provides
modularity, composability, and code reusability through its package ecosystem. Go source files are
organized into directories called packages. In Go, you can write two types of packages: package main that
results in an executable program (often known as a command in Go documentation) and shared library
packages that reuse code with other packages. You can give package aliases to avoid name ambiguity
when referencing packages with the same name. The package’s init function can be used to initialize
packages variables and for other initialization logic. You don’t need to explicitly call the init function; it is
automatically executed at the beginning of the execution.

The Go tool is a command-line tool that provides various commands for functionalities such as
compiling, formatting, testing and running Go code.

Go provides three types of data structures to manage collections of data: arrays, slices, and maps. An
array is a fixed-length data type that contains a sequence of elements of a single type. A slice is a dynamic
array that can be grown at a later stage as data increases or shrinks. Go provides two built-in functions for
manipulating slices: append and copy. A map is a data structure that provides an unordered collection of
key-value pairs.

Go provides the defer keyword for cleaning up resources. A defer statement pushes a function call
onto a list of deferred functions, which is executed after the surrounding function returns. The panic
function allows you to stop the normal flow of control and panic a function. The recover function, which
regains control of a panicking function, is useful only inside deferred functions.

Error handling in Go differs from that of most other programming languages. Because Go functions
can return multiple values, an error value can be returned from functions. So from caller functions, you
can easily check whether the function returns an error value and then provide code implementations
accordingly.

35

Chapter 3

User-Defined Types and
Concurrency

The type system is one of the most important features of a programming language; types allow you to
organize and store your application data. When choosing a programming language, it is important to take its
type system into consideration. Go enforces simplicity throughout the language design.

Go is a static type language in which you can use built-in types and user-defined types for storing
application data. Go provides several built-in types, such as int, float64, string, and bool. Chapter 2
discussed arrays, slices, and maps, which are the composite types made up of other types using built-in
types and user-defined types. For example, the composite type map[string]float64 represents a collection
of float64 values, in which each value of the float64 type can be added to the collection with a key of type
string, where values can be retrieved with the corresponding key value. Apart from built-in types, you can
create your own types by combining one or more built-in or user-defined types. Go provides an interface
type in its type system that allows you to develop programs with a greater level of extensibility.

User-defined Types with Structs
Go’s type system was designed with simplicity and pragmatism in mind, which avoids a lot of complexity
when data structures for applications are designed. The object-oriented approach of Go is completely
different from other programming languages. If you are coming from programming languages such as C++,
Java, and C#, you will realize that the object-oriented approach of Go is different and unique, although you
may miss some features of those languages. When you look at Go’s type system and its user-defined types,
you should look at the language with a fresh mind so you can enjoy and appreciate the simplicity and power
that can be leveraged to solve real-world problems.

Go does not provide classes in its type system; it has structs, which are analogous to classes. A struct can
be considered as a lightweight version of a class, but the design of the struct is unique because it focuses
on real-world practices. Structs in Go let you create user-defined concrete types; they are a collection of
fields or properties that can be used for storing complex data. You can use structs for storing application
domain models.

Creating a Struct Type
Let’s create a struct type for representing a person’s information (see Listing 3-1).

http://dx.doi.org/10.1007/978-1-4842-1052-9_2

Chapter 3 ■ User-Defined Types and Concurrency

36

Listing 3-1.  Declaring a Struct with a Group of Fields

type Person struct {
FirstName, LastName string
Dob time.Time
Email, Location string

}

Create a user-defined type with the keyword struct:

type Person struct

Because the type identifier starts with an uppercase letter, the Person type will be exported into other
packages. You specify the struct fields within the body of the Person type. Because the fields FirstName and
LastName use the same data type, you can declare both variables in a single statement:

FirstName, LastName string

Creating Instances of Struct Types
A struct type named Person has been defined. Let’s create an instance of a Person type and assign the values
to the fields (see Listing 3-2).

Listing 3-2.  Creating a Struct Instance

var p Person
p.FirstName="Shiju"
p.LastName="Varghese"
p.Dob= time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC)
p.Email= "shiju@email.com"
p.Location="Kochi"

An instance of a Person type is created, and field values have been assigned one by one. You can also
use a struct literal to create a struct type instance (see Listing 3-3).

Listing 3-3.  Creating a Struct Instance Using a Struct Literal

p:= Person {
 FirstName : "Shiju",
 LastName : "Varghese",
 Dob : time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
 Email : "shiju@email.com",
 Location : "Kochi",
}

You can create a Person type instance by using a struct literal. When you create struct type instances
using struct literals, you can split the assignment of struct fields into multiple lines, which enhances the
readability of your code block. When you create struck instances this way, you have to put an extra comma at
the end of the last assignment, which enables you to easily rearrange the assignment order of the struct fields
without worrying about removing a comma for the last assignment and adding a comma for all other fields.
Now you have to insert a comma for every struct type field, regardless of whether it is the last field.

You can create struct instances in a more efficient way if you know the order of the struct fields
(see Listing 3-4).

http://mailto:shiju@email.com/

Chapter 3 ■ User-Defined Types and Concurrency

37

Listing 3-4.  Creating a Struct Instance Using a Struct Literal

p:= Person {
 "Shiju",
 "Varghese",
 time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
 "shiju@email.com",
 "Kochi",
}

This is a very convenient way of creating struct type instances if you know the struct type field order.
You can also create struct instances with a single-line statement.

Listing 3-5 shows an example of creating a struct instance by specifying a few fields using a struct literal
and assigning remaining fields later.

Listing 3-5.  Creating a Struct Instance by Specifying a Few Fields

p:= Person { FirstName :"Shiju", LastName : "Varghese" }
p.Dob= time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC)
p.Email= "shiju@email.com"
p.Location="Kochi"

Adding Behavior to a Struct Type
Go’s type system allows you to add behavior to struct types. Like classes of other object-oriented languages,
structs in Go allow you to define fields along with operations. Let’s add a couple of behaviors to the Person
type (see Listing 3-6).

Listing 3-6.  Struct Type with Behaviors

type Person struct {
 FirstName, LastName string
 Dob time.Time
 Email, Location string
}

//A person method
func (p Person) PrintName() {
 fmt.Printf("\n%s %s\n", p.FirstName, p.LastName)
}

//A person method
func (p Person) PrintDetails() {
 �fmt.Printf("[Date of Birth: %s, Email: %s, Location: %s]\n", p.Dob.String(), p.Email,

p.Location)
}

Two methods have been added to the Person type: PrintName and PrintDetails. A method in Go is a
function that is declared with a receiver. Although a method looks like a normal function, it has a receiver.
You can specify the method receiver between the func keyword and the name of the function. In Listing 3-6,
the Person struct was added as the receiver into the functions PrintName and PrintDetails. When this is
done, functions are attached to the Person type to call as methods. This allows you to call the functions using
the dot (.) operator from the struct type instance, just as you call instance methods of classes in traditional
object-oriented language.

http://mailto:shiju@email.com/

Chapter 3 ■ User-Defined Types and Concurrency

38

Here, the method with the Person receiver type is declared:

func (p Person) PrintName() {
 fmt.Printf("\n%s %s\n", p.FirstName, p.LastName)
}

//A person method
func (p Person) PrintDetails() {
 �fmt.Printf("[Date of Birth: %s, Email: %s, Location: %s]\n", p.Dob.String(), p.Email,

p.Location)
}

Calling Struct Methods
Let’s create an instance of a Person type and call the methods provided by the type (see Listing 3-7).

Listing 3-7.  Calling Struct Methods

p := Person{
"Shiju",
"Varghese",
time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
"shiju@email.com",
"Kochi",

}
p. PrintName()
p. PrintDetails()

You should see the following output:

Shiju Varghese
[Date of Birth: 1979-02-17 00:00:00 +0000 UTC, Email: shiju@email.com, Location: Kochi]

Pointer Method Receivers
In Go, you can define methods using both pointer and nonpointer method receivers. Listing 3-7 used
nonpointer receivers for the methods PrintName and PrintDetails. If you want to modify the data of a
receiver from the method, the receiver must be a pointer, as shown in Listing 3-8.

Listing 3-8.  Receiver Method with Pointer

//A person method with pointer receiver
func (p *Person) ChangeLocation(newLocation string) {
 p.Location= newLocation
}

A ChangeLocation function is attached to a pointer receiver. Here the location from the method itself
is modified. Suppose that you add this new method to the Person struct listed in Listing 3-7. Let’s create a
Person type instance and call its methods (see Listing 3-9).

Chapter 3 ■ User-Defined Types and Concurrency

39

Listing 3-9.  Calling Methods of a Pointer Receiver

p := &Person{
"Shiju",
"Varghese",
time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
"shiju@email.com",
"Kochi",

}
p.ChangeLocation("Santa Clara")
p.PrintName()
p.PrintDetails()

You should see the following output:

Shiju Varghese
[Date of Birth: 1979-02-17 00:00:00 +0000 UTC, Email: shiju@email.com, Location: Santa Clara]

Because you want to call a pointer receiver method, you can create the Person type instance by
providing the ampersand (&) operator. When you call the ChangeLocation method, it changes the value of
the Location field, so when calling the PrintDetails method, you get the modified value. The value of the
Location field would not have changed if the ChangeLocation method were a nonpointer method.

When you call a pointer receiver method, you pass by reference as opposed to passing by value (used
with a nonpointer receiver). This makes sense when you want to modify the state (value of the fields) of the
receiver within the methods. If the struct has a pointer receiver on some its methods, it is better to use it for
the rest of the methods because it enables better consistency and predictability for the struct behaviors.

Let’s modify the program to define all methods of the Person struct with a pointer receiver to keep
consistency among all its methods (see Listing 3-10).

Listing 3-10.  Person Struct with Pointer Receiver Methods

package main

import (
"fmt"
"time"

)

func main() {
p := &Person{

"Shiju",
"Varghese",
time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
"shiju@email.com",
"Kochi",

}
p.ChangeLocation("Santa Clara")
p.PrintName()
p.PrintDetails()

}

Chapter 3 ■ User-Defined Types and Concurrency

40

type Person struct {
FirstName, LastName string
Dob time.Time
Email, Location string

}

//A person method with pointer receiver
func (p *Person) PrintName() {

fmt.Printf("\n%s %s\n", p.FirstName, p.LastName)
}

//A person method with pointer receiver
func (p *Person) PrintDetails() {

fmt.Printf("[Date of Birth: %s, Email: %s, Location: %s]\n", p.Dob.String(),
p.Email, p.Location)
}

//A person method with pointer receiver
func (p *Person) ChangeLocation(newLocation string) {
 p.Location = newLocation
}

Type Composition
Go’s design philosophy is to be a simple language while focusing on real-world practices; it simply ignores
many academic thoughts to maintain it as a minimalistic language. You saw the simplicity of Go’s type system
in previous sections. The major decision about its type system is that although it does not support inheritance,
it supports composition through type embedding. Go encourages you to use composition over inheritance.

■ Note  Composition is a design philosophy in which smaller components are combined into larger components.

The Person type was defined in the previous section. You can create bigger and more concrete types by
embedding the Person type. In Listing 3-11, two more types are created by embedding the Person type.

Listing 3-11.  Type Embedding for Composition

type Admin struct {
Person //type embedding for composition
Roles []string

}

type Member struct {
 Person //type embedding for composition
 Skills []string
}

The Person type is embedded into Admin and Member types so that all Person fields and methods will be
available in these new types.

Let’s create a sample program to understand the functionality of type embedding (see Listing 3-12).

Chapter 3 ■ User-Defined Types and Concurrency

41

Listing 3-12.  Example Program for Type Composition

package main

import (
"fmt"
"time"

)

type Person struct {
FirstName, LastName string
Dob time.Time
Email, Location string

}

//A person method
func (p Person) PrintName() {

fmt.Printf("\n%s %s\n", p.FirstName, p.LastName)
}

//A person method
func (p Person) PrintDetails() {

�fmt.Printf("[Date of Birth: %s, Email: %s, Location: %s]\n", p.Dob.String(),
p.Email, p.Location)

}

type Admin struct {
Person //type embedding for composition
Roles []string

}

type Member struct {
Person //type embedding for composition
Skills []string

}

func main() {
alex := Admin{

Person{
"Alex",
"John",
time.Date(1970, time.January, 10, 0, 0, 0, 0, time.UTC),
"alex@email.com",
"New York"},

[]string{"Manage Team", "Manage Tasks"},
}
shiju := Member{

Person{
"Shiju",
"Varghese",
time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
"shiju@email.com",
"Kochi"},

Chapter 3 ■ User-Defined Types and Concurrency

42

[]string{"Go", "Docker", "Kubernetes"},
}
//call methods for alex
alex.PrintName()
alex.PrintDetails()
//call methods for shiju
shiju.PrintName ()
shiju.PrintDetails()

}

A Person type was created with a few fields and two methods. Two more types were then created—
Admin and Member—by embedding the Person type. These new types have all the properties and methods
provided by the Person type. Instances of Admin and Member types can be created by simply embedding the
Person type, as shown here:

alex := Admin{
Person{

"Alex",
"John",
time.Date(1970, time.January, 10, 0, 0, 0, 0, time.UTC),
"alex@email.com",
"New York"},

[]string{"Manage Team", "Manage Tasks"},
}
shiju := Member{

Person{
"Shiju",
"Varghese",
time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
"shiju@email.com",
"Kochi"},

[]string{"Go", "Docker", "Kubernetes"},
}

Because all Person type methods are available to Admin and Member types, you can call the methods as
shown in the following code:

//call methods for alex
alex.PrintName()
alex.PrintDetails()
//call methods for shiju
shiju.PrintName()
shiju.PrintDetails()

You should see the following output:

Alex John
[Date of Birth: 1970-01-10 00:00:00 +0000 UTC, Email: alex@email.com, Location: New York]
Shiju Varghese
[Date of Birth: 1979-02-17 00:00:00 +0000 UTC, Email: shiju@email.com, Location: Kochi]

Type composition with type embedding provides the practical benefits of using inheritance, coupled
with better maintainability.

Chapter 3 ■ User-Defined Types and Concurrency

43

Overriding Methods of Embedded Type
In Listing 3-11, the Person type was embedded into Admin and Member types and called the methods
provided by the Person type. Suppose that you want to override the PrintDetails method in Admin and
Member because these types have additional fields: Roles and Skills. The methods of embedded types can
be overridden, as shown in Listing 3-13.

Listing 3-13.  Overriding the Embedded Type Method

type Admin struct {
Person //type embedding for composition
Roles []string

}

//overrides PrintDetails
func (a Admin) PrintDetails() {

//Call person PrintDetails
a.Person.PrintDetails()
fmt.Println("Admin Roles:")
for _, v := range a.Roles {

fmt.Println(v)
}

}

type Member struct {
Person //type embedding for composition
Skills []string

}

//overrides PrintDetails
func (m Member) PrintDetails() {

//Call person PrintDetails
m.Person.PrintDetails()
fmt.Println("Skills:")
for _, v := range m.Skills {

fmt.Println(v)
}

}

The PrintDetails method is overridden to include additional information held by each type. When this
method is overridden, you can call the PrintDetails method of the embedded type to get basic information
provided by the embedded type and then provide additional information held by the types:

func (m Member) PrintDetails() {
//Call person PrintDetails
m.Person. PrintDetails()
fmt.Println("Skills:")
for _, v := range m.Skills {

fmt.Println(v)
}

}

Chapter 3 ■ User-Defined Types and Concurrency

44

The statement m.Person.PrintDetails() calls the PrintDetails method of the Person type.
Let’s run the modified program with the code shown in Listing 3-14.

Listing 3-14.  Running the Program with Method Overriding

alex := Admin{
Person{

"Alex",
"John",
time.Date(1970, time.January, 10, 0, 0, 0, 0, time.UTC),
"alex@email.com",
"New York"},

[]string{"Manage Team", "Manage Tasks"},
}
shiju := Member{

Person{
"Shiju",
"Varghese",
time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
"shiju@email.com",
"Kochi"},

[]string{"Go", "Docker", "Kubernetes"},
}
//call methods for alex
alex.PrintName()
alex.printDetails()
//call methods for shiju
shiju.PrintName()
shiju.PrintDetails()

You should see the following output:

Alex John
[Date of Birth: 1970-01-10 00:00:00 +0000 UTC, Email: alex@email.com, Location: New York]
Admin Roles:
Manage Team
Manage Tasks

Shiju Varghese
[Date of Birth: 1979-02-17 00:00:00 +0000 UTC, Email: shiju@email.com, Location: Kochi]
Skills:
Go
Docker
Kubernetes

Working with Interfaces
In Go’s type system, you can create concrete types and interface types. (Concrete types were discussed in
previous sections of this chapter.) The interface is one of the greatest features of the Go language because
it provides contracts to user-defined concrete types, which allows you to define behaviors for your objects.
Let’s create an interface type to specify the behavior for Person objects (see Listing 3-15).

Chapter 3 ■ User-Defined Types and Concurrency

45

Listing 3-15.  Defining the Interface Type

type User interface {
 PrintName()
 PrintDetails()
}

An interface type named User was defined with two behaviors: PrintName and PrintDetails. Let’s have
a look at the Person type:

type Person struct {
FirstName, LastName string
Dob time.Time
Email, Location string

}

//A person method
func (p Person) PrintName() {

fmt.Printf("\n%s %s\n", p.FirstName, p.LastName)
}

//A person method
func (p Person) PrintDetails() {

fmt.Printf("[Date of Birth: %s, Email: %s, Location: %s]\n", p.Dob.String(),
p.Email, p.Location)
}

The most surprising thing about interface is that you don’t need to explicitly implement it into concrete
types; instead, just define the methods in the concrete types based on the interface type specification.
The Person type has already implemented the User Interface into the Person type. The Person type has
implemented the PrintName and PrintDetails methods, which were defined in the user interface type. In
programming languages such as C# and Java, you must explicitly implement the interface type into concrete
types. Go provides lot of productivity while keeping itself as a static type language.

Listing 3-16 shows a sample program that describes interface and its concrete types:

Listing 3-16.  Example Program with Interface

package main

import (
"fmt"
"time"

)

type User interface {
PrintName()
PrintDetails()

}

Chapter 3 ■ User-Defined Types and Concurrency

46

type Person struct {
FirstName, LastName string
Dob time.Time
Email, Location string

}

//A person method
func (p Person) PrintName() {

fmt.Printf("\n%s %s\n", p.FirstName, p.LastName)
}

//A person method
func (p Person) PrintDetails() {

�fmt.Printf("[Date of Birth: %s, Email: %s, Location: %s]\n", p.Dob.String(),
p.Email, p.Location)

}

func main() {
alex := Person{

"Alex",
"John",
time.Date(1970, time.January, 10, 0, 0, 0, 0, time.UTC),
"alex@email.com",
"New York",

}
shiju := Person{

"Shiju",
"Varghese",
time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
"shiju@email.com",
"Kochi",

}
users := []User{alex, shiju}
for _, v := range users {

 v.printName()
v.PrintDetails()

}
}

An interface type and a concrete type were created based on the behavior defined by the interface type.
In the main function, two Person objects were created; then a slice of the user interface type with the two
Person objects was created. Finally, you iterated through the collection and call methods defined in the
interface type: PrintName and PrintDetails.

You should see the following output:

Alex John
[Date of Birth: 1970-01-10 00:00:00 +0000 UTC, Email: alex@email.com, Location: New York]
Shiju Varghese
[Date of Birth: 1979-02-17 00:00:00 +0000 UTC, Email: shiju@email.com, Location: Kochi]

Let’s combine the different features of user-defined types that have been discussed in this chapter by
writing the example program shown in Listing 3-17.

Chapter 3 ■ User-Defined Types and Concurrency

47

Listing 3-17.  Example Program with Interface, Composition, and Method Overriding

package main

import (
"fmt"
"time"

)

type User interface {
PrintName()
PrintDetails()

}

type Person struct {
FirstName, LastName string
Dob time.Time
Email, Location string

}

//A person method
func (p Person) PrintName() {

fmt.Printf("\n%s %s\n", p.FirstName, p.LastName)
}

//A person method
func (p Person) PrintDetails() {

�fmt.Printf("[Date of Birth: %s, Email: %s, Location: %s]\n", p.Dob.String(),
p.Email, p.Location)

}

type Admin struct {
Person //type embedding for composition
Roles []string

}

//overrides PrintDetails
func (a Admin) PrintDetails () {

//Call person PrintDetails
a.Person. PrintDetails ()
fmt.Println("Admin Roles:")
for _, v := range a.Roles {

fmt.Println(v)
}

}

type Member struct {
Person //type embedding for composition
Skills []string

}

Chapter 3 ■ User-Defined Types and Concurrency

48

//overrides PrintDetails
func (m Member) PrintDetails () {

//Call person PrintDetails
m.Person. PrintDetails()
fmt.Println("Skills:")
for _, v := range m.Skills {

fmt.Println(v)
}

}

type Team struct {
Name, Description string
Users []User

}

func (t Team) GetTeamDetails() {
fmt.Printf("Team: %s - %s\n", t.Name, t.Description)
fmt.Println("Details of the team members:")
for _, v := range t.Users {

 v.PrintName()
v.PrintDetails()

}
}

func main() {
alex := Admin{

Person{
"Alex",
"John",
time.Date(1970, time.January, 10, 0, 0, 0, 0, time.UTC),
"alex@email.com",
"New York"},

[]string{"Manage Team", "Manage Tasks"},
}
shiju := Member{

Person{
"Shiju",
"Varghese",
time.Date(1979, time.February, 17, 0, 0, 0, 0, time.UTC),
"shiju@email.com",
"Kochi"},

[]string{"Go", "Docker", "Kubernetes"},
}
chris := Member{

Person{
"Chris",
"Martin",
time.Date(1978, time.March, 15, 0, 0, 0, 0, time.UTC),
"chris@email.com",
"Santa Clara"},

[]string{"Go", "Docker"},
}

Chapter 3 ■ User-Defined Types and Concurrency

49

team := Team{
"Go",
"Golang CoE",
[]User{alex, shiju, chris},

}
//get details of Team
team.GetTeamDetails()

}

You should see the following output:

Team: Go - Golang CoE

Here are details of the team members:

Alex John
[Date of Birth: 1970-01-10 00:00:00 +0000 UTC, Email: alex@email.com, Location: New York]
Admin Roles:
Manage Team
Manage Tasks

Shiju Varghese
[Date of Birth: 1979-02-17 00:00:00 +0000 UTC, Email: shiju@email.com, Location: Kochi]
Skills:
Go
Docker
Kubernetes

Chris Martin
[Date of Birth: 1978-03-15 00:00:00 +0000 UTC, Email: chris@email.com, Location: Santa Clara
]
Skills:
Go
Docker

In addition to the types defined in Listing 3-16, two more concrete types of the interface type
were added (User - Admin and Member), in which the Person type was embedded. The PrintName and
PrintDetails methods were modified for both Admin and Member types. Finally, a new struct type (Team) was
created, composed of two string fields and a slice of the user interface type, in which you can add Person,
Admin, or Member type objects. In the GetTeamDetails method, you iterate through the Users collection,
which is made of Admin and Member types, and call the PrintName and PrintDetails methods:

type Team struct {
Name, Description string
Users []User

}

Chapter 3 ■ User-Defined Types and Concurrency

50

func (t Team) GetTeamDetails() {
fmt.Printf("Team: %s - %s\n", t.Name, t.Description)
fmt.Println("Deteails of the team members:")
for _, v := range t.Users {

 v.PrintName()
v.PrintDetails()

}
}

This program shows the power of using the interface type. When the Team type object was created, a
slice of user interface was provided, composed with two Member type objects and one Admin type object for
the Users field. Objects of different types for the Users field were provided because these objects are the
implementation of interface User.

An interface, which adds extensibility and maintainability to your programs, is a contract that lets you
write programs depending on abstractions instead of concrete implementations. In the example program,
the Users field was defined with a slice of the user interface type so that you can provide objects of any
type to provide the implementations of the contract defined in the user interface. If you define a slice of the
Member type as the type for the Users property, you would be limited to providing Member type objects as the
value for the Users field.

Concurrency
When larger applications are developed, multiple tasks might be needed to complete program execution.
Other programs are composed of many smaller subprograms. When you develop these kinds of applications,
you can achieve performance improvements if you can execute these tasks and subprograms concurrently.
Let’s say you are developing a web-based, back-end API in which many concurrent users are accessing the
API. If you can concurrently execute these concurrent web requests on the web server, you can dramatically
improve the performance and efficiency of the system.

When you develop web applications and web APIs, managing a large set of concurrent users is really a
challenge. Go is designed to solve the challenges of modern programming and larger systems. It provides
support for concurrency at the core language level and implements concurrency directly into its language
and runtime. This helps you easily build high-performance systems.

Many programming environments provide concurrency support with the help of an extra library,
but not as a built-in feature of the core language. Concurrency is one of the major selling points of the Go
language, along with its simplicity and pragmatism. In Go, concurrency is implemented by using two unique
features: goroutines and channels.

Goroutines
In Go, a goroutine is the primary mechanism for running programs concurrently. Goroutines let you run
functions concurrently with other functions, and you can run a function as a goroutine to access the concurrency
capability of Go. When you create a function as a goroutine, it works as an independent task unit that runs
concurrently with other goroutines. In short, a goroutine is a lightweight thread managed by the Go runtime.

The most powerful capability of Go’s concurrency is that everything related to concurrency is fully
managed by the Go runtime, but not the OS resources. Go runtime has a powerful piece of software
component called the scheduler that controls and manages everything related to the scheduling and
running of goroutines. Because the Go runtime has the full control over the concurrent tasks running with
goroutines, it enables high performance and better control to your applications when you leverage the
concurrency capabilities of Go.

Chapter 3 ■ User-Defined Types and Concurrency

51

To invoke a function as a goroutine, use the keyword go:

go function()

Because goroutines are treated as independent units that are running concurrently, ensure that all
goroutines are getting executed before the main program is terminated. You can achieve this by using the
WaitGroup type provided by the sync standard library package.

Listing 3-18 is an example program in which two goroutines are launched and executed before
terminating the program.

Listing 3-18.  Concurrency with Goroutines

// This sample program demonstrates how to create goroutines
package main

import (
 "fmt"
 "math/rand"
 "sync"
 "time"
)

// wg is used to wait for the program to finish goroutines.
var wg sync.WaitGroup

func main() {

 // Add a count of two, one for each goroutine.
 wg.Add(2)

 fmt.Println("Start Goroutines")
 //launch a goroutine with label "A"
 go printCounts("A")
 //launch a goroutine with label "B"
 go printCounts("B")
 // Wait for the goroutines to finish.
 fmt.Println("Waiting To Finish")
 wg.Wait()
 fmt.Println("\nTerminating Program")
}

func printCounts(label string) {
 // Schedule the call to WaitGroup's Done to tell we are done.
 defer wg.Done()
 // Randomly wait
 for count := 1; count <= 10; count++ {

sleep := rand.Int63n(1000)
time.Sleep(time.Duration(sleep) * time.Millisecond)
fmt.Printf("Count: %d from %s\n", count, label)

 }
}

Chapter 3 ■ User-Defined Types and Concurrency

52

When you run the program, you see the following output. It will vary each time because of the random
wait during the program execution:

Start Goroutines
Waiting To Finish
Count: 1 from A
Count: 1 from B
Count: 2 from B
Count: 2 from A
Count: 3 from B
Count: 3 from A
Count: 4 from A
Count: 5 from A
Count: 4 from B
Count: 6 from A
Count: 5 from B
Count: 7 from A
Count: 6 from B
Count: 7 from B
Count: 8 from A
Count: 8 from B
Count: 9 from B
Count: 9 from A
Count: 10 from A
Count: 10 from B
Terminating Program

A function named printCounts is created that is called two times as a goroutine:

//launch a goroutine with label "A"
 go printCounts("A")
//launch a goroutine with label "B"
 go printCounts("B")

To ensure that all goroutines are executed before the program is terminated, use WaitGroup, which is
provided by the sync package:

var wg sync.WaitGroup

In the main function, add a count of 2 into the WaitGroup for the two goroutines:

wg.Add(2)

Launch two goroutines by using the keyword go:

//launch a goroutine with label "A"
 go printCounts("A")
//launch a goroutine with label "B"
 go printCounts("B")

Chapter 3 ■ User-Defined Types and Concurrency

53

In the printCounts function, the values from 1 to 10 are printed. For the sake of the demo, the execution
is randomly delayed.

func printCounts(label string) {
// Schedule the call to WaitGroup's Done to tell we are done.
 defer wg.Done()
 // Randomly wait
 for count := 1; count <= 10; count++ {

sleep := rand.Int63n(1000)
time.Sleep(time.Duration(sleep) * time.Millisecond)
fmt.Printf("Count: %d from %s\n", count, label)

 }
}

In the beginning of the printCounts function, the Done method of the WaitGroup type is scheduled
to call to tell the main program that the goroutine has executed. The Done method of the WaitGroup type
is scheduled to call using the keyword defer (as discussed in Chapter 2). This keyword allows you to
schedule other functions to be called when the function returns. In this example, the Done method will be
invoked when the goroutine is executed, which ensures that the value of WaitGroup is decremented so
the main function can check whether any goroutine is yet to be executed. In the main function, the Wait
method of WaitGroup is called, which will check the count of WaitGroup and will block the program until
it becomes zero. When the Done method of WaitGroup is called, the count will be decremented by one. At
the beginning of the execution, the count is added as 2. When Wait is called, it will wait for the count to turn
zero, thereby ensuring that both the goroutines are executed before the program terminates. When the count
becomes zero, the program terminates:

wg.Wait()

GOMAXPROCS and Parallelism
The Go runtime scheduler manages the goroutine execution by leveraging the number of OS threads to
attempt goroutine executions simultaneously. The value for the OS threads is taken from the GOMAXPROCS
environment variable. Prior to Go 1.5, the default setting of GOMAXPROCS was 1, meaning that goroutines
were running on a single OS thread by default. (Keep in mind that Go runtime can execute thousands of
goroutines on a single OS thread.) With Go 1.5, the default setting of GOMAXPROCS was changed to the number
of CPUs available, as determined by the NumCPU function provided by the runtime package. This default
behavior lets the Go programs leverage all available CPU cores for running goroutines in parallel. The value
of the GOMAXPROCS can be set by explicitly using the GOMAXPROCS environment variable or by calling runtime.
GOMAXPROCS from within a program.

The simultaneous execution of goroutines is achieved by raising the GOMAXPROCS setting. This behavior
is parallelism. Concurrency is not parallelism; concurrency in Go is designing a program by breaking it into
goroutines (as subprograms or tasks) that can be executed independently by leveraging available resources.
Parallelism is about doing lots of computations at once. In parallelism, more CPU cores are leveraged to
enable the simultaneous execution of goroutines as much as possible.

In many cases, parallelism can provide better performance because the Go runtime can run goroutines in
parallel by leveraging all the available compute resources of a computer. Remember that running goroutines
in parallel can’t always provide better performance because it depends on your program context. Sometimes
concurrency can outperform parallelism because parallelism may put more strain on the OS’s resources.

http://dx.doi.org/10.1007/978-1-4842-1052-9_2

Chapter 3 ■ User-Defined Types and Concurrency

54

You can control the GOMAXPROCS setting in your program based on the context of your applications.
Listing 3-19 is a code block that modifies the GOMAXPROCS to one from its default setting:

Listing 3-19.  Explicitly Set GOMAXPROCS Setting

import "runtime"
// Set the value of GOMAXPROCS.
runtime.GOMAXPROCS(1)

■ Note  Check out Rob Pike’s excellent presentation, “Concurrency Is Not Parallelism” to understand the
difference between concurrency and parallelism: www.youtube.com/watch?v=cN_DpYBzKso

Channels
Listing 3-18 created two goroutines that were running independently and didn’t need to communicate with
each other. However, sometimes there is a need for communication among goroutines for sending and
receiving data, hence the need for synchronization among goroutines. In many programming environments,
communication among concurrent programs is complex or limited with features. Go allows you to
communicate among goroutines using channels that enable the synchronization of goroutine execution.

The built-in make function is used to declare a channel with the help of the keyword chan, followed by
the type for specifying the type of data you are using for exchanging data:

count := make(chan int)

A channel of integer type is declared, so integer values will be passed into channels. There are two types
of channels available for synchronization of goroutines:

• Buffered channels

• Unbuffered channels

Listing 3-20 is the code block that declares unbuffered and buffered channels.

Listing 3-20.  Declaring Unbuffered and Buffered Channels

// Unbuffered channel of integers.
count := make(chan int)
// Buffered channel of integers for buffering up to 10 values.
count:= make(chan int, 10)

When buffered channels are declared, the capacity of channels to hold the data must be specified. If you
try to send more data than its capacity, you get an error.

Unbuffered Channel
Unbuffered channels provide synchronous communication among goroutines, which ensures message
delivery among them. With unbuffered channels, message sending is permitted only if there is a
corresponding receiver that is ready to receive the messages. In this case, both sides of the channel have
to wait until the other side is ready for sending and receiving messages. With buffered channels, a limited
number of messages can be sent into the channel without a corresponding concurrent receiver for receiving
those messages. After the messages are sent into buffered channels, those messages from the channel are
received. Unlike unbuffered channels, message delivery can’t be guaranteed with buffered channels.

http://www.youtube.com/watch?v=cN_DpYBzKso

Chapter 3 ■ User-Defined Types and Concurrency

55

The <- operator is used to send values into channels (see Listing 3-21).

Listing 3-21.  Sending Values into a Channel

// Buffered channel of strings.
messages := make(chan string, 2)
// Send a message into the channel.
messages <- "Golang"

To receive messages from channels, the <- operator is used as a unary operator (see Listing 3-22).

Listing 3-22.  Receiving Values from a Channel

// Receive a string value from the channel.
value := <-messages

Listing 3-23 is an example program that demonstrates how to communicate and synchronize data
among goroutines using unbuffered channels.

Listing 3-23.  Example Program with Unbuffered Chanel

package main

import (
 "fmt"
 "sync"
)

// wg is used to wait for the program to finish.
var wg sync.WaitGroup

func main() {

 count := make(chan int)
 // Add a count of two, one for each goroutine.
 wg.Add(2)

 fmt.Println("Start Goroutines")
 //launch a goroutine with label "A"
 go printCounts("A", count)
 //launch a goroutine with label "B"
 go printCounts("B", count)
 fmt.Println("Channel begin")
 count <- 1
 // Wait for the goroutines to finish.
 fmt.Println("Waiting To Finish")
 wg.Wait()
 fmt.Println("\nTerminating Program")
}

Chapter 3 ■ User-Defined Types and Concurrency

56

func printCounts(label string, count chan int) {
 // Schedule the call to WaitGroup's Done to tell we are done.
 defer wg.Done()
 for {

//Receives message from Channel
val, ok := <-count
if !ok {

fmt.Println("Channel was closed")
return

}
fmt.Printf("Count: %d received from %s \n", val, label)
if val == 10 {

fmt.Printf("Channel Closed from %s \n", label)
// Close the channel
close(count)
return

}
val++
// Send count back to the other goroutine.
count <- val

 }
}

The output can vary when you run the program. You should see output similar to the following:

Start Goroutines
Channel begin
Count: 1 received from A
Count: 2 received from B
Waiting To Finish
Count: 3 received from A
Count: 4 received from B
Count: 5 received from A
Count: 6 received from B
Count: 7 received from A
Count: 8 received from B
Count: 9 received from A
Count: 10 received from B
Channel Closed from B
Channel was closed
Terminating Program

In this program, two goroutines synchronize and communicate using an unbuffered channel. A channel
of integer values for exchanging data among goroutines is used. In the main function, the unbuffered
channel count is declared for exchanging messages between two goroutines. A count of two is added into
WaitGroup for the two goroutines. Then two goroutines are launched with passing the channel:

count := make(chan int)
// Add a count of two, one for each goroutine.
 wg.Add(2)
//launch a goroutine with label "A"
 go printCounts("A", count)

Chapter 3 ■ User-Defined Types and Concurrency

57

//launch a goroutine with label "B"
 go printCounts("B", count)

Inside the printCounts function, an endless for loop is used and returns from the function when the
value 10 is received from the channel. After launching two goroutines, the channel is started by sending a
value of 1, which it will receive from the goroutine. The unbuffered channel blocks the receiver until the
message is available into the channel.

The following code block in the printCounts function blocks until the value is sent into the channel:

//Receive messages from Channel
 val, ok := <-count

When values are received from channels, two variables on the left side of the assignment can be used:
the data from the channel and a Boolean value to indicate whether the channel is available. We return from
the function if the channel is closed.

if !ok {
fmt.Println("Channel was closed")
return

}

The channel is closed when the value 10 is received from the channel. If the received value of the
channel is less than 10, the value is incremented, and a new value is sent into the channel. This process
blocks the sender until a receiver receives the value from the channel.

if val == 10 {
 fmt.Printf("Channel Closed from %s \n", label)
 // Close the channel
 close(count)
 return
}
val++
// Send count back to the other goroutine.
count <- val

The most important thing about the unbuffered channel is that a receive on the channel blocks the
goroutine until the channel gets the data, and a send on the channel blocks the goroutine until a receiver
receives the data, thus ensuring message delivery among goroutines. If you look at the program output you
will clearly understand the functionality of channels.

Buffered Channels
An unbuffered channel provides a synchronous way of data communication among goroutines that ensures
guaranteed message delivery. A buffered channel is different from this approach. Unlike an unbuffered
channel, it is created by specifying the number of values it can contain. Buffered channels accept the
specified number of values before they are received.

Listing 3-24 is a basic example program that demonstrates a buffered channel.

Chapter 3 ■ User-Defined Types and Concurrency

58

Listing 3-24.  Example Program with a Buffered Channel

package main

import "fmt"

func main() {
messages := make(chan string, 2)
messages <- "Golang"
messages <- "Gopher"
//Recieve value from buffered channel
fmt.Println(<-messages)
fmt.Println(<-messages)

}

You should see the following output:

Golang
Gopher

Listing 3-24 is a simple example program that demonstrates a buffer channel without having any
goroutines. It creates a messages channel for buffering up to two string values. Values are sent into the
channel until its capacity of two. Because this channel is buffered, values can be sent without depending
on a receiver receiving them. If you try to add more values than its capacity, you will get an error. Once the
values are sent into the buffered channel, they can be received from the channel.

Summary
Go’s type system has two fundamental types: concrete types and interface types. You can create concrete
types by using built-in types such as bool, int, string, and float64. You can also create composite types
such as arrays, slices, maps and channels, and your own user-defined types.

Structs are used to create user-defined types in Go. Structs are analogous to classes in classical object-
oriented languages, but the struct design is unique when compared with other languages. A struct is a
lightweight version of a class. Go’s type system does not support inheritance. Instead, you can compose your
types using type embedding.

The interface type is a powerful feature; it enables you to provide lots of extensibility and composability
when you build software systems. Interface provides contracts to user-defined concrete types. In Go, you
don’t need to explicitly implement interfaces into concreate types; you can implement interfaces into
concrete types by simply providing the implementation of methods into your concrete types based on the
definition of methods defined in the interface type.

Concurrency in Go is the capability to run functions concurrently with other functions. Concurrency
is a built-in feature of the Go language, and the Go runtime manages the execution of concurrent functions
using a scheduler. Concurrency in Go is implemented with two features: goroutines and channels. A
goroutine is a function that can run concurrently with other functions, working as an independent unit.
Channels are used to synchronize goroutines to send and receive messages. In Go, you can create two type
of channels: buffered channels and unbuffered channels. Unbuffered channels block receivers of goroutines
until the data is available on a channel and block senders of goroutines until a receiver is available. Buffered
channels block a sender only when the buffer is filled to capacity.

In Chapters 2 and 3, you learned the basics of the Go programming language. From Chapter 4 onward,
you will learn about web programming in Go and how to develop web applications and RESTful services.

http://dx.doi.org/10.1007/978-1-4842-1052-9_2
http://dx.doi.org/10.1007/978-1-4842-1052-9_3
http://dx.doi.org/10.1007/978-1-4842-1052-9_4

59

Chapter 4

Getting Started with Web
Development

The previous three chapters discussed the fundamentals of the Go programming language and the Go
ecosystem. Because the primary focus of this book is to explore web development in Go, the rest of the
chapters will explore web development in Go with a practical perspective.

Go is a great technology stack for building scalable, web-based, back-end systems for mobile and web
applications, although it might not be the best choice for building traditional web applications in which
all kind of processing and rendering of view templates execute on the server side. This doesn’t mean that
Go is not good for developing traditional web applications, but it is an ideal choice for building back-end
systems for SPAs and mobile applications in which you can use Go to build APIs on the server side. In the
era of mobile APIs, RESTful APIs are becoming the backbone of modern applications, and server-side web
development is moving toward REST APIs. Go is great environment choice for building these kind of APIs
for powering as a back end for web and mobile applications. In the past, I used C# and Node.js for building
back-end APIs for mobile apps, but now I highly recommend Go for developing web APIs.

This chapter takes a look at the fundamentals of building web applications in Go. For a web developer,
the Go standard library provides everything for developing web systems. By simply leveraging the standard
library, you can build highly scalable web applications and web APIs in Go.

net/http Package
When you think about building web applications and web APIs, or simply building HTTP servers in Go, the
most important package is net/http, which comes from the Go standard library and provides all essential
functionalities necessary for developing full-fledged web applications. The design philosophy of Go is to
develop bigger programs by composing small pieces of components. The net/http package provides a
greater level of composability and extensibility so you can easily replace or extend functionalities of the
standard library with your own package or a third-party package. In other programming environments
such as Ruby, you use a full-fledged web application framework such as Rails to develop web applications.
In Go, you can find many full-fledged web application frameworks such as Beego, Revel, and Martini.
But the idiomatic way of developing web applications in Go is to leverage standard library packages as
the fundamental pieces of the programming block, along with other libraries (not frameworks) that are
compatible with the http package. For web development, net/http and html/template are the major
packages provided by the standard library. By simply using these two packages, you can build fully
functional web applications without leveraging any third-party packages.

Chapter 4 ■ Getting Started with Web Development

60

■ Note  You should start web development with standard library packages before diving into third-party
packages and frameworks so that you understand Go’s web development ecosystem. If you start web
development with third-party packages and frameworks, you will miss many core fundamentals because these
frameworks provide lots of spoon-feeding kinds of functionalities and syntactic sugars.

The http package provides implementations for HTTP clients and servers, including various structs and
functions for client and server implementations. Various functionalities of the http package will be explored
throughout this chapter.

Processing HTTP Requests
The Web is based on a request-response paradigm. In this model (see Figure 4-1), HTTP clients send a
request for some data to the web server, the request is processed, and the server and sends a response back
to the HTTP clients.

Figure 4-1.  HTTP request-response paradigm

The most important thing about this communication model is that HTTP is a stateless layer, which
means that each request to the HTTP server is treated as an independent transaction that does not
remember any previous requests and cannot persist data between the requests. So the communication
consists of independent pairs of requests and responses. If you are building web APIs, the web server
processes the HTTP requests and sends the response in either XML or JSON format. If you are building web
applications, the web server processes the HTTP requests and sends the response as HTML web pages,
which will be rendered in a web browser.

The net/http library has two major components for processing HTTP requests (discussed in the
following sections):

• ServeMux

• Handler

Chapter 4 ■ Getting Started with Web Development

61

ServeMux
The ServeMux is a multiplexor (or simply an HTTP request router) that compares incoming HTTP requests
against a list of predefined URI resources and then calls the associated handler for the resource requested by
the HTTP client.

Handler
The ServeMux provides a multiplexor and calls corresponding handlers for HTTP requests. Handlers are
responsible for writing response headers and bodies. In Go, any object can become a handler, thanks to Go’s
excellent interface implementation provided by its type system. If any object satisfies the implementation of
the http.Handler interface, it can be a handler for serving HTTP requests.

Listing 4-1 shows the definition of the http.Handler interface.

Listing 4-1.  http.Handler Interface

type Handler interface {
 ServeHTTP(ResponseWriter, *Request)
}

The ServeHTTP method has two arguments: an http.ResponseWriter interface and a pointer to an
http.Request struct. The ResponseWriter interface writes response headers and bodies into the HTTP
response. You can use Request to extract information from the incoming HTTP requests. For example, if you
want to read querystring values, use the Request object.

The http package provides several functions that implement the http.Handler interface and are used
as common handlers:

• FileServer

• NotFoundHandler

• RedirectHandler

• StripPrefix

• TimeoutHandler

Building a Static Web Server
Let’s build a static web server in Go using the common handler function FileServer, which returns a
handler object that can be used for building static web servers.

Figure 4-2 illustrates the folder structure of a static web site.

Figure 4-2.  Folder structure of a static web site

Chapter 4 ■ Getting Started with Web Development

62

A static web site application is created in the GOPATH location with the folder structure specified in
Figure 4-2. The implementation of the static web server is written in the main.go source file, and the static
contents are put into the public folder that provides the contents for the static web site.

Listing 4-2 shows the implementation in main.go that provides a static web server by serving the
contents of public folder.

Listing 4-2.  Static Web Server Using the FileServer Function

package main

import (
 "net/http"
)

func main() {
 mux := http.NewServeMux()
 fs := http.FileServer(http.Dir("public"))
 mux.Handle("/", fs)
 http.ListenAndServe(":8080", mux)
}

In the main function, the http.NewServeMux function is called to create an empty ServeMux object. The
http.FileServer function is then called to create a new handler for serving the static contents of a public
folder in the web site. The ServeMux.Handle function is called to register the URL path "/" with the handler
created with the http.FileServer function. Finally, the http.ListenAndServe function is called to create
a HTTP server that starts listening at :8080 for incoming requests. The address and ServeMux objects are
passed into the ListenAndServe function.

Listing 4-3 shows the signature of the ListenAndServe function.

Listing 4-3.  ListenAndServe Signature

func ListenAndServe(addr string, handler Handler) error

The ListenAndServe function listens on the TCP network address and then calls Serve with
http.Handler to handle requests on incoming connections. The second argument of the ListenAndServe
function is an http.Handler, but a ServeMux object was passed. The ServeMux type also has a ServeHTTP
method, which means that it satisfies the http.Handler interface so that a ServeMux object can be passed
as a second argument for the ListenAndServe function. Keep in mind that an instance of a ServeMux is an
implementation of the http.Handler interface. If you pass nil as the second argument for ListenAndServe,
a DefaultServeMux will be used for the http.Handler. DefaultServeMux is an instance of ServeMux, so it is
also a handler.

When you run the program, you can access the static web page “about.html” by navigating to
http://localhost:8080/about.html (see Figure 4-3). The about.html page was put into the public folder
for serving as static content.

http://golang.org/pkg/builtin/#string
http://golang.org/pkg/net/http/#Handler
http://golang.org/pkg/builtin/#error
http://localhost:8080/about.html

Chapter 4 ■ Getting Started with Web Development

63

Creating Custom Handlers
In Go, any object can be an implementation of http.Handler if it can provide a method with the signature
ServeHTTP(http.ResponseWriter, *http.Request).

Listing 4-4 creates a custom handler by implementing the http.Handler interface.

Listing 4-4.  Creating a Custom Handler

type messageHandler struct {
 message string
}

func (m *messageHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, m.message)
}

A struct named messageHandler is created. To make this type implement Handler, a method with the
signature ServeHTTP(http.ResponseWriter, *http.Request) is implemented. As discussed in Chapter 3,
you don’t need to specify a keyword to implement an interface into a type; you can implement an interface
type into concrete types by providing the methods based on the method signature defined by the interface.
The receiver method is added as a messageHandler type into the ServeHTTP function to make it a method
of the messageHandler struct. In the ServeHTTP method, a string message is returned as the HTTP response,
taking data from the struct field message.

Let's write a program to use the custom handler (see Listing 4-5).

Listing 4-5.  Using a Custom Handler Type

package main

import (
 "fmt"
 "log"
 "net/http"
)

type messageHandler struct {
 message string
}

Figure 4-3.  Accessing the static web site

http://dx.doi.org/10.1007/978-1-4842-1052-9_3

Chapter 4 ■ Getting Started with Web Development

64

func (m *messageHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, m.message)
}

func main() {
 mux := http.NewServeMux()

 mh1 := &messageHandler{"Welcome to Go Web Development"}
 mux.Handle("/welcome", mh1)

 mh2 := &messageHandler{"net/http is awesome"}
 mux.Handle("/message", mh2)

 log.Println("Listening...")
 http.ListenAndServe(":8080", mux)
}

In the main function, instances of the messageHandler struct (the & symbol is used to yield a pointer) are
created and then ServeMux.Handle is called to register handlers with the messageHandler struct instances. If
there are requests for the URL path "/welcome" and "/message", the ServeHTTP method of messageHandler
does all processing at the server. You can also reuse the custom handlers. In the example, messageHandler is
used as the handler for two URL paths.

Using Functions as Handlers
Listing 4-5 created a struct type and made it a handler by implementing the ServeHTTP method with the
appropriate method signature. The custom handler can even be reused for multiple URL paths. Although
it works for some scenarios, making handlers this way is bit verbose because you have to define structs
and then provide implementations for the ServeHTTP method. And in many contexts, you may want to use
normal functions as handlers.

http.HandlerFunc type
Instead of creating custom handler types by implementing the http.Handler interface, you can use the
http.HandlerFunc type to serve as an HTTP handler. You can convert any function into a HandlerFunc type
if the function has the signature func(http.ResponseWriter, *http.Request). The HandlerFunc type
works as an adapter that allows you to use normal functions as HTTP handlers. The HandlerFunc type has a
built-in method ServeHTTP(http.ResponseWriter, *http.Request), so it also satisfies the http.Handler
interface and can work as an HTTP handler.

Listing 4-6 is an example program that uses the HandlerFunc type to create HTTP handlers.

Listing 4-6.  Using the HandlerFunc Type to Create Ordinary Functions as Handlers

package main

import (
 "fmt"
 "log"
 "net/http"
)

Chapter 4 ■ Getting Started with Web Development

65

func messageHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome to Go Web Development")
}

func main() {
 mux := http.NewServeMux()

 // Convert the messageHandler function to a HandlerFunc type
 mh := http.HandlerFunc(messageHandler)
 mux.Handle("/welcome", mh)

 log.Println("Listening...")
 http.ListenAndServe(":8080", mux)
}

When you run the program, navigate to http://localhost:8080/welcome for the output.
In the main function, an instance of HandlerFunc is created by converting the messageHandler function

and then adding it to ServeMux.Handle to handle the requests to the "/welcome" URL path. With the
HandlerFunc type, you can easily use ordinary functions as HTTP handlers.

In Listing 4-5, the custom handler was reused for multiple URL paths because it provides a reusable
"message" field that provides a string value to the handlers. Listing 4-6 could not provide values for
"message", so the value for the message string has to be hard-coded. In many scenarios, you have to provide
some values to the handler functions.

Suppose that you want to pass a database connection object into a handler function to reuse it inside
the handler function. You can write a function with an argument for receiving some values, and then define
and return another function to work as an http.Handler inside the function. In Go, you can create functions
inside the function, and it is also supports closure. Handler logic can be implemented into a closure.

Listing 4-7 is an example program that writes handler logic with a closure.

Listing 4-7.  Writing Handler Logic into a Closure

package main

import (
 "fmt"
 "log"
 "net/http"
)

//Handler logic into a Closure
func messageHandler(message string) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

fmt.Fprintf(w, message)
 })
}
func main() {
 mux := http.NewServeMux()

 mux.Handle("/welcome", messageHandler("Welcome to Go Web Development"))
 mux.Handle("/message", messageHandler("net/http is awesome"))

 log.Println("Listening...")
 http.ListenAndServe(":8080", mux)
}

http://localhost:8080/welcome

Chapter 4 ■ Getting Started with Web Development

66

This program works the same way as Listing 4-5. The messageHandler function returns an http.Handler.
Within the messageHandler function, http.HandlerFunc is returned by calling an anonymous function
that has the signature func(http.ResponseWriter, *http.Request) so that it satisfies the http.Handler,
and the messageHandler function can return http.Handler. As discussed in the previous section, the
http.HandlerFunc type is an implementation of http.Handler. Here, a closure is formed with the variable
"message", and the function is put inside the messageHandler function. This approach is useful when you
are working on real-world applications; you can use this approach to provide values of application context
level types into handler functions.

ServeMux.HandleFunc Function
In the previous section, a normal function was converted into a HandlerFunc type and used as an HTTP
handler by registering it with ServeMux.Handle. Because ordinary functions are frequently used as HTTP
handlers in this way, the http package provides a shortcut method: ServeMux.HandleFunc. The HandleFunc
registers the handler function for the given pattern. (This is just a shortcut method for your convenience.)
It internally (inside the http package) converts into a HandlerFunc type and registers the handler into
ServeMux.

Listing 4-8 is an example program that uses ServeMux.HandleFunc.

Listing 4-8.  Using ServeMux.HandleFunc

package main

import (
 "fmt"
 "log"
 "net/http"
)

func messageHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome to Go Web Development")
}

func main() {
 mux := http.NewServeMux()

 // Use the shortcut method ServeMux.HandleFunc
 mux.HandleFunc("/welcome", messageHandler)

 log.Println("Listening...")
 http.ListenAndServe(":8080", mux)
}

When you run the program, navigate to http://localhost:8080/welcome for the output.

DefaultServeMux
In the example programs in this chapter, the ServeMux object was created by calling the function
http.NewServeMux. DefaultServeMux is same as the ServeMux objects from the previous programs.
DefaultServeMux is the default ServeMux used by the Serve method, and the ServeMux object is instantiated
when the http package is used.

http://localhost:8080/welcome

Chapter 4 ■ Getting Started with Web Development

67

Here is the code statement from Go source:

var DefaultServeMux = NewServeMux()

Listing 4-9 shows the source of the NewServeMux function from Go source.

Listing 4-9.  NewServeMux Function from Go Source

// NewServeMux allocates and returns a new ServeMux.
func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }

The http package provides a couple of shortcut methods for working with DefaultServeMux:
http.Handle and http.HandleFunc. The http.Handle function registers the handler for the given
pattern in DefaultServeMux, and http.HandleFunc registers the handler function for the given pattern in
DefaultServeMux. So these functions are just shortcuts to use ServeMux.Handle and ServeMux.HandleFunc
in DefaultServeMux. The ListenAndServe function uses DefaultServeMux if the second parameter is set as
nil instead of providing an http.Handler object.

Let’s rewrite the program in Listing 4-8 to use with DefaultServeMux (see Listing 4-10).

Listing 4-10.  Using DefaultServeMux

package main

import (
 "fmt"
 "log"
 "net/http"
)

func messageHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome to Go Web Development")
}

func main() {

 http.HandleFunc("/welcome", messageHandler)

 log.Println("Listening...")
 http.ListenAndServe(":8080", nil)
}

When you run the program, navigate to http://localhost:8080/welcome for the output. When you
use the http.Handle and http.HandleFunc functions, you can pass a nil value as the second parameter for
calling ListenAndServe because handler and handler functions register into DefaultServeMux through the
http.Handle and http.HandleFunc functions.

http.Server Struct
In previous examples, http.ListenAndServe was called to run HTTP servers, which does not allow you to
customize HTTP server configuration. The http package provides a struct named Server that enables you to
specify HTTP server configuration.

Listing 4-11 shows the Server struct.

http://localhost:8080/welcome

Chapter 4 ■ Getting Started with Web Development

68

Listing 4-11.  http.Server Struct

type Server struct {
 Addr string
 Handler Handler
 ReadTimeout time.Duration
 WriteTimeout time.Duration
 MaxHeaderBytes int
 TLSConfig *tls.Config
 TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
 ConnState func(net.Conn, ConnState)
 ErrorLog *log.Logger
}

This struct allows you to configure many values, including error logger for the server, maximum
duration before timing out read of the request, maximum duration before timing out write of the response,
and maximum size of request headers.

Listing 4-12 is an example program that uses the Server struct to customize server behavior.

Listing 4-12.  Using the http.Server Struct

package main

import (
 "fmt"
 "log"
 "net/http"
 "time"
)

func messageHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Welcome to Go Web Development")
}

func main() {

 http.HandleFunc("/welcome", messageHandler)

 server := &http.Server{
Addr: ":8080",
ReadTimeout: 10 * time.Second,
WriteTimeout: 10 * time.Second,
MaxHeaderBytes: 1 << 20,

 }
 log.Println("Listening...")
 server.ListenAndServe()
}

The server behavior is customized by creating a Server type object and calling the Server
ListenAndServe method. In previous examples, the http.ListenAndServe function was used to start the
HTTP server. When the http.ListenAndServe function is called, it internally creates a Server type instance
and calls the ListenAndServe method.

Listing 4-13 is the implementation of http.ListenAndServe from Go source.

Chapter 4 ■ Getting Started with Web Development

69

Listing 4-13.  Implementation of http.ListenAndServe

func ListenAndServe(addr string, handler Handler) error {
server := &Server{Addr: addr, Handler: handler}
return server.ListenAndServe()

}

Gorilla Mux
The http.ServeMux is an HTTP request multiplexer that works well for most common scenarios. It was used
in the example programs as the request multiplexer. If you want more power for your request multiplexer,
you might consider a third-party routing package that is compatible with standard http.ServeMux. For
example, if you want to specify RESTful resources with proper HTTP endpoints and HTTP methods, it is
difficult to work with the standard http.ServeMux.

The mux package from the Gorilla web toolkit (github.com/gorilla/mux) is a powerful request router
that allows you to configure the multiplexer in your own way. This package is very useful when you build
RESTful services and it implements the http.Handler interface so it is compatible with the standard
http.ServeMux. With the mux package, requests can be matched based on URL host, path, path prefix,
schemes, header and query values, and HTTP methods. You can also use custom matchers and routes as
subrouters with this package.

To install the mux package, run the following command in the terminal:

go get github.com/gorilla/mux

Let’s configure routes with the mux package (see Listing 4-14).

Listing 4-14.  Routing with the mux Package

func main() {
r := mux.NewRouter().StrictSlash(false)
r.HandleFunc("/api/notes", GetNoteHandler).Methods("GET")
r.HandleFunc("/api/notes", PostNoteHandler).Methods("POST")
r.HandleFunc("/api/notes/{id}", PutNoteHandler).Methods("PUT")
r.HandleFunc("/api/notes/{id}", DeleteNoteHandler).Methods("DELETE")

server := &http.Server{
Addr: ":8080",
Handler: r,

}
server.ListenAndServe()

}

Here a mux.Router object is created by calling the NewRouter function and then specifying the routes
for the resources. You can match with HTTP methods when specifying URI patterns, so it is useful when
building RESTful applications. Because the mux package implements the http.Handler interface, you can
easily work with the http standard package. It provides lot of extensibility so that you can easily replace or
extend many of its functionalities with your own packages and third-party packages.

Unlike other web-programming ecosystems, the idiomatic way of web development in Go is to
use standard library packages and third-party packages if required to extend the capabilities of existing
functionalities. When you choose third-party packages, it is important to choose those that are compatible
with the standard library package. The mux package is a great example for this approach, which is compatible
with the http package because it provides the http.Handler interface.

Chapter 4 ■ Getting Started with Web Development

70

Building a RESTful API
This chapter discussed the fundamentals of web development in Go, including http.ServeMux and
http.Handler for processing and serving HTTP requests. You also learned about the mux third-party
package, which can be used as a replacement for http.ServeMux and is compatible with the http package.
Let’s now build a simple JSON-based REST API with the mux package as the request multiplexer, which will
help you understand many real-world practices for building web systems in Go (see Listing 4-15).

■ Note R epresentational State Transfer (REST): If you want to know more about REST, I recommend that
you read Martin Fowler’s article, “Richardson Maturity Model: Steps Toward the Glory of REST.” Access it here:
http://martinfowler.com/articles/richardsonMaturityModel.html

Listing 4-15.  JSON-based RESTful API

package main

import (
 "encoding/json"
 "log"
 "net/http"
 "strconv"
 "time"

 "github.com/gorilla/mux"
)

type Note struct {
 Title string `json:"title"`
 Description string `json:"description"`
 CreatedOn time.Time `json:"createdon"`
}

//Store for the Notes collection
var noteStore = make(map[string]Note)

//Variable to generate key for the collection
var id int = 0

//HTTP Post - /api/notes
func PostNoteHandler(w http.ResponseWriter, r *http.Request) {
 var note Note
 // Decode the incoming Note json
 err := json.NewDecoder(r.Body).Decode(¬e)
 if err != nil {

panic(err)
 }

http://martinfowler.com/articles/richardsonMaturityModel.html

Chapter 4 ■ Getting Started with Web Development

71

 note.CreatedOn = time.Now()
 id++
 k := strconv.Itoa(id)
 noteStore[k] = note

 j, err := json.Marshal(note)
 if err != nil {

panic(err)
 }

w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusCreated)
w.Write(j)

}

//HTTP Get - /api/notes
func GetNoteHandler(w http.ResponseWriter, r *http.Request) {
 var notes []Note
 for _, v := range noteStore {

notes = append(notes, v)
 }

w.Header().Set("Content-Type", "application/json")
j, err := json.Marshal(notes)
if err != nil {

panic(err)
 }

w.WriteHeader(http.StatusOK)
w.Write(j)

}

//HTTP Put - /api/notes/{id}
func PutNoteHandler(w http.ResponseWriter, r *http.Request) {
 var err error
 vars := mux.Vars(r)
 k := vars["id"]
 var noteToUpd Note
 // Decode the incoming Note json
 err = json.NewDecoder(r.Body).Decode(¬eToUpd)
 if err != nil {

panic(err)
 }
 if note, ok := noteStore[k]; ok {

noteToUpd.CreatedOn = note.CreatedOn
//delete existing item and add the updated item
delete(noteStore, k)
noteStore[k] = noteToUpd

 } else {
log.Printf("Could not find key of Note %s to delete", k)

 }
w.WriteHeader(http.StatusNoContent)

}

Chapter 4 ■ Getting Started with Web Development

72

//HTTP Delete - /api/notes/{id}
func DeleteNoteHandler(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 k := vars["id"]
 // Remove from Store
 if _, ok := noteStore[k]; ok {

//delete existing item
delete(noteStore, k)

 } else {
log.Printf("Could not find key of Note %s to delete", k)

 }
w.WriteHeader(http.StatusNoContent)

}

//Entry point of the program
func main() {
 r := mux.NewRouter().StrictSlash(false)

r.HandleFunc("/api/notes", GetNoteHandler).Methods("GET")
r.HandleFunc("/api/notes", PostNoteHandler).Methods("POST")
r.HandleFunc("/api/notes/{id}", PutNoteHandler).Methods("PUT")
r.HandleFunc("/api/notes/{id}", DeleteNoteHandler).Methods("DELETE")

 server := &http.Server{
Addr: ":8080",
Handler: r,

 }
 log.Println("Listening...")
 server.ListenAndServe()
}

Data Model and Data Store
Listing 4-15 built a simple REST API with basic CRUD operations against the data model Note struct:

type Note struct {
 Title string `json:"title"`
 Description string `json:"description"`
 CreatedOn time.Time `json:"createdon"`
}

For the JSON-based API, the struct fields are encoded into JSON to serve as the response to HTTP
clients. You can easily encode a struct as JSON and decode JSON as a struct by using the standard library
package encoding/json. If you need a representation for the elements of JSON different from struct fields,
you can map the struct fields with the elements you want for JSON encoding:

Title string `json:"title"`
Description string `json:"description"`
CreatedOn time.Time `json:"createdon"

Chapter 4 ■ Getting Started with Web Development

73

Here the struct fields are represented in uppercase letters; encode these fields in lowercase letters for
JSON representation.

This sample does not use any database storage, so a map is used as the persistence storage for the sake
of the demo. An integer variable id is used to generate a key for the map:

//Store for the Notes collection
var noteStore = make(map[string]Note)

//Variable to generate key for the map
var id int = 0

Configuring the Multiplexer
You can use a mux package as the multiplexer and configure it with corresponding handler functions. Use
"/api/notes" as the base endpoint for representing the Notes resources. Because mux provides support for
mapping with HTTP methods, you can easily represent resources in a RESTful way:

//Entry point of the program
func main() {
 r := mux.NewRouter().StrictSlash(false)

r.HandleFunc("/api/notes", GetNoteHandler).Methods("GET")
r.HandleFunc("/api/notes", PostNoteHandler).Methods("POST")
r.HandleFunc("/api/notes/{id}", PutNoteHandler).Methods("PUT")
r.HandleFunc("/api/notes/{id}", DeleteNoteHandler).Methods("DELETE")

 server := &http.Server{
Addr: ":8080",
Handler: r,

 }
 log.Println("Listening...")
 server.ListenAndServe()
}

Table 4-1 shows the configurations used with the multiplexer. The multiplexer calls corresponding
handler functions if the URI and HTTP methods match with a predefined list of configurations.

Table 4-1.  Multiplexer Configurations

URI HTTP Method Handler Function

/api/notes
/api/notes
/api/notes/{id}
/api/notes/{id}

Get
Post
Put
Delete

GetNoteHandler
PostNoteHandler
PutNoteHandler
DeleteNoteHandler

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Getting Started with Web Development

74

Handler Functions for CRUD Operations
Let’s have a look at the handler function for HTTP Get to get Note resource values:

//HTTP Get - /api/notes
func GetNoteHandler(w http.ResponseWriter, r *http.Request) {
 var notes []Note
 for _, v := range noteStore {

notes = append(notes, v)
 }

w.Header().Set("Content-Type", "application/json")
j, err := json.Marshal(notes)
if err != nil {

panic(err)
 }

w.WriteHeader(http.StatusOK)
w.Write(j)

}

Here you iterate through the noteStore map, and the values are appended into a Note slice. By using
the Marshal function of the json package, the Note slice is encoded as JSON.

ResponseWriter is used for writing response headers and bodies. Here the header is written using
the WriteHeader method of ResponseWriter, and the response body is written using the Write method of
ResponseWriter. When you call the API endpoint "/api/notes" with the HTTP Get method, you see the
output in the format shown in Figure 4-4.

Figure 4-4.  HTTP Get for the Notes resource

In Figure 4-4, you get the Note collection as JSON. Here the Postman REST API client tool is used to test
the REST API example. Postman is a Chrome app that allows you to test your APIs. (Because it is a Chrome
app, it runs only on the Chrome browser, however). With Postman, you can quickly construct HTTP requests
to an API server, save them for later use, and analyze the responses sent by the API server. Postman is a very
useful tool that can be used to test REST APIs without building a client application. To get more details, visit
the Postman web site at www.getpostman.com.

http://www.getpostman.com/

Chapter 4 ■ Getting Started with Web Development

75

Let’s have a look at the handler function for HTTP Post for creating a new Note resource:

//HTTP Post - /api/notes
func PostNoteHandler(w http.ResponseWriter, r *http.Request) {
 var note Note
 // Decode the incoming Note json
 err := json.NewDecoder(r.Body).Decode(¬e)
 if err != nil {

panic(err)
 }

 note.CreatedOn = time.Now()
 id++
 k := strconv.Itoa(id)
 noteStore[k] = note

 j, err := json.Marshal(note)
 if err != nil {

panic(err)
 }

w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusCreated)
w.Write(j)

}

A pointer to the http.Request object is used to get information about HTTP Request. Here the incoming
JSON data is accessed from Request.Body and decoded into the Note resource using the json package.
The NewDecoder function creates a Decoder object, and its Decode method decodes the JSON string into
the given type (the Note type in this example). The id variable is incremented to generate a key value for
the noteStore map. The string type is used as the key for the noteStore map, so the int type is converted
to string using the strconv.Itoa function. The new Note resource is added into the noteStore map with
the key created with the id variable. Finally, the response is sent as JSON data for the newly created Note
resource with the appropriate response header back to the HTTP client. json.Marshal is used to convert the
Note object into JSON data.

Figure 4-5 shows testing of HTTP Post for the resource "/api/nodes". You see the newly created
resource in the body with the HTTP status code 201 that represents the HTTP status "Created".

Chapter 4 ■ Getting Started with Web Development

76

The endpoint "/api/notes/{id}" is used for the Note resource HTTP Put and HTTP Delete operations.
In this example, the value of id is used as the key of the noteStore map. To retrieve this value from the
request object, mux.Vars() is called:

vars := mux.Vars(r)
k := vars["id"]

The Vars function of the mux package returns the route variables for the current request. With a route
value of id, the Note object is retrieved from the noteStore map, and the value of CreatedOn is copied to the
Note object.

Here the existing Note object is removed and added into the noteStore map for the sake of update
functionality. Everything else is implemented the same way as the HTTP Post operation:

//HTTP Put - /api/notes/{id}
func PutNoteHandler(w http.ResponseWriter, r *http.Request) {
 var err error
 vars := mux.Vars(r)
 k := vars["id"]
 var noteToUpd Note
 // Decode the incoming Note json
 err = json.NewDecoder(r.Body).Decode(¬eToUpd)
 if err != nil {

panic(err)
 }

Figure 4-5.  HTTP Post for the Notes resource

Chapter 4 ■ Getting Started with Web Development

77

 if note, ok := noteStore[k]; ok {
noteToUpd.CreatedOn = note.CreatedOn
//delete existing item and add the updated item
delete(noteStore, k)
noteStore[k] = noteToUpd

 } else {
log.Printf("Could not find key of Note %s to delete", k)

 }
w.WriteHeader(http.StatusNoContent)

}

Similar to the HTTP Put operation for the Note resource, the route value of id is taken and the Note
object is removed from the noteStore map by using the key value from the route variable id:

//HTTP Delete - /api/notes/{id}
func DeleteNoteHandler(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 k := vars["id"]
 // Remove from Store
 if _, ok := noteStore[k]; ok {

//delete existing item
delete(noteStore, k)

 } else {
log.Printf("Could not find key of Note %s to delete", k)

 }
w.WriteHeader(http.StatusNoContent)

}

This example application demonstrated the fundamental concepts for building RESTful APIs in Go by
using its standard library package net/http and the mux third-party package.

Summary
Go is a great technology stack for building web-based, back-end systems; and is especially excellent for
building RESTful APIs. The net/http package from the standard library provides the fundamental blocks
for building web applications in Go. The Go philosophy discourages using bigger frameworks for building
web applications; it encourages the use of the net/http package as the fundamental block to use third-party
packages and your own packages to extend the functionalities provided by the net/http package.

The http package has two major components for processing HTTP requests: http.ServeMux and
http.Handler. http.ServeMux is a request multiplexor that compares incoming HTTP requests against a
list of predefined URI resources and calls the associated handler for the resource requested by HTTP clients.
Handlers are responsible for writing response headers and bodies. By using third-party packages such as
mux, you can extend the capabilities of http.ServeMux.

The final section of this chapter explored the fundamental pieces of web development in Go by showing
the development of a JSON-based RESTful API.

79

Chapter 5

Working with Go Templates

Chapter 4 discussed the fundamentals of web development in Go using the standard library package
net/http. A JSON-based web API was created by using the standard library package net/http as the primary
web programming block and the third-party package Gorilla mux as the HTTP request multiplexer. This
chapter shows you how to develop web applications in Go; the standard library package html/template is
used for rendering web pages.

This chapter begins with the fundamentals of Go templates and includes how to develop full-fledged
web applications by leveraging the html/template package.

text/template Package
Using templates is a great way to build dynamic contents; you provide data at runtime to generate dynamic
contents with a predefined format. The Go standard library package html/template allows you to build
dynamic HTML pages by combining static contents with dynamic contents where it parses the templates
with the data structure that is provided at runtime.

You will have a look at the standard library package text/template before diving into the html/
template package. The html/template package provides the same interface as the text/template package;
the only difference between the two is that the html/template package parses the template and generates
the output in HTML, and the text/template package generates the output in text format. You can start
with the text/template package to understand the syntax of Go templates and can easily work with the
html/template without any syntactical difference. The text/template package allows you to build
data-driven templates for generating textual output.

Working with text/template
Templates are parsed against the data structure provided at runtime. Commands in the template refer to
elements of the data structure. For example, struct fields can be mapped with template commands.
The commands in the templates are delimited by {{ and }}.

To work with text/template, it to the list of imports:

import (
"text/template"

)

http://dx.doi.org/10.1007/978-1-4842-1052-9_4

Chapter 5 ■ Working with Go Templates

80

Listing 5-1 is an example program that generates textual output with struct object fields.

Listing 5-1.  Applying Struct Fields into a Template

package main

import (
 "log"
 "os"
 "text/template"
)

type Note struct {
 Title string
 Description string
}

const tmpl = `Note - Title: {{.Title}}, Description: {{.Description}}`

func main() {
 //Create an instance of Note struct
 note := Note{"text/templates", "Template generates textual output"}

 //create a new template with a name
 t := template.New("note")

 //parse some content and generate a template
 t, err := t.Parse(tmpl)
 if err != nil {

log.Fatal("Parse: ", err)
return

 }
 //Applies a parsed template to the data of Note object
 if err := t.Execute(os.Stdout, note); err != nil {

log.Fatal("Execute: ", err)
return

 }
}

You should get the following output:

Note - Title: text/templates, Description: Template generates textual output

In the previous listing, a struct named Note is declared, and a template is declared as a string constant:

const tmpl = `Note - Title: {{.Title}}, Description: {{.Description}}`

In the template, the Title and Description fields of the Note struct are mapped so the textual output
with the values of the Note object can be rendered when the template is executed. The template block {{ . }} is
a context-aware block that will be executed based on the execution context. Here the Note object is provided
when the template is executed, so the names after the dot (.) maps the field names of the Note object.

Chapter 5 ■ Working with Go Templates

81

A new template with the name "note" is created. The New function returns the type *Template:

t := template.New("note")

The Parse method parses a string into a template:

t, err := t.Parse(tmpl)

Here the template is parsed from a string that has declared with a constant variable. To parse the
template from template files, use the ParseFiles method of *Template:

func (t *Template) ParseFiles(filenames ...string) (*Template, error)

The ParseGlob method parses the template definitions in the files identified by the pattern. Here is a
sample for parsing all template definition files in a folder with the extension .tmpl:

t, err := template.ParseGlob("templates/*.tmpl")

The previous code block parses all template definitions in the folder templates if the files have an
extension of .tmpl.

The Execute method applies a parsed template to the specified data object (here a Note object) and
writes the output to an output writer. If an error occurs during the template execution or between writing its
output, execution stops, but partial results may already have been written to the output writer:

err1 := t.Execute(os.Stdout, note)

Here’s a summary of the steps for generating the textual output using text/template:

1.	 Declare a template for mapping with a data object.

2.	 Create a template (*Template) by calling the template.New function.

3.	 Parses a string into a template by calling the Parse method.

4.	 Executes the parsed template with the specified data object for rendering the
textual contents with the values of the data object.

In the previous program, a simple struct object was applied to the template for generating the output.
Let’s have a look at how to apply a collection of objects to templates for generating the textual output.

Listing 5-2 is an example program that renders a text template with a collection object.

Listing 5-2.  Applying a Slice of Objects into a Template

package main

import (
"log"
"os"
"text/template"

)

Chapter 5 ■ Working with Go Templates

82

type Note struct {
Title string
Description string

}

const tmpl = `Notes are:
{{range .}}

Title: {{.Title}}, Description: {{.Description}}
{{end}}
`

func main() {
//Create slice of Note objects
notes := []Note{

{"text/template", "Template generates textual output"},
{"html/template", "Template generates HTML output"},

}

//create a new template with a name
t := template.New("note")

//parse some content and generate a template
t, err := t.Parse(tmpl)
if err != nil {

log.Fatal("Parse: ", err)
return

}

//Applies a parsed template to the slice of Note objects
if err := t.Execute(os.Stdout, notes); err!=nil {

log.Fatal("Execute: ", err)
return

}
}

You should get the following output:

Notes are:

Title: text/templates, Description: Template generates textual output

Title: html/templates, Description: Template generates HTML output

A template definition is declared as a string constant:

const tmpl = `Notes are:
{{range .}}
 Title: {{.Title}}, Description: {{.Description}}
{{end}}
`

Chapter 5 ■ Working with Go Templates

83

In this listing, the slice of the Note struct as the data object is provided. Here the template definition
block {{.}} represents the collection object where we can iterate through the collection using the action
{{range .}}. All control structures (if, with, or range) definitions must close with {{end}}.

Define Named Templates
Template definitions can be defined with a define and end action. The define action names the template
being created by providing a string constant, which will be useful when you work with nested template
definitions. (Nested templates will be used later in this chapter when you build a web application.)
Listing 5-3 is an example program.

Listing 5-3.  Defining a Template Definition

package main

import (
 "log"
 "os"
 "text/template"
)

func main() {
 t, err := template.New("test").Parse(`{{define "T"}}Hello, {{.}}!{{end}}`)
 err = t.ExecuteTemplate(os.Stdout, "T", "World")
 if err != nil {

log.Fatal("Execute: ", err)
 }
}

You should get the following output:

Hello World!

In the preceding program, a template definition is defined with a name "T". The ExecuteTemplate
method is used to execute a named template "T" by applying the string data "World" that will be mapped
with template definition block {{.}}. Keep in mind that the define action must be closed with an end action
in which you can provide the template definition between the define and end action.

Declaring Variables
Variables can be declared in template definitions that can be referenced in the template definitions for later
use. To declare a variable, use $variable inside the {{ }} block. Listing 5-4 is an example.

Listing 5-4.  Declaring a Variable and Referencing it Later

{{ $note := "Sample Note"}}
{{ $note }}

Here a $note variable is declared and referenced later by simply specifying the variable name.
The {{ $note }} command prints the value of the $note variable.

Chapter 5 ■ Working with Go Templates

84

When you declare a variable with a range action, the variable value would be successive elements of the
each iteration. A range action can declare two variables for a key and value element, separated by a comma
(see Listing 5-5).

Listing 5-5.  Declaring Variables with a range Action

{{range $key,$value := . }}

If you use a range action with a map, the $key variable is the store key of the map, and the $value
variable is the store value element of each iteration.

Using Pipes
When you work with Go templates, you can perform actions one after another by using pipes: each
pipeline’s output becomes the input of the following pipe. Listing 5-6 shows an example.

Listing 5-6.  Using a Pipe in a Template

{{ eq $a $b | if }} a nnd b are equal{{ end }}

Here an output value is printed if the values of variables $a and $b are equal.

Building HTML Views Using html/template
When you build web applications, you have to render the view (UI) templates with the application data. The
standard library package html/template lets you build user interfaces of dynamic web applications in Go.
When you build web applications, you can define view templates by combining Go template syntax with
HTML, CSS, and JavaScript, which can be rendered as web pages at runtime by providing the application
data using various data structures.

The html/template package provides the same interface as text/template, but the output of the
template definitions is HTML. html/template not only generates HTML but also guards against certain code
injections while rendering the HTML pages. When you render HTML views for your web applications, you
must use html/template instead of text/template.

The greatest advantage of using html/template is that it does the HTML encoding safely with a proper
security model. Listing 5-7 shows a program that protects against a script injection.

Listing 5-7.  html/template Protecting Against Script Injection

package main

import (
 "html/template"
 "log"
 "os"
)

func main() {
 t, err := template.New("test").Parse(`{{define "T"}}Hello, {{.}}!{{end}}`)
 err = t.ExecuteTemplate(os.Stdout, "T", "<script>alert('XSS Injection')</script>")

Chapter 5 ■ Working with Go Templates

85

 if err != nil {
log.Fatal("Execute: ", err)

 }
}

You should get the following output:

Hello, <script>alert('XSS Injection')</script>!

The template securely encodes the output where it replaces the script blocks with corresponding text.

Building a Web Application
In this section, you learn how to use html/template for building HTML views by building a simple web
application.

Figure 5-1 shows the folder structure of the web application that you will build in the next section. You
will write the application in the GOPATH location. All template definition files are put into the templates
folder, and static files such as CSS and JS files are put into the public folder.

Figure 5-1.  Folder Structure of the Example Web Application

html/template must first be added to the list of imports (see Listing 5-8).

Listing 5-8.  List of Imports in main.go

import (
"html/template"
"log"
"net/http"
"strconv"
"time"

"github.com/gorilla/mux"
)

Chapter 5 ■ Working with Go Templates

86

Data Structure and Data Store
In the example web application shown in Listing 5-9, a struct type is used as the data structure, and CRUD
operations are performed against the struct type. A map type is used as the store for persisting struct objects
with a key. The key will be generated by incrementing a variable id.

Listing 5-9.  Data Structure and Data Store in main.go

type Note struct {
 Title string
 Description string
 CreatedOn time.Time
}

//Store for the Notes collection
var noteStore = make(map[string]Note)

//Variable to generate key for the collection
var id int = 0

main function
Listing 5-10 shows the entry point of the program in which the HTTP request multiplexer is configured and
starts the HTTP server.

Listing 5-10.  Entry Point of the Program in main.go

//Entry point of the program
func main() {

 r := mux.NewRouter().StrictSlash(false)
 fs := http.FileServer(http.Dir("public"))

r.Handle("/public/", fs)
r.HandleFunc("/", getNotes)
r.HandleFunc("/notes/add", addNote)
r.HandleFunc("/notes/save", saveNote)
r.HandleFunc("/notes/edit/{id}", editNote)
r.HandleFunc("/notes/update/{id}", updateNote)
r.HandleFunc("/notes/delete/{id}", deleteNote)

 server := &http.Server{
Addr: ":8080",
Handler: r,

 }
 log.Println("Listening...")
 server.ListenAndServe()
}

Chapter 5 ■ Working with Go Templates

87

Views and Template Definition Files
The web application provides the following HTML pages:

• Index shows the list of Note objects.

• Add is used to create a new Note.

• Edit is used to edit an existing Note object.

Four template definition files are created to render the HTML views:

• index.html: Template definition file for generating contents for the Index page.

• add.html: Template definition file for generating contents for the Add page.

• edit.html: Template definition file for generating contents for the Edit page.

• base.html: A nested template definition file used for generating all pages of the web
application. You provide the appropriate content page for rendering each web page.

Listing 5-11 is the template definition file for base.html.

Listing 5-11.  Template Definition in base.html

{{define "base"}}
<html>
 <head>{{template "head" .}}</head>
 <body>{{template "body" .}}</body>
</html>
{{end}}

Here a template called base is defined, in which the two templates are embedded. To render web pages,
the base template is called every time the named templates “head” and “body” are provided from the content
pages. For example, when the Index page is rendered, the template definition files from base.html and
index.html are parsed, and the nested template defined in the “base” in base.html is executed and takes
the contents for “head” and “body” from index.html.

Initializing View Templates
Template definition files have to be parsed before templates execute. Parsing the template definition files
is a one-time activity; the files do not need to be parsed each time the templates execute. Here the files are
parsed and put into a map in which each element represents the template file for rendering a particular
page. Three HTML pages have to be generated, so three items are put into the map. The template definition
files are parsed in the init function and are parsed with the Must helper function. Must is a helper that wraps
a call to a function returning (*Template, error) and panics if the error is non-nil.

Listing 5-12 parses the template files with the Must helper function and puts it into the map.

Chapter 5 ■ Working with Go Templates

88

Listing 5-12.  Compiling View Template Files in init in main.go

var templates map[string]*template.Template

//Compile view templates
func init() {
 if templates == nil {

templates = make(map[string]*template.Template)
 }
 �templates["index"] = template.Must(template.ParseFiles("templates/index.html",

"templates/base.html"))
 �templates["add"] = template.Must(template.ParseFiles("templates/add.html",

"templates/base.html"))
 �templates["edit"] = template.Must(template.ParseFiles("templates/edit.html",

"templates/base.html"))
}

For each content page, the appropriate content file is parsed along with base.html.
Listing 5-13 is a helper function that renders individual web pages.

Listing 5-13.  Helper Function that Renders Templates in main.go

//Render templates for the given name, template definition and data object
func renderTemplate(w http.ResponseWriter, name string, template string, viewModel interface{}) {
 // Ensure the template exists in the map.
 tmpl, ok := templates[name]
 if !ok {

http.Error(w, "The template does not exist.", http.StatusInternalServerError)
 }
 err := tmpl.ExecuteTemplate(w, template, viewModel)
 if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
 }
}

Here the parameter name is used as the key for retrieving the template file from the map, while
the parameter template is used for providing the template name when we execute the template. The
renderTemplate function provides the type interface{} as the type for the data object, so you can pass
any type as the data object for applying into the template. The type interface{} is known as an “empty
interface” that can hold values of any type. This type is very useful when you pass values to a function
parameter when you don’t know the type that you pass at runtime or you want to provide values of any type.

Rendering the Index Page
Let’s render the Index page to show the list of Note objects. Listing 5-14 is the template definition
in index.html.

Listing 5-14.  Template Definition in index.html

{{define "head"}}<title>Index</title>{{end}}
{{define "body"}}
<h1>Notes List</h1>

Chapter 5 ■ Working with Go Templates

89

<p>
Add Note
</p>
<div>
<table border="1">
 <tr>

<th>Title</th>
<th>Description</th>
<th>Created On</th>
<th>Actions</th>

 </tr>
 {{range $key,$value := . }}
 <tr>

<td> {{$value.Title}}</td>
<td>{{$value.Description}}</td>
<td>{{$value.CreatedOn}}</td>
<td>

Edit |
Delete

</td>
 </tr>
{{end}}
</table>
</div>
{{end}}

Named definitions of two templates are defined: head and body. Both will be used by the base template
defined in base.html. When the Index page is executed, the map object that contains the object of the Note
struct in each element is passed. The range action is used to iterate through the map object. In the range
action, two variables are declared for the key and value element that is referenced inside the range action.
A range action must be closed with an end action.

When users request the route "/", the Index page is rendered by calling the getNotes request handler in
main.go. Listing 5-15 shows the getNotes function.

Listing 5-15.  Handler Function for Route “/” in main.go

func getNotes(w http.ResponseWriter, r *http.Request) {
 renderTemplate(w, "index", "base", noteStore)
}

In the getNotes handler function, the renderTemplate helper function is called for rendering the Index
page. To call renderTemplate, the http.ResponseWriter object is provided as the io.Writer, the index for
getting the parsed template for executing the Index page, the base for specifying the template definition to
be executed, and the map object as the data object to apply to the template definitions.

When templates["index"] is called, you get the compiled template that was parsed by using the
template definition files index.html and base.html. The base template definition is finally executed from
the parsed template that is a nested template in which it takes the template definition from head and page
defined in the index.html file.

Chapter 5 ■ Working with Go Templates

90

Figure 5-2 shows the Index page with the list of Note objects.

Note that Figure 5-2 shows the final result of the application after implementing all handler functions
for the example web application. For the sake of the demo, a couple of values were added into the noteStore
object.

Rendering the Add Page
The Add page is used to add new Note objects. add.html is used to provide contents for the head and body
sections (see Listing 5-16).

Listing 5-16.  Template Definitions in add.html

{{define "head"}}<title>Add Note</title>{{end}}
{{define "body"}}
<h1>Add Note</h1>
<form action="/notes/save" method="post">

<p>Title:
 <input type="text" name="title"></p>
<p>Description:
 <textarea rows="4" cols="50" name="description"></textarea> </p>
<p><input type="submit" value="submit"/> </p>

</form>
{{end}}

When the HTTP server gets the request for the "/notes/add" route, it calls the addNote handler
function (see Listing 5-17).

Listing 5-17.  Handler Function for “/notes/add” in main.go

func addNote(w http.ResponseWriter, r *http.Request) {
 renderTemplate(w, "add", "base", nil)
}

Figure 5-2.  Index page

Chapter 5 ■ Working with Go Templates

91

The Add page is used to add a new Note object when you don’t need to provide any data object to the
template definition. So nil is passed as the data object. The string "add" is provided as the key of the map
object for getting the parsed template, which was parsed by using the template definition files add.html and
base.html, for rendering the Add page.

Figure 5-3 shows the Add page that provides the user interface for creating a new Note.

When the user submits the HTML form, an HTTP POST request is sent to the server for a URL
"/notes/save" that will be handled by the handler function shown in Listing 5-18.

Listing 5-18.  Handler Function to Save a New Note Object in main.go

//Handler for "/notes/save" for save a new item into the data store
func saveNote(w http.ResponseWriter, r *http.Request) {

 r.ParseForm()
 title := r.PostFormValue("title")
 desc := r.PostFormValue("description")
 note := Note{title, desc, time.Now()}
 //increment the value of id for generating key for the map
 id++
 //convert id value to string
 k := strconv.Itoa(id)
 noteStore[k] = note
 http.Redirect(w, r, "/", 302)
}

Figure 5-3.  Add page

Chapter 5 ■ Working with Go Templates

92

The saveHandler function parses the form values from the *http.Request object by calling the
ParseForm method; then form field values are read by calling PostFormValue("element_name"). In
Listing 5-18, the values are read from the HTML form elements title and description. The value of id is
incremented for generating a key for the noteStore map object, and finally the newly added Note object is
added into the noteStore map object with the key that was generated. The request is redirected to "/" for
redirecting to the Index page, in which the newly added data can be seen.

Rendering the Edit Page
The Edit page is used to edit an existing Note object. edit.html is used to provide the contents for the head
and body sections (see Listing 5-19).

Listing 5-19.  Template Definitions in edit.html

{{define "head"}}<title>Edit Note</title>{{end}}
{{define "body"}}
<h1>Edit Note</h1>
<form action="/notes/update/{{.Id}}" method="post">

<p>Title:
 <input type="text" value="{{.Note.Title}}" name="title"></p>
<p>�Description:
 <textarea rows="4" cols="50" name="description">

{{.Note.Description}}</textarea> </p>
 <p><input type="submit" value="submit"/></p>
</form>
{{end}}

In edit.html, the data elements of the Note object are mapped with HTML form field values to edit
an existing item. This template definition maps with the data object of the EditNote struct that contains an
id for the item to be edited, along with the Note object for editing the fields of the Note object. When the
template for rendering the Edit page is executed, an instance of the EditNote struct is provided as the data
object (see Listing 5-20).

Listing 5-20.  Data Model for Editing an Item

//View Model for edit
type EditNote struct {
 Note
 Id string
}

When the HTTP server gets the request for the "/notes/edit/{id}" route, it calls the editNote handler
function (see Listing 5-21).

Listing 5-21.  Handler Function for “/notes/edit/{id}” in main.go

//Handler for "/notes/edit/{id}" to edit an existing item
func editNote(w http.ResponseWriter, r *http.Request) {
 var viewModel EditNote
 //Read value from route variable
 vars := mux.Vars(r)
 k := vars["id"]

Chapter 5 ■ Working with Go Templates

93

 if note, ok := noteStore[k]; ok {
viewModel = EditNote{note, k}

 }else {
http.Error(w, "Could not find the resource to edit.", http.StatusBadRequest)

 }
 renderTemplate(w, "edit", "base", viewModel)
}

An EditNote struct instance is provided as the data object to the template definition. The string "edit"
is provided as the key of the map object for getting the parsed template, which was parsed by using template
definition files edit.html and base.html, for rendering the Edit page.

Figure 5-4 shows the Edit page that provides the user interface to edit an existing Note.

When the user submits the HTML form after editing the values of the Note object, an HTTP POST
request is sent to the server for a URL "/notes/update/{id}" that will be handled by the handler function
shown in Listing 5-22.

Listing 5-22.  Handler for “/notes/update/{id}” to Update an Existing Item in main.go

//Handler for "/notes/update/{id}" which update an item into the data store
func updateNote(w http.ResponseWriter, r *http.Request) {
 //Read value from route variable
 vars := mux.Vars(r)
 k := vars["id"]
 var noteToUpd Note
 if note, ok := noteStore[k]; ok {
 r.ParseForm()

noteToUpd.Title = r.PostFormValue("title")
noteToUpd.Description = r.PostFormValue("description")
noteToUpd.CreatedOn = note.CreatedOn

Figure 5-4.  Edit page

Chapter 5 ■ Working with Go Templates

94

//delete existing item and add the updated item
delete(noteStore, k)
noteStore[k] = noteToUpd

 } else {
http.Error(w, "Could not find the resource to update.", http.StatusBadRequest)

 }
 http.Redirect(w, r, "/", 302)
}

Similar to adding a new Note object in Listing 5-18, the form field values from the *http.Request
object are parsed, and the values of the Note object are updated. The request is then redirected to "/" for
redirecting to the Index page, in which the updated values can be seen.

The full source of main.go is provided in Listing 5-23.

Listing 5-23.  main.go

package main

import (
 "html/template"
 "log"
 "net/http"
 "strconv"
 "time"

 "github.com/gorilla/mux"
)

type Note struct {
 Title string
 Description string
 CreatedOn time.Time
}

//View Model for edit
type EditNote struct {
 Note
 Id string
}

//Store for the Notes collection
var noteStore = make(map[string]Note)

//Variable to generate key for the collection
var id int = 0

var templates map[string]*template.Template

Chapter 5 ■ Working with Go Templates

95

//Compile view templates
func init() {
 if templates == nil {

templates = make(map[string]*template.Template)
 }
 �templates["index"] = template.Must(template.ParseFiles("templates/index.html",

"templates/base.html"))
 �templates["add"] = template.Must(template.ParseFiles("templates/add.html",

"templates/base.html"))
 �templates["edit"] = template.Must(template.ParseFiles("templates/edit.html",

"templates/base.html"))
}

//Render templates for the given name, template definition and data object
func renderTemplate(w http.ResponseWriter, name string, template string, viewModel
interface{}) {
 // Ensure the template exists in the map.
 tmpl, ok := templates[name]
 if !ok {

http.Error(w, "The template does not exist.", http.StatusInternalServerError)
 }
 err := tmpl.ExecuteTemplate(w, template, viewModel)
 if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
 }
}

//Handler for "/notes/save" for save a new item into the data store
func saveNote(w http.ResponseWriter, r *http.Request) {

 r.ParseForm()
 title := r.PostFormValue("title")
 desc := r.PostFormValue("description")
 note := Note{title, desc, time.Now()}
 //increment the value of id for generating key for the map
 id++
 //convert id value to string
 k := strconv.Itoa(id)
 noteStore[k] = note
 http.Redirect(w, r, "/", 302)
}

//Handler for "/notes/add" for add a new item
func addNote(w http.ResponseWriter, r *http.Request) {
 renderTemplate(w, "add", "base", nil)
}

Chapter 5 ■ Working with Go Templates

96

//Handler for "/notes/edit/{id}" to edit an existing item
func editNote(w http.ResponseWriter, r *http.Request) {
 var viewModel EditNote
 //Read value from route variable
 vars := mux.Vars(r)
 k := vars["id"]
 if note, ok := noteStore[k]; ok {

viewModel = EditNote{note, k}
 } else {

http.Error(w, "Could not find the resource to edit.", http.StatusBadRequest)
 }
 renderTemplate(w, "edit", "base", viewModel)
}

//Handler for "/notes/update/{id}" which update an item into the data store
func updateNote(w http.ResponseWriter, r *http.Request) {
 //Read value from route variable
 vars := mux.Vars(r)
 k := vars["id"]
 var noteToUpd Note
 if note, ok := noteStore[k]; ok {
 r.ParseForm()

noteToUpd.Title = r.PostFormValue("title")
noteToUpd.Description = r.PostFormValue("description")
noteToUpd.CreatedOn = note.CreatedOn
//delete existing item and add the updated item
delete(noteStore, k)
noteStore[k] = noteToUpd

 } else {
http.Error(w, "Could not find the resource to update.", http.StatusBadRequest)

 }
 http.Redirect(w, r, "/", 302)
}

//Handler for "/notes/delete/{id}" which delete an item form the store
func deleteNote(w http.ResponseWriter, r *http.Request) {
 //Read value from route variable
 vars := mux.Vars(r)
 k := vars["id"]
 // Remove from Store
 if _, ok := noteStore[k]; ok {

//delete existing item
delete(noteStore, k)

 } else {
http.Error(w, "Could not find the resource to delete.", http.StatusBadRequest)

 }
 http.Redirect(w, r, "/", 302)
}

Chapter 5 ■ Working with Go Templates

97

//Handler for "/" which render the index page
func getNotes(w http.ResponseWriter, r *http.Request) {
 renderTemplate(w, "index", "base", noteStore)
}

//Entry point of the program
func main() {

 r := mux.NewRouter().StrictSlash(false)
 fs := http.FileServer(http.Dir("public"))

r.Handle("/public/", fs)
r.HandleFunc("/", getNotes)
r.HandleFunc("/notes/add", addNote)
r.HandleFunc("/notes/save", saveNote)
r.HandleFunc("/notes/edit/{id}", editNote)
r.HandleFunc("/notes/update/{id}", updateNote)
r.HandleFunc("/notes/delete/{id}", deleteNote)

 server := &http.Server{
Addr: ":8080",
Handler: r,

 }
 log.Println("Listening...")
 server.ListenAndServe()
}

In this example, a full web application was completed in Go by leveraging the standard library package
html/template for rendering the user interfaces with dynamic data. Template definition files are parsed
and put into a map object so that you can easily get the parsed template files whenever you want to execute
the templates. This approach allows you to avoid parsing the template files every time the templates are
executed, which improves web application performance. By leveraging the various techniques shown in this
example application, you can build real-world web applications.

Summary
This chapter showed how to work with Go templates by developing a web application. When you work
with data-driven web applications, you have to leverage templates to render HTML pages in which you can
combine static contents with dynamic contents by applying a data object to the templates.

The html/template package is used to render HTML pages. It also provides a security mechanism
against various code injections while rendering the HTML output. Both html/template and text/template
provide the same interface for the template authors, in which html/template generates HTML output,
and text/template generates textual output. By leveraging the standard library packages net/http and
html/template, you can build full-fledged web applications in Go.

99

Chapter 6

HTTP Middleware

The last two chapters explored various aspects of building web applications and web APIs. This chapter
takes a look at HTTP middleware, which simplifies development efforts when real-world web applications
are built. The Go developer community has not been too interested in adopting full-fledged web application
frameworks for building web applications. Instead, they prefer to use standard library packages such as the
fundamental block, along with a few essential third-party libraries such as Gorilla mux. Writing and using
HTTP middleware is an essential approach for staying with this strategy. You can implement many cross-
cutting behaviors such as security, HTTP request and response logging, compressing HTTP responses, and
caching as middleware components; and these middleware components can be applied to many application
handlers or across-the-application handlers.

Introduction to HTTP Middleware
When you build web applications, you might need some shared functionality to be executed for some or
all HTTP request handlers. For example, let’s say that you want to log all HTTP requests into a web server;
implementing logic for logging for every HTTP request handler would be a tedious job. It would be great
to use special kinds of handlers to implement shared behaviors and to be applied to some or all of the
application handlers. By using HTTP middleware, you can implement this kind of functionality into your
web applications. Using HTTP middleware handlers is a great way to implement shared behaviors into your
applications.

Middleware is a pluggable and self-contained piece of code that wraps a web application. It can be
used to implement shared behaviors into HTTP request handlers. The middleware components can be
plugged into applications to work as another layer in the request-handling cycle, which can execute some
logic before or after HTTP request handlers. For example, to log all HTTP requests, you can write logging
middleware that can decorate into the request handlers, in which it does apply the logging functionality for
each HTTP request to the web server. It doesn’t affect your application logic because it is an independent
piece of code. You can decorate the middleware components into HTTP request handlers whenever you
need to, and you can remove them whenever you don’t need them.

Here are some example scenarios in which you can use middleware:

• Logging HTTP requests and responses

• Compressing HTTP responses

• Writing common response headers

• Creating database session objects

• Implementing security and validating authentication credentials

Chapter 6 ■ HTTP Middleware

100

Writing HTTP Middleware
The Go standard library package net/http provides functions such as StripPrefix and TimeoutHandler,
which are similar to middleware: they wrap request handlers and provide additional implementations in the
request-handling cycle. Both StripPrefix and TimeoutHandler take http.Handler as a parameter, along
with other parameters, and return an http.Handler so that you can easily wrap this into normal handlers
to execute some additional logic. The StripPrefix function takes a string prefix and an http.Handler as
parameters, and returns a handler that serves HTTP requests by removing the given prefix from the request
URL’s path (see Listing 6-1).

Listing 6-1.  Using StripPrefix to Wrap the http.FileServer Handler

package main

import (
"net/http"

)

func main() {
// To serve a directory on disk (/public) under an alternate URL
// path (/public/), use StripPrefix to modify the request
// URL's path before the FileServer sees it:
fs := http.FileServer(http.Dir("public"))
http.Handle("/public/", http.StripPrefix("/public/", fs))

}

The StripPrefix function wraps the http.FileServer handler and provides extra functionality
because it modifies the request URL’s path by removing the given prefix from the request URL’s path and
invoking the given handler object.

Listing 6-2 is the Go source code for the StripPrefix function.

Listing 6-2.  Source of StripPrefix from the net/http Library

func StripPrefix(prefix string, h Handler) Handler {
if prefix == "" {

return h
}
return HandlerFunc(func(w ResponseWriter, r *Request) {

if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
r.URL.Path = p
h.ServeHTTP(w, r)

} else {
NotFound(w, r)

}
})

}

The StripPrefix function returns an http.Handler object by converting an anonymous function with
the signature func(w ResponseWriter, r *Request), into the HandlerFunc func. When you write wrapper
handler functions, you can execute additional logic before or after the normal handler function. In the
StripPrefix function, the http library executes the logic before executing the normal handler. The function

Chapter 6 ■ HTTP Middleware

101

invokes the given handler (the application handler or another wrapper handler) by calling the ServeHTTP
method:

if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
 r.URL.Path = p

h.ServeHTTP(w, r)
} else {

NotFound(w, r)
}

You can easily write HTTP middleware in the same way as the http package implements wrapper
handler functions. You can write middleware functions by implementing functions with the signature
func(http.Handler) http.Handler. If you want to pass any values into the middleware functions, you can
provide the same as function parameters along with http.Handler, as the StripPrefix function does in the
http package.

How to Write HTTP Middleware
The fundamental steps of writing HTTP middleware are as follows:

1.	 Write a function with http.Handler as a function parameter so that you can pass
other middleware handlers and normal application handlers as the function
parameter. You can invoke the handler functions by calling the ServeHTTP
method within the middleware functions.

2.	 Return http.Handler from the middleware function to chain with other
middleware handlers and wrap with normal application handlers. Because
middleware functions return http.Handler, you can register this with the
ServeMux object.

Listing 6-3 shows the pattern for writing HTTP middleware.

Listing 6-3.  Pattern for Writing Middleware

func middlewareHandler(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 // Middleware logic goes here before executing application handler
 next.ServeHTTP(w, r)
 // Middleware logic goes here after executing application handler
 })
}

Writing a Logging Middleware
Let’s write an HTTP middleware to log all HTTP requests so that this behavior can be applied into multiple
application handlers.

Listing 6-4 is an example of logging middleware.

Chapter 6 ■ HTTP Middleware

102

Listing 6-4.  Logging Middleware

package main

import (
 "fmt"
 "log"
 "net/http"
 "time"
)

func loggingHandler(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

start := time.Now()
log.Printf("Started %s %s", r.Method, r.URL.Path)
next.ServeHTTP(w, r)
log.Printf("Completed %s in %v", r.URL.Path, time.Since(start))

 })
}
func index(w http.ResponseWriter, r *http.Request) {
 log.Println("Executing index handler")
 fmt.Fprintf(w, "Welcome!")
}
func about(w http.ResponseWriter, r *http.Request) {
 log.Println("Executing about handler")
 fmt.Fprintf(w, "Go Middleware")
}
func iconHandler(w http.ResponseWriter, r *http.Request) {
}
func main() {
 http.HandleFunc("/favicon.ico", iconHandler)
 indexHandler := http.HandlerFunc(index)
 aboutHandler := http.HandlerFunc(about)
 http.Handle("/", loggingHandler(indexHandler))
 http.Handle("/about", loggingHandler(aboutHandler))
 server := &http.Server{

Addr: ":8080",
 }
 log.Println("Listening...")
 server.ListenAndServe()
}

Run this program and make a request to "/" and "/about". You should get a log output similar to this:

2015/04/25 19:40:10 Started GET /
2015/04/25 19:40:10 Executing index handler
2015/04/25 19:40:10 Completed / in 0
2015/04/25 19:40:18 Started GET /about
2015/04/25 19:40:18 Executing about handler
2015/04/25 19:40:18 Completed /about in 1.0005ms

Chapter 6 ■ HTTP Middleware

103

In the previous program, loggingHandler is the HTTP middleware that decorates into the application
handlers for the "/" and "/about" routes. Middleware allows you to reuse the shared behavior functionality
onto multiple handlers. In the logging middleware handler, the log messages are written before and after
executing the application handler. The middleware function logs the HTTP method and URL path of the
requests before invoking the application handler, and logs the time it takes to execute the application
handler after executing the application handler. By calling next.ServeHTTP(w, r), the middleware function
can execute the application handler function:

func loggingHandler(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

start := time.Now()
log.Printf("Started %s %s", r.Method, r.URL.Path)
next.ServeHTTP(w, r)
log.Printf("Completed %s in %v", r.URL.Path, time.Since(start))

 })
}

The application handler functions are converted to the HandlerFunc func type and passed into the
logging middleware handler function:

indexHandler := http.HandlerFunc(index)
aboutHandler := http.HandlerFunc(about)
http.Handle("/", loggingHandler(indexHandler))
http.Handle("/about", loggingHandler(aboutHandler))

Controlling the Flow of HTTP Middleware
Because HTTP middleware handler functions take http.Handler as a function parameter and return
an http.Handler, you can easily chain with other middleware handlers and finally call the application
handler. It is important to understand the control flow of middleware handlers when you chain with other
middleware handlers. Let’s write a couple of middleware handlers and wrap this into application handlers.

Listing 6-5 illustrates the control flow of middleware handlers.

Listing 6-5.  Control Flow of Middleware Handlers

package main

import (
 "fmt"
 "log"
 "net/http"
)

func middlewareFirst(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

log.Println("MiddlewareFirst - Before Handler")
next.ServeHTTP(w, r)
log.Println("MiddlewareFirst - After Handler")

 })
}

Chapter 6 ■ HTTP Middleware

104

func middlewareSecond(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

log.Println("MiddlewareSecond - Before Handler")
if r.URL.Path == "/message" {

if r.URL.Query().Get("password") == "pass123" {
log.Println("Authorized to the system")
next.ServeHTTP(w, r)

} else {
log.Println("Failed to authorize to the system")
return

}
} else {

next.ServeHTTP(w, r)
}

log.Println("MiddlewareSecond - After Handler")
 })
}

func index(w http.ResponseWriter, r *http.Request) {
 log.Println("Executing index Handler")
 fmt.Fprintf(w, "Welcome")
}
func message(w http.ResponseWriter, r *http.Request) {
 log.Println("Executing message Handler")
 fmt.Fprintf(w, "HTTP Middleware is awesome")
}

func iconHandler(w http.ResponseWriter, r *http.Request) {
}
func main() {

 http.HandleFunc("/favicon.ico", iconHandler)
 http.Handle("/", middlewareFirst(middlewareSecond(http.HandlerFunc(index))))
 http.Handle("/message", middlewareFirst(middlewareSecond(http.HandlerFunc(message))))
 server := &http.Server{

Addr: ":8080",
 }
 log.Println("Listening...")
 server.ListenAndServe()
}

Run this program and make a request to "http://localhost:8080/". You should get the following
output:

2015/04/30 11:10:53 MiddlewareFirst - Before Handler

2015/04/30 11:10:53 MiddlewareSecond - Before Handler

2015/04/30 11:10:53 Executing index Handler

2015/04/30 11:10:53 MiddlewareSecond - After Handler

2015/04/30 11:10:53 MiddlewareFirst - After Handler

Chapter 6 ■ HTTP Middleware

105

When you make a request for "http://localhost:8080/message" by providing the wrong value for
the querystring variable password (let’s say you provide "http://localhost:8080/message?password=
wrongpass"), you should get the following output:

2015/04/30 11:11:06 MiddlewareFirst - Before Handler

2015/04/30 11:11:06 MiddlewareSecond - Before Handler

2015/04/30 11:11:06 Failed to authorize to the system

2015/04/30 11:11:06 MiddlewareFirst - After Handler

When you make a request for "http://localhost:8080/message" by providing the correct value for the
querystring variable password ("http://localhost:8080/message?password=pass123"), you should get the
following output:

2015/04/30 11:11:35 MiddlewareFirst - Before Handler

2015/04/30 11:11:35 MiddlewareSecond - Before Handler

2015/04/30 11:11:35 Authorized to the system

2015/04/30 11:11:35 Executing message Handler

2015/04/30 11:11:35 MiddlewareSecond - After Handler

2015/04/30 11:11:35 MiddlewareFirst - After Handler

You can easily understand the control flow of middleware handlers by looking at the log messages
generated by the program. Here middlewareFirst and middlewareSecond are called as the wrapper
handlers; you can apply this into the application handler. In the middleware function middlewareSecond,
the value of the querystring variable password is validated if the request URL path is "/message".

Here is the control flow that happens when the program is run and you make requests to the "/" and
"/message" routes:

1.	 The control flow goes to the middlewareFirst middleware function.

2.	 After a log message is written (before executing the next handler) in the
middlewareFirst function, the control flow goes to the middlewareSecond
middleware function when next.ServeHTTP(w, r) is called.

3.	 After a log message is written (before executing the next handler) in the
middlewareSecond function, the control flow goes to the application handler
when next.ServeHTTP(w, r) is called:

a.	 If the request URL path is "/", the index application handler is invoked
without any authorization.

b.	 If the request URL path is "/message", the middleware function validates
the request with the querystring variable password. If you do not
provide the value "pass123" for the querystring variable password, the
control flow returns from the middleware function and goes back to the
middlewareFirst function, invokes the logic after the next.ServeHTTP(w, r)
code block, and then returns from the request-handling cycle without
executing the application handler. If the request gets validated, the control
flow goes to the application handler message when next.ServeHTTP(w, r)
is called.

Chapter 6 ■ HTTP Middleware

106

4.	 After invoking the application handler from the middlewareSecond function (if
the request gets validated), the control flow goes back to the middlewareSecond
function and invokes the logic after the next.ServeHTTP(w, r) code block.

5.	 After returning from the middlewareSecond handler, the control flow goes
back to the middlewareFirst function and invokes the logic after the
next.ServeHTTP(w, r) code block.

You can exit from middleware handler chains at any time, as the middlewareSecond handler does if the
request is not valid. In this context, the control flow goes back to the previous handler if there is any handler
in the request-handling cycle. When "/message" is requested without any valid querystring value, the
application handler will not be invoked when you return from the middleware handler. The most important
thing is that you can execute some logic before or after invoking a middleware handler function.

Using Third-Party Middleware
Using middleware is a great way to implement a reusable piece of code across applications. Many third-party
libraries provide different kinds of reusable middleware components that can be used for many common
functionalities such as authentication, logging, compressing responses, and so on. When you develop
web applications in Go, you can leverage these third-party libraries to implement many of the common
functionalities into your applications.

Using Gorilla Handlers
The Gorilla web toolkit (www.gorillatoolkit.org/) provides a collection of handlers for use with Go’s
net/http package. Let’s write a program to use Gorilla’s LoggingHandler and CompressHandler for logging
HTTP requests and compressing HTTP responses.

Installing Gorilla Handlers
To install Gorilla handlers, run the following command in the terminal:

$ go get github.com/gorilla/handlers

Working with Gorilla Handlers
To work with Gorilla handlers, you must add github.com/gorilla/handlers to the import list:

import "github.com/gorilla/handlers"

http://www.gorillatoolkit.org/

Chapter 6 ■ HTTP Middleware

107

Listing 6-6 shows Gorilla’s logging and compression handlers.

Listing 6-6.  Using Gorilla’s Logging and Compression Handlers

package main

import (
 "fmt"
 "log"
 "net/http"
 "os"

 "github.com/gorilla/handlers"
)

func index(w http.ResponseWriter, r *http.Request) {
 log.Println("Executing index handler")
 fmt.Fprintf(w, "Welcome!")
}
func about(w http.ResponseWriter, r *http.Request) {
 log.Println("Executing about handler")
 fmt.Fprintf(w, "Go Middleware")
}
func iconHandler(w http.ResponseWriter, r *http.Request) {
}
func main() {
 http.HandleFunc("/favicon.ico", iconHandler)
 indexHandler := http.HandlerFunc(index)
 aboutHandler := http.HandlerFunc(about)
 logFile, err := os.OpenFile("server.log", os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0666)
 if err != nil {

panic(err)
 }
 http.Handle("/", handlers.LoggingHandler(logFile, handlers.CompressHandler(indexHandler)))
 �http.Handle("/about", handlers.LoggingHandler(logFile, handlers.CompressHandler(

aboutHandler)))
 server := &http.Server{

Addr: ":8080",
 }
 log.Println("Listening...")
 server.ListenAndServe()
}

Similar to Listing 6-5, handler chaining is done with LoggingHandler and CompressHandler, and then
wraps into application handlers. This program does the logging for requests and compresses the responses
using gzip or Deflate. The log file is provided as "server.log", so you can see the logging in this file. Run the
program and make requests to "/" and "/about". You should get the following log in the "server.log" file:

::1 - - [26/Apr/2015:16:42:41 +0530] "GET / HTTP/1.1" 200 32

::1 - - [26/Apr/2015:16:42:45 +0530] "GET /about HTTP/1.1" 200 37

You can see the log messages that include HTTP status code as well.

Chapter 6 ■ HTTP Middleware

108

Middleware Chaining with the Alice Package
The third-party Alice library package (https://github.com/justinas/alice) provides a convenient way to
chain HTTP middleware functions and the application handler. The program shown in Listing 6-5 chained
HTTP middleware functions as follows:

http.Handle("/", middlewareFirst(middlewareSecond(http.HandlerFunc(index))))

By using the Alice package, you can transform the preceding handler chains to the following:

http.Handle("/",alice.New(middlewareFirst, middlewareSecond).ThenFunc(http.HandlerFunc(index)))

This process is an elegant way to chain middleware functions and decorate them with application
handlers.

Installing Alice
To install Alice, run the following command in the terminal:

$ go get github.com/justinas/alice

Working with Alice
To work with the Alice package, github.com/justinas/alice must be added to the import list:

import "github.com/ justinas/alice"

Let’s rewrite the program shown in Listing 6-6 with the Alice package (see Listing 6-7).

Listing 6-7.  Chaining Middleware Functions with the Alice Package

package main

import (

 "io"
 "log"
 "net/http"
 "os"

 "github.com/gorilla/handlers"
 "github.com/justinas/alice"
)

func loggingHandler(next http.Handler) http.Handler {
 logFile, err := os.OpenFile("server.log", os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0777)
 if err != nil {

panic(err)
 }
 return handlers.LoggingHandler(logFile, next)
}

https://github.com/justinas/alice

Chapter 6 ■ HTTP Middleware

109

func index(w http.ResponseWriter, r *http.Request) {

 w.Header().Set(
"Content-Type",
"text/html",

)
 io.WriteString(

w,
`<doctype html>
<html>

<head>
<title>Index</title>

</head>
<body>

Hello Gopher!
</body>

</html>`,
)

}
func about(w http.ResponseWriter, r *http.Request) {
 w.Header().Set(

"Content-Type",
"text/html",

)
 io.WriteString(

w,
`<doctype html>
<html>

<head>
<title>About</title>

</head>
<body>

Go Web development with HTTP Middleware
</body>

</html>`,
)
}
func iconHandler(w http.ResponseWriter, r *http.Request) {
 http.ServeFile(w, r, "./favicon.ico")
}
func main() {
 http.HandleFunc("/favicon.ico", iconHandler)
 indexHandler := http.HandlerFunc(index)
 aboutHandler := http.HandlerFunc(about)
 commonHandlers := alice.New(loggingHandler, handlers.CompressHandler)
 http.Handle("/", commonHandlers.ThenFunc(indexHandler))
 http.Handle("/about", commonHandlers.ThenFunc(aboutHandler))
 server := &http.Server{

Addr: ":8080",
 }

Chapter 6 ■ HTTP Middleware

110

 log.Println("Listening...")
 server.ListenAndServe()
}

In this program, two Gorilla handlers are used for logging requests and compressing responses:
LoggingHandler and CompressHandler. The HTML string is provided in the responses to verify the
compression impact of the HTTP responses. Run the program, make requests to "/" and "/about", and
watch the log file and HTTP responses.

Figure 6-1 shows the screenshot in Fiddler: an HTTP debugging tool showing that the web responses
are compressing with gzip encoding.

Chaining middleware functions can be done in an elegant way using the Alice package, which makes it
easy to understand code blocks. Gorilla’s LoggingHandler does not have the signature func (http.Handler)
http.Handler, and it takes a log file as a function parameter along with the http.Handler. So by working
properly with the Alice package and using this handler in multiple places, you can write a middleware
function for logging, in which the Gorilla LoggingHandler is called by providing the log file as the parameter.
This is a good approach whenever a middleware function is needed with multiple function parameters:

func loggingHandler(next http.Handler) http.Handler {
 logFile, err := os.OpenFile("server.log", os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0777)
 if err != nil {

panic(err)
 }
 return handlers.LoggingHandler(logFile, next)
}

The loggingHandler middleware function can be used with Alice, which calls the Gorilla
LoggingHandler function with necessary arguments. When you use middleware handlers, you might need
to decorate multiple middleware handlers into several application handlers. In this context, you can create
common handlers with Alice by combining with multiple middleware handlers, and it can apply to multiple
application handlers.

Figure 6-1.  Compressing HTTP responses with a Gorilla handler

Chapter 6 ■ HTTP Middleware

111

Here commonHandlers is defined as the common handlers for use with multiple application handlers:

indexHandler := http.HandlerFunc(index)
aboutHandler := http.HandlerFunc(about)
commonHandlers := alice.New(loggingHandler, handlers.CompressHandler)
http.Handle("/", commonHandlers.ThenFunc(indexHandler))
http.Handle("/about", commonHandlers.ThenFunc(aboutHandler))

The Alice package provides a fluent API for working with middleware functions that allows you to
chain middleware functions in an elegant way. The Alice package is a very lightweight library that has fewer
than 100 lines of code.

Using Middleware with the Negroni Package
When you work directly with the net/http package to build web applications, the Negroni third-party
library is a great companion for you. Negroni is a library that is designed to be compatible with the net/http
package. Negroni provides an idiomatic approach to using HTTP middleware in Go. It encourages you to use
net/http handlers while providing a way to handle HTTP middleware functions.

The previous section discussed the Alice package, which is great for chaining middleware handlers.
Negroni provides a different approach for handling HTTP middleware functions in a simple and
nonintrusive way. If you prefer to use Alice for handling middleware functions, you can stick with it because
both Alice and Negroni solve the same problems in a slightly different way. Negroni provides a full-fledged
library for working with middleware functions, which also comes with some common middleware functions
for logging requests and compressing responses, providing static file server and recovery from panics.

Negroni allows you to configure middleware functions at a global level to be used with all application
handlers. You can also configure middleware functions for working with specific handlers. When you use
middleware functions with all application handlers, you don’t need to configure it for every application
handler. Instead, you can just configure the middleware function with Negroni, which will wrap the
configured middleware functions into all application handlers. You can also configure some middleware
functions to be executed with some specific application handlers.

Getting Started with Negroni
Negroni provides a simple programming model for working with middleware handlers. When you work with
it, you can also use its default middleware functions. Let’s install and write a simple program to get started
with the Negroni package.

Installing Negroni
To install Negroni, run the following command in the terminal:

$ go get github.com/codegangsta/negroni

To work with the Negroni package, the github.com/codegangsta/negroni package must be added to
the import list:

import "github.com/codegangsta/negroni"

Chapter 6 ■ HTTP Middleware

112

Listing 6-8 is an example program using Negroni:

Listing 6-8.  Simple HTTP Server with Negroni

package main

import (
 "fmt"
 "net/http"

 "github.com/codegangsta/negroni"
)

func index(w http.ResponseWriter, req *http.Request) {
 fmt.Fprintf(w, "Welcome!")
}
func main() {
 mux := http.NewServeMux()
 mux.HandleFunc("/", index)
 n := negroni.Classic()

n.UseHandler(mux)
n.Run(":8080")

}

In this program, you don’t use your own middleware functions; you simply run an HTTP server with
the Negroni default middleware functions. A Negroni instance is created by calling the negroni.Classic
function.

When a Negroni instance is created with the Classic function, it provides the following built-in
middleware functions, which are useful for most web applications:

• negroni.Recovery: Panic recovery middleware

• negroni.Logging: Request/response logging middleware

• negroni.Static: Static file serving under the "public" directory

Negroni instances can also be created by calling the negroni.New function, which returns a new
Negroni instance without any middleware preconfigured:

n := negroni.New()

The Run method of a Negroni instance is a convenience function that runs the Negroni stack as an
HTTP server. The address string takes the same format as http.ListenAndServe:

n.Run(":8080")

Routing with Negroni
The UseHandler method of a Negroni instance allows you to provide your own http.Handler onto the
middleware stack.

Listing 6-9 is an example program that uses Gorilla mux as the request multiplexer with the Negroni
package.

Chapter 6 ■ HTTP Middleware

113

Listing 6-9.  Simple HTTP Server with Negroni and Gorilla mux

package main

import (
 "fmt"
 "net/http"

 "github.com/codegangsta/negroni"
 "github.com/gorilla/mux"
)

func index(w http.ResponseWriter, req *http.Request) {
 fmt.Fprintf(w, "Welcome!")
}
func main() {
 router := mux.NewRouter()
 router.HandleFunc("/", index)
 n := negroni.Classic()

n.UseHandler(router)
n.Run(":8080")

}

The Gorilla Mux.Router object is provided as the handler to be used with Negroni. You can provide any
object of the http.Handler interface to the UseHandler method of the Negroni instance.

Registering Middleware
Negroni manages middleware flow through the negroni.Handler interface.

Listing 6-10 shows the definition of the negroni.Handler interface:

Listing 6-10.  negroni.Handler Interface

type Handler interface {
 ServeHTTP(rw http.ResponseWriter, r *http.Request, next http.HandlerFunc)
}

Listing 6-11 provides the pattern for writing middleware handler functions for Negroni to work with the
negroni.Handler interface.

Listing 6-11.  negroni.Handler Interface

func myMiddleware(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) {
 // logic before executing the next handler
 next(w, r)
 // logic after running next the handler

}

Chapter 6 ■ HTTP Middleware

114

The function signature of a Negroni-compatible middleware function is different from the functions
written in the previous sections. The Negroni middleware stack uses the following signature to write
middleware functions:

func myMiddleware(w http.ResponseWriter, r *http.Request, next http.HandlerFunc)

Here you can call the next handler in the middleware stack by invoking the http.HandlerFunc object by
passing the values of the http.ResponseWriter object and the *http.Request object:

// logic before executing the next handler
 next(w, r)
 // logic after running next the handler

You can map the middleware function to the Negroni handler chain with the Use function, which takes
an argument of negroni.Handler. The Use function adds a negroni.Handler into the middleware stack
(see Listing 6-12). Handlers are invoked in the order in which they are added to a Negroni instance.

Listing 6-12.  Registering a Middleware Function with Negroni

n := negroni.New()
n.Use(negroni.HandlerFunc(myMiddleware))

The middleware function is converted into a negroni.HandlerFunc type and added to the Negroni
middleware stack. HandlerFunc is an adapter that allows ordinary functions to be used as Negroni handlers.

Registering Middleware for Specific Routes
When middleware functions such as logging are used, they might be decorated with across-the-application
handlers. But you may need to use middleware functions for some specific routes; for example, you might
want to apply some middleware functions to be executed with some specific application handlers that will
be accessible to an administrator user account. In this context, you can create a new Negroni instance and
use it as your route handler.

Listing 6-13 is the code block that applies middleware functions to be used with some specific routes.

Listing 6-13.  Registering Middleware Handlers for Specific Routes

router := mux.NewRouter()
adminRoutes := mux.NewRouter()
// add admin routes here

// Create a new negroni for the admin middleware
router.Handle("/admin", negroni.New(
 Middleware1,
 Middleware2,
 negroni.Wrap(adminRoutes),
))

Chapter 6 ■ HTTP Middleware

115

Working with a Negroni Middleware Stack
Listing 6-5 showed the control flow of middleware functions in which two middleware functions have been
decorated into application handlers. Let’s rewrite the program to show how to write custom middleware
functions with Negroni (see Listing 6-14).

Listing 6-14.  Illustrating Middleware Control Flow with Negroni

package main

import (
 "fmt"
 "log"
 "net/http"

 "github.com/codegangsta/negroni"
)

func middlewareFirst(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) {
 log.Println("MiddlewareFirst - Before Handler")
 next(w, r)
 log.Println("MiddlewareFirst - After Handler")
}

func middlewareSecond(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) {
 log.Println("MiddlewareSecond - Before Handler")
 if r.URL.Path == "/message" {

if r.URL.Query().Get("password") == "pass123" {
log.Println("Authorized to the system")
next(w, r)

} else {
log.Println("Failed to authorize to the system")
return

}
 } else {

next(w, r)
 }
 log.Println("MiddlewareSecond - After Handler")
}

func index(w http.ResponseWriter, r *http.Request) {
 log.Println("Executing index Handler")
 fmt.Fprintf(w, "Welcome")
}
func message(w http.ResponseWriter, r *http.Request) {
 log.Println("Executing message Handler")
 fmt.Fprintf(w, "HTTP Middleware is awesome")
}

func iconHandler(w http.ResponseWriter, r *http.Request) {
}

Chapter 6 ■ HTTP Middleware

116

func main() {
 mux := http.NewServeMux()
 mux.HandleFunc("/favicon.ico", iconHandler)
 mux.HandleFunc("/", index)
 mux.HandleFunc("/message", message)
 n := negroni.Classic()

n.Use(negroni.HandlerFunc(middlewareFirst))
n.Use(negroni.HandlerFunc(middlewareSecond))
n.UseHandler(mux)
n.Run(":8080")

}

Run the program and make requests to "/", and make requests to "/message" by providing the wrong
value to the querystring variable password and providing the value "pass123" to the querystring variable
password, respectively. You should get log messages similar to these:

[negroni] listening on :8080

[negroni] Started GET /

2015/04/30 14:45:44 MiddlewareFirst - Before Handler

2015/04/30 14:45:44 MiddlewareSecond - Before Handler

2015/04/30 14:45:44 Executing index Handler

2015/04/30 14:45:44 MiddlewareSecond - After Handler

2015/04/30 14:45:44 MiddlewareFirst - After Handler

[negroni] Completed 200 OK in 1.0008ms

[negroni] Started GET /message

2015/04/30 14:45:52 MiddlewareFirst - Before Handler

2015/04/30 14:45:52 MiddlewareSecond - Before Handler

2015/04/30 14:45:52 Failed to authorize to the system

2015/04/30 14:45:52 MiddlewareFirst - After Handler

[negroni] Completed 0 in 1.0008ms

[negroni] Started GET /message

2015/04/30 14:46:00 MiddlewareFirst - Before Handler

2015/04/30 14:46:00 MiddlewareSecond - Before Handler

2015/04/30 14:46:00 Authorized to the system

2015/04/30 14:46:00 Executing message Handler

2015/04/30 14:46:00 MiddlewareSecond - After Handler

2015/04/30 14:46:00 MiddlewareFirst - After Handler

[negroni] Completed 200 OK in 1.0071ms

You can easily understand the control flow of handler functions by looking at these log messages.

Chapter 6 ■ HTTP Middleware

117

To rewrite an existing program to work with Negroni, the middleware handler functions must be
modified to be compatible with the negroni.Handler interface:

func middlewareFirst(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) {
//logic before next handler
next(w, r)
//logic after next handler

}

func middlewareSecond(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) {
//logic before next handler
next(w, r)
//logic after next handler

}

After the middleware handler functions are compatible with the negroni.Handler interface, they need
to be added to the Negroni middleware stack by using the Use function of the Negroni instance. Handlers are
invoked in the order in which are added to a Negroni middleware stack:

n := negroni.Classic()
n.Use(negroni.HandlerFunc(middlewareFirst))
n.Use(negroni.HandlerFunc(middlewareSecond))

As the Negroni instance is created with the Classic function, the following built-in middleware
functions will be available on the middleware stack:

• negroni.Recovery

• negroni.Logging

• negroni.Static

You can also add middleware functions when you create Negroni instances by using the New function:

n := negroni.New(
negroni.NewRecovery(),
negroni.HandlerFunc(middlewareFirst),
negroni.HandlerFunc(middlewareSecond),
negroni.NewLogger(),
negroni.NewStatic(http.Dir("public")),

)

Negroni provides a very simple and elegant library to work with HTTP middleware functions. This is a
very tiny library, but really helpful when you build real-world web applications and RESTful services in Go.
One of the major advantages of Negroni is that it is fully compatible with the net/http library. If you don’t
like to use full-fledged web development frameworks to build web applications in Go, making and using
HTTP middleware with Negroni is a good choice for building efficient web applications, which helps you to
achieve better reusability and maintainability.

Chapter 6 ■ HTTP Middleware

118

Sharing Values Among Middleware
In the previous sections, you learned how to make and use HTTP middleware in Go. The example
middleware was running independently without depending on any data from other middleware handlers
and application handlers. In some cases, however, you may need to provide values to the next middleware or
share values between middleware handlers and application handlers. For example, when you authorize to
an application through a middleware handler function, it may need to provide some user-specific values to
the next handler in the request-handling cycle.

Using Gorilla context
Many third-party packages are available for store values to be shared during a request lifetime. The context
package from the Gorilla web toolkit is a great choice that can be used for sharing values during a request
lifetime.

To install context, run the following command in the terminal:

$ go get github.com/gorilla/context

To work with the context package, the github.com/gorilla/context package must be added to the
import list:

import "github.com/gorilla/context"

Setting and Getting Values with Gorilla context
To set values to a context object, use the Set function (see Listing 6-15).

Listing 6-15.  Setting Values in Gorilla context

context.Set(r, "user", "shijuvar")

Here r is the *http.Request object in your handler functions. To get values from the context object,
use Get or the GetOk function (see Listing 6-16).

Listing 6-16.  Getting Values from Gorilla context

// val is "shijuvar"
val := context.Get(r, "user")
// returns ("shijuvar", true)
val, ok := context.GetOk(r, foo.MyKey)

Listing 6-17 is an example program in which a value from a middleware handler function is passed to
an application handler.

Chapter 6 ■ HTTP Middleware

119

Listing 6-17.  Middleware Function Passing a Value to an App Handler

package main

import (
 "fmt"
 "log"
 "net/http"

 "github.com/codegangsta/negroni"
 "github.com/gorilla/context"
)

func Authorize(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) {
 token := r.Header.Get("X-AppToken")
 if token == "bXlVc2VybmFtZTpteVBhc3N3b3Jk" {

log.Printf("Authorized to the system")
context.Set(r, "user", "Shiju Varghese")
next(w, r)

 } else {
http.Error(w, "Not Authorized", 401)

 }
}

func index(w http.ResponseWriter, r *http.Request) {
 user := context.Get(r, "user")
 fmt.Fprintf(w, "Welcome %s!", user)
}

func main() {
 mux := http.NewServeMux()
 mux.HandleFunc("/", index)
 n := negroni.Classic()

n.Use(negroni.HandlerFunc(Authorize))
n.UseHandler(mux)
n.Run(":8080")

}

A middleware handler function is created to authorize HTTP requests. The HTTP header value
"X-AppToken" is read from the request object and validates the security token. This is one of the ways to
validate RESTful APIs in which HTTP clients must send the security token through an HTTP header. Some
APIs validate the token and provide an access token to access the application for a specific session.

In this program, you want to pass the username into the next handler: the application handler. So you
set the user value to the context object from the authorized middleware handler, which will be accessible
in the HTTP request lifecycle. Here the value of the context object is accessed from the index application
handler.

By leveraging the Gorilla context package to share values between middleware handlers, or share
values with middleware handlers and application handlers, you can build useful middleware handler
functions to build real-world applications.

Chapter 6 ■ HTTP Middleware

120

Summary
Using HTTP middleware is an important practical approach for building real-world applications in Go.
Middleware is a pluggable and self-contained piece of code that wraps application handlers, which can
be used for implementing shared behaviors into across-the-application handlers or into some specific
application handlers.

HTTP middleware allows you to build applications with pluggable logic that obtains a greater level
of reusability maintainability. Using HTTP middleware, you can execute some logic before or after HTTP
request handlers. Because HTTP middleware are pluggable components, you can add or remove them at
any time.

The Alice third-party package allows you to implement chaining of middleware handlers with an
elegant syntax using its fluent interface. The Negroni third-party package is a great library for handling
middleware functions, which also come with some default middleware functions. Negroni provides an
idiomatic approach to using HTTP middleware in Go.

When you build real-world applications, you may need to share values among various middleware
handlers and application handlers. The third-party context package from the Gorilla web toolkit can be
used for sharing values during a request lifetime. It is a great web development stack in Go to use
net/http as the fundamental programming block for web development, Negroni as the handler for working
with HTTP middleware, Gorilla mux as the router, and Gorilla context as the mechanism for sharing
values during the request lifetime. With this web development stack, you don’t need a full-fledged web
development framework.

121

Chapter 7

Authentication to Web Apps

Security is one of the most important factors to consider when building a successful web application or web
API. If you can’t protect your applications from unauthorized access, the entire application won’t make
any sense, regardless of its functionality. You might have developed a brilliant user experience for your
applications, but all your implementations will fail if you can’t secure your applications. Authentication and
authorization enable applications to be protected from unauthorized access to their protected resources.

This chapter shows you how to protect web-based systems using various authentication approaches.
It focuses more on modern authentication approaches for securing applications, which are useful when you
build web applications and mobile applications by using a web API as the server-side implementation.

Authentication and Authorization
Authentication is the process of identifying clients of applications and services that will gain access to
protected resources. These clients will be end users or other applications and services. Typically, a database
stores user credentials such as usernames and passwords, and end users enter valid usernames and
passwords to gain access to applications.

Authorization is the process of granting permission to do certain actions or access resources, which
is permitted for authenticated clients. Authorization works with the authentication process, in which you
can attach authorization roles with user credentials. When you store user credentials in a database, you can
associate authorization roles and permissions along with the user information. When you build applications,
you can differentiate access permissions by defining multiple authorization roles. For example, if you want
to provide administrator functionalities to certain authenticated users, you can define an authorization role
for administrator users along with the access permissions, so you can differentiate the access permissions
from other authenticated users. Some applications may not have any authorization roles because all
authenticated users will have the same privileges to the applications.

A proper strategy for authentication and authorization is the most important factor when you design
web applications. If you design your applications with proper authentication and authorization, you avoid
lots of security challenges, which are very critical for a successful application.

Authentication Approaches
There are various approaches available for implementing authentication into applications. Typically, user
credentials are stored in a database of an application. The web server takes the username and password
through an HTML form and then validates these credentials with the credentials stored in the database. But in
modern applications, people also use social identity providers such as Facebook, Twitter, LinkedIn, and Google
as social identities for authentication, which helps applications avoid maintaining separate user identity
systems for each individual application. End users don’t need to remember their user ID and password for
individual applications; they can use their existing social identities to authenticate to applications.

Chapter 7 ■ Authentication to Web Apps

122

Modern web development is moving toward an API-based approach in this mobility era, in which these
APIs are being consumed from both mobile clients and web clients. More-reliable security systems must
be provided to modern web applications. APIs are developed based on a stateless design, which should be
considered when authentication systems for APIs are designed. So you can’t use the same approach for APIs,
which you have been using for traditional web applications.

Once users have been logged in to the system, they must be able to access web server resources in
subsequent HTTP requests without providing user credentials for each HTTP request. There are two kinds of
approaches available for keeping the user as a “logged-in” user for subsequent HTTP requests. A conventional
approach is to use an HTTP session and cookies, and a modern approach is to use an access token generated
by the web server. A token-based approach is a convenient solution for web APIs; an HTTP session and
cookies are appropriate for traditional web applications.

Cookie-Based Authentication
A cookie-based approach is the most widely used method of implementing authentication into web
applications. In this approach, HTTP cookies are used to authenticate users on every HTTP request after
they have logged in to the system with user credentials.

Figure 7-1 illustrates the cookie-based authentication workflow.

Figure 7-1.  Cookie-based authentication workflow

Chapter 7 ■ Authentication to Web Apps

123

In cookie-based authentication, the web server first validates the username and password, which
are sent through an HTML form. Once the user credentials are validated with the credentials stored in
the database, the HTTP server sets a session cookie that typically contains the user information. For each
subsequent HTTP request, the web server can validate the HTTP request based on the value contained in
the cookie. Some server-side technologies provide a very rich infrastructure for implementing this kind of
authentication, in which you can easily implement cookie-based authentication by simply calling its API
methods. In other server-side technologies and frameworks, you can manually write some code for writing
cookies and storing values into session storage to implement the authentication.

A cookie-based approach that combines with sessions is a good fit for traditional web applications in
which you implement everything at the server side, including the logic for UI rendering. The web application
is accessed from normal desktop browsers.

In Go, you can use packages such as sessions (www.gorillatoolkit.org/pkg/sessions), which is
provided by the Gorilla web toolkit, to implement authentication using cookie-based sessions.

Using a cookie-based approach to implement authentication into a web API is not a good idea for
several reasons. When you build APIs, a stateless design is an ideal design choice. If you use a cookie-based
approach, you need to maintain a session store for your API, which violates the design choice of being a
stateless API. The cookie-based approach also doesn’t work well when web server resources are accessed
from different domains due to cross-origin resource sharing (CORS) constraints.

Token-Based Authentication
Methods of developing web applications have changed in the past few years. The era of mobile application
development has also changed the way web-based systems are developed. Modern web development is
moving toward an API-driven approach in which a web API (often a RESTful API) is provided on the server
side, and web applications and mobile applications are built by consuming the web API.

A token-based approach is a modern approach for implementing authentication into web applications
and web APIs. In a token-based approach (see Figure 7-2), an access token ID used for authentication on
every HTTP request. In this approach, you can also use usernames and passwords to log in to the system. If
the user gets access to the system, the authentication system generates an access token for the subsequent
HTTP requests to get authentication into the web server. These access tokens are a securely signed string
that can be used for accessing HTTP resources on every HTTP request. Typically, the access tokens are sent
with an HTTP Authorization header as a bearer token that can be validated at the web server.

http://www.gorillatoolkit.org/pkg/sessions

Chapter 7 ■ Authentication to Web Apps

124

Sometimes, you can use a third-party identity provider or a third-party API for authentication. In this
context, a client ID and a secret key for getting logged in to the authentication system are used instead of a
username and password.

Here is the token-based authentication process:

1.	 Authenticate into the system by providing a username and password, or by
providing a client ID and a secret key.

2.	 If the authentication request is successful, the authentication system generates a
securely signed string as an access token for subsequent HTTP requests.

3.	 The client application receives the token from the web server and uses it to
access web server resources.

Figure 7-2.  Token-based authentication workflow

Chapter 7 ■ Authentication to Web Apps

125

4.	 The client application provides the access token on every HTTP request into
the web server. An HTTP header is used to transmit the access token into the
web server.

5.	 The web server validates the access token provided by the client application and
then provides the web server resources if the access token is valid.

A token-based approach is very convenient when you build mobile applications for which you don’t
need to leverage cookies on the client. When you use APIs as your server-side implementation, you don’t
need to maintain session stores that allow you to build stateless APIs on the server side, which can be easily
consumed from variety of client applications without any hurdles. Another benefit of using a token-based
approach is that you can easily make AJAX calls to any web server, regardless of domains, because you use
an HTTP header to make the HTTP requests.

A token-based approach is an ideal solution for providing security to RESTful APIs. On the web
technology space, Go is primarily used for building back-end APIs (often RESTful APIs), so the focus of this
chapter is primarily on the token-based approach.

Authentication with OAuth 2
A token-based approach actually comes from an OAuth specification that is defined for solving problems
with authentication, for enabling applications to access each other’s data with an open authentication
model. Let’s have a brief look at OAuth before diving into an example authentication program using an
OAuth 2 service provider.

Understanding OAuth 2
OAuth 2 is an open specification for authentication. The OAuth 2.0 authorization framework enables a
third-party application to obtain limited access to an HTTP service such as Facebook, Twitter, GitHub, and
Google. The most important thing is that OAuth 2 is a specification for authentication flow.

OAuth 2 provides the authorization flow for web applications, desktop applications, and mobile
applications. When you build applications, you can delegate user authentication to the social identity
providers such as Facebook, Twitter, GitHub, and Google. You can register your applications into an identity
provider to authorize the application to access the user account. When you register your application into the
identity provider, typically it gives you a client ID and a client secret key to obtain access to the user account
of the identity provider. Once you are logged in with client ID and client secret key, the authentication server
gives you an access token that can be used for accessing protected resources of the web server.

Section 7.2.2 discussed the token-based approach workflow for authentication. The use of a bearer
token is a specification defined in the OAuth 2 authorization framework, which defines how to use bearer
tokens in HTTP requests to access protected resources in OAuth 2.

Several OAuth 2 service providers are available for authentication. Because OAuth 2 is an open standard
for authorization, you can implement these standards for your web APIs as an authentication mechanism for
various client applications, including mobile and web applications.

■ Note OA uth 2.0 is the next evolution of the OAuth protocol that was originally created in 2006. OAuth 2.0
focuses on client developer simplicity while providing specific authorization flows for web applications,
desktop applications, and mobile applications. The final version of the OAuth 2 specification can be found at
http://tools.ietf.org/html/rfc6749.

http://tools.ietf.org/html/rfc6749

Chapter 7 ■ Authentication to Web Apps

126

Authentication with OAuth 2 using the Goth Package
The Go ecosystem provides various packages for working on the OAuth 2 authentication protocol. The Goth
third-party package and its Gothic subpackage allow you to work with OAuth 2 providers. Goth supports
OAuth 2 service providers such as LinkedIn, Facebook, Twitter, Google, and GitHub. The Goth package
provides various providers to work with each service provider. For example, it provides the github.com/
markbates/goth/providers/twitter package for working with the Twitter identity provider.

To install the Goth package, run the following command in the terminal:

go get github.com/markbates/goth

To work with the Goth package, you must add github.com/markbates/goth to the import list:

import "github.com/markbates/goth"

Listing 7-1 is an example program that uses Twitter and Facebook as identity providers. In this program,
Twitter and Facebook login credentials are used to authenticate into an example application.

Listing 7-1.  Authentication with OAuth 2 Service Providers

package main

import (
 "encoding/json"
 "fmt"
 "html/template"
 "log"
 "net/http"
 "os"

 "github.com/gorilla/pat"
 "github.com/markbates/goth"
 "github.com/markbates/goth/gothic"
 "github.com/markbates/goth/providers/facebook"
 "github.com/markbates/goth/providers/twitter"
)

//Struct for parsing JSON configuration
type Configuration struct {
 TwitterKey string
 TwitterSecret string
 FacebookKey string
 FacebookSecret string
}

var config Configuration

//Read configuration values from config.json
func init() {
 file, _ := os.Open("config.json")
 decoder := json.NewDecoder(file)
 config = Configuration{}
 err := decoder.Decode(&config)

Chapter 7 ■ Authentication to Web Apps

127

 if err != nil {
log.Fatal(err)

 }
}
func callbackAuthHandler(res http.ResponseWriter, req *http.Request) {
 user, err := gothic.CompleteUserAuth(res, req)
 if err != nil {

fmt.Fprintln(res, err)
return

 }
 t, _ := template.New("userinfo").Parse(userTemplate)

t.Execute(res, user)
}
func indexHandler(res http.ResponseWriter, req *http.Request) {
 t, _ := template.New("index").Parse(indexTemplate)

t.Execute(res, nil)
}
func main() {
 //Register providers with Goth
 goth.UseProviders(

�twitter.New(config.TwitterKey, config.TwitterSecret, "http://localhost:8080/auth/
twitter/callback"),
�facebook.New(config.FacebookKey, config.FacebookSecret, "http://localhost:8080/auth/
facebook/callback"),

)
 //Routing using Pat package
 r := pat.New()

r.Get("/auth/{provider}/callback", callbackAuthHandler)
r.Get("/auth/{provider}", gothic.BeginAuthHandler)
r.Get("/", indexHandler)

 server := &http.Server{
Addr: ":8080",
Handler: r,

 }
 log.Println("Listening...")
 server.ListenAndServe()

}

//View templates

var indexTemplate = `
<p>Log in with Twitter</p>
<p>Log in with Facebook</p>
`

var userTemplate = `
<p>Name: {{.Name}}</p>
<p>Email: {{.Email}}</p>
<p>NickName: {{.NickName}}</p>

Chapter 7 ■ Authentication to Web Apps

128

<p>Location: {{.Location}}</p>
<p>AvatarURL: {{.AvatarURL}} </p>
<p>Description: {{.Description}}</p>
<p>UserID: {{.UserID}}</p>
<p>AccessToken: {{.AccessToken}}</p>
`

Twitter and Facebook are used to log in to the example application. To do this, register the application
with the corresponding identity provider. When you register an application with an identity provider, you get
a client ID and secret key. Twitter and Facebook providers are registered with the Goth package by providing
a client ID, client secret key, and callback URL.

After a successful login with an OAuth2 service provider, the server redirects to the callback URL:

//Register OAuth2 providers with Goth
 goth.UseProviders(

�twitter.New(config.TwitterKey, config.TwitterSecret, "http://localhost:8080/auth/
twitter/callback"),
�facebook.New(config.FacebookKey, config.FacebookSecret, "http://localhost:8080/auth/
facebook/callback"),

)

The client ID and client secret key are read from a configuration file in the init function.
Run the program and navigate to http://localhost:8080/. Figure 7-3 shows the home page of the

application, which provides authentication with Twitter and Facebook.

Let’s choose Twitter to obtain access to the identity provider. It asks to authorize the application with
Twitter account credentials, as shown in Figure 7-4.

Figure 7-3.  Index page of the example program

Chapter 7 ■ Authentication to Web Apps

129

After a successful login with a social identity provider, the application is authorized to obtain access
to the authentication server and gives user information to the application, including an access token and
redirect to the callback URL that was provided when the social identity provider was registered with the
Goth package.

Here is the application handler for the callback URL:

func callbackAuthHandler(res http.ResponseWriter, req *http.Request) {
 user, err := gothic.CompleteUserAuth(res, req)
 if err != nil {

fmt.Fprintln(res, err)
return

 }
 t, _ := template.New("userinfo").Parse(userTemplate)

t.Execute(res, user)
}

When the CompleteUserAuth function of the Goth package is called, it returns a User struct of the Goth
package. The User struct contains the information common to most OAuth and OAuth2 providers. All the
“raw” data from the provider can be found in the RawData field.

Figure 7-4.  Logging in with Twitter credentials

Chapter 7 ■ Authentication to Web Apps

130

Here is the definition of User struct from the source of the Goth package:

type User struct {
RawData map[string]interface{}
Email string
Name string
NickName string
Description string
UserID string
AvatarURL string
Location string
AccessToken string
AccessTokenSecret string

}

Finally, the view template is rendered by providing the User struct. Here is the view template used to
render the UI to display user information:

var userTemplate = `
<p>Name: {{.Name}}</p>
<p>Email: {{.Email}}</p>
<p>NickName: {{.NickName}}</p>
<p>Location: {{.Location}}</p>
<p>AvatarURL: {{.AvatarURL}} </p>
<p>Description: {{.Description}}</p>
<p>UserID: {{.UserID}}</p>
<p>AccessToken: {{.AccessToken}}</p>
`

Figure 7-5 shows the user information obtained from Twitter.

Figure 7-5.  User information page obtained from Twitter

Chapter 7 ■ Authentication to Web Apps

131

Authentication with JSON Web Token
Section 7.2.2 discussed a token-based approach for authentication in which a bearer token is used to access
the protected resources of a web server. JSON Web Token (JWT) is an open standard for generating and
using bearer tokens for authentication between two parties. JWT is a compact, URL-safe way of representing
claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is
digitally signed using JSON Web Signature (JWS). Like OAuth 2, JWT is an open standard for token-based
authentication. (The pronunciation of JWT is the same as for the English word jot.)

JWT is a signed JSON object that can be used as a bearer token in OAuth 2 for authentication. A JWT
token is made of three parts, separated by a . (period). The first part is called the Header, which is a JSON
object that has been base64url-encoded. The second part, called the Claims, is also a JSON object that
contains the claims conveyed by the JWT. The last part, called the Signature, is verified with the information
provided by the Header.

■ Note T he draft of the JWT specification is available here: http://self-issued.info/docs/draft-ietf-
oauth-json-web-token.html

Working with JWT Using the jwt-go Package
The third-party Go package jwt-go provides various utility functions for working with JWT. It provides the
following utilities:

• Generates and signs JWT tokens

• Parses and verifies JWT tokens

The jwt-go library supports the signing algorithms of RSA256 and HMAC SHA256.
To install the jwt-go package, enter the following command in the terminal:

go get github.com/dgrijalva/jwt-go

To work with the jwt-go package, you must add github.com/dgrijalva/jwt-go to the import list:

import "github.com/dgrijalva/jwt-go"

Let’s write an example API to work with JWT tokens using the jwt-go package. Steps of the
authentication flow in the example program are the following:

1.	 The API server validates the user credentials (username and password) provided
by the client application.

2.	 If the login credentials are valid, the API server generates a JWT token and sends
it to the client application as an access token.

3.	 The client applications can store the JWT token in client storage. HTML 5 local
storage is generally used for storing JWT tokens.

4.	 To obtain access to protected resources of the API server, the client application
sends an access token as a bearer token in the HTTP header Authorization
(Authorization: Bearer "Access_Token") on every HTTP request.

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

Chapter 7 ■ Authentication to Web Apps

132

Before starting the example program, let’s generate RSA keys for the application to use to sign the
tokens. The RSA keys can be generated by using the openssl command-line tool.

Run the following commands:

openssl genrsa -out app.rsa 1024
openssl rsa -in app.rsa -pubout > app.rsa.pub

These commands generate a private and public key. 1024 is the size of the key that was generated.
Listing 7-2 shows the example program.

Listing 7-2.  JWT Token-based Authentication with the jwt-go Package

package main

import (
 "encoding/json"
 "fmt"
 "io/ioutil"
 "log"
 "net/http"
 "time"

 jwt "github.com/dgrijalva/jwt-go"
 "github.com/gorilla/mux"
)

// using asymmetric crypto/RSA keys
// location of the files used for signing and verification
const (
 privKeyPath = "keys/app.rsa" // openssl genrsa -out app.rsa 1024
 pubKeyPath = "keys/app.rsa.pub" // openssl rsa -in app.rsa -pubout > app.rsa.pub
)

// verify key and sign key
var (
 verifyKey, signKey []byte
)

//struct User for parsing login credentials
type User struct {
 UserName string `json:"username"`
 Password string `json:"password"`
}

// read the key files before starting http handlers
func init() {
 var err error

 signKey, err = ioutil.ReadFile(privKeyPath)
 if err != nil {

log.Fatal("Error reading private key")
return

 }

Chapter 7 ■ Authentication to Web Apps

133

 verifyKey, err = ioutil.ReadFile(pubKeyPath)
 if err != nil {

log.Fatal("Error reading private key")
return

 }
}

// reads the login credentials, checks them and creates JWT the token
func loginHandler(w http.ResponseWriter, r *http.Request) {
 var user User
 //decode into User struct
 err := json.NewDecoder(r.Body).Decode(&user)
 if err != nil {
 w.WriteHeader(http.StatusInternalServerError)

fmt.Fprintln(w, "Error in request body")
return

 }
 // validate user credentials
 if user.UserName != "shijuvar" && user.Password != "pass" {
 w.WriteHeader(http.StatusForbidden)

fmt.Fprintln(w, "Wrong info")
return

 }

 // create a signer for rsa 256
 t := jwt.New(jwt.GetSigningMethod("RS256"))

 // set our claims
t.Claims["iss"] = "admin"
t.Claims["CustomUserInfo"] = struct {

Name string
Role string

 }{user.UserName, "Member"}

 // set the expire time
t.Claims["exp"] = time.Now().Add(time.Minute * 20).Unix()
tokenString, err := t.SignedString(signKey)

 if err != nil {
 w.WriteHeader(http.StatusInternalServerError)

fmt.Fprintln(w, "Sorry, error while Signing Token!")
log.Printf("Token Signing error: %v\n", err)
return

 }
 response := Token{tokenString}
 jsonResponse(response, w)
}

Chapter 7 ■ Authentication to Web Apps

134

// only accessible with a valid token
func authHandler(w http.ResponseWriter, r *http.Request) {
 // validate the token
 token, err := jwt.ParseFromRequest(r, func(token *jwt.Token) (interface{}, error) {

// since we only use one private key to sign the tokens,
// we also only use its public counter part to verify
return verifyKey, nil

 })

 if err != nil {
switch err.(type) {

case *jwt.ValidationError: // something was wrong during the validation
vErr := err.(*jwt.ValidationError)

switch vErr.Errors {
case jwt.ValidationErrorExpired:

w.WriteHeader(http.StatusUnauthorized)
fmt.Fprintln(w, "Token Expired, get a new one.")
return

default:
w.WriteHeader(http.StatusInternalServerError)
fmt.Fprintln(w, "Error while Parsing Token!")
log.Printf("ValidationError error: %+v\n", vErr.Errors)
return

}

default: // something else went wrong
w.WriteHeader(http.StatusInternalServerError)
fmt.Fprintln(w, "Error while Parsing Token!")
log.Printf("Token parse error: %v\n", err)
return

}

 }
 if token.Valid {

response := Response{"Authorized to the system"}
jsonResponse(response, w)

 } else {
response := Response{"Invalid token"}
jsonResponse(response, w)

 }

}

type Response struct {
 Text string `json:"text"`
}
type Token struct {
 Token string `json:"token"`
}

Chapter 7 ■ Authentication to Web Apps

135

func jsonResponse(response interface{}, w http.ResponseWriter) {
 json, err := json.Marshal(response)
 if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
return

 }

w.WriteHeader(http.StatusOK)
w.Header().Set("Content-Type", "application/json")
w.Write(json)

}

//Entry point of the program
func main() {

 r := mux.NewRouter()
r.HandleFunc("/login", loginHandler).Methods("POST")
r.HandleFunc("/auth", authHandler).Methods("POST")

 server := &http.Server{
Addr: ":8080",
Handler: r,

 }
 log.Println("Listening...")
 server.ListenAndServe()
}

Generating the JWT Token
If the login is successful, the API server generates the JWT token by using the jwt-go library:

// create a signer for rsa 256
 t := jwt.New(jwt.GetSigningMethod("RS256"))

 // set our claims
t.Claims["iss"] = "admin"
t.Claims["CustomUserInfo"] = struct {

Name string
Role string

 }{user.UserName, "Member"}

 // set the expire time
t.Claims["exp"] = time.Now().Add(time.Minute * 20).Unix()
tokenString, err := t.SignedString(signKey)

In the code block, a signer with "RS256" was created. Claims were set, including an expiration (with the
predefined claim "exp") for the JWT token. Finally, a JWT token was created using the RSA key (private key)
that was generated in the beginning step. The tokenString variable contains the JWT token that is sent to
the client applications.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Authentication to Web Apps

136

Validating the JWT Token
Because there is only one private key ("app.rsa") to sign the tokens, only its public counterpart
("app.rsa.pub") is used to verify the access token.

Here is the authentication handler that validates the access token. It automatically looks at the Bearer
token from the HTTP Authorization header of the HTTP request object.

func authHandler(w http.ResponseWriter, r *http.Request) {
 // validate the token
 token, err := jwt.ParseFromRequest(r, func(token *jwt.Token) (interface{}, error) {

// since we only use one private key to sign the tokens,
// we also only use its public counter part to verify
return verifyKey, nil

 })

 if err != nil {
switch err.(type) {

case *jwt.ValidationError: // something was wrong during the validation
vErr := err.(*jwt.ValidationError)

switch vErr.Errors {
case jwt.ValidationErrorExpired:

w.WriteHeader(http.StatusUnauthorized)
fmt.Fprintln(w, "Token Expired, get a new one.")
return

default:
w.WriteHeader(http.StatusInternalServerError)
fmt.Fprintln(w, "Error while Parsing Token!")
log.Printf("ValidationError error: %+v\n", vErr.Errors)
return

}

default: // something else went wrong
w.WriteHeader(http.StatusInternalServerError)
fmt.Fprintln(w, "Error while Parsing Token!")
log.Printf("Token parse error: %v\n", err)
return

}

 }
 if token.Valid {

response := Response{"Authorized to the system"}
jsonResponse(response, w)

 } else {
response := Response{"Invalid token"}
jsonResponse(response, w)

 }

}

Chapter 7 ■ Authentication to Web Apps

137

The ParseFromRequest function automatically looks at the HTTP header for the access token and
validates the string with a corresponding verification key. By checking the error, you can see whether the
token has expired. The jwt-go package is very helpful when you work with JWT tokens.

Running and Testing the API Server
Let’s run the program and call the API endpoints using the REST client tool. To log in to the API server, send
HTTP Post to "/login" by providing a username and password, as shown in Figure 7-6.

Figure 7-6.  HTTP Post to “/login”

Figure 7-7.  API server sends JWT access token as the response

Figure 7-7 shows the response of the HTTP Post to “/login”.

Chapter 7 ■ Authentication to Web Apps

138

If the login is valid, the API server sends a JWT token to the client as an access token for subsequent
HTTP requests.

Let’s authorize into the API server with the access token received from the HTTP Post to "/login".
Let’s send a request to "/auth" by providing the access token in the HTTP Authorization header as

shown in the following format (see Figure 7-8):

Authorization: Bearer "JWT Access Token"

Figure 7-9 displays the response that shows a successful authentication into the system.

When you build web APIs as the back end for mobile applications and web applications, a token-based
approach is the preferred solution when you provide your own authentication and authorization
infrastructure. This approach is good for mobile clients and SPAs to consume API resources. After logging
in to the system using a username and a password, a client application can obtain an access token to
access protected resources in subsequent HTTP requests. Once the client applications obtain the access
token (JWT token) from an API server, the token can be persisted into a local storage of client applications.
Whenever HTTP requests are sent to access the protected resources of the API server, they then can be taken
from local storage.

Figure 7-8.  Authenticating into the API server with a JWT access token

Figure 7-9.  Successful authentication into the API server

Chapter 7 ■ Authentication to Web Apps

139

Using HTTP Middleware to Validate JWT Tokens
When you work with JWT tokens as an authentication model for accessing the protected resources of a
server, you have to validate the tokens on every HTTP request. It would be a tedious job to implement
the validation logic in each HTTP request, so HTTP middleware is a great approach for implementing
authentication and authorization logic in web applications in which you can decorate the authentication
middleware into the routes (which is required for authentication). You write authentication logic in one
place that can be applied into multiple routes in which you want to implement authorization for accessing
its protected resources.

Listing 7-3 is an authentication middleware that can be used for decorating into multiple application
handlers to perform authorization.

Listing 7-3.  Authentication Middleware for Validating JWT Tokens

func authMiddleware(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) {
 // validate the token
 token, err := jwt.ParseFromRequest(r, func(token *jwt.Token) (interface{}, error) {

return verifyKey, nil
 })
 if(err==nil && token.Valid) {

next(w,r)
 } else {
 w.WriteHeader(http.StatusUnauthorized)

fmt.Fprint(w, "Authentication failed")
 }
}

If the token is valid, the next handler in the middleware stack is called.
Here is the code block that decorates an authentication middleware into an application handler for a

protected resource:

r.HandleFunc("/login", loginHandler).Methods("POST")
r.Handle("/admin", negroni.New(

negroni.HandlerFunc(authMiddleware),
negroni.Wrap(http.HandlerFunc(adminHandler)),

))

The Negroni package for the middleware stack is used. For the protected resource "/admin", the
authMiddleware middleware handler is decorated into the adminHandler application handler.

Summary
When you build web applications and RESTful APIs, security is one of the most important factors for a
successful application. If you can’t protect your application from unauthorized access, the entire application
doesn’t make any sense, despite providing a good user experience.

You usually use two kinds of authentication models for authorizing HTTP requests to access the
protected resources of a server: cookie-based authentication and token-based authentication. A cookie-
based authentication is the conventional approach that works well for traditional and stand-alone web
applications in which server-side implementation provides everything, including UI rendering.

Chapter 7 ■ Authentication to Web Apps

140

A token-based approach is great for adding authentication into RESTful APIs that can be easily accessed
from various client applications, including mobile and web applications. A token-based approach is a very
convenient model for mobile applications because tokens can be sent through an HTTP header as bearer
tokens. When a token-based approach is used, Ajax requests can be sent to any API server, regardless of
domain constrains, thus avoiding CORS issues.

OAuth 2 is an open standard for authentication that allows applications to delegate authentication
to various OAuth 2 service providers such as LinkedIn, GitHub, Twitter, Facebook, and Google. Several
OAuth 2 service providers are available as identity providers. The Go third-party package Goth allows you to
implement authentication with various OAuth 2 service providers. In the OAuth 2 authentication flow, an
access token is used to obtain access to protected resources.

JSON Web Token (JWT) is an open standard for generating and using bearer tokens for authentication
between two parties. JWT is a compact, URL-safe way to represent claims to be transferred between two
parties. The third-party Go package jwt-go provides various utility functions for working with JWT tokens.
It allows you to easily generate JWT tokens and verify tokens for authentication. When you use token-based
authentication, you might have to apply authentication logic into multiple application handlers. In this
context, you can use HTTP middleware to implement authentication logic, which can decorate into multiple
application handlers.

141

Chapter 8

Persistence with MongoDB

When you build web applications, persistence of application data is very important. You can define the data
model of your Go applications using structs, in which you can program against the structs for working with
application data, but you need persistent storage for your application data.

This chapter shows you how to persist application data into MongoDB, which is a popular NoSQL database.
This chapter covers the following:

• Introduction to MongoDB

• The mgo package

• Working with MongoDB using mgo

• Persistence with MongoDB

Introduction to MongoDB
MongoDB is a popular NoSQL database that has been widely used for modern web applications. MongoDB
is an open-source document database that provides high performance, high availability, and automatic
scaling. MongoDB is a nonrelational database that stores data as documents in a binary representation
called BSON Binary JSON (BSON). In short, MongoDB is the data store for BSON documents. Go structs can
be easily serialized into BSON documents.

For more details on MongoDB and to get instructions for download and install, check out the MongoDB
web site here: www.mongodb.org/.

■ Note  A NoSQL (often interpreted as Not Only SQL) database provides a mechanism for data storage and
retrieval. It provides an alternative approach to the tabular relations used in relational databases to design
data models. A NoSQL database is designed to cope with modern application development challenges such
as dealing with large volumes of data with easier scalability and performance. When compared with relational
databases, the NoSQL database can provide high performance, better scalability, and cheaper storage.
NoSQL databases are available in different types: document databases, graph stores, key-value stores, and
wide-column stores. MongoDB is a popular document database.

A MongoDB database holds a set of collections that consists of documents. A document comprises one
or more fields in which you store data as a set of key-value pairs. In MongoDB, you persist documents into
collections, which are analogous to tables in a relational database. Documents are analogous to rows, and
fields within a document are analogous to columns.

http://www.mongodb.org/

Chapter 8 ■ Persistence with MongoDB

142

Unlike relational databases, MongoDB provides a greater level of flexibility for the schema of
documents, which enables you to change the document schema whenever the data model is evolving.
When you work on MongoDB with Go, your Go structs can become the schema of your documents; you can
change the schema any time you want to alter the structure of application data. Documents in a collection
don’t need to have the same set of fields or schema, and common fields in a collection’s documents can
hold different types of data. This dynamic schema feature is very useful when you build applications in an
evolving way with many development iterations.

Getting Started Using MongoDB
Once you have installed MongoDB, you can start working with it from Go applications using a Go driver for
MongoDB. (Keep in mind that you have to start the MongoDB process before running applications.) You can
start MongoDB from a command line by entering the mongod command with the appropriate command-line
options.

In this chapter, you learn how to persist data and process it with MongoDB using the third-party
package mgo, which is a popular Go driver for MongoDB.

Introduction to mgo Driver for MongoDB
mgo (pronounced mango) is a MongoDB driver for Go that supports the major features of MongoDB. The
mgo package allows you to easily work with MongoDB from Go applications using its simple API that follows
Go idioms. mgo is a mature package that was created in 2010 and sponsored by MongoDB Inc. since 2011. It
is a battle-tested library that is used for larger production scenarios such as Facebook’s Parse.com, a popular
mobile back end as a service (MBaaS) platform written in Go.

Installing mgo
To install the mgo package, run the following command in the terminal:

go get gopkg.in/mgo.v2

To work with mgo, you must add gopkg.in/mgo.v2 and its subpackage gopkg.in/mgo.v2/bson to the
import list:

import (
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

Connecting to MongoDB
To get started working with MongoDB, you have to obtain a MongoDB Session using the Dial function
(see Listing 8-1). The Dial function establishes the connection with the MongoDB server defined by the url
parameter.

Listing 8-1.  Connecting to MongoDB Server and Obtaining a Session

session, err := mgo.Dial("localhost")

Chapter 8 ■ Persistence with MongoDB

143

The Dial function can also be used to connect with a cluster of servers (see Listing 8-2). This is useful
when you scale a MongoDB database into a cluster of servers.

Listing 8-2.  Connecting to a Cluster of MongoDB Servers and Obtaining a Session

session, err := mgo.Dial("server1.mongolab.com,server2.mongolab.com")

You can also use the DialWithInfo function to establish connection to one server or a cluster of servers
(see Listing 8-3). The difference from the Dial function is that you can provide extra information to the
cluster by using the value of the DialInfo type. DialWithInfo establishes a new Session to the cluster of
MongoDB servers identified by the DialInfo type. The DialWithInfo function lets you customize values
when you establish a connection to a server. When you establish a connection using the Dial function, the
default timeout value is 10 seconds, so it times out after 10 seconds if Dial can’t reach to a server. When you
establish a connection using the DialWithInfo function, you can specify the value for the Timeout property.

Listing 8-3.  Connecting to a Cluster of MongoDB Servers Using DialWithInfo

mongoDialInfo := &mgo.DialInfo{
Addrs: []string{"localhost"},
Timeout: 60 * time.Second,
Database: "taskdb",
Username: "shijuvar",
Password: "password@123",

}

 session, err := mgo.DialWithInfo(mongoDialInfo)

The mgo.Session object handles a pool of connections to MongoDB. Once you obtain a Session object,
you can perform write and read operations with MongoDB. MongoDB servers are queried with multiple
consistency rules. SetMode of the Session object changes the consistency mode for the session. Three types
of consistency modes are available: Eventual, Monotonic, and Strong.

Listing 8-4 establishes a Session object and sets a consistency mode.

Listing 8-4.  Establishing a Session Object and a Consistency Mode

session, err := mgo.Dial("localhost")
if err != nil {
 panic(err)
}
defer session.Close()

//Switch the session to a monotonic behavior.
session.SetMode(mgo.Monotonic, true)

It is important to close the Session object at the end of its lifetime by calling the Close method. In the
previous listing, the Close method is called by using the defer function.

Chapter 8 ■ Persistence with MongoDB

144

Accessing Collections
To perform CRUD operations into MongoDB, an object of *mgo.Collection is created, which represents the
MongoDB collection. You can create an object of *mgo.Collection by calling method C of *mgo.Database.
The mgo.Database type represents the named database that can be created by calling the DB method of
*mgo.Session.

Listing 8-5 accesses the MongoDB collection named "categories".

Listing 8-5.  Accessing a MongoDB Collection

c := session.DB("taskdb").C("categories")

The DB method returns a value representing a database named taskdb, which gets an instance of type
Database. Method C of type Database returns a value representing a collection named "categories". The
Collection object can be used for performing CRUD operations.

CRUD Operations with MongoDB
You now know how to establish a MongoDB Session object by using the Dial and DialWithInfo functions.
Let’s take a look at how to perform CRUD operations against the MongoDB database using the mgo package.
In Go, you can persist structs, maps, and slices as BSON documents into a MongoDB database. When you
persist your data as Go types such as structs, maps, and slices, the mgo driver automatically serializes it as
BSON documents.

Inserting Documents
You can insert documents into MongoDB using the Insert method of mgo.Collection. The Insert method
inserts one or more documents into the collection. Using this method, you can insert values of structs, maps,
and document slices.

Inserting Struct Values
The struct type should be your choice when you define a data model for Go applications. So when you work
with MongoDB, you primarily provide values of the struct type to insert BSON documents into a MongoDB
collection. The mgo driver for MongoDB automatically serializes the struct values as BSON documents when
the Insert method is used.

Listing 8-6 inserts three documents into a MongoDB collection.

Listing 8-6.  Inserting Struct Values into MongoDB

package main

import (
 "fmt"
 "log"

 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

Chapter 8 ■ Persistence with MongoDB

145

type Category struct {
 Id bson.ObjectId `bson:"_id,omitempty"`
 Name string
 Description string
}

func main() {
 session, err := mgo.Dial("localhost")
 if err != nil {

panic(err)
 }
 defer session.Close()

 // Optional. Switch the session to a monotonic behavior.
 // Reads may not be entirely up-to-date, but they will always see the
 // history of changes moving forward, the data read will be consistent
 // across sequential queries in the same session, and modifications made
 // within the session will be observed in following queries (read-your-writes).
 // http://godoc.org/labix.org/v2/mgo#Session.SetMode
 session.SetMode(mgo.Monotonic, true)

 //get collection
 c := session.DB("taskdb").C("categories")

 doc := Category{
bson.NewObjectId(),
"Open Source",
"Tasks for open-source projects",

 }
 //insert a category object
 err = c.Insert(&doc)
 if err != nil {

log.Fatal(err)
 }

 //insert two category objects
 err = c.Insert(&Category{bson.NewObjectId(), "R & D", "R & D Tasks"},

&Category{bson.NewObjectId(), "Project", "Project Tasks"})

 var count int
 count, err = c.Count()
 if err != nil {

log.Fatal(err)
 } else {
 fmt.Printf("%d records inserted", count)
 }
}

A struct named Category is created to define the data model and persist struct values into a MongoDB
database. You can specify the type of _id field as bson.ObjectId. ObjectId is a 12-byte BSON type that
holds uniquely identified values. BSON documents stored in a MongoDB collection require a unique _id
field that acts as a primary key.

http://godoc.org/labix.org/v2/mgo#Session.SetMode

Chapter 8 ■ Persistence with MongoDB

146

When you insert a new document, provide an _id field with a unique ObjectId. If an _id field isn’t
provided, MongoDB will add an _id field that holds an ObjectId. When you insert records into a MongoDB
collection, you can call bson.NewObjectId() to generate a unique value for bson.ObjectId. Tag the _id field
to be serialized as _id when the mgo driver serializes the values into a BSON document and also specifies the
omitempty tag to omit values when serializing into BSON if the value is empty.

The Insert method of mgo.Collection is used for persisting values into MongoDB. The Collection
object is created by specifying the name "categories" and inserting values into the "categories" collection
by calling the Insert method. The Insert method inserts one or more documents into the collection. First,
one document with the values of the Category struct is inserted and then two documents are inserted into
the collection. The mgo driver automatically serializes the struct values into BSON representation and inserts
them into the collection.

In this example program, three documents are inserted. The Count method of the Collection object is
called to get the number of records in the collection and finally print the count.

When you run the program for the first time, you should get the following output:

3 records inserted

Inserting Map and Document SliceGo structs are an idiomatic way of defining a data model and
persisting data into MongoDB. But in some contexts, you may need to persist values from maps and slices.

Listing 8-7 shows how to persist values of map objects and document slices (bson.D).

Listing 8-7.  Inserting Values from Map and Document Slices (bson.D)

package main

import (
 "log"

 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

func main() {
 session, err := mgo.Dial("localhost")
 if err != nil {

panic(err)
 }
 defer session.Close()
 session.SetMode(mgo.Monotonic, true)

 //get collection
 c := session.DB("taskdb").C("categories")

 docM := map[string]string{
"name": "Open Source",
"description": "Tasks for open-source projects",

 }

Chapter 8 ■ Persistence with MongoDB

147

 //insert a map object
 err = c.Insert(docM)
 if err != nil {

log.Fatal(err)
 }
 docD := bson.D{

{"name", "Project"},
{"description", "Project Tasks"},

 }

 //insert a document slice
 err = c.Insert(docD)
 if err != nil {

log.Fatal(err)
 }

}

A document is inserted by using a map object and a document slice (bson.D). The bson.D type
represents a BSON document containing ordered elements. Because the Insert method expects the
interface{} type for parameter values, struct, map, and document slices can be provided.

Inserting Embedded Documents
The major difference between relational databases and document databases is that the latter doesn’t
support a relational approach for modeling a domain model. If you want to make a one-to-many
relationship in a relational database, you can create a parent and a child table, in which each record in
the parent table can be associated with multiple records in the child table. To enforce data integrity in this
relational model, you can define a foreign key constraint in the child table that points to a primary key in the
parent table.

MongoDB collections have flexible schema, so a data model can be defined in different ways to achieve
the same objectives. You can choose the right strategy for defining a data model based on the context of the
application. To make relationships among connected data, you can either embed the connected documents
inside the main document or make references between two documents. For making relationships among
connected data, the first strategy (embedding documents) is good in some scenarios; the latter is good for
different scenarios.

■ Note  In Chapter 9, you will learn how to make relationships using a reference among documents. Check
out the MongoDB documentation for more information on data model concepts: https://docs.mongodb.org/
manual/data-modeling/

Listing 8-8 is an example that shows a data model that uses embedded documents to describe
relationships among connected data. In this one-to-many relationship between Category and Tasks data,
Category has multiple Task entities.

http://dx.doi.org/10.1007/978-1-4842-1052-9_9
https://docs.mongodb.org/manual/data-modeling/
https://docs.mongodb.org/manual/data-modeling/

Chapter 8 ■ Persistence with MongoDB

148

Listing 8-8.  Inserting a Document with Embedded Documents

package main

import (
 "log"
 "time"

 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

type Task struct {
 Description string
 Due time.Time
}
type Category struct {
 Id bson.ObjectId `bson:"_id,omitempty"`
 Name string
 Description string
 Tasks []Task
}

func main() {
 session, err := mgo.Dial("localhost")
 if err != nil {

panic(err)
 }
 defer session.Close()
 session.SetMode(mgo.Monotonic, true)
 //get collection
 c := session.DB("taskdb").C("categories")
 //Embedding child collection
 doc := Category{

bson.NewObjectId(),
"Open-Source",
"Tasks for open-source projects",
[]Task{

Task{"�Create project in mgo", time.Date(2015, time.August, 10, 0, 0, 0, 0,
time.UTC)},

Task{"Create REST API", time.Date(2015, time.August, 20, 0, 0, 0, 0, time.UTC)},
},

 }
 //insert a Category object with embedded Tasks
 err = c.Insert(&doc)
 if err != nil {

log.Fatal(err)
 }

}

Chapter 8 ■ Persistence with MongoDB

149

A Category struct is created, in which a slice of the Task struct is specified for the Tasks field to embed
child collection. Embedding documents enables you to get the parent document and associated child
documents by using a single query (you don’t need to execute another query to get the child details).

Reading Documents
The Find method of Collection allows you to query MongoDB collections. When you call the Find method,
you can provide a document to filter the collection data. The Find method prepares a query using the
provided document. To provide the document for querying the collection, you can provide a map or a struct
value capable of being marshalled with BSON. You can use a generic map such as bson.M to provide the
document for querying the data. To query all documents in the collection, you can use nil as the argument
that is equivalent to an empty document such as bson.M{}. The Find method returns the value of the mgo.
Query type, in which you can retrieve results using methods such as One, For, Iter, or Tail.

Retrieving All Records
Listing 8-9 retrieves all documents in a collection by providing nil as the parameter value for the Find
method. This query executes against the data model defined in Listing 8-8.

Listing 8-9.  Querying All Documents in a Collection

iter := c.Find(nil).Iter()
 result := Category{}
 for iter.Next(&result) {

fmt.Printf("Category:%s, Description:%s\n", result.Name, result.Description)
tasks := result.Tasks
for _, v := range tasks {

fmt.Printf("Task:%s Due:%v\n", v.Description, v.Due)
}

 }
if err = iter.Close(); err != nil {

log.Fatal(err)
 }

The Iter method of the Query object is used to iterate over the documents. Iter executes the query and
returns an iterator capable of iterating over all the results. When you use embedded documents to define a
parent-child relationship, you can obtain the associated documents in a single query.

Sorting Records
Documents can be sorted using the Sort method provided by the Query type. The Sort method prepares the
query to order returned documents according to the provided field names.

Listing 8-10 sorts the collection documents.

Listing 8-10.  Ordering Documents Using the Sort Method

iter := c.Find(nil).Sort("name").Iter()
 result := Category{}
 for iter.Next(&result) {

fmt.Printf("Category:%s, Description:%s\n", result.Name, result.Description)
tasks := result.Tasks

Chapter 8 ■ Persistence with MongoDB

150

for _, v := range tasks {
fmt.Printf("Task:%s Due:%v\n", v.Description, v.Due)

}
 }
 if err = iter.Close(); err != nil {

log.Fatal(err)
 }

You can sort the value in reverse order by providing a field name prefixed by a – (minus sign), as shown
in Listing 8-11.

Listing 8-11.  Sorting Documents in Reverse Order

iter := c.Find(nil).Sort("-name").Iter()

Retrieving a Single Record
Listing 8-12 retrieves a single record from a collection by providing a map object to make the query.

Listing 8-12.  Querying a Single Record from a Collection

result := Category{}
err := c.Find(bson.M{"name": "Open-Source"}).One(&result)
if err != nil {
 log.Fatal(err)
}
fmt.Printf("Category:%s, Description:%s\n", result.Name, result.Description)
tasks := result.Tasks
for _, v := range tasks {
 fmt.Printf("Task:%s Due:%v\n", v.Description, v.Due)
}

The bson.M map type is provided to query the data. Here, it queries the collection with the value
provided for the Name field. The One method of the Query type executes the query and unmarshals the first
obtained document into the result argument.

The Collection type provides the method FindId that is a convenience helper equivalent to the
following:

query := c.Find(bson.M{"_id": id})

The FindId method allows you to query the collection with a document _id field.
Listing 8-13 queries the collection with the FindId method.

Listing 8-13.  Querying a Single Record Using FindId

result = Category{}
err = c.FindId(obj_id).One(&result)

Chapter 8 ■ Persistence with MongoDB

151

Updating Documents
The Update method of the Collection type allows you to update existing documents.

Here is the method signature of the Update method:

func (c *Collection) Update(selector interface{}, update interface{}) error

The Update method finds a single document from the collection, matches it with the provided selector
document, and modifies it based on the provided update document. A partial update can be done by using
the keyword "$set" in the update document.

Listing 8-14 updates an existing document.

Listing 8-14.  Updating a Document

err := c.Update(bson.M{"_id": id},
bson.M{"$set": bson.M{

"description": "Create open-source projects",
"tasks": []Task{

Task{"�Evaluate Negroni Project", time.Date(2015, time.August, 15, 0, 0, 0,
0, time.UTC)},

Task{"�Explore mgo Project", time.Date(2015, time.August, 10, 0, 0, 0, 0,
time.UTC)},

Task{"�Explore Gorilla Toolkit", time.Date(2015, time.August, 10, 0, 0, 0, 0,
time.UTC)},

},
}})

A partial update is performed for the fields’ descriptions and tasks. The Update method finds the
document with the provided _id value and modifies the fields based on the provided document.

Deleting Documents
The Remove method of the Collection type allows you to remove a single document.

Here is the method signature of the Remove method:

func (c *Collection) Remove(selector interface{}) error

Remove finds a single document from the collection, matches it with the provided selector document,
and removes it from the database.

Listing 8-15 removes a single document from the collection.

Listing 8-15.  Deleting a Single Document

err := c.Remove(bson.M{"_id": id})

The single document matching the _id field is removed.
The RemoveAll method of the Collection type allows you to remove multiple documents.
Here is the method signature of the RemoveAll method:

func (c *Collection) RemoveAll(selector interface{}) (info *ChangeInfo, err error)

Chapter 8 ■ Persistence with MongoDB

152

RemoveAll finds all documents from the collection, matches the provided selector document, and
removes all documents from the database. If you want to remove all documents from a collection, pass the
selector document as a nil value.

Listing 8-16 removes all documents from a collection.

Listing 8-16.  Removing All Documents from a Collection

c.RemoveAll(nil)

Indexes in MongoDB
MongoDB databases can provide high performance on read operations as compared with relational
databases. In addition to the default performance behavior of MongoDB, you can further improve
performance by adding indexes to MongoDB collections. Indexes in collections provide high performance
on read operations for frequently used queries. MongoDB defines indexes at the collection level and
supports indexes on any field or subfield of the documents in a MongoDB collection.

All MongoDB collections have an index on the _id field that exists by default. If you don’t provide an
_id field, the MongoDB process (mongod) creates an _id field with a unique ObjectId value. The _id index is
unique (you can think of it as a primary key). In addition to the default index on the _id field, you can add an
index to any field.

If you frequently query collections by filtering with a specific field, you should apply an index to ensure
better performance for read operations. The mgo driver provides support for creating indexes using the
EnsureIndex method of Collection, in which you can add the mgo.Index type as the argument.

Listing 8-17 applies a unique index to the field name and later queries with the Name field.

Listing 8-17.  Creating an Index in a MongoDB Collection

package main

import (
 "fmt"
 "log"

 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

type Category struct {
 Id bson.ObjectId `bson:"_id,omitempty"`
 Name string
 Description string
}

func main() {
 session, err := mgo.Dial("localhost")
 if err != nil {

panic(err)
 }
 defer session.Close()

http://docs.mongodb.org/manual/reference/glossary/#term-collection

Chapter 8 ■ Persistence with MongoDB

153

 session.SetMode(mgo.Monotonic, true)

 c := session.DB("taskdb").C("categories")
c.RemoveAll(nil)
// Index
index := mgo.Index{

Key: []string{"name"},
Unique: true,
DropDups: true,
Background: true,
Sparse: true,

 }
 //Create Index
 err = c.EnsureIndex(index)
 if err != nil {

panic(err)
 }

 //insert three category objects
 err = c.Insert(

&Category{bson.NewObjectId(), "Open-Source", "Tasks for open-source projects"},
&Category{bson.NewObjectId(), "R & D", "R & D Tasks"},
&Category{bson.NewObjectId(), "Project", "Project Tasks"},

)
 if err != nil {

panic(err)
 }

 result := Category{}
 err = c.Find(bson.M{"name": "Open-Source"}).One(&result)
 if err != nil {

log.Fatal(err)
 } else {

fmt.Println("Description:", result.Description)
 }
}

An instance of mgo.Index type is created, and the EnsureIndex function is called by providing an Index
type instance as the argument:

index := mgo.Index{
 Key: []string{"name"},
 Unique: true,
 DropDups: true,
 Background: true,
 Sparse: true,
}
err = c.EnsureIndex(index)
if err != nil {
 panic(err)
}

Chapter 8 ■ Persistence with MongoDB

154

The Key property of the Index type allows you to specify a slice of field names to be applied as indexes
on the collections. Here, the field name is specified as an index. Because field names are provided as a slice,
you can provide multiple fields along with a single instance of the Index type. The Unique property of the
Index type prevents two documents from having the same index key.

By default, the index is in ascending order. To create an index in descending order, the field name
should be specified with a prefix dash (-) as shown here:

Key: []string{"-name"}

Managing Sessions
The Dial method of the mgo package establishes a connection to the cluster of MongoDB servers, which returns
an mgo.Session object. You can manage all CRUD operations using the Session object, which manages
the pool of connections to the MongoDB servers. A connection pool is a cache of database connections, so
connections can be reused when new connections to the database are required. When you develop web
applications, using a single global Session object for all CRUD operations is a really bad practice.

A recommended process for managing the Session object in web applications is shown here:

1.	 Obtain a Session object using the Dial method.

2.	 Create a new Session object during the lifetime of an individual HTTP request by
using the New, Copy, or Clone methods on the Session object obtained from the
Dial method. This approach enables the Session object to use the connection
pool appropriately.

3.	 Use the newly obtained Session object to perform all CRUD operations during
the lifetime of an HTTP request.

The New method creates a new Session with the same parameters as the original Session. The Copy
method works just like New, but the copied Session preserves the exact authentication information from the
original Session. The Clone method works just like Copy, but it also reuses the same socket (connection to
the server) as the original Session.

Listing 8-18 is an example HTTP server that uses a copied Session object during the lifetime of an
HTTP request. In this example, a struct type is created to hold the Session object for easily managing
database operations from the application handlers.

Listing 8-18.  HTTP Server Using a New Session for Each HTTP Request

package main

import (
 "encoding/json"
 "log"
 "net/http"

 "github.com/gorilla/mux"
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

var session *mgo.Session

Chapter 8 ■ Persistence with MongoDB

155

type (
 Category struct {

Id bson.ObjectId `bson:"_id,omitempty"`
Name string
Description string

 }
 DataStore struct {

session *mgo.Session
 }
)

//Close mgo.Session
func (d *DataStore) Close() {
 d.session.Close()
}

//Returns a collection from the database.
func (d *DataStore) C(name string) *mgo.Collection {
 return d.session.DB("taskdb").C(name)
}

//Create a new DataStore object for each HTTP request
func NewDataStore() *DataStore {
 ds := &DataStore{

session: session.Copy(),
 }
 return ds
}

//Insert a record
func PostCategory(w http.ResponseWriter, r *http.Request) {
 var category Category
 // Decode the incoming Category json
 err := json.NewDecoder(r.Body).Decode(&category)
 if err != nil {

panic(err)
 }
 ds := NewDataStore()
 defer ds.Close()
 //Getting the mgo.Collection
 c := ds.C("categories")
 //Insert record
 err = c.Insert(&category)
 if err != nil {

panic(err)
 }

w.WriteHeader(http.StatusCreated)
}

Chapter 8 ■ Persistence with MongoDB

156

//Read all records
func GetCategories(w http.ResponseWriter, r *http.Request) {

 var categories []Category
 ds := NewDataStore()
 defer ds.Close()
 //Getting the mgo.Collection
 c := ds.C("categories")
 iter := c.Find(nil).Iter()
 result := Category{}
 for iter.Next(&result) {

categories = append(categories, result)
 }

w.Header().Set("Content-Type", "application/json")
j, err := json.Marshal(categories)
if err != nil {

panic(err)
 }

w.WriteHeader(http.StatusOK)
w.Write(j)

}

func main() {
 var err error
 session, err = mgo.Dial("localhost")
 if err != nil {

panic(err)
 }
 r := mux.NewRouter()

r.HandleFunc("/api/categories", GetCategories).Methods("GET")
r.HandleFunc("/api/categories", PostCategory).Methods("POST")

 server := &http.Server{
Addr: ":8080",
Handler: r,

 }
 log.Println("Listening...")
 server.ListenAndServe()

}

A DataStore struct type is defined to easily manage mgo.Session. Two methods are added to the
DataStore type: Close and C. The Close method releases the resources of the newly created Session object
by calling the Close method of the Session object. This method is invoked by using the defer function after
the lifetime of an HTTP request. The C method returns the Collection object with the given name:

type DataStore struct {
session *mgo.Session

 }

Chapter 8 ■ Persistence with MongoDB

157

//Close mgo.Session
func (d *DataStore) Close() {
 d.session.Close()
}

//Returns a collection from the database.
func (d *DataStore) C(name string) *mgo.Collection {
 return d.session.DB("taskdb").C(name)
}

The NewDataStore function creates a new DataStore object by providing a new Session object using
the Copy method of the Session obtained from the Dial method:

func NewDataStore() *DataStore {
 ds := &DataStore{

session: session.Copy(),
 }
 return ds
}

The NewDataStore function is called to create a DataStore object for providing a copied Session
object being used in the lifetime of an HTTP request. For each handler for a route, a new Session object
is used through the DataStore type. In short, using a global Session object is not a good practice; it is
recommended to use a copied Session object for the lifetime of each HTTP request. This approach allows
you to having multiple Session objects if required.

Summary
When working with web applications, it is important that you persist application data into persistence
storage. In this chapter, you learned how to persist data into MongoDB using the mgo package, which is a
MongoDB driver for Go.

MongoDB is an open-source document database that provides high performance, high availability, and
automatic scaling. MongoDB is the most popular NoSQL database; it has been widely used by modern web
applications. The mgo driver provides a simple API that follows the Go idioms.

You can add indexes to fields of MongoDB collections, which provide high performance on read
operations. When developing web applications in Go, using a global mgo.Session object is not a good
practice. The right approach for managing Session is to create a new Session object by calling Copy, Clone,
or New on the obtained Session object, which was obtained by the Dial method of the mgo package.

The next chapter will show you more about working with the MongoDB database using the mgo package.

159

Chapter 9

Building RESTful Services

The last few chapters discussed various aspects of building web-based systems, including the fundamentals
of Go web programming using the http package, the html/template package for rendering the UI, various
approaches for authentication, HTTP middleware, and data persistence with MongoDB.

This chapter will implement a full-fledged RESTful API application named TaskManager by using the
concepts discussed in previous chapters. This application will also have new features, such as the capability
to manage dependencies for external packages and deploy an HTTP server with Docker.

RESTful APIs: the Backbone of Digital Transformation
Representational State Transfer (REST) is an architectural style for building scalable web services. RESTful
systems typically communicate over the Hypertext Transfer Protocol (HTTP) by using HTTP verbs. The REST
architectural style was first described by Roy Fielding in his doctoral dissertation, in which he described six
constraints applied to the REST architecture.

Here are the six constraints described by Roy Fielding:

• Uniform interface

• Stateless

• Cacheable

• Client-server

• Layered system

• Code on demand (optional)

■ Note  For a better understanding of the REST architectural style, read Roy Fielding’s doctoral dissertation at
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Chapter 9 ■ Building RESTful Services

160

The greatest advantages of REST architecture is that it uses the basic components of web programming.
If you have basic knowledge of HTTP programming, you can easily adopt the REST architecture style for your
applications. It uses HTTP as a transport system to communicate with remote servers. You can use XML and
JSON as the data format to communicate among clients and servers. Resource is a key concept in RESTful
systems, as described by Fielding in his dissertation:

The key abstraction of information in REST is a resource. Any information that can be
named can be a resource: a document or image, a temporal service (e.g. “today’s weather
in Los Angeles”), a collection of other resources, a non-virtual object (e.g. a person), and so
on. In other words, any concept that might be the target of an author’s hypertext reference
must fit within the definition of a resource. A resource is a conceptual mapping to a set of
entities, not the entity that corresponds to the mapping at any particular point in time.

By using uniform resource identifiers (URIs) and HTTP verbs, you can perform actions against the
resources. Let’s say you define the resource "/api/employees". Now you can retrieve the information about
an employee resource using the HTTP verb Get, create a new employee resource using the HTTP verb Post,
update an existing employee resource using the HTTP verb Put, and delete an employee resource using the
HTTP verb Delete.

Web service APIs that follow the REST architecture style are known as RESTful APIs. When you build
RESTful APIs, you use XML and JSON as the data format for exchanging data among client applications and
API servers. Some APIs support both XML and JSON formats; others support a single data format: either
XML or JSON. When you build APIs targeted for mobile applications, the most commonly used data format
is JSON because it is lightweight and easier to consume than it compared to XML. In this chapter, you will
build a JSON-based RESTful API.

API-Driven Development with RESTful APIs
APIs, often RESTful APIs, are becoming the backbone of modern applications by enabling digital
transformation in enterprises. RESTful APIs enable better integration among applications, regardless of
technology, platforms, and devices. They are very important components in many application development
scenarios, including Big Data, the Internet of Things (IoT), Microservice architecture, web applications, and
mobile applications.

The importance of API-based development has increased a lot in the era of mobility. When you build
mobile applications, RESTful APIs can be used as the back end and for building web front-end applications.
In enterprise mobility, the biggest challenge is not about building mobile front-end applications, but to
expose enterprise data into mobile devices. These data might be spans in multiple systems, technologies,
and platforms. RESTful APIs allow you to expose your enterprise data into mobile devices. A RESTful
services layer is an important part of implementation in most enterprise mobility scenarios.

In the past, web applications were developed by implemented everything on the server side, including
user interface rendering logic using server-side templates. Today’s APIs are becoming the central point of web
applications and mobile applications: developers are building RESTful services on the server side and then
building the front-end applications for both web and mobile by leveraging these RESTful services as the back end.

Go: the Great Stack for RESTful Services
I believe that Go may not be a great choice for building conventional web applications in which everything,
including UI rendering, is implemented on the server side. I am not saying that Go is not good for building
traditional web applications; you can build conventional web applications by simply using Go standard
library packages. Go web development frameworks such as Beego and Revel are great for building web

Chapter 9 ■ Building RESTful Services

161

applications, but I strongly believe that Go is a good choice for building highly scalable RESTful API systems
to power the back end for modern applications. Among the technology stacks available for building RESTful
APIs, I highly recommended Go, which gives high performance, greater concurrency support, and simplicity
for building scalable back-end systems. Go’s simplicity and package ecosystem are excellent for writing
loosely coupled, maintainable RESTful services.

The standard library package http provides a great foundation for building scalable web systems. It comes
with built-in concurrency support that executes each HTTP request in a separate goroutine. The http package
comes with a greater number of extensibility points that work well with third-party package ecosystems. If you
want to extend or replace any functionality of the http package, you can easily build your own package without
destroying the design goals of the package. Several useful third-party packages extend the functionality of the
http package, enabling you to build highly scalable web applications and RESTful APIs using Go.

When you build web-based systems, the ecosystem is very important, and there are many mature
database driver packages available for Go. Chapter 8 discussed how to work with MongoDB using the mgo
package. Database driver packages are available for major relational databases and NoSQL databases. If your
back-end systems need to work with middleware messaging systems, you can find client library packages
to work with those systems. NSQ, a real-time distributed messaging platform, is built with Go. In short, the
Go ecosystem, including third-party packages and tools, provides everything required for building scalable
RESTful APIs and other web-based, back-end systems using Go.

Go: the Great Stack for Microservice Architecture
Software development practices have been continuously evolving to cater to solving new challenges. As
a programming language, Go is a great example of language as a solution for solving today’s challenges
of building larger applications. The evolution is happening in software architectures as well. Microservice
architecture is the hottest buzzword in software architectures, which is a fundamental shift in software
development for building larger distributed applications.

In the past, many applications used a monolithic architecture pattern in which all components of the
application, including presentation components, business logic, database access logic, and applications
integration logic, were put in a single deployable unit. When the scope and functionalities of these applications
were evolving, they were maintained as a single application unit by adding new functionalities and software
components. Scaling and maintaining monolithic applications are always a big challenge because of the
complex nature of maintaining everything as a single deployable unit. Microservice architecture is an
alternative architecture pattern that addresses the limitations and challenges of monolithic architecture.

Microservice architecture is a paradigm shift in software development that focuses on building
independently deployable and individual pieces of software. Instead of developing larger monolithic
applications, Microservice architecture recommends building loosely coupled, small pieces of software
services that can be deployed independently of other services. Unlike monolithic architecture, each service
in the Microservice architecture is developed and deployed independently so that you can easily scale
development and deployment. You can even use different technology stacks for developing individual
services because they are deploying and updating independently of other services.

RESTful Services in Microservice Architecture
In Microservice architecture, loosely coupled software services are developed, and the application is built
by composing these services. In this architecture approach, each microservice needs to communicate with
other microservices; RESTful APIs can be used to communicate among these microservices. RESTful APIs
are very important components in the Microservice architecture.

Go is a great technology stack for building applications with the Microservice pattern and its
design philosophy intersects with the Microservice architecture pattern. The idiomatic approach of Go
programming is to develop small pieces of software components as packages and then build applications by
composing these packages.

http://dx.doi.org/10.1007/978-1-4842-1052-9_8

Chapter 9 ■ Building RESTful Services

162

Building RESTful APIs
Let’s build a simple RESTful API application by using the knowledge you have gained from previous
chapters. This RESTful API application provides the back end for building a simple “TaskManager”
application that can be used to manage tasks and give updates and notes about each task. The application
will be persisted into a MongoDB database. This TaskManager RESTful API will be a JSON-based API in
which the JSON data format will be used for sending and receiving messages among client applications and
the RESTful API server.

Third-Party Packages
The following third-party packages will be used for building the TaskManager application:

• gopkg.in/mgo.v2: The mgo package provides a MongoDB driver for Go.

• gopkg.in/mgo.v2/bson: A subpackage of mgo, it provides implementation of the
BSON specification for Go.

• github.com/gorilla/mux: The mux package implements a request router and
dispatcher.

• github.com/dgrijalva/jwt-go: The jwt-go package implements helper functions
for working with JSON Web Tokens (JWT).

• github.com/codegangsta/negroni: The Negroni package provides an idiomatic
approach to HTTP middleware.

Application Structure
Figure 9-1 illustrates the high-level folder structure of the RESTful API application.

Figure 9-1.  Application folder structure

Chapter 9 ■ Building RESTful Services

163

Figure 9-2 illustrates the folder structure and associated files of the completed version of the RESTful
API application.

Figure 9-2.  Folders and associated files of the completed application

Besides the keys and Godeps folders, all other folders represent Go packages. The keys folder, which
contains cryptographic keys for signing JWT and its verification, is used for the authentication of APIs with JWT.
The Godeps folder is used to manage external dependencies of the application using the godep third-party tool.

Chapter 9 ■ Building RESTful Services

164

The RESTful API application has been divided into the following packages:

• common: Implements some utility functions and provides initialization logic for the
application

• controllers: Implements the application’s application handlers

• data: Implements the persistence logic with the MongoDB database

• models: Describes the data model of the application

• routers: Implements the HTTP request routers for the RESTful API

Data Model
The application provides the API for managing tasks. A user can add tasks and can provide updates and
notes against the individual task. Let’s define the data model for this application to be used with the
MongoDB database.

Listing 9-1 defines the data model for the RESTful API application.

Listing 9-1.  Data Model for the Application in models.go

package models

import (
 "time"

 "gopkg.in/mgo.v2/bson"
)

type (
 User struct {

Id bson.ObjectId `bson:"_id,omitempty" json:"id"`
FirstName string `json:"firstname"`
LastName string `json:"lastname"`
Email string `json:"email"`
Password string `json:"password,omitempty"`
HashPassword []byte `json:"hashpassword,omitempty "`

 }
 Task struct {

Id bson.ObjectId `bson:"_id,omitempty" json:"id"`
CreatedBy string `json:"createdby"`
Name string `json:"name"`
Description string `json:"description"`
CreatedOn time.Time `json:"createdon,omitempty"`
Due time.Time `json:"due,omitempty"`
Status string `json:"status,omitempty"`
Tags []string `json:"tags,omitempty"`

 }
 TaskNote struct {

Id bson.ObjectId `bson:"_id,omitempty" json:"id"`
TaskId bson.ObjectId `json:"taskid"`
Description string `json:"description"`
CreatedOn time.Time `json:"createdon,omitempty"`

 }
)

Chapter 9 ■ Building RESTful Services

165

Three structs are created: User, Task, and TaskNote. The User struct represents users of the application.
A user should register at the application to create tasks. An authenticated user can add tasks, which will be
represented with the Task struct. A user can add notes against each task, which will be represented with the
TaskNote struct. The TaskNote entity holds the child details of its parent entity: Task.

Chapter 8 showed how to make a parent–child relationship by embedding child documents into the
parent document. That approach is good for some scenarios, but document references are also appropriate
in other contexts. Here, the parent-child relationships are made with document references. Whenever a
TaskNote object is created, a reference is put to the parent Task document by specifying the TaskId in the
TaskNote object. In this approach, you have to execute separate queries into the MongoDB database to get
the documents of the Task object and TaskNote object. When you follow embedded documents to make a
one-to-many relationship, you can retrieve the information for both parent and child entities by executing a
single query because child documents are embedded into the parent entity.

Resource Modeling for RESTful APIs
When you design RESTful APIs, resource modeling is a very important concept; it is the foundational layer
for designing RESTful APIs. Let’s define the resources of the RESTful API by leveraging URIs as resource
identifiers and HTTP verbs.

Table 9-1 shows the resources identified for the RESTful API.

Table 9-1.  Resources Identified for the RESTful API

URI HTTP Verb Functionality

/users/register Post Creates a new user.

/users/login Post User logs in to the system, which returns a JWT if the login is
successful.

/tasks Post Creates a new task.

/tasks/{id} Put Updates an existing task.

/tasks Get Gets all tasks.

/tasks/{id} Get Gets a single task for a given ID. The value of the ID comes from the
route parameter.

/tasks/users/{id} Get Gets all tasks associated with a user. The value of the user ID comes
from the route parameter.

/tasks/{id} Delete Deletes an existing task for a given ID. The value of the ID comes
from the route parameter.

/notes Post Creates a new note against an existing task.

/notes/{id} Put Updates an existing task note.

/notes Get Gets all task notes.

/notes/{id} Get Gets a single note for a given ID. The value of the ID comes from the
route parameter.

/notes/tasks/{id} Get Gets all task notes for a given task ID. The value of the ID comes
from the route parameter.

/notes/{id} Delete Deletes an existing note for a given ID. The value of the ID comes
from the route parameter.

http://dx.doi.org/10.1007/978-1-4842-1052-9_8

Chapter 9 ■ Building RESTful Services

166

Mapping Resources with Application Routes
You have to map the resource identifiers with the HTTP server’s application routes to execute appropriate
application handlers for the HTTP requests to RESTful API resources. All routes are organized in the routers
package, in which separate Go source files are written to specify the routes for each resource path. In this
RESTful API application, three entities are used: User, Task, and TaskNote. These entities are mapped with
three resources: "/users", "/tasks", and "/notes".

Figure 9-3 illustrates the structure of the routers package directory:

Figure 9-3.  Structure of routers package

Routes for the Users Resource
Let’s define the routes for the Users resource (see Listing 9-2).

Listing 9-2.  Routes for the Users Resource in user.go

package routers

import (
 "github.com/gorilla/mux"
 "github.com/shijuvar/go-web/taskmanager/controllers"
)

func SetUserRoutes(router *mux.Router) *mux.Router {
 router.HandleFunc("/users/register", controllers.Register).Methods("POST")
 router.HandleFunc("/users/login", controllers.Login).Methods("POST")
 return router
}

The SetUserRoutes function receives a pointer to the Gorilla mux router object (mux.Router) as an
argument and returns the pointer of the mux.Router object. Two routes are specified: for registering a
new user and for user login to the system. Application handler functions are called from the controllers
package, which is discussed later in the chapter.

Routes for the Tasks Resource
A user must log in to the system to access the resources of Task and TaskNote. When users log in using
a username and password, the system gives them a JWT that can be used as authorization to access the
resources of the Task and TaskNote entities. The server validates the JWT of HTTP requests in the Task and
TaskNote resources by using an HTTP middleware that wraps the application handlers and ensures that
HTTP requests have a valid bearer token as a JWT.

Chapter 9 ■ Building RESTful Services

167

The third-party package Negroni is used for handling HTTP middleware (refer to Chapter 6). A
middleware handler function named Authorize is in the common package and used to authorize HTTP
requests with the JWT. In the RESTful API application, it isn’t necessary to use the authorization middleware
across the routes of the application; when the resources of User – Register and Login are accessed, the
middleware function should not be invoked. The authentication middleware function is applied into the
Task and TaskNote entities. Here, the resources of the Task entity are mapped with the URI "/tasks", so the
authorization middleware has to be added to work with the "/tasks" URL path. The Negroni package allows
you to add middleware to route specific URL paths.

Listing 9-3 provides the routes specified for the Tasks resource.

Listing 9-3.  Routes for the Tasks Resource in task.go

package routers

import (
 "github.com/codegangsta/negroni"
 "github.com/gorilla/mux"
 "github.com/shijuvar/go-web/taskmanager/common"
 "github.com/shijuvar/go-web/taskmanager/controllers"
)

func SetTaskRoutes(router *mux.Router) *mux.Router {
 taskRouter := mux.NewRouter()
 taskRouter.HandleFunc("/tasks", controllers.CreateTask).Methods("POST")
 taskRouter.HandleFunc("/tasks/{id}", controllers.UpdateTask).Methods("PUT")
 taskRouter.HandleFunc("/tasks", controllers.GetTasks).Methods("GET")
 taskRouter.HandleFunc("/tasks/{id}", controllers.GetTaskById).Methods("GET")
 taskRouter.HandleFunc("/tasks/users/{id}", controllers.GetTasksByUser).Methods("GET")
 taskRouter.HandleFunc("/tasks/{id}", controllers.DeleteTask).Methods("DELETE")
 router.PathPrefix("/tasks").Handler(negroni.New(

negroni.HandlerFunc(common.Authorize),
negroni.Wrap(taskRouter),

))
 return router
}

Adding Route-Specific Middleware
You can add the authorization middleware for the route path "/tasks" to restrict access only to
authenticated users. In the SetTaskRoutes function, a new router instance of mux router is created, the
routes for the "/tasks" resource are specified, and the authorization middleware is wrapped into the
handler functions of the routes path "/tasks":

router.PathPrefix("/tasks").Handler(negroni.New(
negroni.HandlerFunc(common.Authorize),
negroni.Wrap(taskRouter),

))

http://dx.doi.org/10.1007/978-1-4842-1052-9_6

Chapter 9 ■ Building RESTful Services

168

Routes for the TaskNote Resource
The TaskNote entity is wrapped with the URI "/notes". Like the "/tasks" resources, authorization
middleware has to be added to the "/notes" resource.

Listing 9-4 provides the routes specified for the TaskNote resource.

Listing 9-4.  Routes for the TaskNote Resource in note.go

package routers

import (
 "github.com/codegangsta/negroni"
 "github.com/gorilla/mux"
 "github.com/shijuvar/go-web/taskmanager/common"
 "github.com/shijuvar/go-web/taskmanager/controllers"
)

func SetNoteRoutes(router *mux.Router) *mux.Router {
 noteRouter := mux.NewRouter()
 noteRouter.HandleFunc("/notes", controllers.CreateNote).Methods("POST")
 noteRouter.HandleFunc("/notes/{id}", controllers.UpdateNote).Methods("PUT")
 noteRouter.HandleFunc("/notes/{id}", controllers.GetNoteById).Methods("GET")
 noteRouter.HandleFunc("/notes", controllers.GetNotes).Methods("GET")
 noteRouter.HandleFunc("/notes/tasks/{id}", controllers.GetNotesByTask).Methods("GET")
 noteRouter.HandleFunc("/notes/{id}", controllers.DeleteNote).Methods("DELETE")
 router.PathPrefix("/notes").Handler(negroni.New(

negroni.HandlerFunc(common.Authorize),
negroni. Wrap(noteRouter),

))
 return router
}

Initializing Routes for a RESTful API
All routes are now specified for the RESTful API application. Let’s write the code to initialize all routes
specified in the previous steps.

Listing 9-5 initializes all routes for the RESTful API.

Listing 9-5.  Initializing Routes in router.go

package routers

import (
 "github.com/gorilla/mux"
)

func InitRoutes() *mux.Router {
 router := mux.NewRouter().StrictSlash(false)
 // Routes for the User entity
 router = SetUserRoutes(router)
 // Routes for the Task entity

Chapter 9 ■ Building RESTful Services

169

 router = SetTaskRoutes(router)
 // Routes for the TaskNote entity
 router = SetNoteRoutes(router)
 return router
}

The InitRoutes function in main.go is called when the HTTP server starts, as discussed in a later
section of the chapter.

Setting up the RESTful API Application
The resource modeling for the RESTful API application is complete. This section focuses on setting up the
application and starting the HTTP server after executing some essential initialization logic.

Before starting the HTTP server, follow these steps:

1.	 Initialize the AppConfig identifier of the common package by reading
configuration values from config.json. The AppConfig identifier provides
the configuration values such as the host URI of HTTP server and MongoDB,
name of the MongoDB database, and authentication credentials to access the
MongoDB database.

2.	 Initialize asymmetric cryptographic keys for signing the JWT and verifying the
tokens.

3.	 Create a MongoDB Session object using the mgo package.

4.	 Add indexes into MongoDB collections.

These are one-time activities that are invoked before starting the HTTP server. These functionalities are
implemented in the common package. Let’s take a look at the bootstrapping logic implemented in the common
package (discussed in the following sections).

Figure 9-4 illustrates the source files contained in the common package.

Figure 9-4.  Source files of the common package

Initializing Configuration Values
Configuration values are put in a file named config.json, which stores values such as host URIs of the HTTP
server and MongoDB server, authentication credentials to connect MongoDB, and so on. This helps you
avoid using hard-coded strings in an application. The config.json file is read and decodes the JSON values
into a variable AppConfig. Configuration values are read from this package variable to start the HTTP server
and connect to the MongoDB database.

Chapter 9 ■ Building RESTful Services

170

Listing 9-6 decodes the JSON string from config.json and puts the values into AppConfig.

Listing 9-6.  Initializing AppConfig in utils.go

package common

import (
"encoding/json"
"log"
"os"

)
type configuration struct {

Server, MongoDBHost, DBUser, DBPwd, Database string
}
// AppConfig holds the configuration values from config.json file
var AppConfig configuration

// Initialize AppConfig
func initConfig() {

loadAppConfig()
}

// Reads config.json and decode into AppConfig
func loadAppConfig() {

file, err := os.Open("common/config.json")
defer file.Close()
if err != nil {

log.Fatalf("[loadConfig]: %s\n", err)
}
decoder := json.NewDecoder(file)
AppConfig = configuration{}
err = decoder.Decode(&AppConfig)
if err != nil {

log.Fatalf("[loadAppConfig]: %s\n", err)
}

}

Loading Private/Public RSA Keys
RSA keys are loaded into two variables for representing private and public keys, which are used for the
authorization infrastructure of the application. The private/public keys are used to generate JWT and verify
the token in HTTP requests to authorize access to protected resources of the application. The private/public
keys are loaded into two variables before the HTTP server starts so they can be used for a login handler and
for authorizing HTTP requests in authorization middleware.

The command-line tool OpenSSL is used to generate the keys. To generate the private key, run the
following command on the command-line window:

openssl genrsa -out app.rsa 1024

Chapter 9 ■ Building RESTful Services

171

This command generates a 1024-bit key named app.rsa. To generate a counterpart public key for the
private key, run the following command on the command-line window:

openssl rsa -in app.rsa -pubout > app.rsa.pub

This code generates a counterpart public key named app.rsa.pub. The RSA keys are stored in the
directory keys.

Listing 9-7 loads the private/public RSA keys from the keys folder and stores them into two variables.

Listing 9-7.  Initializing Private/Public Keys in auth.go

package common

import (
"io/ioutil"

)

// using asymmetric crypto/RSA keys
const (
 // openssl genrsa -out app.rsa 1024
 privKeyPath = "keys/app.rsa"
 // openssl rsa -in app.rsa -pubout > app.rsa.pub
 pubKeyPath = "keys/app.rsa.pub"
)

// private key for signing and public key for verification
var (
 verifyKey, signKey []byte
)

// Read the key files before starting http handlers
func initKeys() {

var err error

signKey, err = ioutil.ReadFile(privKeyPath)
if err != nil {

log.Fatalf("[initKeys]: %s\n", err)
}

verifyKey, err = ioutil.ReadFile(pubKeyPath)
if err != nil {

log.Fatalf("[initKeys]: %s\n", err)
panic(err)

}
}

The private key is used for signing the JWT; the public key verifies the JWT in HTTP requests to access
the resources of the RESTful API. You can use the OpenSSL tool to generate the RSA keys.

Chapter 9 ■ Building RESTful Services

172

Creating a MongoDB Session Object
A MongoDB Session object is created before the HTTP server starts. The createDbSession function in
mongoUtils.go creates a mgo.Session object by calling the DialWithInfo function of the mgo package.
The DialWithInfo function establishes a new Session to the cluster of MongoDB servers provided by
the instance of DialInfo type. The URI of MongoDB is read from the AppConfig variable. The Session
object will be accessed through the GetSession function. Whenever CRUD operations are performed, the
GetSession function is called, and the Session object is copied using the Copy method of mgo.Session.
A copied Session object will be used for all CRUD operations.

Listing 9-8 provides the implementation of createDbSession and GetSession to use with the Session
object.

Listing 9-8.  MongoDB Session in mongoUtils.go

package common

import (
 "gopkg.in/mgo.v2"
)

var session *mgo.Session

func GetSession() *mgo.Session {
if session == nil {

var err error
session, err = mgo.DialWithInfo(&mgo.DialInfo{

Addrs: []string{AppConfig.MongoDBHost},
Username: AppConfig.DBUser,
Password: AppConfig.DBPwd,
Timeout: 60 * time.Second,

})
if err != nil {

log.Fatalf("[GetSession]: %s\n", err)
}

}
return session

}
func createDbSession() {

var err error
session, err = mgo.DialWithInfo(&mgo.DialInfo{

Addrs: []string{AppConfig.MongoDBHost},
Username: AppConfig.DBUser,
Password: AppConfig.DBPwd,
Timeout: 60 * time.Second,

})
if err != nil {

log. Fatalf("[createDbSession]: %s\n", err)
}

}

Chapter 9 ■ Building RESTful Services

173

Adding Indexes into MongoDB
Indexes provide improved performance for executing queries in MongoDB. Because the User collection
is frequently queried with the email field, the Task collection with the createdby field, and the TaskNote
collection with the taskid field, indexes are added for these fields. The addIndexes function adds indexes
into MongoDB collections.

Listing 9-9 adds indexes into MongoDB.

Listing 9-9.  Adding Indexes in MongoDB in mongoUtils.go

// Add indexes into MongoDB
func addIndexes() {
 var err error
 userIndex := mgo.Index{

Key: []string{"email"},
Unique: true,
Background: true,
Sparse: true,

 }
 taskIndex := mgo.Index{

Key: []string{"createdby"},
Unique: false,
Background: true,
Sparse: true,

 }
 noteIndex := mgo.Index{

Key: []string{"taskid"},
Unique: false,
Background: true,
Sparse: true,

 }
 // Add indexes into MongoDB
 session := GetSession().Copy()
 defer session.Close()
 userCol := session.DB(AppConfig.Database).C("users")
 taskCol := session.DB(AppConfig.Database).C("tasks")
 noteCol := session.DB(AppConfig.Database).C("notes")
 err = userCol.EnsureIndex(userIndex)
 if err != nil {

log.Fatalf("[addIndexes]: %s\n", err)
 }
 err = taskCol.EnsureIndex(taskIndex)
 if err != nil {

log.Fatalf("[addIndexes]: %s\n", err)
 }
 err = noteCol.EnsureIndex(noteIndex)
 if err != nil {

log.Fatalf("[addIndexes]: %s\n", err)
 }
}

Chapter 9 ■ Building RESTful Services

174

Initialization Logic in the common Package
The bootstrapper.go source file in the common package provides a StartUp function that calls the necessary
initialization logic before the HTTP server starts. The StartUp function of the common package is called from
main.go.

Listing 9-10 provides the implementation of the StartUp function that calls the initialization logic,
which is required before running the HTTP server.

Listing 9-10.  StartUp Function in bootstrapper.go

package common

func StartUp() {
 // Initialize AppConfig variable
 initConfig()
 // Initialize private/public keys for JWT authentication
 initKeys()
 // Start a MongoDB session
 createDbSession()
 // Add indexes into MongoDB
 addIndexes()
}

Starting the HTTP Server
The HTTP server is created in main.go.

Listing 9-11 provides the implementation of main.go.

Listing 9-11.  Entry Point of the Program in main.go

package main

import (
 "log"
 "net/http"

 "github.com/codegangsta/negroni"
 "github.com/shijuvar/go-web/taskmanager/common"
 "github.com/shijuvar/go-web/taskmanager/routers"
)

//Entry point of the program
func main() {

 // Calls startup logic
 common.StartUp()
 // Get the mux router object
 router := routers.InitRoutes()
 // Create a negroni instance
 n := negroni.Classic()

n.UseHandler(router)

Chapter 9 ■ Building RESTful Services

175

 server := &http.Server{
Addr: common.AppConfig.Server,
Handler: n,

 }
 log.Println("Listening...")
 server.ListenAndServe()
}

The HTTP server is created in main.go, in which the StartUp function of the common package is called to
execute initialization logic for the RESTful API application. The InitRoutes function of the routers package
is then called to get the *mux.Router, which is used for creating the Negroni handler. The http.Server
object is created by providing the Negroni handler and finally starting the HTTP server. The host URI of the
HTTP server is read from common.AppConfig.

Authentication
Here is the authentication workflow defined in the application:

1.	 Users register into the system by sending HTTP requests to the resource
"/users/register".

2.	 Registered users can log in to the system by sending HTTP requests to the resource
"/users/login". The server validates the login credential and generates a JWT as
an access token for accessing the protected resources of the RESTful API server.

3.	 Users can use the JWT to access the protected resources of the RESTful API.
Users must send this token as a bearer token with the "Authorization" HTTP
header.

The authentication workflow is described in more detail in the following sections.

Generating and Verifying JWT
JWT is used to authorize HTTP requests to access RESTful API resources. The third-party package jwt-go is
used for working with JWT (refer to Chapter 7). The auth.go source file in the common package provides the
functionalities for generating JWT and verifying the token using a middleware handler function. The third-
party package jwt-go is used for generating and verifying the JWT, and the private key is used for signing
the JWT. It will be invoked from the application handler for the request "/users/login" if the login user is
successfully authenticated into the system.

Listing 9-12 shows the helper functions for generating JWT and verifying it in a HTTP middleware handler.

Listing 9-12.  Helper Functions for JWT Authentication in auth.go

package common

import (
"io/ioutil"
"log"
"net/http"
"time"

jwt "github.com/dgrijalva/jwt-go"
)

http://dx.doi.org/10.1007/978-1-4842-1052-9_7

Chapter 9 ■ Building RESTful Services

176

// using asymmetric crypto/RSA keys
// location of private/public key files
const (

// openssl genrsa -out app.rsa 1024
privKeyPath = "keys/app.rsa"
// openssl rsa -in app.rsa -pubout > app.rsa.pub
pubKeyPath = "keys/app.rsa.pub"

)

// Private key for signing and public key for verification
var (

verifyKey, signKey []byte
)

// Read the key files before starting http handlers
func initKeys() {

var err error

signKey, err = ioutil.ReadFile(privKeyPath)
if err != nil {

log.Fatalf("[initKeys]: %s\n", err)
}

verifyKey, err = ioutil.ReadFile(pubKeyPath)
if err != nil {

log.Fatalf("[initKeys]: %s\n", err)
panic(err)

}
}

// Generate JWT token
func GenerateJWT(name, role string) (string, error) {
 // create a signer for rsa 256
 t := jwt.New(jwt.GetSigningMethod("RS256"))

 // set claims for JWT token
t.Claims["iss"] = "admin"
t.Claims["UserInfo"] = struct {

Name string
Role string

 }{name, role}

 // set the expire time for JWT token
t.Claims["exp"] = time.Now().Add(time.Minute * 20).Unix()
tokenString, err := t.SignedString(signKey)
if err != nil {

return "", err
 }
 return tokenString, nil
}

Chapter 9 ■ Building RESTful Services

177

// Middleware for validating JWT tokens
func Authorize(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) {
 // validate the token
 token, err := jwt.ParseFromRequest(r, func(token *jwt.Token) (interface{}, error) {

// Verify the token with public key, which is the counter part of private key
return verifyKey, nil

 })

 if err != nil {
switch err.(type) {

case *jwt.ValidationError: // JWT validation error
vErr := err.(*jwt.ValidationError)

switch vErr.Errors {
case jwt.ValidationErrorExpired: //JWT expired

DisplayAppError(
w,
err,
"Access Token is expired, get a new Token",
401,

)
return

default:
DisplayAppError(w,

err,
"Error while parsing the Access Token!",
500,

)
return

}

default:
DisplayAppError(w,

err,
"Error while parsing Access Token!",
500)

return
}

 }
 if token. Valid {

next(w, r)
 } else {

DisplayAppError(w,
err,
"Invalid Access Token",
401,

)
 }
}

Chapter 9 ■ Building RESTful Services

178

Generating JWT
The GenerateJWT function generates the JWT by using the private key. Various claims are set onto the JWT,
including expiration information for the token. The go-jwt package is used for signing the encoded security
token. The GenerateJWT function is invoked from the application handler for the request "/users/login"
and is called only if the login process is successful.

When a user logs in to the system, the server sends back a JSON response, as shown here:

{"data":
{"user":{"id":"55b9f7e13f06221910000001","firstname":"Shiju","lastname":"Varghese",
"email":"shijuvar@gmail.com"},
"token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJVc2VySW5mbyI6eyJOYW1lIjoic2hpanVAZ21haWwu
Y29tIiwiUm9sZSI6Im1lbWJlciJ9LCJleHAiOjE0MzgyNTI5MzgsImlzcyI6ImFkbWluIn0.WtdM55KE0cNlj5c2
VYwtIUQS8L6UI_ViLiwe0wH_0cpDj0dKkMTMtZ6LSHoIxtZyt92z19WX5gQCi3z-7Mly4kPe5Yvp3IXuDNdgJvB
kQvEd_xg0-Vx9bhm_ztf0Hb2CInsVgux49EIxgjFoinwdzrxmM9ZbY7msBYSKutcRKLU"}
}

From the JSON response, users can take the JWT from the JSON field "token", which can be used for
authorizing the HTTP requests to access protected resources of the RESTful API.

JWT has three parts, separated by a . (period):

• Header

• Payload

• Signature

JWT is a JSON-based security encoding that can be decoded to get JSON representation of these parts.
Figure 9-5 shows the decoded representation of the Header and Payload sections.

Figure 9-5.  Decoded JSON representation of JWT

Chapter 9 ■ Building RESTful Services

179

The Header section contains the algorithm used for generating the token, which is RS256, and the type,
which is JWT. Payload carries the JWT claims in which you can provide user information, expiration, and
other information about the JWT.

Sending JWT to the Server
When users successfully log in to the system, they provide a JWT as the access token to authorize the
subsequent HTTP requests to the API server. So whenever HTTP requests are sent to access protected
resources, the JWT must be provided in the HTTP request to get authorization to the API server. Once the
login process is successfully completed, the returned token string can be put into any kind of client storage
to be easily accessed whenever HTTP requests are sent to access the resources of the RESTful API.

In front-end web applications, you can use HTML5 Web Storage (localStorage/sessionStorage) or
web cookies to persist the JWT. But you should consider the security aspects when you put JWT into various
kinds of client application storage.

When you send HTTP requests to access RESTful API resources, you must provide a bearer token in the
HTTP request header "Authorization".

Here is the format for sending a JWT string with the "Authorization" header:

"Authorization": "Bearer token_string”

Here is an example that provides a JWT as a bearer token with the "Authorization" header:

"Authorization":"Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkw
IiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ"

Authorizing JWT
The Authorize middleware handler function authorizes HTTP requests, which validate whether the HTTP
request has a valid JWT in the "Authorization" header as a bearer token. The ParseFromRequest helper
function of the go-jwt package is used to verify the token with a public key. In this application, one private
key is used to sign the tokens, so its public counterpart is also used to verify the token:

token, err := jwt.ParseFromRequest(r, func(token *jwt.Token) (interface{}, error) {
 return verifyKey, nil
})

If the request has a valid token, the middleware function calls the next handler in the middleware stack.
If the token is invalid, the DisplayAppError helper function is called to display HTTP errors in JSON format.
When the DisplayAppError function is called, the error value is provided a custom message for the error
and an HTTP status code. The HTTP status code 401 represents the HTTP status "Unauthorized":

if token.Valid {
next(w, r)

 } else {
 w.WriteHeader(http.StatusUnauthorized)

DisplayAppError(
w,
err,
"Invalid Access Token",
401,

)
 }

Chapter 9 ■ Building RESTful Services

180

When next(w,r) is called, it calls the next handler function. The Negroni package is called for
the middleware stack and uses the signature func (http.ResponseWriter, *http.Request, http.
HandlerFunc) to write middleware handler functions to be used with Negroni. All HTTP requests to
the URL "/tasks" and "/notes" paths must be authorized with a valid access token. So the middleware
function Authorize is added into the Negroni middleware stack.

Here is the code block in task.go of the routers package to add authentication middleware function to
the "/tasks" path:

func SetTaskRoutes(router *mux.Router) *mux.Router {
 taskRouter := mux.NewRouter()
 taskRouter.HandleFunc("/tasks", controllers.CreateTask).Methods("POST")
 taskRouter.HandleFunc("/tasks/{id}", controllers.UpdateTask).Methods("PUT")
 taskRouter.HandleFunc("/tasks", controllers.GetTasks).Methods("GET")
 taskRouter.HandleFunc("/tasks/{id}", controllers.GetTaskById).Methods("GET")
 taskRouter.HandleFunc("/tasks/users/{id}", controllers.GetTasksByUser).Methods("GET")
 taskRouter.HandleFunc("/tasks/{id}", controllers.DeleteTask).Methods("DELETE")
 router.PathPrefix("/tasks").Handler(negroni.New(

negroni.HandlerFunc(common.Authorize),
negroni.Wrap(taskRouter),

))
 return router
}

You can add middleware functions to specific routes by using the PathPrefix function of the router
instance.

Here is the code block in note.go of the routers package to add authentication middleware function to
the "/notes" path:

func SetNoteRoutes(router *mux.Router) *mux.Router {
 noteRouter := mux.NewRouter()
 noteRouter.HandleFunc("/notes", controllers.CreateNote).Methods("POST")
 noteRouter.HandleFunc("/notes/{id}", controllers.UpdateNote).Methods("PUT")
 noteRouter.HandleFunc("/notes/{id}", controllers.GetNoteById).Methods("GET")
 noteRouter.HandleFunc("/notes", controllers.GetNotes).Methods("GET")
 noteRouter.HandleFunc("/notes/tasks/{id}", controllers.GetNotesByTask).Methods("GET")
 noteRouter.HandleFunc("/notes/{id}", controllers.DeleteNote).Methods("DELETE")
 router.PathPrefix("/notes").Handler(negroni.New(

negroni.HandlerFunc(common.Authorize),
negroni.Wrap(noteRouter),

))
 return router
}

Middleware functions are great for implementing shared functionalities across application handlers.
Middleware functions can also be applied to specific routes, as was done for URL paths "/tasks" and
"/notes".

Chapter 9 ■ Building RESTful Services

181

Application Handlers
Previous sections looked at application data models, RESTful API resource modeling and mapping it with an
application’s HTTP routes, setting up the HTTP server with essential initialization logic, and authentication
of RESTful APIs. Let’s now take a look at application handlers for serving HTTP requests against each route.

Application handlers are organized in the controllers package. Figure 9-6 shows the source files
contained in the controllers package.

Figure 9-6.  Source files of the controllers package

Helper for Displaying HTTP Errors
Error handling in Go is different from most mainstream programming languages because it provides a
simple and minimalistic approach for handling exceptions using a built-in error type. The values of the
error type are used to indicate an abnormal state in the applications. When you look at the standard library
packages, you see that most of the functions return multiple values, including an error type value to indicate
an abnormal state.

You can check the value of the error type to see whether any exception occurred during the function
execution:

file, err := os.Open("common/config.json")
 if err != nil {

log.Fatalf("[loadConfig]: %s\n", err)
 }

The Fatalf function of the log package is called if the error variable contains any value. The Fatalf function
aborts the program after writing the log message. In HTTP handlers of the RESTful API application, the program
doesn’t abort for any kind of abnormal state. Instead, a JSON response is provided as the HTTP response with the
appropriate HTTP status code. A helper function is written in a common package to display HTTP errors in JSON
format so that client applications can understand anything wrong with their HTTP requests.

Listing 9-13 provides a helper function to display HTTP errors in JSON format, which includes
appropriate HTTP status codes in the error response.

Listing 9-13.  Helper Function for Displaying Errors in utils.go

package common

import (
"encoding/json"
"log"
"net/http"

)

Chapter 9 ■ Building RESTful Services

182

type (
appError struct {

Error string `json:"error"`
Message string `json:"message"`
HttpStatus int `json:"status"`

}
errorResource struct {

Data appError `json:"data"`
}

)

func DisplayAppError(w http.ResponseWriter, handlerError error, message string, code int) {
errObj := appError{

Error: handlerError.Error(),
Message: message,
HttpStatus: code,

}
log.Printf("AppError]: %s\n", handlerError)
w.Header().Set("Content-Type", "application/json; charset=utf-8")
w.WriteHeader(code)
if j, err := json.Marshal(errorResource{Data: errObj}); err == nil {

 w.Write(j)
}

}

A helper function named DisplayAppError is written to provide error messages in JSON as the
HTTP response. Client applications can check the HTTP status code to verify whether the HTTP request is
successful. A struct type named appError is used to create the model object for providing error messages.
In the appError type, the Error property is used for holding the string value of the error object, the Message
property is used for holding a custom message on the error, and the HttpStatus property is used for holding
HTTP status code. An instance of the errorResource type is created by providing the value of appError to
encode the response as JSON.

Figure 9-7 shows the error response of an invalid HTTP request that contains an expired access token.

Figure 9-7.  HTTP response for error messages in JSON

Chapter 9 ■ Building RESTful Services

183

The DisplayAppError function is a simple helper function to provide HTTP errors. You can also write
the error-handling logic in HTTP middleware, which can be used to wrap application handlers and is a
more elegant approach to implement error handling in Go web applications. If any error occurred in an
application handler, you can return a model object for holding the error data, and within the middleware
function you can check whether the error model contains any value. You can also provide the HTTP
response for an error if one occurs. This approach is not discussed in this chapter, but you can try it when
you build your own web applications.

Handling Data for an HTTP Request Lifecycle
Let’s define a type for handling the data during the lifecycle of an HTTP request. Here, a Context struct type
is defined, on which the MongoDB Session object is put as a property, exposing the DbCollection method
for getting the MongoDB Collection object and the Close method for closing the MongoDB Session object.

Listing 9-14 provides the code block of the Context struct type that will be used with HTTP handler
functions to hold the data during an HTTP request lifecycle.

Listing 9-14.  Context Struct in context.go

package controllers

import (
"gopkg.in/mgo.v2"

"github.com/shijuvar/go-web/taskmanager/common"
)

// Struct used for maintaining HTTP Request Context
type Context struct {

MongoSession *mgo.Session
}

// Close mgo.Session
func (c *Context) Close() {
 c.MongoSession.Close()
}

// Returns mgo.collection for the given name
func (c *Context) DbCollection(name string) *mgo.Collection {

return c.MongoSession.DB(common.AppConfig.Database).C(name)
}

// Create a new Context object for each HTTP request
func NewContext() *Context {

session := common.GetSession().Copy()
context := &Context{

MongoSession: session,
}
return context

}

Chapter 9 ■ Building RESTful Services

184

This source file provides a NewContext function that returns an instance of Context type by providing a
copied version of the MongoDB Session object. The GetSession function of the common package is called to
get the Session object and take a copy from it. Within the application handlers, the NewContext function is
called to get an instance of a Context type in which the MongoDB Session object of the Context type is used
for performing CRUD operations against the MongoDB database.

In the Context type, you are simply storing the MongoDB Session object, but you can use any kind of
data in the Context type to be used with the lifecycle of an HTTP request. In many use cases, you may need
to share these data among various middleware handler functions and application handler functions. In
short, you need to share data among different handler functions.

In this scenario, you can use a mechanism to store objects to work with the HTTP request context.
The context package from the Gorilla web toolkit (www.gorillatoolkit.org/pkg/context) provides
the functionality for putting data in the HTTP Context object for holding the data during the lifecycle of
an HTTP request. You can put the data into HTTP context in one handler, which is accessible from other
handlers. In the RESTful API example, you use the data in the application handler and don’t need to share
data among handlers. So you aren’t putting the Context struct into the HTTP Context object.

Handlers for the Users Resource
Here are the routes specified for the Users resource:

router.HandleFunc("/users/register", controllers.Register).Methods("POST")
router.HandleFunc("/users/login", controllers.Login).Methods("POST")

Two routes are specified for the Users resource. The resource "/users/register" is used to register a
user into the system, and "/users/login" is used to authenticate into the system for getting an access token
to be used to authorize the HTTP requests to access RESTful API resources.

JSON Resource Models
The RESTful API is a JSON-based API in which the client applications need to send data in JSON format, and
the server sends the responses in JSON as well. To work with JSON API standards (http://jsonapi.org),
resource models are defined for sending and receiving data in formatted JSON. "data" is defined as the root
element for all JSON representations.

Listing 9-15 shows the resource models to be used with the Users resource.

Listing 9-15.  JSON Resources for Working with “/users” in resources.go

package controllers

import (
 "github.com/shijuvar/go-web/taskmanager/models"
)

type (
 //For Post - /user/register
 UserResource struct {

Data models.User `json:"data"`
 }

http://www.gorillatoolkit.org/pkg/context
http://jsonapi.org/

Chapter 9 ■ Building RESTful Services

185

 //For Post - /user/login
 LoginResource struct {

Data LoginModel `json:"data"`
 }
 // Response for authorized user Post - /user/login
 AuthUserResource struct {

Data AuthUserModel `json:"data"`
 }
 //Model for authentication
 LoginModel struct {

Email string `json:"email"`
Password string `json:"password"`

 }
 //Model for authorized user with access token
 AuthUserModel struct {

User models.User `json:"user"`
Token string `json:"token"`

 }
)

Handlers for the Users Resource
Application handler functions for the Users resource are written in the userController.go source file,
which is organized in the controllers package.

Listing 9-16 provides the implementation of handler functions for the Users resource.

Listing 9-16.  Application Handler Functions in userController.go

package controllers

import (
 "encoding/json"
 "net/http"

 "github.com/shijuvar/go-web/taskmanager/common"
 "github.com/shijuvar/go-web/taskmanager/data"
 "github.com/shijuvar/go-web/taskmanager/models"
)

// Handler for HTTP Post - "/users/register"
// Add a new User document
func Register(w http.ResponseWriter, r *http.Request) {
 var dataResource UserResource
 // Decode the incoming User json
 err := json.NewDecoder(r.Body).Decode(&dataResource)
 if err != nil {

common.DisplayAppError(
w,
err,
"Invalid User data",
500,

)

Chapter 9 ■ Building RESTful Services

186

return
 }
 user := &dataResource.Data
 context := NewContext()
 defer context.Close()
 c := context.DbCollection("users")
 repo := &data.UserRepository{c}
 // Insert User document
 repo.CreateUser(user)
 // Clean-up the hashpassword to eliminate it from response
 user.HashPassword = nil
 if j, err := json.Marshal(UserResource{Data: *user}); err != nil {

common. DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return

 } else {
 w.Header().Set("Content-Type", "application/json")

w.WriteHeader(http.StatusCreated)
w.Write(j)

 }

}

// Handler for HTTP Post - "/users/login"
// Authenticate with username and apssword
func Login(w http.ResponseWriter, r *http.Request) {
 var dataResource LoginResource
 var token string
 // Decode the incoming Login json
 err := json.NewDecoder(r.Body).Decode(&dataResource)
 if err != nil {

common.DisplayAppError(
w,
err,
"Invalid Login data",
500,

)
return

 }
 loginModel := dataResource.Data
 loginUser := models.User{

Email: loginModel.Email,
Password: loginModel.Password,

 }
 context := NewContext()
 defer context.Close()
 c := context.DbCollection("users")
 repo := &data.UserRepository{c}

Chapter 9 ■ Building RESTful Services

187

 // Authenticate the login user
 if user, err := repo.Login(loginUser); err != nil {

common.DisplayAppError(
w,
err,
"Invalid login credentials",
401,

)
return

 } else { //if login is successful

// Generate JWT token
token, err = common.GenerateJWT(user.Email, "member")
if err != nil {

common.DisplayAppError(
w,
err,
"Eror while generating the access token",
500,

)
return

}
w.Header().Set("Content-Type", "application/json")
user.HashPassword = nil
authUser := AuthUserModel{

User: user,
Token: token,

}
j, err := json.Marshal(AuthUserResource{Data: authUser})
if err != nil {

common.DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return

}
w.WriteHeader(http.StatusOK)
w.Write(j)

 }
}

Registering New Users
To register a new user, the client application should send an HTTP Post to the URI "/users/register". In
the Register handler function, the incoming JSON string is decoded into the type UserResource and creates
an instance of the models.User struct by accessing the Data property of the UserResource object.

Chapter 9 ■ Building RESTful Services

188

The Context type is used to access the MongoDB Session object (mgo.Session) in application handlers.
So an instance of Context type and the MongoDB Collection object (mgo.Collection) are created by
calling the DbCollection method:

context := NewContext()
defer context.Close()
c := context.DbCollection("users")

The Close method of the Context type is added into the defer function to close the MongoDB Session
object, which is a copied version of the Session object. In all HTTP handler functions, a copied version of
the MongoDB Session object is created and will use the same instance in a single HTTP request lifecycle
and release the resources using the defer function.

In the Register handler function, an instance of UserRepository is created by providing the MongoDB
Collection object. The CreateUser method of the UserRepository struct is created to persist the User
object into the MongoDB database. All data persistence logic is written in the data package:

repo := &data.UserRepository{c}
// Insert User document
repo.CreateUser(user)

UserRepository provides all CRUD operations against the User entity. (This topic is discussed in the
next section of the chapter.) The Register handler function sends back a response as a JSON representation
of the newly created User entity.

Let’s test the functionality of the Users resource by using a RESTful API client tool "Postman"
(www.getpostman.com/), which allows you to test your APIs (also very useful for testing RESTful APIs).

Figure 9-8 shows the HTTP Post request sent to the URI endpoint "users/register" using the RESTful
API client tool "Postman".

Figure 9-8.  HTTP Post to “/users/register”

http://www.getpostman.com/

Chapter 9 ■ Building RESTful Services

189

Figure 9-9 shows the response from the RESTful API server, indicating that a new resource has been created.

Figure 9-9.  HTTP response from “/users/register”

Logging in to the System
Users of client applications must obtain a JWT to access the protected resources of the RESTful API.
To get the token, a user must log in to the system with a username and password. If the user is getting
authenticated, the server sends back a JWT that can be used for accessing the RESTful API resources.

The application handler Login is used for serving HTTP requests to the login resource. If the login is
successful, the GenerateJWT function of the common package is called to generate JWT. The generated JWT is
included in the JSON response:

if user, err := repo.Login(loginUser); err != nil {
common.DisplayAppError(

w,
err,
"Invalid login credentials",
401,

)
return

 } else { //if login is successful

// Generate JWT token
token, err = common.GenerateJWT(user.Email, "member")
if err != nil {

common.DisplayAppError(
w,
err,
"Eror while generating the access token",
500,

)
return

}

Chapter 9 ■ Building RESTful Services

190

w.Header().Set("Content-Type", "application/json")
user.HashPassword = nil
authUser := AuthUserModel{

User: user,
Token: token,

}
j, err := json.Marshal(AuthUserResource{Data: authUser})
if err != nil {

common.DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return

}
w.WriteHeader(http.StatusOK)
w.Write(j)

 }

Figure 9-10 shows that login credentials were sent to the system by sending an HTTP Post to the URI
endpoint "users/register" to get the JWT.

Figure 9-10.  HTTP Post to “/users/login”

Chapter 9 ■ Building RESTful Services

191

Figure 9-11 shows the HTTP response from the RESTful API server after the successful login to the system.

Figure 9-11.  HTTP Response from “/users/login”

Figure 9-12.  Source files in the data package

The server will send back the response to the client applications, which includes user information and JWT.

Data Persistence with MongoDB
Chapter 8 discussed how to perform CRUD operations with MongoDB. In the RESTful API application, the
logic for data persistence is organized in the data package. Separate struct types are organized for handling
CRUD operations against each data model of the application.

Figure 9-12 illustrates the source files contained in the data package.

Listing 9-17 provides the source of userRepository.go that implements the functionalities to insert a
new user and log in with user credentials.

Listing 9-17.  Data Persistence Logic for User Entity in userRepository.go

package data

import (
 "github.com/shijuvar/go-web/taskmanager/models"
 "golang.org/x/crypto/bcrypt"
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

type UserRepository struct {
 C *mgo.Collection
}

http://dx.doi.org/10.1007/978-1-4842-1052-9_8

Chapter 9 ■ Building RESTful Services

192

func (r *UserRepository) CreateUser(user *models.User) error {
 obj_id := bson.NewObjectId()
 user.Id = obj_id
 hpass, err := bcrypt.GenerateFromPassword([]byte(user.Password), bcrypt.DefaultCost)
 if err != nil {

panic(err)
 }
 user.HashPassword = hpass
 //clear the incoming text password
 user.Password = ""
 err = r.C.Insert(&user)
 return err
}

func (r *UserRepository) Login(user models.User) (u models.User, err error) {

 err = r.C.Find(bson.M{"email": user.Email}).One(&u)
 if err != nil {

return
 }
 // Validate password
 err = bcrypt.CompareHashAndPassword(u.HashPassword, []byte(user.Password))
 if err != nil {

u = models.User{}
 }
 return
}

The UserRepository struct has a property C of type *mgo.Collection. The instance of the
UserRepository struct is created from the userController.go source by providing the mgo.Collection
object that will be created from the Context type. The bcrypt package is used for encrypting the password
using a hashing algorithm and validating the password by using the CompareHashAndPassword method.

Handlers for the Tasks Resource
Here are the routes configured for the Tasks resource:

taskRouter := mux.NewRouter()
 taskRouter.HandleFunc("/tasks", controllers.CreateTask).Methods("POST")
 taskRouter.HandleFunc("/tasks/{id}", controllers.UpdateTask).Methods("PUT")
 taskRouter.HandleFunc("/tasks", controllers.GetTasks).Methods("GET")
 taskRouter.HandleFunc("/tasks/{id}", controllers.GetTaskById).Methods("GET")
 taskRouter.HandleFunc("/tasks/users/{id}", controllers.GetTasksByUser).Methods("GET")
 taskRouter.HandleFunc("/tasks/{id}", controllers.DeleteTask).Methods("DELETE")
 router.PathPrefix("/tasks").Handler(negroni.New(

negroni.HandlerFunc(common.Authorize),
negroni.Wrap(taskRouter),

))

Chapter 9 ■ Building RESTful Services

193

The requests to the URL path "/tasks" are decorated with an authorization middleware handler named
Authorize, which is provided by the Negroni stack. Authenticated users can create Tasks by providing the
JWT in the HTTP requests as an access token to the Server.

JSON Resource Models
The operations on the "/tasks" resource use the data model Task to persist the values of data objects.

Listing 9-18 provides the resource models for representing JSON data for sending and receiving
messages with the Tasks resource.

Listing 9-18.  JSON Resources for Working with “/tasks” in resources.go

//Models for JSON resources
type (
 // For Post/Put - /tasks
 // For Get - /tasks/id
 TaskResource struct {

Data models.Task `json:"data"`
 }
 // For Get - /tasks
 TasksResource struct {

Data []models.Task `json:"data"`
 }

)

Handlers for the Tasks Resource
The application handler functions for the Tasks resource are written in the taskController.go source file,
which is organized in the controllers package.

Listing 9-19 provides the handler functions for the Tasks resource.

Listing 9-19.  Application Handler Functions in taskController.go

package controllers

import (
 "encoding/json"
 "log"
 "net/http"

 "github.com/gorilla/mux"
 "github.com/shijuvar/go-web/taskmanager/data"
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

Chapter 9 ■ Building RESTful Services

194

// Handler for HTTP Post - "/tasks"
// Insert a new Task document
func CreateTask(w http.ResponseWriter, r *http.Request) {
 var dataResource TaskResource
 // Decode the incoming Task json
 err := json.NewDecoder(r.Body).Decode(&dataResource)
 if err != nil {

common.DisplayAppError(
w,
err,
"Invalid Task data",
500,

)
return

 }
 task := &dataResource.Data
 context := NewContext()
 defer context.Close()
 c := context.DbCollection("tasks")
 repo := &data.TaskRepository{c}
 // Insert a task document
 repo.Create(task)
 if j, err := json.Marshal(TaskResource{Data: *task}); err != nil {

common.DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return

 } else {
 w.Header().Set("Content-Type", "application/json")

w.WriteHeader(http.StatusCreated)
w.Write(j)

 }
}

// Handler for HTTP Get - "/tasks"
// Returns all Task documents
func GetTasks(w http.ResponseWriter, r *http.Request) {
 context := NewContext()
 defer context.Close()
 c := context.DbCollection("tasks")
 repo := &data.TaskRepository{c}
 tasks := repo.GetAll()
 j, err := json.Marshal(TasksResource{Data: tasks})
 if err != nil {

common.DisplayAppError(
w,
err,

Chapter 9 ■ Building RESTful Services

195

"An unexpected error has occurred",
500,

)
return

 }
w.WriteHeader(http.StatusOK)
w.Header().Set("Content-Type", "application/json")
w.Write(j)

}

// Handler for HTTP Get - "/tasks/{id}"
// Returns a single Task document by id
func GetTaskById(w http.ResponseWriter, r *http.Request) {
 // Get id from the incoming url
 vars := mux.Vars(r)
 id := vars["id"]
 context := NewContext()
 defer context.Close()
 c := context.DbCollection("tasks")
 repo := &data.TaskRepository{c}
 task, err := repo.GetById(id)
 if err != nil {

if err == mgo.ErrNotFound {
 w.WriteHeader(http.StatusNoContent)

return
} else {

common.DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return
}

 }
 if j, err := json.Marshal(task); err != nil {

common.DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return

 } else {
 w.Header().Set("Content-Type", "application/json")

w.WriteHeader(http.StatusOK)
w.Write(j)

 }
}

Chapter 9 ■ Building RESTful Services

196

// Handler for HTTP Get - "/tasks/users/{id}"
// Returns all Tasks created by a User
func GetTasksByUser(w http.ResponseWriter, r *http.Request) {
 // Get id from the incoming url
 vars := mux.Vars(r)
 user := vars["id"]
 context := NewContext()
 defer context. Close()
 c := context.DbCollection("tasks")
 repo := &data.TaskRepository{c}
 tasks := repo.GetByUser(user)
 j, err := json.Marshal(TasksResource{Data: tasks})
 if err != nil {

common.DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return

 }
w.WriteHeader(http.StatusOK)
w.Header().Set("Content-Type", "application/json")
w.Write(j)

}

// Handler for HTTP Put - "/tasks/{id}"
// Update an existing Task document
func UpdateTask(w http.ResponseWriter, r *http.Request) {
 // Get id from the incoming url
 vars := mux.Vars(r)
 id := bson.ObjectIdHex(vars["id"])
 var dataResource TaskResource
 // Decode the incoming Task json
 err := json.NewDecoder(r.Body).Decode(&dataResource)
 if err != nil {

common.DisplayAppError(
w,
err,
"Invalid Task data",
500,

)
return

 }
 task := &dataResource.Data
 task.Id = id
 context := NewContext()
 defer context.Close()
 c := context.DbCollection("tasks")
 repo := &data.TaskRepository{c}

Chapter 9 ■ Building RESTful Services

197

 // Update an existing Task document
 if err := repo.Update(task); err != nil {

common.DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return

 } else {
 w.WriteHeader(http.StatusNoContent)
 }
}

// Handler for HTTP Delete - "/tasks/{id}"
// Delete an existing Task document
func DeleteTask(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 id := vars["id"]
 context := NewContext()
 defer context.Close()
 c := context.DbCollection("tasks")
 repo := &data.TaskRepository{c}
 // Delete an existing Task document
 err := repo.Delete(id)
 if err != nil {

common.DisplayAppError(
w,
err,
"An unexpected error has occurred",
500,

)
return

 }
w.WriteHeader (http.StatusNoContent)

}

The handler functions in taskController.go use the package "data" for performing CRUD operations
against the data model Task, which is implemented in the taskRepository struct.

Listing 9-20 provides the data persistence logic written in taskRepository.go.

Listing 9-20.  Data Persistence Logic for the Task Entity in taskRepository.go

package data

import (
 "time"

 "github.com/shijuvar/go-web/taskmanager/models"
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

Chapter 9 ■ Building RESTful Services

198

type TaskRepository struct {
 C *mgo.Collection
}

func (r *TaskRepository) Create(task *models.Task) error {
 obj_id := bson.NewObjectId()
 task.Id = obj_id
 task.CreatedOn = time.Now()
 task.Status = "Created"
 err := r.C.Insert(&task)
 return err
}

func (r *TaskRepository) Update(task *models.Task) error {
 // partial update on MogoDB
 err := r.C.Update(bson.M{"_id": task.Id},

bson.M{"$set": bson.M{
"name": task.Name,
"description": task.Description,
"due": task.Due,
"status": task.Status,
"tags": task.Tags,

}})
 return err
}
func (r *TaskRepository) Delete(id string) error {
 err := r.C. Remove(bson.M{"_id": bson.ObjectIdHex(id)})
 return err
}
func (r *TaskRepository) GetAll() []models.Task {
 var tasks []models.Task
 iter := r.C.Find(nil).Iter()
 result := models.Task{}
 for iter.Next(&result) {

tasks = append(tasks, result)
 }
 return tasks
}
func (r *TaskRepository) GetById(id string) (task models.Task, err error) {
 err = r.C.FindId(bson.ObjectIdHex(id)).One(&task)
 return
}
func (r *TaskRepository) GetByUser(user string) []models.Task {
 var tasks []models.Task
 iter := r.C.Find(bson.M{"createdby": user}).Iter()
 result := models.Task{}
 for iter.Next(&result) {

tasks = append(tasks, result)
 }
 return tasks
}

Chapter 9 ■ Building RESTful Services

199

Testing API Operations for the Tasks Resource
Let’s test the API operations of the Tasks resource by using a RESTful API client tool. To access the API
operations of the Tasks resource, client applications must provide a JWT in the “Authorization” header as a
bearer token. You get the JWT from the URI endpoint “/users/login”.

Figure 9-13 shows the HTTP Post request to "/Tasks" for creating a new Task resource by providing the
JSON data in the request body.

Figure 9-13.  Request body of HTTP Post to “/tasks”

Figure 9-14 shows that the HTTP Post request to "/Tasks" provides a JWT in the “Authorization” header.

Figure 9-14.  Authorization headers of HTTP Post to “/tasks”

Chapter 9 ■ Building RESTful Services

200

Figure 9-15 shows the response from the RESTful API server for the HTTP Post to "/tasks".

Figure 9-15.  Response from HTTP Post of “/tasks”

Figure 9-16.  HTTP request Get to “/tasks/{id}”

Figure 9-16 shows the request for HTTP Get to "/tasks/{id}".

Chapter 9 ■ Building RESTful Services

201

Figure 9-17 shows the response from the RESTful API server for the HTTP Get to "/tasks{id}".

Figure 9-17.  Response from HTTP Get of “/tasks{id}”

Handlers for Notes Resource
The operations on the "/notes" resource uses the data model TaskNote for persisting the values of data
objects.

Here is the route specified for the Notes resource:

noteRouter := mux.NewRouter()
 noteRouter.HandleFunc("/notes", controllers.CreateNote).Methods("POST")
 noteRouter.HandleFunc("/notes/{id}", controllers.UpdateNote).Methods("PUT")
 noteRouter.HandleFunc("/notes/{id}", controllers.GetNoteById).Methods("GET")
 noteRouter.HandleFunc("/notes", controllers.GetNotes).Methods("GET")
 noteRouter.HandleFunc("/notes/tasks/{id}", controllers.GetNotesByTask).Methods("GET")
 noteRouter.HandleFunc("/notes/{id}", controllers.DeleteNote).Methods("DELETE")
 router.PathPrefix("/notes").Handler(negroni.New(

negroni.HandlerFunc(common.Authorize),
negroni.Wrap (noteRouter),

))

Chapter 9 ■ Building RESTful Services

202

JSON Resource Models
Listing 9-21 provides the resource models for representing the JSON data for sending and receiving
messages with the Notes resource:

Listing 9-21.  JSON Resources for Working with “/notes” in resources.go

//Models for JSON resources
type (
 // For Post/Put - /notes
 NoteResource struct {

Data NoteModel `json:"data"`
 }
 // For Get - /notes
 // For /notes/tasks/id
 NotesResource struct {

Data []models.TaskNote `json:"data"`
 }
 //Model for a TaskNote
 NoteModel struct {

TaskId string `json:"taskid"`
Description string `json:"description"`

 }
)

The implementation of the Users and Tasks resources is complete. You can implement the API
operations for the "/notes" resource as you did for "/tasks".

■ Note  The source code of the completed version of the TaskManager application is available at
github.com/shijuvar/go-web/tree/master/taskmanager

Go Dependencies Using Godep
In previous sections, you completed the RESTful API application named TaskManager that uses a few third-
party packages. Now let’s focus on managing the dependencies of the application to reduce external build
dependencies for productivity when building the application.

When you work on Go applications using many third-party packages, the dependency management
is always a painful experience. Most software development teams work with version control systems to
manage and distribute their source code. A proper dependency management tool is an essential component
for speeding up the development process and build process.

Many technology stacks such as Ruby and Node.js provide a package management system with better
dependency management. Those environments provide a centralized repository system to get external packages,
so it is extremely easy to provide a dependency management system for those technology stacks. Go doesn’t
provide a centralized system for its package ecosystem, which is designed for simplicity like most of the Go features.
This has some limitations for managing external dependencies while enabling simplicity for exposing and using
third-party packages. By default, Go doesn’t provide any mechanism for managing external dependencies.

The godep tool helps you build packages reproducibly by fixing their dependencies. This tool ensures a
better experience for doing repeatable builds.

Chapter 9 ■ Building RESTful Services

203

Installing the godep Tool
To install the godep tool, run the following command:

go get github.com/tools/godep

Using godep with TaskManager
Let’s use godep with the RESTful API application to manage external dependencies. Run the following
command:

godep save -r

The save command saves a list of the application’s dependencies to the file Godeps.json inside the
Godeps directory. The Godeps.json file contains the JSON representation of the application’s dependencies
and the Go version. It also copies the source code of the dependencies into the Godeps/_workspace
directory, reflecting the structure of GOPATH.

Figure 9-18 illustrates the structure created by the godep save command to manage the application’s
dependencies.

Figure 9-18.  Godeps directory structure

Chapter 9 ■ Building RESTful Services

204

Listing 9-22 shows the Godeps.json file.

Listing 9-22.  Godeps.json file for the TaskManager Application

 {
 "ImportPath": "github.com/shijuvar/go-web/taskmanager",
 "GoVersion": "go1.5.1",
 "Deps": [

{
"ImportPath": "github.com/codegangsta/negroni",
"Comment": "v0.1-70-gc7477ad",
"Rev": "c7477ad8e330bef55bf1ebe300cf8aa67c492d1b"

},
{

"ImportPath": "github.com/dgrijalva/jwt-go",
"Comment": "v2.2.0-23-g5ca8014",
"Rev": "5ca80149b9d3f8b863af0e2bb6742e608603bd99"

},
{

"ImportPath": "github.com/gorilla/context",
"Rev": "215affda49addc4c8ef7e2534915df2c8c35c6cd"

},
{

"ImportPath": "github.com/gorilla/mux",
"Rev": "8a875a034c69b940914d83ea03d3f1299b4d094b"

},
{

"ImportPath": "golang.org/x/crypto/bcrypt",
"Rev": "02a186af8b62cb007f392270669b91be5527d39c"

},
{

"ImportPath": "golang.org/x/crypto/blowfish",
"Rev": "02a186af8b62cb007f392270669b91be5527d39c"

},
{

"ImportPath": "gopkg.in/mgo.v2",
"Comment": "r2015.10.05-1-g4d04138",
"Rev": "4d04138ffef2791c479c0c8bbffc30b34081b8d9"

}
]
}

You can run the godep save command any time you want to update the newly imported packages.

Restoring an Application’s Dependencies
To restore an application’s dependencies on a target machine, run the following command:

godep restore

The godep restore command installs the package versions specified in Godeps/Godeps.json to the
$GOPATH, which modifies the state of the packages in the GOPATH location.

Chapter 9 ■ Building RESTful Services

205

Deploying HTTP Servers with Docker
You have completed the TaskManager application and provided dependency management infrastructure using
the godep tool. It is time to provide the deployment infrastructure for running the RESTful API application onto
production servers. You can deploy HTTP servers with on-premise servers and Cloud computing environments.
(In Chapter 11, you will learn how to deploy Go servers with Google Cloud Platform.)

Linux containers (https://linuxcontainers.org/) are gradually becoming a preferred approach
for deploying and running applications regardless of on-premise servers and Cloud computing platforms.
Docker is a technology that revolutionized the concept of using Linux containers for building, shipping, and
running applications in a Linux container. You can use Docker for running applications in both on-premise
servers and Cloud computing infrastructures.

In this section, a Dockerfile will be written for the TaskManager application to be used with Docker
to deploy the application onto both on-premise servers and Cloud environments. A Dockerfile is a text
document that is used to build and run applications with Docker. Before writing the Dockerfile, let’s briefly
discuss Docker.

Introduction to Docker
Docker is a platform for developers and SAs to develop, ship, and run applications in the container
virtualization environment. An application container is a lightweight Linux environment that you can
leverage to deploy and run an independently deployable unit of code. This chapter briefly discussed
Microservice architecture, in which independently deployable service units are composed to build larger
applications. A Docker container (application container) is a perfect fit for running a microservice in the
Microservices architecture. Docker is not just a technology; it is an ecosystem that lets you quickly compose
applications from components (analogous to a microservice in the Microservice architecture).

In traditional computing environments, you develop applications for virtual machines (VMs), in
which you target an idealized hardware environment, including the OS, network infrastructure layers, and
so on. The greatest advantage of using an application container is that it separates applications from the
infrastructure and from where it runs, enabling great opportunities for application developers. With Docker,
developers can now develop applications against an idealized OS — a static Linux environment — and ship
their applications as quickly as possible.

Docker eliminates complexities and hurdles that can occur when applications are deployed and run.
It also provides a great abstraction on the top of Linux container technology to easily work on container
virtualization, which is becoming a big revolution in the IT industry, thanks to the Docker ecosystem.

Docker was developed with the Go language, which is becoming a language of choice for building
many innovative systems. On the container ecosystem, the majority of systems are being developed with
Go. Kubernetes is an example of a technology developed with Go that is used for clustering application
containers. You can also use Kubernetes to cluster Docker applications.

Although Docker is a Linux technology, you can also run it in both Mac and Windows by using the
Docker Toolbox (www.docker.com/docker-toolbox). To get more information about Docker, check out its
documentation at https://docs.docker.com/.

The Docker ecosystem consists of the following:

• Docker Engine: A lightweight, powerful, open source, container virtualization
technology combined with a workflow for building and containerizing applications

• Docker Hub: An SaaS portal (https://hub.docker.com/) for sharing and managing
application stacks known as Docker images.

http://dx.doi.org/10.1007/978-1-4842-1052-9_11
https://linuxcontainers.org/
http://www.docker.com/docker-toolbox
https://docs.docker.com/
https://hub.docker.com/

Chapter 9 ■ Building RESTful Services

206

In Docker, images and containers are important concepts. A container is a “stripped-to-basics” version
of a Linux OS in which an image is loaded. A container is created from an image, which is an immutable file
that provides a snapshot of a container. You can make changes to an existing image, but you persist it as a
new image. Images are created with the docker build command. When these images run using the docker
run command, a container is produced. Images are stored in Docker registry systems such as Docker Hub
(provided by Docker) and private registry systems.

Writing Dockerfile
In this chapter, the objective will be to create a Dockerfile to automate the build process of the TaskManager
application to run on Dockerized containers.

When you work with Docker, you create application containers by manually making changes into a base
image or by building a Dockerfile, the text document that contains all instructions and commands to create
a desired image automatically without manually running commands. A Dockerfile lets you automate your
build to execute several command-line instructions. The docker build command builds an image from a
Dockerfile and a build context.

You create a Dockerfile by naming a text file as a Dockerfile without a file extension. Typically, you put
this file onto the root directory of your project repository.

Listing 9-23 provides a Dockerfile for the TaskManager application.

Listing 9-23.  Dockerfile for the TaskManager Application

golang image where workspace (GOPATH) configured at /go.
FROM golang

Copy the local package files to the container’s workspace.
ADD . /go/src/github.com/shijuvar/go-web/taskmanager

Setting up working directory
WORKDIR /go/src/github.com/shijuvar/go-web/taskmanager

Get godeps for managing and restoring dependencies
RUN go get github.com/tools/godep

Restore godep dependencies
RUN godep restore

Build the taskmanager command inside the container.
RUN go install github.com/shijuvar/go-web/taskmanager

Run the taskmanager command when the container starts.
ENTRYPOINT /go/bin/taskmanager

Service listens on port 8080.
EXPOSE 8080

Chapter 9 ■ Building RESTful Services

207

Let’s explore the commands used in the Dockerfile:

• The command FROM golang instructs Docker to start from an official golang
Docker image, which is a Debian image with the latest version of Go installed, and a
workspace (GOPATH) configured at /go.

• The Add command copies the local code to the container’s workspace.

• The WORKDIR command sets the working directory in the container.

• The RUN command runs commands within the container. Using the RUN command,
the godep tool is installed.

• The godep restore command restores dependencies into a container’s GOPATH
location.

• The taskmanager command runs inside the container’s GOPATH/bin location
(/go/bin) using the go install command.

• The ENTRYPOINT command instructs Docker to run the taskmanager command from
the /go/bin location when the container is started.

• The EXPOSE command instructs Docker that the container listens on the specified
network ports at runtime. It exposes port 8080. The EXPOSE command doesn’t open
up the ports of the container to the public. To do that, the publish flag (--publish) is
used to open up the ports by mapping with external HTTP ports.

The Dockerfile for building and running the TaskManager API server in an application container using
Docker is complete. Now let’s build the image from the Dockerfile. Run the following command from the
root directory of the TaskManager application:

docker build -t taskmanager

A local image is built by executing the instructions defined in the Dockerfile. The resulting image tags as
taskmanager.

An image named taskmanager (the resulting image from the Docker build) is created. Use the following
to run a container from this image:

docker run --publish 80:8080 --name taskmanager_api --rm taskmanager

Let’s explore the flags used in the docker run command:

• The --publish flag instructs Docker to publish the container’s exposed port 8080 on
the external port 80.

• The --name flag gives a name to the container created from the taskmanager image.
The name taskmanager_api is given to the container.

• The --rm flag instructs Docker to remove the container image when the container
exits. Otherwise, the container image will be there even after the container exits.

The docker run command runs the container by exposing external port 80. You can access the server
application by navigating to http://localhost:80.

Chapter 9 ■ Building RESTful Services

208

The Dockerfile for the TaskManager application provides everything for running the HTTP server inside
an application container. When you move the TaskManager application into production environments
with Docker, the pending action is the implementation on MongoDB into an application container. The
TaskManager application uses MongoDB as the persistence store, so you have to run the MongoDB database
in another container. You can use one container for running the HTTP server and another for running the
MongoDB database.

Containerized applications running on containers are referred as jailed services running in a jail. This
kind of virtualization isolates containers from each other. But when you build real-world applications, you
have to compose multiple containers to make them an application. In this case, you need to compose the
containers from the HTTP server and MongoDB database.

In this scenario, you can use Docker Compose (https://docs.docker.com/compose/) to define and
run multicontainer applications on the Docker platform. The design philosophy of Docker is to build
independently deployable microservices into containers and compose these services to build larger
applications.

Go Web Frameworks
In this chapter, you learned how to develop a RESTful API application from scratch without leveraging
a Go web framework. In the Go web development stack, using a full-fledged web framework is not very
popular within the Go developer community. Go developers prefer to use Go standard library packages
as the foundation for building their web applications and web APIs. On top of standard library packages,
developers do use a few third-party library packages for extending the functionality of standard library
packages and getting some utility functions to speed up web development.

This chapter used the same approach: developing a full-fledged application using the net/http
standard library package and a few third-party packages. In my opinion, a web framework is not necessary
for developing RESTful APIs. You can build highly scalable RESTful APIs in Go without using any web
framework. Having said that, using a web framework might be helpful in some contexts, especially when you
develop conventional web applications.

Here are some Go web frameworks to use if you want a full-fledged web framework:

• Beego (http://beego.me/): A full-featured MVC framework that includes a
built-in ORM

• Martini (https://github.com/go-martini/martini): A web framework inspired
from Sinatra (a Ruby web framework)

• Revel (https://revel.github.io/): A full-stack web framework focused on high
productivity

• Goji (https://goji.io/): A lightweight and minimalist web framework

• Gin (https://github.com/gin-gonic/gin): A web framework with Martini-like API
that promises better performance

Summary
In this chapter, you learned how to build a production-ready RESTful API with Go. You used MongoDB as
the data store for the RESTful API application, in which you organized the application logic into multiple
packages to easily maintain the application. (Some business validations and best practices were ignored
in the application due to the constraints of a book chapter, but a few best practices were included in the
application.)

https://docs.docker.com/compose/
http://beego.me/
https://github.com/go-martini/martini
https://revel.github.io/
https://goji.io/
https://github.com/gin-gonic/gin

Chapter 9 ■ Building RESTful Services

209

Negroni was used to handle the middleware stack, and middleware was added to specific routes.
A struct type for holding the values during the lifecycle of an HTTP request was created. A MongoDB
Session object was created before the HTTP server was started, and a copied version of the MongoDB
Session object was taken and closed for each HTTP request after executing the application handler. Go
is a great technology stack for building highly scalable RESTful APIs and is a perfect technology stack for
developing applications with the Microservice architecture pattern.

Go doesn’t provide a centralized repository for managing third-party packages, so managing external
dependencies is bit difficult. The godep third-party tool was used to manage dependencies of the RESTful
API application. It allows you to restore the dependencies into the GOPATH system location.

Docker is a revolutionary ecosystem for containerizing applications that enables developers and SAs to
develop, ship, and run applications in the container virtualization environment. An application container is
a lightweight Linux environment. A Dockerfile was created for the RESTful API application to automate the
build process of the application with Docker.

You can build web-based, scalable back-end systems in Go without using any web framework. In this
chapter, a production-ready RESTful API application was created by using the standard library package
net/http and a few third-party libraries. When you build RESTful APIs, you might not need a web
framework, but when you develop conventional web applications, using one might be helpful. Beego is a
fully featured web framework that provides everything, including an ORM.

References
https://docs.docker.com/

https://github.com/tools/godep

https://docs.docker.com/
https://github.com/tools/godep

211

Chapter 10

Testing Go Applications

Automated testing is an important practice in software engineering that ensures the quality of your
applications. If you are concerned about application quality, you should write automated tests to verify
the behavior of the components of your applications. In your Go applications, automated tests can ensure
that the Go packages behave the way they were designed to work. Go provides the fundamental testing
capabilities through its standard library packages and tooling support. In this chapter, you will learn how to
write unit tests using standard library packages and third-party packages.

Unit Testing
It isn’t easy to develop reliable software systems and maintain them long term. When you develop
applications, you must ensure that they work as intended every time. A good software system should be
maintainable so you can modify the functionality of the applications at any time without breaking any parts
of the application. When you modify some parts of an application, it should not destroy the functionality
of other parts. So you need to adopt good software engineering practices to ensure the quality of your
applications. Unit testing is an important software development practice that can be used for ensuring this
quality.

Unit testing is a kind of automated testing process in which the smallest pieces of testable software in
the application, called units, are individually and independently tested to determine whether they behave
exactly as designed. When you write unit tests, it is important to isolate the units (the smallest testable parts)
from the remaining parts of the code to individually and independently test the application code. When you
write unit tests, you should identify the units to be tested.

In OOP, the smallest unit might be a method that belongs to a class. In procedural programming, the
smallest unit might be a single function. In Go programs, a function or a method might be considered a
unit. But it doesn’t necessarily make a function as a unit because it is a situation in which the context of the
application functionality and the software design will decide which part can be treated as a unit.

Test-Driven Development (TDD)
Test-driven development (TDD) is a software development process that follows test-first development
in which unit tests are written before the production code. TDD is a design approach that encourages
developers to think about their implementation before writing the code, which is similar to developing
mock-up user interfaces. The mock-up design lets you learn what user interface you will develop for your
application.

Chapter 10 ■ Testing Go Applications

212

In TDD, you first write a unit test that defines a newly identified requirement or a desired improvement
before writing the production code, which gives you an understanding about what you will develop. You
write a unit test against a newly identified functional requirement, and the development process starts with
the newly added unit test. A developer must clearly understand the functional requirement in order to write
a new unit test. In a pure TDD approach, you run all unit tests along with the newly added test before writing
the implementation and see the newly added test fail. After writing a unit test, you write just enough code
to pass the test. Once your test is successful, you can fearlessly refactor the application code because it is
covered by the unit tests.

The TDD approach is highly recommended by those who are using agile development methodologies
for their software delivery. Agile methodologies emphasize developing software based on an evolutionary
approach rather than following an upfront design. When you develop software based on an evolutionary
design approach, TDD gives you lots of values as you continuously refactor application code for a newly
identified requirement or desired improvement. Because your application code is covered by unit tests, you
can run the suite of unit tests at any time to ensure that your application is working as you designed. Unit
tests define the design of your application.

Here are the steps involved in TDD:

1.	 Add a unit test to define a new functional requirement.

2.	 Run all tests and see whether the new unit test gets a fail.

3.	 Write some code to pass the tests.

4.	 Run the tests.

5.	 Refactor the code.

These steps will continue for the entire evolution of the software development process.
This chapter doesn’t use the test-first approach or TDD as the design approach for the examples. It

focuses more on writing automated unit tests. TDD is an advanced technique of using automated unit tests,
so you can easily practice TDD if you know how to write automated unit tests.

Unit Testing with Go
Go provides the core functionality to write automated unit tests through its testing standard library
package. The testing package provides all the essential functionality to write automated unit tests, which is
intended to be used with the go test command. So you can write unit tests with the testing package, and
these unit tests can then be run with the go test command. Like the net/http package that performs the
fundamental block to web programming available for extensibility, the testing package does the same for
unit testing.

The testing package lacks some advanced features required for writing unit tests, but there are many
third-party packages built on top of the package that provide additional functionalities that are required for
writing automated unit tests for several advanced scenarios. Besides the testing package, the Go standard
library provides two more packages: httptest (net/http/httptest) provides utilities for HTTP testing, and
quick (testing/quick) provides utility functions to help with black box testing.

The testing package is intended to be used with the go test command. To perform it, some naming
conventions and patterns are used for writing the test functions to be used with this command.

The go test command looks for the following conventions for identifying test functions:

func TestXxx(*testing.T)

Here, Xxx can be any alphanumeric string that starts with an uppercase letter.

Chapter 10 ■ Testing Go Applications

213

The following conventions are used to write a new test suite:

• Create a source file with a name ending in _test.go.

• Within the test suite (the source file ends with _test.go), write functions with
signature func TestXxx(*testing.T).

You can put the test suite files in the same package that is being tested. These test files are excluded
when you build the packages, but are included when you run the go test command, which recompiles each
package along with any files with names matching the file pattern "*_test.go".

To get help with go test, run the following command:

go help test

To get help with the various flags used by the go test command, run the following command:

go help testflag

Writing Unit Tests
Let’s write some unit tests using the testing package (this chapter doesn’t focus on the test-first
development process). First, let’s write a couple of string utility functions to demonstrate unit tests.

Listing 10-1 provides several string utility functions to change the case of a string parameter and reverse
a string parameter.

Listing 10-1.  String Utility Functions in utils.go

package stringutils

import (
 "bytes"
 "unicode"
)

// Swap the case of a string parameter
func SwapCase(str string) string {

 buf := &bytes.Buffer{}
 for _, r := range str {

if unicode.IsUpper(r) {
buf.WriteRune(unicode.ToLower(r))

} else {
buf.WriteRune(unicode.ToUpper(r))

}
 }

 return buf.String()
}

Chapter 10 ■ Testing Go Applications

214

// Reverse the string parameter
func Reverse(s string) string {
 r := []rune(s)
 for i, j := 0, len(r)-1; i < len(r)/2; i, j = i+1, j-1 {

r[i], r[j] = r[j], r[i]
 }
 return string(r)
}

There are two functions to be tested: SwapCase and Reverse. The SwapCase function swaps the case of a
string parameter; the Reverse function reverses the string parameter.

Let’s write the test cases for testing the SwapCase and Reverse functions.
Listing 10-2 provides the tests in the source file utils_test.go.

Listing 10-2.  Unit Tests for the stringutils package in utils_test.go

package stringutils

import (
 "testing"
)

// Test case for the SwapCase function
func TestSwapCase(t *testing.T) {
 input, expected := "Hello, World", "hELLO, wORLD"
 result := SwapCase(input)

 if result != expected {

 t.Errorf("SwapCase(%q) == %q, expected %q", input, result, expected)
 }

}

// Test case for the Reverse function
func TestReverse(t *testing.T) {
 input, expected := "Hello, World", "dlroW ,olleH"
 result := Reverse(input)

 if result != expected {

 t.Errorf("Reverse(%q) == %q, expected %q", input, result, expected)
 }

}

The test suite file utils_test.go is created in the stringutils package directory. Within the
utils_test.go file, two test functions with the pattern func TestXxx(*testing.T) are written. The
TestSwapCase function is written to verify the behavior of the SwapCase function, and TestReverse is written
to verify the Reverse function.

Chapter 10 ■ Testing Go Applications

215

If the test results don’t match with the expected results, Error, Fail, or related functions can be called
to signal failure of the test cases. The Error and Fail functions signal the failure of a test case, but it will
continue the execution for the rest of the test cases. If you want to stop the execution when any test case
fails, you can call the FailNow or Fatal functions. The FailNow function calls the Fail function and stops the
execution. Fatal is equivalent to Log followed by FailNow. In these test cases, the Errorf function is called to
signal their failure:

if result != expected {

 t.Errorf("SwapCase(%q) == %q, expected %q", input, result, expected)
}

Let’s run the test cases. Navigate to the package directory and then run the following command on the
command-line window:

go test

The go test command will execute all _test.go files in the package directory, and you should see
output something like this:

PASS
ok github.com/shijuvar/go-web/chapter-10/stringutils 0.524s

The output of the previous test result is not very descriptive. The verbose (-v) flag is provided to get
descriptive information about the test cases. Let’s run the go test command by providing the verbose flag:

go test –v

When you run go test with the verbose flag, you should see output something like this:

=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
PASS
ok github.com/shijuvar/go-web/chapter-10/stringutils 0.466s

This output shows descriptive information about each test case.

Getting Test Coverage
The coverage (-cover) flag helps to get coverage of the test case against the code. Let’s take a look at the
test coverage of the stringutil package.

Let’s provide the coverage flag along with the verbose flag:

go test –v –cover

Chapter 10 ■ Testing Go Applications

216

You should see output something like this:

=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
PASS
coverage: 100.0% of statements

This output shows that there is 100% test coverage against the code written in the stringutils package.
In the stringutils package, two utility functions that were covered in the utils_test.go test suite file are
written.

For the sake of the demonstration, let’s comment out the test function TestSwapCase and run the go
test command with the coverage flag. You should see output something like this:

=== RUN TestReverse
--- PASS: TestReverse (0.00s)
PASS
coverage: 40.0% of statements
ok github.com/shijuvar/go-web/chapter-10/stringutils 0.371s

This output shows that the test coverage is 40% because the SwapCase function is not covered
(the TestSwapCase function was commented out) in the test suite file.

Benchmark Unit Tests
Listing 10-2 showed a couple of test cases to verify the behavior of code using the testing package. These
tests focused on verifying the code behavior and design of the application. In addition to writing these kind
of tests, the testing package also provides the capability to benchmark your code, which allows you to
analyze the performance of a unit of work.

Here is the convention for writing benchmark tests:

func BenchmarkXxx(*testing.B)

You write benchmark functions inside the _test.go files. The benchmark tests are executed by the go
test command when its benchmark (-bench) flag is provided.

Let’s write the benchmark tests inside the utils_test.go test suite file to benchmark the functions
written in utils.go.

Listing 10-3 provides the benchmark tests for analyzing the functions written in utils.go: SwapCase
and Reverse.

Listing 10-3.  Benchmark Test Cases in utils_test.go

//Benchmark for SwapCase function
func BenchmarkSwapCase(b *testing.B) {
 for i := 0; i < b.N; i++ {

SwapCase("Hello, World")
 }
}

Chapter 10 ■ Testing Go Applications

217

//Benchmark for Reverse function
func BenchmarkReverse(b *testing.B) {
 for i := 0; i < b.N; i++ {

Reverse("Hello, World")
 }
}

Two benchmark test cases are written to determine the performance of the SwapCase and Reverse
functions. To reliably benchmark the test functions, it must run the target code for b.N times. The value of
b.N will be adjusted during the execution of the benchmark functions. Test benchmarks give you a reliable
response time per loop.

When the benchmark (-bench) flag is provided, you have to provide a regular expression to indicate the
benchmarks to be tested. To run all benchmarks, use "-bench ." or "-bench=.".

Let’s run the tests by providing "-bench .":

go test -v -cover -bench .

You should see output something like this:

=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
PASS
BenchmarkSwapCase-4 3000000 562 ns/op
BenchmarkReverse-4 3000000 404 ns/op
coverage: 100.0% of statements
ok github.com/shijuvar/go-web/chapter-10/stringutils 4.471s

This output shows that the loop within the BenchmarkSwapCase benchmark function ran 3,000,000
times at a speed of 562 ns per loop. The loop within the BenchmarkReverse function ran 3,000,000 times at
a speed of 404 ns per loop. In the output, the BenchmarkReverse function performed a bit better than the
BenchmarkSwapCase function.

Verifying Example Code
In addition to providing support for writing tests to verify behavior and writing benchmark tests, the
testing package also provides support for running and verifying example code. Example code for packages,
functions, types, and methods can be provided by using this capability.

Here are the naming conventions used to declare examples for the package, a function F, a type T, and a
method M on type T:

func Example() // Example test for package
func ExampleF() // Example test for function F
func ExampleT() // Example test for type T
func ExampleT_M() // Example test for M on type T

Within the example test functions is a concluding line comment that begins with "Output:" and is
compared with the standard output of the function when the tests are run.

Listing 10-4 provides the example code for the Reverse and SwapCase functions.

Chapter 10 ■ Testing Go Applications

218

Listing 10-4.  Example code for Reverse and SwapCase Functions

//Example code for Reverse function
func ExampleReverse() {
 fmt.Println(Reverse("Hello, World"))
 // Output: dlroW ,olleH
}

//Example code for Reverse function
func ExampleSwapCase() {
 fmt.Println(SwapCase("Hello, World"))
 // Output: hELLO, wORLD
}

The example test function is written inside the utils_test.go file. In the example code, a concluding
line comment that begins with "Output:" is included.

Let’s run the tests with the go test command:

go test –v -cover

You should see output something like this:

=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
=== RUN ExampleReverse
--- PASS: ExampleReverse (0.00s)
=== RUN ExampleSwapCase
--- PASS: ExampleSwapCase (0.00s)
PASS
coverage: 100.0% of statements
ok github.com/shijuvar/go-web/chapter-10/stringutils 0.359s

This output shows that the example tests have successfully passed. In addition to verifying the example
code, example tests are available as examples for package documentation. When documentation is
generated with the godoc tool, the example code in the example test functions is available as an example in
the documentation.

Chapter 10 ■ Testing Go Applications

219

Figure 10-1.  Documentation for the Reverse function generated by the godoc tool

Figure 10-1 illustrates the documentation for the Reverse function, showing that the example is taken
from the ExampleReverse function.

Chapter 10 ■ Testing Go Applications

220

Figure 10-2 illustrates the documentation for the SwapCase function, showing that the example is taken
from the ExampleSwapCase function.

Figure 10-2.  Documentation for the SwapCase function generated by the godoc tool

Chapter 10 ■ Testing Go Applications

221

Skipping Test Cases
When you run tests, you can skip some of the test cases by leveraging the Skip function provided by the
testing package and providing the short (-short) flag to the go test command. This is useful in some
specific scenarios. If you want to skip some time-consuming test cases when running the tests, you can
leverage the capability of skipping test cases.

In another scenario, some test cases may require a dependency to resources such as a configuration
file or an environment variable that should be provided for running those tests. If these resources are not
available during the execution of those tests, you can simply skip those tests instead of letting them fail. The
testing package provides a Skip method of testing.T type that allows you to skip test cases.

Listing 10-5 provides a test case in utils_test.go to illustrate skipping test cases.

Listing 10-5.  Skipping Test Cases

func TestLongRun(t *testing.T) {
 // Checks whether the short flag is provided
 if testing.Short() {
 t.Skip("Skipping test in short mode")
 }
 // Long running implementation goes here
 time.Sleep(5 * time.Second)
}

Within the TestLongRun function, you see whether the short flag is provided by calling testing.Short().
If the short flag is provided, call the Skip method to skip the test case. Otherwise, the test case executes
normally. When the test function TestLongRun executes normally, the execution is delayed by 5 seconds for
the sake of the demonstration.

Let’s run the tests without providing the short flag:

go test –v –cover

You should see output something like this:

=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
=== RUN TestLongRun
--- PASS: TestLongRun (5.00s)
=== RUN ExampleReverse
--- PASS: ExampleReverse (0.00s)
=== RUN ExampleSwapCase
--- PASS: ExampleSwapCase (0.00s)
PASS
coverage: 100.0% of statements
ok github.com/shijuvar/go-web/chapter-10/stringutils 5.457s

Here, the tests are run normally without the short flag, so the test function ExampleSwapCase executes
normally and takes 5 seconds to complete the execution. Now let’s run the tests by providing the short flag:

go test –v –cover -short

Chapter 10 ■ Testing Go Applications

222

You should see output something like this:

=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
=== RUN TestLongRun
--- SKIP: TestLongRun (0.00s)

utils_test.go:61: Skipping test in short mode
=== RUN ExampleReverse
--- PASS: ExampleReverse (0.00s)
=== RUN ExampleSwapCase
--- PASS: ExampleSwapCase (0.00s)
PASS
coverage: 100.0% of statements
ok github.com/shijuvar/go-web/chapter-10/stringutils 0.449s

This output shows that the test case TestLongRun skipped during the execution:

--- SKIP: TestLongRun (0.00s)
utils_test.go:61: Skipping test in short mode

Running Tests Cases in Parallel
Although test cases are run sequentially, you can run test cases in parallel if you want to speed up the test
execution. When you run a large set of sequential test cases, you can leverage the capability of running
tests in parallel to speed up the execution. To run a test case in parallel, call the Parallel method of the
testing.T type as the first statement in the test case.

Listing 10-6 provides couple of test cases inside the utils_test.go file to run test cases in parallel.

Listing 10-6.  Test Cases to Run in Parallel

// Test case for the SwapCase function to execute in parallel
func TestSwapCaseInParallel(t *testing.T) {
 t.Parallel()
 // Delaying 1 second for the sake of demonstration
 time.Sleep(1 * time.Second)
 input, expected := "Hello, World", "hELLO, wORLD"
 result := SwapCase(input)

 if result != expected {

 t.Errorf("SwapCase(%q) == %q, expected %q", input, result, expected)
 }

}

Chapter 10 ■ Testing Go Applications

223

// Test case for the Reverse function to execute in parallel
func TestReverseInParallel(t *testing.T) {
 t.Parallel()
 // Delaying 2 seconds for the sake of demonstration
 time.Sleep(2 * time.Second)
 input, expected := "Hello, World", "dlroW ,olleH"
 result := Reverse(input)

 if result != expected {

 t.Errorf("Reverse(%q) == %q, expected %q", input, result, expected)
 }

}

A couple of test cases are written in which t.Parallel() is called to run test cases in parallel. The
SwapCase and Reverse functions are run and tested to ensure that there is parallel execution.

Let’s run the tests by providing the parallel (-parallel) flag:

go test –v –cover –short –parallel 2

With the parallel flag, you specify running two test cases at a time in parallel. If you don’t specify the
parallel flag, it defaults to runtime.GOMAXPROCS(0), which is 1, so the parallel tests will be run one at a time.

When you run the tests, you should see output something like this:

=== RUN TestSwapCaseInParallel
=== RUN TestReverseInParallel
=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
=== RUN TestLongRun
--- SKIP: TestLongRun (0.00s)

utils_test.go:91: Skipping test in short mode
--- PASS: TestSwapCaseInParallel (1.00s)
--- PASS: TestReverseInParallel (2.00s)
=== RUN ExampleReverse
--- PASS: ExampleReverse (0.00s)
=== RUN ExampleSwapCase
--- PASS: ExampleSwapCase (0.00s)
PASS
coverage: 100.0% of statements
ok github.com/shijuvar/go-web/chapter-10/stringutils 2.345s

This output shows that test cases TestSwapCaseInParallel and TestReverseInParallel ran in parallel:

=== RUN TestSwapCaseInParallel
=== RUN TestReverseInParallel

Chapter 10 ■ Testing Go Applications

224

Within these functions, the execution time is delayed by using the time.Sleep function for the
sake of this demonstration. Both tests complete in different order by taking 1 second for
TestSwapCaseInParallel and 2 seconds for TestReverseInParallel:

--- PASS: TestSwapCaseInParallel (1.00s)
--- PASS: TestReverseInParallel (2.00s)

If you look at the logs generated by go test, you see that other test cases ran sequentially one by one
after completing each test case:

=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
=== RUN TestLongRun
--- SKIP: TestLongRun (0.00s)

utils_test.go:91: Skipping test in short mode
=== RUN ExampleReverse
--- PASS: ExampleReverse (0.00s)
=== RUN ExampleSwapCase
--- PASS: ExampleSwapCase (0.00s)

Putting Tests in Separate Packages
Unit tests are usually put into the same package as the one being tested. The _test.go files are excluded
from regular package builds, but are included when the go test command is run. In my opinion, it is better
to move your test files into a separate package, which allows you to separate unit tests from the application
code that improves the separation of concerns. (In previous examples, the application code and test files
were written in the same package: stringutils.)

Let’s move the utils_test.go file into a new package directory named stringutils_test and import
the stringutils package so the functions to be tested can be accessed.

Figure 10-3 illustrates the directory structure of the application.

Figure 10-3.  Directory structure of the stringutils and stringutils_test packages

Chapter 10 ■ Testing Go Applications

225

The utils.go file is put into the stringutils package directory, and the test suite file utils_test.go is
put into the stringutils_test package directory.

Listing 10-7 provides the combined source version of the utils_test.go file used in previous examples.

Listing 10-7.  Source of Test Suite File utils_test.go

package stringutils_test

import (
 "fmt"
 "testing"
 "time"

 . "github.com/shijuvar/go-web/chapter-10/stringutils"
)

// Test case for the SwapCase function to execute in parallel
func TestSwapCaseInParallel(t *testing.T) {
 t.Parallel()
 // Delaying 1 second for the sake of demonstration
 time.Sleep(1 * time.Second)
 input, expected := "Hello, World", "hELLO, wORLD"
 result := SwapCase(input)

 if result != expected {

 t.Errorf("SwapCase(%q) == %q, expected %q", input, result, expected)
 }
}

// Test case for the Reverse function to execute in parallel
func TestReverseInParallel(t *testing.T) {
 t.Parallel()
 // Delaying 2 seconds for the sake of demonstration
 time.Sleep(2 * time.Second)
 input, expected := "Hello, World", "dlroW ,olleH"
 result := Reverse(input)

 if result != expected {

 t.Errorf("Reverse(%q) == %q, expected %q", input, result, expected)
 }

}

Chapter 10 ■ Testing Go Applications

226

// Test case for the SwapCase function
func TestSwapCase(t *testing.T) {
 input, expected := "Hello, World", "hELLO, wORLD"
 result := SwapCase(input)

 if result != expected {

 t.Errorf("SwapCase(%q) == %q, expected %q", input, result, expected)
 }

}

// Test case for the Reverse function
func TestReverse(t *testing.T) {
 input, expected := "Hello, World", "dlroW ,olleH"
 result := Reverse(input)

 if result != expected {

 t.Errorf("Reverse(%q) == %q, expected %q", input, result, expected)
 }

}

//Benchmark for SwapCase function
func BenchmarkSwapCase(b *testing.B) {
 for i := 0; i < b.N; i++ {

SwapCase("Hello, World")
 }
}

//Benchmark for Reverse function
func BenchmarkReverse(b *testing.B) {
 for i := 0; i < b.N; i++ {

Reverse("Hello, World")
 }
}

//Example code for Reverse function
func ExampleReverse() {
 fmt.Println(Reverse("Hello, World"))
 // Output: dlroW ,olleH
}

//Example code for Reverse function
func ExampleSwapCase() {
 fmt.Println(SwapCase("Hello, World"))
 // Output: hELLO, wORLD
}

Chapter 10 ■ Testing Go Applications

227

func TestLongRun(t *testing.T) {
 // Checks whether the short flag is provided
 if testing.Short() {
 t.Skip("Skipping test in short mode")
 }
 // Long running implementation goes here
 time.Sleep(5 * time.Second)
}

In the imports package, the stringutils package is imported:

. "github.com/shijuvar/go-web/chapter-10/stringutils"

When importing the stringutils package, use dot (.) import, which allows you to call exported
identifiers without referring to the package name:

result := SwapCase(input)

Let’s run the unit tests using the go test command:

go test –v –cover –short –parallel 2

You should see the output something like this:

=== RUN TestSwapCaseInParallel
=== RUN TestReverseInParallel
=== RUN TestSwapCase
--- PASS: TestSwapCase (0.00s)
=== RUN TestReverse
--- PASS: TestReverse (0.00s)
=== RUN TestLongRun
--- SKIP: TestLongRun (0.00s)

utils_test.go:93: Skipping test in short mode
--- PASS: TestSwapCaseInParallel (1.00s)
--- PASS: TestReverseInParallel (2.00s)
=== RUN ExampleReverse
--- PASS: ExampleReverse (0.00s)
=== RUN ExampleSwapCase
--- PASS: ExampleSwapCase (0.00s)
PASS
coverage: 0.0% of statements
ok github.com/shijuvar/go-web/chapter-10/stringutils_test 2.573s

Although unit tests were run from a package separate from the one being tested, the go test command
gave the proper output. Here, the only difference is that the test coverage is 0%:

coverage: 0.0% of statements

If you aren’t concerned about the percentage of test coverage you get from the go test command,
putting unit tests into separate packages is a recommended approach.

Chapter 10 ■ Testing Go Applications

228

Testing Web Applications
The primary focus of this book is web development in Go, and this section takes a look at how to test web
applications. The standard library package net/http/httptest provides the utilities for testing HTTP
applications. The httptest package provides the following struct types that help test HTTP applications:

• ResponseRecorder

• Server

ResponseRecorder is an implementation of http.ResponseWriter that can be used for records returned
HTTP response to inspect the response in unit tests. You can create the ResponseRecorder instance by
calling the NewRecorder function of the httptest package. The ResponseRecorder object is passed when the
HTTP request handlers are executed; the response can be inspected by testing the ResponseRecorder object
that contains the returned response.

A Server is an HTTP server designed for testing HTTP applications with a test server. You can create a
test HTTP server by calling the NewServer function of the httptest package by passing an instance of
http.Handler, which starts an HTTP server by calling the Serve method of http.Server. By using
httptest.Server, you can test your HTTP applications using a test server (HTTP server). Hence you can
perform end-to-end HTTP tests by sending HTTP requests to the server from a HTTP client.

Testing with ResponseRecorder
Let’s take a look at how to write unit tests to inspect HTTP responses by leveraging the ResponseRecorder
type. First, we write an example HTTP API server with the endpoints shown in Table 10-1.

Table 10-1.  Example of HTTP API Server

HTTP Verb Path Functionality

GET /users Lists all users in JSON format

POST /users Creates a user

Listing 10-8 provides an implementation of an example HTTP server.

Listing 10-8.  Example HTTP API Server in main.go

package main

import (
 "encoding/json"
 "errors"
 "net/http"

 "github.com/gorilla/mux"
)

type User struct {
 FirstName string `json:"firstname"`
 LastName string `json:"lastname"`
 Email string `json:email"`
}

Chapter 10 ■ Testing Go Applications

229

var userStore = []User{}

func getUsers(w http.ResponseWriter, r *http.Request) {
 users, err := json.Marshal(userStore)

 if err != nil {
 w.WriteHeader(http.StatusInternalServerError)

return
 }

w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
w.Write(users)

}
func createUser(w http.ResponseWriter, r *http.Request) {

 var user User
 // Decode the incoming User json
 err := json.NewDecoder(r.Body).Decode(&user)
 if err != nil {
 w.WriteHeader(http.StatusInternalServerError)

return
 }
 // Validate the User entity
 err = validate(user)
 if err != nil {
 w.WriteHeader(http.StatusBadRequest)

return
 }
 // Insert User entity into User Store
 userStore = append(userStore, user)

w.WriteHeader(http.StatusCreated)
}

// Validate User entity
func validate(user User) error {
 for _, u := range userStore {

if u.Email == user.Email {
return errors.New("The Email is already exists")

}
 }
 return nil
}
func SetUserRoutes() *mux.Router {
 r := mux.NewRouter()

r.HandleFunc("/users", createUser).Methods("POST")
r.HandleFunc("/users", getUsers).Methods("GET")
return r

}

func main() {
 http.ListenAndServe(":8080", SetUserRoutes())
}

Chapter 10 ■ Testing Go Applications

230

Two HTTP endpoints are written: HTTP Post on "/users" and HTTP Get on "/users". Gorilla mux
is used to configure the request multiplexer. When a new User entity is created, you validate whether the
e-mail ID already exists. For the sake of the example demonstration, the User objects are persisted into a
slice named userStore.

In TDD, a developer starts the development cycle by writing unit tests based on the requirements
identified. Developers normally write user stories to write unit tests. Even though this book doesn’t follow a
test-first approach or the purest form of TDD, let’s write user stories for writing unit tests:

1.	 Users should be able to view a list of User entities.

2.	 Users should be able to create a new User entity.

3.	 The e-mail ID of a User entity should be unique.

Listing 10-9 provides the unit tests for the HTTP server application (refer to Listing 10-8). The tests are
based on the user stories defined previously.

Listing 10-9.  Unit Tests for HTTP API Server using ResponseRecorder in main_test.go

package main

import (
"fmt"
"net/http"
"net/http/httptest"
"strings"
"testing"

"github.com/gorilla/mux"
)

// User Story - Users should be able to view list of User entity
func TestGetUsers(t *testing.T) {

r := mux.NewRouter()
r.HandleFunc("/users", getUsers).Methods("GET")
req, err := http.NewRequest("GET", "/users", nil)
if err != nil {

 t.Error(err)
}
w := httptest.NewRecorder()

r.ServeHTTP(w, req)
if w.Code != 200 {

 t.Errorf("HTTP Status expected: 200, got: %d", w.Code)
}

}

// User Story - Users should be able to create a User entity
func TestCreateUser(t *testing.T) {

r := mux.NewRouter()
r.HandleFunc("/users", createUser).Methods("POST")

�userJson := `{"firstname": "shiju", "lastname": "Varghese", "email":
"shiju@xyz.com"}`

Chapter 10 ■ Testing Go Applications

231

req, err := http.NewRequest(
"POST",
"/users",
strings.NewReader(userJson),

)
if err != nil {

 t.Error(err)
}

w := httptest.NewRecorder()
r.ServeHTTP(w, req)
if w.Code != 201 {

 t.Errorf("HTTP Status expected: 201, got: %d", w.Code)
}

}

//User Story - The Email Id of a User entity should be unique
func TestUniqueEmail(t *testing.T) {

r := mux.NewRouter()
r.HandleFunc("/users", createUser).Methods("POST")

�userJson := `{"firstname": "shiju", "lastname": "Varghese", "email":
"shiju@xyz.com"}`

req, err := http.NewRequest(
"POST",
"/users",
strings.NewReader(userJson),

)
if err != nil {

 t.Error(err)
}

w := httptest.NewRecorder()
r.ServeHTTP(w, req)
if w.Code != 400 {

 t.Error("Bad Request expected, got: %d", w.Code)
}

}
func TestGetUsersClient(t *testing.T) {

r := mux.NewRouter()
r.HandleFunc("/users", getUsers).Methods("GET")
server := httptest.NewServer(r)
defer server.Close()
usersUrl := fmt.Sprintf("%s/users", server.URL)
request, err := http.NewRequest("GET", usersUrl, nil)

res, err := http.DefaultClient.Do(request)

Chapter 10 ■ Testing Go Applications

232

if err != nil {
 t.Error(err)

}

if res.StatusCode != 200 {
 t.Errorf("HTTP Status expected: 200, got: %d", res.StatusCode)

}
}
func TestCreateUserClient(t *testing.T) {

r := mux.NewRouter()
r.HandleFunc("/users", createUser).Methods("POST")
server := httptest.NewServer(r)
defer server.Close()
usersUrl := fmt.Sprintf("%s/users", server.URL)
fmt.Println(usersUrl)
userJson := `{"firstname": "Rosmi", "lastname": "Shiju", "email": "rose@xyz.com"}`
request, err := http.NewRequest("POST", usersUrl, strings.NewReader(userJson))

res, err := http.DefaultClient.Do(request)

if err != nil {
 t.Error(err)

}

if res.StatusCode != 201 {
 t.Errorf("HTTP Status expected: 201, got: %d", res.StatusCode)

}
}

Three test cases are written against the user stories. Follow these steps to write each test case:

1.	 Create a router instance using the Gorilla mux package and configure the
multiplexer.

2.	 Create an HTTP request using the http.NewRequest function.

3.	 Create a ResponseRecorder object using the httptest.NewRecorder function.

4.	 Send the ResponseRecorder object and Request object to the multiplexer by
calling the ServeHTTP method.

5.	 Inspect the ResponseRecorder object to inspect the returned HTTP response.

Let’s explore the code of the test function TestGetUsers:
The multiplexer is configured to perform an HTTP Get request on "/users":

r := mux.NewRouter()
r.HandleFunc("/users", getUsers).Methods("GET")

The HTTP request object is created using http.NewRequest to send this object to the multiplexer:

req, err := http.NewRequest("GET", "/users", nil)
if err != nil {
 t.Error(err)
}

Chapter 10 ■ Testing Go Applications

233

A ResponseRecorder object is created using the httptest.NewRecorder function to record the returned
HTTP response:

w := httptest.NewRecorder()

The ServeHTTP method of the multiplexer is called by providing the ResponseRecorder and Request
objects to invoke the HTTP Get request on "/users", which invokes the getUsers handler function:

r.ServeHTTP(w, req)

The ResponseRecorder object records the returned response so the behavior of the HTTP response can
be verified. Here, the returned HTTP response of a status code of 200 is verified:

if w.Code != 200 {
 t.Errorf("HTTP Status expected: 200, got: %d", w.Code)
}

In the test function TestCreateUser, JSON data is provided to create a User entity. Here, the returned
HTTP response of a status code of 201 is verified:

if w.Code != 201 {
 t.Errorf("HTTP Status expected: 201, got: %d", w.Code)
}

The test function TestUniqueEmail verifies that the behavior of the e-mail ID of a User entity
is unique. To test this behavior, the same JSON data used for the TestCreateUser function is provided.
Because test cases run sequentially, the TestUniqueEmail function is run after the TestCreateUser function
is executed. Because a duplicate e-mail is provided, a status code of 400 should be received:

if w.Code != 400 {
 t.Error("Bad Request expected, got: %d", w.Code)
 }

Testing with Server
In the previous section, unit tests using the ResponseRecorder struct type were written, and this type is
sufficient for testing HTTP responses. The httptest package also provides a Server struct type that allows
you to create an HTTP server for performing end-to-end HTTP tests in which you can send HTTP requests
to the server using an HTTP client. Listing 10-9 tested the behavior of HTTP responses without creating an
HTTP server. Instead, an HTTP request and a ResponseRecorder object are sent into the multiplexer. With
httptest.Server, an HTTP server can be created, and the behaviors can then be tested by sending requests
from an HTTP client.

Let’s write unit tests by using the httptest.Server type to test the example HTTP application written
in Listing 10-8. In these example unit tests, test cases are written to verify the behavior of HTTP Get on
"/users" and HTTP Post on "/users". The unit tests are written inside the main_test.go test suite file, in
which unit tests using ResponseRecorder are already written.

Chapter 10 ■ Testing Go Applications

234

Listing 10-10 provides the unit tests using httptest.Server.

Listing 10-10.  Unit Tests for HTTP API Server using Server in main_test.go

func TestGetUsersClient(t *testing.T) {
 r := mux.NewRouter()

r.HandleFunc("/users", getUsers).Methods("GET")
server := httptest.NewServer(r)
defer server.Close()
usersUrl := fmt.Sprintf("%s/users", server.URL)
request, err := http.NewRequest("GET", usersUrl, nil)

 res, err := http.DefaultClient.Do(request)

 if err != nil {
 t.Error(err)
 }

 if res.StatusCode != 200 {
 t.Errorf("HTTP Status expected: 200, got: %d", res.StatusCode)
 }
}
func TestCreateUserClient(t *testing.T) {
 r := mux.NewRouter()

r.HandleFunc("/users", createUser).Methods("POST")
server := httptest.NewServer(r)
defer server.Close()
usersUrl := fmt.Sprintf("%s/users", server.URL)
userJson := `{"firstname": "Rosmi", "lastname": "Shiju", "email": "rose@xyz.com"}`
request, err := http.NewRequest("POST", usersUrl, strings.NewReader(userJson))

 res, err := http.DefaultClient.Do(request)

 if err != nil {
 t.Error(err)
 }

 if res.StatusCode != 201 {
 t.Errorf("HTTP Status expected: 201, got: %d", res.StatusCode)
 }
}

With httptest.Server, two test functions are written: TestGetUsersClient and TestCreateUserClient.
In these test cases, an HTTP server is created, and behaviors are tested by sending HTTP requests to it from
an HTTP client.

Chapter 10 ■ Testing Go Applications

235

Follow these steps to write each test case:

1.	 Create a router instance using the Gorilla mux package and configure the
multiplexer.

2.	 Create an HTTP server using the httptest.NewServer function.

3.	 Create a Request object using the http.NewRequest function.

4.	 Send an HTTP request to the server using the Do method of an http.Client
object.

5.	 Inspect the Response object to inspect the returned HTTP response.

Let’s explore the test function TestGetUsersClient. First, the multiplexer is configured to perform an
HTTP Get request on "/users":

r := mux.NewRouter()
r.HandleFunc("/users", getUsers).Methods("GET")

An HTTP server is created with the httptest.NewServer function. The NewServer function starts and
returns a new HTTP server. The Close method of the Server object is added to the list of deferred functions:

server := httptest.NewServer(r)
defer server.Close()

An HTTP request is created with the http.NewRequest function and sends an HTTP request using the
Do method of the http.Client object. An http.Client object is created with http.DefaultClient. The Do
method is called, which sends an HTTP request and returns an HTTP response:

usersUrl := fmt.Sprintf("%s/users", server.URL)
request, err := http.NewRequest("GET", usersUrl, nil)
res, err := http.DefaultClient.Do(request)

Here, nil is provided as the request parameter to the NewRequest function because it is an HTTP Get
request.

Finally, the behavior of the HTTP response return from the HTTP server is verified:

if res.StatusCode != 200 {
 t.Errorf("HTTP Status expected: 200, got: %d", res.StatusCode)
}

TestCreateUserClient is used to test HTTP Post on "/users". Because it is an HTTP Post request, data
have to be sent to the server to create the User entity. When the http.NewRequest function is called to create
an HTTP request, the JSON data is provided as the request parameter.

Here is the code block used to provide JSON data to the server for an HTTP Post request on "/users":

usersUrl := fmt.Sprintf("%s/users", server.URL)
 userJson := `{"firstname": "Rosmi", "lastname": "Shiju", "email": "rose@xyz.com"}`
request, err := http.NewRequest("POST", usersUrl, strings.NewReader(userJson))

Chapter 10 ■ Testing Go Applications

236

If the request on "/users" is successful, the HTTP status code 201 should appear. The verification is
shown here:

if res.StatusCode != 201 {
 t.Errorf("HTTP Status expected: 201, got: %d", res.StatusCode)
}

BDD Testing in Go
The Go testing and httptest standard library packages provide a great foundation for writing automated
unit tests. The advantage of these packages is that they provide many extensibility points, so you can easily
use these packages with other custom packages.

This section discusses two third-party packages: Ginkgo and Gomega. Ginkgo is a behavior-driven
development (BDD) – based testing framework that lets you write expressive tests in Go to specify
application behaviors. If you are practicing BDD for your software development process, Ginkgo is a great
choice of package. Gomega is a matcher library that is best paired with the Ginkgo package. Although Gomega
is a preferred matching library for Ginkgo, it is designed to be matcher-agnostic.

Behavior-Driven Development (BDD)
BDD is a software development process that evolved from TDD and other agile practices. BDD is designed
to make an effective software development practice for agile software delivery. It is an evolved practice
from many agile practices (mainly from TDD). The term test in TDD has created confusion in the developer
community for those who practice TDD in their software development process.

Although TDD is a software development process and a design philosophy, many developers assumed
that it was only about testing. But the idea of TDD was to design code by writing unit tests. It’s all about
designing and verifying the behavior of applications. BDD is an extension of TDD, with the emphasis on
behavior instead of test. In BDD, you specify behaviors in automated tests and write code based on the
behaviors.

Behavior-Driven Development with Ginkgo
You can easily adopt BDD-style testing if you have a basic understanding of automated tests. In BDD, the
term behavior is used instead of test. Let’s take a look at how to write BDD-style testing using Ginkgo and its
preferred matcher library Gomega.

Refactoring the HTTP API
Let’s write BDD-style testing for the example HTTP server written in Listing 10-8. When you write automated
unit tests, you have to make the code testable by applying a loosely coupled design so that you can easily
write tests. Let’s refactor the HTTP server written in Listing 10-8.

Figure 10-4 illustrates the directory structure of the refactored application.

Chapter 10 ■ Testing Go Applications

237

Listing 10-8 implemented everything in a single source file: main.go in the main package. In the
refactored application, code is implemented in two packages: lib and main. The main package contains the
main.go file that provides the entry point of the application, and all application logic is moved into the lib
package.

The lib package contains the following source files:

• handlers.go contains the HTTP handlers and provides the implementation for
setting up routes with Gorilla mux.

• repository.go contains the persistence logic and persistence store.

Other source files in the lib directory provide implementation for automated tests for BDD, but they
are put in the lib_test package. (This topic is discussed later in the chapter.)

Listing 10-11 provides the handlers.go code in the lib package.

Listing 10-11.  handlers.go in the lib Package

package lib

import (
 "encoding/json"
 "net/http"

 "github.com/gorilla/mux"
)

func GetUsers(repo UserRepository) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

userStore := repo.GetAll()
users, err := json.Marshal(userStore)

if err != nil {
 w.WriteHeader(http.StatusInternalServerError)

return
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
w.Write(users)

 })
}

Figure 10-4.  Directory structure of the refactored application from Listing 10-8

Chapter 10 ■ Testing Go Applications

238

func CreateUser(repo UserRepository) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

var user User
err := json.NewDecoder(r.Body).Decode(&user)
if err != nil {

 w.WriteHeader(http.StatusInternalServerError)
return

}
err = repo.Create(user)
if err != nil {

 w.WriteHeader(http.StatusBadRequest)
return

}
w.WriteHeader(http.StatusCreated)

 })
}
func SetUserRoutes() *mux.Router {
 userRepository := NewInMemoryUserRepo()
 r := mux.NewRouter()

r.Handle("/users", CreateUser(userRepository)).Methods("POST")
r.Handle("/users", GetUsers(userRepository)).Methods("GET")
return r

}

The HTTP handler functions are refactored to obtain a parameter value that implements the
persistence logic. The handler functions return an http.Handler by calling http.HandlerFunc. The handler
functions have a parameter of UserRepository type, which is an interface defined in the repository.go
file. Because it is an interface, you can provide any concrete implementation for this type. For example,
you can provide implementations of the UserRepository type for application code and for automated tests
separately, which provides better code testability. For application code, you can provide an implementation
of the UserRepository interface to implement the persistence logic on a real database. But when you call
handler functions from automated tests, you can provide a fake implementation of the UserRepository
interface to mimic the functionality when you don’t need to hit the real database. When you write tests, you
may need to mock the interfaces in many places like this one.

Listing 10-12 provides the source code of repository.go in the lib package.

Listing 10-12.  repository.go in the lib Package

package lib

import (
 "errors"
)

type User struct {
 FirstName string `json:"firstname"`
 LastName string `json:"lastname"`
 Email string `json:email"`
}

Chapter 10 ■ Testing Go Applications

239

type UserRepository interface {
 GetAll() []User
 Create(User) error
 Validate(User) error
}
type InMemoryUserRepository struct {
 DataStore []User
}

func (repo *InMemoryUserRepository) GetAll() []User {
 return repo.DataStore
}
func (repo *InMemoryUserRepository) Create(user User) error {
 err := repo.Validate(user)
 if err != nil {

return err
 }
 repo.DataStore = append(repo.DataStore, user)
 return nil
}
func (repo *InMemoryUserRepository) Validate(user User) error {
 for _, u := range repo.DataStore {

if u.Email == user.Email {
return errors.New("The Email is already exists")

}
 }
 return nil
}
func NewInMemoryUserRepo() *InMemoryUserRepository {
 return &InMemoryUserRepository{DataStore: []User{}}
}

In the repository.go source file, an interface named UserRepository is written that provides the
persistence logic for the model entity User. The Validate function validates whether the User entity has a
duplicate e-mail ID and returns an error if the given e-mail ID exists:

type UserRepository interface {
 GetAll() []User
 Create(User) error
 Validate(User) error
}

An implementation of UserRepository – InMemoryUserRepository is provided, which persists
User objects into a slice. (A slice is used as the data store for the example demonstration; in a real-world
implementation, it might be a database such as MongoDB.)

Chapter 10 ■ Testing Go Applications

240

An HTTP server in main.go is started. Listing 10-13 provides the source code of main.go in the main
package.

Listing 10-13.  main.go in the main Package

package main
import (
 "net/http"

 "github.com/shijuvar/go-web/chapter-10/httptestbdd/lib"
)

func main() {
 routers := lib.SetUserRoutes()
 http.ListenAndServe(":8080", routers)
}

The main function in the main package starts the HTTP server.

Writing BDD-style Tests
The HTTP API application has been refactored to be more testable so that you can easily write automated
tests. Now let’s focus on writing tests based on BDD methodology. Like TDD, the user stories are defined and
converted into test cases before the code is written. The primary objective of BDD is to define the behavior in
more expressive way before the production code is written so that you can easily develop applications based
on well-defined behavior. Because this book is not primarily focused on agile practices and BDD, the exact
development process of BDD is not followed, but the focus is on how to write BDD-style tests using Go third-
party libraries.

The Ginkgo package, paired with its preferred matcher library Gomega, is used to specify the behavior in
test cases.

Installing Ginkgo and Gomega

To install Ginkgo and Gomega, run the following commands on the command-line window:

go get github.com/onsi/ginkgo/ginkgo
go get github.com/onsi/gomega

The Ginkgo package also provides an executable program named ginkgo, which can be used for
bootstrapping test suite files and running tests. When the ginkgo package is installed, it also installs the
ginkgo executable under $GOPATH/bin.

To work with Ginkgo and Gomega, you must add these packages to the import list:

import (

 "github.com/onsi/ginkgo"
 "github.com/onsi/gomega"
)

Chapter 10 ■ Testing Go Applications

241

Bootstrapping a Suite

To write tests with Ginkgo for a package, you must first create a test suite file by running the following
command on the command-line window:

ginkgo bootstrap

Let’s navigate to the lib directory and then run the ginkgo bootstrap command. It generates a file
named lib_suite_test.go that contains the code shown in Listing 10-14.

Listing 10-14.  Test Suite File lib_suite_test.go in the lib_test Package

package lib_test

import (
 . "github.com/onsi/ginkgo"
 . "github.com/onsi/gomega"

 "testing"
)

func TestLib(t *testing.T) {
 RegisterFailHandler(Fail)
 RunSpecs(t, "Lib Suite")
}

The generated source file will be put into a package named lib_test, which isolates the tests from the
application code sitting on the lib package. Go allows you to directly put the lib_test package inside the
lib package directory. You can also change the package name to lib for the test suite file and tests.

The source of lib_suite_test.go shows that Ginkgo leverages the Go existing testing infrastructure.
You can run the suite by running "go test" or "ginkgo" on the command-line window.

Let’s explore the suite file:

• The ginkgo and gomega packages are imported with a dot (.) import, which allows
you to call exported identifiers of ginkgo and gomega packages without using a
qualifier.

• The RegisterFailHandler(Fail) statement connects Ginkgo and Gomega. Gomega
is used as the matcher library for Ginkgo.

• The RunSpecs(t, "Lib Suite") statement tells Ginkgo to start the test suite. Ginkgo
automatically fails the testing.T if any of the specs fail.

Adding Specs to the Suite

A test suite file named lib_suite_test.go is created, but to run the test suite, specs have to be added to
the test suite by adding test files. Let’s generate a test file using the ginkgo generate command on the
command-line window:

ginkgo generate users

Chapter 10 ■ Testing Go Applications

242

This command generates a test file named users_test.go that contains the code shown in Listing 10-15.
As discussed earlier, tests are written in the lib_test packages under the lib directory, and Go allows you to
do this. If you want to use the lib package for tests, you can also do so.

Listing 10-15.  Test File users_test.go Generated by ginkgo

package lib_test

import (
 . "lib"

 . "github.com/onsi/ginkgo"
 . "github.com/onsi/gomega"
)

var _ = Describe("Users", func() {

})

The generated test file contains the code for importing ginkgo and gomega packages using the dot (.)
import. Because test files are written in the lib_test package, the lib package has to be imported. Because
the dot (.) import is used for packages, the exported identifiers of these packages can be called directly
without needing a qualifier.

In BDD-style tests, specs are written to define code behavior. With Ginkgo, specs are written inside
a top-level Describe container using the Ginkgo Describe function. Ginkgo uses the "var _ =" trick to
evaluate the Describe function at the top level without requiring an init function.

Organizing Specs with Containers

Now a basic test file to write specs for the application code is created. Let’s organize the specs using
functions provided by the Ginkgo package.

Listing 10-16 provides the high-level structure of the Users spec.

Listing 10-16.  High-level Structure of the Users Spec

var _ = Describe("Users", func() {

BeforeEach(func() {

})

Describe("Get Users", func() {
Context("Get all Users", func() {

It("should get list of Users", func() {
})

})
})

Chapter 10 ■ Testing Go Applications

243

Describe("Post a new User", func() {
Context("Provide a valid User data", func() {
It("should create a new User and get HTTP Status: 201", func() {
})

})
Context("Provide a User data that contains duplicate email id", func() {

It("should get HTTP Status: 400", func() {

})
})

 })
})

Describe blocks are used to describe a code’s individual behaviors. Inside the Describe container,
Context and It blocks are written. The Context block is used to specify different contexts under an
individual behavior. You can write multiple Context blocks within a Describe block. You write individual
specs inside an It block within a Describe or Context container.

The BeforeEach block, which runs before each It block, can be used for writing logic before running
each spec.

Writing Specs in the Test File

High-level specs were specified in the previous section. In this section, the test file will be completed by
writing concrete implementations in the It blocks. In the tests, HTTP handler functions are invoked by
sending requests to the multiplexer.

Let’s explore one of the HTTP handler functions that was written in Listing 10-11:

func GetUsers(repo UserRepository) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

userStore := repo.GetAll()
users, err := json.Marshal(userStore)

if err != nil {
 w.WriteHeader(http.StatusInternalServerError)

return
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
w.Write(users)

 })
}

The GetUsers function has a parameter of type UserRepository that is an interface:

type UserRepository interface {
 GetAll() []User
 Create(User) error
 Validate(User) error
}

Chapter 10 ■ Testing Go Applications

244

In the application code, a concrete implementation for the UserRepository interface is provided
(InMemoryUserRepository), which provides persistence onto in-memory data of a collection. When you
develop real-world applications, you might persist your application data onto a database. When you write
tests, you may want to avoid persistence on to the database by providing a mocked implementation. Because
the handler functions expect a concrete implementation of UserRepository as a parameter value, you can
provide a separate version of UserRepository in the tests for invoking the handler functions.

Listing 10-17 provides a concrete implementation of the UserRepository interface for use in the tests.

Listing 10-17.  Implementation of UserRepository in users_tests.go

type FakeUserRepository struct {
 DataStore []User
}

func (repo *FakeUserRepository) GetAll() []User {

 return repo.DataStore
}
func (repo *FakeUserRepository) Create(user User) error {
 err := repo.Validate(user)
 if err != nil {

return err
 }
 repo.DataStore = append(repo.DataStore, user)
 return nil
}
func (repo *FakeUserRepository) Validate(user User) error {
 for _, u := range repo.DataStore {

if u.Email == user.Email {
return errors.New("The Email is already exists")

}
 }
 return nil
}
func NewFakeUserRepo() *FakeUserRepository {
 return &FakeUserRepository{

DataStore: []User{
User{"Shiju", "Varghese", "shiju@xyz.com"},
User{"Rosmi", "Shiju", "rose@xyz.com"},
User{"Irene", "Rose", "irene@xyz.com"},

},
 }
}

FakeUserRepository provides an implementation of the UserRepository interface that is written for
use with tests. You can create an instance of FakeUserRepository by calling the NewFakeUserRepo function,
which also provides fake data for three User objects. The FakeUserRepository type is a kind of test double,
a generic term used in unit testing for any circumstance in which a production object is replaced for testing
purposes. Here, InMemoryUserRepository is replaced with FakeUserRepository for testing purposes.

Listing 10-18 provides the completed version of users_test.go, in which all the specs are
implemented.

Chapter 10 ■ Testing Go Applications

245

Listing 10-18.  Completed Version of users_tests.go in the lib_test Package

package lib_test

import (
 "encoding/json"
 "errors"
 "net/http"
 "net/http/httptest"
 "strings"

 "github.com/gorilla/mux"
 . "github.com/onsi/ginkgo"
 . "github.com/onsi/gomega"
 . "github.com/shijuvar/go-web/chapter-10/httptestbdd/lib"
)

var _ = Describe("Users", func() {
 userRepository := NewFakeUserRepo()
 var r *mux.Router
 var w *httptest.ResponseRecorder

 BeforeEach(func() {
r = mux.NewRouter()

 })

 Describe("Get Users", func() {
Context("Get all Users", func() {

//providing mocked data of 3 users
It("should get list of Users", func() {

 r.Handle("/users", GetUsers(userRepository)).Methods("GET")
req, err := http.NewRequest("GET", "/users", nil)
Expect(err).NotTo(HaveOccurred())
w = httptest.NewRecorder()
r.ServeHTTP(w, req)
Expect(w.Code).To(Equal(200))
var users []User
json.Unmarshal(w.Body.Bytes(), &users)
//Verifying mocked data of 3 users
Expect(len(users)).To(Equal(3))

})
})

 })

 Describe("Post a new User", func() {
Context("Provide a valid User data", func() {

It("should create a new User and get HTTP Status: 201", func() {
 r.Handle("/users", CreateUser(userRepository)).Methods("POST")

�userJson := `{"firstname": "Alex", "lastname": "John", "email":
"alex@xyz.com"}`

Chapter 10 ■ Testing Go Applications

246

req, err := http.NewRequest(
"POST",
"/users",
strings.NewReader(userJson),

)
Expect(err).NotTo(HaveOccurred())
w = httptest.NewRecorder()
r.ServeHTTP(w, req)
Expect(w.Code).To(Equal(201))

})
})
Context("Provide a User data that contains duplicate email id", func() {

It("should get HTTP Status: 400", func() {
 r.Handle("/users", CreateUser(userRepository)).Methods("POST")

�userJson := `{"firstname": "Alex", "lastname": "John", "email":
"alex@xyz.com"}`

req, err := http.NewRequest(
"POST",
"/users",
strings.NewReader(userJson),

)
Expect(err).NotTo(HaveOccurred())
w = httptest.NewRecorder()
r.ServeHTTP(w, req)
Expect(w.Code).To(Equal(400))

})
})

 })
})

type FakeUserRepository struct {
 DataStore []User
}

func (repo *FakeUserRepository) GetAll() []User {

 return repo.DataStore
}
func (repo *FakeUserRepository) Create(user User) error {
 err := repo.Validate(user)
 if err != nil {

return err
 }
 repo.DataStore = append(repo.DataStore, user)
 return nil
}

Chapter 10 ■ Testing Go Applications

247

func (repo *FakeUserRepository) Validate(user User) error {
 for _, u := range repo.DataStore {

if u.Email == user.Email {
return errors.New("The Email is already exists")

}
 }
 return nil
}
func NewFakeUserRepo() *FakeUserRepository {
 return &FakeUserRepository{

DataStore: []User{
User{"Shiju", "Varghese", "shiju@xyz.com"},
User{"Rosmi", "Shiju", "rose@xyz.com"},
User{"Irene", "Rose", "irene@xyz.com"},

},
 }
}

Let’s explore the code in users_test.go:

• Individual behaviors are written in the Describe block. Here, behaviors for
"Get Users" and "Post a new User" are defined on "Users".

• Within the Describe block, the Context blocks are written to define circumstances
under a behavior.

• Individual specs are written in the It block within the Describe and Context
containers.

• Within the "Get Users" behavior, a "Get all Users" context is defined, which
maps the functionality of HTTP Get on the "/users" endpoint. Within this context,
an It block is defined as "should get list of Users", which checks to see
whether the returned HTTP response has the status code of 200. Dummy data of
three Users are defined by creating an instance of FakeUserRepository so that the
returned HTTP response shows having three Users.

• For the "Post a new User" behavior, two circumstances are defined: "Provide a
valid User data" and "Provide a User data that contains duplicate email
id". This maps the functionality of HTTP Post on the "/users" endpoint. A new
User should be able to be created if valid User data is provided. An error occurs
if a User data with a duplicate e-mail ID is provided. These specs are specified in the
It block.

• An instance of FakeUserRepository, which is an implementation of the
UserRepository interface, is provided to the HTTP handler function as a parameter
value.

• The Ginkgo preferred matcher library Gomega is used for assertion. Gomega provides a
variety of functions for writing assertion statements. The Expect function is also used
for assertion.

Chapter 10 ■ Testing Go Applications

248

Running Specs

You can run the test suite using the go test or gingko commands.
Let’s run the suite using the go test command:

go test -v

The go test command generates the output shown in Figure 10-5.

Figure 10-5.  Output of the specs run by the go test command

Figure 10-6.  Output of the specs run by the ginkgo command

Let’s run the suite using the ginkgo command:

ginkgo -v

The ginkgo command generates the output shown in Figure 10-6.

Chapter 10 ■ Testing Go Applications

249

Summary
Automated testing is an important practice in software engineering that ensures application quality.
Unit testing is a kind of automated testing process in which the smallest pieces of testable software in the
application, called units, are individually and independently tested to determine whether they behave
exactly as designed.

Test-driven development (TDD) is a software development process that follows a test-first development
approach, in which unit tests are written before the production code. TDD is a design approach that
encourages developers to think about their implementation before writing the code.

Go provides the core functionality to write automated unit tests through its testing standard library
package. The testing package provides all the essential functionality required for writing automated tests
with tooling support. It is intended to be used with the go test command. Besides the testing package, the
Go standard library provides two more packages: httptest provides utilities for HTTP testing, and quick
provides utility functions to help with black box testing.

The following naming conventions and patterns are used to write a test suite:

• Create a source file with a name ending in _test.go.

• Within the test suite (the source file ends in _test.go), write functions with the
signature func TestXxx(*testing.T).

Test functions are run sequentially when tests using the go test command are run. In addition to
providing support for code testing behavior, the testing package can also be used for benchmarking tests
and testing example code.

You can test HTTP applications using the httptest package. When you test HTTP applications, you can
use the ResponseRecorder and Server struct types provided by the httptest package. ResponseRecorder
records the response of a returned HTTP response so it can be inspected. A Server is an HTTP server for
testing to perform end-to-end HTTP tests.

This chapter showed you third-party packages Ginkgo and Gomega for testing. Ginkgo is a behavior-driven
development (BDD) – style testing framework that lets you write expressive tests in Go to specify application.
BDD is an extension of TDD, with an emphasis on behavior instead of test. In BDD, you specify behaviors in
an expressive way in your automated tests, and you write code based on the behaviors.

251

Chapter 11

Building Go Web Applications on
Google Cloud

Cloud computing is changing the way scalable applications are developed and run. Cloud computing allows
you to fully focus on application engineering instead of managing the IT infrastructure. Developing Go
applications on the Cloud infrastructure is a great choice because Go is the language designed for running
on modern computer hardware and next-generation IT infrastructure platforms. Go is built to solve large-
scale computing problems, and it is becoming the language of choice for building Cloud infrastructure
technologies such as Docker and Kubernetes. This chapter shows you how to build Cloud native
applications using Go by leveraging the Google Cloud platform.

Introduction to Cloud Computing
Cloud computing is gradually becoming a primary option for deploying applications. Instead of
managing and maintaining on-premise computing resources, Cloud computing allows you to move the IT
infrastructure and applications to a subscription-based computing model in which the software is accessed
via the Internet. This allows a focus on application engineering instead of managing the IT infrastructure, so
developers can build highly scalable applications with a greater level of agility.

Cloud computing is a “pay-as-you-go” computing model in which IT infrastructure and software
development platforms are being offered in a service-based consumption model. The greatest advantage of
Cloud computing is the operational agility you get while developing applications. The Cloud model enables
on-demand scalability, which means that you can scale up computing resources whenever you require
more and can use them for as long as you want, and then scale down computing resources when they are no
longer needed. Most Cloud computing platforms provide autoscaling capabilities to their Cloud platform,
which allows you to automatically scale up and scale down the number of computing resources based on
configurations.

In Cloud computing, various options are available for hosting and running applications. These
options provide different flexibility models to host, run, and scale your applications, which can be used for
appropriate computing scenarios.

Here are the different options available in Cloud computing platforms to host and run applications:

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Container as a Service (CaaS)

Chapter 11 ■ Building Go Web Applications on Google Cloud

252

Infrastructure as a Service (IaaS)
The Infrastructure as a Service (IaaS) model provides virtualized computing resources as a service over the
Internet. You can acquire virtual machines (VMs) from the Cloud platform for on-demand scalability. In this
model, you have to set up everything on your end for hosting and running your applications. For example, if
you want to run an HTTP server in Go, you have to manually set up the Go runtime environment and open
up the HTTP ports to receive incoming web requests to the HTTP server. The most important thing about
the IaaS model is that you have full control over the VMs acquired on the Cloud.

Platform as a Service (PaaS)
The Platform as a Service (PaaS) model provides a platform managed by the Cloud platform vendor to
deploy and run applications. This model provides specialized language environments, tools, and software
development kits (SDKs) to develop and run applications on the Cloud. The PaaS model provides more
operational agility than the IaaS model because it is a managed service provided by the Cloud platform in
which you can develop, test, deploy, and run applications by using SDKs and tools provided by the platform.

For example, if you want to leverage the PaaS platform provided by Google Cloud for developing Go
applications, you can download the Google Cloud PaaS platform SDK for Go, which allows you to quickly
build, test, and run your Go applications on the Google Cloud. Autoscaling can be easily achieved with this
model of Cloud computing without requiring any manual intervention. You might only need to configure
the parameters for KPIs to perform autoscaling. In this model, you don’t have to manage and maintain your
VMs, unlike the IaaS model. This model enables superior operational agility during the development process
because developers are freed from many IT infrastructure management operations.

Container as a Service
Container as a Service (CaaS) is an evolutionary computing model from both IaaS and PaaS. It is a relatively
new model that brings you the best of both IaaS and PaaS. This model allows you to run software containers
on the Cloud platform by using popular container technologies such as Docker and Kubernetes. Application
containers are gradually becoming a standard for deploying and running applications due to their benefits.
When you run application containers on Cloud platforms, this model gives you many capabilities. Google
Container Engine is a CaaS platform provided by Google Cloud.

Introduction to Google Cloud
Google Cloud is a public Cloud platform from Google that enables developers to build, test, deploy, and run
applications on Google’s highly scalable and reliable infrastructure. The Google Cloud platform provides a
set of modular Cloud-based services that allow you to build a variety of applications, from web applications
to larger Big Data solutions, with on-demand scalability and a greater level of operational agility.

Google Cloud provides three types of services for computing:

• Google App Engine (GAE) is a PaaS service.

• Google Compute Engine (GCE) is an IaaS service.

• Google Container Engine (GKE) is a CaaS service.

Figure 11-1 shows an infographic of the various services provided by the Google Cloud platform.

Chapter 11 ■ Building Go Web Applications on Google Cloud

253

This chapter primarily focuses on the Google App Engine, which is a PaaS in the Google Cloud platform.

Figure 11-1.  Infographic of Google Cloud platform services

Chapter 11 ■ Building Go Web Applications on Google Cloud

254

Google App Engine (GAE)
Google App Engine is the PaaS offering from the Google Cloud platform that allows you to build highly
scalable web applications and back-end APIs. App Engine applications are available for automatic scaling
to scale up computing instances automatically when traffic picks up and scale down computing instances
automatically when they are no longer needed. Unlike IaaS, you don’t need to provision VMs and maintain
them by leveraging an Ops (operations) team. With App Engine, you just upload source code using the
tools provided by App Engine and run applications on the Cloud, which is available for load balancing
and autoscaling. When compared with the IaaS model, App Engine provides lot of operational agility for
developing and managing applications because you don’t have to spend time managing the VMs for running
your applications.

App Engine provides the support for following language environments:

• Python

• Java

• PHP

• Go

Cloud Services with App Engine
When you develop Go applications on App Engine, you can leverage various Cloud services provided by
the Google Cloud platform. Google Cloud provides APIs for accessing these services from App Engine
applications. Keep in mind that these services are not restricted to App Engine; you can also use them with
Google Compute Engine and Google Container Engine.

The following sections describe some of the Cloud services that can be used for App Engine
applications.

User Authentication
You can use User Authentication services to sign on users with a Google account or OpenID.

Cloud Datastore
Cloud Datastore is a schema-less NoSQL database that can be used for persisting data of your App Engine
applications.

Cloud Bigtable
Cloud Bigtable is a fast, fully managed, massively scalable NoSQL database that is ideal for using the data
store for large-scale web, mobile, Big Data, and IoT applications that deal with large volumes of data. If the
App Engine application requires a massively scalable data store with high performance, Cloud Bigtable is a
better choice than Cloud Datastore.

Chapter 11 ■ Building Go Web Applications on Google Cloud

255

Google Cloud SQL
Google Cloud SQL is a MySQL-compatible, relational database in the Google Cloud platform available as a
managed service. If an App Engine application requires a relational model for data persistence, you can use
Google Cloud SQL.

Memcache
When you develop high-performance applications, caching your application data is an important strategy
for improving application performance. Memcache is a distributed, in-memory data cache that can be used
to cache application data to improve the performance of App Engine applications.

Search
The Search service allows you to perform Google-like searches over structured data such as plain text,
HTML, atom, numbers, dates, and geographic locations.

Traffic Splitting
The Traffic Splitting service allows you to route incoming requests to different application versions, run A/B
tests, and do incremental feature rollouts.

Logging
The Logging service allows App Engine applications to collect and store logs.

Task Queues
The Task Queues service enables App Engine applications to perform work outside of user requests by using
small discrete tasks that are executed later.

Security Scanning
The Security Scanning service scans applications for security vulnerabilities such as XSS attacks.

Google App Engine for Go
App Engine provides a Go runtime environment to run natively compiled Go code on the Cloud that allows
you to build highly scalable web applications on the Google Cloud infrastructure. With App Engine, Go
applications run in a secured “sandbox” environment that allows the App Engine environment to distribute
web requests across multiple servers and scaling servers for on-demand scalability. When you develop
applications in the sandbox environment of App Engine, you don’t need to provision servers or spend
time managing infrastructure. App Engine provides a deployment tool that allows you to upload your Go
applications into the Cloud.

Chapter 11 ■ Building Go Web Applications on Google Cloud

256

Go Development Environment
You can develop, test, and deploy Go applications on App Engine using the App Engine SDK for Go, which
provides the tools and APIs for developing, testing, and running applications on Google Cloud. The App
Engine Go SDK includes a development web server that allows you to run an App Engine application on a
local computer to test Go applications before uploading them into the Cloud.

The development web server simulates many Cloud services in the development environment so that
you can test App Engine applications on your local computer. This is very useful because you don’t need
to deploy applications into the Cloud whenever you want to test an App Engine application during the
development cycle. You can test your App Engine application locally, and whenever you want to deploy the
application into the Cloud platform’s production environment, you can do so by using the tools provided by
App Engine. The development server application simulates the App Engine environment, including a local
version of the Google Accounts data store, and gives the ability to fetch URLs and send e-mail directly from a
local computer using the App Engine APIs.

The Go SDK uses a modified version of the development tools from the Python SDK and runs on Mac
OS X, Linux, and Windows computers with Python 2.7. So you can download and install Python 2.7 for your
platform from the Python web site. Most Mac OS X users already have Python 2.7 installed. To develop Go
applications on App Engine, download and install the App Engine SDK for Go for your OS.

App Engine SDK for Go provides a command-line tool named goapp that provides the following
commands:

• goapp serve: The command goapp serve runs Go applications on a local
development server.

• goapp deploy: The command goapp deploy is used to upload a Go application into
the App Engine production environment.

You can find the goapp tool in the go_appengine directory of the zip archive of App Engine SDK for Go.
To invoke the goapp tool from a command line, add the go_appengine directory to the PATH environment
variable. This command adds the go_appengine directory to the PATH environment variable:

export PATH=$HOME/go_appengine:$PATH

Building App Engine Applications
Once you have set up App Engine SDK for Go, you can start developing web applications on the App Engine
platform. Although App Engine applications are very similar to stand-alone Go web applications, there
are some fundamental differences between them. The main difference is that the Go App Engine runtime
provides a special main package, so you shouldn’t use the main package for your App Engine applications.
Instead, you can put HTTP handler code in a package of your choice. The Go http standard library package
has been slightly modified for the App Engine runtime environment for running App Engine applications in
the sandbox environment.

Chapter 11 ■ Building Go Web Applications on Google Cloud

257

Writing an HTTP Server
Let’s write an example web application server to explore the App Engine platform for Go.

Listing 11-1 provides an HTTP server on the App Engine platform.

Listing 11-1.  Web Application Server for App Engine

package task

import (
 "fmt"
 "html/template"
 "net/http"
)

type Task struct {
 Name string
 Description string
}

const taskForm = `
<html>
 <body>
 <form action="/task" method="post">

<p>Task Name: <input type="text" name="taskname" ></p>
<p> Description: <input type="text" name="description" ></p>
<p><input type="submit" value="Submit"></p>

 </form>
 </body>
</html>
`
const taskTemplateHTML = `
<html>
 <body>

<p>New Task has been created:</p>
<div>Task: {{.Name}}</div>
<div>Description: {{.Description}}</div>
</body>

</html>
`

var taskTemplate = template.Must(template.New("task").Parse(taskTemplateHTML))

func init() {
 http.HandleFunc("/", index)
 http.HandleFunc("/task", task)
}

func index(w http.ResponseWriter, r *http.Request) {
 fmt.Fprint(w, taskForm)
}

Chapter 11 ■ Building Go Web Applications on Google Cloud

258

func task(w http.ResponseWriter, r *http.Request) {
 task := Task{

Name: r.FormValue("taskname"),
Description: r.FormValue("description"),

 }
 err := taskTemplate.Execute(w, task)
 if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
 }
}

An example web application is written with several HTML pages. The HTTP handler code is written
inside the init function of the task package because the App Engine runtime provides a special main
package that you can’t use in the application code.

Creating the Configuration File
To run App Engine applications, you have to write a configuration file named app.yaml, which specifies
various kinds of information for running the application, including the application identifier, runtime, and
URLs that should be handled by the Go web application.

Let’s write a configuration file for the App Engine application (see Listing 11-2).

Listing 11-2.  Configuration File for the App Engine in app.yaml

application: gae-demo
version: 1
runtime: go
api_version: go1

handlers:
- url: /.*
script: _go_app

The app.yaml configuration file says the following about the App Engine application:

• The application identifier is gae-demo. When you deploy an application into App
Engine, you must specify a unique identifier as the application identifier. When
you run the application in the development server, you can set any value as the
application identifier. Here, it is set as gae-demo during the time the application runs
on the development server.

• The version number of the application code is 1. If you properly update the versions
before uploading a new application version of application into App Engine, you can
roll back to a previous version of using the administrative console.

• This Go program runs in the Go runtime environment with the API version go1.

• Every request to a URL whose path matches the regular expression /.* (all URLs)
should be handled by the Go program. The _go_app value is recognized by the
development web server and ignored by the production App Engine servers.

Chapter 11 ■ Building Go Web Applications on Google Cloud

259

Testing the Application in Development Server
In the previous steps, an App Engine application and a configuration file were created. Now the application
is ready for running on the development web server provided by the App Engine SDK. The development web
server allows you to test App Engine applications in a development environment.

Figure 11-2 illustrates the directory structure of the App Engine application.

Figure 11-2.  Application directory structure

Figure 11-3.  Running a development web server

Let’s run the example web application on the development web server by running the goapp tool:

goapp serve gae-server/

The development web server is run by providing a path to the gae-server directory. You can omit the
application path if you are running the goapp tool from the application’s directory:

goapp serve

Figure 11-3 shows that the web development server has been started and is listening for requests on
port 8080 and requests for the admin server on port 8000.

Run and test the App Engine application by accessing the following URL in a web browser:
http://localhost:8080/.

http://localhost:8080/

Chapter 11 ■ Building Go Web Applications on Google Cloud

260

Figure 11-4 shows that the application is running at http://localhost:8080/ under the
development server.

■ Note  You can get information about App Engine instances on the admin web server here:
http://localhost:8000/.

Figure 11-5 shows that the admin web server is providing the information about App Engine instances
running in the development web server.

Figure 11-4.  Development web server listening on port 8080

Figure 11-5.  Admin server listening on port 8000

http://localhost:8080/
http://localhost:8000/

Chapter 11 ■ Building Go Web Applications on Google Cloud

261

Deploying App Engine Applications into the Cloud
To deploy App Engine applications into the Cloud, you have to create a project in the Google Cloud platform
for the App Engine instance. You also must provide a unique project ID, which will be used to deploy the
application into the Cloud. Specify the application as Project ID in the app.yaml file.

You create and manage App Engine applications by using the Google Developers Console
(see https://console.developers.google.com/). You can sign in to the Google Developers Console
using your Google account (Google Cloud provides a free trial account for 60 days).

Let’s create an App Engine project in the Google Developers Console. First, click the Create a Project
button. You can then specify the project name, project ID, and App Engine location.

Figure 11-6 shows the New Project window that displays a new project in Google Developers Console.

Figure 11-6.  Creating a new App Engine project

You create an App Engine project with a unique project ID in the Google Developers Console (refer to
Figure 11-6). The project ID is gae-demo-1073, which will be used to specify the application identifier in
app.yaml before the application is deployed.

https://console.developers.google.com/

Chapter 11 ■ Building Go Web Applications on Google Cloud

262

Figure 11-7 shows details about the newly created project from the Google Developers Console.

Figure 11-7.  Details of the App Engine project

Let’s modify the application identifier in the app.yaml configuration file to deploy the application into a
Cloud environment.

Listing 11-3 provides the app.yaml file to be used to deploy on an App Engine production environment.

Listing 11-3.  Project ID as the Application in app.yaml

application: gae-demo-1073
version: 1
runtime: go
api_version: go1

handlers:
- url: /.*
script: _go_app

You can now deploy the App Engine application into the Google Cloud environment by running the
goapp tool from the root directory of the application:

goapp deploy

The goapp deploy command deploys the App Engine application into the Google Cloud environment
by taking the configuration from app.yaml. It takes the application identifier from app.yaml and uploads
the compiled Go program to the associated App Engine project. When you deploy the application, you
are asked to provide Google account credentials to access the App Engine application you created in the
Google Developer Console. In the App Engine production environment, a URL is given with
https://{project ID}.appspot.com. You receive the following URL for the App Engine application:
https://gae-demo-1073.appspot.com/.

You can verify the application in the Cloud environment by visiting the URL for the production
environment. Figures 11-8 and 11-9 show that the App Engine application is successfully running in the
production environment of Google App Engine.

https://gae-demo-1073.appspot.com/

Chapter 11 ■ Building Go Web Applications on Google Cloud

263

Creating Hybrid Stand-alone/App Engine applications
The fundamental differences between an App Engine application and a stand-alone application are very
few. The App Engine environment provides a special main package, so you can’t use it for App Engine
applications. You can write handler logic in init functions of the Go package of your choice for App Engine
applications. When you develop stand-alone applications, you need to write the main package.

It would be really helpful in some scenarios to write hybrid applications for both stand-alone and App
Engine environments. Let’s say you want to write a Go web application that tests and deploys on both
on-premise servers and Google Cloud. Writing a hybrid application to be running in both environments
would be really helpful for testing and deploying applications in multiple environments without modifying
the source code before each deployment scenario. You can develop a hybrid application for both stand-
alone and App Engine environments by using build constraints.

■ Note  A build constraint, also known as a build tag, specifies conditions in which a file should be
included in the package. A build constraint must appear near the top of the source files as a line comment that
begins with // +build. Build constraints can appear in any kind of source file that is not restricted with Go
source files.

The App Engine SDK provides a new build constraint, appengine, that can be used to differentiate
the source code in stand-alone and App Engine environments when compiling the source code. Using the
appengine build constraint, you can exclude some source files during the build process based on the build
environment. For example, when you build the application source using the App Engine SDK, you can
ignore the source code written in the main package.

Figure 11-8.  Task form in the App Engine app

Figure 11-9.  Response page of the Task form in the App Engine app

Chapter 11 ■ Building Go Web Applications on Google Cloud

264

If you want to build source files using the App Engine SDK to be ignored by the Go tool, add the
following to the top of the source file:

// +build appengine

The following build constraint specifies that you want to build with the Go tool, so the source files will
not be compiled in the App Engine SDK:

// +build !appengine

Let’s rewrite the web application from Listing 11-1 to make it a hybrid application for both App Engine
and stand-alone environments. In this hybrid implementation, you’ll create separate source files for
handling the HTTP handler logic using build constraints for both App Engine and stand-alone applications
and putting common logic in a shared library.

Figure 11-10 illustrates the directory structure of the hybrid application.

Figure 11-10.  Directory structure of the hybrid app

main.go will be built with the Go tool, and appengine.go with the App Engine SDK. Common logic is
put in a shared library named hybridapplib.

Listing 11-4 provides the implementation of hybridapplib, which is used for common logic.

Listing 11-4.  Shared Logic in handler.go of hybridapplib

package hybridapplib

import (
 "fmt"
 "html/template"
 "net/http"
)

type Task struct {
 Name string
 Description string
}

Chapter 11 ■ Building Go Web Applications on Google Cloud

265

const taskForm = `
<html>
 <body>
 <form action="/task" method="post">

<p>Task Name: <input type="text" name="taskname" ></p>
<p> Description: <input type="text" name="description" ></p>
<p><input type="submit" value="Submit"></p>

 </form>
 </body>
</html>
`
const taskTemplateHTML = `
<html>
 <body>

<p>New Task has been created:</p>
<div>Task: {{.Name}}</div>
<div>Description: {{.Description}}</div>
</body>

</html>
`

var taskTemplate = template.Must(template.New("task").Parse(taskTemplateHTML))

func init() {
 http.HandleFunc("/", index)
 http.HandleFunc("/task", task)
}

func index(w http.ResponseWriter, r *http.Request) {
 fmt.Fprint(w, taskForm)
}

func task(w http.ResponseWriter, r *http.Request) {
 task := Task{

Name: r.FormValue("taskname"),
Description: r.FormValue("description"),

 }
 err := taskTemplate.Execute(w, task)
 if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
 }
}

HTTP handler logic is put in the init function of handler.go. The code in the handler.go source file is
common for both stand-alone and App Engine applications.

Listing 11-5 provides the main.go source file of the main package that provides the main function. It is
built with the Go tool.

Chapter 11 ■ Building Go Web Applications on Google Cloud

266

Listing 11-5.  main.go in the main Package

// +build !appengine

package main

import (
 "net/http"

 _ "github.com/shijuvar/go-web/chapter-11/hybridapplib"
)

func main() {
 http.ListenAndServe("localhost:8080", nil)
}

The build constraint !appengine is used in the main.go file to be included when the Go tool application
is built. When the application is built with the Go tool, the main.go file is taken as part of the main package.
In the main function, the ListenAndServe function of the http package is called to start the HTTP server on
the on-premise server. The blank identifier (_) is used as the alias name for the hybridapplib package to
invoke its init function without referring the package identifier in the programs.

When you run the application on the App Engine, you can’t use the main package. Listing 11-6 provides
the implementation to build the application in the App Engine environment in which the init function of
the hybridapplib package is invoked.

Listing 11-6.  appengine.go in the task Package

// +build appengine

package task

import (
 _ "github.com/shijuvar/go-web/chapter-11/hybridapplib"
)

func init() {
}

The build constraint appengine is used in the appengine.go file to be included when the application
is built with the App Engine SDK. The appengine.go file is taken as part of the task package. Because the
HTTP handler code was implemented in the hybridapplib package, this source file is kept without having
any implementation.

When you build the application using the Go tool, the main.go source file is included for compiling Go
packages, and the appengine.go source file is excluded from the compilation. When the application is built
with the App Engine SDK, the HTTP server is run in the App Engine environment by taking the handler logic
from the package init functions and is ignored by the main.go file.

This hybrid approach may not be useful when you develop App Engine applications with various Cloud
services. For example, let’s say you want to use the Cloud Datastore service for your App Engine application.
You can test the application on a local computer as the App Engine web development server simulates
Datastore, but you can’t run this application in your on-premise environment.

Chapter 11 ■ Building Go Web Applications on Google Cloud

267

Working with Cloud Native Databases
The App Engine, the platform as a service of the Google Cloud platform, allows you to build massively
scalable web applications in which you don’t have to worry about setting up an IT infrastructure. As
discussed in previous sections, Go developers can develop, test, and deploy web applications on the App
Engine by using the App Engine SDK for Go, and these applications are available for autoscaling. When
you develop scalable applications, persisting data in a scalable storage mechanism is very important for
achieving scalability and availability.

When you develop applications for the Google Cloud platform, you can use any kind of database.
Chapters 8 and 9 discussed MongoDB, a NoSQL data store. You can set up a database like MongoDB,
which can be used with web applications running on the Google Cloud platform. To use a database such as
MongoDB on Google Cloud, you need to obtain a VM as a Google Compute Engine (GCE) service, which is
an IaaS platform in the Google Cloud. Then you need to set up the database on the VM instance. It requires
IaaS instances; managing and scaling these databases may require lot of manual interventions.

Google Cloud provides different data stores as managed services that can be used with web applications
without worrying about setting up and managing IaaS instances. So you don’t need Ops on your databases
running on Cloud, giving you lots of operational agility for Google Cloud applications.

In Google Cloud Platform, you can use the following databases for persisting structured data:

• Google Cloud SQL: A MySQL-compatible relational database available for Cloud
scale.

• Google Cloud Datastore: A NoSQL data store that provides scalable storage.

• Google Cloud Bigtable: A NoSQL database that can scale to billions of rows and
thousands of columns, allowing petabytes of data. It is an ideal data store for Big
Data solutions.

Google Cloud provides both NoSQL and relational databases. Google Cloud offers two options for
NoSQL: Google Cloud Datastore and Google Cloud Bigtable. Both Datastore and Bigtable are designed to
provide a massively scalable data store.

Even though both are designed to be massively scalable, Bigtable is a better choice when you deal
with terabytes of data. Bigtable is designed for HBase compatibility and is accessible through extensions to
the HBase 1.0 API, so it is compatible with the Big Data ecosystem. In Big Data solutions, you can store the
massive volume of data in Bigtable and analyze it with analytics tools on the Hadoop ecosystem.

Cloud Datastore is built on the top of Bigtable. Datastore provides high availability with replication and
data synchronization; Bigtable doesn’t replicate data and runs in a single datacenter region. Datastore provides
support for ACID transactions and SQL-like queries using GQL, which is a SQL-like language for retrieving
entities from Datastore. Cloud Datastore is a great data store choice for App Engine web applications.

The following section describes how to use the Google Cloud Datastore with App Engine applications.

Introduction to Google Cloud Datastore
Google Cloud Datastore is a schema-less NoSQL data store that provides robust, scalable storage for
applications. It has the following features:

• No planned downtime

• Atomic transactions

• High availability of reads and writes

• Strong consistency for reads and ancestor queries

• Eventual consistency for all other queries

http://dx.doi.org/10.1007/978-1-4842-1052-9_8
http://dx.doi.org/10.1007/978-1-4842-1052-9_9
https://cloud.google.com/bigtable/

Chapter 11 ■ Building Go Web Applications on Google Cloud

268

The most important thing about Datastore is that it replicates data across multiple datacenter regions,
providing a high level of availability for reads and writes. When you compare Datastore with Bigtable, note
that Bigtable runs on a single datacenter.

Entities
The Cloud Datastore holds data objects known as entities. The values of the Go struct are persisted into
entities, which hold one or more properties. The Go structs fields become the properties of the entity. The
type of property values are taken from the structs fields.

Like many NoSQL databases, Cloud Datastore is schema-less database, which means that data objects
of the same entity can have different properties, and properties with the same name can have different
value types.

Cloud Datastore is an evolutionary NoSQL that has lot of advantages over traditional NoSQL databases.
Cloud Datastore allows you to store hierarchically structured data using ancestor paths in a tree-like
structure.

Ancestors and Descendants
When you create an entity in Datastore, you can optionally specify another entity as its parent. You can
associate hierarchically structured data by specifying the parent entity. If you are not specifying any entity
as a parent, it is designated as a root entity. An entity’s parent, parent’s parent, and so on recursively are
its ancestors. An entity’s children, children’s children, and so on are its descendants. A root entity and all
its descendants belong to the same entity group. Understanding the concept of entity groups can help you
perform queries in an efficient way.

Working with Cloud Datastore
Google Cloud Datastore is a great data store choice when you develop highly scalable Cloud native
applications on the Google Cloud platform using App Engine. Both App Engine and Cloud Datastore provide
massive scalability to applications without developers having to manage infrastructure or work on Ops.
When you use Datastore with your App Engine applications, you don’t need to configure anything to work
with it. You can simply use the Go package for Cloud Datastore and then persist and query data against the
Datastore.

Let’s create an example App Engine web application by using Cloud Datastore as the database. This
example application works with a simple data model without using ancestors and descendants.

The following Go packages are used in the App Engine application:

• google.golang.org/appengine: The appengine package provides basic functionality
for Google App Engine.

• google.golang.org/appengine/datastore: The datastore package provides a
client for App Engine’s datastore service.

You can install the packages using the goapp tool:

goapp get google.golang.org/appengine
goapp get google.golang.org/appengine/datastore

Chapter 11 ■ Building Go Web Applications on Google Cloud

269

The example application provides the following functionalities:

• The home page of the application shows a list of tasks.

• Users can create a new task by choosing the Create task option, which displays a
form for creating a new task.

Listing 11-7 provides an example App Engine application using Cloud Datastore.

Listing 11-7.  App Engine Application with Cloud Datastore

package task

import (
 "fmt"
 "html/template"
 "net/http"
 "time"

 "google.golang.org/appengine"
 "google.golang.org/appengine/datastore"
)

type Task struct {
 Name string
 Description string
 CreatedOn time.Time
}

const taskForm = `
<html>
 <body>
 <form action="/save" method="post">

<p>Task Name: <input type="text" name="taskname" ></p>
<p> Description: <input type="text" name="description" ></p>
<p><input type="submit" value="Submit"></p>

 </form>
 </body>
</html>
`
const taskListTmplHTML = `
<html>
<body>
<p>Task List</p>
{{range .}}
 <p>{{.Name}} - {{.Description}}</p>
{{end}}
<p>Create task </p>
</body>
</html>
`

Chapter 11 ■ Building Go Web Applications on Google Cloud

270

var taskListTemplate = template.Must(template.New("taskList").Parse(taskListTmplHTML))

func init() {
 http.HandleFunc("/", index)
 http.HandleFunc("/create", create)
 http.HandleFunc("/save", save)
}

func index(w http.ResponseWriter, r *http.Request) {
 c := appengine.NewContext(r)
 q := datastore.NewQuery("tasks").

Order("-CreatedOn")
 var tasks []Task
 _, err := q.GetAll(c, &tasks)
 if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
 }
 if err := taskListTemplate.Execute(w, tasks); err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
 }
}
func create(w http.ResponseWriter, r *http.Request) {
 fmt.Fprint(w, taskForm)
}

func save(w http.ResponseWriter, r *http.Request) {
 task := Task{

Name: r.FormValue("taskname"),
Description: r.FormValue("description"),
CreatedOn: time.Now(),

 }
 c := appengine.NewContext(r)
 _, err := datastore.Put(c, datastore.NewIncompleteKey(c, "tasks", nil), &task)
 if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
return

 }
 http.Redirect(w, r, "/", http.StatusMovedPermanently)
}

The following packages are imported to work with the App Engine application:

• google.golang.org/appengine

• google.golang.org/appengine/datastore

A Task struct is declared to persist values into Datastore entities.

Chapter 11 ■ Building Go Web Applications on Google Cloud

271

Creating a New Entity
The Save application handler creates a new Task object and persists the values into Datastore with an entity
named "tasks". The NewContext function of the appengine package is called, which returns a context for an
in-flight HTTP request. You have to provide a context object to working with Datastore.

The datastore.Put function is used to create a new entity into Datastore by providing a struct instance
and a key to the entity’s key name. The Task struct type instance is provided to save it to Datastore.

There are multiple options for providing a key name. For example, the key name can be provided by
passing a non-empty string ID to the datastore.NewKey function, as shown here:

c := appengine.NewContext(r)
key := datastore.NewKey(c, "tasks", "taskgae", 0, nil)
_, err := datastore.Put(c, key, &task)

You can also provide an empty key name or use the datastore.NewIncompleteKey function to pass
a new incomplete key. The NewIncompleteKey function creates a new incomplete key. The Datastore
automatically generates a unique numeric ID for the entity key.

In the example program, the incomplete key is used to insert records into the "tasks" entity:

c := appengine.NewContext(r)
key := datastore.NewIncompleteKey(c, "tasks", nil)
_, err := datastore.Put(c, key, &task)

The datastore.Put function returns a datastore.PendingKey that can be resolved into a datastore.Key
value by using the return value from a successful transaction commit. If the key is an incomplete key, the
returned PendingKey resolves to a unique key generated by the data store. PendingKey represents the key for
a newly inserted entity. It can be resolved into datastore.Key by calling the Key method of Commit.

You can also use the datastore.Put function to update an existing entity. When you update an existing
entity, modify the fields of the struct and then call the datastore.Put function to update the values. It
overwrites the existing entity.

Querying the Datastore
The Go Datastore API provides Go idioms to query data against the Datastore. It provides a datastore.Query
type for preparing and executing queries to retrieve entities from the App Engine Datastore. The NewQuery
function prepares a query object:

q := datastore.NewQuery("tasks").
Order("-CreatedOn")

A Datastore query includes the following:

• An entity (entity kind) to which the query applies

• Zero or more filters based on the entities’ property values, keys, and ancestors

• Zero or more sort orders to sequence the results

https://cloud.google.com/appengine/docs/go/datastore/entities#Go_Kinds_and_identifiers

Chapter 11 ■ Building Go Web Applications on Google Cloud

272

In the preceding query, "tasks" was specified as the entity kind, but no filter conditions were specified.
You can specify the filter condition using the Filter function:

q := datastore.NewQuery("tasks").
 Filter("Name =", "GAE").
 Order("-CreatedOn")

The Order condition is applied to get results sorted by descending order in the CreatedOn field. The - is
used to sort in descending order.

The Query type instance prepares the query, so you need to call various Query type methods to execute
the query and fill in the data for the Go object. The GetAll method executes the query and fills the data into
a slice of Task type:

c := appengine.NewContext(r)
var tasks []Task
_, err := q.GetAll(c, &tasks)

Running the Application
Let’s deploy the App Engine application into Google Cloud using the goapp tool and run the application.

Figure 11-11 shows the index page of the application. In this page, the App Engine application query
against the "tasks" entity and displaying the data. The page shows the task list after inserting two tasks
using the form for creating a new task.

Figure 11-11.  Task List page

Figure 11-12.  Create task form

When you select the Create task link, you see a page that allows you to create tasks (see Figure 11-12).

Chapter 11 ■ Building Go Web Applications on Google Cloud

273

You can query Datastore data from the web interface of the Google Developers Console. Figure 11-13
displays the data of the "tasks" entity from the Google Developers Console.

Figure 11-13.  Data from the Google Developers Console

You can see that a unique ID is assigned as an entity key to be used when a data object is put into
entities.

Building Back-end APIs with Cloud Endpoints
In Google Cloud, the App Engine platform lets Go developers build back-end APIs and web applications in
the sandbox environment of App Engine, which is available for autoscaling. With App Engine, you can build
massively scalable Cloud-native applications on Google’s infrastructure using the tools and SDKs provided
by the Google Cloud platform. Google Cloud Endpoints is an App Engine service that allows you to easily
create back-end APIs for web clients and mobile clients.

Google Cloud Endpoints provides tools, libraries, and services to quickly generate APIs and client
libraries from an App Engine application. Cloud Endpoints is an App Engine application that runs in the
App Engine environment, but it provides extra capabilities for building API back ends and its client libraries
improve developer productivity when building mobile back-end systems.

You can create back-end APIs on the App Engine platform without leveraging Cloud Endpoints.
However, although you can create back-end APIs using a normal App Engine application, Cloud Endpoints
makes the development process easier by providing extra capabilities. Cloud Endpoints allows you to
generate native client libraries for iOS, Android, JavaScript, and Dart. Because natively generated libraries
are available for various client applications, you can quickly build client applications on which you
don’t need to write native wrappers to communicate with the back-end API. For a back-end developer, it
eliminates some complexities from the development process for developing RESTful APIs.

When you build an API with Cloud Endpoints, you don’t have to write anything on HTTP Request and
Response objects. You can write API methods like a normal Go function without leveraging these objects and
can make them HTTP APIs by using the libraries provided by Cloud Endpoints.

Chapter 11 ■ Building Go Web Applications on Google Cloud

274

Figure 11-14 illustrates the basic architecture of a Cloud Endpoints application.

Figure 11-14.  Basic architecture of a Cloud Endpoints application

Figure 11-14 shows the back-end API running on App Engine instances that are powered as a back end
for mobile clients and JavaScript web clients. The operations of back-end applications are made available
to client applications through endpoints, which expose an API that clients can call using native libraries
generated by Cloud Endpoints. Cloud Endpoints improves developer productivity to both back-end API
developers and client application developers.

In Chapter 9, a RESTful API was developed as a back end for a client application. By using Cloud Endpoints,
you can improve your developer productivity when you build RESTful APIs on the Google Cloud platform.

Cloud Endpoints for Go
With App Engine and its SDKs and Go tools, you can build Cloud Endpoints back-end APIs using Go.
You create Cloud Endpoints back ends in Go using the endpoints package provided by the Google Cloud
platform.

Installing the endpoints Package
To install the endpoints package, use the goapp tool provided by Google App Engine SDK for Go:

goapp get github.com/GoogleCloudPlatform/go-endpoints/endpoints

To use the endpoints package in Go programs, you must include the package in the import list:

import (
 "github.com/GoogleCloudPlatform/go-endpoints/endpoints"
)

By using the endpoints package, you can quickly write back-end APIs in Go.

http://dx.doi.org/10.1007/978-1-4842-1052-9_9

Chapter 11 ■ Building Go Web Applications on Google Cloud

275

Cloud Endpoints Back-end APIs in Go
In this section, you walk through an example that demonstrates how to write back-end APIs in Go by using
Cloud Endpoints. Like a normal App Engine application, your Cloud Endpoints applications can also
leverage the various Cloud services provided by Google Cloud. In this example application, Cloud Datastore
is used as the persistence store.

Let’s declare a struct to describe the data model for the application. Listing 11-8 provides a struct type to
work as a Datastore entity.

Listing 11-8.  Application Data Model

// Task is a datastore entity
type Task struct {
 Key *datastore.Key `json:"id" datastore:"-"`
 Name string `json:"name" endpoints:"req"`
 Description string `json:"description" datastore:",noindex" endpoints:"req"`
 CreatedOn time.Time `json:"createdon,omitempty"`
}

A struct type named Task is created to describe application data for the Cloud Endpoints application.
The value of the Task struct is persisted into Datastore, and the necessary tags are provided to the fields of
the Task struct to work with JSON encoding and the Datastore.

Two API methods are provided in the example application: the List method provides a list of Task data
from the Datastore, and the Add method allows you to create a new Task entity into the Datastore. Let’s write
these methods through a struct type that can be registered with Endpoints later.

Listing 11-9 provides the Go source file that contains the struct type and API methods to be exposed as
methods of the API provided by Cloud Endpoints.

Listing 11-9.  TaskService Exposing Methods for the API

package cloudendpoint

import (
 "time"

 "golang.org/x/net/context"
 "google.golang.org/appengine/datastore"
)

// Task is a datastore entity
type Task struct {
 Key *datastore.Key `json:"id" datastore:"-"`
 Name string `json:"name" endpoints:"req"`
 Description string `json:"description" datastore:",noindex" endpoints:"req"`
 CreatedOn time.Time `json:"createdon,omitempty"`
}

Chapter 11 ■ Building Go Web Applications on Google Cloud

276

// Tasks is a response type of TaskService.List method
type Tasks struct {
 Tasks []Task `json:"tasks"`
}

// Struct is used to add API methods
type TaskService struct {
}

// List returns a list of all the existing tasks from Datastore.
func (ts *TaskService) List(c context.Context) (*Tasks, error) {
 tasks := []Task{}
 keys, err := datastore.NewQuery("tasks").Order("-CreatedOn").GetAll(c, &tasks)
 if err != nil {

return nil, err
 }

 for i, k := range keys {
tasks[i].Key = k

 }
 return &Tasks{tasks}, nil
}

// Add inserts a new Task into Datastore
func (ts *TaskService) Add(c context.Context, t *Task) error {
 t.CreatedOn = time.Now()
 key := datastore.NewIncompleteKey(c, "tasks", nil)
 _, err := datastore.Put(c, key, t)
 return err
}

A struct type named TaskService was written, and two methods were added: List and Add. These
methods will be exposed later as the operations of a back-end API using the endpoints package. The HTTP
Request and Response objects are not used in either method, despite being exposed as operations of an
HTTP API.

The context package is used to carry the request-scoped values. The List method queries the data
from the "tasks" Datastore entity. The GetAll method executes the query and returns all keys that match
the query. The returned keys collection is used to assign the value of the Key field of the Task struct.

The Add method adds a new Task into the "tasks" Datastore entity. In normal HTTP API applications,
incoming messages from the body of HTTP requests are read, and the JSON (or XML) values are decoded
into struct types. In the Add method, a parameter of type Task is provided to get values into that parameter
from the body of the HTTP request. Here, you don’t write any logic or parse the incoming values into struct
types; a parameter for binding the values from the HTTP request is provided. When you build back-end APIs
using Cloud Endpoints, you can improve your developer productivity because Cloud Endpoints allows you
to avoid writing the plumbing code required for writing RESTful APIs.

At this moment, the List and Add methods are normal functions. You need to make them operations of
an HTTP API using Cloud Endpoints. Listing 11-10 provides the implementation for registering the methods
of TaskService into Endpoints so that the methods can be exposed as operations of an HTTP API.

Chapter 11 ■ Building Go Web Applications on Google Cloud

277

Listing 11-10.  Registering TaskService to the HTTP Server

package cloudendpoint

import (
 "log"

 "github.com/GoogleCloudPlatform/go-endpoints/endpoints"
)

// Register the API endpoints
func init() {
 taskService := &TaskService{}
 // Adds the TaskService to the server.
 api, err := endpoints.RegisterService(

taskService,
"tasks",
"v1",
"Tasks API",
true,

)
 if err != nil {

log.Fatalf("Register service: %v", err)
 }

 // Get ServiceMethod's MethodInfo for List method
 info := api.MethodByName("List").Info()
 // Provide values to MethodInfo - name, HTTP method, and path.
 info.Name, info.HTTPMethod, info.Path = "listTasks", "GET", "tasks"

 // Get ServiceMethod's MethodInfo for Add method
 info = api.MethodByName("Add").Info()
 info.Name, info.HTTPMethod, info.Path = "addTask", "POST", "tasks"
 // Calls DefaultServer's HandleHttp method using default serve mux
 endpoints.HandleHTTP()
}

In the init function, TaskService methods are registered to the HTTP server using the
RegisterService function of the endpoints package. The RegisterService function adds a new service to
the server using DefaultServer, which is the default RPC server. "tasks" is furnished as the name, and "v1"
is the API version to the HTTP service:

api, err := endpoints.RegisterService(
 taskService,
 "tasks",
 "v1",
 "Tasks API",
 true,
)

Chapter 11 ■ Building Go Web Applications on Google Cloud

278

The information is provided to the methods of HTTP service. It is used to provide discovery
documentation for the back-end APIs:

// Get ServiceMethod's MethodInfo for List method
 info := api.MethodByName("List").Info()
 // Provide values to MethodInfo - name, HTTP method, and path.
 info.Name, info.HTTPMethod, info.Path = "listTasks", "GET", "List Tasks"

 // Get ServiceMethod's MethodInfo for Add method
 info = api.MethodByName("Add").Info()
 info.Name, info.HTTPMethod, info.Path = "addTask", "POST", "Add a new Task"

Finally, the HandleHTTP function of the endpoints package is called, which calls the DefaultServer
HandleHttp method using the default http.ServeMux:

// Calls DefaultServer's HandleHttp method using default serve mux
 endpoints.HandleHTTP()

Now the TaskService methods are made available as HTTP endpoints of a RESTful API, which can be
used for building web and mobile client applications. Because the Cloud Endpoints application is an App
Engine application, let’s add an app.yaml file to be is used for the goapp tool and as the configuration for the
App Engine application.

Listing 11-11 provides the app.yaml file for the App Engine application.

Listing 11-11.  app.yaml file for the App Engine Application

application: go-endpoints
version: v1
threadsafe: true

runtime: go
api_version: go1

handlers:
- url: /.*
script: _go_app

Important! Even though there's a catch all routing above,
without these two lines it's not going to work.
Make sure you have this:
- url: /_ah/spi/.*
script: _go_app

The Cloud Endpoints application is now ready for running on both a development web server and an
App Engine production environment.

Chapter 11 ■ Building Go Web Applications on Google Cloud

279

Running Cloud Endpoints Back-end API
The App Engine Cloud Endpoints application is complete. Let’s run the application in a local development
server using the goapp tool. Run the goapp tool from the root directory of the application:

goapp serve

The application runs in the local web development server. The discovery doc of the API is available at
http://localhost:8080/_ah/api/discovery/v1/apis/tasks/v1/rest.

The APIs Explorer is available at http://localhost:8080/_ah/api/explorer.
Let’s navigate to the APIs Explorer in the browser window. Figure 11-15 shows the APIs Explorer

showing the API services.

Figure 11-15.  APIs Explorer running in the browser window

Figure 11-16.  Operations of the tasks API

When you click any available API service, you navigate to a window in which you can see the service’s
available operations. Figure 11-16 shows the tasks API operations.

Chapter 11 ■ Building Go Web Applications on Google Cloud

280

When you click any operation, you navigate to a window on which you can test the API operation by
providing request data in an input window and clicking the Execute button.

Figure 11-17 shows the input window for testing the addTask operation.

Figure 11-17.  Input window for the addTask operation

Figure 11-18 shows the HTTP Request and Response for the addTask operation.

Figure 11-18.  HTTP Request and Response from the addTask operation

The addTask operation is an HTTP Post request to the URI endpoint: http://localhost:8080/_ah/
api/tasks/v1/tasks.

Figure 11-19 shows the HTTP Request and Response for the listTasks operation. The listTasks
operation is executed after the addTask operation is executed three times so that you can see three records.

Chapter 11 ■ Building Go Web Applications on Google Cloud

281

The listTasks operation is an HTTP Get request to the URI endpoint: http://localhost:8080/_ah/
api/tasks/v1/tasks.

The application has been tested in the local web development server provided by Google App Engine
SDK for Go. You can deploy the Cloud Endpoints application into the production environment of App
Engine using the goapp tool. Deploying a Cloud Endpoints application into a production environment is

Figure 11-19.  HTTP Request and Response for the listTasks operation

Chapter 11 ■ Building Go Web Applications on Google Cloud

282

exactly the same process as that of a normal App Engine application. You must provide the application ID
in the app.yaml file to deploy the application. Section 11.4.4 provides instructions for creating a project in
Google Developer Console and getting an application ID. To deploy the application into production, run the
goapp tool from the root directory of the application:

goapp deploy

This command deploys the Cloud Endpoints application into the App Engine production environment,
powered by the Google Cloud platform.

Generating Client Libraries
The Cloud Endpoints application not only supports writing back-end APIs but also provides useful
capabilities to client applications. Cloud Endpoints allows you to generate client libraries for accessing APIs
from client applications and generates native libraries for iOS, Android, Dart, and JavaScript.

To generate a client library for the tasks API for iOS, run the following command on the terminal
window:

Use the rpc suffix in the URL:
$ URL='https://app-id.appspot.com/_ah/api/discovery/v1/apis/tasks/v1/rpc'
$ curl -s $URL > tasks.rpc.discovery

Here, "app-id" is the application ID of the App Engine application.
To generate a client library for the tasks API for Android, run the following command on the terminal

window:

Use the rest suffix in the URL
$ URL='https://app-id.appspot.com/_ah/api/discovery/v1/apis/tasks/v1/rest'
$ curl -s $URL > tasks.rest.discovery
$ endpointscfg.py gen_client_lib java tasks.rest.discovery

The endpointscfg.py tool is run from the go_appengine directory (the directory of the Google App
Engine SDK for Go) to generate the Java library for Android applications. It should generate a zip file named
tasks.rest.zip.

Summary
Go is a programming language designed to work with modern hardware and IT infrastructures to build
massively scalable applications. Go is a perfect language choice for building scalable applications in the
Cloud computing era. With the Google Cloud platform, Go developers can easily build massively scalable
applications on the Cloud by leveraging the tools and APIs provided by the Google Cloud platform.

Google Cloud provides App Engine, a Platform as a Service (PaaS) offering that lets Go developers
build highly scalable and reliable web applications using the App Engine SDK for Go and Go APIs to various
Cloud services. When you build App Engine applications, you don’t need to spend time managing the IT
infrastructure. Instead, you can fully focus on building your application, which is available for automatic
scaling whenever there is a need to increase computing resources. With App Engine, developers are freed
from system administration, load balancing, scaling, and server maintenance.

App Engine SDK for Go provides the goapp tool that allows you to test the App Engine application in a
development web server. The goapp tool can also be used for deploying App Engine web applications into
the Google Cloud production environment that runs on the App Engine sandbox environment.

https://app-id.appspot.com/_ah/api/discovery/v1/apis/tasks/v1/rpc
https://app-id.appspot.com/_ah/api/discovery/v1/apis/tasks/v1/rest

Chapter 11 ■ Building Go Web Applications on Google Cloud

283

The App Engine environment provides a main package, so you can’t use a package called main. Instead,
you can write HTTP handler logic in the package of your choice. App Engine applications easily access many
Cloud services provided by the Google Cloud platform. When you leverage many of Cloud services from
your App Engine application, you don’t need to configure these services to be used with App Engine because
you can directly access them from your application by using the corresponding Go API.

The Google Cloud platform provides various managed services for persisting structured data, including
Google Cloud SQL, Google Cloud Datastore, and Google Bigtable. When you build App Engine applications
with large volumes of data, the Google Cloud Datastore is the best database choice. You can build massively
scalable web applications using App Engine and Cloud Datastore without spending time managing the IT
infrastructure.

Google Cloud Endpoints is an App Engine service that builds back-end APIs for mobile client
applications and web client applications. It provides tools, libraries, and capabilities for quickly building
back-end APIs and generating native client libraries from App Engine applications. Although you can create
back-end APIs using a normal App Engine application, Cloud Endpoints makes the development process
easier by providing extra capabilities. Cloud Endpoints allows you to generate native client libraries for iOS,
Android, JavaScript, and Dart, so client application developers are freed from writing wrappers to access
back-end APIs.

References
https://github.com/GoogleCloudPlatform/gcloud-golang

https://cloud.google.com

Google Cloud Services infographic: https://cloud.google.com/

Endpoints architecture diagram: https://cloud.google.com/appengine/docs/python/endpoints/

https://github.com/GoogleCloudPlatform/gcloud-golang
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/appengine/docs/python/endpoints/

285

�       � A
Alice package, 108, 110
App Engine applications

configuration file, 258–259
goapp deploy command, 262
Google Developers Console

project creation, 261
project details, 262

HTTP server, 257–258
task form, 263
testing, 259–260

Arrays, 24–25
Authentication

API-based approach, 122
and authorization, 121
cookie-based approach, 122–123
JWT (see JSON Web Token (JWT))
social identities, 121
token-based approach, 123–125
user credentials, 121

�       � B
Behavior-driven development (BDD)

definition, 236
Ginkgo (see Ginkgo, BDD-style testing)
TDD, 236

Blank identifier, 17
BSON Binary JSON (BSON), 141, 144–146, 149
Buffered channels, 54, 57

�       � C
CaaS. See Container as a Service (CaaS)
Cloud computing

advantage, 251
autoscaling capabilities, 251
CaaS, 252
Google Cloud platform services, 253
host and run applications, 251

IaaS, 252
PaaS, 252
service-based consumption model, 251

Concurrency
description, 50
Go language, 50
goroutines, 50, 52–53

Container as a Service (CaaS), 252
Cookie-based authentication, 122–123
CRUD operations, MongoDB

Find method, 149
handler functions, 74–77
Insert method

embedded documents, 147, 149
map objects and document

slices, 146–147
struct values, 144–145

Query object, documents, 149
Remove method, 151
single record, 150
Sort method, 149
Update method, 151

Custom handlers
implemention, 63
messageHandler, 64
type, 63

�       � D
Data collections

array, 24–25
map, 29–31
slices (see Slices)

DefaultServeMux, 66–67
Docker

Dockerfile, TaskManager
application, 206–208

Engine, 205
flags and commands, 207
Hub, 205
Linux containers, 205

Index

■ index

286

�       � E
Embedded type method, overriding, 43–44
Error handling, 33–34

�       � F
Full-fledged web framework, 208
Function

defer, 31
panic, 32
recover, 32–33

�       � G
GAE. See Google App Engine (GAE)
Ginkgo, BDD-style testing

bootstrapping, suite file, 241
Gomega installation, 240
HTTP API Server

directory structure, refactored
application, 236

lib package, 237–239
main package, 237, 240

specs
containers, 242–243
FakeUserRepository, 244
HTTP handler functions, 243
running, 248
test suite, 241–242
UserRepository interface, 244
users_tests.go, lib_test

Package, 244–245, 247
Godeps

dependency management system, 202
installation, 203
restore command, 204
TaskManager application, 203–204

godoc tool, 23
Go documentation, 23
Go ecosystem

Go tools, 4–7
language, 4
libraries, 4

GOMAXPROCS, 53
Go Mobile project, 13
Google App Engine (GAE)

Cloud Bigtable, 254
Cloud Datastore, 254
Google Cloud SQL, 255
Go SDK, 256
logging service, 255
memcache, 255
PaaS, 254
“sandbox” environment, 255

search service, 255
security scanning, 255
task queues service, 255
traffic splitting, 255
user authentication services, 254

Google Cloud Bigtable, 267
Google Cloud Datastore

App Engine application, 269–270
data, Google Developers Console, 273
task form, 272
task list page, 272

entities, 268
features, 267–268
Go packages, 268
key name, 271
PendingKey, 271
query, 271
save application handler, 271

Google Cloud Endpoints
architecture, 274
back-end APIs

addTask operation, 280
APIs Explorer, 279
application data model, 275
HTTP request and response, 280–281
listTasks operation, 281
struct type, 275
tasks API operations, 279
TaskService exposing methods, 275–276
TaskService registration,

HTTP Server, 277–278
client libraries, 282
endpoints package installation, 274

Google Cloud platform services, 252–253
Google Cloud SQL, 267
Go programming language

benefit, 3
calc package, 10
code reusability, 10
compilation, 3
description, 1
features

channels, 3
concurrency, 3
minimalistic language, 1
OOP, 2
statically typed programming language, 2

Go playground, 12
goroutine, 3
hello world program, 8–9
mobile project, 3
shared library program, 9–10
testing Go code, 11

Gorilla handlers, 106–107
Gorilla web toolkit, 69

■ Index

287

Goroutines, 50, 52–53
Go tools

commands, 21
fmt command, 22
godoc tool, 23
installation

binary distributions, 4–5
installation verify commands, 6–7
Mac OS, 6

Go workspace
code organization paths, 8
GOPATH environment variable, 7
packages, 7
subdirectories, 7

�       � H
Handlers

CRUD operations, 74–75, 77
definition, 61
ServeHTTP method, 61
writing response headers and bodies, 61

html/template package
add page, 90–92
data structure and data store, 86
edit page, 92–97
folder structure, web application, 85
helper functions, 87–88
index page, 88–89
main function, 86
script injection, 84
views and template definition files, 87

HTTP applications
ResponseRecorder

HTTP API Server, 228–232
NewRecorder function, 228
ServeHTTP method, 233
TDD, 230
TestGetUsers, 232–233

server
HTTP API Server, 234
httptest.NewServer function, 235
TestCreateUserClient, 234–235
TestGetUsersClient, 234

http.HandlerFunc type, 64–66
HTTP middleware

components, 99
control flow, 103–106
Gorilla context, 118–119
logging, 99
Negroni (see Negroni)
scenarios, 99
third-party libraries

Alice package, 108, 110
Gorilla handlers, 106–107

writing
logging, 101–102
pattern, 101
steps of, 101
StripPrefix function, 100

HTTP requests
Handler, 61
request-response paradigm, 60
ServeMux multiplexor, 61

http.Server Struct, 67–68
Hybrid stand-alone/App Engine applications

App Engine SDK, 263
directory structure, 264
Go tool, 266
hybridapplib, 264–265
task package, 266

�       � I
Infrastructure as a Service (IaaS) model, 252
Interfaces

composition and method overriding, 47–49
concrete implementations, 50
example program with, 45–46
PrintName and PrintDetails

methods, 46, 49
types, defined, 45

�       � J, K
JSON

API operations, 199–201
data persistence, 191–192
error handling, 181–182
handler functions, 185
HTTP request lifecycle, 183–184
login resource, 189–191
notes resource, 201
Register handler function, 187–188
resource models, 184–185, 193
RESTful API, 70–72
taskController.go source file, 193–197
taskRepository.go, 197–198
tasks resource, 192

JSON Web Token (JWT)
API server, 135
DisplayAppError function, 179
encoded and decoded

security token, 178
generating and verifying, 175–177
Header and Payload sections, 178–179
HTML5 Web Storage/web cookies, 179
HTTP middleware, 139
JSON object, 131
jwt-go package, 131–135

■ index

288

middleware function, 180
ParseFromRequest function, 179
running and testing, API server, 137–138
validation, 136

�       � L
ListenAndServe Signature, 62–63

�       � M
Maps, data collections, 29–31
Microservice architecture, 14, 161
MongoDB

BSON, 141
collections, 144
createDbSession function, 172
CRUD operations (see CRUD operations,

MongoDB)
GetSession, 172
indexes, 152–154
mgo driver

battle-tested library, 142
connection, 142–143
installation, 142

NoSQL database, 141
Session object

DataStore struct type, 156
HTTP server, 154–156
web applications, 154

TaskNote collection, 173
Monolithic architecture approach, 13
Multiplexer configuration, 73

�       � N
Negroni

definition, 111
installation, 111–112
middleware functions, specific routes, 114
negroni.Handler interface, 113–114
routing, 112–113
stack middleware, 115–117

net/http package
composability and extensibility, 59
full-fledged web applications, 59
standard library, 59

�       � O
OAuth 2

mobile and web applications, 125
social identity providers, 125, 140
Twitter and Facebook, 126, 128–130

Object-oriented programming (OOP) language, 2

�       � P, Q
PaaS. See Platform as a Service (PaaS) model
Packages

alias, 16
blank identifier, 17
executable program, 15
GOPATH directory, 15
GOROOT directory, 15
import, 18
init function, 17
library package, 19
main Function, 16
shared libraries, 15
strconv, 20
third-party, installation, 18

Parallelism, 53
Platform as a Service (PaaS) model, 252, 254
Pointer method receivers

ampersand (&) operator, 39
calling methods, 39
ChangeLocation function, 38
description, 38
person struct with, 39–40

PrintDetails method, 43, 49
PrintName method, 49

�       � R
RESTful APIs

configuration values, 169–170
data model, 164–165
digital transformation, 160
Dockerfile, 205–208
front /back end applications, 160
Godep, 202–204
JSON, 184, 186–187
JWT authentication (see JSON Web Token (JWT))
microservice architecture, 161
MongoDB Session object (see MongoDB)
private/public RSA keys, 170–171
resource modeling, 165
routers

package directory, 166
TaskNote resource, 168
Tasks resource, 166–167
users resource, 166

settings, 169
stack, 160
StartUp function, 174–175
TaskManager application

structure, 162–163
third-Party Packages, 162

URIs, 160
web and mobile applications, 160
XML, 160

JSON Web Token (JWT) (cont.)

■ Index

289

�       � S
ServeMux.HandleFunc Function, 66
Single Page Application (SPA) architecture, 13
Slices

functions, 27
iterate over slice, 29
length and capacity, 28
make function, 26
nil slice, 26

Static type language, 2
Static web server

access, 63
FileServer function, 62
folder structure of, 61
ListenAndServe function, 62
ServeMux.Handle function, 62

Structs. See also Pointer method receivers
calling methods, 38
classes, 35
declaring, with group of fields, 36
fields specification, 37
instances, 36
struct literal, 36–37
type with behaviors, 37

�       � T
Test-driven development (TDD), 212, 230, 236, 249
Text/template package. See also html/template

package
collection object, 81–82
data structure, 79
definitions, 83
pipes, 84
struct fields, 79–80
variable declaration, 83

Third-party packages installation, 18–19
Token-based authentication, 123–125, 140
Type composition

benefits of, inheritance, 42
embedding, 40
example program, 41–42

�       � U, V
Unbuffered channels, 54, 56–57
Uniform resource identifiers

(URIs), 160, 165, 169
Unit testing

BDD (see Behavior-driven
development (BDD))

benchmark, 216–217
coverage flag, 215–216
definition, 211
Parallel method, 222–224
Reverse and SwapCase

functions, 217–220
separate packages, 224–227
Skip method, 221–222
software development, 211
string utility functions, 213–214
TDD, 211
third-party packages, 212
web applications (see HTTP applications)

URIs. See Uniform resource identifiers (URIs)

�       � W, X, Y, Z
Web and microservices

HTTP package, 13
monolithic application, 13
RESTful APIs, 14
SPA architecture, 13

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Started with Go
	 Introducing Go
	 Minimalistic Language with Pragmatic Design
	 A Static Type Language with High Productivity
	 Concurrency Is a Built-In Feature at the Language Level
	 Go Compiles Programs Quickly
	 Go as a General-Purpose Language

	 Go Ecosystem
	 Installing the Go Tools
	 Checking the Installation

	 Setting up a Work Environment
	 Go Workspace
	 GOPATH Environment Variable
	 Code Organization Paths

	 Writing Go Programs
	 Writing a Hello World Program
	 Writing a Library
	 Testing Go Code
	 Using Go Playground

	 Using Go Mobile
	 Go as a Language for Web and Microservices
	 Summary

	Chapter 2: Go Fundamentals
	 Packages
	 Package main
	 Package Alias
	 Function init
	 Using a Blank Identifier
	 Importing Packages
	 Install Third-Party Packages
	 Writing Packages

	 Go Tool
	 Formatting Go Code
	 Go Documentation

	 Working with Collections
	 Arrays
	 Slices
	Creating a Slice with the make Function
	Creating a Slice with Slice Literal
	Slice Functions
	Length and Capacity
	Iterating Over Slices

	 Maps

	 Defer, Panic, and Recover
	 Defer
	 Panic
	 Recover

	 Error Handling
	 Summary

	Chapter 3: User-Defined Types and Concurrency
	 User-defined Types with Structs
	 Creating a Struct Type
	 Creating Instances of Struct Types
	 Adding Behavior to a Struct Type
	Calling Struct Methods
	Pointer Method Receivers

	 Type Composition
	 Overriding Methods of Embedded Type
	 Working with Interfaces
	 Concurrency
	 Goroutines
	 GOMAXPROCS and Parallelism
	 Channels
	Unbuffered Channel
	 Buffered Channels

	 Summary

	Chapter 4: Getting Started with Web Development
	 net/http Package
	 Processing HTTP Requests
	 Serve Mux
	 Handler

	 Building a Static Web Server
	 Creating Custom Handlers
	 Using Functions as Handlers
	 http.HandlerFunc type
	 ServeMux.HandleFunc Function

	 DefaultServeMux
	 http.Server Struct
	 Gorilla Mux
	 Building a RESTful API
	 Data Model and Data Store
	 Configuring the Multiplexer
	 Handler Functions for CRUD Operations

	 Summary

	Chapter 5: Working with Go Templates
	 text/template Package
	 Working with text/template
	 Define Named Templates
	 Declaring Variables
	 Using Pipes

	 Building HTML Views Using html/template
	
	Building a Web Application
	Data Structure and Data Store
	main function
	Views and Template Definition Files
	Initializing View Templates
	Rendering the Index Page
	Rendering the Add Page
	Rendering the Edit Page

	 Summary

	Chapter 6: HTTP Middleware
	 Introduction to HTTP Middleware
	 Writing HTTP Middleware
	 How to Write HTTP Middleware
	 Writing a Logging Middleware

	 Controlling the Flow of HTTP Middleware
	 Using Third-Party Middleware
	 Using Gorilla Handlers
	Installing Gorilla Handlers
	Working with Gorilla Handlers

	 Middleware Chaining with the Alice Package
	Installing Alice
	Working with Alice

	 Using Middleware with the Negroni Package
	 Getting Started with Negroni
	Installing Negroni
	Routing with Negroni
	Registering Middleware
	Registering Middleware for Specific Routes

	 Working with a Negroni Middleware Stack

	 Sharing Values Among Middleware
	 Using Gorilla context
	 Setting and Getting Values with Gorilla context

	 Summary

	Chapter 7: Authentication to Web Apps
	 Authentication and Authorization
	 Authentication Approaches
	 Cookie-Based Authentication
	 Token-Based Authentication

	 Authentication with OAuth 2
	 Understanding OAuth 2
	 Authentication with OAuth 2 using the Goth Package

	 Authentication with JSON Web Token
	 Working with JWT Using the jwt-go Package
	Generating the JWT Token
	Validating the JWT Token
	Running and Testing the API Server

	 Using HTTP Middleware to Validate JWT Tokens

	 Summary

	Chapter 8: Persistence with MongoDB
	 Introduction to MongoDB
	 Getting Started Using MongoDB
	 Introduction to mgo Driver for MongoDB
	Installing mgo
	Connecting to MongoDB

	 Accessing Collections

	 CRUD Operations with MongoDB
	 Inserting Documents
	Inserting Struct Values
	Inserting Embedded Documents

	 Reading Documents
	Retrieving All Records
	Sorting Records
	Retrieving a Single Record

	 Updating Documents
	 Deleting Documents

	 Indexes in MongoDB
	 Managing Sessions
	 Summary

	Chapter 9: Building RESTful Services
	 RESTful APIs: the Backbone of Digital Transformation
	 API-Driven Development with RESTful APIs
	 Go: the Great Stack for RESTful Services
	 Go: the Great Stack for Microservice Architecture
	RESTful Services in Microservice Architecture

	 Building RESTful APIs
	 Third-Party Packages
	 Application Structure
	 Data Model
	 Resource Modeling for RESTful APIs
	Mapping Resources with Application Routes
	Routes for the Users Resource
	Routes for the Tasks Resource

	 Adding Route-Specific Middleware
	Routes for the TaskNote Resource
	Initializing Routes for a RESTful API

	 Setting up the RESTful API Application
	Initializing Configuration Values
	Loading Private/Public RSA Keys
	Creating a MongoDB Session Object
	Adding Indexes into MongoDB
	Initialization Logic in the common Package
	Starting the HTTP Server

	 Authentication
	Generating and Verifying JWT
	Generating JWT
	Sending JWT to the Server
	Authorizing JWT

	 Application Handlers
	Helper for Displaying HTTP Errors
	Handling Data for an HTTP Request Lifecycle
	Handlers for the Users Resource

	 JSON Resource Models
	 Handlers for the Users Resource
	 Registering New Users
	 Logging in to the System
	 Data Persistence with MongoDB
	Handlers for the Tasks Resource

	 JSON Resource Models
	 Handlers for the Tasks Resource
	 Testing API Operations for the Tasks Resource
	Handlers for Notes Resource

	 JSON Resource Models

	 Go Dependencies Using Godep
	 Installing the godep Tool
	 Using godep with TaskManager
	 Restoring an Application’s Dependencies

	 Deploying HTTP Servers with Docker
	 Introduction to Docker
	 Writing Dockerfile

	 Go Web Frameworks
	 Summary
	 References

	Chapter 10: Testing Go Applications
	 Unit Testing
	 Test-Driven Development (TDD)
	 Unit Testing with Go
	 Writing Unit Tests
	 Getting Test Coverage
	Benchmark Unit Tests
	Verifying Example Code

	 Skipping Test Cases
	 Running Tests Cases in Parallel
	 Putting Tests in Separate Packages

	 Testing Web Applications
	 Testing with ResponseRecorder
	 Testing with Server

	 BDD Testing in Go
	 Behavior-Driven Development (BDD)
	 Behavior-Driven Development with Ginkgo
	Refactoring the HTTP API
	Writing BDD-style Tests
	Installing Ginkgo and Gomega
	Bootstrapping a Suite
	Adding Specs to the Suite
	Organizing Specs with Containers
	Writing Specs in the Test File
	Running Specs

	 Summary

	Chapter 11: Building Go Web Applications on Google Cloud
	 Introduction to Cloud Computing
	 Infrastructure as a Service (IaaS)
	 Platform as a Service (PaaS)
	 Container as a Service

	 Introduction to Google Cloud
	 Google App Engine (GAE)
	 Cloud Services with App Engine
	User Authentication
	Cloud Datastore
	Cloud Bigtable
	Google Cloud SQL
	Memcache
	Search
	Traffic Splitting
	Logging
	Task Queues
	Security Scanning

	 Google App Engine for Go
	 Go Development Environment

	 Building App Engine Applications
	 Writing an HTTP Server
	 Creating the Configuration File
	 Testing the Application in Development Server
	 Deploying App Engine Applications into the Cloud

	 Creating Hybrid Stand-alone/App Engine applications
	 Working with Cloud Native Databases
	 Introduction to Google Cloud Datastore
	Entities
	Ancestors and Descendants

	 Working with Cloud Datastore
	Creating a New Entity
	Querying the Datastore
	Running the Application

	 Building Back-end APIs with Cloud Endpoints
	 Cloud Endpoints for Go
	Installing the endpoints Package

	 Cloud Endpoints Back-end APIs in Go
	Running Cloud Endpoints Back-end API
	Generating Client Libraries

	 Summary
	 References

	Index

