
Mike Loukides

Infrastructure as Code

What is
DevOps?

www.allitebooks.com

http://www.allitebooks.org

Building a
Faster and
Stronger Web
The only things expanding faster than new

techniques and technologies to build a faster,

stronger web are the many features web and

mobile users have come to expect.

To succeed in the ever-shifting, increasingly

complexity that is web ops and performance,

you not only have keep up with new tools and

technologies, you also have to constantly look

ahead to what’s coming next.

Sign up for the
Velocity Newsletter today
to receive weekly insights
from the people shaping
the future of the web.

oreilly.com/velocity

©2012 O’Reilly Media, Inc.
O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 12560

www.allitebooks.com

http://www.allitebooks.org

 Santa Clara, CA

June 25–27, 2012

Building a Faster and Stronger Web

©2012 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 12560

Join us at Velocity
The way we defi ne web operations is constantly evolving. Resilience, reliability, and
collaboration between operations and development teams are now integral to a company’s
infrastructure and success.

Velocity is much more than a conference; it’s become the essential training event for web
professionals from companies and organizations of all sizes.

Join us in Santa Clara to stay ahead in the emerging fi eld of DevOps.
Sessions include:
■ How to Walk Away From Your Outage Looking Like a HERO
■ Frying Squirrels and Unspun Gyros
■ How Complex Systems Fail

Save 25% on registration with code RADAR25.
http://oreil.ly/devops1

www.allitebooks.com

http://www.allitebooks.org

What is DevOps?

Mike Loukides

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

What is DevOps?
by Mike Loukides

Copyright © 2012 O’Reilly Media . All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

June 2012: First Edition.

Revision History for the First Edition:
2012-06-04 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449339104 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. What Is DevOps? and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-33910-4

[LSI]

1339158883

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449339104
http://www.allitebooks.org

Table of Contents

What is DevOps? . 1

iii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

What is DevOps?

Adrian Cockcroft’s article about NoOps at Netflix ignited a controversy that has been
smouldering for some months. John Allspaw’s detailed response to Adrian’s article
makes a key point: What Adrian described as “NoOps” isn’t really. Operations doesn’t
go away. Responsibilities can, and do, shift over time, and as they shift, so do job
descriptions. But no matter how you slice it, the same jobs need to be done, and one
of those jobs is operations. What Adrian is calling NoOps at Netflix isn’t all that dif-
ferent from Operations at Etsy. But that just begs the question: What do we mean by
“operations” in the 21st century? If NoOps is a movement for replacing operations with
something that looks suspiciously like operations, there’s clearly confusion. Now that
some of the passion has died down, it’s time to get to a better understanding of what
we mean by operations and how it’s changed over the years.

1

www.allitebooks.com

http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html
https://gist.github.com/2140086
http://www.allitebooks.org

At a recent lunch, John noted that back in the dawn of the computer age, there was no
distinction between dev and ops. If you developed, you operated. You mounted the
tapes, you flipped the switches on the front panel, you rebooted when things crashed,
and possibly even replaced the burned out vacuum tubes. And you got to wear a geeky
white lab coat. Dev and ops started to separate in the ’60s, when programmer/analysts
dumped boxes of punch cards into readers, and “computer operators” behind a glass
wall scurried around mounting tapes in response to IBM JCL. The operators also pulled
printouts from line printers and shoved them in labeled cubbyholes, where you got
your output filed under your last name.

The arrival of minicomputers in the 1970s and PCs in the ’80s broke down the wall
between mainframe operators and users, leading to the system and network adminis-
trators of the 1980s and ’90s. That was the birth of modern “IT operations” culture.
Minicomputer users tended to be computing professionals with just enough knowledge
to be dangerous. (I remember when a new director was given the root password and
told to “create an account for yourself” ... and promptly crashed the VAX, which was
shared by about 30 users). PC users required networks; they required support; they

2 | What is DevOps?

www.allitebooks.com

http://www.allitebooks.org

required shared resources, such as file servers and mail servers. And yes, BOFH
(“Bastard Operator from Hell”) serves as a reminder of those days. I remember being
told that “no one” else is having the problem you’re having — and not getting beyond
it until at a company meeting we found that everyone was having the exact same prob-
lem, in slightly different ways. No wonder we want ops to disappear. No wonder we
wanted a wall between the developers and the sysadmins, particularly since, in theory,
the advent of the personal computer and desktop workstation meant that we could all
be responsible for our own machines.

But somebody has to keep the infrastructure running, including the increasingly im-
portant websites. As companies and computing facilities grew larger, the fire-fighting
mentality of many system administrators didn’t scale. When the whole company runs
on one 386 box (like O’Reilly in 1990), mumbling obscure command-line incantations
is an appropriate way to fix problems. But that doesn’t work when you’re talking hun-
dreds or thousands of nodes at Rackspace or Amazon. From an operations standpoint,
the big story of the web isn’t the evolution toward full-fledged applications that run in
the browser; it’s the growth from single servers to tens of servers to hundreds, to thou-
sands, to (in the case of Google or Facebook) millions. When you’re running at that
scale, fixing problems on the command line just isn’t an option. You can’t afford letting
machines get out of sync through ad-hoc fixes and patches. Being told “We need 125
servers online ASAP, and there’s no time to automate it” (as Sascha Bates encoun-
tered) is a recipe for disaster.

The response of the operations community to the problem of scale isn’t surprising. One
of the themes of O’Reilly’s Velocity Conference is “Infrastructure as Code.” If you’re
going to do operations reliably, you need to make it reproducible and programmatic.
Hence virtual machines to shield software from configuration issues. Hence Puppet
and Chef to automate configuration, so you know every machine has an identical soft-
ware configuration and is running the right services. Hence Vagrant to ensure that all
your virtual machines are constructed identically from the start. Hence automated
monitoring tools to ensure that your clusters are running properly. It doesn’t matter
whether the nodes are in your own data center, in a hosting facility, or in a public cloud.
If you’re not writing software to manage them, you’re not surviving.

Furthermore, as we move further and further away from traditional hardware servers
and networks, and into a world that’s virtualized on every level, old-style system ad-
ministration ceases to work. Physical machines in a physical machine room won’t dis-
appear, but they’re no longer the only thing a system administrator has to worry about.
Where’s the root disk drive on a virtual instance running at some colocation facility?
Where’s a network port on a virtual switch? Sure, system administrators of the ’90s
managed these resources with software; no sysadmin worth his salt came without a
portfolio of Perl scripts. The difference is that now the resources themselves may be
physical, or they may just be software; a network port, a disk drive, or a CPU has
nothing to do with a physical entity you can point at or unplug. The only effective way
to manage this layered reality is through software.

What is DevOps? | 3

www.allitebooks.com

http://bofh.ntk.net/BOFH/
http://blog.brattyredhead.com/wherein-sascha-ponders-a-question-thats-alrea
http://blog.brattyredhead.com/wherein-sascha-ponders-a-question-thats-alrea
http://velocityconf.com/
http://puppetlabs.com/
http://www.opscode.com/
http://vagrantup.com/
http://www.allitebooks.org

So infrastructure had to become code. All those Perl scripts show that it was already
becoming code as early as the late ’80s; indeed, Perl was designed as a programming
language for automating system administration. It didn’t take long for leading-edge
sysadmins to realize that handcrafted configurations and non-reproducible incanta-
tions were a bad way to run their shops. It’s possible that this trend means the end of
traditional system administrators, whose jobs are reduced to racking up systems for
Amazon or Rackspace. But that’s only likely to be the fate of those sysadmins who
refuse to grow and adapt as the computing industry evolves. (And I suspect that sy-
sadmins who refuse to adapt swell the ranks of the BOFH fraternity, and most of us
would be happy to see them leave.) Good sysadmins have always realized that auto-
mation was a significant component of their job and will adapt as automation becomes
even more important. The new sysadmin won’t power down a machine, replace a failing
disk drive, reboot, and restore from backup; he’ll write software to detect a misbehaving
EC2 instance automatically, destroy the bad instance, spin up a new one, and configure
it, all without interrupting service. With automation at this level, the new “ops guy”
won’t care if he’s responsible for a dozen systems or 10,000. And the modern BOFH
is, more often than not, an old-school sysadmin who has chosen not to adapt.

James Urquhart nails it when he describes how modern applications, running in the
cloud, still need to be resilient and fault tolerant, still need monitoring, still need to
adapt to huge swings in load, etc. But he notes that those features, formerly provided
by the IT/operations infrastructures, now need to be part of the application, particularly
in “platform as a service” environments. Operations doesn’t go away, it becomes part
of the development. And rather than envision some sort of uber developer, who un-
derstands big data, web performance optimization, application middleware, and fault
tolerance in a massively distributed environment, we need operations specialists on the
development teams. The infrastructure doesn’t go away — it moves into the code; and
the people responsible for the infrastructure, the system administrators and corporate
IT groups, evolve so that they can write the code that maintains the infrastructure.
Rather than being isolated, they need to cooperate and collaborate with the developers
who create the applications. This is the movement informally known as “DevOps.”

Amazon’s EBS outage last year demonstrates how the nature of “operations” has
changed. There was a marked distinction between companies that suffered and lost
money, and companies that rode through the outage just fine. What was the difference?
The companies that didn’t suffer, including Netflix, knew how to design for reliability;
they understood resilience, spreading data across zones, and a whole lot of reliability
engineering. Furthermore, they understood that resilience was a property of the appli-
cation, and they worked with the development teams to ensure that the applications
could survive when parts of the network went down. More important than the flames
about Amazon’s services are the testimonials of how intelligent and careful design kept
applications running while EBS was down. Netflix’s ChaosMonkey is an excellent, if
extreme, example of a tool to ensure that a complex distributed application can survive
outages; ChaosMonkey randomly kills instances and services within the application.

4 | What is DevOps?

http://news.cnet.com/8301-19413_3-10470260-240.html
http://aws.amazon.com/message/65648/
http://www.readwriteweb.com/cloud/2010/12/chaos-monkey-how-netflix-uses.php

The development and operations teams collaborate to ensure that the application is
sufficiently robust to withstand constant random (and self-inflicted!) outages without
degrading.

On the other hand, during the EBS outage, nobody who wasn’t an Amazon employee
touched a single piece of hardware. At the time, JD Long tweeted that the best thing
about the EBS outage was that his guys weren’t running around like crazy trying to fix
things. That’s how it should be. It’s important, though, to notice how this differs from
operations practices 20, even 10 years ago. It was all over before the outage even oc-
curred: The sites that dealt with it successfully had written software that was robust,
and carefully managed their data so that it wasn’t reliant on a single zone. And similarly,
the sites that scrambled to recover from the outage were those that hadn’t built resil-
ience into their applications and hadn’t replicated their data across different zones.

In addition to this redistribution of responsibility, from the lower layers of the stack to
the application itself, we’re also seeing a redistribution of costs. It’s a mistake to think
that the cost of operations goes away. Capital expense for new servers may be replaced
by monthly bills from Amazon, but it’s still cost. There may be fewer traditional IT
staff, and there will certainly be a higher ratio of servers to staff, but that’s because some
IT functions have disappeared into the development groups. The bonding is fluid, but
that’s precisely the point. The task — providing a solid, stable application for customers
— is the same. The locations of the servers on which that application runs, and how
they’re managed, are all that changes.

One important task of operations is understanding the cost trade-offs between public
clouds like Amazon’s, private clouds, traditional colocation, and building their own
infrastructure. It’s hard to beat Amazon if you’re a startup trying to conserve cash and
need to allocate or deallocate hardware to respond to fluctuations in load. You don’t
want to own a huge cluster to handle your peak capacity but leave it idle most of the
time. But Amazon isn’t inexpensive, and a larger company can probably get a better
deal taking its infrastructure to a colocation facility. A few of the largest companies will
build their own datacenters. Cost versus flexibility is an important trade-off; scaling is
inherently slow when you own physical hardware, and when you build your data cen-
ters to handle peak loads, your facility is underutilized most of the time. Smaller com-
panies will develop hybrid strategies, with parts of the infrastructure hosted on public
clouds like AWS or Rackspace, part running on private hosting services, and part run-
ning in-house. Optimizing how tasks are distributed between these facilities isn’t sim-
ple; that is the province of operations groups. Developing applications that can run
effectively in a hybrid environment: that’s the responsibility of developers, with healthy
cooperation with an operations team.

The use of metrics to monitor system performance is another respect in which system
administration has evolved. In the early ’80s or early ’90s, you knew when a machine
crashed because you started getting phone calls. Early system monitoring tools like
HP’s OpenView provided limited visibility into system and network behavior but didn’t
give much more information than simple heartbeats or reachability tests. Modern tools

What is DevOps? | 5

http://twitter.com/cmastication

like DTrace provide insight into almost every aspect of system behavior; one of the
biggest challenges facing modern operations groups is developing analytic tools and
metrics that can take advantage of the data that’s available to predict problems before
they become outages. We now have access to the data we need, we just don’t know
how to use it. And the more we rely on distributed systems, the more important mon-
itoring becomes. As with so much else, monitoring needs to become part of the appli-
cation itself. Operations is crucial to success, but operations can only succeed to the
extent that it collaborates with developers and participates in the development of ap-
plications that can monitor and heal themselves.

Success isn’t based entirely on integrating operations into development. It’s naive to
think that even the best development groups, aware of the challenges of high-perfor-
mance, distributed applications, can write software that won’t fail. On this two-way
street, do developers wear the beepers, or IT staff? As Allspaw points out, it’s important
not to divorce developers from the consequences of their work since the fires are fre-
quently set by their code. So, both developers and operations carry the beepers. Sharing
responsibilities has another benefit. Rather than finger-pointing post-mortems that try
to figure out whether an outage was caused by bad code or operational errors, when
operations and development teams work together to solve outages, a post-mortem can
focus less on assigning blame than on making systems more resilient in the future.
Although we used to practice “root cause analysis” after failures, we’re recognizing that
finding out the single cause is unhelpful. Almost every outage is the result of a “perfect
storm” of normal, everyday mishaps. Instead of figuring out what went wrong and
building procedures to ensure that something bad can never happen again (a process
that almost always introduces inefficiencies and unanticipated vulnerabilities), modern
operations designs systems that are resilient in the face of everyday errors, even when
they occur in unpredictable combinations.

In the past decade, we’ve seen major changes in software development practice. We’ve
moved from various versions of the “waterfall” method, with interminable up-front
planning, to “minimum viable product,” continuous integration, and continuous de-
ployment. It’s important to understand that the waterfall and methodology of the ’80s
aren’t “bad ideas” or mistakes. They were perfectly adapted to an age of shrink-wrapped
software. When you produce a “gold disk” and manufacture thousands (or millions)
of copies, the penalties for getting something wrong are huge. If there’s a bug, you can’t
fix it until the next release. In this environment, a software release is a huge event. But
in this age of web and mobile applications, deployment isn’t such a big thing. We can
release early, and release often; we’ve moved from continuous integration to continu-
ous deployment. We’ve developed techniques for quick resolution in case a new release
has serious problems; we’ve mastered A/B testing to test releases on a small subset of
the user base.

All of these changes require cooperation and collaboration between developers and
operations staff. Operations groups are adopting, and in many cases, leading in the
effort to implement these changes. They’re the specialists in resilience, in monitoring,

6 | What is DevOps?

http://velocityconf.com/velocity2011/public/schedule/detail/19766

in deploying changes and rolling them back. And the many attendees, hallway discus-
sions, talks, and keynotes at O’Reilly’s Velocity conference show us that they are
adapting. They’re learning about adopting approaches to resilience that are completely
new to software engineering; they’re learning about monitoring and diagnosing dis-
tributed systems, doing large-scale automation, and debugging under pressure. At a
recent meeting, Jesse Robbins described scheduling EMT training sessions for opera-
tions staff so that they understood how to handle themselves and communicate with
each other in an emergency. It’s an interesting and provocative idea, and one of many
things that modern operations staff bring to the mix when they work with developers.

What does the future hold for operations? System and network monitoring used to be
exotic and bleeding-edge; now, it’s expected. But we haven’t taken it far enough. We’re
still learning how to monitor systems, how to analyze the data generated by modern
monitoring tools, and how to build dashboards that let us see and use the results ef-
fectively. I’ve joked about “using a Hadoop cluster to monitor the Hadoop cluster,”
but that may not be far from reality. The amount of information we can capture is
tremendous, and far beyond what humans can analyze without techniques like machine
learning.

Likewise, operations groups are playing a huge role in the deployment of new, more
efficient protocols for the web, like SPDY. Operations is involved, more than ever, in
tuning the performance of operating systems and servers (even ones that aren’t under
our physical control); a lot of our “best practices” for TCP tuning were developed in
the days of ISDN and 56 Kbps analog modems, and haven’t been adapted to the reality
of Gigabit Ethernet, OC48* fiber, and their descendants. Operations groups are re-
sponsible for figuring out how to use these technologies (and their successors) effec-
tively. We’re only beginning to digest IPv6 and the changes it implies for network in-
frastructure. And, while I’ve written a lot about building resilience into applications,
so far we’ve only taken baby steps. There’s a lot there that we still don’t know. Oper-
ations groups have been leaders in taking best practices from older disciplines (control
systems theory, manufacturing, medicine) and integrating them into software devel-
opment.

And what about NoOps? Ultimately, it’s a bad name, but the name doesn’t really mat-
ter. A group practicing “NoOps” successfully hasn’t banished operations. It’s just
moved operations elsewhere and called it something else. Whether a poorly chosen
name helps or hinders progress remains to be seen, but operations won’t go away; it
will evolve to meet the challenges of delivering effective, reliable software to customers.
Old-style system administrators may indeed be disappearing. But if so, they are being
replaced by more sophisticated operations experts who work closely with development
teams to get continuous deployment right; to build highly distributed systems that are
resilient; and yes, to answer the pagers in the middle of the night when EBS goes down.
DevOps.

Photo: Taken at IBM’s headquarters in Armonk, NY. By Mike Loukides.

What is DevOps? | 7

http://en.wikipedia.org/wiki/SPDY
http://radar.oreilly.com/2011/06/web-ops-resilience-engineering-failure-data.html

www.allitebooks.com

http://www.allitebooks.org

	Table of Contents
	What is DevOps?

