O'REILLY"

SEARCH ACROSS A VARIETY
OF XML DATA

Priscilla Walmsley

vww .allitebooks.cond

http://www.allitebooks.org

9

O'REILLY"

XQuery

The W3C XQuery 3.1 standard provides a tool to search, extract, and
manipulate content, whether it's in XML, JSON, or plain text. With this fully
updated, in-depth tutorial, you'll learn to program with this highly practical
query language.

Designed for query writers who have some knowledge of XML basics,
but not necessarily advanced knowledge of XML-related technologies,
this book is ideal as both a tutorial and a reference. You'll find background
information for namespaces, schemas, built-in types, and regular
expressions that are relevant to writing XML queries.

This second edition provides:

m A high-level overview and quick tour of XQuery
m New chapters on higher-order functions, maps, arrays, and JSON

m A carefully paced tutorial that teaches XQuery without being
bogged down by the details

m Advanced concepts for taking advantage of modularity,
namespaces, typing, and schemas

m Guidelines for working with specific types of data, such as
numbers, strings, dates, URIs, maps, and arrays

m XQuery's implementation-specific features and its relationship
to other standards including SQL and XSLT

m A complete alphabetical reference to the built-in functions,
types, and error messages

Priscilla Walmsley has been working closely with XQuery, XSLT, and XML
Schema for years. She is currently Managing Director at Datypic, providing
training and consulting services in the areas of electronic publishing, data
architecture, information exchange, and XML core technologies. Priscilla is also
the author of Definitive XML Schema (Prentice Hall PTR).

“This second edition

rigorously covers the
many new features and
functions available in
XQuery 3.0 and 3.1, again
reasserting itself as the
authoritative book on
XQuery. Well suited to
both the beginner and
the expert, it is consci-
entiously written to
empower both those
who are restricted to
XQuery 1.0 and those
reaching for XQuery 3.1.”

—Adam Retter
CEO of Evolved Binary
and author of eXist

XML / DATABASE

US $59.99 CAN $68.99
ISBN: 978-1-491-91510-3

NIRRTV
zepi R

4911915

8

vww allitebooks.conl

Twitter: @oreillymedia
facebook.com/oreilly

http://www.allitebooks.org

SECOND EDITION

XQuery

Search Across a Variety of XML Data

Priscilla Walmsley

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

vww allitebooks.cond

http://www.allitebooks.org

XQuery
by Priscilla Walmsley

Copyright © 2016 Priscilla Walmsley. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley Indexer: Priscilla Walmsley
Production Editor: Shiny Kalapurakkel Interior Designer: David Futato
Copyeditor: Nan Reinhardt Cover Designer: Karen Montgomery
Proofreader: Sonia Saruba lllustrator: Rebecca Demarest
March 2007: First Edition

December 2015: Second Edition

Revision History for the Second Edition
2015-11-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915103 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. XQuery, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-91510-3
[LST]

vww allitebooks.cond

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491915103
http://www.allitebooks.org

Preface

1.

Table of Contents

Introductionto XQuery.........covviiiiiiiiiiiiiiiiiiiiieanns,

What Is XQuery?
Capabilities of XQuery
Uses for XQuery
Processing Scenarios
Easing into XQuery
Path Expressions
FLWORs
Adding XML Elements and Attributes
Adding Elements
Adding Attributes
Functions
Joins
Aggregating and Grouping Values

. XQuery Foundations.ooviiiiiiiiiiiiiiiiiiiiiiiienn,

The Design and History of the XQuery Language
XQuery in Context

XQuery and XPath

XQuery Versus XSLT

XQuery Versus SQL

XQuery and XML Schema
Processing Queries

Input Documents

The Query

The Context

N Ul WD -

— = = =
NN —= = O

15
15
16
16
16
17
17
18
18
19
20

vww allitebooks.cond

http://www.allitebooks.org

The Query Processor
The Results of the Query
The XQuery Data Model
Nodes
Atomic Values
Sequences
Types
Namespaces

Expressions: XQuery Building Blocks.ccoovviiiiiiiinnnt,

Categories of Expressions

Keywords and Names

Whitespace in Queries

Literals

Variables

Function Calls

Comments

Precedence and Parentheses

Comparison Expressions
General Comparisons
Value Comparisons
Node Comparisons

Conditional (if-then-else) Expressions
Conditional Expressions and Effective Boolean Value
Nesting Conditional Expressions

Switch Expressions

Logical (and/or) Expressions
Precedence of Logical Expressions
Negating a Boolean Value

Navigating XML by Using Paths.cccociiiiiiiiiiinnnt,

Path Expressions
Path Expressions and Context
Steps
Axes
Node Tests
Abbreviated Syntax
Other Expressions as Steps
Predicates
Comparisons in Predicates
Using Positions in Predicates
Using Multiple Predicates

20
21
21
22
26
27
28
28

31
31
32
33
33
34
34
35
35
37
37
38
40
41
42
43
43
45
45
46

47
47
48
49
49
50
53
53
54
55
56
59

iv

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

More Complex Predicates 59
A Closer Look at Context 60
Working with the Context Node 61
Accessing the Root 61
Dynamic Paths 62
The Simple Map Operator 63
. Adding Elements and AttributestoResults.ccovviiiiiiiiiiiiiinnnen. 65
Including Elements and Attributes from the Input Document 65
Direct Element Constructors 66
Containing Literal Characters 67
Containing Other Element Constructors 68
Containing Enclosed Expressions 68
Specifying Attributes Directly 71
Declaring Namespaces in Direct Constructors 72
Use Case: Modifying an Element from the Input Document 73
Direct Element Constructors and Whitespace 74
Computed Constructors 77
Computed Element Constructors 77
Computed Attribute Constructors 80
Use Case: Turning Content to Markup 80

. Selecting and Joining Using FLWORS.ovviiiiiiiiiriiininneenneennnns 83
Selecting with Path Expressions 83
FLWOR Expressions 83
The for Clause 85
The let Clause 88
The where Clause 89
The return Clause 920
The Scope of Variables 91
Quantified Expressions 91
Binding Multiple Variables 93
Selecting Distinct Values 93
Joins 95
Three-Way Joins 96
Outer Joins 96
Joins and Types 98

. Sorting and GroUPING. ovvveeerie et tieeeieeenieeeiereerenaeannesnnnns 99
Sorting in XQuery 99
The order by Clause 99
The sort Function 103
Table of Contents | v

http://www.allitebooks.org

Document Order

Document Order Comparisons

Reversing the Order

Indicating That Order Is Not Significant
Grouping

Grouping Using the group by Clause
Aggregating Values

Ignoring “Missing” Values

Counting “Missing” Values

Aggregating on Multiple Values

Constraining and Sorting on Aggregated Values

FUNCEIONS. . oo v et iit it ittt ittt ei it enrennennennens

Built-in Versus User-Defined Functions
Calling Functions

Function Names

Function Signatures

Argument Lists

Sequence Types

Calling Functions with the Arrow Operator
User-Defined Functions

Why Define Your Own Functions?

Function Declarations

The Function Body

The Function Name

The Parameter List

Functions and Context

Recursive Functions

. Advanced QUeKIeS. . ..vvvve ettt ittt

Working with Positions and Sequence Numbers
Adding Sequence Numbers to Results
Using the count Clause
Testing for the Last Item

Windowing
Using start and end Conditions
Windows Based on Position
Windows Based on Previous or Next Items
Sliding Windows

Copying Input Elements with Modifications
Adding Attributes to an Element
Removing Attributes from an Element

ooooooooooooo

103
105
106
106
108
109
112
114
115
116
116

119
119
119
120
121
121
123
124
124
124
125
126
127
127
130
130

133
133
133
135
137
138
140
141
142
143
144
145
146

vi

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

10.

1.

Removing Attributes from All Descendants
Removing Child Elements
Changing Names

Combining Results
Sequence Constructors
The union Expression
The intersect Expression
The except Expression

Using Intermediate XML Documents
Creating Lookup Tables
Reducing Complexity

Namespaces and XQUerY.oveuuirinirinnieneeierenneenneennesennsens
XML Namespaces
Namespace URIs
Declaring Namespaces
Default Namespace Declarations
Namespaces and Attributes
Namespace Declarations and Scope
Namespaces and XQuery
Namespace Declarations in Queries
Predeclared Namespaces
Prolog Namespace Declarations
Namespace Declarations in Direct Element Constructors
Namespace Declarations in Computed Constructors
The Impact and Scope of Namespace Declarations
Controlling Namespace Declarations in Your Results
In-Scope Versus Statically Known Namespaces
Controlling the Copying of Namespace Declarations
URI-Qualified Names

ACloser Look at TYPeS. .o v oveveeeeeenieetieeeneeenaeennernnesennesnneennns
The XQuery Type System
Advantages of a Strong Type System
Do You Need to Care About Types?
The Built-in Types
Atomic Types
List Types
Union Types
Types, Nodes, and Atomic Values
Nodes and Types
Atomic Values and Types

147
147
148
150
150
151
151
151
152
152
153

157
157
157
158
159
159
160
161
162
162
163
166
167
168
170
171
174
177

179
179
179
180
181
181
183
183
183
183
184

Table of Contents

vww allitebooks.cond

| vii

http://www.allitebooks.org

12.

13.

Type Checking in XQuery
The Static Analysis Phase
The Dynamic Evaluation Phase
Automatic Type Conversions
Subtype Substitution
Type Promotion
Casting of Untyped Values
Atomization
Effective Boolean Value
Function Conversion Rules
Sequence Types
Occurrence Indicators
Generic Sequence Types
Simple Type Names as Sequence Types
Element and Attribute Tests
Sequence Type Matching
The instance of Expression
Constructors and Casting
Constructors
The Cast Expression
The Castable Expression
Casting Rules

Prologs, Modules, and Variables.c.conennn.

Structure of a Query: Prolog and Body
Prolog Declarations
The Version Declaration
Assembling Queries from Multiple Modules
Library Modules
Importing a Library Module
Loading a Library Module Dynamically
Variable Declarations
Variable Declaration Syntax
The Scope of Variables
Variable Names
Initializing Expressions
External Variables
Private Functions and Variables
Declaring External Functions

Inputsand Qutputs.oovvienniiniiiiiiiiii e eennns

Types of Input and Output Documents

ooooooooooooooo

184
184
185
185
185
186
186
186
187
189
190
191
192
193
193
194
194
195
195
196
197
198

201
201
202
203
204
204
205
207
208
208
209
209
210
210
211
211

213
213

viii

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

14.

15.

Accessing Input Documents
Accessing a Single Document with a Function
Accessing a Collection
Setting the Context Outside the Query
Using Variables
Setting the Context in the Prolog
Serializing Output
Serialization Methods
Serialization Parameters
Specifying Serialization Parameters by Using Option Declarations
Specifying Serialization Parameters by Using a Separate XML Document
Serialization Errors
Serializing to a String

Using Schemas with XQuery..........cooiiiiiiiiiiiiiii i
What Is a Schema?
Why Use Schemas with Queries?
W3C XML Schema: A Brief Overview
Element and Attribute Declarations
Types
Namespaces and XML Schema
In-Scope Schema Definitions
Where Do In-Scope Schema Definitions Come From?
Schema Imports
Schema Validation and Type Assignment
The Validate Expression
Validation Mode
Assigning Type Annotations to Nodes
Nodes and Typed Values
Types and Newly Constructed Elements and Attributes
Sequence Types and Schemas

StAtiCTYPING. .o e

What Is Static Typing?
Obvious Static Type Errors
Static Typing and Schemas
Raising “False” Errors
Static Typing Expressions and Constructs
The Typeswitch Expression
The Treat Expression
Type Declarations
Type Declarations in FLWORs

214
214
215
216
216
217
217
218
220
224
225
226
226

227
227
228
230
230
231
232
233
233
234
236
236
238
238
239
240
241

245
245
246
246
247
247
248
250
251
251

Table of Contents

16.

17.

Type Declarations in Quantified Expressions
Type Declarations in Global Variable Declarations

The zero-or-one, one-or-more, and exactly-one Functions

Writing Better QUeries.oovvvviniinieiiiriinreineenneennns

Query Design Goals
Clarity
Improving the Layout
Choosing Names
Using Comments for Documentation
Modularity
Robustness
Handling Data Variations
Handling Missing Values
Error Handling
Avoiding Dynamic Errors
The error and trace Functions
Try/Catch Expressions
Performance
Avoid Reevaluating the Same or Similar Expressions
Avoid Unnecessary Sorting
Avoid Expensive Path Expressions
Use Predicates Instead of where Clauses

Working with Numbers.coviuiiiiiiiiiiiiii i iiieenns

The Numeric Types
The xs:decimal Type
The xs:integer Type
The xs: float and xs:double Types
The xs:numeric Type

Constructing Numeric Values
The number Function
Numeric Type Promotion

Comparing Numeric Values

Arithmetic Operations
Arithmetic Operations on Multiple Values
Arithmetic Operations and Types
Precedence of Arithmetic Operators
Addition, Subtraction, and Multiplication
Division
Modulus (Remainder)

Functions on Numbers

252
253
253

255
255
256
256
257
257
259
259
259
260
262
262
263
263
265
266
266
267
268

269
269
269
269
270
270
270
271
271
272
273
274
274
274
275
275
276
277

X

Table of Contents

18.

19.

Formatting Numbers
Formatting Integers
Formatting Decimal Numbers
The Decimal Format Declaration

Working with Strings.oovvniiiiiiiiii i i i
The xs:string Type
Constructing Strings
String Literals
The xs:string Constructor and the string Function
Comparing Strings
Comparing Entire Strings
Determining Whether a String Contains Another String
Matching a String to a Pattern
Substrings
Finding the Length of a String
Concatenating and Splitting Strings
Concatenating Strings
Splitting Strings Apart
Converting Between Codepoints and Strings
Manipulating Strings
Converting Between Uppercase and Lowercase
Replacing Individual Characters in Strings
Replacing Substrings That Match a Pattern
Whitespace and Strings
Normalizing Whitespace
Internationalization Considerations
Collations
Unicode Normalization
Determining the Language of an Element

Reqular EXPressions.oueueineiieineeneeneenerneerneeneeneenesnannns
The Structure of a Regular Expression

Atoms

Quantifiers

Parenthesized Sub-Expressions and Branches
Representing Individual Characters
Representing Any Character
Representing Groups of Characters

Multi-Character Escapes

Category Escapes

Block Escapes

279
279
280
280

283
283
283
284
284
284
285
285
286
287
288
289
289
290
291
291
291
292
292
294
294
295
295
297
297

299
299
299
299
300
301
303
303
304
304
305

Table of Contents

| xi

20.

21.

Character Class Expressions
Single Characters and Ranges
Subtraction from a Range
Negative Character Class Expressions
Escaping Rules for Character Class Expressions
Reluctant Quantifiers
Anchors
Back-References
Using Flags
Using Sub-Expressions with Replacement Variables

Working with Dates, Times, and Durations...............covvviiiiennne.

The Date and Time Types
Constructing and Casting Dates and Times
Time Zones
Comparing Dates and Times
The Duration Types
The xs:yearMonthDuration and xs:dayTimeDuration Types
Comparing Durations
Extracting Components of Dates, Times, and Durations
Formatting Dates and Times
Using Arithmetic Operators on Dates, Times, and Durations
Subtracting Dates and Times
Adding and Subtracting Durations from Dates and Times
Adding and Subtracting Two Durations
Multiplying and Dividing Durations by Numbers
Dividing Durations by Durations
The Date Component Types

Working with Qualified Names, URIs, andIDs................coeveeennntn

Working with Qualified Names
Retrieving Node Names
Constructing Qualified Names
Other Name-Related Functions

Working with URIs
Base and Relative URIs
Documents and URIs
Escaping URIs

Working with IDs
Joining IDs and IDREFs
Constructing ID Attributes
Generating Unique ID Values

306
306
307
307
308
308
309
310
311
312

315
315
316
317
318
319
320
320
321
322
323
323
324
325
326
326
327

329
329
330
332
333
334
334
336
338
339
340
341
341

Xii

| Table of Contents

22. Working with Other XML CONStIUCES. . ..o ovvvieinneiniieninrineenneenneennns 343

XML Comments 343
XML Comments and the Data Model 343
Querying Comments 344
Comments and Sequence Types 344
Constructing Comments 345

Processing Instructions 346
Processing Instructions and the Data Model 346
Querying Processing Instructions 347
Processing Instructions and Sequence Types 347
Constructing Processing Instructions 348

Documents 349
Document Nodes and the Data Model 349
Document Nodes and Sequence Types 350
Constructing Document Nodes 350

Text Nodes 351
Text Nodes and the Data Model 351
Querying Text Nodes 352
Text Nodes and Sequence Types 353
Why Work with Text Nodes? 353
Constructing Text Nodes 355

XML Entity and Character References 355

CDATA Sections 357

23. Function Items and Higher-Order Functions.oooiiiiiiiiinininnnn 359

Why Higher-Order Functions? 359

Constructing Functions and Calling Them Dynamically 360
Named Function References 360
Using function-lookup to Obtain a Function 361
Inline Function Expressions 361
Partial Function Application 362
The Arrow Operator and Dynamic Function Calls 363
Syntax Recap 363

Functions and Sequence Types 364

Higher-Order Functions 364
Built-In Higher-Order Functions 365
Writing Your Own Higher-Order Functions 366

24, Maps, Arrays, and JSON.ottt i 369

Maps 369
Constructing Maps 369
Looking Up Map Values 371

Table of Contents | xiii

25.

26.

Querying Maps

Changing Maps

Iterating over Entries in a Map

Maps and Sequence Types
Arrays

Constructing Arrays

Arrays Versus Sequences

Arrays and Atomization

Looking Up Array Values

Querying Arrays

Changing Arrays

Arrays and Sequence Types
JSON

Parsing JSON

Serializing JSON

Converting Between JSON and XML

Implementation-SpecificFeatures..............ooovviiiiinnn.n.

Conformance
Version Support
New Features in XQuery 3.0
New Features in XQuery 3.1
Setting the Query Context
The Option Declaration
Extension Expressions
Annotations

XQuery for SQLUSErS. vooeeenieeiiiiie i iiee e

Relational Versus XML Data Models
Comparing SQL Syntax with XQuery Syntax
A Simple Query
Conditions and Operators
Functions
Selecting Distinct Values
Working with Multiple Tables and Subqueries
Grouping
Combining SQL and XQuery
Combining Structured and Semi-Structured Data
Flexible Data Structures
SQL/XML

375
375
376
376
378
378
379
380
380
382
383
384
385
385
386
387

391
391
392
392
393
394
395
396
397

399
399
401
401
402
404
405
406
408
408
409
409
411

Xiv

| Table of Contents

27. XQUErY for XSLTUSEIS. . v eveeeeeenieeeeneeeerneeeeenneesennnesennnasennns 413

XQuery and XPath 413
XQuery Versus XSLT 413
Shared Components 414
Equivalent Components 414
Differences 415
Using XQuery and XSLT Together 420
XQuery Backward Compatibility with XPath 1.0 421
Data Model 421

New Expressions 422

Path Expressions 422
Function Conversion Rules 423
Arithmetic and Comparison Expressions 423
Built-in Functions 424

28. Additional XQuery-Related Standards.cooiiiiiiiiiiiiiiii., 425
XQuery Update Facility 425
Full-Text Search 426
XQueryX 428
RESTXQ 430
XQuery API for Java (XQJ) 432

A. Built-in Function Reference.............ooiiiiiiiiiiiiiiiiiiiiin i 435
T L 7 3 635
L (0T 1111111 T 7S 667
INdeX. ..o 705

Table of Contents | xv

Preface

This book provides complete coverage of the W3C XQuery 3.1 standard. In addition,
it provides the background knowledge in namespaces, schemas, built-in types, and
regular expressions that is relevant to writing XML queries.

This book is designed for query writers who have some knowledge of XML basics but
not necessarily advanced knowledge of XML-related technologies. It can be used as a
tutorial, by reading it cover to cover, and as a reference, by using the comprehensive
index and appendixes.

As of the date of publication of this book, XQuery 3.1 is a Candi-
date Recommendation. No significant changes are expected, but
| there may be small differences between this book and the specifica-
tion. These will be documented in detail as errata at http://
www.datypic.com/books/xquery/.

Contents of This Book

The book is organized into six parts:

1. Chapters 1 and 2 provide a high-level overview and quick tour of XQuery.

2. Chapters 3 through 9 provide enough information to write sophisticated queries,
without being bogged down by the details of types, namespaces, and schemas.

3. Chapters 10 through 16 introduce some advanced concepts for users who want
to take advantage of modularity, namespaces, typing, and schemas.

4. Chapters 17 through 24 provide guidelines for working with specific types of
data, such as numbers, strings, dates, URISs, processing instructions, and maps.

5. Chapters 25 through 28 describe XQuery’s implementation-specific features and
its relationship to other standards, including SQL and XSLT.

Xvii

http://www.datypic.com/books/xquery/
http://www.datypic.com/books/xquery/

6.

Appendices A, B, and C provide a complete alphabetical reference to the built-in
functions, types, and error messages.

Reading the Syntax Diagrams

This book includes syntax diagrams as an option for readers who want a more visual
representation of XQuery expression syntax. Each syntax diagram is accompanied by
explanatory text and examples. Figure P-1 illustrates the components of a syntax dia-
gram, showing the schema import syntax as an example.

— import schema "<namespace-name>" —»
knamespace <prefixy =——

default element namespace —

; >
L at _l " <locat’ion>J"—|

b

Figure P-1. Example syntax diagram

Rules for interpreting the syntax diagrams are:

Parts of the diagram in constant width font are literal values. In Figure P-1,
import schema and at should appear literally in your query.

Quotes that appear in syntax diagrams also must appear in your query. Figure P-1
shows that the <namespace-name> must be surrounded by quotes, whereas the
<prefix> must not. Either single or double quotes can be used in XQuery, but
only double quotes are included in the diagrams for simplicity.

Where you can specify a value, such as a name, a descriptive name for that value
appears in constant width italic and is surrounded by angle brackets. Figure P-1
shows that you fill in the <namespace-name>, <prefix>, and <location> with
your own values.

Multiple options are indicated by parallel lines in the diagram. Figure P-1 shows
that you may choose to specify a namespace prefix or default element name
space.

Optional parts of the expression are indicated by a line that bypasses the main

arrow. In Figure P-1, it is not necessary to include the namespace <prefix> = or
the default element namespace keywords.

Xviii

| Preface

vww allitebooks.cond

http://www.allitebooks.org

o Repeating parts of an expression are indicated by an arrow that returns to the
beginning. Figure P-1 shows that you can specify multiple <location>s (separa-
ted by commas) as part of the at clause.

Conventions Used in This Book

Constant width is used for:

o Code examples and fragments

o Anything that might appear in an XML document, including element and
attribute names, element contents, attribute values, and processing instructions

o Anything that might appear in a query, including keywords, operators, and
literals

Constant width bold is used for:
o Emphasis in code examples and fragments
Italic is used for:

o New terms where they are defined

Empbhasis in body text
o Pathnames, filenames, and program names

o Host and domain names

This icon indicates a warning or caution.

The numbered examples in this book are self-sufficient and contain all the necessary
declarations to run them independently. When they use functionality that is only
available in XQuery 3.0 or 3.1, they contain a version declaration to indicate this.
Other (non-numbered) examples appear as code fragments that may not be able to
run independently because, for example, they are dependent on a variable that is
defined elsewhere. These code fragments are placed into a separate paragraph like
this:

for $prod as element(*, ProductType) in doc("catalog.xml")/catalog/*
return $prod/name

Preface | xix

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://www.datypic.com/books/xquery/examples.html.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a query that uses several chunks of code from this book does not require per-
mission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: "XQuery by Priscilla Walmsley. Copy-
right 2016 Priscilla Walmsley, 978-1-491-91510-3”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Useful Functions

This book contains a series of illustrative examples that are labeled “Useful Function.”
What sets them apart from regular examples is that they are likely to be directly use-
ful in your own queries. They range from string functions like substring-after-
last and replace-first to functions that modify elements and attributes, such as
add-attributes.

The useful functions included in this book are part of a large library of XQuery func-
tions called the FunctX XQuery Library, which 1is available at
http://www.xqueryfunctions.com. This library contains a wide variety of reusable
XQuery functions that can be searched or browsed by category. It also includes
detailed descriptions and example function calls.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert content in
both book and video form from the world’s leading authors in technology and busi-
ness.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

xx | Preface

http://www.datypic.com/books/xquery/examples.html
mailto:permissions@oreilly.com
http://www.xqueryfunctions.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

O’Reilly has a web page for this book at http://oreil ly/1lgtvMF. The author also main-
tains a companion web site at http://www.datypic.com/books/xquery/ that lists errata,
examples, and additional information.

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xxi

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://oreil.ly/1lgtvMF
http://www.datypic.com/books/xquery/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

I am deeply indebted to Michael Kay, not only for his detailed review of this book,
but also for his excellent Saxon XQuery implementation, without which I would not
have been able to reliably test the examples.

Ron Bourret, Bob DuCharme, Tim Finney, Ashok Malhotra, Darin McBeath, Peter
Meggitt, Shannon Shiflett, and Bruno]. Walmsley (my father) provided extremely
helpful comments on, and assistance with, the first edition of this book. Michael Kay,
Debbie Lockett, Dave Pawson, and Adam Retter provided especially helpful com-
ments on the second edition of this book. I would also like to thank Steve Carton,
Patrick Durusau, Betty Harvey, Eliot Kimber, Greg Murray, Liam Quin, Hans-Jiirgen
Rennau, Ken Sall, Christine Schwartz, Will Thompson, and Joe Wicentowski for their
feedback and guidance on the second edition.

This project would not have been possible without Simon St.Laurent, who provided
editorial guidance and championed the book within O’Reilly. Meg Foley was my
excellent (and very patient!) editor for the second edition.

Finally, I would like to thank Doug, my partner, my love, for his constant support and
encouragement.

xxii | Preface

CHAPTER 1
Introduction to XQuery

This chapter provides background on the purpose and capabilities of XQuery. It also
gives a quick introduction to the features of XQuery that are covered in more detail
later in the book. It is designed to provide a basic familiarity with the most commonly
used kinds of expressions, without getting too bogged down in the details.

What Is XQuery?

The use of XML has exploded in recent years. An enormous amount of information
is now stored in XML, both in XML databases and in documents on a filesystem. This
includes highly structured data such as sales figures, semi-structured data such as
product catalogs and yellow pages, and relatively unstructured data such as letters
and books. Even more information is passed between systems as transitory XML
documents.

All of this data is used for a variety of purposes. For example, sales figures may be
useful for compiling financial statements that may be published on the Web, report-
ing results to the tax authorities, calculating bonuses for salespeople, or creating
internal reports for planning. For each of these uses, we are interested in different ele-
ments of the data and expect it to be formatted and transformed according to our
needs.

XQuery is a query language designed by the W3C to address these needs. It allows
you to select the XML data elements of interest, reorganize and possibly transform
them, and return the results in a structure of your choosing.

Capabilities of XQuery

XQuery has a rich set of features that allow many different types of operations on
XML data and documents, including:

Selecting information based on specific criteria

Filtering out unwanted information

Searching for information within a document or set of documents
Joining data from multiple documents or collections of documents
Sorting, grouping, and aggregating data

Transforming and restructuring XML data into another XML vocabulary or
structure

Performing arithmetic calculations on numbers and dates

Manipulating strings to reformat text

As you can see, XQuery can be used not just to extract sections of XML documents,
but also to manipulate and transform the results for output. In fact, XQuery is a
Turing-complete functional programming language, which means you can also use it
for general-purpose programming and application development, not just for query-
ing data.

Uses for XQuery

There are as many reasons to query XML as there are reasons to use XML. Some
examples of common uses for the XQuery language are:

Finding textual documents in a native XML database and presenting styled
results

Generating reports on data stored in a database for presentation on the Web as
HTML

Extracting information from a relational database for use in a web service

Pulling data from databases or packaged software and transforming it for appli-
cation integration

Combining content from traditionally non-XML sources to implement content
management and delivery

Ad hoc querying of standalone XML documents for the purposes of testing or
research

Building entire complex web applications

2

Chapter 1: Introduction to XQuery

Processing Scenarios

XQuery’s sweet spot is querying bodies of XML content that encompass many XML
documents, often stored in databases. For this reason, it is sometimes called the “SQL
of XML Some of the earliest XQuery implementations were in native XML database
products. The term “native XML database” generally refers to a database that is
designed for XML content from the ground up, as opposed to a traditionally rela-
tional database. Rather than being oriented around tables and columns, its data
model is based on hierarchical documents and collections of documents.

Native XML databases are most often used for narrative content and other data that is
less predictable than what you would typically store in a relational database. Many of
these products are now known by the broader term NoSQL database and provide
support for not just XML but also JSON and other data formats. Examples of these
database products that support XQuery are eXist, MarkLogic Server, BaseX, Zorba,
and EMC Documentum xDB. Of these, all but MarkLogic Server and EMC Docu-
mentum xDB are open source. These products provide the traditional capabilities of
databases, such as data storage, indexing, querying, loading, extracting, backup, and
recovery. Most of them also provide some added value in addition to their database
capabilities. For example, they might provide advanced full-text searching functional-
ity, document conversion services, or end-user interfaces.

Major relational database products, including Oracle (via its XML DB), IBM DB2 (via
pureXML), and Microsoft SQL Server, also have support for XML and various ver-
sions of XQuery. Early implementations of XML in relational databases involved stor-
ing XML in table columns as blobs or character strings and providing query access to
those columns. However, these vendors are increasingly blurring the line between
native XML databases and relational databases with new features that allow you to
store XML natively.

Other XQuery processors are not embedded in a database product, but work inde-
pendently. They might be used on physical XML documents stored as files on a file
system or on the Web. They might also operate on XML data that is passed in mem-
ory from some other process. The most notable product in this category is Saxon,
which has both open source and commercial versions. Altova’s RaptorXML also pro-
vides support for standalone XQuery queries.

XML editors provide support for editing and running XQuery queries and displaying
the results. Some, like Altova’s XMLSpy, have their own embedded XQuery imple-
mentations. Others, like 0Xygen XML Editor, allow you to run queries using one or
more separate XQuery processors. If you are new to XQuery, a free trial license to a
product like 0Xygen or XMLSpy is a good way to get started running queries.

What Is XQuery? | 3

Easing into XQuery

The rest of this chapter takes you through a set of example queries, each of which
builds on the previous one. Three XML documents are used repeatedly as input
documents to the query examples throughout the book. They will be used so fre-
quently that it may be worth printing them from the companion web site at http://
www.datypic.com/books/xquery/chapter01.html so that you can view them alongside
the examples.

These three examples are quite simplistic, but they are useful for educational pur-
poses because they are easy to learn and remember while looking at query examples.
In reality, most XQuery queries will be executed against much more complex docu-
ments, and often against multiple documents as a collection. However, in order to
keep the examples reasonably concise and clear, this book will work with smaller
documents that have a representative mix of XML characteristics.

The catalog.xml document is a product catalog containing general information about
products (Example 1-1).

Example 1-1. Product catalog input document (catalog.xml)

<catalog>
<product dept="WMN">
<number>557</number>
<name language="en">Fleece Pullover</name>
<colorChoices>navy black</colorChoices>
</product>
<product dept="ACC">
<number>563</number>
<name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC">
<number>443</number>
<name language="en"s>Deluxe Travel Bag</name>
</product>
<product dept="MEN">
<number>784</number>
<name language="en">Cotton Dress Shirt</name>
<colorChoices>white gray</colorChoices>
<desc>0ur <i>favorite</i> shirt!</desc>
</product>
</catalog>

The prices.xml document contains prices for most of the products, based on an effec-
tive date (Example 1-2).

4 | Chapter 1: Introduction to XQuery

http://www.datypic.com/books/xquery/chapter01.html
http://www.datypic.com/books/xquery/chapter01.html

Example 1-2. Price information input document (prices.xml)

<prices>
<pricelList effDate="2015-11-15">
<prod num="557">
<price currency="USD">29.99</price>
<discount type="CLR">10.00</discount>
</prod>
<prod num="563">
<price currency="USD">69.99</price>
</prod>
<prod num="443">
<price currency="USD">39.99</price>
<discount type="CLR">3.99</discount>
</prod>
</priceList>
</prices>

The order.xml document is a simple order containing a list of products ordered (ref-
erenced by a number that matches the number used in catalog.xml), along with quan-
tities and colors (Example 1-3).

Example 1-3. Order input document (order.xml)

<order num="00299432" date="2015-09-15" cust="0221A">
<item dept="WMN" num="557" quantity="1" color="navy"/>
<item dept="ACC" num="563" quantity="1"/>
<item dept="ACC" num="443" quantity="2"/>
<item dept="MEN" num="784" quantity="1" color="white"/>
<item dept="MEN" num="784" quantity="1" color="gray"/>
<item dept="WMN" num="557" quantity="1" color="black"/>
</order>

Path Expressions

The most straightforward kind of query simply selects elements or attributes from an
input document. This type of query is known as a path expression. For example, the
path expression:

doc("catalog.xml")/catalog/product
will select all the product elements from the catalog.xml document.

Path expressions are used to traverse an XML tree to select elements and attributes of
interest. They are similar to paths used for filenames in many operating systems.
They consist of a series of steps, separated by slashes, that traverse the elements and
attributes in the XML documents. In this example, there are three steps:

Path Expressions | 5

1. doc("catalog.xml") calls an XQuery function named doc, passing it the name
of the file to open

2. catalog selects the catalog element, the outermost element of the document

3. product selects all the product children of catalog

The result of the query will be the four product elements, exactly as they appear (with
the same attributes and contents) in the input document. Example 1-4 shows the
complete result.

Example 1-4. Four product elements selected from the catalog

<product dept="WMN">
<number>557</number>
<name language="en">Fleece Pullover</name>
<colorChoices>navy black</colorChoices>
</product>
<product dept="ACC">
<number>563</number>
<name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC">
<number>443</number>
<name language="en"s>Deluxe Travel Bag</name>
</product>
<product dept="MEN">
<number>784</number>
<name language="en">Cotton Dress Shirt</name>
<colorChoices>white gray</colorChoices>
<desc>0ur <i>favorite</i> shirt!</desc>
</product>

The asterisk (*) can be used as a wildcard to indicate any element name. For example,
the path expression:
doc("catalog.xml")/*/product

will return any product children of the outermost element, regardless of the outer-
most element’s name. Alternatively, you can use a double slash (//) to return product
elements that appear anywhere in the catalog document, as in:

doc("catalog.xml")//product

In addition to traversing the XML document, a path expression can contain predi-
cates that filter out elements or attributes that do not meet a particular criterion.
Predicates are indicated by square brackets. For example, the path expression:

doc("catalog.xml")/catalog/product[@dept = "ACC"]

6 | Chapter1: Introduction to XQuery

vww allitebooks.cond

http://www.allitebooks.org

contains a predicate. It selects only those product elements whose dept attribute
value is ACC. The @ sign is used to indicate that dept is an attribute as opposed to a
child element.

When a predicate contains a number, it serves as an index. For example:
doc("catalog.xml")/catalog/product[2]
will return the second product element in the catalog.

Path expressions are convenient because of their compact, easy-to-remember syntax.
However, they have a limitation: they can only return elements and attributes as they
appear in input documents. Any elements selected in a path expression appear in the
results with the same names, the same attributes and contents, and in the same order
as in the input document. When you select the product elements, you get them with
all of their children and with their dept attributes. Path expressions are covered in
detail in Chapter 4.

FLWORs

The basic structure of many (but not all) queries is the FLWOR expression. FLWOR
(pronounced “flower”) stands for “for, let, where, order by, return,” the most common
keywords used in the expression.

FLWORs, unlike path expressions, allow you to manipulate, transform, and sort your
results. Example 1-5 shows a simple FLWOR that returns the names of all products in
the ACC department.

Example 1-5. Simple FLWOR

Query

for $prod in doc("catalog.xml")/catalog/product
where $prod/@dept = "ACC"

order by $prod/name

return $prod/name

Results

<name language="en">Deluxe Travel Bag</name>
<name language="en">Floppy Sun Hat</name>

As you can see, the FLWOR is made up of several parts:

for
This clause sets up an iteration through the product elements, and the rest of the
FLWOR is evaluated once for each of the four products. Each time, a variable

FLWORs | 7

named $prod is bound to a different product element. Dollar signs are used to
indicate variable names in XQuery.

where
This clause selects only products in the ACC department. This has the same
effect as a predicate ([@dept = "ACC"]) in a path expression.

order by
This clause sorts the results by product name, something that is not possible with
path expressions.

return
This clause indicates that the product element’s name children should be returned
in the query result.

The let clause (the L in FLWOR) is used to bind the value of a variable. Unlike a for
clause, it does not set up an iteration. Example 1-6 shows a FLWOR that returns the
same result as Example 1-5. The second line is a let clause that binds the product
element’s name child to a variable called $name. The $name variable is then referenced
later in the FLWOR, in both the order by clause and the return clause.

Example 1-6. Adding a let clause

for $prod in doc("catalog.xml")/catalog/product
let $name := $prod/name

where $prod/@dept = "ACC"

order by $name

return $name

The let clause serves as a programmatic convenience that avoids repeating the same
expression multiple times. With some implementations, it may improve performance
because the expression is evaluated only once instead of each time it is needed.

This chapter has provided only very basic examples of FLWORs. In fact, FLWORs can
become quite complex. Multiple for clauses are permitted, which set up iterations
within iterations. Additional clauses such as group by, count, and window are avail-
able. In addition, complex expressions can be used in any of the clauses. FLWORs are
discussed in detail in Chapter 6. Even more advanced examples of FLWORs are pro-
vided in Chapter 9.

Adding XML Elements and Attributes

Sometimes you want to reorganize or transform the elements in the input documents
into differently named or structured elements. XML constructors can be used to cre-
ate elements and attributes that appear in the query results.

8 | Chapter1: Introduction to XQuery

Adding Elements

Suppose you want to wrap the results of your query in a different XML vocabulary,
for example, XHTML. You can do this using a familiar XML-like syntax. To wrap the
name elements in a ul element, for instance, you can use the query shown in
Example 1-7. The ul element represents an unordered list in HTML.

Example 1-7. Wrapping results in a new element

Query

{
for $prod in doc("catalog.xml")/catalog/product
where S$prod/@dept="'ACC'
order by S$prod/name
return $prod/name
}

Results

<name language="en"s>Deluxe Travel Bag</name>
<name language="en">Floppy Sun Hat</name>

This example is the same as Example 1-5, with the addition of the first and last lines.
In the query, the ul start tag and end tag, and everything in between, is known as an
element constructor. The curly braces around the content of the ul element signify
that it is an expression (known as an enclosed expression) that is to be evaluated. In
this case, the enclosed expression returns two elements, which become children of ul.

Any content in an element constructor that is not inside curly braces appears in the
results as is. For example:

<h1>There are {count(doc("catalog.xml")//product)} products.</h1>
will return the result:

<h1>There are 4 products.</h1l>

The content outside the curly braces, namely the strings "There are and

" products.", appear literally in the results, as textual content of the h1 element.

The element constructor does not need to be the outermost expression in the query.
You can include element constructors at various places in your query. For example, if
you want to wrap each resulting name element in its own 11 element, you could use
the query shown in Example 1-8. An 11 element represents a list item in HTML.

Adding XML Elements and Attributes | 9

Example 1-8. Element constructor in FLWOR return clause

Query

{
for $prod in doc("catalog.xml")/catalog/product
where S$prod/@dept="ACC'
order by Sprod/name
return {$prod/name}</1i>
}

Results

<name language="en"s>Deluxe Travel Bag</name></1li>
<name language="en">Floppy Sun Hat</name>

Here, the 11 element constructor appears in the return clause of a FLWOR. Since the
return clause is evaluated once for each iteration of the for clause, two 11 elements

appear in the results, each with a name element as its child.

However, suppose you don’t want to include the name elements at all, just their con-
tents. You can do this by calling a built-in function called data, which extracts the

contents of an element. This is shown in Example 1-9.

Example 1-9. Using the data function

Query

{
for $prod in doc("catalog.xml")/catalog/product
where $prod/@dept="'ACC'
order by Sprod/name
return {data($prod/name)}</1i>
}

Results

Deluxe Travel Bag
Floppy Sun Hat

Now no name elements appear in the results. In fact, no elements at all from the input

document appear.

10 | Chapter 1:Introduction to XQuery

Adding Attributes

You can also add your own attributes to results using an XML-like syntax.
Example 1-10 adds attributes to the ul and 11 elements.

Example 1-10. Adding attributes to results

Query

<ul type="square">{

for Sprod in doc("catalog.xml")/catalog/product

where $prod/@dept="ACC'

order by Sprod/name

return <li class="{$prod/@dept}">{data($prod/name)}</1i>
}

Results

<ul type="square"s>
<1li class="ACC">Deluxe Travel Bag
<1i class="ACC">Floppy Sun Hat

As you can see, attribute values, like element content, can either be literal text or
enclosed expressions. The ul element constructor has an attribute type that is
included as is in the results, while the 11 element constructor has an attribute class
whose value is an enclosed expression delimited by curly braces. In attribute values,
unlike element content, you don’t need to use the data function to extract the value: it
happens automatically.

The constructors shown in these examples are known as direct constructors, because
they use an XML-like syntax. You can also construct elements and attributes with
dynamically determined names, using computed constructors. Chapter 5 provides
detailed coverage of XML constructors.

Functions

Almost 200 functions are built into XQuery, covering a broad range of functionality.
Functions can be used to manipulate strings and dates, perform mathematical calcu-
lations, combine sequences of elements, and perform many other useful jobs. You can
also define your own functions, either in the query itself, or in an external library.

Both built-in and user-defined functions can be called from almost any place in a
query. For instance, Example 1-9 calls the doc function in a for clause, and the data
function in an enclosed expression. Chapter 8 explains how to call functions and also

Functions | 11

describes how to write your own user-defined functions. Appendix A lists all the
built-in functions and explains each of them in detail.

Joins

One of the major benefits of FLWOR:s is that they can easily join data from multiple
sources. For example, suppose you want to join information from your product cata-
log (catalog.xml) and your order (order.xml). You want a list of all the items in the
order, along with their number, name, and quantity.

The name comes from the product catalog, and the quantity comes from the order.
The product number appears in both input documents, so it is used to join the two
sources. Example 1-11 shows a FLWOR that performs this join.

Example 1-11. Joining multiple input documents

Query

for $item in doc("order.xml")//item
let $name := doc("catalog.xml")//product[number = $item/@num]/name
return <item num="{$item/@num}"

name="{Sname}"

quan="{$item/@quantity}"/>

Results

<item num="557" name="Fleece Pullover" quan="1"/>
<item num="563" name="Floppy Sun Hat" quan="1"/>
<item num="443" name="Deluxe Travel Bag" quan="2"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="557" name="Fleece Pullover" quan="1"/>

The for clause sets up an iteration through each item from the order. For each item,
the let clause goes to the product catalog and gets the name of the product. It does
this by finding the product element whose number child equals the items num
attribute, and selecting its name child. Because the FLWOR iterated six times, the
results contain one new item element for each of the six item elements in the order
document. Joins are covered in Chapter 6.

Aggregating and Grouping Values

One common use for XQuery is to summarize and group XML data. It is sometimes
useful to find the sum, average, or maximum of a sequence of values, grouped by a
particular value. For example, suppose you want to know the number of items con-
tained in an order, grouped by department. The query shown in Example 1-12
accomplishes this. It uses a group by clause to group the items by department, and

12 | Chapter 1:Introduction to XQuery

the sum function to calculate the totals of the quantity attribute values for the items
in each department.

Example 1-12. Aggregating values

Query

xquery version "3.0";

for $1 in doc("order.xml")//item

let $d := $i/@dept

group by $d

order by $d

return <department name="{$d}" totQuantity="{sum($i/@quantity)}"/>

Results

<department name="ACC" totQuantity="3"/>
<department name="MEN" totQuantity="2"/>
<department name="WMN" totQuantity="2"/>

Chapter 7 covers sorting, grouping, and aggregating values in detail. The version dec-
laration on the first line of this example is used to show that use of the group by
clause requires at least version 3.0 of XQuery.

Aggregating and Grouping Values | 13

CHAPTER 2

XQuery Foundations

This chapter provides a brief overview of the foundations of XQuery: its design, its
place among XML-related standards, and its processing model. It also discusses the
underlying data model behind XQuery and the use of types and namespaces in quer-

1€8S.

The Design and History of the XQuery Language

The XML Query Working Group of the World Wide Web Consortium (W3C) began
work on XQuery in 1999. It used as a starting point an XML query language called
Quilt, which was itself influenced by two earlier XML query languages: XQL and
XML-QL.

The working group set out to design a language that would:

Be useful for both highly structured and semi-structured documents

Be protocol-independent, allowing a query to be evaluated on any system with
predictable results

Be a declarative language rather than a procedural one

Be strongly typed, allowing queries to be “compiled” to identify possible errors
and to optimize evaluation of the query

Allow querying across collections of documents

Use and share as much as possible with appropriate W3C recommendations,
such as XML, Namespaces in XML, XML Schema, and XPath

The XQuery recommendation and related supporting standards include over 15 sep-
arate documents and over 1,000 printed pages. These documents are listed (with
links) at the public XQuery website at http://www.w3.0rg/XML/Query. The various

15

http://www.w3.org/XML/Query

recommendation documents are generally designed to be used by implementers of
XQuery software, and they vary in readability and accessibility.

Version 1.0 of XQuery became a standard in 2007. Subsequently, version 3.0 was
finalized in 2014. The version number 2.0 was skipped in order to align the version
numbers with XPath and XSLT. As of the date of publication of this book in 2015,
XQuery 3.1 is a Candidate Recommendation. A list of the major new features added
in versions 3.0 and 3.1 can be found in “New Features in XQuery 3.0” on page 392
and “New Features in XQuery 3.1” on page 393, respectively.

XQuery in Context

XQuery is dependent on or related to a number of other technologies, particularly
XPath, XSLT, SQL, and XML Schema. This section explains how XQuery fits in with
these technologies.

XQuery and XPath

XPath started out as a language for selecting elements and attributes from an XML
document while traversing its hierarchy and filtering out unwanted content. XPath
1.0 is a fairly simple yet useful recommendation that specifies path expressions and a
limited set of functions. Later versions of XPath are much more than that, encom-
passing a wide variety of expressions and functions, not just path expressions.

XQuery and XPath overlap to a very large degree. They have the same data model and
the same set of built-in functions and operators. XPath is essentially a subset of
XQuery. XQuery has a number of features that are not included in XPath, such as
FLWORs, user-defined functions, and XML constructors. This is because these fea-
tures are not relevant to selecting, but instead have to do with structuring, sorting
query results or more complex programming.

The two languages are consistent in that any expression that is valid in both lan-
guages evaluates to the same value using both languages.

XQuery Versus XSLT

XSLT is a W3C language for transforming XML documents into other XML docu-
ments or, indeed, documents of any kind. There is a lot of overlap in the capabilities
of XQuery and XSLT. XSLT makes use of XPath, so it has the same data model and
supports all the same built-in functions and operators as XQuery, as well as many of
the same expressions.

Some of the differences between XQuery and XSLT are:

16 | Chapter2: XQuery Foundations

o XSLT implementations are generally optimized for transforming entire docu-
ments. Whether they load the entire input document into memory or use the
streaming features of XSLT 3.0, the use case is typically handling a single docu-
ment at a time. XQuery is optimized for selecting fragments of data, for example,
from a database. XQuery is designed to be scalable and to take advantage of data-
base features such as indexes for optimization.

o XQuery has a more compact non-XML syntax, which is sometimes easier to read
and write (and embed in program code) than the XML syntax of XSLT.

o XQuery is designed to select from a collection of documents as opposed to a sin-
gle document. FLWORs make it easy to join information across (and within)
documents. XSLT stylesheets can also operate on multiple documents, but XSLT
processors are not particularly optimized for this less common use case.

Generally, when transforming an entire XML document from one XML vocabulary
to another, it makes more sense to use XSLT. When your main focus is selecting a
subset of data from an XML document or database, you should use XQuery. The rela-
tionship between XQuery and XSLT is explored further in Chapter 27.

XQuery Versus SQL

XQuery borrows ideas from SQL, and many of the designers of XQuery were also
designers of SQL. The line between XQuery and SQL may seem clear; XQuery is for
XML, and SQL is for relational data. However, increasingly this line is blurred,
because relational database vendors are putting XML frontends on their products and
allowing XML to be stored in traditionally relational databases.

XQuery does not replace SQL for the highly structured data that is traditionally
stored in relational databases. The two can coexist, with XQuery being used to query
less-structured data, or data that is destined for an XML-based application, and SQL
continuing to be used for highly structured relational data.

Chapter 26 compares XQuery and SQL, and describes how they can be used together.

XQuery and XML Schema

XML Schema is a W3C standard for defining schemas, which can be used to validate
XML documents and to assign types to XML elements and attributes. XQuery uses
the type system of XML Schema, which includes built-in types that represent com-
mon datatypes such as decimal, date, and string. XML Schema also specifies a lan-
guage for defining your own types based on the built-in types.

If an input document to a query has a schema, the types can be used when evaluating
expressions on the input data. For example, if your item element has a quantity
attribute, and you know from the schema that the value of the quantity attribute is

XQueryin Context | 17

an integer, you can perform sorts or other operations on that attribute’s value without
converting it to an integer in the query. This also has the advantages of allowing the
processor to better optimize the query and to catch errors earlier.

XQuery users are not required to use schemas. It is entirely possible (and common)
to write a complete query with no mention of schemas. However, a rich set of func-
tions and operators are provided that generally operate on typed data, so it is useful to
understand the type system and use the built-in types, even if no schema is present.
Chapter 14 covers schemas in more detail.

Processing Queries

A simple, typical example of a processing model for XQuery is shown in Figure 2-1.
This section describes the various components of this model.

Context

XQuery
Query

Analyze and evaluate :

(using context)
v i
éryﬁt XQuery R
Documents Processor Serialize Results
(or pass on) :

Figure 2-1. A basic XQuery processor

Input Documents

Throughout this book, the term input document is used to refer to the data that is
being queried, which is most often XML. The XML that is being queried can, in fact,
take a number of different forms, for example:

o Text files that are XML documents

+ Fragments of XML documents that are retrieved from the Web using a URI
o A collection of XML documents that are associated with a particular URI

« Data stored in native XML databases

o Data stored in relational databases that have an XML frontend

o In-memory XML documents

18 | Chapter2: XQuery Foundations

Some queries use a hardcoded link to the location of the input document(s), using the
doc or collection function in the query. Other queries operate on a set of input data
that is set by the processor at the time the query is evaluated.

Whether it is physically stored as an XML document or not, an XML input document
must conform to other constraints on XML documents. For example, an element can-
not have two attributes with the same name, and element and attribute names cannot
contain special characters other than hyphens, underscores, and periods.

In addition to XML input, it is also possible to query JSON documents and simple
text files. This can be done via the json-doc and unparsed-text functions, or
through in-memory data structures.

The Query

An XQuery query could be contained in a text file, embedded in program code or in a
query library, generated dynamically by program code, or input by the user on a
command line or in a dialog box. Queries can also be composed from multiple files,
known as modules.

A query is made up of three parts: a version declaration, a prolog, and a body, in that
order.

 The optional version declaration says what version of XQuery you are using, for
example 3.1. If the version declaration does not appear, the processor makes an
assumption about the version based on which version it supports.

o The optional query prolog contains various declarations that are used in evaluat-
ing the query. This includes namespace declarations, variable declarations, user-
defined functions, and other settings. These declarations are discussed in relevant
sections throughout the book and summarized in Chapter 12.

o The query body contains one or more expressions, separated by commas, that
indicate what the query should return.

So far, the examples in this book have had only a query body. Example 2-1 shows a
query with all three parts. As you can see, a semicolon separates the version declara-
tion and each of the two declarations in the prolog. The query body contains two
expressions, a constructed h1 element, and a FLWOR. The comma after the h1 ele-
ment is used to separate the two expressions in the query body.

Processing Queries | 19

Example 2-1. A query with a prolog

Query

xquery version "3.1";

declare namespace html = "http://www.w3.0rg/1999/xhtml";
declare variable $orderTitle := "Order Report";

<h1>{$orderTitle}</h1>,

for $item in doc("order.xml")//item
order by $item/@num

return <p>{data($item/@num)}</p>

Results

<h1>0rder Report</hi>
<p>443</p>
<p>557</p>
<p>557</p>
<p>563</p>
<p>784</p>
<p>784</p>

The Context

A query is not evaluated in a vacuum. The query context consists of a collection of
information that affects the evaluation of the query. Some of these values can be set
by the processor outside the scope of the query, while others are set in the query pro-
log. The context may include such values as:

o The context item, which determines the context for path expressions in the
query, i.e., what input documents are being queried

o Current date and time, and the implicit time zone
« Names and values of variables that are bound outside the query or in the prolog

o External function libraries built into your processor

The Query Processor

The query processor is the software that parses, analyzes, and evaluates the query.
The analysis and evaluation phases are roughly equivalent to compiling and execut-
ing program code. The analysis phase finds syntax errors and other static errors that
do not depend on the input data. The evaluation phase actually evaluates the results
of the query based on input documents, possibly raising dynamic errors for situations
like missing input documents or division by zero. Either phase may raise type errors,

20 | Chapter2: XQuery Foundations

which result when a value is encountered that has a different type than expected.
Errors in XQuery all have eight-character names, such as XPST0001, and they are
described in detail in Appendix C.

There are a number of implementations of XQuery. Some are open source, while oth-
ers are available commercially from major vendors. Many are listed at the official
XQuery website at http://www.w3.0rg/XML/Query. This book does not delve into all
the details of individual XQuery implementations but points out features that are
implementation-defined or implementation-dependent, meaning that they may vary
by implementation.

The Results of the Query

The query processor returns a sequence of values as the results. The results are often
XML elements (or entire documents), but a query could also return a result that is
not XML, for example a string or an array of integers. Depending on the implementa-
tion, these results can then be written to a physical file, sent to a user interface, or
passed to another application for further processing.

Writing the results to a physical XML document is known as serialization. In your
query you can specify that you want the output serialized as XML, HTML, XHTML,
text, or JSON. “Serializing Output” on page 217 covers serialization options in more
detail.

The XQuery Data Model

XQuery has a data model that is used to define formally all the values used within
queries, including those from the input document(s), those in the results, and any
intermediate values. The data model is officially known as the XQuery and XPath
Data Model, or XDM. Understanding the data model is analogous to understanding
tables, columns, and rows when learning SQL. It describes the structure of both the
inputs and outputs of the query. It is not necessary to become an expert on the intri-
cacies of the data model to write XML queries, but it is essential to understand the
basic components:

Node
An XML construct such as an element or attribute

Atomic value
A simple data value with no markup associated with it

Function
Starting in version 3.0, a function is a full-fledged item in the data model. Maps
and arrays are subtypes of functions. These more advanced use cases are
described in Chapters 23 and 24.

The XQuery Data Model | 21

http://www.w3.org/XML/Query

Item
A generic term that refers to either a node, atomic value, or function.

Sequence
An ordered list of zero, one, or more items

The relationship among these components is depicted in Figure 2-2.

sequence L[contains item i

| node i Iatomicvaluei ‘functioni

| [| I |
‘documenti ’ element ' ‘ attribute i l text i processing |commenti l map ' l array i
instruction

Figure 2-2. Basic components of the data model

Nodes

Nodes are used to represent XML constructs such as elements and attributes. Nodes
are returned by many expressions, including path expressions and constructors. For
example, the following path expression returns four product element nodes:

doc("catalog.xml")/catalog/product

Node kinds

XQuery uses six kinds of nodes:

Element node
An XML element

Attribute node
An XML attribute

Document node
An entire XML document (not its outermost element)

Text node
Some character data content of an element

Processing instruction node
An XML processing instruction

Comment node
An XML comment

22 | Chapter2: XQuery Foundations

Most of this book focuses on element and attribute nodes, the ones most often used
within queries. Generally, the book refers to them as “elements” and “attributes”
rather than “element nodes” and “attribute nodes,” unless a special emphasis on the
data model is required. The other node kinds are discussed in Chapter 22.

The data model also allows for namespace nodes, but the XQuery language does not
provide any way to access them or perform any operations on them. Therefore, they
are not discussed directly in this book. Chapter 10 provides complete coverage of
namespaces in XQuery.

The node hierarchy

An XML document (or document fragment) is made up of a hierarchy of nodes. For
example, suppose you have the document shown in Example 2-2.

Example 2-2. Small XML example

<catalog xmlns="http://datypic.com/cat">
<product dept="MEN" xmlns="http://datypic.com/prod">
<number>784</numbers>
<name language="en">Cotton Dress Shirt</name>
<colorChoices>white gray</colorChoices>
<desc>0ur <i>favorite</i> shirt!</desc>
</product>
</catalog>

When translated to the XQuery data model, it looks like the diagram in Figure 2-3.
(Depending on the processor, there may also be text nodes, not shown in the dia-
gram, for the line breaks and spaces used to indent the XML document.)

The XQuery Data Model | 23

document node
element node (catalog)
element node (product)

— attribute node (dept)
— element node (number)

text node ("784")
— element node (name)

attribute node (language)

text node ("Cotton Dress Shirt")
— element node (colorChoices)

text node ("white gray")

~— element node (desc)
text node ("Our ")
element node (i)
textnode ("favorite")
text node (" shirt!")

Figure 2-3. A node hierarchy

The node family

A family analogy is used to describe the relationships between nodes in the hierarchy.
Each node can have a number of different kinds of relatives:

Children
An element may have zero, one, or several elements as its children. It can also
have text, comment, and processing instruction children. Attributes are not con-
sidered children of an element. A document node can have an element child (the
outermost element), as well as comment and processing instruction children.

Parent
The parent of an element is either another element or a document node. The par-
ent of an attribute is the element that carries it. Strangely, even though attributes
are not considered children of elements, elements are considered parents of
attributes!

Ancestors
Ancestors are a node’s parent, parent’s parent, etc.

Descendants
Descendants are a node’s children, children’s children, etc.

Siblings

A node’s siblings are the other children of its parent. Attributes are not consid-
ered to be siblings.

24 | Chapter2: XQuery Foundations

Roots, documents, and elements

A lot of confusion surrounds the term root in XML processing, because it’s used to
mean several different things. XML 1.0 uses the term root element, to mean the top-
level, outermost element in a document. Every well-formed XML document must
have a single element at the top level. In Example 2-2, the root element is the catalog
element.

XPath 1.0, by contrast, does not use the term root element and instead would call the
catalog element the document element. XPath 1.0 has a separate concept of a root
node, which is equivalent to a document node in XQuery (and later versions of
XPath). A root node represents the entire document and would be the parent of the
catalog element in our example.

This terminology made sense in XPath 1.0, where the input to a query was always
expected to be a complete, well-formed XML document. However, the XQuery/XPath
data model allows for inputs that are not complete documents. For example, the input
might be a document fragment, a sequence of multiple elements, or even a sequence
of processing instruction nodes. Therefore, the root is not one special kind of node; it
could be one of several different kinds of nodes.

In order to avoid confusion, this book does not use either of the terms root element or
document element. Instead, when referring to the top-level element, it uses the term
outermost element. The term root is reserved for whatever node might be at the top of
a hierarchy, which may be a document node (in the case of a complete XML docu-
ment), or an element or other kind of node (in the case of a document fragment).

Node identity and name

Every node has a unique identity. You may have two XML elements in the input
document that have the same name and contain the exact same content, but that does
not mean they have the same identity. Identity is unique to each node and is assigned
by the query processor. You can test whether two nodes have the same identity using
the is operator. It is also possible to retrieve a unique identifier for a node using the
generate-1id function.

In addition to their identity, element and attribute nodes have names. These names
can be accessed using the built-in functions node-name, name, and local-name.

String and typed values of nodes

There are two kinds of values for a node: string and typed. All nodes have a string
value. The string value of an element node is its character data content and that of all
its descendant elements concatenated together. If an element has no content, its string
value is a zero-length string. The string value of an attribute node is simply the
attribute value.

The XQuery DataModel | 25

The string value of a node can be accessed using the string function. For example:
string(doc("catalog.xml")/catalog/product[4]/number)

returns the string 784, while:
string(<desc>0ur <i>favorite</i> shirt!</desc>)

returns the string Our favorite shirt!, without the 1 start and end tags.

Element and attribute nodes also both have a typed value that takes into account their
type, if any. An element or attribute might have a particular type if it has been valida-
ted with a schema. The typed value of a node can be accessed using the data function.
For example:

data(doc("catalog.xml")/catalog/product[4]/number)

returns the integer 784, if the number element is declared in a schema to be an integer.
If it is not declared in the schema, its typed value is still 784, but the value is consid-
ered to be untyped (meaning it does not have a specified type).

Atomic Values

An atomic value is a simple data value such as 784 or ACC, with no markup, and no
association with any particular element or attribute. An atomic value can have a spe-
cific type, such as xs:integer or xs:string, or it can be untyped, meaning that it is
assigned the generic type xs:untypedAtomic.

Atomic values can be extracted from element or attribute nodes using the string and
data functions described in the previous section. They can also be created from liter-
als in queries. For example, in the expression @dept = 'ACC', the string ACC is an
atomic value. The result of the entire expression is also an atomic value; it is a
Boolean true/false value.

The line between a node and an atomic value that it contains is often blurred. That is
because all functions and operators that expect to have atomic values as their
operands also accept nodes. For example, you can call the substring function as fol-
lows:

doc("catalog.xml")//product[4]/substring(name, 1, 15)

The function expects a string atomic value as the first argument, but you can pass it
an element node (name). In this case, the atomic value is automatically extracted from
the node in a process known as atomization.

Unlike nodes, atomic values don't have identities. It’s not meaningful (or possible) to
ask whether "abc" and "abc" are the same string or different strings; you can only
ask whether they are equal.

26 | Chapter2: XQuery Foundations

vww allitebooks.cond

http://www.allitebooks.org

Sequences

Sequences are ordered collections of items. A sequence can contain zero, one, or
many items of any kind. For example, you could have a sequence of atomic values, or
a sequence of nodes, or a sequence that contains both atomic values and nodes.

The most common way that sequences are created is that they are returned from
expressions or functions that return sequences. For example, the expression:

doc("catalog.xml")/catalog/product
returns a sequence of four items, which happen to be product element nodes.

A sequence can also be created explicitly using a sequence constructor. The syntax of a
sequence constructor is a series of values, delimited by commas, surrounded by
parentheses. For example, the expression (1, 2, 3) creates a sequence consisting of
those three atomic values.

You can also use expressions in sequence constructors. For example, the expression:
(doc("catalog.xml")/catalog/product, 1, 2, 3)

results in a seven-item sequence containing the four product element nodes, plus the
three atomic values 1, 2, and 3, in that order.

Sequences do not have names, although they may be bound to a named variable. For
example, the let clause:

let $prodList := doc("catalog.xml")/catalog/product
binds the sequence of four product elements to the variable $prodList.

A sequence with only one item is known as a singleton sequence. There is no differ-
ence between a singleton sequence and the item it contains. Therefore, any of the
functions or operators that can operate on sequences can also operate on individual
items, which are treated as singleton sequences.

A sequence with zero items is known as the empty sequence. In XQuery, the empty
sequence is different from a zero-length string (i.e., "") or a zero value. Many of the
built-in functions and operations accept the empty sequence as an argument, and
have defined behavior for handling it. Some expressions will return the empty
sequence, such as doc("catalog.xml")//foo, if there are no foo elements in the
document.

Sequences cannot be nested within other sequences; there is only one level of items. If
a sequence constructor is inserted into another sequence constructor, the items cre-
ated by the inserted sequence constructor become full-fledged items of the result
sequence. For example:

(10, (20, 30), 40)

The XQuery Data Model | 27

is equivalent to:
(10, 20, 30, 40)

Quite a few functions and operators in XQuery operate on sequences. Some of the
most used functions on sequences are the aggregate functions (count, min, max, avg,
and sum). In addition, union, except, and intersect operators allow sequences to be
combined. There are also a number of functions that operate generically on any
sequence, such as index-of and insert-before.

Like atomic values, sequences have no identity. You can't ask whether (1, 2, 3) and
(1, 2, 3) are the same sequence; you can only compare their contents.

Types

XQuery is a strongly typed language, meaning that each function and operator
expects its arguments or operands to be of a particular type. This section provides
some basic information about types that is useful to any query author. More detailed
coverage of types in XQuery can be found in Chapter 11.

The XQuery type system is based on that of XML Schema. XML Schema has built-in
simple types representing common datatypes such as xs:integer, xs:string, and
xs:date. The xs prefix is used to indicate that these types are defined in the XML
Schema specification. Types are assigned to items in the input document during
schema validation, which is optional. If no schema is used, the items are untyped.

The type system of XQuery is not as rigid as it may sound because there are a number
of type conversions that happen automatically. Most notably, the processor attempts
to automatically cast untyped items to the type required by a particular operation.
Casting involves converting a value from one type to another following specified
rules. For example, the function call:

doc("order.xml")/order/substring(@num, 1, 4)

does not require that the num attribute be declared to be of type xs:string. If it is
untyped, it is cast to xs:string. In fact, if you do not plan to use a schema, you can in
many cases use XQuery without any regard for types. However, if you do use a
schema and the num attribute is declared to be of type xs:integer, you cannot use the
preceding substring example without explicitly converting the value of the num
attribute to xs:string, as in:

doc("order.xml")/order/substring(xs:string(@num), 1, 4)

Namespaces

Namespaces are used to identify the vocabulary to which XML elements and
attributes belong, and to disambiguate names from different vocabularies. This sec-

28 | (Chapter2: XQuery Foundations

tion provides a brief overview of the use of namespaces in XQuery for those who
expect to be writing queries with basic use of namespaces. More detailed coverage of
namespaces, including a complete explanation of the use of namespaces in XML
documents, can be found in Chapter 10.

Many of the names used in a query are namespace-qualified, including those of:

o Elements and attributes from an input document
o Elements and attributes in the query results

o Functions, variables, and types

Example 2-3 shows an input document that contains a namespace declaration, a spe-
cial attribute whose name starts with xmlns. The prod prefix is bound to the name-
space http://datypic.com/prod. This means that any element or attribute name in
the document that is prefixed with prod is in that namespace.

Example 2-3. Input document with namespaces (prod_ns.xml)

<prod:product xmlns:prod="http://datypic.com/prod">
<prod:number>563</prod:number>
<prod:name language="en">Floppy Sun Hat</prod:name>
</prod:product>

Example 2-4 shows a query (and its results) that might be used to select the products
from the input document.

Example 2-4. Querying with namespaces

Query

declare namespace prod = "http://datypic.com/prod";
for $prod in doc("prod_ns.xml")/prod:product
return $prod/prod:name

Results

<prod:name xmlns:prod="http://datypic.com/prod"
language="en">Floppy Sun Hat</prod:name>

The namespace declaration that appears in the first line of the query binds the name-
space http://datypic.com/prod to the prefix prod. The prod prefix is then used in
the body of the query to refer to elements in the input document. The namespace
(not the prefix) is considered to be a significant part of the name of an element or
attribute, so the namespace URIs (if any) in the query and input document must
match exactly. The prefixes themselves are technically irrelevant; they do not have to
be the same in the input document and the query.

Namespaces | 29

CHAPTER 3
Expressions: XQuery Building Blocks

The basic unit of evaluation in the XQuery language is the expression. A query con-
tains expressions that can be made up of a number of sub-expressions, which may
themselves be composed from other sub-expressions. This chapter explains the
XQuery syntax, and covers the most basic types of expressions that can be used in
queries: literals, variables, function calls, and comments.

Categories of Expressions

A query can range in complexity from a single expression such as 2+3, to a complex
composite expression like a FLWOR. Within a FLWOR, there may be other expres-
sions, such as $SprodDept = "ACC", which is a comparison expression, and doc("cata
log.xml")/catalog/product, which is a path expression. Within these expressions
are further expressions, such as "ACC", which is a literal, and $prodDept, which is a
variable reference. Every expression evaluates to a sequence, which may be a single
item (for example, an atomic value or node), the empty sequence, or multiple items.

The categories of expressions available are summarized in Table 3-1, along with a ref-
erence to the chapter or section that covers them.

Table 3-1. Categories of expressions

Category Description Operators or keywords Chapter/Section

Primary The basics: literals, variables, Chapter 3
function calls, and parenthesized
expressions

Comparison Comparison based on value, node =, !'=, <, <=, >,>=,eq,ne, 1t, “Comparison Expressions” on
identity, or document order le, gt, ge, is, <<, >> page 37

31

Category Description Operators or keywords Chapter/Section

String Concatenating two strings | “Concatenating Strings” on
concatenation page 289
Conditional If-then-else expressions if, then, else “Conditional (1f-then-
else) Expressions” on page
M
Switch Switch expressions switch, case “Switch Expressions” on page
L]
Logical Boolean and/or operators or, and “Logical (and/or)
Expressions” on page 45
Path Selecting nodes from XML [./], .., .,child::, etc Chapter 4
documents
Simple map [terating through items ! “The Simple Map Operator”
on page 63
Constructor Adding XML to the results <, >, element, attribute Chapter 5
FLWOR Controlling the selection and for, let,where, order by, “FLWOR Expressions” on page
processing of nodes group by, count, return 83
Quantified Determining whether sequences some, every, in, satisfies “Quantified Expressions” on
fulfill specific conditions page 91
Sequence- (reating and combining sequences to, union (|), intersect, Chapter 9
related except
Type-related (asting and validating values instance of, typeswitch, Chapter 11, Chapter 15
based on type cast as,castable as,
treat as,validate
Arithmetic Adding, subtracting, multiplying, +, -, *, div, idiv, mod Chapter 17
and dividing

Keywords and Names

The XQuery language uses a number of keywords and symbols in its expressions. All
of the keywords are case-sensitive, and they are generally lowercase. In some cases, a
symbol (such as *) or keyword (such as in) has several meanings, depending on
where they appear. The XQuery grammar is defined in such a way that these multi-
use operators are never ambiguous.

Names are used in XQuery to identify elements, attributes, types, variables, and func-
tions. These names must conform to the rules for XML qualified names, meaning
that they can start with a letter or underscore and contain letters, digits, underscores,
hyphens, and periods. Like the keywords, they are also case-sensitive. Because there
are no reserved words in the XQuery language, a name (for example, a variable or
function name) used in a query may be the same as any of the keywords, without any
ambiguity arising.

32 | Chapter3: Expressions: XQuery Building Blocks

All names used in XQuery are namespace-qualified names. This means that they can
be prefixed in order to associate them with a namespace name, and they may be
affected by default namespace declarations.

Whitespace in Queries

Whitespace (spaces, tabs, and line breaks) is allowed almost anywhere in a query to
break up expressions and make queries more readable. You are required to use white-
space to separate keywords from each other—for example, order by cannot be writ-
ten as orderby. Extra whitespace is acceptable, as in order by. By contrast, you are
not required to use whitespace as a separator when using non-word symbols such as
= and (. For example, you can use a=bora = b.

In most cases, whitespace used in queries has no significance. Whitespace is signifi-
cant in quoted strings, e.g., in the expression "contains spaces", and in construc-
ted elements and attributes when it's combined with other characters.

No special end-of-line characters are required in the XQuery language as they might
be in some programming languages. Line-feed and carriage return characters are
treated like any other whitespace.

Literals

Literals are simply constant values that are directly represented in a query, such as
"ACC" and 29.99. They can be used in expressions anywhere a constant value is
needed, for example the strings in the conditional expression:

if (Sdepartment = "ACC") then "accessories" else "other"
or the numbers 1 and 30 in the function call:
substring($name, 1, 30)

There are two kinds of literals: string literals, which must be enclosed in single or
double quotes, and numeric literals, which must not. Numeric literals can take the
form of simple integers, such as 1, decimal numbers, such as 1.5, or floating-point
numbers, such as 1.5E2. The processor makes assumptions about the type of a
numeric literal based on its format.

You can also use type constructors to convert your literal values to the desired type.
For example, to include a literal date in an expression, you can use
xs:date("2015-05-03"). For literal Boolean values, you can use the function calls
true() and false().

Whitespace in Queries | 33

Variables

Variables in XQuery are identified by names that are preceded by a dollar sign ($).
The names (not including the dollar sign) must conform to the definition of an XML-
qualified name. This means that they can be prefixed, in which case they are associ-
ated with the namespace bound to that prefix. If they are not prefixed, they are not
associated with any namespace.

When a query is evaluated, a variable is bound to a particular value. That value may
be any sequence, including a single item such as a node or atomic value, the empty
sequence, or multiple items. Once the variable is bound to a value, its value does not
change. One consequence of this is that you cannot bind a new value to the variable
as you can in most procedural languages. Instead, you must use a new variable.

Variables can be bound in several kinds of expressions, including global variable dec-
larations, for or let clauses of a FLWOR, quantified expressions, or switch expres-
sions. For example, evaluation of the FLWOR:

for $prod in doc("catalog.xml")/catalog/product

return $prod/number
binds the $prod variable to a product element node. The variable is then referenced
in the return clause. Function declarations also bind variables to values. For example,
the function declaration:

declare function local:addTwo ($value as xs:integer) as xs:integer

{ $value + 2 };

binds the $value variable to the value of the argument passed to it. In this case, the
$value variable is referenced in the function body.

Function Calls

Function calls are another building block of queries. A typical function call might
look like:

substring($prodName, 1, 5)

where the name of the function is substring and there are three arguments, separa-
ted by commas and surrounded by parentheses. The first argument is a variable refer-
ence, whereas the other two are numeric literals.

The XQuery language has almost 200 built-in functions, detailed in Appendix A.
Chapter 8 explains the details of the rules for calling functions based on their signa-
tures. It also explains how to define your own functions.

34 | Chapter3: Expressions: XQuery Building Blocks

Starting in version 3.0 there are additional options for calling functions, including
partial function application and dynamic function calls. These are discussed in Chap-
ter 23.

Comments

XQuery comments, delimited by (: and :), can be added to any query to provide
more information about the query itself. These comments are ignored during pro-
cessing. XQuery comments can contain any text, including XML markup. For exam-

ple:
(: This query returns the <number> children :)

XQuery comments can appear anywhere insignificant whitespace is allowed in a
query. If they appear within quoted strings, or directly in the content of element con-
structors, they are not interpreted as comments. XQuery comments can be nested
within other XQuery comments.

You can also include XML comments, delimited by <!-- and -->, in your queries.
Unlike XQuery comments, these comments appear in the result document. They can
include expressions that are evaluated, making them a useful debugging tool. XML
comments are discussed further in “XML Comments” on page 343.

Precedence and Parentheses

A query can contain many nested expressions that are not necessarily delimited by
parentheses. Therefore, it is important to understand which expressions are evaluated
first. In most cases, the precedence (also known as the evaluation order) of expres-
sions is straightforward. For example, in the expression:

if ($x < 12 and Sy > 0)

then $x + Sy

else $x - Sy
it is easy to see that the if, then, and else keywords are all parts of the same expres-
sion that should be evaluated as a whole after all the sub-expressions have been evalu-
ated. In the cases where it is not obvious, this book explains the precedence of that
type of expression. For example, any and operators are evaluated before or operators,
so that:

true() and true() or false() and false()
is the same as:
(true() and true()) or (false() and false())

If there is doubt in your mind regarding which expression is evaluated first, it is likely
that others reading your query will be uncertain too. In this case, it is best to

Comments | 35

surround the expressions in question with parentheses. For example, you can change
the previous if-then-else expression to:

if (($x < 12) and (Sy > 0))
then ($x + $y)
else (S$x - Sy)

The meaning is exactly the same, but the precedence is clearer. Parentheses can also
be used to change the precedence. For example, if you change the true/false example
to:

true() and (true() or false()) and false()

it now has a different value (false) because the or expression is evaluated first.

Parentheses or Curly Braces?

One of the more confusing aspects of XQuery syntax to newcomers is the interaction
of parentheses, commas, and curly braces ({ and }). Curly braces appear in very spe-
cific kinds of expressions, namely XML constructors, map and array constructors,
validate expressions, ordered and unordered expressions, and pragmas. Each of
these kinds of expressions is discussed later in this book.

In the case of element and attribute constructors, commas can be used within curly
braces to separate multiple expressions. For example, in the expression:

<myNewEl>{"a", "b", "c"}</myNewEl>
commas are used to separate the three expressions.

Parentheses are part of the syntax of specific kinds of expressions, too, such as func-
tion calls and in conditional expressions (directly after the keyword if). In addition,
parentheses, unlike curly braces, can be added around an expression to change the
precedence, or simply to visually format a query.

Parentheses are also commonly used to construct sequences of multiple items. This is
useful in cases where only one expression is expected but multiple values are desired.
For example, an else-expression can only consist of one expression, so if you would
like to return two elements, you need to put them together as a sequence constructor,
as in:

if (not($prod))

then (<empty/>)

else (<name>{data($prod/name)l}</name>,
<num>{data($prod/number)}</num>)

The parentheses around the name and num elements, and the comma that separates
them, are used to combine them into a single expression. If they were omitted, the
query processor would consider the num element to be outside the if-then-else expres-
sion.

36 | Chapter3: Expressions: XQuery Building Blocks

At the top level of a query, you can omit the parentheses and just list individual
expressions separated by commas. For example, to return all the product elements of

the catalog, followed by all the item elements from the order, your entire query can
be:

doc("catalog.xml")//product, doc("order.xml")//item

The comma is used to separate the two expressions. All the results of the first expres-
sion will appear first, followed by the results of the second expression.

Comparison Expressions

Comparison expressions are used to compare values. There are three kinds of com-
parison expressions: general, value, and node.

General Comparisons

General comparisons are used for comparing atomic values or nodes that contain
atomic values. Table 3-2 shows some examples of general comparisons. They use the
operators = (equal to), != (not equal to), < (less than), <= (less than or equal to), >
(greater than), and >= (greater than or equal to). Unlike in XSLT, you don’t need to
escape the < operator as &Lt ;. In fact, it won't be recognized if you do.

Table 3-2. General comparisons

Example Value

doc("catalog.xml")/catalog/product[2]/name = 'Floppy Sun Hat' true

doc("catalog.xml")/catalog/product[4]/number < 500 false
1>2 false
0O =1(1,2) false
(2, 5) > (1, 3) true
1="2" Error XPTY0004
(1, "a") = (2, "b") Error XPTY0004

If either operand is the empty sequence, the expression evaluates to false.

General comparisons on multi-item sequences

General comparisons can operate on sequences of more than one item, as well as
empty sequences. If one or both of the operands is a sequence of more than one item,
the expression evaluates to true if the corresponding value comparison is true for any
combination of two items from the two sequences. For example, the expression
(2, 5) < (1, 3) returns true if one or more of the following conditions is true:

Comparison Expressions | 37

e 2islessthan1
o 2islessthan 3
o 5islessthan 1
e 5islessthan 3

This example returns true because 2 is less than 3. The expression (2, 5) > (1, 3)
also returns true because there are values in the first sequence that are greater than
values in the second sequence.

General comparisons are useful for determining if any values in a sequence meet a
particular criterion. For example, if you want to return all the products that are in
either the ACC or the WMN department, you can use the expression:

doc("catalog.xml")/catalog/product[@dept = ("ACC", "WMN")]

This expression is true if the dept attribute is equal to at least one of the two values.

General comparisons and types

When comparing two values, their types are taken into account. Values of like types
(e.g., both numeric or both strings) can always be tested for equality using the =
and != operators. Usually, values of like types can also be compared using less than or
greater than operators (<, ><=, >, >=), although there are a few less common types
(such as xs:QName and xs:gYear) that do not support less than or greater than com-
parisons. If the values have different types that cannot be compared to each other, the
processor may raise type error XPTY0004, as shown in the last two rows of Table 3-2.

When comparing any two of the atomic values in each operand, if one value is typed,
and the other is untyped, the untyped value is cast to the other value’s type (or to
xs :double if the specific type is numeric). For example, you can compare the untyped
value of a number element with the xs:1integer 500, as long as the number element’s
content can be cast to xs:double. If both operands are untyped, they are compared as
strings.

Value Comparisons

Value comparisons differ fundamentally from general comparisons in that they can
only operate on single atomic values. They use the operators eq (equal to), ne (not
equal to), 1t (less than), le (less than or equal to), gt (greater than), and ge (greater
than or equal to). Table 3-3 shows some examples.

38 | Chapter3: Expressions: XQuery Building Blocks

Table 3-3. Value comparisons

Example Value

3 gt 4 false

"abc" 1t "def" true

doc("catalog.xml")/catalog/product[4]/ Error XPTYQ0O4, if number is untyped or non-

number 1t 500 numeric

<a>3 gt <z>2</z> true

<a>03 gt <z>2</z> false, since a and z are untyped and treated like
strings

() eq1 O

1 eq "2" Error XPTY0004

(1, 2) eq (1, 2) Error XPTY0004

Unlike general comparisons, if either operand is the empty sequence, the empty
sequence is returned. In this respect, the empty sequence behaves like null in SQL.

Each operand of a value comparison must be either a single atomic value, a single
node that contains a single atomic value, or the empty sequence. If either operand is a
sequence of more than one item, type error XPTY0004 is raised. For example, the
expression:

doc("catalog.xml")/catalog/product/@dept eq "ACC"

raises an error, because the path expression on the left side of the operator returns
more than one dept attribute. The difference between general and value comparisons
is especially important in the predicates of path expressions.

When comparing typed values, value comparisons have similar restrictions to general
comparisons. The two operands must have comparable types. For example, you can-
not compare the string "4" with the integer 3. In this case, one value must be explic-
itly cast to the other’s type, as in:

xs:integer("4") gt 3

However, value comparisons treat untyped data differently from general compari-
sons. Untyped values are always treated like strings by value comparisons. This means
that if you have two untyped elements that contain numbers, they will be compared
as strings unless you explicitly cast them to numbers. For example, the expression:

xs:integer(SprodNuml) gt xs:integer(SprodNum2)
explicitly casts the two variables to the type xs: integer.

You also must perform an explicit cast if you are comparing the value of an untyped
element to a numeric literal. For example, the expression:

doc("catalog.xml")/catalog/product[1]/number gt 1

Comparison Expressions | 39

will raise type error XPTY0004 if the number element is untyped, because you are
essentially comparing a string to a number. Because of these complexities, you may
prefer to use general comparisons if you are using untyped data.

Useful Function
functx:between-inclusive

There is no built-in function in XQuery to test whether a value is between two other
values, but you can easily write one:

declare namespace functx = "http://www.functx.com";

declare function functx:between-inclusive

($value as xs:anyAtomicType, SminValue as xs:anyAtomicType,
$maxValue as xs:anyAtomicType) as xs:boolean {

Svalue >= $minValue and $value <= SmaxValue

1Y
This function accepts any atomic value and an upper and lower bound. It does a sim-
ple general comparison and returns true if the value is between the bounds. To call
this function, you might use the following function call to test whether a product
number is between 1 and 500:

functx:between-inclusive($prod/number, 1, 500)

This function is the first of many “useful functions” that are included in this book.
You can use them not just as examples but also directly in your queries. The source
for these functions (and many more) <can be found at
http://www.xqueryfunctions.com. You can paste individual functions directly into the
beginning of your queries, or import the entire FunctX module as described in
“Importing a Library Module” on page 205.

Node Comparisons

Another type of comparison is the node comparison. To determine whether two
operands are actually the same node, you can use the is operator. Each of the
operands must be a single node or the empty sequence. If one of the operands is the
empty sequence, the result is the empty sequence.

The is operator compares the nodes based on their identity rather than by any value
they may contain. To compare the contents and attributes of two nodes, you can use
the deep-equal built-in function instead.

40 | Chapter 3: Expressions: XQuery Building Blocks

http://www.xqueryfunctions.com

Table 3-4 shows some examples of node comparisons. They assume that the variables
$n1 and $n2 are bound to two different nodes, as shown in the following variable dec-
larations:

declare variable $n1 :
declare variable $n2 :

doc("catalog.xml")/catalog/product[2];
doc("catalog.xml")/catalog/product[3];

Table 3-4. Node comparisons

Example Value

$nl is $n2 false
$nl is $n1 true
$n1 is doc("catalog.xml")//product[number = 563] true
$n1/@dept is $n2/@dept false

In the last example of the table, even though the second and third products have the
same value for their dept attributes, they are two distinct attribute nodes.

Conditional (1f-then-else) Expressions

XQuery allows conditional expressions using the keywords if, then, and else. The
syntax of a conditional expression is shown in Figure 3-1.

——if (<expr>) then <expr> else <expr> —

Figure 3-1. Syntax of a conditional expression

The expression after the if keyword is known as the test expression. It must be
enclosed in parentheses. If the test expression evaluates to true, the value of the
entire conditional expression is the value of the then-expression. Otherwise, it is the
value of the else-expression.

Example 3-1 shows a conditional expression (embedded in a FLWOR).

Example 3-1. Conditional expression

Query

for $prod in (doc("catalog.xml")/catalog/product)

return if ($prod/@dept = "ACC")
then <accessoryNum>{data($prod/number)}</accessoryNum>
else <otherNum>{data($prod/number)}</otherNum>

Conditional (if-then-else) Expressions | 41

Results

<otherNum>557</otherNum>
<accessoryNum>563</accessoryNum>
<accessoryNum>443</accessoryNum>
<otherNum>784</otherNum>

If the then-expression and else-expression are single expressions, they are not
required to be in parentheses. However, to return the results of multiple expressions,
they need to be concatenated together using a sequence constructor. For example, if
in Example 3-1 you wanted to return an accessoryName element in addition to
accessoryNum, you would be required to separate the two elements by commas and
surround them with parentheses, effectively constructing a sequence of two elements.
This is shown in Example 3-2.

Example 3-2. Conditional expression returning multiple expressions

Query

for Sprod in (doc("catalog.xml")/catalog/product)
return if (Sprod/@dept = "ACC")
then (<accessoryNum>{data($prod/number)}</accessoryNum>,
<accessoryName>{data($prod/name)}</accessoryName>)
else <otherNum>{data($prod/number)}</otherNum>

Results

<otherNum>557</otherNum>
<accessoryNum>563</accessoryNum>
<accessoryName>Floppy Sun Hat</accessoryName>
<accessoryNum>443</accessoryNum>
<accessoryName>Deluxe Travel Bag</accessoryName>
<otherNum>784</otherNum>

The else keyword and the else-expression are required. However, if you want the
else-expression to evaluate to nothing, it can simply be () (the empty sequence).

Conditional Expressions and Effective Boolean Value

The test expression is interpreted as an xs:boolean value by calculating its effective
boolean value. This means that if it evaluates to the xs:boolean value false, the
number 0 or NaN (i.e., not a number), a zero-length string, or the empty sequence, it is
considered false. Otherwise, it is generally considered true. For example, the
expression:

if (doc("order.xml")//item) then "Item List: " else ""

returns the string Item List: if there are any item elements in the order document.
The test expression doc("order.xml")//item returns a sequence of element nodes

42 | Chapter 3: Expressions: XQuery Building Blocks

rather than a Boolean value, but its effective boolean value is true. Effective boolean
value is discussed in more detail in “Effective Boolean Value” on page 187.

Nesting Conditional Expressions

You can also nest conditional expressions, as shown in Example 3-3. This provides an
“else if” construct.

Example 3-3. Nested conditional expressions

Query

for $prod in (doc("catalog.xml")/catalog/product)
return if ($prod/@dept = "ACC")
then <accessory>{data($prod/number)}</accessory>
else if (Sprod/@dept = "WMN")
then <womens>{data($prod/number)}</womens>
else if (Sprod/@dept = "MEN")
then <mens>{data($prod/number)}</mens>
else <other>{data($Sprod/number)}</other>

Results

<womens>557</womens>
<accessory>563</accessory>
<accessory>443</accessory>
<mens>784</mens>

Switch Expressions

Switch expressions, new in version 3.0, are used to branch to one of several expres-
sions based on a particular value. For example, assuming you have a variable named
$department that was previously bound to a value, you can return one of several
options depending on the value of $department:

switch ($department)
case "ACC" return "Accessories"
case "MEN" return "Men's"

Tt

case "WMN" return "Women's
default return "Other"

The processor proceeds through the case clauses and compares $department (known
as the switch operand expression) to the expression after the case keyword (known
as the case operand expression). If they are equal, it returns the expression after the

return keyword. It chooses only the first case clause that applies; if multiple case
causes apply, the later ones are ignored.

The default return keywords are required and are used to specify what to return if
none of the case clauses apply. If nothing should be returned in that case, the empty

Switch Expressions | 43

sequence can be specified by using the clause default return (). The syntax of a
switch expression is shown in Figure 3-2.

- switch (<expr>)

}—fcase <expr>]-return <expr>J—>

- default return <expr>—— >

Figure 3-2. Syntax of a switch expression

You can have multiple case keywords for a single return, meaning that if any of
those cases apply, that return clause is used. In the following example, if
$department is equal to either MEN or WMN, the string Clothing is returned.

switch ($department)
case "ACC" return "Accessories"
case "MEN"
case "WMN" return "Clothing"
default return "Other"

The switch operand expression (in parentheses) must evaluate to either the empty
sequence or a single value, not a sequence of multiple values. If it evaluates to a node,
for example an element or attribute, it is atomized, meaning that an atomic value is
extracted from its contents. Likewise, the case operand expression (after case) must
also evaluate to zero or one values, with atomization occurring if necessary. The two
atomic values are then compared, taking into account their data types.

A switch expression is similar to a nested conditional if-then-else expression except
that it is based on a particular value rather than a Boolean. For example, you could
rewrite the conditional expression in Example 3-3 by using a switch expression, as
shown in Example 3-4.

Example 3-4. Switch expression similar to nested conditional expressions

Query

xquery version "3.0";
for $prod in (doc("catalog.xml")/catalog/product)
return switch($prod/@dept)
case "ACC" return <accessory>{data($prod/number)}</accessory>
case "WMN" return <womens>{data($prod/number)}</womens>
case "MEN" return <mens>{data($prod/number)}</mens>
default return <other>{data($prod/number)}</other>

44 | Chapter 3: Expressions: XQuery Building Blocks

Results

<womens>557</womens>
<accessory>563</accessory>
<accessory>443</accessory>
<mens>784</mens>

Example 3-4 exhibits the fact that although the switch operand expression and the
case operand expression have to evaluate to atomic values, the return expression can
return any number of any items of any kind, including an element node in this case.

Logical (and/or) Expressions

Logical expressions combine Boolean values by using the operators and and or. They
are most often used in conditional (i1f-then-else) expressions, where clauses of
FLWORs and path expression predicates. However, they can be used anywhere a
Boolean value is expected.

For example, when used in a conditional expression:
if ($isDiscounted and S$discount > 10) then 10 else $discount

an and expression returns true if both of its operands are true. An or expression eval-
uates to true if one or both of its operands is true.

As with conditional test expressions, the effective boolean value of each of the
operands is evaluated. This means that if the operand expression evaluates to a
Boolean false value, the number 0 or NaN, a zero-length string, or the empty
sequence, it is considered false; otherwise, it is generally considered true. For exam-

ple:

Sorder/item and SnumItems

returns true if there is at least one item child of $order, and $numItems (assuming it
is numeric) is not equal to 0 or NaN.

Precedence of Logical Expressions

The logical operators have lower precedence than comparison operators do, so you
can use:

$x < 12 and Sy > 15

without parenthesizing the two comparison expressions.

You can also chain multiple and and or expressions together. The and operator takes
precedence over the or operator. Therefore:

true() and true() or false() and false()

Logical (and/or) Expressions | 45

is the same as:

(true() and true()) or (false() and false())
and evaluates to true. It is not equal to:

true() and (true() or false()) and false()

which evaluates to false.

Negating a Boolean Value

You can negate any Boolean value by using the not function, which turns false to
true and true to false. Because not is a function rather than a keyword, you are
required to use parentheses around the value that you are negating.

The not function accepts a sequence of items, from which it calculates the effective
boolean value before negating it. This means that if the argument evaluates to the
xs:boolean value false, the number 0 or NaN, a zero-length string, or the empty
sequence, the not function returns true. In most other cases, it returns false.

Table 3-5 shows some examples of the not function.

Table 3-5. Examples of the not function

Example Return value

not(true()) false
not(12 > 0) false

not(doc("catalog.xml")/catalog/ falseifthereisatleast one product child of catalog in catalog.xml
product)

not(()) true

not("") true

There is a subtle but important difference between using the != operator and calling
the not function with an expression that uses the = operator. For example, the expres-
sion $prod/@dept != "ACC" returns:

o true if the $prod element has a dept attribute that is not equal to ACC
o falseifit has a dept attribute that is equal to ACC

o false if it does not have a dept attribute

On the other hand, not($prod/@dept = "ACC") will return true in the third case—
that is, if the $prod element does not have a dept attribute. This is because the $prod/
@dept expression returns the empty sequence, which results in the comparison evalu-
ating to false. The not function will negate this and return true.

46 | Chapter 3: Expressions: XQuery Building Blocks

CHAPTER 4
Navigating XML by Using Paths

Path expressions are used to navigate XML input documents to select elements and
attributes of interest. This chapter explains how to use path expressions to select ele-
ments and attributes from an input document and apply predicates to filter those
results. It also covers the different methods of accessing input documents.

Path Expressions

A path expression is made up of one or more steps that are separated by a slash (/) or
double slashes (//). For example, the path:

doc("catalog.xml")/catalog/product

selects all the product children of the catalog element in the catalog.xml document.
Table 4-1 shows some other simple path expressions.

Table 4-1. Simple path expressions

Example Return value

doc("catalog.xml")/catalog The catalog element that is the outermost element of the document
doc("catalog.xml")//product All product elements anywhere in the document

doc("catalog.xml")//product/@dept All dept attributes of product elements in the document

doc("catalog.xml")/catalog/* All child elements of catalog
doc("catalog.xml")/catalog/*/ All number elements that are grandchildren of catalog
number

Path expressions return nodes in document order. This means that the examples in
Table 4-1 return the product elements in the same order that they appear in the

47

catalog.xml document. More information on document order and on sorting results
differently can be found in Chapter 7.

Path Expressions and Context

A path expression is always evaluated relative to a particular context item, which
serves as the starting point for the relative path. Some path expressions start with an
initial step that sets the context item, as in:

doc("catalog.xml")/catalog/product/number

The function call doc("catalog.xml") returns the document node of the catalog.xml
document, which becomes the context item. When the context item is a node (as
opposed to an atomic value), it is called the context node. The rest of the path is eval-
uated relative to it. Another example is:

$catalog/product/number

where the value of the variable $catalog sets the context. The variable must select
zero, one, or more nodes, which become the context nodes for the rest of the expres-
sion.

A path expression can also be relative. For example, it can also simply start with a
name, as in:

product/number

This means that the path expression will be evaluated relative to the current context
node, which must have been previously determined outside the expression. It may
have been set by the processor outside the scope of the query, or in an outer expres-
sion.

Steps and changing context

The context item changes with each step. A step returns a sequence of zero, one, or
more nodes that serve as the context items for evaluating the next step. For example,
in:

doc("catalog.xml")/catalog/product/number

the doc("catalog.xml") step returns one document node that serves as the context
item when evaluating the catalog step. The catalog step is evaluated using the docu-
ment node as the current context node, returning a sequence of one catalog element
child of the document node. This catalog element then serves as the context node
for evaluation of the product step, which returns the sequence of product children of
catalog.

The final step, number, is evaluated in turn for each product child in this sequence.
During this process, the processor keeps track of three things:

48 | Chapter4: Navigating XML by Using Paths

o The context node itself—for example, the product element that is currently being
processed

o The context sequence, which is the sequence of items currently being processed
—for example, all the product elements

o The position of the context node within the context sequence, which can be used
to retrieve nodes based on their position

Steps

As we have seen in previous examples, steps in a path can simply be primary expres-
sions like function calls (doc("catalog.xml")) or variable references ($catalog).
Any expression that returns nodes can be on the lefthand side of the slash operator.

Another kind of step is the axis step, which allows you to navigate around the XML
node hierarchy. There are two kinds of axis steps:

Forward step
This step selects descendants or nodes appearing after the context node (or the
context node itself).

Reverse step
This step selects ancestors or nodes appearing before the context node (or the
context node itself).

In the examples so far, catalog, product, and @dept are all axis steps (that happen to
be forward steps). The syntax of an axis step is shown in Figure 4-1.

<kind-test> l ‘ >
i:@i |—<name-tes1:>J |—[<expr>]J

<axis-namey ::—

Figure 4-1. Syntax of a step in a path expression

Axes

Each forward or reverse step has an axis, which defines the direction and relationship
of the selected nodes. For example, the child:: axis (a forward axis) can be used to
indicate that only child nodes should be selected, while the parent:: axis (a reverse
axis) can be used to indicate that only the parent node should be selected. The 12 axes
are listed in Table 4-2.

Path Expressions | 49

Table 4-2. Axes

self:: The context node itself.

child:: Children of the context node. Attributes are not considered children of an element. This is the
default axis if none is specified.

descendant:: All descendants of the context node (children, children of children, etc.). Attributes are not
considered descendants.

descendant-or-self:: The context node and its descendants.

attribute:: Attributes of the context node (if any).

following:: All nodes that follow the context node in the document, minus the context node’s
descendants.

following-sibling:: Allsiblings of the context node that follow it. Attributes of the same element are not
considered siblings.

parent:: The parent of the context node (if any). This is either the element or the document node that
contains it. The parent of an attribute is its element, even though it is not considered a child
of that element.

ancestor:: All ancestors of the context node (parent, parent of the parent, etc.).

ancestor-or-self:: The context node and all its ancestors.

preceding:: All nodes that precede the context node in the document, minus the context node’s
ancestors.

preceding-sibling:: Allthe siblings of the context node that precede it. Attributes of the same element are not

considered siblings.

Node Tests

In addition to having an axis, each axis step has a node test. The node test indicates
which of the nodes (by name or node kind) to select, along the specified axis. For
example, child: :product only selects product element children of the context node.
It does not select other kinds of children (for example, text nodes), or other product
elements that are not children of the context node.

Node name tests

In previous examples, most of the node tests were based on names, such as product
and dept. These are known as name tests. The syntax of a node name test is shown in
Figure 4-2.

<local-name>
t <prefix> : *

0{<namespace-name>} —

Figure 4-2. Syntax of a node name test

50 | Chapter4: Navigating XML by Using Paths

Node name tests and namespaces

Names used in node tests are qualified names, meaning that they are affected by
namespace declarations. A namespace declaration is in scope if it appears in an outer
element, or in the query prolog. The names may be prefixed or unprefixed. If a name
is prefixed, its prefix must be bound to a namespace by using a namespace declara-
tion.

If an element name is unprefixed, and there is an in-scope default namespace
declared, it is considered to be in that namespace; otherwise, it is in no namespace.
Attribute names, on the other hand, are not affected by default namespace declara-
tions.

Use of namespace prefixes in path expressions is depicted in Example 4-1, where the
prod prefix is first bound to the namespace, and then used in the steps prod:product
and prod:number. Keep in mind that the prefix is just serving as a proxy for the
namespace name. It is not important that the prefixes in the path expressions match
the prefixes in the input document; it is only important that the prefixes are bound to
the same namespace. In Example 4-1, you could use the prefix pr instead of prod in
the query, as long as you used it consistently throughout the query.

Example 4-1. Prefixed name tests

Input document (prod_ns.xml)

<prod:product xmlns:prod="http://datypic.com/prod"s
<prod:number>563</prod:number>
<prod:name language="en">Floppy Sun Hat</prod:name>
</prod:product>

Query

declare namespace prod = "http://datypic.com/prod";
<prod:prodList>{

doc("prod_ns.xml")/prod:product/prod:number
}</prod:prodList>

Results

<prod:prodList xmlns:prod="http://datypic.com/prod"s>
<prod:number>563</prod:number>
</prod:prodList>

Node name tests and wildcards

You can use wildcards to match names. The step child: :* (abbreviated simply *) can
be used to select all element children, regardless of name. Likewise, @* (or
attribute::*) can be used to select all attributes, regardless of name.

Path Expressions | 51

In addition, wildcards can be used for just the namespace and/or local part of a name.
The step prod: * selects all child elements in the namespace bound to the prefix prod,
and the step *:product selects all product child elements that are in any namespace,
Or no namespace.

Node kind tests

In addition to the tests based on node name, you can test based on node kind. The
syntax of a node kind test is shown in Figure 4-3. (The detailed syntax of <element-
attribute-test> is shown in Figure 14-4.)

node() >
text()

comment ()

document-node()

processing-instruction(—h)—
<name>

<element-attribute-test>

Figure 4-3. Syntax of a node kind test

The test node() will retrieve all different kinds of nodes. You can specify node() as
the entire step, and it will default to the child:: axis. In this case, it will bring back
child element, text, comment, and processing-instruction nodes (but not attributes,
because they are not considered children). This is in contrast to *, which selects child
element nodes only.

You can also use node() in conjunction with the axes. For example,
ancestor::node() returns all ancestor element nodes and the document node (if it
exists). This is different from ancestor::*, which returns ancestor element nodes
only. You can even use attribute::node(), which will return attribute nodes, but
this is not often used because it means the same as @*.

Four other node kind tests, text(), comment(), processing-instruction(), and
document-node(), are discussed in Chapter 22.

If you are using schemas, you can also test elements and attributes based on their type
by using node kind tests. For example, you can specify element(*, ProductType) to
return all elements whose type is ProductType, or element(product, ProductType)
to return all elements named product whose type is ProductType. This is discussed
further in “Sequence Types and Schemas” on page 241.

52 | Chapter4: Navigating XML by Using Paths

Abbreviated Syntax

Some axes and steps can be abbreviated, as shown in Table 4-3. The abbreviations ".
and ".." are used as the entire step (with no node test). The step "." represents the
current context node itself, regardless of its node kind. Likewise, the step ".." repre-

sents the parent node, which could be either an element node or a document node.

Table 4-3. Abbreviations

Abbreviation Meaning

self::node()
parent: :node()
Q attribute::
// /descendant-or-self::node()/

The @ abbreviation, on the other hand, replaces the axis only, so it is used along with a
node test or wildcard. For example, you can use @dept to select dept attributes, or @*
to select all attributes.

The // abbreviation is a shorthand to indicate a descendant anywhere in a tree. For
example, catalog//number will match all number elements at any level among the
descendants of catalog. You can start a path with .// if you want to limit the selec-
tion to descendants of the current context node.

Table 4-4 shows additional examples of abbreviated and unabbreviated syntax.

Table 4-4. Unabbreviated and abbreviated syntax examples

Unabbreviated syntax Abbreviated equivalent

child: :product product
child::* *
self::node()

attribute::dept @dept
attribute::* @*
descendant: :product .//product

child: :product/descendant::name product//name

parent: :node()/number ../number

Other Expressions as Steps

In addition to axis steps, other expressions can also be used as steps. You have already
seen this in use in:

doc("catalog.xml")/catalog/product/number

Path Expressions | 53

where doc("catalog.xml") is a function call that is used as a step. You can include
more complex expressions, for example:

doc("catalog.xml")/catalog/product/(number | name)

which uses the parenthesized expression (number | name) to select all number and
name elements. The | operator is a union operator; it selects the union of two sets of
nodes.

If the expression in a step contains an operator with lower precedence than /, it needs
to be in parentheses. Some other examples of more complex steps are provided in
Table 4-5.

Table 4-5. More complex steps (examples start with doc("catalog.xml")/catalog/)

Example Return value

product/(number | name) All number AND name children of product.

product/(* except number) All children of product except number. See “Combining Results” on page 150
for more information on the | and except operators.

product/(if (desc) then For each product element, the desc child if it exists; otherwise, the name

desc else name) child.

product/substring(name, 1, A sequence of xs : string values that are substrings of product names.
30)

The last step (and only the last step) in a path may return atomic values rather than
nodes. The last example in Table 4-5 will return a sequence of atomic values that are
the substrings of the product names. Error XPTY0019 is raised if a step that is not the
last returns atomic values. For example:

1 '

doc("catalog.xml")//product/substring(name, 1, 30)/replace(., ' ', '-")

will raise an error because the substring step returns atomic values, and it is not the
last step.

Predicates

Predicates are used in a path expression to filter the results to contain only items that
meet specific criteria. Using a predicate, you can, for example, select only the ele-
ments that have a certain value for an attribute or child element, using a predicate like
[@dept = "ACC"]. You can also select only elements that have a particular attribute or
child element, using a predicate such as [color], or elements that occur in a particu-
lar position within their parent, using a predicate such as [3].

The syntax of a predicate is simply an expression in square brackets ([and]).
Table 4-6 shows some examples of predicates.

54 | Chapter4: Navigating XML by Using Paths

Table 4-6. Predicates (examples start with doc("catalog.xml")/catalog/)

Example Return value

product[name = All product elements that have a name child whose value is equal to Floppy Sun
"Floppy Sun Hat"] Hat

product[number < 500] All product elements that have a number child whose value is less than 500
product[@dept = "ACC"] All product elements that have a dept attribute whose value is ACC
product[desc] All product elements that have at least one desc child
product[@dept] All product elements that have a dept attribute
product[@dept]/number All number children of product elements that have a dept attribute

If the expression evaluates to anything other than a number, its effective boolean
value is determined. This means that if it evaluates to the xs:boolean value false,
the number 0 or NaN, a zero-length string, or the empty sequence, it is considered
false. In most other cases, it is considered true. If the effective boolean value is true
for a particular node, that node is returned. If it is false, the node is not returned.

If the expression evaluates to a number, it is interpreted as the position as described
in “Using Positions in Predicates” on page 56.

As you can see from the last example, the predicate is not required to appear at the
end of the entire path expression. Predicates can appear at the end of any step.

Note that product[number] is different from product/number. While both expres-
sions filter out products that have no number child, in the former expression, the
product element is returned. In the latter case, the number element is returned.

Comparisons in Predicates

The examples in the previous section use general comparison operators like = and <.
You can also use the corresponding value comparison operators, such as eq and 1t,
but you should be aware of the difference. Value comparison operators only allow a
single value, while general comparison operators allow sequences of zero, one, or
more values. Therefore, the path expression:

doc("prices.xml")//priceList[@effDate eq '2015-11-15"']

is acceptable, because each priceList element can have only one effDate attribute.
However, if you wanted to find all the priceList elements that contain the product
557, you might try the expression:

doc("prices.xml")//priceList[prod/@num eq 557]

This will raise error XPTY0004 because the expression prod/@num returns more than
one value per pricelList. By contrast:

doc("prices.xml")//priceList[prod/@num = 557]

Predicates | 55

returns a pricelList if it has at least one prod child whose num attribute is equal to
557. It might have other prod children whose numbers are not equal to 557.

In both cases, if a particular priceList does not have any prod children with num
attributes, it does not return that pricelList, but it does not raise an error.

Another difference is that value comparison operators treat all untyped data like
strings. If we fixed the previous problem with eq by returning prod nodes instead, as
in:

doc("prices.xml")//priceList/prod[@num eq 557]

it would still raise an error (XPTY0004) if no schema were present, because it treats the
num attribute like a string, which can’t be compared to a number. The = operator, on
the other hand, will cast the value of the num attribute to xs:integer and then com-
pare it to 557, as you would expect.

For these reasons, general comparison operators are easier to use than value compari-
son operators in predicates when children are untyped or repeating. The down side of
general comparison operators is that they also make it less likely that the processor
will catch any mistakes you make. In addition, they may be more expensive to evalu-
ate because it’s harder for the processor to make use of indexes.

Using Positions in Predicates

Another use of predicates is to specify the numeric position of an item within the
sequence of items currently being processed. These are sometimes called, predictably,
positional predicates. For example, if you want the fourth product in the catalog, you
can specify:

doc("catalog.xml")/catalog/product[4]

The positions start with 1 for the first item, as opposed to 0 as they do in some pro-
gramming languages. Any predicate expression that evaluates to an integer will be
considered a positional predicate. If you specify a number that is greater than the
number of items in the context sequence, it does not raise an error; it simply does not
return any nodes. For example:

doc("catalog.xml")/catalog/product[99]

returns the empty sequence.

Understanding positional predicates

With positional predicates, it is important to understand that the position is the posi-
tion within the current sequence of items being processed, not the position of an ele-
ment relative to its parent’s children. Consider the expression:

doc("catalog.xml")/catalog/product/name[1]

56 | Chapter4: Navigating XML by Using Paths

This expression refers to the first name child of each product; the step name[1] is eval-
uated once for every product element. It does not necessarily mean that the name ele-
ment is the first child of product.

It also does not return the first name element that appears in the document as a whole.
If you wanted just the first name element in the document, you could use the expres-
sion:

(doc("catalog.xml")/catalog/product/name)[1]

because the parentheses change the order of evaluation. First, all the name elements
are returned; then, the first one of those is selected. Alternatively, you could use:

doc("catalog.xml")/catalog/descendant: :name[1]

because the sequence of descendants is evaluated first, then the predicate is applied.
However, this is different from the abbreviated expression:

doc("catalog.xml")/catalog//name[1]

which, like the first example, returns the first name child of each of the products.
That’s because it’s an abbreviation for:

doc("catalog.xml")/catalog/descendant-or-self::node()/name[1]

The position and last functions

The position and last functions are also useful when writing predicates based on
position. The position function returns the position of the context item within the
context sequence (the current sequence of items being processed). The function takes
no arguments and returns an integer representing the position (starting with 1, not 0)
of the context item. For example:

doc("catalog.xml")/catalog/product[position() < 3]

returns the first two product children of catalog. You could also select the first two
children of each product, with any name, using:

doc("catalog.xml")/catalog/product/*[position() < 3]

by using the wildcard *. Note that the predicate [position() = 3] is equivalent to
the predicate [3], so the position function is not very useful in this case.

Predicates | 57

When using positional predicates, you should be aware that the to

keyword does not work as you might expect when used in predi-

cates. If you want the first three products, it may be tempting to use
\ the syntax:

doc("catalog.xml")/catalog/product[1 to 3]

However, this should raise error FORGOOO6 because the predicate
evaluates to multiple numbers instead of a single one. You can,
however, use the syntax:

doc("catalog.xml")/catalog/product[position() = (1 to 3)]

You can also use the subsequence function to limit the results
based on position, as in:

doc("catalog.xml")/catalog/subsequence(product, 1, 3)

The last function returns the number of nodes in the current sequence. It takes no
arguments and returns an integer representing the number of items. The last func-
tion is useful for testing whether an item is the last one in the sequence. For example,
catalog/product[last()] returns the last product child of catalog.

Table 4-7 shows some examples of predicates that use the position of the item. The
descriptions assume that there is only one catalog element, which is the case in the
catalog.xml example.

Table 4-7. Position in predicates (examples start with doc("catalog.xml")/catalog/)

Example Return value

product[2] The second product child of catalog
product[position() = 2] Thesecond product child of catalog
product[position() > 1] All product children of catalog after the first one

product[last()-1] The second to last product child of catalog
product[last()] The last product child of catalog

*[2] The second child of catalog, regardless of name
product[3]/*[2] The second child of the third product child of catalog

In XQuery, it’s very unusual to use the position or last functions anywhere except
within a predicate. It’s not an error, however, as long as the context item is defined.
For example, a/last() returns the same number as count(a).

Positional predicates and reverse axes

Oddly, positional predicates have the opposite meaning when using reverse axes such
as ancestor, ancestor-or-self, preceding, or preceding-sibling. These axes, like
all axes, return nodes in document order. For example, the expression:

58 | Chapter4: Navigating XML by Using Paths

doc("catalog.xml")//1i/ancestor::*

returns the ancestors of the 1 element in document order, namely the catalog ele-
ment, followed by the fourth product element, followed by the desc element. How-
ever, if you use a positional predicate, as in:

doc("catalog.xml")//i/ancestor::*[1]

you might expect to get the catalog element, but you will actually get the nearest
ancestor, the desc element. The expression:

doc("catalog.xml")//1i/ancestor::*[last()]

will give you the catalog element.

Using Multiple Predicates

Multiple predicates can be chained together to filter items based on more than one
constraint. For example:

doc("catalog.xml")/catalog/product[number < 500][@dept = "ACC"]

selects only product elements with a number child whose value is less than 500 and
whose dept attribute is equal to ACC. This can also be equivalently expressed as:

doc("catalog.xml")/catalog/product[number < 500 and @dept = "ACC"]
It is sometimes useful to combine the positional predicates with other predicates, as
in:

doc("catalog.xml")/catalog/product[@dept = "ACC"][2]

which represents “the second product child that has a dept attribute whose value is
ACC;” namely the third product element. The order of the predicates is significant. If
the previous example is changed to:

doc("catalog.xml")/catalog/product[2][@dept = "ACC"]

it means something different, namely “the second product child, if it has a dept
attribute whose value is ACC” This is because the predicate changes the context, and
the context node for the second predicate in this case is the second product element.

More Complex Predicates

So far, the examples of predicates have been simple path expressions, comparison
expressions, and numbers. In fact, any expression is allowed in a predicate, making it
a very flexible construct. For example, predicates can contain function calls, as in:

doc("catalog.xml")/catalog/product[contains(@dept, "A")]

which returns all product children whose dept attribute contains the letter A. They
can contain conditional expressions, as in:

Predicates | 59

doc("catalog.xml")/catalog/product[if (SdescFilter)
then desc else true()]

which filters product elements based on their desc child only if the variable
$descFilter is true. They can also contain expressions that combine sequences, as
in:

doc("catalog.xml")/catalog/product[* except number]

which returns all product children that have at least one child other than number.
General comparisons with multiple values can be used, as in:

doc("catalog.xml")/catalog/product[@dept = ("ACC", "WMN", "MEN")]

which returns products whose dept attribute value is any of those three values. This is
similar to an SQL in clause.

To retrieve every third product child of catalog, you could use the expression:
doc("catalog.xml")/catalog/product[position() mod 3 = 0]
because it selects all the products whose position is divisible by 3.

Predicates can even contain path expressions that themselves have predicates. For
example:

doc("catalog.xml")/catalog/product[*[3][self::colorChoices]]

can be used to find all product elements whose third child element is colorChoices.
The *[3][self::colorChoices] is part of a separate path expression that is itself
within a predicate. *[3] selects the third child element of product, and [self::color
Chotices] is a way of testing the name of the current context element.

Predicates are not limited to use with path expressions. They can be used with any
sequence. For example:

(1 to 100)[. mod 5 = 0]

can be used to return the integers from 1 to 100 that are divisible by 5. Another exam-
pleis:

(@price, 0.0)[1]

which selects the price attribute if it exists, or the decimal value 0.0 otherwise.

A Closer Look at Context

As mentioned earlier, a path expression is always evaluated relative to a particular
context. The processor can set the context node outside the query, or, starting in ver-
sion 3.0, the context can be explicitly specified in a context item declaration. Alterna-
tively, the context node can be set by an outer expression. In XQuery, the only

60 | Chapter4: Navigating XML by Using Paths

operators that change the context node are the slash, the square brackets used in
predicates, and the simple map operator. For example:

doc("catalog.xml")/catalog/product/(if (desc) then desc else name)

In this case, the conditional expression in the last step uses the paths desc and name.
Because it is entirely contained in one step of another (outer) path expression, it is
evaluated with the context node being the product element. Therefore, desc and name
are tested as children of product.

In some cases, the context node is absent. This might occur if the processor does not
set the context node outside the scope of the query or in a context item declaration,
and there is no outer expression that sets the context. In these cases, using a relative
path such as desc raises error XPTY0020.

Working with the Context Node

It is sometimes useful to be able to reference the context node, either in a step or in a
predicate. A prior example retrieved product elements whose number child is less
than 500 by using the expression:

doc("catalog.xml")/catalog/product[number < 500]

Suppose, instead, you want to retrieve the number child itself. You can do this using
the expression:

doc("catalog.xml")/catalog/product/number[. < 500]

The period (.) is used to represent the context node itself in predicates and in paths.
You can also use the period as an argument to functions, as in:

doc("catalog.xml")/catalog/product/name[starts-with(., "T")]

which passes the context item to the starts-with function. Some functions, when
they are not passed any arguments, automatically use the context node. For example:

doc("catalog.xml")/catalog/product/desc[string-length() > 20]

uses the string-length function to test the length of the desc value. It was not nec-
essary to pass the 7 to the string-length function. This is because the defined
behavior of this particular function is such that if no argument is passed to the func-

tion, it defaults to the context node.

Accessing the Root

When the context node is part of a complete XML document, the root is a document
node (not the outermost element). However, XQuery also allows nodes to participate
in tree fragments, which can be rooted at any kind of node.

ACloser Look at Context | 61

There are several ways of accessing the root of the current context node. When a path
expression starts with one forward slash, as in:

/catalog/product

the path is evaluated relative to the root of the tree containing the current context
node. For example, if the current context node is a number element in the catalog.xml
document, the path /catalog/product retrieves all product children of catalog in
catalog.xml.

When a path expression starts with two forward slashes, as in:
//product/number

it is referring to any product element in the tree containing the current context node.
Starting an expression with / or // is allowed only if the current context node is part
of a complete XML document (with a document node at its root). The / can also be
used as an expression in its own right, to refer to the root of the tree containing the
context node (provided this is a document node).

The root function also returns the root of the tree containing a node. It can be used
in conjunction with path expressions to find siblings and other elements that are in
the same document. For example, root($myNode)//product retrieves all product ele-
ments that are in the same document (or document fragment) as $myNode. When
using the root function, it’s not necessary for the tree to be rooted at a document
node.

Dynamic Paths

It is a common requirement that the paths in your query will not be static but will
instead be calculated based on some input to the query. For example, if you want to
provide users with a search capability where they choose the elements in the input
document to search, you can’t use a static path in your query. XQuery does not pro-
vide any built-in support for evaluating dynamic paths, but you do have a couple of
alternatives.

For simple paths, it is easy enough to test for an element’s name by using the name
function instead of including it directly as a step in the path. For example, if the name
of the element to search and its value are bound to the variables $elementName and
$searchValue, you can use a path like:

doc("catalog.xml")//*[name() = $elementName][. = S$searchValue]

If the dynamic path is more complex than a simple element or attribute name, you
can use an implementation-specific function. Most XQuery implementations provide
a function for dynamic evaluation of paths or entire queries. For example, the Saxon
implementation has the saxon:evaluate function, while in MarkLogic it is called

62 | Chapter4: Navigating XML by Using Paths

xdmp:eval. In Saxon, you could use the following expression to get the same results
as the previous example:

saxon:evaluate(concat('doc("catalog.xml")//', $SelementName,
'"[. ="', $searchvalue, '"]"))

The Simple Map Operator

Starting in version 3.0, path expressions are supplemented by a new operator that
allows you to traverse through a sequence of items and evaluate expressions based on
them. It is called the simple map operator and it uses an exclamation point (!). It is in
some ways similar to the path operator (/) that separates steps in path expressions,
but it is more general purpose.

One limitation of the path operator (/) is that it is limited to nodes. The expression on
the lefthand side of the slash must evaluate to zero or more nodes, not atomic values
or other items. The expression on the righthand side of the slash can only evaluate to
atomic values if it’s the last step in a path. With the simple map operator (!), either
side of the operator can evaluate to zero or more items of any kind, including nodes,
atomic values, or function items, or any mixture of them.

For example, the following expression takes the first three characters of each product
name and converts them to lowercase:

doc("catalog.xml")//name/substring(., 1, 3) ! lower-case(.)

It returns the four string values ("fle", "flo", "del", "cot"). Like the path oper-
ator, the simple map operator sets up an iteration over the items to the left of the
operator (!). For each of the four substrings returned by the expression on the left-
hand side, the expression on the righthand side is evaluated. Also like the path opera-
tor, the simple map operator changes the context item, so that when the lower-case
function is called with . as the argument, the . refers to the current context item,
which is the substring that is currently being processed. However, in this example, the
path operator could not be used, because the expression on the lefthand side returns
atomic values rather than nodes.

Another difference between the path operator and the simple map operator is that the
path operator removes duplicates and always returns items in document order. The
simple map operator does neither. For example, the following expression returns the
name and number elements for each product, in that order:

doc("catalog.xml")//product ! (name, number)

If the path operator had been used instead, the elements would have been re-sorted in
document order, and the number element would appear before the name for each
product.

The Simple Map Operator | 63

All of these examples could be rewritten in other ways, for example with FLWOR
expressions or with differently structured path expressions that make creative use of
parentheses. However, the simple map operator is convenient as a shorthand for iter-
ating over a sequence of items.

64 | Chapter4: Navigating XML by Using Paths

CHAPTER 5
Adding Elements and Attributes to Results

Most queries include some XML elements and attributes that structure the results. In
the previous chapter, we saw how to use path expressions to copy elements and
attributes from input documents. After a brief review of this technique, this chapter
explains how you can create entirely new elements and attributes and include them in
your results.

There are two ways to create new elements and attributes: direct constructors and
computed constructors. Direct constructors, which use an XML-like syntax, are use-
ful for creating elements and attributes whose names are fixed. Computed construc-
tors, on the other hand, allow for names that are generated dynamically in the query.

Including Elements and Attributes from the Input
Document

Some queries simply include elements and attributes from the input document in the
results. Example 5-1 includes certain selected name elements in the results.

Example 5-1. Including elements from the input document

Query

for Sprod in doc("catalog.xml")/catalog/product[@dept = 'ACC']
return $prod/name

Results

<name language="en">Floppy Sun Hat</name>
<name language="en">Deluxe Travel Bag</name>

65

Note that because the entire name element is returned, the results include the name
elements, not just their atomic values. In fact, if the query returns elements that have
attributes and descendants, they are all part of the results. This is exhibited in
Example 5-2.

Example 5-2. Including complex elements from the input document

Query

for $prod in doc("catalog.xml")/catalog/product[@dept = 'ACC']
return $prod

Results
<product dept="ACC">

<number>563</number>

<name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC">

<number>443</number>

<name language="en"s>Deluxe Travel Bag</name>
</product>

The product elements are included as they appear in the input document, with all
attributes and children. If they are in a namespace in the input document, they will be
in that same namespace in the results. There is no opportunity to add or remove chil-
dren or attributes, or change the namespace name, when using path expressions.
Techniques for making such modifications are covered later in this chapter.

Direct Element Constructors

You can also insert your own XML elements and attributes into the query results by
using XML constructors. There are two kinds of XML constructors: direct construc-
tors, which use familiar XML-like syntax, and computed constructors, that allow you
to generate dynamically the XML names used in the results.

A direct element constructor is a constructor of the first kind; it specifies an XML ele-
ment (optionally with attributes) by using XML-like syntax, as shown in Example 5-3.
The result of the query is an XHTML fragment that presents the selected data.

The h1, ul, and 11 elements appear in the results as XML elements. The h1 element
constructor simply contains literal characters Product Catalog, which appear in the
results as the content of h1. The ul element constructor, on the other hand, contains
another XQuery expression enclosed in curly braces. This is known as an enclosed
expression, and its value becomes the content of the ul element in the results. In this
case, the enclosed expression evaluates to a sequence of 1i elements, which then

66 | Chapter5: Adding Elements and Attributes to Results

vww allitebooks.cond

http://www.allitebooks.org

appear as children of the ul element in the results. An enclosed expression may also
evaluate to one or more atomic values, which appear in the results as character data.

Example 5-3. Constructing elements using XML-like syntax

Query

<html>
<h1> </h1>
{
for $prod in doc("catalog.xml")/catalog/product
return {data($Sprod/number)} {data(Sprod/name)}</1i>
}
</html>

Results

<html>
<h1>Product Catalog</hi1>

number: 557, name: Fleece Pullover
number: 563, name: Floppy Sun Hat
<lisnumber: 443, name: Deluxe Travel Bag
number: 784, name: Cotton Dress Shirt

</html>

The 11 element constructor contains a combination of both literal characters (the
strings number: and , name:) and enclosed expressions, each of which evaluates to
an atomic value. Any element constructor content outside curly braces is considered
a literal, no matter how much it looks like an expression.

Direct element constructors use a syntax that looks very much like XML. The tags use
the same angle-bracket syntax, the names must be valid XML names, and every start
tag must have a matching end tag that is properly nested. In addition, prefixed names
can be used, and even namespace declarations included. As with regular XML, the
attributes of a direct element constructor must have unique names. But there are a
few differences from real XML. For example, expressions within curly braces can use
the < operator without escaping it.

As shown in Example 5-3, element constructors can contain literal characters, other
element constructors, and enclosed expressions, in any combination.

Containing Literal Characters

Literal characters are characters that appear outside of enclosed expressions in ele-
ment constructor content. Literal characters from Example 5-3 include the string
Product Catalog in the h1 element constructor, and the string , name: in the 11
element constructor.

Direct Element Constructors | 67

In addition, the literal characters can include character and predefined entity refer-
ences such as and &1t; and CDATA sections (described in “CDATA Sections”
on page 357). As in XML content, the literal characters cannot include unescaped
less-than (<) or ampersand (&) characters; they must be escaped using < and
&, respectively.

When a curly brace is to be included literally in the content of an element, it must be
escaped by doubling it, that is, {{ for the left curly brace, or }} for the right.

Containing Other Element Constructors

Direct element constructors can also contain other direct element constructors. In
Example 5-4, the html element constructor contains constructors for h1 and ul. They
are included directly within the content of html, without curly braces. No special sep-
arator is used between them. The p element constructor contains a combination of
character data content, a direct element constructor (for the element i), and an
enclosed expression. As you can see, these three things can be intermingled as neces-
sary.

Example 5-4. Embedded direct element constructors

Query

<html>

<h1> </h1>

<p>A <i> </i> {count(doc("catalog.xml")//product)} </p>
</html>

Results

<html>

<h1>Product Catalog</h1>

<p>A <i>huge</i> list of 4 products.</p>
</html>

Containing Enclosed Expressions

In Example 5-3, the enclosed expression of the ul element evaluates to a sequence of
elements. In fact, it is possible for the enclosed expression to evaluate to a sequence of
attributes or other nodes, atomic values, or even a combination of nodes and atomic
values. It can even evaluate to a document node, in which case, that document node is
replaced by its children.

Enclosed expressions that evaluate to elements

As you have seen with the 11 elements, elements in the sequence become children of
the element being constructed (in this case, ul). Atomic values, on the other hand,

68 | Chapter5: Adding Elements and Attributes to Results

become character data content. If the enclosed expression evaluates to a sequence of
both elements and atomic values, as shown in Example 5-5, the result element has
mixed content, with the order of the child elements and character data preserved.

Example 5-5. Enclosed expressions that evaluate to elements

Query

for $prod in doc("catalog.xml")/catalog/product
return {Sprod/number}</1i>

Results

number: <number>557</number></1i>
number: <number>563</number></1i>
number: <number>443</number></1i>
number: <number>784</number></1i>

Example 5-3 used the data function in enclosed expressions to extract the values of
the elements number and name. In this example, the number element is included
without applying the data function. The results are somewhat different; instead of
just the number value itself, the entire number element is included.

Enclosed expressions that evaluate to attributes

If an element constructor contains an enclosed expression that evaluates to one or
more attributes, these attributes become attributes of the element under construction.
This is exhibited in Example 5-6, where the enclosed expression {$prod/@dept} has
been added at the beginning of the 11 constructor content.

Example 5-6. Enclosed expressions that evaluate to attributes

Query

for Sprod in doc("catalog.xml")/catalog/product
return {$prod/@dept} {Sprod/number}</1li>
Results

<1li dept="WMN">number: <number>557</number></1i>
<11 dept="ACC">number: <number>563</number></1i>
<li dept="ACC">number: <number>443</number></1i>
<1li dept="MEN">number: <number>784</number></1i>

The dept attribute appears in the results as an attribute of the 11 element rather than
as content of the element. If the example had used the data function within the
enclosed expression, the value of the dept attribute would have been the first charac-
ter data content of the 11 element.

Direct Element Constructors | 69

Enclosed expressions that evaluate to attributes must appear first in the element con-
structor content, before any other kinds of nodes.

Enclosed expressions that evaluate to atomic values

If an enclosed expression evaluates to one or more atomic values, those values are
simply cast to xs:string and included as character data content of the element.
When adjacent atomic values appear in the expression sequence, they are separated
by a space in the element content. For example:

<'L_'L>{IIX||, ||yll’ IIZ||}</'L_‘L>
will return x y z</1i>, with spaces. To avoid this, you can use three separate
expressions, as in:

<'L_'L>{llX||}{||yll}{llz||}
Another option is to use the concat function to concatenate them together into a sin-
gle expression, as in:

<lis{concat("x", "y", "z")}

Enclosed expressions with multiple sub-expressions

Enclosed expressions may include more than one sub-expression inside the curly
braces, using commas as separators. In Example 5-7, the enclosed expression in the
11 constructor contains four different sub-expressions, separated by commas.

Example 5-7. Enclosed expressions with multiple sub-expressions

Query

for $prod in doc("catalog.xml")/catalog/product
return {$prod/@dept, "string", 5+3, $prod/number}

Results

<li dept="WMN">string 8<number>557</number></1i>
<li dept="ACC">string 8<number>563</number></1i>
<li dept="ACC">string 8<number>443</number></1i>
<li dept="MEN">string 8<number>784</number></1i>

The first sub-expression, $prod/@dept, evaluates to an attribute, and therefore
becomes an attribute of 11.

The next two sub-expressions, "string" and 5+3, evaluate to atomic values: a string
and an integer, respectively. Note that they are separated by a space in the results.

The final sub-expression, $prod/number, is an element, which is not separated from
the atomic values by a space.

70 | Chapter5: Adding Elements and Attributes to Results

Specifying Attributes Directly

You have seen how attributes can be included with the result elements by including
enclosed expressions that evaluate to attributes. Attributes can also be constructed
directly using XML-like syntax. Attribute values can be specified using literal text or
enclosed expressions, or a combination of the two.

In Example 5-8, class and dep attributes are added to the h1 and 11 elements, respec-
tively. The class attribute of h1 simply includes literal text that is repeated in the
results. The dep attribute of 11, on the other hand, includes an enclosed expression
that evaluates to the value of the dept attribute of that product. Do not let the quotes
around the expression fool you; anything in curly braces is evaluated as an enclosed
expression.

Example 5-8. Specifying attributes directly using XML-like syntax

Query
<html>
<h1 class="itemHdr"> </h1>
{
for $prod in doc("catalog.xml")/catalog/product
return <1li dep="{Sprod/@dept}"> {data($prod/number)
} {data($prod/name)}</1i>
}
</html>
Results
<html>
<h1 class="itemHdr">Product Catalog</h1>

<li dep="WMN">number: 557, name: Fleece Pullover
<1i dep="ACC">number: 563, name: Floppy Sun Hat
<li dep="ACC">number: 443, name: Deluxe Travel Bag
<li dep="MEN">number: 784, name: Cotton Dress Shirt

</html>

Note that the dep attribute will appear regardless of whether there is a dept attribute
of the $prod element. If the $prod element has no dept attribute, the dep attribute’s
value will be a zero-length string. This is in contrast to Example 5-7, where 11 will
have a dept attribute only if $prod has a dept attribute.

If literal text is used in a direct attribute constructor, it follows similar rules to the
literal text in element constructors. Also, as with XML syntax, quote characters in
attribute values must be escaped if they match the kind of quotes (single or double)
used to delimit that value. However, you don’t need to escape quotes appearing in an

Direct Element Constructors | 71

expression inside curly braces. The following example is valid because the inner pair
of double quotes is inside curly braces:

<11 dep="{substring-after($prod/@dept, "-")}"/>

The evaluation of enclosed expressions in attribute values is slightly different from
those in element content. Because attributes cannot themselves have children or
attributes, the attribute value must evaluate to an atomic value. Therefore, if an
enclosed expression in an attribute value evaluates to one or more elements or
attributes, the value of the node(s) is extracted and converted to a string.

In Example 5-8, the enclosed expression {$prod/@dept} for the dep attribute of 11
evaluates to an attribute. The processor did not attempt to add a dept attribute to the
dep attribute (which would not make sense). Instead, it extracted the value of the
dept attribute and used this as the value of the dep attribute.

Just as in XML, you can specify multiple attributes on an element, as long as they
have unique names. The order of the attributes is never considered significant in
XML, so your attributes might not appear in your result document in the same order
as you specified them in the query. There is no way to force the processor to preserve
attribute order.

Declaring Namespaces in Direct Constructors

In addition to regular attributes, you can also include namespace declarations in
direct element constructors. These namespace declaration attributes affect the ele-
ment itself and all its descendants, and override any namespace declarations in the
prolog or in outer element constructors. Example 5-9 shows the use of a namespace
declaration in an element constructor. This is discussed in detail in “Namespace Dec-
larations in Direct Element Constructors” on page 166.

Example 5-9. Using a namespace declaration in a constructor

Query

<xhtml:html xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<xhtml:h1 class="1itemHdr"> </xhtml:h1>
<xhtml:ul>{
for $prod in doc("catalog.xml")/catalog/product
return <xhtml:1i class="{$prod/@dept}"> {
data(Sprod/number)}</xhtml:1i>
}</xhtml:ul>
</xhtml:html>

72 | Chapter5: Adding Elements and Attributes to Results

Results

<xhtml:html xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<xhtml:h1 class="itemHdr">Product Catalog</xhtml:h1>
<xhtml:ul>
<xhtml:11 class="WMN">number: 557</xhtml:1i>
<xhtml:1i class="ACC"snumber: 563</xhtml:1i>
<xhtml:11 class="ACC">number: 443</xhtml:1i>
<xhtml:1i class="MEN">number: 784</xhtml:1i>
</xhtml:ul>
</xhtml:html>

Use Case: Modifying an Element from the Input Document

Suppose you want to include elements from the input document but want to make
minor modifications such as adding or removing a child or attribute. To do this, a
new element must be created using a constructor. For example, suppose you want to
include product elements from the input document, but add an additional attribute
id that is equal to the letter P plus the product number. The query shown in
Example 5-10 accomplishes this.

Example 5-10. Adding an attribute to an element

Query

for $prod in doc("catalog.xml")/catalog/product[@dept = 'ACC']
return <product id="P{$prod/number}">

{$prod/(@*, *)}

</product>
Results
<product dept="ACC" 1d="P563">
<number>563</number>
<name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC" 1d="P443">
<number>443</number>
<name language="en">Deluxe Travel Bag</name>
</product>

The query makes a new copy of the product element, which contains the enclosed
expression {$prod/(@*, *)} to copy all the attributes and child elements from the
original product element. You could also use the broader expression {$prod/(@*,
node())} to copy all the child nodes of the element, including text, comments, and
processing instructions.

As another example, suppose you want to copy some product elements from the
input document but remove the number child. This can be accomplished using the

Direct Element Constructors | 73

query in Example 5-11. The enclosed expression $prod/(@*, * except number)
selects all the attributes and all the child elements of product except number.

Example 5-11. Removing a child from an element

Query

for $prod in doc("catalog.xml")/catalog/product[@dept = 'ACC']
return <product>
{$prod/(@*, * except number)}
</product>

Results

<product dept="ACC">

<name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC">

<name language="en"s>Deluxe Travel Bag</name>
</product>

Additional examples of making “modifications” to elements and attributes can be
found in “Copying Input Elements with Modifications” on page 144.

Direct Element Constructors and Whitespace

Whitespace is often used in direct element constructors. For example, you may use
line breaks and tabs to indent result XML elements for readability, or spaces to sepa-
rate enclosed expressions. Sometimes the query author intends for whitespace to be
significant (included in the results); sometimes it is just used for formatting the query
for visual presentation.

Boundary whitespace

Boundary whitespace is whitespace that occurs by itself (without any non-whitespace
characters) in direct element constructors. It may appear between two element con-
structor tags, between two enclosed expressions, or between a tag and an enclosed
expression. It can be made up of any of the XML whitespace characters, namely
space, tab, carriage return, and line feed.

For example, in the constructor shown in Example 5-12, there is boundary white-
space in the ul constructor between the ul start tag and the left curly brace, as well as
between the right curly brace and the ul end tag. In the 1i constructor, there is
boundary whitespace between the 11 start tag and the b start tag, between the b end
tag and the left curly brace, and between the right curly brace and the 11 end tag.

74 | Chapter5: Adding Elements and Attributes to Results

Example 5-12. Constructor with boundary whitespace

{ { "557" } 1}

With boundary whitespace discarded, the results look something like:
 number:<number>557</number></1i>

Note that the space before the text number: is not discarded because it appears with
other characters. Of course, if you choose to serialize and indent your results, new
whitespace will be added for the indentation. Therefore, your results may vary.

Whitespace inside enclosed expressions that is not in quotes is never considered sig-
nificant. It is simply the normal whitespace allowed by XQuery syntax. In the ul con-
structor, the spaces between the left curly brace and the 11 start tag fall into this
category. It is not technically considered boundary whitespace, and it is always dis-
carded. Using an xml:space attribute on a direct element constructor has no effect on
the treatment of boundary whitespace.

There is no boundary whitespace in attribute values. For example, in the expression:
<product dept=" {$d} />
the whitespace between the quotes and the enclosed expression is considered signifi-
cant and therefore is preserved. The expression:
<product dept="{ $d 1" />

has no boundary whitespace either, only whitespace in an enclosed expression. This
whitespace is not preserved. Line breaks are never preserved in attribute values; they
are converted to spaces. This is a standard feature of XML itself, known as attribute
value normalization.

The boundary-space declaration

By default, a query processor discards all boundary whitespace. Sometimes you want
to preserve the boundary whitespace in your query results because it is significant.
The boundary-space declaration, specified in the query prolog, instructs the pro-
cessor how to handle boundary whitespace in direct element constructors. Its syntax
is shown in Figure 5-1.

——declare boundary-space Lpreserve ;—>
strip

Figure 5-1. Syntax of a boundary-space declaration

The two valid values are:

Direct Element Constructors | 75

preserve
This value results in boundary whitespace being preserved.

strip
This value results in boundary whitespace being deleted.

The default is strip. For example, the boundary-space declaration:
declare boundary-space preserve;

causes whitespace to be preserved. With this boundary-space declaration, the result
of the constructor in Example 5-12 becomes:

 number: <number>557</number> </1i>

Table 5-1 shows some additional examples of results with and without preserved
whitespace.

Table 5-1. Stripping boundary whitespace

Expression Value with boundary whitespace Value with boundary whitespace stripped

preserved

<e> <e> <e><c></c></e>

<c></c> <c></c>

</e> </e>

<e> {"x"} </e> <e> x </e> <e>x</e>

<e> {()} </e> <e> </e> <e></e>

<e>{"x"} {"y"}</e> <e>x y</e> <e>xy</e>

<e> x {"y"}</e> <e> X y</e> <e> X y</e>

<e>{" x "}</e> <e> x </e> <e> x </e>

<e>{ "x" }</e> <e>x</e> <e>x</e>

<e> {"x"}</e> <e> x</e> <e> x</e>

<e> </e> <e> </e> <e></e>

Forcing boundary whitespace preservation

If you don't want to preserve all whitespace but wish to preserve it in one or more
specific elements, you can do this in one of two ways. The first way is to include an
enclosed expression that evaluates to whitespace. For example, <e>{" x "}</e> eval-
uates to <e> x </e>, regardless of the boundary-space declaration. This is because
the whitespace is part of the value of the expression (the literal string).

76 | Chapter5: Adding Elements and Attributes to Results

Another method is to use a character reference to a whitespace character. Whitespace
that is the result of a character reference is always considered significant. For exam-
ple, <e> {"x"}</e> always evaluates to <e> x</e>. Character references
are described further in “XML Entity and Character References” on page 355.

Computed Constructors

Generally, if you know the element or attribute name that you want to use in your
results, you can use XML-like syntax as described in the previous sections. However,
sometimes you may want to compute the name dynamically, so you cannot include
the literal names in the query. In this case, you use computed constructors. This can
be useful when:

 You want to simply copy elements from the input document (regardless of name)
but make minor changes to their content. For example, you want to add an id
attribute to every element, or move all the elements to a different namespace.

o You want to turn content from the input document into element or attribute
names. For example, you want to create an element whose name is the value of
the dept attribute in the input document, without a predefined list of elements.

o You want to look up element names in a separate dictionary, e.g., for language
translation purposes.

You can use computed constructors for elements, attributes, and other kinds of
nodes.

Computed Element Constructors

A computed element constructor uses the keyword element, followed by a name and
some content in curly braces. The syntax of a computed element constructor is shown
in Figure 5-2.

——element <element-name> { }—
[{ <name-expr> } J |— <content-expr> J

Figure 5-2. Syntax of a computed element constructor

Example 5-13 shows a query that is equivalent to Example 5-3, except that it uses
computed element constructors instead of direct ones.

Computed Constructors | 77

Example 5-13. Simple computed constructor

Query

element html {
element h1l { "Product Catalog" },
element ul {
for $prod in doc("catalog.xml")/catalog/product
return element 11 {"number:", data(Sprod/number),
", name:", data(Sprod/name)}

}
}
Results
<html>
<h1>Product Catalog</hi1>

<lisnumber: 557 , name: Fleece Pullover
number: 563 , name: Floppy Sun Hat
<lisnumber: 443 , name: Deluxe Travel Bag
number: 784 , name: Cotton Dress Shirt

</html>

Names of computed element constructors

The name in a computed element constructor is represented by either a qualified
name or an expression (in curly braces) that evaluates to a qualified name. This is
then followed by an enclosed expression (also in curly braces) that contains the con-
tent of the element. For example, the constructor:

element h1 { "Product Catalog" }
uses a literal name to construct the element <h1>Product Catalog</h1>, while:
element {concat("h", $level)} { "Product Catalog" }

uses an expression, enclosed in curly braces, to dynamically generate the name by
concatenating the literal h with a variable value.

You could also copy the name of the new node from an existing node, using the
node-name function. For example:

element {node-name($myNode)} { "contents" }

will give the new element the same name as the node that is bound to the $myNode
variable.

78 | Chapter5: Adding Elements and Attributes to Results

The expression used for the name can be untyped, or it can be either an xs:QName
(which is what node-name returns) or an xs:string value. It can even be a node, in
which case it is atomized to extract its typed value (not its name).

Default namespace declarations apply to element constructors. If you do not prefix
your names, and you declare a default element namespace (e.g., in an outer expres-
sion or in the query prolog), the new elements are considered to be in that name-
space.

Content of computed element constructors

After the name, the next part of the computed element constructor is an enclosed
expression that contains the contents of the element, including attributes, character
data, and child elements. As with direct XML constructors, any elements returned by
the enclosed expression become children of the new element, attributes become
attributes, and atomic values become character data content. Computed constructors
have the same rule that the attributes must appear before any elements or character
data.

The syntax is slightly different for computed constructors in that there can only be
one pair of curly braces, containing the attributes and contents of the element. If sev-
eral expressions are needed for the attributes, child elements, and character data con-
tent, they are separated by commas. For example, when using a direct element
constructor, you can construct the 11 element this way:

number: {data($prod/number)} , name: {data($prod/name)}</1i>

where you intersperse literal text and enclosed expressions. To create an identical 11
element using a computed constructor, you would use the syntax:

element 11 {"number:", data($prod/number), ", name:", data($prod/name)}

Note that the literal text is in quotes and is separated from the expressions by com-
mas. Also, the expressions, such as data($prod/number), are not themselves enclosed
in curly braces as they were with the direct constructor.

The values of each of the four expressions in the 11 constructor will be separated by
spaces in the results. If you do not wish to have those spaces in the results, you can
use the concat function to concatenate the values together, as in:

element 11 {concat("number:", data($prod/number), ", name:", data($prod/name))}

If you want the constructed element to be empty, you can put nothing between the
curly braces (as in { }), but the braces are still required.

Computed Constructors | 79

Computed Attribute Constructors

A computed attribute constructor has syntax identical to a computed element con-
structor, except that it uses the keyword attribute. Its syntax is shown in Figure 5-3.

—attribute—[<attribute—name> { }—
{ <name-expr> } J L <value-expr> J

Figure 5-3. Syntax of a computed attribute constructor

For example, the constructors:
attribute myattr { $prod/@dept }
and:
attribute {concat("my", "attr")} { Sprod/@dept }

both construct an attribute whose name is myattr and whose value is the same as the
dept attribute of $prod. As with direct attribute constructors, any elements or
attributes that are returned by the expression have their values extracted and con-
verted to strings.

Computed attribute constructors are not just for use in computed element construc-
tors. They can be used in direct element constructors as well, if they are included in
an enclosed expression. For example, the expression:

<result>{attribute {concat("my", "attr")} { "xyz" } }</result>
will return the result:
<result myattr="xyz"/>

You cannot construct namespace declarations by using computed attribute construc-
tors. If the name specified for an attribute constructor is xmlns, or a name whose pre-
fix is xmlns, error XQDY0044 is raised. For example, the following constructor is
invalid:

attribute xmlns:prod { "http://datypic.com/prod" }

Instead, you should declare the namespace in the query prolog or in an outer direct
element constructor.

Use Case: Turning Content to Markup

One application of computed constructors is to transform content into markup. For
example, suppose you want to create a product catalog that has the names of the
departments as element names instead of attribute values. The query in Example 5-14
can be used for this purpose.

80 | Chapter5: Adding Elements and Attributes to Results

Example 5-14. Turning content into markup

Query

for Sdept in distinct-values(doc("catalog.xml")/catalog/product/@dept)
return element {Sdept}
{doc("catalog.xml")/catalog/product[@dept = $dept]/name}

Results

<WMN>
<name language="en">Fleece Pullover</name>
</WMN>
<ACC>
<name language="en">Floppy Sun Hat</name>
<name language="en"s>Deluxe Travel Bag</name>
</ACC>
<MEN>
<name language="en">Cotton Dress Shirt</name>
</MEN>

In the results, the department names are now element names. The second expression
in curly braces returns all the name elements for products in that department.

Computed constructors are also useful to recursively process elements regardless of

their names. Example 5-10 showed how to add an 1id attribute to a product element.
Suppose you wanted to add an id attribute to every element in a document, regard-
less of its name. It is necessary to use computed constructors for this, because you will
not know the name of the constructed elements in advance. “Copying Input Elements

with Modifications” on page 144 shows some further examples of using computed

constructors to generically handle elements with any name.

Computed Constructors

81

CHAPTER 6
Selecting and Joining Using FLWORs

This chapter describes the facilities in XQuery for selecting, filtering, and joining data
from one or more input documents. It covers the syntax of FLWOR expressions and
quantified expressions.

Selecting with Path Expressions

Chapter 4 described how to use path expressions to select elements from input docu-
ments. For example, the expression:

doc("catalog.xml")//product[@dept = "ACC"]/name

can be used to select the names of all the products in the ACC department. You can
add multiple predicates (expressions in square brackets) to filter the results based on
more than one criterion. You can even add logical and other expressions to predi-
cates, as in:

doc("catalog.xml")//product[@dept = "ACC" or @dept = "WMN"]/name

A path expression can be the entire content of a query; there is no requirement that
there be a FLWOR expression in every query. Path expressions are useful for queries
where no new elements and attributes are being constructed and the results don’t
need to be sorted. A path expression can be preferable to a FLWOR because it is more
compact and some implementations will be able to evaluate it faster.

FLWOR Expressions

FLWOR expressions, also known simply as FLWORs, are used for queries that are
more complex. In addition to allowing more readable and structured selections, they
allow functionality such as joining data from multiple sources, constructing new ele-
ments and attributes, evaluating functions on intermediate values, and sorting results.

83

FLWOR (pronounced “flower”), stands for “for, let, where, order by, return,” the key-
words that are used in the expression. Example 6-1 shows a FLWOR that is equivalent
to the second path expression from the previous section.

Example 6-1. FLWOR

for $prod in doc("catalog.xml")//product
let SprodDept := $prod/@dept

where $prodDept = "ACC" or SprodDept = "WMN"
return $prod/name

Of course, this is far more verbose, and for such a simple example, the path expres-
sion is preferable. However, this example is useful as an illustration before moving on
to examples that are more complex. As you can see, the FLWOR is made up of several
parts:

for
This clause sets up an iteration through the product elements returned by the
path expression. The variable $prod is bound, in turn, to each product in the
sequence. The rest of the FLWOR is evaluated once for each product, in this case,
four times.

let
This clause binds the $prodDept variable to the value of the dept attribute.

where
This clause selects elements whose dept attribute is equal to ACC or WMN.

return
This clause returns the name child of each of the three product elements that pass
the where clause.

The overall syntax of a FLWOR is shown in Figure 6-1.
<for-clause>

<for-clause> ¢
E<let—clause> —<let-clause>
<window-clause> — |—<window-clause> —j

— <where-clause>

—]— return <expr>—

— <groupby-clause> —
— <orderby-clause> —

—<count-clause>

Figure 6-1. Syntax of a FLWOR

84 | Chapter6: Selecting and Joining Using FLWORs

The first clause in a FLWOR must be a for, let, or window clause. After that, any
number of any of the clauses listed may appear, in any order. The final clause is the
required return clause. The clauses of a FLWOR are listed in Table 6-1, along with a
link to where they are covered fully in the book.

Table 6-1. FLWOR clauses

Keyword Description Chapter/Section

for Sets up an iteration “The for Clause” on page 85

let Binds a variable “The et Clause” on page 88

for tumbling window, (reates windows “Windowing” on page 138

for sliding window

where Filters out elements “The where Clause” on page 89

group by Groups results “Grouping Using the group by Clause” on page 109
order by Sorts the results “The order by Clause” on page 99

count Binds the position to a variable “Using the count Clause” on page 135

return Specifies what to return “The return Clause” on page 90

FLWORs can be the whole query, or they can appear in other expressions such as in
the return clause of another FLWOR or even in a function call, as in:

max(for $prod in doc("catalog.xml")//product
return xs:integer($prod/number))
The for and return keywords are aligned vertically here to make the structure of the
FLWOR more obvious. This is generally good practice, although not always possible.

Let’s take a closer look at the main clauses that make up the FLWOR.

The for Clause

A for clause, whose syntax is shown in Figure 6-2, sets up an iteration that allows the
rest of the FLWOR to be evaluated multiple times, once for each item in the sequence
returned by the expression after the in keyword. This sequence, also known as the
binding sequence, can evaluate to any sequence of zero, one, or more items. In the
previous example, it was a sequence of product elements, but it could also be atomic
values, attribute nodes, or indeed items of any kind, or a mixture of items. If the
binding sequence is the empty sequence, the rest of the FLWOR is simply not evalu-
ated (it iterates zero times).

Additional features of the for clause are described elsewhere in the book. The at
clause, which allows for positional variables, is described in “Working with Positions
and Sequence Numbers” on page 133. The as clause, which declares the type of the
variable, is described in “Type Declarations in FLWORs” on page 251. The allowing

FLWOR Expressions | 85

empty keywords, which allow outer joins, are described in “Outer joins with allowing
empty” on page 97.

)
—for£$ <var-name> L J[“ J in <expr>J—>
as <sequence-type>-lallowing empty-lat $<var-name>

Figure 6-2. Syntax of a for clause

The FLWOR expression with its for clause is similar to loops in procedural languages
such as C. However, one key difference is that in XQuery, because it is a functional
language, the iterations are considered to be in no particular order. They do not nec-
essarily occur sequentially, one after the other. One manifestation of this is that you
cannot keep variable counters that are incremented with each iteration, or continu-
ously append to the end of a string variable with each iteration. “Working with Posi-
tions and Sequence Numbers” on page 133 provides more information about
simulating counters.

Range expressions

Another useful technique is to supply a sequence of integers in the for clause in order
to specify the number of times to iterate. This can be accomplished through a range
expression, which creates a sequence of consecutive integers. For example, the range
expression 1 to 3 evaluates to a sequence of integers (1, 2, 3).The FLWOR shown
in Example 6-2 iterates three times and returns three oneEval elements.

Example 6-2. Using a range expression

Query

for $1 in 1 to 3
return <oneEval>{$i}</oneEval>

Results

<oneEval>1</oneEval>
<oneEval>2</oneEval>
<oneEval>3</oneEval>

Range expressions can be included within parenthesized expressions, as in (1 to 3,
6, 8 to 10). They can also use variables, asin 1 to $prodCount. Each of the expres-
sions before and after the to keyword must evaluate to an integer.

If the first integer is greater than the second, as in 3 to 1, or if either operand is the
empty sequence, the expression evaluates to the empty sequence. The reason for this

86 | (Chapter6: Selecting and Joining Using FLWORs

is to ensure that for $i in 1 to count($seq) does the expected thing even if $seq
is an empty sequence.

You can use the reverse function if you want to descend in value, as in:
for $1 in reverse(1 to 3)

You can also increment by some value other than 1 by using an expression like:
for $1 in (1 to 100)[. mod 2 = 0]

which gives you every other number (2, 4, 6, etc.) up to 100.

Multiple for clauses

You can use multiple for clauses in a FLWOR, which is similar to nested loops in a
programming language. The result is that the rest of the FLWOR is evaluated for
every combination of the values of the variables. Example 6-3 shows a query with two
for clauses, and demonstrates the order of the results.

Example 6-3. Multiple for clauses

Query

for $1 in (1, 2)

for $j in ("a", "b")

return <oneEval> {s1} {$j}</oneEval>

Results

<oneEval>i is 1 and j is a</oneEval>
<oneEval>i is 1 and j is b</oneEval>
<oneEval>i is 2 and j is a</oneEval>
<oneEval>i is 2 and j is b</oneEval>

The order is significant; it uses the first value of the first variable ($1) and iterates
over the values of the second variable ($3j), then takes the second value of $1 and iter-
ates over the values of $j.

Also, multiple variables can be bound in a single for clause, separated by commas.
This has the same effect as using multiple for clauses. The example shown in
Example 6-4 returns the same results as Example 6-3. This syntax is shorter but can
be less clear in the case of complex expressions.

Example 6-4. Multiple variable bindings in one for clause

for $1 in (1, 2), $j in ("a", "b")
return <oneEval> {s1} {$j}</oneEval>

FLWOR Expressions | 87

Specifying multiple variable bindings (or multiple for clauses) is especially useful for
joining data. This is described further in “Joins” on page 95.

The let Clause

A let clause is a convenient way to bind a variable to a value. Unlike a for clause, a
let clause does not result in iteration; it binds the whole sequence to the variable
rather than binding each item in turn. The let clause serves as a programmatic con-
venience that avoids repeating the same expression multiple times. With some imple-
mentations, it may improve performance, because the expression is evaluated only
once instead of each time it is needed.

The syntax of a let clause is shown in Figure 6-3. (The as clause, which declares the
type of the variable, is described in “Type Declarations in FLWORs” on page 251.)

)
————let—i—$<var—name> L 1= <expr>J—>

as <sequence-1.‘ype>J

Figure 6-3. Syntax of a let clause

To illustrate the difference between for and let clauses, compare Example 6-5 with
Example 6-2.

Example 6-5. Using a let clause with a range expression

Query

let $1 := (1 to 3)
return <oneEval>{$i}</oneEval>

Results
<oneEval>1 2 3</oneEval>

The FLWOR with the let clause returns only a single oneEval element, because no
iteration takes place and the return clause is evaluated only once.

One or more let clauses can be intermingled with one or more for clauses. Each of
the let and for clauses may reference a variable bound in any previous clause.
Example 6-6 shows such a FLWOR.

Example 6-6. Intermingled for and let clauses
let $doc := doc('"catalog.xml")

for $prod in $doc//product
let $prodDept := $prod/@dept

88 | (Chapter6: Selecting and Joining Using FLWORs

let $prodName := $prod/name
where $prodDept = "ACC" or SprodDept = "WMN"
return $prodName

As with for clauses, adjacent let clauses can be represented using a slightly short-
ened syntax that replaces the let keyword with a comma, as in:
let $prodDept := $prod/@dept, SprodName := S$Sprod/name

Another handy use for the let clause is to perform several functions or operations in
order. For example, suppose you want to take a string and replace all instances of at
with @, replace all instances of dot with a period (.), and remove any remaining
spaces. You could write the expression:

replace(replace(replace($myString, 'at', '@'), 'dot', '.'), " ', '")

but that is difficult to read and debug, especially as more functions are added. An
alternative is the expression:

let SmyString2 := replace(SmyString, 'at', 'Q@')
let $myString3 := replace($myString2, 'dot', '.'")
let SmyString4 := replace(SmyString3, ' ', '")
return $myString4

which makes the query clearer.

The where Clause

The where clause is used to specify criteria that filter the results of the FLWOR. Its
syntax is shown in Figure 6-4.

where <expr>—»

Figure 6-4. Syntax of a where clause

The where clause can reference variables that were bound by a for or let clause. For
example:

where $prodDept = "ACC" or SprodDept = "WMN"

references the $prodDept variable. In addition to expressing complex filters, the
where clause is also very useful for joins.

A where clause can be composed of many expressions joined by and and or keywords,
as shown in Example 6-7.

FLWOR Expressions | 89

Example 6-7. A where clause with multiple expressions

for $prod in doc("catalog.xml")//product
let SprodDept := $prod/@dept
where $prod/number > 100
and starts-with($prod/name, "F")
and exists($prod/colorChoices)
and (SprodDept = "ACC" or $prodDept = "WMN")
return $prod

Starting in version 3.0, it is also possible to have multiple where clauses in the same
FLWOR. In previous versions, only one was allowed.

Note that when using paths within the where clause, they need to start with an
expression that sets the context. For example, it has to say $prod/number > 100
rather than just number > 100. Otherwise, the processor does not know where to
look for the number child.

The effective boolean value of the where clause is calculated. This means that if the
where clause evaluates to a Boolean value false, a zero-length string, the number 0 or
NaN, or the empty sequence, it is considered false, and the return clause of the
FLWOR is not evaluated for that iteration. If the effective boolean value is true, the
return clause is evaluated. For example, you could use:

where $prod/name

which returns true if $prod has a name child, and false if it does not. As another
example, you could use:

where $numProds

which returns true if $numProds is a numeric value that is not zero (and not NaN).
However, these types of expressions are somewhat cryptic, and it is preferable to use
clearer expressions, such as:

where exists($prod/name)
and $numProds > 0

The return Clause

The return clause consists of the return keyword followed by the single expression
that is to be returned. It is evaluated once for each iteration, assuming the where
clause evaluated to true. The result value of the entire FLWOR is a sequence of items

returned by each evaluation of the return clause. For example, the value of the entire
FLWOR:

for $1 in (1 to 3)
return <oneEval>{$i}</oneEval>

90 | Chapter6: Selecting and Joining Using FLWORs

is a sequence of three oneEval elements, one for each time the return clause was
evaluated.

If more than one expression is to be included in the return clause, they can be com-
bined in a sequence. For example, the FLWOR:

for $1 in (1 to 3)

return (<one>{$i}</one>, <two>{S$i}</two>)
returns a sequence of six elements, two for each time the return clause is evaluated.
The parentheses and comma are used in the return clause to indicate that a sequence
of the two elements should be returned. If no parentheses or comma were used, the
two element constructor would not be considered part of the FLWOR.

The Scope of Variables

When a variable is bound in a for or let clause, it can be referenced anywhere in that
FLWOR after the clause that binds it. This includes, for example, other subsequent
let or for clauses, the where clause, or the return clause. It cannot be referenced in a
preceding clause, and it cannot be referenced in the clause itself, as in:

let Scount := 0

for $prod in doc("catalog.xml")//product

let Scount := Scount + 1
This does not raise an error, but it is actually declaring a new variable with the same
name, so it will have unexpected results, as described in “Adding Sequence Numbers
to Results” on page 133.

If you bind two variables with the same name with the same containing expression,
such as two for or let clauses that are part of the same FLWOR, you may again get
unexpected results. It will create two separate variables with the same name, where
the second masks the first and makes it inaccessible within the scope of the second
variable.

Quantified Expressions

A quantified expression determines whether some or all of the items in a sequence
meet a particular condition. For example, if you want to know whether any of the
items in an order are from the accessory department, you can use the expression
shown in Example 6-8. This expression will return true.

Example 6-8. Quantified expression using the some keyword

some Sdept in doc('"catalog.xml")//product/@dept
satisfies (Sdept = "ACC")

Quantified Expressions | 91

Alternatively, if you want to know if every item in an order is from the accessory
department, you can simply change the word some to every, as shown in
Example 6-9. This expression will return false.

Example 6-9. Quantified expression using the every keyword

every S$dept in doc("catalog.xml")//product/@dept
satisfies (Sdept = "ACC")

A quantified expression always evaluates to a Boolean value (true or false). As such,
it is not useful for selecting the elements or attributes that meet certain criteria, but
rather for simply determining whether any exist. Quantified expressions can gener-
ally be easily rewritten as FLWORs or even as simple path expressions. However, the
quantified expression can be more compact and easier for implementations to
optimize.

A quantified expression is made of several parts:

o A quantifier (the keyword some or every)
o One or more in clauses that bind variables to sequences
o A satisfies clause that contains the test expression
The syntax of a quantified expression is shown in Figure 6-5. (The as clause, which

specifies the type of the variable, is described in “Type Declarations in Quantified
Expressions” on page 252.)

)

—[some j— $<var-name> L J in <expr> J~ satisfies <expr>—»
every as <sequence-type>

Figure 6-5. Syntax of a quantified expression

The processor tests the satisfies expression (using its effective boolean value) for
every item in the sequence. If the quantifier is some, it returns true if the satisfies
expression is true for any of the items. If the quantifier is every, it returns true only
if the satisfies expression is true for all items. If there are no items in the sequence,
an expression with some always returns false, while an expression with every always
returns true.

You can use the not function with a quantified expression to express “not any”
(none), and “not every” Example 6-10 returns true if none of the product elements
have a dept attribute equal to ACC. For our particular catalog, this returns false.

92 | Chapter 6: Selecting and Joining Using FLWORs

Example 6-10. Combining the not function with a quantified expression

not(some $dept in doc("catalog.xml")//product/@dept
satisfies (Sdept = "ACC"))

Binding Multiple Variables

You can bind multiple variables in a quantified expression by separating the clauses
with commas. As with the for clauses of FLWORs, the result is that every combina-
tion of the items in the sequences is taken. Example 6-11 returns true because there
is a combination of values (where $1 is 3 and $j is 10) where the satisfies expres-
sion is true.

Example 6-11. Binding multiple variables in a quantified expression

some Si1 in (1 to 3), $j in (10, 11)
satisfies $j - $1 = 7

Selecting Distinct Values

The distinct-values function selects distinct atomic values from a sequence. For
example, the function call:

distinct-values(doc("catalog.xml")//product/@dept)

returns all the distinct values of the dept attribute, namely ("WMN", "ACC", "MEN").
This function determines whether two values are distinct based on their value equal-
ity by using the eq operator.

It is also common to select a distinct set of combinations of values. For example, you
might want to select all the distinct department/product number combinations from
the product catalog. You cannot use the distinct-values function directly for this,
because it accepts only one sequence of atomic values, not multiple sequences of mul-
tiple values. Instead, you could use the expression shown in Example 6-12.

Example 6-12. Distinctness on a combination of values

Query

let $prods := doc("catalog.xml")//product
for $d in distinct-values($prods/@dept),

$n in distinct-values($prods[@dept = $d]/number)
return <result dept="{$d}" number="{$n}"/>

Selecting Distinct Values | 93

Results

<result dept="WMN" number="557"/>
<result dept="ACC" number="563"/>
<result dept="ACC" number="443"/>
<result dept="MEN" number="784"/>

For each distinct department, bound to $d, it generates a list of distinct product num-
bers within that department by using the predicate [@dept = $d]. It then returns the
resulting combination of values as a result element. The order in which the values
are returned is implementation-dependent, so it can be unpredictable.

Additional data items can be added by adding for clauses with the appropriate
predicates.

Useful Function
functx:distinct-deep

Suppose you want to find distinct elements based on all of their children and
attributes. You could use an expression similar to the one shown in Example 6-12, but
it could get complicated if there are many elements and attributes to compare. Also,
you would be required to know the names of all the attributes and child elements in
advance. A more generic function, shown here, can be used to select distinct nodes
based on all of their contents:

declare namespace functx = "http://www.functx.com";
declare function functx:distinct-deep ($nodes as node()*) as node()*
{

for $seq in (1 to count($nodes))
let $node := Snodes[$seq]
let $restOfNodes := subsequence($nodes, $seq + 1)
return if (some SotherNode in $restOfNodes
satisfies (deep-equal(SotherNode, $node)))
then ()
else $node
b
For each node in a sequence, the function determines whether the node has the same
contents as any nodes that occur later in the sequence. Any nodes that have later
matches are eliminated. The function makes use of the deep-equal function, which
compares two elements based on their attributes and children.

For example, suppose your product catalog is very large, and you suspect that there
are duplicate entries that need to be eliminated from the query results. The function
call:

functx:distinct-deep(doc("catalog.xml")//product)

94 | Chapter6: Selecting and Joining Using FLWORs

returns only distinct product elements, based on all of their content and attributes.
The function provided here is slightly altered from the version in the FunctX function
library in order to make it more clear for educational purposes, but the result is the
same.

Joins

One of the major benefits of FLWORs is that they can easily join data from multiple
sources. For example, suppose you want to join information from your product cata-
log (catalog.xml) and your order (order.xml). You want a list of all the items in the
order, along with their number, name, and quantity. Example 6-13 shows a FLWOR
that performs this join.

Example 6-13. Two-way join in a predicate

Query

for $item in doc("order.xml")//item,
$prod in doc("catalog.xml")//product[number = S$item/@num]
return <item num="{$item/@num}"
name="{Sprod/name}"
quan="{$item/@quantity}"/>

Results

<item num="557" name="Fleece Pullover" quan="1"/>
<item num="563" name="Floppy Sun Hat" quan="1"/>
<item num="443" name="Deluxe Travel Bag" quan="2"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="557" name="Fleece Pullover" quan="1"/>

The first part of the for clause selects each item from the order, and the second part
selects the matching product element from the catalog.xml document, using a predi-
cate to identify the one whose number matches the item’s num attribute. Another way
to accomplish the same thing is by using a where clause instead of a predicate, as
shown in Example 6-14. This query yields the same results.

Example 6-14. Two-way join in a where clause

for $item in doc("order.xml")//item,
$prod in doc("catalog.xml")//product
where $item/@num = $prod/number
return <item num="{$item/@num}"
name="{Sprod/name}"
quan="{$item/@quantity}"/>

Joins | 95

Whether to use a predicate or a where clause is a matter of personal preference. When
many conditions apply, a where clause can be more readable. However, for simple
conditions, a predicate may be preferable because it is less verbose. In some imple-
mentations, predicates perform faster than where clauses.

Three-Way Joins

Joins can be extended to allow more than two sources to be joined together. For
example, suppose that, along with catalog.xml and order.xml, you also want to join the
prices.xml document, which contains current pricing information for each product.

The query shown in Example 6-15 joins the prices.xml document with the others to
provide pricing information in the results. It uses two expressions in the where clause
to implement the two joins.

Example 6-15. Three-way join in a where clause

Query

for $item in doc("order.xml")//item,
$prod in doc("catalog.xml")//product,
Sprice in doc("prices.xml")//prod
where $item/@num = $prod/number and $prod/number = Sprice/@num
return <item num="{$item/@num}"
name="{Sprod/name}"
price="{$price/price}"/>

Results

<item num="557" name="Fleece Pullover" price="29.99"/>
<item num="563" name="Floppy Sun Hat" price="69.99"/>
<item num="443" name="Deluxe Travel Bag" price="39.99"/>
<item num="557" name="Fleece Pullover" price="29.99"/>

Outer Joins

The previous join examples in this section are known as inner joins; the results do
not include items without matching products or products without matching items.
Suppose you want to create a list of products and join it with the price information.
Even if there is no price, you still want to include the product in the list. This is
known in relational databases as an outer join.

The query in Example 6-16 performs an outer join. It uses two FLWORs, one embed-
ded in the return clause of the other. The outer FLWOR returns the list of products,
regardless of the availability of price information. The inner FLWOR selects the price,
if it is available.

96 | Chapter6: Selecting and Joining Using FLWORs

Example 6-16. Outer join

Query

for $prod in doc("catalog.xml")//product
return <product number="{$prod/number}">{
attribute price
{for Sprice in doc("prices.xml")//prod
where $prod/number = $price/@num
return $price/price}
}</product>

Results

<product number="557" price="29.99"/>
<product number="563" price="69.99"/>
<product number="443" price="39.99"/>
<product number="784" price=""/>

Product 784 doesn’t have a corresponding price in the prices.xml document, so the
price attribute has an empty value for that product.

Outer joins with allowing empty

Version 3.0 added a new feature to the for clause that makes outer joins simpler and
more explicit. Adding the keywords allowing empty into the for clause means that
an outer join should be performed that allows that value to be absent. Example 6-17
shows an example equivalent to Example 6-16 (with the same results) that takes
advantage of this new syntax.

Example 6-17. Outer join with allowing empty

xquery version "3.0";
for $prod in doc("catalog.xml")//product
for $price allowing empty
in doc("prices.xml")//prices/priceList/prod[@nhum = Sprod/number]
return <product number="{$prod/number}" price="{Sprice/price}"/>

In this example, because allowing empty is specified in the for clause for $price, the
return clause is evaluated once in the case where $price is the empty sequence.
Without allowing empty, the return clause would have been evaluated zero times
for that particular $prod.

Joins | 97

Joins and Types

The where clauses in the join examples use the = operator to determine whether two
values are equal. Keep in mind that XQuery considers type when determining
whether two values are equal. If schemas are not used with these documents, both
values are untyped, and the join shown in Example 6-16 compares the values as
strings. Unless they are cast to numeric types, the join does not consider different
representations of the same number equal, for example 0557 and 557.

On the other hand, if number in catalog.xml is declared as an xs:integer, and the num
attribute in prices.xml is declared as an xs:string, the join will not work. One value
would have to be explicitly cast to the other’s type, as in:

where $prod/number = xs:integer($price/@num)

98 | Chapter 6: Selecting and Joining Using FLWORs

CHAPTER 7
Sorting and Grouping

This chapter explains how to sort and group data from input documents. It covers
sorting in FLWORs, grouping results together, and calculating summary values by
using aggregate functions.

Sorting in XQuery

Path expressions, which are most often used to select elements and attributes from
input documents, always return items in document order. FLWORs by default return
results based on the order of the sequence specified in the for clause, which is also
often document order if a path expression was used.

You can sort data in an order other than document order by using the order by
clause of the FLWOR. Therefore, in some cases it is necessary to use a FLWOR where
it would not otherwise be necessary. For example, if you simply want to select all your
items from an order, you can use the path expression doc("order.xml")//item.
However, if you want to sort those items based on their num attribute, the most
straightforward way to do this is using a FLWOR with an order by clause. The other
alternative is to use the sort function, described in “The sort Function” on page 103.

The order by Clause
Example 7-1 shows an order by clause in a FLWOR.

Example 7-1. The order by clause

for $item in doc("order.xml")//item
order by $item/@num
return $item

99

The results will be sorted by item number. The syntax of an order by clause is shown
in Figure 7-1.

The order by clause is made up of one or more ordering specifications, separated by
commas, each of which consists of an expression and an optional modifier. The
expression can only return one value for each item being sorted. In Example 7-1,
there is only one num attribute of $item. If instead, you had specified order by
$item/@*, which selects all attributes of item, type error XPTY0004 would have been
raised because more than one value is returned by that expression.

ﬁ order by i <expr> I >
stable L <order-modifier> J

Figure 7-1. Syntax of an order by clause

You can order by a value that is not returned by the expression. For example, you can
order by $item/@dept and only return $item/@num in the results.

Using multiple ordering specifications

In order to sort on more than one expression, you can include multiple ordering
specifications, as shown in Example 7-2.

Example 7-2. Using multiple ordering specifications

for $item in doc("order.xml")//item
order by S$item/@dept, S$item/@num
return $item

This sorts the results first by department, then by item number. An unlimited num-
ber of ordering specifications can be included.

Sorting and types

When sorting values, the processor considers their type. All the values returned by a
single ordering specification expression must have comparable types. For example,
they could be all xs:integer or all xs:string. They could also be a mix of
xs:integer and xs:decimal, since values of these two types can be compared.

However, if integer values are mixed with string values, type error XPTY0004 is raised.
It is acceptable, of course, for different ordering specifications to sort on values of dif-
ferent types; in Example 7-2, item numbers could be integers while departments are
strings.

100 | Chapter7:Sorting and Grouping

Untyped values are treated like strings. If your values are untyped but you want them
to be treated as numeric for sorting purposes, you can use the number function, as in:

order by number($item/@num)

This allows the untyped value 10 to come after the untyped value 9. If they were
treated as strings, the value 10 would come before 9.

Order modifiers

Several order modifiers can optionally be specified for each ordering specification:

« ascending and descending specify the sort direction. The default is ascending.
o empty greatest and empty least specify how to sort the empty sequence.

» collation, followed by a collation URI in quotes, specifies a collation used to
determine the sort order of strings. Collations are described in detail in “Colla-
tions” on page 295.

The syntax of an order modifier is shown in Figure 7-2.

hascendingj‘ i:empty greatest — ’—collation—"<collat1’on-name>"J
g

descendin empty least

Figure 7-2. Syntax of an order modifier

Order modifiers apply to only one order specification. For example, if you specify:
order by $item/@dept, S$item/@num descending

the descending modifier applies only to $item/@num, not to $item/@dept. If you
want both to be sorted in descending order, you have to specify:

order by $item/@dept descending, S$item/@num descending

Empty order

The order modifiers empty greatest and empty least indicate whether the empty
sequence and NaN should be considered a low value or a high value. If
empty greatest is specified, the empty sequence is greater than NaN, and NaN is
greater than all other values. If empty least is specified, the opposite is true; the
empty sequence is less than NaN, and NaN is less than all other values. Note that this
applies to the empty sequence and NaN only, not to zero-length strings, which are
always sorted before other strings.

You can also specify the default behavior for all order by clauses in the query prolog,
using an empty order declaration, whose syntax is shown in Figure 7-3.

Sorting in XQuery | 101

——declare default ordeI—Eempty greatest ;—>
empty least j

Figure 7-3. Syntax of an empty order declaration

Example 7-3 shows a query that uses an empty order declaration and sorts the results
by the color attributes. Because the greatest option is chosen, the items with no
color attribute appear last in the results.

Example 7-3. Using an empty order declaration

Query

declare default order empty greatest;
for $item in doc("order.xml")//item
order by $item/@color

return $item

Results

<item dept="WMN" num="557" quantity="1" color="black"/>
<item dept="MEN" num="784" quantity="1" color="gray"/>
<item dept="WMN" num="557" quantity="1" color="navy"/>
<item dept="MEN" num="784" quantity="1" color="white"/>
<item dept="ACC" num="563" quantity="1"/>
<item dept="ACC" num="443" quantity="2"/>

The setting in the empty order declaration applies unless it is overridden by an order
modifier in an individual ordering specification. The empty order declaration in the
prolog applies only when an order by clause is present; otherwise, the results are not
sorted. If no empty order declaration is present, the default order for empty sequen-
ces is implementation-defined.

Stable ordering

When you sort on $item/@num, several values may be returned that have the same
sort value. If stable ordering is not in use, the implementation is free to return those
values that have equal sort values in any order. If you want those with equal sort val-
ues to be sorted in the order of the input sequence, or if you simply want to ensure
that every implementation returns the values in the same order for the query, you can
use the stable keyword before the keywords order by. For example, if you specify:

stable order by $item/@num

the items with the same num value are always returned in the order returned by the
for expression, within the sorted results.

102 | Chapter7: Sorting and Grouping

More complex order specifications

So far, the order specifications have been simple path expressions. You can sort based
on almost any expression, as long as it only returns a single item. For example, you
could sort on the result of a function call, such as:

order by substring($item/@dept, 2, 2)

which sorts on a substring of the department, or you could sort on a conditional
expression, as in:

order by (if ($item/@color) then S$item/@color else "unknown")

which sorts on the color if it exists or the string unknown if it does not. In addition,
you could use a path expression that refers to a completely different XML document,
as in:

order by doc("catalog.xml")//product[number = $item/@num]/name
which orders the results based on a name it looks up in the catalog.xml document.

A common requirement is to parameterize the sort key—that is, to decide at runtime
what sort key to use. In some cases you can use:

order by S$item/@*[name()=$param]

In other cases you may need to use an extension function, as described in “Dynamic
Paths” on page 62.

The sort Function

A built-in sort function is available in version 3.1 that will sort a sequence of items.
The one-argument version simply sorts the items based on their typed values. For
example:

sort(doc("catalog.xml")//product/number)

will return the number elements, sorted by their contents. A second argument can be
used to provide a function that generates the sort key for each item. For example:

sort(doc(catalog.xml)//product, function($product) { $product/number })

will return the product elements sorted by their number child. The second argument
is a function, in this case an inline function expression, whose syntax is covered in
detail later in the book in “Inline Function Expressions” on page 361.

Document Order

Every XML document (or document fragment) has an order, known as document
order, which defines the sequence of nodes. Document order is significant because
certain expressions return nodes in document order. Additionally, document order is

Sorting in XQuery | 103

used when determining whether one node precedes another. Note that items in
sequences are not always arranged in document order; it depends on how the
sequence was constructed.

Document order defined

The document order of a set of nodes is:

o The document node itself
o Each element node in order of the appearance of its start tag, followed by:
— Its attribute nodes, in an implementation-dependent order
— Its children (text nodes, child elements, comments, and processing instruc-
tions) in the order they appear

If a sequence containing nodes from more than one document is sorted in document
order, it is arbitrary (implementation-dependent) which document comes first, but all
the nodes from one document come before all the nodes from the other document.
For nodes that are not part of a document, such as those that are constructed in your
query, the order is implementation-dependent, but stable.

There is no such thing as a document order on atomic values.

Sorting in document order

Certain kinds of expressions, including path expressions and operators that combine
sequences (|, union, intersect, and except), eliminate duplicate nodes and return
nodes in document order automatically. For example, the path expression:

doc("catalog.xml")//product/(number | name)

retrieves the number and name children of product, in document order. If you want all
the number children to appear before all the name children, you need to use a sequence
constructor, as in:

(doc("catalog.xml")//product/number, doc("catalog.xml")//product/name)

which uses parentheses and a comma. This sequence constructor maintains the order
of the items, putting all the results of the first expression first in the sequence, and all
the results of the second expression next.

If you have a sequence of nodes that are not in document order, but you want them to
be, you can simply use the expression:

$mySequence/.

where $mySequence is a sequence of nodes. The / operator means that it is a path
expression, which always returns nodes in document order.

104 | Chapter7: Sorting and Grouping

Inadvertent re-sorting in document order

If you have used an order by clause to sort the results of a FLWOR, you should use
caution when using the resulting sequence in another expression because the results
may be re-sorted to document order. The example shown in Example 7-4 first sorts
the products in order by product number, then returns their names in 11 elements.

Example 7-4. Inadvertent re-sorting in document order

let $sortedProds := for $prod in doc('"catalog.xml")//product
order by $prod/number
return S$prod

for S$prodName in $sortedProds/name

return {string($prodName)}</1i>

However, this query returns the products in document order, not product number
order. This is because the expression $sortedProds/name re-sorts the nodes back to
document order. In this case, the expression can easily be rewritten as shown in
Example 7-5. In more complex queries, the error might be more subtle.

Example 7-5. FLWOR without inadvertent re-sorting

for $prod in doc("catalog.xml")//product
order by $prod/number
return {string(Sprod/name)}</1i>

Document Order Comparisons

Two nodes can be compared based on their relative position in document order by
using the << and >> operators. For example, $n1 << $n2 returns true if $n1 precedes
$n2 in document order. According to the definition of document order, a parent pre-
cedes its children.

Each of the operands of the << and >> operators must be a single node, or the empty
sequence. If one of the operands is the empty sequence, the result of the comparison
is the empty sequence.

Example 7-6 shows a FLWOR that makes use of an order comparison in its where
clause. For each product, it checks whether any other products later in the document
are in the same department. If so, it returns the product element. Specifically, it binds
the $prods variable to a sequence of all four product elements. In the where clause, it
uses predicates to choose from the $prods sequence those that are in the same
department as the current $prod, and then gets the last of those. If the current $prod
precedes that last product in the department, the expression evaluates to true, and
the product is selected.

Sorting in XQuery | 105

In the case of catalog.xml, only the second product element is returned because it
appears before another product in the same department (ACC).

Example 7-6. Using an order comparison

let $prods := doc("catalog.xml")//product

for Sprod in Sprods

where $prod << $prods[@dept = $prod/@dept][last()]
return $prod

Reversing the Order
The reverse function reverses the order of items in a sequence. For example:
reverse(doc("catalog.xml")//product)

returns the product elements in reverse document order. The function is not just for
reversing document order; it can reverse any sequence. For example:

reverse((6, 2, 3))

returns the sequence (3, 2, 6).

Indicating That Order Is Not Significant

As described in the previous section, several kinds of expressions return results in
document order. In cases where the order of the results does not matter, the processor
may be much more efficient if it does not have to keep track of order. This is espe-
cially true for FLWORSs that perform joins. For example, processing multiple variable
bindings in a for clause might be significantly faster if the processor can decide
which variable binding controls the join without regard to the order of the results.

To make a query more efficient, there are three ways for a query author to indicate
that order is not significant: the unordered function, the unordered expression, and
the ordering mode declaration.

The unordered function

A query author can tell the processor that order does not matter for an individual
expression by enclosing it in a call to the unordered function, as shown in
Example 7-7. The unordered function takes as an argument any sequence of items,
and returns those same items in an undetermined order. Rather than being a function
that performs some operation on its argument, it is more a signal to the processor to
evaluate the expression without regard to order.

106 | Chapter7: Sorting and Grouping

Example 7-7. Using the unordered function

unordered(
for $item in doc("order.xml")//item,
$prod in doc("catalog.xml")//product

where $item/@num = $prod/number

return <item number="{$item/@num}"
name="{Sprod/name}"
quantity="{$item/@quantity}"/>

)

The unordered expression

An unordered expression is similar to a call to the unordered function, except that it
affects not just the main expression passed as an argument, but also every embedded
expression. The syntax of an unordered expression is similar, but it uses curly braces
instead of the parentheses, as shown in Example 7-8.

Example 7-8. An unordered expression

unordered {
for $item in doc("order.xml")//item,
$prod in doc("catalog.xml")//product

where $item/@num = $prod/number

return <item number="{$item/@num}"
name="{Sprod/name}"
quantity="{S$item/@quantity}"/>

}

Similarly, an ordered expression will allow you to specify that order matters in a cer-
tain section of your query. This is generally unnecessary except to override an order-
ing mode declaration, as described in the next section.

The ordering mode declaration

You can specify whether order is significant for an entire query in the query prolog,
using an ordering mode declaration, whose syntax is shown in Figure 7-4.

——declare ordering—[ordered ;—>
unordered

Figure 7-4. Syntax of an ordering mode declaration

For example, the prolog declaration:

declare ordering unordered;

Sorting in XQuery | 107

allows the processor to disregard order for the scope of the entire query, unless it is
overridden by an ordered expression or an order by clause. If no ordering mode
declaration is present, the default is ordered.

Grouping

Queries are often written to summarize or organize information into categories. For
example, suppose you want your list of items to be grouped by department. The only
way to accomplish this in version 1.0 is to use FLWORs along with the distinct-
values function, as shown in Example 7-9.

Example 7-9. Grouping by department

Query

for $d in distinct-values(doc("order.xml")//item/@dept)
let Sitems := doc("order.xml")//item[@dept = $d]
order by $d
return <department code="{$d}">{

for $1 in Sitems

order by $i/@num

return $i

}</department>

Results

<department code="ACC">
<item dept="ACC" num="443" quantity="2"/>
<item dept="ACC" num="563" quantity="1"/>
</department>
<department code="MEN">
<item dept="MEN" num="784" quantity="1" color="white"/>
<item dept="MEN" num="784" quantity="1" color="gray"/>
</department>
<department code="WMN">
<item dept="WMN" num="557" quantity="1" color="navy"/>
<item dept="WMN" num="557" quantity="1" color="black"/>
</department>

In this example, the variable $d is iteratively bound to each of the distinct values for
department code, namely WMN, ACC, and MEN. For each department, the variable
$items is bound to all the items that have the particular department code $d. Because
$items is bound in a let clause rather than a for clause, the entire sequence of items
(for a single department) is bound to $items, not each item individually. The order
by clause causes the results to be sorted by department.

108 | Chapter7: Sorting and Grouping

The inner FLWOR is used simply to sort $items by item number. If the order of the
items within a department is not a concern, the entire inner FLWOR can simply be
replaced by $items, which returns the items in document order.

Grouping Using the group by Clause

Starting in version 3.0, it is possible to be more explicit about grouping by a particu-
lar value by using a group by clause. This clause not only makes your intentions
clearer, but is also in many cases likely to be a lot faster to execute. Example 7-10
shows a revised version of Example 7-9 that uses a group by clause, and returns the
same results.

Example 7-10. Grouping by department with group by clause

xquery version "3.0";
for $item in doc("order.xml")//item
let $d := Sitem/@dept
group by $d
order by $d
return <department code="{$d}">{
for $1 in Sitem
order by $i/@num
return $i}</department>

Adding the group by clause changes the iteration of the FLWOR expression. Instead
of iterating over the items specified in the for clause (the item elements), it is now
iterating over groups of those items, so it evaluates the return clause once for every
group.

The group by clause also changes the variables that were defined before it. Before the
group by clause, the $item variable is bound to one item element at a time. After the

group by clause, the $item variable is bound to a sequence of one or more item ele-
ments, whichever ones are in the current group.

l ’ R

—-group by— $<var-name> | >

L J = <expr>JI-collation "<collation—name>"J
as <sequence-type>

Figure 7-5. Syntax of a group by clause

The syntax of a group by clause is shown in Figure 7-5. The group by clause is made
up of one or more grouping specifications, separated by commas, each of which con-
sists of a grouping variable name with an optional expression and an optional colla-
tion specification. The as clause, which declares the type of the grouping variable, is

Grouping | 109

described in “Type Declarations in FLWORSs” on page 251. A collation can be used to
compare strings for equality. Collations are described in detail in “Collations” on page
295.

The grouping variable name, for example, $d in Example 7-10, is required, and must
be bound to a value. In the example, this was done by the let clause. It is not possible
to specify just an expression to group on, for example, group by $item/@dept. How-
ever, as a shortcut you can bind a value to that variable in the group by clause. For
example, you can eliminate the let clause in Example 7-10 and give $d a value in the
group by clause using the following syntax:

for $item in doc("order.xml")//item

group by $d := $item/@dept

order by $d

return <department code="{$d}">{$item}</department>
The grouping variable must be bound to a single atomic value, known as the group-
ing key. In Example 7-10, there is only one dept attribute of $item. If instead, you
had specified group by $item/@*, which selects all attributes of item, type error
XPTY0004 would have been raised because more than one value is returned by that
expression.

Grouping on multiple values

In order to group on more than one expression, you can include multiple grouping
specifications, separated by commas, as shown in Example 7-11.

Example 7-11. Using multiple grouping specifications

Query

xquery version "3.0";

for $item in doc("order.xml")//item

group by $d:= $item/@dept, $n:= $item/@num

return <group dept="{$d}" num="{$n}" count="{count($item)}"/>

Results

<group dept="ACC" num="563" count="1"/>
<group dept="MEN" num="784" count="2"/>
<group dept="WMN" num="557" count="2"/>
<group dept="ACC" num="443" count="1"/>

This groups the results both by department and item number. An unlimited number
of grouping specifications can be included. To have nested groups, where the groups
of numbers appear within the groups of departments, you would need to use a
FLWOR embedded within another FLWOR, as shown in Example 7-12.

110 | Chapter7: Sorting and Grouping

Example 7-12. Using nested FLWORSs for multilevel grouping

Query

xquery version "3.0";
for $item in doc("order.xml")//item
group by $d:= $item/@dept
return <group dept="{$d}" count="{count($item)}">{
for $item-in-dept in $item
group by $n := S$item-in-dept/@num
return <subgroup num="{$n}" count="{count($item-in-dept)}"/>
}</group>

Results

<group dept="ACC" count="2">
<subgroup num="443" count="1"/>
<subgroup num="563" count="1"/>

</group>

<group dept="MEN" count="2">
<subgroup num="784" count="2"/>

</group>

<group dept="WMN" count="2">
<subgroup num="557" count="2"/>

</group>

More complex grouping specifications

The previous examples show grouping on individual values that appear in the input
document. However, because you can use any expression to bind a value to a group-
ing variable, you can write more sophisticated grouping specifications. Example 7-13
shows how you can group the items based on whether the product number is over
500. The grouping variable $g is bound to a Boolean value indicating whether the
product number is over 500.

Example 7-13. Grouping high and low product numbers

Query

xquery version "3.0";

for $item in doc("order.xml")//item

group by $g:= $item/@num > 500

return <group prodnumrange="{if ($g) then 'high' else 'low'}"
count="{count(Sitem)}"/>

Results

<group prodnumrange="high" count="5"/>
<group prodnumrange="low" count="1"/>

You could even use the query shown in Example 7-14 to group the items on ranges of
product numbers.

Grouping | 111

Example 7-14. Grouping on a range of values

Query

xquery version "3.0";

for $item in doc("order.xml")//item

group by $g:= $item/@num - ($item/@num mod 100)

return <group prodnumrange="{$g}-{$g+99}" count="{count($item)}"/>

Results

<group prodnumrange="400-499" count="1"/>
<group prodnumrange="500-599" count="3"/>
<group prodnumrange="700-799" count="2"/>

Aggregating Values

In addition to simply regrouping items, it is often desirable to perform calculations
on the groups. For example, suppose you want to know the number of i1tem elements
in a department, or the sum of the quantities for a department. This type of aggrega-
tion can be performed using the aggregate functions. Example 7-15 shows some of
these functions in action.

Example 7-15. Aggregation

Query

xquery version "3.0";

for $item in doc("order.xml")//item

group by $d := S$item/@dept

order by $d

return

<department code="{$d}"

numItems="{count($item)}"
distinctItemNums="{count(distinct-values($item/@num))}"
totQuant="{sum($item/@quantity)}"/>

Results

<department code="ACC" numItems="2" distinctItemNums="2" totQuant="3"/>
<department code="MEN" numItems="2" distinctItemNums="1" totQuant="2"/>
<department code="WMN" numItems="2" distinctItemNums="1" totQuant="2"/>

The aggregate functions can operate on the $item variable, because after the group
by clause, that variable is bound to all the items in the current group. Here is how the
aggregate functions work:

count
This function is used to determine the number of items in the sequence. In
Example 7-15, the count function is used to calculate the value of numItems,

112 | Chapter7: Sorting and Grouping

which is the number of items in the department. It is also used to calculate the
value of distinctItemNums. In the latter case, the count function is combined
with the distinct-values function to count only the unique numbers in that
department.

sum
This function is used to determine the total value of the items in a sequence. In
Example 7-15, the sum function is used to calculate the value of totQuant, the
sum of all the quantity attributes for that department.

min and max
These functions are used to determine the minimum and maximum values of the
items in the sequence.

avg
This function is used to determine the average value of the items in a sequence.

The sum and avg functions accept values that are all numeric, all
xs:yearMonthDuration values, or all xs:dayTimeDuration values. The max and min
functions accept values of any type that is ordered (i.e., values can be compared using
< and >). This includes strings, dates, and many other types.

The sum, min, max, and avg functions treat untyped data as numeric. This means that
if you are not using a schema, and you want to find a maximum string value, you
need to use an expression like:

max(doc("order.xml")//item/string(@dept))

which uses the string function to convert each value to xs:string before the com-
parison. Otherwise, a type error will be raised because the dept attribute contains a
value that is not a number.

Aggregating Values | 113

Useful Function
functx:max-string

If you are going to be finding the maximum value of many untyped strings, it may be
useful to define a function like this one:

declare namespace functx = "http://www.functx.com";
declare function functx:max-string
($strings as xs:anyAtomicType*) as xs:string? {
max(for $string in $strings return string($string))
1
Unlike the max function, it casts all values (including untyped values) to xs:string
and compares them as strings. You can call this function with:

functx:max-string(doc("order.xml")//item/@dept)

Ignoring “Missing” Values

The sequence passed to an aggregate function may contain nodes that are zero-length
strings, even though the user might think of them as “missing” values. For example,
the minimum value of the color attribute in order.xml is black. However, if there had
been an item with a color attribute whose value was a zero-length string (as in
color=""), the min function would have returned a zero-length string.

Useful Function
functx:min-non-empty-string

Suppose you want to find the minimum string value, but you do not want a zero-
length string to count. You can use this function:

declare namespace functx = "http://www.functx.com";
declare function functx:min-non-empty-string
($strings as xs:string*) as xs:string? {
min($strings[. != ''])
1
This function eliminates all zero-length strings from consideration by using a predi-
cate. It also works on untyped values, because they are converted to strings automati-

cally.

114 | Chapter7: Sorting and Grouping

Counting “Missing” Values

On the other hand, there may be cases where you want “missing” values to be taken
into consideration, but they are not. For example, the avg function ignores any absent
nodes. If you want the average product discount, and you use:

avg(doc("prices.xml")//discount)

you get the average of the two discount values. It does not take into account the fact
that there are three products, and that you might want the discount to be counted as
zero for the product with no discount child. To count absent discount children as
zero, you need to calculate the average explicitly, using:
sum(doc("prices.xml")//prod/discount)
div count(doc("prices.xml")//prod)
On the other hand, if a prod had an empty discount child (i.e., <discount/> or <dis
count></discount>), it would be considered a zero-length string and the avg func-
tion would raise error FORGO0O6 because this value is not of a numeric or duration
type. In that case, you would have to test for missing values using:

avg(doc("prices.xml")//prod/discount[. != ""])

Useful Function
functx:avg-empty-is-zero

The functx:avg-empty-is-zero function, shown here, can alleviate the problems
with counting missing values in averages:

declare namespace functx = "http://www.functx.com";
declare function functx:avg-empty-is-zero
($values as xs:anyAtomicType*, $allNodes as node()*)
as xs:double {

if (empty($allNodes))
then 0
else sum(Svalues[string(.) != '"']) div count($SallNodes)
I
It takes as its first argument the entire sequence of items for which the average should
be calculated (in this case, the sequence of prod elements). The second argument is
the sequence of values to be averaged. If you use the function call:

let $prods := doc("prices.xml")//prod

return (functx:avg-empty-is-zero($prods/discount, $prods))
it returns 4.66333, which is the average of 10.00 and 3.99 (the two discount values),
and 0 for the prod element that does not have a discount child. The function would
have returned the same result if the discount child were present but empty.

Aggregating Values | 115

Aggregating on Multiple Values

So far, the aggregation examples assume that you want to group on one value, the
dept attribute. Suppose you want to group on two values: the dept attribute and the
num attribute. You would like to know the number of items and total quantity for each
department/product number combination. This could be accomplished by adding
another grouping specification, as shown in Example 7-16.

Example 7-16. Aggregation on multiple values

Query

xquery version "3.0";
for $item in doc("order.xml")//item
group by $d := S$item/@dept, $n := $item/@num
order by $d, $n
return
<group dept="{$d}" num="{Sn}" numItems="{count(S$item)}"
totQuant="{sum($item/@quantity)}"/>

Results

<group dept="ACC" num="443" numItems="1" totQuant="2"/>
<group dept="ACC" num="563" numItems="1" totQuant="1"/>
<group dept="MEN" num="784" numItems="2" totQuant="2"/>
<group dept="WMN" num="557" numItems="2" totQuant="2"/>

Constraining and Sorting on Aggregated Values

In addition to returning aggregated values in the query results, you can constrain and
sort the results on the aggregated values. Suppose you want to return the similar
results to those shown in Example 7-16, but you only want the groups whose total
quantity (totQuant) is greater than 1, and you want the results sorted by the number
of items (numItems). The query shown in Example 7-17 accomplishes this.

Example 7-17. Constraining and sorting on aggregated values

Query

xquery version "3.0";
for $item in doc("order.xml")//item
group by $d := S$item/@dept, $n := $item/@num
where sum($item/@quantity) gt 1
order by count($item)
return
<group dept="{$d}" num="{Sn}" numItems="{count(S$item)}"
totQuant="{sum($item/@quantity)}"/>

116 | Chapter7: Sorting and Grouping

Results

<group dept="ACC" num="443" numItems="1" totQuant="2"/>
<group dept="WMN" num="557" numItems="2" totQuant="2"/>
<group dept="MEN" num="784" numItems="2" totQuant="2"/>

Adjusting the query was a simple matter of adding a where clause that tested the total
quantity, and modifying the order by clause to use the number of items.

Aggregating Values | 117

CHAPTER 8
Functions

Functions are a useful feature of XQuery that allow a wide array of built-in function-
ality, as well as the ability to modularize and reuse parts of queries. There are two
kinds of functions: built-in functions and user-defined functions.

Built-in Versus User-Defined Functions

The built-in functions are a standard set supported by all XQuery implementations.
A detailed description of each built-in function is provided in Appendix A, and most
are also discussed at appropriate places in the book.

A user-defined function is one that is specified by a query author, either in the query
itself, or in an external library. The second half of this chapter explains how to define
your own functions in detail.

Calling Functions

The syntax of a function call, shown in Figure 8-1, is the same whether it is a built-in
function or a user-defined function. It is the qualified name of the function, followed
by a parenthesized list of the arguments, separated by commas. An argument is the
actual value that is passed to a function, while a parameter is its definition. For exam-
ple, to call the substring function, you might use:

substring(SprodName, 1, 5)

F)
——<function-name> — (<expr>)—>

Figure 8-1. Syntax of a function call

119

Function calls can be included anywhere an expression is permitted. For example,
you might include a function call in a let clause, as in:

let $name := substring($prodName, 1, 5)
or in element constructor content:

<name>{substring($prodName, 1, 5)}</name>
or in the predicate of a path expression:

doc("catalog.xml")/catalog/product[substring(name, 1, 6) = 'Fleece']

Function Names

Functions have namespace-qualified names. Most of the built-in function names are
in the XPath Functions Namespace, http://www.w3.0rg/2005/xpath-functions.
Since this is the default namespace for functions, these built-in functions can be ref-
erenced without a namespace prefix (unless you have overridden the default function
namespace, which is not recommended). Some XQuery users still prefer to use the fn
prefix for these functions, but this is normally unnecessary.

A number of built-in functions that were introduced in versions 3.0 and 3.1 are in
namespaces commonly associated with the prefixes math, map, and array. These
function names need to be prefixed when called, and the appropriate namespaces
need to be declared, as shown in the following query, which declares the math name-
space and calls the math:exp function with the declared prefix:

declare namespace math = "http://www.w3.0rg/2005/xpath-functions/math";
math:exp(12)
If a function is user-defined, it must be called by its prefixed name. If a function is
declared in the same query module, you can call it by using the same prefixed name
found in the declaration. Some functions may use the local prefix, a built-in prefix
for locally declared functions. To call these functions, you use the local prefix in the
name, as in:

declare function local:return2 () as xs:integer {2};
<size>{local:return2()}</size>
If the function is in a separate library, it may have a different namespace that needs to
be declared. For example, if you are calling a function named trim in the namespace
http://datypic.com/strings, you must declare that namespace and use the appro-
priate prefix when calling the function, as in:

import module namespace strings = "http://datypic.com/strings"
at "strings.xgm";

for $prod in doc("catalog.xml")//product

return strings:trim(Sprod/name)

120 | Chapter 8: Functions

Function Signatures

A function signature is used to describe the inputs and outputs of a function. For
example, the signature of the built-in upper-case function is:

upper-case($arg as xs:string?) as xs:string

The signature indicates:

« The name of the function, in this case, upper-case.

o The list of parameters. In this case, there is only one, whose name is $arg and
whose type is xs:string?. The question mark after xs:string indicates that the
function accepts a single xs:string value or the empty sequence.

« The return type of the function, in this case, xs:string.

There may be several signatures associated with the same function name, with a dif-
ferent number of parameters (arity). For example, there are two signatures for the
substring function:

substring($sourceString as xs:string?,
$start as xs:double) as xs:string
substring($sourceString as xs:string?,
Sstart as xs:double,
$length as xs:double) as xs:string

The second signature has one additional parameter, $length.

Argument Lists

When calling a function, there must be an argument for every parameter specified in
the function signature. If there is more than one signature, as in the case of the
substring function, the argument list may match either function signature. If the
function does not take any arguments, the parentheses are still required, although
there is nothing between them, as in:

current-date()

You are not limited to simple variable names and literals in a function call. You can
have complex, nested expressions that are evaluated before evaluation of the function.
For example, the following function call has one argument that is itself a function call,
and another argument that is a conditional (if) expression:

concat(substring($name, 1, Ssublen), if ($addT) then "T" else "")

Calling a function never changes the value of any of the variables that are passed to it.
In the preceding example, the value of $name does not change during evaluation of
the substring function.

Calling Functions | 121

Argument lists and the empty sequence

Passing the empty sequence or a zero-length string for an argument is not the same as
omitting an argument. For example:

substring($myString, 2)
is not the same as:
substring(SmyString, 2, ())

The first function call matches the first signature of substring, and therefore returns
a substring of $myString starting at position 2. The second matches the second signa-
ture of substring, which takes three arguments. This function call raises type error
XPTY0004 because the third argument of the substring function must be an
xs :double value, and cannot be the empty sequence.

Conversely, if an argument can be the empty sequence, this does not mean it can be
omitted. For example, the upper-case function expects one argument, which can be
the empty sequence. It is not acceptable to use upper-case(), although it is accepta-
ble to use upper-case(()), because the inner parentheses () represent the empty
sequence.

Argument lists and sequences

The syntax of an argument list is similar to the syntax of a sequence constructor, and
it is important not to confuse the two. Each expression in the argument list (separated
by a comma) is considered a single argument. A sequence passed to a function is con-
sidered a single argument, not a list of arguments. Some functions expect sequences
as arguments. For example, the max function, whose one-argument signature is:

max($arg as xs:anyAtomicType*) as xs:anyAtomicType?

expects one argument that is a sequence. Therefore, an appropriate call to max is:
max ((1, 2, 3))

not:
max (1, 2, 3)

which is attempting to pass it three arguments.

Conversely, it is not acceptable to pass a sequence to a function that expects several
arguments that are atomic values. For example, in:

substring((SmyString, 2))

the argument list contains only one argument, which happens to be a sequence of two
items, because of the extra parentheses. This raises type error XPTY0004 because the
function expects two (or three) arguments.

122 | Chapter8: Functions

You may want to pass a sequence of multiple items to a function to apply the function
to each of those items. For example, to take the substring of each of the product
names, you might be tempted to write:

substring(doc("catalog.xml")//name, 1, 3)

but this won’t work because the first argument of substring is not allowed to contain
more than one item. Instead, you could use a path expression, as in:

doc("catalog.xml")//name/substring(., 1, 3)

which will return a sequence of four strings: Fle, Flo, Del, and Cot.

Sequence Types

The types of parameters are expressed as sequence types, which specify both the
number and type (and/or node kind) of items that make up the parameter. The most
commonly used sequence types are the name of a specific atomic type, such as
xs:integer, xs:double, xs:date, or xs:string. The sequence type
xs:anyAtomicType, which allows any atomic value, or xs:numeric, which allows any
number, can also be specified.

Occurrence indicators are used to indicate how many items can be in a sequence. The
occurrence indicators are:

¢ ? For zero or one items
« * For zero, one, or more items

« + For one or more items

If no occurrence indicator is specified, it is assumed that it means one and only one.
For example, a sequence type of xs:integer matches one and only one atomic value
of type xs:integer. A sequence type of xs:string* matches a sequence that is either
the empty sequence, or contains one or more atomic values of type xs:string.
Sequence types are covered in detail in “Sequence Types” on page 190.

Remember that there is no difference between an item, and a sequence that contains
only that item. If a function expects xs:string* (a sequence of zero to many strings),
it is perfectly acceptable to pass it a single string such as "xyz".

When you call a function, sometimes the type of an argument differs from the type
specified in the function signature. For example, you may pass an xs:integer to a
function that expects an xs:decimal. Alternatively, you may pass an element that
contains a string to a function that expects just the string itself. XQuery defines rules,
known as function conversion rules, for converting arguments to the expected type.
The function conversion rules are covered in detail in “Function Conversion Rules”
on page 189.

Calling Functions | 123

Not all arguments can be converted using the function conversion rules, because
function conversion does not involve straight casting from one type to another. For
example, you cannot pass a string to a function that expects an integer. If you attempt
to pass an argument that does not match the sequence type specified in the function
signature, type error XPTY0004 is raised.

Calling Functions with the Arrow Operator

The arrow operator (=>), introduced in version 3.1, allows another syntax for calling
functions. For example, instead of the function call upper-case('abc'), you can
specify 'abc'=>upper-case(). This means that the upper-case function should be
applied to the item to the left of the operator, in this case the string abc.

If a function takes more than one argument, these additional arguments are moved
up a position in the function call. For example, instead of substring('abc', 1, 2),
you can specify 'abc'=>substring(1, 2), where 'abc' is the first argument, 1 is the
second argument, and 2 is the third argument.

The arrow operator is especially useful for chaining together multiple function calls.
For example, instead of:

tokenize(normalize-space(replace($string, 'a', 'b')), "\s")
it is much clearer to say:

$string=>replace('a', 'b')=>normalize-space()=>tokenize("\s")

The expression to the left of the arrow operator can return a sequence of multiple
items. In this case, the function is called once using the entire sequence as its first
argument, as opposed to calling the function once per item in the sequence.

User-Defined Functions

XQuery allows you to create your own functions. This allows query fragments to be
reused, and allows code libraries to be developed and reused by other parties. User-
defined functions can also make a query more readable by separating out expressions
and naming them. For a starter set of user-defined function examples, see the FunctX
library at http://www.xqueryfunctions.com.

Why Define Your Own Functions?
There are many good reasons for user-defined functions, such as:

Reuse
If you are evaluating the same expression repeatedly, it makes sense to define it as
a separate function, and then call it from multiple places. This has the advantage
of being written (and maintained) only once. If you want to change the algorithm

124 | Chapter 8: Functions

http://www.xqueryfunctions.com

later—for example, to accept the empty sequence or to fix a bug—you can do it
only in one place.

Clarity
Functions make it clearer to the query reader what is going on. Having a function
clearly named, with a set of named, typed parameters, serves as a form of docu-
mentation. It also physically separates it from the rest of the query, which makes
it easier to decipher complex queries with many nested expressions.

Recursion
It is virtually impossible to implement some algorithms without recursion. For
example, if you want to generate a table of contents based on section headers, you
can write a recursive function that processes section elements, their children,
their grandchildren, and so on.

Managing change
By encapsulating functionality such as “get all the orders for a product” into a
user-defined function, applications become easier to adapt to subsequent schema
changes.

Automatic type conversions
The function conversion rules automatically perform some type promotions,
casting, and atomization. These type conversions can be performed explicitly in
the query, but sometimes it is cleaner simply to call a function.

Function Declarations

Functions are defined using function declarations, which can appear either in the
query prolog or in an external library. Example 8-1 shows a function declaration in a
query prolog. The function, called local:discountPrice, accepts three arguments: a
price, a discount, and a maximum discount percent. It applies the lesser of the dis-
count and the maximum discount to the price. The last two lines in the example are
the query body, which call to the local:discountPrice function.

Example 8-1. A function declaration

declare function local:discountPrice(
Sprice as xs:decimal?,
$discount as xs:decimal?,
SmaxDiscountPct as xs:integer?) as xs:decimal?

{
let SmaxDiscount := ($price * $maxDiscountPct) div 100
let SactualDiscount := min(($maxDiscount, S$discount))
return (Sprice - $actualDiscount)

}

User-Defined Functions | 125

let Sprod := doc("prices.xml")//prod[1]
return local:discountPrice($prod/price, $prod/discount, 15)

The syntax of a function declaration is shown in Figure 8-2. As you can see, a func-
tion declaration consists of several parts:

o The keyword declare

o An optional %public or %private annotation, described in “Private Functions
and Variables” on page 211. Other annotations are also allowed here, as described
in “Annotations” on page 397.

o The keyword function followed by the qualified function name

o A list of parameters enclosed in parentheses and separated by commas. The
parameter list is optional, although the parentheses around the parameter list are
required.

o An optional as clause, which declares the return type of the function. This is
optional, but it is strongly encouraged.

o A function body enclosed in curly braces and followed by a semicolon

——declare

—function - <function-name>(L _])—>
<param-1ist>

Jpublic
Zprivate
<annotation> —

C T e 77
as <sequence-type> external

Figure 8-2. Syntax of a function declaration

The Function Body

The function body is an expression enclosed in curly braces, which may contain any
valid XQuery expressions, including FLWORs, path expressions, or any other XQuery
expression. It does not have to contain a return clause; the return value is simply the
value of the expression. You could have a function declaration as minimal as:

declare function local:get-2() {2};

Within a function body, a function can call other functions that are declared any-
where in the module, or in an imported library module, regardless of the order of
their declarations.

Once the function body has been evaluated, its value is converted to the return type
by using the function conversion rules described in “Function Conversion Rules” on

126 | Chapter8: Functions

vww allitebooks.cond

http://www.allitebooks.org

page 189. If the return type is not specified, it is assumed to be item()*, that is, a pos-
sibly empty sequence of items of any kind.

The Function Name

Each function is uniquely identified by its qualified name and its arity (number of
parameters). There can be more than one function declaration that has the same
qualified name, as long as the arity is different. The function name must be a valid
XML name, meaning that it can start with a letter or underscore and contain letters,
digits, underscores, hyphens, and periods. Like other XML names, function names
are case-sensitive.

All user-defined function names must be in a namespace. In the main query module,
you can use any prefix that is declared in the prolog. You can also use the predeclared
prefix local, which puts the function in the namespace http://www.w3.0rg/2005/
xquery-local-functions. It can then be called from within that main module, using
the prefix local. On the other hand, if a function is declared in a library module, its
name must be in the target namespace of the module. Library modules are discussed
in “Assembling Queries from Multiple Modules” on page 204.

Certain namespaces that are built into the specifications are reserved. It is not possi-
ble to define functions in the XML Schema namespace, for example, or any of the
namespaces of the built-in functions. Attempting to do this results in error XQST0045.

In addition, certain function names are reserved; these are listed in Table 8-1. It is not
an error to declare functions with these names, but when called they must be pre-
fixed. As long as you have not overridden the default function namespace, this is not
an issue. However, for clarity, it is best to avoid these function names.

Table 8-1. Reserved function names

array function processing-instruction
attribute if schema-attribute
comment item schema-element
document-node map switch
element namespace-node text
empty-sequence node typeswitch

The Parameter List

The syntax of a parameter list is shown in Figure 8-3. Each parameter has a unique
name, and optionally a type. The name is expressed as a variable name, preceded by a
dollar sign ($). When a function is called, the variable specified is bound to the value
that is passed to it. For example, the function declaration:

User-Defined Functions | 127

declare function local:getProdNum ($Sprod as element()) as element()
{ $prod/number };

binds the $prod variable to the value of the argument passed to it. The $prod variable
can be referenced anywhere in the function body.

v | .

$<param-name> >

L as <sequence-type> J

Figure 8-3. Syntax of a parameter list

The type is expressed as a sequence type, described earlier in this chapter. If no type is
specified for a particular parameter, it allows any argument. However, it is best to
specify a type for the purposes of error checking and clarity.

When the function is called, each argument value is converted to the appropriate type
according to the function conversion rules.

Accepting arguments that are nodes versus atomic values

You may be faced with the decision of whether to accept a node that contains an
atomic value, or to accept the atomic value itself. For example, in the declaration of
local:discountPrice, you could have accepted the price and discountPct element
instead of accepting their xs:decimal and xs:integer values. In some cases, it is
advantageous to pass the entire element as an argument, such as if:

» You want to access its attributes—for example, to access the currency attribute of
price

+ You need to access its parent or siblings

However, if you are interested in only a single data value, there are a number of rea-
sons why it is generally better to accept the atomic value:

o It is more flexible, in that you can pass a node to a function that expects an
atomic value, but you cannot pass an atomic value to a function that expects a
node.

« You can be more specific about the desired type of the value, to ensure, for exam-
ple, that it is an xs: integer.

 You don't have to cast untyped values to the desired type; this will happen auto-
matically as part of the conversion.

128 | Chapter 8: Functions

Accepting arguments that are the empty sequence

You may have noticed that many of the XQuery built-in functions accept the empty
sequence as arguments, as evidenced by the occurrence indicators * and ?. For exam-
ple, the substring function accepts the empty sequence for its first argument and
returns a zero-length string if the empty sequence is passed to it. This is a flexible way
of handling optional elements. If you want to take a substring of an optional number
child, if it exists, you can simply specify:

substring($prod/number, 1, 5)

If the substring function were less flexible, and did not accept the empty sequence,
you would be required to write:

if (Sprod/number)
then substring ($prod/number, 1, 5)
else "

This can become quite cuambersome if you are nesting many function calls. Generally,
your functions should be designed to be easily nested in this way as well.

It is also important to decide how you want the function to handle arguments that are
the empty sequence, if they are allowed. In some cases, it is not appropriate simply to
return the empty sequence. Using the local:discountPrice function from
Example 8-1, suppose $discount is bound to the empty sequence because $prod has
no discount child. The function returns the empty sequence because all arithmetic
operations on the empty sequence return the empty sequence.

It is more likely that you want the function to return the original price if no discount
amount is provided. Example 8-2 shows a revised function declaration where special
checking is done for the case where either $discount or $maxDiscountPct is the
empty sequence.

Example 8-2. Handling the empty sequence

declare function local:discountPrice(
$price as xs:decimal?,
Sdiscount as xs:decimal?,
$maxDiscountPct as xs:integer?) as xs:double?

{
let $newDiscount := if ($discount) then $discount else 0
let SmaxDiscount := if ($maxDiscountPct)
then ($price * $maxDiscountPct) div 100
else 0
let SactualDiscount := min(($maxDiscount, $newDiscount))
return (Sprice - S$SactualDiscount)
}s

let Sprod := doc("prices.xml")//prod[1]
return local:discountPrice($prod/price, $prod/discount, 15)

User-Defined Functions | 129

Functions and Context

Inside a function body, there is no context item, even if there is one in the part of the
query that contained the function call. For example, the function shown in
Example 8-3 is designed to return all the products with numbers whose second digit
is greater than 5. You might think that because the function is called in an expression
where the context is the product element, the function can use the simple expression
number to access the number child of that product. However, because the function
does not inherit the context item from the main body of the query, the processor does
not have a context in which to evaluate number.

Example 8-3. Invalid use of context in a function body

declare function local:prod2ndDigit() as xs:string? {
substring(number, 2, 1)

b
doc("catalog.xml")//product[local:prod2ndDigit() > '5']

Instead, the relevant node must be passed to the function as an argument.
Example 8-4 shows a revised function that correctly accepts the desired product ele-
ment as an argument and uses a path expression ($prod/number) to find the number
child. The product element is passed to the function, using a period (.), shorthand for
the context item.

Example 8-4. Passing the context item to the function

declare function local:prod2ndDigit($prod as element()?) as xs:string? {
substring($prod/number, 2, 1)

b

doc("catalog.xml")//product[local:prod2ndDigit(.) > '5"]

Recursive Functions

Functions can recursively call themselves. For example, suppose you want to count
the number of descendant elements of an element (not just the immediate children,
but all the descendants). You could accomplish this by using the function shown in
Example 8-5.

Example 8-5. A recursive function

declare function local:num-descendant-elements
($el as element()) as xs:integer {
sum(for $child in Sel/*
return local:num-descendant-elements($child) + 1)

130 | Chapter8: Functions

The local:num-descendant-elements function recursively calls itself to determine
how many element children the element has, how many children its children has, and
so on. The only caveat is that there must be a level at which the function stops calling
itself. In this case, it will eventually reach an element that has no children, so the
return clause will not be evaluated. On the other hand, declaring a function such as:

declare function local:addItUp () { 1 + local:addItUp() };

results in an infinite loop, which will possibly end with an “out of memory” or “stack
overflow” error. Even if it is not an infinite loop, processors will have a limit to how
many recursive function calls are supported. If you can write your recursive functions
as tail-recursive, then most processors will optimize those functions so that they will
not overflow the stack.

You can also declare mutually recursive functions that call each other. “Copying Input
Elements with Modifications” on page 144 explores the use of recursive functions for
making modifications to element structures.

User-Defined Functions | 131

CHAPTER9
Advanced Queries

Now that you are an expert on the syntax of XQuery expressions, let’s look at some
more advanced queries. This chapter describes syntax and techniques for some com-
monly requested query capabilities. You may have these same requirements for your
queries, but even if you don’t, this chapter will show you some creative ways to apply
XQuery syntax.

Working with Positions and Sequence Numbers

Determining positions and generating sequence numbers are sometimes challenging
to query authors who are accustomed to procedural programming languages.
Because XQuery is a declarative rather than a procedural language, it is not possible
to use familiar techniques like counters. In addition, the sorting and filtering of
results can interfere with sequence numbers. This section describes some techniques
for working with positions and sequence numbers.

Adding Sequence Numbers to Results

Suppose you want to return a list of product names preceded by a sequence number.
Your first approach might be to use a variable as a counter, as shown in Example 9-1.
However, the results are not what you might expect. This is because the return clause
for each iteration is evaluated in parallel rather than sequentially. This means that you
cannot make changes to the value of a variable in one iteration, and expect it to affect
the next iteration of the for clause. At the beginning of every iteration, the $count
variable is equal to 0.

133

Example 9-1. Attempting to use a counter variable

Query

let Scount := 0

for $prod in doc("catalog.xml")//product[@dept = ("ACC", "WMN")]
let Scount := $count + 1

return <p>{Scount}. {data(Sprod/name)}</p>

Results

<p>1. Fleece Pullover</p>
<p>1. Floppy Sun Hat</p>
<p>1. Deluxe Travel Bag</p>

Another temptation might be to use the position function, as shown in Example 9-2.
However, this will return the same results as the previous example. In XQuery, unlike
in XSLT, the position function only has meaning inside a predicate in a path expres-
sion. In this case, the value bound to $prod is no longer in the context of three prod-
uct items; therefore, it has no relative sequence number within that sequence.

Example 9-2. Attempting to use the position function

for $prod in doc("catalog.xml")//product[@dept = ("ACC", "WMN")]
return <p>{$prod/position()}. {data($prod/name)}</p>

Luckily, FLWORs have a special syntax that enables you to define a positional variable
in the for clause. This variable, which is preceded by the keyword at, is bound to an
integer representing the iteration number, as shown in Example 9-3.

Example 9-3. Using a positional variable in a for clause

Query

for $prod at Scount in doc("catalog.xml")//product[@dept = ("ACC", "WMN")]
return <p>{Scount}. {data($prod/name)}</p>

Results

<p>1. Fleece Pullover</p>
<p>2. Floppy Sun Hat</p>
<p>3. Deluxe Travel Bag</p>

However, the positional variable in the at clause does not always work. For example,
suppose you wanted to use both where and order by clauses in your FLWOR. This
interferes with the sequencing, as shown in Example 9-4. First, the numbers are not
in ascending order. This is because the results are ordered after the positional number
is evaluated. Another problem is that the sequence numbers are 2, 3, and 4 instead of

134 | Chapter9: Advanced Queries

1, 2, and 3. This is because there are four product elements returned in the for
clause, and the first one was eliminated by the where clause.

Example 9-4. Attempting to use a positional variable with a where clause

Query

for $prod at $count in doc("catalog.xml")//product
where $prod/@dept = ("ACC", "MEN")

order by $prod/name

return <p>{$count}. {data($Sprod/name)}</p>

Results

<p>4. Cotton Dress Shirt</p>
<p>3. Deluxe Travel Bag</p>
<p>2. Floppy Sun Hat</p>

One way to resolve this is by embedding a second FLWOR in the let clause, as shown
in Example 9-5. This embedded FLWOR returns all the products sorted and filtered
appropriately. Then, the for clause contained in the main FLWOR uses the positional
variable on the sorted sequence.

Example 9-5. Embedding the where clause

Query

let S$sortedProds := for Sprod in doc("catalog.xml")//product
where $prod/@dept = "ACC" or Sprod/@dept = "MEN"
order by $prod/name
return S$prod

for $sortedProd at $count in $SsortedProds

return <p>{Scount}. {data($sortedProd/name)}</p>

Results

<p>1. Cotton Dress Shirt</p>
<p>2. Deluxe Travel Bag</p>
<p>3. Floppy Sun Hat</p>

Using the count Clause

Starting in version 3.0, the count clause offers a new way to address the challenges of
keeping track of position. Its simple syntax is shown in Figure 9-1.

——count $<var-name> —>

Figure 9-1. Syntax of a count clause

Working with Positions and Sequence Numbers | 135

Like the at keyword in a for clause, the count clause creates a variable whose value is
the iteration number. It is more useful, though, because it can appear anywhere
between the first clause and the return clause of a FLWOR. Example 9-6 shows how
you can use it after the where and order by clauses, eliminating the problem shown
in Example 9-4.

Example 9-6. Using a count clause

xquery version "3.0";

for $prod in doc("catalog.xml")//product
where $prod/@dept = ("ACC", "MEN")

order by $prod/name

count $count

return <p>{Scount}. {data($prod/name)}</p>

Being able to use the count clause after an order by clause but before a where clause
also makes it easier to rank items and only return a certain number. Example 9-7
shows how you might return only the highest prices in the price document. It refers
to the variable $count in the where to limit it to the two highest values.

Example 9-7. Using a count clause for ranking

Query

xquery version "3.0";

for $prod in doc("prices.xml")//prod

order by Sprod/price/number(.) descending
count $count

where $count <= 2

return <p>{Scount}. {data($prod/price)}</p>

Results

<p>1. 69.99</p>
<p>2. 39.99</p>

The count clause can also be used after a group by clause to count the position of the
group within all the groups. This is shown in Example 9-8.

Example 9-8. Using the count clause with groups

Query

xquery version "3.0";

for $item in doc("order.xml")//item

group by $d := S$item/@dept

count $count

return <p>{concat("Group ", Scount, ": ", $d)}</p>

136 | Chapter9: Advanced Queries

Results

<p>Group 1: ACC</p>
<p>Group 2: MEN</p>
<p>Group 3: WMN</p>

Testing for the Last Item

Sometimes it is also useful to test whether an item is last in a sequence. Earlier in this
chapter, we saw that the position function is not useful unless it is in a predicate. The
same is true of the last function, which limits its usefulness when testing for the last
item, for example, in a FLWOR.

Suppose you want to concatenate the names of the products together, separated by
commas. At the end of the last product name, you want to specity a period instead of
a comma. (Actually, this particular example would be best accomplished using the
string-join function. However, the example is useful for illustrative purposes.) One
approach is to bind the number of items to a variable in a let clause, as shown in
Example 9-9.

Example 9-9. Testing for the last item

Query

<p>{ let S$prods := doc("catalog.xml")//product
let $numProds := count($prods)
for $prod at S$count in S$Sprods
return if (Scount = $numProds)
then concat($prod/name, ".")

else concat($prod/name, ",")

}</p>
Results

<p>Fleece Pullover, Floppy Sun Hat, Deluxe Travel Bag, Cotton Dress Shirt.</p>

The $numProds variable is bound to the number of products. A positional variable,
$count, is used to keep track of the iteration number. When the Scount variable
equals the $numProds variable, you have arrived at the last item in the sequence.

Another approach is to use the is operator to determine whether the current $prod
element is the last one in the sequence. This query is shown in Example 9-10. In this
case, it is not necessary to count the number of items or to use a positional variable.
The results are the same as in Example 9-9.

Working with Positions and Sequence Numbers | 137

Example 9-10. Testing for the last item using the is operator

<p>{ let $prods := doc("catalog.xml")//product
for $prod in $prods
return if (Sprod is $prods[last()])
then concat($prod/name, ".")
else concat($prod/name, ", ")

}</p>

Windowing

The window clause, new in version 3.0, provides a way to group items that are adja-
cent to each other in more sophisticated ways than are possible with just a group by
clause. Like a for clause, a window clause creates an iteration over a sequence of items.
However, it creates windows based on starting and ending conditions, and evaluates
the return clause once per window.

Example 9-11 uses the window clause to iterate through a sequence of integers and
create a new window when it encounters an even number (where that number mod 2
is 0). The variable $s is named so that it can be referenced in the when expression,
which specifies the condition that creates a new window. In the return clause, the
variable $w refers to all the items in the original input sequence that are in the win-
dow. Note that in this example, the value 1 does not appear in the results, because
there was no window for it.

Example 9-11. Using the window clause

Query

xquery version "3.0";

for tumbling window $Sw in (1, 4, 3, 12, 5, 13, 8)
start $s when $s mod 2 = 0

return <window>{$w}</window>

Results

<window>4 3</window>
<window>12 5 13</window>
<window>8</window>

Creating windows with the window clause is different from creating groups with the
group by clause in several ways. One is that the order of the items is retained,
whereas in grouping the items are rearranged into their groups. In Example 9-11, the
integers were kept in their original order, not reorganized into two separate groups
containing even and odd numbers. Because you retain the order of the items, you can
put constraints on items that come before and after the start or end of the window.

138 | Chapter9: Advanced Queries

For example, you can specify a start condition to create a new window if a particular
value changes compared to the previous item.

There are two kinds of window clauses: tumbling and sliding. The difference is that
tumbling windows never overlap each other, while sliding windows might. This is
another difference from grouping, where the groups cannot overlap. The syntax of a
window clause is shown in Figure 9-2. The diagram shows the end condition as
optional, but it is only optional when the tumbling option is chosen. With sliding
windows, the end condition is required.

— for —I—_tumblingj—window —$<var-name>

J in <expr>—»
sliding

I—as <sequence-type>

—start <window-variables> when <expr> J >
Lmfend <window-variable> when <expr>
only

Figure 9-2. Syntax of a window clause

The start and end conditions use a series of window variables. Figure 9-3 shows
their syntax.

|— $<var-name> J|— at $<var-name> J|— previous $<var-name> JI— next 5}5<var—name>J

Figure 9-3. Syntax of window variables

In all, up to nine variables can be declared in a window clause. They are listed in
Table 9-1. All but the first are optional. It is possible to name these variables anything
you want, as long as their names are distinct from each other. For clarity, in all of the
examples in this chapter, the variables are named the same thing, as listed in the sec-
ond column of the table. If all nine variables were used (which is very unusual), a
window clause might look like:
for tumbling window $w in (2, 4, 6, 8, 10)
start $s at S$s-pos previous $s-prev next $s-next when true()
end $e at Se-pos previous $e-prev next Se-next when true()
return $s
The window variables are declared so that they can be accessed in the when expres-
sion (either in the start or end conditions) or in the return clause. They are
optional; if they are not referenced, they do not need to be specified. In Example 9-11,
only the $s variable was used.

Windowing | 139

Table 9-1. Variables of the window clause

Term Name usedin Purpose
examples

Window-variable $w The sequence of items in the window (required), appears after the keyword window

Start-item $s The first item in the window, appears after the word start

Start-item-position $s-pos The position of $s in the binding sequence, appears after the keyword at in the
start condition

Start-previous-ittem $s-prev The item in the binding sequence (if any) that precedes $s, appears after the
keyword previous in the start condition

Start-next-item $s-next The item in the binding sequence (if any) that follows $s, appears after the keyword
next in the start condition

End-item Se The last item in the window, appears after the word end

End-item-position ~ $e-pos The position of $e in the binding sequence, appears after the keyword at in the end
condition

End-previous-ittem $e-prev The item in the binding sequence (if any) that precedes $e, appears after the

keyword previous in the end condition

End-next-item $e-next The item in the binding sequence (if any) that follows Se, appears after the keyword
next in the end condition

Using start and end Conditions

Example 9-11 only had a start condition, saying when to start a new window. Every
item starting with the start item, up until the next start item, was included in the win-
dow. It is also possible to use an end condition to end the window before the next
window starts. With tumbling windows, this usually means that you do not want to
include all the items in your results, just certain subsets.

Example 9-12 shows some input XML that has sequences of three elements
(propname, value, and alt-value). If you want to create a new window when you
reach a propname element, but want to ignore the alt-value elements, you could end
the window when you encounter a value element, thus excluding alt-value ele-
ments from the results.

Example 9-12. Using the end condition

Query

xquery version "3.0";

let $props := <properties>
<propname>x</propname>
<value> </value>
<alt-value> </alt-value>
<propname>y</propname>
<value> </value>

140 | Chapter9: Advanced Queries

<alt-value> </alt-value>
</properties>
for tumbling window Sw in $props/*
start $s when name($s) = 'propname'
end $e when name($e) = 'value'
return <property>{Sw}</property>

Results

<property>
<propname>x</propname>
<value>xval</value>

</property>

<property>
<propname>y</propname>
<value>yval</value>

</property>

Windows Based on Position

The start-item-position and end-item-position variables are useful for creating win-
dows based on the position of the item in the sequence. For example, to create win-
dows of three items, one way would be to test the difference between the start and
end positions, as shown in Example 9-13.

Example 9-13. Using the start and end positions

Query

xquery version "3.0";

for tumbling window Sw in (1, 4, 3, 12, 5, 13, 8)
start at $s-pos when true()
end at Se-pos when $e-pos - $s-pos = 2

return <window>{Sw}</window>

Results

<window>1 4 3</window>
<window>12 5 13</window>
<window>8</window>

In that example, the when expression in the start condition is set to true(), meaning
that a new window should always start immediately after another one ends (or at the
beginning). In the end condition, it tests the difference between the positions of the
start item and the end item, and if it is equal to two, that means there are three items
in the window and it should end the window. In the results, the value 8 appears in a
window by itself because that window was started, even though it never satisfied the
end condition.

Windowing | 141

Example 9-14 shows a slightly revised query that uses only end instead of just end.
This has the effect of removing the last window that contained only 8, because the
end condition was never true.

Example 9-14. Using the only keyword

Query
xquery version "3.0";
for tumbling window $w in (1, 4, 3, 12, 5, 13, 8)
start at $s-pos when true()
only end at $e-pos when $e-pos - $s-pos = 2
return <window>{$w}</window>

Results

<window>1 4 3</window>
<window>12 5 13</window>

Windows Based on Previous or Next Items

The previous and next keywords in a window clause allow you to create windows by
testing the previous or next items. This is useful for testing if something has changed.
For example, suppose you want to iterate through the order document and display
some information from it, but you want to put a header in every time the department
changes. You don’t want to group by department, because for whatever reason, it is
important that the items retain their original order. An example of this is shown in
Example 9-15.

Example 9-15. Using the previous keyword

Query

xquery version "3.0";
for tumbling window Sw in doc("order.xml")//item

start $s previous S$s-prev when $s/@dept != Ss-prev/@dept
return (<p> {data($s/@dept)}</p>, Sw)

Results

<p>Department ACC</p>

<item dept="ACC" num="563" quantity="1"/>

<item dept="ACC" num="443" quantity="2"/>

<p>Department MEN</p>

<item dept="MEN" num="784" quantity="1" color="white"/>
<item dept="MEN" num="784" quantity="1" color="gray"/>
<p>Department WMN</p>

<item dept="WMN" num="557" quantity="1" color="black"/>

142 | Chapter9: Advanced Queries

The example uses the keyword previous and declares a variable $s-prev that will
contain the previous item. The when expression then checks if the current and previ-
ous dept attributes are equal to each other. If not, a new window is created, which
allows the insertion of a p element at the beginning of the window.

However, you may have noticed that the first item in the order is missing from the
results. This is because $s-prev is the empty sequence when it encounters the first
item, and comparing anything to the empty sequence is always false. This could be
remedied by adding an additional test for the existence of $s-prev, as in:

start $s previous $s-prev when $s/@dept != Ss-prev/@dept or not($s-prev)
or alternatively, you could compare their string values, as in:
start $s previous $s-prev when string($s/@dept) != string(Ss-prev/@dept)

It is possible to specify a similar condition in the end condition by checking the next
item, as shown in Example 9-16, where we use the technique of comparing string val-
ues to avoid dropping the last item.

Example 9-16. Using the next keyword

Query

xquery version "3.0";
for tumbling window Sw in doc("order.xml")//item

start $s when true()

end $e next Se-next when string($e/@dept) !'= string($e-next/@dept)
return (<p> {data($s/@dept)}</p>, $w)

Results

<p>Department WMN</p>

<item dept="WMN" num="557" quantity="1" color="navy"/>
<p>Department ACC</p>

<item dept="ACC" num="563" quantity="1"/>

<item dept="ACC" num="443" quantity="2"/>

<p>Department MEN</p>

<item dept="MEN" num="784" quantity="1" color="white"/>
<item dept="MEN" num="784" quantity="1" color="gray"/>
<p>Department WMN</p>

<item dept="WMN" num="557" quantity="1" color="black"/>

Sliding Windows

Sliding windows differ from tumbling windows in that the windows can overlap. This
can be useful for things like moving averages, or for data that naturally overlaps, like
overlapping events over time. Example 9-14 showed how to create windows with
three items each. Using tumbling windows, each item was only in one window. If we

Windowing | 143

change that example slightly to make it a sliding window, as shown in Example 9-17,
more windows are created, with overlapping values.

Example 9-17. Sliding windows

Query

xquery version "3.0";
for sliding window $w in (1, 4, 3, 12, 5, 13, 8)
start at $s-pos when true()
only end at $e-pos when $e-pos - $s-pos = 2
return <window>{$w}</window>

Results

<window>1 4 3</window>

<window>4 3 12</window>
<window>3 12 5</window>
<window>12 5 13</window>
<window>5 13 8</window>

You could calculate the integer average of each window by changing the return
clause to:

return round(avg($w))
which would result in the sequence:

3671009

Copying Input Elements with Modifications

Often you will want to include elements from an input document, but with minor
modifications. For example, you may wish to eliminate or add attributes, or change
their names. However, the XQuery language does not have any special functions or
operators that perform these minor modifications. For example, there is no direct
syntax that means “select all the product elements, but leave out their dept
attributes”

The good news is that you can accomplish these modifications by “reconstructing”
the elements. For example, you can write a query to construct a new product element
and include all the children and attributes (except dept) of the original product ele-
ment in the input document. Even better, you can write a user-defined function that
uses computed constructors to handle these modifications in the general case. This
section describes some common modifications and provides useful functions to han-
dle these cases.

Note that these functions are intended to change the way elements and attributes
appear in the results of a query, not to update them in an XML database. To update

144 | Chapter9: Advanced Queries

your XML database, you should check the documentation for your XQuery imple-
mentation to find out about its update capabilities, which may consist of support for
the XQuery Update Facility, or implementation-specific update functions.

Adding Attributes to an Element

To add an attribute to an element, you could use a function like the one shown in
Example 9-18. It takes as arguments a sequence of elements, along with a sequence of
attribute names and values, and returns newly constructed elements with those
attributes added.

Example 9-18. Useful function: functx:add-attributes

declare namespace functx = "http://www.functx.com";
declare function functx:add-attributes
(Selements as element()*,
SattrNames as xs:QName*,
SattrValues as xs:anyAtomicType*) as element()* {

for Selement in $elements
return element { node-name($element)}
{ for $SattrName at $seq in S$attrNames
return if ($element/@*[node-name(.) = SattrName])

then ()
else attribute {$attrName}
{Sattrvalues[$seq]},
Selement/@*,

$element/node() }
}s

The function makes use of computed constructors to create dynamically new ele-
ments with the same names as the original elements passed to the function. It also
uses a computed constructor to create the attributes, specifying their names and val-
ues as expressions.

It then copies the attribute and child nodes from the original elements. The expres-
sion $element/node() is used rather than * because node() will return text, process-
ing instruction, and comment nodes in addition to child elements. However, node()
does not return attributes, so a separate expression $element/@* is used to copy
those.

The expression:
functx:add-attributes(doc("catalog.xml")//product, xs:QName("xml:lang"), "en"

uses this function to return all the product elements from the catalog, with an addi-
tional xml:lang="en" attribute.

Copying Input Elements with Modifications | 145

Removing Attributes from an Element

Removing attributes also requires the original element to be reconstructed.
Example 9-19 shows a function that “removes” attributes from a sequence of ele-
ments. It does this by reconstructing the elements, copying the content and all the
attributes, except those whose names are specified in the second argument.

Example 9-19. Useful function: functx:remove-attributes

declare namespace functx = "http://www.functx.com";
declare function functx:remove-attributes
(Selements as element()*, Snames as xs:string*) as element()* {

for Selement in $elements
return element
{node-name($element)}
{Selement/@*[not(name() = Snames)],
Selement/node() }
b

The function will accept a sequence of strings that represent attribute names to
remove. For example, the expression:

functx:remove-attributes(doc("order.xml")//item, ("quantity", "color"))

returns all the item elements from the order document, minus the quantity and
color attributes. The extra parentheses are necessary around the "quantity" and
"color" strings to combine them into a single argument that is a sequence of two
items. Otherwise, they would be considered two separate arguments.

Notice that the predicate [not(name() = $names)] does not need to explicitly iterate
through each of the strings in the $names sequence. This is because the = operator,
unlike the eq operator, can be used on lists of values. The comparison will return true
for every attribute name that is equal to any one of the strings in $names. Using the
not function means that the predicate will allow through only the attributes whose
names do not match any of the strings in $names.

It may seem simpler to use the != operator rather than the not function, but that does
not have the same meaning. If the predicate were [name() != $names], it would
return all the attributes whose names don’t match either quantity or color. This
means that it will return all the attributes, because no single attribute name will
match both strings.

146 | Chapter9: Advanced Queries

Removing Attributes from All Descendants

You could go further and remove attributes from an element as well as remove all its
descendants. The recursive function functx:remove-attributes-deep, shown in
Example 9-20, accomplishes th