O'REILLY"

Fundamental
with Swift

SWIFT, XCODE, AND COCOA BASICS

Matt Neuburg

vww allitebooks.conl

http://www.allitebooks.org

OREILLY"

10S 9 Programming Fundamentals with Swift

Move into iOS development by getting a firm grasp of its fundamentals, “Neuburg is my favorite
including the Xcode IDE, the Co;oa Touch frameyvork, and Swift 2_.O—th.e programming book

latest version of Apple's acclaimed programming language. With this
thoroughly updated guide, you'll learn Swift's object-oriented concepts,
understand how to use Apple's development tools, and discover how —J°hv" Gr_“ber
Cocoa provides the underlying functionality iOS apps need to have. Daring Firebal

writer, period.”

m Explore Swift's object-oriented concepts: variables and
functions, scopes and namespaces, object types and instances

m Become familiar with built-in Swift types such as numbers,
strings, ranges, tuples, Optionals, arrays, dictionaries, and sets

Learn how to declare, instantiate, and customize Swift object
types—enumes, structs, and classes

m Discover powerful Swift features such as protocols and generics

m Catch up on Swift 2.0 innovations: option sets, protocol
extensions, error handling, guard statements, availability
checks, and more

m Tour the lifecycle of an Xcode project from inception to App Store
m Create app interfaces with nibs and the nib editor, Interface Builder

m Understand Cocoa's event-driven model and its major design
patterns and features

Find out how Swift communicates with Cocoa’s C and
Objective-C APIs

Matt Neuburg has a PhD in Classics
Once you master the fundamentals, you'll be ready to and has taught at many colleges and
tackle the details of iOS app development with author universities. He has served as editor
Matt Neuburg's companion guide, Programming iOS 9. of MacTech magazine and as contrib-

Programming Programming iOS 9 uting editor for TidBITS. He has writ-

lOS 9 978-1-491-93685-6 ten many OS X and iOS applications.
Previous books include Programming

iOS 8, REALbasic: The Definitive Guide,
and AppleScript: The Definitive Guide.

Matt Neuburg

MOBILE DEVELOPMENT / I0S Twitter: @Orei”ymedia

facebook.com/oreilly

US $49.99 CAN $57.99
ISBN: 978-1-491-93677-1

MO

7814911936771

vww allitebooks.conl

http://www.allitebooks.org

SECOND EDITION

10S 9 Programming

Fundamentals with Swift
Swift, Xcode, and Cocoa Basics

Matt Neuburg

Beijing « Boston - Farnham - Sebastopol « Tokyo [KOAR{={|HN4

vww allitebooks.cond

http://www.allitebooks.org

i0S 9 Programming Fundamentals with Swift, Second Edition
by Matt Neuburg

Copyright © 2016 Matt Neuburg. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis Cover Designer: Karen Montgomery
Production Editor: Kristen Brown Interior Designer: David Futato
Proofreader: O’Reilly Production Services lllustrator: Matt Neuburg

Indexer: Matt Neuburg
April 2015: First Edition
October 2015: Second Edition

Revision History for the Second Edition:
2015-09-23: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491936771 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 9 Programming Fundamentals with
Swift, the image of a harp seal, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instruc-
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the intel-
lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

ISBN: 978-1-491-93677-1
[LSI]

vww allitebooks.cond

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491936771
http://www.allitebooks.org

Table of Contents

Preface. ..o xiii
Partl. Llanguage
1. The Architecture of Swift...........oooiiiiiiiiiiiii 3
Ground of Being 3
Everything Is an Object? 5
Three Flavors of Object Type 6
Variables 6
Functions 8
The Structure of a Swift File 9
Scope and Lifetime 11
Object Members 12
Namespaces 13
Modules 13
Instances 14
Why Instances? 16
self 19
Privacy 20
Design 21
Object Types and APIs 22
Instance Creation, Scope, and Lifetime 24
Summary and Conclusion 25
2. FUNCHIONS. ..o e 27
Function Parameters and Return Value 27
Void Return Type and Parameters 30

vww allitebooks.cond

http://www.allitebooks.org

Function Signature 32

External Parameter Names 32
Overloading 35
Default Parameter Values 36
Variadic Parameters 37
Ignored Parameters 38
Modifiable Parameters 38
Function In Function 42
Recursion 44
Function As Value 44
Anonymous Functions 47
Define-and-Call 52
Closures 53
How Closures Improve Code 55
Function Returning Function 56
Closure Setting a Captured Variable 59
Closure Preserving Its Captured Environment 59
Curried Functions 61
3. Variablesand Simple Types.c.vviriiiiiiiiiiiii it i 63
Variable Scope and Lifetime 63
Variable Declaration 65
Computed Initializer 67
Computed Variables 68
Setter Observers 71
Lazy Initialization 73
Built-In Simple Types 75
Bool 76
Numbers 77
String 85
Character 89
Range 93
Tuple 95
Optional 98
L 1) 1T G T -1 3 m
Object Type Declarations and Features 111
Initializers 113
Properties 119
Methods 122

iv | Tableof Contents

vww allitebooks.cond

http://www.allitebooks.org

Subscripts
Nested Object Types
Instance References
Enums
Case With Fixed Value
Case With Typed Value
Enum Initializers
Enum Properties
Enum Methods
Why Enums?
Structs
Struct Initializers, Properties, and Methods
Struct As Namespace
Classes
Value Types and Reference Types
Subclass and Superclass
Class Initializers
Class Deinitializer
Class Properties and Methods
Polymorphism
Casting
Type Reference
Protocols
Why Protocols?
Protocol Type Testing and Casting
Declaring a Protocol
Optional Protocol Members
Class Protocol
Implicitly Required Initializers
Literal Convertibles
Generics
Generic Declarations
Type Constraints
Explicit Specialization
Associated Type Chains
Additional Constraints
Extensions
Extending Object Types
Extending Protocols
Extending Generics

124
126
127
129
130
131
132
134
135
136
137
137
139
139
140
144
150
158
159
161
164
168
173
174
176
177
179
180
181
183
184
186
188
190
191
194
197
198
200
203

vww allitebooks.cond

Table of Contents

| v

http://www.allitebooks.org

Umbrella Types 205
AnyObject 205
AnyClass 208
Any 209

Collection Types 210
Array 210
Dictionary 224
Set 229

5. Flow ControlandMore............coeeviiiiiiiiiiiiiiiiiinnns 235

Flow Control 235
Branching 236
Loops 248
Jumping 253

Operators 265

Privacy 268
Private Declaration 269
Public Declaration 271
Privacy Rules 272

Introspection 272

Memory Management 273
Weak References 275
Unowned References 276
Weak and Unowned References in Anonymous Functions 278
Memory Management of Protocol-Typed References 281

Partll. IDE
6. Anatomy of an Xcode Project..........cvvvviiiiiiiiiiiiiiiiiinnnnn. 285

New Project 285

The Project Window 288
The Navigator Pane 289
The Utilities Pane 295
The Editor 296

The Project File and Its Dependents 299

The Target 301
Build Phases 302
Build Settings 304
Configurations 305

vi

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Schemes and Destinations 306

From Project to Running App 309
Build Settings 311
Property List Settings 312
Nib Files 313
Additional Resources 313
Code Files and the App Launch Process 316
Frameworks and SDKs 321

Renaming Parts of a Project 324

. NibManagement..........cooviiiiiiiiiiiiii i i i e 325

The Nib Editor Interface 326
Document Qutline 328
Canvas 330
Inspectors and Libraries 332

Nib Loading 334
When Nibs Are Loaded 334
Manual Nib Loading 336

Connections 338
Outlets 338
The Nib Owner 340
Automatically Configured Nibs 343
Misconfigured Outlets 344
Deleting an Outlet 345
More Ways to Create Outlets 346
Outlet Collections 349
Action Connections 350
More Ways to Create Actions 352
Misconfigured Actions 353
Connections Between Nibs — Not! 354

Additional Configuration of Nib-Based Instances 354

. Documentation. ... 359

The Documentation Window 360

Class Documentation Pages 362

Sample Code 365

Quick Help 366

Symbols 367

Header Files 368

Internet Resources 369

Table of Contents | vii

vww allitebooks.cond

http://www.allitebooks.org

9. LifeCycle of aProject.oveernieriiiie it i iieeeenieeeennns 3N

Device Architecture and Conditional Code 371
Backward Compatibility 372
Device Type 374

Version Control 375

Editing and Navigating Your Code 377
Autocompletion 378
Snippets 380
Fix-it and Live Syntax Checking 381
Navigation 382
Finding 384

Running in the Simulator 385

Debugging 386
Caveman Debugging 386
The Xcode Debugger 389

Testing 395

Clean 401

Running on a Device 402
Running Without a Developer Program Membership 403
Obtaining a Developer Program Membership 404
Obtaining a Certificate 405
Obtaining a Development Provisioning Profile 407
Running the App 408
Profile and Device Management 409

Profiling 409
Gauges 410
Instruments 410

Localization 413
Localizing the Info.plist 414
Localizing a Nib File 416
Localizing Code Strings 418
Localizing With XML Files 420

Archiving and Distribution 422

Ad Hoc Distribution 424

Final App Preparations 426
Icons in the App 426
Other Icons 427
Launch Images 428
Screenshots and Video Previews 429
Property List Settings 430

vii | Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Submission to the App Store 431

Partlll. Cocoa

10. €0C0ACIASSES. uvveiiiiiiiiiiii it e 437
Subclassing 437
Categories and Extensions 440

How Swift Uses Extensions 441
How You Use Extensions 441
How Cocoa Uses Categories 442
Protocols 443
Informal Protocols 445
Optional Methods 446
Some Foundation Classes 448
Useful Structs and Constants 448
NSString and Friends 450
NSDate and Friends 452
NSNumber 454
NSValue 455
NSData 456
Equality and Comparison 457
NSIndexSet 458
NSArray and NSMutableArray 459
NSDictionary and NSMutableDictionary 461
NSSet and Friends 462
NSNull 463
Immutable and Mutable 463
Property Lists 464
Accessors, Properties, and Key-Value Coding 465
Swift Accessors 466
Key-Value Coding 467
Uses of Key-Value Coding 468
KVC and Outlets 470
Key Paths 470
Array Accessors 471
The Secret Life of NSObject 472

1. CocoaEvents..........oooiiiiiiiiiii 475

Reasons for Events 475

Table of Contents | ix

12.

13.

A. (, Objective-C, and Swift

Subclassing
Notifications
Receiving a Notification
Unregistering
Posting a Notification
NSTimer
Delegation
Cocoa Delegation
Implementing Delegation
Data Sources
Actions
The Responder Chain
Deferring Responsibility
Nil-Targeted Actions
Key-Value Observing
Swamped by Events
Delayed Performance

Memory Management..........ccovvvvuiiiniiiiiniennennnnnss

Principles of Cocoa Memory Management
Rules of Cocoa Memory Management
What ARC Is and What It Does

How Cocoa Objects Manage Memory
Autorelease Pool

Memory Management of Instance Properties
Retain Cycles and Weak References
Unusual Memory Management Situations
Nib Loading and Memory Management
Memory Management of CFTypeRefs
Property Memory Management Policies
Debugging Memory Management Mistakes

Communication Between Objects...........coevvvvvnevnnnnen.

Visibility by Instantiation
Visibility by Relationship
Global Visibility
Notifications and KVO
Model-View-Controller

476
477
478
481
482
483
484
484
486
488
488
492
493
493
494
498
501

505
505
506
508
508
509
511
512
514
519
520
521
524

525
526
528
529
530
531

X

Table of Contents

Table of Contents

Xi

Preface

On June 2, 2014, Apple’s WWDC keynote address ended with a shocking announce-
ment: “We have a new programming language” This came as a huge surprise to the
developer community, which was accustomed to Objective-C, warts and all, and doubt-
ed that Apple could ever possibly relieve them from the weight of its venerable legacy.
The developer community, it appeared, had been wrong.

Having picked themselves up off the floor, developers immediately began to examine
this new language — Swift — studying it, critiquing it, and deciding whether to use it.
My own first move was to translate all my existing iOS apps into Swift; this was enough
to convince me that, for all its faults, Swift deserved to be adopted by new students of
iOS programming, and that my books, therefore, should henceforth assume that readers
are using Swift.

The Swift language is designed from the ground up with these salient features:

Object-orientation
Swift is a modern, object-oriented language. It is purely object-oriented: “Every-
thing is an object”

Clarity
Swift is easy to read and easy to write, with minimal syntactic sugar and few hidden
shortcuts. Its syntax is clear, consistent, and explicit.

Safety
Swift enforces strong typing to ensure that it knows, and that you know, what the
type of every object reference is at every moment.

Economy
Swift is a fairly small language, providing some basic types and functionalities and
no more. The rest must be provided by your code, or by libraries of code that you
use — such as Cocoa.

xXiii

Memory management
Swift manages memory automatically. You will rarely have to concern yourself with
memory management.

Cocoa compatibility
The Cocoa APIs are written in C and Objective-C. Swift is explicitly designed to
interface with most of the Cocoa APIs.

These features make Swift an excellent language for learning to program iOS.

The alternative, Objective-C, still exists, and you can use it if you like. Indeed, it is easy
to write an app that includes both Swift code and Objective-C code; and you may have
reason to do so. Objective-C, however, lacks the very advantages that Swift offers.
Objective-C agglomerates object-oriented features onto C. It is therefore only partially
object-oriented; it has both objects and scalar data types, and its objects have to be slotted
into one particular C data type (pointers). Its syntax can be difficult and tricky; reading
and writing nested method calls can make one’s eyes glaze over, and it invites hacky
habits such as implicit nil-testing. Its type checking can be and frequently is turned off,
resulting in programmer errors where a message is sent to the wrong type of object and
the program crashes. It uses manual memory management; the recent introduction of
ARC (automatic reference counting) has alleviated some of the programmer tedium
and has greatly reduced the likelihood of programmer error, but errors are still possible,
and memory management ultimately remains manual.

Recent revisions and additions to Objective-C — ARG, synthesis and autosynthesis,
improved literal array and dictionary syntax, blocks — have made it easier and more
convenient, but such patches have also made the language even larger and possibly even
more confusing. Because Objective-C must encompass C, there are limits to how far it
can be extended and revised. Swift, on the other hand, is a clean start. If you were to
dream of completely revising Objective-C to create a better Objective-C, Swift might be
what you would dream of. It puts a modern, rational front end between you and the
Cocoa Objective-C APIs.

Therefore, Swift is the programming language used throughout this book. Nevertheless,
the reader will also need some awareness of Objective-C (including C). The Foundation
and Cocoa APIs, the built-in commands with which your code must interact in order
to make anything happen on an iOS device, are still written in C and Objective-C. In
order to interact with them, you have to know what those languages would expect. For
example, in order to pass a Swift array where an NSArray is expected, you need to know
what consitutes an object acceptable as an element of an Objective-C NSArray.

Therefore, in this edition, although I do not attempt to teach Objective-C, I do describe
it in enough detail to allow you to read it when you encounter it in the documentation
and on the Internet, and I occasionally show some Objective-C code. Part III, on Cocoa,
is really all about learning to think the way Objective-C thinks — because the structure
and behavior of the Cocoa APIs are fundamentally based on Objective-C. And the book

xiv | Preface

ends with an appendix that details how Swift and Objective-C communicate with one
another, as well as detailing how your app can be written partly in Swift and partly in
Objective-C.

The Scope of This Book

This book is actually one of a pair with my Programming iOS 9, which picks up exactly
where this book leaves off. They complement and supplement one another. The two-
book architecture should, I believe, render the size and scope of each book tractable for
readers. Together, they provide a complete grounding in the knowledge needed to begin
writing 10S apps; thus, when you do start writing iOS apps, you’ll have a solid and
rigorous understanding of what you are doing and where you are heading. If writing
an i0S program is like building a house of bricks, this book teaches you what a brick is
and how to handle it, while Programming iOS 9 hands you some actual bricks and tells
you how to assemble them.

When you have read this book, you’ll know about Swift, Xcode, and the underpinnings
of the Cocoa framework, and you will be ready to proceed directly to Programming iOS
9. Conversely, Programming iOS 9 assumes a knowledge of this book; it begins, like
Homer’s Iliad, in the middle of the story, with the reader jumping with all four feet into
views and view controllers, and with a knowledge of the language and the Xcode IDE
already presupposed. If you started reading Programming iOS 9 and wondered about
such unexplained matters as Swift language basics, the UIApplicationMain function,
the nib-loading mechanism, Cocoa patterns of delegation and notification, and retain
cycles, wonder no longer — I didn’t explain them there because I do explain them here.

The three parts of this book teach the underlying basis of all iOS programming:

o PartI introduces the Swift language, from the ground up — I do not assume that
you know any other programming languages. My way of teaching Swift is different
from other treatments, such as Apple’s; it is systematic and Euclidean, with peda-
gogical building blocks piled on one another in what I regard as the most helpful
order. At the same time, I have tried to confine myself to the essentials. Swift is not
a big language, but it has some subtle and unusual corners. You don't need to dive
deep into all of these, and my discussion will leave many of them unexplored. You
will probably never encounter them, and if you do, you will have entered an ad-
vanced Swift world outside the scope of this discussion. To give an obvious example,
readers may be surprised to find that I never mention Swift playgrounds or the
REPL. My focus here is real-life iOS programming, and my explanation of Swift
therefore concentrates on those common, practical aspects of the language that, in
my experience, actually come into play in the course of programming iOS.

o Part II turns to Xcode, the world in which all iOS programming ultimately takes
place. It explains what an Xcode project is and how it is transformed into an app,
and how to work comfortably and nimbly with Xcode to consult the documentation

Preface | xv

http://shop.oreilly.com/product/0636920044352.do

and to write, navigate, and debug code, as well as how to bring your app through
the subsequent stages of running on a device and submission to the App Store.
Thereisalso a very important chapter on nibs and the nib editor (Interface Builder),
including outlets and actions as well as the mechanics of nib loading; however, such
specialized topics as autolayout constraints in the nib are postponed to the other
book.

o Part IIT introduces the Cocoa Touch framework. When you program for iOS, you
take advantage of a suite of frameworks provided by Apple. These frameworks,
taken together, constitute Cocoa; the brand of Cocoa that provides the API for
programming iOS is Cocoa Touch. Your code will ultimately be almost entirely
about communicating with Cocoa. The Cocoa Touch frameworks provide the un-
derlying functionality that any iOS app needs to have. But to use a framework, you
have to think the way the framework thinks, put your code where the framework
expects it, and fulfill many obligations imposed on you by the framework. To make
things even more interesting, Cocoa uses Objective-C, while you'll be using Swift:
you need to know how your Swift code will interface with Cocoa’s features and
behaviors. Cocoa provides important foundational classes and adds linguistic and
architectural devices such as categories, protocols, delegation, and notifications, as
well as the pervasive responsibilities of memory management. Key-value coding
and key-value observing are also discussed here.

The reader of this book will thus get a thorough grounding in the fundamental knowl-
edge and techniques that any good iOS programmer needs. The book itself doesn’t show
how to write any particularly interesting iOS apps, but it does constantly use my own
real apps and real programming situations to illustrate and motivate its explanations.
And then you’ll be ready for Programming iOS 9, of course!

Versions
This book is geared to Swift 2.0, i0S 9, and Xcode 7.

In general, only very minimal attention is given to earlier versions of iOS and Xcode. It
is not my intention to embrace in this book any detailed knowledge about earlier ver-
sions of the software, which is, after all, readily and compendiously available in my
earlier books. The book does contain, nevertheless, a few words of advice about back-
ward compatibility (especially in Chapter 9).

The Swift language included with Xcode 7, Swift 2.0, has changed very significantly
from its immediate predecessor, Swift 1.2. If you were using Swift 1.2 previously, you'll
almost certainly find that your code won’'t compile with Swift 2.0 without some thorough
revision. Similarly, the code in this book, being written in Swift 2.0, is totally incom-
patible with Swift 1.2. On the assumption that you might have some prior knowledge
of Swift 1.2, I call out, in the course of my discussion, most of the important language
features that are new or changed in Swift 2.0. But I do not describe or explain Swift 1.2

xvi | Preface

at all; if you need to know about it — though I can’t imagine why you would — consult
the previous edition of this book.

Acknowledgments

My thanks go first and foremost to the people at O’Reilly Media who have made writing
a book so delightfully easy: Rachel Roumeliotis, Sarah Schneider, Kristen Brown, Dan
Fauxsmith, and Adam Witwer come particularly to mind. And let’s not forget my first
and long-standing editor, Brian Jepson, who had nothing whatever to do with this ed-
ition, but whose influence is present throughout.

As in the past, I have been greatly aided by some fantastic software, whose excellences
I have appreciated at every moment of the process of writing this book. I should like to
mention, in particular:

o git (http://git-scm.com)

o SourceTree (http://www.sourcetreeapp.com)

o TextMate (http://macromates.com)

o AsciiDoc (http://www.methods.co.nz/asciidoc)
« BBEdit (http://barebones.com/products/bbedit/)
o Snapz Pro X (http://www.ambrosiasw.com)

o GraphicConverter (http://www.lemkesoft.com)
o OmniGraftle (http://www.omnigroup.com)

The book was typed and edited entirely on my faithful Unicomp Model M keyboard
(http://pckeyboard.com), without which I could never have done so much writing over
solonga period so painlessly. For more about my physical work environment, see http://
matt.neuburg.usesthis.com.

From the Programming i0S 4 Preface

A programming framework has a kind of personality, an overall flavor that provides an
insight into the goals and mindset of those who created it. When I first encountered
Cocoa Touch, my assessment of its personality was: “Wow, the people who wrote this
arereally clever!” On the one hand, the number of built-in interface objects was severely
and deliberately limited; on the other hand, the power and flexibility of some of those
objects, especially such things as UITableView, was greatly enhanced over their OS X
counterparts. Even more important, Apple created a particularly brilliant way (UIView-
Controller) to help the programmer make entire blocks of interface come and go and
supplant one another in a controlled, hierarchical manner, thus allowing that tiny

Preface | xvii

http://git-scm.com
http://www.sourcetreeapp.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://barebones.com/products/bbedit/
http://www.ambrosiasw.com
http://www.lemkesoft.com
http://www.omnigroup.com
http://pckeyboard.com
http://matt.neuburg.usesthis.com
http://matt.neuburg.usesthis.com

iPhone display to unfold virtually into multiple interface worlds within a single app
without the user becoming lost or confused.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the fold
many new programmers who see programming for these devices as worthwhile and
doable, even though they may not have felt the same way about OS X. Apple’sown annual
WWDC developer conventions have reflected this trend, with their emphasis shifted
from OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one hand,
has also fostered a certain tendency to try to run without first learning to walk. iOS gives
the programmer mighty powers that can seem as limitless as imagination itself, but it
also has fundamentals. I often see questions online from programmers who are evidently
deep into the creation of some interesting app, but who are stymied in a way that reveals
quite clearly that they are unfamiliar with the basics of the very world in which they are
so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Here I have attempted to marshal and expound, in what I hope is a pedagogically
helpful and instructive yet ruthlessly Euclidean and logical order, the principles and
elements on which sound iOS programming rests. My hope, as with my previous books,
is that you will both read this book cover to cover (learning something new often enough
to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time goes
on. I have depended heavily on them in the preparation of this book. But I also find that
they don’t fulfill the same function as a reasoned, ordered presentation of the facts. The
online documentation must make assumptions as to how much you already know; it
can’t guarantee that you'll approach it in a given order. And online documentation is
more suitable to reference than to instruction. A fully written example, no matter how
well commented, is difficult to follow; it demonstrates, but it does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can assume
you know views before you know view controllers for the simple reason that Part I
precedes Part II. And along with facts, I also bring to the table a degree of experience,
which I try to communicate to you. Throughout this book you’ll find me referring to
“common beginner mistakes”; in most cases, these are mistakes that I have made myself,
in addition to seeing others make them. I try to tell you what the pitfalls are because I
assume that, in the course of things, you will otherwise fall into them just as naturally
as I did as I was learning. You'll also see me construct many examples piece by piece or
extract and explain just one tiny portion of a larger app. It is not a massive finished

xviii | Preface

vww allitebooks.cond

http://www.allitebooks.org

program that teaches programming, but an exposition of the thought process that de-
veloped that program. It is this thought process, more than anything else, that I hope
you will gain from reading this book.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

a This element signifies a tip or suggestion.

S This element signifies a general note.
% This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://github.com/mattneub/Programming-iOS-Book-Examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly

Preface | xix

http://github.com/mattneub/Programming-iOS-Book-Examples

books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “iOS 9 Programming Fundamentals with
Swift by Matt Neuburg (O'Reilly). Copyright 2016 Matt Neuburg, 978-1-491-93677-1”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers
‘ expert content in both book and video form from the world’s
7 leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xx | Preface

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/ios9-prog-fundamentals.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xxi

http://bit.ly/ios9-prog-fundamentals
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART |
Language

This part of the book teaches the Swift language, from the ground up. The description
is rigorous and orderly. Here you’ll become sufficiently conversant with Swift to be
comfortable with it, so that you can proceed to the practical business of actual pro-
gramming.

o Chapter 1 surveys the structure of a Swift program, both physically and conceptu-
ally. You'll learn how Swift code files are organized, and you’ll be introduced to the
most important underlying concepts of the object-oriented Swift language: vari-
ables and functions, scopes and namespaces, object types and their instances.

o Chapter 2 explores Swift functions. We start with the basics of how functions are
declared and called; then we discuss parameters — external parameter names, de-
fault parameters, and variadic parameters. Then we dive deep into the power of
Swift functions, with an explanation of functions inside functions, functions as first-
class values, anonymous functions, functions as closures, and curried functions.

o Chapter 3 starts with Swift variables — their scope and lifetime, and how they are
declared and initialized, along with important Swift features such as computed
variables and setter observers. Then some important built-in Swift types are intro-
duced, including Booleans, numbers, strings, ranges, tuples, and Optionals.

o Chapter 4 is all about Swift object types — classes, structs, and enums. It explains
how these three object types work, and how you declare, instantiate, and use them.
Then it proceeds to polymorphism and casting, protocols, generics, and extensions.
The chapter concludes with a discussion of Swift’s umbrella types, such as AnyOb-
ject, and collection types — Array, Dictionary, and Set (including option sets, the
new Swift 2.0 way of expressing bitmasks).

o Chapter 5 is a miscellany. We start with Swift’s flow control structures for branching,
looping, and jumping, including a major new Swift 2.0 feature, error handling. Then
I’ll explain how to create your own Swift operators. The chapter concludes by de-
scribing Swift access control (privacy), introspection (reflection), and memory
management.

CHAPTER 1
The Architecture of Swift

It will be useful at the outset for you to have a general sense of how the Swift language
is constructed and what a Swift-based iOS program looks like. This chapter will survey
the overall architecture and nature of the Swift language. Subsequent chapters will fill
in the details.

Ground of Being

A complete Swift command is a statement. A Swift text file consists of multiple lines of
text. Line breaks are meaningful. The typical layout of a program is one statement, one
line:

print("hello")
print("world")

(The print command provides instant feedback in the Xcode console.)

You can combine more than one statement on a line, but then you need to put a semi-
colon between them:

print("hello"); print("world")

You are free to put a semicolon at the end of a statement that is last or alone on its line,
but no one ever does (except out of habit, because C and Objective-C require the sem-
icolon):

print("hello");

print("world");
Conversely, a single statement can be broken into multiple lines, in order to prevent
long statements from becoming long lines. But you should try to do this at sensible
places so as not to confuse Swift. For example, after an opening parenthesis is a good
place:

print(
"world")

Comments are everything after two slashes in a line (so-called C++-style comments):
print("world") // this is a comment, so Swift ignores it

You can also enclose comments in /*...*/, as in C. Unlike C, C-style comments can
be nested.

Many constructs in Swift use curly braces as delimiters:

class Dog {
func bark() {
print("woof")
}
}
By convention, the contents of curly braces are preceded and followed by line breaks
and are indented for clarity, as shown in the preceding code. Xcode will help impose
this convention, but the truth is that Swift doesn’t care, and layouts like this are legal
(and are sometimes more convenient):

class Dog { func bark() { print("woof") }}

Swift is a compiled language. This means that your code must build — passing through
the compiler and being turned from text into some lower-level form that a computer
can understand — before it can run and actually do the things it says to do. The Swift
compiler is very strict; in the course of writing a program, you will often try to build
and run, only to discover that you can’t even build in the first place, because the compiler
will flag some error, which you will have to fix if you want the code to run. Less often,
the compiler will let you off with a warning; the code can run, but in general you should
take warnings seriously and fix whatever they are telling you about. The strictness of
the compiler is one of Swift’s greatest strengths, and provides your code with a large
measure of audited correctness even before it ever starts running.

obtuse to the downright misleading. You will often know that something is wrong
with a line of code, but the Swift compiler will not be telling you clearly exactly
what is wrong or even where in the line to focus your attention. My advice in these
situations is to pull the line apart into several lines of simpler code until you reach
a point where you can guess what the issue is. Try to love the compiler despite the
occasional unhelpful nature of its messages. Remember, it knows more than you
do, even if it is sometimes rather inarticulate about its knowledge.

g‘L The Swift compiler’s error and warning messages range from the insightful to the

4 | Chapter 1: The Architecture of Swift

Everything Is an Object?

In Swift, “everything is an object” That’s a boast common to various modern object-
oriented languages, but what does it mean? Well, that depends on what you mean by
“object” — and what you mean by “everything”

Let’s start by stipulating that an object, roughly speaking, is something you can send a
message to. A message, roughly speaking, is an imperative instruction. For example,
you can give commands to a dog: “Bark!” “Sit!” In this analogy, those phrases are mes-
sages, and the dog is the object to which you are sending those messages.

In Swift, the syntax of message-sending is dot-notation. We start with the object; then
there’s a dot (a period); then there’s the message. (Some messages are also followed by
parentheses, but ignore them for now; the full syntax of message-sending is one of those
details we’ll be filling in later.) This is valid Swift syntax:

fido.bark()

rover.sit()
The idea of everything being an object is a way of suggesting that even “primitive” lin-
guistic entities can be sent messages. Take, for example, 1. It appears to be a literal digit
and no more. It will not surprise you, if you've ever used any programming language,
that you can say things like this in Swift:

let sum = 1 + 2

But it is surprising to find that 1 can be followed by a dot and a message. This is legal
and meaningful in Swift (don’t worry about what it actually means):

let x = 1.successor()

But we can go further. Return to that innocent-looking 1 + 2 from our earlier code. It
turns out that this is actually a kind of syntactic trickery, a convenient way of expressing
and hiding what’s really going on. Just as 1 is actually an object, + is actually a message;
but it’s a message with special syntax (operator syntax). In Swift, every noun is an object,
and every verb is a message.

Perhaps the ultimate acid test for whether something is an object in Swift is whether
you can modify it. An object type can be extended in Swift, meaning that you can define
your own messages on that type. For example, you can’t normally send the sayHello
message to a number. But you can change a number type so that you can:

extension Int {
func sayHello() {
print("Hello, I'm \(self)")
}

}
1.sayHello() // outputs: "Hello, I'm 1"

I rest my case.

Everything Is an Object? | 5

In Swift, then, 1 is an object. In some languages, such as Objective-C, it clearly is not;
it is a “primitive” or scalar built-in data type. The distinction being drawn here, then,
when we say that “everything is an object,” is between object types on the one hand and
scalars on the other. In Swift, there are no scalars; all types are ultimately object types.
That’s what “everything is an object” really means.

Three Flavors of Object Type

If you know Objective-C or some other object-oriented language, you may be surprised
by Swift’s notion of what kind of object 1 is. In many languages, such as Objective-C,
an object is a class or an instance of a class. Swift has classes and instances, and you can
send messages to them; but 1 in Swift is neither of those: it’s a struct. And Swift has yet
another kind of thing you can send messages to, called an enum.

So Swift has three kinds of object type: classes, structs, and enums. I like to refer to these
as the three flavors of object type. Exactly how they differ from one another will emerge
in due course. But they are all very definitely object types, and their similarities to one
another are far stronger than their differences. For now, just bear in mind that these
three flavors exist.

(The fact that a struct or enum is an object type in Swift will surprise you particularly
if you know Objective-C. Objective-C has structs and enums, but they are not objects.
Swift structs, in particular, are much more important and pervasive than Objective-C
structs. This difference between how Swift views structs and enums and how Objective-
C views them can matter when you are talking to Cocoa.)

Variables

A variable is a name for an object. Technically, it refers to an object; it is an object
reference. Nontechnically, you can think of it as a shoebox into which an object is placed.
The object may undergo changes, or it may be replaced inside the shoebox by another
object, but the name has an integrity all its own.

In Swift, no variable comes implicitly into existence; all variables must be declared. If
you need a name for something, you must say “I'm creating a name.” You do this with
one of two keywords: let or var. In Swift, declaration is usually accompanied by
initialization — you use an equal sign to give the variable a value, right there as part of
the declaration. These are both variable declarations (and initializations):

let one = 1

var two

Once the name exists, you are free to use it. For example, we can change the value of
what’s in two to be the same as the value of what’s in one:

6 | Chapter 1: The Architecture of Swift

vww allitebooks.cond

http://www.allitebooks.org

let one = 1
var two = 2
two = one

The last line of that code uses both the name one and the name two declared in the first
two lines: the name one, on the right side of the equal sign, is used merely to refer to the
value inside the shoebox (namely 1); but the name two, on the left side of the equal sign,
is used to replace the value inside the shoebox. A statement like that, with a variable
name on the left side of an equal sign, is called an assignment, and the equal sign is the
assignment operator. The equal sign is not an assertion of equality, as it might be in an
algebraic formula; it is a command. It means: “Get the value of what’s on the right side
of me, and use it to replace the value inside what’s on the left side of me”

The two kinds of variable declaration differ in that a name declared with let cannot
have its object replaced. A variable declared with et is a constant; its value is assigned
once and stays. This won't even compile:

let one = 1

var two = 2

one = two // compile error
It is always possible to declare a name with var to give yourself the most flexibility, but
if you know you’re never going to replace the initial value of a variable, it’s better to use
let, as this permits Swift to behave more efficiently — so much more efficiently, in fact,
that the Swift compiler will actually call your attention to any case of your using var
where you could have used let, offering to change it for you.

Variables also have a type. This type is established when the variable is declared and can
never change. For example, this won't compile:

var two = 2
two = "hello" // compile error

Once two is declared and initialized as 2, it is a number (properly speaking, an Int) and
it must always be so. You can replace its value with 1 because that’s also an Int, but you
can’t replace its value with "hello" because that’s a string (properly speaking, a String)
— and a String is not an Int.

Variables literally have a life of their own — more accurately, a lifetime of their own. As
long as a variable exists, it keeps its value alive. Thus, a variable can be not only a way
of conveniently naming something, but also a way of preserving it. I'll have more to say
about that later.

By convention, type names such as String or Int (or Dog or Cat) start with a capital

% letter; variable names start with a small letter. Do not violate this convention. If you
do, your code might still compile and run just fine, but I will personally send agents
to your house to remove your kneecaps in the dead of night.

Variables | 7

Functions

Executable code, like fido.bark() or one = two, cannot go just anywhere. In general,
it must live inside the body of a function. A function is a batch of code that can be told,
as a batch, to run. Typically, a function has a name, and it gets that name through a
function declaration. Function declaration syntax is another of those details that will be
filled in later, but here’s an example:

func go() {
let one = 1
var two = 2
two = one

}

That describes a sequence of things to do — declare one, declare two, change the value
of two to match the value of one — and it gives that sequence a name, go; but it doesn’t
perform the sequence. The sequence is performed when someone calls the function.
Thus, we might say, elsewhere:

go()

That is a command to the go function that it should actually run. But again, that com-
mand is itself executable code, so it cannot live on its own either. It might live in the
body of a different function:

func doGo() {
go()

}
But wait! This is getting a little nutty. That, too, is just a function declaration; to run it,
someone must call doGo, and that’s executable code too. This seems like some kind of
infinite regression; it looks like none of our code will ever run. If all executable code has
to live in a function, who will tell any function to run? The initial impetus must come
from somewhere.

In real life, fortunately, this regression problem doesn't arise. Remember that your goal
is ultimately to write an iOS app. Thus, your app will be run on an iOS device (or the
Simulator) by a runtime that already wants to call certain functions. So you start by
writing special functions that you know the runtime itself will call. That gives your app
away to get started and gives you places to put functions that will be called by the runtime
at key moments — such as when the app launches, or when the user taps a button in
your app’s interface.

Swift also has a special rule that a file called main.swift, exceptionally, can have
executable code at its top level, outside any function body, and this is the code that
actually runs when the program runs. You can construct your app with a main.swift
file, but in general you won’t need to.

8 | (Chapter 1: The Architecture of Swift

The Structure of a Swift File

A Swift program can consist of one file or many files. In Swift, a file is a meaningful
unit, and there are definite rules about the structure of the Swift code that can go inside
it. ('m assuming that we are not in a main.swift file.) Only certain things can go at the
top level of a Swift file — chiefly the following:

Module import statements
A module is an even higher-level unit than a file. A module can consist of multiple
files, and in Swift, the files within a module can all see each other automatically; but
amodule can’t see another module without an import statement. For example, that
is how you are able to talk to Cocoa in an iOS program: the first line of your file
says import UIKit.

Variable declarations
A variable declared at the top level of a file is a global variable: it lives as long as the
program runs.

Function declarations
A function declared at the top level of a file is a global function: all code will be able
to see and call it, without sending a message to any object.

Object type declarations
The declaration for a class, a struct, or an enum.

For example, this is a legal Swift file containing (just to demonstrate that it can be done)
an import statement, a variable declaration, a function declaration, a class declaration,
a struct declaration, and an enum declaration:

import UIKit

var one =1

func changeOne() {
}

class Manny {

}

struct Moe {

}

enum Jack {

}

That’s a very silly and mostly empty example, but remember, our goal is to survey the
parts of the language and the structure of a file, and the example shows them.

Furthermore, the curly braces for each of the things in that example can all have variable
declarations, function declarations, and object type declarations within them! Indeed,
any structural curly braces can contain such declarations. So, for example, the keyword
if (which is part of Swift’s flow control, discussed in Chapter 5) is followed by structural

The Structure of a Swift File | 9

curly braces, and they can contain variable declarations, function declarations, and ob-
ject type declarations. This code, while silly, is legal:

func silly() {
if true {
class Cat {}
var one =1
one = one + 1

}

You'll notice that I did not say that executable code can go at the top level of a file. That’s
because it can't! Only a function body can contain executable code. It can contain exe-
cutable code at any depth within itself; in the preceding code, the line one = one + 1,
which is executable code, is legal because it is inside the if construct, which is inside a
function body. But the line one = one + 1 cannot go at the top level of the file; and it
cannot go directly inside the Cat declaration’s curly braces.

Example 1-1 is a legal Swift file, schematically illustrating the structural possibilities.
(Ignore the hanky-panky with the name variable declaration inside the enum declaration
for Jack; enum top-level variables have some special rules that I'll explain later.)

Example 1-1. Schematic structure of a legal Swift file

import UIKit
var one =1
func changeOne() {
let two = 2
func sayTwo() {
print(two)
}
class Klass {}
struct Struct {}
enum Enum {}
one = two
}
class Manny {
let name = "manny"
func sayName() {
print(name)
}
class Klass {}
struct Struct {}
enum Enum {}
}
struct Moe {
let name = "moe"
func sayName() {
print(name)
}
class Klass {}

10 | Chapter1: The Architecture of Swift

struct Struct {}
enum Enum {}
}
enum Jack {
var name : String {
return "jack"

}

func sayName() {
print(name)

}

class Klass {}
struct Struct {}
enum Enum {}

}

Obviously, we can recurse down as far we like: we could have a class declaration con-
taining a class declaration containing a class declaration...and so on. But there’s no point
illustrating that.

Scope and Lifetime

In a Swift program, things have a scope. This refers to their ability to be seen by other
things. Things are nested inside of other things, making a nested hierarchy of things.
The rule is that things can see things at their own level and higher. The levels are:

o A module is a scope.
o Afileis a scope.
 An object declaration is a scope.

o Curly braces are a scope.

When something is declared, it is declared at some level within that hierarchy. Its place
in the hierarchy — its scope — determines whether it can be seen by other things.

Look again at Example 1-1. Inside the declaration of Manny is a name variable declaration
and a sayName function declaration; the code inside sayName’s curly braces can see things
outside those curly braces at a higher level, and can therefore see the name variable.
Similarly, the code inside the body of the changeOne function can see the one variable
declared at the top level of the file; indeed, everything throughout this file can see the
one variable declared at the top level of the file.

Scope is thus a very important way of sharing information. Two different functions
declared inside Manny would both be able to see the name declared at Manny’s top level.
Code inside Jack and code inside Moe can both see the one declared at the file’s top level.

Things also have a lifetime, which is effectively equivalent to their scope. A thing lives
as long as its surrounding scope lives. Thus, in Example 1-1, the variable one lives as

Scope and Lifetime | 11

long as the file lives — namely, as long the program runs. It is global and persistent. But
the variable name declared at the top level of Manny exists only so long as Manny exists
(T'll talk in a moment about what that means). Things declared at a deeper level live
even shorter lifetimes; for example, let’s return to this code:

func silly() {
if true {
class Cat {}
var one =1
one = one + 1

}

In that code, the class Cat and the variable one exist only during the brief instant that
the path of code execution passes through the if construct. When the function silly is
called, the path of execution enters the if construct. Here, Cat is declared and comes
into existence; then one is declared and comes into existence; then the executable line
one = one + 1isexecuted; and then the scope ends and both Cat and one vanish in a
puft of smoke.

Object Members

Inside the three object types (class, struct, and enum), things declared at the top level
have special names, mostly for historical reasons. Let’s use the Manny class as an ex-
ample:

class Manny {

let name = "manny"
func sayName() {
print(name)
}
}
In that code:

o name is a variable declared at the top level of an object declaration, so it is called a
property of that object.

o sayName is a function declared at the top level of an object declaration, so it is called
a method of that object.

Things declared at the top level of an object declaration — properties, methods, and
any objects declared at that level — are collectively the members of that object. Members
have a special significance, because they define the messages you are allowed to send to
that object!

12 | Chapter 1: The Architecture of Swift

Namespaces

A namespace is a named region of a program. A namespace has the property that the
names of things inside it cannot be reached by things outside it without somehow first
passing through the barrier of saying that region’s name. This is a good thing because it
allows the same name to be used in different places without a conflict. Clearly, name-
spaces and scopes are closely related notions.

Namespaces help to explain the significance of declaring an object at the top level of an
object, like this:

class Manny {

class Klass {}

}
This way of declaring Klass makes Klass a nested type. It effectively “hides” Klass inside
Manny. Manny is a namespace! Code inside Manny can see (and say) Klass directly. But
code outside Manny can’t do that. It has to specify the namespace explicitly in order to
pass through the barrier that the namespace represents. To do so, it must say Manny’s
name first, followed by a dot, followed by the term Klass. In short, it has to say
Manny.Klass.

The namespace does not, of itself, provide secrecy or privacy; it’s a convenience. Thus,
in Example 1-1, I gave Manny a Klass class, and I also gave Moe a Klass class. But they
don’t conflict, because they are in different namespaces, and I can differentiate them, if
necessary, as Manny .Klass and Moe.Klass.

It will not have escaped your attention that the syntax for diving explicitly into a name-
space is the message-sending dot-notation syntax. They are, in fact, the same thing.

In effect, message-sending allows you to see into scopes you can’t see into otherwise.
Code inside Moe can’t automatically see the Klass declared inside Manny, but it can see
it by taking one easy extra step, namely by speaking of Manny.Klass. It can do that
because it can see Manny (because Manny is declared at a level that code inside Moe
can see).

Modules

The top-level namespaces are modules. By default, your app is a module and hence a
namespace; that namespace’s name is, roughly speaking, the name of the app. For ex-
ample, if my app is called MyApp, then if I declare a class Manny at the top level of a file,
that class’s real name is MyApp.Manny. But I don't usually need to use that real name,
because my code is already inside the same namespace, and can see the name Manny
directly.

Namespaces | 13

Frameworks are also modules, and hence they are also namespaces. For example, Co-
coas Foundation framework, where NSString lives, is a module. When you program
iOS, you will say import Foundation (or, more likely, you’ll say import UIKit, which
itself imports Foundation), thus allowing you to speak of NSString without saying
Foundation.NSString. But you could say Foundation.NSString, and if you were so
silly as to declare a different NSString in your own module, you would have to say
Foundation.NSString, in order to differentiate them. You can also create your own
frameworks, and these, too, will be modules.

Thus, above and beyond the level of the file, as shown in Example 1-1, are any libraries
(modules) that the file imports. Your code always implicitly imports Swift itself. You
could make this explicit by starting a file with the line import Swift; there is no need
to do this, but it does no harm either.

That fact is important, because it solves a major mystery: where do things like print
come from, and why is it possible to use them outside of any message to any object?
print is in fact a function declared at the top level of the Swift.h header file — which
your file can see exactly because it imports Swift. It is thus an ordinary top-level function
like any other. You could say things like Swift.print("hello"),butyou probably never
will, because there’s no name conflict to resolve.

thing to do. To do so, Command-click the term print in your code. Alternatively,
explicitly import Swift and Command-click the term Swift. Behold, there’s the
Swift header file! You won't see any executable Swift code here, but you will see the
declarations for all the available Swift terms, including top-level functions like print,
operators like +, and declarations of built-in types such as Int and String (look for
struct Int, struct String, and so on).

g You can actually see the Swift.h file and read it and study it, and this can be a useful

Instances

Object types — class, struct, and enum — have an important feature in common: they
can be instantiated. In effect, when you declare an object type, you are only defining a
type. To instantiate a type is to make a thing — an instance — of that type.

So, for example, I can declare a Dog class, and I can give my class a method:

class Dog {
func bark() {
print("woof")
}
}

But I don’t actually have any Dog objects in my program yet. I have merely described
the type of thing a Dog would be if T had one. To get an actual Dog, I have to make one.

14 | Chapter 1: The Architecture of Swift

Dog class

.a”i--'.“e_t'h?d instantiate yourselfl |
\.\\ I‘_-'_ "'.»?3 k .
Y 4

) e

Dog instance

Figure 1-1. Making an instance and calling an instance method

The process of making an actual Dog object whose type is the Dog class is the process
of instantiating Dog. The result is a new object — a Dog instance.

In Swift, instances can be created by using the object type’s name as a function name
and calling the function. This involves using parentheses. When you append parenthe-
ses to the name of an object type, you are sending a very special kind of message to that
object type: Instantiate yourself!

So now I'm going to make a Dog instance:
let fido = Dog()

There’s a lot going on in that code! I did two things. I instantiated Dog, thus causing me
to end up with a Dog instance. I also put that Dog instance into a shoebox called fido
— I declared a variable and initialized the variable by assigning my new Dog instance
to it. Now fido is a Dog instance. (Moreover, because I used let, fido will always be
this same Dog instance. I could have used var instead, but even then, initializing fido
as a Dog instance would have meant fido could only be some Dog instance after that.)

Now that I have a Dog instance, I can send instance messages to it. And what do you
suppose they are? They are Dog’s properties and methods! For example:

let fido = Dog()
fido.bark()

That code is legal. Not only that, it is effective: it actually does cause "woof" to appear
in the console. I made a Dog and I made it bark! (See Figure 1-1.)

Instances | 15

There’s an important lesson here, so let me pause to emphasize it. By default, properties
and methods are instance properties and methods. You can’t use them as messages to
the object type itself; you have to have an instance to send those messages to. As things
stand, this is illegal and won’t compile:

Dog.bark() // compile error

It is possible to declare a function bark in such a way that saying Dog.bark() is legal,
but that would be a different kind of function — a class function or a static function —
and you would need to say so when you declare it.

The same thing is true of properties. To illustrate, let’s give Dog a name property. The
only respect in which any Dog has had a name up to now has been the name of the
variable to which it is assigned. But that name is not intrinsic to the Dog object itself.
The name property will be:

class Dog {
var name =

}
That allows me to set a Dog’s name, but it needs to be an instance of Dog:

let fido = Dog()
fido.name = "Fido"

It is possible to declare a property name in such a way that saying Dog . name is legal, but
that would be a different kind of property — a class property or a static property — and
you would need to say so when you declare it.

Why Instances?

Even if there were no such thing as an instance, an object type is itself an object. We
know this because it is possible to send a message to an object type: it is possible to treat
an object type as a namespace and to dive explicitly into that namespace (the phrase
Manny.Klass is a case in point). Moreover, since class and static members exist, it is
possible to call a method directly on a class, a struct, or an enum type, and to refer to a
property of a class, a struct, or an enum type. Why, then, do instances exist at all?

The answer has mostly to do with the nature of instance properties. The value of an
instance property is defined with respect to a particular instance. This is where instances
get their real usefulness and power.

Consider again our Dog class. I'll give it a name property and a bark method; remember,
these are an instance property and an instance method:

16 | Chapter 1: The Architecture of Swift

class Dog {
var name =
func bark() {
print("woof")

}
}

A Dog instance comes into existence with a blank name (an empty string). But its name
property is a var, so once we have any Dog instance, we can assign to its name a new
String value:

let dogl = Dog()
dogl.name = "Fido"

We can also ask for a Dog instance’s name:

let dogl = Dog()
dogl.name = "Fido"
print(dogl.name) // "Fido"

The important thing is that we can make more than one Dog instance, and that two
different Dog instances can have two different name property values (Figure 1-2):

let dogl = Dog()

dogl.name = "Fido"

let dog2 = Dog()

dog2.name = "Rover"
print(dogl.name) // "Fido"
print(dog2.name) // "Rover"

Note that a Dog instance’s name property has nothing to do with the name of the variable
to which a Dog instance is assigned. The variable is just a shoebox. You can pass an
instance from one shoebox to another. But the instance itself maintains its own internal
integrity:

let dogl = Dog()

dogl.name = "Fido"
var dog2 = Dog()
dog2.name = "Rover"

print(dogl.name) // "Fido"

print(dog2.name) // "Rover"

dog2 = dogl

print(dog2.name) // "Fido"
That code didn’t change Rover’s name; it changed which dog was inside the dog2 shoebox,
replacing Rover with Fido.

The full power of object-based programming has now emerged. There is a Dog object
type which defines what it is to be a Dog. Our declaration of Dog says that a Dog instance
— any Dog instance, every Dog instance — has a name property and a bark method. But
each Dog instance can have its own name property value. They are different instances
and maintain their own internal state. So multiple instances of the same object type

Why Instances? | 17

Dog class

../'[: A | .I'|
“-~|/f|ame instance %/
| property |

f—

Dog instance Dog instance

Figure 1-2. Two dogs with different property values

behave alike — both Fido and Rover can bark, and will do so when they are sent the
bark message — but they are different instances and can have different property values:
Fido's name is "Fido" while Rover’s name is "Rover".

(The same thing is true of 1 and 2, though this fact is somewhat more opaque. An Int
has a value property. 1 is an Int whose value is 1, and 2 is an Int whose value is 2.
However, this fact is of less interest in real life, because obviously you’re not going to
change the value of 1!)

So an instance is a reflection of the instance methods of its type, but that isn’t all it is;
it’s also a collection of instance properties. The object type is responsible for what
properties the instance has, but not necessarily for the values of those properties. The
values can change as the program runs, and apply only to a particular instance. An
instance is a cluster of particular property values.

An instance is responsible not only for the values but also for the lifetimes of its prop-
erties. Suppose we bring a Dog instance into existence and assign to its name property
the value "Fido". Then this Dog instance is keeping the string "Fido" alive just so long
as we do not replace the value of its name with some other value and just so long as this
instance lives.

In short, an instance is both code and data. The code it gets from its type and in a sense
is shared with all other instances of that type, but the data belong to it alone. The data

18 | Chapter 1: The Architecture of Swift

can persist as long as the instance persists. The instance has, at every moment, a state
— the complete collection of its own personal property values. An instance is a device
for maintaining state. It’s a box for storage of data.

self

An instance is an object, and an object is the recipient of messages. Thus, an instance
needs a way of sending a message to itself. This is made possible by the magic word
self. This word can be used wherever an instance of the appropriate type is expected.

For example, let’s say I want to keep the thing that a Dog says when it barks — namely
"woof" — in a property. Then in my implementation of bark I need to refer to that
property. I can do it like this:

class Dog {
var name =
var whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
}

Similarly, let’s say I want to write an instance method speak which is merely a synonym
for bark. My speak implementation can consist of simply calling my own bark method.
I can do it like this:

class Dog {
var name =
var whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
func speak() {

self.bark()
}
}

Observe that the term self in that example appears only in instance methods. When
an instance’s code says self, it is referring to this instance. If the expression self.name
appears in a Dog instance method’s code, it means the name of this Dog instance, the
one whose code is running at that moment.

It turns out that every use of the word self I've just illustrated is completely optional.
You can omit it and all the same things will happen:

class Dog {
var name =
var whatADogSays = "woof"
func bark() {
print(whatADogSays)

self | 19

}
func speak() {

bark()
}
}

The reason is that if you omit the message recipient and the message you're sending can
be sent to self, the compiler supplies self as the message’s recipient under the hood.
However, I never do that (except by mistake). As a matter of style, I like to be explicit in
my use of self. I find code that omits self harder to read and understand. And there
are situations where you must say self, so I prefer to use it whenever I'm allowed to.

Privacy

Earlier, I said that a namespace is not, of itself, an insuperable barrier to accessing the
names inside it. But it can act as a barrier if you want it to. For example, not all data
stored by an instance is intended for alteration by, or even visibility to, another instance.
And not every instance method is intended to be called by other instances. Any decent
object-based programming language needs a way to endow its object members with
privacy — a way of making it harder for other objects to see those members if they are
not supposed to be seen.

Consider, for example:

class Dog {
var name =
var whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
func speak() {
print(self.whatADogSays)
}
}

Here, other objects can come along and change my property whatADogSays. Since that

property is used by both bark and speak, we could easily end up with a Dog that, when
told to bark, says "meow". This seems somehow undesirable:

let dogl = Dog()
dogl.whatADogSays = "meow"
dogl.bark() // meow

You might reply: Well, silly, why did you declare whatADogSays with var? Declare it with
let instead. Make it a constant! Now no one can change it:
class Dog {
var name =

let whatADogSays = "woof"
func bark() {

20 | Chapter 1: The Architecture of Swift

print(self.whatADogSays)
}
func speak() {
print(self.whatADogSays)
}
}

That is a good answer, but it is not quite good enough. There are two problems. Suppose
I want a Dog instance itself to be able to change self.whatADogSays. Then whatADog-
Says has to be a var; otherwise, even the instance itself can’t change it. Also, suppose I
don’t want any other object to know what this Dog says, except by calling bark or
speak. Even when declared with let, other objects can still read the value of whatADog-
Says. Maybe I don't like that.

To solve this problem, Swift provides the private keyword. I'll talk later about all the
ramifications of this keyword, but for now it’s enough to know that it solves the problem:

class Dog {
var name =
private var whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
func speak() {
print(self.whatADogSays)
}
}

Now name is a public property, but whatADogSays is a private property: it can’t be seen
by other objects. A Dog instance can speak of self.whatADogSays, but a different object
with a reference to a Dog instance as, say, dogl cannot say dog1.whatADogSays.

The important lesson here is that object members are public by default, and if you want
privacy, you have to ask for it. The class declaration defines a namespace; this namespace
requires that other objects use an extra level of dot-notation to refer to what's inside the
namespace, but other objects can still refer to what’s inside the namespace; the name-
space does not, in and of itself, close any doors of visibility. The private keyword lets
you close those doors.

Design

You now know what an object is, and what an instance is. But what object types will
your program need, what methods and properties should they have, when and how will
they be instantiated, and what should you do with those instances when you have them?
Unfortunately I can’t tell you that; it's an art — the art of object-based programming.
What I can tell you is what your chief considerations are going to be as you design and
implement an object-based program — the process that I call growing a program.

Design | 21

Object-based program design must be founded upon a secure understanding of the
nature of objects. You want to design object types that encapsulate the right sort of
functionality (methods) accompanied by the right set of data (properties). Then, when
you instantiate those object types, you want to make sure that your instances have the
right lifetimes, sufficient exposure to one another, and an appropriate ability to com-
municate with one another.

Object Types and APIs

Your program files will have very few, if any, top-level functions and variables. Methods
and properties of object types — in particular, instance methods and instance properties
— will be where most of the action is. Object types give each actual instance its speci-
alized abilities. They also help to organize your program’s code meaningfully and main-
tainably.

We may summarize the nature of objects in two phrases: encapsulation of functionality,
and maintenance of state. (I first used this summary many years ago in my book
REALbasic: The Definitive Guide.)

Encapsulation of functionality
Each object does its own job, and presents to the rest of the world — to other objects,
and indeed in a sense to the programmer — an opaque wall whose only entrances
are the methods to which it promises to respond and the actions it promises to
perform when the corresponding messages are sent to it. The details of how, behind
the scenes, it actually implements those actions are secreted within itself; no other
object needs to know them.

Maintenance of state
Each individual instance is a bundle of data that it maintains. Often that data is
private, so it’s encapsulated as well; no other object knows what that data is or in
what form it is kept. The only way to discover from outside what private data an
object is maintaining is if there’s a public method or property that reveals it.

As an example, imagine an object whose job is to implement a stack — it might be an
instance of a Stack class. A stack is a data structure that maintains a set of data in LIFO
order (last in, first out). It responds to just two messages: push and pop. Push means to
add a given piece of data to the set. Pop means to remove from the set the piece of data
that was most recently pushed and hand it out. It’s like a stack of plates: plates are placed
onto the top of the stack or removed from the top of the stack one by one, so the first
plate to go onto the stack can’t be retrieved until all other subsequently added plates
have been removed (Figure 1-3).

The stack object illustrates encapsulation of functionality because the outside world
knows nothing of how the stack is actually implemented. It might be an array, it might
be alinked list, it might be any of a number of other implementations. But a client object

22 | Chapter 1: The Architecture of Swift

http://oreilly.com/catalog/9780596001773/

Figure 1-3. A stack

— an object that actually sends a push or pop message to the stack object — knows
nothing of this and cares less, provided the stack object adheres to its contract of be-
having like a stack. This is also good for the programmer, who can, as the program
develops, safely substitute one implementation for another without harming the vast
machinery of the program as a whole. And just the other way round, the stack object
knows nothing and cares less about who is telling it to push or to pop, and why. It just
hums along and does its job in its reliable little way.

The stack object illustrates maintenance of state because it isn’t just the gateway to the
stack data — it is the stack data. Other objects can get access to that data, but only by
virtue of having access to the stack object itself, and only in the manner that the stack
object permits. The stack data is effectively inside the stack object; no one else can see
it. All that another object can do is push or pop. If a certain object is at the top of our
stack object’s stack right now, then whatever object sends the pop message to this stack

Design | 23

object will receive that object in return. If no object sends the pop message to this stack
object, then the object at the top of the stack will just sit there, waiting.

The sum total of messages that each object type is eligible to be sent by other objects —
its API (application programming interface) — is like a list or menu of things you can
ask this type of object to do. Your object types divide up your code; their APIs form the
basis of communication between those divisions.

In real life, when youre programming iOS, the vast majority of object types you’ll be
working with will not be yours but Apple’s. Swift itself comes with a few useful object
types, such as String and Int; you'll also import UIKit, which includes a huge number
of object types, all of which spring to life in your program. You didn’t create any of those
object types, so to learn to use them, you consult the published APIs, also known as the
documentation. Apple’s own Cocoa documentation consists largely of pages where each
page lists and describes the properties and methods supplied by one object type. For
example, to know what messages you can send to an NSString instance, you'd start by
studying the NSString class documentation. That page is really just a biglist of properties
and methods, so it tells you what an NSString object can do. That isn't everything in the
world there is to know about an NSString, but it’s a big percentage of it.

Apple has thus done a great deal of thinking and planning on your behalf, before you
ever write a single line of code! As a result, you will mostly use the object types that
Apple has already given you. You can also create completely new object types, but pro-
portionately you will do so far less than you will use the object types that exist already.

Instance Creation, Scope, and Lifetime

The important moment-to-moment entities in a Swift program are mostly instances.
Object types define what kinds of instances there can be and how each kind of instance
behaves. But the actual instances of those types are the state-carrying individual “things”
that the program is all about, and instance methods and properties are messages that
can be sent to instances. So there need to be instances in order for the program to do
anything.

By default, however, there are no instances! Looking back at Example 1-1, we defined
some object types, but we made no instances of them. If we were to run this program,
our object types would exist from the get-go, but that’s all that would exist. We've created
a world of pure potentiality — some types of object that might exist. In that world,
nothing would actually happen.

Instances do not come into being by magic. You have to instantiate a type in order to
obtain an instance. Much of the action of your program, therefore, will consist of in-
stantiating types. And of course you will want those instances to persist, so you will also
assign each newly created instance to a variable as a shoebox to hold it, name it, and
give it a lifetime. The instance will persist according to the lifetime of the variable that

24 | Chapter 1: The Architecture of Swift

refers to it. And the instance will be visible to other instances according to the scope of
the variable that refers to it.

Much of the art of object-based programming turns out to be exactly here, in giving
instances a sufficient lifetime and making them visible to one another. You will often
putan instance into a particular shoebox — assigning it to a particular variable, declared
at a certain scope — exactly so that, thanks to the rules of variable lifetime and scope,
this instance will persist long enough to keep being useful to your program while it will
still be needed, and so that other code can get a reference to this instance and talk to it
later.

Planning how you’re going to create instances, and working out the lifetimes and com-
munication between those instances, may sound daunting. Fortunately, in real life, when
you’re programming iOS, the Cocoa framework itself will once again provide an initial
scaffolding for you.

For example, you'll know from the start that, for an iOS app, you need an app delegate
type and a view controller type, and in fact when you create an i0S app project, Xcode
will give them to you. Moreover, as your app launches, the runtime will instantiate those
object types for you, and will place those instances into a fixed and useful relationship.
The runtime will make an app delegate instance and assign it in such a way that it lives
for the lifetime of the app; it will create a window instance and assign it to a property
of the app delegate; and it will create a view controller instance and assign it to a property
of the window. Finally, the view controller instance has a view, which automatically
appears in the window.

Thus, without your doing any work at all, you already have some objects that will persist
for the lifetime of the app, including one that is the basis of your visible interface. Just
as important, you have well-defined globally available ways of referring to all these
objects. This means that, without writing any code, you already have access to some
important objects, and you have an initial place to put any other objects with long
lifetimes and any other visible bits of interface that your app may need.

Summary and Conclusion

As we imagine constructing an object-based program for performing a particular task,
we bear in mind the nature of objects. There are types and instances. A type is a set of
methods describing what all instances of that type can do (encapsulation of function-
ality). Instances of the same type differ only in the value of their properties (maintenance
of state). We plan accordingly. Objects are an organizational tool, a set of boxes for
encapsulating the code that accomplishes a particular task. They are also a conceptual
tool. The programmer, being forced to think in terms of discrete objects, must divide
the goals and behaviors of the program into discrete tasks, each task being assigned to
an appropriate object.

Design | 25

At the same time, no object is an island. Objects can cooperate with one another, namely
by communicating with one another — that is, by sending messages to one another.
The ways in which appropriate lines of communication can be arranged are innumer-
able. Coming up with an appropriate arrangement — an architecture — for the coop-
erative and orderly relationship between objects is one of the most challenging aspects
of object-based programming. In iOS programming, you get a boost from the Cocoa
framework, which provides an initial set of object types and a practical basic architec-
tural scaffolding.

Using object-based programming effectively to make a program do what you want it to
do while keeping it clear and maintainable is itself an art; your abilities will improve
with experience. Eventually, you may want to do some further reading on effective
planningand construction of the architecture of an object-based program. I recommend
in particular two classic, favorite books. Refactoring, by Martin Fowler (Addison-
Wesley, 1999), describes why you might need to rearrange what methods belong to what
classes (and how to conquer your fear of doing so). Design Patterns, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (also known as “the Gang of Four”),
is the bible on architecting object-based programs, listing all the ways you can arrange
objects with the right powers and the right knowledge of one another (Addison-Wesley,
1994).

26 | Chapter 1: The Architecture of Swift

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2
Functions

Nothing is so characteristic of Swift syntax as the way you declare and call functions.
Probably nothing is so important, either! As I said in Chapter 1, all your code is going
to be in functions; they are where the action is.

Function Parameters and Return Value

A function is like one of those pseudoscientific machines for processing miscellaneous
stuff that you probably drew in your math textbook in elementary school. You know
the ones I mean: with a funnel-like “hopper” at the top, and then a bunch of gears and
cranks, and then a tube at the bottom where something is produced. A function is a
machine like that: you feed some stuff in, the stuff is processed in accordance with what
this particular machine does, and something is produced.

The stuff that goes in is the input; what comes out is the output. More technically, a
function that expects input has parameters; a function that produces output has a re-
sult. For example, here’s a very silly but perfectly valid function that expects two Int
values, adds them together, and produces that sum:

func sum (x:Int, _ y:Int) -> Int {
let result = x +y
return result

}

The syntax here is very strict and well-defined, and you can’t use Swift unless you un-
derstand it perfectly. Let’s pause to appreciate it in full detail; I'll break the first line into
pieces so that I can call them out individually:

27

func sum @

(x:Int, _ y:Int) OO

> Int { O
let result = x +y @
return result @

The declaration starts with the keyword func, followed by the name of this
function; here, it’s sum. This is the name that must be used in order to call the
function — that is, in order to run the code that the function contains.

The name of the function is followed by its parameter list. It consists, minimally,
of parentheses. If this function takes parameters (input), they are listed inside
the parentheses, separated by comma. Each parameter has a strict format: the
name of the parameter, a colon, and the type of the parameter. Here, our sum
function expects two parameters — an Int, to which it gives the name x, and
another Int, to which it gives the name y.

Observe that these names, x and y, are arbitrary and purely local (internal) to
this function. They are different from any other x and y that may be used in
other functions or at a higher level of scope. These names are defined so that
the parameter values will have names by which they can be referred to in the
code within the function body. The parameter declaration is, indeed, a kind of
variable declaration: we are declaring variables x and y for use inside this
function.

This particular function declaration also has an underscore (_) and a space
before the name of the second parameter in the parameter list. I'm not going to
explain that underscore yet. I need it for the example, so just trust me for now.

After the parentheses is an arrow operator ->, followed by the type of value that
this function will return. Then we have curly braces enclosing the body of the
function — its actual code.

Within the curly braces, in the function body, the variables defined as the
parameter names have sprung to life, with the types specified in the parameter
list. We know that this code won’t run unless this function is called and is actually
passed values in its parameters.

Here, the parameters are called x and y, so we can confidently use those values,
referring to them by those names, secure in the knowledge that such values will
exist and that they will be Int values, as specified by our parameter list. Not only
the programmer, but also the compiler can be sure about this.

If the function is to return a value, it must do so with the keyword return
followed by that value. And, not surprisingly, the type of that value must match
the type declared earlier for the return value (after the arrow operator).

28

Chapter 2: Functions

Here, I return a variable called result; it was created by adding two Int values
together, so it is an Int, which is what this function is supposed to produce. If I
tried to return a String (return "howdy"), or if I were to omit the return
statement altogether, the compiler would stop me with an error.

Note that the keyword return actually does two things. It returns the
accompanying value, and it also halts execution of the function. It is permitted
for more lines of code to follow a return statement, but the compiler will warn
if this means that those lines of code can never be executed.

The function declaration, then, before the curly braces, is a contract about what kinds
of values will be used as input and about what kind of output will be produced. Ac-
cording to this contract, the function expects a certain number of parameters, each of a
certain type, and yields a certain type of result. Everything must correspond to this
contract. The function body, inside the curly braces, can use the parameters as local
variables. The returned value must match the declared return type.

The same contract applies to code elsewhere that calls this function. Here’s some code
that calls our sum function:

let z = sum(4,5)

Focus your attention on the right side of the equal sign — sum(4,5). That’s the function
call. How is it constructed? It uses the name of the function; that name is followed by
parentheses; and inside those parentheses, separated by comma, are the values to be
passed to each of the function’s parameters. Technically, these values are called argu-
ments. Here, ’'m using literal Int values, but ’'m perfectly free to use Int variables instead;
the only requirement is that I use things that have the correct type:

let x = 4
lety =5
let z = sum(y,x)

In that code, I purposely used the names x and y for the variables whose values are
passed as arguments, and I purposely reversed them in the call, to emphasize that these
names have nothing to do with the names x and y inside the function parameter list and
the function body. These names do not magically make their way to the function. Their
values are all that matter; their values are the arguments.

What about the value returned by the function? That value is magically substituted for
the function call, at the point where the function call is made. It happens that in the
preceding code, the result is 9. So the last line is exactly as if I had said:

let z =9

The programmer and the compiler both know exactly what type of thing this function
returns, so they also know where it is and isn't legal to call this function. It’s fine to call

Function Parameters and Return Value | 29

this function as the initialization part of the declaration of the variable z, just as it would
be to use 9 as the initialization part of that declaration: in both cases, we have an Int,
and so z ends up being declared as an Int. But it would not be legal to write this:

let z = sum(4,5) + "howdy" // compile error

Because sum returns an Int, that’s the same as trying to add an Int to a String — and by
default, you can’t do that in Swift.

Observe that it is legal to ignore the value returned from a function call:
sum(4,5)

That code is legal; it causes neither a compile error nor a runtime error. It is also sort of
silly in this particular situation, because we have made our sum function go to all the
trouble of adding 4 and 5 for us and we have then thrown away the answer without
capturing or using it. However, there are lots of situations where it is perfectly reasonable
to ignore the value returned from a function call; in particular, the function may do
other things (technically called side effects) in addition to returning a value, and the
purpose of your call to that function may be those other things.

If you can call sum wherever you can use an Int, and if the parameters of sum have to be
Int values, doesn’t that mean you can call sum inside a call to sum? Of course it does! This
is perfectly legal (and reasonable):

let z = sum(4,sum(5,6))

The only argument against writing code like that is that you might confuse yourself and
that it might make things harder to debug later. But, technically, it’s quite normal.

Void Return Type and Parameters

Let’s return to our function declaration. With regard to a function’s parameters and
return type, there are two degenerate cases that allow us to express a function declaration
more briefly:

A function without a return type
No law says that a function must return a value. A function may be declared to
return no value. In that case, there are three ways to write the declaration: you can
write it as returning Void; you can write it as returning (), an empty pair of paren-
theses; or you can omit the arrow operator and the return type entirely. These are
all legal:

func say1(s:String) -> Void { print(s) }
func say2(s:String) -> () { print(s) }
func say3(s:String) { print(s) }

30 | Chapter2:Functions

If a function returns no value, then its body need not contain a return statement.
If it does contain a return statement, its purpose will be purely to end execution of
the function at that point.

This return statement will usually consist of return and nothing else. However,
Void (the type returned by a function that returns no value) is an actual type in
Swift, and a function that returns no value technically does in fact return a value of
this type, which may be expressed as the literal (). (I'll explain in Chapter 3 what
the literal () really represents.) Thus, it is legal for such a function to say
return (); whether it says that or not, () is what it returns. Writing return () —
or return;, with a semicolon — can be useful to disambiguate in case Swift thinks
I’'m trying to return whatever is on the next line.

A callto afunction that returns no value is made purely for the function’s side effects;
it has no useful return value that can be made part of a larger expression, so it will
usually be the only thing in its line of code, with the () value that it returns being
ignored. Nevertheless, it is legally possible to capture that value in a variable typed
as Void; for example:

let pointless : Void = say1("howdy")

A function without any parameters
No law says that a function must take any parameters. If it doesn’t, the parameter
list in the function declaration can be completely empty. But you can’t omit the
parameter list parentheses themselves! They will be present in the function decla-
ration, after the function’s name:

func greet1() -> String { return "howdy" }

Obviously a function can lack both a return value and parameters; these are all ways of
expressing the same thing:

func greet1() -> Void { print("howdy") }
func greet2() -> () { print("howdy") }
func greet3() { print("howdy") }

Just as you cannot omit the parentheses (the parameter list) from a function declaration,
you cannot omit the parentheses from a function call. Those parentheses will be empty
if the function takes no parameters, but they must be present. For example:

greet1()

Notice the parentheses!

Function Parameters and Return Value | 31

Function Signature

If we ignore for a moment the parameter names in the function declaration, we can
completely characterize a function by the types of its inputs and its output, using an
expression like this:

(Int, Int) -> Int

That in fact is a legal expression in Swift. It is the signature of a function. In this case,
it’s the signature of our sum function. Of course, there can be other functions that take
two Int parameters and return an Int — and that’s just the point. This signature char-
acterizes all functions that have this number of parameters, of these types, and that
return a result of this type. A function’s signature is, in effect, its type — the type of the
function. The fact that functions have types will be of great importance later on.

The signature of a function must include both the parameter list (without parameter
names) and the return type, even if one or both of those is empty; so, the signature of a
function that takes no parameters and returns no value may be written in any of four
equivalent ways, including Void -> Voidand () -> ().

External Parameter Names

A function can externalize the names of its parameters. The external names must then
appear in a call to the function as labels to the arguments. There are several reasons why
this is a good thing:

o It clarifies the purpose of each argument; each argument label can give a clue as to
how that argument contributes to the behavior of the function.

« It distinguishes one function from another; two functions can have the same name
and signature but different externalized parameter names.

o It helps Swift to interface with Objective-C and Cocoa, where method parameters
nearly always have externalized names.

To externalize a parameter name, put the external name before the internal parameter
name, separated by a space, in the function declaration. The external name can be the
same as the internal name, or different. Externalized parameter names are so standard
in Swift, however, that there’s a rule: all parameter names except for the first parame-
ter are externalized automatically by default. Thus, if you want a parameter name to be
externalized, and if this is not the first parameter, and if you want the externalized name
to be the same as the internal name, do nothing — that will happen all by itself.

Here’s the declaration for a function that concatenates a string with itselfa given number
of times:

32 | Chapter2:Functions

func repeatString(s:String, times:Int) -> String {
var result = ""
for _ in 1...times { result += s }
return result

}

That function’s first parameter has an internal name only, but its second parameter has
an external name, which will be the same as its internal name, namely times. And here’s
how to call it:

let s = repeatString("hi", times:3)

In the call, as you can see, the external name precedes the argument as a label, separated
by a colon.

AsTvealready said, a parameter’s external name can be different from its internal name.
Let’s say that in our repeatString function we prefer to use times purely as an external

name, with a different name — say, n — as the internal name. Then the declaration
would look like this:

func repeatString(s:String, times n:Int) -> String {
var result = ""
for _ in 1...n { result += s}
return result

}

In the body of that function, there is now no times variable available; times is purely
an external name, for use in the call. The internal name is n, and that’s the name the
code refers to.

The existence of external names doesn’t mean that the call can use a different pa-
rameter order from the declaration. For example, our repeatString expects a String
parameter and an Int parameter, in that order. The order can’t be different in the
call, even though the label might appear to disambiguate which argument goes with
which parameter. (Later, though, I'll give an apparent exception to this rule.)

Our repeatString function demonstrates the default rule that the first parameter has
no external name, while the others do. Why is this the default? One reason is that the
first parameter often doesn’t need an external name, because the function name usually
clarifies sufficiently what the first parameter is for — as it does in the case of repeat-
String (it repeats a string, which the first parameter should provide). Another reason
— much more important in real life — is that this convention allows Swift functions to
interface with Objective-C methods, which typically work this way.

For example, here’s the Objective-C declaration for a Cocoa NSString method:

- (NSString *)stringByReplacingOccurrencesOfString: (NSString *)target
withString: (NSString *)replacement

External Parameter Names | 33

This method takes two NSString parameters and returns an NSString. The external
name of the second parameter is obvious — it's withString. But its a bit less obvious
what the name of the first parameter is. On the one hand, you could argue thatit's string-
ByReplacingOccurrencesOfString. On the other hand, thats not really the name of
the parameter; it's more the name of the method. Actually, the formal name of the
method is the whole thing: stringByReplacingOccurrencesOfString:withString:.
But Swift function call syntax has parentheses distinguishing the function name from
the external parameter names. So when Swift wants to call this Objective-C method,
the first thing-before-a-colon becomes the name of the function, before the parentheses,
and the second thing-before-a-colon becomes the label of the second argument, inside
the parentheses. A Swift String and a Cocoa NSString are automatically bridged to one
another, so you can actually call this Cocoa method on a Swift String, like this:

let s = "hello"
let s2 = s.stringByReplacingOccurrencesOfString("ell", withString:"ipp")
// s2 is now "hippo"

If a function is your own function — that is, if you declare it — and if it is not a method
that Objective-C will ever call (so that there is no need to conform to Objective-C’s

expectations), then you are free to depart from the default behavior. You can do any of
the following in your function declaration:

Externalize the name of the first parameter
If you want to externalize the name of the first parameter, put the external name
before the internal name. The two names can be the same.

Change the name of a nonfirst parameter
If you want to change the external name of a parameter other than the first param-
eter, put the desired external name before the internal name.

Suppress the externalization of a nonfirst parameter
To suppress a nonfirst parameter’s external name, precede it with an underscore
and a space:

func say(s:String, _ times:Int) {

Now this method would have to be called without labeling the second parameter:

let d = Dog()
d.say("woof", 3)

(That explains my declaration func sum (x:Int, _ y:Int) -> Int atthe start of
this chapter: I was suppressing the externalization of the second parameter name,
so as not to have to explain argument labels at the outset.)

34 | Chapter2:Functions

What Is the Name of This Function?

Technically, the name of a Swift function is the name that precedes the parentheses plus
the external names of its parameters. If the external name of a parameter is suppressed,
we can represent its external name as an underscore. The result is a notation in which
the external parameter names are shown in parentheses followed by a colon. For ex-
ample, a function declared func say(s:String, times:Int) would be technically
named say(_:times:), and a function declared func say(s:String, _ times:Int)
would be technically named say(_:_:). This notation is a bit cumbersome, and I don’t
adhere to it in this book, but it has the advantage of being accurate and unambiguous.

Overloading

In Swift, function overloading is legal (and common). This means that two functions
with exactly the same name (including their external parameter names) can coexist as
long as they have different signatures.

Thus, for example, these two functions can coexist:

func say (what:String) {

}
func say (what:Int) {

}
The reason overloading works is that Swift has strict typing. A String is not an Int. Swift
can tell them apart in the declaration, and Swift can tell them apart in a function call.
Thus, Swift knows unambiguously that say("what") is different from say(1).

Overloading works for the return type as well. Two functions with the same name and
parameter types can have different return types. But the context of the call must dis-
ambiguate; that is, it must be clear what return type the caller is expecting.

For example, these two functions can coexist:

func say() -> String {
return "one"

}

func say() -> Int {
return 1

}

But now you can’t call say like this:
let result = say() // compile error

The call is ambiguous, and the compiler tells you so. The call must be used in a context
where the expected return type is clear. For example, suppose we have another function
that is not overloaded, and that expects a String parameter:

Overloading | 35

func giveMeAString(s:String) {
print("thanks!")
}

Then giveMeAString(say()) is legal, because only a String can go in this spot, so we
must be calling the say that returns a String. Similarly:

let result = say() + "two"
Only a String can be “added” to a String, so this say() must be a String.

The legality of overloading in Swift is particularly striking if youre coming from
Objective-C, where overloading is not legal. If you tried to declare two overloaded ver-
sions of the same method in Objective-C, you'd get a “Duplicate declaration” compile
error. And indeed, if you try to declare two overloaded methods in Swift, but in a place
where Objective-C can see them (see Appendix A for what that means), you’ll get a Swift
compile error, because such overloading is incompatible with Objective-C.

Two functions with the same signature but different external parameter names do
not constitute a case of overloading; the functions have different external parame-
ter names, so they are simply two different functions with two different names.

Default Parameter Values

A parameter can have a default value. This means that the caller can omit the parameter
entirely, supplying no argument for it; the value will then be the default.

To provide a default value, append = and the default value after the parameter type in
the declaration:
class Dog {
func say(s:String, times:Int = 1) {
for _ in 1...times {
print(s)
}

}

In effect, there are now two functions — say plain and simple, and say(times:).If you
just want to say something once, you can call say plain and simple, and a times:
parameter value of 1 will be supplied for you:

let d = Dog()
d.say("woof") // same as saying d.say("woof", times:1)

If you want repetition, call say(times:):

let d = Dog()
d.say("woof", times:3)

36 | Chapter2: Functions

If parameters with external names have default values, the requirement that they be
called in order is lifted. For example, if a function is declared like this:

func doThing (a a:Int = 0, b:Int = 3) {}
then it is legal to call it like this:

doThing(b:5, a:10)

However, this might be an oversight — with Swift, it's always hard to know, and certainly
it would be illegal to call it like that if either parameter lacked a default value — so I
would recommend that you not do that sort of thing: keep your call’sarguments ordered
like the parameters in the declaration.

Variadic Parameters

A parameter can be variadic. This means that the caller can supply as many values of
this parameter’s type as desired, separated by comma; the function body will receive
these values as an array.

To indicate that a parameter is variadic, follow it by three dots, like this:

func sayStrings(array0fStrings:String ...) {
for s in arrayOfStrings { print(s) }
}

And here’s how to call it:
sayStrings("hey", "ho", "nonny nonny no")

In earlier versions of Swift, a variadic parameter had to be the last parameter; but that
limitation has been lifted in Swift 2.0. The limitation is now only that a function can
declare a maximum of one variadic parameter (because otherwise it might be impossible
to determine where the list of values ends). For example:

func sayStrings(array0fStrings:String ..., times:Int) {
for _ in 1...times {
for s in arrayOfStrings { print(s) }
}
}

And here’s how to call it:
sayStrings("Mannie", "Moe", "Jack", times:3)

The global print function takes a variadic first parameter, so you can output multiple
values with a single command:

print("Mannie", 3, true) // Mannie 3 true

Variadic Parameters | 37

Default parameters dictate further details of the output. The default separator: is a
space (when you provide multiple values), and the default terminator: is a newline;
you can change either or both:

print("Mannie", "Moe", separator:", ", terminator: ", ")
print("Jack")
// output is "Mannie, Moe, Jack" on one line

@ | Unfortunately, there’s a hole in the Swift language: there’s no way to convert an

% array into a comma-separated list of arguments (comparable to splatting in Ruby).

" If what you're starting with is an array of some type, you can’t use it where a variadic
of that type is expected.

Ignored Parameters

A parameter whose local name is an underscore is ignored. The caller must supply an
argument, but it has no name within the function body and cannot be referred to there.
For example:

func say(s:String, times:Int, loudly _:Bool) {

No loudly parameter makes its way into the function body, but the caller must still
provide the third parameter:

say("hi", times:3, loudly:true)

The declaration needn’t have an externalized name for the ignored parameter:
func say(s:String, times:Int, _:Bool) {

But the caller must still supply it:
say("hi", times:3, true)

What's the purpose of this feature? It isn’t to satisfy the compiler, because the compiler
doesn't complainifa parameter is never referred to in the function body. I use it primarily
as a kind of note to myself, a way of saying, “Yes, I know there is a parameter here, and
I am deliberately not using it for anything.”

Modifiable Parameters

In the body of a function, a parameter is essentially a local variable. By default, it’s a
variable implicitly declared with let. You can't assign to it:
func say(s:String, times:Int, loudly:Bool) {

loudly = true // compile error

}

38 | Chapter2: Functions

If your code needs to assign to a parameter name within the body of a function, declare
the parameter name explicitly with var:

func say(s:String, times:Int, var loudly:Bool) {
loudly = true // no problem
}

In that code, the parameter loudly is still just a local variable. Assigning to it doesn’t
change the value of any variable outside the function body. However, it is also possible
to configure a parameter in such a way that it does modify the value of a variable outside
the function body! One typical use case is that you want your function to return more
than one result. For example, here I'll write a rather advanced function that removes all
occurrences of a given character from a given string and returns the number of occur-
rences that were removed:

func removeFromString(var s:String, character c:Character) -> Int {
var howMany = 0
while let ix = s.characters.index0f(c) {
s.removeRange(ix...1x)
howMany += 1

}

return howMany

}
And you call it like this:

let s = "hello"
let result = removeFromString(s, character:Character("1")) // 2

That’s nice, but we forgot one little thing: the original string, s, is still "hello"! In the
function body, we removed all occurrences of the character from the local copy of the
String parameter, but this change didn't affect the original string.

If we want our function to alter the original value of an argument passed to it, we must
make three changes:

o The parameter we intend to modify must be declared inout.

o At the point of the call, the variable holding the value we intend to tell the function
to modify must be declared with var, not let.

o Instead of passing the variable as an argument, we pass its address. This is done by
preceding its name with an ampersand (&).
Let’s make those changes. The declaration of removeFromString now looks like this:
func removeFromString(inout s:String, character c:Character) -> Int {
Our call to removeFromString now looks like this:

var s = "hello"
let result = removeFromString(&s, character:Character("1"))

Modifiable Parameters | 39

After the call, resultis 2 and s is "heo". Notice the ampersand before name of s as the
first argument in our function call! I like this requirement, because it forces us to ac-
knowledge explicitly to the compiler, and to ourselves, that we're about to do something
potentially dangerous: were letting this function, as a side effect, modify a value outside
of itself.

When a function with an inout parameter is called, the variable whose address was
passed as argument to that parameter is always set, even if the function makes no
changes to that parameter.

You will often encounter variations on this pattern when you're using Cocoa. The Cocoa
APIs are written in C and Objective-C, so you probably won't see the Swift term
inout. You'll probably see some mysterious type such as UnsafeMutablePointer. From
your point of view as the caller, however, it’s the same thing. You’ll prepare a var variable
and pass its address.

For instance, consider the Core Graphics function CGRectDivide. A CGRect is a struct
representing a rectangle. You call CGRectDivide when you want to slice a rectangle into
two rectangles. CGRectDivide needs to tell you what both resulting rectangles are. So it
needs to return two CGRects. Its strategy for doing this is to return no value as a result
of the function; instead, it says, “You hand me two CGRects as arguments, and I will
modify them for you so that they are the results of this operation”

Here’s how the declaration for CGRectDivide appears in Swift:

func CGRectDivide(rect: CGRect,
_ slice: UnsafeMutablePointer<CGRect>,
_ remainder: UnsafeMutablePointer<CGRect>,
_ amount: CGFloat,
_ edge: CGRectEdge)

The second and third parameters are each an UnsafeMutablePointer to a CGRect. Here’s
actual code from one of my apps where I call this function; look at how I treat the second
and third arguments:

var arrow = CGRectZero

var body = CGRectZero

CGRectDivide(rect, &arrow, &body, Arrow.ARHEIGHT, .MinYEdge)
I have to create two var CGRect variables beforehand, and they have to have some value
even though that value will immediately be replaced by the call to CGRectDivide, so I
assign them CGRectZero as a placeholder.

40 | Chapter2: Functions

Swift extends CGRect to provide a divide method. This method, being a Swift
method, does something that a Cocoa C function cannot do — it returns two values
(as a tuple, see Chapter 3)! Thus, you could avoid calling CGRectDivide in the first
place. Still, you can call CGRectDivide, so it’s worth knowing how.

Sometimes, Cocoa will call your function with an UnsafeMutablePointer parameter, and
you will want to change its value. To do this, you cannot assign directly to it, as we did
with the inout variable s in our implementation of removeFromString. Youre talking
to Objective-C, not to Swift, and this is an UnsafeMutablePointer, not an inout param-
eter. The technique here is to assign to the UnsafeMutablePointer’s memory property.
Here (without further explanation) is an example from my own code:

func popoverPresentationController(
popoverPresentationController: UIPopoverPresentationController,
willRepositionPopoverToRect rect: UnsafeMutablePointer<CGRect>,
inView view: AutoreleasingUnsafeMutablePointer<UIView?>) {
view.memory = self.button2
rect.memory = self.button2.bounds

}
There is one very common situation where your function can modify a parameter
without declaring it as inout — namely, when the parameter is an instance of a class.
This is a special feature of classes, as opposed to the other two object type flavors, enum
and struct. String isn't a class; it’s a struct. That's why we had to use inout in order to
modify a String parameter. So I'll illustrate by declaring a Dog class with a name property:

class Dog {
var name =

}

Here’s a function that takes a Dog instance parameter and a String, and sets that Dog
instance’s name to that String. Notice that no inout is involved:

func changeNameOfDog(d:Dog, to tostring:String) {
d.name = tostring

}

Here’s how to call it. There’s no inout, so we pass a Dog instance directly:

let d = Dog()

d.name = "Fido"

print(d.name) // "Fido"
changeNameOfDog(d, to:"Rover")
print(d.name) // "Rover"

Observe that we were able to change a property of our Dog instance d, even though it
wasn't passed as an inout parameter, and even though it was declared originally with

let, not var. This appears to be an exception to the rules about modifying parameters
— but it isn’t. It’s a feature of class instances, namely that they are themselves mutable.

Modifiable Parameters | 41

In changeNameOfDog, we didn’t actually attempt to modify the parameter itself. To do
that, we would have had to substitute a different Dog instance. That is not what we tried
to do, and if we did want to do it, the Dog parameter would need to be declared inout
(and d would have to be declared with var and we would have to pass its address as
argument).

Technically, we say that classes are reference types, whereas the other object type
flavors are value types. When you pass an instance of a struct as an argument to a
function, you effectively wind up with a separate copy of the struct instance. But
when you pass an instance of a class as an argument to a function, you pass a
reference to the class instance itself. I'll discuss this topic in more detail in Chapter 4.

Function In Function

A function can be declared anywhere, including inside the body of a function. A function
declared in the body of a function (also called a local function) is available to be called
by later code within the same scope, but is completely invisible outside its scope.

This feature is an elegant architecture for functions whose sole purpose is to assist an-
other function. If only function A ever needs to call function B, function B might as well
be packaged inside function A.

Here’s a typical example from one of my apps (I've omitted everything except the struc-
ture):

func checkPair(pl:Piece, and p2:Piece) -> Path? {

/] ...

func addPathIfvValid(midptl:Point, _ midpt2:Point) {
/] ...

}

for y in -1..._yct {
addPathIfvalid((ptl.x,y),(pt2.x,y))

}

for x in -1..._xct {
addPathIfvalid((x,ptl.y),(x,pt2.y))

}

/...

}

What I'm doing in the first for loop (for y) and what I'm doing in the second for loop
(for x) are the same — but with a different set of starting values. We could write out
the functionality in full inside each for loop, but that would be an unnecessary and
confusing repetition. (Such a repetition would violate the principle often referred to as
DRY, for “Don’t Repeat Yourself”) To prevent that repetition, we could refactor the
repeated code into an instance method to be called by both for loops, but that exposes

42 | Chapter2: Functions

this functionality more broadly than we need, as it is called only by these two for loops
inside checkPatir. A local function is the perfect compromise.

Sometimes, it's worth using a local function even when that function will be called in
only one place. Here’s another example from my code (it’s actually another part of the
same function):

func checkPair(pl:Piece, and p2:Piece) -> Path? {
/] ...
if arr.count > 0 {
func distance(ptl:Point, _ pt2:Point) -> Double {

// utility to learn physical distance between two points
let deltax = pt1.0 - pt2.0
let deltay = pt1.1 - pt2.1
return sqrt(Double(deltax * deltax + deltay * deltay))

for thisPath in arr {
var thisLength = 0.0
for ix in 0..<(thisPath.count-1) {
thisLength += distance(thisPath[ix],thisPath[ix+1])
}
/] ...

}
/...
}

Again, the structure is clear (even though the code uses some Swift features I haven’t
discussed yet). Deep inside the function checkPatir, a moment comes when I have an
array (arr) of paths, and I need to know the length of every path. Each path is itself an
array of points, so to learn its length, I need to sum the distances between each pair of
points. To get the distance between a pair of points, I use the Pythagorean theorem. I
could apply the Pythagorean theorem and express the calculation right there inside the
for loop (for ix).Instead, I've expressed it as a separate function, distance, and inside
the for loop I call that function.

There is no savings whatever in the number of lines of code; in fact, declaring distance
makes my code longer! Nor, strictly speaking, am I in danger of repeating myself; the
application of the Pythagorean theorem is repeated many times, but it occurs at only
one spot in my code, namely inside this one for loop. Nevertheless, abstracting the code
into a more general distance-calculation utility makes my code much clearer: in effect,
Iannounce in general form what I'm about to do (“Look! 'm going to calculate distances
between points now!”), and then I do it. The function name, distance, gives my code
meaning; it is more understandable and maintainable than if I had directly written out
the steps of the distance calculation inline.

Function In Function | 43

explain later in this chapter). Therefore, a local function can’t have the same name
as a local variable in the same scope, and two local functions can’t have the same
name as one another in the same scope.

% Local functions are really local variables with function values (a notion that I'll

Recursion

A function can call itself. This is called recursion. Recursion seems a little scary, rather
like jumping off a cliff, because of the danger of creating an infinite loop; but if you write
the function correctly, you will always have a “stopper” condition that handles the de-
generate case and prevents the loop from being infinite:

func countDownFrom(ix:Int) {
print(ix)
if ix > 0 { // stopper
countDownFrom(ix-1) // recurse!

}

Before Swift 2.0, Swift imposed a restriction on recursion: a function-in-function
(a local function) could not call itself. In Swift 2.0, this restriction is gone.

Function As Value

If you've never used a programming language where functions are first-class citizens,
perhaps youd better sit down now, because what I'm about to tell you might make you
feel a little faint: In Swift, a function is a first-class citizen. This means that a function
can be used wherever a value can be used. For example, a function can be assigned to a
variable; a function can be passed as an argument in a function call; a function can be
returned as the result of a function.

Swift has strict typing. You can only assign a value to a variable or pass a value into or
out of a function if it is the right type of value. In order for a function to be used as a
value, it needs to have a type. And indeed it does! Have you guessed what it is? A func-
tion’s signature is its type.

The chief purpose of using a function as a value is so that this function can later be called
without a definite knowledge of what function it is.

Here’s the world’s simplest (and silliest) example, just to show the syntax and structure:

func doThis(f:()->()) {
fO
}

44 | Chapter 2: Functions

That is a function doThis that takes one parameter (and returns no value). The param-
eter, f, is itself a function; we know this because the type of the parameter is not given
as Int or String or Dog, but is a function signature, ()->(), meaning (as you know) a
function that takes no parameters and returns no value. The function doThtis then calls
the function f that it received as its parameter — that (as you know) is the meaning of
the parentheses after the name of the parameter in the function body.

How would you call the function doThis? To do so, you'd need to pass it a function as
argument. One way to do that is to use the name of a function as the argument, like this:

func whatToDo() {
print("I did it")

}

doThis(whatToDo)
First, we declare a function of the proper type — a function that takes no parameters and
returns no value. Then, we call doThis, passing as argument the name of the function.
Notice that we are not calling whatToDo here; we are passing it. You know this because
there are no parentheses after its name. Sure enough, this works: we pass whatToDo as
argument to doThtis; doThis calls the function that it receives as its parameter; and the
string "I did it" appears in the console.

But what’s the point of being able to do that? If our goal is to call whatToDo, why don’t
we just call it? What’s useful about being able to tell some other function to call it? In
the example I just gave, there is nothing useful about it; I was just showing you the syntax
and structure. But in real life, this is a very valuable thing to do, because the other
function may call the parameter function in some special way. For example, it might
call it after doing other things, or at some later time.

For example, one reason for encapsulating function-calling in a function is that it can
reduce repetition and opportunity for error. Here’s a case from my own code. A common
thing to do in Cocoa is to draw an image, directly, in code. This involves four steps:

let size = CGSizeMake(45,20)
UIGraphicsBeginImageContextWithOptions(size, false, 0) @
let p = UIBezierPath(

roundedRect: CGRectMake(0,0,45,20), cornerRadius: 8)

p.stroke() @
let result = UIGraphicsGetImageFromCurrentImageContext() @
UIGraphicsEndImageContext() @

Open an image context.
Draw into the context.

Extract the image.

o000

Close the image context.

FunctionAsValue | 45

That’s terribly ugly. The sole purpose of all that code is to obtain result, the image; but
that purpose is buried in all the other code. At the same time, the entire structure is
boilerplate; every time I do this in any app, step 1, step 3, and step 4 are exactly the same.
Moreover, I live in mortal fear of forgetting a step; for example, if I were to omit step 4
by mistake, the universe would explode.

The only thing that’s different every time I draw is step 2. Thus, step 2 is the only part I
should have to write out! The entire problem is solved by writing a utility function
expressing the boilerplate:

func imageOfSize(size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
UIGraphicsBeginImageContextWithOptions(size, false, 0)
whatToDraw()
let result = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
return result

}

My imageOfSize utility is so useful that I declare it at the top level of a file, where all my
files can see it. To make an image, I perform step 2 (the actual drawing) in a function
and pass that function as argument to the image0fSize utility:

func drawing() {
let p = UIBezierPath(
roundedRect: CGRectMake(0,0,45,20), cornerRadius: 8)
p.stroke()

}
let image = image0fSize(CGSizeMake(45,20), drawing)

Now that is a beautifully expressive and clear way to turn drawing instructions into an
image.

The Cocoa API is full of situations where you’ll pass a function to be called by the
runtime in some special way or at some later time. For example, when one view con-
troller presents another, the method you’ll call takes three parameters — the view con-
troller to be presented; a Bool stating whether you want the presentation to be animated;
and a function that is to be called after the presentation has finished:

let vc = UIViewController()

func whatToDoLater() {
print("I finished!")

}

self.presentViewController(vc, animated:true, completion:whatToDolLater)

The Cocoa documentation will often describe such a function as a handler, and will
refer it as a block, because that’s the Objective-C syntactic construct needed here; in
Swift, it’s a function, so just think of it as a function and pass a function.

46 | Chapter 2: Functions

Some common Cocoa situations even involve passing two functions to a function. For
instance, when you perform view animation, you'll often pass one function prescribing
the action to be animated and another function saying what to do afterwards:

func whatToAnimate() { // self.myButton is a button in the interface
self.myButton.frame.origin.y += 20

}
func whatToDoLater(finished:Bool) {
print("finished: \(finished)")
}
UIView.animateWithDuration(
0.4, animations: whatToAnimate, completion: whatToDolLater)

That means: Change the frame origin (that is, the position) of this button in the interface,
but do it over time (four-tenths of a second); and then, when that’s finished, print a log
message in the console saying whether the animation was performed or not.

To make function type specifiers clearer, take advantage of Swift’s typealias fea-
ture to create a type alias giving a function type a name. The name can be descrip-
tive, and the possibly confusing arrow operator notation is avoided. For example,
if you say typealias VoidVoidFunction = () -> (), you can then say VoidVoid-
Function wherever you need to specify a function type with that signature.

Anonymous Functions

Consider again the preceding example:

func whatToAnimate() { // self.myButton is a button in the interface
self.myButton.frame.origin.y += 20

}
func whatToDolLater(finished:Bool) {

print("finished: \(finished)")
}
UIView.animateWithDuration(
0.4, animations: whatToAnimate, completion: whatToDoLater)

There’s a slight bit of ugliness in that code. I'm declaring functions whatToAnimate and
whatToDoLater, just because I want to pass those functions in the last line. I don’t really
need the names whatToAnimate and whatToDoLater for anything, except to refer to
them in the last line; neither the names nor the functions will ever be used again. There-
fore, it would be nice to be able to pass just the body of those functions without a declared
name.

That's called an anonymous function, and it’s legal and common in Swift. To form an
anonymous function, you do two things:

Anonymous Functions | 47

1. Create the function body itself, including the surrounding curly braces, but with
no function declaration.

2. If necessary, express the function’s parameter list and return type as the first line
inside the curly braces, followed by the keyword in.

Let’s practice by transforming our named function declarations into anonymous func-
tions. Here’s the named function declaration for whatToAnimate:

func whatToAnimate() {
self.myButton.frame.origin.y += 20

}
Here’s an anonymous function that does the same thing. Notice how I've moved the
parameter list and return type inside the curly braces:

{
O ->0 1in
self.myButton.frame.origin.y += 20

}

Here’s the named function declaration for whatToDoLater:

func whatToDoLater(finished:Bool) {
print("finished: \(finished)")

}
Here’s an anonymous function that does the same thing:
{
(finished:Bool) -> () in
print("finished: \(finished)")
}

Now that we know how to make anonymous functions, let’s use them. The point where
we need the functions is the point where we're passing arguments to animateWith-
Duration. We can create and pass anonymous functions right at that point, like this:

UIView.animateWithDuration(0.4, animations: {
O->01in
self.myButton.frame.origin.y += 20
}, completion: {
(finished:Bool) -> () in
print("finished: \(finished)")
H

We can make the same improvement in the way we call the image0fSize function from
the preceding section. Earlier, we called that function like this:

48 | Chapter 2: Functions

func drawing() {
let p = UIBezierPath(
roundedRect: CGRectMake(0,0,45,20), cornerRadius: 8)
p.stroke()

}
let image = imageOfSize(CGSizeMake(45,20), drawing)

We now know, however, that we don’t need to declare the drawing function separately.
We can call image0fSize with an anonymous function:

let image = imageOfSize(CGSizeMake(45,20), {
let p = UIBezierPath(
roundedRect: CGRectMake(0,0,45,20), cornerRadius: 8)
p.stroke()

b

Anonymous functions are very commonly used in Swift, so make sure you can read and
write that code! Anonymous functions, in fact, are so common and so important, that
some shortcuts for writing them are provided:

Omission of the return type
If the anonymous function’s return type is known to the compiler, you can omit the
arrow operator and the specification of the return type:

UIView.animateWithDuration(0.4, animations: {
O in
self.myButton.frame.origin.y += 20
}, completion: {
(finished:Bool) in
print("finished: \(finished)")
H

Omission of the in line when there are no parameters
If the anonymous function takes no parameters, and if the return type can be omit-
ted, the in line itself can be omitted entirely:

UIView.animateWithDuration(0.4, animations: {
self.myButton.frame.origin.y += 20
}, completion: {
(finished:Bool) in
print("finished: \(finished)")
H

Omission of the parameter types
If the anonymous function takes parameters and their types are known to the com-
piler, the types can be omitted:

UIView.animateWithDuration(0.4, animations: {
self.myButton.frame.origin.y += 20
}, completion: {
(finished) in
print("finished: \(finished)")
b

Anonymous Functions | 49

Omission of the parentheses
If the parameter types are omitted, the parentheses around the parameter list can
be omitted:

UIView.animateWithDuration(0.4, animations: {
self.myButton.frame.origin.y += 20
}, completion: {
finished in
print("finished: \(finished)")
b

Omission of the in line even when there are parameters
If the return type can be omitted, and if the parameter types are known to the
compiler, you can omit the in line and refer to the parameters directly within the
body of the anonymous function by using the magic names $0, $1, and so on, in
order:

UIView.animateWithDuration(0.4, animations: {
self.myButton.frame.origin.y += 20
}, completion: {
print("finished: \($0)")
b

Omission of the parameter names
If the anonymous function body doesn't need to refer to a parameter, you can sub-
stitute an underscore for its name in the parameter list in the in line; in fact, if the
anonymous function body doesn’t need to refer to any of the parameters, you can
substitute one underscore for the entire parameter list:

UIView.animateWithDuration(0.4, animations: {
self.myButton.frame.origin.y += 20
}, completion: {
_in
print("finished!")
H

But note that if the anonymous function takes parameters, you must acknowledge
them somehow. You can omit the in line and use the parameters by the magic names
$0 and so on, or you can keep the in line and ignore the parameters with an un-
derscore, but you can’t omit the in line altogether and not use the parameters by
their magic names! If you do, your code won't compile.

Omission of the function argument label
If, as will just about always be the case, your anonymous function is the last argu-
ment being passed in this function call, you can close the function call with a right
parenthesis before this last argument, and then put just the anonymous function
body without a label (this is called a trailing function):

50 | Chapter2: Functions

UIView.animateWithDuration(0.4, animations: {
self.myButton.frame.origin.y += 20

ni
_1in
print("finished!")
}
Omission of the calling function parentheses

If you use the trailing function syntax, and if the function you are calling takes no
parameters other than the function you are passing to it, you can omit the empty
parentheses from the call. This is the only situation in which you can omit the
parentheses from a function call! To illustrate, I'll declare and call a different func-
tion:

func doThis(f:()->()) {
f0)
}
doThis { // no parentheses!
print("Howdy")
}
Omission of the keyword return
Ifthe anonymous function body consists of exactly one statement and that statement
consists of returning a value with the keyword return, the keyword return can be
omitted. To put it another way, in a context that expects a function that returns a
value, if an anonymous function body consists of exactly one statement, Swift
assumes that this statement is an expression whose value is to be returned from the
anonymous function:

func sayHowdy() -> String {
return "Howdy"

}

func performAndPrint(f:()->String) {
let s = f()
print(s)

}

performAndPrint {
sayHowdy() // meaning: return sayHowdy()

}
When writing anonymous functions, you will frequently find yourself taking advantage
of all the omissions you are permitted. In addition, you’ll often shorten the layout of
the code (though not the code itself) by putting the whole anonymous function together
with the function call on one line. Thus, Swift code involving anonymous functions can
be extremely compact.

Here’s a typical example. We start with an array of Int values and generate a new array
consisting of all those values multiplied by 2, by calling the map instance method. The
map method of an array takes a function that takes one parameter, and returns a value,

Anonymous Functions | 51

of the same type as the array’s elements; here, our array is made of Int values, so we need
to pass to the map method a function that takes one Int parameter and returns an Int.
We could write out the whole function, like this:

let arr = [2, 4, 6, 8]

func doubleMe(i:Int) -> Int {
return i*2

}
let arr2 = arr.map(doubleMe) // [4, 8, 12, 16]

That, however, is not very Swifty. We don’'t need the name doubleMe for anything else,
so this may as well be an anonymous function. Its return type is known, so we don’t
need to specify that. Its parameter type is known, so we don’t need to specify that. There’s
just one parameter and we are going to use it, so we don’t need the in line as long we
refer to the parameter as $0. Our function body consists of just one statement, and it is
a return statement, so we can omit return. And map doesn’t take any other parameters,
so we can omit the parentheses and follow the name directly with a trailing function:

let arr = [2, 4, 6, 8]
let arr2 = arr.map {$0*2}

Define-and-Call

A pattern that’s surprisingly common in Swift is to define an anonymous function and
call it, all in one move:

{

// ... code goes here
30
Notice the parentheses after the curly braces. The curly braces define an anonymous
function body; the parentheses call that anonymous function.

Why would anyone do such a thing? If you want to run some code, you can just run it;
why would you embed it in a deeper level as a function body, only to turn around and
run that function body immediately?

For one thing, an anonymous function can be a good way to make your code less im-
perative and more, well, functional: an action can be taken at the point where itis needed,
rather than in a series of preparatory steps. Here’s a common Cocoa example: we create
and configure an NSMutableParagraphStyle and then use it as an argument in a call to
addAttribute:value:range: (content is an NSMutableAttributedString):

52 | Chapter2: Functions

let para = NSMutableParagraphStyle()

para.headIndent = 10

para.firstLineHeadIndent = 10

// ... more configuration of para ...

content.addAttribute(
NSParagraphStyleAttributeName,
value:para, range:NSMakeRange(0,1))

I find that code ugly. We don’t need para except to pass it as the value: argument within
the call to addAttribute:value:range, so it would be much nicer to create and con-
figure it right there within the call, as the value: argument. Swift lets us do just that. I
much prefer this way of writing the same code:

content.addAttribute(

NSParagraphStyleAttributeName,

value: {
let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
// ... more configuration of para ...
return para

10,
range:NSMakeRange(0,1))

I'll demonstrate some further uses of define-and-call in Chapter 3.

Closures

Swift functions are closures. This means they can capture references to external variables
in scope within the body of the function. What do I mean by that? Well, recall from
Chapter 1 that code in curly braces constitutes a scope, and this code can “see” variables
and functions declared in a surrounding scope:

class Dog {
var whatThisDogSays = "woof"
func bark() {
print(self.whatThisDogSays)

}
}
In that code, the body of the function bark refers to a variable whatThisDogSays. That
variable is external to the body of the function, because it is declared outside the body
of the function. It is in scope for the body of the function, because the code inside the
body of the function can see it. And the code inside the body of the function refers to it
— it says, explicitly, whatThisDogSays.

So far, so good; but we now know that the function bark can be passed as a value. In
effect, it can travel from one environment to another! When it does, what happens to
that reference to whatThisDogSays? Let’s find out:

Closures | 53

func doThis(f : Void -> Void) {
O

}

let d = Dog()

d.whatThisDogSays = "arf"

let f = d.bark

doThis(f) // arf

We run that code, and "arf" appears in the console.

Perhaps that result doesn’t seem very surprising to you. But think about it. We do not
directly call bark. We make a Dog instance and pass its bark function as a value into the
function doThts. There, it is called. Now, whatThisDogSays is an instance property of
a particular Dog. Inside the function doThis there is no whatThisDogSays. Indeed,
inside the function doThtis there is no Dog instance! Nevertheless the call f () still works.
The function d.bark, as it is passed around, can still see that variable whatThisDog-
Says, declared outside itself, even though it is called in an environment where there is
no longer any Dog instance and no longer any instance property whatThisDogSays.

The bark function, it appears, as it is passed around, is carrying its environment with
it — even when it isn’t called until it has been passed into some other environment
entirely. So, by “capture” I mean that when a function is passed around as a value, it
carries along its internal references to external variables. That is what makes a function
a closure.

You'll probably take advantage of the fact that functions are closures without even being
conscious of it. Recall this earlier example, where we animate the repositioning of a
button in our interface:

UIView.animateWithDuration(0.4, animations: {
self.myButton.frame.origin.y += 20

ni
_in
print("finished!")
}

That code seems innocent enough; but concentrate on the second line, the anonymous
function passed as argument to the animations: parameter. You should be saying:
Really? Way off in the land of Cocoa, when this anonymous function is executed at some
future time to start the animation, Cocoa is going to be able to find myButton, an object
referred to as a property of self, way back over here in my code? Yes, Cocoa will be able
to do that, because a function is a closure. The reference to this property is captured
and maintained by the anonymous function; thus, when the anonymous function is
actually called, it works and the button moves.

54 | Chapter2: Functions

How Closures Improve Code

Once you understand that functions are closures, you can take advantage of this fact to
improve your code’s syntax. Closures can help make your code more general, and hence
more useful. Here, once again, is my earlier example of a function that accepts drawing
instructions and performs them to generate an image:

func imageOfSize(size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
UIGraphicsBeginImageContextWithOptions(size, false, 0)
whatToDraw()
let result = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
return result

}
We can call image0fSize with a trailing anonymous function:

let image = imageOfSize(CGSizeMake(45,20)) {
let p = UIBezierPath(
roundedRect: CGRectMake(0,0,45,20), cornerRadius: 8)
p.stroke()
}

That code, however, contains an annoying repetition. This is a call to create an image
of a given size consisting of a rounded rectangle of that size. We are repeating the size;
the pair of numbers 45,20 appears twice. That’s silly. Let’s prevent the repetition by
putting the size into a variable at the outset:

let sz = CGSizeMake(45,20)
let image = imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz), cornerRadius: 8)
p.stroke()
}

The variable sz, declared outside our anonymous function at a higher level, is visible
inside it. Thus we can refer to it inside the anonymous function — and we do so. The
anonymous function is a function. Therefore it is a closure. Therefore the anonymous
function captures that reference, and carries it on into the call to image0fSize. When
imageOfSize calls whatToDraw and whatToDraw refers to a variable sz, there’s no prob-
lem, even though there is no sz anywhere in the neighborhood of image0fSize.

Now lets go further. So far, we've been hard-coding the size of the desired rounded
rectangle. Imagine, though, that creating images of rounded rectangles of various sizes
is something we do often. It would make sense to package this code up as a function,
where sz is not a fixed value but a parameter; the function will then return the image:

func makeRoundedRectangle(sz:CGSize) -> UIImage {
let image = imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),

Closures | 55

cornerRadius: 8)
p.stroke()
}

return image

}

Observe that our code still works. Here, sz in the anonymous function refers to the sz
parameter that arrives into the surrounding function makeRoundedRectangle. A pa-
rameter of the surrounding function is a variable external to and in scope within the
anonymous function. The anonymous function is a closure, so it captures the reference
to that parameter as it is passed to imageOfSize.

Our code is becoming beautifully compact. To call makeRoundedRectangle, supply a
size; an image is returned. Thus, I can perform the call, obtain the image, and put that
image into my interface, all in one move, like this:

self.myImageView.image = makeRoundedRectangle(CGSizeMake(45,20))

Function Returning Function

But now let’s go even further! Instead of returning an image, our function can return a
function that makes rounded rectangles of the specified size. If you've never seen a func-
tion returned as a value from a function, you may now be gasping for breath. But a
function, after all, can be used as a value. We have already passed a function into a
function as an argument in the function call; now we are going to receive a function
from a function call as its result:

func makeRoundedRectangleMaker(sz:CGSize) -> () -> UIImage { @
func f () -> UIImage { @
let im = imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),
cornerRadius: 8)

p.stroke()
}
return im
}
return f @

}

Let’s analyze that code slowly:

© The declaration is the hardest part. What on earth is the type (signature) of this
function makeRoundedRectangleMaker? Itis (CGSize) -> () -> UIImage. That
expression has two arrow operators. To understand it, keep in mind that
everything after each arrow operator is the type of a returned value. So make-
RoundedRectangleMaker is a function that takes a CGSize parameter and returns
a () -> UIImage. Okay,and whatsa () -> UIImage? We already know that: it’s
a function that takes no parameters and returns a Ullmage. So makeRounded-

56 | Chapter2: Functions

RectangleMaker is a function that takes a CGSize parameter and returns a
function — a function that itself, when called with no parameters, will return a
UlImage.

©® Now here we are in the body of the function makeRoundedRectangleMaker, and
our first step is to declare a function (a function-in-function, or local function)
of precisely the type we intend to return, namely, one that takes no parameters
and returns a Ullmage. Here, we’re naming this function f. The way this function
works is simple and familiar: it calls imageOfSize, passing it an anonymous
function that makes an image of a rounded rectangle (im) — and then it returns
the image.

© Finally, we return the function we just made (f). We have thus fulfilled our
contract: we said we would return a function that takes no parameters and
returns a Ullmage, and we do so.

But perhaps you are still gazing open-mouthed at makeRoundedRectangleMaker, won-
dering how you would ever call it and what you would get if you did. Let’s try it:

let maker = makeRoundedRectangleMaker (CGSizeMake(45,20))

What is the variable maker after that code runs? It’s a function — a function that takes
no parameters and that, when called, produces the image of a rounded rectangle of size
45,20. You don’t believe me? I'll prove it — by calling the function that is now the value
of maker:

let maker = makeRoundedRectangleMaker (CGSizeMake(45,20))
self.myImageView.image = maker()

Now that you've gotten over your stunned surprise at the notion of a function that
produces a function as its result, turn your attention once again to the implementation
of makeRoundedRectangleMaker and let’s analyze it again, a different way. Remember,
I didn’t write that function to show you that a function can produce a function. I wrote
it to illustrate closures! Lets think about how the environment gets captured:

func makeRoundedRectangleMaker(sz:CGSize) -> () -> UIImage {
func f () -> UIImage {
let im = imageOfSize(sz) { // *
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz), // *
cornerRadius: 8)

p.stroke()
}
return im
}
return f

Closures | 57

The function f takes no parameters. Yet, twice within the function body of f (I've marked
the places with asterisk comments), there are references to a size value sz. The body of
the function f can see sz, the incoming parameter to the surrounding function make -
RoundedRectangleMaker, because it is in a surrounding scope. The function f cap-
tures the reference to sz at the time makeRoundedRectangleMaker is called, and keeps
that reference when f is returned and assigned to maker:

let maker = makeRoundedRectangleMaker (CGSizeMake(45,20))

That is why maker is now a function that, when it is called, creates and returns an image
of the particular size 45,20 even though it itself will be called with no parameters. We
have baked the knowledge of what size of image to produce into maker.

Lookingat it another way, makeRoundedRectangleMaker is a factory for creating a whole
family of functions similar to maker, each of which produces an image of one particular
size. That’s a dramatic illustration of the power of closures.

Before I leave makeRoundedRectangleMaker, I'd like to rewrite it in a Swiftier fashion.
Within f, there is no need to create im and then return it; we can return the result of
calling image0OfSize directly:

func makeRoundedRectangleMaker(sz:CGSize) -> () -> UIImage {
func f () -> UIImage {
return imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),
cornerRadius: 8)
p.stroke()
}
}

return f

}

But there is no need to declare f and then return it either; it can be an anonymous
function and we can return it directly:

func makeRoundedRectangleMaker(sz:CGSize) -> () -> UIImage {
return {
return imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),
cornerRadius: 8)
p.stroke()

}

But our anonymous function consists of just one statement, returning the result of the
call to imageOfSize. (The anonymous function parameter to imageOfSize is written

58 | Chapter2: Functions

over multiple lines, but the image0fSize call itself is still just one Swift statement.) Thus
there is no need to say return:

func makeRoundedRectangleMaker(sz:CGSize) -> () -> UIImage {
return {
imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),
cornerRadius: 8)
p.stroke()

}

Closure Setting a Captured Variable

The power that a closure gets through its ability to capture its environment is even
greater than I've shown so far. If a closure captures a reference to a variable outside itself,
and if that variable is settable, the closure can set the variable.

For example, let’s say I've declared this simple function. All it does is to accept a function
that takes an Int parameter, and to call that function with an argument of 100:

func pass100 (f:(Int)->()) {
f(100)
}

Now, look closely at this code and try to guess what will happen when we run it:

var x = 0

print(x)

func setX(newX:Int) {
X = newX

iassl@@(setx)

print(x)
The first print(x) call obviously produces 0. The second print(x) call produces 100!
The pass100 function has reached into my code and changed the value of my variable
x! That’s because the function that I passed to pass100 contains a reference to x; not
only does it contain it, but it captures it; not only does it capture it, but it sets its value.
That x is my x. Thus, pass100 was able to set my x just as readily as I would have set it
by calling setX directly.

Closure Preserving Its Captured Environment

When a closure captures its environment, it preserves that environment even if nothing
else does. Here’s an example calculated to blow your mind — a function that modifies a
function:

Closures | 59

func countAdder(f:()->()) -> () -> () {
var ct = 0
return {
ct=ct+1
print("count is \(ct)")
O

}

The function countAdder accepts a function as its parameter and returns a function as
its result. The function that it returns calls the function that it accepts, with a little bit
added: it increments a variable and reports the result. So now try to guess what will
happen when we run this code:

func greet () {
print("howdy")
}
let countedGreet = countAdder(greet)
countedGreet()
countedGreet()
countedGreet()

What we’ve done here is to take a function greet, which prints "howdy", and pass it
through countAdder. What comes out the other side of countAdder is a new function,
which we’ve named countedGreet. We then call countedGreet three times. Here’s what
appears in the console:

count is 1
howdy
count is 2
howdy
count is 3
howdy

Clearly, countAdder has added to the functionality of the function that was passed into
it the ability to report how many times it is called. Now ask yourself: Where on earth is
the variable that maintains this count? Inside countAdder, it was a local variable ct. But
it isn’t declared inside the anonymous function that countAdder returns. That’s delib-
erate! If it were declared inside the anonymous function, we would be setting ct to @
every time countedGreet is called — we wouldn’t be counting. Instead, ct is initialized
to 0 once and then captured by the anonymous function. Thus, this variable is preserved
as part of the environment of countedGreet — it is outside countedGreet in some mys-
terious environment-preserving world, so that it can be incremented every time
countedGreet is called. That’s the power of closures.

That example, with its maintenance of environmental state, can also help us to demon-
strate that functions are reference types. To show what I mean, I'll start with a contrasting
situation. Two separate calls to a function factory method produce two different func-
tions, as you would expect:

60 | Chapter2:Functions

let countedGreet = countAdder(greet)
let countedGreet2 = countAdder(greet)
countedGreet() // count is 1
countedGreet2() // count is 1

The two functions countedGreet and countedGreet?, in that code, are maintaining
their counts separately. But mere assignment or parameter passing results in a new
reference to the same function, as I shall now prove:

let countedGreet = countAdder(greet)
let countedGreet2 = countedGreet
countedGreet() // count is 1
countedGreet2() // count is 2

Curried Functions

Return once more to makeRoundedRectangleMaker:

func makeRoundedRectangleMaker(sz:CGSize) -> () -> UIImage {
return {
imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),
cornerRadius: 8)
p.stroke()

}

There’s something I don't like about this method: the size of the rounded rectangle that
it creates is a parameter (sz), but the cornerRadius of the rounded rectangle is hard-
coded as 8. I'd like the ability to specify a value for the corner radius as well. I can think
of two ways to do it. One is to give makeRoundedRectangleMaker itself another param-
eter:

func makeRoundedRectangleMaker(sz:CGSize,
return {
imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),
cornerRadius: r)
p.stroke()

r:CGFloat) -> () -> UIImage {

}
And we would then call it like this:

let maker = makeRoundedRectangleMaker (CGSizeMake(45,20), 8)

But there’s another way. The function that we are returning from makeRounded-
RectangleMaker takes no parameters. Instead, it could take the extra parameter:

Curried Functions | 61

func makeRoundedRectangleMaker(sz:CGSize) -> (CGFloat) -> UIImage {
return {
r in
imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),
cornerRadius: r)
p.stroke()

}

Now makeRoundedRectangleMaker returns a function that, itself, takes one parameter,
so we must remember to supply that when we call it:

let maker = makeRoundedRectangleMaker (CGSizeMake(45,20))
self.myImageView.image = maker(8)

If we don’t need to conserve maker for anything, we can of course do all that in one line
— afunction call that yields a function which we immediately call to obtain our image:

self.myImageView.image = makeRoundedRectangleMaker (CGSizeMake(45,20))(8)

When a function returns a function that takes a parameter in this way, it is called a
curried function (after the computer scientist Haskell Curry). It turns out that there’s a
Swift shorthand for writing the declaration of a curried function. You can omit the first
arrow operator and the top-level anonymous function, like this:

func makeRoundedRectangleMaker(sz:CGSize)(_ r:CGFloat) -> UIImage {
return imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPointZero, size:sz),
cornerRadius: r)
p.stroke()

}

The expression (sz:CGSize)(_ r:CGFloat) — two parameter lists in a row, with no
arrow operator between them — means “Swift, please curry this function for me” Swift
here does all the work of dividing our function into two functions, one (makeRounded-
RectangleMaker) taking a CGSize parameter and another (the anonymous result) tak-
ing a CGFloat. Our code looks as if makeRoundedRectangleMaker returns a Ullmage,
but it actually returns a function that returns a UIlmage just as before. And we can call
it in exactly the same two ways as before.

62 | Chapter2:Functions

CHAPTER 3
Variables and Simple Types

This chapter goes into detail about declaration and initialization of variables. It then
discusses all the primary built-in Swift simple types. (I mean “simple” as opposed to
collections; the primary built-in collection types are discussed at the end of Chapter 4.)

Variable Scope and Lifetime

Recall, from Chapter 1, that a variable is a named shoebox of a single well-defined type.
Every variable must be explicitly and formally declared. To put an object into the shoe-
box, thus causing the variable name to refer to that object, you assign the object to the
variable. (As we now know from Chapter 2, a function, too, has a type, and can be
assigned to a variable.)

Aside from the convenience of giving a reference a name, a variable, by virtue of the
place where it is declared, endows its referent with a particular scope (visibility) and
lifetime; assigning something to a variable is a way of ensuring that it can be seen by
code that needs to see it and that it persists long enough to serve its purpose.

In the structure of a Swift file (see Example 1-1), a variable can be declared virtually
anywhere. It will be useful to distinguish several levels of variable scope and lifetime:

Global variables
A global variable, or simply a global, is a variable declared at the top level of a Swift
file. (In Example 1-1, the variable one is a global.)

A global variable lives as long as the file lives. That means it lives forever. Well, not
strictly forever, but as long as the program runs.

A global variable is visible everywhere — that’s what “global” means. It is visible to
all code within the same file, because it is at top level, so any other code in the same
file must be at the same level or at a lower contained level of scope. Moreover, it is

63

visible (by default) to all code within any other file in the same module, because
Swift files in the same module can automatically see one another, and hence can
see one another’s top levels.

Properties

A property is a variable declared at the top level of an object type declaration (an
enum, struct, or class; in Example 1-1, the three name variables are properties). There
are two kinds of properties: instance properties and static/class properties.

Instance properties
By default, a property is an instance property. Its value can differ for each in-
stance of this object type. Its lifetime is the same as the lifetime of the instance.
Recall from Chapter 1 that an instance comes into existence when it is created
(by instantiation); the subsequent lifetime of the instance depends on the life-
time of the variable to which the instance itself is assigned.

Static/class properties
A property is a static/class property if its declaration is preceded by the keyword
staticor class. (I'll go into detail about those terms in Chapter 4.) Its lifetime
is the same as the lifetime of the object type. If the object type is declared at the
top level of a file, or at the top level of another object type that is declared at
top level, that means it lives forever (as long as the program runs).

A property s visible to all code inside the object declaration. For example, an object’s
methods can see that object’s properties. Such code can refer to the property using
dot-notation with self, and I always do this as a matter of style, but self can usually
be omitted except for purposes of disambiguation.

An instance property is also visible (by default) to other code, provided the other
code has a reference to this instance; in that case, the property can be referred to
through dot-notation with the instance reference. A static/class property is visible
(by default) to other code that can see the name of this object type; in that case, it
can be referred to through dot-notation with the object type.

Local variables

A local variable is a variable declared inside a function body. (In Example 1-1, the
variable two is alocal variable.) A local variable lives only as long as its surrounding
curly-brace scope lives: it comes into existence when the path of execution passes
into the scope and reaches the variable declaration, and it goes out of existence
when the path of execution exits the scope. Local variables are sometimes called
automatic, to signify that they come into and go out of existence automatically.

A local variable can be seen only by subsequent code within the same scope (in-
cluding a subsequent deeper scope within the same scope).

64

Chapter 3: Variables and Simple Types

Variable Declaration

As T explained in Chapter 1, a variable is declared with let or var:

« With let, the variable becomes a constant — its value can never be changed after
the first assignment of a value (initialization).

 With var, the variable is a true variable, and its value can be changed by subsequent
assignment.

A variable’s type, however, can never be changed. A variable declared with var can be
given a different value, but that value must conform to the variable’s type. Thus, when
a variable is declared, it must be given a type, which it will have forever after. You can
give a variable a type explicitly or implicitly:

Explicit variable type declaration
After the variable’s name in the declaration, add a colon and the name of the type:

var x : Int

Implicit variable type by initialization
If you initialize the variable as part of the declaration, and if you provide no explicit
type, Swift will infer its type, based on the value with which it is initialized:

var x =1 // and now x is an Int

It is perfectly possible to declare a variable’s type explicitly and assign it an initial value,
all in one move:

var x : Int =1

In that example, the explicit type declaration is superfluous, because the type (Int) would
have been inferred from the initial value. Sometimes, however, providing an explicit
type, even while also assigning an initial value, is not superfluous. Here are the main
situations where that’s the case:

Swift’s inference would be wrong
A very common case in my own code is when I want to provide the initial value as
a numeric literal. Swift will infer either Int or Double, depending on whether the
literal contains a decimal point. But there are a lot of other numeric types! When I
mean one of those, I will provide the type explicitly, like this:

let separator : CGFloat = 2.0

Swift can’t infer the type
In this situation, the explicit variable type is what allows Swift to infer the type of
the initial value. A very common case involves option sets (discussed in Chap-
ter 4). This won't compile:

var opts = [.Autoreverse, .Repeat] // compile error

Variable Declaration | 65

The problem is thatthe names . Autoreverse and .Repeat are shortcuts for UIView-
AnimationOptions.Autoreverse and UIViewAnimationOptions.Repeat, but
Swift doesn’t know that unless we tell it:

let opts : UIViewAnimationOptions = [.Autoreverse, .Repeat]

The programmer can’t infer the type
I frequently include a superfluous explicit type declaration as a kind of note to
myself. Here’s an example from my own code:

let duration : CMTime = track.timeRange.duration

Inthat code, trackisan AVAssetTrack. Swift knows perfectly well that the duration
property of an AVAssetTrack’s timeRange property is a CMTime. But I don't! In
order to remind myself of that fact, I've shown the type explicitly.

Because explicit variable typing is possible, a variable doesn’t have to be initialized when
it is declared. It is legal to write this:

let x : Int

Now x is an empty shoebox — an Int variable without an initial value. I strongly urge
you, however, not to do that with a local variable if you can possibly avoid it. It isn’'t a
disaster — the Swift compiler will stop you from trying to use a variable that has never
been assigned a value — but it’s not a good habit.

The exception that proves the rule is what we might call conditional initialization.
Sometimes, we don’t know a variable’s initial value until we’ve performed some sort of
conditional test. The variable itself, however, can be declared only once; so it must be
declared in advance and conditionally initialized afterwards. This sort of thing is not
unreasonable (though there are other, possibly better ways to write it):

let timed : Bool

if val == 1 {
timed = true
} else {

timed = false

}

When a variable’s address is to be passed as argument to a function, the variable must
be declared and initialized beforehand, even if the initial value is fake. Recall this real-
life example from Chapter 2:

var arrow = CGRectZero
var body = CGRectZero
CGRectDivide(rect, &arrow, &body, Arrow.ARHEIGHT, .MinYEdge)

After that code runs, our two CGRectZero values will have been replaced; they were just
momentary placeholders, to satisfy the compiler.

66 | Chapter3:Variables and Simple Types

vww allitebooks.cond

http://www.allitebooks.org

On rare occasions, you'll want to call a Cocoa method that returns a value immediately
and later uses that value in a function passed to that same method. For example, Cocoa
has a UIApplication instance method declared like this:

func beginBackgroundTaskWithExpirationHandler(handler: (() -> Void)?)
-> UIBackgroundTaskIdentifier

That function returns a number (a UIBackgroundTaskIdentifier is just an Int), and will
later call the function passed to it (handler) — a function in which you will want to use
the number that was returned at the outset. Swift’s safety rules won’t let you declare the
variable that holds this number and use it in an anonymous function all in the same
line:

let bti = UIApplication.sharedApplication()
.beginBackgroundTaskWithExpirationHandler ({
UIApplication.sharedApplication().endBackgroundTask(bti)
}) // error: variable used within its own initial value

Therefore, you need to declare the variable beforehand; but then Swift has another
complaint:

var bti : UIBackgroundTaskIdentifier
bti = UIApplication.sharedApplication()
.beginBackgroundTaskWithExpirationHandler ({
UIApplication.sharedApplication().endBackgroundTask(bti)
}) // error: variable captured by a closure before being initialized

The solution is to declare the variable beforehand and give it a fake initial value as a
placeholder:

var bti : UIBackgroundTaskIdentifier = 0
bti = UIApplication.sharedApplication()
.beginBackgroundTaskWithExpirationHandler ({
UIApplication.sharedApplication().endBackgroundTask(bti)
b

Instance properties of an object (at the top level of an enum, struct, or class decla-
ration) can be initialized in the object’s initializer function rather than by assign-
ment in their declaration. It is legal and common for both constant instance prop-
erties (let) and variable instance properties (var) to have an explicit type and no
directly assigned initial value. I'll have more to say about that in Chapter 4.

Computed Initializer

Sometimes, you'd like to run several lines of code in order to compute a variable’s initial
value. A simple and compact way to express this is with an anonymous function that
you call immediately (see “Define-and-Call” on page 52). I'll illustrate by rewriting an
earlier example:

Computed Initializer | 67

let timed : Bool = {
if val == 1 {
return true
} else {
return false

}
10
You can do the same thing when you're initializing an instance property. In this class,
there’s an image (a Ullmage) that ’'m going to need many times later on. It makes sense
to create this image in advance as a constant instance property of the class. To create it
means to draw it. That takes several lines of code. So I declare and initialize the property
by defining and calling an anonymous function, like this (for my image0fSize utility,
see Chapter 2):

class RootViewController : UITableViewController {
let cellBackgroundImage : UIImage = {
return imageOfSize(CGSizeMake(320,44)) {
// ... drawing goes here ...
3
10
}
Indeed, a define-and-call anonymous function is often the only legal way to compute
an instance property’s initial value with multiple lines of code. The reason is that, when
you're initializing an instance property, you can’t call an instance method, because there
is no instance yet — the instance, after all, is what you are in the process of creating.

Computed Variables

The variables I've been describing so far in this chapter have all been stored variables.
The shoebox analogy applies. The variable is a name, like a shoebox; a value can be put
into the shoebox, by assigning to the variable, and it then sits there and can be retrieved
later, by referring to the variable, for as long the variable lives.

Alternatively, a variable can be computed. This means that the variable, instead of having
a value, has functions. One function, the setter, is called when the variable is assigned
to. The other function, the getter, is called when the variable is referred to. Here’s some
code illustrating schematically the syntax for declaring a computed variable:

var now : String { @

get { @
return NSDate().description @

}

set { @
print(newvalue) @

}

68 | Chapter3:Variables and Simple Types

© The variable must be a var (not a let). Its type must be declared explicitly. The
type is followed immediately by curly braces.

® The getter function is called get. Note that there is no formal function
declaration; the word get is simply followed immediately by a function body in
curly braces.

© The getter function must return a value of the same type as the variable.

O The setter function is called set. There is no formal function declaration; the
word set is simply followed immediately by a function body in curly braces.

© The setter behaves like a function taking one parameter. By default, this
parameter arrives into the setter function body with the local name newvalue.

Here’s some code that illustrates the use of our computed variable. You don't treat it any
differently than any other variable! To assign to the variable, assign to it; to use the
variable, use it. Behind the scenes, though, the setter and getter functions are called:
now = "Howdy" // Howdy @
print(now) // 2015-06-26 17:03:30 +0000 @
@ Assigning to now calls its setter. The argument passed into this call is the assigned
value; here, that’s "Howdy". That value arrives in the set function as newValue.
Our set function prints newValue to the console.

® Fetching now calls its getter. Our get function obtains the current date-time and
translates it into a string, and returns the string. Our code then prints that string
to the console.

Observe that when we set now to "Howdy" in the first line, the string "Howdy" wasn't
stored anywhere. It had no effect, for example, on the value of now in the second line. A
set function can store a value, but it can’t store it in this computed variable; a computed
variable isn’t storage! It’s a shorthand for calling its getter and setter functions.

There are a couple of variants on the basic syntax I've just illustrated:

o The name of the set function parameter doesn't have to be newValue. To specify a
different name, put it in parentheses after the word set, like this:

set (val) { // now you can use "val" inside the setter function body
o There doesn’t have to be a setter. If the setter is omitted, this becomes a read-only

variable. Attempting to assign to it is a compile error. A computed variable with no
setter is the primary way to create a read-only variable in Swift.

o There must always be a getter! However, if there is no setter, the word get and the
curly braces that follow it can be omitted. Thus, this is a legal declaration of a read-
only variable:

Computed Variables | 69

var now : String {
return NSDate().description

}

A computed variable can be useful in many ways. Here are the ones that occur most
frequently in my real programming life:

Read-only variable

A computed variable is the simplest way to make a read-only variable. Just omit the
setter from the declaration. Typically, the variable will be a global variable or a
property; there probably wouldn't be much point in a local read-only variable.

Fagade for a function

When a value can be readily calculated by a function each time it is needed, it often
makes for simpler syntax to express it as a read-only calculated variable. Here’s an
example from my own code:

var mp : MPMusicPlayerController {
return MPMusicPlayerController.systemMusicPlayer()

}
It's no bother to call MPMusicPlayerController.systemMusicPlayer() every time
I want to refer to this object, but it's more compact to refer to it by a simple name,
mp. And since mp represents a thing, rather than the performance of an action, its
nicer for mp to appear as a variable, so that to all appearances it is the thing, rather
than as a function, which returns the thing.

Fagade for other variables

A computed variable can sit in front of one or more stored variables, acting as a
gatekeeper on how those stored variables are set and fetched. This is comparable
to an accessor method in Objective-C. In the extreme case, a public computed
variable is backed by a private stored variable:

private var _p : String =
var p : String {

get {
return self._p
}
set {
self._p = newValue
}

}

That’s a silly example, because we're not doing anything interesting with our acces-
sors: we are just setting and getting the private stored variable directly, so there’s no
effective difference between p and _p. But based on that template, you could now
add functionality so that something useful happens during setting and getting.

70

Chapter 3: Variables and Simple Types

As the preceding example demonstrates, a computed instance property function
can refer to other instance properties; it can also call instance methods. This is
important, because in general the initializer for a stored property can do neither of
those things. The reason this is legal for a computed property is that its functions
won't be called until the instance actually exists.

Here’s a practical example of a computed variable used as a fagade for storage. My class
hasaninstance property holding a verylarge stored piece of data, which can alternatively
be nil (it’s an Optional, as I'll explain later):

var myBigDataReal : NSData! = nil

When my app goes into the background, I want to reduce memory usage (because iOS
kills backgrounded apps that use too much memory). So I plan to save the data of myBig-
DataReal as a file to disk, and then set the variable itself to nil, thus releasing its data
from memory. Now consider what should happen when my app comes back to the front
and my code tries to fetch myBigDataReal. If it isn't nil, we just fetch its value. But if it
is n11, this might be because we saved its value to disk. So now I want to restore its value
by reading it from disk, and then fetch its value. This is a perfect use of a computed
variable facade:

var myBigData : NSData! {
set (newdata) {
self.myBigDataReal = newdata

}
get {
if myBigDataReal == nil {
// ... get a reference to file on disk, f ...
self.myBigDataReal = NSData(contentsOfFile: f)
// ... erase the file ...
}
return self.myBigDataReal
}
}
Setter Observers

Computed variables are not needed as a stored variable fagade as often as you might
suppose. That’s because Swift has another brilliant feature, which lets you inject func-
tionality into the setter of a stored variable — setter observers. These are functions that
are called just before and just after other code sets a stored variable.

The syntax for declaring a variable with a setter observer is very similar to the syntax
for declaring a computed variable; you can write awillSet function, a didSet function,
or both:

Setter Observers | 71

var s = "whatever" { @
willSet { @
print(newvalue) @

}
didSet { @

print(oldvalue) @

// self.s = "something else"
}

© The variable must be a var (not a let). It can be assigned an initial value. It is
then followed immediately by curly braces.

® ThewillSet function, if there is one, is the word willSet followed immediately
by a function body in curly braces. It is called when other code sets this variable,
just before the variable actually receives its new value.

© By default, the willSet function receives the incoming new value as new-
Value. You can change this name by writing a different name in parentheses
after the word willSet. The old value is still sitting in the stored variable, and
the willSet function can access it there.

O The didSet function, if there is one, is the word didSet followed immediately
by a function body in curly braces. It is called when other code sets this variable,
just after the variable actually receives its new value.

© By default, the didSet function receives the old value, which has already been
replaced as the value of the variable, as oldValue. You can change this name by
writing a different name in parentheses after the word didSet. The new value
is already sitting in the stored variable, and the didSet function can access it
there. Moreover, it is legal for the didSet function to set the stored variable to a
different value.

Setter observer functions are not called when the stored variable is initialized or
when the didSet function changes the stored variable’s value. That would be cir-
cular!

In practice, I find myself using setter observers, rather than a computed variable, in the
vast majority of situations where I would have used a setter override in Objective-C.
Here’s an example from Apple’s own code (the Master-Detail Application template)
illustrating a typical use case — changing the interface as a consequence of a property
being set:

72 | Chapter3:Variables and Simple Types

var detailltem: AnyObject? {
didSet {
// Update the view.
self.configureView()

}

This is an instance property of a view controller class. Every time this property changes,
we need to change the interface, because the job of the interface is, in part, to display
the value of this property. So we simply call an instance method every time the property
is set. The instance method reads the property’s value and sets the interface accordingly.

In this example from my own code, not only do we change the interface, but also we
“clamp” the incoming value within a fixed limit:

var angle : CGFloat = 0 {
didSet {
// angle must not be smaller than 0 or larger than 5
if self.angle < 0 {
self.angle = 0

}
if self.angle > 5 {
self.angle = 5

}
// modify interface to match

self.transform = CGAffineTransformMakeRotation(self.angle)

A computed variable can't have setter observers. But it doesn’t need them! There’s
a setter function, so anything additional that needs to happen during setting can be
programmed directly into that setter function.

Lazy Initialization

The term lazy is not a pejorative ethical judgment; it’s a formal description of an im-
portant behavior. If a stored variable is assigned an initial value as part of its declaration,
and if it uses lazy initialization, then the initial value is not actually evaluated and as-
signed until running code accesses the variable’s value.

There are three types of variable that can be initialized lazily in Swift:

Global variables
Global variables are automatically lazy. This makes sense if you ask yourself when
they should be initialized. As the app launches, files and their top-level code are
encountered. It would make no sense to initialize globals now, because the app isn't
even running yet. Thus global initialization must be postponed to some moment
that does make sense. Therefore, a global variable’s initialization doesn’t happen

Lazy Initialization | 73

until other code first refers to that global. Under the hood, this behavior is protected
with dispatch_once; this makes initialization both singular (it can happen only
once) and thread-safe.

Static properties
Static properties behave exactly like global variables, and for basically the same
reason. (There are no stored class properties in Swift, so class properties can't be
initialized and thus can’t have lazy initialization.)

Instance properties
An instance property is not lazy by default, but it may be made lazy by marking its
declaration with the keyword lazy. This property must be declared with var, not
let. The initializer for such a property might never be evaluated, namely if code
assigns the property a value before any code fetches the property’s value.

Lazy initialization is often used to implement singleton. Singleton is a pattern where all
code is able to get access to a single shared instance of a certain class:

class MyClass {
static let sharedMyClassSingleton = MyClass()

}

Now other code can obtain areference to MyClass’s singleton by saying MyClass . shared-
MyClassSingleton. The singleton instance is not created until the first time other code
says this; subsequently, no matter how many times other code may say this, the instance
returned is always that same instance. (Observe that that is not what would happen if
this were a computed read-only property whose getter calls MyClass() and returns that
instance; do you see why?)

Now let’s talk about lazy initialization of instance properties. Why might you want this?
One reason is obvious: the initial value might be expensive to generate, so youd like to
avoid generating it until and unless it is actually needed. But there’s another reason that
might not occur to you at first, but that turns out to be even more important: a lazy
initializer can do things that a normal initializer can’t. In particular, it can refer to the
instance. A normal initializer can't do that, because the instance doesn't yet exist at the
time that a normal initializer would need to run (ex hypothesi, we're in the middle of
creating the instance, so it isn't ready yet). A lazy initializer, by contrast, won't run until
some time after the instance has fully come into existence, so referring to the instance
is fine. For example, this code would be illegal if the arrow property weren’t declared
lazy:
class MyView : UIView {
lazy var arrow : UIImage = self.arrowImage()

func arrowImage () -> UIImage {
// ... big image-generating code goes here ...

}

74 | Chapter3:Variables and Simple Types

A very common idiom is to initialize a lazy instance property with a define-and-call
anonymous function:

lazy var prog : UIProgressView = {
let p = UIProgressView(progressViewStyle: .Default)
p.alpha = 0.7
p.trackTintColor = UIColor.clearColor()
p.progressTintColor = UIColor.blackColor()
p.frame = CGRectMake(0, 0, self.view.bounds.size.width, 20)
p.progress = 1.0
return p

10

There are some minor holes in the language: lazy instance properties can’t have setter
observers, and there’s no lazy let (so you can’t readily make a lazy instance property
read-only). But these restrictions are not terribly serious, because lazy arguably isn’t
doing very much that you couldn't do with a calculated property backed by a stored
property, as Example 3-1 shows.

Example 3-1. Implementing a lazy property by hand

private var lazyOncer : dispatch_once_t = 0
private var lazyBacker : Int = 0
var lazyFront : Int {
get {
dispatch_once(&self.lazyOncer) {
self.lazyBacker = 42 // expensive initial value

}

return self.lazyBacker
}
set {
dispatch_once(&self.lazyOncer) {}
// will set
self.lazyBacker = newValue
// did set

}

In Example 3-1, the idea is that only lazyFront is accessed publicly; lazyBacker is its
underlying storage, and lazyOncer makes everything happen the right number of times.
Since lazyFront is now an ordinary computed property, we can observe it during setting
(put additional code into its setter function, at the points I've marked by “will set” and
“did set”), or we can make it read-only (delete the setter entirely).

Built-In Simple Types

Every variable, and every value, must have a type. But what types are there? Up to this
point, I've assumed the existence of some types, such as Int and String, without formally
telling you about them. Here’s a survey of the primary simple types provided by Swift,

Built-In Simple Types | 75

along with some instance methods, global functions, and operators that apply to them.
(Collection types will be discussed at the end of Chapter 4.)

Bool

The Bool object type (a struct) has only two values, commonly regarded as true and
false (or yes and no). You can represent these values using the literal keywords true and
false, and it is natural to think of a Bool value as being either true or false:

var selected : Bool = false

In that code, selected is a Bool variable initialized to false; it can subsequently be set
to false or true, and to no other values. Because of its simple yes-or-no state, a Bool
variable of this kind is often referred to as a flag.

Cocoa methods very often expect a Bool parameter or return a Bool value. For example,
when your app launches, Cocoa calls a method in your code declared like this:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool
You can do anything you like in that method; often, you will do nothing. But you must
return a Bool! And in real life, that Bool will always be true. A minimal implementation
thus looks like this:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {
return true

}
A Bool is useful in conditions; as I'll explain in Chapter 5, when you say if
something, the something is the condition, and is a Bool — or an expression that eval-
uates to a Bool. For example, when you compare two values with the equality compar-
ison operator ==, the result is a Bool — true if they are equal to each other, false if they
are not:

if meaningOfLife == 42 { // ...

(T'll talk more about equality comparison in a moment, when we come to discuss types
that can be compared, such as Int and String.)

When preparing a condition, you will sometimes find that it enhances clarity to store
the Bool value in a variable beforehand:

let comp = self.traitCollection.horizontalSizeClass == .Compact

if comp { // ...
Observe that, when employing that idiom, we use the Bool variable directly as the con-
dition. It is silly — and arguably wrong — to say if comp == true, because if comp

76 | Chapter3:Variables and Simple Types

already means “if comp is true” There is no need to test explicitly whether a Bool equals
true or false; the conditional expression itself is already testing that.

Since a Bool can be used as a condition, a call to a function that returns a Bool can be
used as a condition. Here’s an example from my own code. I've declared a function that
returns a Bool to say whether the cards the user has selected constitute a correct answer
to the puzzle:

func evaluate(cells:[CardCell]) -> Bool { // ...
Thus, elsewhere I can say this:
if self.evaluate(cellsToTest) { // ...

Unlike many computer languages, nothing else in Swift is implicitly coerced to or treated
as a Bool. For example, in C, a boolean is actually a number, and 0 is false. But in Swift,
nothing is false but false, and nothing is true but true.

The type name, Bool, comes from the English mathematician George Boole; Boolean
algebra provides operations on logical values. Bool values are subject to these same
operations:
!
Not. The ! unary operator reverses the truth value of the Bool to which it is applied
as a prefix. If ok is true, !ok is false — and vice versa.

&&
Logical-and. Returns true only if both operands are true; otherwise, returns
false. If the first operand is false, the second operand is not even evaluated (thus
avoiding possible side effects).

Logical-or. Returns true if either operand is true; otherwise, returns false. If the
first operand is true, the second operand is not even evaluated (thus avoiding pos-
sible side effects).

If a logical operation is complicated or elaborate, parentheses around subexpressions
can help clarify both the logic and the order of operations.

Numbers

The main numeric types are Int and Double, meaning that, left to your own devices,
these are the types youw’ll use. Other numeric types exist mostly for compatibility with
the C and Objective-C APIs that Swift needs to be able to talk to when you're program-
ming iOS.

Built-In Simple Types | 77

Int

The Int object type (a struct) represents an integer between Int.max and Int.min in-
clusive. The actual values of those limits might depend on the platform and architecture
under which the app runs, so don’t count on them to be absolute; in my testing at this
moment, they are 2%-1 and -2 respectively (64-bit words).

The easiest way to represent an Int value is as a numeric literal. A simple numeric literal
without a decimal point is taken as an Int by default. Internal underscores are legal; this
is useful for making long numbers readable. Leading zeroes are legal; this is useful for
padding and aligning values in your code.

You can write an Int literal using binary, octal, or hexadecimal digits. To do so, start the
literal with @b, @o, or 0x respectively. Thus, for example, 0x10 is decimal 16.

Double

The Double object type (a struct) represents a floating-point number to a precision of
about 15 decimal places (64-bit storage).

The easiest way to represent a Double value is as a numeric literal. Any numeric literal
containing a decimal point is taken as a Double by default. Internal underscores and
leading zeroes are legal.

A Double literal may not begin with a decimal point! If the value to be represented is
between 0 and 1, start the literal with a leading 0. (I stress this because it is significantly
different from C and Objective-C.)

You can write a Double literal using scientific notation. Everything after the letter e is
the exponent of 10. You can omit the decimal point if the fractional digits would be zero.
For example, 3e2 is 3 times 10* (300).

You can write a Double literal using hexadecimal digits. To do so, start the literal with
0x. You can use exponentiation here too (and again, you can omit the decimal point);
everything after the letter p is the exponent of 2. For example, 0x10p2 is decimal 64,
because you are multiplying 16 by 2%

There’s a static property Double.infinity and an instance property isZero, among
others.

Coercion

Coercion is the conversion of a value from one numeric type to another. Swift doesn't
really have explicit coercion, but it has something that serves the same purpose — in-
stantiation. To convert an Int explicitly into a Double, instantiate Double with an Int in
the parentheses. To convert a Double explicitly into an Int, instantiate Int with a Double
in the parentheses; this will truncate the original value (everything after the decimal
point will be thrown away):

78 | Chapter3:Variables and Simple Types

let 1 = 10

let x = Double(i)

print(x) // 10.0, a Double
let y = 3.8

let j = Int(y)
print(j) // 3, an Int

When numeric values are assigned to variables or passed as arguments to a function,
Swift will perform implicit coercion of literals only. This code is legal:

let d : Double = 10

But this code is not legal, because what you're assigning is a variable (not a literal) of a
different type; the compiler will stop you:

let 1 = 10
let d : Double = 1 // compile error

The solution is to coerce explicitly as you assign or pass the variable:

let 1 = 10

let d : Double = Double(i)
The same rule holds when numeric values are combined by an arithmetic operation.
Swift will perform implicit coercion of literals only. The usual situation is an Int com-
bined with a Double; the Int is treated as a Double:

let x = 10/3.0
print(x) // 3.33333333333333

But variables of different numeric types must be coerced explicitly so that they are the
same type if you want to combine them in an arithmetic operation. Thus, for example:

let 1 = 10
let n = 3.0
let x =1 / n // compile error; you need to say Double(i)

These rules are evidently a consequence of Swift’s strict typing; but (as far as T am aware)
they constitute very unusual treatment of numeric values for a modern computer lan-
guage, and will probably drive you mad in short order. The examples I've given so far
were easily solved, but things can become more complicated if an arithmetic expression
is longer, and the problem is compounded by the existence of other numeric types that
are needed for compatibility with Cocoa, as I shall now proceed to explain.

Other numeric types

If you weren’t programming iOS — if you were using Swift in some isolated, abstract
world — you could probably do all necessary arithmetic with Int and Double alone.
Unfortunately, to program iOS you need Cocoa, which is full of other numeric types;
and Swift has types that match every one of them. Thus, in addition to Int, there are
signed integers of various sizes — Int8, Int16, Int32, Int64 — plus the unsigned integer
Ulnt along with Ulnt8, Ulnt16, UInt32, and Ulnt64. In addition to Double, there is the

Built-In Simple Types | 79

lower-precision Float (32-bit storage, about 6 or 7 decimal places of precision) and the
extended-precision Float80; plus, in the Core Graphics framework, CGFloat (whose
size can be that of Float or Double, depending on the bitness of the architecture).

You may also encounter a C numeric type when trying to interface with a C API. These
types, as far as Swift is concerned, are just type aliases, meaning that they are alternate
names for another type; for example, a CDouble (corresponding to C’s double) is just
a Double by another name, a CLong (C’s long) is an Int, and so on. Many other numeric
type aliases will arise in various Cocoa frameworks; for example, an NSTimelnterval is
merely a type alias for Double.

Here’s the problem. T have just finished telling you that you can’t assign, pass, or combine
values of different numeric types using variables; you have to coerce those values ex-
plicitly to the correct type. But now it turns out that you're being flooded by Cocoa with
numeric values of many types! Cocoa will often hand you a numeric value that is neither
an Int nor a Double — and you won't necessarily realize this, until the compiler stops
you dead in your tracks for some sort of type mismatch. You must then figure out what
you've done wrong and coerce everything to the same type.

Here’s a typical example from one of my apps. We have a Ullmage, we extract its
CGlImage, and now we want to express the size of that CGImage as a CGSize:

let mars = UIImage(named:"Mars")!

let marsCG = mars.CGImage

let szCG = CGSizeMake(// compile error
CGImageGetWidth(marsCG),
CGImageGetHeight(marsCG)

)

The trouble is that CGImageGetWidth and CGImageGetHeight return Ints, but CGSize-

Make expects CGFloats. This is not an issue in C or Objective-C, where there is implicit
coercion from the former to the latter. But in Swift, you have to coerce explicitly:

var szCG = CGSizeMake(
CGFloat(CGImageGetWidth(marsCG)),
CGFloat(CGImageGetHeight(marsCG))
)

Here’s another real-life example. A slider, in the interface, is a UISlider, whose minimum-
Value and maximumValue are Floats. In this code, s is a UlSlider, g is a UlGesture-
Recognizer, and were trying to use the gesture recognizer to move the slider’s “thumb”
to wherever the user tapped within the slider:

let pt = g.locationInView(s)

let percentage = pt.x / s.bounds.size.width

let delta = percentage * (s.maximumValue - s.minimumValue) // compile error
That won't compile. pt is a CGPoint, and therefore pt.x is a CGFloat. Luckily,
s.bounds.size.width is also a CGFloat, so the second line compiles; percentage is

80 | (Chapter3:Variables and Simple Types

Quick Help

Declaration let percentage: CGFloat
let percentage, = pt.x / s.bounds.size.width Declared In MySlider.swift

Figure 3-1. Quick Help displays a variable’s type

now inferred to be a CGFloat. In the third line, however, we try to combine percentage
with s.maximumValue and s.minimumvalue — and they are Floats, not CGFloats. We
must coerce explicitly:

let delta = Float(percentage) * (s.maximumValue - s.minimumValue)

The good news here — perhaps the only good news — is that if you can get enough of
your code to compile, Xcode’s Quick Help feature will tell you what type Swift has
inferred for a variable (Figure 3-1). This can assist you in tracking down your issues
with numeric types.

In the rare circumstance where you need to assign or pass an integer type where
another integer type is expected and you don’t actually know what that other
integer type is, you can get Swift to coerce dynamically by calling numericCast.
For example, if 1 and j are previously declared variables of different integer types,
1 = numericCast(j) coerces j to the integer type of i.

Arithmetic operations

Swift’s arithmetic operators are as you would expect; they are familiar from other com-
puter languages as well as from real arithmetic:

+
Addition operator. Add the second operand to the first and return the result.

Subtraction operator. Subtract the second operand from the first and return the
result. A different operator (unary minus), used as a prefix, looks the same; it returns
the additive inverse of its single operand. (There is, in fact, also a unary plus oper-
ator, which returns its operand unchanged.)

Multiplication operator. Multiply the first operand by the second and return the
result.

Division operator. Divide the first operand by the second and return the result.

Built-In Simple Types | 81

As in C, division of one Int by another Int yields an Int; any remaining frac-
1 tion is stripped away. 10/3 is 3, not 3-and-one-third.

Remainder operator. Divide the first operand by the second and return the re-
mainder. The result can be negative, if the first operand is negative; if the second
operand is negative, it is treated as positive. Floating-point operands are legal.

Integer types can be treated as binary bitfields and subjected to binary bitwise opera-
tions:

&
Bitwise-and. A bit in the result is 1 if and only if that bit is 1 in both operands.

Bitwise-or. A bit in the result is 0 if and only if that bit is 0 in both operands.

Bitwise-or, exclusive. A bit in the result is 1 if and only if that bit is not identical in
both operands.

Bitwise-not. Precedes its single operand; inverts the value of each bit and returns
the result.

<<
Shift left. Shift the bits of the first operand leftward the number of times indicated
by the second operand.

>>
Shift right. Shift the bits of the first operand rightward the number of times indicated
by the second operand.

Technically, the shift operators perform a logical shift if the integer is unsigned, and
an arithmetic shift if the integer is signed.

Integer overflow or underflow — for example, adding two Int values so as to exceed
Int.max — is a runtime error (your app will crash). In simple cases the compiler will
stop you, but you can get away with it easily enough:

let 1
let j

Int.max - 2
i+ 12/2 // crash

82 | Chapter3:Variables and Simple Types

Under certain circumstances you might want to force such an operation to succeed, so
special overflow/underflow methods are supplied. These methods return a tuple; I'll
show you an example even though I haven't discussed tuples yet:

let 1 = Int.max - 2

let (j, over) = Int.addWithOverflow(i,12/2)
Now j is Int.min + 3 (because the value has wrapped around from Int.max to
Int.min) and over is true (to report the overflow).

If you don't care to hear about whether or not there was an overflow/underflow, special
arithmetic operators let you suppress the error: &+, &-, &*.

You will frequently want to combine the value of an existing variable arithmetically with
another value and store the result in the same variable. Remember that to do so, you
will need to have declared the variable as a var:

var 1 =1

i=1+7
As a shorthand, operators are provided that perform the arithmetic operation and the
assignment all in one move:

var i =1
1+=7
The shorthand (compound) assignment arithmetic operators are +=, -=, *=, /=, %=, &=,
=, A:, ~=, <<:, >>=,

It is often desirable to increase or decrease a numeric value by 1, so there are unary
increment and decrement operators ++ and - -. These differ depending on whether they
are prefixed or postfixed. If prefixed (++1, - - 1) the value is incremented (or decremen-
ted), stored back in the same variable, and then used within the surrounding expression;
if postfixed (i++, i- -), the current value of the variable is used within the surrounding
expression, and then the value is incremented (or decremented) and stored back in the
same variable. Obviously, the variable must be declared with var.

Operation precedence is largely intuitive: for example, * has a higher precedence than
+, so x+y*z multiplies y by z first, and then adds the result to x. Use parentheses to
disambiguate when in doubt; for example, (x+y)*z performs the addition first.

Global functions include abs (absolute value), max, and min:

let 1 = -7

let j =6
print(abs(i)) // 7
print(max(i,j)) // 6

Other mathematical functions, such as square roots, rounding, pseudorandom num-
bers, trigonometry, and so forth, come from the C standard libraries that are visible

Built-In Simple Types | 83

because you've imported UIKit. You still have to be careful about numeric types, and
there is no implicit coercion, even for literals.

For example, sqrt expects a C double, which is a CDouble, which is a Double. So you
can’t say sqrt(2); you have to say sqrt(2.0). Similarly, arc4random returns a Ulnt32.
Soif nis an Int and you want to get a random number between between 0 and n-1, you
can’t say arc4random()%n; you have to coerce the result of calling arc4random to an Int.

Comparison
Numbers are compared using the comparison operators, which return a Bool. For ex-
ample, the expression 1==]j tests whether 1 and j are equal; when 1 and j are numbers,

“equal” means numerically equal. So 1==j is true only if 1 and j are “the same number;,’
in exactly the sense you would expect.

The comparison operators are:

Equality operator. Returns true if its operands are equal.

Inequality operator. Returns false if its operands are equal.

<
Less-than operator. Returns true if the first operand is less than the second operand.
<=
Less-than-or-equal operator. Returns true if the first operand is less than or equal
to the second operand.
>
Greater-than operator. Returns true if the first operand is greater than the second
operand.
>=

Greater-than-or-equal operator. Returns true if the first operand is greater than or
equal to the second operand.

Keep in mind that, because of the way computers store numbers, equality comparison
of Double values may not succeed where you would expect. To test whether two Doubles
are effectively equal, it can be more reliable to compare the difference between them to
a very small value (usually called an epsilon):

let isEqual = abs(x - y) < 0.000001

84 | (Chapter3:Variables and Simple Types

String

The String object type (a struct) represents text. The easiest way to represent a String
value is with a literal, which is delimited by double quotes:

let greeting = "hello"

A Swift string is thoroughly modern; under the hood, it’s Unicode, and you can include
any character directly in a string literal. If you don’t want to bother typing a Unicode
character whose codepoint you know, use the notation \u{. ..}, where what’s between
the curly braces is up to eight hex digits:

let leftTripleArrow = "\u{21DA}"

The backslash in that string representation is the escape character; it means, “I'm not
really a backslash; I indicate that the next character gets special treatment.” Various
nonprintable and ambiguous characters are entered as escaped characters; the most
important are:

\n

A Unix newline character

\t
A tab character

\ll
A quotation mark (escaped to show that this is not the end of the string literal)

\\

A backslash (escaped because a lone backslash is the escape character)

One of Swift’s coolest features is string interpolation. This permits you to embed any
value that can be output with print inside a literal string as a string, even if it is not
itself a string. The notation is escaped parentheses: \ (.. .). For example:
letn=>5
let s = "You have \(n) widgets."
Now s is the string "You have 5 widgets." The example is not very compelling, be-
cause we know what n is and could have typed 5 directly into our string; but imagine
that we don’t know what n is! Moreover, the stuff in escaped parentheses doesn’t have

to be the name of a variable; it can be almost any expression that evaluates as legal Swift.
If you don’'t know how to add, this example is more compelling:

letm=14
letn =75
let s = "You have \(m + n) widgets."

Built-In Simple Types | 85

One thing that can’t go inside escaped parentheses is double quotes. This is disappoint-
ing, but it'’s not much of a hurdle; just assign to a variable and use the variable instead.
For example, you can’t say this:

let ud = NSUserDefaults.standardUserDefaults()
let s = "You have \(ud.integerForKey("widgets")) widgets." // compile error

Escaping the double quotes doesn't help. You have to write it as multiple lines, like this:

let ud = NSUserDefaults.standardUserDefaults()
let n = ud.integerForKey("widgets")
let s = "You have \(n) widgets."

To combine (concatenate) two strings, the simplest approach is to use the + operator
(and its += assignment shortcut):

let s = "hello"
let s2 = " world"
let greeting = s + s2

This convenient notation is possible because the + operator is overloaded: it does one
thing when the operands are numbers (numeric addition) and another when the
operands are strings (concatenation). As I'll explain in Chapter 5, all operators can be
overloaded, and you can overload them to operate in some appropriate way on your
own types.

As an alternative to +=, you can call the appendContentsOf instance method:

var s = "hello"
let s2 = " world"
s.appendContentsOf(s2) // or: s += s2

Another way of concatenating strings is with the joinWithSeparator method. You start
with an array (yes, I know we haven't gotten to arrays yet) of strings to be concatenated,
and hand it the string that is to be inserted between all of them:

let s = "hello"
let s2 = "world"
let space = " "

let greeting = [s,s2].joinWithSeparator(space)

The comparison operators are also overloaded so that they all work with String
operands. Two String values are equal (==) if they are, in the natural sense of the words,
“the same text” A String is less than another if it is alphabetically prior.

A few additional convenient instance methods and properties are provided. i{sEmpty
returns a Bool reporting whether this string is the empty string (""). hasPrefix and
hasSuffix report whether this string starts or ends with another string; for example,
"hello".hasPrefix("he") is true. The uppercaseString and lowercaseString
properties provide uppercase and lowercase versions of the original string.

86 | Chapter3:Variables and Simple Types

Coercion between a String and an Int is possible. To make a string that represents an
Int, it is sufficient to use string interpolation; alternatively, use the Int as a String ini-
tializer, just as if you were coercing between numeric types:

leti=7
let s = String(il) // "7"

Your string can also represent an Int in some other base; supply a radix: argument
expressing the base:

let 1 =31

let s = String(i, radix:16) [/ "1f"
A String that might represent a number can be coerced to a numeric type; an integer
type will accepta radix: argument expressing the base. The coercion might fail, though,
because the String might not represent a number of the specified type; so the result is
not a number but an Optional wrapping a number (I haven’t talked about Optionals
yet, so you'll have to trust me for now; failable initializers are discussed in Chapter 4):

let s = "31"
let 1 = Int(s) // Optional(31)
let s2 = "1f"

let 12 = Int(s2, radix:16) // Optional(31)

Coercion to String is in fact the basis of string interpolation, and of representa-
tion in the console with print. You can make any object coercible to String, by
making it conform to any of three protocols: Streamable, CustomStringConverti-
ble, and CustomDebugStringConvertible. I'll give an example when I explain what
a protocol is, in Chapter 4.

The length of a String, in characters, is given by the count method of its characters
property:

let s = "hello"
let length = s.characters.count // 5

Why isn't there simply a length property of a String? It’s because a String doesn’t really
have a simple length. The String is stored as a sequence of Unicode codepoints, but
multiple Unicode codepoints can combine to form a character; so, in order to know
how many characters are represented by such a sequence, we actually have to walk
through the sequence and resolve it into the characters that it represents.

You, too, can walk through a String’s characters. The simplest way is with the for...in
construct (see Chapter 5). What you get when you do this are Character objects; I'll talk
more about Character objects later:

Built-In Simple Types | 87

let s = "hello"
for ¢ in s.characters {
print(c) // print each Character on its own line

}

At an even deeper level, you can decompose a String into its UTF-8 codepoints or its
UTF-16 codepoints, using the utf8 and utf16 properties:

let s = "\u{BF}Qui\u{E9}n?"
for 1 in s.utf8 {
print(i) // 194, 191, 81, 117, 105, 195, 169, 110, 63
}
for 1 in s.utf16 {
print(i) // 191, 81, 117, 105, 233, 110, 63
}
ThereisalsoaunicodeScalars property representing a collection of the String’s UTF-32
codepoints expressed as UnicodeScalar structs. To compose a string from numeric
codepoints, instantiate a UnicodeScalar from a number and append it to a String. To
illustrate, here’s a utility function that turns a two-letter country abbreviation into an
emoji representation of its flag:

func flag(country:String) -> String {
let base : UInt32 = 127397
var s = ""
for v in country.unicodeScalars {
s.append(UnicodeScalar(base + v.value))

}

return s

}

// and here's how to use it:
let s = flag("DE")

The curious thing is that there aren’t more methods for standard string manipulation.
How, for example, do you capitalize a string, or find out whether a string contains a
given substring? Most modern programming languages have a compact, convenient
way of doing things like that; Swift doesn’t. The reason appears to be that missing features
are provided by the Foundation framework, to which you’ll always be linked in real life
(importing UIKit imports Foundation). A Swift String is bridged to a Foundation
NSString. This means that, to a large extent, Foundation NSString methods magically
spring to life whenever you are using a Swift String. For example:

let s = "hello world"
let s2 = s.capitalizedString // "Hello World"

The capitalizedString property comes from the Foundation framework; it’s provided
by Cocoa, not by Swift. It's an NSString property; it appears tacked on to String “for
free” Similarly, here’s how to locate a substring of a string:

let s = "hello"
let range = s.rangeOfString("ell") // Optional(Range(1..<4))

88 | Chapter3:Variables and Simple Types

I haven't explained yet what an Optional is or what a Range is (I'll talk about them later
in this chapter), but that innocent-looking code has made a remarkable round-trip from
Swift to Cocoa and back again: the Swift String s becomes an NSString, the NSString
rangeOfString method is called, a Foundation NSRange struct is returned, and the
NSRange is converted to a Swift Range and wrapped up in an Optional.

It will often happen, however, that you don't want this round-trip conversion. For var-
ious reasons, you might want to stay in the Foundation world and receive the answer
as a Foundation NSRange. To accomplish that, you have to cast your string explicitly to
an NSString, using the as operator (I'll discuss casting formally in Chapter 4):

let s = "hello"

let range = (s as NSString).rangeOfString("ell") // (1,3), an NSRange
Here’s another example, also involving NSRange. Suppose you want to derive the string
"ell" from "hello" by its range — the second, third, and fourth characters. Founda-
tion’s NSString method substringWithRange: requires that you supply a range —
meaning an NSRange. You can readily form the NSRange directly, using a Foundation
function; but when you do, your code doesn’t compile:

let s = "hello"
let ss = s.substringWithRange(NSMakeRange(1,3)) // compile error

The reason for the compile error is that Swift has absorbed NSString’s substringWith-
Range:, and expects you to supply a Swift Range here. I'll explain in a moment how to
do that, but you may find it simpler to tell Swift to stay in the Foundation world, by
casting:

let s = "hello"

let ss = (s as NSString).substringWithRange(NSMakeRange(1,3)) // "ell"

Character

The Character object type (a struct) represents a single Unicode grapheme cluster —
what you would naturally think of as one character of a string. A String object can be
decomposed into a sequence of Character objects by taking its characters property.
Formally, this is a String.CharacterView struct; but I'll call it simply a character se-
quence. As I mentioned earlier, you can walk through a character sequence with
for...in to obtain the String’s Characters, one by one:

let s = "hello"
for ¢ in s.characters {
print(c) // print each Character on its own line

It isn’t common to encounter Character objects outside of some character sequence of
which they are a part. There isn’t even a way to write a literal Character. To make a
Character from scratch, initialize it from a single-character String:

Built-In Simple Types | 89

The String—NSString Element Mismatch

Swift and Cocoa have different ideas of what the elements of a string are. The Swift
conception involves characters. The NSString conception involves UTF-16 codepoints.
Each approach has its advantages. The NSString way makes for great speed and effi-
ciency in comparison to Swift, which must walk the string to investigate how the char-
acters are constructed; but the Swift way gives what you would intuitively think of as
the right answer. To emphasize this difference, a nonliteral Swift string has no length
property; its analog to an NSString’s length is the count of its utf16 property.

Fortunately, the element mismatch doesn’t arise very often in practice; but it can arise.
Here’s a good test case:

let s = "Ha\u{030A}kon"

print(s.characters.count) // 5

let length = (s as NSString).length // or: s.utf16.count
print(length) // 6

We've created our string (the Norwegian name Hakon) using a Unicode codepoint that
combines with the previous codepoint to form a character with a ring over it. Swift walks

the whole string, so it normalizes the combination and reports five characters. Cocoa
just sees at a glance that this string contains six 16-bit codepoints.

let c = Character("h")
By the same token, you can initialize a String from a Character:

let c = Character("h")
let s = (String(c)).uppercaseString

Characters can be compared for equality; “less than” means what you would expect it
to mean.

A character sequence has many properties and methods that can come in handy. By
virtue of being a collection (a CollectionType), it has a first and last property; these
are Optionals, because the string might be empty:

let s = "hello"
let c1 = s.characters.first // Optional("h")
let c2 = s.characters.last // Optional("o")

The index0f method locates the first occurrence of a given character within the se-
quence and returns its index. Again, this is an Optional, because the character might be
absent:

let s = "hello"
let firstL = s.characters.indexOf("1") // Optional(2)

90 | Chapter3:Variables and Simple Types

All Swift indexes are numbered starting with 0, so 2 means the third character. The
index value here, however, is not an Int; I'll explain in a moment what it is and what it’s
good for.

By virtue of being a sequence (a SequenceType), a character sequence has a contatins
method that returns a Bool, reporting whether a certain character is present:

let s = "hello"
let ok = s.characters.contains("o") // true

Alternatively, contains can take a function that takes a Character and returns a Bool.
(The index0f method can do this too.) This code reports whether the target string
contains a vowel:

let s = "hello"
let ok = s.characters.contains {"aeiou".characters.contains($0)} // true

The filter method takesafunction that takes a Character and returns a Bool, effectively
eliminating those characters for which false is returned. The result is a character se-
quence, but you can coerce that to a String. Thus, here’s how to delete all consonants
from a String:

let s = "hello"

let s2 = String(s.characters.filter {"aeiou".characters.contains($0)}) // "eo"
The dropFirst and dropLast methods return (in effect) a new character sequence
without the first or last character, respectively:

let s = "hello"

let s2 = String(s.characters.dropFirst()) // "ello"
prefix and suffix extract the character sequence of a given length from the start or
end of the original character sequence:

let s = "hello"

let s2 = String(s.characters.prefix(4)) // "hell"
split breaks a character sequence up into an array, according to a function that takes
a Character and returns a Bool. In this example, I obtain the words of a String, where a
“word” is simplemindedly defined as a run of Characters other than a space:

let s = "hello world"

let arr = s.characters.split{$0 == " "}
The result, however, is an array of rather curious SubSlice objects; to get String objects,

we need to apply the map function and coerce them all to Strings. I'll talk about map in
Chapter 4, so you’ll have to trust me for now:

let s = "hello world"
let arr = split(s.characters){3$0 == " "}.map{String($0)} // ["hello", "world"]

Built-In Simple Types | 91

A String — in reality, its underlying character sequence — can also be manipulated
similarly to an array. For example, you can use subscripting to obtain the character ata
certain position. Unfortunately, this isn’t as easy as it might be. For example, what’s the
second character of "hello"? This doesn’t compile:

let s = "hello"

let ¢ = s[1] // compile error
The reason is that the indexes on a String (which are actually indexes on its character
sequence) are a special nested type, a String.Index (which is actually a type alias for
String.CharacterView.Index). To make an object of this type is rather tricky. Start
with a String’s (or a character sequence’s) startIndex or endIndex, or with the return
value from the index0f method; you can then call the advancedBy method to derive the
index you want:

let s = "hello"

let ix = s.startIndex

let ¢ = s[ix.advancedBy(1)] // "e"
The reason for this clumsy circumlocution is that Swift doesn’t know where the char-
acters of a character sequence actually are until it walks the sequence; calling advanced-
By is how you make Swift do that.

In addition to the advancedBy method, you can increment or decrement an index value

with ++and - -, and you can obtain the next or preceding index value with the successor

and predecessor methods. Thus, I could have written the preceding example like this:
let s = "hello"

var ix = s.startIndex
let ¢ = s[++ix] // "e"

Or like this:

let s = "hello"

let ix = s.startIndex

let ¢ = s[ix.successor()] // "e"
Once you've obtained a desired character index value, you can use it to modify the
String. For example, the insertContentsOf(at:) method inserts a character sequence
— not a String! — into a String:

var s = "hello"

let ix = s.characters.startIndex.advancedBy(1)
s.insertContentsOf("ey, h".characters, at: ix) // s is now "hey, hello"

Similarly, removeAtIndex deletes a single character (and returns that character).

(Manipulations involving longer character stretches require use of a Range, which is
the subject of the next section.)

92 | Chapter3:Variables and Simple Types

Note that a character sequence can be coerced directly to an Array of Character objects
— for example, Array("hello".characters). It could be worth your while to do that,
because array indexes are Ints, and are thus easy to work with. Once you've manipulated
the array of Characters, you can coerce it directly to a String. I'll give an example in the
next section (and I'll discuss arrays, and say more about collections and sequences, in
Chapter 4).

Range

The Range object type (a struct) represents a pair of endpoints. There are two operators
for forming a Range literal; you supply a start value and an end value, with one of the
Range operators between them:

Closed interval operator. The notation a...b means “everything from a up to b,
including b?

<
Half-open interval operator. The notation a..<b means “everything from a up to
but not including b”

Spaces around a Range operator are legal.

There are no reverse Ranges: the start value of a Range can’t be greater than the
end value (the compiler won't stop you, but you'll crash at runtime).

The types of a Range’s endpoints will typically be some kind of number — most often,
Ints:

let r =1...3
If the end value is a negative literal, it has to be enclosed in parentheses:
let r = -1000...(-1)
A very common use of a Range is to loop through numbers with for...1in:

for ix in1 ... 3 {
print(ix) // 1, then 2, then 3
}

You can also use a Range’s contains instance method to test whether a value falls within
given limits; a range used in this way is actually an interval (strictly, an IntervalType):

let ix = // ... an Int ...
if (1...3).contains(ix) { // ...

For purposes of testing containment, a Range’s endpoints can be Doubles:

Built-In Simple Types | 93

letd =// ... a Double ...
if (0.1...0.9).contains(d) { // ...

Another common use of a Range is to index into a sequence. For example, here’s one
way to get the second, third, and fourth characters of a String. As I suggested at the end
of the preceding section, we coerce the String’s characters to an Array; we can then
use an Int Range as an index into that array, and coerce back to a String:

let s = "hello"

let arr = Array(s.characters)
let result = arr[1...3]

let s2 = String(result) // "ell"

Alternatively, you can use a Range to index directly into a String (or its underlying
character sequence), but then it has to be a Range of String. Index, which, as I've already

pointed out, is rather clumsy to obtain. One way to get one is to let Swift convert the
NSRange that you get back from a Cocoa method call into a Swift Range for you:

let s = "hello"
let r = s.range0fString("ell") // a Swift Range (wrapped in an Optional)

You can also generate your Range endpoints as index values — for example, by using
advancedBy from the String’s startIndex, as I showed earlier. Once you have a Range
of the proper type, you can extract a substring by subscripting:

let s = "hello"

let ix1 = s.startIndex.advancedBy(1)
let ix2 = ix1.advancedBy(2)

let s2 = s[ix1...1x2] // "ell"

An elegant shortcut is to start with a sequence’s indices property, which returns a half-
open Range between the sequence’s startIndex and its endIndex; you can then modify
the Range and use it:

let s = "hello"

var r = s.characters.indices
r.startIndex++

r.endIndex--

let s2 = s[r] // "ell"

The replaceRange method splices into a range, thus modifying the string:

var s = "hello"

let ix = s.startIndex

let r = ix.advancedBy(1)...ix.advancedBy(3)
s.replaceRange(r, with: "ipp") // s is now "hippo"

Similarly, you can delete a stretch of characters with the removeRange method:

var s = "hello"

let ix = s.startIndex

let r = ix.advancedBy(1)...ix.advancedBy(3)
s.removeRange(r) // s is now "ho"

94 | Chapter3:Variables and Simple Types

A Swift Range and a Cocoa NSRange are constructed very differently from one another.
A Swift Range is defined by two endpoints. A Cocoa NSRange is defined by a starting
point and a length. But you can coerce a Swift Range whose endpoints are Ints to an
NSRange, and you can convert from an NSRange to a Swift Range with the toRange
method (which returns an Optional wrapping a Range).

Sometimes, Swift goes even further. For example, when we say "hello".rangeOf-
String("ell"), Swift bridges between Range and NSRange for us, correctly taking
account of the fact that Swift and Cocoa interpret characters and string length differ-
ently, as well as the fact that an NSRange’s values are Ints, while the endpoints of a Range
describing a Swift substring are String.Index.

Tuple

A tuple is a lightweight custom ordered collection of multiple values. As a type, it is
expressed by surrounding the types of the contained values with parentheses and sep-
arating them by commas. For example, here’s a declaration for a variable whose type is
a tuple of an Int and a String:

var pair : (Int, String)
The literal value of a tuple is expressed in the same way — the contained values, sur-
rounded with parentheses and separated by commas:
var pair : (Int, String) = (1, "One")
Those types can be inferred, so there’s no need for the explicit type in the declaration:
var pair = (1, "One")

Tuples are a pure Swift language feature; they are not compatible with Cocoa and
Objective-C, so you'll use them only for values that Cocoa never sees. Within Swift,
however, they have many uses. For example, a tuple is an obvious solution to the problem
that a function can return only one value; a tuple is one value, but it contains multiple
values, so using a tuple as the return type of a function permits that function to return
multiple values.

Tuples come with numerouslinguistic conveniences. You can assign to a tuple of variable
names as a way of assigning to multiple variables simultaneously:

var ix: Int
var s: String
(ix, s) = (1, "One")

That's such a convenient thing to do that Swift lets you do it in one line, declaring and
initializing multiple variables simultaneously:

var (ix, s) = (1, "One") // can use let or var here

Assigning variable values to one another through a tuple swaps them safely:

Built-In Simple Types | 95

var s1 = "hello"
var s2 = "world"
(s1, s2) = (s2, s1) // now s1 is "world" and s2 is "hello"

There’s also a global function swap that swaps values in a more general way.

To ignore one of the assigned values, use an underscore to represent it in the receiving
tuple:

let pair = (1, "One")

let (_, s) = pair // now s is "One"
The enumerate method lets you walk a sequence with for...in and receive, on each

iteration, each successive element’s index number along with the element itself; this
double result comes to you as — you guessed it — a tuple:

let s = "hello"
for (ix,c) in s.characters.enumerate() {
print("character \(ix) is \(c)")
}
I also pointed out earlier that numeric instance methods such as addWithOverflow
return a tuple.

You can refer to the individual elements of a tuple directly, in two ways. The first way
isbyindex number, using a literal number (not a variable value) as the name of a message
sent to the tuple with dot-notation:

let pair = (1, "One")
let ix = pair.0 // now ix is 1

If your reference to a tuple isn't a constant, you can assign into it by the same means:

var pair = (1, "One")
pair.0 = 2 // now pair is (2, "One")

The second way to access tuple elements is to give them names. The notation is like that
of function parameters, and must appear as part of the explicit or implicit type decla-
ration. Thus, here’s one way to establish tuple element names:

let pair : (first:Int, second:String) = (1, "One")
And here’s another way:
let pair = (first:1, second:"One")

The names are now part of the type of this value, and travel with it through subsequent
assignments. You can then use them as literal message names, just like (and together
with) the numeric literals:

96 | Chapter3:Variables and Simple Types

var pair = (first:1, second:"One")

let x = pair.first // 1

pair.first = 2

let y = pair.0 // 2
You can assign from a tuple without names into a corresponding tuple with names (and
vice versa):

let pair = (1, "One")

let pairWithNames : (first:Int, second:String) = pair

let ix = pairWithNames.first // 1

You can also pass, or return from a function, a tuple without names where a corre-
sponding tuple with names is expected:

func tupleMaker() -> (first:Int, second:String) {
return (1, "One") // no names here

{et ix = tupleMaker().first // 1
If you're going to be using a certain type of tuple consistently throughout your program,
it might be useful to give it a type name. To do so, use Swift’s typealias keyword. For
example, in my LinkSame app I have a Board class describing and manipulating the
game layout. The board is a grid of Piece objects. I needed a way to describe positions
of the grid. That’s a pair of integers, so I define my own type as a tuple:

class Board {
typealias Point = (Int,Int)
/...
}
The advantage of that notation is that it now becomes easy to use Points throughout my
code. For example, given a Point, I can fetch the corresponding Piece:

func pileceAt(p:Point) -> Pilece? {
let (1,3) = p
/] ... error-checking goes here ...
return self.grid[i][j]

}

The obvious similarity between a tuple with element names and a function parameter

list is not a coincidence. A parameter list is a tuple! The truth is that every function takes

one tuple parameter and returns one tuple. Thus, you can pass a single tuple to a function

that takes multiple parameters. For example, suppose you have a function like this:
func f (11:Int, _ 12:Int) -> () {}

The parameter list of f is a tuple. Thus, we can call f with a single tuple as argument:

let tuple = (1,2)
f(tuple)

Built-In Simple Types | 97

In that example, f has no external parameter names. If a function does have external
parameter names, you can pass it a tuple with named elements. Here is such a function:
func f2 (i1 i1:Int, 12:Int) -> () {}
You can call it like this:
let tuple = (i1:1, 12:2)
f2(tuple)
However, for reasons that are not entirely clear to me, tuples passed as function pa-

rameters in this way must be constants. This code won't compile:

var tuple = (i1:1, 12:2)

f2(tuple) // compile error
Similarly, Void, the type of value returned by a function that doesn’t return a value, is
actually a type alias for an empty tuple. That’s why it is also notated as ().

Optional

The Optional object type (an enum) wraps another object of any type. A single Optional
object can wrap only one object. Alternatively, an Optional object might wrap no other
object. This is what makes an Optional optional: it might wrap another object, but then
again it might not. Think of an Optional as being itself a kind of shoebox — a shoebox
which can quite legally be empty.

Let’s start by creating an Optional that does wrap an object. Suppose we want an Optional
wrapping the String "howdy". One way to create it is with the Optional initializer:

var stringMaybe = Optional("howdy")
If we log stringMaybe to the console with print, we’ll see an expression identical to the

corresponding initializer: Optional("howdy").

After that declaration and initialization, stringMaybe is typed, not as a String, nor as
an Optional plain and simple, but as an Optional wrapping a String. This means that
any other Optional wrapping a String can be assigned to it — but not an Optional
wrapping some other type. This code is legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional("farewell")

This code, however, is not legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional(123) // compile error

Optional(123) is an Optional wrapping an Int, and you can’t assign an Optional wrap-
ping an Int where an Optional wrapping a String is expected.

98 | Chapter3:Variables and Simple Types

Optionals are so important to Swift that special syntax for working with them is baked
into the language. The usual way to make an Optional is not to use the Optional ini-
tializer (though you can certainly do that), but to assign or pass a value of some type to
a reference that is already typed as an Optional wrapping that type. For example, once
stringMaybe is typed as an Optional wrapping a String, it is legal to assign a String
directly to it. This seems as if it should not be legal — but it is. The outcome is that the
assigned String is wrapped in an Optional for us, automatically:

var stringMaybe = Optional("howdy")

stringMaybe = "farewell" // now stringMaybe is Optional("farewell")
We also need a way of typing something explicitly as an Optional wrapping a String.
Otherwise, we cannot declare a variable with an Optional type, and we cannot declare
a parameter with an Optional type. Formally, an Optional is a generic, so an Optional
wrapping a String is an Optional<String> (I'll explain that syntax in Chapter 4). How-
ever, you don't have to write that. The Swift language supports syntactic sugar for ex-
pressing an Optional type: use the name of the wrapped type followed by a question
mark. For example:

var stringMaybe : String?

Thus I don’t need to use the Optional initializer at all. I can type the variable as an
Optional wrapping a String and assign a String into it for wrapping, all in one move:

var stringMaybe : String? = "howdy"
That, in fact, is the normal way to make an Optional in Swift.

Once you've got an Optional wrapping a particular type, you can use it wherever an
Optional wrapping that type is expected — just like any other value. If a function expects
an Optional wrapping a String as its parameter, you can pass stringMaybe as argument
to that parameter:

func optionalExpecter(s:String?) {}

let stringMaybe : String? = "howdy"

optionalExpecter(stringMaybe)
Moreover, where an Optional wrapping a certain type of value is expected, you can pass
a value of that wrapped type instead. That’s because parameter passing is just like as-
signment: an unwrapped value will be wrapped implicitly for you. For example, if a
function expects an Optional wrapping a String, you can pass a String argument, which
will be wrapped into an Optional in the received parameter:

func optionalExpecter(s:String?) {
// ... here, s will be an Optional wrapping a String ...
print(s)

}

optionalExpecter("howdy") // console prints: Optional("howdy")

Built-In Simple Types | 99

But you cannot do the opposite — you cannot use an Optional wrapping a type where
the wrapped type is expected. This won’t compile:

func realStringExpecter(s:String) {}

let stringMaybe : String? = "howdy"

realStringExpecter(stringMaybe) // compile error
The error message reads: “Value of optional type Optional<String> not unwrapped;
did you mean to use ! or ??” You're going to be seeing that sort of message a lot in Swift,
so get used to it! As that message suggests, if you want to use an Optional where the
type of thing it wraps is expected, you must unwrap the Optional — that is, you must
reach inside it and retrieve the actual thing that it wraps. Now I'm going to talk about
how to do that.

Unwrapping an Optional

We have seen more than one way to wrap an object in an Optional. But what about the
opposite procedure? How do we unwrap an Optional to get at the object wrapped inside
it? One way is to use the unwrap operator (or forced unwrap operator), which is a post-
fixed exclamation mark. For example:

func realStringExpecter(s:String) {}

let stringMaybe : String? = "howdy"

realStringExpecter(stringMaybe!)
In that code, the stringMaybe! syntax expresses the operation of reaching inside the
Optional stringMaybe, grabbing the wrapped value, and substituting it at that point.
Since stringMaybe is an Optional wrapping a String, the thing inside it is a String. That
is exactly what the realStringExpecter function wants as its parameter! Thus, we are
able to pass the unwrapped Optional as argument to realStringExpecter. string-
Maybe is an Optional wrapping the String "howdy", but stringMaybe! is the String
"howdy".

If an Optional wraps a certain type, you cannot send it a message expected by that type.
You must unwrap it first. For example, let’s try to get an uppercase version of string-
Maybe:

let stringMaybe : String? = "howdy"

let upper = stringMaybe.uppercaseString // compile error
The solution is to unwrap stringMaybe to get at the String inside it. We can do this
directly, in place, using the unwrap operator:

let stringMaybe : String? = "howdy"

let upper = stringMaybe!.uppercaseString
If an Optional is to be used several times where the unwrapped type is expected, and if

you’re going to be unwrapping it with the unwrap operator each time, your code can
quickly start to look like the dialog from a 1960s Batman comic. For example, in iOS

100 | Chapter3:Variables and Simple Types

programming, an app’s window is an Optional UITWindow property of the app delegate
(self.window):

// self.window is an Optional wrapping a UIWindow
self.window = UIWindow()
self.window!.rootViewController = RootViewController()
self.window!.backgroundColor = UIColor.whiteColor()
self.window!.makeKeyAndVisible()

That sort of thing soon gets old (or silly). One obvious alternative is to assign the un-
wrapped value once to a variable of the wrapped type and then use that variable:

// self.window is an Optional wrapping a UIWindow

self.window = UIWindow()

let window = self.window!

// now window (not self.window) is a UIWindow, not an Optional
window.rootViewController = RootViewController()
window.backgroundColor = UIColor.whiteColor()
window.makeKeyAndVisible()

However, there’s another way, as I shall now explain.

Implicitly unwrapped Optional

Swift provides another way of using an Optional where the wrapped type is expected:
you can declare the Optional type as being implicitly unwrapped. This is actually a sep-
arate type — ImplicitlyUnwrappedOptional. An ImplicitlyUnwrappedOptional is an
Optional, but the compiler permits some special magic associated with it: its value can
be used directly where the wrapped type is expected. You can unwrap an ImplicitlyUn-
wrappedOptional explicitly, but you don’t have to, because it is already implicitly un-
wrapped (hence the name). For example:

func realStringExpecter(s:String) {}

var stringMaybe : ImplicitlyUnwrappedOptional<String> = "howdy"

realStringExpecter(stringMaybe) // no problem
Aswith Optional, Swift provides syntactic sugar for expressing an implicitly unwrapped
Optional type. Just as an Optional wrapping a String can be expressed as String?, an
implicitly unwrapped Optional wrapping a String can be expressed as String!. Thus,
we can rewrite the preceding code like this (and this is how you would in fact write it):

func realStringExpecter(s:String) {}

var stringMaybe : String! = "howdy"

realStringExpecter(stringMaybe)
Bear in mind that an implicitly unwrapped Optional is still an Optional. It’s just a con-
venience. By declaring something as an implicitly unwrapped Optional, you are asking
the compiler, if you happen to use this value where the wrapped type is expected, to
forgive you and to unwrap the value for you.

Built-In Simple Types | 101

As far as their types are concerned, a normal Optional wrapping a certain type (such as
a String?) and an implicitly unwrapped Optional wrapping that same type (such as a
String!) are considered interchangeable: you can pass either one where either one is
expected.

The magic word nil

I have talked so far about Optionals that contain a wrapped value. But what about an
Optional that doesn’t contain any wrapped value? Such an Optional is, as I've already
said, a perfectly legal entity; that, indeed, is the whole point of Optionals.

You are going to need a way to ask whether an Optional contains a wrapped value, and
a way to specify an Optional without a wrapped value. Swift makes both of those things
easy, through the use of a special keyword, nil:

To learn whether an Optional contains a wrapped value
Test the Optional for equality against nil. If the test succeeds, the Optional is empty.
An empty Optional is also reported in the console as nil.

To specify an Optional with no wrapped value
Assign or pass nil where the Optional type is expected. The result is an Optional
of the expected type, containing no wrapped value.

For example:

var stringMaybe : String? = "Howdy"
print(stringMaybe) // Optional("Howdy")
if stringMaybe == nil {
print("it is empty") // does not print
}
stringMaybe = nil
print(stringMaybe) // nil
if stringMaybe == nil {
print("it is empty") // prints
}
The magic word nillets you express the concept “An Optional wrapping the appropriate
type, but not actually containing any object of that type.” Clearly, that’s very convenient
magic; you’ll want to take advantage of it. It is very important to understand, however,
that it is magic: nil in Swift is not a thing and is not a value. It is a shorthand. It is natural
to think and speak as if this shorthand were real. For example, I will say that something
“is ni1” But in reality, nothing “is nil”; nil isn’t a thing. What I really mean is that this
thing is equatable with nil (because it is an Optional not wrapping anything).

102 | Chapter3:Variables and Simple Types

The real value of an Optional that contains no wrapped object is Optional.None,
and the real value of an Optional wrapping a String that contains no wrapped String
is Optional<String>.None. But you'll probably never actually need to say those
things in your code, because it’s so much easier to say nil. I'll explain in Chapter 4
what those expressions signify.

Because a variable typed as an Optional can be nil, Swift follows a special initialization
rule: a variable (var) typed as an Optional is nil, automatically. This is legal:

func optionalExpecter(s:String?) {}

var stringMaybe : String?

optionalExpecter(stringMaybe)
That code is interesting because it looks as if it should be illegal. We declared a variable
stringMaybe, but we never assigned it a value. Nevertheless we are now passing it
around as if it were an actual thing. That’s because it is an actual thing. This variable has
been implicitly initialized — to nil. A variable (var) typed as an Optional is the only
sort of variable that gets implicit initialization in Swift.

We come now to perhaps the most important rule in all of Swift: You cannot unwrap
an Optional containing nothing (an Optional equatable with nil). Such an Optional
contains nothing; there’s nothing to unwrap. Like Oakland, there’s no there there. In
fact, explicitly unwrapping an Optional containing nothing will crash your program at
runtime:

var stringMaybe : String?

let s = stringMaybe! // crash
The crash message reads: “Fatal error: unexpectedly found nil while unwrapping an
Optional value” Get used to it, because you're going to be seeing it a lot. This is an easy
mistake to make. Unwrapping an Optional that contains no value is, in fact, probably
the most common way to crash a Swift program. You should look upon this kind of
crash as a blessing. Very often, in fact, you will want to crash if your Optional contains
no value, because it should contain a value, and the fact that it doesn’t indicates that
you've made a mistake elsewhere.

To eliminate such a crash, you need to ensure that your Optional contains a value, and
don’t unwrap it if it doesn’t. One obvious way to do that is to test against nil first:

var stringMaybe : String?
// ... stringMaybe might be assigned a real value here ...
if stringMaybe !'= nil {

let s = stringMaybe!

/] ...

Built-In Simple Types | 103

Optional chains

A common situation is that you want to send a message to the value wrapped inside an
Optional. To do so, you can unwrap the Optional in place. I gave an example earlier:
let stringMaybe : String? = "howdy"
let upper = stringMaybe!.uppercaseString

That form of code is called an Optional chain. In the middle of a chain of dot-notation,
you have unwrapped an Optional.

You cannot send a message to an Optional without unwrapping it. Optionals themselves
don’t respond to any messages. (Well, they do respond to some messages, but very few,
and you are unlikely to use them — and in any case they are not the messages to which
the thing inside them responds.) If you try to send to an Optional a message intended
for the thing inside it, you will get an error message from the compiler:

let stringMaybe : String? = "howdy"

let upper = stringMaybe.uppercaseString // compile error
We have already seen, however, that if you unwrap an Optional that contains no wrapped
object, you'll crash. So what if you're not sure whether this Optional contains a wrapped
object? How can you send a message to an Optional in that situation? Swift provides a
special shorthand for exactly this purpose. To send a message safely to an Optional that
might be empty, you can unwrap the Optional optionally. To do so, unwrap the Optional
with the question mark postfix operator instead of the exclamation mark:

var stringMaybe : String?

// ... stringMaybe might be assigned a real value here ...

let upper = stringMaybe?.uppercaseString
That’s an Optional chain in which you used a question mark to unwrap the Optional.
By using that notation, you have unwrapped the Optional optionally — meaning con-
ditionally. The condition in question is one of safety; a test for nilis performed for us.
Our code means: “If stringMaybe contains a String, unwrap itand send it the uppercase-
String message. If it doesn't (that is, if it equates to nil), do not unwrap it and do not
send it any messages!”

Such code is a double-edged sword. On the one hand, if stringMaybe is nil, you won’t
crash at runtime. On the other hand, if stringMaybe is nil, that line of code won’t do
anything useful — you won’t get any uppercase string.

But now there’s a new question. In that code, we initialized a variable upper to an ex-
pression that involves sending the uppercaseString message. Now it turns out that the
uppercaseString message might or not even be sent. So what, exactly, is upper initial-
ized to?

To handle this situation, Swift has a special rule. If an Optional chain contains an op-
tionally unwrapped Optional, and if this Optional chain produces a value, that value is

104 | Chapter3:Variables and Simple Types

itself wrapped in an Optional. Thus, upper is typed as an Optional wrapping a String.
This works brilliantly, because it covers both possible cases. Let’s say, first, that string-
Maybe contains a String:

var stringMaybe : String?
stringMaybe = "howdy"
let upper = stringMaybe?.uppercaseString // upper is a String?

After that code, upper is not a String; it is not "HOWDY". It is an Optional wrapping
"HOWDY"! On the other hand, if the attempt to unwrap the Optional fails, the Optional
chain can return nil instead:

var stringMaybe : String?

let upper = stringMaybe?.uppercaseString // upper is a nil String?
Unwrapping an Optional optionally in this way is elegant and safe; but consider the
consequences. On the one hand, even if stringMaybe is nil, we won't crash at runtime.
On the other hand, we're no better off than we were before: we've ended up with yet
another Optional on our hands! Whether stringMaybe is nil or not, upper is typed as
an Optional wrapping a String, and in order to use that String, we’re going to have to
unwrap upper. And we don’t know whether upper is nil, so we have exactly the same

problem we had before — we need to make sure that we unwrap upper safely, and that
we don't accidentally unwrap an empty Optional.

Longer Optional chains are legal. They work just as you would expect: no matter how
many Optionals are unwrapped in the course of the chain, if any of them is unwrapped
optionally, the entire expression produces an Optional wrapping the type it would have
produced if the Optionals were unwrapped normally, and is free to fail safely at any
point along the way. For example:

// self.window is a UIWindow?
let f = self.window?.rootViewController?.view.frame

The frame property of a view is a CGRect. But after that code, f is not a CGRect. It’s an
Optional wrapping a CGRect. If any of the optional unwrapping along the chain fails
(because the Optional we propose to unwrap is nil), the entire chain can return nil to
indicate failure.

Observe that the preceding code does not end up nesting Optionals; it doesn’t
produce a CGRect wrapped in an Optional wrapped in an Optional, merely be-
cause there are two Optionals being optionally unwrapped in the chain. However,
it is possible, for other reasons, to end up with an Optional wrapped in an Option-
al. I'll give an example in Chapter 4.

If an Optional chain involving optional unwrapping produces a result, you can learn
whether all the Optionals in the chain were safely unwrapped by examining that result:

Built-In Simple Types | 105

i it isn’t nil, everything was unwrapped successfully. But what if an Optional chain
containing optional unwrapping produces no result? For example:

self.window?.rootViewController = UIViewController()

Now we're in a quandary. It’s true that we won’t crash; if self.window is nil, it won't be
unwrapped, so we're safe. But if self.window is nil, we didn’t succeed in giving our
window a root view controller either! It would be nice to know whether the unwrapping
in this Optional chain succeeded. Fortunately, there’s a trick for finding out. Every
statement in Swift that doesn’t otherwise return a value returns Void. Therefore, an
assignment into an Optional chain with optional unwrapping returns an Optional
wrapping Vold — and you can capture that Optional. That means you can test the
Optional against nil; if it isn’t nil, the assignment worked. For example:

let ok : Void? = self.window?.rootViewController = UIViewController()
if ok !'= nil {

// it worked
}

Naturally, you don’t need to capture the Optional wrapping Void explicitly in a variable;
you can capture and test it against nil in a single move:

if (self.window?.rootViewController = UIViewController()) != nil {
// it worked
}

If a function call returns an Optional, you can unwrap the result and use it. You don’t
necessarily have to capture the result in order to do that; you can unwrap it in place, by
putting an exclamation mark or a question mark after the function call (that is, after the
closing parenthesis). That’s really no different from what we’ve been doing all along,
except that instead of an Optional property or variable, this is a function call that returns
an Optional. For example:

class Dog {
var noise : String?
func speak() -> String? {
return self.noise
}

}
let d = Dog()
let bigname = d.speak()?.uppercaseString

After that, don't forget, bigname is not a String — it’s an Optional wrapping a String.

I'll discuss some additional Swift syntax for checking whether an Optional is nil
when I come to flow control in Chapter 5.

106 | Chapter3:Variables and Simple Types

ally unwrap an Optional, have basically nothing to do with the ! and ? used with
type names as syntactic sugar for expressing Optional types (such as String? to
mean an Optional wrapping a String, and String! to mean an implicitly unwrap-
ped Optional wrapping a String). The outward similarity has confused many a
beginner.

g The ! and ? postfix operators, which respectively unconditionally and condition-

Comparison with Optional

In a comparison with something other than nil, an Optional gets special treatment: the
wrapped value, not the Optional itself, is compared. So, for example, this works:

let s : String? = "Howdy"

if s == "Howdy" { // ... they _are_ equal!
That shouldn’t work, but it does — mercifully so, since it would be maddening to have
to unwrap an Optional just to compare its wrapped value with something (especially as
youd have to check first whether the Optional isnil). Instead of comparing the Optional
itself with "Howdy", Swift automagically (and safely) compares its wrapped value (if there
is one) with "Howdy", and the comparison succeeds. If the wrapped value is not
"Howdy", the comparison fails. If there is no wrapped value (s is nil), the comparison
fails too — safely! Thus, you can compare s to nil or to a String, and the comparison
works correctly in all cases.

In the same way, if an Optional wraps a type of value that can be compared using the
greater-than and less-than operators, those operators can be applied directly to the
Optional:

let 1 : Int? =2
ifi<3{// ... 1t _is_ less!

Why Optionals?

Now that you know how to use an Optional, you are probably wondering why to use
an Optional. Why does Swift have Optionals at all? What are they good for?

One very important purpose of Optionals is to provide interchange of object values with
Objective-C. In Objective-C, any object reference can be nil. You thus need a way to
send nil to Objective-C and to receive nil from Objective-C. Swift Optionals provide
your only way to do that.

Swift will typically assist you by a judicious use of appropriate types in the Cocoa APIs.
For example, consider a UIView’s backgroundColor property. It’s a UIColor, but it can
be nil, and you are allowed to set it to nil. Thus, it is typed as a UIColor?. You don't
need to work directly with Optionals in order to set such a value! Remember, assigning
the wrapped type to an Optional is legal, as the assigned value will be wrapped for you.

Built-In Simple Types | 107

Thus, you can set myView.backgroundColor to a UIColor — or to nil! But if you get a
UIView’s backgroundColor, you now have an Optional wrapping a UIColor, and you
must be conscious of this fact, for all the reasons I've already discussed: if you're not,
surprising things can happen:

let v = UIView()

let ¢ = v.backgroundColor
let c2 = c.colorWithAlphaComponent(0.5) // compile error

You're trying to send the colorWithAlphaComponent messageto c, as if it werea UIColor.
It isn’t a UIColor. It’s an Optional wrapping a UIColor. Xcode will brilliantly and des-
perately try to help you in this situation; if you use code completion to enter the name
of the colorWithAlphaComponent method, Xcode will insert a question mark after c,
thus (optionally) unwrapping the Optional and giving you legal code:

let v = UIView()

let ¢ = v.backgroundColor

let c2 = c?.colorWithAlphaComponent(0.5)
In the vast majority of situations, however, a Cocoa object type will not be marked as
an Optional. That’s because, although in theory it could be nil (because any Objective-
C object reference can be nil), in practice it won’t be. Swift thus saves you a step by
treating the value as the object type itself. This magic is performed by hand-tweaking
the Cocoa APIs (also called auditing). In the very first public version of Swift (in June
0f 2014), all object values received from Cocoa were in fact typed as Optionals (usually
implicitly unwrapped Optionals). But then Apple embarked on the massive project of
hand-tweaking the APIs to eliminate Optionals that didn’t need to be Optionals.

In a few cases, you may still encounter implicitly unwrapped Optionals in a Cocoa AP
For example, as of this writing, the API for the NSBundle method loadNib-
Named:owner:options: looks like this:

func loadNibNamed(name: String!,
owner: AnyObject!,
options: [NSObject : AnyObject]!)
-> [AnyObject]!
Those implicitly unwrapped Optionals show that this header hasn't yet been hand-
tweaked. They don't represent the situation accurately — you’ll never pass nil as the
first parameter, for example — but they do no serious harm.

Another important use of Optionals is to defer initialization of an instance property. If
a variable (declared with var) is typed as an Optional, it has a value even if you don’t
initialize it — namely nil. That comes in very handy in situations where you know
something will have a value, but not right away. A typical example in real-life iOS pro-
gramming is an outlet, which is a reference to something in your interface such as a
button:

108 | Chapter 3:Variables and Simple Types

class ViewController: UIViewController {
@IBOutlet var myButton: UIButton!
/...
}
Ignore, for now, the @IBOutlet designation, which is an internal hint to Xcode (as I'll
explain in Chapter 7). The important thing is that this property, myButton, won’t have
a value when our ViewController instance first comes into existence, but shortly there-
after the view controller’s view will be loaded and myButton will be set so that it points
to an actual UIButton object in the interface. Therefore, the variable is typed as an
implicitly unwrapped Optional. It's an Optional because we need a placeholder value
for myButton when the ViewController instance first comes into existence. It’s implicitly
unwrapped so that in our code we can just treat self.myButton as a reference to an
actual UIButton, passing through the Optional without noticing that it is an Optional.

A closely related situation is when a variable, again typically an instance property, rep-
resents data that will take time to acquire. For example, in my Albumen app, as we
launch, I create an instance of my root view controller. I also want to gather a bunch of
data about the user’s music library and store that data in instance properties of the root
view controller instance. But gathering that data will take time. Therefore I must in-
stantiate the root view controller first and gather the data later, because if we pause to
gather the data before instantiating the root view controller, the app will take too long
to launch — the delay will be perceptible, and we might even crash (because iOS forbids
long launch times). Therefore the data properties are all typed as Optionals; they are
nil until the data are gathered, at which time they are assigned their “real” values:

class RootViewController : UITableViewController {
var albums : [MPMedialtemCollection]! // initialized to nil

/...
Finally, one of the most important uses of Optionals is to permit a value to be marked
as empty or erroneous. The preceding code is a good illustration. When my Albumen
app launches, it displays a table listing all the user’s music albums. At launch time,
however, that data has not yet been gathered. My table-display code tests albums to see
whether it’s nil and, if it is, displays an empty table. After gathering the data, I tell my
table to display its data again. This time, the table-display code finds that albums is not
nil, but rather consists of actual data — and it now displays that data. The use of an
Optional allows one and the same value, albunms, to store the data or to state that there
is no data.

Many built-in Swift functions use an Optional in a similar way. I mentioned earlier that
you can coerce a String to an Int:

ngqn
Int(s) // Optional(31)

let s
let 1

Built-In Simple Types | 109

Initializing an Int from a String returns an Optional because the conversion can fail. If
s is "howdy", it isn’t a number. Thus the type returned cannot be an Int, because there
is no Int that can be taken to mean, “I didn’t find any Int” Returning an Optional solves
the problem neatly: nil means “I didn't find any Int,” and otherwise the actual Int result
is sitting there wrapped up in the Optional.

Swift is cleverer than Objective-C in this regard. If a reference is an object, Objective-
C can return nil to report failure; but not everything in Objective-C is an object. Thus,
many important Cocoa methods return a special value to indicate failure, and you have
toknow this and remember to test for it. For example, NSString’s range0OfString: might
not find the given substring in the target string; in that case, it returns an NSRange
whose length is zero and whose location (index) is a special value, NSNotFound, which
is actually just a very large negative number. Fortunately, a knowledge of this special
value is built into the Swift bridge to the Cocoa API: Swift types the returned value as
an Optional wrapping a Range, and if range0fString: does return an NSRange whose
location is NSNotFound, Swift expresses it as nil!

Not every part of the Swift-Cocoa bridge is so helpful, however. If you call NSArray’s
index0fObject:, the result is an Int, not an Optional wrapping an Int; that result can
be NSNotFound, and you have to remember to test for this:

let arr = [1,2,3]

let ix = (arr as NSArray).indexO0fObject(4)
if ix == NSNotFound { // ...

An alternative in this case might be to stay in Swift and call the index0f method, which
returns an Optional:
let arr = [1,2,3]

let ix = arr.index0f(4)
ifix=nil {// ...

110 | Chapter 3:Variables and Simple Types

CHAPTER 4
Object Types

In the preceding chapter, I discussed some built-in object types. But I have not yet
explained object types themselves. AsI mentioned in Chapter 1, Swift object types come
in three flavors: enum, struct, and class. What are the differences between them? And
how would you create your own object type? That’s what this chapter is about.

I'll describe object types in general, and then each of the three flavors. Then I'll explain
three Swift ways of giving an object type greater flexibility: protocols, generics, and
extensions. Finally, the survey of Swift’s built-in types will conclude with three umbrella
types and three collection types.

Object Type Declarations and Features

Object types are declared with the flavor of the object type (enum, struct, or class), the
name of the object type (which should start with a capital letter), and curly braces:

class Manny {

}

struct Moe {

}

enum Jack {

}
An object type declaration can appear anywhere: at the top level of a file, at the top level
of another object type declaration, or in the body of a function. The visibility (scope),
and hence the usability, of this object type by other code depends upon where it appears
(see Chapter 1):

o Object types declared at the top level of a file will, by default, be visible to all files
in your project (module). This is the usual place for object type declarations.

o Sometimes it’s useful to declare a type inside the declaration of another type, thus
giving it a namespace. This is called a nested type.

m

o Anobjecttype declared within the body of a function will exist only inside the scope

of the curly braces that surround it; such declarations are legal but rare.

Declarations for any object type may contain within their curly braces the following
things:

Initializers

An object type is merely the type of an object. The purpose of declaring an object
type will usually (though not always) be so that you can make an actual object —
an instance — that has this type. An initializer is a special function, declared and
called in a special way, allowing you to do that.

Properties

A variable declared at the top level of an object type declaration is a property. By
default, it is an instance property. An instance property is scoped to an instance: it
is accessed through a particular instance of this type, and its value can be different
for every instance of this type.

Alternatively, a property can be a static/class property. For an enum or struct, it is
declared with the keyword static; for a class, it may instead be declared with the
keyword class. Such a property belongs to the object type itself: it is accessed
through the type, and it has just one value, associated with the type.

Methods

A function declared at the top level of an object type declaration is a method. By
default, it is an instance method: it is called by sending a message to a particular
instance of this type. Inside an instance method, self is the instance.

Alternatively, a function can be a static/class method. For an enum or struct, it is
declared with the keyword static; for a class, it may be declared instead with the
keyword class. It is called by sending a message to the type. Inside a static/class
method, self is the type.

Subscripts

A subscript is a special kind of instance method. It is called by appending square
brackets to an instance reference.

Object type declarations

An object type declaration can contain an object type declaration — a nested type.
From inside the containing object type, the nested type is in scope; from outside
the containing object type, the nested type must be referred to through the con-
taining object type. Thus, the containing object type is a namespace for the nested

type.

112

| Chapter 4: Object Types

Initializers

An initializer is a function called in order to bring an instance of an object type into
existence. Strictly speaking, it is a static/class method, because it is called by talking to
the object type. It is usually called using special syntax: the name of the type is followed
directly by parentheses, as if the type itself were a function. When an initializer is called,
a new instance is created and returned as a result. You will usually do something with
the returned instance, such as assigning it to a variable, in order to preserve it and work
with it in subsequent code.

For example, suppose we have a Dog class:

class Dog {
}

Then we can make a Dog instance like this:

Dog()

That code, however, though legal, is silly — so silly that it warrants a warning from the
compiler. We have created a Dog instance, but there is no reference to that instance.
Without such a reference, the Dog instance comes into existence and then immediately
vanishes in a puff of smoke. The usual sort of thing is more like this:

let fido = Dog()

Now our Dog instance will persist as long as the variable fido persists (see Chapter 3)
— and the variable fido gives us a reference to our Dog instance, so that we can use it.

Observe that Dog() calls an initializer even though our Dog class doesn’t declare any
initializers! The reason is that object types may have implicit initializers. These are a
convenience that save you from the trouble of writing your own initializers. But you
can write your own initializers, and you will often do so.

An initializer is kind of function, and its declaration syntax is rather like that of a func-
tion. To declare an initializer, you use the keyword init followed by a parameter list,
followed by curly braces containing the code. An object type can have multiple initial-
izers, distinguished by their parameters. The parameter names, including the first
parameter, are externalized by default (though of course you can prevent this by putting
an underscore before a parameter name). A frequent use of the parameters is to set the
values of instance properties.

For example, here’sa Dog class with two instance properties, name (a String) and license
(anInt). We give these instance properties default values that are effectively placeholders
— an empty string and the number zero. Then we declare three initializers, so that the
caller can create a Dog instance in three different ways: by supplying a name, by sup-
plying a license number, or by supplying both. In each initializer, the parameters sup-
plied are used to set the values of the corresponding properties:

Object Type Declarations and Features | 113

class Dog {
var name =
var license = 0
init(name:String) {
self.name = name

}
init(license:Int) {
self.license = license

}

init(name:String, license:Int) {
self.name = name
self.license = license

}

Observe that in that code, in each initializer, I've given each parameter the same name
as the property to which it corresponds. There’s no reason to do that apart from stylistic
clarity. In the code for each initializer, I can distinguish the parameter from the property
by using self to access the property.

The result of that declaration is that I can create a Dog in three different ways:

let fido = Dog(name:"Fido")
let rover = Dog(license:1234)
let spot = Dog(name:"Spot", license:1357)

What I can’t do is to create a Dog with no initializer parameters. I wrote initializers, so
my implicit initializer went away. This code is no longer legal:

let puff = Dog() // compile error

Of course, I could make that code legal by explicitly declaring an initializer with no
parameters:

class Dog {
var name =
var license = 0
init() {
}
init(name:String) {
self.name = name

}

init(license:Int) {
self.license = license

}

init(name:String, license:Int) {
self.name = name
self.license = license

114 | Chapter 4: Object Types

Now, the truth is that we don’t need those four initializers, because an initializer is a
function, and a function’s parameters can have default values. Thus, I can condense all
that code into a single initializer, like this:

class Dog {
var name = ""
var license = 0
init(name:String = "", license:Int = 0) {

self.name = name
self.license = license

}

I can still make an actual Dog instance in four different ways:

let fido = Dog(name:"Fido")

let rover = Dog(license:1234)

let spot = Dog(name:"Spot", license:1357)
let puff = Dog()

Now comes the really interesting part. In my property declarations, I can eliminate the
assignment of default initial values (as long as I declare explicitly the type of each prop-
erty):
class Dog {
var name : String // no default value!
var license : Int // no default value!
init(name:String = "", license:Int = 0) {
self.name = name
self.license = license

}

That code is legal (and common) — because an initializer initializes! In other words, I
don’t have to give my properties initial values in their declarations, provided I give them
initial values in all initializers. That way, I am guaranteed that all my instance properties
have values when the instance comes into existence, which is what matters. Conversely,
an instance property without an initial value when the instance comes into existence is
illegal. A property must be initialized either as part of its declaration or by every ini-
tializer, and the compiler will stop you otherwise.

The Swift compiler’s insistence that all instance properties be properly initialized is a
valuable feature of Swift. (Contrast Objective-C, where instance properties can go un-
initialized — and often do, leading to mysterious errors later.) Don't fight the compiler;
work with it. The compiler will help you by giving you an error message (“Return from
initializer without initializing all stored properties”) until all your initializers initialize
all your instance properties:

Object Type Declarations and Features | 115

class Dog {
var name : String
var license : Int
init(name:String = "") {
self.name = name // compile error
}
}

Because setting an instance property in an initializer counts as initialization, it is legal
even if the instance property is a constant declared with let:

class Dog {
let name : String
let license : Int
init(name:String = "", license:Int = 0) {
self.name = name
self.license = license

}

In our artificial examples, we have been very generous with our initializer: we are letting
the caller instantiate a Dog without supplying a name argument or a license argument.
Usually, however, the purpose of an initializer is just the opposite: we want to force the
caller to supply all needed information at instantiation time. Thus, in real life, it is much
more likely that our Dog class would look like this:

class Dog {
let name : String
let license : Int
init(name:String, license:Int) {
self.name = name
self.license = license

}

In that code, our Dog has a name and a license, and values for these must be supplied
atinstantiation time (there are no default values), and those values can never be changed
thereafter (these properties are constants). In this way, we enforce a rule that every Dog
must have a meaningful name and license. There is now only one way to make a Dog:

let spot = Dog(name:"Spot", license:1357)

Optional properties

Sometimes, there is no meaningful default value that can be assigned to an instance
property during initialization. For example, perhaps the initial value of this property
will not be obtained until some time has elapsed after this instance has come into exis-
tence. This situation conflicts with the requirement that all instance properties be ini-
tialized either in their declaration or through an initializer. You could, of course, just
circumvent the problem by assigning a default initial value anyway; but this fails to
communicate to your own code the fact that this isn’t a “real” value.

116 | Chapter 4: Object Types

A sensible and common solution, as I explained in Chapter 3, is to declare your instance
property as a var having an Optional type. An Optional has a value, namely nil, sig-
nifying that no “real” value has been supplied; and an Optional var is initialized to nil
automatically. Thus, your code can test this instance property against nil and, if it is
nil, it won't use the property. Later, the property will be given its “real” value. Of course,
that value is now wrapped in an Optional; butif you declare this property as an implicitly
unwrapped Optional, you have the additional advantage of being able to use the wrapped
value directly, without explicitly unwrapping it — as if this weren't an Optional at all —
once you're sure it is safe to do so:

// this property will be set automatically when the nib loads
@IBOutlet var myButton: UIButton!

// this property will be set after time-consuming gathering of data
var albums : [MPMedialItemCollection]!

Referring to self

Exceptin order to set an instance property, an initializer may not refer to self, explicitly
or implicitly, until all instance properties have been initialized. This rule guarantees that
the instance is fully formed before it is used. This code, for example, is illegal:

struct Cat {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
meow() // too soon - compile error
self.license = license

iunc meow() {
print("meow")
}
}

The call to the instance method meow is implicitly a reference to self — it means
self.meow(). Theinitializer can say that, but not until it has fulfilled its primary contract
of initializing all uninitialized properties. The call to the instance method meow simply
needs to be moved down one line, so that it comes after both name and license have
been initialized.

Delegating initializers

Initializers within an object type can call one another by using the syntax
self.init(...). An initializer that calls another initializer is called a delegating ini-
tializer. When an initializer delegates, the other initializer — the one that it delegates to
— must completely initialize the instance first, and then the delegating initializer can
work with the fully initialized instance, possibly setting again a var property that was
already set by the initializer that it delegated to.

Object Type Declarations and Features | 117

A delegating initializer appears to be an exception to the rule against saying self too
early. But it isn’t, because it is saying self in order to delegate — and delegating will
cause all instance properties to be initialized. In fact, the rules about a delegating ini-
tializer saying self are even more stringent: a delegating initializer cannot refer to se'lf,
not even to set a property, until after the call to the other initializer. For example:

struct Digit {
var number : Int
var meaningOfLife : Bool
init(number:Int) {
self.number = number
self.meaningOfLife = false

}

init() { // this is a delegating initializer
self.init(number:42)
self.meaningOfLife = true

}

Moreover, a delegating initializer cannot set an immutable property (a let variable) at
all. That is because it cannot refer to the property until after it has called the other
initializer, and at that point the instance is fully formed — initialization proper is over,
and the door for initialization of immutable properties has closed. Thus, the preceding
code would be illegal if meaningOfLife were declared with let, because the second
initializer is a delegating initializer and cannot set an immutable property.

Be careful not to delegate recursively! If you tell an initializer to delegate to itself, or if
you create a vicious circle of delegating initializers, the compiler won't stop you (I regard
that as a bug), but your running app will hang. For example, don’t say this:

struct Digit { // do not do this!
var number : Int = 100
init(value:Int) {
self.init(number:value)
}
intt(number:Int) {
self.init(value:number)
}
}

Failable initializers

An initializer can return an Optional wrapping the new instance. In this way, nil can
be returned to signal failure. An initializer that behaves this way is a failable initializer.
To mark an initializer as failable when declaring it, put a question mark (or, for an
implicitly unwrapped Optional, an exclamation mark) after the keyword init. If your
failable initializer needs to return nil, explicitly write return nil.Itis up to the caller
to test the resulting Optional for equivalence with nil, unwrap it, and so forth, as with
any Optional.

118 | Chapter 4: Object Types

Here’saversion of Dog with an initializer that returns an implicitly unwrapped Optional,
returning nil if the name: or license: arguments are invalid:

class Dog {
let name : String
let license : Int
init!(name:String, license:Int) {
self.name = name
self.license = license
if name.isEmpty {

return nil

}

if license <= 0 {
return nil

}

}

The resulting value is typed as Dog! — the Optional is implicitly unwrapped — so the
caller who instantiates a Dog in this way can use the result directly as if it were simply
a Dog instance. But if nil was returned, any attempt on the caller’s part to access mem-
bers of the Dog instance will result in a crash at runtime:

let fido = Dog(name:"", license:0Q)

let name = fido.name // crash
Cocoa and Objective-C conventionally return nil from initializers to signal failure; the
API for such initializers has been hand-tweaked as a Swift failable initializer if initiali-
zation really might fail. For example, the UlImage initializer init?(named:) is a failable
initializer, because there might be no image with the given name. It is not implicitly
unwrapped, so the resulting value is a UIImage? and must be unwrapped before you can
use it. (Most Objective-C initializers, however, are not bridged as failable initializers,
even though in theory any Objective-C initializer might return nil.)

Properties

A property is a variable — one that happens to be declared at the top level of an object
type declaration. This means that everything said about variables in Chapter 3 applies.
A property has a fixed type; it can be declared with var or let; it can be stored or
computed; it can have setter observers. An instance property can also be declared lazy.

A stored instance property must be given an initial value. But, as I explained a moment
ago, this doesn’t have to be through assignment in the declaration; it can be through an
initializer instead. Setter observers are not called during initialization of properties.

Code that initializes a property cannot fetch an instance property or call an instance
method. Such behavior would require a reference, explicit or implicit, to self; and
during initialization, there is no self yet — self is exactly what we are in the process

Object Type Declarations and Features | 119

of initializing. Making this mistake can result in some of Swift’s most perplexing compile
error messages. For example, this is illegal (and removing the explicit references to self
doesn’'t make it legal):

class Moi {
let first = "Matt"
let last = "Neuburg"
let whole = self.first + " " + self.last // compile error

}
One solution in that situation would be to make whole a computed property:

class Moi {
let first = "Matt"
let last = "Neuburg"
var whole : String {
return self.first + " " + self.last
}
}

That’s legal because the computation won't actually be performed until after self exists.
Another solution is to declare who'le as lazy:

class Mot {
let first = "Matt"
let last = "Neuburg"
lazy var whole : String = self.first + " " + self.last

}

Again, that’s legal because the reference to self won’t be performed until after self
exists. Similarly, a property initializer can’t call an instance method, but a computed
property can, and so can a lazy property.

As I demonstrated in Chapter 3, a variable’s initializer can consist of multiple lines of
code if you write it as a define-and-call anonymous function. If this variable is an in-
stance property, and if that code is to refer to other instance properties or instance
methods, the variable must be declared lazy:

class Moi {
let first = "Matt"
let last = "Neuburg"
lazy var whole : String = {
var s = self.first
s.appendContentsOf(" ")
s.appendContentsOf(self.last)
return s
10
}

If a property is an instance property (the default), it can be accessed only through an
instance, and its value is separate for each instance. For example, let’s start once again
with a Dog class:

120 | Chapter 4: Object Types

class Dog {
let name : String
let license : Int
init(name:String, license:Int) {
self.name = name
self.license = license

}

Our Dog class has a name instance property. Then we can make two different Dog in-
stances with two different name values, and we can access each Dog instance’s name
through the instance:

let fido = Dog(name:"Fido", license:1234)
let spot = Dog(name:"Spot", license:1357)
let aName = fido.name // "Fido"

let anotherName = spot.name // "Spot"

A static/class property, on the other hand, is accessed through the type, and is scoped
to the type, which usually means that it is global and unique. I'll use a struct as an
example:

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"

}

Now code elsewhere can fetch the values of Greeting.friendly and
Greeting.hostile. That example is neither artificial nor trivial; immutable static/class
properties are a convenient and effective way to supply your code with nicely name-
spaced constants.

Unlike instance properties, static properties can be initialized with reference to one
another; the reason is that static property initializers are lazy (see Chapter 3):

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"
static let ambivalent = friendly + " but " + hostile

}

Notice the lack of self in that code. In static/class code, self means the type itself. I
like to use self explicitly wherever it would be implicit, but here I can’t use it without
arousing the ire of the compiler (I regard this as a bug). To clarify the status of the terms
friendly and hostile, I can use the name of the type, just as any other code would do:

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"
static let ambivalent = Greeting.friendly + " but " + Greeting.hostile

Object Type Declarations and Features | 121

On the other hand, if I write ambivalent as a computed property, I can use self:

struct Greeting {
static let friendly = "hello there"

static let hostile = "go away"
static var ambivalent : String {
return self.friendly + " but

+ self.hostile

}
}

On the other other hand, I'm not allowed to use self when the initial value is set by a
define-and-call anonymous function (again, I regard this as a bug):

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"
static var ambivalent : String = {
return self.friendly + " but "

10

+ self.hostile // compile error

}
Methods

A method is a function — one that happens to be declared at the top level of an object
type declaration. This means that everything said about functions in Chapter 2 applies.

By default, a method is an instance method. This means that it can be accessed only
through an instance. Within the body of an instance method, self is the instance. To
illustrate, let’s continue to develop our Dog class:

class Dog {

let name : String

let license : Int

let whatDogsSay = "Woof"

init(name:String, license:Int) {
self.name = name
self.license = license

}

func bark() {
print(self.whatDogsSay)

}

func speak() {
self.bark()
print("I'm \(self.name)")

}
Now I can make a Dog instance and tell it to speak:

let fido = Dog(name:"Fido", license:1234)
fido.speak() // Woof I'm Fido

122 | Chapter 4: Object Types

In my Dog class, the speak method calls the instance method bark by way of self, and
obtains the value of the instance property name by way of self; and the bark instance
method obtains the value of the instance property whatDogsSay by way of self. This is
because instance code can use self to refer to this instance. Such code can omit self
if the reference is unambiguous; thus, for example, I could have written this:

func speak() {
bark()
print("I'm \(name)")
}
But I never write code like that (except by accident). Omitting self, in my view, makes
the code harder to read and maintain; the loose terms bark and name seem mysterious
and confusing. Moreover, sometimes self cannot be omitted. For example, in my im-
plementation of init(name:license:), I must use self to disambiguate between the
parameter name and the property self.name.

A static/class method is accessed through the type, and self means the type. I'll use our
Greeting struct as an example:

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"
static var ambivalent : String {
return self.friendly + " but " + self.hostile

}
static func beFriendly() {
print(self.friendly)
}
}

And here’s how to call the static beFriendly method:
Greeting.beFriendly() // hello there

There is a kind of conceptual wall between static/class members, on the one hand, and
instance members on the other; even though they may be declared within the same
object type declaration, they inhabit different worlds. A static/class method can’t refer
to “the instance” because there is no instance; thus, a static/class method cannot directly
refer to any instance properties or call any instance methods. An instance method, on
the other hand, can refer to the type by name, and can thus access static/class properties
and can call static/class methods. (T'll talk later in this chapter about another way in
which an instance method can refer to the type.)

For example, let’s return to our Dog class and grapple with the question of what dogs
say. Presume that all dogs say the same thing. We'd prefer, therefore, to express what-
DogsSay not at instance level but at class level. This would be a good use of a static
property. Here’s a simplified Dog class that illustrates:

Object Type Declarations and Features | 123

The Secret Life of Instance Methods

Here’s a secret: instance methods are actually static/class methods. For example, this is
legal (but strange):

class MyClass {
var s = ""
func store(s:String) {
self.s = s
}

}
let m
let f

MyClass()
MyClass.store(m) // what just happened!?

Even though store is an instance method, we are able to call it as a class method — with
a parameter that is an instance of this class! The reason is that an instance method is
actually a curried static/class method composed of two functions — one function that
takes an instance, and another function that takes the parameters of the instance meth-
od. Thus, after that code, f is the second of those functions, and can be called as a way
of passing a parameter to the store method of the instance m:

f("howdy")
print(m.s) // howdy

class Dog {
static var whatDogsSay = "Woof"
func bark() {
print(Dog.whatDogsSay)
}
}

Now we can make a Dog instance and tell it to bark:

let fido = Dog()
fido.bark() // Woof

Subscripts

A subscript is an instance method that is called in a special way — by appending square
brackets to an instance reference. The square brackets can contain arguments to be
passed to the subscript method. You can use this feature for whatever you like, but it is
suitable particularly for situations where this is an object type with elements that can be
appropriately accessed by key or by index number. I have already described (in Chap-
ter 3) the use of this syntax with strings, and it is familiar also from dictionaries and
arrays; you can use square brackets with strings and dictionaries and arrays exactly
because Swift’s String and Dictionary and Array types declare subscript methods.

124 | Chapter 4: Object Types

The syntax for declaring a subscript method is somewhat like a function declaration
and somewhat like a computed property declaration. Thats no coincidence! A subscript
is like a function in that it can take parameters: arguments can appear in the square
brackets when a subscript method is called. A subscript is like a computed property in
that the call is used like a reference to a property: you can fetch its value or you can
assign into it.

To illustrate, I'll write a struct that treats an integer as if it were a string, returning a digit
that can be specified by an index number in square brackets; for simplicity, ’'m delib-
erately omitting any sort of error-checking:

struct Digit {
var number : Int
intt(_ n:Int) {
self.number = n

}
subscript(ix:Int) -> Int { @ O
get { ©
let s = String(self.number)
return Int(String(s[s.startIndex.advancedBy(ix)]))!
}
}

}

O After the keyword subscript we have a parameter list stating what parameters
are to appear inside the square brackets; by default, their names are not
externalized.

@ Then, after the arrow operator, we have the type of value that is passed out (when
the getter is called) or in (when the setter is called); this is parallel to the type
declared for a computed property, even though the syntax with the arrow
operator is like the syntax for the returned value in a function declaration.

© Finally, we have curly braces whose contents are exactly like those of a computed
property. You can have get and curly braces for the getter, and set and curly
braces for the setter. If there’s a getter and no setter, the word get and its curly
braces can be omitted. The setter receives the new value as newVa'lue, but you
can change that name by supplying a different name in parentheses after the
word set.

Here’s an example of calling the getter; the instance with appended square brackets
containing the arguments is used just as if you were getting a property value:

var d = Digit(1234)
let aDigit = d[1] // 2

Now I'll expand my Digit struct so that its subscript method includes a setter (and again
I'll omit error-checking):

Object Type Declarations and Features | 125

struct Digit {
var number : Int
init(_ n:Int) {
self.number = n

}
subscript(ix:Int) -> Int {
get {
let s = String(self.number)
return Int(String(s[s.startIndex.advancedBy(ix)]))!
}
set {
var s = String(self.number)
let 1 = s.startIndex.advancedBy(ix)
s.replaceRange(i...1, with: String(newValue))
self.number = Int(s)!
}
}

}

And here’s an example of calling the setter; the instance with appended square brackets
containing the arguments is used just as if you were setting a property value:

var d = Digit(1234)

d[0] = 2 // now d.number is 2234
An object type can declare multiple subscript methods, provided their signatures dis-
tinguish them as different functions.

Nested Object Types
An object type may be declared inside an object type declaration, forming a nested type:

class Dog {
struct Noise {
static var noise = "Woof"

}
func bark() {

print(Dog.Noise.noise)
}
}
A nested object type is no different from any other object type, but the rules for referring
to it from the outside are changed; the surrounding object type acts as a namespace,
and must be referred to explicitly in order to access the nested object type:

Dog.Noise.noise = "Arf"

The Noise struct is thus namespaced inside the Dog class. This namespacing provides
clarity: the name Noise does not float free, but is explicitly associated with the Dog class
to which it belongs. Namespacing also allows more than one Noise struct to exist,
without any clash of names. Swift built-in object types often take advantage of name-

126 | Chapter 4: Object Types

vww allitebooks.cond

http://www.allitebooks.org

spacing; for example, the String struct is one of several structs that contain an Index
struct, with no clash of names.

(It is also possible, through Swift’s privacy rules, to hide a nested object type, in such a
way that it cannot be referenced from the outside at all. This is useful for organization
and encapsulation when one object type needs a second object type as a helper, but no
other object type needs to know about the second object type. Privacy is discussed in
Chapter 5.)

Instance References

On the whole, the names of object types will be global, and you will be able to refer to
them simply by using their names. Instances, however, are another story. Instances must
be deliberately created, one by one. That is what instantiation is for. Once you have
created an instance, you can cause that instance to persist, by storing the instance in a
variable with sufficient lifetime; using that variable as a reference, you can send instance
messages to that instance, accessing instance properties and calling instance methods.

Direct instantiation of an object type is the act of creating a brand new instance of that
type, directly, yourself. It involves you calling an initializer. In many cases, though, some
other object will create or provide the instance for you.

A simple example is what happens when you manipulate a String, like this:

let s = "Hello, world"
let s2 = s.uppercaseString

In that code, we end up with two String instances. The first one, s, we created using a
string literal. The second one, s2, was created for us when we accessed the first string’s
uppercaseString property. Thus we have two instances, and they will persist inde-
pendently as long as our references to them persist; but we didn’t get either of them by
calling an initializer.

In other cases, the instance you are interested in will already exist in some persistent
fashion; the problem will then be to find a way of getting a reference to that instance.

Let’s say, for example, that this is a real-life iOS app. You will certainly have a root view
controller, which will be an instance of some type of UIViewController. Let’s say it’s an
instance of the ViewController class. Once your app is up and running, this instance
already exists. It would then be utterly counterproductive to attempt to speak to the root
view controller by instantiating the ViewController class:

let theVC = ViewController()

All that code does is to make a second, different instance of the ViewController class,
and your messages to that instance will be wasted, as it is not the particular already
existing instance that you wanted to talk to. That is a very common beginner mistake;
don’t make it.

Object Type Declarations and Features | 127

Getting a reference to an already existing instance can be, of itself, an interesting prob-
lem. Instantiation is definitely not how to do it. But how do you do it? Well, it depends.
In this particular situation, the goal is to obtain, from any code, a reference to your app’s
root view controller instance. I'll describe, just for the sake of the example, how you
would do it.

Getting a reference always starts with something you already have a reference to. Often,
this will be a class. In iOS programming, the app itself is an instance, and there is a class
that holds a reference to that instance and will hand it to you whenever you ask for it.
That class is the UIApplication class, and the way to get a reference to the app instance
is to call its sharedApplication class method:

let app = UIApplication.sharedApplication()

Now we have a reference to the application instance. The application instance has a key -
Window property:

let window = app.keyWindow

Now we have a reference to our app’s key window. That window owns the root view
controller, and will hand us a reference to it, as its own rootViewController property;
the app’s keyWindow is an Optional, so to get at its rootViewController we must unwrap
the Optional:

let vc = window?.rootViewController

And voila, we have a reference to our app’s root view controller. To obtain the reference
to this persistent instance, we created, in effect, a chain of method calls and properties
leading from the known to the unknown, from a globally available class to the particular
desired instance:

let app = UIApplication.sharedApplication()
let window = app.keyWindow
let vc = window?.rootViewController

Clearly, we can write that chain as an actual chain, using repeated dot-notation:
let vc = UIApplication.sharedApplication().keyWindow?.rootViewController

You don't have to chain your instance messages into a single line — chaining through
multiple let assignments is completely efficient, possibly more legible, and certainly
easier to debug — but it’s a handy formulaic convenience and is particularly character-
istic of dot-notated object-oriented languages like Swift.

The general problem of getting a reference to a particular already existing instance is
so interesting and pervasive that I will devote much of Chapter 13 to it.

128 | Chapter 4: Object Types

Enums

An enum is an object type whose instances represent distinct predefined alternative
values. Think of it as a list of known possibilities. An enum is the Swift way to express
a set of constants that are alternatives to one another. An enum declaration includes
case statements. Each case is the name of one of the alternatives. An instance of an enum
will represent exactly one alternative — one case.

For example, in my Albumen app, different instances of the same view controller can
list any of four different sorts of music library contents: albums, playlists, podcasts, or
audiobooks. The view controller’s behavior is slightly different in each case. So I need a
sort of four-way switch that I can set once when the view controller is instantiated, saying
which sort of contents this view controller is to display. That sounds like an enum!

Here’s the basic declaration for that enum; I call it Filter, because each case represents a
different way of filtering the contents of the music library:

enum Filter {
case Albums
case Playlists
case Podcasts
case Books

}

That enum doesn’t have an initializer. You can write an initializer for an enum, as I’ll
demonstrate in a moment; but there is a default mode of initialization that you’ll prob-
ably use most of the time — the name of the enum followed by dot-notation and one
of the cases. For example, here’s how to make an instance of Filter representing the
Albums case:

let type = Filter.Albums

As a shortcut, if the type is known in advance, you can omit the name of the enum; the
bare case must still be preceded by a dot. For example:

let type : Filter = .Albums

You can't say .Albums just anywhere out of the blue, because Swift doesn’t know what
enum it belongs to. But in that code, the variable is explicitly declared as a Filter, so Swift
knows what .Albums means. A similar thing happens when passing an enum instance
as an argument in a function call:

func filterExpecter(type:Filter) {}
filterExpecter(.Albums)

In the second line, I create an instance of Filter and pass it, all in one move, without
having to include the name of the enum. That’s because Swift knows from the function
declaration that a Filter is expected here.

Enums | 129

In real life, the space savings when omitting the enum name can be considerable —
especially because, when talking to Cocoa, the enum type names are often long. For
example:

let v = UIView()
v.contentMode = .Center

A UlView’s contentMode property is typed as a UIViewContentMode enum. Our code
is neater and simpler because we don’t have to include the name UIViewContentMode
explicitly here; .Center is nicer than UIViewContentMode.Center. But either is legal.

Code inside an enum declaration can use a case name without dot-notation. The enum
is a namespace; code inside the declaration is inside the namespace, so it can see the
case names directly.

Instances of an enum with the same case are regarded as equal. Thus, you can compare
an enum instance for equality against a case. Again, the type of enum is known from
the first term in the comparison, so the second term can omit the enum name:

func filterExpecter(type:Filter) {
if type == .Albums {
print("it's albums")
}

}
filterExpecter(.Albums) // "it's albums"

Case With Fixed Value

Optionally, when you declare an enum, you can add a type declaration. The cases then
all carry with them a fixed (constant) value of that type. If the type is an integer numeric
type, the values can be implicitly assigned, and will start at zero by default. In this
code, .Mannie carries a value of 0, .Moe carries of a value of 1, and so on:

enum PepBoy : Int {
case Mannie
case Moe
case Jack

}

If the type is String, the implicitly assigned values are the string equivalents of the case
names. In this code, .Albums carries a value of "Albums", and so on:

enum Filter : String {
case Albums
case Playlists
case Podcasts
case Books

}

Regardless of the type, you can assign values explicitly as part of the case declarations:

130 | Chapter 4: Object Types

enum Filter : String {
case Albums = "Albums"
case Playlists = "Playlists"
case Podcasts = "Podcasts"
case Books = "Audiobooks"

}

The types attached to an enum in this way are limited to numbers and strings, and the
values assigned must be literals. The values carried by the cases are called their raw
values. An instance of this enum has just one case, so it has just one fixed raw value,
which can be retrieved with its rawValue property:

let type = Filter.Albums

print(type.rawvalue) // Albums
Having each case carry a fixed raw value can be quite useful. In my Albumen app, the
Filter cases really do have those String values, and so when the view controller wants to
know what title string to put at the top of the screen, it simply retrieves the current type’s
rawValue.

The raw value associated with each case must be unique within this enum; the compiler
will enforce this rule. Therefore, the mapping works the other way: given a raw value,
you can derive the case. For example, you can instantiate an enum that has raw values
by using its rawvalue: initializer:

let type = Filter(rawValue:"Albums")

However, the attempt to instantiate the enum in this way might fail, because you might
supply a raw value corresponding to no case; therefore, this is a failable initializer, and
the value returned is an Optional. In that code, type is not a Filter; it's an Optional
wrapping a Filter. This might not be terribly important, however, because the thing you
are most likely to want to do with an enum is to compare it for equality with a case of
the enum; you can do that with an Optional without unwrapping it. This code is legal
and works correctly:

let type = Filter(rawValue:"Albums")
if type == .Albums { // ...

Case With Typed Value

The raw values discussed in the preceding section are fixed in advance: a given case
carries with it a certain raw value, and that’s that. Alternatively, you can construct a case
whose constant value can be set when the instance is created. To do so, do not declare
any type for the enum as a whole; instead, append a tuple type to the name of the case.
There will usually be just one type in this tuple, so what you’ll write will look like a type
name in parentheses. Any type may be declared. Here’s an example:

Enums | 131

enum Error {
case Number(Int)
case Message(String)
case Fatal

}

That code means that, at instantiation time, an Error instance with the .Number case
must be assigned an Int value, an Error instance with the . Message case must be assigned
a String value, and an Error instance with the .Fatal case can’t be assigned any value.
Instantiation with assignment of a value is really a way of calling an initialization func-
tion, so to supply the value, you pass it as an argument in parentheses:

let err : Error = .Number(4)

The attached value here is called an associated value. What you are supplying here is
actually a tuple, so it can contain literal values or value references; this is legal:

let num = 4

let err : Error = .Number(num)
The tuple can contain more than one value, with or without names; if the values have
names, they must be used at initialization time:

enum Error {

case Number(Int)

case Message(String)

case Fatal(n:Int, s:String)
}

let err : Error = .Fatal(n:-12, s:"Oh the horror")
An enum case that declares an associated value is actually an initialization function, so
you can capture a reference to that function and call the function later:

let fatalMaker = Error.Fatal

let err = fatalMaker(n:-1000, s:"Unbelievably bad error")
I'll explain how to extract the associated value from an actual instance of such an enum
in Chapter 5.

At the risk of sounding like a magician explaining his best trick, I will now reveal how
an Optional works. An Optional is simply an enum with two cases: .None and . Some.
Ifitis .None, it carries no associated value, and it equates to nil. If it is . Some, it carries
the wrapped value as its associated value.

Enum Initializers

An explicit enum initializer must do what default initialization does: it must return a
particular case of this enum. To do so, set self to the case. In this example, I'll expand
my Filter enum so that it can be initialized with a numeric argument:

132 | Chapter4: Object Types

enum Filter : String {
case Albums = "Albums"
case Playlists = "Playlists"
case Podcasts = "Podcasts"
case Books = "Audiobooks"
static var cases : [Filter] = [Albums, Playlists, Podcasts, Books]
init(_ ix:Int) {
self = Filter.cases[ix]
}
}

Now there are three ways to make a Filter instance:

let typel = Filter.Albums
let type2 = Filter(rawValue:"Playlists")!
let type3 = Filter(2) // .Podcasts

In that example, we'll crash in the third line if the caller passes a number that’s out of
range (less than 0 or greater than 3). If we want to avoid that, we can make this a failable
initializer and return nil if the number is out of range:

enum Filter : String {
case Albums = "Albums"
case Playlists = "Playlists"
case Podcasts = "Podcasts"
case Books = "Audiobooks"
static var cases : [Filter] = [Albums, Playlists, Podcasts, Books]
intt!(_ ix:Int) {
if 1(0...3).contains(ix) {
return nil
}

self = Filter.cases[ix]

}

An enum can have multiple initializers. Enum initializers can delegate to one another
by saying self.init(...). The only requirement is that, at some point in the calling
chain, self must be set to a case; if that doesn't happen, your enum won’t compile.

In this example, I improve my Filter enum so that it can be initialized with a String raw
value without having to say rawvalue: in the call. To do so, I declare a failable initializer
with a string parameter that delegates to the built-in failable rawvalue: initializer:

enum Filter : String {
case Albums = "Albums"
case Playlists = "Playlists"
case Podcasts = "Podcasts"
case Books = "Audiobooks"
static var cases : [Filter] = [Albums, Playlists, Podcasts, Books]
init!(_ ix:Int) {
if 1(0...3).contains(ix) {
return nil

}

Enums | 133

self = Filter.cases[ix]
}
init!(_ rawValue:String) {
self.init(rawVvalue:rawValue)
}
}

Now there are four ways to make a Filter instance:

let typel = Filter.Albums

let type2 = Filter(rawValue:"Playlists")
let type3 = Filter(2) // .Podcasts

let typed4 = Filter("Playlists")

Enum Properties

An enum can have instance properties and static properties, but there’s a limitation: an
enum instance property can’t be a stored property. This makes sense, because if two
instances of the same case could have different stored instance property values, they
would no longer be equal to one another — which would undermine the nature and
purpose of enums.

Computed instance properties are fine, however, and the value of the property can vary
by rule in accordance with the case of self. In this example from my real code, I've
associated a search function with each case of my Filter enum, suitable for fetching the
songs of that type from the music library:

enum Filter : String {
case Albums = "Albums"
case Playlists = "Playlists"
case Podcasts = "Podcasts"
case Books = "Audiobooks"
var query : MPMediaQuery {
switch self {
case .Albums:
return MPMediaQuery.albumsQuery()
case .Playlists:
return MPMediaQuery.playlistsQuery()
case .Podcasts:
return MPMediaQuery.podcastsQuery()
case .Books:
return MPMediaQuery.audiobooksQuery()
}
}

If an enum instance property is a computed variable with a setter, other code can assign
to this property. However, that code’s reference to the enum instance must be a variable
(var), not a constant (let). If you try to assign to an enum instance property through
a let reference, you’'ll get a compile error.

134 | Chapter 4: Object Types

Enum Methods

An enum can have instance methods (including subscripts) and static methods. Writing
an enum method is straightforward. Here’s an example from my own code. In a card
game, the cards draw themselves as rectangles, ellipses, or diamonds. I've abstracted the
drawing code into an enum that draws itself as a rectangle, an ellipse, or a diamond,
depending on its case:

enum ShapeMaker {
case Rectangle
case Ellipse
case Diamond
func drawShape (p: CGMutablePath, inRect r : CGRect) -> () {
switch self {
case Rectangle:
CGPathAddRect(p, nil, r)
case Ellipse:
CGPathAddEllipseInRect(p, nil, r)
case Diamond:
CGPathMoveToPoint(p, nil, r.minX, r.midY)
CGPathAddLineToPoint(p, nil, r.midX, r.minY)
CGPathAddLineToPoint(p, nil, r.maxX, r.midY)
CGPathAddLineToPoint(p, nil, r.midX, r.maxy)
CGPathCloseSubpath(p)

}

An enum instance method that modifies the enum itself must be marked as mutating.
For example, an enum instance method might assign to an instance property of self;
even though this is a computed property, such assignment is illegal unless the method
is marked as mutating. An enum instance method can even change the case of self, by
assigning to self; but again, the method must be marked as mutating. The caller of a
mutating instance method must have a variable reference to the instance (var), not a
constant reference (let).

In this example, I add an advance method to my Filter enum. The idea is that the cases
constitute a sequence, and the sequence can cycle. By calling advance, I transform a
Filter instance into an instance of the next case in the sequence:

enum Filter : String {
case Albums = "Albums"
case Playlists = "Playlists"
case Podcasts = "Podcasts"
case Books = "Audiobooks"
static var cases : [Filter] = [Albums, Playlists, Podcasts, Books]
mutating func advance() {
var ix = Filter.cases.indexOf(self)!

Enums | 135

ix = (ix+1) % 4
self = Filter.cases[ix]

}
And here’s how to call it:

var type = Filter.Books
type.advance() // type is now Filter.Albums

(A subscript setter is always considered mutating and does not have to be specially
marked.)

Why Enums?

An enum is a switch whose states have names. There are many situations where that’s
a desirable thing. You could implement a multistate value yourself; for example, if there
are five possible states, you could use an Int whose values can be 0 through 4. But then
you would have to provide a lot of additional overhead — making sure that no other
values are used, and interpreting those numeric values correctly. A list of five named
cases is much better! Even when there are only two states, an enum is often better than,
say, a mere Bool, because the enum’s states have names. With a Bool, you have to know
what true and false signify in a particular usage; with an enum, the name of the enum
and the names of its cases tell you its significance. Moreover, you can store extra infor-
mation in an enum’ associated value or raw value; you can’t do that with a mere Bool.

For example, in my LinkSame app, the user can play a real game with a timer or a practice
game without a timer. At various places in the code, I need to know which type of game
this is. The game types are the cases of an enum:

enum InterfaceMode : Int {

case Timed = 0
case Practice = 1

}

The current game type is stored in an instance property interfaceMode, whose value
is an InterfaceMode. Thus, it’s easy to set the game type by case name:

// ... initialize new game ...
self.interfaceMode = .Timed

And it’s easy to examine the game type by case name:

// notify of high score only if user is not just practicing

if self.interfaceMode == .Timed { // ...
So what are the raw value integers for? That’s the really clever part. They correspond to
the segment indexes of a UISegmentedControl in the interface! Whenever I change the
interfaceMode property, a setter observer also selects the corresponding segment of

136 | Chapter 4: Object Types

the UISegmentedControl (self.timedPractice), simply by fetching the rawvalue of
the current enum case:

var interfaceMode : InterfaceMode = .Timed {
willSet (mode) {
self.timedPractice?.selectedSegmentIndex = mode.rawValue
}
}

Structs

A struct is the Swift object type par excellence. An enum, with its fixed set of cases, is a
reduced, specialized kind of object. A class, at the other extreme, will often turn out to
be overkill; it has some features that a struct lacks, but if you don’t need those features,
a struct may be preferable.

Of the numerous object types declared in the Swift header, only four are classes (and
you are unlikely to encounter any of them consciously). On the contrary, nearly all the
built-in object types provided by Swift itself are structs. A String is a struct. An Intis a
struct. A Range is a struct. An Array is a struct. And so on. That shows how powerful a
struct can be.

Struct Initializers, Properties, and Methods

A struct that doesn’t have an explicit initializer and that doesn’t need an explicit initializer
— because it has no stored properties, or because all its stored properties are assigned
default values as part of their declaration — automatically gets an implicit initializer
with no parameters, init(). For example:

struct Digit {
var number = 42

}

That struct can be initialized by saying Digit(). But if you add any explicit initializers
of your own, you lose that implicit initializer:

struct Digit {
var number = 42
init(number:Int) {
self.number = number
}
}

Now you can say Digit(number:42), but you can’t say Digit() any longer. Of course,
you can add an explicit initializer that does the same thing:

Structs | 137

struct Digit {
var number = 42
init() {}
init(number:Int) {
self.number = number
}
}

Now you can say Digit() once again, as well as Digit(number:42).

A struct that has stored properties and that doesn’t have an explicit initializer automat-
ically gets an implicit initializer derived from its instance properties. This is called the
memberwise initializer. For example:

struct Digit {
var number : Int // can use "let" here

}

That struct is legal — indeed, it is legal even if the number property is declared with let
instead of var — even though it seems we have not fulfilled the contract requiring us
to initialize all stored properties in their declaration or in an initializer. The reason is
that this struct automatically has a memberwise initializer which does initialize all its
properties. In this case, the memberwise initializer is called init(number:).

The memberwise initializer exists even for var stored properties that are assigned a
default value in their declaration; thus, this struct has a memberwise initializer
init(number:), in addition to its implicit init() initializer:

struct Digit {
var number = 42

}
But if you add any explicit initializers of your own, you lose the memberwise initializer
(though of course you can write an explicit initializer that does the same thing).

If a struct has any explicit initializers, then they must fulfill the contract that all stored
properties must be initialized either by direct initialization in the declaration or by all
initializers. If a struct has multiple explicit initializers, they can delegate to one another
by saying self.init(...).

A struct can have instance properties and static properties, and they can be stored or
computed variables. If other code wants to set a property of a struct instance, its refer-
ence to that instance must be a variable (var), not a constant (let).

A struct can have instance methods (including subscripts) and static methods. If an
instance method sets a property, it must be marked as mutating, and the caller’s refer-
ence to the struct instance must be a variable (var), not a constant (let). A mutating
instance method can even replace this instance with another instance, by setting self

138 | Chapter4: Object Types

to a different instance of the same struct. (A subscript setter is always considered
mutating and does not have to be specially marked.)

Struct As Namespace

I very often use a degenerate struct as a handy namespace for constants. I call such a
struct “degenerate” because it consists entirely of static members; I don’t intend to use
this object type to make any instances. Nevertheless, there is absolutely nothing wrong
with this use of a struct.

For example, let’s say 'm going to be storing user preference information in Cocoa’s
NSUserDefaults. NSUserDefaults is a kind of dictionary: each item is accessed through
a key. The keys are typically strings. A common programmer mistake is to write out
these string keys literally every time a key is used; if you then misspell a key name, there’s
no penalty at compile time, but your code will mysteriously fail to work correctly. The
proper approach is to embody these keys as constant strings and use the names of the
strings; that way, if you make a mistake typing the name of a string, the compiler can
catch you. A struct with static members is a great way to define those constant strings
and clump their names into a namespace:

struct Default {
static let Rows = "CardMatrixRows"
static let Columns = "CardMatrixColumns"
static let HazyStripy = "HazyStripy"

}

That code means that I can now refer to an NSUserDefaults key with a name, such as
Default.HazyStripy.

If a struct declares static members whose values are instances of the same struct type,
you can omit the struct name when supplying a static member where an instance of this
struct type is expected — as if the struct were an enum:

struct Thing {
var rawValue : Int = 0
static var One : Thing = Thing(rawValue:1)
static var Two : Thing = Thing(rawValue:2)

}
let thing : Thing = .One // no need to say Thing.One here

The example is artificial, but the situation is not; many Objective-C enums are bridged
to Swift as this kind of struct (and I'll talk about them later in this chapter).

Classes

A class is similar to a struct, with the following key differences:

Classes | 139

Reference type
Classes are reference types. This means, among other things, that a class instance
has two remarkable features that are not true of struct instances or enum instances:

Mutability
A class instance is mutable in place. Even if your reference to an instance of a
class is a constant (let), you can change the value of an instance property
through that reference. An instance method of a class never has to be marked
mutating (and cannot be).

Multiple references
When a given instance of a class is assigned to multiple variables or passed as
argument to a function, you get multiple references to one and the same object.

Inheritance
A class can have a superclass. A class that has a superclass is a subclass of that
superclass. Class types can thus form a hierarchical tree.

In Objective-C, classes are the only object type. Some built-in Swift struct types are
magically bridged to Objective-C class types, but your custom struct types don’t have
that magic. Thus, when programming iOS with Swift, a primary reason for declaring a
class, rather than a struct, is as a form of interchange with Objective-C and Cocoa.

Value Types and Reference Types

A major difference between enums and structs, on the one hand, and classes, on the
other hand, is that enums and structs are value types, whereas classes are reference types.

A value type is not mutable in place. In practice, this means that you can’t change the
value of an instance property of a value type. It looks like you can do it, but in reality,
you can’t. For example, consider a struct. A struct is a value type:

struct Digit {
var number : Int
init(_ n:Int) {
self.number = n
}
}

Now, it looks as if you can change a Digit’s number property. That, after all, is the whole
purpose of declaring that property as a var; and Swift’s syntax of assignment would
certainly lead us to believe that changing a Digit’s number is possible:

var d = Digit(123)
d.number = 42

140 | Chapter 4: Object Types

Butin reality, in that code, we are not changing the number property of this Digit instance;
we are, in fact, making a different Digit instance and replacing the first one. To see that
this is true, add a setter observer:

var d : Digit = Digit(123) {
didSet {
print("d was set")
}

}
d.number = 42 // "d was set"

In general, then, when you change an instance value type, you are actually replacing that
instance with another instance. That explains why it is impossible to mutate a value type
instance if the reference to that instance is declared with let. As you know, an initialized
variable declared with let cannot be assigned to. If that variable refers to a value type
instance, and that value type instance has a property, and we try to assign to that prop-
erty, even if the property is declared with var, the compiler will stop us:

struct Digit {
var number : Int
init(_ n:Int) {
self.number = n

}
}
let d = Digit(123)
d.number = 42 // compile error

The reason is that this change would require us to replace the Digit instance inside the

d shoebox. But we can’t replace the Digit instance pointed to by d with another Digit
instance, because that would mean assigning into d — which the let declaration forbids.

That, in turn, is why an instance method of a struct or enum that sets a property of the
instance must be marked explicitly with the mutating keyword. For example:

struct Digit {
var number : Int
init(_ n:Int) {
self.number = n
}
mutating func changeNumberTo(n:Int) {
self.number = n
}
}

Without the mutating keyword, that code won't compile. The mutating keyword as-
sures the compiler that you understand what's really happening here: if that method is
called, it replaces the instance. The result is that this method can be called only on a
reference declared with var, not let:

let d = Digit(123)
d.changeNumberTo(42) // compile error

Classes | 141

None of what I've just said, however, applies to class instances! Class instances are ref-
erence types, not value types. An instance property of a class, to be settable, must be
declared with var, obviously; but the reference to a class instance does not have to be
declared with var in order to set that property through that reference:

class Dog {
var name : String = "Fido"
}
let rover = Dog()
rover.name = "Rover" [/ fine

In the last line of that code, the class instance pointed to by rover is being mutated in
place. No implicit assignment to rover is involved, and so the let declaration is pow-
erless to prevent the mutation. A setter observer on a Dog variable is not called when a
property is set:
var rover : Dog = Dog() {
didSet {
print("did set rover")

}
}

rover.name = "Rover" // nothing in console
The setter observer would be called if we were to set rover explicitly (to another Dog
instance), but it is not called merely because we change a property of the Dog instance
already pointed to by rover.

Those examples involve a declared variable reference. Exactly the same difference be-
tween a value type and a reference type may be seen with a parameter of a function call.
The compiler will stop us in our tracks if we try to assign into an enum parameter’s
instance property or a struct parameter’s instance property. This doesn’t compile:

func digitChanger(d:Digit) {

d.number = 42 // compile error

}

To make that code compile, we must declare the parameter with var:

func digitChanger(var d:Digit) {
d.number = 42
}

But this compiles even without the var declaration:

func dogChanger(d:Dog) {
d.name = "Rover"

}

The underlying reason for these differences between value types and reference types is
that, with a reference type, there is in effect a concealed level of indirection between
your reference to the instance and the instance itself; the reference actually refers to a

142 | Chapter 4: Object Types

pointer to the instance. This, in turn, has another important implication: it means that
when a class instance is assigned to a variable or passed as an argument to a function,
you can wind up with multiple references to the same object. That is not true of structs
and enums. When an enum instance or a struct instance is assigned to a variable, or
passed to or from a function, what is assigned or passed is essentially a new copy of that
instance. But when a class instance is assigned to a variable, or passed to or from a
function, what is assigned or passed is a reference to the same instance.

To prove it, I'll assign one reference to another and then mutate the second reference
— and then I'll examine what happened to the first reference. Let’s start with the struct:
var d = Digit(123)
print(d.number) // 123
var d2 = d // assignment!

d2.number = 42
print(d.number) // 123

In that code, we changed the number property of d2, a struct instance; but nothing
happened to the number property of d. Now let’s try the class:

var fido = Dog()
print(fido.name) // Fido

var rover = fido // assignment!
rover.name = "Rover"
print(fido.name) // Rover

In that code, we changed the name property of rover, a class instance — and the name
property of fido was changed as well! That’s because, after the assignment in the third
line, fidoand rover refer to one and the same instance. When an enum or struct instance
is assigned, it is effectively copied; a fresh, separate instance is created. But when a class
instance is assigned, you get a new reference to the same instance.

The same thing is true of parameter passing. Let’s start with the struct:

func digitChanger(var d:Digit) {
d.number = 42
}

var d = Digit(123)

print(d.number) // 123

digitChanger(d)

print(d.number) // 123
We passed our Digit struct instance d to the function digitChanger, which set the
number property of its local parameter d to 42. Nevertheless, the number property of our
Digit d remains 123. That’s because the Digit that arrives inside digitChanger is quite
literally a different Digit. The act of passing a Digit as a function argument creates a
separate copy. But with a class instance, what is passed is a reference to the same instance:

Classes | 143

func dogChanger(d:Dog) { // no "var" needed
d.name = "Rover"

}
var fido = Dog()

print(fido.name) // "Fido"

dogChanger(fido)

print(fido.name) // "Rover"
The change made to d inside the function dogChanger affected our Dog instance
fido! Handing a class instance to a function does not copy that instance; it is more like
lending that instance to the function.

The ability to generate multiple references to the same instance is significant particularly
in a world of object-based programming, where objects persist and can have properties
that persist along with them. If object A and object B are both long-lived objects, and
if they both have a Dog property (where Dog is a class), and if they have each been
handed a reference to one and the same Dog instance, then either object A or object B
can mutate its Dog, and this mutation will affect the other’s Dog. You can thus be holding
on to an object, only to discover that it has been mutated by someone else behind your
back. The problem is even more acute in a multithreaded app, where one and the same
object can be mutated differently, in place, by two different threads. None of these issues
arise with a value type; this difference can, indeed, be an important reason for preferring
a struct to a class when you’re designing an object type.

The fact that class instances are reference types can thus be bad. But it is also good! It’s
good because it means that passing a class instance is simple: all you're doing is passing
a pointer. No matter how big and complicated a class instance may be, no matter how
many properties it may have containing vast amounts of data, passing the instance is
incredibly fast and efficient, because no new data is generated. Moreover, the extended
lifetime of a class instance, as it passed around, can be crucial to its functionality and
its integrity; a UIViewController needs to be a class, not a struct, because an individual
UlViewController instance, no matter how it gets passed around, must continue to
represent the same single real and persistent view controller in your running app’s view
controller hierarchy.

Subclass and Superclass

Two classes can be subclass and superclass of one another. For example, we might have
a class Quadruped and a class Dog and make Quadruped the superclass of Dog. A class
may have many subclasses, but a class can have only one immediate superclass. I say
“immediate” because that superclass might itself have a superclass, and so on in a rising
chain, until we get to the ultimate superclass, called the base class, or root class. Because
a class can have many subclasses but only one superclass, there is a hierarchical tree of
subclasses, each branching from its superclass, and so on, with a single class, the base
class, at the top.

144 | Chapter 4: Object Types

Recursive References

Another consequence of the difference between value types and reference types is that
avalue type cannot be structurally recursive: an instance property of a value type cannot
be an instance of the same type. This code won’t compile:

struct Dog { // compile error
var puppy : Dog?

}
More complex circular chains, such as a Dog with a Puppy property and a Puppy with
a Dog property, are similarly illegal. But if Dog is a class instead of a struct, there’s no
error. This is a consequence of the nature of memory management of value types as
opposed to reference types. (I'll talk more about reference type memory management
in Chapter 5, and Chapter 12 will be entirely devoted to it.)

In Swift 2.0 an enum case’s associated value can be an instance of that enum, provided
the case (or the entire enum) is marked indirect:

enum Node {
case None(Int)
indirect case Left(Int, Node)
indirect case Right(Int, Node)
indirect case Both(Int, Node, Node)

Asfar as the Swift language itselfis concerned, there is no requirement that a class should
have any superclass, or, if it does have a superclass, that it should ultimately be descended
from any particular base class. Thus, a Swift program can have many classes that have
no superclass, and it can have many independent hierarchical subclass trees, each de-
scended from a different base class.

Cocoa, however, doesn't work that way. In Cocoa, there is effectively just one base class
— NSObject, which embodies all the functionality necessary for a class to be a class in
the first place — and all other classes are subclasses, at some level, of that one base class.
Cocoa thus consists of one huge tree of hierarchically arranged classes, even before you
write a single line of code or create any classes of your own. We can imagine diagram-
ming this tree as an outline. And in fact Xcode will show you this outline (Figure 4-1):
in an i0OS project window, choose View — Navigators - Show Symbol Navigator and
click Hierarchical, with the first and third icons in the filter bar selected (blue). The
Cocoa classes are the part of the tree descending from NSObject.

The reason for having a superclass—subclass relationship in the first place is to allow
related classes to share functionality. Suppose, for example, we have a Dog class and a
Cat class, and we are considering declaring a walk method for both of them. We might
reason that both a dog and a cat walk in pretty much the same way, by virtue of both

Classes | 145

B E QAN & = o B

v [E] UIResponder
» [E AppDelegate
» [2] UlApplication
v [Uview
» [E] UlActionSheet
» [E UlactivitylndicatorView
» [E ulAlertview
» [F] UlCollectionReusableView
v [E uiCentrol
» [E uiButton
» [E] UIDatePicker
» [E] UIPageControl
» [E] UIRefreshControl
» [E] UISegmentedControl
» [E uislider
» [2] UIStepper
» [E uiswitch
» [E UlTextField
» [E UlimageView
» [E] Ulinputview
» [E UlLabel
» [E] UINavigationBar
» [E] UIPickerView

Figure 4-1. Part of the Cocoa class hierarchy as shown in Xcode

being quadrupeds. So it might make sense to declare walk asa method of the Quadruped
class, and make both Dog and Cat subclasses of Quadruped. The result is that both Dog
and Cat can be sent the walk message, even if neither of them has awalk method, because
each of them has a superclass that does have a walk method. We say that a subclass
inherits the methods of its superclass.

To declare that a certain class is a subclass of a certain superclass, add a colon and the
superclass name after the class’s name in its declaration. So, for example:

class Quadruped {
func walk () {
print("walk walk walk")
}
}
class Dog : Quadruped {}
class Cat : Quadruped {}

Now let’s prove that Dog has indeed inherited walk from Quadruped:

let fido = Dog()
fido.walk() // walk walk walk

146 | Chapter 4: Object Types

Observe that, in that code, the walk message can be sent to a Dog instance just as if the
walk instance method were declared in the Dog class, even though the walk instance
method is in fact declared in a superclass of Dog. That’s inheritance at work.

The purpose of subclassing is not merely so that a class can inherit another class’s meth-
ods; it’s so that it can also declare methods of its own. Typically, a subclass consists of
the methods inherited from its superclass and then some. If Dog has no methods of its
own, after all, it’s hard to see why it should exist separately from Quadruped. But if a
Dog knows how to do something that not every Quadruped knows how to do — let’s
say, bark — then it makes sense as a separate class. If we declare bark in the Dog class,
and walk in the Quadruped class, and make Dog a subclass of Quadruped, then Dog
inherits the ability to walk from the Quadruped class and also knows how to bark:

class Quadruped {
func walk () {
print("walk walk walk")
}

}
class Dog : Quadruped {
func bark () {
print("woof")
}
}

Again, let’s prove that it works:

let fido = Dog()
fido.walk() // walk walk walk
fido.bark() // woof

Within a class, it is a matter of indifference whether that class has an instance method
because that method is declared in that class or because the method is declared in a
superclass and inherited. A message to self works equally well either way. In this code,
we have declared a barkAndWalk instance method that sends two messages to self,
without regard to where the corresponding methods are declared (one is native to the
subclass, one is inherited from the superclass):

class Quadruped {
func walk () {
print("walk walk walk")
}
}
class Dog : Quadruped {
func bark () {
print("woof")
}
func barkAndWalk() {

Classes | 147

self.bark()
self.walk()

}
And here’s proof that it works:

let fido = Dog()
fido.barkAndWalk() // woof walk walk walk

It is also permitted for a subclass to redefine a method inherited from its superclass. For
example, perhaps some dogs bark differently from other dogs. We might have a class
NoisyDog, for instance, that is a subclass of Dog. Dog declares bark, but NoisyDog also
declares bark, and defines it differently from how Dog defines it. This is called over-
riding. The very natural rule is that if a subclass overrides a method inherited from its
superclass, then when the corresponding message is sent to an instance of that subclass,
it is the subclass’s version of that method that is called.

In Swift, when you override something inherited from a superclass, you must explicitly
acknowledge this fact by preceding its declaration with the keyword override. So, for
example:

class Quadruped {
func walk () {
print("walk walk walk")
}

}
class Dog : Quadruped {

func bark () {
print("woof")
}
}
class NoisyDog : Dog {
override func bark () {
print("woof woof woof")
}
}

And let’s try it:

let fido = Dog()

fido.bark() // woof

let rover = NoisyDog()
rover.bark() // woof woof woof

Observe that a subclass function by the same name as a superclass’s function is not
necessarily, of itself, an override. Recall that Swift can distinguish two functions with
the same name, provided they have different signatures. Those are different functions,
and so an implementation of one in a subclass is not an override of the other in a
superclass. An override situation exists only when the subclass redefines the same

148 | Chapter 4: Object Types

function that it inherits from a superclass — using the same name, including the external
parameter names, and the same signature.

It often happens that we want to override something in a subclass and yet access the
thing overridden in the superclass. This is done by sending a message to the keyword
super. Our bark implementation in NoisyDog is a case in point. What NoisyDog really
does when it barks is the same thing Dog does when it barks, but more times. We’d like
to express that relationship in our implementation of NoisyDog’s bark. To do so, we
have NoisyDog’s bark implementation send the bark message, not to self (which would
be circular), but to super; this causes the search for a bark instance method implemen-
tation to start in the superclass rather than in our own class:

class Dog : Quadruped {
func bark () {
print("woof")
}
}
class NoisyDog : Dog {
override func bark () {
for _ in 1...3 {
super.bark()

}

}
And it works:

let fido = Dog()

fido.bark() // woof

let rover = NoisyDog()

rover.bark() // woof woof woof
A subscript function is a method. If a superclass declares a subscript, the subclass can
declare a subscript with the same signature, provided it designates it with the override
keyword. To call the superclass subscript implementation, the subclass can use square
brackets after the keyword super (e.g. super[3]).

Along with methods, a subclass also inherits its superclass’s properties. Naturally, the
subclass may also declare additional properties of its own. It is possible to override an
inherited property (with some restrictions that I'll talk about later).

A class declaration can prevent the class from being subclassed by preceding the class
declaration with the final keyword. A class declaration can prevent a class member
from being overridden by a subclass by preceding the member’s declaration with the
final keyword.

Classes | 149

Class Initializers

Initialization of a class instance is considerably more complicated than initialization of
a struct or enum instance, because of the existence of class inheritance. The chief task
of an initializer is to ensure that all properties have an initial value, thus making the
instance well-formed as it comes into existence; and an initializer may have other tasks
to perform that are essential to the initial state and integrity of this instance. A class,
however, may have a superclass, which may have properties and initializers of its own.
Thus we must somehow ensure that when a subclass is initialized, its superclass’s prop-
erties are initialized and the tasks of its initializers are performed in good order, in
addition to initializing the properties and performing the initializer tasks of the subclass
itself.

Swift solves this problem coherently and reliably — and ingeniously — by enforcing
some clear and well-defined rules about what a class initializer must do.

Kinds of class initializer

The rules begin with a distinction between the kinds of initializer that a class can have:

Implicit initializer
A class with no stored properties, or with stored properties all of which are initial-
ized as part of their declaration, and that has no explicit initializers, has an implicit
initializer init().

Designated initializer
A class initializer, by default, is a designated initializer. A class with any stored
properties that are not initialized as part of their declaration must have at least one
designated initializer,and when the class is instantiated, exactly one of its designated
initializers must be called, and must see to it that all stored properties are initialized.
A designated initializer may not delegate to another initializer in the same class; it
is illegal for a designated initializer to use the phrase self.init(...).

Convenience initializer
A convenience initializer is marked with the keyword convenience. Itis a delegating
initializer; it must contain the phrase self.init(...). Moreover, a convenience
initializer must delegate to a designated initializer: when it says self.init(...),
it must call a designated initializer in the same class — or else it must call another
convenience initializer in the same class, thus forming a chain of convenience ini-
tializers which ends by calling a designated initializer in the same class.

Here are some examples. This class has no stored properties, so it has an implicit init()
initializer:

class Dog {
}
let d = Dog()

150 | Chapter 4: Object Types

This class’s stored properties have default values, so it has an implicit init() initializer
too:

class Dog {
var name = "Fido'

}
let d = Dog()

This class has stored properties without default values; it has a designated initializer,
and all of those properties are initialized in that designated initializer:

class Dog {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
self.license = license
}
}

let d = Dog(name:"Rover", license:42)

This class is similar to the previous example, but it also has two convenience initializers.
The caller doesn’t have to supply any parameters, because a convenience initializer with
no parameters calls through a chain of convenience initializers ending with a designated
initializer:
class Dog {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
self.license = license

}
convenience init(license:Int) {
self.init(name:"Fido", license:license)

}
convenience init() {
self.init(license:1)
}
}
let d = Dog()
Note that the rules about what else an initializer can say and when it can say it, as I
described them earlier in this chapter, are still in force. A designated initializer cannot,
except in order to initialize a property, say self until all of this class’s properties have
been initialized. A convenience initializer is a delegating initializer, so it cannot say self
until after it has called, directly or indirectly, a designated initializer (and cannot set an
immutable property at all).

Classes | 151

Subclass initializers

Having defined and distinguished between designated initializers and convenience in-
itializers, we are ready for the rules about what happens with regard to initializers when
a class is itself a subclass of some other class:

No declared initializers

If a subclass doesn’t have to have any initializers of its own, and if it declares no
initializers of its own, then its initializers consist of the initializers inherited from
its superclass.

Convenience initializers only

If a subclass doesn’t have to have any initializers of its own, it is eligible to declare
convenience initializers, and these work exactly as convenience initializers always
do, because inheritance supplies self with the designated initializers that the con-
venience initializers must call.

Designated initializers

If a subclass declares any designated initializers of its own, the entire game changes
drastically. Now, no initializers are inherited! The existence of an explicit designated
initializer blocks initializer inheritance. The only initializers the subclass now has
are the initializers that you explicitly write. (However, there’s an exception, which
I'll come to in a moment.)

Every designated initializer in the subclass now has an extra requirement: it must
call one of the superclass’s designated initializers, by saying super.init(...).
Moreover, the rules about saying self continue to apply. A subclass designated
initializer must do things in this order:

1. It must ensure that all properties of this class (the subclass) are initialized.

2. Tt must call super.init(...), and the initializer that it calls must be a desig-
nated initializer.

3. Onlythen may thisinitializer say self for any other reason — to call an instance
method, say, or to access an inherited property.

Convenience initializers in the subclass are still subject to the rules I've already
outlined. They must call self.init(...), calling a designated initializer directly
or (through a chain of convenience initializers) indirectly. In the absence of inher-
ited initializers, the initializer that a convenience initializer calls must be explicitly
present in the subclass.

152

| Chapter 4: Object Types

If a designated initializer doesn’t call super.init(...), then super.init() is called
1 implicitly if possible. This code is legal:

class Cat {

}

class NamedCat : Cat {
let name : String
init(name:String) {

self.name = name

}

}

In my view, this feature of Swift is a mistake: Swift should not indulge in secret
behavior, even if that behavior might be considered “helpful.” I believe that that
code should not compile; a designated initializer should always have to call
super.init(...) explicitly.

Override initializers
Superclass initializers can be overridden in the subclass, in accordance with these
restrictions:

« An initializer whose signature matches a convenience initializer of the super-
class must be a convenience initializer and is not marked override.

o Aninitializer whose signature matches a designated initializer of the superclass
can be a designated initializer or a convenience initializer, and must be marked
override. The superclass designated initializer that an override designated in-
itializer calls with super.init(...) can be the one that it overrides.

Generally, if a subclass has any designated initializers, no initializers are inherited.
But if a subclass overrides all of its superclass’s designated initializers, then the sub-
class does inherit the superclass’s convenience initializers.

Failable initializers

A failable designated initializer cannot say return nil until after it has completed
all of its own initialization duties. Thus, for example, a failable subclass designated
initializer must see to it that all the subclass’s properties are initialized and must call
super.init(...) before it can say return nil. (There is a certain delicious irony
here: before it can tear the instance down, the initializer must finish building the
instance up. But this is necessary in order to ensure that the superclass is given a
coherent opportunity to do its own initialization.)

If an initializer called by a failable initializer is failable, the calling syntax does not
change, and no additional test is needed — if a called failable initializer fails, the
whole initialization process will fail (and will be aborted) immediately.

A failable initializer that returns an implicitly unwrapped Optional (init!) is treat-
ed just like a normal initializer (init) for purposes of overriding and delegation.

Classes | 153

For a failable initializer that returns an ordinary Optional (init?), there are some
additional restrictions:

o init can override init?, but not vice versa.
e init? can call init.

o init can call init? by saying init and unwrapping the result (with an excla-
mation mark, because if the init? fails, you'll crash).

Here’s a meaningless example, just to show the legal syntax:

class A:NSObject {
init?(ok:Bool) {

super.init() // init? can call init
}
}
class B:A {
override init(ok:Bool) { // init can override init?
super.init(ok:ok)! // init can call init? using "!"
}
}

At no time can a subclass initializer set a constant (let) property of a superclass.
This is because, by the time the subclass is allowed to do anything other than
initialize its own properties and call another initializer, the superclass has finished
its own initialization and the door for initializing its constants has closed.

Here are some basic examples. We start with a class whose subclass has no explicit
initializers of its own:

class Dog {

var name : String

var license : Int

init(name:String, license:Int) {
self.name = name
self.license = license

}

convenience init(license:Int) {
self.init(name:"Fido", license:license)

}
}
class NoisyDog : Dog {
}

Given that code, you can make a NoisyDog like this:

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)

154 | Chapter 4: Object Types

That code is legal, because NoisyDog inherits its superclass’s initializers. However, you
can’'t make a NoisyDog like this:

let nd3 = NoisyDog() // compile error

That code is illegal. Even though a NoisyDog has no properties of its own, it has no
implicit init() initializer; its initializers are its inherited initializers, and its superclass,
Dog, has no implicit init() initializer to inherit.

Now here is a class whose subclass’s only explicit initializer is a convenience initializer:

class Dog {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
self.license = license
}
convenience init(license:Int) {
self.init(name:"Fido", license:license)
}
}
class NoisyDog : Dog {
convenience init(name:String) {
self.init(name:name, license:1)
}
}

Observe how NoisyDog’s convenience initializer fulfills its contract by calling

self.init(...) to call a designated initializer — which it happens to have inherited.

Given that code, there are three ways to make a NoisyDog, just as you would expect:
let nd1 = NoisyDog(name:"Fido", license:1)

let nd2 = NoisyDog(license:2)
let nd3 = NoisyDog(name:"Rover")

Next, here is a class whose subclass declares a designated initializer:

class Dog {

var name : String

var license : Int

init(name:String, license:Int) {
self.name = name
self.license = license

}

convenience init(license:Int) {
self.init(name:"Fido", license:license)

}

}
class NoisyDog : Dog {

Classes | 155

init(name:String) {
super.init(name:name, license:1)
}
}

NoisyDog’s explicit initializer is now a designated initializer. It fulfills its contract by
calling a designated initializer in super. NoisyDog has now cut off inheritance of all
initializers; the only way to make a NoisyDog is like this:

let nd1 = NoisyDog(name:"Rover")
Finally, here is a class whose subclass overrides its designated initializers:

class Dog {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
self.license = license
}
convenience init(license:Int) {
self.init(name:"Fido", license:license)
}
}
class NoisyDog : Dog {
override init(name:String, license:Int) {
super.init(name:name, license:license)
}
}

NoisyDog has overridden all of its superclass’s designated initializers, so it inherits its
superclass’s convenience initializers. There are thus two ways to make a NoisyDog:

let nd1 = NoisyDog(name:"Rover", license:1)
let nd2 = NoisyDog(license:2)

Those examples illustrate the main rules that you should keep in your head. You prob-

ably don’t need to memorize the remaining rules, because the compiler will enforce
them, and will keep slapping you down until you get them right.

Required initializers

There’s one more thing to know about class initializers: a class initializer may be pre-
ceded by the keyword required. This means that a subclass may not lack it. This, in
turn, means that if a subclass implements designated initializers, thus blocking inheri-
tance, it must override this initializer. Here’s a (rather pointless) example:

class Dog {
var name : String
required init(name:String) {
self.name = name

}

156 | Chapter 4: Object Types

class NoisyDog : Dog {
var obedient = false
init(obedient:Bool) {
self.obedient = obedient
super.init(name:"Fido")
}

} // compile error

That code won’t compile. init(name:) is marked required; thus, our code won’t com-
pile unless we inherit or override init(name:) in NoisyDog. But we cannot inherit it,
because, by implementing the NoisyDog designated initializer init(obedient:), we
have blocked inheritance. Therefore we must override it:

class Dog {
var name : String
required init(name:String) {
self.name = name
}
}
class NoisyDog : Dog {
var obedient = false
init(obedient:Bool) {
self.obedient = obedient
super.init(name:"Fido")
}
required init(name:String) {
super.init(name:name)
}
}

Observe that our overridden required intializer is not marked with override, but is

marked with required, thus guaranteeing that the requirement continues drilling down
to any further subclasses.

I have explained what declaring an initializer as required does, but I have not explained
why you'd need to do it. I'll give examples later in this chapter.

Surprises from Cocoa

The initializer inheritance rules can cause some rude surprises to pop up when you’re
subclassing one of Cocoa’s classes. For example, when programming iOS, you will surely
declare a UIViewController subclass. Let’s say you give your subclass a designated ini-
tializer. A designated initializer in the superclass, UIViewController, is init(nib-
Name:bundle:), so, in obedience to the rules, you call that from your designated ini-
tializer:

Classes | 157

class ViewController: UIViewController {
init() {
super.init(nibName:"MyNib", bundle:nil)
}
}
So far, so good; but you are then surprised to find that code elsewhere that makes a
ViewController instance no longer compiles:

let vc = ViewController(nibName:"MyNib", bundle:nil) // compile error

That code was legal until you wrote your designated initializer; now it isn’t. The reason
is that by implementing a designated initializer in your subclass, you have blocked
initializer inheritance! Your ViewController class used to inherit the init(nib-
Name:bundle:) initializer from UIViewController; now it doesn’t. You need to override
that initializer as well, even if all your implementation does is to call the overridden
initializer:
class ViewController: UIViewController {
init() {
super.init(nibName:"MyNib", bundle:nil)
}
override init(nibName: String?, bundle: NSBundle?) {
super.init(nibName:nibName, bundle:bundle)

}
}

The code that instantiates ViewController now does indeed compile:
let vc = ViewController(nibName:"MyNib", bundle:nil) // fine

But now there’s a further surprise: ViewController itself doesn’t compile! The reason is
that there is also a required initializer being imposed upon ViewController, and you
must implement that as well. You didn’t know about this before, because, when View-
Controller had no explicit initializers, you were inheriting the required initializer; now
you've blocked inheritance. Fortunately, Xcode’s Fix-It feature offers to supply a stub
implementation; it doesn’t do anything (in fact, it crashes if called), but it satisfies the
compiler:
required init?(coder aDecoder: NSCoder) {

fatalError("init(coder:) has not been implemented")

}

I'll explain later in this chapter how this required initializer is imposed.

Class Deinitializer

A class, and only a class (not the other flavors of object type), can have a deinitializer.
Thisisa function declared with the keyword deintit followed by curly braces containing
the function body. You never call this function yourself; it is called by the runtime when

158 | Chapter 4: Object Types

an instance of this class goes out of existence. If a class has a superclass, the subclass’s
deinitializer (if any) is called before superclass’s deinitializer (if any).

The idea of a deinitializer is that you might want to perform some cleanup, or just log
to the console to prove to yourself that your instance is going out of existence in good
order. T'll take advantage of deinitializers when I discuss memory management issues
in Chapter 5.

Class Properties and Methods

A subclass can override its inherited properties. The override must have the same name
and type as the inherited property, and must be marked with override. (A property
cannot have the same name as an inherited property but a different type, as there is no
way to distinguish them.) The following additional rules apply:

o If the superclass property is writable (a stored property or a computed property
with a setter), the subclass’s override may consist of adding setter observers to this
property.

o Alternatively, the subclass’s override may be a computed variable. In that case:

n If the superclass property is stored, the subclass’s computed variable override
must have both a getter and a setter.

= Ifthe superclass property is computed, the subclass’s computed variable override
must reimplement all the accessors that the superclass implements. If the su-
perclass property is read-only (it has just a getter), the override can add a setter.

The overriding property’s functions may refer to — and may read from and write to —
the inherited property, through the super keyword.

A class can have static members, marked static, just like a struct or an enum. It can
also have class members, marked class. Both static and class members are inherited by
subclasses (as static and class members).

The chief difference between static and class methods from the programmer’s point of
view is that a static method cannot be overridden; it is as if static were a synonym for
class final.

Here, for example, I'll use a static method to express what dogs say:

class Dog {
static func whatDogsSay() -> String {
return "woof"
}
func bark() {
print(Dog.whatDogsSay())
}

Classes | 159

A subclass now inherits whatDogsSay, but can’t override it. No subclass of Dog may
contain any implementation of a class method or a static method whatDogsSay with this
same signature.

Now I'll use a class method to express what dogs say:

class Dog {
class func whatDogsSay() -> String {
return "woof"

}
func bark() {

print(Dog.whatDogsSay())
}
}

A subclass inherits whatDogsSay, and can override it, either as a class function or as a
static function:

class NoisyDog : Dog {
override class func whatDogsSay() -> String {
return "WOOF"
}
}

The difference between static properties and class properties is similar, but with an
additional, rather dramatic qualification: static properties can be stored, but class prop-
erties can only be computed.

Here, I'll use a static class property to express what dogs say:

class Dog {
static var whatDogsSay = "woof"
func bark() {
print(Dog.whatDogsSay)
}
}

A subclass inherits whatDogsSay, but can’t override it; no subclass of Dog can declare a
class or static property whatDogsSay.

Now I'll use a class property to express what dogs say. It cannot be a stored property, so
I’ll have to use a computed property instead:

class Dog {
class var whatDogsSay : String {
return "woof"
}
func bark() {
print(Dog.whatDogsSay)
}

160 | Chapter 4: Object Types

A subclass inherits whatDogsSay and can override it either as a class property or as a
static property. But even as a static property the subclass’s override cannot be a stored
property, in keeping with the rules of property overriding that I outlined earlier:

class NoisyDog : Dog {
override static var whatDogsSay : String {
return "WOOF"

}
}

Polymorphism

When a computer language has a hierarchy of types and subtypes, it must resolve the
question of what such a hierarchy means for the relationship between the type of an
object and the declared type of a reference to that object. Swift obeys the principles of
polymorphism. In my view, it is polymorphism that turns an object-based language into
a full-fledged object-oriented language. We may summarize Swifts polymorphism
principles as follows:

Substitution
Wherever a certain type is expected, a subtype of that type may be used instead.

Internal identity
An object’s type is a matter of its internal nature, regardless of how the object is
referred to.

To see what these principles mean in practice, imagine we have a Dog class, along with
its subclass, NoisyDog:

class Dog {

}
class NoisyDog : Dog {

}

let d : Dog = NoisyDog()
The substitution rule says that the last line is legal: we can assign a NoisyDog instance
to a reference, d, that is typed as a Dog. The internal identity rule says that, under the
hood, d now is a NoisyDog.

You may be asking: How is the internal identity rule manifested? If a reference to a
NoisyDog is typed as a Dog, in what sense is this “really” a NoisyDog? To illustrate, let’s
examine what happens when a subclass overrides an inherited method. Let me redefine
Dog and NoisyDog to demonstrate:

class Dog {
func bark() {
print("woof")

}

Polymorphism | 161

class NoisyDog : Dog {
override func bark() {
super.bark(); super.bark()
}
}
Now look at this code and tell me whether it compiles and, if so, what happens when it
runs:

func tellToBark(d:Dog) {
d.bark()

}
var d = NoisyDog()

tellToBark(d)
That code does compile. We create a NoisyDog instance and pass it to a function that
expects a Dog parameter. This is permitted, because NoisyDog is a Dog subclass (sub-
stitution). A NoisyDog can be used wherever a Dog is expected. Typologically, a Noisy-
Dog is a kind of Dog.

But when the code actually runs, how does the object referred to by the local variable d
inside the tellToBark function react to being told to bark? On the one hand, d is typed
as Dog, and a Dog barks by saying "woof" once. On the other hand, in our code, when
tellToBarkis called, whatis really passed is a NoisyDog instance, and a NoisyDog barks
by saying "woof" twice. What will happen? Let’s find out:

func tellToBark(d:Dog) {
d.bark()

}
var d = NoisyDog()

tellToBark(d) // woof woof
The result is "woof woof". The internal identity rule says that what matters when a
message is sent is not how the recipient of that message is typed through this or that
reference, but what that recipient actually is. What arrives inside tellToBark is a Noisy-
Dog, regardless of the type of variable that holds it; thus, the bark message causes this
object to say "woof" twice. It is a NoisyDog!

Here’s another important consequence of polymorphism — the meaning of the keyword
self. It means the actual instance, and thus its meaning depends upon the type of the
actual instance — even if the word self appears in a superclass’s code. For example:

class Dog {
func bark() {
print("woof")
}
func speak() {
self.bark()
}

162 | Chapter 4: Object Types

class NoisyDog : Dog {
override func bark() {
super.bark(); super.bark()
}
}

What happens when we tell a NoisyDog to speak? Let’s try it:

let d = NoisyDog()
d.speak() // woof woof

The speak method is declared in Dog, the superclass — not in NoisyDog. The speak
method calls the bark method. It does this by way of the keyword self. (I could have
omitted the explicit reference to self here, but self would still be involved implicitly,
so 'm not cheating by making self explicit.) There’s a bark method in Dog, and an
override of the bark method in NoisyDog. Which bark method will be called?

The word self is encountered within the Dog class’s implementation of speak. But what
matters is not where the word self appears but what it means. It means this instance.
And the internal identity principle tells us that this instance is a NoisyDog! Thus, it is
NoisyDog’s override of bark that is called.

Thanks to polymorphism, you can take advantage of subclasses to add power and cus-
tomization to existing classes. This is important particularly in the world of iOS pro-
gramming, where most of the classes are defined by Cocoa and don’t belong to you. The
UIViewController class, for example, is defined by Cocoa; it has lots of built-in methods
that Cocoa will call, and these methods perform various important tasks — but in a
generic way. In real life, you’ll make a UIViewController subclass and override those
methods to do the tasks appropriate to your particular app. This won’t bother Cocoa in
the slightest, because (substitution principle) wherever Cocoa expects to receive or to
be talking to a UIViewController, it will accept without question an instance of your
UlViewController subclass. And this substitution will also work as expected, because
(internal identity principle) whenever Cocoa calls one of those UIViewController
methods on your subclass, it is your subclass’s override that will be called.

the runtime has to think about what a message to a class instance means. This is
another reason for preferring a struct over a class where possible: structs don't need
dynamic dispatch. Alternatively, you can reduce the need for dynamic dispatch by
declaring a class or a class member final or private, or by turning on Whole
Module Optimization (see Chapter 6).

g Polymorphism is cool, but it is also slow. It requires dynamic dispatch, meaning that

Polymorphism | 163

Casting

The Swift compiler, with its strict typing, imposes severe restrictions on what messages
can be sent to an object reference. The messages that the compiler will permit to be sent
to an object reference are those permitted by the reference’s declared type, including its
inheritance.

This means that, thanks to the internal identity principle of polymorphism, an object
may be capable of receiving messages that the compiler won't permit us to send. This
puts us in a serious bind. For example, let’s give NoisyDog a method that Dog doesn’t
have:

class Dog {
func bark() {
print("woof")
}
}
class NoisyDog : Dog {
override func bark() {
super.bark(); super.bark()
}
func beQuiet() {
self.bark()
}
}

In that code, we configure a NoisyDog so that we can tell it to beQuiet. Now look at
what happens when we try to tell an object typed as a Dog to be quiet:

func tellToHush(d:Dog) {
d.beQuiet() // compile error

}
let d = NoisyDog()
tellToHush(d)

Our code doesn’t compile. We can’t send the beQuiet message to this object, even though
itisin fact a NoisyDog and has a beQuiet method. That’s because the reference d inside
the function body is typed as a Dog — and a Dog has no beQuiet method. There is a
certain irony here: for once, we know more than the compiler does! We know that our
code would run correctly — because d really is a NoisyDog — if only we could get our
code to compile in the first place. We need a way to say to the compiler, “Look, compiler,
just trust me: this thing is going to turn out to be a NoisyDog when the program actually
runs, so let me send it this message.”

There is in fact a way to do this — casting. To cast, you use a form of the keyword as
followed by the name of the type you claim something really is. Swift will not let you
cast just any old type to any old other type — for example, you can’t cast a String to an
Int — but it will let you cast a superclass to a subclass. This is called casting down. When
you cast down, the form of the keyword as that you must use is as! with an exclamation

164 | Chapter 4: Object Types

mark. The exclamation mark reminds you that you are forcing the compiler to do
something it would rather not do:

func tellToHush(d:Dog) {
(d as! NoisyDog).beQuiet()

}
let d = NoisyDog()
tellToHush(d)

That code compiles, and works. A useful way to rewrite the example is like this:

func tellToHush(d:Dog) {
let d2 = d as! NoisyDog
d2.beQuiet()
d2.beQuiet()

}
let d = NoisyDog()
tellToHush(d)

The reason that way of rewriting the code is useful is in case we have other NoisyDog
messages to send to this object. Instead of casting every time we want to send a message
to it, we cast the object once to its internal identity type, and assign it to a variable. Now
that variable’s type — inferred, in this case, from the cast — is that internal identity type,
and we can send multiple messages to the variable.

A moment ago, I said that the as! operator’s exclamation mark reminds you that you
are forcing the compiler’s hand. It also serves as a warning: your code can now crash!
The reason is that you might be lying to the compiler. Casting down is a way of telling
the compiler to relax its strict type checking and to let you call the shots. If you use
casting to make a false claim, the compiler may permit it, but you will crash when the
app runs:

func tellToHush(d:Dog) {
(d as! NoisyDog).beQuiet() // compiles, but prepare to crash...!

}
let d = Dog()
tellToHush(d)

In that code, we told the compiler that this object would turn out to be a NoisyDog, and
the compiler obediently took its hands off and allowed us to send the beQuiet message
to it. But in fact, this object was a Dog when our code ran, and so we ultimately crashed
when the cast failed because this object was not a NoisyDog.

To prevent yourself from lying accidentally, you can test the type of an instance at run-
time. One way to do this is with the keyword is. You can use is in a condition; if the
condition passes, then cast, in the knowledge that your cast is safe:

Casting | 165

func tellToHush(d:Dog) {
if d is NoisyDog {
let d2 = d as! NoisyDog
d2.beQuiet()

}

The result is that we won't cast d to a NoisyDog unless it really is a NoisyDog.

An alternative way to solve the same problem is to use Swift’s as? operator. This casts
down, but with the option of failure; therefore what it casts to is (you guessed it) an
Optional — and now we are on familiar ground, because we know how to deal safely
with an Optional:

func tellToHush(d:Dog) {
let noisyMaybe = d as? NoisyDog // an Optional wrapping a NoisyDog
if noisyMaybe != nil {
noisyMaybe! .beQuiet()
}
}
That doesn’t look much cleaner or shorter than our previous approach. But remember
that we can safely send a message to an Optional by optionally unwrapping the Optional!
Thus we can skip the assignment and condense to a single line:

func tellToHush(d:Dog) {
(d as? NoisyDog)?.beQuiet()
}
First we use the as? operator to obtain an Optional wrapping a NoisyDog (or nil). Then
we optionally unwrap that Optional and send a message to it. If d isn’t a NoisyDog, the
Optional will be nil and the message won't be sent. If d is a NoisyDog, the Optional will
be unwrapped and the message will be sent. Thus, that code is safe.

Recall from Chapter 3 that comparison operators applied to an Optional are automat-
ically applied to the object wrapped by the Optional. The as!, as?, and is operators
work the same way. Consider an Optional d wrapping a Dog (that is, d is a Dog? object).
This might, in actual fact, be wrapping either a Dog or a NoisyDog; the substitution
principle applies to Optional types, because it applies to the type of thing wrapped by
the Optional. To find out which it is, you might be tempted to use is. But can you? After
all, an Optional is neither a Dog nor a NoisyDog — it’s an Optional! Well, the good news
is that Swift knows what you mean; when the thing on the left side of is is an Optional,
Swift pretends that it’s the value wrapped in the Optional. Thus, this works just as you
would hope:

let d : Dog? = NoisyDog()
if d is NoisyDog { // it is!

166 | Chapter 4: Object Types

When using is with an Optional, the test fails in good order if the Optional is nil. Thus
our is test really does two things: it checks whether the Optional is nil, and if it is not,
it then checks whether the wrapped value is the type we specify.

What about casting? You can’t really cast an Optional to anything. But you can use the
as! operator with an Optional, because Swift knows what you mean; when the thing on
the left side of as! is an Optional, Swift treats it as the wrapped type. Moreover, the
consequence of applying the as! operator is that two things happen: Swift unwraps first,
and then casts. This code works, because d is unwrapped to give us d2, which is a Noisy-
Dog:

let d : Dog? = NoisyDog()

let d2 = d as! NoisyDog

d2.beQuiet()
That code, however, is not safe. You shouldn’t cast like that, without testing first, unless
you are very sure of your ground. If d were nil, you'd crash in the second line because
you're trying to unwrap a nil Optional. And if d were a Dog, not a NoisyDog, you'd still
crash in the second line when the cast fails. That’s why there’s also an as? operator, which
is safe — but yields an Optional:

let d : Dog? = NoisyDog()

let d2 = d as? NoisyDog

d2?.beQuiet()
Another way you’ll use casting is during a value interchange between Swift and
Objective-C when two types are equivalent. For example, you can cast a Swift String to
a Cocoa NSString, and vice versa. That’s not because one is a subclass of the other, but
because they are bridged to one another; in a very real sense, they are the same type.
When you cast from String to NSString, you're not casting down, and what you’re doing
is not dangerous, so you use the as operator, with no exclamation mark. I gave an
example, in Chapter 3, of a situation where you might need to do that:

let s = "hello"
let range = (s as NSString).rangeOfString("ell") // (1,3), an NSRange

The cast from String to NSString tells Swift to stay in the Cocoa world as it calls range-
0fString, and thus causes the result to be the Cocoa result, an NSRange, rather than a
Swift Range.

A number of common classes are bridged in this way between Swift and Objective-C.
Often, you won't need to cast as you cross the bridge from Swift to Objective-C, because
Swift will automatically cast for you. For example, a Swift Int and a Cocoa NSNumber
are two very different things; nevertheless, you can often use an Int where an NSNumber
is expected, without casting, like this:

let ud = NSUserDefaults.standardUserDefaults()
ud.setObject(1, forKey: "Test")

Casting | 167

In that code, we used an Int, namely 1, where Objective-C expects an NSObject instance.
An Int is not an NSObject instance; it isn't even a class instance (it’s a struct instance).
But Swift sees that an NSObject is expected, decides that an NSNumber would best
represent an Int, and crosses the bridge for you. Thus, what winds up being stored in
NSUserDefaults is an NSNumber.

Coming back the other way, however, when you call objectForKey:, Swift has no in-
formation about what this value really is, so you have to cast explicitly if you want an
Int — and now you are casting down (as I'll explain in more detail later):

let 1 = ud.objectForKey("Test") as! Int

That cast works because ud.objectForKey("Test") yields an NSNumber wrapping an
integer, and casting that to a Swift Int is permitted — the types are bridged. But if
ud.objectForKey("Test") were not an NSNumber (or if it were nil), you'd crash. If
you’re not sure of your ground, use is or as? to be safe.

Type Reference

It can be useful for an instance to refer to its own type — for example, to send a message
to that type. In an earlier example, a Dog instance method fetched a Dog class property
by sending a message to the Dog type explicitly — by using the word Dog:

class Dog {
class var whatDogsSay : String {
return "Woof"

}
func bark() {

print(Dog.whatDogsSay)
}
}

The expression Dog.whatDogsSay seems clumsy and inflexible. Why should we have to
hard-code into Dog a knowledge of what class it is? It has a class; it should just know
what it is.

In Objective-C, you may be accustomed to using the class instance method to deal
with this situation. In Swift, an instance might not have a class (it might be a struct
instance or an enum instance); what a Swift instance has is a type. The instance method
that Swift provides for this purpose is the dynamicType method. An instance can access
its type through this method. Thus, if you don't like the notion of a Dog instance calling
a Dog class method by saying Dog explicitly, there’s another way:

class Dog {
class var whatDogsSay : String {
return "Woof"

}

168 | Chapter 4: Object Types

func bark() {
print(self.dynamicType.whatDogsSay)
}
}

An important thing about using dynamicType instead of hard-coding a class name is
that it obeys polymorphism:

class Dog {
class var whatDogsSay : String {
return "Woof"

}
func bark() {
print(self.dynamicType.whatDogsSay)
}
}
class NoisyDog : Dog {
override class var whatDogsSay : String {
return "Woof woof woof"

}
}

Now watch what happens:

let nd = NoisyDog()

nd.bark() // Woof woof woof
If we tell a NoisyDog instance to bark, it says "Woof woof woof". The reason is that
dynamicType means, “The type that this instance actually is, right now.” That’s what
makes this type dynamic. We send the bark message to a NoisyDog instance. The bark
implementation refers to self.dynamicType; self means this instance, which is a
NoisyDog, and so self.dynamicType is the NoisyDog class, and it is NoisyDog’s version
of whatDogsSay that is fetched.

| You can also use dynamicType for learning the name of an object’s type, as a string
— typically for debugging purposes. When you say print(myObject.dynamic-
Type), you'll see the type name in the console.

In some situations, you may want to pass an object type as a value. That is legal; an object
type is itself an object. Here’s what you need to know:

o To declare that an object type is acceptable — for example, as the type of a variable
or parameter — use dot-notation with the name of the type and the keyword Type.

o To use an object type as a value — for example, to assign a type to a variable or pass
it to a function — use a reference to the type (the type’s name, or some instance’s
dynamicType), possibly followed by the keyword self using dot-notation.

Type Reference | 169

For example, here’s a function that accepts a Dog type as its parameter:

func typeExpecter(whattype:Dog.Type) {
}

And here’s an example of calling that function:
typeExpecter(Dog) // or: typeExpecter(Dog.self)
Or you could call it like this:

let d = Dog() // or: let d = NoisyDog()
typeExpecter(d.dynamicType) // or: typeExpecter(d.dynamicType.self)

Why might you want to do something like that? A typical situation is that your function
isafactory forinstances: given a type, it creates an instance of that type, possibly prepares
it in some way, and returns it. You can use a variable reference to a type to make an
instance of that type, by explicitly sending it an init(...) message.

For example, here’s a Dog class with an init(name:) initializer, and its NoisyDog sub-
class:

class Dog {
var name : String
init(name:String) {
self.name = name

}
}
class NoisyDog : Dog {
}

And here’s a factory method that creates a Dog or a NoisyDog, as specified by its pa-
rameter, gives it a name, and returns it:

func dogMakerAndNamer (whattype:Dog.Type) -> Dog {
let d = whattype.init(name:"Fido") // compile error
return d

}

As you can see, since whattype refers to a type, we can call its initializer to make an
instance of that type. However, there’s a problem. The code doesn’t compile. The reason
is that the compiler is in doubt as to whether the init(name:) initializer is implemented
by every possible subtype of Dog. To reassure it, we must declare that initializer with
the required keyword:

class Dog {
var name : String
required init(name:String) {
self.name = name

}
}
class NoisyDog : Dog {
}

170 | Chapter 4: Object Types

I promised I'd tell you why you might need to declare an initializer as required; now
I'm fulfilling that promise! The required designation reassures the compiler; every
subclass of Dog must inherit or reimplement init(name:), so it’s legal to send the
init(name:) message to a type reference that might refer to Dog or some subclass of
Dog. Now our code compiles, and we can call our function:

let d = dogMakerAndNamer(Dog) // d is a Dog named Fido

let d2 = dogMakerAndNamer(NoisyDog) // d2 is a NoisyDog named Fido
In a class method, self stands for the class — polymorphically. This means that, in a
class method, you can send a message to self to call an initializer polymorphically.
Here’s an example. Let’s say we want to move our instance factory method into Dog
itself, as a class method. Let’s call this class method makeAndName. We want this class
method to create and return a named Dog of whatever class we send the makeAndName
message to. If we say Dog . makeAndName (), we should geta Dog. If we say NoisyDog . make -
AndName(), we should get a NoisyDog. That type is the polymorphic self class, so our
makeAndName class method initializes self:

class Dog {
var name : String
required init(name:String) {
self.name = name
}
class func makeAndName() -> Dog {
let d = self.init(name:"Fido")

return d
}
}
class NoisyDog : Dog {
}

It works as expected:

let d = Dog.makeAndName() // d is a Dog named Fido
let d2 = NoisyDog.makeAndName() // d2 is a NoisyDog named Fido

But there’s a problem. Although d2 is in fact a NoisyDog, it is typed as a Dog. This is
because our makeAndName class method is declared as returning a Dog. That isn’t what
we meant to say. What we want to say is that this method returns an instance of the
same type as the class to which the makeAndName message was originally sent. In other
words, we need a polymorphic type declaration! That type is Self (notice the capitali-
zation). It is used as a return type in a method declaration to mean “an instance of
whatever type this is at runtime.” Thus:

class Dog {
var name : String
required init(name:String) {
self.name = name

}

Type Reference | 171

class func makeAndName() -> Self {
let d = self.init(name:"Fido")

return d
}
}
class NoisyDog : Dog {
}

Now when we call NoisyDog.makeAndName() we get a NoisyDog typed as a NoisyDog.

Self also works for instance method declarations. Therefore, we can write an instance
method version of our factory method. Here, we start with a Dog or a NoisyDog and
tell it to have a puppy of the same type as itself:

class Dog {
var name : String
required init(name:String) {
self.name = name
}
func havePuppy(name name:String) -> Self {
return self.dynamicType.init(name:name)

}
}
class NoisyDog : Dog {
}

And here’s some code to test it:

let d = Dog(name:"Fido")

let d2 = d.havePuppy(name:"Fido Junior")
let nd = NoisyDog(name:"Rover")

let nd2 = nd.havePuppy(name:"Rover Junior")

As expected, d2 is a Dog, but nd2 is a NoisyDog typed as a NoisyDog.
All this terminology can get a bit confusing, so here’s a quick summary:

.dynamicType
In code, sent to an instance: the polymorphic (internal) type of this instance, re-
gardless of how the instance reference is typed. Static/class members are accessible
through an instance’s dynamicType.

.Type
In declarations, sent to a type: the polymorphic type (as opposed to an instance of
the type). For example, in a function declaration, Dog means a Dog instance is
expected (or an instance of one its subclasses), but Dog. Type means that the Dog
type itself is expected (or the type of one of its subclasses).

172 | Chapter 4: Object Types

.self
In code, sent to a type: the type. For example, to pass the Dog type where Dog. Type
is expected, you can pass Dog.self. (It is not illegal to send .self to an instance,
but it is pointless.)

self
In instance code, this instance, polymorphically.

In static/class code, this type, polymorphically; self.init(...) instantiates the
type.
Self

In a method declaration, when specifying the return type, this class or this instance’s
class, polymorphically.

Protocols

A protocol is a way of expressing commonalities between otherwise unrelated types. For
example, a Bee object and a Bird object might need to have certain features in common
by virtue of the fact that both a bee and a bird can fly. Thus, it might be useful to define
a Flier type. The question is: In what sense can both Bee and Bird be Fliers?

One possibility, of course, is class inheritance. If Bee and Bird are both classes, there’s a
class hierarchy of superclasses and subclasses. So Flier could be the superclass of both
Bee and Bird. The problem is that there may be other reasons why Flier can’t be the
superclass of both Bee and Bird. A Bee is an Insect; a Bird isn’t. Yet they both have the
power of flight — independently. We need a type that cuts across the class hierarchy
somehow, tying remote classes together.

Moreover, what if Bee and Bird are not both classes? In Swift, that’s a very real possibility.
Important and powerful objects can be structs instead of classes. But there is no struct
hierarchy of superstructs and substructs! That, after all, is one of the major differences
between structs and classes. Yet structs need the ability to possess and express formal
commonalities every bit as much as classes do. How can a Bee struct and a Bird struct
both be Fliers?

Swift solves this problem through the use of protocols. Protocols are tremendously
important in Swift; the Swift header defines over 70 of them! Moreover, Objective-C
has protocols as well; Swift protocols correspond roughly to these, and can interchange
with them. Cocoa makes heavy use of protocols.

A protocol is an object type, but there are no protocol objects — you can’t instantiate a
protocol. A protocol is much more lightweight than that. A protocol declaration is just
a list of properties and methods. The properties have no values, and the methods have
no code! The idea is that a “real” object type can formally declare that it belongs to a
protocol type; this is called adopting or conforming to the protocol. An object type that

Protocols | 173

adopts a protocol is signing a contract stating that it actually implements the properties
and methods listed by the protocol.

For example, let’s say that being a Flier consists of no more than implementing a fly
method. Then a Flier protocol could specify that there must be a fly method; to do so,
it lists the fly method with no function body, like this:

protocol Flier {
func fly()

}
Any type — an enum, a struct, a class, or even another protocol — can then adopt this
protocol. To do so, it lists the protocol after a colon after its name in its declaration. (If
the adopter is a class with a superclass, the protocol comes after a comma after the
superclass specification.)

Let’s say Bird is a struct. Then it can adopt Flier like this:

struct Bird : Flier {

} // compile error
So far, so good. But that code won’t compile. The Bird struct has made a promise to
implement the features listed in the Flier protocol. Now it must keep that promise! The
fly method is the only requirement of the Flier protocol. To satisty that requirement,
I’ll just give Bird an empty fly method:

protocol Flier {
func fly()

}
struct Bird : Flier {

func fly() {
}
}
That’s all there is to it! We've defined a protocol, and we’ve made a struct adopt that
protocol. Of course, in real life you’ll probably want to make the adopter’s implemen-
tation of the protocol’s methods do something; but the protocol says nothing about that.

New in Swift 2.0, a protocol can declare a method and provide its implementation,
thanks to protocol extensions, which I'll discuss later in this chapter.

Why Protocols?

Perhaps at this point you're scratching your head over why this is a useful thing to do.
We made a Bird a Flier, but so what? If we wanted a Bird to know how to fly, why didn't
we just give Bird a fly method without adopting any protocol? The answer has to do
with types. Don't forget, a protocol is a type. Our protocol, Flier, is a type. Therefore, I

174 | Chapter 4: Object Types

can use Flier wherever I would use a type — to declare the type of a variable, for example,
or the type of a function parameter:

func tellToFly(f:Flier) {
f.fly()
}

Think about that code for a moment, because it embodies the entire point of protocols.
A protocol is a type — so polymorphism applies. Protocols give us another way of ex-
pressing the notion of type and subtype. This means that, by the substitution principle,
a Flier here could be an instance of any object type — an enum, a struct, or a class. It
doesn’t matter what object type it is, as long as it adopts the Flier protocol. If it adopts
the Flier protocol, then it must have a fly method, because that’s exactly what it means
to adopt the Flier protocol! Therefore the compiler is willing to let us send the fly
message to this object. A Flier is, by definition, an object that can be told to fly.

The converse, however, is not true: an object with a fly method is not automatically a
Flier. It isn’t enough to obey the requirements of a protocol; the object type must adopt
the protocol. This code won’t compile:

struct Bee {
func fly() {
}

}
let b = Bee()
tellToFly(b) // compile error

A Bee canbe sent the fly message, qua Bee. But tellToF ly doesn’t take a Bee parameter;
it takes a Flier parameter. Formally, a Bee is not a Flier. To make a Bee a Flier, simply
declare formally that Bee adopts the Flier protocol. This code does compile:

struct Bee : Flier {
func fly() {

}
}
let b = Bee()
tellToFly(b)

Enough of birds and bees; we're ready for a real-life example! As I've already said, Swift
is chock full of protocols already. Let’s make one of our own object types adopt one. One
of the most useful Swift protocols is CustomStringConvertible. The CustomString-
Convertible protocol requires that we implement a description String property. If we
do that, a wonderful thing happens: when an instance of this type is used in string
interpolation or print (or the po command in the console), the description property
value is used automatically to represent it.

Recall, for example, the Filter enum, from earlier in this chapter. I'll add a description
property to it:

Protocols | 175

enum Filter : String {
case Albums = "Albums"
case Playlists = "Playlists"
case Podcasts = "Podcasts"
case Books = "Audiobooks"
var description : String { return self.rawValue }

}
But that isn't enough, in and of itself, to give Filter the power of the CustomStringCon-
vertible protocol; to do that, we also need to adopt the CustomStringConvertible pro-
tocol formally. There is already a colon and a type in the Filter declaration, so an adopted
protocol comes after a comma:

enum Filter : String, CustomStringConvertible {
case Albums = "Albums"
case Playlists = "Playlists"
case Podcasts = "Podcasts"
case Books = "Audiobooks"
var description : String { return self.rawValue }

}
We have now made Filter formally adopt the CustomStringConvertible protocol. The
CustomStringConvertible protocol requires that we implement a description String
property; we do implement a description String property, so our code compiles. Now
we can hand a Filter to print, or interpolate it into a string, and its description will
appear automatically:

let type = Filter.Albums

print(type) // Albums

print("It is \(type)") // It is Albums
Behold the power of protocols. You can give any object type the power of string con-
version in exactly the same way.

Note that a type can adopt more than one protocol! For example, the built-in Double
type adopts CustomStringConvertible, Hashable, Comparable, and other built-in pro-
tocols. To declare adoption of multiple protocols, list each one after the first protocol
in the declaration, separated by comma. For example:

struct MyType : CustomStringConvertible, Hashable, Comparable {
/] ...
}

(Of course, that code won’t compile unless I also declare the required methods in My-
Type, so that MyType really does adopt those protocols.)

Protocol Type Testing and Casting

A protocol is a type, and an adopter of a protocol is its subtype. Polymorphism applies.
Therefore, the operators for mediating between an object’s declared type and its real

176 | Chapter 4: Object Types

type work when the object is declared as a protocol type. For example, given a protocol
Flier that is adopted by both Bird and Bee, we can use the is operator to test whether a
particular Flier is in fact a Bird:

func isBird(f:Flier) -> Bool {
return f is Bird

}

Similarly, as! and as? can be used to cast an object declared as a protocol type down to
its actual type. This is important to be able to do, because the adopting object will typ-
ically be able to receive messages that the protocol can’t receive. For example, let’s say
that a Bird can get a worm:

struct Bird : Flier {
func fly() {

}
func getWorm() {

}
}
A Bird can fly qua Flier, but it can getWorm only qua Bird. Thus, you can't tell just any
old Flier to get a worm:

func tellGetWorm(f:Flier) {
f.getWorm() // compile error

}
But if this Flier is a Bird, clearly it can get a worm. That is exactly what casting is all
about:

func tellGetWorm(f:Flier) {
(f as? Bird)?.getWorm()
}

Declaring a Protocol

Protocol declaration can take place only at the top level of a file. To declare a protocol,
use the keyword protocol followed by the name of the protocol, which, being an object
type, should start with a capital letter. Then come curly braces which may contain the
following:

Properties
A property declaration in a protocol consists of var (not let), the property name,
a colon, its type, and curly braces containing the word get or the words get set.
In the former case, the adopter’s implementation of this property can be writable,
while in the latter case, it must be: the adopter may not implement a get set
property as a read-only computed property or as a constant (let) stored property.

To declare a static/class property, precede it with the keyword static. A class
adopter is free to implement this as a class property.

Protocols | 177

Methods

A method declaration in a protocol is a function declaration without a function
body — that is, it has no curly braces and thus it has no code. Any object function
type is legal, including init and subscript. (The syntax for declaring a subscript
in a protocol is the same as the syntax for declaring a subscript in an object type,
except that there will be no function bodies, so the curly braces, like those of a
property declaration in a protocol, will contain get or get set.)

To declarea static/class method, precede it with the keyword static. A classadopter
is free to implement this as a class method.

If a method, as implemented by an enum or struct, might need to be declared
mutating, the protocol must specify the mutating designation; the adopter cannot
add mutating if the protocol lacks it. However, the adopter may omit mutating if
the protocol has it.

Type alias

A protocol can introduce a local synonym for a type that it mentions in its decla-
rations by declaring a type alias. For example, typealias Time = Double allows
the Time type to be referred to inside the protocol’s curly braces; elsewhere (such
as in an adopting object type), the Time type doesn’t exist, but the Double type is a
match for it.

There are other ways to use a type alias in a protocol, which T'll discuss later.

Protocol adoption

A protocol can itself adopt one or more protocols; the syntax is just as you would
expect — a colon after the protocol’s name in the declaration, followed by a comma-
separated list of the protocols it adopts. In effect, this gives you a way to create an
entire secondary hierarchy of types! The Swift headers make heavy use of this.

A protocol that adopts another protocol may repeat the contents of the adopted
protocol’s curly braces, for clarity; but it doesn’t have to, as this repetition is implicit.
An object type that adopts such a protocol must satisfy the requirements of this
protocol and all protocols that the protocol adopts.

If the only purpose of a protocol would be to combine other protocols by adopt-
ing all of them, without adding any new requirements, and if this combination is
used in just one place in your code, you can avoid formally declaring the protocol
in the first place by creating the combining protocol on the fly. To do so, use a type
name protocol<...,...>, where the contents of the angle brackets is a comma-
separated list of protocols.

178

| Chapter 4: Object Types

Optional Protocol Members

In Objective-C, a protocol member can be declared optional, meaning that this member
doesn’'t have to be implemented by the adopter, but it may be. For compatibility with
Objective-C, Swift allows optional protocol members, but only in a protocol explicitly
bridged to Objective-C by preceding its declaration with the @objc attribute. In such a
protocol, an optional member — meaning a method or property — is declared by pre-
ceding its declaration with the keyword optional:

@objc protocol Flier {
optional var song : String {get}
optional func sing()

}

Only a class can adopt such a protocol, and this feature will work only if the class is an
NSObject subclass, or the optional member is marked with the @objc attribute:

class Bird : Flier {
@objc func sing() {
print("tweet")
}
}

An optional member is not guaranteed to be implemented by the adopter, so Swift
doesn'tknow whether it’s safe to send a Flier either the song message or the sing message.

In the case of an optional property like song, Swift solves the problem by wrapping its
value in an Optional. If the Flier adopter doesn’t implement the property, the result is
nil and no harm done:

let f : Flier = Bird()
let s = f.song // s is an Optional wrapping a String

wrapped Optional. For example, if the value of the optional property song were a

ﬁ This is one of those rare situations where you can wind up with a double-
String?, then fetching its value from a Flier would yield a String??.

legal syntax for setting such a property in an object of that protocol type. For
example, if f is a Flier and song is declared {get set}, you can't set f.song. [regard
this as a bug in the language.

% An optional property can be declared {get set} by its protocol, but there is no

In the case of an optional method like sing, things are more elaborate. If the method is
not implemented, we must not be permitted to call it in the first place. To handle this
situation, the method itselfis automatically typed as an Optional version of its declared

Protocols | 179

type. To send the sing message to a Flier, therefore, you must unwrap it. The safe ap-
proach is to unwrap it optionally, with a question mark:

let f : Flier = Bird()

f.sing?()
That code compiles — and it also runs safely. The effect is to send the sing message to
f only if this Flier adopter implements sing. If this Flier adopter doesn’t implement
sing, nothing happens. You could have force-unwrapped the call — f.sing!() — but
then your app would crash if the adopter doesn’t implement sing.

If an optional method returns a value, that value is wrapped in an Optional as well. For
example:
@objc protocol Flier {
optional var song : String {get}
optional func sing() -> String

}
If we now call sing?() on a Flier, the result is an Optional wrapping a String:

let f : Flier = Bird()
let s = f.sing?() // s is an Optional wrapping a String

If we force-unwrap the call — sing!() — the result is either a String (if the adopter
implements sing) or a crash (if it doesn’t).

Many Cocoa protocols have optional members. For example, your iOS app will have an
app delegate class that adopts the UIApplicationDelegate protocol; this protocol has
many methods, all of them optional. That fact, however, will have no effect on how you
implement those methods; you don’t need to mark them in any special way. Your app
delegate class is already a subclass of NSObject, so this feature just works. Either you
implementa method or you don’t. Similarly, you will often make your UIViewController
subclass adopt a Cocoa delegate protocol with optional members; again, this is an
NSObject subclass, so you'll just implement the methods you want to implement, with
no special marking. (I'll talk more about Cocoa protocols in Chapter 10, and about
delegate protocols in Chapter 11.)

Class Protocol

A protocol declared with the keyword class after the colon after its name is a class
protocol, meaning that it can be adopted only by class object types:

protocol SecondViewControllerDelegate : class {
func acceptData(data:AnyObject!)
}

(There is no need to say class if this protocol is already marked @objc; the @objc
attribute implies that this is also a class protocol.)

180 | Chapter 4: Object Types

A typical reason for declaring a class protocol is to take advantage of special memory
management features that apply only to classes. I haven't discussed memory manage-
ment yet, but I'll continue the example anyway (and I'll repeat it when I do talk about
memory management, in Chapter 5):

class SecondViewController : UIViewController {
weak var delegate : SecondViewControllerDelegate?

/...

}
The keyword weak marks the delegate property as having special memory manage-
ment. Only a class instance can participate in this kind of special memory management.
The delegate property is typed as a protocol, and a protocol might be adopted by a
struct or an enum type. So to satisfy the compiler that this object will in fact be a class
instance, and not a struct or enum instance, the protocol is declared as a class protocol.

Implicitly Required Initializers

Suppose that a protocol declares an initializer. And suppose that a class adopts this
protocol. By the terms of this protocol, this class and any subclass it may ever have must
implement this initializer. Therefore, the class must not only implement the initializer,
butitmustalso markitas required. Aninitializer declared ina protocolis thus implicitly
required, and the class is forced to make that requirement explicit.

Consider this simple example, which won't compile:

protocol Flier {
init()
}
class Bird : Flier {
init() {} // compile error

}
That code generates an elaborate but perfectly informative compile error message: “In-
itializer requirement init() can only be satisfied by a required initializer in non-final
class Bird” To compile our code, we must designate our initializer as required:
protocol Flier {
init()
}
class Bird : Flier {
required init() {3}
}
The alternative, as the compile error message informs us, would be to mark the Bird
class as final. This would mean that it cannot have any subclasses — thus guaranteeing
that the problem will never arise in the first place. If Bird were marked final, there
would be no need to mark its init as required.

Protocols | 181

In the above code, Bird is not marked as final, and its init is marked as required.
This, as I've already explained, means in turn that any subclass of Bird that implements
any designated initializers — and thus loses initializer inheritance — must implement
the required initializer and mark it required as well.

That fact is responsible for a strange and annoying feature of real-life iOS programming
with Swift that I mentioned earlier in this chapter. Lets say you subclass the built-in
Cocoa class UIViewController — something that you are extremely likely to do. And
let’s say you give your subclass an initializer — something that you are also extremely
likely to do:

class ViewController: UIViewController {
init() {
super.init(nibName: "ViewController", bundle: nil)
}
}

That code won't compile. The compile error says: “required initializer init(coder:)
must be provided by subclass of UIViewController”

We are now in a position to understand what’s going on. It turns out that UIView-
Controller adopts a protocol, NSCoding. And this protocol requires an initializer
init(coder:). None of that is your doing; UIViewController and NSCoding are de-
clared by Cocoa, not by you. But that doesn’t matter! This is the same situation I was
just describing. Your UIViewController subclass must either inherit init(coder:) or
must explicitly implement it and mark it required. Well, your subclass has implemented
a designated initializer of its own — thus cutting off initializer inheritance. Therefore
it must implement init(coder:) and mark it required.

But that makes no sense if you are not expecting init(coder:) ever to be called on your
UlIViewController subclass. You are being forced to write an initializer for which you
can provide no meaningful functionality! Fortunately, Xcode’s Fix-It feature will offer
to write the initializer for you, like this:

required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")

}

That code satisfies the compiler. (I'll explain in Chapter 5 why it’s a legal initializer even
though it doesn’t fulfill an initializer’s contract.) It also deliberately crashes if it is ever
called.

If you do have functionality for this initializer, you will delete the fatalError line and
insert your own functionality in its place. A minimum meaningful implementation
would be super.init(coder:aDecoder), but of course if your class has properties that
need initialization, you will need to initialize them first.

182 | Chapter 4: Object Types

Not only UIViewController but lots of built-in Cocoa classes adopt NSCoding. You will
encounter this problem if you subclass any of those classes and implement your own
initializer. It’s just something you’ll have to get used to.

Literal Convertibles

One of the wonderful things about Swift is that so many of its features, rather than being
built-in and accomplished by magic, are implemented in Swift and are exposed to view
in the Swift header. Literals are a case in point. The reason you can say 5 to make an Int
whose value is 5, instead of formally initializing Int by saying Int(5), is not because of
magic (or at least, not entirely because of magic). It's because Int adopts a protocol,
IntegerLiteralConvertible. Not only Int literals, but all literals work this way. The fol-
lowing literal convertible protocols are declared in the Swift header:

o NilLiteralConvertible

» BooleanLiteralConvertible

« IntegerLiteralConvertible

o FloatLiteralConvertible

o StringLiteralConvertible

» ExtendedGraphemeClusterLiteral Convertible
o UnicodeScalarLiteral Convertible

o ArrayLiteralConvertible

« DictionaryLiteralConvertible

Your own object type can adopt a literal convertible protocol as well. This means that a
literal can appear where an instance of your object type is expected! For example, here
we declare a Nest type that contains some number of eggs (its eggCount):

struct Nest : IntegerLiteralConvertible {
var eggCount : Int = 0
init() {}
init(integerLiteral val: Int) {
self.eggCount = val

}
}
Because Nest adopts IntegerLiteralConvertible, we can pass an Int where a Nest is ex-
pected, and our init(integerLiteral:) will be called automatically, causing a new
Nest object with the specified eggCount to come into existence at that moment:

func reportEggs(nest:Nest) {
print("this nest contains \(nest.eggCount) eggs")

}
reportEggs(4) // this nest contains 4 eggs

Protocols | 183

Generics

A generic is a sort of placeholder for a type, into which an actual type will be slotted
later. This is useful because of Swift’s strict typing. Without sacrificing that strict typing,
there are situations where you can’'t or don’t want to specify too precisely in a certain
region of your code what the exact type of something is going to be.

It is important to understand that generics do not in any way relax Swift’s strict typing.
In particular, they do not postpone resolution of a type until runtime. When you use a
generic, your code will still specify its real type; that real type is known with complete
specificity at compile time! The particular region of your code where the type is expect-
ed uses a generic so that it doesn’t have to specify the type fully, but at the point where
that code is used by other code, the type is specified. The placeholder is generic, but it
is resolved to an actual specific type whenever the generic is used.

An Optional is a good example. Any type of value can be wrapped up in an Optional.
Yet you are never in any doubt as to what type is wrapped up in a particular Optional.
How can this be? It's because Optional is a generic type. Here’s how an Optional works.

I have already said that an Optional is an enum, with two cases: .None and . Some. If an
Optional’s case is .Some, it has an associated value — the value that is wrapped by this
Optional. But what is the type of that associated value? On the one hand, one wants to
say that it can be any type; that, after all, is why anything can be wrapped up in an
Optional. On the other hand, any given Optional that wraps a value wraps a value of
some specific type. When you unwrap an Optional, that unwrapped value needs to be
typed as what it is, so that it can be sent messages appropriate for that type.

The solution to this sort of problem is a Swift generic. The declaration for the Optional
enum in the Swift header starts like this:

enum Optional<Wrapped> {
/...

}
That syntax means: “In the course of this declaration, 'm going to be using a made-up
type — a type placeholder — that I call Wrapped. It’s a real and individual type, but I'm
not going to say more about it right now. All you need to know is that whenever I say
Wrapped, I mean this one particular type. When an actual Optional is created, it will
be perfectly clear what type Wrapped stands for, and then, wherever I say Wrapped, you
should substitute the type that it stands for.”

Let’s look at more of the Optional declaration:

184 | Chapter 4: Object Types

enum Optional<Wrapped> {
case None
case Some(Wrapped)
init(_ some: Wrapped)
/...
}
Having declared that Wrapped is a placeholder, we proceed to use it. Theres a
case .None. There’s also a case . Some, which has an associated value — of type Wrapped.
We also have an initializer, which takes a parameter — of type Wrapped. Thus, the type
with which we are initialized — whatever type that may be — is type Wrapped, and thus
is the type of value that is associated with the .Some case.

It is this identity between the type of the initializer parameter and the type of
the . Some associated value that allows the latter to be resolved. In the declaration of the
Optional enum, Wrapped is a placeholder. But in real life, when an actual Optional is
created, it will be initialized with an actual value of some definite type. Usually, we’ll use
the question-mark syntactic sugar (type String?) and the initializer will be called for
us behind the scenes, but let’s call the initializer explicitly for the sake of clarity:

let s = Optional("howdy")

That code resolves the type of Wrapped for this particular Optional instance! Obviously,
"howdy" is a String. As a result, the compiler knows that for this particular
Optional<Wrapped>, Wrapped is String. Under the hood, wherever Wrapped appears
in the declaration of the Optional enum, the compiler substitutes String. Thus, the
declaration for the particular Optional referred to by the variable s looks, in the com-
piler’s mind, like this:
enum Optional<String> {
case None
case Some(String)
init(_ some: String)
/...
}
That s the pseudocode declaration of an Optional whose Wrapped placeholder has been
replaced everywhere with the String type. We can summarize this by saying that s is an
Optional<String>. In fact, that is legal syntax! We can create the same Optional like
this:

let s : Optional<String> = "howdy"

A great many of the built-in Swift types involve generics. In fact, this feature of the
language seems to be designed with the Swift types in mind; generics exist exactly so
that the Swift types can do what they need to do.

Generics | 185

Generic Declarations

Here’s a list of the places where generics, in one form or another, can be declared in
Swift:

Generic protocol with Self
In a protocol, use of the keyword Self (note the capitalization) turns the protocol
into a generic. Self is a placeholder meaning the type of the adopter. For example,
here’s a Flier protocol that declares a method that takes a Self parameter:

protocol Flier {
func flockTogetherWith(f:Self)
}

That means that if the Bird object type were to adopt the Flier protocol, its imple-
mentation of flockTogetherWith would need to declare its f parameter as a Bird.

Generic protocol with empty type alias
A protocol can declare a type alias without defining what the type alias stands for
— that is, the typealias statement doesn’'t include an equal sign. This turns the
protocol into a generic; the alias name, called an associated type, is a placeholder.
For example:

protocol Flier {
typealias Other
func flockTogetherWith(f:0ther)
func mateWith(f:0ther)

}

An adopter will declare some particular type where the generic uses the type alias
name, thus resolving the placeholder. If the Bird struct adopts the Flier protocol
and declares the f parameter of flockTogetherWith as a Bird, that declaration
resolves Other to Bird for this particular adopter — and now Bird must declare the
f parameter for mateWith as a Bird as well:

struct Bird : Flier {
func flockTogetherWith(f:Bird) {3}
func mateWith(f:Bird) {}

This form of generic protocol is ultimately the same as the previous form; where
I've written f:0ther, Swift understands this to mean f:Self.Other, and in fact it is
legal (and possibly clearer) to write that.

186 | Chapter 4: Object Types

Generic functions
A function declaration can use a generic placeholder type for any of its parameters,
for its return type, and within its body. Declare the placeholder name in angle
brackets after the function name:

func takeAndReturnSameThing<T> (t:T) -> T {
return t

}

The caller will use some particular type where the placeholder appears in the func-
tion declaration, thus resolving the placeholder:

let thing = takeAndReturnSameThing("howdy")

Here, the type of the argument "howdy" used in the call resolves T to String; there-
fore this call to takeAndReturnSameThing will also return a String, and the variable
capturing the result, thing, is inferred to String as well.

Generic object types
An object type declaration can use a generic placeholder type anywhere within its
curly braces. Declare the placeholder name in angle brackets after the object type
name:

struct HolderOfTwoSameThings<T> {
var firstThing : T
var secondThing : T
init(thingOne:T, thingTwo:T) {
self.firstThing = thingOne
self.secondThing = thingTwo

}

A user of this object type will use some particular type where the placeholder ap-
pears in the object type declaration, thus resolving the placeholder:

let holder = HolderOfTwoSameThings(thingOne:"howdy", thingTwo:"getLost")

Here, the type of the thingOne argument, "howdy", used in the initializer call, re-
solves T to String; therefore thingTwo must also be a String, and the properties
firstThing and secondThing are Strings as well.

For generic functions and object types, which use the angle bracket syntax, the angle
brackets may contain multiple placeholder names, separated by comma. For example:

func flockTwoTogether<T, U>(f1:T, _ f2:U) {}

The two parameters of flockTwoTogether can now be resolved to two different types
(though they do not have to be different).

Generics | 187

Type Constraints

All our examples so far have permitted any type to be substituted for the placeholder.
Alternatively, you can limit the types that are eligible to be used for resolving a particular
placeholder. This is called a type constraint. The simplest form of type constraint is to
put a colon and a type name after the placeholder’s name when it first appears. The type
name after the colon can be a class name or a protocol name.

For example, let’s return to our Flier and its flockTogetherWith function. Suppose we
want to say that the parameter of flockTogetherWith should be declared by the adopter
as a type that adopts Flier. You would not do that by declaring the type of that parameter
as Flier in the protocol:

protocol Flier {
func flockTogetherWith(f:Flier)
}

That code says: You can’'t adopt this protocol unless you declare a function flock-
TogetherWith whose f parameter is declared as Flier:

struct Bird : Flier {
func flockTogetherWith(f:Flier) {}
}

That isn’t what we want to say! We want to say that Bird should be able to adopt Flier
while declaring f as being of some Flier adopter type, such as Bird. The way to say that
is to use a placeholder constrained as a Flier. For example, we could do it like this:

protocol Flier {

typealias Other : Flier

func flockTogetherWith(f:0ther)
}

Unfortunately, that’s illegal: a protocol can’t use itself as a type constraint. The work-
around is to declare an extra protocol that Flier itself will adopt, and constrain Other
to that protocol:

protocol Superflier {}

protocol Flier : Superflier {
typealias Other : Superflier
func flockTogetherWith(f:0ther)

}

Now Bird can be a legal adopter like this:

struct Bird : Flier {
func flockTogetherWith(f:Bird) {}
}

In a generic function or a generic object type, the type constraint appears in the angle
brackets. For example:

188 | Chapter 4: Object Types

func flockTwoTogether<T:Flier>(f1:T, _ f2:T) {}

Now you can't call flockTwoTogether with two String parameters, because a String is
not a Flier. Moreover, if Bird and Insect both adopt Flier, flockTwoTogether can be
called with two Bird parameters or with two Insect parameters — but not with a Bird
and an Insect, because T is just one placeholder, signifying one Flier adopter type.

A type constraint on a placeholder is often useful as a way of assuring the compiler that
some message can be sent to an instance of the placeholder type. For example, let’s say
we want to implement a function myMin that returns the smallest from a list of the same
type. Here’s a promising implementation as a generic function, but there’s one problem
— it doesn’t compile:

func myMin<T>(things:T...) -> T {
var minimum = things[0]
for ix in 1..<things.count {
if things[ix] < minimum { // compile error
minimum = things[ix]
}
}

return minimum

}

The problem is the comparison things[ix] < minimum. How does the compiler know
that the type T, the type of things[ix] and minimum, will be resolved to a type that can
in fact be compared using the less-than operator in this way? It doesn’t, and that’s exactly
why it rejects that code. The solution is to promise the compiler that the resolved type
of T will in fact work with the less-than operator. The way to do that, it turns out, is to
constrain T to Swifts built-in Comparable protocol; adoption of the Comparable pro-
tocol exactly guarantees that the adopter does work with the less-than operator:

func myMin<T:Comparable>(things:T...) -> T {

Now myMin compiles, because it cannot be called except by resolving T to an object type
that adopts Comparable and hence can be compared with the less-than operator. Nat-
urally, built-in object types that you think should be comparable, such as Int, Double,
String, and Character, do in fact adopt the Comparable protocol! If you look in the Swift
headers, you'll find that the built-in min global function is declared in just this way, and
for just this reason.

A generic protocol (a protocol whose declaration mentions Self or has an associated
type) can be used as a type only in a generic, as a type constraint. This won't compile:

protocol Flier {
typealias Other
func fly()

Generics | 189

f2:Flier) { // compile error

func flockTwoTogether(f1:Flier,
f1.fly()
f2.fly()

}

To use a generic Flier protocol as a type, we must write a generic and use Flier as a type
constraint. For example:

protocol Flier {
typealias Other

func fly()

}

func flockTwoTogether<T1:Flier, T2:Flier>(f1:T1, _ f2:72) {
f1.fly()
f2.fly()

}

Explicit Specialization

In the examples so far, the user of a generic resolves the placeholder’s type through
inference. But there’s another way to perform resolution: the user can resolve the type
manually. This is called explicit specialization. In some situations, explicit specialization
is mandatory — namely, if the placeholder type cannot be resolved through inference.
There are two forms of explicit specialization:

Generic protocol with associated type
The adopter of a protocol can resolve the protocol’s associated type manually
through a typealias declaration using the protocol’s alias name with an explicit
type assignment. For example:

protocol Flier {
typealias Other

}
struct Bird : Flier {
typealias Other = String

}

Generic object type
The user of a generic object type can resolve the object’s placeholder type(s) man-
ually using the same angle bracket syntax used to declare the generic in the first
place, with actual type names in the angle brackets. For example:

class Dog<T> {
var name : T?

}
let d = Dog<String>()

(That explains the Optional<String>type used earlier in this chapter and in Chapter 3.)

190 | Chapter 4: Object Types

You cannot explicitly specialize a generic function. You can, however, declare a generic
type with a nongeneric function that uses the generic type’s placeholder; explicit spe-
cialization of the generic type resolves the placeholder, and thus resolves the function:

protocol Flier {

init()

}

struct Bird : Flier {
init() {}

}

struct FlierMaker<T:Flier> {
static func makeFlier() -> T {
return T()
}

}
let f = FlierMaker<Bird>.makeFlier() // returns a Bird

When a class is generic, you can subclass it, provided you resolve the generic. (This is

new in Swift 2.0.) You can do this either through a matching generic subclass or by
resolving the superclass generic explicitly. For example, here’s a generic Dog:

class Dog<T> {
var name : T?

}

You can subclass it as a generic whose placeholder matches that of the superclass:
class NoisyDog<T> : Dog<T> {}

That’s legal because the resolution of the NoisyDog placeholder T will resolve the Dog
placeholder T. The alternative is to subclass an explicitly specialized Dog:

class NoisyDog : Dog<String> {}

Associated Type Chains

When a generic placeholder is constrained to a generic protocol with an associated type,
the associated type name can be chained with dot-notation to the placeholder name to
specify that type.

Here’s an example. Imagine that in a game program, soldiers and archers are enemies
of one another. I'll express this by subsuming a Soldier struct and an Archer struct under
a Fighter protocol that has an Enemy associated type, which is itself constrained to be
a Fighter (again, I'll need an extra protocol that Fighter adopts):

protocol Superfighter {}

protocol Fighter : Superfighter {

typealias Enemy : Superfighter
}

I'll resolve that associated type manually for both structs:

Generics | 191

struct Soldier : Fighter {
typealias Enemy = Archer

}
struct Archer : Fighter {
typealias Enemy = Soldier

}

Now I'll create a generic struct to express the opposing camps of these fighters:

struct Camp<T:Fighter> {
}

Now suppose that a camp may contain a spy from the opposing camp. What is the type
of that spy? Well, if this is a Soldier camp, it’s an Archer; and if it’s an Archer camp, it’s
a Soldier. More generally, since T is a Fighter, it’s the type of the Enemy of this adopter
of Fighter. I can express that neatly by chaining the associated type name to the place-
holder name:

struct Camp<T:Fighter> {
var spy : T.Enemy?
}
Theresultis thatif, for a particular Camp, T is resolved to Soldier, T. Enemy means Fighter
— and vice versa. We have created a correct and inviolable rule for the type thata Camp’s
spy must be. This won’t compile:

var ¢
c.spy

Camp<Soldier>()
Soldier() // compile error

We've tried to assign an object of the wrong type to this Camp’s spy property. But this
does compile:

var ¢ = Camp<Soldier>()
c.spy = Archer()

Longer chains of associated type names are possible — in particular, when a generic
protocol has an associated type which is itself constrained to a generic protocol with an
associated type.

For example, let’s give each type of Fighter a characteristic weapon: a soldier has a sword,
while an archer has a bow. I'll make a Sword struct and a Bow struct, and I'll unite them
under a Wieldable protocol:

protocol Wieldable {

}

struct Sword : Wieldable {
}

struct Bow : Wieldable {

}

I'll add a Weapon associated type to Fighter, which is constrained to be a Wieldable, and
once again I'll resolve it manually for each type of Fighter:

192 | Chapter4: Object Types

protocol Superfighter {
typealias Weapon : Wieldable

}
protocol Fighter : Superfighter {
typealias Enemy : Superfighter

}

struct Soldier : Fighter {
typealias Weapon = Sword
typealias Enemy = Archer

}

struct Archer : Fighter {
typealias Weapon = Bow
typealias Enemy = Soldier

}

Now let’s say that every Fighter has the ability to steal his enemy’s weapon. T'll give the
Fighter generic protocol a steal(weapon:from:) method. How can the Fighter generic
protocol express the parameter types in a way that causes its adopter to declare this
method with the proper types?

The from: parameter type is this Fighter’s Enemy. We already know how to express that:
it’s the placeholder plus dot-notation with the associated type name. Here, the place-
holder is the adopter of this protocol — namely, Self. So the from: parameter type is
Self.Enemy. And what about the weapon: parameter type? That’s the Weapon of that
Enemy! So the weapon: parameter type is Self.Enemy.Weapon:

protocol Fighter : Superfighter {
typealias Enemy : Superfighter
func steal(weapon:Self.Enemy.Weapon, from:Self.Enemy)

}

(That code will compile, and will mean the same thing, if we omit Self. But Self would
still be the implicit start of the chain, and I think it makes the meaning of the code
clearer.)

The result is that the following declarations for Soldier and Archer correctly adopt the
Fighter protocol, and the compiler approves:

struct Soldier : Fighter {
typealias Weapon = Sword
typealias Enemy = Archer
func steal(weapon:Bow, from:Archer) {
}
}
struct Archer : Fighter {
typealias Weapon = Bow
typealias Enemy = Soldier
func steal (weapon:Sword, from:Soldier) {

}

Generics | 193

The example is artificial (though, I hope, sufficiently vivid); but the concept is not. The
Swift headers make heavy use of associated type chains; the associated type chain
Generator.Element is particularly common, because it expresses the type of the element
of a sequence. The SequenceType generic protocol has an associated type Generator,
which is constrained to be an adopter of the generic GeneratorType protocol, which in
turn has an associated type Element.

Additional Constraints

A simple type constraint limits the types eligible for resolving a placeholder to a single
type. Sometimes, you want to limit the eligible resolving types still further: you want
additional constraints.

In a generic protocol, the colon in a type alias constraint is effectively the same as the
colon that appears in a type declaration. Thus, it can be followed by multiple protocols,
or by a superclass and multiple protocols:

class Dog {

}

class FlyingDog : Dog, Flier {
}

protocol Flier {

}
protocol Walker {

}

protocol Generic {
typealias T : Flier, Walker
typealias U : Dog, Flier

}
In the Generic protocol, the associated type T can be resolved only as a type that adopts

the Flier protocol and the Walker protocol, and the associated type U can be resolved
only as a type that is a Dog (or a subclass of Dog) and that adopts the Flier protocol.

In the angle brackets of a generic function or object type, that syntax is illegal; instead,
you can append a where clause, consisting of one or more comma-separated additional
constraints on a declared placeholder:

func flyAndWalk<T where T:Flier, T:Walker> (f:T) {}

func flyAndWalk2<T where T:Flier, T:Dog> (f:T) {}
A where clause can also impose additional constraints on the associated type of a generic
protocol that already constrains a placeholder, using an associated type chain (described
in the preceding section). This pseudocode shows what I mean; I've omitted the content
of the where clause, to focus on what the where clause will be constraining:

194 | Chapter 4: Object Types

protocol Flier {
typealias Other

}
func flockTogether<T:Flier where T.Other /*2?22*/ > (f:T) {}

As you can see, the placeholder T is already constrained to be a Flier. Flier is itself a
generic protocol, with an associated type Other. Thus, whatever type resolves T will
resolve Other. The where clause constrains further the types eligible to resolve T, by
restricting the types eligible to resolve Other.

So what sort of restriction are we allowed to impose on our associated type chain? One
possibility is the same sort of restriction as in the preceding example — a colon followed
bya protocol that it mustadopt, or by a class that it must descend from. Here’san example
with a protocol:

protocol Flier {
typealias Other

}
struct Bird : Flier {

typealias Other = String
}

struct Insect : Flier {
typealias Other = Bird

}
func flockTogether<T:Flier where T.Other:Equatable> (f:T) {}

Both Bird and Insect adopt Flier, but they are not both eligible as the argument in a call
to the flockTogether function. The flockTogether function can be called with a Bird
argument, because a Bird’s Other associated type is resolved to String, which adopts the
built-in Equatable protocol. But flockTogether can’t be called with an Insect argument,
because an Insect’s Other associated type is resolved to Bird, which doesn’t adopt the
Equatable protocol:

flockTogether(Bird()) // okay
flockTogether(Insect()) // compile error

Here’s an example with a class:

protocol Flier {
typealias Other
}
class Dog {
}
class NoisyDog : Dog {
}
struct Pig : Flier {
typealias Other = NoisyDog // or Dog

}
func flockTogether<T:Flier where T.Other:Dog> (f:T) {}

Generics | 195

The flockTogether function can be called with a Pig argument, because Pig adopts
Flier and resolves Other to a Dog or a subclass of Dog:

flockTogether(Pig()) // okay

Instead of a colon, we can use an equality operator == followed by a type. The type at
the end of the associated type chain must then be this exact type — not merely an adopter
or subclass. For example:

protocol Flier {
typealias Other

}

protocol Walker {

}

struct Kiwi : Walker {
}

struct Bird : Flier {
typealias Other = Kiwil
}

struct Insect : Flier {
typealias Other = Walker

}
func flockTogether<T:Flier where T.Other == Walker> (f:T) {}

The flockTogether function can be called with an Insect argument, because Insect
adopts Flier and resolves Other to Walker. But it can’t be called with a Bird argument.
Bird adopts Flier, and it resolves Other to an adopter of Walker, namely Kiwi — but that
isn’t good enough to satisfy the == restriction.

The same sort of thing would be true if we had said == Dog in the previous example. A
Pig argument would no longer be acceptable if Pig resolves Other to NoisyDog; Pig
must resolve Other to Dog itself in order to be acceptable as an argument.

The type on the right side of the == operator can itself be an associated type chain. The
resolved types at the ends of the two chains must then be identical. For example:

protocol Flier {
typealias Other

}

struct Bird : Flier {
typealias Other = String

}

struct Insect : Flier {
typealias Other = Int
}
func flockTwoTogether<T:Flier, U:Flier where T.Other == U.Other>
(f1:1, _ f2:U0) {}
The flockTwoTogether function can be called with a Bird and a Bird, and it can be
called with an Insect and an Insect, butit can’t be called with an Insect and a Bird, because
they don’t resolve the Other associated type to the same type.

196 | Chapter4: Object Types

The Swift header makes extensive use of where clauses with an == operator, especially
as a way of restricting a sequence type. For example, the String appendContentsOf
method is declared twice, like this:

mutating func appendContentsOf(other: String)
mutating func appendContentsOf<S : SequenceType
where S.Generator.Element == Character>(newElements: S)
I mentioned in Chapter 3 that appendContentsOf can concatenate a String to a String.
But that’s not the only kind of thing that appendContentsOf can concatenate to a String!
A character sequence is legal too:

var s = "hello"
s.appendContentsOf(" world".characters) // "hello world"

And so is an array of Character:

s.appendContentsOf ([as Character])

Those areboth sequences of characters — and the genericin the second appendContents-
0f method declaration is how you specify that. It's a sequence, because it’s a type that
adopts the SequenceType protocol. But its not just any old sequence; its
Generator.Element associated type chain must be resolved to Character. The
Generator . Element chain, as I mentioned earlier, is Swift’s way of expressing the notion
of a sequence’s element type.

The Array struct has an appendContentsOf method too, but it’s declared a little
differently:
mutating func appendContentsOf<S : SequenceType
where S.Generator.Element == Element>(newElements: S)

A sequence must be of just one type. If a sequence consists of String elements, you can
add more elements to it, but only String elements; you can't add a sequence of Int ele-
ments to a sequence of String elements. An array is a sequence; it is a generic whose
Element placeholder is the type of its elements. So the Array struct uses the == operator
in its appendContentsOf method declaration to enforce this rule: the element type of
the argument sequence must be the same as the element type of the existing array.

Extensions

An extension is a way of injecting your own code into an object type that has already
been declared elsewhere; you are extending an existing object type. You can extend your
own object types; you can also extend one of Swift’s object types or one of Cocoa’s object
types, in which case you are adding functionality to a type that doesn’t belong to you!

Extension declaration can take place onlyat the top level of a file. To declare an extension,
put the keyword extension followed by the name of an existing object type, then op-

Extensions | 197

tionally a colon plus the names of any protocols you want to add to the list of those
adopted by this type, and finally curly braces containing the usual things that go inside
an object type declaration — with the following restrictions:

 An extension can't override an existing member (but it can overload an existing

method).

o An extension can’t declare a stored property (but it can declare a computed prop-
erty).

o An extension of a class can’t declare a designated initializer or a deinitializer (but
it can declare a convenience initializer).

Extending Object Types

In my real programming life, I sometimes extend a built-in Swift or Cocoa type just to
encapsulate some missing functionality by expressing it as a property or method. Here
are some examples from actual apps.

In a card game, I need to shuffle the deck, which is stored in an array. I extend Swift’s
built-in Array type to give it a shuffle method:

extension Array {
mutating func shuffle () {
for 1 in (0..<self.count).reverse() {
let ix1 = 1
let ix2 = Int(arc4random_uniform(UInt32(i+1)))
(self[ix1], self[ix2]) = (self[ix2], self[ix1])

}

Cocoa’s Core Graphics framework has many useful functions associated with the
CGRect struct, and Swift already extends CGRect to add some helpful properties and
methods; but there’s no shortcut for getting the center point (a CGPoint) of a CGRect,
something that in practice one very often needs. I extend CGRect to give it a center

property:

extension CGRect {
var center : CGPoint {
return CGPointMake(self.midX, self.midY)

}
}
An extension can declare a static or class method; since an object type is usually globally
available, this can often be an excellent way to slot a global function into an appropriate
namespace. For example, in one of my apps, I find myself frequently using a certain
color (a UIColor). Instead of creating that color repeatedly, it makes sense to encapsulate

198 | Chapter4: Object Types

the instructions for generating it in a global function. But instead of making that func-
tion completely global, I make it — appropriately enough — a class method of UIColor:

extension UIColor {
class func myGoldenColor() -> UIColor {
return self.init(red:1.000, green:0.894, blue:0.541, alpha:0.900)
}
}

Now I can use that color throughout my code simply by saying UIColor.myGolden-
Color(), completely parallel to built-in class methods such as UIColor.redColor().

Another good use of an extension is to make built-in Cocoa classes work with your
private data types. For example, in my Zotz app, I've defined an enum whose raw values
are the key strings to be used when archiving or unarchiving a property of a Card:

enum Archive : String {

case Color = "itsColor"
case Number = "itsNumber"
case Shape = "itsShape"

case Fill = "itsFill"
}
The only problem is that in order to use this enum when archiving, I have to take its
rawValue each time:

coder.encodeObject(sl, forKey:Archive.Color.rawValue)
coder.encodeObject(s2, forKey:Archive.Number.rawValue)
coder.encodeObject(s3, forKey:Archive.Shape.rawValue)
coder.encodeObject(s4, forKey:Archive.Fill.rawValue)

That’s just ugly. An elegant fix (suggested ina WWDC 2015 video) is to teach NSCoder,
the class of coder, what to do when the forKey: argument is an Archive instead of a
String. In an extension, I overload the encodeObject: forkKey: method:

extension NSCoder {
func encodeObject(objv: AnyObject?, forKey key: Archive) {
self.encodeObject(objv, forKey:key.rawValue)
}
}

In effect, I've moved the rawValue call out of my code and into NSCoder’s code. Now I
can archive a Card without saying rawvalue:

coder.encodeObject(s1, forKey:Archive.Color)
coder.encodeObject(s2, forKey:Archive.Number)
coder.encodeObject(s3, forKey:Archive.Shape)
coder.encodeObject(s4, forKey:Archive.Fill)

Extensions on one’s own object types can help to organize one’s code. A frequently used

convention is to add an extension for each protocol one’s object type needs to adopt,
like this:

Extensions | 199

class ViewController: UIViewController {
// ... UIViewController method overrides go here ...

}
extension ViewController : UIPopoverPresentationControllerDelegate {
// ... UIPopoverPresentationControllerDelegate methods go here ...

}

extension ViewController : UIToolbarDelegate {
// ... UIToolbarDelegate methods go here ...
}

An extension on your own object type is also a way to spread your definition of that
object type over multiple files, if you feel that several shorter files are better than one
long file.

When you extend a Swift struct, a curious thing happens with initializers: it becomes
possible to declare an initializer and keep the implicit initializers:

struct Digit {
var number : Int

}
extension Digit {
init() {
self.init(number:42)
}
}
That code means that you can instantiate a Digit by calling the explicitly declared ini-
tializer — Digit() — or by calling the implicit memberwise initializer —

Digit(number:7). Thus, the explicit declaration of an initializer through an extension
did not cause us to lose the implicit memberwise initializer, as would have happened if
we had declared the same initializer inside the original struct declaration.

Extending Protocols

New in Swift 2.0, you can extend a protocol. When you do, you can add methods and
properties to the protocol, just as for any object type. Unlike a protocol declaration,
these methods and properties are not mere requirements, to be fulfilled by the adopter
of the protocol; they are actual methods and properties, to be inherited by the adopter
of the protocol! For example:

protocol Flier {
}
extension Flier {
func fly() {
print("flap flap flap")

}
}
struct Bird : Flier {
}

200 | Chapter4: Object Types

Observe that Bird can now adopt Flier without implementing the fly method. Even if
we were to add func fly() as a requirement in the Flier protocol declaration, Bird
could still adopt Flier without implementing the fly method. That’s because the Flier
protocol extension supplies the fly method! Bird thus inherits an implementation of
fly:

let b = Bird()
b.fly() // flap flap flap

An adopter can implement a method inherited from a protocol extension, thus over-
riding that method:

struct Insect : Flier {
func fly() {
print("whirr")
}
}
let 1 = Insect()
i.fly() // whirr

But be warned: this kind of inheritance is not polymorphic. The adopter’s implementa-
tion is not an override; it is merely another implementation. The internal identity rule
does not apply; it matters how a reference is typed:

let f : Flier = Insect()
f.fly() // flap flap flap

Even though f is internally an Insect (as we can discover with the is operator), the fly
message is being sent to an object reference typed as a Flier, so it is Flier’s implementation
of the fly method that is called, not Insect’s implementation.

To get something that looks like polymorphic inheritance, we must declare fly as a
requirement in the original protocol:

protocol Flier {
func fly() // *
}
extension Flier {
func fly() {
print("flap flap flap")
}
}

struct Insect : Flier {
func fly() {
print("whirr")
}
}

Now an Insect maintains its internal integrity:

let f : Flier = Insect()
f.fly() // whirr

Extensions | 201

This difference makes sense, because adoption of a protocol does not (and must not)
introduce the overhead of dynamic dispatch. Therefore the compiler must make a static
decision. If the method is declared as a requirement in the original protocol, we are
guaranteed that the adopter implements it, and so we can (and do) call the adopter’s
implementation. But if the method exists only in the protocol extension, then deciding
whether the adopter reimplements it would require dynamic dispatch at runtime, and
that would defeat the nature of protocols — so the compiler messages the protocol
extension.

The chief benefit of protocol extensions is that they allow code to be moved to an ap-
propriate scope. Here’s an example from my Zotz app. I have four enums, each repre-
senting an attribute of a Card: Fill, Color, Shape, and Number. They all have an Int raw
value. I was tired of having to say rawvalue: every time I initialized one of these enums
from its raw value, so I gave each enum a delegating initializer with no externalized
parameter name, that calls the built-in init(rawvalue:) initializer:

enum Fill : Int {
case Empty =1
case Solid
case Hazy
init?(_ what:Int) {
self.init(rawvalue:what)
}
}
enum Color : Int {
case Colorl =1
case Color2
case Color3
init?(_ what:Int) {
self.init(rawvalue:what)
}
}

// ... and so on ...

I didn't like the repetition of my initializer declaration, but in Swift 1.2 and before, there
was nothing I could do about that. In Swift 2.0, I can move that declaration into a
protocol extension. It turns out that an enum with a raw value automatically adopts the
built-in generic RawRepresentable protocol, where the raw value type is a type alias
called RawValue. So I can shoehorn my initializer into the RawRepresentable protocol:

extension RawRepresentable {

init?(_ what:RawValue) {
self.init(rawvalue:what)

}

}

enum Fill : Int {
case Empty =1
case Solid
case Hazy

202 | Chapter4: Object Types

}

enum Color : Int {
case Colorl =1
case Color2
case Color3

}

// ... and so on ...
In the Swift standard library, protocol extensions have meant that many global functions
can be recast as methods. For example, in Swift 1.2 and earlier, enumerate (see Chap-
ter 3) was a global function:

func enumerate<Seq:SequenceType>(base:Seq) -> EnumerateSequence<Seq>

It was a global function because it had to be. This is a function that is to apply only to
sequences — adopters of the SequenceType protocol. Prior to Swift 2.0, how could that
be expressed? An enumerate method might have been declared as a requirement of the
SequenceType protocol, but this would mean merely that every adopter of Sequence-
Type must implement it; it wouldn’t provide an implementation. The only way to do
that was as a global function, with the sequence as parameter, using a generic constraint
to guard the door, so to speak, so that only a sequence could be passed as argument.

In Swift 2.0, however, enumerate is a method, declared in an extension to the Sequence-
Type protocol:

extension SequenceType {
func enumerate() -> EnumerateSequence<Self>

}
Now there’s no need for a generic constraint. There’s no need for a generic. There’s no
need for a parameter! This is a method of SequenceType; the sequence to be enumerated
is the sequence to which the enumerate message is sent.

That example could be greatly multiplied; a lot of Swift standard library global functions
were turned into methods in Swift 2.0. This change effectively transforms the feel of the
language.

Extending Generics

When you extend a generic type, the placeholder type names are visible to your exten-
sion declaration. That’s good, because you might need to use them; but it can make your
code a little mystifying, because you seem to be using an undefined type name out of
the blue. It might be a good idea to add a comment, to remind yourself what you’re up
to:

class Dog<T> {
var name : T?

}

extension Dog {

Extensions | 203

func sayYourName() -> T? { // T is the type of self.name
return self.name
}
}

New in Swift 2.0, a generic type extension can include a where clause. This has the same
effect as any generic constraint: it limits which resolvers of the generic can call the code
injected by this extension, and assures the compiler that your code is legal for those
resolvers.

As with protocol extensions, this means that a global function can be turned into a
method. Recall this example from earlier in this chapter:

func myMin<T:Comparable>(things:T...) -> T {
var minimum = things[0]
for ix in 1..<things.count {
if things[ix] < minimum {
minimum = things[ix]
}
}

return minimum

}

Why did I make that a global function? Because before Swift 2.0, I had to. Let’s say I
wanted to make this a method of Array. In Swift 1.2 and before, you could extend Array,
and your extension could refer to Array’s generic placeholder; but it couldn’t constrain
that placeholder further. Thus, there was no way to inject a method into Array while
guaranteeing that the placeholder would be a Comparable — and so the compiler
wouldn’t permit the use of the < operator on an element of the array. In Swift 2.0, I can
constrain the generic placeholder further, and so I can make this a method of Array:

extension Array where Element:Comparable { // Element is the element type
func min() -> Element {
var minimum = self[0]
for ix in 1..<self.count {
if self[ix] < minimum {
minimum = self[ix]
}
}

return minimum

}

That method can be called only on an array of Comparable elements; it isn’t injected
into other kinds of arrays, so the compiler won’t permit it to be called:

let m = [4,1,5,7,2].min() // 1
let d = [Digit(12), Digit(42)].min() // compile error

The second line doesn't compile, because I haven't made my Digit struct adopt the
Comparable protocol.

204 | Chapter4: Object Types

Once again, this change in the Swift language has resulted in a major wholesale reor-
ganization of the Swift standard library, allowing global functions to be moved into
struct extensions and protocol extensions as methods. For example, the global find
function from Swift 1.2 and before has become, in Swift 2.0, the CollectionType index-
0f method; it is constrained so that the collection’s elements are Equatables, because
you can't find a needle in a haystack unless you have a way of identifying the needle
when you see it:

extension CollectionType where Generator.Element : Equatable {
func indexOf(element: Self.Generator.Element) -> Self.Index?

}

That’s a protocol extension, and it is also a generic extension constrained with a where
clause — neither of which was possible before Swift 2.0.

Umbrella Types

Swift provides a few built-in types as general umbrella types, capable of embracing
multiple real types under a single heading.

AnyObject

The umbrella type most commonly encountered in real-life iOS programming is Any-
Object. It is actually a protocol; as a protocol, it is completely empty, requiring no prop-
erties or methods. It has the special feature that all class types conform to it automatically.
Thus, it is possible to assign or pass any class instance where an AnyObject is expected,
and to cast in either direction:

class Dog {
}
let d = Dog()

let any : AnyObject = d

let d2 = any as! Dog
Certain Swift types, which are not class types — such as String and the basic numeric
types — are bridged to Objective-C types, which are class types, defined by the Foun-
dation framework. This means that, in the presence of the Foundation framework, a
Swift bridged type can be assigned, passed, or cast to an AnyObject, even if it is not a
class type — because it will be cast first to its Objective-C bridged class type automati-
cally, behind the scenes — and an AnyObject can be cast down to a Swift bridged type.
For example:

let s = "howdy"

let any : AnyObject = s // implicitly casts to NSString
let s2 = any as! String

leti=1

let any2 : AnyObject = 1 // implicitly casts to NSNumber
let 12 = any2 as! Int

UmbrellaTypes | 205

The common way to encounter an AnyObject is in the course of interchange with
Objective-C. Swift’s ability to cast any class type to and from an AnyObject parallels
Objective-C’s ability to cast any class type to and from an id. In effect, AnyObject is the
Swift version of id.

NSUserDefaults, NSCoding, and key-value coding (Chapter 10), for example, all allow
you to retrieve an object of indeterminate class by a string key name; such an object will
arrive into Swift as an AnyObject — in particular, as an Optional wrapping an AnyOb-
ject, because there might be no such key, in which case Cocoa needs to be able to return
nil. In general, however, an AnyObject will be of little use to you; you’ll want to let Swift
know what sort of object this really is. Unwrapping the Optional and casting down from
AnyObject is up to you. If you're perfectly sure of your ground, you can force-unwrap
and force-cast with the as! operator:
required init (coder decoder: NSCoder) {
let s = decoder.decodeObjectForKey(Archive.Color) as! String
/] ...
}
Of course, you'd better be telling the truth when you cast down an AnyObject with
as!, or you will crash when the code runs and the cast turns out to be impossible. You
can use the is and as? operators, if youre in doubt, to make sure your cast is safe.

Suppressing type checking

A surprising feature of AnyObject is that it can be used to suspend the compiler’s judg-
ment as to whether a certain message can be sent to an object — similar to Objective-
C, where typing something as an id causes the compiler to suspend judgment about
what messages can be sent to it. Thus, you can send a message to an AnyObject without
bothering to cast to its real type. (Nevertheless, if you know the object’s real type, you
probably will cast to that type.)

You can't send just any old message to an AnyObject; the message must correspond to

a class member that meets one of the following criteria:

o Itis a member of an Objective-C class.
o Itis a member of your own Swift subclass (or extension) of an Objective-C class.
o Itis a member of a Swift class, and is marked @objc (or dynamic).

This feature is fundamentally parallel to optional protocol members, which I discussed
earlier in this chapter — with some slight differences. Let’s start with two classes:

206 | Chapter4: Object Types

class Dog {
@objc var noise : String = "woof"
@objc func bark() -> String {
return "woof"

}

}

class Cat {}
The Dog property noise and the Dog method bark are marked @objc, so they are visible
as potential messages to be sent to an AnyObject. To prove it, I'll type a Cat as an
AnyObject and send it one of these messages. Let’s start with the noise property:

let c : AnyObject = Cat()

let s = c.noise
That code, amazingly, compiles. Moreover, it doesn’t crash when the code runs! The
noise property has been typed as an Optional wrapping its original type. Here, that’s
an Optional wrapping a String. If the object typed as AnyObject doesn’t implement
notise, the resultis nil and no harm done. Moreover, unlike an optional protocol prop-
erty, the Optional in question is implicitly unwrapped. Therefore, if the AnyObject turns
out to have a noise property (for example, if it had been a Dog), the resulting implicitly
unwrapped String can be treated directly as a String.

Now let’s try it with a method call:

let c : AnyObject = Cat()

let s = c.bark?()
Again, that code compiles and is safe. If the Object typed as AnyObject doesn’t imple-
ment bark, no bark() call is performed; the method result type has been wrapped in
an Optional, so s is typed as String? and has been set to nil. If the AnyObject turns
out to have a bark method (for example, if it had been a Dog), the result is an Optional
wrapping the returned String. If you call bark! () on the AnyObject instead, the result
will be a String, but you’ll crash if the AnyObject doesn't implement bark. Unlike an
optional protocol member, you can even send the message with no unwrapping. This is
legal:

let ¢ : AnyObject = Cat()
let s = c.bark()

That’s just like force-unwrapping the call: the result is a String, but it’s possible to crash.

Object identity and type identity

Sometimes, what you want to know is not what type an object is, but whether an object
itself is the particular object you think it is. This problem can’t arise with a value type,
but it can arise with a reference type, where there can be more than one distinct reference
to one and the same object. A class is a reference type, so the problem can arise with
class instances.

Umbrella Types | 207

Swift’s solution is the identity operator (===). This operator is available for instances of
object types that adopt the AnyObject protocol — like classes! It compares one object
reference with another. It is not a comparison of values for equality, like the equality
operator (==); youre asking whether two object references refer to one and the same
object. There is also a negative version of the identity operator (!==).

A typical use case is that a class instance arrives from Cocoa, and you need to know
whether it is in fact a particular object to which you already have a reference. For ex-
ample, an NSNotification has an object property that helps identify the notification
(usually, it is the original sender of the notification); Cocoa is agnostic about its under-
lying type, so this is another of those situations where you’ll receive an AnyObject
wrapped in an Optional. Like ==, the === operator works seamlessly on an Optional, so
you can use it to make sure that a notification’s object property is the object you expect:

func changed(n:NSNotification) {
let player = MPMusicPlayerController.applicationMusicPlayer()
if n.object === player {
I/l ...
}

Any(lass

AnyClass is the class of AnyObject. It corresponds to the Objective-C Class type. It
arises typically in declarations where a Cocoa API wants to say that a class is expected.

For example, the UIView layerClass class method is declared, in its Swift translation,
like this:

class func layerClass() -> AnyClass

That means: if you override this method, implement it to return a class. This will pre-
sumably be a CALayer subclass. To return an actual class in your implementation, send
the self message to the name of the class:

override class func layerClass() -> AnyClass {
return CATiledLayer.self

}

A reference to an AnyClass object behaves much like a reference to an AnyObject object.
You can send it any Objective-C message that Swift knows about — any Objective-C
class message. To illustrate, once again I'll start with two classes:

class Dog {
@objc static var whatADogSays : String = "woof"

}
class Cat {}

208 | Chapter 4: Object Types

Objective-C can see whatADogSays, and it sees it as a class property. Therefore you can
send whatADogSays to an AnyClass reference:
let c : AnyClass = Cat.self
let s = c.whatADogSays
A reference to a class, such as you can obtain by sending dynamicType to an instance
reference, or by sending self to the type name, is of a type that adopts AnyClass, and
you can compare references to such types with the === operator. In effect, this is a way
of finding out whether two references to classes refer to the same class. For example:
func typeTester(d:Dog, _ whattype:Dog.Type) {
if d.dynamicType === whattype {
/...
}
}
The condition is true only if d and whattype are the same type (without regard to
polymorphism); for example, if Dog has a subclass NoisyDog, then the condition is true
if the parameters are Dog() and Dog.self or NoisyDog and NoisyDog.self, but not if
they are NoisyDog() and Dog. self. This is valuable, despite the lack of polymorphism,
because you can't use the is operator when the thing on the right side is a type reference
— it has to be a literal type name.

Any

The Any type is a type alias for an empty protocol that is automatically adopted by all
types. Thus, where an Any object is expected, absolutely any object can be passed:

func anyExpecter(a:Any) {}

anyExpecter("howdy") // a struct instance
anyExpecter(String) // a struct
anyExpecter(Dog()) // a class instance
anyExpecter(Dog) // a class

anyExpecter(anyExpecter) // a function

An object typed as Any can be tested against, or cast down to, any object or function
type. To illustrate, here’s a protocol with an associated type, and two adopters who
explicitly resolve it:

protocol Flier {
typealias Other

}

struct Bird : Flier {
typealias Other = Insect

}

struct Insect : Flier {
typealias Other = Bird

}

Umbrella Types | 209

Now here’s a function that takes a Flier along with a second parameter typed as Any,
and tests whether that second parameter’s type is the same as the Flier’s resolved Other
type; the test is legal because Any can be tested against any type:

func flockTwoTogether<T:Flier>(flier:T, _ other:Any) {
if other is T.Other {
print("they can flock together")

}
}
If we call flockTwoTogether with a Bird and an Insect, the console says “they can flock
together” If we call it with a Bird and an object of any other type, it doesn’t.

Collection Types

Swift, in common with most modern computer languages, has built-in collection types
Array and Dictionary, along with a third type, Set. Array and Dictionary are sufficiently
important that the language accommodates them with some special syntax. At the same
time, like most Swift types, they are quite thinly provided with related functions; some
missing functionality is provided by Cocoa’s NSArray and NSDictionary, to which they
are respectively bridged. The Set collection type is bridged to Cocoa’s NSSet.

Array

An array (Array, a struct) is an ordered collection of object instances (the elements of
the array) accessible by index number, where an index number is an Int numbered from
0. Thus, if an array contains four elements, the first has index 0 and the last has index
3. A Swift array cannot be sparse: if there is an element with index 3, there is also an
element with index 2 and so on.

The most salient feature of Swift arrays is their strict typing. Unlike some other computer
languages, a Swift array’s elements must be uniform — that is, the array must consist
solely of elements of the same definite type. Even an empty array must have a definite
element type, despite the fact that it happens to lack elements at this moment. An array
isitself typed in accordance with its element type. Arrays whose elements are of different
types are considered, themselves, to be of two different types: an array of Int elements
is of a different type from an array of String elements. Array types are polymorphic in
accordance with their element types: if NoisyDog is a subclass of Dog, then an array of
NoisyDog can be used where an array of Dog is expected. If all this reminds you of
Optionals, it should. Like an Optional, a Swift array is a generic. It is declared as
Array<Element>, where the placeholder Element is the type of a particular array’s ele-
ments.

210 | Chapter4: Object Types

The uniformity restriction is not as severe as it might seem at first glance. An array must
have elements of just one type, but types are very flexible. By a clever choice of type, you
can have an array whose elements are of different types internally. For example:

o If there’s a Dog class with a NoisyDog subclass, an array of Dog can contain both
Dog objects and NoisyDog objects.

o Ifboth Bird and Insect adopt the Flier protocol, an array of Flier can contain both
Bird objects and Insect objects.

o An array of AnyObject can contain instances of any class and of any Swift bridged
type — such as an Int, a String, and a Dog.

o A type might itself be a carrier of different possible types. My Error enum, earlier
in this chapter, is an example; its associated value might be an Int or it might be a
String, so an array of Error elements can carry both Int values and String values
within itself.

To declare or state the type of a given array’s elements, you could explicitly resolve the
generic placeholder; an array of Int elements would thus be an Array<Int>. However,
Swift offers syntactic sugar for stating an array’s element type, using square brackets
around the name of the element type, like this: [Int]. That’s the syntax you’ll use most
of the time.

Aliteral array is represented as square brackets containing a list of its elements separated
by comma (and optional spaces): for example, [1,2,3]. The literal for an empty array
is empty square brackets: [].

An array’s default initializer init(), called by appending empty parentheses to the ar-
ray’s type, yields an empty array of that type. Thus, you can create an empty array of Int
like this:

var arr = [Int]()

Alternatively, ifareference’s type is known in advance, the empty array [] can be inferred
to that type. Thus, you can also create an empty array of Int like this:

var arr : [Int] = []

If you're starting with a literal array containing elements, you won't usually need to
declare the array’s type, because Swift will infer it by looking at the elements. For ex-
ample, Swift will infer that [1,2,3] is an array of Int. If the array element types consist
of a class and its subclasses, like Dog and NoisyDog, Swift will infer the common su-
perclass as the array’s type. Even [1, "howdy"]is alegal array literal; it is inferred to be
an array of NSObject. However, in some cases you will need to declare an array refer-
ence’s type explicitly even while assigning a literal to that array:

let arr : [Flier] = [Insect(), Bird()]

Collection Types | 211

An array also has an initializer whose parameter is a sequence. This means that if a type
is a sequence, you can split an instance of it into the elements of an array. For example:

o Array(1...3) generates the array of Int [1,2,3].
o Array("hey".characters) generates the array of Character ["h","e","y"].

o Array(d), where d is a Dictionary, generates an array of tuples of the key-value
pairs of d.

Another array initializer, init(count:repeatedvalue:), lets you populate an array
with the same value. In this example, I create an array of 100 Optional strings initialized
tonil:

let strings : [String?] = Array(count:100, repeatedValue:nil)

That’s the closest you can get in Swift to a sparse array; we have 100 slots, each of which
might or might not contain a string (and to start with, none of them do).

Array casting and type testing

When you assign, pass, or cast one array type to another array type, you are operating
on the individual elements of the array. Thus, for example:

let arr : [Int?] = [1,2,3]

That code is actually a shorthand: to treat an array of Int as an array of Optionals wrap-
ping Int means that each individual Int in the original array must be wrapped in an
Optional. And that is exactly what happens:

let arr : [Int?] = [1,2,3]
print(arr) // [Optional(1l), Optional(2), Optional(3)]

Similarly, suppose we have a Dog class and its NoisyDog subclass; then this code is legal:

let dogl : Dog = NoisyDog()

let dog2 : Dog = NoisyDog()

let arr = [dogl, dog2]

let arr2 = arr as! [NoisyDog]
In third line, we have an array of Dog. In the fourth line, we cast this array down to an
array of NoisyDog, meaning that we cast each individual Dog in the first array to a
NoisyDog (and we won't crash when we do that, because each element of the first array
really is a NoisyDog).

You can test all the elements of an array with the is operator by testing the array itself.
For example, given the array of Dog from the previous code, you can say:

if arr is [NoisyDog] { // ...

That will be true if each element of the array is in fact a NoisyDog.

212 | Chapter 4: Object Types

Similarly, the as? operator will cast an array to an Optional wrapping an array, which
will be nil if the underlying cast cannot be performed:

let dogl : Dog = NoisyDog()

let dog2 : Dog = NoisyDog()

let dog3 : Dog = Dog()

let arr = [dogl, dog2]

let arr2 = arr as? [NoisyDog] // Optional wrapping an array of NoisyDog
let arr3 [dog2, dog3]

let arr4 = arr3 as? [NoisyDog] // nil

The reason for casting down an array is exactly the same as the reason for casting down
any value — it’s so that you can send appropriate messages to the elements of that array.
If NoisyDog declares a method that Dog doesn’t have, you can't send that message to an
element of an array of Dog. Somehow, you need to cast that element down to a NoisyDog
so that the compiler will let you send it that message. You can cast down an individual
element, or you can cast down the entire array; you'll do whichever is safe and makes
sense in a particular context.

Array comparison

Array equality works just as you would expect: two arrays are equal if they contain the
same number of elements and all the elements are pairwise equal in order:

let 11 =1
let 12 = 2
let i3 =3

if [1,2,3] == [11,12,13] { // they are equal!

Two arrays don't have to be of the same type to be compared against one another for
equality, but the test won't succeed unless they do in fact contain objects that are equal
to one another. Here, I compare a Dog array against a NoisyDog array; they are in fact
equal because the dogs they contain are the same dogs in the same order:

let nd1 = NoisyDog()
let d1 = nd1 as Dog
let nd2 = NoisyDog()
let d2 = nd2 as Dog
if [d1,d2] == [nd1,nd2] { // they are equal!

Arrays are value types

Because an array is a struct, it is a value type, not a reference type. This means that every
time an array is assigned to a variable or passed as argument to a function, it is effectively
copied. I do not mean to imply, however, that merely assigning or passing an array is
expensive, or that a lot of actual copying takes place every time. If the reference to an
array is a constant, clearly no copying is actually necessary; and even operations that
yield a new array derived from another array, or that mutate an array, may be quite

Collection Types | 213

efficient. You just have to trust that the designers of Swift have thought about these
problems and have implemented arrays efficiently behind the scenes.

Although an array itself is a value type, its elements are treated however those elements
would normally be treated. In particular, an array of class instances, assigned to multiple
variables, results in multiple references to the same instances.

Array subscripting

The Array structimplements subscript methods to allow access to elements using square
brackets after a reference to an array. You can use an Int inside the square brackets. For
example, in an array consisting of three elements, if the array is referred to by a variable
arr, then arr[1] accesses the second element.

You can also use a Range of Int inside the square brackets. For example, if arr isan array
with three elements, then arr[1...2] signifies the second and third elements. Techni-
cally, an expression like arr[1...2] yields something called an ArraySlice. However,
an ArraySlice is very similar to an array; for example, you can subscript an ArraySlice
in just the same ways you would subscript an array, and an ArraySlice can be passed
where an array is expected. In general, therefore, you will probably pretend that an
ArraySlice is an array.

If the reference to an array is mutable (var, not let), then a subscript expression can
be assigned to. This alters what’s in that slot. Of course, what is assigned must accord
with the type of the array’s elements:

var arr = [1,2,3]
arr[1] = 4 // arr is now [1,4,3]

If the subscript is a range, what is assigned must be an array. This can change the length
of the array being assigned to:

var arr = [1,2,3]

arr[1..<2] = [7,8] // arr is now [1,7,8,3]
arr[1..<2] = [1 // arr is now [1,8,3]
arr[1..<1] = [10] // arr is now [1,10,8,3] (no element was removed!)

It is a runtime error to access an element by a number larger than the largest element
number or smaller than the smallest element number. If arr has three elements, speaking
of arr[-1] or arr[3] is not illegal linguistically, but your program will crash.

Nested arrays
It is legal for the elements of an array to be arrays. For example:

let arr = [[1,2;3]; [4,5,6], [718:9]]

214 | Chapter 4: Object Types

That’s an array of arrays of Int. Its type declaration, therefore, is [[Int]]. (No law says
that the contained arrays have to be the same length; that’s just something I did for
clarity.)

To access an individual Int inside those nested arrays, you can chain subscript opera-
tions:

let arr = [[1’2:3]; [4,5,6], [718’9]]
let 1 = arr[1][1] // 5

If the outer array reference is mutable, you can also write into a nested array:

var arr = [[1,2,3], [4,5,6], [7,8,9]]

arr[1][1] = 100
You can modify the inner arrays in other ways as well; for example, you can insert
additional elements into them.

Basic array properties and methods

An array is a collection (CollectionType protocol), which is itself a sequence (Sequence-
Type protocol). If those terms have a familiar ring, they should: the same is true of a
String’s characters, which I called a character sequence in Chapter 3. For this reason,
an array has a striking similarity to a character sequence.

As a collection, an array’s count read-only property reports the number of elements it
contains. If an array’s count is 0, its i1sEmpty property is true.

An array’s first and last read-only properties return its first and last elements, but
they are wrapped in an Optional because the array might be empty and so these prop-
erties would need to be nil. This is one of those rare situations in Swift where you can
wind up with an Optional wrapping an Optional. For example, consider an array of
Optionals wrapping Ints, and what happens when you get the last property of such an
array.

An array’s largest accessible index is one less than its count. You may find yourself
calculating index values with reference to the count; for example, to refer to the last two
elements of arr, you can say:

let arr = [1,2,3]

let arr2 = arr[arr.count-2...arr.count-1] // [2,3]
Swift doesn’t adopt the modern convention of letting you use negative numbers as a
shorthand for that calculation. On the other hand, for the common case where you want
the last n elements of an array, you can use the suffix method:

let arr = [1,2,3]
let arr2 = arr.suffix(2) // [2,3]

Collection Types | 215

Both suffix and its companion prefix have the remarkable feature that there is no
penalty for going out of range:

let arr = [1,2,3]

let arr2 = arr.suffix(10) // [1,2,3] (and no crash)
Instead of describing the size of the suftix or prefix by its count, you can express the
limit of the suffix or prefix by its index:

let arr = [1,2,3]

let arr2 = arr.suffixFrom(1) /] [2,3]

let arr3 = arr.prefixUpTo(1) // [1]
let arr4 = arr.prefixThrough(1) // [1,2]

An array’s startIndex property is 0, and its endIndex property is its count. Moreover,
an array’s indices property is a half-open range whose endpoints are its startIndex
and endIndex — that is, a range accessing the entire array. If you start with a mutable
reference to this range, you can modify its startIndex and endIndex to derive a new
range. We did the same thing with a character sequence in Chapter 3; but an array’s
index values are Ints, so you can use ordinary arithmetic operations:

let arr = [1,2,3]

var r = arr.indices

r.startIndex = r.endIndex-2

arr2 = arr[r] // [2,3]
The index0f method reports the index of the first occurrence of an element in an array,
butitis wrapped in an Optional so that n11 can be returned if the element doesn’t appear
in the array. If the array consists of Equatables, the comparison uses == to identify the
element being sought:

let arr = [1,2,3]

let ix = arr.index0f(2) // Optional wrapping 1
Even if the array doesn’t consist of Equatables, you can supply your own function that
takes an element type and returns a Bool, and you’ll get back the first element for which
that Bool is true. In this example, my Bird struct has a name String property:

let aviary = [Bird(name:"Tweety"), Bird(name:"Flappy"), Bird(name:"Lady")]
let ix = aviary.indexOf {$0.name.characters.count < 5} // Optional(2)

As a sequence, an array’s contains method reports whether it contains an element.
Again, you can rely on the == operator if the elements are Equatables, or you can supply
your own function that takes an element type and returns a Bool:

let arr = [1,2,3]

let ok = arr.contains(2) // true

let ok2 = arr.contains {$0 > 3} // false
The startsWith method reports whether an array’s starting elements match the ele-
ments of a given sequence of the same type. Once more, you can rely on the == operator

216 | Chapter 4: Object Types

for Equatables, or you can supply a function that takes two values of the element type
and returns a Bool stating whether they match:
let arr = [1,2,3]

let ok = startsWith(arr, [1,2]) // true
let ok2 = arr.startsWith([1,-2]) {abs($0) == abs($1)} // true

The elementsEqual method is the sequence generalization of array comparison: the
two sequences must be of the same length, and either their elements must be Equatables
or you can supply a matching function.

The minElement and maxElement methods return the smallest or largest element in an
array, wrapped in an Optional in case the array is empty. If the array consists of Com-
parables, you can let the < operator do its work; alternatively, you can supply a function
that returns a Bool stating whether the smaller of two given elements is the first:

let arr = [3,1,-2]

let min = arr.minElement() // Optional(-2)
let min2 = arr.minElement {abs($0)<abs($1)} // Optional(l)

If the reference to an array is mutable, the append and appendContentsOf instance
methods add elements to the end of it. The difference between them is that append takes
a single value of the element type, while appendContentsOf takes a sequence of the
element type. For example:

var arr = [1,2,3]

arr.append(4)

arr.appendContentsOf([5,6])

arr.appendContentsOf(7...8) // arr is now [1,2,3,4,5,6,7,8]
The + operator is overloaded to behave like appendContentsOf (not append!) when the
left-hand operand is an array, except that it generates a new array, so it works even if
the reference to the array is a constant. If the reference to the array is mutable, you can
extend it in place with the += operator. Thus:

let arr = [1,2,3]

let arr2 = arr + [4] // arr2 is now [1,2,3,4]

var arr3 = [1,2,3]

arr3 += [4] // arr3 is now [1,2,3,4]
If the reference to an array is mutable, the instance method insert(atIndex:) inserts
a single element at the given index. To insert multiple elements at once, use assignment
into a range-subscripted array, as I described earlier (and there is also an insert-
ContentsOf(at:) method).

If the reference to an array is mutable, the instance method removeAtIndex removes
the element at that index; the instance method removelLast removes the last element,
and removeFirst removes the first element. These methods also return the value that
was removed from the array; you can ignore the returned value if you don’t need it.

Collection Types | 217

These methods do not wrap the returned value in an Optional, and accessing an out-
of-range index will crash your program. Another form of removeFirst lets you specify
how many elements to remove, but returns no value; it, too, can crash if there aren’t that
many elements.

On the other hand, popFirst and popLast do wrap the returned value in an Optional,
and are thus safe even if the array is empty. If the reference is not mutable, you can use
the dropFirst and dropLast methods to return an array (actually, a slice) with the end
element removed.

The joinWithSeparator instance method starts with an array of arrays. It extracts their
individual elements, and interposes between each sequence of extracted elements the
elements of its parameter array. The result is an intermediate sequence called a Join-
Sequence, and might have to be coerced further to an Array if that’s what you were after.
For example:

let arr = [[1,2], [3,4], [5,6]]
let arr2 = Array(arr.joinWithSeparator([10,11]))
// [1, 2, 10, 11, 3, 4, 10, 11, 5, 6]

Calling joinWithSeparator with an empty array as parameter is thus a way to flatten
an array of arrays:

let arr = [[1,2], [3,4], [5,6]]

let arr2 = Array(arr.joinWithSeparator([]))

// [1 E 2 E 3 E 4) S E 6]
There’s also a flatten instance method that does the same thing. Again, it returns an
intermediate sequence (or collection), so you might want to coerce to an Array:

let arr = [[1,2], [3,4], [5,6]]

let arr2 = Array(arr.flatten())

// [1 E 2 E 3 k1 4) 5 E 6]
The reverse instance method yields a new array whose elements are in the opposite
order from the original.

The sortInPlace and sort instance methods respectively sort the original array (if the
reference to it is mutable) and yield a new sorted array based on the original. Once again,
you get two choices: if this is an array of Comparables, you can let the < operator dictate
the new order; alternatively, you can supply a function that takes two parameters of the
element type and returns a Bool stating whether the first parameter should be ordered
before the second (just like minElement and maxElement). For example:

var arr = [4,3,5,2,6,1]

arr.sortInPlace() // [1, 2, 3, 4, 5, 6]
arr.sortInPlace {$0 > $1} // [6, 5, 4, 3, 2, 1]

218 | Chapter 4: Object Types

In that last line, I provided an anonymous function. Alternatively, of course, you can
pass as argument the name of a declared function. In Swift, comparison operators are
the names of functions! Therefore, I can do the same thing more briefly, like this:

var arr = [4,3,5,2,6,1]
arr.sortInPlace(>) // [6, 5, 4, 3, 2, 1]

The split instance method breaks an array into an array of arrays at the elements that
pass a specified test, which is a function that takes a value of the element type and returns
a Bool; the elements passing the test are eliminated:

let arr = [1,2,3,4,5,6]
let arr2 = arr.split {$0 % 2 == 0} // split at evens: [[1], [3], [5]]

Array enumeration and transformation

An array is a sequence, and so you can enumerate it, inspecting or operating with each
element in turn. The simplest way is by means of a for. . .in loop; I'll have more to say
about this construct in Chapter 5:

let pepboys = ["Manny", "Moe", "Jack"]
for pepboy in pepboys {

print(pepboy) // prints Manny, then Moe, then Jack
}

Alternatively, you can use the forEach instance method. Its parameter is a function that
takes an element of the array (or other sequence) and returns no value. Think of it as
the functional equivalent of the imperative for. . .in loop:

let pepboys = ["Manny", "Moe", "Jack"]
pepboys.forEach {print($0)} // prints Manny, then Moe, then Jack

If you need the index numbers as well as the elements, call the enumerate instance
method and loop on the result; what you get on each iteration is a tuple:

let pepboys = ["Manny", "Moe", "Jack"]
for (ix,pepboy) in pepboys.enumerate() {
print("Pep boy \(ix) is \(pepboy)") // Pep boy 0 is Manny, etc.
}
// or:
pepboys.enumerate().forEach {print("Pep boy \($0.0) is \($0.1)")}

Swift also provides three powerful array transformation instance methods. Like for -

Each, these methods all enumerate the array for you, so that the loop is buried implicitly
inside the method call, making your code tighter and cleaner.

Let’s start with the map instance method. It yields a new array, each element of which is
the result of passing the corresponding element of the old array through a function that
you supply. This function accepts a parameter of the element type and returns a result
which may be of some other type; Swift can usually infer the type of the resulting array
elements by looking at the type returned by the function.

Collection Types | 219

For example, here’s how to multiply every element of an array by 2:

let arr = [1,2,3]

let arr2 = arr.map {$0 * 2} // [2,4,6]
Here’s another example, to illustrate the fact that map can yield an array with a different
element type:

let arr = [1,2,3]

let arr2 = arr.map {Double($0)} // [1.0, 2.0, 3.0]
Here’s a real-life example showing how neat and compact your code can be when you
use map. In order to remove all the table cells in a section of a UITableView, I have to

specify the cells as an array of NSIndexPath objects. If sec is the section number, I can
form those NSIndexPath objects individually like this:

let path® = NSIndexPath(forRow:0, inSection:sec)

let pathl = NSIndexPath(forRow:1, inSection:sec)

/...
Hmmm, I think I see a pattern here! I could generate my array of NSIndexPath objects
by looping through the row values using for. . . in. But with map, there’s a much tighter
way to express the same loop (ct is the number of rows in the section):

let paths = Array(0..<ct).map {NSIndexPath(forRow:$0, inSection:sec)}

Actually, map is a CollectionType instance method — and a Range is itself a Collection-
Type. Therefore, I don’t need the cast to an array:

let paths = (0..<ct).map {NSIndexPath(forRow:$0, inSection:sec)}

The filter instance method also yields a new array. Each element of the new array is
an element of the old array, in the same order; but some of the elements of the old array
may be omitted — they were filtered out. What filters them out is a function that you
supply; it accepts a parameter of the element type and returns a Bool stating whether
this element should go into the new array.

For example:

let pepboys = ["Manny", "Moe", "Jack"]

let pepboys2 = pepboys.filter{$0.hasPrefix("M")} // [Manny, Moe]
Finally, we come to the reduce instance method. If you've learned LISP or Scheme,
you're probably accustomed to reduce; otherwise, it can be a bit mystifying at first. It’s
a way of combining all the elements of an array (actually, a sequence) into a single value.
This value’s type — the result type — doesn’t have to be the same as the array’s element
type. You supply a function that takes two parameters; the first is of the result type, the
second is of the element type, and the result is the combination of those two parameters,
as the result type. The result of each iteration becomes the first parameter in the next
iteration, along with the next element of the array as the second parameter. Thus, the
output of combining pairs accumulates, and the final accumulated value is the final

220 | Chapter4: Object Types

output of the reduce function. However, that doesn’t explain where the first parameter
for the first iteration comes from. The answer is that you have to supply it as the first
argument of the reduce call.

That will all be easier to understand with a simple example. Let’s assume we’ve got an
array of Int. Then we can use reduce to sum all the elements of the array. Here’s some
pseudocode where I've left out the first argument of the reduce call, so that you can
think about what it needs to be:

let sum = arr.reduce(/*??22*/) {$0 + S$1}

Each pair of parameters will be added together to get the first parameter on the next
iteration. The second parameter on every iteration is an element of the array. So the
question is, what should the first element of the array be added to? We want the actual
sum of all the elements, no more and no less; so clearly the first element of the array
should be added to 0! So here’s actual working code:

let arr = [1, 4, 9, 13, 112]

let sum = arr.reduce(0) {$0 + $1} // 139
Once again, we can write that code more briefly, because the + operator is the name of
a function of the required type:

let sum = arr.reduce(0, combine:+)

In my real iOS programming life, I depend heavily on these methods, often using two
or even all three of them together, nested or chained or both. Here’s an example; it’s
rather elaborate, but it’s very typical of how neatly you can do things with arrays using
Swift, so bear with me. I have a table view that displays data divided into sections. Under
the hood, the data is an array of arrays of String — a [[String]] — where each subarray
represents the rows of a section. Now I want to filter that data to eliminate all strings
that don’t contain a certain substring. I want to keep the sections intact, but if removing
strings removes all of a section’s strings, I want to eliminate that section array entirely.

The heart of the action is the test for whether a string contains a substring. 'm going to
use Cocoa methods for that, in part because they allow me to do a case-insensitive search.
If s is a string from my array, and target is the substring we’re looking for, then the
code for looking to see whether s contains target case-insensitively is as follows:

let options = NSStringCompareOptions.CaseInsensitiveSearch
let found = s.rangeOfString(target, options: options)

Recall the discussion of range0fString in Chapter 3. If found is not nil, the substring
was found. Here, then, is the actual code, preceded by some sample data for exercising
it:

Collection Types | 221

let arr = [["Manny", "Moe", "Jack"], ["Harpo", "Chico", "Groucho"]]

let target = "m
let arr2 = arr.map {
$0.filter {
let options = NSStringCompareOptions.CaselnsensitiveSearch
let found = $0.rangeOfString(target, options: options)
return (found != nil)

}
}.filter {$0.count > 0}
After the first two lines, setting up the sample data, what remains is a single command
— amap call, whose function consists of a filter call, with a filter call chained to it.
If that code doesn’t prove to you that Swift is cool, nothing will.

Swift Array and Objective-C NSArray

When youre programming iOS, you import the Foundation framework (or UIKit,
which imports Foundation) and thus the Objective-C NSArray type. Swift’s Array type
is bridged to Objective-C’s NSArray type. However, such bridging is possible only if the
types of the elements in the array can be bridged. Objective-C’s rules for what can be an
element of an NSArray are both looser and tighter than Swift’s. On the one hand, the
elements of an NSArray do not all have to be of the same type. On the other hand, an
element of an NSArray must be an object, as Objective-C understands that term. In
general, a type is bridged to Objective-C if it can be cast up to AnyObject — meaning
that it is a class type, or else a specially bridged struct such as Int, Double, or String.

Passing a Swift array to Objective-C is thus usually easy. If your Swift array consists of
things that can be cast up to AnyObject, you'll just pass the array, either by assignment
or as an argument in a function call:

let arr = [UIBarButtonItem(), UIBarButtonItem()]
self.navigationItem.leftBarButtonItems = arr
self.navigationItem.setLeftBarButtonItems(arr, animated: true)

To call an NSArray method on a Swift array, you may have to cast to NSArray:

let arr = ["Manny", "Moe", "Jack"]
let s = (arr as NSArray).componentsJoinedByString(", ")
// s is "Manny, Moe, Jack"

A Swift Array seen through a var reference is mutable, but an NSArray isn’t mutable no
matter how you see it. For mutability in Objective-C, you need an NSMutableArray, a
subclass of NSArray. You can’t cast, assign, or pass a Swift array to an NSMutableArray;
you have to coerce. The best way is to call the NSMutableArray initializer
init(array:), to which you can pass a Swift array directly:

let arr = ["Manny", "Moe", "Jack"]

let arr2 = NSMutableArray(array:arr)
arr2.removeObject("Moe")

222 | Chapter4: Object Types

To convert back from an NSMutableArray to a Swift array, you can cast; if you want an
array of the original Swift type, you'll need to cast twice in order to quiet the compiler:

var arr = ["Manny", "Moe", "Jack"]

let arr2 = NSMutableArray(array:arr)

arr2.removeObject("Moe")

arr = arr2 as NSArray as! [String]
If a Swift object type can’t be cast up to AnyObject, it isn’t bridged to Objective-C, and
the compiler will stop you if you try to pass an Array containing an instance of that type
where an NSArray is expected. In such a situation, you'll need to “bridge” the array
elements yourself.

Here, for example, I have a Swift array of CGPoint. That’s perfectly fine in Swift, but
CGPoint is a struct, which Objective-C doesn’t see as an object, so you can’t put one in
an NSArray. If I try to pass this array where an NSArray is expected, I'll get a compiler
error: “[CGPoint] is not convertible to NSArray” The solution is to wrap each CGPoint
in an NSValue, an Objective-C object type specifically designed to act as a carrier for
nonobject types; now we have a Swift array of NSValue, which can subsequently be
handed to Objective-C:

let arrNSValues = arrCGPoints.map { NSValue(CGPoint:$0) }

Another case in point is a Swift array of Optionals. An Objective-C collection can't
contain nil (because, in Objective-C, nil isn't an object). Therefore you can’t put an
Optional in an NSArray. You'll have to do something with those Optionals before pass-
ing the array where an NSArray is expected. If an Optional wraps a value, you can
unwrap it. Butif an Optional wraps no value (itis nil), you can’t unwrap it. One solution
is to do what you would do in Objective-C. An Objective-C NSArray can’t contain
nil, so Cocoa provides a special class, NSNull, whose singleton instance, NSNull(), can
stand in for nil where an object is needed. Thus, if T have an array of Optionals wrapping
Strings, I can unwrap those that aren’t nil and substitute NSNull() for those that are:

let arr2 : [AnyObject] =
arr.map{if $0 == nil {return NSNull()} else {return $0!}}

(In Chapter 5, I'll write that code much more compactly.)

Now let’s talk about what happens when an NSArray arrives from Objective-C into Swift.
There won't be any problem crossing the bridge: the NSArray will arrive safely as a Swift
Array. But a Swift Array of what? Of itself, an NSArray carries no information about
what type of element it contains. The default, therefore, is that an Objective-C NSArray
will arrive as a Swift array of AnyObject.

Fortunately, you won't encounter this default anywhere near as often as in the past.
Starting in Xcode 7, the Objective-C language has been modified so that the declaration
of an NSArray, NSDictionary, or NSSet — the three collection types that are bridged to
Swift — can include element type information. (Objective-C calls this a lightweight

Collection Types | 223

generic.) In iOS 9, the Cocoa APIs have been revised so that they do include this infor-
mation. Thus, for the most part, the arrays you receive from Cocoa will be correctly

typed.

For example, this elegant code was previously impossible:

let arr = UIFont.familyNames().map {
UIFont.fontNamesForFamilyName($0)
}

The result is an array of arrays of String, listing all available fonts grouped by family.
That code is possible because both of those UIFont class methods are now seen by Swift
asreturning an array of String. Previously, those arrays were untyped — they were arrays
of AnyObject — and casting down to an array of String was up to you.

It is still perfectly possible, though far less likely, that you will receive an array of Any-
Object from Objective-C. If that happens, then usually you will want to cast it down or
otherwise transform it into an array of some specific Swift type. Here’s an Objective-C
class containing a method whose return type of NSArray hasn’t been marked up with
an element type:

@implementation Pep
- (NSArray*) boys {
return @ @"Mannie", @"Moe", @"Jack"];

}

@end
To call that method and do anything useful with the result, it will be necessary to cast
that result down to an array of String. If 'm sure of my ground, I can force the cast:

let p = Pep()

let boys = p.boys() as! [String]
As with any cast, though, be sure you don’t lie! An Objective-C array can contain more
than one type of object. Don’t force such an array to be cast down to a type to which not
all the elements can be cast, or you'll crash when the cast fails; you'll need a more de-
liberate strategy for eliminating or otherwise transforming the problematic elements.

Dictionary

A dictionary (Dictionary, a struct) is an unordered collection of object pairs. In each
pair, the first object is the key; the second object is the value. The idea is that you use a
key to access a value. Keys are usually strings, but they don’t have to be; the formal
requirement is that they be types that adopt the Hashable protocol, meaning that they
adopt Equatable and also have a hashValue property (an Int) such that two equal keys
have equal hash values and two unequal keys do not. Thus, the hash values can be used

224 | Chapter4: Object Types

behind the scenes for rapid key access. Swift numeric types, strings, and enums are
Hashables.

As with arrays, a given dictionary’s types must be uniform. The key type and the value
type don’t have to be the same type, and they often will not be. But within any dictionary,
all keys must be of the same type, and all values must be of the same type. Formally, a
dictionary is a generic, and its placeholder types are ordered key type, then value type:
Dictionary<Key,Value>. As with arrays, however, Swift provides syntactic sugar for
expressing a dictionary’s type, which is what you’ll usually use: [Key: Value]. That’s
square brackets containing a colon (and optional spaces) separating the key type from
the value type. This code creates an empty dictionary whose keys (when they exist) will
be Strings and whose values (when they exist) will be Strings:

var d = [String:String]()

The colon is used also between each key and value in the literal syntax for expressing a
dictionary. The key—value pairs appear between square brackets, separated by comma,
just like an array. This code creates a dictionary by describing it literally (and the dic-
tionary’s type of [String:String] is inferred):

var d = ["CA": "California", "NY": "New York"]

The literal for an empty dictionary is square brackets containing just a colon: [:]. This
notation can be used provided the dictionary’s type is known in some other way. Thus,
this is another way to create an empty [String:String] dictionary:

var d : [String:String] = [:]

If you try to fetch a value through a nonexistent key, there is no error, but Swift needs
a way to report failure; therefore, it returns nil. This, in turn, implies that the value
returned when you successfully access a value through a key must be an Optional wrap-
ping the real value!

Access to a dictionary’s contents is usually by subscripting. To fetch a value by key,
subscript the key to the dictionary reference:

let d = ["CA": "California", "NY": "New York"]
let state = d["CA"]

Bear in mind, however, that after that code, state is not a String — it'’s an Optional
wrapping a String! Forgetting this is a common beginner mistake.

If the reference to a dictionary is mutable, you can also assign into a key subscript
expression. If the key already exists, its value is replaced. If the key doesn’t already exist,
it is created and the value is attached to it:

var d = ["CA": "California", "NY": "New York"]

d["CA"] "Casablanca"

d["MD"] = "Maryland"

// d is now ["MD": "Maryland", "NY": "New York", "CA": "Casablanca"]

Collection Types | 225

Alternatively, call updateValue(forKey:); it has the advantage that it returns the old
value wrapped in an Optional, or nil if the key wasn’t already present.

By akind of shorthand, assigning nil into a key subscript expression removes that key—
value pair if it exists:

var d

= ["CA": "California", "NY": "New York"]
d[llNYll] =

nil // d is now ["CA": "California"]

Alternatively, call removeValueForKey; it has the advantage that it returns the removed
value before it removes the key-value pair. The removed value is returned wrapped in
an Optional, so a nil result tells you that this key was never in the dictionary to begin
with.

As with arrays, a dictionary type is legal for casting down, meaning that the individual
elements will be cast down. Typically, only the value types will differ:

let dogl : Dog = NoisyDog()

let dog2 : Dog = NoisyDog()

let d = ["fido": dogl, "rover": dog2]

let d2 = d as! [String : NoisyDog]
As with arrays, is can be used to test the actual types in the dictionary, and as? can be
used to test and cast safely. Dictionary equality, like array equality, works as you would
expect.

Basic dictionary properties and enumeration

A dictionary has a count property reporting the number of key—value pairs it contains,
and an isEmpty property reporting whether that number is @.

A dictionary has a keys property reporting all its keys, and a values property reporting
all its values. They are effectively opaque structs (a LazyForwardCollection, if you must
know), but when you enumerate them with for...1n, you get the expected type:

var d = ["CA": "California", "NY": "New York"]
for s in d.keys {

print(s) // s is a String
}

A dictionary is unordered! You can enumerate it (or its keys, or its values), but do
not expect the elements to arrive in any particular order.

You can extract all a dictionary’s keys or values at once, by coercing the keys or values
property to an array:

var d = ["CA": "California", "NY": "New York"]
var keys = Array(d.keys)

226 | Chapter4: Object Types

You can also enumerate a dictionary itself. As you might expect from what I've already
said, each iteration provides a key-value tuple:

var d = ["CA": "California", "NY": "New York"]
for (abbrev, state) in d {
print("\(abbrev) stands for \(state)")
}
You can extract a dictionary’s entire contents at once as an array (of key-value tuples)
by coercing the dictionary to an array:

var d = ["CA": "California", "NY": "New York"]
let arr = Array(d) // [("NY", "New York"), ("CA", "California")]

Like an array, a dictionary and its keys property and its values property are collections
(CollectionType) and sequences (SequenceType). Therefore, everything I said about
arrays as collections and sequences in the previous section is applicable! For example,
if a dictionary d has Int values, you can sum them with the reduce instance method:

let sum = d.values.reduce(0, combine:+)

You can obtain its smallest value (wrapped in an Optional):
let min = d.values.minElement()

You can list the values that match some criterion:
let arr = Array(d.values.filter{$0 < 2})

(The coercion to Array is needed because the sequence resulting from filter is lazy:
there isn’t really anything in it until we enumerate it or collect it into an array.)

Swift Dictionary and Objective-C NSDictionary

The Foundation framework dictionary type is NSDictionary, and Swift’s Dictionary type
is bridged to it. Considerations for passing a dictionary across the bridge are parallel to
those I've already discussed for arrays. The untyped bridged API characterization of an
NSDictionary will be [NSObject:AnyObject], using the Objective-C Foundation object
base class for the keys; there are various reasons for this choice, but from Swift’s point
of view the main one is that AnyObject is not a Hashable. NSObject, on the other hand,
is extended by the Swift APIs to adopt Hashable; and since NSObject is the base class
for Cocoa classes, any Cocoa class type will be Hashable. Thus, any NSDictionary can
cross the bridge.

Like NSArray, NSDictionary key and value types can now be marked in Objective-C.
The most common key type in a real-life Cocoa NSDictionary is NSString, so you might
well receive an NSDictionary as a [String:AnyObject]. Specific typing of an NSDic-
tionary’s values, however, is much rarer; dictionaries that you pass to and receive from
Cocoa will very often have values of different types. It is not at all surprising to have a
dictionary whose keys are strings but whose values include a string, a number, a color,

Collection Types | 227

and an array. For this reason, you will usually not cast down the entire dictionary’s type;
instead, you'll work with the dictionary as having AnyObject values, and cast when
fetching an individual value from the dictionary. Since the value returned from sub-
scripting a key is itself an Optional, you will typically unwrap and cast the value as a
standard single move.

Here’s an example. A Cocoa NSNotification object comes with a userInfo property. It
is an NSDictionary that might itself be nil, so the Swift API characterizes it like this:

var userInfo: [NSObject : AnyObject]? { get }

Lets say 'm expecting this dictionary to be present and to contain a "progress" key
whose value is an NSNumber containing a Double. My goal is to extract that NSNumber
and assign the Double that it contains to a property, self.progress. Here’s one way to
do that safely, using optional unwrapping and optional casting (n is the NSNotification
object):

let prog = (n.userInfo?["progress"] as? NSNumber)?.doubleValue

if prog != nil {

self.progress = prog!

}
That’s an optional chain that ends by fetching an NSNumber’s doubleValue property,
so prog is implicitly typed as an Optional wrapping a Double. The code is safe, because
if there is no userInfo dictionary, or if it doesn’t contain a "progress" key, or if that
key’s value isn't an NSNumber, nothing happens, and prog will be nil. I then test prog
to see whether it is nil; if it isn't, I know that it’s safe to force-unwrap it, and that the
unwrapped value is the Double I'm after.

(In Chapter 5 I'll describe another syntax for accomplishing the same goal, using con-
ditional binding.)

Conversely, here’s a typical example of creating a dictionary and handing it off to Cocoa.
This dictionary is a mixed bag: its values are a UIFont, a UIColor, and an NSShadow.
Its keys are all strings, which I obtain as constants from Cocoa. I form the dictionary as
a literal and pass it, all in one move, with no need to cast anything:

UINavigationBar.appearance().titleTextAttributes = [
NSFontAttributeName : UIFont(name: "ChalkboardSE-Bold", size: 20)!,
NSForegroundColorAttributeName : UIColor.darkTextColor(),
NSShadowAttributeName : {

let shad = NSShadow()
shad.shadowOffset = CGSizeMake(1.5,1.5)
return shad
10
1

As with NSArray and NSMutableArray, if you want Cocoa to mutate a dictionary, you
must coerce to NSMutableDictionary. In this example, I want to do a join between two

228 | Chapter 4: Object Types

dictionaries, so I harness the power of NSMutableDictionary, which hasan addEntries-
FromDictionary: method:

var d1 = ["NY":"New York", "CA":"California"]

let d2 = ["MD":"Maryland"]

let mutdl = NSMutableDictionary(dictionary:d1)
mutdl.addEntriesFromDictionary(d2)

d1 = mutdl as NSDictionary as! [String:String]

// d1 is now ["MD": "Maryland", "NY": "New York", "CA": "California"]

That sort of thing is needed quite often, because there’s no native method for adding
the elements of one dictionary to another dictionary. Indeed, native utility methods
involving dictionaries in Swift are disappointingly thin on the ground: there really aren't
any. Still, Cocoa and the Foundation framework are right there, so perhaps Apple feels
there’s no point duplicating in the Swift standard library the functionality that already
exists in Foundation. If having to drop into Cocoa bothers you, you can write your own
library; for example, addEntriesFromDictionary: is easily reimplemented as a Swift
Dictionary instance method through an extension:

extension Dictionary {
mutating func addEntriesFromDictionary(d:[Key:Value]) { // generic types
for (k,v) in d {
self[k] = v
}

Set

A set (Set, a struct) is an unordered collection of unique objects. It is thus rather like the
keys of a dictionary! Its elements must be all of one type; it has a count and an isEmpty
property; it can be initialized from any sequence; you can cycle through its elements
with for...in. But the order of elements is not guaranteed, and you should make no
assumptions about it.

The uniqueness of set elements is implemented by constraining their type to adopt the
Hashable protocol, just like the keys of a Dictionary. Thus, the hash values can be used
behind the scenes for rapid access. Checking whether a set contains a given element,
which you can do with the contains instance method, is very efficient — far more
efficient than doing the same thing with an array. Therefore, if element uniqueness is
acceptable (or desirable) and you don’'t need indexing or a guaranteed order, a set can
be a much better choice of collection than an array.

The fact that a set’s elements are Hashables means that they must also be Equatables.
This makes sense, because the notion of uniqueness depends upon being able to answer
the question of whether a given object is already in the set.

Collection Types | 229

There are no set literals in Swift, but you won't need them because you can pass an array
literal where a set is expected. There is no syntactic sugar for expressing a set type, but
the Set struct is a generic, so you can express the type by explicitly specializing the
generic:

let set : Set<Int> = [1, 2, 3, 4, 5]

In that particular example, however, there was no need to specialize the generic, as the
Int type can be inferred from the array.

It sometimes happens (more often than you might suppose) that you want to examine
one element of a set as a kind of sample. Order is meaningless, so it’s sufficient to obtain
any element, such as the first element. For this purpose, use the first instance property;
it returns an Optional, just in case the set is empty and has no first element.

The distinctive feature of a set is the uniqueness of its objects. If an object is added to a
set and that object is already present, it isn’t added a second time. Conversion from an
array to a set and back to an array is thus a quick and reliable way of uniquing the array
— though of course order is not preserved:

let arr = [1,2,1,3,2,4,3,5]

let set = Set(arr)

let arr2 = Array(set) // [5,2,3,1,4], perhaps
A setis a collection (CollectionType) and a sequence (SequenceType), so it is analogous
to an array or a dictionary, and what I have already said about those types generally
applies to a set as well. For example, Set has a map instance method; it returns an array,
but of course you can turn that right back into a set if you need to:

let set : Set = [1,2,3,4,5]

let set2 = Set(set.map {$0+1}) // {6, 5, 2, 3, 4}, perhaps
If the reference to a set is mutable, a number of instance methods spring to life. You can
add an object with insert; if the object is already in the set, nothing happens, but there
is no penalty. You can remove an object and return it by specifying the object itself (or
something equatable to it), with the remove method; it returns the object wrapped in
an Optional, or nil if the object was not present. You can remove and return the first
object (whatever “first” may mean) with removeFirst; it crashes if the set is empty, so
take precautions (or use popFirst, which is safe).

Equality comparison (==) is defined for sets as you would expect; two sets are equal if
every element of each is also an element of the other.

If the notion of a set brings to your mind visions of Venn diagrams from elementary
school, that’s good, because sets have instance methods giving you all those set opera-
tions you remember so fondly. The parameter can be a set, or it can be any sequence,
which will be converted to a set; for example, it might be an array, a range, or even a
character sequence:

230 | Chapter4: Object Types

intersect, intersectInPlace
Yields the elements of this set that also appear in the parameter.

union, unionInPlace
Yields the elements of this set along with the (unique) elements of the parameter.

exclusiveOr, exclusiveOrInPlace
Yields the elements of this set that don’t appear in the parameter, plus the (unique)
elements of the parameter that don’t appear in this set.

subtract, subtractInPlace
Yields the elements of this set except for those that appear in the parameter.

isSubsetOf, isStrictSubsetOf

isSupersetOf, isStrictSupersetOf
Returns a Bool reporting whether the elements of this set are respectively embraced
by or embrace the elements of the parameter. The “strict” variant yields false if the
two sets consist of the same elements.

isDisjointWith
Returns a Bool reporting whether this set and the parameter have no elements in
common.

Here’s a real-life example of elegant Set usage from one of my apps. I have a lot of
numbered pictures, of which we are to choose one randomly. But I don’t want to choose
a picture that has recently been chosen. Therefore, I keep a list of the numbers of all
recently chosen pictures. When it’s time to choose a new picture, I convert the list of all
possible numbers to a Set, convert the list of recently chosen picture numbers to a Set,
and subtract to get a list of unused picture numbers! Now I choose a picture number
at random and add it to the list of recently chosen picture numbers:

let ud = NSUserDefaults.standardUserDefaults()
var recents = ud.objectForKey(RECENTS) as? [Int]
if recents == nil {
recents = []
}
var forbiddenNumbers = Set(recents!)
let legalNumbers = Set(1...PIXCOUNT).subtract(forbiddenNumbers)
let newNumber = Array(legalNumbers)[
Int(arc4random_uniform(UInt32(legalNumbers.count)))
1
forbiddenNumbers.insert(newNumber)
ud.setObject(Array(forbiddenNumbers), forKey:RECENTS)

Option sets

An option set (technically, an OptionSetType) is Swift’s way of treating as a struct a
certain type of enumeration commonly used in Cocoa. It is not, strictly speaking, a Set;

Collection Types | 231

but it is deliberately set-like, sharing common features with Set through the SetAlgebra-
Type protocol. Thus, an option set has contains, insert, and remove methods, along
with all the various set operation methods.

The purpose of option sets is to help you grapple with Objective-C bitmasks. A bitmask
is an integer whose bits are used as switches when multiple options are to be specified
simultaneously. Such bitmasks are very common in Cocoa. In Objective-C, and in Swift
prior to Swift 2.0, bitmasks are manipulated through the arithmetic bitwise-or and
bitwise-and operators. Such manipulation can be mysterious and error-prone. Thanks
to option sets, Swift 2.0 allows bitmasks to be manipulated through set operations in-
stead.

For example, when specifying how a UIView is to be animated, you are allowed to pass
an options: argument whose value comes from the UIViewAnimationOptions enu-
meration, whose definition (in Objective-C) begins as follows:

typedef NS_OPTIONS(NSUInteger, UIViewAnimationOptions) {
UIViewAnimationOptionLayoutSubviews =1 <<
UIViewAnimationOptionAllowUserInteraction =
UIViewAnimationOptionBeginFromCurrentState =
UIViewAnimationOptionRepeat =
UIViewAnimationOptionAutoreverse =

/...

-

<<

-

<<

<<

-

A WNRL O
-

-

[=Y

<<

}

Pretend that an NSUInteger is 8 bits (it isn't, but let’s keep things simple and short).
Then this enumeration means that (in Swift) the following name-value pairs are de-
fined:

UIViewAnimationOptions.LayoutSubviews 0b00000001
UIViewAnimationOptions.AllowUserInteraction 0b0000EO10
UIViewAnimationOptions.BeginFromCurrentState 0b00000100
UIViewAnimationOptions.Repeat 0b00001000
UIViewAnimationOptions.Autoreverse 0b00010000
These values can be combined into a single value — a bitmask — that you pass as the
options: argument for your animation. All Cocoa has to do to understand your in-
tentions is to look to see which bits in the value that you pass are set to 1. So, for example,
0b00011000 would mean that UIViewAnimationOptions.Repeat and UIView-
AnimationOptions.Autoreverse are both true (and that the others, by implication, are
all false).

The question is how to form the value 6b00011000 in order to pass it. You could form
itdirectly as aliteral and set the options: argument to UIViewAnimationOptions(raw-
Value:0b00011000); but that’s not a very good idea, because it’s error-prone and makes
your code incomprehensible. In Objective-C, you'd use the arithmetic bitwise-or op-
erator, analogous to this Swift code:

232 | Chapter 4: Object Types

let val =
UIViewAnimationOptions.Autoreverse.rawValue |
UIViewAnimationOptions.Repeat.rawValue

let opts = UIViewAnimationOptions(rawValue: val)

In Swift 2.0, however, the UIViewAnimationOptions type is an option set struct (be-
cause it is marked as NS_OPTIONS in Objective-C), and therefore can be treated much
like a Set. For example, given a UIViewAnimationOptions value, you can add an option
to it using insert:

var opts = UIViewAnimationOptions.Autoreverse
opts.insert(.Repeat)

Alternatively, you can start with an array literal, just as if you were initializing a Set:

let opts : UIViewAnimationOptions = [.Autoreverse, .Repeat]

To indicate that no options are to be set, pass an empty option set ([]). This is a
major change from Swift 1.2 and earlier, where the convention was to pass nil —
illogically, since this value was never an Optional.

The inverse situation is that Cocoa hands you a bitmask, and you want to know whether
a certain bit is set. In this example from a UITableViewCell subclass, the cell’s state
comes to us as a bitmask; we want to know about the bitindicating that the cell is showing
its edit control. In the past, it was necessary to extract the raw values and use the bitwise-
and operator:

override func didTransitionToState(state: UITableViewCellStateMask) {
let editing = UITableViewCellStateMask.ShowingEditControlMask.rawValue
if state.rawValue & editing != 0 {
// ... the ShowingEditControlMask bit is set ...
}
}

That’s a tricky formula, all too easy to get wrong. In Swift 2.0, this is an option set, so
the contains method tells you the answer:
override func didTransitionToState(state: UITableViewCellStateMask) {

if state.contains(.ShowingEditControlMask) {
// ... the ShowingEditControlMask bit is set ...

}
}

Swift Set and Objective-C NSSet

Swift’s Set type is bridged to Objective-C NSSet. The untyped medium of interchange
is Set<NSObject>, because NSObject is seen as Hashable. Of course, the same rules apply
as for arrays. An Objective-C NSSet expects its elements to be class instances, and Swift

Collection Types | 233

will help by bridging where it can. In real life, you'll probably start with an array and
coerce it to a set or pass it where a set is expected, as in this example from my own code:

let types : UIUserNotificationType = [.Alert, .Sound] // a bitmask

let category = UIMutableUserNotificationCategory()

category.identifier = "coffee"

let settings = UIUserNotificationSettings(// second parameter is an NSSet
forTypes: types, categories: [category])

Comingback from Objective-C, you'll get a Set of NSObject if Objective-C doesn’t know
what this is a set of, and in that case you would probably cast down as needed. As with

NSArray, however, NSSet can now be marked up to indicate its element type; many
Cocoa APIs have been marked up, and no casting will be necessary:

override func touchesBegan(touches: Set<UITouch>, withEvent event: UIEvent?) {
let t = touches.first // an Optional wrapping a UITouch
/...

234 | Chapter 4: Object Types

CHAPTER 5
Flow Control and More

This chapter presents the miscellaneous remaining aspects of the Swift language. I'll
start by describing the syntax of Swift’s flow control constructs for branching, looping,
and jumping. Then I'll talk about how to override operators and how to create your
own operators. The chapter ends with a survey of Swift’s privacy and introspection
features and some specialized modes of reference type memory management.

Flow Control

A computer program has a path of execution through its code statements. Normally,
this path follows a simple rule: execute each statement in succession. But there is another
possibility. Flow control can be used to make the path of execution skip some code
statements, or repeat some code statements. Flow control is what makes a computer
program “intelligent,” and not merely a simple fixed sequence of steps. By testing the
truth value of a condition — an expression that evaluates to a Bool and is thus true or
false — the program decides at that moment how to proceed. Flow control based on
testing a condition may be divided into two general types:

Branching
The code is divided into alternative chunks, like roads that diverge in a wood, and
the program is presented with a choice of possible ways to go: the truth of a con-
dition is used to determine which chunk will actually be executed.

Looping
A chunk of code is marked off for possible repetition: the truth of a condition is
used to determine whether the chunk should be executed, and then whether it
should be executed again. Each repetition is called an iteration. Typically, some
feature of the environment (such as the value of a variable) is changed on each
iteration, so that the repetitions are not identical, but are successive stages in pro-
gressing through an overall task.

235

The chunks of code in flow control, which I refer to as blocks, are demarcated by curly
braces. These curly braces constitute a scope. New local variables can be declared here,
and go out of existence automatically when the path of execution exits the curly braces.
For a loop, this means that local variables come into existence and go out of existence
on each iteration. As with any scope, code inside the curly braces can see the surrounding
higher scope.

Swift flow control is fairly simple, and by and large is similar to flow control in C and
related languages. There are two fundamental syntactic differences between Swift and
C, both of which make Swift simpler and clearer: in Swift, a condition does not have to
be wrapped in parentheses, and the curly braces can never be omitted. Moreover, Swift
adds some specialized flow control features to help you grapple more conveniently with
Optionals, and boasts a particularly powerful form of switch statement.

Branching

Swift has two forms of branching: the if construct, and the switch statement. I'll also
discuss conditional evaluation, a compact form of if construct.

If construct

The Swift branching construct with if is similar to C. Many examples of if constructs
have appeared already in this book. The construct may be formally summarized as
shown in Example 5-1.

Example 5-1. The Swift if construct

if condition {
statements

}

if condition {
statements

} else {
statements

}

if condition {
statements

} else if condition {
statements

} else {
statements

}

The third form, containing else 1if, can have as many else 1if blocks as needed, and
the final else block may be omitted.

Here’s a real-life if construct that lies at the heart of one of my apps:

236 | Chapter 5: Flow Control and More

Custom Nested Scopes

Sometimes, when you know that a local variable needs to exist only for a few lines of
code, you might like to define an artificial scope — a custom nested scope, at the start
of which you can introduce your local variable, and at the end of which that variable
will be permitted to go out of scope, destroying its value automatically.

Swift, however, does not permit you to use bare curly braces to do this. In Swift 1.2 and
earlier, the usual solution was to cheat — for example, by misusing some form of flow
control that introduces a nested scope legally, such as 1f true. New in Swift 2.0, a do
construct is provided for this purpose:

do {
var myVar = "howdy"
// ... use myVar here ...

}

// now myVar is out of scope and its value is destroyed

// okay, we've tapped a tile; there are three cases

if self.selectedTile == nil { // no selected tile: select and play this tile
self.selectTile(tile)
self.playTile(tile)

} else if self.selectedTile == tile { // selected tile tapped: deselect it
self.deselectAll()
self.player?.pause()

} else { // there was a selected tile, another tile tapped: swap them
self.swap(self.selectedTile, with:tile, check:true, fence:true)

}

Conditional binding

In Swift, 1f can be followed immediately by a variable declaration and assignment —
that is, by let or var and a new local variable name, possibly followed by a colon and
a type declaration, then an equal sign and a value. This syntax, called a conditional
binding, is actually a shorthand for conditionally unwrapping an Optional. The assigned
value is expected to be an Optional — the compiler will stop you if it isn’t — and this is
what happens:

o If the Optional is nil, the condition fails and the block is not executed.
o Ifthe Optional is not nil, then:
1. The Optional is unwrapped.

2. The unwrapped value is assigned to the declared local variable.

3. The block is executed with the local variable in scope.

Flow Control | 237

Thus, a conditional binding is a convenient shorthand for safely passing an unwrapped
Optional into a block. The Optional is unwrapped, and the block is executed, only if the
Optional can be unwrapped.

It is perfectly reasonable for the local variable in a conditional binding to have the same
name as an existing variable in the surrounding scope. It can even have the same name
as the Optional being unwrapped! There is then no need to make up a new name, and
inside the block the unwrapped value of the Optional overshadows the original Op-
tional, which thus cannot be accessed accidentally.

Here’s an example of a conditional binding. Recall this code from Chapter 4, where I
optionally unwrap an NSNotification’s userInfo dictionary, attempt to fetch a value
from the dictionary using the "progress" key, and proceed only if that value turns out
to be an NSNumber:

let prog = (n.userInfo?["progress"] as? NSNumber)?.doubleValue
if prog != nil {
self.progress = prog!

}

We can rewrite that code as a conditional binding:

if let prog = (n.userInfo?["progress"] as? NSNumber)?.doubleValue {
self.progress = prog
}
It is also possible to nest conditional bindings. To illustrate, I'll rewrite the previous
example to use a separate conditional binding for every Optional in the chain:

if let ul = n.userInfo {
if let prog : AnyObject = ui["progress"] {
if let prog = prog as? NSNumber {
self.progress = prog.doubleValue

3
}

The result is somewhat more verbose and the nest is rather deeply indented — Swift
programmers like to call this the “pyramid of doom” — but in my view it is also con-
siderably more legible, because the structure reflects perfectly the successive stages of
testing. To help avoid the indentation, successive conditional bindings can be combined
into a list, separated by comma:

if let uil = n.userInfo, prog = ui["progress"] as? NSNumber {
self.progress = prog.doubleValue

}
Abindingin thelist can even be followed by awhere clause folding yet another condition
into the line. And the entire list can start with a condition, before the word let or var
is encountered. Here’s a real-life example from my own code (which I'll explain further
in Chapter 11). The “pyramid of doom” consists of four nested conditions:

238 | Chapter 5: Flow Control and More

override func observeValueForKeyPath(keyPath: String?,
ofObject object: AnyObject?, change: [String : AnyObject]?,
context: UnsafeMutablePointer<()>) {
if keyPath == "readyForDisplay" {
if let obj = object as? AVPlayerViewController {
if let ok = change?[NSKeyValueChangeNewKey] as? Bool {
if ok {
/...

}

}

Alternatively, those four conditions can be combined into a single list:

override func observeValueForKeyPath(keyPath: String?,
ofObject object: AnyObject?, change: [String : AnyObject]?,
context: UnsafeMutablePointer<()>) {
if keyPath == "readyForDisplay",
let obj = object as? AVPlayerViewController,
let ok = change?[NSKeyValueChangeNewKey] as? Bool where ok {
// ...
}
}

But whether the second version is more legible is an open question.

New in Swift 2.0, you can express the chain of conditions as a series of guard statements
(see “Guard” on page 264); I think I like this idiom best:

override func observeValueForKeyPath(keyPath: String?,
ofObject object: AnyObject?, change: [String : AnyObject]?,
context: UnsafeMutablePointer<()>) {
guard keyPath == "readyForDisplay" else {return}
guard let obj = object as? AVPlayerViewController else {return}
guard let ok = change?[NSKeyValueChangeNewKey] as? Bool else {return}
guard ok else {return}
/] ...
}

Switch statement

A switch statement is a neater way of writing an extended if...else if...else con-
struct. In C (and Objective-C), a switch statement contains hidden traps; Swift elimi-
nates those traps, and adds power and flexibility. As a result, switch statements are
commonly used in Swift (whereas they are relatively rare in my Objective-C code).

In a switch statement, the condition consists in the comparison of different possible
values, called cases, against a single value, called the tag. The case comparisons are
performed successively in order. As soon as a case comparison succeeds, that case’s code
is executed and the entire switch statement is exited. The schema is shown in

Flow Control | 239

Example 5-2; there can be as many cases as needed, and the default case can be omitted
(subject to restrictions that I'll explain in a moment).

Example 5-2. The Swift switch statement

switch tag {
case patternl:
statements
case pattern2:
statements
default:
statements

}

Here’s an actual example:

switch 1 {
case 1:
print("You have 1 thingy!")
case 2:
print("You have 2 thingies!")
default:
print("You have \(i) thingies!")
}
In that code, a variable i functions as the tag. The value of 1 is first compared to the
value 1. If it is 1, that case’s code is executed and that’s all. If it is not 1, it is compared to
the value 2. If it is 2, that case’s code is executed and that’s all. If the value of 1 matches

neither of those, the default case’s code is executed.

In Swift, a switch statement must be exhaustive. This means that every possible value of
the tag must be covered by a case. The compiler will stop you if you try to violate this
rule. The rule makes intuitive sense when a value’s type allows only a limited number
of possibilities; the usual example is an enum, which itself has a small, fixed set of cases
as its possible values. But when, as in the preceding example, the tag is an Int, there is
an infinite number of possible individual cases. Thus, a “mop-up” case must appear, to
mop up all the cases that you didn’t write explicitly. A common way to write a “mop-
up” case is to use a default case.

Each case’s code can consist of multiple lines; it doesn’t have to be a single line, as the
cases in the preceding example happen to be. However, it must consist of at least a single
line; it is illegal for a Swift switch case to be completely empty. It is legal for the first (or
only) line of a case’s code to appear on the same line as the case, after the colon; thus, I
could have written the preceding example like this:

switch 1 {

case 1: print("You have 1 thingy!")

case 2: print("You have 2 thingies!")
default: print("You have \(1) thingies!")
}

240 | Chapter 5: Flow Control and More

The minimum single line of case code is the keyword break; used in this way, break
acts as a placeholder meaning, “Do nothing” It is very common for a switch statement
to include a default (or other “mop-up” case) consisting of nothing but the keyword
break; in this way, you exhaust all possible values of the tag, but if the value is one that
no case explicitly covers, you do nothing.

Now let’s focus on the comparison between the tag value and the case value. In the
preceding example, it works like an equality comparison (==); but that isn’t the only
possibility. In Swift, a case value is actually a special expression called a pattern, and the
pattern is compared to the tag value using a “secret” pattern-matching operator, ~=. The
more you know about the syntax for constructing a pattern, the more powerful your
case values and your switch statements will be.

A pattern can include an underscore (_) to absorb all values without using them. An
underscore case is thus an alternative form of “mop-up” case:

switch 1 {
case 1:
print("You have 1 thingy!")
case _
print("You have many thingies!")

}

A pattern can include a declaration of a local variable name (an unconditional binding)
to absorb all values and use the actual value. This is another alternative form of “mop-
up” case:

switch 1 {
case 1:
print("You have 1 thingy!")
case let n:
print("You have \(n) thingies!")
}

When the tag is a Comparable, a case can include a Range; the test involves sending the
Range the contains message:

switch 1 {
case 1:
print("You have 1 thingy!")
case 2...10:
print("You have \(i) thingies!")
default:
print("You have more thingies than I can count!")

}
When the tagis an Optional, a case can test it against nil. Thus, a possible way to unwrap
an Optional safely is to test against nil first and then unwrap in a subsequent case, since

we’ll never reach the unwrapping if the nil test succeeds. In this example, 1 is an Op-
tional wrapping an Int:

Flow Control | 241

switch 1 {
case nil: break
default:
switch i! {
case 1:
print("You have 1 thingy!")
case let n:
print("You have \(n) thingies!")
}
}

That seems a bit clumsy, however, so Swift 2.0 introduces a new syntax: appending ? to
a case pattern safely unwraps an Optional tag. Thus, we can rewrite that example like
this:
switch 1 {
case 1?:
print("You have 1 thingy!")
case let n?:
print("You have \(n) thingies!")
case nil: break

}
When the tag is a Bool, a case can test it against a condition. Thus, by a clever perversion,
you can use the cases to test any conditions you like — by using true as the tag! A switch
statement thus becomes a genuine substitute for an extended if...else if construct.
In this example from my own code, I could have used if...else if,but each case is
just one line, so a switch statement seems clearer:

func positionForBar(bar: UIBarPositioning) -> UIBarPosition {
switch true {

case bar === self.navbar: return .TopAttached
case bar === self.toolbar: return .Bottom
default: return .Any

}

}

A pattern can include a where clause adding a condition to limit the truth value of the
case. This is often, though not necessarily, used in combination with a binding; the
condition can refer to the variable declared in the binding:

switch 1 {
case let j where j < 0:
print("i is negative")
case let j where j > 0:
print("i is positive")
case 0:
print("i is 0")
default:break
}

242 | Chapter 5: Flow Control and More

A pattern can include the is operator to test the tag’s type. In this example, assume that
we have a Dog class and its NoisyDog subclass, and that d is typed as Dog:

switch d {
case is NoisyDog:
print("You have a noisy dog!")
case _
print("You have a dog.")
}

A pattern can include a cast with the as (not as?) operator. Typically, you'll combine
this with a binding that declares a local variable; despite the use of unconditional as,
the value is conditionally cast and, if the cast succeeds, the local variable carries the cast
value into the case code. Assume that Dog implements bark and that NoisyDog imple-
ments beQuiet:

switch d {

case let nd as NoisyDog:
nd.beQuiet()

case let d:
d.bark()

}

You can also use as (not as!) to cast down the tag (and possibly unwrap it) conditionally
as part of a test against a specific match; in this example, 1 might be an AnyObject or
an Optional wrapping an AnyObject:

switch 1 {

case 0 as Int:
print("It is 0")

default:break

}

You can perform multiple tests at once by expressing the tag as a tuple and wrapping
the corresponding tests in a tuple. The case passes only if every test in the test tuple
succeeds against the corresponding member of the tag tuple. In this example, we start
with a dictionary d typed as [String:AnyObject]. Using a tuple, we can safely attempt
to extract and cast two values at once:

switch (d["size"], d["desc"]) {
case let (size as Int, desc as String):

print("You have size \(size) and it is \(desc)")
default:break

}

When a tag is an enum, the cases can be cases of the enum. A switch statement is thus
an excellent way to handle an enum. Here’s an enum:

Flow Control | 243

enum Filter {
case Albums
case Playlists
case Podcasts
case Books

}
And here’s a switch statement, where the tag, type, is a Filter:

switch type {

case .Albums:
print("Albums")

case .Playlists:
print("Playlists")

case .Podcasts:
print("Podcasts")

case .Books:
print("Books")

}

No “mop-up” is needed, because I exhausted the cases. (In that example, the dot before
the case names is needed. But if the code is inside the enum’s declaration, the dot can be
omitted.)

A switch statement provides a way to extract an associated value from an enum case.
Recall this enum from Chapter 4:

enum Error {
case Number(Int)
case Message(String)
case Fatal

}

To extract the error number from an Error whose case is . Number, or the message string
from an Error whose case is .Message, I can use a switch statement. Recall that the
associated value is actually a tuple. A tuple of patterns after the matched case name is
applied to the associated value. Ifa pattern is abinding variable, it captures the associated
value. The let (or var) can appear inside the parentheses or after the case keyword;
this code illustrates both alternatives:

switch err {
case .Number(let theNumber):

print("It is a .Number: \(theNumber)")
case let .Message(theMessage):

print("It is a .Message: \(theMessage)")
case .Fatal:

print("It is a .Fatal")
}

If the let (or var) appears after the case keyword, I can add a where clause:

244 | Chapter 5: Flow Control and More

switch err {
case let .Number(n) where n > 0:

print("It's a positive error number \(n)")
case let .Number(n) where n < 0:

print("It's a negative error number \(n)")
case .Number(0):

print("It's a zero error number")
default:break

}

If I don’t want to extract the error number but just want to match against it, I can use
some other pattern inside the parentheses:

switch err {
case .Number(1..<Int.max):

print("It's a positive error number")
case .Number(Int.min...(-1)):

print("It's a negative error number")
case .Number(0):

print("It's a zero error number")
default:break

}

This same pattern also gives us yet another way to deal with an Optional tag. An Op-
tional, as I explained in Chapter 4, is in fact an enum. It has two cases, .None and . Some,
where the wrapped value is the . Some case’s associated value. But now we know how to
extract the associated value! Thus we can rewrite yet again the earlier example where 1
is an Optional wrapping an Int:

switch 1 {
case .None: break
case .Some(1):
print("You have 1 thingy!")
case .Some(let n):
print("You have \(n) thingies!")
}
New in Swift 2.0, the lightweight 1f case construct lets you use in a condition the same
sort of pattern syntax youd use in a case of a switch statement. Where a switch case
pattern is compared against a previously stated tag, an if case pattern is followed by
an equal sign and the tag. In practice, this is useful primarily for performing a single
conditional binding to extract an associated value from an enum (err is our Error enum
once again):
if case let .Number(n) = err {

print("The error number is \(n)")

}

You can even append a where clause, just as in a switch case:

Flow Control | 245

if case let .Number(n) = err where n < 0 {
print("The negative error number is \(n)")

}

To combine case tests (with an implicit logical-or), separate them with a comma:

switch 1 {
case 1,3,5,7,9:

print("You have a small odd number of thingies.")
case 2,4,6,8,10:

print("You have a small even number of thingies.")
default:

print("You have too many thingies for me to count.")

}
In this example, 1 is declared as an AnyObject:

switch 1 {
case is Int, is Double:

print("It's some kind of number.")
default:

print("I don't know what it is.")
}

But you can’t use a comma to combine patterns that declare binding variables, presum-
ably because it isn’t clear what variable should be set to what value.

Another way of combining cases is to fall through from one case to the next by using a
fallthrough statement. It is not uncommon for a case to consist entirely of a
fallthrough statement, though it is perfectly legal for a case to execute some code and
then fall through:

switch pep {
case "Manny": fallthrough
case "Moe": fallthrough
case "Jack":

print("\(pep) is a Pep boy")
default:

print("I don't know who \(pep) is")
}

Note that fallthrough evades the test of the next case; it simply starts executing the
next case’s code, directly. Therefore, the next case can’t declare any binding variables,
because they would never be set.

Conditional evaluation

Aninteresting problem arises when you'd like to decide what value to use — for example,
what value to assign to a variable. This seems like a good use of a branching construct.
You can, of course, declare the variable first without initializing it, and then set it from
within a subsequent branching construct. It would be nice, however, to use a branching

246 | Chapter 5: Flow Control and More

construct as the variable’s value. Here, for example, I try (and fail) to write a variable
assignment where the equal sign is followed directly by a branching construct:

let title = switch type { // compile error
case .Albums:
"Albums"
case .Playlists:
"Playlists"
case .Podcasts:
"Podcasts"
case .Books:
"Books"

}
There are languages that let you talk that way, but Swift is not one of them. However,
an easy workaround does exist — use a define-and-call anonymous function:

let title : String = {

switch type {
case .Albums:

return "Albums"
case .Playlists:

return "Playlists"
case .Podcasts:

return "Podcasts"
case .Books:

return "Books"

}
10

In the special case where a value can be decided by a two-pronged condition, Swift
provides the C ternary operator (:?). Its scheme is as follows:

condition ? expl : exp2

Ifthe condition is true, the expression exp1is evaluated and the result is used; otherwise,
the expression exp2 is evaluated and the result is used. Thus, you can use the ternary
operator while performing an assignment, using this schema:

let myVariable = condition ? expl : exp2

What myVariable gets initialized to depends on the truth value of the condition. I use
the ternary operator heavily in my own code. Here’s an example:

cell.accessoryType =
ix.row == self.currow ? .Checkmark : .DisclosureIndicator

The context needn’t be an assignment; here, were deciding what value to pass as a
function argument:

CGContextSetFillColorWithColor(
context, self.hilite ? purple.CGColor : beige.CGColor)

Flow Control | 247

In the version of C used by modern Objective-C, there’s a collapsed form of the ternary
operator that allows you to test a value against nil. If it is nil, you get to supply a
substitute value. If it isn’t nil, the tested value itself is used. In Swift, the analogous
operation would involve testing an Optional: if the tested Optional is nil, use the sub-
stitute value; if it isn’t nil, unwrap the Optional and use the unwrapped value. Swift has
such an operator — the ?? operator (called the nil-coalescing operator).

Recall this example from Chapter 4, where arr is a Swift array of Optional strings and
I'm converting it to a form that can be handed over to Objective-C as an NSArray:

let arr2 : [AnyObject] =
arr.map {if $0 == nil {return NSNull()} else {return $0!}}

We can write the same thing much more neatly using the ternary operator:
let arr2 = arr.map { $0 != nil ? $0! : NSNull() }

And the nil-coalescing operator is even neater:
let arr2 = arr.map { $0 22 NSNull() }

Expressions using ?? can be chained:
let someNumber = i1 as? Int ?? 12 as? Int ?? 0

That code tries to cast 11 to an Int and use that Int. If that fails, it tries to cast 12 to an
Int and use that Int. If that fails, it gives up and uses @.

Loops

The usual purpose of a loop is to repeat a block of code with some simple difference on
each iteration. This difference will typically serve also as a signal for when to stop the
loop. Swift provides two basic loop structures: while loops and for loops.

While loops

A while loop comes in two forms, schematized in Example 5-3.

Example 5-3. The Swift while loop

while condition {

statements
}
repeat {
statements

} while condition

The chief difference between the two forms is the timing of the test. In the second form,
the condition is tested after the block has executed — meaning that the block will be
executed at least once.

248 | Chapter 5: Flow Control and More

Usually, the code inside the block will change something that alters both the environ-
ment and the condition, thus eventually bringing the loop to an end. Here’s a typical
example from my own code (movenda is an array):

while self.movenda.count > 0 {
let p = self.movenda.removelLast()
/...

}

Each iteration removes an element from movenda, so eventually its count falls to @ and

the loop is no longer executed; execution then proceeds to the next line after the closing
curly braces.

The condition in the first form of while loop can be a conditional binding of an Optional.
This provides a compact way of safely unwrapping an Optional and looping until the
Optional is nil; the local variable containing the unwrapped Optional is in scope inside
the curly braces. Thus, my code can be rewritten more compactly:

while let p = self.movenda.poplLast() {
/] ...
}
Another common use of while loops in my code is to walk my way up or down a hier-
archy. In this example, I start with a subview (textField) of some table view cell, and
I want to know which table view cell it is a subview of. So I keep walking up the view
hierarchy, investigating each superview in turn, until I reach a table view cell:

var v : UIView = textField
repeat { v = v.superview! } while !(v is UITableViewCell)

After that code, v is the desired table view cell. Nevertheless, that code is dangerous:
we'll crash if we don’t encounter a UITableViewCell before reaching the top of the view
hierarchy — a view whose superview is nil. Here is a safe way to write the same code:

var v : UIView = textField
while let vv = v.superview where !(vv is UITableViewCell) {v = wv}
if let c = v.superview as? UITableViewCell { // ...

Similar to the 1f case construct, while case lets you use a switch case pattern. In this
rather artificial example, we have an array of various Error enums:

let arr : [Error] = [
.Message("ouch"), .Message("yipes"), .Number(10), .Number(-1), .Fatal
1

We can extract the .Message associated string values from the start of the array, like
this:

var 1 =0
while case let .Message(message) = arr[i++] {

print(message) // "ouch", then "yipes"; then the loop stops
}

Flow Control | 249

For loops

A Swift for loop comes in two forms, as schematized in Example 5-4.

Example 5-4. The Swift for loop

for variable in sequence {
statements

}

for before-all; condition; after-each {
statements

}

The first form — the for...1in construct — is similar to Objective-C’s for...in con-
struct. In Objective-C, this syntax is available whenever a class conforms to the NSFast-
Enumeration protocol. In Swift, it is available whenever a type adopts the SequenceType
protocol.

In the for...1in construct, the variable is implicitly declared with let on each iteration;
it is thus immutable by default. (If you need to assign to the variable within the block,
write for var.) The variable is also local to the block. On each iteration, a successive
element of the sequence is used to initialize the variable, which is then in scope inside
block. This is the form of for loop you’ll use most often, especially because it is so easy
in Swift to create a sequence on the fly if you don’t have one already. In C, for example,
the way to iterate through the numbers 1 to 5 is to use the second form, and you can
certainly do the same in Swift:

for var 1 = 1; 1 < 6; i1++ {

print(i)

}
But in Swift, you can create a sequence of the numbers 1 through 5 on the fly — a Range
— and that’s what you’ll usually do:

for 1 in 1...5 {
print(i)
}
A SequenceType has a generate method which yields a “generator” object which, itself,
has a mutating next method that returns the next object in the sequence wrapped in an
Optional, or nil if there is no next object. Under the hood, therefore, for...in isac-
tually a kind of while loop:

var g = (1...5).generate()

while let 1 = g.next() {
print(i)

}

Sometimes you may find that writing out the while loop explicitly in that way makes
the loop easier to control and to customize.

250 | Chapter 5: Flow Control and More

The sequence will often be an existing value. It might be a character sequence, in which
case the variable values are the successive Characters. It might be an array, in which case
the variable values are the successive elements of the array. It might be a dictionary, in
which case the variable values are a key-value tuple, and you will probably express the
variable as a tuple of two names in order to capture them. Many examples have already
appeared in earlier chapters.

As I explained in Chapter 4, you may encounter an array coming from Objective-C
whose elements will need to be cast down from AnyObject. It is quite typical to do this
as part of the sequence specification:

let p = Pep()

for boy in p.boys() as! [String] {
/] ...

}

The sequence enumerate method yields a sequence of tuples preceding each element of
the original sequence with its index number:

for (i,v) in self.tiles.enumerate() {
v.center = self.centers[i]

}

If you need to skip some values of the sequence, Swift 2.0 allows you to append a where
clause:

for 1 in 0...10 where 1 % 2 == 0 {
print(i) // 0, 2, 4, 6, 8, 10
}

Like if case andwhile case, there’salso for case.Return to our example of an array
of Error enums:

let arr : [Error] = [
.Message("ouch"), .Message("yipes"), .Number(10), .Number(-1), .Fatal
]

Here we cycle through the whole array, extracting just the .Number associated values:

for case let .Number(i) in arr {
print(i) // 10, then -1
}

A sequence also has instance methods, such as map, filter, and reverse; in this ex-
ample, I count backward by even numbers:

let range = (0...10).reverse().filter{$0 % 2 == 0}
for 1 in range {

print(i) // 10, 8, 6, 4, 2, 0
}

Flow Control | 251

Yet another approach is to generate the sequence by calling the stride method. It’s an
instance method of the Strideable protocol, which is adopted by numeric types and
anything else that can be incremented and decremented. It has two forms:

e stride(through:by:)
e stride(to:by:)

Which form you use depends on whether you want the sequence to include the final
value or not. The by : argument can be negative:

for 10.stride(through: 0, by: -2) {
print(i) // 10, 8, 6, 4, 2, O
}

You can cycle through two sequences simultaneously using the global zip function,
which takes two sequences and yields a Zip2 struct, which is itself a sequence. The value
on each iteration through a Zip2 is a tuple of the corresponding elements from both
original sequences; if one of the original sequences is longer than the other, the extra
elements are ignored:

.l,et arrl = [”CA”’ ”MD"’ “NY"’ I|AZII]

let arr2 = ["California", "Maryland", "New York"]

var d = [String:String]()

for (s1,s2) in zip(arri,arr2) {

d[s1] = s2

} // now d is ["MD": "Maryland", "NY": "New York", "CA": "California"]
The second form of for loop is a clone of the C for loop (refer to Example 5-4). The idea
here is usually to increment or decrement a counter. The before-all statement is ex-
ecuted once as the for loop is first encountered and is usually used for initialization of
the counter. The condition is then tested, and if true, the block is executed; the condition
will usually test whether the counter has reached some limit. The after -each statement
is then executed, and will usually increment or decrement the counter; the condition is
then immediately tested again. Thus, to execute a block using integer values 1, 2, 3, 4,
and 5 for 1, the standard formula (if you're going to use this kind of for loop) is:

var 1 : Int

for 1 =1; 1 < 6; 1++ {
print(i)

}

To limit the scope of the counter to the inside of the curly braces, declare it as part of
the before-all statement:
for var 1 = 1; 1 < 6; 1++ {

print(i)
}

252 | Chapter 5: Flow Control and More

No law says, however, that this kind of for loop must be about counting or incrementing.
Recall this earlier example of a while loop, where we cycle up the view hierarchy looking
for a table view cell:

var v : UIView = textField
repeat { v = v.superview! } while !(v is UITableViewCell)

Here’s another way to express that, using a for loop whose block is empty:

var v : UIView
for v = textField; !(v is UITableViewCell); v = v.superview! {}

Asin C, each statement in the declaration (separated by semicolon) may consist, itself,
of more than one code statement (separated by comma). This can be a handy, elegant
way to clarify your intentions. In this example from my own code, I declare two variables
in the before-all statement, and change both of them in the after-each statement;
there are other ways to accomplish this same end, certainly, but this seems cleanest and
clearest:

var values = [0.0]

for (var i1 = 20, direction = 1.0; 1 < 60; 1 += 5, direction *= -1) {
values.append(direction * M_PI / Double(i))

}

Jumping

Although branching and looping constitute the bulk of the decision-making flow of
code execution, sometimes even they are insufficient to express the logic of what needs
to happen next. On rare occasions, it is useful to be able to interrupt your code’s progress
completely and jump to a different place within it.

The most general way to jump from anywhere to anywhere is the goto command, com-
mon in early programming languages, but now notoriously “considered harmful” Swift
doesn’'t have a goto command, but it does provide a repertory of controlled ways of
jumping, which will, in practice, cover any real-life situation. Swift's modes of jumping
are all forms of early exit from the current flow of code.

You are familiar already with one of the most important forms of early exit: return,
which brings the current function to an immediate end and resumes at the point where
the function was called. Thus, return may be considered a form of jumping.

Shortcircuiting and labels
Swift has several ways of shortcircuiting the flow of branch and loop constructs:

fallthrough
A fallthrough statement in a switch case aborts execution of the current case code
and immediately begins executing the code of the next case. There must be a next
case or the compiler will stop you.

Flow Control | 253

continue
A continue statement in a loop construct aborts execution of the current iteration
and proceeds to the next iteration:

o In a while loop, continue means to perform immediately the conditional test.

o In a for loop of the first type (for...1n), continue means to proceed imme-
diately to the next iteration if there is one.

o In a for loop of the second type (C for loop), continue means to perform
immediately the after-each statement and then the conditional test.

break
A break statement aborts the current construct:

o Inaloop, break aborts the loop completely.

« In the code of a switch case, break aborts the entire switch construct.

When constructs are nested, you may need to specify which construct you want to
continue or break. Therefore, Swift permits you to put a label before the start of a do
block, an if construct, a switch statement, a while loop, or a for loop. The label is an
arbitrary name followed by a colon. You can then use that label name as a second term
in a continue or break statement within the labeled construct at any depth, to specify
that this is the construct you are referring to.

Here’s an artifical example to illustrate the syntax. First, I'll nest two for loops with no
label:

for 1 in 1...5 {
for j in 1...5 {
print("\(1), \(3);")
break
}

}
/l 1, 1; 2, 1; 3, 1; 4, 1; 5, 1;

As you can see from the output, that code keeps aborting the inner loop after one
iteration, while the outer loop proceeds normally through all five iterations. But what
if you wanted to abort the entire nested construct? The solution is a label:

outer: for i in 1...5 {
for j in 1...5 {
print("\(1), \(3);")
break outer
}
}
/] 1, 1;

254 | Chapter 5: Flow Control and More

New in Swift 2.0, you can put a label before the word if, and you can also break with
a label name within the code of an if or else block; similarly, you can put a label before
the word do and you can break with a label name in a do block. With these additions,
Swift’s shortcircuiting capabilities may be considered feature-complete.

Throwing and catching errors

Sometimes a situation arises where further coherent progress is impossible: the entire
operation in which we are engaged has failed. It can then be desirable to abort the current
scope, and possibly the current function, and possibly even the function that called it,
and so on, exiting to a point where we can acknowledge this failure and proceed in good
order in some other way.

For this purpose, Swift 2.0 provides a mechanism for throwing and catching errors. In
keeping with its usual insistence on safety and clarity, Swift imposes certain strict con-
ditions on the use of this mechanism, and the compiler will ensure that you adhere to
them.

An error, in this sense, is a kind of message, presumably specifying what went wrong.
This message is passed up the nest of scopes and function calls as part of the error-
handling process, and the code that recovers from the failure can, if desired, read the
message and determine how to proceed. In Swift, an error must be an object of a type
that adopts the ErrorType protocol, which has just two requirements: a String _domain
property and an Int _code property. In practice, that’s likely to mean one of the following:

NSError
NSError is Cocoa’s class for communicating the nature of a problem. If your call to
a Cocoa method generates a failure, Cocoa will send you an NSError instance. You
can also create your own NSError instance by calling its designated initializer,
init(domain:code:userInfo:).

A Swift type that adopts ErrorType
As soon as a type adopts the ErrorType protocol, it is ready to be used as an error
object; the protocol requirements are magically fulfilled for you, behind the scenes.
Typically, this type will be an enum, which will communicate its message by means
ofits cases: different cases will distinguish different kinds of possible failure, perhaps
with raw values or associated types to carry further information.

There are two stages of the error mechanism to consider: throwing an error, and catch-
ing an error. Throwing an error aborts the current path of execution and hands an error
object to the error-handling mechanism. Catching an error receives that error object
and responds in good order, with the path of execution resuming after the point of
catching. In effect, we have jumped from the throwing point to the catching point.

To throw an error, use the keyword throw followed by an error object. This causes the
current block of code to be aborted and the error-handling mechanism to kick in. To

Flow Control | 255

ensure that the throw command is used coherently, Swift imposes a rule that you can
say throw only in one of the following two places:

In the do block of a do. . .catch construct
A do. . .catch construct consists of (at least) two blocks, the do block and the catch
block. The point of the construct is that a catch block can be fed any errors thrown
from within the do block. Thus, such an error can be handled coherently — it can
be caught. I'll describe the do. . .catch construct in more detail in a moment.

In a function marked throws

If an error is thrown not inside the do block of a do...catch construct, or if an
error is thrown inside the do block but the catch block fails to catch it, the error
message travels right up and out of the current function. You are thus relying on
some other function — the function that called this function, or the function that
called that function, and so on up the call stack — to catch the error. To signal to
any callers (and to the compiler) that this can happen, your function must include
the keyword throws in its declaration.

To catch an error, use a do. . .catch construct. An error thrown from within the do
block can be caught by a catch block that accompanies it. The do. . .catch construct’s
schema looks like Example 5-5.

Example 5-5. The Swift do. . .catch construct

do {

statements [/ a throw can happen here
} catch errortype {

statements
} catch {

statements

}

A single do block can be accompanied by multiple catch blocks. Catch blocks are like
the cases of a switch statement, and will usually have the same logic: first, you might
have specialized catch blocks, each of which is designed to handle some limited set of
possible errors; finally, you might have a general catch block that acts as the default,
mopping up any errors that were not caught by any of the specialized catch blocks.

In fact, the syntax used by a catch block to specify what sorts of error it catches is the
pattern syntax used by a case in a switch statement! Imagine that this is a switch state-
ment, and that the tag is the error object. Then the matching of that error object to a
particular catch block is performed just as if you had written case instead of catch.
Typically, when the ErrorType is an enum, a specialized catch block will state at least
the enum that it catches, and possibly also the case of that enum; it can have a binding,
to capture the enum or its associated type; and it can have a where clause to limit the
possibilities still further.

256 | Chapter 5: Flow Control and More

To illustrate, I'll start by defining a couple of errors:

enum MyFirstError : ErrorType {
case FirstMinorMistake
case FirstMajorMistake
case FirstFatalMistake

}

enum MySecondError : ErrorType {
case SecondMinorMistake(i:Int)
case SecondMajorMistake(s:String)
case SecondFatalMistake

}

Now here’s ado. . .catch construct designed to demonstrate some of the different ways
we can catch different errors in different catch blocks:

do {
// throw can happen here
} catch MyFirstError.FirstMinorMistake {
/] catches MyFirstError.FirstMinorMistake
} catch let err as MyFirstError {
|/ catches all other cases of MyFirstError
} catch MySecondError.SecondMinorMistake(let i) where 1 < 0 {
|/ catches e.g. MySecondError.SecondMinorMistake(i:-3)
} catch {
|/ catches everything else

}

In a catch block with an accompanying pattern, it is up to you to capture in the pattern
any desired information about the error. For example, if you want the error itself to
travel as a variable into the catch block, you'll need a binding in the pattern. In a catch
block with no accompanying pattern, the error object arrives into the block as a variable
called error.

If a line of code in a function says throw, and this is not in a do block that has a “mop-
up” catch block, then the function itself must be marked with throws — because if not
every possible error is caught, and an error is thrown, that error can travel right out of
the enclosing function. The syntax is that the keyword throws will appear immediately
after the parameter list (and before the arrow operator, if there is one). For example:

enum NotLongEnough : ErrorType {
case ISaidLongIMeantLong
}
func giveMeAlLongString(s:String) throws {
if s.characters.count < 5 {
throw NotLongEnough.ISaidLongIMeantLong
}
print("thanks for the string")

Flow Control | 257

The addition of throws to a function declaration creates a new function type. The type
of giveMeALongString is not (String) -> (), but rather (String) throws -> ().If
a function receives as parameter a function that can throw, that parameter’s type needs
to be specified accordingly:

func receiveThrower(f:(String) throws -> ()) {
/...
}

That function can now be called with giveMeALongString as argument:

func callReceiveThrower() {
receiveThrower(giveMeALongString)

}

An anonymous function, if necessary, can include the keyword throws in its in line, in
the same place where it would appear in a normal function declaration. But this is not
necessary if, as is usually the case, the anonymous function’s type is known by inference:

func callReceiveThrower() {
receiveThrower {
s in
if s.characters.count < 5 {
throw NotLongEnough.ISaidLongIMeantLong

}
print("thanks for the string")

}

Swift also imposes a requirement on the caller of a throws function: the caller must
precede the call with the keyword try. This keyword acknowledges, to the programmer
and to the compiler, that we understand that this function can throw. It also imposes a
further requirement: this call must take place where throwing is legal! A function called
with try can throw, so saying try is just like saying throw: you must say it either in the
do block of a do. . .catch construct or in a function marked throws.

So, for example:

func stringTest() {
do {
try giveMeALongString("is this long enough for you?")
} catch {
print("I guess it wasn't long enough: \(error)")

}
}

If, however, you are very sure that a function that can throw will in fact not throw, then
you can call it with the keyword try! instead of try. This relieves you of all further
responsibility: you can say try! anywhere, without catching the possible throw. But be
warned: if youre wrong, and this function does throw when your program runs, your

258 | Chapter 5: Flow Control and More

program can crash at that moment, because you have allowed an error to proceed,
uncaught, all the way up to the top of the calling chain.

Thus, this is legal but dangerous:

func stringTest() {
try! giveMeALongString("okay")

}
In between try and try! is try?. This has the advantage that, like try!, you can use it
anywhere, without catching the possible throw. In addition, it won’t crash if there is a
throw; instead, it returns nil. Thus, try? is useful particularly in situations where its
expression returns a value. If there’s no throw, it wraps that value in an Optional. Com-
monly, you'll unwrap that Optional safely in the same line with a conditional binding.
I’ll give an example in a moment.

A function that receives a throws function parameter, and that calls that function (with
try), and that doesn’t throw for any other reason, may itself be marked as rethrows
instead of throws. The difference is that when a rethrows function is called, the caller
can pass as argument a function that does not throw, and in that case the call doesn’t
have to be marked with try (and the calling function doesn’t have to be marked with
throws):

func receiveThrower(f:(String) throws -> ()) rethrows {
try f("ok?")
}

func callReceiveThrower() { // no throws needed
receiveThrower { // no try needed
s in
print("thanks for the string!")

}

Now lets talk about how Swift’s error-handling mechanism relates to Cocoa and
Objective-C. A common Cocoa pattern is that a method will return nil to indicate
failure, and will take an NSError** parameter as a way of communicating an error to
the caller outside of the method result. Swift types such a parameter as an NSError-
Pointer, meaning a pointer to an Optional wrapping an NSError. For example, NSString
has an initializer declared in Objective-C like this:

- (instancetype)initWithContentsOfFile: (NSString *)path
encoding: (NSStringEncoding)enc
error:(NSError **)error;

Prior to Swift 2.0, the Swift translation of that declaration looked like this:

convenience init?(contentsOfFile path: String,
encoding enc: UInt,
error: NSErrorPointer)

Flow Control | 259

And you would call it by passing, as the last argument, the address of an Optional
wrapping an NSError:

var err : NSError?
let s = String(contentsOfFile: f, encoding: NSUTF8StringEncoding, error: &err)

The idea is that after that call, s is either a String (wrapped in an Optional) or nil. Ifit’s
nil, the call has failed, and you can examine err, which has been set by indirection, to
find out why.

In Swift 2.0, however, that Objective-C method is automatically recast to take advantage
of the error-handling mechanism. The error: parameter is removed from the Swift
translation of the declaration, and is replaced by a throws marker:

init(contentsOfFile path: String, encoding enc: NSStringEncoding) throws

Thus there is no need to declare an NSError variable beforehand, and no need to receive
the NSError by indirection. Instead, you just call the method, within the controlled
conditions dictated by Swift: you have to say try, in a place where throwing is legal. The
result can never be nil, and so it is no longer a String wrapped in an Optional; it’s a
String, plain and simple, because if the initialization fails, the call will throw and no
result will arrive at all:

do {
let f = // path to some file, maybe
let s = try String(contentsOfFile: f, encoding: NSUTF8StringEncoding)
/] ... if successful, do something with s ...
} catch {
print((error as NSError).localizedDescription)

}

If youre very sure the initialization won't fail, you can skip the do. . .catch construct
and use try! instead:

let f = // path to some file, maybe
let s = try! String(contentsOfFile: f, encoding: NSUTF8StringEncoding)

But even if you're in doubt, you can skip the do. . .catch construct and still proceed
safely by using try?, in which case the value returned is an Optional — which you’ll
probably unwrap safely at the same time, like this:

let f = // path to some file, maybe
if let s = try? String(contentsOfFile: f, encoding: NSUTF8StringEncoding) {
/...

}
Objective-C NSError and Swift ErrorType are bridged to one another. Thus, in a catch
block a moment ago, I cast the error variable to NSError and examined it using an
NSError property. However, you don’t have to do that; instead of treating the caught
error as an NSError, you can treat it as a Swift enum.

260 | Chapter 5: Flow Control and More

For common Cocoa error types, the name of the bridged enum is the name of the
NSError domain, with "Domain" deleted from its name. Let’s say there is no such file,
the call throws, and we catch the error. This NSError’s domain is "NSCocoaError -
Domain", so Swift can see it as an NSCocoaError enum. Moreover, its code is 260, which
is expressed in Objective-C as NSFileReadNoSuchFileError and in Swift as the File-
ReadNoSuchFileError enum case. Thus we can catch the same error like this:
do {
let f = // path to some file, maybe
let s = try String(contentsOfFile: f, encoding: NSUTF8StringEncoding)
// ... if successful, do something with s ...
} catch NSCocoaError.FileReadNoSuchFileError {
print("no such file")
} catch {
print(error)

}

See the FoundationError.h header file in Objective-C to learn about Cocoa’s built-
in standard error domains.

The same sort of thing is true in reverse. As I said earlier, a Swift type that adopts
ErrorType automatically implements its requirements behind the scenes: in particular,
its _domatin is the name of the type, and, if this is an enum, its _code is the index number
of its case (otherwise, the _code is 1). If an ErrorType is used where an NSError is
expected (or is simply cast to an NSError), those become the NSError’s domain and code
values.

Defer

The purpose of the defer statement, new in Swift 2.0, is to ensure that a certain block of
code will be executed at the time the path of execution flows out of the current scope,
no matter how.

A defer statement applies to the scope in which it appears, such as a function body, a
while block, an if construct, and so on. Wherever you say defer, curly braces surround
it; the defer block will be executed when the path of execution leaves those curly braces.
Leaving the curly braces can involve reaching the last line of code within the curly braces,
or any of the forms of early exit described earlier in this section.

To see why this is useful, consider the following pair of commands:

UIApplication.sharedApplication().beginIgnoringInteractionEvents()
Stops all user touches from reaching any view of the application.

UIApplication.sharedApplication().endIgnoringInteractionEvents()
Restores the ability of user touches to reach views of the application.

Flow Control | 261

It can be valuable to turn off user interactions at the start of some slightly time-
consuming operation and then turn them back on after that operation, especially when,
during the operation, the interface or the app’s logic will be in some state where the user’s
tapping a button, say, could cause things to go awry. Thus, it is not uncommon for a
method to be constructed like this:

func doSomethingTimeConsuming() {
UIApplication.sharedApplication().beginIgnoringInteractionEvents()
// ... do stuff ...
UIApplication.sharedApplication().endIgnoringInteractionEvents()

}

All well and good — if we can guarantee that the only path of execution out of this
function will be by way of that last line. But what if we need to return early from this
function? Our code now looks like this:

func doSomethingTimeConsuming() {
UIApplication.sharedApplication().beginIgnoringInteractionEvents()
/] ... do stuff ...
if somethingHappened {
return

}
// ... do more stuff ...
UIApplication.sharedApplication().endIgnoringInteractionEvents()

}

Ooops! We've just made a terrible mistake. By providing an additional path out of our
doSomethingTimeConsuming function, we've created the possibility that our code might
never encounter the call to endIgnoringInteractionEvents(). We might leave our
function by way of the return statement — and the user will then be left unable to
interact with the interface. Obviously, we need to add another endIgnoring... call
inside the if construct, just before the return statement. But as we continue to develop
our code, we must remember, if we add further ways out of this function, to add yet
another endIgnoring. .. call for each of them. This is madness!

The defer statement solves the problem. It lets us specify once what should happen when
we leave this scope, no matter how. Our code now looks like this:

func doSomethingTimeConsuming() {
UIApplication.sharedApplication().beginIgnoringInteractionEvents()
defer {
UIApplication.sharedApplication().endIgnoringInteractionEvents()
}
// ... do stuff ...
if somethingHappened {
return
}
// ... do more stuff ...

262 | Chapter 5:Flow Control and More

The endIgnoring... call in the defer block will be executed, not where it appears, but
before the return statement, or before the last line of the method — whichever path of
execution ends up leaving the function. The defer statement says: “Eventually, and as
late as possible, be sure to execute this code” We have thus ensured the necessary balance
between turning off user interactions and turning them back on again. Most uses of the
defer statement will probably come under this same rubric: you’'ll use it to balance a
command or restore a disturbed state.

If the current scope has multiple defer blocks pending, they will be called in the
reverse of the order in which they originally appeared. In effect, there is a defer
stack; each successive defer statement pushes its code onto the top of the stack, and
exiting the scope in which a defer statement appeared pops that code and exe-
cutes it.

Aborting

Aborting is an extreme form of flow control; the program stops dead in its tracks. In
effect, you have deliberately crashed your own program. This is an unusual thing to do,
but it can be useful as a way of raising a very red flag: you don't really want to abort, so
if you do abort, things must be so bad that you've no choice.

One way to abort is by calling the global function fatalError. It takes a String parameter
permitting you to provide a message to appear in the console. I've already given this
example:

required init?(coder aDecoder: NSCoder) {

fatalError("init(coder:) has not been implemented")

}
That code says, in effect, that execution should never reach this point. We have no real
implementation of init(coder:), and we do not expect to be initialized this way. If we
are initialized this way, something has gone very wrong, and we want to crash, because
our program has a serious bug.

An initializer containing a fatalError call does not have to initialize any properties.
This is because fatalError is declared with the @horeturn attribute, which causes the
compiler to abandon any contextual requirements. Similarly, a function that returns a
value does not have to return any value if a fatalError call is encountered.

You can also abort conditionally by calling the assert function. Its first parameter is a
condition — something that evaluates as a Bool. If the condition is false, we will abort;
the second parameter is a String message to appear in the console if we do abort. The
idea here is that you are making a bet (an assertion) that the condition is true — a bet
that you feel so strongly about that if the condition is false, there’s a serious bug in your
program and you want to crash so you can learn of this bug and fix it.

Flow Control | 263

By default, assert works only when you're developing your program. When your pro-
gram is to be finalized and made public, you throw a different build switch, telling the
compiler that assert should be ignored. In effect, the conditions in your assert calls
are then disregarded; they are all seen as true. This means that you can safely leave
assert calls in your code. By the time your program ships, of course, none of your
assertions should be failing; any bugs that caused them to fail should already have been
ironed out.

The disabling of assertions in shipping code is performed in an interesting way. The
condition parameter is given an extra layer of indirection by declaring it as an
@autoclosure function. This means that, even though the parameter is not in fact a
function, the compiler will wrap it in a function; thus, the runtime needn't call that
function unless it has to. In shipping code, the runtime will nof call that function. This
mechanism averts expensive and unnecessary evaluation: an assert condition test may
involve side effects, but the test won’t even be performed when assertions are turned off
in your shipping program.

Alternatively, Swift provides the precondition function. It is similar to assert,
except that it remains operative even in a shipping program.

Guard

If the need for jumping might arise, you will probably want to test a condition that
decides whether to jump. Swift 2.0 provides a special syntax for this situation — the
guard statement. In effect, a guard statement is an if statement where you must exit early
in response to failure of the condition. Its form is shown in Example 5-6.

Example 5-6. The Swift guard statement

guard condition else {
statements
exit

}

A guard statement, as you can see, consists solely of a condition and an else block. The
else block must jump out of the current scope, by any of the means that Swift provides,
such as return, break, continue, throw, or fatalError — anything that guarantees to
the compiler that, in case of failure of the condition, execution absolutely will not pro-
ceed within the block that contains the guard statement.

An elegant consequence of this architecture is that, because the guard statement guar-
antees an exit on failure of the condition, the compiler knows that the condition has
succeeded after the guard statement if we do not exit. Thus, a conditional binding in

264 | Chapter 5: Flow Control and More

the condition is in scope after the guard statement, without introducing a further nested
scope. For example:

guard let s = optionalString else {return}

// s is now a String (not an Optional)
That construct, as I demonstrated earlier, can be a nice alternative to the “pyramid of
doom?” It will also come in handy in conjunction with try?. Let’s presume we can’t
proceed unless String(contentsOfFile:encoding:) succeeds. Then we can rewrite
our earlier example like this:

let f = // path to some file, maybe

guard let s = try? String(contentsOfFile: f, encoding: NSUTF8StringEncoding)
else {return}

// s is now a String (not an Optional)

There is also a guard case construct, forming the logical inverse of 1f case. To illus-
trate, we’ll use our Error enum o