

iOS	9	Swift	Programming	Cookbook
Vandad	Nahavandipoor

iOS	9	Swift	Programming	Cookbook
by	Vandad	Nahavandipoor

Copyright	©	2016	Vandad	Nahavandipoor.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editors:	Rachel	Roumeliotis	and	Andy	Oram

Production	Editor:	Nicole	Shelby

Copyeditor:	Kim	Cofer

Proofreader:	James	Fraleigh

Indexer:	Judy	McConville

Interior	Designer:	David	Futato

Cover	Designer:	Ellie	Volckhausen

Illustrator:	Rebecca	Demarest

December	2015:	First	Edition

http://safaribooksonline.com

Revision	History	for	the	First	Edition
2015-12-08:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491936696	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	iOS	9	Swift
Programming	Cookbook,	the	cover	image,	and	related	trade	dress	are	trademarks	of
O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
author	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-93669-6

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491936696

Preface

When	I	started	writing	this	edition	of	this	book	(which	has	been	in	the	field	and	regularly
updated	since	iOS	version	4),	I	thought	to	myself:	what	I	should	do	to	really	overhaul	it
and	make	it	even	more	exciting	than	the	previous	editions?	The	answer	was	to	rewrite	the
whole	book	—	every	single	word	from	scratch.	Up	to	and	including	the	iOS	8	Swift
Programming	Cookbook	(where	I	made	the	big	switch	from	Objective-C	to	Swift)	was	to
base	every	edition	on	the	previous	edition.	I	would	go	through	all	the	examples	from	the
previous	edition	to	remove	the	ones	that	were	irrelevant	for	the	new	edition	or	just
expendable	because	they	were	very	simple	and	basic.	I’d	then	update	the	remaining
examples	to	make	sure	they	work	great	with	the	new	iOS	version.	Then	I	would	also	write
new	content	for	the	new	version	of	iOS.	However,	after	5	editions,	I	noticed	that	many
recipes	were	not	really	useful	anymore	and	had	stayed	almost	the	same	since	the
beginning.	So	how	could	I	solve	this	issue?	The	solution	was	to	not	do	this	any	longer.	I
had	to	write	all	new	content,	and	that’s	what	I	did	for	this	book.

The	amount	of	work	that	went	into	writing	this	book	was	tremendous,	on	my	side	and	on
O’Reilly’s	side.	I	have	had	to	think	long	and	hard	about	every	new	recipe,	writing	all	the
example	code	anew	and	ensuring	it	works	with	the	latest	production	tools	from	Apple.
You	will	learn	a	lot	about	Swift	2	and	iOS	9	SDK	in	this	book.

And	yes,	there	is	a	great	deal	of	watchOS	material	in	this	book.	The	chapter	dedicated	to
watchOS	has	more	content	in	it	than	any	other	chapter.	The	reason	behind	that	decision
was	that	watchOS	was	the	main	focus	for	this	year’s	WWDC	and	that	Apple	has	paid
more	attention	to	watchOS	in	iOS	9	SDK	than	to	other	frameworks	or	tools	that	they	have
published	this	year.	I	hope	you’ll	enjoy	writing	watchOS	apps	as	much	as	I	do.

One	last	thing.	Since	Swift	changes	a	lot	and	is	constantly	updated,	please	always	check
the	GitHub	repo	for	this	book	to	get	the	most	up-to-date	code.	I	have	ensured	that	all	code
compiles	and	works	fine	with	Xcode	7	and	the	iOS	9	SDK,	but	if	for	some	reason	you	are
on	a	beta	Xcode	that	is	newer	than	the	production	version	of	Xcode	7	that	Apple	has
released,	do	ensure	that	you	have	the	latest	code	by	checking	out	this	book’s	GitHub	repo.

Have	fun	and	I	hope	you’ll	enjoy	reading	this	book.

Audience
I	assume	that	you	are	comfortable	writing	iOS	apps,	at	least	know	your	way	around
Xcode,	and	can	work	with	the	simulator.	This	book	is	not	for	beginners.	If	you	have	never
programmed	in	Xcode	before	for	iOS,	it	will	be	tough	to	learn	iOS	programming	only
from	this	book.	So	I	suggest	that	you	complement	your	skills	with	other	online	resources.
The	best	market	for	this	book	is	intermediate	and	advanced	users.

I	also	assume	that	you	have	written	a	little	bit	of	Swift	code.	In	this	book,	I	use	Swift	2
and	will	teach	you	some	of	the	concepts,	but	if	you	don’t	know	Swift,	this	is	not	the	right
place	to	start.	Please	pick	up	Apple’s	book	on	Swift	programming	first;	try	with	that	and
once	you	are	a	bit	comfortable	with	Swift,	come	back	to	this	book	and	I’m	sure	you’ll
learn	a	lot	of	new	things,	even	about	Swift	2.

Organization	of	This	Book
Here	I’ll	explain	what	each	chapter	is	about	so	that	you’ll	get	a	feeling	for	what	this	book
is	going	to	teach	you:

Chapter	1,	Swift	2.0,	Xcode	7,	and	Interface	Builder

In	this	chapter,	we	go	through	a	lot	of	new	stuff	in	Swift,	Xcode,	and	Interface
Builder	(IB),	such	as	the	addition	of	the	guard	keyword	to	Swift	and	conditionally
extending	types	with	Swift’s	new	runtime	features.	Swift	has	really	matured	with
Swift	2,	and	I	want	to	share	some	of	the	most	important	additions	with	you.

Chapter	2,	Apple	Watch

This	year’s	WWDC	star,	without	a	doubt,	is	watchOS	2	with	all	its	additions.	Now
apps	can	run	natively	on	the	watchOS	without	having	to	talk	to	the	iOS	counterpart
app,	and	this	is	great	for	us.	More	work,	more	things	to	do,	more	fun.	We	will	talk
about	complications,	transferring	files	between	iOS	and	watchOS	2	apps,
downloading	files	right	on	the	watch,	recording	audio,	and	playing	multimedia	on
your	watch.

Chapter	3,	The	User	Interface

Even	though	additions	to	UIKit	were	not	talked	about	as	extensively	as	watchOS	2	at
this	year’s	WWDC,	there	are	still	tons	of	new	features	that	we	can	discuss,	including
anchored	constraints,	stack	views,	and	the	new	Safari	view	controller.

Chapter	4,	Contacts

The	all-new	contacts	APIs	will	be	discussed	in	this	chapter.	The	frameworks	on
which	this	chapter	is	based	are	both	completely	new	to	iOS	9.	With	the	APIs	in	these
frameworks,	you’ll	learn	how	to	add	new	contacts	to	the	user’s	device,	remove
contacts,	edit	them,	or	even	allow	the	user	to	pick	a	contact	from	the	list	so	that	you
can	perform	your	tasks	on	it.

Chapter	5,	Extensions

Safari	Content	Blockers	shocked	a	lot	of	developers	during	this	year’s	WWDC.	This
allows	us	developers	to	create	apps	that	get	installed	as	extensions	on	the	user’s
Safari	browser,	and	allows	us	to	block	various	elements	of	web	pages	that	the	user
views.	For	instance,	you	can	now	block	pictures	or	various	unwanted	elements	in	the
websites	that	you	specify	in	your	app,	and	you	can	share	these	content	blockers	with
those	who	use	your	app.	This	chapter	is	all	about	new	extension	points	that	you	can
add	to	your	apps.

Chapter	6,	Web	and	Search

Apps	can	now	provide	content	to	iOS.	iOS	will	then	index	these	contents	and	allow
the	user	to	search	for	these	contents	right	within	Spotlight	on	their	devices.	Your
contents	can	also	be	indexed	globally	on	Apple’s	servers	so	even	those	who	don’t
have	your	app	can	see	your	content	on	their	devices.	Intrigued?	Read	this	chapter,
then!

Chapter	7,	Multitasking

We	now	have	Picture	in	Picture	(PiP)	in	iOS.	Your	app	can	provide	a	video	player	to
iOS	and	allow	the	user	to	minimize	your	whole	app	into	that	video	player	while	she
works	with	other	apps.	It’s	really	cool,	in	my	opinion.

Chapter	8,	Maps	and	Location

With	the	additions	to	Core	Location	and	MapKit	frameworks,	you	can	now,	for
example,	display	an	ETA	for	transit	between	two	locations	or	display	your	custom
view	inside	the	annotation	of	a	pin	on	the	map.

Chapter	9,	UI	Testing

One	of	the	stars	of	this	year’s	WWDC	is	Apple’s	new	UI	Testing	framework.	We	can
now	write	native	Swift	code	to	do	our	UI	testing,	and	in	this	chapter	I’m	going	to
show	you	how.

Chapter	10,	Core	Motion

Core	Motion	is	now	also	available	on	watchOS	2	and	in	this	chapter	you’ll	learn
some	of	the	new	things	that	you	can	do	with	this	framework,	including	reading
cadence	information	from	sensors	on	the	device.

Chapter	11,	Security

ATS	is	a	welcome	addition	in	iOS	that	forces	all	requests	to	go	through	HTTPS.	If
you	build	your	project	with	Xcode	7	and	iOS	9	SDK,	all	your	network	requests	will
go	through	HTTPS	by	default,	protecting	your	content	and	possibly	breaking	a	few
things	if	you	don’t	support	HTTPS	in	your	web	services.	Read	this	chapter	to	learn
more.

Chapter	12,	Multimedia

We	have	some	new	additions	to	how	apps	can	interact	with	Siri	and	you	can	read
about	them	in	this	chapter.

Chapter	13,	UI	Dynamics

Last	but	not	least,	there	are	some	amazing	effects	that	you	can	achieve	in	your	user
interface	with	the	new	additions	to	UI	Dynamics,	including	the	ability	to	create
turbulence	or	magnetic	fields.	In	this	chapter,	I’ll	show	you	these	additions	with
examples.

Additional	Resources
This	book	is	not	for	beginners,	so	I	assume	you	have	already	gotten	a	grip	on	Swift	and
can	do	basic	things	with	it.	Please	read	Apple’s	documentation	on	Swift	by	doing	a	quick
web	search.	You	can	either	read	it	on	your	browser,	as	a	PDF,	or	you	can	read	it	in	iBooks.

Also	please	check	this	book’s	GitHub	repository	in	order	to	get	the	most	up-to-date	code,
as	I	update	the	code	to	ensure	it	works	with	the	latest	Swift	and	Xcode	versions.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/vandadnp/iOS-9-Swift-Programming-Cookbook.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“iOS	9	Swift	Programming	Cookbook	by
Vandad	Nahavandipoor	(O’Reilly).	Copyright	2016	Vandad	Nahavandippor,	978-1-491-
93669-6.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/vandadnp/iOS-9-Swift-Programming-Cookbook
mailto:permissions@oreilly.com

Acknowledgments
Thank	you	to:

Sara,	Julian,	and	Molly

For	continuously	supporting	and	encouraging	me.

Rachel	Roumeliotis

For	always	having	trust	in	me	and	knowing	that	I	stick	to	my	words	when	I	promise
to	write	a	whole	new	book	in	a	short	period	of	time	with	quality	material.	Your	trust
means	a	lot	to	me	and	I	hope	this	book	will	make	you	proud,	as	much	as	it	made	me.

Andy	Oram

The	editor	that	anybody	would	dream	about,	Andy	has	been	by	my	side	editing	this
book	nonstop	since	I	started.	His	relentless	efforts	have	allowed	me	to	relax	while	he
craftfully	works	his	way	through	the	book,	making	it	even	more	understandable	for
the	readers.	I	would	not	have	been	able	to	write	this	book	without	Andy’s	help.

Niklas	Saers

For	his	detailed	technical	review	of	this	book.

Nicole	Shelby

For	all	her	work	in	getting	this	book	ready	for	production.	It’s	been	a	pleasure
working	with	you,	Nicole.

Chapter	1.	Swift	2.0,	Xcode	7,	and
Interface	Builder

In	this	chapter,	we	are	going	to	have	a	look	at	some	of	the	updates	to	Swift	(Swift	2.0),
Xcode,	and	Interface	Builder.	We	will	start	with	Swift	and	some	of	the	really	exciting
features	that	have	been	added	to	it	since	you	read	the	iOS	8	Swift	Programming	Cookbook.

1.1	Handling	Errors	in	Swift

Problem
You	want	to	know	how	to	throw	and	handle	exceptions	in	Swift.

NOTE
I’ll	be	using	errors	and	exceptions	interchangeably	in	this	book.	When	an	error	occurrs	in	our	app,	we
usually	catch	it,	as	you	will	soon	see,	and	handle	it	in	a	way	that	is	pleasant	and	understandable	to	the	user.

Solution
To	throw	an	exception,	use	the	throw	syntax.	To	catch	exceptions,	use	the	do, try,
catch	syntax.

Discussion
Let’s	say	that	you	want	to	create	a	method	that	takes	in	a	first	name	and	last	name	as	two
arguments	and	returns	a	full	name.	The	first	name	and	the	last	name	have	to	each	at	least
be	one	character	long	for	this	method	to	work.	If	one	or	both	have	0	lengths,	we	are	going
to	want	to	throw	an	exception.

The	first	thing	that	we	have	to	do	is	to	define	our	errors	of	type	ErrorType:

 enum Errors : ErrorType{

 case EmptyFirstName

 case EmptyLastName

 }

And	then	we	are	going	to	define	our	method	to	take	in	a	first	and	last	name	and	join	them
together	with	a	space	in	between:

 func fullNameFromFirstName(firstName: String,

 lastName: String) throws -> String{

 if firstName.characters.count == 0{

 throw Errors.EmptyFirstName

 }

 if lastName.characters.count == 0{

 throw Errors.EmptyLastName

 }

 return firstName + " " + lastName

 }

The	interesting	part	is	really	how	to	call	this	method.	We	use	the	do	statement	like	so:

do{

 let fullName = try fullNameFromFirstName("Foo", lastName: "Bar")

 print(fullName)

} catch {

 print("An error occurred")

}

The	catch	clause	of	the	do	statement	allows	us	to	trap	errors	in	a	fine-grained	manner.
Let’s	say	that	you	want	to	trap	errors	in	the	Errors	enum	differently	from	instances	of
NSException.	Separate	your	catch	clauses	like	this:

do{

 let fullName = try fullNameFromFirstName("Foo", lastName: "Bar")

 print(fullName)

}

catch let err as Errors{

 //handle this specific type of error here

 print(err)

}

catch let ex as NSException{

 //handle exceptions here

 print(ex)

}

catch {

 //otherwise, do this

}

See	Also
	Recipe	1.3

1.2	Specifying	Preconditions	for	Methods

Problem
You	want	to	make	sure	a	set	of	conditions	are	met	before	continuing	with	the	flow	of	your
method.

Solution
Use	the	guard	syntax.

Discussion
The	guard	syntax	allows	you	to:

1.	 Specify	a	set	of	conditions	for	your	methods.

2.	 Bind	variables	to	optionals	and	use	those	variables	in	the	rest	of	your	method’s	body.

Let’s	have	a	look	at	a	method	that	takes	an	optional	piece	of	data	as	the	NSData	type	and
turns	it	into	a	String	only	if	the	string	has	some	characters	in	it	and	is	not	empty:

 func stringFromData(data: NSData?) -> String?{

 guard let data = data,

 let str = NSString(data: data, encoding: NSUTF8StringEncoding)

 where data.length > 0 else{

 return nil

 }

 return String(str)

 }

And	then	we	are	going	to	use	it	like	so:

if let _ = stringFromData(nil){

 print("Got the string")

} else {

 print("No string came back")

}

We	pass	nil	to	this	method	for	now	and	trigger	the	failure	block	(“No	string	came	back”).
What	if	we	passed	valid	data?	And	to	have	more	fun	with	this,	let’s	create	our	NSData
instance	this	time	with	a	guard.	Because	the	NSString	constructor	we	are	about	to	use
returns	an	optional	value,	we	put	a	guard	statement	before	it	to	ensure	that	the	value	that
goes	into	the	data	variable	is	in	fact	a	value,	and	not	nil:

guard let data = NSString(string: "Foo")

 .dataUsingEncoding(NSUTF8StringEncoding) where data.length > 0 else{

 return

}

if let str = stringFromData(data){

 print("Got the string \(str)")

} else {

 print("No string came back")

}

So	we	can	mix	guard	and	where	in	the	same	statement.	How	about	multiple	let
statements	inside	a	guard?	Can	we	do	that?	You	betcha:

 func example3(firstName firstName: String?, lastName: String?, age: UInt8?){

 guard let firstName = firstName, let lastName = lastName , _ = age where

 firstName.characters.count > 0 && lastName.characters.count > 0 else{

 return

 }

 print(firstName, " ", lastName)

 }

See	Also
Recipe	1.1

1.3	Ensuring	the	Execution	of	Code	Blocks	Before
Exiting	Methods

Problem
You	have	various	conditions	in	your	method	that	can	exit	the	method	early.	But	before	you
do	that,	you	want	to	ensure	that	some	code	always	gets	executed,	for	instance	to	do	some
cleanup.

Solution
Use	the	defer	syntax.

Discussion
Anything	that	you	put	inside	a	defer	block	inside	a	method	is	guaranteed	to	get	executed
before	your	method	returns	to	the	caller.	However,	this	block	of	code	will	get	executed
after	the	return	call	in	your	method.	The	code	is	also	called	when	your	method	throws	an
exception.

Let’s	say	that	you	want	to	define	a	method	that	takes	in	a	string	and	renders	it	inside	a	new
image	context	with	a	given	size.	Now	if	the	string	is	empty,	you	want	to	throw	an
exception.	However,	before	you	do	that,	we	want	to	make	sure	that	we	have	ended	our
image	context.	Let’s	define	our	error	first:

 enum Errors : ErrorType{

 case EmptyString

 }

Then	we	move	onto	our	actual	method	that	uses	the	defer	syntax:

 func imageForString(str: String, size: CGSize) throws -> UIImage{

 defer{

 UIGraphicsEndImageContext()

 }

 UIGraphicsBeginImageContextWithOptions(size, true, 0)

 if str.characters.count == 0{

 throw Errors.EmptyString

 }

 //draw the string here…

 return UIGraphicsGetImageFromCurrentImageContext()

 }

I	don’t	want	to	put	print()	statements	everywhere	in	the	code	because	it	makes	the	code
really	ugly.	So	to	see	whether	this	really	works,	I	suggest	that	you	paste	this	code	into	your
Xcode	—	or	even	better,	grab	the	source	code	for	this	book’s	example	code	from	GitHub,
where	I	have	already	placed	breakpoints	in	the	defer	and	the	return	statements	so	that
you	can	see	that	they	are	working	properly.

You	can	of	course	then	call	this	method	like	so:

 do{

 let i = try imageForString("Foo", size: CGSize(width: 100, height: 50))

 print(i)

 } catch let excep{

 print(excep)

 }

See	Also
Recipe	1.2

1.4	Checking	for	API	Availability

Problem
You	want	to	check	whether	a	specific	API	is	available	on	the	host	device	running	your
code.

Solution
Use	the	#available	syntax.

Discussion
We’ve	all	been	waiting	for	this	for	a	very	long	time.	The	days	of	having	to	call	the
respondsToSelector:	method	are	over	(hopefully).	Now	we	can	just	use	the
#available	syntax	to	make	sure	a	specific	iOS	version	is	available	before	making	a	call
to	a	method.

Let’s	say	that	we	want	to	write	a	method	that	can	read	an	array	of	bytes	from	an
NSDataobject.	NSData	offers	a	handy	getBytes:	method	to	do	this,	but	Apple	decided	to
deprecate	it	in	iOS	8.1	and	replace	it	with	the	better	getBytes:length:	version	that
minimizes	the	risk	of	buffer	overflows.	So	assuming	that	one	of	our	deployment	targets	is
iOS	8	or	older,	we	want	to	ensure	that	we	call	this	new	method	if	we	are	on	iOS	8.1	or
higher	and	the	older	method	if	we	are	on	iOS	8.0	or	older:

 enum Errors : ErrorType{

 case EmptyData

 }

 func bytesFromData(data: NSData) throws -> [UInt8]{

 if (data.length == 0){

 throw Errors.EmptyData

 }

 var buffer = [UInt8](count: data.length, repeatedValue: 0)

 if #available(iOS 8.1, *){

 data.getBytes(&buffer, length: data.length)

 } else {

 data.getBytes(&buffer)

 }

 return buffer

 }

And	then	we	go	ahead	and	call	this	method:

 func example1(){

 guard let data = "Foo".dataUsingEncoding(NSUTF8StringEncoding) else {

 return

 }

 do{

 let bytes = try bytesFromData(data)

 print("Data = \(bytes)")

 } catch {

 print("Failed to get bytes")

 }

 }

See	Also
Recipe	1.1

1.5	Categorizing	and	Downloading	Assets	to	Get
Smaller	Binaries

Problem
You	have	many	assets	in	your	app	for	various	circumstances,	and	want	to	save	storage
space	and	network	usage	on	each	user’s	device	by	shipping	the	app	without	the	optional
assets.	Instead,	you	would	want	to	dynamically	download	them	and	use	them	whenever
needed.

Solution
Use	Xcode	to	tag	your	assets	and	then	use	the	NSBundleResourceRequest	class	to
download	them.

Discussion
For	this	recipe,	I	will	create	three	packs	of	assets,	each	with	three	images	in	them.	One
pack	may	run	for	x3	screen	scales,	another	for	iPhone	6,	and	the	last	for	iPhone	6+,	for
instance.	I	am	taking	very	tiny	clips	of	screenshots	of	my	desktop	to	create	these	images
—	nothing	special.	The	first	pack	will	be	called	“level1,”	the	second	“level2,”	and	the
third	“level3.”

NOTE
Use	the	GitHub	repo	of	this	book	for	a	quick	download	of	the	said	resources.	Also,	for	the	sake	of
simplicity,	I	am	assuming	that	we	are	going	to	run	this	only	on	x3	scale	screens	such	as	iPhone	6+.

Place	all	nine	images	(three	packs	of	three	images)	inside	your	Assets.xcassets	file	and
name	them	as	shown	in	Figure	1-1.	Then	select	all	the	images	in	your	first	asset	pack	and
open	the	Attributes	inspector.	In	the	“On	Demand	Resource	Tags”	section	of	the	inspector,
enter	level1	and	do	the	same	thing	for	other	levels	—	but	of	course	bump	the	number	up
for	each	pack.

Figure	1-1.	Name	your	assets	as	shown

Now,	in	your	UI,	place	three	buttons	and	three	image	views,	hook	the	buttons’	actions	to
the	code,	and	hook	the	image	view	references	to	the	code:

 @IBOutlet var img1: UIImageView!

 @IBOutlet var img2: UIImageView!

 @IBOutlet var img3: UIImageView!

 var imageViews: [UIImageView]{

 return [self.img1, self.img2, self.img3]

 }

To	find	out	whether	the	resource	pack	that	you	need	has	already	been	downloaded,	call	the

conditionallyBeginAccessingResourcesWithCompletionHandler	function	on	your
resource	request.	Don’t	blame	me!	I	didn’t	name	this	function.	This	will	return	a	Boolean
of	true	or	false	to	tell	you	whether	you	have	or	don’t	have	access	to	the	resource.	If	you
don’t	have	access,	you	can	simply	download	the	resources	with	a	call	to	the
beginAccessingResourcesWithCompletionHandler	function.	This	will	return	an	error
if	one	happens,	or	nil	if	everything	goes	well.

NOTE
We	keep	a	reference	to	the	request	that	we	send	for	our	asset	pack	so	that	the	next	time	our	buttons	are
tapped,	we	don’t	have	to	check	their	availability	again,	but	release	the	previously	downloaded	resources
using	the	endAccessingResources	function.

 var currentResourcePack: NSBundleResourceRequest?

 func displayImagesForResourceTag(tag: String){

 NSOperationQueue.mainQueue().addOperationWithBlock{

 for n in 0..<self.imageViews.count{

 self.imageViews[n].image = UIImage(named: tag + "-\(n+1)")

 }

 }

 }

 func useLevel(lvl: UInt32){

 let imageViews = [img1, img2, img3]

 for img in imageViews{

 img.image = nil

 }

 let tag = "level\(lvl)"

 if let req = currentResourcePack{

 req.endAccessingResources()

 }

 currentResourcePack = NSBundleResourceRequest(tags: [tag])

 guard let req = currentResourcePack else {

 return

 }

 req.conditionallyBeginAccessingResourcesWithCompletionHandler{available in

 if available{

 self.displayImagesForResourceTag(tag)

 } else {

 req.beginAccessingResourcesWithCompletionHandler{error in

 guard error == nil else{

 //TODO: you can handle the error here

 return

 }

 self.displayImagesForResourceTag(tag)

 }

 }

 }

 }

 @IBAction func useLevel3(sender: AnyObject) {

 useLevel(3)

 }

 @IBAction func useLevel2(sender: AnyObject) {

 useLevel(2)

 }

 @IBAction func useLevel1(sender: AnyObject) {

 useLevel(1)

 }

Run	the	code	now	in	your	simulator.	When	Xcode	opens,	go	to	the	Debug	Navigator
(Command-6	key)	and	then	click	the	Disk	section.	You	will	see	something	like	that	shown
in	Figure	1-2.

Figure	1-2.	Xcode	displaying	all	our	On	Demand	Resources	and	status	of	whether	or	not	they	are	downloaded	locally

Note	how	none	of	the	asset	packs	are	in	use.	Now	in	your	UI,	click	the	first	button	to	get
the	first	asset	pack	and	watch	how	the	first	asset	pack’s	status	will	change	to	“In	Use.”
Once	you	switch	from	that	pack	to	another,	the	previously	chosen	pack	will	be	set	to
“Downloaded”	and	be	ready	to	be	purged.

See	Also
Recipe	1.6

1.6	Exporting	Device-Specific	Binaries

Problem
You	want	to	extract	your	app’s	binary	for	a	specific	device	architecture	to	find	out	how	big
your	binary	will	be	on	that	device	when	the	user	downloads	your	app.

Solution
Follow	these	steps:

1.	 Archive	your	app	in	Xcode.

2.	 In	the	Archives	screen,	click	the	Export	button.

3.	 Choose	the	“Save	for	Ad	Hoc	Deployment”	option	in	the	new	screen	and	click	Next.

4.	 In	the	new	window,	choose	“Export	for	specific	device”	and	then	choose	your	device
from	the	list.

5.	 Once	you	are	done,	click	the	Next	button	and	save	your	file	to	disk.

Discussion
With	iOS	9,	Apple	introduced	bitcode.	This	is	Apple’s	way	of	specifying	how	the	binary
that	you	submit	to	the	App	Store	will	be	downloaded	on	target	devices.	For	instance,	if
you	have	an	asset	catalogue	with	some	images	for	the	iPad	and	iPhone	and	a	second	set	of
images	for	the	iPhone	6	and	6+	specifically,	users	on	iPhone	5	should	not	get	the	second
set	of	assets.	You	don’t	have	to	do	anything	really	to	enable	this	functionality	in	Xcode	7.
It	is	enabled	by	default.	If	you	are	working	on	an	old	project,	you	can	enable	bitcode	from
Build	Settings	in	Xcode.

If	you	are	writing	an	app	that	has	a	lot	of	images	and	assets	for	various	devices,	I	suggest
that	you	use	this	method,	before	submitting	your	app	to	the	store,	to	ensure	that	the
required	images	and	assets	are	indeed	included	in	your	final	build.	Remember,	if	bitcode	is
enabled	in	your	project,	Apple	will	detect	the	host	device	that	is	downloading	your	app
from	the	store	and	will	serve	the	right	binary	to	that	device.	You	don’t	have	to	separate
your	binaries	when	submitting	to	Apple.	You	submit	a	big	fat	juicy	binary	and	Apple	will
take	care	of	the	rest.

See	Also
Recipe	1.5

1.7	Linking	Separate	Storyboards	Together

Problem
You	have	a	messy	storyboard,	so	you	would	like	to	place	some	view	controllers	in	their
own	storyboard	and	still	be	able	to	cross-reference	them	in	your	other	storyboards.

Solution
Use	IB’s	new	“Refactor	to	Storyboard”	feature	under	the	Editor	menu.

Discussion
I	remember	working	on	a	project	where	we	had	a	really	messy	storyboard	and	we	had	to
separate	the	view	controllers.	What	we	ended	up	doing	was	putting	the	controllers	on
separate	storyboards	manually,	after	which	we	had	to	write	code	to	link	our	buttons	and
other	actions	to	the	view	controllers,	instantiate	them	manually,	and	then	show	them.	Well,
none	of	that	anymore.	Apple	has	taken	care	of	that	for	us!

As	an	exercise,	create	a	single-view	controller	project	in	Xcode	and	then	open	your	main
storyboard.	Then	choose	the	Editor	menu,	then	Embed	In,	and	then	Navigation	Controller.
Now	your	view	controller	has	a	navigation	controller.	Place	a	button	on	your	view
controller	and	then	place	another	view	controller	on	your	storyboard.	Select	the	button	on
the	first	view	controller,	hold	down	the	Control	button	on	your	keyboard,	drag	the	line
over	to	the	second	view	controller,	and	then	choose	the	Show	option.	This	will	ensure	that
when	the	user	taps	your	button,	the	system	will	push	the	second	view	controller	onto	the
screen,	as	Figure	1-3	shows.

Figure	1-3.	We	need	to	create	a	show	segue	ensuring	that	pressing	our	button	will	show	the	second	view	controller

Now	select	your	second	view	controller	and	then,	from	the	Editor	menu,	choose	the
“Refactor	to	Storyboard”	item.	In	the	dialog,	enter	Second.storyboard	as	the	file	name
and	save.	That’s	really	it.	Now	run	your	app	and	see	the	results	if	you	want.

If	you	prefer	to	do	some	of	this	stuff	manually	instead	of	embedding	things	like	this,	you
can	always	drag	the	new	item	called	Storyboard	Reference	from	the	Object	Library	onto
your	storyboard	and	set	up	the	name	of	the	storyboard	manually.	Xcode	will	give	you	a
drop-down	box	so	that	you	don’t	have	to	write	the	name	of	the	storyboard	all	by	yourself.
You	will	also	be	able	to	specify	an	identifier	for	your	storyboard.	This	identifier	will	then
be	useful	when	working	with	the	segue.	You	of	course	have	to	set	up	this	ID	for	your	view
controller	in	advance.

See	Also
Recipe	3.5

1.8	Adding	Multiple	Buttons	to	the	Navigation	Bar

Problem
You	want	to	add	multiple	instances	of	UIBarButtonItem	to	your	navigation	bar.

Solution
In	Xcode	7,	you	can	now	add	multiple	bar	button	items	to	your	navigation	bar.	Simply
open	the	Object	Library	and	search	for	“bar	button.”	Once	you	find	the	buttons,	drag	and
drop	them	onto	your	navigation	bar	and	then	simply	reference	them	in	your	code	if	you
have	to.	For	instance,	Figure	1-4	shows	two	bar	buttons	on	the	right-hand	side	of	the
navigation	bar.	In	previous	versions	of	Xcode,	we	could	add	only	one	button	to	each	side.
If	we	wanted	more	buttons,	we	had	to	write	code	to	add	them.

Figure	1-4.	Two	buttons	on	the	same	side	of	the	navigation	bar

Discussion
Prior	to	Xcode	7	you	could	not	place	multiple	bar	button	items	next	to	each	other	on	your
navigation	bar.	Well,	now	you	can.	You	can	also	access	these	buttons	just	as	you	would
expect,	by	creating	a	reference	to	them	in	your	code.	And	you	can	always	find	them	using
the	barButtonItems	property	of	your	navigation	bar.

See	Also
Recipe	1.7

1.9	Optimizing	Your	Swift	Code

Problem
You	want	to	adopt	some	simple	practices	that	can	make	your	Swift	code	run	much	faster
than	before.

Solution
Use	the	following	techniques:

1.	 Enable	whole	module	optimization	on	your	code.

2.	 Use	value	types	(such	as	structs)	instead	of	reference	types	where	possible.

3.	 Consider	using	final	for	classes,	methods,	and	variables	that	aren’t	going	to	be
overridden.

4.	 Use	the	CFAbsoluteTimeGetCurrent	function	to	profile	your	app	inside	your	code.

5.	 Always	use	Instruments	to	profile	your	code	and	find	bottlenecks.

Discussion
Let’s	have	a	look	at	an	example.	Let’s	say	that	we	have	a	Person	class	like	so:

class Person{

 let name: String

 let age: Int

 init(name: String, age: Int){

 self.name = name

 self.age = age

 }

}

Now	we	will	write	a	method	that	will	generate	100,000	instances	of	this	class,	place	them
inside	a	mutable	array,	and	then	enumerate	the	array.	We	will	time	this	operation	using	the
CFAbsoluteTimeGetCurrent	function.	We’ll	then	be	able	to	tell	how	many	milliseconds
this	took:

 func example1(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [Person]()

 for _ in 0..<100000{

 array.append(Person(name: "Foo", age: 30))

 }

 //go through the items as well

 for n in 0..<array.count{

 let _ = array[n]

 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

 }

When	I	ran	this	code,	it	took	41.28	milliseconds	to	complete;	it	will	probably	be	different
in	your	computer.	Now	let’s	create	a	struct	similar	to	the	class	we	created	before	but
without	an	initializer,	because	we	get	that	for	free.	Then	do	the	same	that	we	did	before
and	time	it:

 struct PersonStruct{

 let name: String

 let age: Int

 }

 func example2(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [PersonStruct]()

 for _ in 0..<100000{

 array.append(PersonStruct(name: "Foo", age: 30))

 }

 //go through the items as well

 for n in 0..<array.count{

 let _ = array[n]

 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

 }

NOTE
Don’t	suffix	your	struct	names	with	“Struct”	like	I	did.	This	is	for	demo	purposes	only,	to	differentiate
between	the	class	and	the	struct.

When	I	run	this	code,	it	takes	only	35.53	milliseconds.	A	simple	optimization	brought
some	good	savings.	Also	notice	that	in	the	release	version	these	times	will	be	massively
improved,	because	your	binary	will	have	no	debug	information.	I	have	tested	the	same
code	without	the	debugging,	and	the	times	are	more	around	4	milliseconds.	Also	note	that
I	am	testing	these	on	the	simulator,	not	on	a	real	device.	The	profiling	will	definitely
report	different	times	on	a	device,	but	the	ratio	should	be	quite	the	same.

Another	thing	that	you	will	want	to	do	is	think	about	which	parts	of	your	code	are	final
and	mark	them	with	the	final	keyword.	This	will	tell	the	compiler	that	you	are	not
intending	to	override	those	properties,	classes,	or	methods	and	will	help	Swift	optimize	the
dispatch	process.	For	instance,	let’s	say	we	have	this	class	hierarchy:

 class Animal{

 func move(){

 if "Foo".characters.count > 0{

 //some code

 }

 }

 }

 class Dog : Animal{

 }

And	we	create	instances	of	the	Dog	class	and	then	call	the	move	function	on	them:

 func example3(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [Dog]()

 for n in 0..<100000{

 array.append(Dog())

 array[n].move()

 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

 }

When	we	run	this,	the	runtime	will	first	have	to	detect	whether	the	move	function	is	on	the
super	class	or	the	subclass	and	then	call	the	appropriate	class	based	on	this	decision.	This
checking	takes	time.	For	instance,	if	you	know	that	the	move	function	won’t	be	overridden
in	the	subclasses,	mark	it	as	final:

 class AnimalOptimized{

 final func move(){

 if "Foo".characters.count > 0{

 //some code

 }

 }

 }

 class DogOptimized : AnimalOptimized{

 }

 func example4(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [DogOptimized]()

 for n in 0..<100000{

 array.append(DogOptimized())

 array[n].move()

 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

 }

When	I	run	these	on	the	simulator,	I	get	90.26	milliseconds	for	the	non-optimized	version
and	88.95	milliseconds	for	the	optimized	version.	Not	that	bad.

I	also	recommend	that	you	turn	on	whole	module	optimization	for	your	release	code.	Just
go	to	your	Build	Settings	and	under	the	optimization	for	your	release	builds	(App	Store
scheme),	simply	choose	“Fast”	with	Whole	Module	Optimization,	and	you	are	good	to	go.

See	Also
Recipe	1.1	and	Recipe	1.2

1.10	Showing	the	Header	View	of	Your	Swift	Classes

Problem
You	want	to	get	an	overview	of	what	your	Swift	class’s	interface	looks	like.

Solution
Use	Xcode’s	new	Generated	Interface	Assistant	Editor.	This	is	how	you	do	it.	Open	your
Swift	file	first	and	then,	in	Xcode,	use	Show	Assistant	Editor,	which	you	can	find	in	the
Help	menu	if	you	just	type	that	name.	After	you	open	the	assistant,	you	will	get	a	split
screen	of	your	current	view.	Then	in	the	second	editor	that	opened,	on	top,	instead	of
Counterparts	(which	is	the	default	selection),	choose	Generated	Interface.	You’ll	see	your
code	as	shown	in	Figure	1-5.

Figure	1-5.	Code	shown	in	Xcode	assistant

Discussion
I	find	the	Generated	Interface	functionality	of	the	assistant	editor	quite	handy	if	you	want
to	get	an	overview	of	how	clean	your	code	is.	It	probably	won’t	be	day-to-day
functionality	that	you	use	all	the	time,	but	I	cannot	be	sure.	Maybe	you	will	love	it	so
much	that	you	will	dedicate	a	whole	new	monitor	just	to	see	your	generated	interface	all
the	time.	By	the	way,	there	is	a	shortcut	to	the	assistant	editor	in	Xcode	7:	Command-Alt-
Enter.	To	get	rid	of	the	editor,	press	Command-Enter.

See	Also
Recipe	1.7

1.11	Creating	Your	Own	Set	Types

Problem
You	want	to	create	a	type	in	Swift	that	can	allow	all	operators	that	normal	sets	allow,	such
as	the	contain	function.

Solution
Conform	to	the	OptionSetType	protocol.	As	a	bonus,	you	can	also	conform	to	the
CustomDebugStringConvertible	protocol,	as	I	will	do	in	this	recipe,	in	order	to	set
custom	debug	descriptions	that	the	print	function	can	use	during	debugging	of	your	sets.

Discussion
Let’s	say	that	I	have	a	structure	that	keeps	track	of	iPhone	models.	I	want	to	be	able	to
create	a	set	of	this	structure’s	values	so	that	I	can	say	that	I	have	an	iPhone	6,	iPhone	6+,
and	iPhone	5s	(fancy	me!).	Here	is	the	way	I	would	do	that:

 struct IphoneModels : OptionSetType, CustomDebugStringConvertible{

 let rawValue: Int

 init(rawValue: Int){

 self.rawValue = rawValue

 }

 static let Six = IphoneModels(rawValue: 0)

 static let SixPlus = IphoneModels(rawValue: 1)

 static let Five = IphoneModels(rawValue: 2)

 static let FiveS = IphoneModels(rawValue: 3)

 var debugDescription: String{

 switch self{

 case IphoneModels.Six:

 return "iPhone 6"

 case IphoneModels.SixPlus:

 return "iPhone 6+"

 case IphoneModels.Five:

 return "iPhone 5"

 case IphoneModels.FiveS:

 return "iPhone 5s"

 default:

 return "Unknown iPhone"

 }

 }

 }

And	then	I	can	use	it	like	so:

 func example1(){

 let myIphones: [IphoneModels] = [.Six, .SixPlus]

 if myIphones.contains(.FiveS){

 print("You own an iPhone 5s")

 } else {

 print("You don't seem to have an iPhone 5s but you have these:")

 for i in myIphones{

 print(i)

 }

 }

 }

Note	how	I	could	create	a	set	of	my	new	type	and	then	use	the	contains	function	on	it
just	as	I	would	on	a	normal	set.	Use	your	imagination	—	this	is	some	really	cool	stuff.

See	Also
Recipe	1.1,	Recipe	1.2,	and	Recipe	1.3

1.12	Conditionally	Extending	a	Type

Problem
You	want	to	be	able	to	extend	existing	data	types	that	pass	a	certain	test.

Solution
Use	protocol	extensions.	Swift	2.0	allows	protocol	extensions	to	contain	code.

Discussion
Let’s	say	that	you	want	to	add	a	method	on	any	array	in	Swift	where	the	items	are	integers.
In	your	extension,	you	want	to	provide	a	method	called	canFind	that	can	find	a	specific
item	in	the	array	and	return	yes	if	it	could	be	found.	I	know	that	we	can	do	this	with	other
system	methods.	I	am	offering	this	simple	example	to	demonstrate	how	protocol
extensions	work:

extension SequenceType where

 Generator.Element : IntegerArithmeticType{

 public func canFind(value: Generator.Element) -> Bool{

 for (_, v) in self.enumerate(){

 if v == value{

 return true

 }

 }

 return false

 }

}

Then	you	can	go	ahead	and	use	this	method	like	so:

 func example1(){

 if [1, 3, 5, 7].canFind(5){

 print("Found it")

 } else {

 print("Could not find it")

 }

 }

As	another	example,	let’s	imagine	that	you	want	to	extend	all	array	types	in	Swift
(SequenceType)	that	have	items	that	are	either	double	or	floating	point.	It	doesn’t	matter
which	method	you	add	to	this	extension.	I	am	going	to	add	an	empty	method	for	now:

extension SequenceType where Generator.Element : FloatingPointType{

 //write your code here

 func doSomething(){

 //TODO: code this

 }

}

And	you	can,	of	course,	use	it	like	so:

 func example2(){

 [1.1, 2.2, 3.3].doSomething()

 }

However,	if	you	try	to	call	this	method	on	an	array	that	contains	non–floating-point	data,
you	will	get	a	compilation	error.

Let	me	show	you	another	example.	Let’s	say	that	you	want	to	extend	all	arrays	that
contain	only	strings,	and	you	want	to	add	a	method	to	this	array	that	can	find	the	longest
string.	This	is	how	you	would	do	that:

extension SequenceType where Generator.Element : StringLiteralConvertible{

 func longestString() -> String{

 var s = ""

 for (_, v) in self.enumerate(){

 if let temp = v as? String

 where temp.characters.count > s.characters.count{

 s = temp

 }

 }

 return s

 }

}

Calling	it	is	as	simple	as:

 func example3(){

 print(["Foo", "Bar", "Vandad"].longestString())

 }

See	Also
Recipe	1.6

1.13	Building	Equality	Functionality	into	Your	Own
Types

Problem
You	have	your	own	structs	and	classes	and	you	want	to	build	equality-checking
functionality	into	them.

Solution
Build	your	equality	functionality	into	the	protocols	to	which	your	types	conform.	This	is
the	way	to	go!

Discussion
Let	me	give	you	an	example.	Let’s	say	that	we	have	a	protocol	called	Named:

protocol Named{

 var name: String {get}

}

We	can	build	the	equality	functionality	into	this	protocol.	We	can	check	the	name	property
and	if	the	name	is	the	same	on	both	sides,	then	we	are	equal:

func ==(lhs : Named, rhs: Named) -> Bool{

 return lhs.name == rhs.name

}

Now	let’s	define	two	types,	a	car	and	a	motorcycle,	and	make	them	conform	to	this
protocol:

struct Car{}

struct Motorcycle{}

extension Car : Named{

 var name: String{

 return "Car"

 }

}

extension Motorcycle : Named{

 var name: String{

 return "Motorcycle"

 }

}

That	was	it,	really.	You	can	see	that	I	didn’t	have	to	build	the	equality	functionality	into
Car	and	into	Motorcycle	separately.	I	built	it	into	the	protocol	to	which	both	types
conform.	And	then	we	can	use	it	like	so:

 func example1(){

 let v1: Named = Car()

 let v2: Named = Motorcycle()

 if v1 == v2{

 print("They are equal")

 } else {

 print("They are not equal")

 }

 }

This	example	will	say	that	the	two	constants	are	not	equal	because	one	is	a	car	and	the
other	one	is	a	motorcycle,	but	what	if	we	compared	two	cars?

 func example2(){

 let v1: Named = Car()

 let v2: Named = Car()

 if v1 == v2{

 print("They are equal")

 } else {

 print("They are not equal")

 }

 }

Bingo.	Now	they	are	equal.	So	instead	of	building	the	equality	functionality	into	your
types,	build	them	into	the	protocols	that	your	types	conform	to	and	you	are	good	to	go.

See	Also
Recipe	1.12

1.14	Looping	Conditionally	Through	a	Collection

Problem
You	want	to	go	through	the	objects	inside	a	collection	conditionally	and	state	your
conditions	right	inside	the	loop’s	statement.

Solution
Use	the	new	for x in y where	syntax,	specifying	a	where	clause	right	in	your	for	loop.
For	instance,	here	I	will	go	through	all	the	keys	and	values	inside	a	dictionary	and	only	get
the	values	that	are	integers:

 let dic = [

 "name" : "Foo",

 "lastName" : "Bar",

 "age" : 30,

 "sex" : 1,

]

 for (k, v) in dic where v is Int{

 print("The key \(k) contains an integer value of \(v)")

 }

Discussion
Prior	to	Swift	2.0,	you’d	have	to	create	your	conditions	before	you	got	to	the	loop
statement	—	or	even	worse,	if	that	wasn’t	possible	and	your	conditions	depended	on	the
items	inside	the	array,	you’d	have	to	write	the	conditions	inside	the	loop.	Well,	no	more.

Here	is	another	example.	Let’s	say	that	you	want	to	find	all	the	numbers	that	are	divisible
by	8,	inside	the	range	of	0	to	1000,	inclusively:

 let nums = 0..<1000

 let divisibleBy8 = {$0 % 8 == 0}

 for n in nums where divisibleBy8(n){

 print("\(n) is divisible by 8")

 }

And	of	course	you	can	have	multiple	conditions	for	a	single	loop:

 let dic = [

 "name" : "Foo",

 "lastName" : "Bar",

 "age" : 30,

 "sex" : 1,

]

 for (k, v) in dic where v is Int && v as! Int > 10{

 print("The key \(k) contains the value of \(v) that is larger than 10")

 }

See	Also
Recipe	1.11

1.15	Designing	Interactive	Interface	Objects	in
Playgrounds

Problem
You	want	to	design	a	view	the	way	you	want,	but	don’t	want	to	compile	your	app	every
time	you	make	a	change.

Solution
Use	storyboards	while	designing	your	UI,	and	after	you	are	done,	put	your	code	inside	an
actual	class.	In	IB,	you	can	detach	a	view	so	that	it	is	always	visible	in	your	playground
while	you	are	working	on	it,	and	any	changes	you	make	will	immediately	be	shown.

Discussion
Create	a	single-view	app	and	add	a	new	playground	to	your	project,	as	shown	in	Figure	1-
6.

Figure	1-6.	Add	a	new	playground	to	your	project

Write	code	similar	to	this	to	create	your	view:

import UIKit

var view = UIView(frame: CGRect(x: 0, y: 0, width: 300, height: 300))

view.backgroundColor = UIColor.greenColor()

Now	on	the	right	hand	side	of	the	last	line	of	code	that	you	wrote,	you	should	see	a	+
button.	Click	that	(see	Figure	1-7).

Figure	1-7.	Click	the	little	+	button	to	get	your	view	right	onto	your	playground

By	clicking	that	button,	you	will	get	a	live	preview	of	your	view	inside	your	playground.

Now	you	can	continue	changing	your	view’s	properties	and	once	you	are	done,	add	a	new
preview	of	your	view,	so	that	you	can	compare	the	previous	and	the	new	states	(see
Figure	1-8).	The	first	view	shown	has	only	the	properties	you	assigned	to	it	up	to	the	point
that	view	was	drawn.	The	second	view	has	more	properties,	such	as	the	border	width	and
color,	even	though	it	is	the	same	view	instance	in	memory.	However,	because	it	is	drawn
at	a	different	time	inside	IB,	it	shows	different	results.	This	helps	you	compare	how	your
views	look	before	and	after	modifications.

Figure	1-8.	Two	versions	of	a	view

See	Also
Recipe	1.7

1.16	Grouping	Switch	Statement	Cases	Together

Problem
You	want	to	design	your	cases	in	a	switch	statement	so	that	some	of	them	fall	through	to
the	others.

Solution
Use	the	fallthrough	syntax.	Here	is	an	example:

 let age = 30

 switch age{

 case 1...10:

 fallthrough

 case 20...30:

 print("Either 1 to 10 or 20 to 30")

 default:

 print(age)

 }

NOTE
This	is	just	an	example.	There	are	better	ways	of	writing	this	code	than	to	use	fallthrough.	You	can
indeed	batch	these	two	cases	together	into	one	case	statement.

Discussion
In	Swift,	if	you	want	one	case	statement	to	fall	through	to	the	next,	you	have	to	explicitly
state	the	fallthrough	command.	This	is	more	for	the	programmers	to	look	at	than	the
compiler,	because	in	many	languages	the	compiler	is	able	to	fall	through	to	the	next	case
statement	if	you	just	leave	out	the	break	statement.	However,	this	is	a	bit	tricky	because
the	developer	might	have	just	forgotten	to	place	the	break	statement	at	the	end	of	the	case
and	all	of	a	sudden	her	app	will	start	behaving	really	strangely.	Swift	now	makes	you
request	fall-through	explicity,	which	is	safer.

1.17	Bundling	and	Reading	Data	in	Your	Apps

Problem
You	want	to	bundle	device-specific	data	into	your	app.	At	runtime,	you	want	to	easily	load
the	relevant	device’s	data	and	use	it	without	having	to	manually	distinguish	between
devices	at	runtime.

Solution
Follow	these	steps:

1.	 In	your	asset	catalogue,	tap	the	+	button	and	create	a	new	Data	Set	(see	Figure	1-9).

Figure	1-9.	Data	sets	contain	our	raw	device-specific	data

2.	 In	the	Attributes	inspector	of	your	data	set,	specify	for	which	devices	you	want	to
provide	data	(see	Figure	1-10).

Figure	1-10.	I	have	chosen	to	provide	data	for	the	iPad	and	iPhone	in	this	example

3.	 Drag	and	drop	your	actual	raw	data	file	into	place	in	IB

4.	 In	your	asset	list,	rename	your	asset	to	something	that	you	wish	to	refer	it	to	by	later
(see	Figure	1-11).

Figure	1-11.	I	have	placed	two	RTF	files	into	this	data	asset:	one	for	iPhone	and	another	for	iPad

NOTE
In	the	iPhone	RTF	I’ve	written	“iPhone	Says	Hello,”	and	the	iPad	one	says	“iPad	Says	Hello”;	the	words
iPhone	and	iPad	are	bold	(attributed	texts).	I	am	then	going	to	load	these	as	attributed	strings	and	show
them	on	the	user	interface	(see	Figure	1-13).

5.	 In	your	code,	load	the	asset	with	the	NSDataAsset	class’s	initializer.

6.	 Once	done,	use	the	data	property	of	your	asset	to	access	the	data.

Discussion
Place	a	label	on	your	UI	and	hook	it	up	to	your	code	under	the	name	lbl	(see	Figure	1-
12).

Figure	1-12.	Place	a	label	on	your	user	interface	and	add	all	the	constraints	to	it	(Xcode	can	do	this	for	you).	Hook	it	up
to	your	code	as	well.

Then	create	an	intermediate	property	that	can	set	your	label’s	text	for	you:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var lbl: UILabel!

 var status = ""{

 didSet{lbl.text = status}

 }

 ...

When	the	view	is	loaded,	attempt	to	load	the	custom	data	set:

 guard let asset = NSDataAsset(name: "rtf") else {

 status = "Could not find the data"

 return

 }

NOTE
The	name	of	the	data	asset	is	specified	in	the	asset	catalogue	(see	Figure	1-11).

Because	data	assets	can	be	of	any	type	(raw	data,	game	levels,	etc.),	when	loading	an
attributed	string,	we	need	to	specify	what	type	of	data	we	are	loading	in.	We	do	that	using
an	options	dictionary	that	we	pass	to	NSAttributedString’s	constructor.	The	important
key	in	this	dictionary	is	NSDocumentTypeDocumentAttribute,	whose	value	in	this	case
should	be	NSRTFTextDocumentType.	We	can	also	specify	the	encoding	of	our	data	with

the	NSCharacterEncodingDocumentAttribute	key:

 let options = [

 NSDocumentTypeDocumentAttribute : NSRTFTextDocumentType,

 NSCharacterEncodingDocumentAttribute : NSUTF8StringEncoding

] as [String : AnyObject]

Last	but	not	least,	load	the	data	into	our	string	and	show	it	(see	Figure	1-13):

 do{

 let str = try NSAttributedString(data: asset.data, options: options,

 documentAttributes: nil)

 lbl.attributedText = str

 } catch let err{

 status = "Error = \(err)"

 }

Figure	1-13.	This	is	how	my	string	looked	when	I	saved	it	in	RTF	format	and	now	it	is	loaded	into	the	user	interface	of
my	app

See	Also
Recipe	1.6

Chapter	2.	Apple	Watch

Version	2	of	watchOS	gives	us	developers	a	lot	more	control	and	brings	cool	features	to
the	users	as	well.	Now	that	we	can	download	files	directly	and	get	access	to	sensors
directly	on	the	watch,	the	users	will	benefit.

In	this	chapter,	I	am	going	to	assume	that	you	have	a	simple	iOS	application	in	Xcode
already	created	and	you	want	to	add	a	watchOS	2	target	to	your	app.	So	go	to	Xcode	and
create	a	new	Target.	On	the	new	window,	on	the	left-hand	side,	under	the	watchOS
category,	choose	WatchKit	App	(see	Figure	2-1)	and	proceed	to	the	next	stage.

Figure	2-1.	Adding	a	WatchKit	App	target	to	your	main	application

In	the	next	stage,	make	sure	that	you	have	enabled	complications	(we’ll	talk	about	it	later)
and	the	glance	scene	(see	Figure	2-2).

Figure	2-2.	Add	a	complication	and	a	glance	scene	to	your	watch	app

After	you	have	created	your	watch	extension,	you	want	to	be	able	to	run	it	on	the
simulator.	To	do	this,	simply	choose	your	app	from	the	targets	in	Xcode	and	click	the	run
button	(see	Figure	2-3).

Figure	2-3.	A	simple	watch	interface

2.1	Downloading	Files	onto	the	Apple	Watch

Problem
You	want	to	be	able	to	download	files	from	your	watch	app	directly	without	needing	to
communicate	your	intentions	to	the	paired	iOS	device.

Solution
Use	NSURLSession	as	you	would	on	a	phone,	but	with	more	consideration	toward
resources	and	the	size	of	the	file	you	are	downloading.

Always	consider	whether	or	not	you	need	the	file	immediately.	If	you	need	the	file	and	the
size	is	quite	manageable,	download	it	on	the	watch	itself.	If	the	file	is	big,	try	to	download
it	on	the	companion	app	on	the	iOS	device	first	and	then	send	the	file	over	to	the	watch,
which	itself	takes	some	time.

Discussion
Let’s	create	an	interface	similar	to	Figure	2-4	in	our	watch	extension.

Figure	2-4.	Place	a	label	and	a	button	on	your	interface

Make	sure	the	label	can	contain	at	least	four	lines	of	text	(see	Figure	2-5).

Figure	2-5.	Lines	property	must	be	set	to	at	least	4

Hook	up	your	button’s	action	to	a	method	in	your	code	named	download.	Also	hook	up
your	label	to	code	under	the	name	statusLbl.

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController, NSURLSessionDelegate,

NSURLSessionDownloadDelegate {

 @IBOutlet var statusLbl: WKInterfaceLabel!

 var status: String = ""{

 didSet{

 dispatch_async(dispatch_get_main_queue()){[unowned self] in

 self.statusLbl.setText(self.status)

 }

 }

 }

 ...

NOTE
Because	NSURLSession	delegate	methods	get	called	on	private	queues	(not	the	main	thread),	I’ve	coded	a
property	on	our	class	called	status.	This	is	a	string	property	that	functions	on	the	private	thread	can	set
to	indicate	what	they’re	doing,	and	that	is	displayed	as	the	text	on	our	label	by	the	main	thread.

The	most	important	method	of	the	NSURLSessionDownloadDelegate	protocol	that	we	are

going	to	have	to	implement	is	the
URLSession(_:downloadTask:didFinishDownloadingToURL:)	method.	It	gets	called
when	our	file	has	been	downloaded	into	a	URL	onto	the	disk,	accessible	to	the	watch.	The
file	there	is	temporary:	when	this	method	returns,	the	file	will	be	deleted	by	watchOS.	In
this	method,	you	can	do	two	things:

Read	the	file	directly	from	the	given	URL.	If	you	do	so,	you	have	to	do	the	reading	on
a	separate	thread	so	that	you	won’t	block	NSURLSession’s	private	queue.

Move	the	file	using	NSFileManager	to	another	location	that	is	accessible	to	your
extension	and	then	read	it	later.

We	are	going	to	move	this	file	to	a	location	that	will	later	be	accessible	to	our	app.

 func URLSession(session: NSURLSession,

 downloadTask: NSURLSessionDownloadTask,

 didFinishDownloadingToURL location: NSURL) {

 let fm = NSFileManager()

 let url = try! fm.URLForDirectory(.DownloadsDirectory,

 inDomain: .UserDomainMask,

 appropriateForURL: location, create: true)

 .URLByAppendingPathComponent("file.txt")

 do{

 try fm.removeItemAtURL(url)

 try fm.moveItemAtURL(location, toURL: url)

 self.status = "Download finished"

 } catch let err{

 self.status = "Error = \(err)"

 }

 session.invalidateAndCancel()

 }

The	task	that	we	are	going	to	start	in	order	to	download	the	file	(you’ll	see	that	soon)	will
have	an	identifier.	This	identifier	is	quite	important	for	controlling	the	task	after	we	have
started	it.

You	can	see	that	we	also	have	to	call	the	invalidateAndCancel()	method	on	our	task	so
that	we	can	reuse	the	same	task	identifier	later.	If	you	don’t	do	this,	the	next	time	you	tap
the	button	to	redownload	the	item	you	won’t	be	able	to.

We	are	then	going	to	implement	a	few	more	useful	methods	from
NSURLSessionDelegate	and	NSURLSessionDownloadDelegate	just	so	we	can	show
relevant	status	messages	to	the	user	as	we	are	downloading	the	file:

 func URLSession(session: NSURLSession,

 downloadTask: NSURLSessionDownloadTask, didWriteData bytesWritten: Int64,

 totalBytesWritten: Int64, totalBytesExpectedToWrite: Int64) {

 status = "Downloaded \(bytesWritten) bytes"

 }

 func URLSession(session: NSURLSession,

 downloadTask: NSURLSessionDownloadTask,

 didResumeAtOffset fileOffset: Int64, expectedTotalBytes: Int64) {

 status = "Resuming the download"

 }

 func URLSession(session: NSURLSession, task: NSURLSessionTask,

 didCompleteWithError error: NSError?) {

 if let e = error{

 status = "Completed with error = \(e)"

 } else {

 status = "Finished"

 }

 }

 func URLSession(session: NSURLSession,

 didBecomeInvalidWithError error: NSError?) {

 if let e = error{

 status = "Invalidated \(e)"

 } else {

 //no errors occurred, so that's alright

 }

 }

When	the	user	taps	the	download	button,	we	first	define	our	URL:

 let url = NSURL(string: "http://localhost:8888/file.txt")!

NOTE
I	am	running	MAMP	and	hosting	my	own	file	called	file.txt.	This	URL	won’t	get	downloaded	successfully
on	your	machine	if	you	are	not	hosting	the	exact	same	file	with	the	same	name	on	your	local	machine	on
the	same	port!	So	I	suggest	that	you	change	this	URL	to	something	that	makes	more	sense	for	your	app.

Then	use	the	backgroundSessionConfigurationWithIdentifier(_:)	class	method	of
NSURLSessionConfiguration	to	create	a	background	URL	configuration	that	you	can
use	with	NSURLSession:

 let id = "se.pixolity.app.backgroundtask"

 let conf = NSURLSessionConfiguration

 .backgroundSessionConfigurationWithIdentifier(id)

Once	all	of	that	is	done,	you	can	go	ahead	and	create	a	download	task	and	start	it	(see
Figure	2-6):

 let session = NSURLSession(configuration: conf, delegate: self,

 delegateQueue: NSOperationQueue())

 let request = NSURLRequest(URL: url)

 session.downloadTaskWithRequest(request).resume()

Figure	2-6.	Our	file	is	successfully	downloaded

See	Also
Recipe	1.6

2.2	Noticing	Changes	in	Pairing	State	Between	the	iOS
and	Watch	Apps

Problem
You	want	to	know,	both	on	the	watch	and	in	your	companion	iOS	app,	whether	there	is
connectivity	between	them	and	whether	you	can	send	messages	between	them.
Specifically,	you	want	to	find	out	whether	one	device	can	receive	a	signal	sent	from	the
other.

Solution
Import	the	WatchConnectivity	framework	on	both	projects.	Then	use	the	WCSession’s
delegate	of	type	WCSessionDelegate	to	implement	the
sessionWatchStateDidChange(_:)	method	on	your	iOS	side	and	the
sessionReachabilityDidChange(_:)	method	on	the	watch	side.	These	methods	get
called	by	WatchConnectivity	whenever	the	state	of	the	companion	app	is	changed
(whether	that	is	on	the	iOS	side	or	on	the	watchOS	side).

Discussion
Both	devices	contain	a	flag	called	reachability	that	indicates	whether	the	device	can
connect	to	the	other.	This	is	represented	by	a	property	on	WCSession	called	reachable,	of
type	Bool.	On	the	iOS	side,	if	you	check	this	flag,	it	tells	you	whether	your	companion
watch	app	is	reachable,	and	if	you	check	it	on	the	watchOS	side,	it	tells	you	whether	your
companion	iOS	app	is	reachable.

The	idea	here	is	to	use	the	WCSession	object	to	listen	for	state	changes.	Before	doing	that,
we	need	to	find	out	whether	the	session	is	actually	supported.	We	do	that	using	the
isSupported()	class	function	of	WCWCSession.	Once	you	know	that	sessions	are
supported,	you	have	to	do	the	following	on	the	iOS	app	side:

1.	 Obtain	your	session	with	WCSession.defaultSession().

2.	 Set	the	delegate	property	of	your	session.

3.	 Become	the	delegate	of	your	session,	of	type	WCSessionDelegate.

4.	 Implement	the	sessionWatchStateDidChange(_:)	function	of	your	session
delegate	and	in	there,	check	the	reachable	flag	of	the	session.

5.	 Call	the	activateSession()	method	of	your	session.

Make	sure	that	you	do	this	in	a	function	that	can	be	called	even	if	your	app	is	launched	in
the	background.

On	the	watch	side,	do	the	exact	same	things	as	you	did	on	the	iOS	side,	but	instead	of
implementing	the	sessionWatchStateDidChange(_:)	method,	implement	the
sessionReachabilityDidChange(_:)	method.

NOTE
The	sessionWatchStateDidChange(_:)	delegate	method	is	called	on	the	iOS	side	when	at	least	one	of
the	properties	of	the	session	changes.	These	properties	include	paired,	watchAppInstalled,
complicationEnabled,	and	watchDirectoryURL,	all	of	type	Bool.	In	contrast,	the
sessionReachabilityDidChange(_:)	method	is	called	on	the	watch	only	when	the	reachable	flag	of	the
companion	iOS	app	is	changed,	as	the	name	of	the	delegate	method	suggests.

So	on	the	iOS	side,	let’s	implement	an	extension	on	WCSession	that	can	print	all	its
relevant	states,	so	that	when	the	sessionWatchStateDidChange(_:)	method	is	called,
we	can	print	the	session’s	information:

import UIKit

import WatchConnectivity

extension WCSession{

 public func printInfo(){

 //paired

 print("Paired: ", terminator: "")

 print(self.paired ? "Yes" : "No")

 //watch app installed

 print("Watch app installed: ", terminator: "")

 print(self.watchAppInstalled ? "Yes" : "No")

 //complication enabled

 print("Complication enabled: ", terminator: "")

 print(self.complicationEnabled ? "Yes" : "No")

 //watch directory

 print("Watch directory url", terminator: "")

 print(self.watchDirectoryURL)

 }

}

Make	your	app	delegate	the	delegate	of	the	session	as	well:

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate, WCSessionDelegate {

 var window: UIWindow?

 ...

Now	start	listening	for	state	and	reachablity	changes:

 func sessionReachabilityDidChange(session: WCSession) {

 print("Reachable: ", terminator: "")

 print(session.reachable ? "Yes" : "No")

 }

 func sessionWatchStateDidChange(session: WCSession) {

 print("Watch state is changed")

 session.printInfo()

 }

Last	but	not	least,	on	the	iOS	side,	set	up	the	session	and	start	listening	to	its	events:

 guard WCSession.isSupported() else {

 print("Session is not supported")

 return

 }

 let session = WCSession.defaultSession()

 session.delegate = self

 session.activateSession()

Now	on	the	watch	side,	in	the	ExtensionDelegate	class,	import	WatchConnectivity

and	become	the	session	delegate	as	well:

import WatchKit

import WatchConnectivity

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate {

 ...

And	listen	for	reachablity	changes:

 func sessionReachabilityDidChange(session: WCSession) {

 print("Reachablity changed. Reachable?", terminator: "")

 print(session.reachable ? "Yes" : "No")

 }

Then	in	the	applicationDidFinishLaunching()	function	of	our	extension	delegate,	set
up	the	session:

 guard WCSession.isSupported() else {

 print("Session is not supported")

 return

 }

 let session = WCSession.defaultSession()

 session.delegate = self

 session.activateSession()

See	Also
Recipe	2.1

2.3	Transferring	Small	Pieces	of	Data	to	and	from	the
Watch

Problem
You	want	to	transfer	some	plist-serializable	content	between	your	apps	(iOS	and
watchOS).	This	content	can	be	anything:	for	instance,	information	about	where	a	user	is
inside	a	game	on	an	iOS	device,	or	more	random	information	that	you	can	serialize	into	a
plist	(strings,	integers,	booleans,	dictionaries,	and	arrays).	Information	can	be	sent	in	either
direction.

Solution
Follow	these	steps:

1.	 Use	what	you	learned	in	Recipe	2.2	to	find	out	whether	both	devices	are	reachable.

2.	 On	the	sending	app,	use	the	updateApplicationContext(_:)	method	of	your
session	to	send	the	content	over	to	the	other	app.

3.	 On	the	receiving	app,	wait	for	the	session(_:didReceiveApplicationContext:)
delegate	method	of	WCSessionDelegate,	where	you	will	be	given	access	to	the
transmitted	content.

NOTE
The	content	that	you	transmit	must	be	of	type	[String : AnyObject].

Discussion
Various	types	of	content	can	be	sent	between	iOS	and	watchOS.	One	is	plist-serializable
content,	also	called	an	application	context.	Let’s	say	that	you	are	playing	a	game	on
watchOS	and	you	want	to	send	the	user’s	game	status	to	iOS.	You	can	use	the	application
context	for	this.

Let’s	begin	by	creating	a	sample	application.	Create	a	single-view	iOS	app	and	add	a
watchOS	target	to	it	as	well	(see	Figure	2-1).	Design	your	main	interface	like	Figure	2-7.
We’ll	use	the	top	label	to	show	the	download	status.	The	buttons	are	self-explanatory.	The
bottom	label	will	show	the	pairing	status	between	our	watchOS	and	iOS	apps.

Figure	2-7.	Labels	and	button	for	sample	app

NOTE
Hook	up	the	top	label	to	your	view	controller	as	statusLbl,	the	first	button	as	sendBtn,	the	second	button
as	downloadBtn,	and	the	bottom	label	as	reachabilityStatusLbl.	Hook	up	the	action	of	the	download
button	to	a	method	called	download()	and	the	send	button	to	a	method	called	send().

Download	and	install	MAMP	(it’s	free)	and	host	the	following	contents	as	a	file	called
people.json	on	your	local	web	server’s	root	folder:

{

 "people" : [

 {

 "name" : "Foo",

 "age" : 30

 },

 {

 "name" : "Bar",

 "age" : 50

 }

]

}

Now	the	top	part	of	your	iOS	app’s	view	controller	should	look	like	this:

https://www.mamp.info/en/

import UIKit

import WatchConnectivity

class ViewController: UIViewController, WCSessionDelegate,

NSURLSessionDownloadDelegate {

 @IBOutlet var statusLbl: UILabel!

 @IBOutlet var sendBtn: UIButton!

 @IBOutlet var downloadBtn: UIButton!

 @IBOutlet var reachabilityStatusLbl: UILabel!

 ...

When	you	download	that	JSON	file,	it	will	become	a	dictionary	of	type	[String :
AnyObject],	so	let’s	define	that	as	a	variable	in	our	vc:

 var people: [String : AnyObject]?{

 didSet{

 dispatch_async(dispatch_get_main_queue()){

 self.updateSendButton()

 }

 }

 }

 func updateSendButton(){

 sendBtn.enabled = isReachable && isDownloadFinished && people != nil

 }

NOTE
Setting	the	value	of	the	people	variable	will	call	the	updateSendButton()	function,	which	in	turn	enables
the	send	button	only	if	all	the	following	conditions	are	met:

1.	 The	watch	app	is	reachable.

2.	 The	file	is	downloaded.

3.	 The	file	was	correctly	parsed	into	the	people	variable.

Also	define	a	variable	that	can	write	into	your	status	label	whenever	the	reachability	flag
is	changed:

 var isReachable = false{

 didSet{

 dispatch_async(dispatch_get_main_queue()){

 self.updateSendButton()

 if self.isReachable{

 self.reachabilityStatusLbl.text = "Watch is reachable"

 } else {

 self.reachabilityStatusLbl.text = "Watch is not reachable"

 }

 }

 }

 }

We	need	two	more	properties:	one	that	sets	the	status	label	and	another	that	keeps	track	of
when	our	file	is	downloaded	successfully:

 var isDownloadFinished = false{

 didSet{

 dispatch_async(dispatch_get_main_queue()){

 self.updateSendButton()

 }

 }

 }

 var status: String?{

 get{return self.statusLbl.text}

 set{

 dispatch_async(dispatch_get_main_queue()){

 self.statusLbl.text = newValue

 }

 }

 }

NOTE
All	three	variables	(people,	isReachable,	and	isDownloadFinished)	that	we	defined	call	the
updateSendButton()	function	so	that	our	send	button	will	be	disabled	if	conditions	are	not	met,	and
enabled	otherwise.

Now	when	the	download	button	is	pressed,	start	a	download	task:

 @IBAction func download() {

 //if loading HTTP content, make sure you have disabled ATS

 //for that domain

 let url = NSURL(string: "http://localhost:8888/people.json")!

 let req = NSURLRequest(URL: url)

 let id = "se.pixolity.app.backgroundtask"

 let conf = NSURLSessionConfiguration

 .backgroundSessionConfigurationWithIdentifier(id)

 let sess = NSURLSession(configuration: conf, delegate: self,

 delegateQueue: NSOperationQueue())

 sess.downloadTaskWithRequest(req).resume()

 }

After	that,	check	if	you	got	any	errors	while	trying	to	download	the	file:

 func URLSession(session: NSURLSession, task: NSURLSessionTask,

 didCompleteWithError error: NSError?) {

 if error != nil{

 status = "Error happened"

 isDownloadFinished = false

 }

 session.finishTasksAndInvalidate()

 }

Now	implement	the	URLSession(_:downloadTask:didFinishDownloadingToURL:)
method	of	NSURLSessionDownloadDelegate.	Inside	there,	tell	your	view	controller	that
you	have	downloaded	the	file	by	setting	isDownloadFinished	to	true.	Then	construct	a
more	permanent	URL	for	the	temporary	URL	to	which	our	JSON	file	was	downloaded	by
iOS:

 func URLSession(session: NSURLSession,

 downloadTask: NSURLSessionDownloadTask,

 didFinishDownloadingToURL location: NSURL){

 isDownloadFinished = true

 //got the data, parse as JSON

 let fm = NSFileManager()

 let url = try! fm.URLForDirectory(.DownloadsDirectory,

 inDomain: .UserDomainMask,

 appropriateForURL: location,

 create: true).URLByAppendingPathComponent("file.json")

 ...

Then	move	the	file	over:

 do {try fm.removeItemAtURL(url)} catch {}

 do{

 try fm.moveItemAtURL(location, toURL: url)

 } catch {

 status = "Could not save the file"

 return

 }

After	that,	simply	read	the	file	as	a	JSON	file	with	NSJSONSerialization:

 //now read the file from url

 guard let data = NSData(contentsOfURL: url) else{

 status = "Could not read the file"

 return

 }

 do{

 let json = try NSJSONSerialization.JSONObjectWithData(data,

 options: .AllowFragments) as! [String : AnyObject]

 self.people = json

 status = "Successfully downloaded and parsed the file"

 } catch{

 status = "Could not read the file as json"

 }

Great	—	now	go	to	your	watch	interface,	place	a	label	there,	and	hook	it	up	to	your	code
under	the	name	statusLabel	(see	Figure	2-8).

In	the	interface	controller	file,	place	a	variable	that	can	set	the	status:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 @IBOutlet var statusLabel: WKInterfaceLabel!

 var status = "Waiting"{

 didSet{

 statusLabel.setText(status)

 }

 }

}

Figure	2-8.	Our	watch	interface	has	a	simple	label	only

Go	to	your	ExtensionDelegate	file	on	the	watch	side	and	do	these	things:

1.	 Define	a	structure	that	can	hold	instances	of	a	person	you	will	get	in	your	application
context.

2.	 Define	a	property	called	status	that	when	set,	will	set	the	status	property	of	the
interface	controller:

import WatchKit

import WatchConnectivity

struct Person{

 let name: String

 let age: Int

}

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate{

 var status = ""{

 didSet{

 dispatch_async(dispatch_get_main_queue()){

 guard let interface =

 WKExtension.sharedExtension().rootInterfaceController as?

 InterfaceController else{

 return

 }

 interface.status = self.status

 }

 }

 }

 ...

Now	activate	the	session	using	what	you	learned	in	Recipe	2.2.	I	won’t	write	the	code	for
that	in	this	recipe	again.	Then	the	session	will	wait	for	the
session(_:didReceiveApplicationContext:)	method	of	the	WCSessionDelegate
protocol	to	come	in.	When	that	happens,	just	read	the	application	context	and	convert	it
into	Person	instances:

 func session(session: WCSession,

 didReceiveApplicationContext applicationContext: [String : AnyObject]) {

 guard let people = applicationContext["people"] as?

 Array<[String : AnyObject]> where people.count > 0 else{

 status = "Did not find the people array"

 return

 }

 var persons = [Person]()

 for p in people where p["name"] is String && p["age"] is Int{

 let person = Person(name: p["name"] as! String, age: p["age"] as! Int)

 persons.append(person)

 }

 status = "Received \(persons.count) people from the iOS app"

 }

Now	run	both	your	watch	app	and	your	iOS	app.	At	first	glance,	your	watch	app	will	look
like	Figure	2-9.

Figure	2-9.	Your	watch	app	is	waiting	for	the	context	to	come	through	from	the	iOS	app

Your	iOS	app	in	its	initial	state	will	look	like	Figure	2-10.

Figure	2-10.	Your	iOS	app	has	detected	that	its	companion	watch	app	is	reachable

When	I	press	the	download	button,	my	iOS	app’s	interface	will	change	to	Figure	2-11.

Figure	2-11.	The	iOS	app	is	now	ready	to	send	the	data	over	to	the	watch	app

After	pressing	the	send	button,	the	watch	app’s	interface	will	change	to	something	like
Figure	2-12.

Figure	2-12.	The	watch	app	received	the	data

See	Also
Recipe	2.1

2.4	Transferring	Dictionaries	in	Queues	to	and	from
the	Watch

Problem
You	want	to	send	dictionaries	of	information	to	and	from	the	watch	in	a	queuing	(FIFO)
fashion.

Solution
Call	the	transferUserInfo(_:)	method	on	your	WCSession	on	the	sending	part.	On	the
receiving	part,	implement	the	session(_:didReceiveUserInfo:)	method	of	the
WCSessionDelegate	protocol.

NOTE
A	lot	of	the	things	that	I’ll	refer	to	in	this	recipe	have	been	discussed	already	in	Recipe	2.3,	so	have	a	look	if
you	feel	a	bit	confused.

Discussion
Create	a	single-view	app	in	iOS	and	put	your	root	view	controller	in	a	nav	controller.	Then
add	a	watch	target	to	your	app	(see	this	chapter’s	introduction	for	an	explanation).	Make
sure	that	your	root	view	controller	in	IB	looks	like	Figure	2-13.

Figure	2-13.	Place	a	label	and	a	button	on	your	UI

Hook	up	the	label	to	a	variable	in	your	code	named	statusLbl	and	hook	up	the	button	to
a	variable	named	sendBtn.	Hook	up	your	button’s	action	to	a	method	in	your	code	called
send().	The	top	of	your	vc	should	now	look	like:

import UIKit

import WatchConnectivity

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var statusLbl: UILabel!

 @IBOutlet var sendBtn: UIButton!

 ...

You	also	need	a	property	that	can	set	the	status	for	you	on	your	label.	The	property	must
be	on	the	main	thread,	because	WCSession	methods	(where	we	may	want	to	set	our	status
property)	usually	are	not	called	on	the	main	thread:

 var status: String?{

 get{return self.statusLbl.text}

 set{

 dispatch_async(dispatch_get_main_queue()){

 self.statusLbl.text = newValue

 }

 }

 }

When	the	user	presses	the	send	button,	we	will	use	the
WCSession.defaultSession().transferUserInfo(_:)	method	to	send	a	simple
dictionary	whose	only	key	is	kCFBundleIdentifierKey	and	a	value	that	will	be	our

Info.plist’s	bundle	identifier:

 @IBAction func send() {

 guard let infoPlist = NSBundle.mainBundle().infoDictionary else{

 status = "Could not get the Info.plist"

 return

 }

 let key = kCFBundleIdentifierKey as String

 let plist = [

 key : infoPlist[key] as! String

]

 let transfer = WCSession.defaultSession().transferUserInfo(plist)

 status = transfer.transferring ? "Sent" : "Could not send yet"

 }

The	transferUserInfo(_:)	method	returns	an	object	of	type
WCSessionUserInfoTransfer	that	has	properties	such	as	userInfo	and	transferring
and	a	method	called	cancel().	You	can	always	use	the	cancel()	method	of	an	instance
of	WCSessionUserInfoTransfer	to	cancel	the	transfer	of	this	item	if	it	is	not	already
transferring.	You	can	also	find	all	the	user	info	transfers	that	are	ongoing	by	using	the
outstandingUserInfoTransfers	property	of	your	session	object.

NOTE
The	app	also	contains	code	to	disable	the	button	if	the	watch	app	is	not	reachable,	but	I	won’t	discuss	that
code	here	because	we	have	already	discussed	it	in	Recipe	2.2	and	Recipe	2.3.

On	the	watch	side,	in	InterfaceController,	write	the	exact	same	code	that	you	wrote	in
Recipe	2.3.	In	the	ExtensionDelegate	class,	however,	our	code	will	be	a	bit	different.	Its
status	property	is	exactly	how	we	wrote	it	in	Recipe	2.3.

When	the	applicationDidFinishLaunching()	method	of	our	delegate	is	called,	we	set
up	the	session	just	as	we	did	in	Recipe	2.2.	We	will	wait	for	the
session(_:didReceiveUserInfo:)	method	of	the	WCSessionDelegate	protocol	to	be
called.	There,	we	will	simply	read	the	bundle	identifier	from	the	user	info	and	display	it	in
our	view	controller:

 func session(session: WCSession,

 didReceiveUserInfo userInfo: [String : AnyObject]) {

 guard let bundleVersion = userInfo[kCFBundleIdentifierKey as String]

 as? String else{

 status = "Could not read the bundle version"

 return

 }

 status = bundleVersion

 }

If	you	run	the	iOS	app,	your	UI	should	look	like	Figure	2-14.

Figure	2-14.	The	app	has	detected	that	the	watch	app	is	reachable	so	the	button	is	enabled

And	your	watch	app	should	look	like	Figure	2-15.

Figure	2-15.	The	watch	app	is	waiting	for	incoming	user	info	data

When	you	press	the	send	button,	the	user	interface	will	change	to	Figure	2-16.

Figure	2-16.	The	data	is	sent	to	the	watch

And	the	watch	app	will	look	like	Figure	2-17.

Figure	2-17.	The	watch	app	successfully	received	our	user	info

See	Also
Recipe	2.1	and	Recipe	2.3

2.5	Transferring	Files	to	and	from	the	Watch

Problem
You	want	to	transfer	a	file	between	your	iOS	app	and	the	watch	app.	The	technique	works
in	both	directions.

Solution
Follow	these	steps:

1.	 Use	the	transferFile(_:metadata:)	method	of	your	WCSession	object	on	the
sending	device.

2.	 Implement	the	WCSessionDelegate	protocol	on	the	sender	and	wait	for	the
session(_:didFinishFileTransfer:error:)	delegate	method	to	be	called.	If	the
optional	error	parameter	is	nil,	it	indicates	that	the	file	is	transferred	successfully.

3.	 On	the	receiving	part,	become	the	delegate	of	WCSession	and	wait	for	the
session(_:didReceiveFile:)	delegate	method	to	be	called.

4.	 The	incoming	file	on	the	receiving	side	is	of	type	WCSessionFile	and	has	properties
such	as	fileURL	and	metadata.	The	metadata	is	the	same	metadata	of	type	[String
: AnyObject]	that	the	sender	sent	with	the	transferFile(_:metadata:)	method.

Discussion
Let’s	have	a	look	at	a	simple	UI	on	the	sending	device	(the	iOS	side	in	this	example).	It
contains	a	label	that	shows	our	status	and	a	button	that	sends	our	file.	When	the	button	is
pressed,	we	create	a	file	in	the	iOS	app’s	caches	folder	and	then	send	that	file	through	to
the	watch	app	if	it	is	reachable	(see	Recipe	2.2).

Make	your	UI	on	the	iOS	(sender)	side	look	like	Figure	2-18.	The	button	will	be	disabled
if	the	watch	app	is	not	reachable	(see	Recipe	2.2).

Figure	2-18.	Status	label	and	button	on	sender

Hook	up	your	button’s	action	code	to	a	method	in	your	view	controller	called	send()	and
make	sure	your	view	controller	conforms	to	WCSessionDelegate:

import UIKit

import WatchConnectivity

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var statusLbl: UILabel!

 @IBOutlet var sendBtn: UIButton!

 var status: String?{

 get{return self.statusLbl.text}

 set{

 dispatch_async(dispatch_get_main_queue()){

 self.statusLbl.text = newValue

 }

 }

 }

 ...

NOTE
We	implemented	and	talked	about	the	status	property	of	our	view	controller	in	Recipe	2.3,	so	I	won’t
explain	it	here.

Then,	when	the	send	button	is	pressed,	construct	a	URL	that	will	point	to	your	file.	It
doesn’t	exist	yet,	but	you	will	write	it	to	disk	soon:

 let fileName = "file.txt"

 let fm = NSFileManager()

 let url = try! fm.URLForDirectory(.CachesDirectory,

 inDomain: .UserDomainMask, appropriateForURL: nil,

 create: true).URLByAppendingPathComponent(fileName)

Now	write	some	text	to	disk,	reachable	through	the	URL:

 let text = "Foo Bar"

 do{

 try text.writeToURL(url, atomically: true,

 encoding: NSUTF8StringEncoding)

 } catch {

 status = "Could not write the file"

 return

 }

Once	that	is	done,	send	the	file	over:

 let metadata = ["fileName" : fileName]

 WCSession.defaultSession().transferFile(url, metadata: metadata)

Also,	when	your	session’s	reachability	state	changes,	enable	or	disable	your	button:

 func updateUiForSession(session: WCSession){

 status = session.reachable ? "Ready to send" : "Not reachable"

 sendBtn.enabled = session.reachable

 }

 func sessionReachabilityDidChange(session: WCSession) {

 updateUiForSession(session)

 }

On	the	watch	side,	make	your	UI	look	like	Figure	2-8.	Then,	in	your	ExtensionDelegate
class,	implement	the	exact	same	status	property	that	we	implemented	in	Recipe	2.3.

Now	implement	the	session(_:didReceiveFile:)	method	of	WCSessionDelegate.
Start	by	double-checking	that	the	metadata	is	as	you	expected	it:

 guard let metadata = file.metadata where metadata["fileName"]

 is String else{

 status = "No metadata came through"

 return

 }

If	it	is,	read	the	file	and	show	it	in	the	user	interface:

 do{

 let str = try String(NSString(contentsOfURL: file.fileURL,

 encoding: NSUTF8StringEncoding))

 guard str.characters.count > 0 else{

 status = "No file came through"

 return

 }

 status = str

 } catch {

 status = "Could not read the file"

 return

 }

When	you	run	the	watch	app,	it	will	look	like	Figure	2-15.	When	you	run	the	iOS	app,	it
will	look	like	Figure	2-19.

Figure	2-19.	The	file	is	ready	to	be	sent	from	iOS	to	watchOS

When	the	file	is	sent,	your	user	interface	on	iOS	will	look	like	Figure	2-20.

Figure	2-20.	iOS	sent	our	file	to	watchOS

And	the	UI	on	your	receiver	(watchOS)	will	look	like	Figure	2-21.

Figure	2-21.	watchOS	successfully	received	our	file,	read	its	content,	and	is	displaying	it	in	our	label

See	Also
Recipe	2.1,	Recipe	2.2,	and	Recipe	2.3

2.6	Communicating	Interactively	Between	iOS	and
watchOS

Problem
You	want	to	interactively	send	messages	from	iOS	to	watchOS	(or	vice	versa)	and	receive
a	reply	immediately.

Solution
On	the	sender	side,	use	the	sendMessage(_:replyHandler:errorHandler:)	method	of
WCSession.	On	the	receiving	side,	implement	the
session(_:didReceiveMessage:replyHandler:)	method	to	handle	the	incoming
message	if	your	sender	expected	a	reply,	or	implement
session(_:didReceiveMessage:)	if	no	reply	was	expected	from	you.	Messages	and
replies	are	of	type	[String : AnyObject].

Discussion
Let’s	implement	a	chat	program	where	the	iOS	app	and	the	watch	app	can	send	messages
to	each	other.	On	the	iOS	app,	we	will	allow	the	user	to	type	text	and	then	send	it	over	to
the	watch.	On	the	watch,	since	we	cannot	type	anything,	we	will	have	four	predefined
messages	that	the	user	can	send	us.	In	order	to	decrease	the	amount	of	data	the	watch
sends	us,	we	define	these	messages	as	Int	and	send	the	integers	instead.	The	iOS	app	will
read	the	integers	and	then	print	the	correct	message	onto	the	screen.	So	let’s	first	define
these	messages.	Create	a	file	called	PredefinedMessages	and	write	the	following	Swift
code	there:

import Foundation

enum PredefinedMessage : Int{

 case Hello

 case ThankYou

 case HowAreYou

 case IHearYou

}

Add	this	file	to	both	your	watch	extension	and	your	iOS	app	so	that	they	both	can	use	it
(see	Figure	2-22).

Figure	2-22.	We	will	include	the	file	on	our	iOS	app	and	watch	extension

Now	move	to	your	main	iOS	app’s	storyboard	and	design	a	UI	that	looks	like	Figure	2-23.
There	are	two	labels	that	say	“…”	at	the	moment.	They	will	be	populated	dynamically	in
our	code.

Figure	2-23.	Initial	iOS	app	UI

Hook	up	your	UI	to	your	code	as	follows:

Hook	up	your	send	button	to	an	outlet	called	sendBtn.	Hook	up	its	action	method	to	a
function	called	send(_:)	in	your	vc.

Hook	up	the	text	field	to	your	code	under	the	name	textField.

Hook	up	the	label	that	says	“…”	in	front	of	“Watch	Status:”	to	an	outlet	called
watchStatusLbl.

Hook	up	the	label	that	says	“…”	in	front	of	“Watch	Said:”	to	an	outlet	called
watchReplyLbl.

So	now	the	top	part	of	your	vc	on	the	iOS	side	should	look	like	this:

import UIKit

import WatchConnectivity

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var sendBtn: UIBarButtonItem!

 @IBOutlet var textField: UITextField!

 @IBOutlet var watchStatusLbl: UILabel!

 @IBOutlet var watchReplyLbl: UILabel!

 ...

As	we	have	done	before,	we	need	two	variables	that	can	populate	the	text	inside	the
watchStatusLbl	and	watchReplyLbl	labels,	always	on	the	main	thread:

 var watchStatus: String{

 get{return self.watchStatusLbl.text ?? ""}

 set{onMainThread{self.watchStatusLbl.text = newValue}}

 }

 var watchReply: String{

 get{return self.watchReplyLbl.text ?? ""}

 set{onMainThread{self.watchReplyLbl.text = newValue}}

 }

NOTE
The	definition	of	onMainThread	is	very	simple.	It’s	a	custom	function	I’ve	written	in	a	library	to	make	life
easier:

import Foundation

public func onMainThread(f: () -> Void){

 dispatch_async(dispatch_get_main_queue(), f)

}

When	the	send	button	is	pressed,	we	first	have	to	make	sure	that	the	user	has	entered	some
text	into	the	text	field:

 guard let txt = textField.text where txt.characters.count > 0 else{

 textField.placeholder = "Enter some text here first"

 return

 }

Then	we	will	use	the	sendMessage(_:replyHandler:errorHandler:)	method	of	our
session	to	send	our	text	over:

 WCSession.defaultSession().sendMessage(["msg" : txt],

 replyHandler: {dict in

 guard dict["msg"] is String &&

 dict["msg"] as! String == "delivered" else{

 self.watchReply = "Could not deliver the message"

 return

 }

 self.watchReply = dict["msg"] as! String

 }){err in

 self.watchReply = "An error happened in sending the message"

 }

Later,	when	we	implement	our	watch	side,	we	will	also	be	sending	messages	from	the
watch	over	to	the	iOS	app.	Those	messages	will	be	inside	a	dictionary	whose	only	key	is
“msg”	and	the	value	of	this	key	will	be	an	integer.	The	integers	are	already	defined	in	the
PredefinedMessage	enum	that	we	saw	earlier.	So	in	our	iOS	app,	we	will	wait	for
messages	from	the	watch	app,	translate	the	integer	we	get	to	its	string	counterpart,	and
show	it	on	our	iOS	UI.	Remember,	we	send	integers	(instead	of	strings)	from	the	watch	to

make	the	transfer	snappier.	So	let’s	implement	the	session(_:didReceiveMessage:)
delegate	method	in	our	iOS	app:

 func session(session: WCSession,

 didReceiveMessage message: [String : AnyObject]) {

 guard let msg = message["msg"] as? Int,

 let value = PredefinedMessage(rawValue: msg) else{

 watchReply = "Received invalid message"

 return

 }

 switch value{

 case .Hello:

 watchReply = "Hello"

 case .HowAreYou:

 watchReply = "How are you?"

 case .IHearYou:

 watchReply = "I hear you"

 case .ThankYou:

 watchReply = "Thank you"

 }

 }

Let’s	use	what	we	learned	in	Recipe	2.2	to	enable	or	disable	our	send	button	when	the
watch’s	reachability	changes:

 func updateUiForSession(session: WCSession){

 watchStatus = session.reachable ? "Reachable" : "Not reachable"

 sendBtn.enabled = session.reachable

 }

 func sessionReachabilityDidChange(session: WCSession) {

 updateUiForSession(session)

 }

On	the	watch	side,	design	your	UI	like	Figure	2-24.	On	the	watch,	the	user	cannot	type,
but	she	can	press	a	predefined	message	in	order	to	send	it	(remember
PredefinedMessage?).	That	little	line	between	“Waiting…”	and	“Send	a	reply”	is	a
separator.

Figure	2-24.	Strings	that	a	user	can	send	from	a	watch

Hook	up	your	watch	UI	to	your	code	by	following	these	steps:

Hook	up	the	“Waiting…”	label	to	an	outlet	named	iosAppReplyLbl.	We	will	show	the
text	that	our	iOS	app	has	sent	to	us	in	this	label.

Place	all	the	buttons	at	the	bottom	of	the	page	inside	a	group	and	hook	that	group	up	to
an	outlet	called	repliesGroup.	We	will	hide	this	whole	group	if	the	iOS	app	is	not
reachable	to	our	watch	app.

Hook	the	action	of	the	“Hello”	button	to	a	method	in	your	code	called	sendHello().

Hook	the	action	of	the	“Thank	you”	button	to	a	method	in	your	code	called
sendThankYou().

Hook	the	action	of	the	“How	are	you?”	button	to	a	method	in	your	code	called
sendHowAreYou().

Hook	the	action	of	the	“I	hear	you”	button	to	a	method	in	your	code	called

sendIHearYou().

In	our	InterfaceController	on	the	watch	side,	we	need	a	generic	method	that	takes	in
an	Int	(our	predefined	message)	and	sends	it	over	to	the	iOS	side	with	the
sendMessage(_:replyHandler:errorHandler:)	method	of	the	session:

import WatchKit

import Foundation

import WatchConnectivity

class InterfaceController: WKInterfaceController {

 @IBOutlet var iosAppReplyLbl: WKInterfaceLabel!

 @IBOutlet var repliesGroup: WKInterfaceGroup!

 func send(int: Int){

 WCSession.defaultSession().sendMessage(["msg" : int],

 replyHandler: nil, errorHandler: nil)

 }

 ...

And	whenever	any	of	the	buttons	is	pressed,	we	call	the	send(_:)	method	with	the	right
predefined	message:

 @IBAction func sendHello() {

 send(PredefinedMessage.Hello.hashValue)

 }

 @IBAction func sendThankYou() {

 send(PredefinedMessage.ThankYou.hashValue)

 }

 @IBAction func sendHowAreYou() {

 send(PredefinedMessage.HowAreYou.hashValue)

 }

 @IBAction func sendIHearYou() {

 send(PredefinedMessage.IHearYou.hashValue)

 }

In	the	ExtensionDelegate	class	on	the	watch	side,	we	want	to	hide	all	the	reply	buttons
if	the	iOS	app	is	not	reachable.	To	do	that,	write	a	property	called	isReachable	of	type
Bool.	Whenever	this	property	is	set,	the	code	sets	the	hidden	property	of	our	replies
group:

import WatchKit

import WatchConnectivity

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate{

 var isReachable = false{

 willSet{

 self.rootController?.repliesGroup.setHidden(!newValue)

 }

 }

 var rootController: InterfaceController?{

 get{

 guard let interface =

 WKExtension.sharedExtension().rootInterfaceController as?

 InterfaceController else{

 return nil

 }

 return interface

 }

 }

 ...

You	also	are	going	to	need	a	String	property	that	will	be	your	iOS	app’s	reply.	Whenever
you	get	a	reply	from	the	iOS	app,	place	it	inside	this	property.	As	soon	as	this	property	is
set,	the	watch	extension	will	write	this	text	on	our	UI:

 var iosAppReply = ""{

 didSet{

 dispatch_async(dispatch_get_main_queue()){

 self.rootController?.iosAppReplyLbl.setText(self.iosAppReply)

 }

 }

 }

Now	let’s	wait	for	messages	from	the	iOS	app	and	display	those	messages	on	our	UI:

 func session(session: WCSession,

 didReceiveMessage message: [String : AnyObject],

 replyHandler: ([String : AnyObject]) -> Void) {

 guard message["msg"] is String else{

 replyHandler(["msg" : "failed"])

 return

 }

 iosAppReply = message["msg"] as! String

 replyHandler(["msg" : "delivered"])

 }

Also	when	our	iOS	app’s	reachability	changes,	we	want	to	update	our	UI	and	disable	the
reply	buttons:

 func sessionReachabilityDidChange(session: WCSession) {

 isReachable = session.reachable

 }

 func applicationDidFinishLaunching() {

 guard WCSession.isSupported() else{

 iosAppReply = "Sessions are not supported"

 return

 }

 let session = WCSession.defaultSession()

 session.delegate = self

 session.activateSession()

 isReachable = session.reachable

 }

Running	our	app	on	the	watch	first,	we	will	see	an	interface	similar	to	Figure	2-25.	The
user	can	scroll	to	see	the	rest	of	the	buttons.

Figure	2-25.	Available	messages	on	watch

And	when	we	run	our	app	on	iOS	while	the	watch	app	is	reachable,	the	UI	will	look	like
Figure	2-26.

Figure	2-26.	The	send	button	on	our	app	is	enabled	and	we	can	send	messages

Type	“Hello	from	iOS”	in	the	iOS	UI	and	press	the	send	button.	The	watch	app	will
receive	the	message	(see	Figure	2-27).

Figure	2-27.	The	watch	app	received	the	message	sent	from	the	iOS	app

Now	press	the	How	are	you?	button	on	the	watch	UI	and	see	the	results	in	the	iOS	app
(Figure	2-28).

Figure	2-28.	The	iOS	app	received	the	message	from	the	watch	app

See	Also
Recipe	2.1,	Recipe	2.2,	Recipe	2.3,	Recipe	2.4,	and	Recipe	2.5

2.7	Setting	Up	Apple	Watch	for	Custom	Complications

Problem
You	want	to	create	a	barebones	watch	project	with	support	for	complications	and	you	want
to	see	a	complication	on	the	screen.

Solution
Follow	these	steps:

1.	 Add	a	watch	target	to	your	project	(see	Figure	2-1).	Make	sure	that	it	includes
complications	upon	setting	it	up.

2.	 In	Xcode,	in	your	targets,	select	your	watch	extension.	Under	the	General	tab,	ensure
that	the	Modular	Small	complication	is	the	only	complication	that	is	enabled.
Disable	all	the	others	(see	Figure	2-29).

3.	 Write	your	complication	code	in	your	ComplicationController	class.	We’ll
discuss	this	code	soon.

4.	 Run	your	app	on	the	watch	simulator.

5.	 Once	your	app	is	opened	in	the	simulator,	press	Command-Shift-H	to	go	to	the	clock
face	(see	Figure	2-3).

6.	 Press	Command-Shift-2	to	simulate	Deep	Press	on	the	watch	simulator	and	then	tap
and	hold	on	the	watch	face	(see	Figure	2-30).

Figure	2-29.	We	are	going	to	support	only	small-modular	complications

Figure	2-30.	We	can	now	customize	our	watch	face

7.	 Press	Command-Shift-1	to	simulate	Shallow	Press	and	then	scroll	to	the	modular
watch	face	(see	Figure	2-31).

Figure	2-31.	Select	the	modular	watch	face

8.	 Press	the	Customize	button	(see	Figure	2-32).

Figure	2-32.	Now	you	can	customize	your	modular	watch	face

9.	 Scroll	to	the	next	page	to	the	right,	and	then	tap	the	small-modular	complication	at
the	bottom	left	of	the	screen	until	it	becomes	selected	(see	Figure	2-33).	You	will
replace	this	with	your	own	complication.

Figure	2-33.	Select	the	small	modular	complication	at	the	bottom	left

10.	 Now	use	the	up	and	down	arrows	on	your	keyboard	(or	if	on	the	device,	use	the
digital	crown)	to	select	your	complication	(see	Figure	2-34).	What	you	see	on	the
screen	is	the	preview	template	that	you	have	provided	to	the	system.	We	will
implement	this	template	soon,	but	in	the	figure	I	have	already	done	that,	hence	the
number	22.

Figure	2-34.	Your	own	small-modular	complication	is	shown

11.	 Press	Cmd-Shift-2	to	simulate	Deep	Press	and	then	tap	the	screen	(see	Figure	2-35).

Figure	2-35.	We	have	now	configured	our	complication	on	the	selected	watch	face

12.	 Press	Command-Shift-H	to	go	to	the	clock	app	on	the	screen	(see	Figure	2-36).
Notice	that	your	complication	is	gone	and	shows	no	data.	That	is	because	what	we
displayed	on	the	screen	while	configuring	our	watch	face	was	just	a	preview
template.	What	the	clock	app	displays	is	real	data	and	we	are	not	providing	any	of	it.

Figure	2-36.	Our	complication	is	on	the	bottom	left	but	is	empty

Discussion
Complications	are	pieces	of	information	that	apps	can	display	on	a	watch	face.	They	are
divided	into	a	few	main	categories:

Modular	small

A	very	small	amount	of	space	with	minimal	text	and/or	a	very	small	image	(see
Figure	2-37;	the	date	on	the	top	left	is	a	modular	small	complication).

Modular	large

An	image,	title,	and	up	to	two	lines	of	text	(see	Figure	2-37;	the	calendar	event	in	the
center	of	the	screen	is	a	modular	large	complication).

Utilitarian	small

Mainly	a	small	image	with	optional	text	(see	Figure	2-37;	the	activity	icon	in	the
bottom	center	is	of	this	type).

Utilitarian	large

A	date/text	mixed	with	an	image,	rendered	on	one	line.	This	is	similar	to	modular
large	but	on	just	one	line.

Circular	small

A	circular	image	with	optional	text	(see	Figure	2-37;	the	sunrise/sunset	complication
on	the	bottom	right	is	an	example	of	a	circular-small	complication).

Figure	2-37.	Everything	except	the	time	is	a	complication

Assuming	that	you	have	already	created	a	watch	target	with	a	complication	attached	to	it,
go	into	your	ComplicationController	class	and	find	the
getPlaceholderTemplateForComplication(_:withHandler:)	method.	This	method

gets	called	by	iOS	when	your	complication	is	being	added	to	a	watch	face.	This	gives	you
the	chance	to	provide	a	placeholder	for	what	the	user	has	to	see	while	adjusting	her	watch
face.	It	won’t	usually	be	real	data.

After	this	method	is	called,	you	need	to	create	a	complication	template	of	type
CLKComplicationTemplate	(or	one	of	its	many	subclasses)	and	return	that	into	the
replyHandler	block	that	you	are	given.	For	now,	implement	the	template	like	this:

 func getPlaceholderTemplateForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationTemplate?) -> Void) {

 let temp = CLKComplicationTemplateModularSmallSimpleText()

 temp.textProvider = CLKSimpleTextProvider(text: "22")

 handler(temp)

 }

NOTE
I	am	not	going	to	discuss	the	details	of	this	code	right	now.	You’ll	learn	them	in	other	recipes	in	this
chapter.

One	more	thing	that	you	have	to	know	is	that	once	you	have	provided	watchOS	with	your
placeholder	template,	you	won’t	be	asked	to	do	it	again	unless	the	user	uninstalls	your
watchOS	app	and	installs	it	again	from	her	iPhone	(see	Figure	2-38).

Figure	2-38.	If	the	user	uninstalls	and	reinstalls	your	app,	it	can	provide	a	new	placeholder	template

If	you	are	working	on	the
getPlaceholderTemplateForComplication(_:withHandler:)	method	and	want	to	test
out	different	templates,	you	can	simply	reset	the	watch	simulator	and	then	run	your	app
again.	This	will	retrigger	the
getPlaceholderTemplateForComplication(_:withHandler:)	method	on	your
complication	controller.

See	Also
Recipe	2.8	and	Recipe	2.9

2.8	Constructing	Small	Complications	with	Text	and
Images

Problem
You	want	to	construct	a	small-modular	complication	and	provide	the	user	with	past,
present,	and	future	data.	In	this	example,	a	small	modular	complication	(Figure	2-39,
bottom	left)	shows	the	current	hour	with	a	ring	swallowing	it.	The	ring	is	divided	into	24
sections	and	increments	for	every	1	hour	in	the	day.	At	the	end	of	the	day,	the	ring	will	be
completely	filled	and	the	number	inside	the	ring	will	show	24.

Figure	2-39.	Small-modular	complication	(bottom	left)	showing	the	current	hour	surrounded	by	a	ring

Solution
Follow	these	steps:

1.	 Create	your	main	iOS	project	with	a	watch	target	and	make	sure	your	watch	target
has	a	complication.

2.	 In	your	complication,	implement	the
getSupportedTimeTravelDirectionsForComplication(_:withHandler:)

method	of	the	CLKComplicationDataSource	protocol.	In	this	method,	return	your
supported	time	travel	directions	(more	on	this	later).	The	directions	are	of	type
CLKComplicationTimeTravelDirections.

3.	 Implement	the	getTimelineStartDateForComplication(_:withHandler:)
method	inside	your	complication	class	and	call	the	given	handler	with	an	NSDate
that	indicates	the	start	date	of	your	available	data.

4.	 Implement	the	getTimelineEndDateForComplication(_:withHandler:)	method
of	your	complication	and	call	the	handler	with	the	last	date	for	which	your	data	is
valid.

5.	 Implement	the
getTimelineEntriesForComplication(_:beforeDate:limit:withHandler:)
method	of	your	complication,	create	an	array	of	type
CLKComplicationTimelineEntry,	and	send	that	array	into	the	given	handler	object.
These	will	be	the	timeline	entries	before	the	given	date	that	you	would	want	to	return
to	the	watch	(more	on	this	later).

6.	 Implement	the
getTimelineEntriesForComplication(_:afterDate:limit:withHandler:)
method	of	your	complication	and	return	all	the	events	that	your	complication
supports,	after	the	given	date.

7.	 Implement	the	getNextRequestedUpdateDateWithHandler(_:)	method	of	your
complication	and	let	watchOS	know	when	it	has	to	ask	you	next	for	more	content.

Discussion
When	providing	complications,	you	are	expected	to	provide	data	to	the	watchOS	as	the
time	changes.	In	our	example,	for	every	hour	in	the	day,	we	want	to	change	our
complication.	So	each	day	we’ll	return	24	events	to	the	runtime.

With	the	digital	crown	on	the	watch,	the	user	can	scroll	up	and	down	while	on	the	watch
face	to	engage	in	a	feature	called	“time	travel.”	This	allows	the	user	to	change	the	time
known	to	the	watch	just	so	she	can	see	how	various	components	on	screen	change	with	the
new	time.	For	instance,	if	you	provide	a	complication	to	the	user	that	shows	all	football
match	results	of	the	day,	the	user	can	then	go	back	in	time	a	few	hours	to	see	the	results	of
a	match	she	has	just	missed.	Similarly,	in	the	context	of	a	complication	that	shows	the	next
fast	train	time	to	the	city	where	the	user	lives,	she	can	scroll	forward,	with	the	digital
crown	on	the	watch	face,	to	see	the	future	times	that	the	train	leaves	from	the	current
station.

The	time	is	an	absolute	value	on	any	watch,	so	let’s	say	that	you	want	to	provide	the	time
of	the	next	football	match	in	your	complication.	Let’s	say	it’s	14:00	right	now	and	the
football	match	starts	at	15:00.	If	you	give	15:00	as	the	start	of	that	event	to	your
complication,	watchOS	will	show	the	football	match	(or	the	data	that	you	provide	for	that
match	to	your	user	through	your	complication)	to	the	user	at	15:00,	not	before.	That	is	a
bit	useless,	if	you	ask	me.	You	want	to	provide	that	information	to	the	user	before	the
match	starts	so	she	knows	what	to	look	forward	to,	and	when.	So	keep	that	in	mind	when
providing	a	starting	date	for	your	events.

watchOS	complications	conform	to	the	CLKComplicationDataSource	protocol.	They	get
a	lot	of	delegate	messages	from	this	protocol	calling	methods	that	you	have	to	implement
even	if	you	don’t	want	to	return	any	data.	For	instance,	in	the
getNextRequestedUpdateDateWithHandler(_:)	method,	you	get	a	handler	as	a
parameter	that	you	must	call	with	an	NSDate	object,	specifying	when	you	want	to	be	asked
for	more	data	next	time.	If	you	don’t	want	to	be	asked	for	any	more	data,	you	still	have	to
call	this	handler	object	but	with	a	nil	date.	You’ll	find	out	soon	that	most	of	these
handlers	ask	for	optional	values,	so	you	can	call	them	with	nil	if	you	want	to.

While	working	with	complications,	you	can	tell	watchOS	which	directions	of	time	travel
you	support,	or	if	you	support	time	travel	at	all.	If	you	don’t	support	it,	your	complication
returns	only	data	for	the	current	time.	And	if	the	user	scrolls	the	watch	face	with	the
digital	crown,	your	complication	won’t	update	its	information.	I	don’t	suggest	you	opt	out
of	time	travel	unless	your	complication	really	cannot	provide	relevant	data	to	the	user.
Certainly,	if	your	complication	shows	match	results,	it	cannot	show	results	for	matches
that	have	not	happened.	But	even	then,	you	can	still	support	forward	and	backward	time
travel.	If	the	user	chooses	forward	time	travel,	just	hide	the	scores,	show	a	question	mark,
or	do	something	similar.

As	you	work	with	complications,	it’s	important	to	construct	a	data	model	to	return	to	the

watch.	What	you	usually	return	to	the	watch	for	your	complication	is	either	of	type
CLKComplicationTemplate	or	of	type	CLKComplicationTimelineEntry.	The	template
defines	how	your	data	is	viewed	on	screen.	The	timeline	entry	only	binds	your	template
(your	visible	data)	to	a	date	of	type	NSDate	that	dictates	to	the	watch	when	it	has	to	show
your	data.	As	simple	as	that.	In	the	case	of	small-modular	complications,	you	can	provide
the	following	templates	to	the	watch:

CLKComplicationTemplateModularSmallSimpleText

Has	just	text.

CLKComplicationTemplateModularSmallSimpleImage

Has	just	an	image.

CLKComplicationTemplateModularSmallRingText

Has	text	inside	a	ring	that	you	can	fill	from	0	to	100%.

CLKComplicationTemplateModularSmallRingImage

Has	an	image	inside	a	ring	that	you	can	fill.

CLKComplicationTemplateModularSmallStackText

Has	two	lines	of	code,	the	second	of	which	can	be	highlighted.

CLKComplicationTemplateModularSmallStackImage

Has	an	image	and	a	text,	with	the	text	able	to	be	highlighted.

CLKComplicationTemplateModularSmallColumnsText

Has	a	2	×	2	text	display	where	you	can	provide	four	pieces	of	textual	data.	The
second	column	can	be	highlighted	and	have	its	text	alignment	adjusted.

As	you	saw	in	Figure	2-33,	this	example	bases	our	small-modular	template	on
CLKComplicationTemplateModularSmallRingText.	So	we	provide	only	a	text	(the
current	hour)	and	a	value	between	0	and	1	that	will	tell	watchOS	how	much	of	the	ring
around	our	number	it	has	to	fill	(0…100%).

Let’s	now	begin	defining	our	data	for	this	example.	For	every	hour,	we	want	our	template
to	show	the	current	hour.	Just	before	midnight,	we	provide	another	24	new	complication
data	points	for	that	day	to	the	watch.	So	let’s	define	a	data	structure	that	can	contain	a
date,	the	hour	value,	and	the	fraction	(between	0…1)	to	set	for	our	complication.	Start	off
by	creating	a	file	called	DataProvider.swift	and	write	all	this	code	in	that:

protocol WithDate{

 var hour: Int {get}

 var date: NSDate {get}

 var fraction: Float {get}

}

Now	we	can	define	our	actual	structure	that	conforms	to	this	protocol:

struct Data : WithDate{

 let hour: Int

 let date: NSDate

 let fraction: Float

 var hourAsStr: String{

 return "\(hour)"

 }

}

Later,	when	we	work	on	our	complication,	we	will	be	asked	to	provide,	inside	the
getCurrentTimelineEntryForComplication(_:withHandler:)	method	of
CLKComplicationDataSource,	a	template	to	show	to	the	user	for	the	current	time.	We	are
also	going	to	create	an	array	of	24	Data	structures.	So	it	would	be	great	if	we	could
always,	inside	this	array,	easily	find	the	Data	object	for	the	current	date:

extension NSDate{

 func hour() -> Int{

 let cal = NSCalendar.currentCalendar()

 return cal.components(NSCalendarUnit.Hour, fromDate: self).hour

 }

}

extension CollectionType where Generator.Element : WithDate {

 func dataForNow() -> Generator.Element?{

 let thisHour = NSDate().hour()

 for d in self{

 if d.hour == thisHour{

 return d

 }

 }

 return nil

 }

}

NOTE
The	dataForNow()	function	goes	through	any	collection	that	has	objects	that	conform	to	the	WithDate
protocol	that	we	specified	earlier,	and	finds	the	object	whose	current	hour	is	the	same	as	that	returned	for
the	current	moment	by	NSDate().

Let’s	now	create	our	array	of	24	Data	objects.	We	do	this	by	iterating	from	1	to	24,
creating	NSDate	objects	using	NSDateComponents	and	NSCalendar.	Then,	using	those
objects,	we	construct	instances	of	the	Data	structure	that	we	just	wrote:

struct DataProvider{

 func allDataForToday() -> [Data]{

 var all = [Data]()

 let now = NSDate()

 let cal = NSCalendar.currentCalendar()

 let units = NSCalendarUnit.Year.union(.Month).union(.Day)

 let comps = cal.components(units, fromDate: now)

 comps.minute = 0

 comps.second = 0

 for i in 1...24{

 comps.hour = i

 let date = cal.dateFromComponents(comps)!

 let fraction = Float(comps.hour) / 24.0

 let data = Data(hour: comps.hour, date: date, fraction: fraction)

 all.append(data)

 }

 return all

 }

}

That	was	our	entire	data	model.	Now	let’s	move	onto	the	complication	class	of	our	watch
app.	In	the	getNextRequestedUpdateDateWithHandler(_:)	method	of	the
CLKComplicationDataSource	protocol	to	which	our	complication	conforms,	we	are
going	to	be	asked	when	watchOS	should	next	call	our	complication	and	ask	for	new	data.
Because	we	are	going	to	provide	data	for	the	whole	day,	today,	we	would	want	to	be	asked
for	new	data	for	tomorrow.	So	we	need	to	ask	to	be	updated	a	few	seconds	before	the	start
of	the	next	day.	For	that,	we	need	an	NSDate	object	that	tells	watchOS	when	the	next	day
is.	So	let’s	extend	NSDate:

extension NSDate{

 class func endOfToday() -> NSDate{

 let cal = NSCalendar.currentCalendar()

 let units = NSCalendarUnit.Year.union(NSCalendarUnit.Month)

 .union(NSCalendarUnit.Day)

 let comps = cal.components(units, fromDate: NSDate())

 comps.hour = 23

 comps.minute = 59

 comps.second = 59

 return cal.dateFromComponents(comps)!

 }

}

Moving	to	our	complication,	let’s	define	our	data	provider	first:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

We	know	that	our	data	provider	can	give	us	an	array	of	Data	objects,	so	we	need	a	way	of
turning	those	objects	into	our	templates	so	they	that	can	be	displayed	on	the	screen:

 func templateForData(data: Data) -> CLKComplicationTemplate{

 let template = CLKComplicationTemplateModularSmallRingText()

 template.textProvider = CLKSimpleTextProvider(text: data.hourAsStr)

 template.fillFraction = data.fraction

 template.ringStyle = .Closed

 return template

 }

Our	template	of	type	CLKComplicationTemplateModularSmallRingText	has	a	few
important	properties:

textProvider	of	type	CLKTextProvider

Tells	watchOS	how	our	text	has	to	appear.	We	never	instantiate	CLKTextProvider
directly,	though.	We	use	one	of	its	subclasses,	such	as	the	CLKSimpleTextProvider
class.	There	are	other	text	providers	that	we	will	talk	about	later.

fillFraction	of	type	Float

A	number	between	0.0	and	1.0	that	tells	watchOS	how	much	of	the	ring	around	our
template	it	has	to	fill.

ringStyle	of	type	CLKComplicationRingStyle

The	style	of	the	ring	we	want	around	our	text.	It	can	be	Open	or	Closed.

Later	we	are	also	going	to	be	asked	for	timeline	entries	of	type
CLKComplicationTimelineEntry	for	the	data	that	we	provide	to	watchOS.	So	for	every
Data	object,	we	need	to	be	able	to	create	a	timeline	entry:

 func timelineEntryForData(data: Data) -> CLKComplicationTimelineEntry{

 let template = templateForData(data)

 return CLKComplicationTimelineEntry(date: data.date,

 complicationTemplate: template)

 }

In	this	example,	we	support	forward	and	backward	time	travel	(of	type
CLKComplicationTimeTravelDirections)	so	let’s	tell	watchOS	that:

 func getSupportedTimeTravelDirectionsForComplication(

 complication: CLKComplication,

 withHandler handler: (CLKComplicationTimeTravelDirections) -> Void) {

 handler([.Forward, .Backward])

 }

NOTE
If	you	don’t	want	to	support	time	travel,	call	the	handler	argument	with	the	value	of
CLKComplicationTimeTravelDirections.None.

The	next	thing	we	have	to	do	is	implement	the
getTimelineStartDateForComplication(_:withHandler:)	method	of
CLKComplicationDataSource.	This	method	gets	called	on	our	delegate	whenever
watchOS	wants	to	find	out	the	beginning	of	the	date/time	range	of	our	time	travel.	For	our
example,	since	we	want	to	provide	24	templates,	one	for	each	hour	in	the	day,	we	tell
watchOS	the	date	of	the	first	template:

 func getTimelineStartDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allDataForToday().first!.date)

 }

Similarly,	for	the	getTimelineEndDateForComplication(_:withHandler:)	method,
we	provide	the	date	of	the	last	event:

 func getTimelineEndDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allDataForToday().last!.date)

 }

Complications	can	be	displayed	on	the	watch’s	lock	screen.	Some	complications	might
contain	sensitive	data,	so	they	might	want	to	opt	out	of	appearing	on	the	lock	screen.	For
this,	we	have	to	implement	the
getPrivacyBehaviorForComplication(_:withHandler:)	method	as	well.	We	call	the
handler	with	an	object	of	type	CLKComplicationPrivacyBehavior,	such	as
ShowOnLockScreen	or	HideOnLockScreen.	Because	we	don’t	have	any	sensitive	data,	we
show	our	complication	on	the	lock	screen:

 func getPrivacyBehaviorForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationPrivacyBehavior) -> Void) {

 handler(.ShowOnLockScreen)

 }

Now	to	the	stuff	that	I	like.	The
getCurrentTimelineEntryForComplication(_:withHandler:)	method	will	get	called
on	our	delegate	whenever	the	runtime	needs	to	get	the	complication	timeline	(the	template
plus	the	date	to	display)	for	the	complication	to	display	no.	Do	you	remember	the
dataForNow()	method	that	we	wrote	a	while	ago	as	an	extension	on	CollectionType?
Well,	we	are	going	to	use	that	now:

 func getCurrentTimelineEntryForComplication(complication: CLKComplication,

 withHandler handler: ((CLKComplicationTimelineEntry?) -> Void)) {

 if let data = dataProvider.allDataForToday().dataForNow(){

 handler(timelineEntryForData(data))

 } else {

 handler(nil)

 }

 }

NOTE
Always	implement	the	handlers	that	the	class	gives	you.	If	they	accept	optional	values	and	you	don’t	have
any	data	to	pass,	just	pass	nil.

Now	we	have	to	implement	the
getTimelineEntriesForComplication(_:beforeDate:limit:beforeDate:)	method
of	our	complication	delegate.	This	method	gets	called	whenever	watchOS	needs	timeline
entries	for	data	before	a	certain	date,	with	a	maximum	of	limit	entries.	So	let’s	say	that	you
have	1,000	templates	to	return	but	the	limit	is	100.	Do	not	return	more	than	100	in	that
case.	In	our	example,	I	will	go	through	all	the	data	items	that	we	have,	filter	them	by	their
dates,	find	the	ones	coming	before	the	given	date	(the	beforeDate	parameter),	and	create
a	timeline	entry	for	all	of	those	with	the	timelineEntryForData(_:)	method	that	we
wrote:

 func getTimelineEntriesForComplication(complication: CLKComplication,

 beforeDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allDataForToday().filter{

 date.compare($0.date) == .OrderedDescending

 }.map{

 self.timelineEntryForData($0)

 }

 handler(entries)

 }

Similarly,	we	have	to	implement	the
getTimelineEntriesForComplication(_:afterDate:limit:withHandler:)	method
to	return	the	timeline	entries	after	a	certain	date	(afterDate	parameter):

 func getTimelineEntriesForComplication(complication: CLKComplication,

 afterDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allDataForToday().filter{

 date.compare($0.date) == .OrderedAscending

 }.map{

 self.timelineEntryForData($0)

 }

 handler(entries)

 }

The	getNextRequestedUpdateDateWithHandler(_:)	method	is	the	next	method	we
need	to	implement.	This	method	gets	called	to	ask	us	when	we	would	like	to	be	asked	for
more	data	later.	For	our	app	we	specify	the	next	day,	because	we	have	already	provided	all
the	data	for	today:

 func getNextRequestedUpdateDateWithHandler(handler: (NSDate?) -> Void) {

 handler(NSDate.endOfToday());

 }

Last	but	not	least,	we	have	to	implement	the
getPlaceholderTemplateForComplication(_:withHandler:)	method	that	we	talked
about	before.	This	is	where	we	provide	our	placeholder	template:

 func getPlaceholderTemplateForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationTemplate?) -> Void) {

 if let data = dataProvider.allDataForToday().dataForNow(){

 handler(templateForData(data))

 } else {

 handler(nil)

 }

 }

Now	when	I	run	my	app	on	my	watch,	because	the	time	is	10:24	and	the	hour	is	10,	our
complication	will	show	10	and	fill	the	circle	around	it	to	show	how	much	of	the	day	has
passed	by	10:00	(see	Figure	2-40).

Figure	2-40.	Our	complication	on	the	bottom	left	is	showing	the	hour

And	if	I	engage	time	travel	and	move	forward	to	18:23,	our	complication	updates	itself	as
well,	showing	18	as	the	hour	(see	Figure	2-41).

Figure	2-41.	The	user	moves	the	time	to	the	future	and	our	complication	updates	itself	as	well

See	Also
Recipe	2.7

2.9	Displaying	Time	Offsets	in	Complications

Problem
The	data	that	you	want	to	present	has	to	be	shown	as	an	offset	to	a	specific	time.	For
instance,	you	want	to	show	the	remaining	minutes	until	the	next	train	that	the	user	can	take
to	get	home.

Solution
Use	the	CLKRelativeDateTextProvider	to	provide	your	information	inside	a	template.
In	this	example,	we	are	going	to	use
CLKComplicationTemplateModularLargeStandardBody,	which	is	a	large	and	modular
template.

Discussion
In	this	recipe,	let’s	create	a	watch	app	that	shows	the	next	available	train	that	the	user	can
take	to	get	home.	Trains	can	have	different	properties:

Date	and	time	of	departure

Train	operator

Type	of	train	(high	speed,	commuter	train,	etc.)

Service	name	(as	shown	on	the	time	table)

In	our	example,	I	want	the	complication	to	look	like	Figure	2-42.	The	complication	shows
the	next	train	(a	Coastal	service)	and	how	many	minutes	away	that	train	departs.

Figure	2-42.	Complication	shows	that	the	next	train	leaves	in	25	minutes

When	you	create	your	watchOS	project,	enable	only	the	modular	large	complication	in	the
target	settings	(see	Figure	2-43).

Figure	2-43.	Enable	only	the	modular	large	complication	for	this	example

Now	create	your	data	model.	It	will	be	similar	to	what	we	did	in	Recipe	2.8,	but	this	time
we	want	to	provide	train	times.	For	the	train	type	and	the	train	company,	create
enumerations:

enum TrainType : String{

 case HighSpeed = "High Speed"

 case Commuter = "Commuter"

 case Coastal = "Coastal"

}

enum TrainCompany : String{

 case SJ = "SJ"

 case Southern = "Souther"

 case OldRail = "Old Rail"

}

NOTE
These	enumerations	are	of	type	String,	so	you	can	display	them	on	your	UI	easily	without	having	to	write
a	switch	statement.

Then	define	a	protocol	to	which	your	train	object	will	conform.	Protocol-oriented
programming	offers	many	possibilities	(see	Recipe	1.12),	so	let’s	do	that	now:

protocol OnRailable{

 var type: TrainType {get}

 var company: TrainCompany {get}

 var service: String {get}

 var departureTime: NSDate {get}

}

struct Train : OnRailable{

 let type: TrainType

 let company: TrainCompany

 let service: String

 let departureTime: NSDate

}

As	we	did	in	Recipe	2.8,	we	are	going	to	define	a	data	provider.	In	this	example,	we	create
a	few	trains	that	depart	at	specific	times	with	different	types	of	services	and	from	different
operators:

struct DataProvider{

 func allTrainsForToday() -> [Train]{

 var all = [Train]()

 let now = NSDate()

 let cal = NSCalendar.currentCalendar()

 let units = NSCalendarUnit.Year.union(.Month).union(.Day)

 let comps = cal.components(units, fromDate: now)

 //first train

 comps.hour = 6

 comps.minute = 30

 comps.second = 0

 let date1 = cal.dateFromComponents(comps)!

 all.append(Train(type: .Commuter, company: .SJ,

 service: "3296", departureTime: date1))

 //second train

 comps.hour = 9

 comps.minute = 57

 let date2 = cal.dateFromComponents(comps)!

 all.append(Train(type: .HighSpeed, company: .Southern,

 service: "2307", departureTime: date2))

 //third train

 comps.hour = 12

 comps.minute = 22

 let date3 = cal.dateFromComponents(comps)!

 all.append(Train(type: .Coastal, company: .OldRail,

 service: "3206", departureTime: date3))

 //fourth train

 comps.hour = 15

 comps.minute = 45

 let date4 = cal.dateFromComponents(comps)!

 all.append(Train(type: .HighSpeed, company: .SJ,

 service: "3703", departureTime: date4))

 //fifth train

 comps.hour = 18

 comps.minute = 19

 let date5 = cal.dateFromComponents(comps)!

 all.append(Train(type: .Coastal, company: .Southern,

 service: "8307", departureTime: date5))

 //sixth train

 comps.hour = 22

 comps.minute = 11

 let date6 = cal.dateFromComponents(comps)!

 all.append(Train(type: .Commuter, company: .OldRail,

 service: "6802", departureTime: date6))

 return all

 }

}

Move	now	to	the	ComplicationController	class	of	your	watch	extension.	Here,	you
will	provide	watchOS	with	the	data	it	needs	to	display	your	complication.	The	first	task	is
to	extend	CollectionType	so	that	you	can	find	the	next	train	in	the	array	that	the
allTrainsForToday()	function	of	DataProvider	returns:

extension CollectionType where Generator.Element : OnRailable {

 func nextTrain() -> Generator.Element?{

 let now = NSDate()

 for d in self{

 if now.compare(d.departureTime) == .OrderedAscending{

 return d

 }

 }

 return nil

 }

}

And	you	need	a	data	provider	in	your	complication:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

For	every	train,	you	need	to	create	a	template	that	watchOS	can	display	on	the	screen.	All
templates	are	of	type	CLKComplicationTemplate,	but	don’t	initialize	that	class	directly.
Instead,	create	a	template	of	type
CLKComplicationTemplateModularLargeStandardBody	that	has	a	header,	two	lines	of
text	with	the	second	line	being	optional,	and	an	optional	image.	The	header	will	show	a
constant	text	(see	Figure	2-42),	so	instantiate	it	of	type	CLKSimpleTextProvider.	For	the
first	line	of	text,	you	want	to	show	how	many	minutes	away	the	next	train	is,	so	that	would

require	a	text	provider	of	type	CLKRelativeDateTextProvider	as	we	talked	about	it
before.

The	initializer	for	CLKRelativeDateTextProvider	takes	in	a	parameter	of	type
CLKRelativeDateStyle	that	defines	the	way	the	given	date	has	to	be	shown.	In	our
example,	we	use	CLKRelativeDateStyle.Offset:

 func templateForTrain(train: Train) -> CLKComplicationTemplate{

 let template = CLKComplicationTemplateModularLargeStandardBody()

 template.headerTextProvider = CLKSimpleTextProvider(text: "Next train")

 template.body1TextProvider =

 CLKRelativeDateTextProvider(date: train.departureTime,

 style: .Offset,

 units: NSCalendarUnit.Hour.union(.Minute))

 let secondLine = "\(train.service) - \(train.type)"

 template.body2TextProvider = CLKSimpleTextProvider(text: secondLine,

 shortText: train.type.rawValue)

 return template

 }

NOTE
The	second	line	of	text	we	are	providing	has	a	shortText	alternative.	If	the	watch	UI	has	no	space	to	show
our	secondLine	text,	it	will	show	the	shortText	alternative.

We	are	going	to	need	to	provide	timeline	entries	(date	plus	template)	for	every	train	as
well,	so	let’s	create	a	helper	method	for	that:

 func timelineEntryForTrain(train: Train) -> CLKComplicationTimelineEntry{

 let template = templateForTrain(train)

 return CLKComplicationTimelineEntry(date: train.departureTime,

 complicationTemplate: template)

 }

When	we	are	asked	for	the	first	and	the	last	date	of	the	data	we	provide,	we	read	our	data
provider’s	array	of	trains	and	return	the	first	and	the	last	train’s	dates,	respectively:

 func getTimelineStartDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allTrainsForToday().first!.departureTime)

 }

 func getTimelineEndDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allTrainsForToday().last!.departureTime)

 }

I	want	to	allow	the	user	to	be	able	to	time	travel	so	that	she	can	see	the	next	train	as	she
changes	the	time	with	the	digital	crown.	I	also	believe	our	data	is	not	sensitive,	so	I’ll
allow	viewing	this	data	on	the	lock	screen:

 func getSupportedTimeTravelDirectionsForComplication(

 complication: CLKComplication,

 withHandler handler: (CLKComplicationTimeTravelDirections) -> Void) {

 handler([.Forward, .Backward])

 }

 func getPrivacyBehaviorForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationPrivacyBehavior) -> Void) {

 handler(.ShowOnLockScreen)

 }

Regarding	time	travel,	when	asked	for	trains	after	and	before	a	certain	time,	your	code
should	go	through	all	the	trains	and	filter	out	the	times	you	don’t	want	displayed,	as	we
did	in	Recipe	2.8:

 UU

 func getTimelineEntriesForComplication(complication: CLKComplication,

 beforeDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allTrainsForToday().filter{

 date.compare($0.departureTime) == .OrderedDescending

 }.map{

 self.timelineEntryForTrain($0)

 }

 handler(entries)

 }

 func getTimelineEntriesForComplication(complication: CLKComplication,

 afterDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allTrainsForToday().filter{

 date.compare($0.departureTime) == .OrderedAscending

 }.map{

 self.timelineEntryForTrain($0)

 }

 handler(entries)

 }

When	the	getCurrentTimelineEntryForComplication(_:withHandler:)	method	is
called	on	our	delegate,	we	get	the	next	train’s	timeline	entry	and	return	it:

 func getCurrentTimelineEntryForComplication(complication: CLKComplication,

 withHandler handler: ((CLKComplicationTimelineEntry?) -> Void)) {

 if let train = dataProvider.allTrainsForToday().nextTrain(){

 handler(timelineEntryForTrain(train))

 } else {

 handler(nil)

 }

 }

Because	we	provide	data	until	the	end	of	today,	we	ask	watchOS	to	ask	us	for	new	data
tomorrow:

 func getNextRequestedUpdateDateWithHandler(handler: (NSDate?) -> Void) {

 handler(NSDate.endOfToday());

 }

Last	but	not	least,	we	provide	our	placeholder	template:

 func getPlaceholderTemplateForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationTemplate?) -> Void) {

 if let data = dataProvider.allTrainsForToday().nextTrain(){

 handler(templateForTrain(data))

 } else {

 handler(nil)

 }

 }

We	saw	an	example	of	our	app	showing	the	next	train	(see	Figure	2-42),	but	our	app	can
also	participate	in	time	travel	(see	Figure	2-44).	The	user	can	use	the	digital	crown	on	the
watch	to	move	forward	or	backward	and	see	the	next	available	train	at	the	new	time.

Figure	2-44.	Moving	our	complication	backward	in	time

See	Also
Recipe	2.7

2.10	Displaying	Dates	in	Complications

Problem
You	want	to	display	NSDate	instances	on	your	complications.

Solution
Use	an	instance	of	the	CLKDateTextProvider	class,	which	is	a	subclass	of
CLKTextProvider,	as	your	text	provider.

NOTE
I	am	going	to	use	CLKComplicationTemplateModularLargeColumns	(a	modular	large	template)	for	this
recipe.	So	configure	your	watch	target	to	provide	only	large-modular	templates	(see	Figure	2-43).

Discussion
Let’s	develop	a	modular	large	complication	that	provides	us	with	the	name	and	the	date	of
the	next	three	public	holidays	(see	Figure	2-45).	We	are	not	formatting	the	date	ourselves.
We	leave	it	to	watchOS	to	decide	how	to	display	the	date	by	using	an	instance	of
CLKDateTextProvider.

Figure	2-45.	The	next	three	public	holidays,	with	their	names	and	dates

Just	as	in	Recipe	2.8	and	Recipe	2.9,	we	are	going	to	add	a	new	class	to	our	watch	app
called	DataProvider.	In	there,	we	are	going	to	program	all	the	holidays	this	year.	Let’s
start	off	by	defining	what	a	holiday	object	looks	like:

protocol Holidayable{

 var date: NSDate {get}

 var name: String {get}

}

struct Holiday : Holidayable{

 let date: NSDate

 let name: String

}

In	our	data	provider	class,	we	start	off	by	defining	some	holiday	names:

struct DataProvider{

 private let holidayNames = [

 "Father's Day",

 "Mother's Day",

 "Bank Holiday",

 "Nobel Day",

 "Man Day",

 "Woman Day",

 "Boyfriend Day",

 "Girlfriend Day",

 "Dog Day",

 "Cat Day",

 "Mouse Day",

 "Cow Day",

]

 private func randomDay() -> Int{

 return Int(arc4random_uniform(20) + 1)

 }

 ...

Then	we	move	on	to	providing	our	instances	of	Holiday:

 func allHolidays() -> [Holiday]{

 var all = [Holiday]()

 let now = NSDate()

 let cal = NSCalendar.currentCalendar()

 let units = NSCalendarUnit.Year.union(.Month).union(.Day)

 let comps = cal.components(units, fromDate: now)

 var dates = [NSDate]()

 for month in 1...12{

 comps.day = randomDay()

 comps.month = month

 dates.append(cal.dateFromComponents(comps)!)

 }

 var i = 0

 for date in dates{

 all.append(Holiday(date: date, name: holidayNames[i++]))

 }

 return all

 }

It’s	worth	noting	that	the	allHolidays()	function	we	just	wrote	simply	goes	through	all
months	inside	this	year,	and	sets	the	day	of	the	month	to	a	random	day.	So	we	will	get	12
holidays,	one	in	each	month,	at	a	random	day	inside	that	month.

Over	to	our	ComplicationController.	When	we	get	asked	later	when	we	would	like	to
provide	more	data	or	updated	data	to	watchOS,	we	are	going	to	ask	for	10	minutes	in	the
future.	So	if	our	data	changes,	watchOS	will	have	a	chance	to	ask	us	for	updated
information:

extension NSDate{

 func plus10Minutes() -> NSDate{

 return self.dateByAddingTimeInterval(10 * 60)

 }

}

Because	the	template	we	are	going	to	provide	allows	a	maximum	of	three	items,	I	would
like	to	have	methods	on	Array	to	return	the	second	and	the	third	items	inside	the	array,
just	like	the	prebuilt	first	property	that	the	class	offers:

extension Array{

 var second : Generator.Element?{

 return self.count >= 1 ? self[1] : nil

 }

 var third : Generator.Element?{

 return self.count >= 2 ? self[2] : nil

 }

}

DataProvider’s	allHolidays()	method	returns	12	holidays.	How	about	extending	the
built-in	array	type	to	always	give	us	the	next	three	holidays?	It	would	have	to	read	today’s
date,	go	through	the	items	in	our	array,	compare	the	dates,	and	give	us	just	the	upcoming
three	holidays:

extension CollectionType where Generator.Element : Holidayable {

 //may contain less than 3 holidays

 func nextThreeHolidays() -> Array<Self.Generator.Element>{

 let now = NSDate()

 let orderedArray = Array(self.filter{

 now.compare($0.date) == .OrderedAscending

 })

 let result = Array(orderedArray[0..<min(orderedArray.count , 3)])

 return result

 }

}

Now	we	start	defining	our	complication:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

We	need	a	method	that	can	take	in	a	Holiday	object	and	give	us	a	template	of	type
CLKComplicationTemplate	for	that.	Our	specific	template	for	this	recipe	is	of	type

CLKComplicationTemplateModularLargeColumns.	This	template	is	like	a	3	×	3	table.	It
has	three	rows	and	three	columns	(see	Figure	2-45).	If	we	are	at	the	end	of	the	year	and	we
have	no	more	holidays,	we	return	a	template	that	is	of	type
CLKComplicationTemplateModularLargeStandardBody	and	tell	the	user	that	there	are
no	more	upcoming	holidays.	Note	that	both	templates	have	the	words	“ModularLarge”	in
their	name.	Because	we	have	specified	in	our	target	setting	that	we	support	only	modular
large	templates	(see	Figure	2-43),	this	example	can	return	only	templates	that	have	those
words	in	their	name:

 func templateForHoliday(holiday: Holiday) -> CLKComplicationTemplate{

 let next3Holidays = dataProvider.allHolidays().nextThreeHolidays()

 let headerTitle = "Next 3 Holidays"

 guard next3Holidays.count > 0 else{

 let template = CLKComplicationTemplateModularLargeStandardBody()

 template.headerTextProvider = CLKSimpleTextProvider(text: headerTitle)

 template.body1TextProvider = CLKSimpleTextProvider(text: "Sorry!")

 return template

 }

 let dateUnits = NSCalendarUnit.Month.union(.Day)

 let template = CLKComplicationTemplateModularLargeColumns()

 //first holiday

 if let firstHoliday = next3Holidays.first{

 template.row1Column1TextProvider =

 CLKSimpleTextProvider(text: firstHoliday.name)

 template.row1Column2TextProvider =

 CLKDateTextProvider(date: firstHoliday.date, units: dateUnits)

 }

 //second holiday

 if let secondHoliday = next3Holidays.second{

 template.row2Column1TextProvider =

 CLKSimpleTextProvider(text: secondHoliday.name)

 template.row2Column2TextProvider =

 CLKDateTextProvider(date: secondHoliday.date, units: dateUnits)

 }

 //third holiday

 if let thirdHoliday = next3Holidays.third{

 template.row3Column1TextProvider =

 CLKSimpleTextProvider(text: thirdHoliday.name)

 template.row3Column2TextProvider =

 CLKDateTextProvider(date: thirdHoliday.date, units: dateUnits)

 }

 return template

 }

You	need	to	provide	a	timeline	entry	(date	plus	template)	for	your	holidays	as	well:

 func timelineEntryForHoliday(holiday: Holiday) ->

 CLKComplicationTimelineEntry{

 let template = templateForHoliday(holiday)

 return CLKComplicationTimelineEntry(date: holiday.date,

 complicationTemplate: template)

 }

Also	provide	the	first	and	the	last	holidays:

 func getTimelineStartDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allHolidays().first!.date)

 }

 func getTimelineEndDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allHolidays().last!.date)

 }

Also	support	time	travel	and	provide	your	content	on	the	lock	screen,	because	it	is	not
private:

 func getSupportedTimeTravelDirectionsForComplication(

 complication: CLKComplication,

 withHandler handler: (CLKComplicationTimeTravelDirections) -> Void) {

 handler([.Forward, .Backward])

 }

 func getPrivacyBehaviorForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationPrivacyBehavior) -> Void) {

 handler(.ShowOnLockScreen)

 }

Now	let’s	give	watchOS	information	about	previous	and	upcoming	holidays:

 func getTimelineEntriesForComplication(complication: CLKComplication,

 beforeDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allHolidays().filter{

 date.compare($0.date) == .OrderedDescending

 }.map{

 self.timelineEntryForHoliday($0)

 }

 handler(entries)

 }

 func getTimelineEntriesForComplication(complication: CLKComplication,

 afterDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allHolidays().filter{

 date.compare($0.date) == .OrderedAscending

 }.map{

 self.timelineEntryForHoliday($0)

 }

 handler(entries)

 }

Last	but	not	least,	provide	the	upcoming	three	holidays	when	you	are	asked	to	provide
them	now:

 func getCurrentTimelineEntryForComplication(complication: CLKComplication,

 withHandler handler: ((CLKComplicationTimelineEntry?) -> Void)) {

 if let first = dataProvider.allHolidays().nextThreeHolidays().first{

 handler(timelineEntryForHoliday(first))

 } else {

 handler(nil)

 }

 }

 func getNextRequestedUpdateDateWithHandler(handler: (NSDate?) -> Void) {

 handler(NSDate().plus10Minutes());

 }

 func getPlaceholderTemplateForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationTemplate?) -> Void) {

 if let holiday = dataProvider.allHolidays().nextThreeHolidays().first{

 handler(templateForHoliday(holiday))

 } else {

 handler(nil)

 }

 }

See	Also
Recipe	2.7	and	Recipe	2.9

2.11	Displaying	Times	in	Complications

Problem
You	want	to	display	a	time	on	your	watch	UI	and	want	it	to	look	good	regardless	of
available	space	on	the	watch.

Solution
Provide	your	time	(in	form	of	NSDate)	to	an	instance	of	CLKTimeTextProvider	and	use	it
inside	a	template	(see	Figure	2-46).	Our	large	and	modular	complication	on	the	center	of
the	screen	is	showing	the	next	pause	that	we	can	take	at	work,	which	happens	to	be	a
coffee	pause.

Figure	2-46.	The	time	is	displayed	on	the	screen	using	an	instance	of	CLKTimeTextProvider

NOTE
In	this	recipe,	we	are	going	to	rely	a	lot	on	what	we	have	learned	in	Recipe	2.8	and	other	complication
recipes	in	this	chapter.	I	suggest	reading	Recipe	2.8	at	least	to	get	an	idea	of	how	our	data	provider	works.
Otherwise,	you	will	still	be	able	to	read	this	recipe;	however,	I	will	skip	over	some	details	that	I’ve	already
explained	in	Recipe	2.8.

Discussion
This	recipe	uses	a	large-modular	template,	so	make	sure	that	your	project	is	set	up	for	that
(see	Figure	2-43).	Here,	I	want	to	build	an	app	that	shows	the	different	breaks	or	pauses
that	I	can	take	at	work,	and	when	they	occur:	for	instance,	when	the	first	pause	is	after	I
get	to	work,	when	lunch	happens,	when	the	next	pause	between	lunch	and	dinner	is,	and	if
I	want	to	have	dinner	as	well,	when	that	should	happen.

So	we	have	breaks	at	work	and	we	need	to	define	them.	Create	a	Swift	file	in	your	watch
extension	and	call	it	DataProvider.	In	there,	define	your	break:

import Foundation

protocol Pausable{

 var name: String {get}

 var date: NSDate {get}

}

struct PauseAtWork : Pausable{

 let name: String

 let date: NSDate

}

Now	in	your	DataProvider	structure,	create	four	pauses	that	we	can	take	at	work	at
different	times	and	provide	them	as	an	array:

struct DataProvider{

 func allPausesToday() -> [PauseAtWork]{

 var all = [PauseAtWork]()

 let now = NSDate()

 let cal = NSCalendar.currentCalendar()

 let units = NSCalendarUnit.Year.union(.Month).union(.Day)

 let comps = cal.components(units, fromDate: now)

 comps.calendar = cal

 comps.minute = 30

 comps.hour = 11

 all.append(PauseAtWork(name: "Coffee", date: comps.date!))

 comps.minute = 30

 comps.hour = 14

 all.append(PauseAtWork(name: "Lunch", date: comps.date!))

 comps.minute = 0

 comps.hour = 16

 all.append(PauseAtWork(name: "Tea", date: comps.date!))

 comps.hour = 17

 all.append(PauseAtWork(name: "Dinner", date: comps.date!))

 return all

 }

}

Here	we	have	just	obtained	the	date	and	time	of	today	and	then	gone	from	coffee	break	in
the	morning	to	dinner	in	the	evening,	adding	each	pause	to	the	array.	The	method	is	called
allPausesToday()	and	we	are	going	to	invoke	it	from	our	watch	complication.

Before,	we	created	a	protocol	called	Pausable	and	now	we	have	all	our	pauses	in	an	array.
When	we	are	asked	to	provide	a	template	for	the	next	pause	to	show	in	the	complication,
we	have	to	get	the	current	time	and	find	the	pause	whose	time	is	after	the	current	time.	So
let’s	bundle	that	up	by	extending	CollectionType	like	we	have	done	in	other	recipes	in
this	chapter:

extension CollectionType where Generator.Element : Pausable {

 func nextPause() -> Self.Generator.Element?{

 let now = NSDate()

 for pause in self{

 if now.compare(pause.date) == .OrderedAscending{

 return pause

 }

 }

 return nil

 }

}

In	our	complication	now,	we	instantiate	our	data	provider:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

For	every	pause	that	we	want	to	display	to	the	user	(see	Figure	2-46),	we	need	to	provide	a
template	of	type	CLKComplicationTemplate	to	the	runtime.	We	never	instantiate	that
class	directly.	Instead,	we	return	an	instance	of	a	subclass	of	that	class.	In	this	particular
example,	we	display	an	instance	of	CLKComplicationTemplateModularLargeTallBody.
However,	if	there	are	no	more	pauses	to	take	at	work	(e.g.,	if	time	is	21:00	and	we	are	no
longer	at	work),	we	display	a	placeholder	to	the	user	to	tell	her	there	are	no	more	pauses.
The	template	for	that	is	of	type	CLKComplicationTemplateModularLargeStandardBody.
The	difference	between	the	two	templates	is	visible	if	you	read	their	names.	We	set	the

time	on	our	template	by	setting	the	bodyTextProvider	property	of	our
CLKComplicationTemplateModularLargeTallBody	instance:

 func templateForPause(pause: PauseAtWork) -> CLKComplicationTemplate{

 guard let nextPause = dataProvider.allPausesToday().nextPause() else{

 let template = CLKComplicationTemplateModularLargeStandardBody()

 template.headerTextProvider = CLKSimpleTextProvider(text: "Next Break")

 template.body1TextProvider = CLKSimpleTextProvider(text: "None")

 return template

 }

 let template = CLKComplicationTemplateModularLargeTallBody()

 template.headerTextProvider = CLKSimpleTextProvider(text: nextPause.name)

 template.bodyTextProvider = CLKTimeTextProvider(date: nextPause.date)

 return template

 }

We	also	have	to	provide	some	of	the	other	delegate	methods	of
CLKComplicationDataSource,	such	as	the	timeline	entry	(date	plus	template)	for	every
pause	that	we	can	take	at	work.	We	also	need	to	support	time	travel	for	this	example.	On
top	of	that,	our	information	is	not	sensitive,	so	when	asked	whether	we	want	to	display	our
complication	on	the	lock	screen,	we	happily	say	yes:

 func timelineEntryForPause(pause: PauseAtWork) ->

 CLKComplicationTimelineEntry{

 let template = templateForPause(pause)

 return CLKComplicationTimelineEntry(date: pause.date,

 complicationTemplate: template)

 }

 func getSupportedTimeTravelDirectionsForComplication(

 complication: CLKComplication,

 withHandler handler: (CLKComplicationTimeTravelDirections) -> Void) {

 handler([.Forward, .Backward])

 }

 func getPrivacyBehaviorForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationPrivacyBehavior) -> Void) {

 handler(.ShowOnLockScreen)

 }

When	asked	the	beginning	and	the	end	range	of	dates	for	our	complications,	we	will	return
the	dates	for	the	first	and	the	last	pause	that	we	want	to	take	at	work	today.	Remember,	in
this	complication,	we	will	return	all	the	pauses	that	we	can	take	at	work	today.	When	the
time	comes	to	display	the	pauses	to	take	at	work	tomorrow,	we	will	provide	a	whole	set	of
new	pauses:

 func getTimelineStartDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allPausesToday().first!.date)

 }

 func getTimelineEndDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allPausesToday().last!.date)

 }

When	the	runtime	calls	the
getTimelineEntriesForComplication(_:beforeDate:limit:withHandler:)
method,	provide	all	the	pauses	that	are	available	before	the	given	date:

 func getTimelineEntriesForComplication(complication: CLKComplication,

 beforeDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allPausesToday().filter{

 date.compare($0.date) == .OrderedDescending

 }.map{

 self.timelineEntryForPause($0)

 }

 handler(entries)

 }

Similarly,	when	the
getTimelineEntriesForComplication(_:afterDate:limit:withHandler:)	method
is	called,	return	all	the	available	pauses	after	the	given	date:

 func getTimelineEntriesForComplication(complication: CLKComplication,

 afterDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allPausesToday().filter{

 date.compare($0.date) == .OrderedAscending

 }.map{

 self.timelineEntryForPause($0)

 }

 handler(entries)

 }

In	the	getCurrentTimelineEntryForComplication(_:withHandler:)	method,	you
will	be	asked	to	provide	the	template	for	the	current	data	(the	next	pause)	to	show	on
screen.	We	already	have	a	method	on	CollectionType	called	nextPause(),	so	let’s	use
that	to	provide	a	template	to	watchOS:

 func getCurrentTimelineEntryForComplication(complication: CLKComplication,

 withHandler handler: ((CLKComplicationTimelineEntry?) -> Void)) {

 if let pause = dataProvider.allPausesToday().nextPause(){

 handler(timelineEntryForPause(pause))

 } else {

 handler(nil)

 }

 }

Because,	in	a	typical	watch	app,	our	data	would	probably	come	from	a	backend,	we	would
like	the	runtime	to	task	us	for	up-to-date	information	as	soon	as	possible,	but	not	too	soon.
So	let’s	do	that	after	10	minutes:

 func getNextRequestedUpdateDateWithHandler(handler: (NSDate?) -> Void) {

 handler(NSDate().plus10Minutes());

 }

Last	but	not	least,	we	also	need	to	provide	a	placeholder	template	when	the	user	is	adding
our	complication	to	her	watch	face:

 func getPlaceholderTemplateForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationTemplate?) -> Void) {

 if let pause = dataProvider.allPausesToday().nextPause(){

 handler(templateForPause(pause))

 } else {

 handler(nil)

 }

 }

See	Also
Recipe	2.9	and	Recipe	2.11

2.12	Displaying	Time	Intervals	in	Complications

Problem
You	want	to	display	a	time	interval	(start	date–end	date)	on	your	watchOS	UI	(see
Figure	2-47).	Our	template	shows	today’s	meetings	on	the	screen.	Right	now,	it’s	brunch
time,	so	the	screen	shows	the	description	and	location	of	where	we	are	going	to	have
brunch,	along	with	the	time	interval	of	the	brunch	(start–end).

Figure	2-47.	Meeting	with	start	and	end	times

Solution
Use	an	instance	of	CLKTimeIntervalTextProvider	as	your	text	provider	(see	Figure	2-
47).

NOTE
I	will	base	this	recipe	on	other	recipes	such	as	Recipe	2.10	and	Recipe	2.11.

Discussion
Let’s	say	that	we	want	to	have	an	app	that	shows	us	all	our	meetings	today.	Every	meeting
has	the	following	properties:

Start	and	end	times	(the	time	interval)

Name	(e.g.,	“Brunch	with	Sarah”)

Location

Because	text	providers	of	type	CLKSimpleTextProvider	accept	a	short	text	in	addition	to
the	full	text,	we	also	have	a	short	version	of	the	location	and	the	name.	For	instance,	the
location	can	be	“Stockholm	Central	Train	Station,”	whereas	the	short	version	of	this	could
be	“Central	Station”	or	even	“Centralen”	in	Swedish,	which	means	the	center.	So	let’s
define	this	meeting	object:

protocol Timable{

 var name: String {get}

 var shortName: String {get}

 var location: String {get}

 var shortLocation: String {get}

 var startDate: NSDate {get}

 var endDate: NSDate {get}

 var previous: Timable? {get}

}

struct Meeting : Timable{

 let name: String

 let shortName: String

 let location: String

 let shortLocation: String

 let startDate: NSDate

 let endDate: NSDate

 let previous: Timable?

}

Create	a	Swift	file	in	your	project	called	DataProvider.	Put	all	the	meetings	for	today	in
there	and	return	an	array:

struct DataProvider{

 func allMeetingsToday() -> [Meeting]{

 var all = [Meeting]()

 let oneHour: NSTimeInterval = 1 * 60.0 * 60

 let now = NSDate()

 let cal = NSCalendar.currentCalendar()

 let units = NSCalendarUnit.Year.union(.Month).union(.Day)

 let comps = cal.components(units, fromDate: now)

 comps.calendar = cal

 comps.minute = 30

 comps.hour = 11

 let meeting1 = Meeting(name: "Brunch with Sarah", shortName: "Brunch",

 location: "Stockholm Central", shortLocation: "Central",

 startDate: comps.date!,

 endDate: comps.date!.dateByAddingTimeInterval(oneHour), previous: nil)

 all.append(meeting1)

 comps.minute = 30

 comps.hour = 14

 let meeting2 = Meeting(name: "Lunch with Gabriella", shortName: "Lunch",

 location: "At home", shortLocation: "Home",

 startDate: comps.date!,

 endDate: comps.date!.dateByAddingTimeInterval(oneHour),

 previous: meeting1)

 all.append(meeting2)

 comps.minute = 0

 comps.hour = 16

 let meeting3 = Meeting(name: "Snack with Leif", shortName: "Snack",

 location: "Flags Cafe", shortLocation: "Flags",

 startDate: comps.date!,

 endDate: comps.date!.dateByAddingTimeInterval(oneHour),

 previous: meeting2)

 all.append(meeting3)

 comps.hour = 17

 let meeting4 = Meeting(name: "Dinner with Family", shortName: "Dinner",

 location: "At home", shortLocation: "Home",

 startDate: comps.date!,

 endDate: comps.date!.dateByAddingTimeInterval(oneHour),

 previous: meeting3)

 all.append(meeting4)

 return all

 }

}

In	your	complication	class,	extend	CollectionType	so	that	it	can	return	the	upcoming
meeting:

extension CollectionType where Generator.Element : Timable {

 func nextMeeting() -> Self.Generator.Element?{

 let now = NSDate()

 for meeting in self{

 if now.compare(meeting.startDate) == .OrderedAscending{

 return meeting

 }

 }

 return nil

 }

}

NOTE
I	have	extended	CollectionType,	but	only	if	the	items	are	Timable.	I	explained	this	technique	in	Recipe
1.12.

In	your	complication	handler,	create	an	instance	of	the	data	provider:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

Our	template	is	of	type	CLKComplicationTemplateModularLargeStandardBody,	which
has	a	few	important	properties	that	we	set	as	follows:

headerTextProvider

Shows	the	time	range	for	the	meeting.

body1TextProvider

Shows	the	name	of	the	meeting.

body2TextProvider

Shows	the	location	of	the	meeting.

To	display	the	time	range	of	the	meeting,	instantiate	CLKTimeIntervalTextProvider:

 func templateForMeeting(meeting: Meeting) -> CLKComplicationTemplate{

 let template = CLKComplicationTemplateModularLargeStandardBody()

 guard let nextMeeting = dataProvider.allMeetingsToday().nextMeeting() else{

 template.headerTextProvider = CLKSimpleTextProvider(text: "Next Break")

 template.body1TextProvider = CLKSimpleTextProvider(text: "None")

 return template

 }

 template.headerTextProvider =

 CLKTimeIntervalTextProvider(startDate: nextMeeting.startDate,

 endDate: nextMeeting.endDate)

 template.body1TextProvider =

 CLKSimpleTextProvider(text: nextMeeting.name,

 shortText: nextMeeting.shortName)

 template.body2TextProvider =

 CLKSimpleTextProvider(text: nextMeeting.location,

 shortText: nextMeeting.shortLocation)

 return template

 }

Using	this	method,	you	can	also	create	timeline	entries	(date	plus	template).	In	this
example,	I	set	every	new	event’s	start	date	to	the	end	date	of	the	previous	event	(if	it	is
available).	That	way,	as	soon	as	the	current	ongoing	meeting	ends,	the	next	meeting	shows
up	on	the	list:

NOTE
If	the	event	has	no	previous	events,	its	timeline	entry	date	will	be	its	start	date,	instead	of	the	end	date	of	the
previous	event.

 func timelineEntryForMeeting(meeting: Meeting) -> CLKComplicationTimelineEntry{

 let template = templateForMeeting(meeting)

 let date = meeting.previous?.endDate ?? meeting.startDate

 return CLKComplicationTimelineEntry(date: date,

 complicationTemplate: template)

 }

Let’s	also	participate	in	time	travel	and	show	our	content	on	the	lock	screen	as	well:

 func getSupportedTimeTravelDirectionsForComplication(

 complication: CLKComplication,

 withHandler handler: (CLKComplicationTimeTravelDirections) -> Void) {

 handler([.Forward, .Backward])

 }

 func getPrivacyBehaviorForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationPrivacyBehavior) -> Void) {

 handler(.ShowOnLockScreen)

 }

Then	we	have	to	provide	the	date	range	for	which	we	have	available	meetings.	The	start	of
the	range	is	the	start	date	of	the	first	meeting	and	the	end	date	is	the	end	date	of	the	last
meeting:

 func getTimelineStartDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allMeetingsToday().first!.startDate)

 }

 func getTimelineEndDateForComplication(complication: CLKComplication,

 withHandler handler: (NSDate?) -> Void) {

 handler(dataProvider.allMeetingsToday().last!.endDate)

 }

We’ll	also	be	asked	to	provide	all	the	available	meetings	before	a	certain	date,	so	let’s	do
that:

 func getTimelineEntriesForComplication(complication: CLKComplication,

 beforeDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allMeetingsToday().filter{

 date.compare($0.startDate) == .OrderedDescending

 }.map{

 self.timelineEntryForMeeting($0)

 }

 handler(entries)

 }

Similarly,	we	have	to	provide	all	our	available	meetings	after	a	given	date:

 func getTimelineEntriesForComplication(complication: CLKComplication,

 afterDate date: NSDate, limit: Int,

 withHandler handler: (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allMeetingsToday().filter{

 date.compare($0.startDate) == .OrderedAscending

 }.map{

 self.timelineEntryForMeeting($0)

 }

 handler(entries)

 }

Last	but	not	least,	provide	your	placeholder	template,	the	template	for	now,	and	the	next
time	we	would	like	watchOS	to	ask	us	for	updated	information:

 func getCurrentTimelineEntryForComplication(complication: CLKComplication,

 withHandler handler: ((CLKComplicationTimelineEntry?) -> Void)) {

 if let meeting = dataProvider.allMeetingsToday().nextMeeting(){

 handler(timelineEntryForMeeting(meeting))

 } else {

 handler(nil)

 }

 }

 func getNextRequestedUpdateDateWithHandler(handler: (NSDate?) -> Void) {

 handler(NSDate().plus10Minutes());

 }

 func getPlaceholderTemplateForComplication(complication: CLKComplication,

 withHandler handler: (CLKComplicationTemplate?) -> Void) {

 if let pause = dataProvider.allMeetingsToday().nextMeeting(){

 handler(templateForMeeting(pause))

 } else {

 handler(nil)

 }

 }

NOTE
We	coded	the	plus10Minutes()	method	on	NSDate	in	Recipe	2.10.

See	Also
Recipe	2.9,	Recipe	2.11,	and	Recipe	2.12

2.13	Recording	Audio	in	Your	Watch	App

Problem
You	want	to	allow	your	users	to	record	audio	while	inside	your	watch	app,	and	you	want
to	get	access	to	the	recorded	audio.

Solution
Use	the
presentAudioRecorderControllerWithOutputURL(_:preset:options:completion:)
method	of	your	WKInterfaceController	class	to	present	a	system	dialog	that	can	take
care	of	audio	recording.	If	you	want	to	dismiss	the	dialog,	use	the
dismissAudioRecordingController()	method	of	your	controller.

The	options	parameter	of	the
presentAudioRecorderControllerWithOutputURL(_:preset:options:completion:)
method	accepts	a	dictionary	that	can	contain	the	following	keys:

WKAudioRecorderControllerOptionsActionTitleKey

This	key,	of	type	String,	will	be	the	title	of	our	recorder.

WKAudioRecorderControllerOptionsAlwaysShowActionTitleKey

This	key,	of	type	NSNumber,	contains	a	Bool	value	to	dictates	whether	the	title	should
always	be	shown	on	the	recorder.

WKAudioRecorderControllerOptionsAutorecordKey

This	key,	of	type	NSNumber,	contains	a	Bool	value	to	indicate	whether	recording
should	begin	automatically	when	the	dialog	is	presented.

WKAudioRecorderControllerOptionsMaximumDurationKey

This	key,	of	type	NSNumber,	contains	an	NSTimeInterval	value	to	dictate	the
maximum	duration	of	the	audio	content.

Discussion
For	this	recipe,	we	are	going	to	create	a	watch	app	whose	UI	looks	like	that	shown	in
Figure	2-48).	It	holds	a	label	to	show	our	current	status	(started	recording,	failed
recording,	etc.)	and	a	button	that,	upon	pressing,	can	show	our	recording	dialog.

Figure	2-48.	Label	for	status	and	button

Hook	the	label	up	to	your	code	with	the	name	statusLbl.	Then	hook	your	record	button
to	your	interface	under	a	method	named	record().	Your	interface	code	should	look	like
this	now:

class InterfaceController: WKInterfaceController {

 @IBOutlet var statusLbl: WKInterfaceLabel!

 ...

Define	the	URL	where	your	recording	will	be	saved:

 var url: NSURL{

 let fm = NSFileManager()

 let url = try! fm.URLForDirectory(NSSearchPathDirectory.MusicDirectory,

 inDomain: NSSearchPathDomainMask.UserDomainMask,

 appropriateForURL: nil, create: true)

 .URLByAppendingPathComponent("recording")

 return url

 }

Also,	because	the	completion	block	of	our	recording	screen	might	not	get	called	on	the
main	thread,	create	a	variable	that	can	set	the	text	inside	our	status	label	on	the	main
thread:

 var status = ""{

 willSet{

 dispatch_async(dispatch_get_main_queue()){

 self.statusLbl.setText(newValue)

 }

 }

 }

When	your	record	button	is	pressed,	construct	your	options	for	the	recording:

 let oneMinute: NSTimeInterval = 1 * 60

 let yes = NSNumber(bool: true)

 let no = NSNumber(bool: false)

 let options = [

 WKAudioRecorderControllerOptionsActionTitleKey : "Audio Recorder",

 WKAudioRecorderControllerOptionsAlwaysShowActionTitleKey : yes,

 WKAudioRecorderControllerOptionsAutorecordKey : no,

 WKAudioRecorderControllerOptionsMaximumDurationKey : oneMinute

]

Last	but	not	least,	present	your	audio	recorder	to	the	user	and	then	set	the	status
accordingly:

 presentAudioRecorderControllerWithOutputURL(url,

 preset: WKAudioRecorderPreset.WideBandSpeech,

 options: options){

 success, error in

 defer{

 self.dismissAudioRecorderController()

 }

 guard success && error == nil else{

 self.status = "Failed to record"

 return

 }

 self.status = "Successfully recorded"

 }

See	Also
Recipe	12.3

2.14	Playing	Local	and	Remote	Audio	and	Video	in
Your	Watch	App

Problem
You	want	to	play	audio	or	video	files,	whether	they	are	saved	locally	or	online.

Solution
Use	the	presentMediaPlayerControllerWithURL(_:options:completion:)	instance
method	of	your	interface	controller	(WKInterfaceController).	Close	the	media	player
with	the	dismissMediaPlayerController()	method.

Discussion
The	first	parameter	to	this	method	is	just	the	URL	from	which	the	media	must	be	loaded.
The	options	parameter	is	a	dictionary	that	can	have	the	following	keys:

WKMediaPlayerControllerOptionsAutoplayKey

A	boolean	value	(wrapped	inside	an	NSNumber	instance)	that	dictates	whether	the
media	should	autoplay	when	it	is	opened.	This	is	set	to	false	by	default.

WKMediaPlayerControllerOptionsStartTimeKey

The	number	of	seconds	(of	type	NSTimeInterval)	into	the	media	where	you	want	to
start	it.

WKMediaPlayerControllerOptionsVideoGravityKey

A	value	of	type	WKVideoGravity	(place	its	raw	integer	value	in	your	dictionary)	that
dictates	the	scaling	of	the	video.	You	can,	for	instance,	specify
WKVideoGravity.ResizeAspectFill.

WKMediaPlayerControllerOptionsLoopsKey

A	boolean	value	(wrapped	inside	NSNumber)	that	specifies	whether	the	media	has	to
loop	automatically.	The	default	is	false.

For	this	recipe,	we	are	going	to	create	a	UI	similar	to	that	in	Recipe	2.13	(see	Figure	2-48).
Our	UI	looks	like	Figure	2-49.

Figure	2-49.	Label	to	show	the	current	status,	and	a	button	to	start	the	playback

Hook	up	the	label	to	an	outlet	called	statusLbl	and	the	action	of	the	button	to	a	method
called	play().	Then	create	a	variable	in	your	code	called	status	of	type	String,	just	as
we	did	in	Recipe	2.13.	In	the	play	method,	first	construct	your	URL:

 guard let url = NSURL(string: "http://localhost:8888/video.mp4") else{

 status = "Could not create url"

 return

 }

NOTE
I	am	running	MAMP	(free	version)	on	my	computer	and	I’m	hosting	a	video	called	video.mp4.	You	can
download	lots	of	public	domain	files	by	just	searching	online.

Now	construct	your	options	dictionary.	I	want	the	media	player	to	do	the	following:

Autoplay	my	video

Loop	the	video

Resize	the	video	so	that	it	fills	the	entire	screen

Start	at	4	seconds	into	the	video:

 let gravity = WKVideoGravity.ResizeAspectFill.rawValue

 let options = [

 WKMediaPlayerControllerOptionsAutoplayKey : NSNumber(bool: true),

 WKMediaPlayerControllerOptionsStartTimeKey : 4.0 as NSTimeInterval,

 WKMediaPlayerControllerOptionsVideoGravityKey : gravity,

 WKMediaPlayerControllerOptionsLoopsKey : NSNumber(bool: true),

]

Now	start	the	media	player	and	handle	any	possible	errors:

 presentMediaPlayerControllerWithURL(url, options: options) {

 didPlayToEnd, endTime, error in

 self.dismissMediaPlayerController()

 guard error == nil else{

 self.status = "Error occurred \(error)"

 return

 }

 if didPlayToEnd{

 self.status = "Played to end of the file"

 } else {

 self.status = "Did not play to end of file. End time = \(endTime)"

 }

 }

See	Also
Recipe	12.3	and	Recipe	2.13

Chapter	3.	The	User	Interface

Apple	has	added	quite	a	few	things	to	UIKit	in	iOS	9	worth	knowing	about.	One	of	my
favorites	is	stacked	views.	We’ll	check	them	out	soon.	We	will	also	have	a	look	at	content
sizes,	unwind	segues,	layout	guides,	and	more.

3.1	Arranging	Your	Components	Horizontally	or
Vertically

Problem
You	have	vertical	or	horizontal	view	hierarchies	that	you	find	cumbersome	to	manage	with
constraints.

Solution
Stacked	views	are	the	solution.

Discussion
Imagine	that	you	want	to	create	a	view	that	looks	like	Figure	3-1.

Figure	3-1.	Vertical	and	horizontal	views

Prior	to	Xcode	7	and	its	stacked	views,	we	had	to	set	up	massive	amounts	of	constraints
just	to	achieve	a	simple	layout	like	Figure	3-1.	Well,	no	more.	Let’s	head	to	IB	and	drop
an	image	view,	three	labels	arranged	vertically,	and	three	arranged	horizontally,	like	the
previous	figure.	Our	image	and	labels	look	initially	like	Figure	3-2.

Figure	3-2.	Stacked	images

Grab	the	top	three	labels	and	press	the	little	Stack	button	at	the	bottom	of	IB	as	shown	in
Figure	3-3.

Figure	3-3.	The	stack	button	is	the	leftmost	button

Now	you	will	notice	that	your	components	are	aligned	as	you	wanted	them.	Now	select
the	top	stack	(your	vertical	components).	Then,	from	the	Attributes	inspector,	under
Spacing,	choose	20.	Then	select	your	horizontal	group	and	do	the	same.	Bring	your
horizontal	group	up	and	align	it	to	the	bottom	of	the	image	view	to	end	up	with	something
like	Figure	3-1.

See	Also
Recipe	3.3,	Recipe	3.2,	and	Recipe	3.7

3.2	Customizing	Stack	Views	for	Different	Screen
Sizes

Problem
You	want	to	customize	the	way	your	stack	views	appear	on	the	screen,	based	on	the	screen
size	they	are	running	on.

Solution
Use	size	class	customization	features	of	Xcode,	right	in	the	Attributes	inspector.

Discussion
You	might	have	noticed	tiny	+	buttons	in	various	places	inside	IB.	But	what	are	they?
Have	you	used	them	before?	If	not,	you	are	missing	out	on	a	lot	and	I’m	going	to	show
you	how	to	take	advantage	of	them.

Size	classes	are	encapsulated	information	about	the	dimensions	of	the	current	screen:
possible	values	are	regular,	compact,	and	any.	These	sizes	have	been	defined	to	stop	us
from	thinking	in	terms	of	pixels.	You	either	have	a	regular	size	or	compact	size.

Imagine	your	iPhone	6+	in	portrait	mode.	The	screen	width	is	compact,	and	the	screen
height	is	regular.	Once	you	go	to	landscape	mode,	your	screen	width	is	regular	and	your
height	is	compact.	Now	imagine	an	iPad	in	portrait	mode.	Your	screen	width	is	regular	and
so	is	your	height.	Landscape,	ditto.

Let’s	work	on	a	project	to	get	the	idea	more	clearly.	I	want	us	to	achieve	the	effect	shown
in	Figure	3-4	when	running	our	app	on	iPhone	in	portrait	mode.

Figure	3-4.	In	portrait,	our	views	have	no	spacing	between	them

And	when	we	go	to	landscape,	I	want	us	to	have	10	points	spacing	between	the	items,	but
only	when	the	height	of	the	screen	is	compact	(Figure	3-5).

Figure	3-5.	With	compact	screen	height,	we	want	spacing	to	be	applied	between	our	views

We	get	started	by	creating	three	colorful	views	on	our	main	storyboard.	I	leave	the	colors
to	you	to	decide.	Select	all	your	views	and	then	press	the	little	stack	button	(Figure	3-3)	in
IB	to	group	your	views	horizontally.	Then	place	your	stacked	view	on	the	top	left	of	the
view	with	proper	top	and	left	margin	spacing	(see	Figure	3-6).

Figure	3-6.	The	IB	guidelines	appear	when	the	view	is	on	top	left	of	the	super	view

Once	done,	make	sure	your	stacked	view	is	the	selected	view	and	then	press	the	Resolve
Auto	Layout	issues	button	(the	rightmost	button	in	Figure	3-3).	Under	Selected	Views,
choose	“Reset	to	Suggested	Constraints.”

Now	choose	your	stack	view.	In	the	Attributes	inspector,	under	the	Spacing	section,	find
the	little	+	button	and	press	it.	In	the	popup,	choose	Any	Width	and	then	under	that	choose
Compact	Height.	This	will	give	you	an	additional	text	field	to	write	the	desired	spacing
value	for	any	screen	width	while	the	height	of	the	screen	is	compact.	Put	the	value	of	10	in
this	box	(see	Figure	3-7).

Figure	3-7.	Place	the	value	of	10	in	the	new	text	box

If	you	run	your	app	on	an	iPhone	6+	and	then	switch	to	landscape,	you	won’t	see	any
spacing	between	the	items	—	so	what	happened?	The	problem	is	that	in	landscape	mode,
we	are	not	increasing	the	width	of	our	stack	view.	It	doesn’t	currently	have	extra	width	to
show	the	spaces	between	the	views.	To	account	for	this,	let’s	first	add	a	normal	width
constraint	to	our	stack	view.	You	can	do	that	by	selecting	the	stack	view	in	the	list	of
views	that	you	have,	holding	down	the	Control	button	on	your	keyboard,	and	dragging
from	the	stack	view	to	the	stack	view	itself.	You	will	now	get	a	popup.	Choose	Width	in
this	popup	(see	Figure	3-8).

Figure	3-8.	Choose	the	Width	option	in	the	popup	to	add	a	width	constraint	to	the	stack	view

While	your	stack	view	is	selected,	go	to	the	Size	inspector	and	double-click	the	Width
constraint	that	we	just	created.	This	will	allow	you	to	edit	this	constraint	with	size	classes.
How	awesome	is	that?	Next	to	the	Constant	text	box,	I	can	see	the	value	of	300.	You
might	see	a	different	value	based	on	the	width	of	the	views	you	placed	in	your	stack	view.
My	views	were	each	100	points	wide,	hence	x3	comes	to	300	points.	I	can	also	see	a	little
+	button	next	to	the	Constant	box.	Press	that	button	and	add	a	new	constant	for	“Any
Width	and	Compact	Height”	and	set	the	value	to	N+20,	where	N	is	the	value	of	your
current	constant.	For	me	N	is	300,	so	I’ll	enter	the	value	of	320	in	the	new	box	(see
Figure	3-9).

Figure	3-9.	Add	a	new	width	constant	class	to	the	stack	view

There	is	one	more	thing	that	we	need	to	tell	the	stack	view	in	order	for	it	to	stack	our
views	correctly	when	its	width	changes.	Select	the	stack	view	and,	in	attributes	inspector,
under	the	Distribution	section,	change	the	default	value	to	Equal	Spacing.	Now	run	your
app	and	enjoy	the	awesomeness	that	you	just	created.	Rotate	from	portrait	to	landscape
under	any	iPhone	simulator	(not	iPad).

See	Also
Recipe	3.1

3.3	Creating	Anchored	Constraints	in	Code

Problem
You	want	your	code	to	use	the	same	layout	anchors	that	IB	uses.

Solution
Start	using	the	new	anchor	properties	on	UIView,	such	as	leadingAnchor	and
trailingAnchor.

Discussion
Layout	anchors	are	very	useful	for	arranging	your	components	on	the	screen.	Let’s	say
that	you	have	two	buttons	on	your	view,	arranged	horizontally,	and	you	want	the	second
button	to	be	placed	10	points	to	the	right	of	the	first	button.

First	create	two	buttons	on	your	view	using	IB	and	then	place	them	next	to	each	other,
horizontally.	The	horizontal	space	between	them	does	not	matter	so	much	right	now.	Then
select	both	of	them	and	in	the	Resolve	Auto	Layout	issues	button	(rightmost	button	in
Figure	3-3),	under	the	Selected	Views,	choose	the	Add	Missing	Constraints	option	(see
Figure	3-10).

Figure	3-10.	Adding	the	missing	constraints	to	our	buttons

Then	select	the	second	button	(on	the	right).	Under	the	Size	inspector,	find	the	“Leading
Space	to”	constraint,	double-click	it,	and	choose	the	“Remove	at	build	time”	option	(see
Figure	3-11).	This	will	make	sure	that	the	leading	constraint,	which	we	are	going	to	create
in	code,	will	be	present	in	IB	while	checking	things	out,	but	that	during	the	project	run	the
constraint	will	be	removed,	giving	us	the	ability	to	replace	it.

Figure	3-11.	Removing	the	leading	constraint	at	build	time	will	give	us	a	window	to	replace	it	at	runtime

Now	link	your	buttons	into	your	code	with	names	such	as	btn1	and	btn2.	In	the
viewDidLoad	method	of	your	view	controller,	write	the	following	code:

 override func viewDidLoad() {

 super.viewDidLoad()

 btn2.leadingAnchor.constraintEqualToAnchor(btn1.trailingAnchor,

 constant: 10).active = true

 }

Now	run	your	app	and	see	how	your	second	button	is	trailing	your	first	button	horizontally
with	a	10-point	space	between	them.	You	can	use	the	following	anchors	in	your	views:

bottomAnchor

centerXAnchor

centerYAnchor

firstBaselineAnchor

heightAnchor

lastBaselineAnchor

leadingAnchor

leftAnchor

rightAnchor

topAnchor

trailingAnchor

widthAnchor

NOTE
All	of	these	anchors	are	direct	or	indirect	subclasses	of	the	NSLayoutAnchor	class.	The	horizontal	anchors
specifically	are	subclasses	of	the	NSLayoutXAxisAnchor	class	and	the	vertical	ones	are	subclasses	of
NSLayoutYAxisAnchor.

Now,	just	to	play	with	some	more	anchors,	let’s	create	a	view	hierarchy	like	the	one	in
Figure	3-12.	We	are	going	to	place	a	red	view	under	the	first	button	and	set	the	width	of
this	view	to	the	width	of	the	button	in	our	code.

Figure	3-12.	Two	buttons	and	a	view

In	IB,	drag	and	drop	a	view	onto	your	main	view	and	set	the	background	color	of	it	to	red
so	that	you	can	see	it	better.	Drag	and	drop	it	so	that	it	is	aligned	under	the	two	buttons
with	proper	left	and	top	margins	(see	Figure	3-13).

Figure	3-13.	Align	the	red	view	like	so

Anchor	the	views	as	follows:

1.	 Select	the	red	view.

2.	 In	IB,	choose	the	Resolve	Auto	Layout	issues	button.

3.	 Under	the	Selected	View	section,	choose	Add	Missing	Constraints.

4.	 Go	to	the	Size	inspector.	For	the	red	view,	find	the	“Trailing	Space	to”	constraint	and
delete	it	by	selecting	it	and	pressing	the	delete	button.

5.	 Select	the	red	button	in	the	view	hierarchy,	hold	down	the	Control	button	on	your
keyboard,	and	drag	and	drop	the	button	into	itself.

6.	 A	menu	will	appear.	In	the	menu,	choose	Width	to	create	a	width	constraint.	Then
find	the	new	width	constraint	in	the	Size	inspector,	double-click	it,	and	choose	the
“Remove	at	build	time”	option	(see	Figure	3-14).

Figure	3-14.	Remove	the	automatically	built	width	constraint	at	build	time	so	that	we	can	replace	it	in	code

Now	create	an	outlet	for	this	red	view	in	your	code	(I’ve	named	mine	“v”)	and	add	the
following	code	to	your	viewDidLoad()method:

 v.widthAnchor.constraintEqualToAnchor(btn2.widthAnchor,

 constant:0).active = true

See	Also
Recipe	3.4

3.4	Allowing	Users	to	Enter	Text	in	Response	to	Local
and	Remote	Notifications

Problem
You	want	to	allow	your	users	to	enter	some	text	in	response	to	local	or	push	notifications
that	you	display.	And	you	would	additionally	like	to	be	able	to	read	this	text	in	your	app
and	take	action	on	it.

Solution
Set	the	new	behavior	property	of	the	UIUserNotificationAction	class	to	.TextInput
(with	a	leading	period).

Discussion
Let’s	say	that	we	want	our	app	to	register	for	local	notifications	and	then	ask	the	user	for
her	name	once	the	app	has	been	sent	to	the	background.	The	user	enters	her	name	and	then
we	come	to	the	foreground	and	take	action	on	that	name.

We	start	by	writing	a	method	that	allows	us	to	register	for	local	notifications:

 func registerForNotifications(){

 let enterInfo = UIMutableUserNotificationAction()

 enterInfo.identifier = "enter"

 enterInfo.title = "Enter your name"

 enterInfo.behavior = .TextInput //this is the key to this example

 enterInfo.activationMode = .Foreground

 let cancel = UIMutableUserNotificationAction()

 cancel.identifier = "cancel"

 cancel.title = "Cancel"

 let category = UIMutableUserNotificationCategory()

 category.identifier = "texted"

 category.setActions([enterInfo, cancel], forContext: .Default)

 let settings = UIUserNotificationSettings(

 forTypes: .Alert, categories: [category])

 UIApplication.sharedApplication()

 .registerUserNotificationSettings(settings)

 }

We	set	the	behavior	property	on	the	UIMutableUserNotificationAction	instance	to
.TextInput	to	allow	this	particular	action	to	receive	text	input	from	the	user.	Now	we
will	move	on	to	calling	this	method	when	our	app	is	launched:

 func application(application: UIApplication,

 didFinishLaunchingWithOptions

 launchOptions: [NSObject : AnyObject]?) -> Bool {

 registerForNotifications()

 return true

 }

We	also	need	a	method	to	schedule	a	local	notification	whenever	asked	for:

 func scheduleNotification(){

 let n = UILocalNotification()

 let c = NSCalendar.autoupdatingCurrentCalendar()

 let comp = c.componentsInTimeZone(c.timeZone, fromDate: NSDate())

 comp.second += 3

 let date = c.dateFromComponents(comp)

 n.fireDate = date

 n.alertBody = "Please enter your name now"

 n.alertAction = "Enter"

 n.category = "texted"

 UIApplication.sharedApplication().scheduleLocalNotification(n)

 }

And	we’ll	call	this	method	when	our	app	is	sent	to	the	background:

 func applicationDidEnterBackground(application: UIApplication) {

 scheduleNotification()

 }

Once	that	is	done,	we	will	read	the	text	that	the	user	has	entered	and	do	our	work	with	it
(I’ll	leave	this	to	you):

 func application(application: UIApplication,

 handleActionWithIdentifier identifier: String?,

 forLocalNotification notification: UILocalNotification,

 withResponseInfo responseInfo: [NSObject : AnyObject],

 completionHandler: () -> Void) {

 if let text = responseInfo[UIUserNotificationActionResponseTypedTextKey]

 as? String{

 print(text)

 //TODO: now you have access to this text

 }

 completionHandler()

 }

Let’s	run	it	and	then	send	the	app	to	the	background	and	see	what	happens	(see	Figure	3-
15).

Figure	3-15.	A	local	notification	is	shown	on	the	screen

Then	take	that	little	bar	at	the	bottom	of	the	notification	and	drag	it	down	to	show	the
actions	that	are	possible	on	the	notification	(see	Figure	3-16).

Figure	3-16.	Possible	actions	on	our	local	notification

Now	if	the	user	just	taps	the	Enter	button,	she	will	see	a	text	field	and	can	then	enter	her
information.	Upon	submitting	the	text,	she	will	be	redirected	to	our	app	where	we	will
receive	the	text	(see	Figure	3-17).

Figure	3-17.	Entering	text	in	a	local	notification

See	Also
Recipe	3.7

3.5	Dealing	with	Stacked	Views	in	Code

Problem
You	want	to	programmatically	manipulate	the	contents	of	stack	views.

Solution
Use	an	instance	of	the	UIStackView.

Discussion
For	whatever	reason,	you	might	want	to	construct	your	stack	views	programmatically.	I	do
not	recommend	this	way	of	working	with	stack	views	because	IB	already	can	handle	most
of	the	situations	where	you	would	want	to	use	stack	views,	and	then	some.	But	if	you
absolutely	have	to	use	stack	views	in	your	app,	simply	instantiate	UIStackView	and	pass	it
your	arranged	views.

You	can	also	then	set	the	axis	property	to	either	Vertical	or	Horizontal.	Remember	to
set	the	distribution	property	as	well,	of	type	UIStackViewDistribution.	Some	of	the
values	of	this	type	are	Fill,	FillEqually	,	and	EqualSpacing.	I	also	like	to	set	the
spacing	property	of	the	stack	view	manually	so	that	I	know	how	much	space	there	is
between	my	items.

Let’s	say	that	we	want	to	create	a	stack	view	like	Figure	3-18.	The	stack	view	is	tucked	to
the	right	side	of	the	screen	and	every	time	we	press	the	button,	a	new	label	will	be
appended	to	the	stack	view.

Figure	3-18.	This	is	the	stack	view	that	we	want	to	create

First	define	a	stack	view	in	your	view	controller:

 var rightStack: UIStackView!

Then	a	few	handy	methods	for	creating	labels	and	a	button:

 func lblWithIndex(idx: Int) -> UILabel{

 let label = UILabel()

 label.text = "Item \(idx)"

 label.sizeToFit()

 return label

 }

 func newButton() -> UIButton{

 let btn = UIButton(type: .System)

 btn.setTitle("Add new items…", forState: .Normal)

 btn.addTarget(self, action: "addNewItem",

 forControlEvents: .TouchUpInside)

 return btn

 }

 func addNewItem(){

 let n = rightStack.arrangedSubviews.count

 let v = lblWithIndex(n)

 rightStack.insertArrangedSubview(v, atIndex: n - 1)

 }

NOTE
The	addNewItem	function	will	be	called	when	the	button	is	pressed.

When	our	view	is	loaded	on	the	screen,	we	will	create	the	stack	view	and	fill	it	with	the
three	initial	labels	and	the	button.	Then	we	will	set	up	its	axis,	spacing,	and	distribution.
Once	done,	we’ll	create	its	constraints:

 override func viewDidLoad() {

 super.viewDidLoad()

 rightStack = UIStackView(arrangedSubviews:

 [lblWithIndex(1), lblWithIndex(2), lblWithIndex(3), newButton()])

 view.addSubview(rightStack)

 rightStack.translatesAutoresizingMaskIntoConstraints = false

 rightStack.axis = .Vertical

 rightStack.distribution = .EqualSpacing

 rightStack.spacing = 5

 rightStack.trailingAnchor.constraintEqualToAnchor(view.trailingAnchor,

 constant: -20).active = true

 rightStack.topAnchor.constraintEqualToAnchor(

 topLayoutGuide.bottomAnchor).active = true

 }

See	Also
Recipe	3.2	and	Recipe	3.3

3.6	Showing	Web	Content	in	Safari	View	Controller

Problem
You	want	to	take	advantage	such	awesome	Safari	functionalities	as	Reader	Mode	in	your
own	apps.

Solution
Use	the	SFSafariViewController	class	in	the	SafariServices.framework.	This	view
controller	can	easily	be	initialized	with	a	URL	and	then	displayed	on	the	screen.

Discussion
Let’s	go	ahead	and	build	the	UI.	For	this	recipe,	I	am	aiming	for	a	UI	like	Figure	3-19.

Figure	3-19.	Create	a	UI	that	looks	similar	to	this	in	your	own	storyboard

Then	hook	up	the	text	field	and	button	to	your	code.	Once	the	button	is	tapped,	the	code
that	runs	is:

 @IBAction func openInSafari() {

 guard let t = textField.text where t.characters.count > 0,

 let u = NSURL(string: t) else{

 //the url is missing, you can further code this method if you want

 return

 }

 let controller = SFSafariViewController(URL: u,

 entersReaderIfAvailable: true)

 controller.delegate = self

 presentViewController(controller, animated: true, completion: nil)

 }

Now	make	your	view	controller	conform	to	the	SFSafariViewControllerDelegate
protocol.	Program	the	safariViewControllerDidFinish(_:)	method	to	ensure	that,
when	the	user	closes	the	Safari	view	controller,	the	view	disappears:

 func safariViewControllerDidFinish(controller: SFSafariViewController) {

 dismissViewControllerAnimated(true, completion: nil)

 }

In	the	initializer	of	the	Safari	controller,	I	also	specified	that	I	would	like	to	take	advantage
of	the	Reader	Mode	if	it	is	available.

See	Also
Recipe	11.1	and	Recipe	5.1

3.7	Laying	Out	Text-Based	Content	on	Your	Views

Problem
You	want	to	show	text-based	content	to	your	users	and	want	to	lay	it	out	on	the	screen	in
the	optimal	position.

Solution
Use	the	readableContentGuide	property	of	UIView.

Discussion
The	readableContentGuide	property	of	UIView	gives	you	the	margins	that	you	need	to
place	your	text	content	on	the	screen	properly.	On	a	typical	iPhone	6	screen,	this	margin	is
around	20	points	on	both	the	left	and	the	right.	The	top	and	bottom	margins	on	the	same
device	are	usually	set	near	0.	But	don’t	take	these	numbers	at	face	value.	They	might
change	and	you	should	never	think	about	them	as	hardcoded	values.	That	is	why	we
should	use	the	readableContentGuide	property	to	place	our	components	correctly	on	the
screen.

There	isn’t	really	much	more	to	it	than	that,	so	let’s	just	see	an	example.	In	this	code,	I	will
create	a	label	and	stretch	it	horizontally	and	vertically	to	fill	the	readable	section	of	my
view.	I	will	also	make	sure	the	top	and	left	positioning	of	the	label	is	according	to	the
readable	section’s	guides:

 let label = UILabel()

 label.translatesAutoresizingMaskIntoConstraints = false

 label.backgroundColor = UIColor.greenColor()

 label.text = "Hello, World"

 label.sizeToFit()

 view.addSubview(label)

 label.leadingAnchor.constraintEqualToAnchor(

 view.readableContentGuide.leadingAnchor).active = true

 label.topAnchor.constraintEqualToAnchor(

 view.readableContentGuide.topAnchor).active = true

 label.trailingAnchor.constraintEqualToAnchor(

 view.readableContentGuide.trailingAnchor).active = true

 label.bottomAnchor.constraintEqualToAnchor(

 view.readableContentGuide.bottomAnchor).active = true

See	Also
Recipe	3.4

3.8	Improving	Touch	Rates	for	Smoother	UI
Interactions

Problem
You	want	to	be	able	to	improve	the	interaction	of	the	user	with	your	app	by	decreasing	the
interval	required	between	touch	events.

Solution
Use	the	coalescedTouchesForTouch(_:)	and	the	predictedTouchesForTouch(_:)
methods	of	the	UIEvent	class.	The	former	method	allows	you	to	receive	coalesced
touches	inside	an	event,	while	the	latter	allows	you	to	receive	predicted	touch	events	based
on	iOS’s	internal	algorithms.

Discussion
On	selected	devices	such	as	iPad	Air	2,	the	display	refresh	rate	is	60Hz	like	other	iOS
devices,	but	the	touch	scan	rate	is	120Hz.	This	means	that	iOS	on	iPad	Air	2	scans	the
screen	for	updated	touch	events	twice	as	fast	as	the	display’s	refresh	rate.	These	events
obviously	cannot	be	delivered	to	your	app	faster	than	the	display	refresh	rate	(60	times	per
second),	so	they	are	coalesced.	At	every	touch	event,	you	can	ask	for	these	coalesced
touches	and	base	your	app’s	reactions	on	them..

In	this	recipe,	imagine	that	we	are	just	going	to	draw	a	line	based	on	where	the	user’s
finger	has	been	touching	the	screen.	The	user	can	move	her	finger	over	our	view	any	way
she	wants	and	we	just	draw	a	line	on	that	path.

Create	a	single-view	app.	In	the	same	file	as	your	view	controller’s	Swift	source	file,
define	a	new	class	of	type	UIView	and	name	it	MyView:

class MyView : UIView{

}

In	your	storyboard,	set	your	view	controller’s	view	class	to	MyView	(see	Figure	3-20).

Figure	3-20.	Your	view	is	inside	the	view	controller	now

NOTE
Make	sure	that	you	are	running	this	code	on	a	device	at	least	as	advanced	as	an	iPad	Air	2.	iPhone	6	and	6+
do	not	have	a	120Hz	touch	scan	rate.

Then	in	your	view,	define	an	array	of	points	and	a	method	that	can	take	a	set	of	touches
and	an	event	object,	read	the	coalesced	touch	points	inside	the	event,	and	place	them

inside	our	array:

 var points = [CGPoint]()

 func drawForFirstTouchInSet(s: Set<UITouch>, event: UIEvent?){

 guard let touch = s.first, event = event,

 allTouches = event.coalescedTouchesForTouch(touch)

 where allTouches.count > 0 else{

 return

 }

 points += allTouches.map{$0.locationInView(self)}

 setNeedsDisplay()

 }

Now	when	the	user	starts	touching	our	view,	we	start	recording	the	touch	points:

 override func touchesBegan(touches: Set<UITouch>,

 withEvent event: UIEvent?) {

 points.removeAll()

 drawForFirstTouchInSet(touches, event: event)

 }

Should	we	be	told	that	the	touch	events	sent	to	our	app	were	by	accident,	and	that	the	user
really	meant	to	touch	another	UI	component	on	the	screen,	such	as	the	notification	center,
we	have	to	clear	our	display:

 override func touchesCancelled(touches: Set<UITouch>?,

 withEvent event: UIEvent?) {

 points.removeAll()

 setNeedsDisplayInRect(bounds)

 }

Every	time	the	touch	location	moves,	we	move	with	it	and	record	the	location:

 override func touchesCancelled(touches: Set<UITouch>?,

 withEvent event: UIEvent?) {

 points.removeAll()

 setNeedsDisplayInRect(bounds)

 }

Once	the	touches	end,	we	also	ask	iOS	for	any	predicted	touch	events	that	might	have

been	calculated,	and	we	will	draw	them	too:

 override func touchesEnded(touches: Set<UITouch>,

 withEvent event: UIEvent?) {

 guard let touch = touches.first, event = event,

 predictedTouches = event.predictedTouchesForTouch(touch)

 where predictedTouches.count > 0 else{

 return

 }

 points += predictedTouches.map{$0.locationInView(self)}

 setNeedsDisplay()

 }

Our	drawing	code	is	simple.	It	goes	through	all	the	points	and	draws	lines	between	them:

 override func drawRect(rect: CGRect) {

 let con = UIGraphicsGetCurrentContext()

 //set background color

 CGContextSetFillColorWithColor(con, UIColor.blackColor().CGColor)

 CGContextFillRect(con, rect)

 CGContextSetFillColorWithColor(con, UIColor.redColor().CGColor)

 CGContextSetStrokeColorWithColor(con, UIColor.redColor().CGColor)

 for point in points{

 CGContextMoveToPoint(con, point.x, point.y)

 if let last = points.last where point != last{

 let next = points[points.indexOf(point)! + 1]

 CGContextAddLineToPoint(con, next.x, next.y)

 }

 }

 CGContextStrokePath(con)

 }

}

Now	run	this	on	an	iPad	Air	2	and	compare	the	smoothness	of	the	lines	that	you	draw	with
those	on	an	iPhone	6	or	6+,	for	instance.

See	Also
Recipe	3.1

3.9	Supporting	Right-to-Left	Languages

Problem
You	are	internationalizing	your	app	and,	as	part	of	this	process,	need	to	support	right-to-
left	languages	such	as	Persian	or	Arabic.

Solution
Use	a	combination	of	the	following:

Use	IB’s	view	properties	to	arrange	your	items	with	proper	semantic	properties.

Ensure	that	you	create	your	constraints	correctly,	preferrably	using	IB.

Use	UIView’s
userInterfaceLayoutDirectionForSemanticContentAttribute(_:)	class	method
to	find	the	direction	of	the	user	interface	based	on	the	semantic	attributes	that	are	part
of	the	UISemanticContentAttribute	enum.

If	arranging	your	items	in	code,	use	the	semanticContentAttribute	property	of	your
views	to	set	their	semantic	correctly.

Discussion
Let’s	create	an	app	that	has	a	text	view	on	top	and	four	buttons	arranged	like	the	arrow
keys	on	the	keyboard:	up,	left,	down,	right.	When	each	one	of	these	buttons	is	pressed,	we
will	display	the	corresponding	word	in	the	text	field.	The	text	field	will	be	read-only,	and
when	displaying	right-to-left	languages,	it	will	of	course	show	the	text	on	the	righthand
side.	Make	sure	that	your	UI	looks	(for	now)	something	like	Figure	3-21.	There	are	one
text	field	and	four	buttons.

Figure	3-21.	Initial	layout

Now	select	the	left,	down,	and	right	buttons	on	the	UI	(exclude	the	up	button	for	now)	and
stack	them	up	together.	In	the	new	stack	that	was	created,	set	the	spacing	to	20	(see
Figure	3-22).	Set	the	horizontal	stack	view’s	spacing	so	that	the	buttons	will	be
horizontally	stacked	with	the	proper	distance	from	each	other.

Then	select	the	newly	created	stack	and	the	up	button	on	IB	and	stack	those	up	together.
This	will	create	a	vertical	stack	view	for	you.	Set	the	spacing	for	this	new	stack	view	to
10.	Place	the	main	stack	view	at	the	center	of	the	screen.	Use	IB’s	“Resolve	Auto	Layout
Issues”	feature	to	add	all	missing	constraints	for	all	the	components.	Also	make	sure	that
you	disable	editing	of	the	text	field.	Then	hook	up	the	text	field	to	your	code	as	an	outlet
and	hook	up	the	four	buttons’	touch	events	to	your	view	controller	as	well.	Now	your	UI
should	look	like	Figure	3-23	on	IB.

Figure	3-22.	Horizontal	spacing	between	buttons

Figure	3-23.	Your	UI	should	look	like	this	at	the	moment

Now	choose	the	main	stack	view	in	your	UI.	In	IB,	in	the	Semantic	section	under
Attributes	inspector,	choose	Playback.	This	will	ensure	that	the	views	inside	this	stack
view	will	not	be	mirrored	right	to	left	when	the	language	changes	to	a	right-to-left
language	(see	Figure	3-24).

Figure	3-24.	Choosing	the	Playback	view	semantic

Now	from	Xcode,	create	a	new	strings	file,	name	it	Localizable.strings,	and	place	your
string	keys	in	there:

"up" = "Up";

"down" = "Down";

"right" = "Right";

"left" = "Left";

Under	your	main	project’s	info	page	in	Xcode,	choose	Localizations	and	add	Arabic	as	a
localization.	Then	move	over	to	your	newly	created	strings	file	and	enable	the	Arabic
language	on	it	(see	Figure	3-25).

Figure	3-25.	Localize	the	strings	file	so	that	you	have	both	English	and	Arabic	in	the	list

You	will	now	have	two	strings	files.	Go	into	the	Arabic	one	and	localize	the	file:

"up" = "Up in Arabic";

"down" = "Down in Arabic";

"right" = "Right in Arabic";

"left" = "Left in Arabic";

In	your	code	now,	we	have	to	set	the	text	field’s	text	direction	based	on	the	orientation	that
we	get	from	UIView.	That	orientation	itself	depends	on	the	semantics	that	we	set	on	our
text	field	before:

class ViewController: UIViewController {

 @IBOutlet var txtField: UITextField!

 @IBAction func up() {

 txtField.text = NSLocalizedString("up", comment: "")

 }

 @IBAction func left() {

 txtField.text = NSLocalizedString("left", comment: "")

 }

 @IBAction func down() {

 txtField.text = NSLocalizedString("down", comment: "")

 }

 @IBAction func right() {

 txtField.text = NSLocalizedString("right", comment: "")

 }

 override func viewDidAppear(animated: Bool) {

 let direction = UIView

 .userInterfaceLayoutDirectionForSemanticContentAttribute(

 txtField.semanticContentAttribute)

 switch direction{

 case .LeftToRight:

 txtField.textAlignment = .Left

 case .RightToLeft:

 txtField.textAlignment = .Right

 }

 }

}

Now	run	the	app	on	an	English	device	and	you	will	see	English	content	in	the	text	field
aligned	from	left	to	right.	Run	it	on	an	Arabic	localized	device	and	you’ll	see	the	text
aligned	on	the	right	hand	side.

3.10	Associating	Keyboard	Shortcuts	with	View
Controllers

Problem
You	want	to	allow	your	application	to	respond	to	complex	key	combinations	that	a	user
can	press	on	an	external	keyboard,	to	give	the	user	more	ways	to	interact	with	your	app.

Solution
Construct	an	instance	of	the	UIKeyCommand	class	and	add	it	to	your	view	controllers	using
the	addKeyCommand(_:)	method.	You	can	remove	key	commands	with	the
removeKeyCommand(_:)	method.

Discussion
Keyboard	shortcuts	are	very	useful	for	users	with	external	keyboards.	Why?	Since	you
asked,	it’s	because	they	can	use	keyboard	shortcuts.	For	instance,	on	a	document	editing
iOS	app,	the	user	might	expect	to	press	Command-N	to	create	a	new	document,	whereas
on	an	iOS	device	this	may	be	achieved	by	the	user	pressing	a	button	such	as	“New.”

Let’s	say	that	we	want	to	write	a	single-view	app	that	allows	users	with	an	external
keyboard	to	press	Command-Alt-Control-N	to	see	an	alert	controller.	When	our	view	is
loaded,	we	will	create	the	command	and	add	it	to	our	view	controller:

 override func viewDidLoad() {

 super.viewDidLoad()

 let command = UIKeyCommand(input: "N",

 modifierFlags: .Command + .Alternate + .Control,

 action: "handleCommand:")

 addKeyCommand(command)

 }

As	you	can	see,	I	am	using	the	+	operator	between	items	of	type	UIKeyModifierFlags.
This	operator	by	default	does	not	exist,	so	let’s	write	a	generic	operator	method	that
enables	this	functionality	for	us:

func +<T: OptionSetType where T.RawValue : SignedIntegerType>

 (lhs: T, rhs: T) -> T{

 return T(rawValue: lhs.rawValue | rhs.rawValue)

}

When	the	command	is	issued,	iOS	will	attempt	to	call	the	method	that	we	have	specified.
In	there,	let’s	show	the	alert:

 func handleCommand(cmd: UIKeyCommand){

 let c = UIAlertController(title: "Shortcut pressed",

 message: "You pressed the shortcut key", preferredStyle: .Alert)

 c.addAction(UIAlertAction(title: "Ok!", style: .Destructive, handler: nil))

 presentViewController(c, animated: true, completion: nil)

 }

Open	this	in	the	simulator.	From	the	Hardware	menu,	select	Keyboard,	and	then	select	the
Connect	Hardware	Keyboard	menu	item	(see	Figure	3-26).	While	the	focus	is	on	the
simulator,	press	the	aforementioned	key	combinations	and	see	the	results	for	yourself.

Figure	3-26.	You	can	enable	a	hardware	keyboard	even	in	the	simulator.	This	is	necessary	to	test	the	output	of	this
recipe.

3.11	Recording	the	Screen	and	Sharing	the	Video

Problem
You	want	your	user	to	be	able	to	record	their	screen	while	in	your	app	and	then	edit	and
save	the	results.	This	is	really	important	for	games	providing	replay	functionality	to
gamers.

Solution
Follow	these	steps:

1.	 Import	ReplayKit.

2.	 Get	a	recorder	of	type	RPScreenRecorder	using
RPScreenRecorder.sharedRecorder().

3.	 Call	the	available	property	of	the	recorder	to	see	whether	recording	is	available.

4.	 Set	the	delegate	property	of	the	recorder	to	your	code	and	conform	to	the
RPScreenRecorderDelegate	protocol.

5.	 Call	the	startRecordingWithMicrophoneEnabled(_:handler:)	method	of	the
recorder.

6.	 Wait	until	your	handler	method	is	called	and	then	check	for	errors.

7.	 If	no	error	occurred,	once	you	are	done	with	recording,	call	the
stopRecordingWithHandler(_:)	on	the	same	recorder	object.

8.	 Wait	for	your	handler	to	be	called.	In	your	handler,	you’ll	get	an	instance	of	the
RPPreviewViewController	class.

9.	 Set	the	previewControllerDelegate	property	of	the	preview	controller	to	your
code	and	conform	to	the	RPPreviewViewControllerDelegate	protocol.

10.	 Preset	your	preview	controller.

Discussion
When	playing	games,	you	might	be	given	the	option	to	record	your	screen	for	later
playback	or	sharing	with	others.	So	let’s	define	our	view	controller:

import UIKit

import ReplayKit

class ViewController: UIViewController, RPScreenRecorderDelegate,

RPPreviewViewControllerDelegate {

 ...

Set	up	your	UI	as	shown	in	Figure	3-27.	The	start	and	stop	buttons	are	self-explanatory.
The	segmented	control	is	there	just	so	you	can	play	with	it	while	recording	and	then	see
the	results	after	you’ve	stopped	the	playback.

Figure	3-27.	Initial	layout

I	hook	up	the	buttons	to	my	code:

 @IBOutlet var startBtn: UIButton!

 @IBOutlet var stopBtn: UIButton!

And	here	I’ll	define	my	delegate	methods:

 func previewControllerDidFinish(previewController: RPPreviewViewController) {

 print("Finished the preview")

 dismissViewControllerAnimated(true, completion: nil)

 startBtn.enabled = true

 stopBtn.enabled = false

 }

 func previewController(previewController: RPPreviewViewController,

 didFinishWithActivityTypes activityTypes: Set<String>) {

 print("Preview finished activities \(activityTypes)")

 }

 func screenRecorderDidChangeAvailability(screenRecorder: RPScreenRecorder) {

 print("Screen recording availability changed")

 }

 func screenRecorder(screenRecorder: RPScreenRecorder,

 didStopRecordingWithError error: NSError,

 previewViewController: RPPreviewViewController?) {

 print("Screen recording finished")

 }

The	previewControllerDidFinish(_:)	method	is	important,	because	it	gets	called
when	the	user	is	finished	with	the	preview	controller.	Here	you’ll	need	to	dismiss	the
preview	controller.

Then	I’ll	define	my	recorder	object:

 let recorder = RPScreenRecorder.sharedRecorder()

When	the	record	button	is	pressed,	I’ll	see	whether	recording	is	possible:

 startBtn.enabled = true

 stopBtn.enabled = false

 guard recorder.available else{

 print("Cannot record the screen")

 return

 }

If	it	is,	I’ll	start	recording:

 recorder.delegate = self

 recorder.startRecordingWithMicrophoneEnabled(true){err in

 guard err == nil else {

 if err!.code == RPRecordingErrorCode.UserDeclined.rawValue{

 print("User declined app recording")

 }

 else if err!.code == RPRecordingErrorCode.InsufficientStorage.rawValue{

 print("Not enough storage to start recording")

 }

 else {

 print("Error happened = \(err!)")

 }

 return

 }

 print("Successfully started recording")

 self.startBtn.enabled = false

 self.stopBtn.enabled = true

 }

NOTE
I	am	checking	the	error	codes	for	specific	ReplayKit	errors	such	as
RPRecordingErrorCode.UserDeclined	and	RPRecordingErrorCode.InsufficientStorage.

The	first	time	you	attempt	to	record	the	user	screen	in	any	app,	the	user	will	be	prompted
to	allow	or	disallow	this	with	a	dialog	that	looks	similar	to	that	shown	in	Figure	3-28.

Figure	3-28.	Permission	to	record	the	screen	is	requested	from	the	user

Now	when	the	user	is	finished	recording	and	presses	the	stop	button,	I’ll	stop	the
recording	and	present	the	preview	controller:

 recorder.stopRecordingWithHandler{controller, err in

 guard let previewController = controller where err == nil else {

 self.startBtn.enabled = true

 self.stopBtn.enabled = false

 print("Failed to stop recording")

 return

 }

 previewController.previewControllerDelegate = self

 self.presentViewController(previewController, animated: true,

 completion: nil)

 }

The	preview	controller	looks	like	this	Figure	3-29.

Figure	3-29.	The	user	is	previewing	what	she	recorded	on	the	screen	earlier	and	can	save	and	share	the	results

NOTE
Throughout	this	whole	process,	your	app	doesn’t	get	direct	access	to	the	recorded	content.	This	protects	the
user’s	privacy.

See	Also
Recipe	7.1

Chapter	4.	Contacts

The	Contacts	framework	is	for	those	who	want	to	import,	show,	select,	modify,	and	save
contacts	on	a	user’s	iOS	device.	This	framework	is	fully	compatible	with	Swift’s	lingo	and
is	very	easy	to	work	with.	At	the	heart	of	the	Contacts	framework	we	have	the	CNContact
object	that	represents	a	contact.	You	get	access	to	the	contacts’	database	using	the
CNContactStore	class.

Every	time	you	want	to	access	the	address	book,	whether	you	are	trying	to	create	a	new
contact	or	fetch	an	existing	one,	you	need	to	ensure	that	you	have	sufficient	access	to	the
address	book.	You	can	check	your	access	privileges	using	the
authorizationStatusForEntityType(_:)	class	method	of	your	contact	store.	This
method	takes	in	one	parameter	of	type	CNEntityType.	You	can	pass	the	value	of
Contacts	to	this	method,	for	instance,	to	ask	for	access	to	the	user’s	contacts.	If	you	do
not	have	access,	you	can	use	the
requestAccessForEntityType(_:completionHandler:)	method	of	your	contact	store
to	request	access.

The	concept	of	a	partial	contact	is	important	enough	to	cover	now	as	well.	A	partial
contact	is	a	contact	whose	properties	have	not	all	been	fetched	from	the	store	yet.	For
instance,	perhaps	you	can	fetch	only	a	contact’s	first	and	last	name,	not	her	profile	photo
or	email	addresses.	This	is	a	partial	contact.	A	partial	contact’s	other	information	—	such
as	email	addresses	—	that	have	not	been	fetched	yet	can	later	be	fetched	from	the	store
using	her	identifier	(part	of	the	CNContact	object).

Some	of	the	classes	that	are	part	of	the	Contacts	framework	have	immutable	and	mutable
flavors.	An	example	is	the	CNContact	and	the	CNMutableContact	classes.	The	former	is	a
contact	that	you	have	fetched	from	the	store	and	just	use	in	your	app,	while	the	latter	is	a
contact	that	you	have	created	in	your	app	and	want	to	save	into	the	store.

Contact	objects	on	iOS	are	thread-safe.	I	suggest	that	you	do	all	your	fetch	operations	on	a
background	thread.	Fetch	the	contacts	in	the	background	and	safely	display	your	contacts
on	your	UI	by	accessing	the	same	contact	object	on	the	main	thread.

NOTE
In	this	chapter,	it’s	best	to	always	reset	the	contents	of	your	address	book	on	the	simulator	by	resetting	the
simulator	before	testing	the	code	in	each	recipe,	unless	I’ve	explicitly	specified	not	to.	This	is	just	to	make
sure	that	every	recipe	is	working	with	a	clear	state	of	the	address	book	database.	You	can	find	the	Contacts
app	on	your	simulator.	It	should	look	like	Figure	4-1	in	a	clear	state.

Figure	4-1.	Clean	state	of	the	Contacts	app	on	the	simulator

4.1	Creating	Contacts

Problem
You	want	to	insert	a	new	contact	into	the	contacts	database.

Solution
Follow	these	steps:

1.	 Request	access	to	the	database	if	you	don’t	already	have	it.

2.	 Create	an	instance	of	the	CNMutableContact	class.

3.	 Set	its	various	properties,	such	as	givenName,	middleName,	and	familyName.

4.	 Instantiate	CNSaveRequest,	call	the
addContact(_:toContainerWithIdentifier:)	method	on	it,	and	pass	your
contact	to	it.	Set	the	container	ID	to	nil.

5.	 Once	you	have	the	request,	execute	it	on	your	store	instance	using
executeSaveRequest(_:).

Discussion
Create	a	single-view	app	and	first	ask	for	permission	to	access	contacts	on	the	user’s
device:

 switch CNContactStore.authorizationStatusForEntityType(.Contacts){

 case .Authorized:

 createContact()

 case .NotDetermined:

 store.requestAccessForEntityType(.Contacts){succeeded, err in

 guard err == nil && succeeded else{

 return

 }

 self.createContact()

 }

 default:

 print("Not handled")

 }

After	I	get	the	permission	here,	I	am	calling	the	createContact()	method	that	we	are	just
about	to	code.	Also,	I	am	using	a	property	on	my	class	that	is	my	instance	of	the	contact
store:

var store = CNContactStore()

In	the	createContact()	method,	first	let’s	create	the	basics	of	the	contact	object	with	the
basic	name	and	such:

 let fooBar = CNMutableContact()

 fooBar.givenName = "Foo"

 fooBar.middleName = "A."

 fooBar.familyName = "Bar"

 fooBar.nickname = "Fooboo"

Then	we	set	the	profile	photo:

 //profile photo

 if let img = UIImage(named: "apple"),

 let data = UIImagePNGRepresentation(img){

 fooBar.imageData = data

 }

NOTE
I’ve	included	a	profile	photo	that	I	can	use	in	the	app.	You	don’t	have	to	do	that	if	you	don’t	want	to.	This
code	will	work	even	if	you	don’t	have	a	profile	photo	by	jumping	over	this	section	if	the	image	cannot	be
found.

Now	I	am	going	to	set	the	user’s	phone	numbers.	This	can	be	done	by	setting	an	array	of
CNLabeledValue	on	the	phoneNumbers	property	of	the	contact	object.	Labeled	values	are

instances	of	the	aforementioned	class	and	can	have	a	label	and	a	value.	The	label	is	a
string	such	as	CNLabelHome	or	CNLabelWork	and	the	value,	in	case	of	a	phone	number,	is
an	instance	of	the	CNPhoneNumber	class:

 //set the phone numbers

 let homePhone = CNLabeledValue(label: CNLabelHome,

 value: CNPhoneNumber(stringValue: "123"))

 let workPhone = CNLabeledValue(label: CNLabelWork,

 value: CNPhoneNumber(stringValue: "567"))

 fooBar.phoneNumbers = [homePhone, workPhone]

I	am	then	going	to	set	the	email	addresses	for	this	person	by	manipulating	the
emailAddresses	property	of	the	contact.	This	property	also	accepts	an	array	of
CNLabeledValue	and	the	values	of	this	labeled	object	are	the	email	addresses,	as	string
objects:

 //set the email addresses

 let homeEmail = CNLabeledValue(label: CNLabelHome,

 value: "foo@home")

 let workEmail = CNLabeledValue(label: CNLabelWork,

 value: "bar@home")

 fooBar.emailAddresses = [homeEmail, workEmail]

Next	up,	I	am	going	to	write	some	information	in	this	contact	about	her	job	using	the
jobTitle,	organizationName,	and	departmentName	properties:

 //job info

 fooBar.jobTitle = "Chief Awesomeness Manager (CAM)"

 fooBar.organizationName = "Pixolity"

 fooBar.departmentName = "IT"

After	that,	I	want	to	set	the	Facebook	and	Twitter	profiles	of	this	user.	I	do	that	by	setting
the	value	of	the	socialProfiles	array	on	the	contact.	This	array	takes	items	of	type
CNLabeledValue	and	the	value	of	each	one	of	these	labeled	objects	should	be	of	type
CNSocialProfile.	You	can	set	the	service	for	each	of	the	profiles	using	constants	such	as
the	following:

CNSocialProfileServiceFacebook

CNSocialProfileServiceTwitter

CNSocialProfileServiceLinkedIn

CNSocialProfileServiceFlickr

 //social media

 let facebookProfile = CNLabeledValue(label: "FaceBook", value:

 CNSocialProfile(urlString: nil, username: "foobar",

 userIdentifier: nil, service: CNSocialProfileServiceFacebook))

 let twitterProfile = CNLabeledValue(label: "Twitter", value:

 CNSocialProfile(urlString: nil, username: "foobar",

 userIdentifier: nil, service: CNSocialProfileServiceTwitter))

 fooBar.socialProfiles = [facebookProfile, twitterProfile]

I	am	also	going	to	set	some	instant	messaging	information	for	my	contact,	such	as	her
Skype	and	AIM	information.	I	can	do	that	by	setting	the	value	of	the
instantMessageAddresses	property	that	takes	in	an	array	of,	you	guessed	it,
CNLabeledValue.	Each	of	these	values	should	be	of	type	CNInstantMessageAddress	and
service	inside	each	message	address	object	can	be	a	string	such	as:

CNInstantMessageServiceSkype

CNInstantMessageServiceAIM

CNInstantMessageServiceMSN

CNInstantMessageServiceYahoo

 //instant messaging

 let skypeAddress = CNLabeledValue(label: "Skype", value:

 CNInstantMessageAddress(username: "foobar",

 service: CNInstantMessageServiceSkype))

 let aimAddress = CNLabeledValue(label: "AIM", value:

 CNInstantMessageAddress(username: "foobar",

 service: CNInstantMessageServiceAIM))

 fooBar.instantMessageAddresses = [skypeAddress, aimAddress]

I	can	also	set	some	notes	on	my	contact	using	the	note	property	that	is	just	a	string:

 //some additional notes

 fooBar.note = "Some additional notes"

Next	step	is	to	set	the	birthday	property.	This	is	a	property	of	type	NSDateComponents:

 //birthday

 let birthday = NSDateComponents()

 birthday.year = 1980

 birthday.month = 9

 birthday.day = 27

 fooBar.birthday = birthday

Every	contact	also	has	a	property	named	dates	that	can	contain	dates	such	as	the	user’s
anniversary.	This	is	an	array	of	CNLabeledValue	objects.	Here	I	am	going	to	set	the
anniversary	for	this	user:

 //anniversary

 let anniversaryDate = NSDateComponents()

 anniversaryDate.month = 6

 anniversaryDate.day = 13

 let anniversary = CNLabeledValue(label: "Anniversary",

 value: anniversaryDate)

 fooBar.dates = [anniversary]

NOTE
I	did	not	set	the	year	for	the	anniversary	because	an	anniversary	is	a	repeating	event.

I	am	finally	done	with	my	contact	and	will	save	her	into	the	contact	store:

 //finally save

 let request = CNSaveRequest()

 request.addContact(fooBar, toContainerWithIdentifier: nil)

 do{

 try storeo.executeSaveRequest(request)

 print("Successfully stored the contact")

 } catch let err{

 print("Failed to save the contact. \(err)")

 }

NOTE
If	you	run	this	code	n	times	on	the	same	device,	you	will	get	n	of	the	same	contacts.	The	Contacts	database
does	not	prevent	multiple	saves	on	the	same	contact.	They	become	different	contacts	eventually.	It	is	our
responsibility	to	avoid	this.

And	now	my	contact	appears	in	the	list	(Figure	4-2).

Figure	4-2.	The	new	contact	in	all	its	glory

4.2	Searching	for	Contacts

Problem
You	want	to	search	the	contacts	available	on	a	device.

Solution
There	are	various	ways	of	fetching	contacts	from	a	store.	Here	are	some	of	them,	in	no
particular	order:

unifiedContactsMatchingPredicate(_:keysToFetch:)	method	of	CNContactStore

This	allows	you	to	fetch	all	contacts	that	match	a	certain	predicate.

enumerateContactsWithFetchRequest(_:usingBlock:)	method	of	CNContactStore

This	allows	you	to	enumerate	through	all	contacts	that	match	a	fetch	request.	The
fetch	request	can	have	a	predicate	if	you	want	it	to.	Otherwise,	you	can	use	this
method	with	a	request	object	that	does	not	have	a	predicate,	in	order	to	fetch	all
contacts.

unifiedContactWithIdentifier(_:keysToFetch:)	method	of	CNContactStore

This	fetches	only	a	single	contact	with	a	given	identifier,	if	it	can	find	one.	Use	this
method	to	fetch	properties	for	a	partially	fetched	contact.

NOTE
The	term	“unified	contacts”	is	iOS’s	way	of	showing	that	the	contact	objects	that	we	get	are	intelligently
merged	from	different	sources,	if	available.	If	you	have	“Foo	bar”	in	your	contacts	and	then	you	sign	into
Facebook	with	its	iOS	app	and	bring	your	Facebook	contacts	into	your	phone,	and	you	have	“Foo	bar”	on
Facebook	as	well,	iOS	will	merge	that	contact	for	you	into	one	contact.	Foo	bar	is	now	a	unified	contact.

Discussion
Let’s	have	a	look	at	a	few	examples.	First,	let’s	write	some	code	that	will	find	anybody	in
our	address	book	whose	name	matches	“John”.	We	start	off	by	creating	a	predicate	using
the	predicateForContactsMatchingName(_:)	class	method	of	the	CNContact	class:

 let predicate = CNContact.predicateForContactsMatchingName("john")

Then	we	are	going	to	specify	that	we	need	the	first	and	the	last	name	of	the	contacts	that
match	that	name:

 let toFetch = [CNContactGivenNameKey, CNContactFamilyNameKey]

Once	that	is	done,	use	the	unifiedContactsMatchingPredicate(_:keysToFetch:)
method	of	the	contact	store	to	fetch	the	contacts	matching	our	predicate.	Go	through	all
matching	contacts	and	print	their	first	and	last	name	alongside	their	identifier	property:

 do{

 let contacts = try store.unifiedContactsMatchingPredicate(

 predicate, keysToFetch: toFetch)

 for contact in contacts{

 print(contact.givenName)

 print(contact.familyName)

 print(contact.identifier)

 }

 } catch let err{

 print(err)

 }

NOTE
I’ve	wrapped	this	whole	code	inside	NSOperationQueue().addOperationWithBlock(_:)	to	make	sure
that	I	am	doing	the	search	on	a	background	thread.	I	suggest	that	you	do	that	too.

Every	contact	object	has	a	handy	property	called	identifier.	This	identifier	usually
looks	like	a	UUID.	If	you	keep	an	identifier	to	a	contact,	you	can	always	refetch	that
contact	using	the	unifiedContactWithIdentifier(_:keysToFetch:)	method	of
CNContactStore.	You	do	not	have	to	explicitly	fetch	the	identifier	property	of	a
contact.	This	identifier	is	fetched	whether	you	want	it	or	not,	for	every	contact	that	you	get
from	a	store.	So	you	can	omit	that	in	your	keysToFetch.

Let’s	look	at	another	example.	This	time	we	are	going	to	do	the	same	thing	that	we	did	in
the	previous	example,	but	instead,	use	the	CNContactFetchRequest	class	mixed	with	the
enumerateContactsWithFetchRequest(_:usingBlock:)	method	of	CNContactStore
to	achieve	the	same	results.

First,	again	I	am	going	to	specify	what	properties	in	the	contacts	I	am	interested	in
reading:

 let toFetch = [CNContactGivenNameKey, CNContactFamilyNameKey]

I	will	now	construct	my	fetch	request	using	these	properties:

let request = CNContactFetchRequest(keysToFetch: toFetch)

Then	I	will	fetch	the	contacts	with	the	aforementioned	method:

 do{

 try store.enumerateContactsWithFetchRequest(request) {

 contact, stop in

 print(contact.givenName)

 print(contact.familyName)

 print(contact.identifier)

 }

 } catch let err{

 print(err)

 }

The	block	that	you	pass	to	this	method	has	two	parameters.	The	first	is	the	contact.	The
second	is	a	Boolean	pointer	that	you	can	set	to	true	whenever	you	want	to	exit	this
enumeration.	You	can	do	that	like	this:

stop.memory = true

How	about	looking	at	another	example.	Let’s	say	that	you	want	to	fetch	all	contacts	whose
name	is	similar	to	“Foo”.	You	then	want	to	find	out	whether	they	have	a	profile	photo.	If
they	do,	we	will	refetch	those	contacts	and	get	their	profile	photo.	The	purpose	of	this
exercise	is	to	show	you	that	if	you	are	interested	in	contacts	with	photos,	it	is	best	to	first
see	whether	they	have	photos	and	only	if	they	do,	fetch	their	profile	photos.	I’ll	start	off	by
defining	the	keys	that	I	want	to	fetch	and	I	ask	for	a	key	that	tells	me	whether	a	contact
has	a	photo:

 var toFetch = [CNContactImageDataAvailableKey]

Then	I	will	define	my	predicate:

 let predicate = CNContact.predicateForContactsMatchingName("foo")

Next,	I	will	find	all	contacts	that	match	my	predicate:

 let contacts = try store.unifiedContactsMatchingPredicate(predicate,

 keysToFetch: toFetch)

NOTE
The	previous	statement	must	be	wrapped	inside	a	do{}catch{}	block,	otherwise	it	won’t	compile.	I	am	not
writing	that	statement	here	in	the	book	because	I	want	to	explain	the	code	step	by	step.	If	I	paste	the
do{}catch{},	I’ll	have	to	paste	the	whole	code	in	a	gigantic	block	and	that’s	not	very	good.

Now	that	we	have	our	contacts,	let’s	go	through	them	and	only	find	the	ones	that	do	have
an	image:

 for contact in contacts{

 guard contact.imageDataAvailable else{

 continue

 }

 ...

The	CNContact	class	offers	an	isKeyAvailable(_:)	method	that	returns	true	or	false
depending	on	whether	or	not	a	given	key	is	available	for	access	on	a	contact.	So	here	I	am
going	to	ask	whether	my	contacts	have	images	(the	CNContactImageDataKey	key)	and	if
they	do,	I	am	going	to	read	the	image:

 //have we fetched image data?

 if contact.isKeyAvailable(CNContactImageDataKey){

 print(contact.givenName)

 print(contact.identifier)

 print(UIImage(data: contact.imageData!))

 } else {

 ...

NOTE
None	of	our	contacts	at	this	point	will	have	images	because	we	have	not	fetched	the	images	yet	in	our
original	fetch	request.	This	is	for	demonstration	purposes	really	and	to	teach	you	how	to	use	the
isKeyAvailable(_:)	method.

If	the	contacts	don’t	have	their	image	data	available	at	this	point	(which	they	won’t!),	we
will	use	the	identifier	of	each	one	of	them	and	re-fetch	them,	but	this	time	by	specifying
that	we	need	the	image	data	as	well:

 else {

 toFetch += [CNContactImageDataKey, CNContactGivenNameKey]

 do{

 let contact = try store.unifiedContactWithIdentifier(

 contact.identifier, keysToFetch: toFetch)

 print(contact.givenName)

 print(UIImage(data: contact.imageData!))

 print(contact.identifier)

 } catch let err{

 print(err)

 }

 }

And	that	was	it,	really.	If	you	have	the	identifier	of	a	contact,	you	can	fetch	that	contact
quite	easily,	as	we	saw.	Now	let’s	say	that	you	do	have	this	identifier	saved	somewhere
inside	your	app	and	you	want	to	directly	fetch	that	contact.	You	do	that	using	the
unifiedContactWithIdentifier(_:keysToFetch:)	method	of	the	contact	store:

 NSOperationQueue().addOperationWithBlock{[unowned store] in

 let id = "AECF6A0E-6BCB-4A46-834F-1D8374E6FE0A:ABPerson"

 let toFetch = [CNContactGivenNameKey, CNContactFamilyNameKey]

 do{

 let contact = try store.unifiedContactWithIdentifier(id,

 keysToFetch: toFetch)

 print(contact.givenName)

 print(contact.familyName)

 print(contact.identifier)

 } catch let err{

 print(err)

 }

 }

See	Also
Recipe	4.1

4.3	Updating	Contacts

Problem
You	have	an	existing	contact	whose	properties	you	want	to	update.

Solution
Call	the	mutableCopy()	method	of	your	CNContact	class.	This	will	give	you	an	instance
of	the	CNMutableContact.	Once	you	have	a	mutable	contact,	you	can	change	her
properties	as	you	would	with	a	contact	of	type	CNContact.	Once	done	editing,	instantiate
CNSaveRequest,	issue	the	updateContact(_:)	method	on	it,	and	pass	your	mutable
contact	to	that	method.	Now	that	you	have	the	request	object,	pass	it	to	the
executeSaveRequest(_:)	method	of	your	store	to	update	the	contact.

Discussion
Let’s	check	an	example.	Let’s	say	that	we	want	to	find	a	contact	named	“John”	and	then
add	a	new	email	address	to	it,	if	it	doesn’t	already	have	it.	I	am	not	going	to	explain	the
things	that	we	learned	in	Recipe	4.2,	so	let’s	dive	in.	Figure	4-3	shows	the	contact	we	will
change.	The	contact	comes	prefilled	in	your	iOS	simulator,	with	only	one	work	email
address.	We	are	going	to	add	another	work	email	to	this	list:

Figure	4-3.	Current	state	of	the	contact

 NSOperationQueue().addOperationWithBlock{[unowned store] in

 let predicate = CNContact.predicateForContactsMatchingName("john")

 let toFetch = [CNContactEmailAddressesKey]

 do{

 let contacts = try store.unifiedContactsMatchingPredicate(predicate,

 keysToFetch: toFetch)

 guard contacts.count > 0 else{

 print("No contacts found")

 return

 }

 //only do this to the first contact matching our criteria

 guard let contact = contacts.first else{

 return

 }

 ...

NOTE
We	are	only	adding	this	new	email	to	the	first	contact	that	matches	our	criteria.

Now	we	have	a	contact	object	that	matches	our	criteria.	Let’s	see	whether	he	already	has
this	email	address,	and	bail	out	if	he	does:

 let newEmail = "newemail@work.com"

 for email in contact.emailAddresses{

 if email.value as! String == newEmail{

 print("This contact already has this email")

 return

 }

 }

Now	that	we	are	sure	he	didn’t	have	this	email	address	already	in	the	list,	we	will	add	it:

 let john = contact.mutableCopy() as! CNMutableContact

 let emailAddress = CNLabeledValue(label: CNLabelWork,

 value: "newemail@work.com")

 john.emailAddresses.append(emailAddress)

 let req = CNSaveRequest()

 req.updateContact(john)

 try store.executeSaveRequest(req)

 print("Successfully added an email")

Now	if	we	look	at	our	contact	in	the	list,	we	can	see	the	new	email	address	added	(see
Figure	4-4).

Figure	4-4.	The	new	email	address	is	added	to	our	contact

See	Also
Recipe	4.1

4.4	Deleting	Contacts

Problem
You	want	to	delete	a	contact	on	a	device.

Solution
Follow	these	steps:

1.	 Find	your	contact	using	what	you	learned	in	Recipe	4.2.

2.	 Instantiate	an	object	of	type	CNSaveRequest.

3.	 Issue	the	deleteContact(_:)	function	on	the	request	and	pass	your	mutable	contact
to	it.

4.	 Execute	your	request	using	the	executeSaveRequest(_:)	method	of	your	contact
store.

Discussion

NOTE
Deleting	a	contact	from	a	store	is	irreversible.	I	suggest	that	you	test	your	code	on	the	simulator	first	and	as
much	as	possible,	ask	the	user	first	whether	they	allow	a	contact	to	be	deleted.

Let’s	have	a	look	at	an	example.	We	want	to	find	all	contacts	named	John	and	then	delete
the	first	one	that	we	find.	I	am	not	showing	an	alert	asking	the	user	whether	this	is	okay	or
not,	because	that’s	not	the	focus	of	this	recipe.	I	suggest	that	you	do	so,	though.

 NSOperationQueue().addOperationWithBlock{[unowned store] in

 let predicate = CNContact.predicateForContactsMatchingName("john")

 let toFetch = [CNContactEmailAddressesKey]

 do{

 let contacts = try store.unifiedContactsMatchingPredicate(predicate,

 keysToFetch: toFetch)

 guard contacts.count > 0 else{

 print("No contacts found")

 return

 }

 //only do this to the first contact matching our criteria

 guard let contact = contacts.first else{

 return

 }

 let req = CNSaveRequest()

 let mutableContact = contact.mutableCopy() as! CNMutableContact

 req.deleteContact(mutableContact)

 do{

 try store.executeSaveRequest(req)

 print("Successfully deleted the user")

 } catch let e{

 print("Error = \(e)")

 }

 } catch let err{

 print(err)

 }

 }

See	Also
Recipe	4.1

4.5	Formatting	Contact	Data

Problem
You	want	to	present	a	local	contact’s	name	and	postal	address	in	a	localized	and	readable
way,	regardless	of	the	current	language	on	the	user’s	device.

Solution
Use	an	instance	of	the	CNContactFormatter	or	the	CNPostalAddressFormatter	classes.
The	former	one	can	easily	be	used	to	format	the	contact’s	name,	and	the	latter	is	self-
explanatory.

Discussion
The	CNContactFormatter	class	allows	you	to	format	the	name	of	any	contact,	according
to	the	localization	settings	of	the	current	device.	For	instance,	in	some	languages,	the	last
name	of	a	person	may	be	mentioned	first.	You	can	use	the	stringFromContact(_:)
function	of	this	method	to	get	the	full	name.

NOTE
You	must	fetch	the	full	name	of	a	contact	from	the	store	for	this	method	to	work	at	all.	Otherwise,	you
might	get	an	exception.

Because	we	have	already	talked	about	Recipe	4.2,	I	have	written	a	simple	extension	on
CNContactStore	that	allows	me	to	fetch	the	first	contact	that	it	finds	with	a	given	name.
I’ve	named	this	method	firstUnifiedContactMatchingName(_:toFetch:output:)
and	it	calls	my	output	block	when	it	finds	the	contact	or	if	an	error	occurs.	You	don’t	have
to	know	the	full	implementation	of	this	method	because	you	already	know	how	you	can
fetch	a	contact	with	a	given	name.

So	let’s	look	at	an	example	where	we	fetch	a	contact	from	the	store	and	print	his	full	name
to	the	console:

 let toFetch =

 CNContactFormatter.descriptorForRequiredKeysForStyle(.FullName)

 store.firstUnifiedContactMatchingName("john", toFetch: [toFetch]){

 guard let contact = $0 else{

 return

 }

 guard let name = CNContactFormatter().stringFromContact(contact) else{

 return

 }

 print("The name of the contact is \(name)")

 }

Note	that	I	am	using	the	descriptorForRequiredKeysForStyle(_:)	class	method	of	the
CNContactFormatter	class	to	get	an	object	of	type	CNKeyDescriptor	and	then	pass	the
results	to	firstUnifiedContactMatchingName(_:toFetch:output:)	when	fetching	the
contact.	The	aforementioned	method	on	CNContactFormatter	tells	the	system	what
properties	of	the	contact	to	fetch;	in	this	case,	all	the	properties	that	are	required	for	the
full	name,	including	the	first,	middle,	and	last	names.

Now	imagine	that	we	want	to	find	a	contact’s	localized	phonetic	name.	A	phonetic	name	is
the	name	of	a	person,	written	as	it	is	pronounced,	rather	than	how	the	name	is	spelled.	For
instance,	a	person’s	name	might	be	Julian,	but	in	Swedish,	because	the	J	is	pronounced	as
“you,“this	name	will	eventually	be	pronounced	as	“you-lian.”	So	“you-lian”	is	the

phonetic	equivalent	of	the	name	“Julian”	in	Swedish.	These	phonetic	names	are	very
useful	for	Siri.	So	a	Swedish	speaker	will	ask	Siri	to	phone	up	“you-lian”	and	Siri	will
have	no	idea	who	that	is	unless	the	phonetic	name	has	been	set	for	that	user.

Create	a	contact	in	your	list.	Set	his	first	name	to	“Julian”	and	last	name	to	“Julianson.”
Then	tap	the	“add	field”	button	at	the	bottom	of	the	create-contact	screen	and	add	the
phonetic	first	and	last	name	fields	to	the	contact	(see	Figure	4-5).

Figure	4-5.	Add	the	phonetic	first	name	and	last	name	fields	to	your	new	contact

Set	the	phonetic	first	name	to	“Youlian”	and	the	phonetic	last	name	to	“Youlianson”	until
your	contact	looks	like	Figure	4-6.

Figure	4-6.	Your	contact’s	phonetic	name	is	also	displayed,	if	set

Let’s	now	look	at	an	example	where	we	fetch	the	phonetic	name	of	a	contact	and	then
format	it	according	to	the	localization	on	the	current	device.	First,	we	need	to	find	the
fields	in	the	contact	store	for	phonetic	name.	We	do	that	using	the
descriptorForRequiredKeysForStyle(_:)	class	method	of	CNContactFormatter	and
this	time	pass	the	value	of	PhoneticFullName	to	it.	Because	the
stringFromContact(_:)	class	method	of	the	CNContactFormatter	class	by	default
reads	the	full	name,	and	not	the	phonetic	full	name,	we	will	have	to	start	using	the
stringFromContact(_:style:) instance	method	of	this	class	instead.	The	last
parameter	to	this	function	allows	us	to	pass	a	style	of	type	CNContactFormatterStyle
that	can	be	set	to	FullName	or	PhoneticFullName:

 let style = CNContactFormatterStyle.PhoneticFullName

 let toFetch =

 CNContactFormatter.descriptorForRequiredKeysForStyle(style)

 store.firstUnifiedContactMatchingName("julian", toFetch: [toFetch]){

 guard let contact = $0 else{

 return

 }

 guard let name = CNContactFormatter

 .stringFromContact(contact, style: style) else{

 return

 }

 print("The phonetic name of the contact is \(name)")

 }

Aside	from	getting	the	localized	full	name	of	a	contact,	you	can	also	get	her	address
information,	again,	properly	localized,	using	the	CNPostalAddressFormatter	class.
Follow	these	steps:

1.	 Fetch	your	contact	and	make	sure	you	include	the	CNContactPostalAddressesKey
key.

2.	 Get	the	address	from	the	contact	using	the	postalAddresses	property	of
CNContact.	This	will	give	you	a	value	of	type	CNLabeledValue.	Get	the	value	of
this	labeled	value	and	cast	it	to	CNPostalAddress.

3.	 Instantiate	CNPostalAddressFormatter.

4.	 Pass	the	postal	address	to	the	stringFromPostalAddress(_:)	method	of	your
postal	address	formatter	to	get	the	formatted	address:

 let toFetch = [CNContactPostalAddressesKey]

 store.firstUnifiedContactMatchingName("john", toFetch: toFetch){

 guard let contact = $0 else{

 return

 }

 guard let firstAddress = contact.postalAddresses.first else{

 print("no postal address could be found")

 return

 }

 guard let address = firstAddress.value as? CNPostalAddress

 where firstAddress.value is CNPostalAddress else{

 return

 }

 let formatter = CNPostalAddressFormatter()

 let formattedAddress = formatter.stringFromPostalAddress(address)

 print("The address is \(formattedAddress)")

 }

See	Also
Recipe	4.1

4.6	Picking	Contacts	with	the	Prebuilt	System	UI

Problem
You	want	to	use	a	built-in	system	dialog	to	allow	your	users	to	pick	contacts	from	their
contact	store.

Solution
Use	an	instance	of	the	CNContactPickerViewController	class	inside	the	ContactsUI
framework.

NOTE
Instances	of	the	CNContactPickerViewController	cannot	be	pushed	to	the	stack.	They	need	to	be
presented	modally.	Use	the	presentViewController(_:animated:completion:)	method	of	your	view	or
navigation	controller	to	display	the	contact	picker	modally.

Discussion
Let’s	say	that	you	want	to	allow	the	user	to	pick	a	contact.	You	will	then	attempt	to	read
the	phone	numbers	from	that	contact.	Instances	of	the	CNContactPickerViewController
class	have	a	property	called	delegate	that	is	of	type	CNContactPickerDelegate.	Some
of	the	interesting	methods	in	this	delegate	are:

contactPickerDidCancel(_:)

This	gets	called	when	the	user	cancels	his	request	to	pick	a	contact.

contactPicker(_:didSelectContact:)

This	gets	called	when	the	user	picks	a	contact	from	the	list.

In	this	example,	I	want	to	allow	the	user	to	pick	a	contact,	whereupon	I	will	read	all	the
phone	numbers	from	that	contact.	I	have	placed	a	button	in	my	storyboard	and	hooked	that
button	to	a	method	in	my	code	called	pickaContact().	In	that	code,	I	present	a	simple
contact	picker:

 let controller = CNContactPickerViewController()

 controller.delegate = self

 navigationController?.presentViewController(controller,

 animated: true, completion: nil)

NOTE
I’m	doing	all	this	code	inside	a	view	controller	and	I’ve	made	my	view	controller	conform	to
CNContactPickerDelegate.

Then,	when	the	user	picks	a	contact,	I	just	print	out	all	the	phone	numbers	of	that	contact,
if	any,	to	the	console:

 func contactPickerDidCancel(picker: CNContactPickerViewController) {

 print("Cancelled picking a contact")

 }

 func contactPicker(picker: CNContactPickerViewController,

 didSelectContact contact: CNContact) {

 print("Selected a contact")

 if contact.isKeyAvailable(CNContactPhoneNumbersKey){

 //this is an extension I've written on CNContact

 contact.printPhoneNumbers()

 } else {

 /*

 TOOD: partially fetched, use what you've learnt in this chapter to

 fetch the rest of this contact

 */

 print("No phone numbers are available")

 }

 }

NOTE
The	printPhoneNumbers()	function	is	a	custom	extension	on	CNContact	that	I’ve	written.	You	don’t	have
to	know	the	implementation	of	that	as	it’s	not	relevant	to	this	recipe.	You	already	know	how	to	do	that	using
what	you	learned	in	Recipe	4.2.

In	this	example,	we	are	looking	for	contacts	with	phone	numbers,	but	the	user	is	allowed
to	pick	any	contact,	even	if	that	contact	has	no	phone	numbers.	How	do	we	remedy	this?	A
property	called	predicateForEnablingContact	of	type	NSPredicate,	on	instances	of
CNContactPickerViewController,	allows	us	to	specify	which	contacts	should	be
enabled	and	which	ones	should	be	disabled.	Here	we	can	create	a	predicate	that	checks	the
@count	of	the	phoneNumbers	property.	Also,	for	fun,	let’s	say	that	we	only	want	to	allow
contacts	whose	names	starts	with	“John”	to	be	selectable	(see	Figure	4-7).

 let controller = CNContactPickerViewController()

 controller.delegate = self

 controller.predicateForEnablingContact =

 NSPredicate(format:

 "phoneNumbers.@count > 0 && givenName BEGINSWITH 'John'",

 argumentArray: nil)

 navigationController?.presentViewController(controller,

 animated: true, completion: nil)

Figure	4-7.	Only	people	whose	names	start	with	“John”	and	who	have	at	least	one	phone	number	are	retrieved

The	predicateForEnablingContact	property	disables	all	contacts	who	do	not	pass	the
predicate	so	that	the	user	won’t	even	be	able	to	select	those	contacts.	There	is	another
property	on	CNContactPickerViewController	that	does	something	more	interesting:
predicateForSelectionOfContact.	The	contacts	that	pass	this	predicate	will	be
selectable	by	the	user	so	that	when	the	user	taps	that	contact,	the	controller	is	dismissed
and	we	get	access	to	the	contact	object.	The	contacts	that	do	not	pass	this	predicate	will
still	be	selectable,	but	upon	selection,	their	details	will	be	shown	to	the	user	using	the
system	UI.	They	won’t	be	returned	to	our	app:

 let controller = CNContactPickerViewController()

 controller.delegate = self

 controller.predicateForSelectionOfContact =

 NSPredicate(format:

 "phoneNumbers.@count > 0",

 argumentArray: nil)

 navigationController?.presentViewController(controller,

 animated: true, completion: nil)

There	is	another	funky	property	on	CNContactPickerViewController	named
predicateForSelectionOfProperty.	This	is	a	predicate	that	dictates	which	property	for
any	contact	the	user	should	be	able	to	pick.	If	you	want	to	allow	the	user	to	pick	a	specific
property	—	say	the	first	phone	number	—	of	any	contact	to	be	passed	to	your	app,	you
also	have	to	implement	the	contactPicker(_:didSelectContactProperty:)	method	of
the	CNContactPickerDelegate	protocol.	Let’s	write	sample	code	that	allows	the	user	to
pick	any	contact	as	long	as	that	contact	has	at	least	one	phone	number,	and	then	be	able	to
pick	the	first	phone	number	of	that	contact	to	be	returned	to	our	app:

 let controller = CNContactPickerViewController()

 controller.delegate = self

 controller.predicateForEnablingContact =

 NSPredicate(format:

 "phoneNumbers.@count > 0",

 argumentArray: nil)

 controller.predicateForSelectionOfProperty =

 NSPredicate(format: "key == 'phoneNumbers'", argumentArray: nil)

 navigationController?.presentViewController(controller,

 animated: true, completion: nil)

And	then	we	provide	an	implementation	of	the

contactPicker(_:didSelectContactProperty:)	method:

 func contactPicker(picker: CNContactPickerViewController,

 didSelectContactProperty contactProperty: CNContactProperty) {

 print("Selected a property")

 }

In	addition	to	all	of	this,	you	can	also	allow	the	user	to	pick	multiple	contacts.	Do	that	by
implementing	the	contactPicker(_:didSelectContacts:)	method	of	the
CNContactPickerDelegate	protocol	(see	Figure	4-8):

 func contactPicker(picker: CNContactPickerViewController,

 didSelectContacts contacts: [CNContact]) {

 print("Selected \(contacts.count) contacts")

 }

 //allows multiple selection mixed with contactPicker:didSelectContacts:

 func example5(){

 let controller = CNContactPickerViewController()

 controller.delegate = self

 navigationController?.presentViewController(controller,

 animated: true, completion: nil)

 }

Figure	4-8.	The	user	is	able	to	select	multiple	contacts	at	the	same	time	and	return	to	our	app	at	the	end

See	Also
Recipe	4.2

4.7	Creating	Contacts	with	a	Prebuilt	System	UI

Problem
You	want	to	specify	some	basic	information	for	a	new	contact	and	let	a	system	UI	and	the
user	take	care	of	the	creation	of	this	contact.

Solution
Follow	these	steps:

1.	 Create	an	instance	of	CNContactStore	and	ask	for	permission	to	use	the	store	(see
Recipe	4.1).

2.	 Create	a	contact	of	type	CNMutableContact	and	put	your	default	values	in	it.	This	is
an	optional	step.	You	might	want	the	user	to	create	a	whole	new	contact	on	her	own,
with	no	predefined	values	from	your	side.

3.	 Instantiate	an	object	of	type	CNContactViewController	using	the	forNewContact
initializer	and	pass	your	contact	to	it.

4.	 Set	the	contactStore	property	of	this	view	controller	to	a	valid	contact	store
instance.

5.	 Optionally,	set	the	delegate	property	of	this	view	controller	to	a	valid	delegate
object	that	conforms	to	the	CNContactViewControllerDelegate	protocol.

Discussion
You	have	Recipe	4.1	to	create	a	contact	programmatically.	What	if	you	have	some	basic
information	about	a	contact,	or	no	information	at	all,	and	you	want	your	user	to	supply	the
rest	of	the	information?	Of	course	you	could	create	a	UI	to	allow	the	user	to	do	that,	but
why	do	so	if	the	SDK	already	comes	with	a	prebuilt	UI	called
CNContactViewController?

You	can	simply	push	an	instance	of	the	CNContactViewController	class	on	your
navigation	controller.	When	you	become	the	delegate	of	this	view	controller,	a	delegate
method	named	contactViewController(_:didCompleteWithContact:)	will	get	called
if	the	user	cancels	or	accepts	the	contact	creation.	Use	this	method	to	dismiss	(pop)	the
contact	view	controller:

 func contactViewController(viewController: CNContactViewController,

 didCompleteWithContact contact: CNContact?) {

 //whatever happens, pop back to our view controller

 defer{navigationController?.popViewControllerAnimated(true)}

 guard let contact = contact else{

 print("The contact creation was cancelled")

 return

 }

 print("Contact was created successfully \(contact)")

 }

Let’s	look	at	a	simple	example	now.	Create	a	simple	contact	with	some	basic	information
and	then	ask	the	user	to	complete	the	creation	process:

 let contact = CNContact().mutableCopy() as! CNMutableContact

 contact.givenName = "Anthony"

 contact.familyName = "Appleseed"

 let controller = CNContactViewController(forNewContact: contact)

 controller.contactStore = store

 controller.delegate = self

 navigationController?

 .pushViewController(controller, animated: true)

Then	our	user	will	see	a	UI	similar	to	Figure	4-9.

Figure	4-9.	The	new-contact	system	UI	is	displayed,	asking	the	user	to	finish	off	or	cancel	the	contact	creation

NOTE
The	contact	that	you	pass	to	the	aforementioned	initializer	of	CNContactViewController	is	optional.	If
you	pass	nil,	the	new-contact	dialog	that	the	user	will	see	will	be	empty	and	the	user	will	have	to	fill	out
every	field	in	the	UI.

See	Also
Recipe	4.1

4.8	Displaying	Contacts	with	a	Prebuilt	System	UI

Problem
You	want	to	use	a	built-in	system	UI	to	display	an	existing	contact’s	information.

Solution
Use	the	forContact	initializer	of	the	CNContactViewController	class	and	pass	this
method	an	instance	of	the	CNContact	that	you	want	to	display.

Discussion
Sometimes,	you	might	want	to	display	information	for	a	particular	contact	but	don’t	want
to	write	the	whole	UI	yourself.	Why	would	you?	It’s	a	lot	of	work	to	display	all	the
information.	That’s	where	you	can	use	the	CNContactViewController	class	again.

NOTE
In	this	example,	I	am	going	to	use	my	custom
firstUnifiedContactMatchingName(_:toFetch:output:)	method	to	fetch	an	existing	contact.	You
don’t	have	to	know	the	implementation	of	this	method	because	you	already	learned	how	to	in	Recipe	4.2

So	this	is	what	we	are	going	to	do:	we	fetch	a	contact	whose	name	matches	“John”	and
display	his	information	on	the	screen.	Make	sure	that	you	fetch	all	the	required	keys	for
your	contact.	Otherwise,	the	controller	won’t	be	able	to	display	the	contact’s	information.
You	can	get	the	list	of	required	keys	by	calling	the	descriptorForRequiredKeys()	class
function	of	the	CNContactViewController:

 let toFetch = [CNContactViewController.descriptorForRequiredKeys()]

 store.firstUnifiedContactMatchingName("john", toFetch: toFetch){

 guard let contact = $0 else{

 print("No contact was found")

 return

 }

 let controller = CNContactViewController(forContact: contact)

 controller.contactStore = self.store

 controller.allowsEditing = false

 controller.displayedPropertyKeys =

 [CNContactEmailAddressesKey, CNContactPostalAddressesKey]

 self.navigationController?

 .pushViewController(controller, animated: true)

 }

By	default,	when	a	contact	is	displayed,	the	contact	controller	allows	the	user	to	edit	that
contact.	You	can	disable	that	behavior	by	setting	the	allowsEditing	property	of	the
controller	to	false.	Also	bear	in	mind	that	you	have	to	set	the	contactStore	property	of
the	controller	to	the	same	store	from	where	you	fetched	your	contact.

Figure	4-10.	Displaying	a	contact

There	is	another	interesting	property	on	the	controller:	displayedPropertyKeys.	As	its
name	implies,	it	allows	you	to	pass	a	series	of	contact	property	keys	that	have	to	be
displayed.	Other	properties	will	be	hidden.	I	have,	in	our	code,	enabled	only	email	and
postal	addresses.	The	results	are	shown	in	Figure	4-10.	Some	other	information	such	as
full	name	are	shown	by	default.

See	Also
Recipe	4.2

Chapter	5.	Extensions

Apple	increased	the	number	of	extensions	that	we	developers	can	write	in	the	new	iOS.
One	of	the	hot	extensions	that	everybody	seems	to	be	talking	about	is	the	Safari	Content
Blocker,	which	allows	a	developer	to	specify	which	URLs	or	resources	should	get	blocked
in	Safari	tabs.

Extensions	are	separate	binaries	that	sit	inside	your	app’s	bundle.	They	usually	have	their
own	naming	convention	and	sit	inside	reserved	folders	inside	your	app	bundle.	It’s	best
not	to	mention	what	they	are	called	on	disk	because	Apple	can	change	that	at	any	time
without	us	knowing.	Because	extensions	sit	in	their	own	folders	and	have	their	own
bundles,	they	do	not	share	the	same	physical	space	as	their	container	app.	But,	through
some	work,	they	can	access	the	container	app’s	resources	such	as	images	and	text.

5.1	Creating	Safari	Content	Blockers

Problem
You	want	to	create	a	content	blocker	that	the	user	can	add	to	her	Safari	browser	for
blocking	specific	web	content.

Solution
Use	the	Safari	Content	Blocker	extension.

Discussion
This	is	something	I	am	very	excited	about.	You	can	ignore	the	long	list	of	content	blockers
popping	up	on	App	Store	every	day	from	now	on.

This	is	how	the	Apple	blocker	works.	When	you	create	an	app,	you	can	add	a	Safari
Content	Blocker	extension	to	it.	In	that	extension,	you	define	the	rules	for	your	content
blocking;	e.g.,	whether	you	want	to	block	images,	style	sheets,	etc.	The	user	can	then,
after	opening	your	app	at	least	once,	go	into	the	settings	on	her	device	and	enable	your
content	blocker.	From	now	on,	if	she	visits	a	web	page	that	your	content	blocker	applies
to,	she	will	see	only	the	content	that	passes	your	filters.

Let’s	create	a	simple	single-view	controller	app	and	then	add	a	new	target	to	your	app.
From	the	iOS	main	section,	choose	Application	Extension	and	then	Content	Blocker
Extension	(see	Figure	5-1).

Figure	5-1.	Adding	a	new	content	blocker	extension	to	our	existing	app

NOTE
Give	any	name	that	you	want	to	your	extension.	It	doesn’t	really	matter	so	much	for	this	exercise.

Now	go	to	the	new	extension’s	new	file	called	blockerList.json	and	place	the	following
content	in	it:

[

 {

 "action": {

 "type": "block"

 },

 "trigger": {

 "url-filter": ".*",

 "resource-type" : ["image"],

 "if-domain" : ["edition.cnn.com"]

 }

 }

]

Even	though	there	is	a	specific	type	of	formatting	to	this	file,	I	think	you	can	just	read	this
as	I’ve	written	it	and	understand	what	it	is	doing.	It	is	blocking	all	images	that	are	under
the	edition.cnn.com	domain	name.	Now	head	to	your	app	delegate	and	import	the
SafariServices	framework.	Every	time	you	change	your	content	blocker,	you	will	have
to	go	to	the	Settings	application	on	the	simulator	and	turn	it	off	and	on	again	so	that	the
simulator	understands	that	the	extension	is	updated.	We	are	now	going	to	write	a	piece	of
code	that	automates	that	for	us:

 func applicationDidBecomeActive(application: UIApplication) {

 //TODO: replace this with your own content blocker's identifier

 let id = "se.pixolity.Creating-Safari-Content-Blockers.Image-Blocker"

 SFContentBlockerManager.reloadContentBlockerWithIdentifier(id) {error in

 guard error == nil else {

 //an error happened, handle it

 print("Failed to reload the blocker")

 return

 }

 print("Reloaded the blocker")

 }

 }

Then	reset	your	simulator	and	run	your	app.	Send	your	app	to	the	background,	open	Safari
on	the	simulator,	and	type	in	cnn.com.	This	will	redirect	you	to	http://edition.cnn.com/	(at
the	time	of	writing	this	book).	Safari	will	hit	the	filter	we	wrote	and	will	discard	all	the
images.	The	results	will	be	lovely.	Well,	I	don’t	know	whether	a	website	without	images	is
lovely	or	not,	but	it’s	what	we	set	out	to	do.

A	user	can	always	enable	or	disable	a	content	blocker.	To	do	that,	you	can	go	to	the
Settings	app	on	your	device	and	in	the	search	field	type	in	blocker.	Then	tap	the	Content
Blockers	item	that	pops	up	(see	Figure	5-2).

Figure	5-2.	Searching	for	blocker	will	allow	you	to	go	directly	to	the	Content	Blockers	settings	section	of	Safari

Once	there,	you	can	enable	or	disable	available	Safari	Content	Blockers	(see	Figure	5-3).

Figure	5-3.	The	list	of	our	Safari	Content	Blockers	is	shown	here

Now	that	you	have	seen	an	example,	let	me	bug	you	with	some	more	details	on	that	json
file.	That	file	contains	an	array	of	dictionaries	with	various	configurations	that	you	can
enter.	This	book	would	grow	very	large	if	I	wanted	to	describe	everything	there
thoroughly,	so	I	am	going	to	explain	the	options	for	each	field	through	some	pseudo-json
code	if	that’s	OK:

[

 {

 "action": {

 "type": "block" | "block-cookies" | "css-display-none",

 "selector" : This is a CSS selector that the action will be applied to

 },

 "trigger": {

 "url-filter": "this is a filter that will be applied on the WHOLE url",

 "url-filter-is-case-sensitive" : same as url-filter but case sensitive,

 "resource-type" : ["image" | "style-sheet" | "script" | "font" | etc],

 "if-domain" : [an array of actual domain names to apply filter on],

 "unless-domain" : [an array of domain names to exclude from filter],

 "load-type" : "first-party" | "third-party"

 }

 }

]

Armed	with	this	knowledge,	let’s	do	some	more	experiments.	Let’s	now	block	all	a	tags	in
macrumors.com:

 {

 "action": {

 "type": "css-display-none",

 "selector" : "a"

 },

 "trigger": {

 "url-filter": ".*",

 "if-domain" : ["macrumors.com"]

 }

 }

NOTE
I	have	no	affiliation	with	nor	any	hate	toward	macrumors.com.	I	find	that	website	quite	informative,
actually.	Check	it	out	for	yourself.	I	am	using	this	website	as	an	example	only	and	I	am	not	suggesting	that
content	on	that	website	is	worthy	of	blocking.

Or	how	about	removing	the	a	tag	on	top	of	the	macrumors.com	page	that	is	an	id	attribute
equal	to	logo?

 {

 "action": {

 "type": "css-display-none",

 "selector" : "a[id='logo']"

 },

 "trigger": {

 "url-filter": ".*",

 "if-domain" : ["macrumors.com"]

 }

 }

Now	let’s	have	a	look	at	another	example.	Let’s	start	blocking	all	images	on	all	websites
except	for	reddit.com:

 {

 "action": {

 "type": "block"

 },

 "trigger": {

 "url-filter": ".*",

 "resource-type" : ["image"],

 "unless-domain" : ["reddit.com"]

 }

 }

Or	how	about	blocking	all	elements	of	type	a	that	have	an	href	attribute	on	Apple’s
website?

 {

 "action": {

 "type": "css-display-none",

 "selector" : "a[href]"

 },

 "trigger": {

 "url-filter": ".*",

 "if-domain" : ["apple.com"]

 }

 }

See	Also
Recipe	3.6

5.2	Creating	Shared	Links	for	Safari

Problem
You	want	to	display	your	own	links	inside	Safari’s	shared	links	on	users’	devices.

Solution
Add	the	new	Shared	Links	Extension	target	to	your	existing	app	and	code	the	extension.	It
is	already	prepopulated,	so	you	don’t	really	have	to	do	much.

Discussion
Shared	links	are	like	bookmarks,	but	lead	to	content	defined	in	your	app	or	a	website.	The
links	are	visible	inside	Safari	on	iOS	when	the	user	taps	the	bookmarks	button	and	then
the	shared	links	icon.	To	get	started,	create	a	single-view	controller	project	and	then	add	a
new	target	to	your	project.	In	the	target	selection	screen,	under	the	iOS	main	section,
choose	Application	Extension	and	then	Shared	Links	Extension	(see	Figure	5-4).

Figure	5-4.	Creating	a	new	shared	link	extension	in	Xcode

I	suggest	that	you	also	add	some	proper	icons	to	your	app’s	bundle,	because	your	app’s
icon	will	also	appear	in	the	list	of	shared	links	when	iOS	shows	your	shared	link.	You	can
just	enter	“public	domain	icon”	into	Google	and	find	some	really	awesome	icons	that	you
can	use	in	your	app.	Also	make	sure	to	add	a	simple	icon	to	your	shared	link	extension,
because	our	code	will	show	this	icon	in	the	list.	Your	extension’s	icon	will	appear	on	the
left	side	of	the	link	and	your	app	icon	on	top	right	(see	Figure	5-5).

Figure	5-5.	You	can	see	our	shared	link’s	icon	on	the	left	and	our	app’s	icon	on	the	upper-right	corner

Then	head	to	the	new	file	called	RequestHandler.swift	that	has	been	created	in	your
extension.	Xcode	has	already	populated	this	file	with	all	the	code	that	you	need	to	display
your	shared	link.	Uncomment	the	line	that	starts	with	extensionItem.attachments,	load
your	extensions’	icon,	and	attach	it	to	the	extension	item	like	so:

import Foundation

class RequestHandler: NSObject, NSExtensionRequestHandling {

 func beginRequestWithExtensionContext(context: NSExtensionContext) {

 let extensionItem = NSExtensionItem()

 extensionItem.userInfo = [

 "uniqueIdentifier": "uniqueIdentifierForSampleItem",

 "urlString": "http://reddit.com/r/askreddit",

 "date": NSDate()

]

 extensionItem.attributedTitle = NSAttributedString(string: "Reddit")

 extensionItem.attributedContentText = NSAttributedString(

 string: "AskReddit, one of the best subreddits there is")

 guard let img = NSBundle.mainBundle().URLForResource("ExtIcon",

 withExtension: "png") else {

 context.completeRequestReturningItems(nil, completionHandler: nil)

 return

 }

 extensionItem.attachments = [NSItemProvider(contentsOfURL: img)!]

 context.completeRequestReturningItems([extensionItem], completionHandler: nil)

 }

}

Run	your	code	and	then	open	Safari	on	the	device.	Navigate	to	the	bookmarks	button	and
then	shared	links	to	see	your	link	displayed	(Figure	5-6).

Figure	5-6.	Our	shared	link	is	displayed	in	the	list

The	user	can	also	subscribe	or	unsubscribe	from	various	shared	link	providers	by	tapping
the	Subscriptions	button	(see	Figure	5-7).

Figure	5-7.	The	user	can	subscribe	to	or	unsubscribe	from	shared	links	providers	right	in	Safari

5.3	Maintaining	Your	App’s	Indexed	Content

Problem
You	want	to	know	when	iOS	is	about	to	delete	your	indexed	items	and	you	would	like	to
be	able	to	provide	new	content	to	the	search	index.

Solution

NOTE
This	is	an	extension	to	the	search	capability	explained	in	Recipe	6.1.

Add	a	Spotlight	Index	Extension	to	your	app	and	update	the	index	right	in	your	extension
(see	Figure	5-8).

Figure	5-8.	Adding	a	Spotlight	Index	Extension	will	allow	us	to	re-index	our	app’s	searchable	content

Discussion
Every	now	and	then,	iOS	has	to	clean	up	the	search	index	on	a	device.	When	this	happens,
apps	that	have	provided	searchable	content	will	be	given	a	chance	to	reindex	their	items.
To	get	started,	create	a	Spotlight	index	extension	as	shown	in	Figure	5-8.	I’ve	given	mine
the	name	of	Reindex.	It’s	up	to	you	what	you	want	to	name	your	extension.	Now	you	will
get	a	class	called	IndexRequestHandler	in	your	extension.	It	offers	two	methods:

searchableIndex(_:reindexAllSearchableItemsWithAcknowledgementHandler:)

searchableIndex(_:reindexSearchableItemsWithIdentifiers:acknowledgementHandler:)

The	first	method	gets	called	when	you	are	asked	to	reindex	all	your	previously	indexed
items.	This	can	happen	if	the	index	is	corrupted	on	the	device	and	you	are	asked	to	reindex
all	of	your	content.	The	second	method	will	be	called	on	your	extension	if	you	have	to
index	specific	items	with	the	given	identifiers.	You	will	be	given	a	function	called	an
acknowledgement	handler	to	call	when	you	are	done	indexing	again.

NOTE
In	both	of	these	methods,	the	first	parameter	that	you	are	given	is	an	index	into	which	you	have	to	index
your	items.	Use	that	index	instead	of	the	default	index.

Here	is	an	example.	Let’s	define	a	protocol	that	dictates	what	indexable	items	have	to	look
like:

protocol Indexable{

 var id: String {get set}

 var title: String {get set}

 var description: String {get set}

 var url: NSURL? {get set}

 var thumbnail: UIImage? {get set}

}

And	then	a	structure	that	conforms	to	our	protocol:

struct Indexed : Indexable{

 //Indexable conformance

 var id: String

 var title: String

 var description: String

 var url: NSURL?

 var thumbnail: UIImage?

}

Later	on	we	are	going	to	go	through	an	array	of	Indexed	instances,	grab	all	the	IDs,	and
put	those	in	an	array.	Then,	when	we	are	asked	by	iOS	to	index	certain	items	with	given
IDs,	we	can	just	find	that	ID	in	our	array,	and	then	find	the	associated	indexed	item	using
the	ID.	For	this,	we	can	use	protocol	extensions	on	sequence	types.	I	wrote	about	this	in

Recipe	1.12:

extension SequenceType where Generator.Element : Indexable{

 func allIds() -> [String]{

 var ids = [String]()

 for (_, v) in self.enumerate(){

 ids.append(v.id)

 }

 return ids

 }

}

And	now	the	juicy	part:	our	extension.	We	construct	an	array	of	indexed	items:

 lazy var indexedItems: [Indexed] = {

 var items = [Indexed]()

 for n in 1...10{

 items.append(Indexed(id: "id \(n)", title: "Item \(n)",

 description: "Description \(n)", url: nil, thumbnail: nil))

 }

 return items

 }()

When	we	are	asked	to	reindex	all	our	items,	we	just	go	through	this	array	and	reindex
them	(see	Recipe	6.1):

 override func searchableIndex(searchableIndex: CSSearchableIndex,

 reindexAllSearchableItemsWithAcknowledgementHandler

 acknowledgementHandler: () -> Void) {

 for _ in indexedItems{

 //TODO: you can index the item here.

 }

 //call this handler once you are done

 acknowledgementHandler()

 }

When	we	are	asked	to	reindex	only	specific	items	with	given	identifiers,	we	use	our
sequence	type	extension	to	find	all	the	IDs	of	our	indexed	items.	Then	we	search	through
these	IDs	for	the	IDs	that	iOS	gave	us.	Should	we	find	a	match,	we	will	reindex	that	item.
Code	for	reindexing	is	not	shown	here,	but	Recipe	6.1	shows	you	how	to	do	it:

 override func searchableIndex(searchableIndex: CSSearchableIndex,

 reindexSearchableItemsWithIdentifiers identifiers: [String],

 acknowledgementHandler: () -> Void) {

 //get all the identifiers strings that we have

 let ourIds = indexedItems.allIds()

 //go through the items that we have and look for the given id

 var n = 0

 for i in identifiers{

 if let index = ourIds.indexOf(i){

 let _ = indexedItems[index]

 //TODO: reindex this item.

 }

 n++

 }

 acknowledgementHandler()

 }

See	Also
Recipe	3.6	and	Recipe	5.1

Chapter	6.	Web	and	Search

iOS	9	brings	with	it	some	really	exciting	functionality,	such	as	indexing	contents	inside
your	app	as	searchable	content	on	an	iOS	device.	Even	better,	you	can	contribute	to	iOS’s
public	search	index	so	that	your	searchable	content	appears	on	devices	that	don’t	even
have	your	app	installed.	That’s	pretty	cool,	don’t	you	agree?	In	this	chapter	we’ll	have	a
look	at	all	these	great	features.

6.1	Making	Your	App’s	Content	Searchable

Problem
You	want	the	user	to	be	able	to	search	within	the	contents	inside	your	app,	from	iOS’s
search	functionality	(see	Figure	6-1).

Solution
First	construct	an	object	of	type	CSSearchableItemAttributeSet.	This	will	represent
the	metadata	for	any	one	item	that	you	want	to	index	in	the	search.	Having	the	metadata,
construct	an	instance	of	the	CSSearchableItem	class	with	your	metadata	and	expiration
date,	plus	some	other	properties	that	you	will	see	soon.	Index	an	item	using	the
CSSearchableIndex	class.	You’ll	get	a	completion	block	that	will	let	you	know	whether
or	not	things	went	well.

Figure	6-1.	iOS	9	has	improved	search	functionality

Discussion
You	have	to	keep	quite	a	few	things	in	mind	when	indexing	items	in	the	local	device
search	functionality.	I’ll	walk	you	through	them	one	by	one.	Always	keep	this	index	in	a
useful	state.	Don’t	index	stuff	that	you	don’t	need,	and	make	sure	you	delete	the	old	items.
You	can	specify	an	expiration	date	for	your	content,	so	I	suggest	that	you	always	do	that.

Let’s	look	at	an	example.	We	will	start	off	by	including	the	two	required	frameworks	that
we	are	going	to	use	and	a	handy	extension:

import CoreSpotlight

import MobileCoreServices

extension String{

 func toFoundationString() -> NSString{

 return NSString(string: self)

 }

}

Then	we	will	proceed	to	deleting	all	existing	indexed	items	using	the
deleteAllSearchableItemsWithCompletionHandler(_:)	method	of	the
CSSearchableIndex	class.	This	method	takes	in	a	closure	that	gives	you	an	optional	error.
Check	this	error	if	you	want	to	find	out	whether	something	went	wrong:

 //delete the existing indexed items

 CSSearchableIndex.defaultSearchableIndex()

 .deleteAllSearchableItemsWithCompletionHandler {err in

 if let err = err{

 print("Error in deleting \(err)")

 }

 }

Now	let’s	instantiate	our	metadata	of	type	CSSearchableItemAttributeSet	and	give	it	a
title,	description,	path	and	URL,	keywords,	and	a	thumbnail:

 let attr = CSSearchableItemAttributeSet(

 itemContentType: kUTTypeText as String)

 attr.title = "My item"

 attr.contentDescription = "My description"

 attr.path = "http://reddit.com"

 attr.contentURL = NSURL(string: attr.path!)!

 attr.keywords = ["reddit", "subreddit", "today", "i", "learned"]

 if let url = NSBundle(forClass: self.dynamicType)

 .URLForResource("Icon", withExtension: "png"){

 attr.thumbnailData = NSData(contentsOfURL: url)

 }

Then	let’s	create	the	actual	searchable	item	of	type	CSSearchableItem	and	set	its

expiration	date	20	seconds	into	the	future:

 //searchable item

 let item = CSSearchableItem(

 uniqueIdentifier: attr.contentURL!.absoluteString,

 domainIdentifier: nil, attributeSet: attr)

 let cal = NSCalendar.currentCalendar()

 //our content expires in 20 seconds

 item.expirationDate = cal.dateFromComponents(cal

 .componentsInTimeZone(cal.timeZone, fromDate:

 NSDate().dateByAddingTimeInterval(20)))

Last	but	not	least,	use	the	indexSearchableItems(_:)	method	of	the
CSSearchableIndex	class	to	index	the	item	that	we	just	created.	You	can	index	an	array
of	items,	but	we	have	just	one	item,	so	let’s	index	that	for	now:

 //now index the item

 CSSearchableIndex.defaultSearchableIndex()

 .indexSearchableItems([item]) {err in

 guard err == nil else{

 print("Error occurred \(err!)")

 return

 }

 print("We successfully indexed the item. Will expire in 20 seconds")

 }

When	the	user	taps	your	item	in	the	results	list,	your	app	will	be	opened	and	iOS	will	call
the	application(_:continueUserActivity:restorationHandler:)	method	on	your
app	delegate.	In	this	method,	you	have	to	do	a	few	things:

1.	 Check	the	activity	type	that	is	given	to	you	and	make	sure	it	is
CSSearchableItemActionType.	The	aforementioned	method	gets	called	under
various	circumstances,	for	example,	with	HandOff,	so	we	have	to	make	sure	we	are
responding	only	to	activities	that	concern	indexed	items:

2.	 Check	the	userInfo	property	of	the	activity	and	read	the	value	of	the
CSSearchableItemActivityIdentifier	key	from	it.	This	should	be	the	identifier
for	your	indexed	item.

 func application(application: UIApplication,

 continueUserActivity userActivity: NSUserActivity,

 restorationHandler: ([AnyObject]?) -> Void) -> Bool {

 guard userActivity.activityType == CSSearchableItemActionType,

 let userInfo = userActivity.userInfo,

 let id = userInfo[CSSearchableItemActivityIdentifier

 .toFoundationString()] as? String

 else{

 return false

 }

 //now we have access to id of the activity. and that is the URL

 print(id)

 return true

 }

Run	your	code	and	then	send	your	app	to	the	background.	Open	a	search	in	your	iPhone
and	do	a	search	on	the	item	that	we	just	indexed	(see	Figure	6-2).

Figure	6-2.	Our	item	is	listed	in	the	search	results

See	Also
Recipe	5.3

6.2	Making	User	Activities	Searchable

Problem
You	want	to	allow	user	activities	inside	your	app	to	be	searchable.	User	activities	are	of
type	NSUserActivity.

Solution
Use	the	eligibleForSearch	and	eligibleForPublicIndexing	properties	of	the
NSUserActivity	class	to	mark	your	activities	as	searchable.

Discussion
Let’s	say	that	the	user	is	inside	your	app	and	is	editing	the	text	inside	a	text	field.	You	start
a	user	activity	and	want	the	user	to	be	able	to	search	for	this	activity	in	her	home	screen,
then	continue	with	that	activity	later.	Start	with	the	UI.	Drop	a	text	field	and	a	text	view	on
your	view	controller	to	make	it	look	like	Figure	6-3.

Figure	6-3.	Put	a	text	field	and	a	text	view	on	your	UI

The	text	field	will	allow	the	user	to	enter	whatever	text	she	wants,	and	we	will	use	the	text
view	to	write	log	messages	so	that	we	know	what	is	going	on	under	the	hood	of	our	app
and	so	will	the	user.	Hook	these	up	to	your	code.	I’ve	named	the	text	field	textField	and
the	text	view	status.	Also	set	the	delegate	of	your	text	field	to	your	view	controller,
because	you	are	going	to	want	to	know	when	the	text	field	becomes	active	and	inactive.
That	lets	you	update	the	user	activity	accordingly.

Make	your	view	controller	conform	to	UITextFieldDelegate	and
NSUserActivityDelegate	protocols	and	implement	the	user	activity	delegate	methods:

 func userActivityWasContinued(userActivity: NSUserActivity) {

 log("Activity was continued")

 }

 func userActivityWillSave(userActivity: NSUserActivity) {

 log("Activity will save")

 }

Let’s	also	write	a	handy	method	that	allows	us	to	log	messages	into	our	text	view:

 func log(t: String){

 dispatch_async(dispatch_get_main_queue()) {

 self.status.text = t + "\n" + self.status.text

 }

 }

We	need	another	method	that	can	read	the	contents	of	our	text	field	and,	if	it’s	nil,	give	us
an	empty	string:

 func textFieldText() -> String{

 if let txt = self.textField.text{

 return txt

 } else {

 return ""

 }

 }

Then	create	your	user	activity	as	a	lazy	variable	and	mark	it	as	searchable:

 //TODO: change this ID to something relevant to your app

 let activityType = "se.pixolity.Making-User-Activities-Searchable.editText"

 let activityTxtKey = "se.pixolity.Making-User-Activities-Searchable.txt"

 lazy var activity: NSUserActivity = {

 let a = NSUserActivity(activityType: self.activityType)

 a.title = "Text Editing"

 a.eligibleForHandoff = true

 a.eligibleForSearch = true

 //do this only if it makes sense

 //a.eligibleForPublicIndexing = true

 a.delegate = self

 a.keywords = ["txt", "text", "edit", "update"]

 let att = CSSearchableItemAttributeSet(

 itemContentType: kUTTypeText as String)

 att.title = a.title

 att.contentDescription = "Editing text right in the app"

 att.keywords = Array(a.keywords)

 if let u = NSBundle.mainBundle().URLForResource("Icon",

 withExtension: "png"){

 att.thumbnailData = NSData(contentsOfURL: u)

 }

 a.contentAttributeSet = att

 return a

 }()

NOTE
Make	sure	that	you	import	the	CoreSpotlight	and	MobileCoreServices	frameworks.

Once	your	text	field	becomes	active,	mark	the	activity	as	the	current	one:

 func textFieldDidBeginEditing(textField: UITextField) {

 log("Activity is current")

 userActivity = activity

 activity.becomeCurrent()

 }

 func textFieldDidEndEditing(textField: UITextField) {

 log("Activity resigns being current")

 activity.resignCurrent()

 userActivity = nil

 }

When	the	text	field’s	content	changes,	mark	that	the	user	activity	needs	to	be	updated:

 func textField(textField: UITextField,

 shouldChangeCharactersInRange range: NSRange,

 replacementString string: String) -> Bool {

 activity.needsSave = true

 return true

 }

A	method	in	your	view	controller	named	updateUserActivityState(_:)	gets	called
periodically	when	the	current	activity	needs	to	be	updated.	Here	you	get	the	chance	to
update	the	user	info	dictionary	of	the	activity:

 override func updateUserActivityState(a: NSUserActivity) {

 log("We are asked to update the activity state")

 a.addUserInfoEntriesFromDictionary(

 [self.activityTxtKey : self.textFieldText()])

 super.updateUserActivityState(a)

 }

That’s	it,	really.	Now	when	the	user	starts	writing	text	in	the	text	field,	and	then	sends	the
app	to	background,	she	will	be	able	to	search	for	the	activity	that	she	had	started	right	on
her	home	screen	and	then	continue	where	she	left	off.	I	leave	the	details	where	we	handle
the	request	to	continue	the	user	activity	up	to	you,	because	they	are	not	new	APIs.

See	Also
Recipe	5.3	and	Recipe	6.1

6.3	Deleting	Your	App’s	Searchable	Content

Problem
You	have	indexed	some	items	in	Spotlight	and	you	would	like	to	get	rid	of	that	now.

Solution
Use	a	combination	of	the	following	methods	on	CSSearchableIndex:

deleteAllSearchableItemsWithCompletionHandler(_:)

deleteSearchableItemsWithDomainIdentifiers(_:completionHandler:)

deleteSearchableItemsWithIdentifiers(_:completionHandler:)

Discussion
Let’s	have	a	look	at	an	example.	Say	that	you	have	already	indexed	some	items	(see
Recipe	6.1)	and	you	want	to	delete	that	content.	The	first	thing	is	to	get	a	handle	to	the
CSSearchableIndex	class:

 let identifiers = [

 "com.yourcompany.etc1",

 "com.yourcompany.etc2",

 "com.yourcompany.etc3"

]

 let i = CSSearchableIndex(name: NSBundle.mainBundle().bundleIdentifier!)

Then	use	the	fetchLastClientStateWithCompletionHandler(_:)	method	on	the	index
to	get	the	latest	application	state	that	you	had	submitted	to	the	index.	After	that,	you	can
begin	deleting	the	items	inside	the	identifiers	array	by	using	the	beginIndexBatch()
function	on	the	index.	Then	use	the	deleteSearchableItemsWithIdentifiers(_:)
function,	which	returns	a	completion	handler.	This	handler	will	return	an	optional	error
that	dictates	whether	the	deletion	went	OK	or	not.	Once	we	are	done,	we	end	the	batch
updates	on	the	index	with	the
endIndexBatchWithClientState(_:completionHandler:)	method:

 i.fetchLastClientStateWithCompletionHandler {clientState, err in

 guard err == nil else{

 print("Could not fetch last client state")

 return

 }

 let state: NSData

 if let s = clientState{

 state = s

 } else {

 state = NSData()

 }

 i.beginIndexBatch()

 i.deleteSearchableItemsWithIdentifiers(identifiers) {err in

 if let e = err{

 print("Error happened \(e)")

 } else {

 print("Successfully deleted the given identifiers")

 }

 }

 i.endIndexBatchWithClientState(state, completionHandler: {err in

 guard err == nil else{

 print("Error happened in ending batch updates = \(err!)")

 return

 }

 print("Successfully batch updated the index")

 })

 }

NOTE
The	content	identifiers	that	I’ve	put	in	the	identifiers	array	are	just	an	example.	I	don’t	know	what
identifiers	you	want	to	use,	but	make	sure	that	you	update	this	array	before	attempting	to	delete	the	existing
indexed	items.

See	Also
Recipe	5.3	and	Recipe	6.2

Chapter	7.	Multitasking

iOS	9	added	some	really	cool	multitasking	functionalities	to	select	devices,	such	as	the
latest	iPads.	One	of	these	functionalities	is	PiP,	or	Picture	in	Picture.	In	this	chapter,	we’ll
have	a	look	at	some	of	these	exciting	features.

7.1	Adding	Picture	in	Picture	Playback	Functionality

Problem
You	want	to	let	a	user	shrink	a	video	to	occupy	a	portion	of	the	screen,	so	that	she	can
view	and	interact	with	other	content	in	other	apps.

Solution
I’ll	break	the	process	down	into	small	and	digestible	steps:

1.	 You	need	a	view	that	has	a	layer	of	type	AVPlayerLayer.	This	layer	will	be	used	by
a	view	controller	to	display	the	video.

2.	 Instantiate	an	item	of	type	VPlayerItem	that	represents	the	video.

3.	 Take	the	player	item	and	place	it	inside	an	instance	of	AVPlayer.

4.	 Assign	this	player	to	your	view’s	layer	player	object.	(Don’t	worry	if	this	sounds
confusing.	I’ll	explain	it	soon.)

5.	 Assign	this	view	to	your	view	controller’s	main	view	and	issue	the	play()	function
on	the	player	to	start	normal	playback.

6.	 Using	KVO,	listen	to	changes	to	the	currentItem.status	property	of	your	player
and	wait	until	the	status	becomes	ReadyToPlay,	at	which	point	you	create	an
instance	of	the	AVPictureInPictureController	class.

7.	 Start	a	KVO	listener	on	the	pictureInPicturePossible	property	of	your
controller.	Once	this	value	becomes	true,	let	the	user	know	that	she	can	now	go	into
Picture	in	Picture	mode.

8.	 Now	when	the	user	presses	a	button	to	start	Picture	in	Picture,	read	the	value	of
pictureInPicturePossible	from	your	controller	for	safety’s	sake,	and	if	it	checks
out,	call	the	startPictureInPicture()	function	on	the	controller	to	start	the
Picture	in	Picture	eventually.

Discussion
Picture	in	Picture	is	finally	here.	Let’s	get	started.	Armed	with	what	you	learned	in	the
solution	section	of	this	recipe,	let’s	start	defining	our	view.	Create	a	view	class	and	call	it
PipView.	Go	into	the	PipView.swift	file	and	start	importing	the	right	frameworks:

import Foundation

import UIKit

import AVFoundation

Then	define	what	a	“pippable”	item	is.	It	is	any	type	that	has	a	PiP	layer	and	a	PiP	player:

protocol Pippable{

 var pipLayer: AVPlayerLayer{get}

 var pipLayerPlayer: AVPlayer? {get set}

}

Extend	UIView	to	make	it	pippable:

extension UIView : Pippable{

 var pipLayer: AVPlayerLayer{

 get{return layer as! AVPlayerLayer}

 }

 //shortcut into pipLayer.player

 var pipLayerPlayer: AVPlayer?{

 get{return pipLayer.player}

 set{pipLayer.player = newValue}

 }

 override public func awakeFromNib() {

 super.awakeFromNib()

 backgroundColor = .blackColor()

 }

}

Last	but	not	least	for	this	view,	change	the	view’s	layer	class	to	AVPlayerLayer:

class PipView : UIView{

 override class func layerClass() -> AnyClass{

 return AVPlayerLayer.self

 }

}

Go	to	your	view	controller’s	storyboard	and	change	the	main	view’s	class	to	PipView.
Also	embed	your	view	controller	in	a	navigation	controller	and	put	two	bar	button	items

on	the	nav	bar,	namely:

Play	(give	it	a	play	button	style)

PiP	(by	pressing	this	we	enable	PiP;	disable	this	button	by	default	and	hook	it	to	an
outlet	in	your	code.)

So	you’ll	end	up	with	something	like	Figure	7-1.

Figure	7-1.	Your	view	controller	should	look	like	this	(should	is	too	strong	a	word	really!)

Hook	up	the	two	buttons	to	your	view	controller’s	code.	The	Play	button	will	be	hooked	to
a	method	called	play()	and	the	PiP	button	to	beginPip().	Now	let’s	head	to	our	view
controller	and	import	some	frameworks	we	need:

import UIKit

import AVKit

import AVFoundation

import SharedCode

Define	the	KVO	context	for	watching	the	properties	of	our	player:

private var kvoContext = 0

let pipPossible = "pictureInPicturePossible"

let currentItemStatus = "currentItem.status"

Then	our	view	controller	becomes	pippable:

protocol PippableViewController{

 var pipView: PipView {get}

}

extension ViewController : PippableViewController{

 var pipView: PipView{

 return view as! PipView

 }

}

NOTE
If	you	want	to,	you	can	define	your	view	controller	as	conformant	to
AVPictureInPictureControllerDelegate	to	get	delegate	messages	from	the	PiP	view	controller.

I’ll	also	define	a	property	for	the	PiP	button	on	my	view	controller	so	that	I	can	enable	this
button	when	PiP	is	available:

 @IBOutlet var beginPipBtn: UIBarButtonItem!

We	also	need	a	player	of	type	AVPlayer.	Don’t	worry	about	its	URL;	we	will	set	it	later:

 lazy var player: AVPlayer = {

 let p = AVPlayer()

 p.addObserver(self, forKeyPath: currentItemStatus,

 options: .New, context: &kvoContext)

 return p

 }()

Here	we	define	the	PiP	controller	and	the	video	URL.	As	soon	as	the	URL	is	set,	we
construct	an	asset	to	hold	the	URL,	place	it	inside	the	player,	and	set	the	player	on	our
view’s	layer:

 var pipController: AVPictureInPictureController?

 var videoUrl: NSURL? = nil{

 didSet{

 if let u = videoUrl{

 let asset = AVAsset(URL: u)

 let item = AVPlayerItem(asset: asset,

 automaticallyLoadedAssetKeys: ["playable"])

 player.replaceCurrentItemWithPlayerItem(item)

 pipView.pipLayerPlayer = player

 }

 }

 }

I	also	need	a	method	that	returns	the	URL	of	the	video	I	am	going	to	play.	I’ve	embedded
a	public	domain	video	to	my	app	and	it	resides	in	my	app	bundle.	Check	out	this	book’s
GitHub	repo	for	sample	code:

 var embeddedVideo: NSURL?{

 return NSBundle.mainBundle().URLForResource("video", withExtension: "mp4")

 }

We	need	to	find	out	whether	PiP	is	supported	by	calling	the
isPictureInPictureSupported()	class	method	of	the
AVPictureInPictureController	class:

 func isPipSupported() -> Bool{

 guard AVPictureInPictureController.isPictureInPictureSupported() else{

 //no pip

 return false

 }

 return true

 }

When	we	start	our	PiP	controller,	we	also	need	to	make	sure	that	the	audio	plays	well	even
though	the	player	is	detached	from	our	app.	For	that,	we	have	to	set	our	app’s	audio
playback	category:

 func setAudioCategory() -> Bool{

 //set the audio category

 do{

 try AVAudioSession.sharedInstance().setCategory(

 AVAudioSessionCategoryPlayback)

 return true

 } catch {

 return false

 }

 }

When	PiP	playback	is	available,	we	can	finally	construct	our	PiP	controller	with	our
player’s	layer.	Remember,	if	the	layer	is	not	ready	yet	to	play	PiP,	constructing	the	PiP
view	controller	will	fail:

 func startPipController(){

 pipController = AVPictureInPictureController(playerLayer: pipView.pipLayer)

 guard let controller = pipController else{

 return

 }

 controller.addObserver(self, forKeyPath: pipPossible,

 options: .New, context: &kvoContext)

 }

Write	the	code	for	play()	now.	We	don’t	have	to	check	for	availability	of	PiP	just	because
we	want	to	play	a	video:

@IBAction func play() {

 guard setAudioCategory() else{

 alert("Could not set the audio category")

 return

 }

 guard let u = embeddedVideo else{

 alert("Cannot find the embedded video")

 return

 }

 videoUrl = u

 player.play()

 }

As	soon	as	the	user	presses	the	PiP	button,	we	start	PiP	if	the
pictureInPicturePossible()	method	of	our	PiP	controller	returns	true:

 @IBAction func beginPip() {

 guard isPipSupported() else{

 alert("PiP is not supported on your machine")

 return

 }

 guard let controller = pipController else{

 alert("Could not instantiate the pip controller")

 return

 }

 controller.addObserver(self, forKeyPath: pipPossible,

 options: .New, context: &kvoContext)

 if controller.pictureInPicturePossible{

 controller.startPictureInPicture()

 } else {

 alert("Pip is not possible")

 }

 }

Last	but	not	least,	we	listen	for	KVO	messages:

 override func observeValueForKeyPath(keyPath: String?,

 ofObject object: AnyObject?,

 change: [String : AnyObject]?,

 context: UnsafeMutablePointer<Void>) {

 guard context == &kvoContext else{

 return

 }

 if keyPath == pipPossible{

 guard let possibleInt = change?[NSKeyValueChangeNewKey]

 as? NSNumber else{

 beginPipBtn.enabled = false

 return

 }

 beginPipBtn.enabled = possibleInt.boolValue

 }

 else if keyPath == currentItemStatus{

 guard let statusInt = change?[NSKeyValueChangeNewKey] as? NSNumber,

 let status = AVPlayerItemStatus(rawValue: statusInt.integerValue)

 where status == .ReadyToPlay else{

 return

 }

 startPipController()

 }

 }

NOTE
Give	this	a	go	in	an	iPad	Air	2	or	a	similar	device	that	has	PiP	support.

See	Also
Recipe	3.11

7.2	Handling	Low	Power	Mode	and	Providing
Alternatives

Problem
You	want	to	know	whether	the	device	is	in	low	power	mode	and	want	to	be	updated	on	the
status	of	this	mode	as	the	user	changes	it.

Solution
Read	the	value	of	the	lowPowerModeEnabled	property	of	your	process	(of	type
NSProcessInfo)	to	find	out	whether	the	device	is	in	low	power	mode,	and	listen	to
NSProcessInfoPowerStateDidChangeNotification	notifications	to	find	out	when	this
state	changes.

Discussion
Low	power	mode	is	a	feature	that	Apple	has	placed	inside	iOS	so	that	users	can	preserve
battery	whenever	they	wish	to.	For	instance,	if	you	have	10%	battery	while	some
background	apps	are	running,	you	can	save	power	by:

Disabling	background	apps

Reducing	network	activity

Disabling	automatic	mail	pulls

Disabling	animated	backgrounds

Disabling	visual	effects

And	that’s	what	low	power	mode	does.	In	Figure	7-2,	low	power	mode	is	disabled	at	the
moment	because	there	is	a	good	amount	of	battery	left	on	this	device.	Should	the	battery
reach	about	10%,	the	user	will	automatically	be	asked	to	enable	low	power	mode.

Figure	7-2.	Low	power	mode	in	the	Settings	app

Let’s	create	an	app	that	wants	to	download	a	URL	but	won’t	do	so	when	low	power	mode

is	enabled.	Instead,	the	app	will	defer	the	download	until	this	mode	is	disabled.	So	let’s
start	by	listening	to	NSProcessInfoPowerStateDidChangeNotification	notifications:

 override func viewDidLoad() {

 super.viewDidLoad()

 NSNotificationCenter.defaultCenter().addObserver(self,

 selector: "powerModeChanged:",

 name: NSProcessInfoPowerStateDidChangeNotification, object: nil)

 downloadNow()

 }

Our	custom	downloadNow()	method	has	to	avoid	downloading	the	file	if	the	device	is	in
low	power	mode:

 func downloadNow(){

 guard let url = NSURL(string: "http://localhost:8888/video.mp4") where

 !processInfo.lowPowerModeEnabled else{

 return

 }

 //do the download here

 print(url)

 mustDownloadVideo = false

 }

Last	but	not	least,	write	the	powerModeChanged(_:)	method	that	we	have	hooked	to	our
notification:

class ViewController: UIViewController {

 var mustDownloadVideo = true

 let processInfo = NSProcessInfo.processInfo()

 func powerModeChanged(notif: NSNotification){

 guard mustDownloadVideo else{

 return

 }

 downloadNow()

 }

 ...

Chapter	8.	Maps	and	Location

In	this	chapter,	we	will	have	a	look	at	some	awesome	updates	to	the	MapKit	and
CoreLocation	frameworks.

8.1	Requesting	the	User’s	Location	a	Single	Time

Problem
You	want	an	optimized	and	energy-efficient	way	of	requesting	the	current	location	of	the
user	only	once.

Solution
Use	the	requestLocation()	method	of	the	CLLocationManager	class.	The	new	location
will	be	sent	to	your	location	manager’s	locationManager(_:didUpdateLocations:)
delegate	method.	Errors	will	be	reported	on	locationManager(_:didFailWithError:).
You	can	make	only	one	request	to	this	method	at	any	given	time.	A	new	request	will
cancel	the	previous	one.

Discussion
Place	a	button	on	your	interface	inside	IB	and	then	hook	it	up	to	a	method	in	your	code
called	requestLocation().	Then	go	into	your	Info.plist	file	and	set	the	value	of	the
NSLocationWhenInUseUsageDescription	key	to	a	valid	string	that	explains	to	the	user
why	you	want	to	get	her	location.	You	will	also	have	to	import	the	CoreLocation
framework	and	make	your	view	controller	conform	to	CLLocationManagerDelegate.

Implement	a	variable	in	your	view	controller	to	represent	the	location	manager:

 lazy var locationManager: CLLocationManager = {

 let m = CLLocationManager()

 m.delegate = self

 m.desiredAccuracy = kCLLocationAccuracyNearestTenMeters

 return m

 }()

When	your	button	is	pressed,	request	access	to	the	user’s	location.	This	requests	users
location	to	be	delivered	to	your	app	only	when	it	is	the	foreground	app.	As	soon	as	your
app	is	sent	to	the	background,	iOS	stops	delivering	location	updates	to	you:

 @IBAction func requestLocation() {

 locationManager.requestWhenInUseAuthorization()

 }

Then	wait	for	the	user	to	accept	or	reject	the	request.	If	everything	is	going	smoothly,
request	the	user’s	location:

 func locationManager(manager: CLLocationManager,

 didChangeAuthorizationStatus status: CLAuthorizationStatus) {

 if case .AuthorizedWhenInUse = status{

 manager.requestLocation()

 } else {

 //TODO: we didn't get access, handle this

 }

 }

Last	but	not	least,	wait	for	the	location	gathering	mechanism	to	fail	or	succeed:

 func locationManager(manager: CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

 //TODO: now you have access to the location. do your work

 }

 func locationManager(manager: CLLocationManager,

 didFailWithError error: NSError) {

 //TODO: handle the error

 }

See	Also
Recipe	8.2

8.2	Requesting	the	User’s	Location	in	Background

Problem
You	want	to	receive	updates	on	the	user’s	location	while	in	the	background.	Being	a	good
iOS	citizen,	you	won’t	ask	for	this	unless	you	really	need	it	for	the	main	functionality	of
your	app.

Solution
Set	the	allowsBackgroundLocationUpdates	property	of	your	location	manager	to	true
and	ask	for	location	updates	using	the	requestAlwaysAuthorization()	function.

Discussion
When	linked	against	iOS	9,	apps	that	want	to	ask	for	a	user’s	location	when	the	app	is	in
the	background	have	to	set	the	allowsBackgroundLocationUpdates	property	of	their
location	manager	to	true.	We	are	going	to	have	to	have	a	look	at	an	example.	Start	a
single	view	controller	app,	place	a	button	on	your	UI	with	IB,	and	give	it	a	title	similar	to
“Request	background	location	updates”.	Then	hook	it	to	a	method	in	your	view	controller
and	name	the	method	requestBackgroundLocationUpdates().	In	your	Info.plist	file,
set	the	string	value	of	the	NSLocationAlwaysUsageDescription	key	and	make	sure	that
it	explains	exactly	why	you	want	to	access	the	user’s	location	even	in	the	background.
Then	go	into	the	Capabilities	section	of	your	target,	and	under	Background	Modes,	enable
“Location	updates”	(see	Figure	8-1).

Figure	8-1.	Enabling	location	updates	in	Background	Modes	in	your	project

Now	import	CoreLocation	in	your	code	and	make	your	view	controller	conformant	to
CLLocationManagerDelegate.	Create	your	location	manager	and	make	sure	that	the
allowsBackgroundLocationUpdates	property	is	set	to	true.

 lazy var locationManager: CLLocationManager = {

 let m = CLLocationManager()

 m.delegate = self

 m.desiredAccuracy = kCLLocationAccuracyNearestTenMeters

 m.allowsBackgroundLocationUpdates = true

 return m

 }()

When	the	user	presses	the	button,	ask	for	location	updates:

 @IBAction func requestBackgroundLocationUpdates() {

 locationManager.requestAlwaysAuthorization()

 }

Wait	until	the	user	accepts	the	request	and	then	start	looking	for	location	updates:

 func locationManager(manager: CLLocationManager,

 didChangeAuthorizationStatus status: CLAuthorizationStatus) {

 if case CLAuthorizationStatus.AuthorizedAlways = status{

 manager.startUpdatingLocation()

 }

 }

Last	but	not	least,	implement	the	usual	location	manager	methods	to	get	to	know	when	the
user’s	location	has	changed:

 func locationManager(manager: CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

 //TODO: now you have access to the location. do your work

 }

 func locationManager(manager: CLLocationManager,

 didFailWithError error: NSError) {

 //TODO: handle the error

 }

See	Also
Recipe	8.1	

8.3	Customizing	the	Tint	Color	of	Pins	on	the	Map

Problem
You	want	to	set	the	tint	color	of	pin	annotations	on	your	map	manually.

Solution
Use	the	pinTintColor	property	of	the	MKPinAnnotationView	class	like	so:

 let view = MKPinAnnotationView(annotation: annotation,

 reuseIdentifier: color.toString())

 view.pinTintColor = color

Discussion
Let’s	check	out	an	example.	Create	a	single	view	controller	project	and	dump	a	map	view
on	top	of	your	view.	Make	sure	that	you	set	the	delegate	of	this	map	view	to	your	view
controller.	Also	link	it	to	a	variable	named	map	in	your	view	controller.

In	the	view	controller,	we	are	going	to	create	annotations	with	reusable	identifiers,	so	let’s
use	the	color	as	the	ID:

import MapKit

extension UIColor{

 final func toString() -> String{

 var red = 0.0 as CGFloat

 var green = 0.0 as CGFloat

 var blue = 0.0 as CGFloat

 var alpha = 0.0 as CGFloat

 getRed(&red, green: &green, blue: &blue, alpha: &alpha)

 return "\(Int(red))\(Int(green))\(Int(blue))\(Int(alpha))"

 }

}

Now	we	create	our	annotation:

class Annotation : NSObject, MKAnnotation{

 var coordinate: CLLocationCoordinate2D

 var title: String?

 var subtitle: String?

 init(coordinate: CLLocationCoordinate2D, title: String, subtitle: String){

 self.coordinate = coordinate

 self.title = title

 self.subtitle = subtitle

 }

}

Now	ensure	that	your	view	controller	conforms	to	the	MKMapViewDelegate	protocol,
define	the	location	that	you	want	to	display	on	the	map,	and	create	an	annotation	for	it:

 let color = UIColor(red: 0.4, green: 0.8, blue: 0.6, alpha: 1.0)

 let location = CLLocationCoordinate2D(latitude: 59.33, longitude: 18.056)

 lazy var annotations: [MKAnnotation] = {

 return [Annotation(coordinate: self.location,

 title: "Stockholm Central Station",

 subtitle: "Stockholm, Sweden")]

 }()

When	your	view	appears	on	the	screen,	add	the	annotation	to	the	map:

 override func viewDidAppear(animated: Bool) {

 super.viewDidAppear(animated)

 map.removeAnnotations(annotations)

 map.addAnnotations(annotations)

 }

And	when	the	map	view	asks	for	an	annotation	view	for	your	annotation,	return	an
annotation	view	with	the	custom	color	(see	Figure	8-2):

 func mapView(mapView: MKMapView,

 viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView? {

 let view: MKPinAnnotationView

 if let v = mapView.dequeueReusableAnnotationViewWithIdentifier(

 color.toString()) where v is MKPinAnnotationView{

 view = v as! MKPinAnnotationView

 } else {

 view = MKPinAnnotationView(annotation: annotation,

 reuseIdentifier: color.toString())

 }

 view.pinTintColor = color

 return view

 }

Figure	8-2.	Our	custom	color	pin	is	displayed	on	the	map

See	Also
Recipe	8.4	and	Recipe	8.5

8.4	Providing	Detailed	Pin	Information	with	Custom
Views

Problem
When	the	user	taps	on	an	annotation	in	a	map,	you	want	to	display	details	for	that
annotation	in	a	view.

Solution
Set	the	detailCalloutAccessoryView	property	of	your	MKAnnotationView	instances	to
a	valid	UIView	instance.

Discussion
Create	your	project	just	as	you	did	in	Recipe	8.3.	In	this	recipe,	I	am	going	to	reuse	a	lot	of
code	from	the	aforementioned	recipe,	except	for	the	implementation	of	the
mapView(_:viewForAnnotation:)	delegate	method	of	our	view	controller.	Instead,	we
are	going	to	construct	instances	here	of	MKAnnotationView	and	then	set	the	detail	callout
accessory	view:

 func mapView(mapView: MKMapView,

 viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView? {

 let view: MKAnnotationView

 if let v = mapView

 .dequeueReusableAnnotationViewWithIdentifier(identifier){

 //reuse

 view = v

 } else {

 //create a new one

 view = MKAnnotationView(annotation: annotation,

 reuseIdentifier: identifier)

 view.canShowCallout = true

 if let img = UIImage(named: "Icon"){

 view.detailCalloutAccessoryView = UIImageView(image: img)

 }

 if let extIcon = UIImage(named: "ExtIcon"){

 view.image = extIcon

 }

 }

 return view

 }

Figure	8-3	shows	the	image	of	an	annotation	on	a	map.	The	image	inside	the	callout	is	the
detail	callout	accessory	view.

Figure	8-3.	Annotation	with	detail	callout	accessory

NOTE
I	am	using	two	public	domain	images	in	this	recipe.	You	also	can	find	public	domain	images	on	Google.

See	Also
Recipe	8.3	and	Recipe	8.5

8.5	Displaying	Traffic,	Scale,	and	Compass	Indicators
on	the	Map

Problem
You	want	to	display	traffic	as	well	as	the	little	compass	and	scale	indicators	on	the	map
view.

Solution
Set	the	following	properties	of	your	map	view	to	true:

showsCompass

showsTraffic

showsScale

Discussion
Place	a	map	view	on	your	view	and	set	the	appropriate	constraints	on	it	so	that	it	stretches
across	the	width	and	height	of	your	view	controller’s	view.	This	is	really	optional,	but
useful	so	the	user	can	see	the	map	view	properly	on	all	devices.	Then	follow	what	I	talked
about	in	Recipe	8.3	to	place	an	annotation	on	the	map.	Write	a	code	similar	to	the
following	in	a	method	such	as	viewDidLoad:

 map.showsCompass = true

 map.showsTraffic = true

 map.showsScale = true

The	results	will	be	similar	to	those	shown	in	Figure	8-4.	The	scale	is	shown	on	top	left	and
the	compass	on	the	top	right.	You	have	to	rotate	the	map	for	the	compass	to	appear.

Figure	8-4.	Map	with	scale,	compass,	and	traffic

See	Also
Recipe	8.3	and	Recipe	8.4

8.6	Providing	an	ETA	for	Transit	Transport	Type

Problem
You	want	your	app	to	provide	routing	options	to	the	user	when	she	is	in	the	iOS	maps	app.

Solution
Mark	your	app	as	a	routing	app	and	construct	an	instance	of	the	MKDirectionsRequest
class.	Set	the	transportType	property	of	that	request	to	Transit	and	send	your	request	to
Apple	to	calculate	an	estimated	time	of	arrival	(ETA),	using	the
calculateETAWithCompletionHandler(_:)	method	of	the	MKDirections	class.

NOTE
We	use	Geo	JSON	files	in	this	recipe,	so	read	the	spec	for	that	format	first,	please.

http://geojson.org/geojson-spec.html

Discussion
Create	a	single-view	application.	Then	head	to	the	Capabilities	tab	in	Xcode,	enable	the
Maps	section,	and	mark	the	routing	options	that	you	believe	your	app	will	be	able	to
provide	(see	Figure	8-5).	I’ve	enabled	all	these	items	for	demonstration	purposes.	You
probably	wouldn’t	want	to	enable	all	of	these	in	your	app.

Figure	8-5.	Transportation	routing	options

Create	a	new	Directions.geoJson	file	in	your	app	and	then	head	over	to	GeoJson.io	to
create	the	polygon	that	defines	your	routing	coverage	area.	Then	copy	and	paste	the
generated	content	and	place	it	in	the	aforementioned	file	in	your	project.	Now	go	and	edit
your	target’s	scheme.	Under	Run	and	then	Options,	find	the	Routing	App	Coverage	file
section	and	select	your	file	(see	Figure	8-6).

http://geojson.io/

Figure	8-6.	Here	I	am	selecting	the	routing	coverage	file	for	my	project

NOTE
You	can	always	go	to	GeoJsonLint	to	validate	your	Geo	JSON	files.

This	will	allow	the	maps	app	to	open	my	app	whenever	the	user	asks	for	transit
information	on	the	iOS	maps	app.	Now	code	the	application(_:openURL:options:)
method	of	your	app	delegate	and	handle	the	routing	request	there:

 func application(app: UIApplication, openURL url: NSURL,

 options: [String : AnyObject]) -> Bool {

 guard MKDirectionsRequest.isDirectionsRequestURL(url) else{

 return false

 }

 //now we have the url

 let req = MKDirectionsRequest(contentsOfURL: url)

 guard req.source != nil && req.destination != nil else{

 return false

 }

 req.transportType = .Transit

 req.requestsAlternateRoutes = true

 let dir = MKDirections(request: req)

 dir.calculateETAWithCompletionHandler {response, error in

 guard let resp = response where error == nil else{

 //handle the error

 print(error!)

http://geojsonlint.com/

 return

 }

 print("ETA response = \(resp)")

 }

 return true

 }

Now	open	the	maps	app	and	ask	for	directions	from	one	location	to	another.	If	the	maps
app	couldn’t	handle	the	request,	it	will	show	a	little	“View	Routing	Apps”	button.
Regardless	of	whether	the	maps	app	could	or	couldn’t	show	the	routing	options,	the	user
can	always	press	the	little	navigation	button	to	open	alternative	routing	apps	(see	Figure	8-
7).	Your	app	will	be	displayed	in	the	list	of	routing	apps	if	the	user	asks	for	a	routing
option	you	support,	and	if	the	starting	and	stopping	points	are	within	the	shape	you
defined	in	your	Geo	JSON	file.	When	the	user	opens	your	app,	your	app	delegate	will	be
informed	and	will	calculate	an	ETA.

Figure	8-7.	Our	app,	displayed	in	the	list	of	routing	apps

See	Also
Recipe	8.5

8.7	Launching	the	iOS	Maps	App	in	Transit	Mode

Problem
You	want	to	launch	iOS’s	maps	app	in	transit	mode.

Solution
When	calling	the	openMapsWithItems(_:launchOptions:)	class	method	of	MKMapItem,
in	the	options	collection,	set	the	value	of	the	MKLaunchOptionsDirectionsModeKey	key
to	MKLaunchOptionsDirectionsModeTransit.

Discussion
Let’s	create	a	single-view	controller	app	and	place	a	button	on	the	view	controller	to	open
a	map.	Set	the	title	of	this	button	to	something	like	“Open	maps	app	in	transit	mode.”
Then	hook	it	up	to	your	view	controller.	For	every	coordinate	of	type
CLLocationCoordinate2D,	you	have	to	create	an	instance	of	MKPlacemark	and	then	from
the	placemark,	create	an	instance	of	MKMapItem.

Here	is	the	source	map	item:

 let srcLoc = CLLocationCoordinate2D(latitude: 59.328564,

 longitude: 18.061448)

 let srcPlc = MKPlacemark(coordinate: srcLoc, addressDictionary: nil)

 let src = MKMapItem(placemark: srcPlc)

Followed	by	the	destination	map	item:

 let desLoc = CLLocationCoordinate2D(latitude: 59.746148,

 longitude: 18.683281)

 let desPlc = MKPlacemark(coordinate: desLoc, addressDictionary: nil)

 let des = MKMapItem(placemark: desPlc)

NOTE
You	can	use	the	Get	Latitude	Longitude	website	to	find	the	latitude	and	longitude	of	any	point	on	the	map.

Now	we	can	launch	the	app,	under	transit	mode,	with	the	source	and	the	destination
points:

 let options = [

 MKLaunchOptionsDirectionsModeKey : MKLaunchOptionsDirectionsModeTransit

]

 MKMapItem.openMapsWithItems([src, des], launchOptions: options)

http://www.latlong.net/

See	Also
Recipe	8.5	and	Recipe	8.6

8.8	Showing	Maps	in	Flyover	Mode

Problem
You	want	to	display	your	maps	in	a	flyover	state,	where	the	regions	on	the	map	are
translated	onto	a	3D	globe,	rather	than	a	2D	flattened	map.

Solution
Set	the	mapType	property	of	your	MKMapView	to	either	HybridFlyover	or
SatelliteFlyover.

Discussion
The	flyover	mode	of	a	map	view	represents	the	map	as	if	it	were	on	a	globe,	rather	than
flat.	So	keep	that	in	mind	when	placing	a	camera	on	the	map	to	show	to	the	user.

Let’s	start	off	with	a	single-view	controller	app.	Place	a	map	view	on	your	view	and	hook
it	up	to	your	code.	I’ve	named	mine	“map.”	When	your	view	gets	loaded,	make	sure	that
your	map	type	is	one	of	the	aforementioned	flyover	modes:

 map.mapType = .SatelliteFlyover

 map.showsBuildings = true

Then	when	your	view	appears	on	the	screen,	set	the	camera	on	your	map:

 let loc = CLLocationCoordinate2D(latitude: 59.328564,

 longitude: 18.061448)

 let altitude: CLLocationDistance = 500

 let pitch = CGFloat(45)

 let heading: CLLocationDirection = 90

 let c = MKMapCamera(lookingAtCenterCoordinate: loc,

 fromDistance: altitude, pitch: pitch, heading: heading)

 map.setCamera(c, animated: true)

Run	this	code	on	a	real	device	(this	doesn’t	work	very	well	on	simulator)	and	you’ll	get	a
display	along	the	lines	of	Figure	8-8.

Figure	8-8.	The	Stockholm	central	station	is	shown	here	under	satellite	flyover	mode

See	Also
Recipe	8.5,	Recipe	8.6,	and	Recipe	8.7

Chapter	9.	UI	Testing

Apple	added	quite	a	good	framework	for	UI	testing	in	Xcode	7.	This	is	so	much	fun,	I	am
sure	you	are	going	to	enjoy	writing	UI	tests.	UI	tests	go	hand-in-hand	with	accessibility,	so
knowing	a	bit	about	that	is	very	useful,	if	not	necessary.

When	you	are	debugging	accessibility-enabled	apps	on	the	simulator,	you	may	want	to	use
a	really	handy	dev	tool	that	comes	with	Xcode:	the	Accessibility	inspector	(Figure	9-1).
You	can	find	it	by	right-clicking	Xcode’s	icon	in	the	Dock	and	then	choosing	Accessibility
Inspector	from	Open	Developer	Tool.	The	Accessibility	inspector	allows	you	to	move
your	mouse	over	items	on	the	screen	and	then	get	information	about	their	accessibility
properties,	such	as	their	values,	identifiers,	etc.	I	suggest	that	you	use	this	program
whenever	you	want	to	figure	out	the	identifiers,	labels,	and	values	of	UI	components	on
your	views.

In	this	chapter	we	will	have	a	look	at	how	to	write	UI	tests	and	evaluate	the	results.	We
will	use	Xcode’s	automated	UI	tests	and	also	write	some	tests	by	hand.

9.1	Preparing	Your	Project	for	UI	Testing

Problem
You	either	have	an	existing	app	or	want	to	create	a	new	app,	and	you	want	to	ensure	that
you	have	some	UI	testing	capabilities	built	into	your	app	so	that	you	can	get	started
writing	UI	tests.

Figure	9-1.	The	Accessibility	inspector	shows	information	for	a	button	on	the	screen,	in	the	simulator

Solution
If	you	have	an	existing	project,	simply	add	a	new	UI	Test	target	to	your	project.	If	you	are
creating	a	new	project	from	scratch,	you	can	add	a	UI	Test	target	in	the	creation	process.

Discussion
If	you	are	starting	a	new	app	from	scratch,	upon	setting	your	project’s	properties,	you	will
be	given	a	chance	to	create	a	UI	testing	target	(see	Figure	9-2).	Enable	the	“Include	UI
Tests”	option.

If	you	have	an	existing	project	and	want	to	add	a	new	UI	testing	target	to	it,	create	a	new
target.	In	the	templates	screen,	under	iOS,	choose	Test	and	then	“Cocoa	Touch	UI	Testing
Bundle”	(see	Figure	9-3).

Figure	9-2.	The	“Include	UI	Tests”	option	in	the	Xcode’s	new	project	sheet

In	the	next	screen,	you	will	then	be	asked	on	which	target	inside	your	project	you	want	to
create	the	UI	testing	target.	Make	sure	that	you	choose	the	right	target.	You	can	change
this	later,	if	you	want,	from	the	properties	of	your	UI	Test	target	(see	Figure	9-4).

Figure	9-3.	You	can	also	add	a	new	UI	testing	bundle	to	your	existing	apps

Figure	9-4.	You	can	change	the	target	to	which	your	UI	tests	are	attached	even	after	the	creation	of	your	UI	Test	target

9.2	Automating	UI	Test	Scripts

Problem
You	want	Xcode	to	generate	most,	if	not	all,	of	your	UI	testing	code.	You	can	write	more
UI	testing	code	in	Swift,	but	it’s	useful	to	take	advantage	of	what	Xcode	gives	you	for
free.

Solution
Use	the	new	record	button	in	Xcode	when	you	are	in	your	UI	testing	target’s	code	(see	the
red	circle	near	the	upper-left	corner	of	Figure	9-5).	This	will	really	be	handy	if	you	want	to
automatically	get	all	your	UI	test	codes	written	for	you	(but	sometimes	you’ll	still	have	to
write	some	yourself).

Figure	9-5.	The	little	circular	record	button	on	the	debugger	section	of	Xcode’s	window	automatically	gets	UI	test	codes

NOTE
You	can	write	all	your	UI	tests	in	pure	Swift	code.	No	more	mocking	around	with	JavaScript.	Jeez,	isn’t
that	a	relief?!

Discussion
Let’s	say	that	you	have	a	UI	that	looks	similar	to	that	shown	in	Figure	9-6.	In	this	UI,	the
user	is	allowed	to	enter	some	text	in	the	text	field	at	the	top	of	the	screen.	Once	she	is
done,	she	can	just	press	the	button	and	the	code	will	translate	her	input	into	its	equivalent
capitalized	string	and	place	it	in	the	label	at	the	bottom.

Figure	9-6.	Sample	UI	with	text	fields	and	button

I	assume	that	you	have	arranged	these	UI	components	inside	a	storyboard.	In	the	Identity
inspector	in	IB,	set	the	accessibility	label	of	your	text	field	to	“Full	Name,”	the	label	for
your	button	to	“Capitalize,”	and	your	label	to	“Capitalized	String.”	Now	hook	up	your	text
field	and	your	label	to	your	code	under	the	names	of	“lbl”	and	“txtField”	as	I’ve	done.	It
just	makes	understanding	the	code	easier.	Otherwise	you	can	name	them	what	you	want.
Then	hook	the	action	of	your	button	to	your	code.	I’ve	named	this	action	method
capitalize().	Now	when	the	user	presses	the	button,	we	read	the	text	and	capitalize	it:

 @IBAction func capitalize() {

 guard let txt = txtField.text where txt.characters.count > 0 else{

 return

 }

 lbl.text = txt.uppercaseString

 lbl.accessibilityValue = lbl.text

 }

Now	head	over	to	the	main	Swift	file	for	your	UI	tests	and	you	should	see	a	simple	and
empty	method	usually	named	testExample().	Put	your	cursor	inside	that	method	and
then	press	the	record	button.	Xcode	will	open	your	app	and	you	will	be	able	to	interact
with	your	app	as	you	would	normally.	Acting	as	a	user	would	be	expected	to	act,	select	the
text	field	by	tapping	on	it	and	then	type	some	text	in	it	like	“Hello,	World!”	Finally,	press
the	capitalize	button.	Xcode	will	generate	a	test	that	looks	more	or	less	like:

 let app = XCUIApplication()

 let fullNameTextField = app.textFields["Full Name"]

 fullNameTextField.tap()

 fullNameTextField.typeText("Hello, World")

 app.buttons["Capitalize"].tap()

We	have	a	problem,	Watson!	We	now	need	to	make	sure	that	the	capitalized	text	inside	our
label	is	correctly	capitalized.	How	can	we	do	that	in	Xcode	and	get	Xcode	to	generate	the
code	for	us?	Well,	the	answer	is:	we	can’t!	This	is	a	logical	task	that	you	cannot	automate
with	Xcode,	so	let’s	do	it	ourselves.	In	the	app	object,	there	is	a	property	called
staticTexts,	so	let’s	get	our	label	from	there:

 let lbl = app.staticTexts["Capitalized String"]

This	will	give	us	an	item	of	type	XCUIElement.	The	app	object	is	of	type
XCUIApplication,	just	so	you	know.	Every	element	has	a	value	property	that	is	an
optional	value	of	type	AnyObject.	For	our	label,	this	is	going	to	contain	a	string.	So	let’s
read	its	value	as	a	string	and	then	compare	it	with	the	string	that	we	expect	it	to	be:

 let enteredString = "Hello, World!"

 let expectedString = enteredString.uppercaseString

 let app = XCUIApplication()

 let fullNameTextField = app.textFields["Full Name"]

 fullNameTextField.tap()

 fullNameTextField.typeText(enteredString)

 app.buttons["Capitalize"].tap()

 let lbl = app.staticTexts["Capitalized String"]

 XCTAssert(lbl.value as! String == expectedString)

NOTE
I	took	the	opportunity	to	put	the	entered	and	expected	strings	inside	string	objects	so	that	we	don’t	have	to
write	them	multiple	times.

Now	press	the	little	play	button	next	to	your	test	method	and	let	Xcode	do	its	thing.	You
should	now	see	that	the	text	has	succeeded	if	everything	went	well.

9.3	Testing	Text	Fields,	Buttons,	and	Labels

Problem
You	want	to	create	UI	tests	to	work	with	instances	of	UITextField,	UIButton,	and
UILabel.

Solution
All	the	aforementioned	items	are	instances	of	type	XCUIElement.	That	means	that	you	can
work	with	some	really	cool	properties	of	them	in	UI	testing,	such	as	the	followings:

exists

title

label

enabled

frame

debugDescription

descendantsMatchingType(_:)

childrenMatchingType(_:)

The	last	two	in	the	list	are	a	bit	more	advanced	than	what	I’d	like	to	discuss	in	this	recipe,
so	we	are	going	to	talk	about	them	later	in	this	chapter	when	we	discuss	queries.

Discussion
Let’s	say	that	you	have	a	label	and	a	button.	When	the	button	is	pressed,	you	are	hiding
the	label	(by	setting	its	hidden	property	to	true).	You	now	want	to	write	a	UI	test	to	see
whether	the	desired	effect	actually	happens.	I	assume	that	you’ve	already	set	up	your	UI
and	you’ve	given	an	accessibility	label	of	“Button”	to	the	button	and	“Label”	to	the	label.

NOTE
I	recommend	that	you	do	as	much	as	possible	in	Xcode’s	automated	recording	system,	where	you	can	just
visually	see	your	UI	and	then	let	Xcode	write	your	UI	test	code	for	you.	So	I	will	do	that,	not	only	in	this
recipe,	but	as	much	as	possible	in	all	other	recipes	in	this	book	if	appropriate.

So	open	the	recording	section	of	UI	tests	(see	Figure	9-5)	and	press	the	button.	The	code
that	you’ll	get	will	be	similar	to	this:

 let app = XCUIApplication()

 app.buttons["Button"].tap()

You	can	see	that	the	app	object	has	a	property	called	buttons	that	returns	an	array	of	all
buttons	that	are	on	the	screen.	That	itself	is	awesome,	in	my	opinion.	Then	the	tap()
method	is	called	on	the	button.	We	want	to	find	the	label	now:

 let lbl = app.staticTexts["Label"]

As	you	can	see,	the	app	object	has	a	property	called	staticTexts	that	is	an	array	of
labels.	Any	label,	anywhere.	That’s	really	cool	and	powerful.	Regardless	of	where	the
label	is	and	who	is	the	parent	of	the	label,	this	property	will	return	that	label.	Now	we
want	to	find	whether	that	label	is	on	screen:

 XCTAssert(lbl.exists == false)

You	can,	of	course,	also	read	the	value	of	a	text	field.	You	can	also	use	the	debugger	to
inspect	the	value	property	of	a	text	field	element	using	the	po	command.	You	can	find	all
text	fields	that	are	currently	on	the	screen	using	the	textFields	property	of	the	app	that
you	instantiated	with	XCUIApplication().

Here	is	an	example	where	I	try	to	find	a	text	field	on	the	screen	with	a	specific
accessibility	label	that	I	have	set	in	my	storyboard:

 let app = XCUIApplication()

 let txtField = app.textFields["MyTextField"]

 XCTAssert(txtField.exists)

 XCTAssert(txtField.value != nil)

 let txt = txtField.value as! String

 XCTAssert(txt.characters.count > 0)

See	Also
Recipe	9.1	and	Recipe	9.2

9.4	Finding	UI	Components

Problem
You	want	to	be	able	to	find	your	UI	components	wherever	they	are,	using	simple	to
complex	queries.

Solution
Construct	queries	of	type	XCUIElementQuery.	Link	these	queries	together	to	create	even
more	complicated	queries	and	find	your	UI	elements.

The	XCUIElement	class	conforms	to	the	XCUIElementTypeQueryProvider	protocol.	I	am
not	going	to	waste	space	here	and	copy/paste	Apple’s	code	in	that	protocol,	but	if	you
have	a	look	at	it	yourself,	you’ll	see	that	it	is	made	out	of	a	massive	list	of	properties	such
as	groups,	windows,	dialogs,	buttons,	etc.

Here	is	how	I	recommend	going	about	finding	your	UI	elements	using	this	knowledge:

1.	 Instantiate	your	app	with	XCUIApplication().

2.	 Refer	to	the	windows	property	of	the	app	object	to	get	all	the	windows	in	the	app	as	a
query	object	of	type	XCUIElementQuery.

3.	 Now	that	you	have	a	query	object,	use	the	childrenMatchingType(_:)	method	to
find	children	inside	this	query.

Let’s	say	that	you	have	a	simple	view	controller.	Inside	that	view	controller’s	view,	you
dump	another	view,	and	inside	that	view	you	dump	a	button	so	that	your	view	hierarchy
looks	something	like	Figure	9-7.	

Figure	9-7.	Hierarchy	of	views	in	this	sample	app

This	hierarchy	was	created	by	placing	a	view	inside	the	view	controller’s	view,	and

placing	a	button	inside	that	view.	We	are	now	going	to	try	to	find	that	button	and	tap	it:

 let app = XCUIApplication()

 let view = app.windows.childrenMatchingType(.Unknown)

 let innerView = view.childrenMatchingType(.Unknown)

 let btn = innerView.childrenMatchingType(.Button).elementBoundByIndex(0)

 XCTAssert(btn.exists)

 btn.tap()

Discussion
Let’s	write	the	code	that	we	wrote	just	now,	but	in	a	more	direct	and	compact	way	using
the	descendantsMatchingType(_:)	method:

 let app = XCUIApplication()

 let btn = app.windows.childrenMatchingType(.Unknown)

 .descendantsMatchingType(.Button).elementBoundByIndex(0)

 XCTAssert(btn.exists)

 btn.tap()

Here	I	am	looking	at	the	children	of	all	my	windows	that	are	of	type	Unknown	(view)	and
then	finding	a	button	inside	that	view,	wherever	that	button	may	be	and	in	whichever
subview	it	may	have	been	bundled	up.	Can	this	be	written	in	a	simpler	way?	You	betcha:

 let btn = XCUIApplication().buttons.elementBoundByIndex(0)

 XCTAssert(btn.exists)

 btn.tap()

NOTE
The	buttons	property	of	our	app	object	is	a	query	that	returns	all	the	buttons	that	are	descendants	of	any
window	inside	the	app.	Isn’t	that	awesome?

Those	of	you	with	a	curious	mind	are	probably	thinking,	“Can	this	be	written	in	a	more
complex	way?”	Well	yes,	I	am	glad	that	you	asked:

 let mainView = XCUIApplication().windows.childrenMatchingType(.Unknown)

 let viewsWithButton = mainView.descendantsMatchingType(.Unknown)

 .containingType(.Button, identifier: nil)

 XCTAssert(viewsWithButton.count > 0)

 let btn = viewsWithButton.childrenMatchingType(.Button)

 .elementBoundByIndex(0)

 XCTAssert(btn.exists)

 btn.tap()

Here	I	am	first	finding	the	main	view	inside	the	view	controller	that	is	on	screen.	Then	I
am	finding	all	views	that	have	a	button	inside	them	as	a	first	child	using	the	awesome
containingType(_:identifier:)	method.	After	I	have	all	the	views	that	have	buttons
in	them,	I	find	the	first	button	inside	the	first	view	and	then	tap	it.

Now	let’s	take	the	same	view	hierarchy,	but	this	time	we	will	use	predicates	of	type
NSPredicate	to	find	our	button.	There	are	two	handy	methods	on	XCUIElementQuery

that	we	can	use	to	find	elements	with	predicates:

elementMatchingPredicate(_:)

matchingPredicate(_:)

The	first	method	will	find	an	element	that	matches	a	given	predicate	(so	your	result	has	to
be	unique)	and	the	second	method	finds	all	elements	that	match	a	given	predicate.	I	now
want	to	find	a	button	inside	my	UI	with	a	specific	title:

 let app = XCUIApplication()

 let btns = app.buttons.matchingPredicate(

 NSPredicate(format: "title like[c] 'Button'"))

 XCTAssert(btns.count >= 1)

 let btn = btns.elementBoundByIndex(0)

 XCTAssert(btn.exists)

Now	another	example.	Let’s	say	we	want	to	write	a	test	script	that	goes	through	all	the
disabled	buttons	on	our	UI:

 let app = XCUIApplication()

 let disabledBtns = app.buttons.containingPredicate(

 NSPredicate(format: "enabled == false"))

 XCTAssert(disabledBtns.count > 1)

 for n in 0..<disabledBtns.count{

 let btn = disabledBtns.elementBoundByIndex(n)

 XCTAssert(btn.exists)

 }

See	Also
Recipe	9.1,	Recipe	9.2,	and	Recipe	9.3

9.5	Long-Pressing	on	UI	Elements

Problem
You	want	to	be	able	to	simulate	long-pressing	on	a	UI	element	using	UI	tests.

Solution
Use	the	pressForDuration(_:)	method	of	XCUIElement.

Discussion
Create	a	single-view	app	and	when	your	view	gets	loaded,	add	a	long	gesture	recognizer
to	your	view.	The	following	code	waits	until	the	user	long-presses	the	view	for	5	seconds:

 override func viewDidLoad() {

 super.viewDidLoad()

 view.isAccessibilityElement = true

 let gr = UILongPressGestureRecognizer(target: self,

 action: "handleLongPress")

 gr.minimumPressDuration = 5

 view.addGestureRecognizer(gr)

 }

The	gesture	recognizer	is	hooked	to	a	method.	In	this	method,	we	will	show	an	alert
controller	and	ask	the	user	for	her	name.	Once	she	has	answered	the	question	and	pressed
the	Save	button	on	the	alert,	we	will	set	the	entered	value	as	the	accessibility	value	of	our
view	so	that	we	can	read	it	in	our	UI	tests:

 func handleLongPress(){

 let c = UIAlertController(title: "Name", message: "What is your name?",

 preferredStyle: .Alert)

 c.addAction(UIAlertAction(title: "Cancel", style: .Destructive,

 handler: nil))

 c.addAction(UIAlertAction(title: "Save", style: .Destructive){

 action in

 guard let fields = c.textFields where fields.count == 1 else{

 return

 }

 let txtField = fields[0]

 guard let txt = txtField.text where txt.characters.count > 0 else{

 return

 }

 self.view.accessibilityValue = txt

 })

 c.addTextFieldWithConfigurationHandler {txt in

 txt.placeholder = "Foo Bar"

 }

 presentViewController(c, animated: true, completion: nil)

 }

Now	let’s	go	to	our	UI	test	code	and	do	the	following:

1.	 Get	an	instance	of	our	app.

2.	 Find	our	view	object	with	the	childrenMatchingType(_:)	method	of	our	app.

3.	 Call	the	pressForDuration(_:)	method	on	it.

4.	 Call	the	typeText(_:)	method	of	our	app	object	and	find	the	Save	button	on	the
dialog.

5.	 Programmatically	press	the	save	button	using	the	tap()	method.

6.	 Check	the	value	of	our	view	and	check	it	against	the	value	that	we	entered	earlier.
They	should	match:

 let app = XCUIApplication()

 let view = app.windows.childrenMatchingType(.Unknown).elementBoundByIndex(0)

 view.pressForDuration(5)

 XCTAssert(app.alerts.count > 0)

 let text = "Foo Bar"

 app.typeText(text)

 let alert = app.alerts.elementBoundByIndex(0)

 let saveBtn = alert.descendantsMatchingType(.Button).matchingPredicate(

 NSPredicate(format: "title like[c] 'Save'")).elementBoundByIndex(0)

 saveBtn.tap()

 XCTAssert(view.value as! String == text)

NOTE
I	highly	recommend	that	you	always	start	by	using	the	auto	recorded	and	written	UI	tests	that	Xcode	can
create	for	you.	This	will	give	you	an	insight	into	how	you	can	find	your	UI	elements	better	on	the	screen.
Having	said	that,	Xcode	isn’t	always	so	intelligent	in	finding	the	UI	elements.

See	Also
Recipe	9.1	and	Recipe	9.2

9.6	Typing	Inside	Text	Fields

Problem
You	want	to	write	UI	tests	for	an	app	that	contains	text	fields.	You	want	to	be	able	to
activate	a	text	field,	type	some	text	in	it,	deactivate	it,	and	then	run	some	tests	on	the
results,	or	a	combination	of	the	aforementioned	scenarios.

Solution
Follow	these	steps:

1.	 Find	your	text	field	with	the	textFields	property	of	your	app	or	one	of	the	other
methods	mentioned	in	Recipe	9.4.

2.	 Call	the	tap()	method	on	your	text	field	to	activate	it.

3.	 Call	the	typeText(_:)	method	on	the	text	field	to	type	whatever	text	that	you	want.

4.	 Call	the	typeText(_:)	method	of	your	app	with	the	value	of
XCUIKeyboardKeyReturn	as	the	parameter.	This	will	simulate	pressing	the	Enter
button	on	the	keyboard.	Check	out	other	XCUIKeyboardKey	constant	values	such	as
XCUIKeyboardKeySpace	or	XCUIKeyboardKeyCommand.

5.	 Once	you	are	done,	read	the	value	property	of	your	text	field	element	as	String	and
do	your	tests	on	that.

Discussion
Create	a	single-view	app	and	place	a	text	field	on	it.	Set	the	accessory	label	of	that	text
field	to	“myText.”	Set	your	text	field’s	delegate	as	your	view	controller	and	make	your
view	controller	conform	to	UITextFieldDelegate.	Then	implement	the	notoriously
redundant	delegate	method	named	textFieldShouldReturn(_:)	so	that	pressing	the
return	button	on	the	keyboard	will	dismiss	the	keyboard	from	the	screen:

import UIKit

class ViewController: UIViewController, UITextFieldDelegate {

 func textFieldShouldReturn(textField: UITextField) -> Bool {

 textField.resignFirstResponder()

 return true

 }

}

Then	inside	your	UI	tests,	let’s	write	the	code	similar	to	what	I	suggested	in	the	solution
section	of	this	recipe:

 let app = XCUIApplication()

 let myText = app.textFields["myText"]

 myText.tap()

 let text1 = "Hello, World!"

 myText.typeText(text1)

 myText.typeText(XCUIKeyboardKeyDelete)

 app.typeText(XCUIKeyboardKeyReturn)

 XCTAssertEqual((myText.value as! String).characters.count,

 text1.characters.count - 1)

See	Also
Recipe	9.1	and	Recipe	9.3

9.7	Swiping	on	UI	Elements

Problem
You	want	to	simulate	swiping	on	various	UI	components	in	your	app.

Solution
Use	the	various	swipe	methods	on	XCUIElement	such	as	the	following:

swipeUp()

swipeDown()

swipeRight()

swipeleft()

Discussion
Let’s	set	our	root	view	controller	to	a	table	view	controller	and	program	the	table	view
controller	so	that	it	shows	10	hardcoded	cells	inside	it:

class ViewController: UITableViewController {

 let id = "c"

 lazy var items: [String] = {

 return Array(0..<10).map{"Item \($0)"}

 }()

 override func tableView(tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return items.count

 }

 override func tableView(tableView: UITableView,

 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let c = tableView.dequeueReusableCellWithIdentifier(id,

 forIndexPath: indexPath)

 c.textLabel!.text = items[indexPath.row]

 return c

 }

 override func tableView(tableView: UITableView,

 commitEditingStyle editingStyle: UITableViewCellEditingStyle,

 forRowAtIndexPath indexPath: NSIndexPath) {

 items.removeAtIndex(indexPath.row)

 tableView.deleteRowsAtIndexPaths([indexPath],

 withRowAnimation: .Automatic)

 }

}

With	this	code,	the	user	can	swipe	left	on	any	cell	and	then	press	the	Delete	button	to
delete	that	cell.	Let’s	test	this	in	our	UI	test.	This	is	what	I	am	going	to	do:

1.	 Get	the	handle	to	the	app.

2.	 Using	the	cells	property	of	the	app,	I	am	going	to	first	count	to	make	sure	there	are
initially	10	items	in	the	table	view.

3.	 I	am	then	going	to	find	the	fifth	item	and	swipe	left	on	it.

4.	 I	will	then	find	the	“Delete”	button	using	the	buttons	property	of	the	app	object	and

tap	on	it	with	the	tap()	method.

5.	 Then	I	will	assert	that	the	cell	was	deleted	for	sure	by	making	sure	the	cell’s	count	is
now	9	instead	of	10:

 let app = XCUIApplication()

 let cells = app.cells

 XCTAssertEqual(cells.count, 10)

 app.cells.elementBoundByIndex(4).swipeLeft()

 app.buttons["Delete"].tap()

 XCTAssertEqual(cells.count, 9)

See	Also
Recipe	9.2

9.8	Tapping	UI	Elements

Problem
You	want	to	be	able	to	simulate	various	ways	of	tapping	UI	elements	when	writing	your
UI	tests.

Solution
Use	one	or	a	combination	of	the	following	methods	of	the	XCUIElement	class:

tap()

doubleTap()

twoFingerTap()

NOTE
Double	tapping	is	two	taps,	with	one	finger.	The	two-finger	tap	is	one	tap,	but	with	two	fingers.

Discussion
Create	a	single-view	app	and	then	add	a	gesture	recognizer	to	the	view	that	sets	the
accessibility	of	the	view	whenever	two	fingers	have	been	tapped	on	the	view:

class ViewController: UIViewController {

 func handleTap(){

 view.accessibilityValue = "tapped"

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 view.isAccessibilityElement = true

 view.accessibilityValue = "untapped"

 view.accessibilityLabel = "myView"

 let tgr = UITapGestureRecognizer(target: self, action: "handleTap")

 tgr.numberOfTapsRequired = 1

 tgr.numberOfTouchesRequired = 2

 view.addGestureRecognizer(tgr)

 }

}

Now	our	UI	tests	will	do	a	two-finger	tap	on	the	view	and	check	its	value	before	and	after
to	make	sure	it	checks	out:

 let app = XCUIApplication()

 let view = app.descendantsMatchingType(.Unknown)["myView"]

 XCTAssert(view.exists)

 XCTAssert(view.value as! String == "untapped")

 view.twoFingerTap()

 XCTAssert(view.value as! String == "tapped")

See	Also
Recipe	9.3

Chapter	10.	Core	Motion

This	year,	Apple	finally	brought	some	long-awaited	features	into	the	Core	Motion
framework.	It’s	especially	exciting	that	the	same	capabilities,	or	some	version	of	them,	is
also	available	on	the	Apple	Watch.	This	is	great	news	for	us	developers	because	we	can
program	for	the	watch	in	a	more	native	way,	rather	than	reading	this	data	from	the	user’s
iPhone	and	sending	it	to	the	watch	with	Bluetooth.

There	are	a	couple	key	terms	I’ll	be	using	throughout	this	chapter	that	you	need	to	know
about:

Cadence

I	use	a	cadence	sensor	on	my	bicycle.	It	helps	me	figure	out	how	many	times	I	spin
my	pedals,	which	can	be	crucial	knowledge.	Think	about	riding	downhill	on	a
bicycle,	at	a	45-degree	angle,	for	20	minutes,	out	of	a	total	40-minute	bike	ride.	Your
total	calories	burned	and	effort	will	be	miscalculated	because	you	might	not	even
have	pedaled	when	going	downhill.	The	watch	actually	includes	a	cadence	sensor	for
running.

Pace

This	is	a	ratio,	dividing	the	time	you	have	moved	by	the	distance.	If	you’re	counting
in	meters,	for	instance,	your	pace	might	be	0.5	seconds	per	meter,	meaning	that	you
travelled	1	meter	in	half	a	second.

iOS	devices	can	provide	pace	and	cadence	information	when	it’s	available	from	the
pedometer.	Some	pedometers	might	not	have	this	information	available.	You	can	call	the
isPaceAvailable()	class	function	of	CMPedometer	to	find	out	whether	pace	information
is	available.	Similarly,	the	isCadenceAvailable()	class	method	of	CMPedometer	can	tell
you	whether	cadence	information	is	available.

NOTE
Import	the	CoreMotion	framework	into	your	project	before	attempting	to	run	the	code	we	write	in	this
chapter.

10.1	Querying	Pace	and	Cadence	Information

Problem
You	want	to	get	cadence	and	pace	information	from	the	pedometer	on	an	iOS	device.

Solution
Follow	these	steps:

1.	 Find	out	whether	cadence	and	pace	are	available.

2.	 Call	the	startPedometerUpdatesFromDate(_:withHandler:)	function	of
CMPedometer.

3.	 In	your	handler	block,	read	the	currentPace	and	currentCadence	properties	of	the
incoming	optional	CMPedometerData	object.

Discussion
Let’s	check	out	an	example:

 guard CMPedometer.isCadenceAvailable() &&

 CMPedometer.isPaceAvailable() else{

 print("Pace and cadence data are not available")

 return

 }

 let oneWeekAgo = NSDate(timeIntervalSinceNow: -(7 * 24 * 60 * 60))

 pedometer.startPedometerUpdatesFromDate(oneWeekAgo) {data, error in

 guard let pData = data where error == nil else{

 return

 }

 if let pace = pData.currentPace{

 print("Pace = \(pace)")

 }

 if let cadence = pData.currentCadence{

 print("Cadence = \(cadence)")

 }

 }

NOTE
When	you	finish	querying	pedometer	data,	always	remember	to	call	the	stopPedometerUpdates()
function	on	your	instance	of	CMPedometer.

10.2	Recording	and	Reading	Accelerometer	Data

Problem
You	want	iOS	to	accumulate	some	accelerometer	data	for	a	specific	number	of	seconds
and	then	batch	update	your	app	with	all	the	accelerometer	data	in	one	go.

Solution
Follow	these	steps:

1.	 Call	the	isAccelerometerRecordingAvailable()	class	function	on
CMSensorRecorder	and	abort	if	it	returns	false,	because	that	means	that
accelerometer	recording	is	not	available

2.	 Instantiate	CMSensorRecorder.

3.	 Call	the	recordAccelerometerFor(_:)	function	on	your	sensor	recorder	and	pass
the	number	of	seconds	for	which	you	want	to	record	accelerometer	data.

4.	 Go	into	a	background	thread	and	wait	for	your	data	if	you	want.

5.	 Call	the	accelerometerDataFrom(_:to:)	function	on	your	sensor	recorder	to	get
the	accelerometer	data	from	a	given	date	to	another	date.	The	return	value	of	this
function	is	a	CMSensorDataList	object,	which	is	enumerable.	Each	item	in	this
enumeration	is	of	type	CMRecordedAccelerometerData.

6.	 Read	the	value	of	each	CMRecordedAccelerometerData.	You’ll	have	properties
such	as	startDate,	timestamp,	and	acceleration,	which	is	of	type
CMAcceleration.

Discussion
I	mentioned	that	CMSensorDataList	is	enumerable.	That	means	it	conforms	to	the
NSFastEnumeration	protocol,	but	you	can	not	use	the	for x in…	syntax	on	this	type	of
enumerable	object.	You’ll	have	to	make	it	conform	to	the	SequenceType	protocol	and
implement	the	generate()	function	like	so:

extension CMSensorDataList : SequenceType{

 public func generate() -> NSFastGenerator {

 return NSFastGenerator(self)

 }

}

So	I’m	going	to	first	define	a	lazily	allocated	sensor	recorder.	If	sensor	information	is	not
available,	my	object	won’t	hang	around	in	the	memory:

 lazy var recorder = CMSensorRecorder()

Then	I	check	whether	sensor	information	is	available:

 guard CMSensorRecorder.isAccelerometerRecordingAvailable() else {

 print("Accelerometer data recording is not available")

 return

 }

Next	I	will	record	my	sensor	data	for	a	period:

 let duration = 3.0

 recorder.recordAccelerometerFor(duration)

Then	I	will	go	to	the	background	and	read	the	data:

 NSOperationQueue().addOperationWithBlock{[unowned recorder] in

 NSThread.sleepForTimeInterval(duration)

 let now = NSDate()

 let past = now.dateByAddingTimeInterval(-(duration))

 guard let data = recorder.accelerometerDataFrom(past, to: now) else{

 return

 }

 let accelerationData: [CMAcceleration] = data.map{

 //every $0 is CMRecordedAccelerometerData

 $0.acceleration

 }

 print(accelerationData)

 }

NOTE
It	is	important	to	enumerate	the	result	of	accelerometerDataFrom(_:to:)	on	a	non-UI	thread,	because
there	may	be	thousands	of	data	points	in	the	results.

Chapter	11.	Security

iOS	9	didn’t	change	much	with	regard	to	the	Security	framework.	A	few	things	were
added,	mainly	about	the	keychain.	There	are	also	some	additions	that	are	about
Application	Transport	Security,	or	ATS.	ATS	is	now	incorporated	into	iOS	9,	so	all	apps
compiled	with	Xcode	7,	linked	against	iOS	9,	and	running	under	iOS	9	will	by	default	use
HTTPS	for	all	their	network	traffic.	This	is	really	good,	and	not	so	good.	It	is	good
because	it	strongly	encourages	the	use	of	secure	connections	for	everything,	but
sometimes	it	can	be	annoying	to	force	using	a	secure	connection	for	everything!

There	are	also	some	changes	that	affect	the	way	we	can	store	values	in	the	keychain,	but
overall,	not	much	to	worry	about.

11.1	Protecting	Your	Network	Connections	with	ATS

Problem
You	want	to	control	the	details	about	the	HTTPS	channels	through	which	your	network
connections	go,	or	use	a	non-secure	channel	(HTTP).

I	do	not	personally	suggest	using	non-secure	connections.	However,	in	some	cases,	if	you
are	using	a	backend	that	does	not	provide	an	HTTPS	variant,	you	will	be	eventually	forced
to	go	through	HTTP.	In	this	chapter,	I’ll	help	you	figure	out	how	to	do	that	as	well.

Solution
As	I	said,	by	default,	all	domain	names	that	you	use	in	your	URLs	will	be	going	through
secure	channels.	But	you	can	indicate	specific	exceptions.	ATS	has	a	dictionary	key	in
your	Info.plist	file	called	NSAppTransportSecurity.	Under	that,	you	have	another
dictionary	key	called	NSExceptionDomains.	Under	this	key	you	can	list	specific	domain
names	that	don’t	use	ATS.

Discussion
If	you	want	to	disable	ATS	entirely	so	that	all	your	network	connections	go	through
channels	specified	in	your	code,	simply	insert	the	NSAllowsArbitraryLoads	key	under
the	NSExceptionDomains	key.	The	NSAllowsArbitraryLoads	key	accepts	a	Boolean
value.	If	set	to	true,	your	HTTP	connections	will	be	HTTP	and	HTTPS	will	be	HTTPS.

Alternatively,	under	the	NSExceptionDomains	key,	you	can	specify	the	name	of	your
domain	and	set	its	data	type	to	be	a	dictionary.	Under	this	dictionary,	you	can	have	the
following	keys:

NSExceptionAllowsInsecureHTTPLoads

If	set	to	true,	allows	HTTP	loads	on	the	given	domain.

NSIncludesSubdomains

If	set	to	true,	includes	all	the	subdomains	of	the	given	domain	as	an	exception	from
ATS.

NSRequiresCertificateTransparency

Dictates	that	the	SSL	certificate	of	the	given	URL	has	to	include	certificate-
transparency	information.	Check	certificate	transparency	out	on	the	Web	for	more
information.

NSExceptionMinimumTLSVersion

This	is	a	key	to	which	you	assign	a	string	value	to	specify	the	minimum	TLS	version
for	the	connection.	Values	can	be	TLSv1.0,	TLSv1.1,	or	TLSv1.2.

So	if	I	want	to	disable	ATS	completely,	my	plist	will	look	like	this:

<plist version="1.0">

<dict>

 <key>NSExceptionDomains</key>

 <dict>

 <key>NSAllowsArbitraryLoads</key>

 <true/>

 </dict>

</dict>

</plist>

How	about	if	I	want	to	have	ATS	enabled	but	not	for	mydomain.com?	I’d	also	like	to
request	certificate	transparency	and	I’d	like	ATS	to	be	disabled	for	subdomains	as	well:

<plist version="1.0">

<dict>

 <key>NSExceptionDomains</key>

 <dict>

 <key>NSAllowsArbitraryLoads</key>

 <false/>

 <key>mydomain.com</key>

 <dict>

 <key>NSExceptionAllowsInsecureHTTPLoads</key>

 <true/>

 <key>NSIncludesSubdomains</key>

 <true/>

 <key>NSRequiresCertificateTransparency</key>

 <true/>

 </dict>

 </dict>

</dict>

</plist>

How	about	if	I	want	to	enable	ATS	only	for	mydomain.com?

<plist version="1.0">

<dict>

 <key>NSExceptionDomains</key>

 <dict>

 <key>NSAllowsArbitraryLoads</key>

 <true/>

 <key>mydomain.com</key>

 <dict>

 <key>NSExceptionAllowsInsecureHTTPLoads</key>

 <false/>

 <key>NSIncludesSubdomains</key>

 <true/>

 </dict>

 </dict>

</dict>

</plist>

See	Also
Recipe	3.6

11.2	Binding	Keychain	Items	to	Passcode	and	Touch
ID

Problem
You	want	to	create	a	secure	item	in	the	keychain	that	is	accessible	only	if	the	user	has	set	a
passcode	on	her	device	and	has	enrolled	into	using	the	device	with	Touch	ID.	So	at	least
one	finger	has	to	have	been	registered.

Solution
Follow	these	steps:

1.	 Create	your	access	control	flags	with	the	SecAccessControlCreateWithFlags
function.	Pass	the	value	of
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly	as	the	protection
parameter	and	the	value	of	SecAccessControlCreateFlags.TouchIDAny	as	the
flags	parameter.

2.	 In	your	secure	dictionary,	add	a	key	named	kSecUseAuthenticationUI	and	set	its
value	to	kSecUseAuthenticationUIAllow.	This	allows	the	user	to	unlock	the
secure	key	with	her	device	passcode	or	Touch	ID.

3.	 In	your	secure	dictionary,	add	a	key	named	kSecAttrAccessControl	and	set	its
value	to	the	return	value	of	the	SecAccessControlCreateWithFlags	function	that
you	called	earlier.

Discussion
For	extra	security,	you	might	want	to	sometimes	bind	secure	items	in	the	keychain	to
Touch	ID	and	a	passcode	on	a	device.	As	explained	before,	you’d	have	to	first	create	your
access	control	flags	with	the	SecAccessControlCreateWithFlags	function	and	then
proceed	to	use	the	SecItemAdd	function	as	you	normally	would,	to	add	the	secure	item	to
the	keychain.

The	following	example	saves	a	string	(as	a	password)	into	the	keychain,	and	binds	it	to	the
user’s	passcode	and	Touch	ID.	First,	start	off	by	creating	the	access	control	flags:

 guard let flags =

 SecAccessControlCreateWithFlags(kCFAllocatorDefault,

 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,

 SecAccessControlCreateFlags.TouchIDAny, nil) else{

 print("Could not create the access control flags")

 return

 }

Then	define	the	data	that	you	want	to	store	in	the	keychain:

 let password = "some string"

 guard let data = password.dataUsingEncoding(NSUTF8StringEncoding) else{

 print("Could not get data from string")

 return

 }

The	next	step	is	to	create	the	dictionary	that	you	need	to	pass	to	the	SecItemAdd	function
later	with	all	your	flags:

 let service = "onlinePasswords"

 let attrs = [

 kSecClass.str() : kSecClassGenericPassword.str(),

 kSecAttrService.str() : service,

 kSecValueData.str() : data,

 kSecUseAuthenticationUI.str() : kSecUseAuthenticationUIAllow.str(),

 kSecAttrAccessControl.str() : flags,

]

Last	but	not	least,	asynchronously	add	the	item	to	the	keychain:

 NSOperationQueue().addOperationWithBlock{

 guard SecItemAdd(attrs, nil) == errSecSuccess else{

 print("Could not add the item to the keychain")

 return

 }

 print("Successfully added the item to keychain")

 }

Earlier,	we	used	the	value	of	SecAccessControlCreateFlags.TouchIDAny	in	the	flags
parameter	of	the	SecAccessControlCreateWithFlags	function	to	specify	that	we	need
Touch	ID	to	be	enabled	on	the	current	device	before	our	secure	item	can	be	read.	There	is
another	value	in	SecAccessControlCreateFlags	that	you	might	find	useful:
TouchIDCurrentSet.	If	you	use	this	value,	your	secure	item	will	still	require	Touch	ID,
but	it	will	be	invalidated	by	a	change	to	the	current	set	of	enrolled	Touch	ID	fingers.	If	the
user	adds	a	new	finger	to	Touch	ID	or	removes	an	existing	one,	your	item	will	be
invalidated	and	won’t	be	readable.

11.3	Opening	URLs	Safely

Problem
You	want	to	find	out	whether	an	app	on	the	user’s	device	can	open	a	specific	URL.

Solution
Follow	these	steps:

1.	 Define	the	key	of	LSApplicationQueriesSchemes	in	your	plist	file	as	an	array.

2.	 Under	that	array,	define	your	URL	schemes	as	strings.	These	are	the	URL	schemes
that	you	want	your	app	to	be	able	to	open.

3.	 In	your	app,	issue	the	canOpenUrl(_:)	method	on	your	shared	app.

4.	 If	you	can	open	the	URL,	proceed	to	open	it	using	the	openUrl(_:)	method	of	the
shared	app.

5.	 If	you	cannot	open	the	URL,	offer	an	alternative	to	your	user	if	possible.

Discussion
In	iOS,	previously,	apps	could	issue	the	canOpenUrl(_:)	call	to	find	out	whether	a	URL
could	be	opened	on	the	device	by	another	application.	For	instance,	I	could	find	out
whether	I	can	open	“instagram://app”	(see	iPhone	Hooks	:	Instagram	Documentation).	If
that’s	possible,	I	would	know	that	Instagram	is	installed	on	the	user’s	device.	This
technique	was	used	by	some	apps	to	find	which	other	apps	are	installed	on	the	user’s
device.	This	information	was	then	used	for	marketing,	among	other	things.

In	iOS	9,	you	need	to	use	the	plist	file	to	define	the	URLs	that	you	want	to	be	able	to	open
or	to	check	whether	URLs	can	be	opened.	If	you	define	too	many	APIs	or	unrelated	APIs,
your	app	might	get	rejected.	If	you	try	to	open	a	URL	that	you	have	not	defined	in	the
plist,	you	will	get	a	failure.	You	can	use	canOpenUrl(_:)	to	check	whether	you	can
access	a	URL	before	trying	to	open	it:	the	method	returns	true	if	you	have	indicated	that
you	can	open	that	kind	of	URL,	and	false	otherwise.

Let’s	check	out	an	example.	I’ll	try	to	find	first	whether	I	can	open	the	Instagram	app	on
the	user’s	device:

 guard let url = NSURL(string: "instagram://app") where

 UIApplication.sharedApplication().canOpenURL(url) else{

 return

 }

Now	that	I	know	I	can	open	the	URL,	I’ll	proceed	to	do	so:

 guard UIApplication.sharedApplication().openURL(url) else{

 print("Could not open Instagram")

 return

 }

 print("Successfully opened Instagram")

I’ll	then	go	into	the	plist	file	and	tell	iOS	that	I	want	to	open	URL	schemes	starting	with
“instagram”:

<plist version="1.0">

<array>

 <string>instagram</string>

</array>

</plist>

https://instagram.com/developer/mobile-sharing/iphone-hooks/

11.4	Authenticating	the	User	with	Touch	ID	and
Timeout

Problem
You	want	to	ask	the	user	for	permission	to	read	secure	content	in	the	keychain.	This
includes	setting	a	timeout	after	which	you	will	no	longer	have	access.

Solution
Follow	these	steps:

1.	 Create	your	access	control	flags	with	SecAccessControlCreateWithFlags,	as	you
saw	in	Recipe	11.2.

2.	 Instantiate	a	context	object	of	type	LAContext.

3.	 Set	the	touchIDAuthenticationAllowableReuseDuration	property	of	your
context	to	LATouchIDAuthenticationMaximumAllowableReuseDuration,	so	your
context	will	lock	out	only	after	the	maximum	allowed	number	of	seconds.

4.	 Call	the	evaluateAccessControl(_:operation:localizedReason:)	method	on
your	context	to	get	access	to	the	access	control.

5.	 If	you	gain	access,	create	your	keychain	request	dictionary	and	include	the
kSecUseAuthenticationContext	key.	The	value	of	this	key	will	be	your	context
object.

6.	 Use	the	SecItemCopyMatching	function	with	your	dictionary	to	read	a	secure	object
with	the	given	access	controls.

Discussion
Whenever	you	write	an	item	to	the	keychain,	you	can	do	so	with	the	access	controls	as	we
saw	in	Recipe	11.2.	So	assume	that	your	item	requires	Touch	ID.	If	you	want	to	read	that
item	now,	you	need	to	request	permission	to	do	so.	Let’s	define	our	context	and	the	reason
why	want	to	read	the	item:

 let context = LAContext()

 let reason = "To unlock previously stored security phrase"

Then	define	your	access	controls	as	before:

 guard let flags =

 SecAccessControlCreateWithFlags(kCFAllocatorDefault,

 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,

 SecAccessControlCreateFlags.TouchIDAny, nil) else{

 print("Could not create the access control flags")

 return

 }

Also	specify	how	long	you	can	get	access.	After	this	time	passes,	the	user	will	be	forced	to
use	Touch	ID	again	to	unlock	the	context:

 context.touchIDAuthenticationAllowableReuseDuration =

 LATouchIDAuthenticationMaximumAllowableReuseDuration

Last	but	not	least,	gain	access	to	the	given	access	controls	and	read	the	item	if	possible:

 context.evaluateAccessControl(flags,

 operation: LAAccessControlOperation.UseItem,

 localizedReason: reason) {[unowned context] succ, err in

 guard succ && err == nil else {

 print("Could not evaluate the access control")

 if let e = err {

 print("Error = \(e)")

 }

 return

 }

 print("Successfully evaluated the access control")

 let service = "onlinePasswords"

 let attrs = [

 kSecClass.str() : kSecClassGenericPassword.str(),

 kSecAttrService.str() : service,

 kSecUseAuthenticationUI.str() : kSecUseAuthenticationUIAllow.str(),

 kSecAttrAccessControl.str() : flags,

 kSecReturnData.str() : kCFBooleanTrue,

 kSecUseAuthenticationContext.str() : context,

]

 //now attempt to use the attrs with SecItemCopyMatching

 print(attrs)

 }

The	operation	argument	of	the
evaluateAccessControl(_:operation:localizedReason:)	method	takes	in	a	value	of
type	LAAccessControlOperation	that	indicates	the	type	of	operation	you	want	to
perform.	Some	of	the	values	that	you	can	use	are	UseItem,	CreateItem,	CreateKey,	and
UseKeySign.

See	Also
Recipe	11.2

Chapter	12.	Multimedia

The	current	version	of	iOS	brings	some	changes	to	multimedia	playback	and	functionality,
especially	the	AVFoundation	framework.	In	this	chapter,	we	will	have	a	look	at	those
additions	and	some	of	the	changes.

NOTE
Make	sure	that	you	have	imported	the	AVFoundation	framework	in	your	app	before	running	the	code	in	this
chapter.

12.1	Reading	Out	Text	with	the	Default	Siri	Alex	Voice

Problem
You	want	to	use	the	default	Siri	Alex	voice	on	a	device	to	speak	some	text.

Solution
Instantiate	AVSpeechSynthesisVoice	with	the	identifier	initializer	and	pass	the	value
of	AVSpeechSynthesisVoiceIdentifierAlex	to	it.

Discussion
Let’s	create	an	example	out	of	this.	Create	your	UI	so	that	it	looks	like	Figure	12-1.	Place
a	text	view	on	the	screen	and	a	bar	button	item	in	your	navigation	bar.	When	the	button	is
pressed,	you	will	ask	Siri	to	speak	out	the	text	inside	the	text	view.

Figure	12-1.	Text	view	and	button	in	the	UI

I’ve	linked	the	text	view	to	a	property	in	my	view	controller	called	textView:

 @IBOutlet var textView: UITextView!

When	the	Read	button	is	pressed,	check	first	whether	Alex	is	available:

 guard let voice = AVSpeechSynthesisVoice(identifier:

 AVSpeechSynthesisVoiceIdentifierAlex) else{

 print("Alex is not available")

 return

 }

Instances	of	AVSpeechSynthesisVoice	have	properties	such	as	identifier,	quality,
and	name.	The	identifier	can	be	used	later	to	reconstruct	another	speech	object.	If	all	you
know	is	the	identifier,	then	you	can	re-create	the	speech	object	using	that.	The	quality
property	is	of	type	AVSpeechSynthesisVoiceQuality	and	can	be	equal	to	values	such	as
Default	or	Enhanced.	Let’s	print	these	values	to	the	console:

 print("id = \(voice.identifier)")

 print("quality = \(voice.quality)")

 print("name = \(voice.name)")

Then	create	the	voice	object	(of	type	AVSpeechUtterance)	with	your	text	view’s	text:

 let toSay = AVSpeechUtterance(string: textView.text)

 toSay.voice = voice

Last	but	not	least,	instantiate	the	voice	synthesizer	of	type	AVSpeechSynthesizer	and	ask
it	to	speak	out	the	voice	object:

 let alex = AVSpeechSynthesizer()

 alex.delegate = self

 alex.speakUtterance(toSay)

See	Also
Recipe	3.4	and	Recipe	3.7

12.2	Downloading	and	Preparing	Remote	Media	for
Playback

Problem
You	have	some	remote	assets	such	as	sound	files	and	would	like	to	download	them,	even
if	in	the	background.	Along	the	way,	you	want	to	provide	real-time	feedback	of	the
download	process.

Solution
Follow	these	steps:

1.	 Create	an	instance	of	AVURLAsset	with	the	URL	to	your	asset.

2.	 Use	the	backgroundSessionConfigurationWithIdentifier(_:)	class	method	on
NSURLSessionConfiguration	to	create	a	background	session	configuration.

3.	 Create	a	session	of	type	AVAssetDownloadURLSession	and	pass	your	configuration
to	it.

4.	 Construct	the	URL	where	your	asset	has	to	be	downloaded	onto	the	disk.

5.	 Use	the	assetDownloadTaskWithURLAsset(_:destinationURL:options)	method
of	your	session	to	create	a	download	task	of	type	AVAssetDownloadTask.

6.	 Call	the	resume()	method	on	your	task	to	start	the	task.

7.	 Conform	to	the	AVAssetDownloadDelegate	protocol	to	get	events	from	your	task.

NOTE
All	the	classes	I	discussed	whose	names	start	with	“AV”	are	in	the	AVFoundation	framework,	so	make	sure
to	import	it.

Discussion
Let’s	imagine	that	you	have	an	.mp4	file	that	you	want	to	download	and	play	back	in	your
app.	First	set	up	your	vc:

import UIKit

import AVFoundation

class ViewController: UIViewController, AVAssetDownloadDelegate {

 let url = NSURL(string: "http://localhost:8888/video.mp4")!

 let sessionId = "com.mycompany.background"

 let queue = NSOperationQueue()

 var task: AVAssetDownloadTask?

 var session: AVAssetDownloadURLSession?

 ...

NOTE
I	am	using	MAMP	to	start	a	local	server	on	my	machine	and	host	the	file	video.mp4	on	my	own	computer;
hence	the	URL	that	you	are	seeing.	You	can	and	probably	should	change	this	URL	to	a	valid	media	file	that
AVFoundation	can	handle,	like	mov	or	mp4.

Now	define	some	of	the	delegate	methods	defined	in	AVAssetDownloadDelegate	and
NSURLSessionTaskDelegate:

 func URLSession(session: NSURLSession, task: NSURLSessionTask,

 didCompleteWithError error: NSError?) {

 //code this

 }

 func URLSession(session: NSURLSession,

 assetDownloadTask: AVAssetDownloadTask,

 didLoadTimeRange timeRange: CMTimeRange,

 totalTimeRangesLoaded loadedTimeRanges: [NSValue],

 timeRangeExpectedToLoad: CMTimeRange) {

 //code this

 }

 func URLSession(session: NSURLSession,

 assetDownloadTask: AVAssetDownloadTask,

 didResolveMediaSelection resolvedMediaSelection: AVMediaSelection) {

 }

Next,	create	an	asset	by	its	URL.	At	the	same	time,	tell	the	system	that	you	don’t	want
cross-site	references	to	be	resolved	using	a	dictionary	with	a	key	equal	to
AVURLAssetReferenceRestrictionsKey	and	value	of
AVAssetReferenceRestrictions.ForbidCrossSiteReference:

 let options = [AVURLAssetReferenceRestrictionsKey :

 AVAssetReferenceRestrictions.ForbidCrossSiteReference.rawValue]

 let asset = AVURLAsset(URL: url, options: options)

Now	it’s	time	to	create	the	configuration	object	of	type	NSURLSessionConfiguration:

 let config = NSURLSessionConfiguration

 .backgroundSessionConfigurationWithIdentifier(sessionId)

Create	the	session	of	type	AVAssetDownloadURLSession:

 let session = AVAssetDownloadURLSession(configuration: config,

 assetDownloadDelegate: self, delegateQueue: queue)

 self.session = session

NOTE
You	must	have	noticed	that	I	keep	a	reference	to	the	session	and	the	task	that	we	are	going	to	create	soon.
This	is	so	we	can	refer	to	them	later	and	cancel	or	reuse	them	if	necessary.

Now	construct	the	URL	where	you	want	the	video	to	be	downloaded	on	disk,	using
NSFileManager:

 let fm = NSFileManager()

 let destinationUrl = try! fm.URLForDirectory(.CachesDirectory,

 inDomain: .UserDomainMask, appropriateForURL: url, create: true)

 .URLByAppendingPathComponent("file.mp4")

And	last	but	not	least,	construct	the	task	and	start	it:

 guard let task = session.assetDownloadTaskWithURLAsset(asset,

 destinationURL: destinationUrl, options: nil) else {

 print("Could not create the task")

 return

 }

 self.task = task

 task.resume()

12.3	Enabling	Spoken	Audio	Sessions

Problem
You	have	an	eBook	reading	app	(or	similar	app)	and	would	like	to	enable	a	specific	audio
session	that	allows	your	app’s	audio	to	be	paused	—	but	another	app	is	playing	back	voice
on	top	of	yours	(such	as	an	app	that	provides	navigation	information	with	voice).

Solution
Follow	these	steps:

1.	 Go	through	the	available	audio	session	categories	inside	the	availableCategories
property	of	your	audio	session	and	find	AVAudioSessionCategoryPlayback.

2.	 Go	through	values	inside	the	availableModes	property	of	your	audio	session	(of
type	AVAudioSession).	If	you	cannot	find	AVAudioSessionModeSpokenAudio,	exit
gracefully.

3.	 After	you	find	the	AVAudioSessionModeSpokenAudio	mode,	set	your	audio
category	to	AVAudioSessionCategoryPlayback	using	the
setCategory(_:withOptions:)	method	of	the	audio	session.

4.	 Activate	your	session	with	the	setActive(_:withOptions:)	method	of	your	audio
session.

Discussion
Suppose	you	are	developing	an	eBook	app	and	have	a	“Read”	button	in	the	UI	that	the
user	presses	to	ask	the	app	to	read	the	contents	of	the	book	out	loud.	For	this	you	can	use
the	AVAudioSessionModeSpokenAudio	audio	session	mode,	but	you	have	to	check	first
whether	that	mode	exists.	Use	the	availableModes	property	of	your	audio	session	to	find
this	information	out.

Let’s	work	on	an	example.	Let’s	find	the	AVAudioSessionCategoryPlayback	category
and	the	AVAudioSessionModeSpokenAudio	mode:

 let session = AVAudioSession.sharedInstance()

 guard session.availableCategories.filter(

 {$0 == AVAudioSessionCategoryPlayback}).count == 1 &&

 session.availableModes.filter(

 {$0 == AVAudioSessionModeSpokenAudio}).count == 1 else{

 print("Could not find the category or the mode")

 return

 }

After	you	confirm	that	the	category	and	mode	are	available,	set	the	category	and	mode	and
then	activate	your	audio	session:

 do{

 try session.setCategory(AVAudioSessionCategoryPlayback,

 withOptions:

 AVAudioSessionCategoryOptions.InterruptSpokenAudioAndMixWithOthers)

 try session.setMode(AVAudioSessionModeSpokenAudio)

 try session.setActive(true, withOptions:

 AVAudioSessionSetActiveOptions.NotifyOthersOnDeactivation)

 } catch let err{

 print("Error = \(err)")

 }

See	Also
Recipe	12.1

Chapter	13.	UI	Dynamics

UI	Dynamics	allow	you	to	create	very	nice	effects	on	your	UI	components,	such	as	gravity
and	collision	detection.	Let’s	say	that	you	have	two	buttons	on	the	screen	that	the	user	can
move	around.	You	could	create	opposing	gravity	fields	on	them	so	that	they	repel	each
other	and	cannot	be	dragged	into	each	other.	Or,	for	instance,	you	could	provide	a	more
live	UI	by	creating	a	turbulence	field	under	all	your	UI	components	so	that	they	move
around	automatically	ever	so	slightly	(or	through	a	noise	field,	as	described	in	Recipe
13.4)	even	when	the	user	is	not	interacting	with	them.	All	of	this	is	possible	with	the	tools
that	Apple	has	given	you	in	UIKit.	You	don’t	have	to	use	any	other	framework	to	dig	into
UI	Dynamics.

One	of	the	basic	concepts	in	UI	Dynamics	is	an	animator.	Animator	objects,	which	are	of
type	UIDynamicAnimator,	hold	every	other	effect	together	and	orchestrate	all	the	effects.
For	instance,	if	you	have	collision	detection	and	gravity	effects,	the	animator	decides	how
the	pull	on	an	object	through	gravity	will	work	hand	in	hand	with	the	collision	detection
around	the	edges	of	your	reference	view.

Reference	views	are	like	canvases	where	all	your	animations	happen.	Effects	are	added	to
views	and	then	added	to	an	animator,	which	itself	is	placed	on	a	reference	view.	In	other
words,	the	reference	view	is	the	canvas	and	the	views	on	your	UI	(like	buttons,	lables,
etc.)	will	have	effects.

13.1	Adding	a	Radial	Gravity	Field	to	Your	UI

Problem
You	want	to	add	a	radial	gravity	field	to	your	UI,	with	animations.

Solution
Use	the	radialGravityFieldWithPosition(_:)	class	method	of	UIFieldBehavior	and
add	this	behavior	to	a	dynamic	animator	of	type	UIDynamicAnimator.

Discussion
A	typical	gravity	behavior	pulls	items	in	a	direction.	A	radial	gravity	field	has	a	center	and
a	region	in	which	everything	is	drawn	to	the	center,	just	like	gravity	on	earth,	whereby
everything	is	pulled	toward	the	core	of	this	sphere.

For	this	recipe,	I	designed	a	UI	like	Figure	13-1.	The	gravity	is	at	the	center	of	the	main
view	and	the	orange	view	is	affected	by	it.

Figure	13-1.	A	main	view	and	another	view	that	is	an	orange	square

The	gravity	field	here	is	not	linear.	I	would	also	like	this	gravity	field	to	repel	the	orange
view,	instead	of	pulling	it	toward	the	core	of	gravity.	Then	I’d	like	the	user	to	be	able	to
pan	this	orange	view	around	the	screen	and	release	it	to	see	how	the	gravity	affects	the
view	at	that	point	in	time	(think	about	pan	gesture	recognizers).

Let’s	have	a	single-view	app	that	has	no	navigation	bar	and	then	go	into	IB	and	add	a
simple	colorful	view	to	your	main	view.	I’ve	created	mine,	colored	it	orange(ish),	and
have	linked	it	to	my	view	controller	under	the	name	orangeView	(see	Figure	13-2).

Figure	13-2.	My	view	is	added	on	top	of	the	view	controller’s	view	and	hooked	to	the	view	controller’s	code

Then	from	the	object	library,	find	a	pan	gesture	recognizer	(see	Figure	13-3)	and	drop	it
onto	your	orange	view	so	that	it	gets	associated	with	that	view.	Find	the	pan	gesture
recognizer	by	typing	its	name	into	the	object	library’s	search	field.

Figure	13-3.	Getting	the	pan	gesture	recognizer

Then	associate	the	pan	gesture	recognizer’s	code	to	a	method	in	your	code	called
panning(_:).	So	now	your	view	controller’s	header	should	look	like	this:

import UIKit

import SharedCode

class ViewController: UIViewController {

 @IBOutlet var orangeView: UIView!

 ...

NOTE
Whenever	I	write	a	piece	of	code	that	I	want	to	share	between	various	projects,	I	put	it	inside	a	framework
that	I’ve	written	called	SharedCode.	You	can	find	this	framework	in	the	GitHub	repo	of	this	book.	In	this
example,	I’ve	extended	CGSize	so	that	I	can	find	the	CGPoint	at	the	center	of	CGSize	like	so:

import Foundation

extension CGSize{

 public var center: CGPoint{

 return CGPoint(x: self.width / 2.0, y: self.height / 2.0)

 }

}

Then	in	the	vc,	create	your	animator,	specifying	this	view	as	the	reference	view:

 lazy var animator: UIDynamicAnimator = {

 let animator = UIDynamicAnimator(referenceView: self.view)

 animator.debugEnabled = true

 return animator

 }()

If	you	are	writing	this	code,	you’ll	notice	that	you’ll	get	a	compiler	error	saying	that	the
debugEnabled	property	is	not	available	on	an	object	of	type	UIDynamicAnimator.	That	is
absolutely	right.	This	is	a	debug	only	method	that	Apple	has	provided	to	us	and	which	we
should	only	use	when	debugging	our	apps.	Because	this	property	isn’t	actually	available	in
the	header	file	of	UIDynamicAnimator,	we	need	to	create	a	bridging	header	(with	some
small	Objective-C	code)	to	enable	this	property.	Create	your	bridging	header	and	then
extend	UIDynamicAnimator:

@import UIKit;

#if DEBUG

@interface UIDynamicAnimator (DebuggingOnly)

@property (nonatomic, getter=isDebugEnabled) BOOL debugEnabled;

@end

#endif

When	the	orange	view	is	repelled	by	the	reversed	radial	gravity	field,	it	should	collide
with	the	edges	of	your	view	controller’s	view	and	stay	within	the	bounds	of	the	view:

 lazy var collision: UICollisionBehavior = {

 let collision = UICollisionBehavior(items: [self.orangeView])

 collision.translatesReferenceBoundsIntoBoundary = true

 return collision

 }()

Then	create	the	radial	gravity	of	type	UIFieldBehavior.	Two	properties	in	this	class	are
quite	important:

region

This	is	of	type	UIRegion	and	specifies	the	region	covered	by	this	gravity.

strength

A	floating-point	value	that	indicates	(id	positive)	the	force	by	which	items	get	pulled
into	the	gravity	field.	If	you	assign	a	negative	value	to	this	property,	items	get
repelled	by	this	gravity	field.

In	our	example,	I	want	the	gravity	field	to	consume	an	area	with	the	radius	of	200	points
and	I	want	it	to	repel	items:

 lazy var centerGravity: UIFieldBehavior = {

 let centerGravity =

 UIFieldBehavior.radialGravityFieldWithPosition(self.view.center)

 centerGravity.addItem(self.orangeView)

 centerGravity.region = UIRegion(radius: 200)

 centerGravity.strength = -1 //repel items

 return centerGravity

 }()

When	the	user	rotates	the	device,	recenter	the	gravity:

 override func viewWillTransitionToSize(size: CGSize,

 withTransitionCoordinator

 coordinator: UIViewControllerTransitionCoordinator) {

 super.viewWillTransitionToSize(size,

 withTransitionCoordinator: coordinator)

 centerGravity.position = size.center

 }

NOTE
Remember	the	center	property	that	we	just	added	on	top	of	CGSize?

When	your	view	is	loaded,	add	your	behaviors	to	the	animator:

 override func viewDidLoad() {

 super.viewDidLoad()

 animator.addBehavior(collision)

 animator.addBehavior(centerGravity)

 }

To	handle	the	panning,	consider	a	few	things:

When	panning	begins,	you	have	to	disable	your	animators	so	that	none	of	the	behaviors
have	an	effect	on	the	orange	view.

When	the	panning	is	in	progress,	you	have	to	move	the	orange	view	where	the	user’s
finger	is	pointing.

When	the	panning	ends,	you	have	to	re-enable	your	behaviors.

All	this	is	accomplished	in	the	following	code:

 @IBAction func panning(sender: UIPanGestureRecognizer) {

 switch sender.state{

 case .Began:

 collision.removeItem(orangeView)

 centerGravity.removeItem(orangeView)

 case .Changed:

 orangeView.center = sender.locationInView(view)

 case .Ended, .Cancelled:

 collision.addItem(orangeView)

 centerGravity.addItem(orangeView)

 default: ()

 }

 }

See	Also
Recipe	13.2,	Recipe	13.3,	and	Recipe	13.4

13.2	Creating	a	Linear	Gravity	Field	on	Your	UI

Problem
You	want	to	create	gravity	that	follows	a	vector	on	your	UI.

Solution
Use	the	linearGravityFieldWithVector(_:)	class	method	of	UIFieldBehavior	to
create	your	gravity.	The	parameter	to	this	method	is	of	type	CGVector.	You	can	provide
your	own	x-	and	y-values	for	this	vector	when	you	construct	it.	This	is	now	your	gravity
field	and	you	can	add	it	to	an	animator	of	type	UIDynamicAnimator.

NOTE
I	am	basing	this	recipe	on	Recipe	13.1.	There	are	some	things,	such	as	the	bridging	header	to	enable
debugging,	that	I	mentioned	in	Recipe	13.1	and	won’t	mention	again	in	this	recipe.	I	might	skim	over	them
but	won’t	go	into	details.

Discussion
Whereas	the	Recipe	13.1	has	a	center	and	a	radius,	a	linear	gravity	has	a	direction	only
(up,	down,	right,	left,	etc.).	In	this	example,	we	are	going	to	have	the	exact	same	UI	that
we	created	in	Recipe	13.1.	So	create	the	little	orange	view	on	your	storyboard	and	link	it
to	an	orangeView	outlet	on	your	code.	Add	a	pan	gesture	recognizer	to	it	as	well	and	add
it	to	a	method	called	panning(_:).

Right	now,	your	view	controller’s	code	should	look	like	this:

import UIKit

import SharedCode

class ViewController: UIViewController {

 @IBOutlet var orangeView: UIView!

 lazy var animator: UIDynamicAnimator = {

 let animator = UIDynamicAnimator(referenceView: self.view)

 animator.debugEnabled = true

 return animator

 }()

 lazy var collision: UICollisionBehavior = {

 let collision = UICollisionBehavior(items: [self.orangeView])

 collision.translatesReferenceBoundsIntoBoundary = true

 return collision

 }()

 ...

The	next	step	is	to	create	your	linear	gravity:

 lazy var gravity: UIFieldBehavior = {

 let vector = CGVector(dx: 0.4, dy: 1.0)

 let gravity =

 UIFieldBehavior.linearGravityFieldWithVector(vector)

 gravity.addItem(self.orangeView)

 return gravity

 }()

Last	but	not	least,	handle	the	panning	and	add	the	effects	to	the	animator	(see	Recipe
13.1):

 override func viewDidLoad() {

 super.viewDidLoad()

 animator.addBehavior(collision)

 animator.addBehavior(gravity)

 }

 @IBAction func panning(sender: UIPanGestureRecognizer) {

 switch sender.state{

 case .Began:

 collision.removeItem(orangeView)

 gravity.removeItem(orangeView)

 case .Changed:

 orangeView.center = sender.locationInView(view)

 case .Ended, .Cancelled:

 collision.addItem(orangeView)

 gravity.addItem(orangeView)

 default: ()

 }

 }

If	you	run	your	app	now	you	should	see	an	interface	similar	to	Figure	13-4.	Our	linear
gravity	pulls	all	objects	down	and	to	the	right.	This	is	because	in	our	vector	earlier	I
specified	a	positive	y-delta	that	pulls	everything	down	and	a	positive	x-delta	that	pulls
everything	to	the	right.	I	suggest	that	you	play	around	with	the	delta	values	of	type
CGVector	to	get	a	feeling	for	how	they	affect	gravity.

Figure	13-4.	Linear	gravity	acting	on	an	object

You	can	also	go	ahead	and	change	some	aspects	of	your	gravity	field.	For	instance,	set	the
strength	property	of	the	gravity	to	20	and	see	how	much	more	gravity	is	applied	to	your
objects.	Similarly,	play	with	the	animationSpeed	property	of	your	gravity	to	set	the
animation	speed.

See	Also
Recipe	13.1,	Recipe	13.3,	and	Recipe	13.5

13.3	Creating	Turbulence	Effects	with	Animations

Problem
You	want	to	simulate	turbulence	in	your	animator	and	have	your	UI	components	flail
about	when	they	hit	the	turbulent	region.

Solution
Instantiate	your	turbulence	with	the
turbulenceFieldWithSmoothness(_:animationSpeed:)	class	method	of
UIFieldBehavior.	Then	do	the	following:

1.	 Set	the	UIFieldBehavior	class’s	strength	property	according	to	your	needs.

2.	 Set	its	region	property	to	an	instance	of	UIRegion.	This	defines	in	which	region	of
the	screen	your	turbulence	behavior	is	effective.

3.	 Set	its	position	property	to	a	CGPoint	instance	in	your	reference	view.

After	you	are	done	setting	up	the	turbulence	behavior,	add	it	to	your	animator	of	type
UIDynamicAnimator.

Discussion
In	this	recipe,	I	want	to	create	an	effect	very	similar	to	what	we	got	in	Recipe	13.2,	but	in
addition	add	a	turbulence	field	in	the	center	of	the	screen	so	that,	when	we	take	our	little
orange	view	(see	Figure	13-1)	and	drop	it	from	the	top-left	corner	of	the	screen,	it	will	fall
down	(and	to	the	right;	see	Figure	13-4).	But	on	its	way	down,	it	will	hit	our	turbulence
field	and	its	movements	will	be	affected.

Set	up	your	gravity	exactly	as	we	did	in	Recipe	13.2.	I	won’t	go	through	that	here	again.
Then	create	a	turbulence	field	in	the	center	of	the	screen	with	a	radius	of	200	points:

 lazy var turbulence: UIFieldBehavior = {

 let turbulence = UIFieldBehavior.turbulenceFieldWithSmoothness(0.5,

 animationSpeed: 60.0)

 turbulence.strength = 12.0

 turbulence.region = UIRegion(radius: 200.0)

 turbulence.position = self.orangeView.bounds.size.center

 turbulence.addItem(self.orangeView)

 return turbulence

 }()

Make	sure	to	add	this	field	to	your	animator.	When	the	user	is	panning	with	the	gesture
recognizer	(see	Recipe	13.1),	disable	all	your	behaviors,	and	re-enable	them	when	the
panning	is	finished:

 override func viewDidLoad() {

 super.viewDidLoad()

 animator.addBehavior(collision)

 animator.addBehavior(gravity)

 animator.addBehavior(turbulence)

 }

 @IBAction func panning(sender: UIPanGestureRecognizer) {

 switch sender.state{

 case .Began:

 collision.removeItem(orangeView)

 gravity.removeItem(orangeView)

 turbulence.removeItem(orangeView)

 case .Changed:

 orangeView.center = sender.locationInView(view)

 case .Ended, .Cancelled:

 collision.addItem(orangeView)

 gravity.addItem(orangeView)

 turbulence.addItem(orangeView)

 default: ()

 }

 }

Give	it	a	go	and	see	the	results	for	yourself.	Drag	the	orange	view	from	the	top-left	corner
of	the	screen	and	drop	it.	It	will	be	dragged	down	and	to	the	right,	and	when	it	hits	the
center	of	the	screen	(inside	a	radius	of	200	points),	it	will	wiggle	around	a	bit	because	of
turbulence.

See	Also
Recipe	13.1	and	Recipe	13.2

13.4	Adding	Animated	Noise	Effects	to	Your	UI

Problem
You	want	to	add	a	noise	field	on	your	UI	and	have	your	UI	components	surf	in	all
directions	on	this	field.

Solution
1.	 Create	a	noise	field	using	the	noiseFieldWithSmoothness(_:animationSpeed:)

class	method	of	UIFieldBehavior.

2.	 Add	the	views	you	want	affected	by	this	noise	to	the	field	using	its	addItem(_:)
method.

3.	 Add	your	noise	field	to	an	animator	of	type	UIDynamicAnimator	(see	Recipe	13.1).

NOTE
This	recipe	is	based	on	what	you	learned	in	Recipe	13.1,	so	I	won’t	be	going	through	all	the	details	that	I
have	already	explained.

Discussion
Noise	is	great	for	having	an	item	constantly	move	around	on	your	reference	view	in
random	directions.	Have	a	look	at	the	noise	field	in	Figure	13-5.	This	noise	field	is	shown
graphically	on	our	UI	using	a	UI	Dynamics	debugging	trick	(see	Figure	13-5).

Figure	13-5.	Noise	field	affecting	a	square	view

The	direction	of	the	noise	that	you	see	on	the	fields	dictates	in	which	direction	the	field
repels	the	items	attached	to	it.	In	this	case,	I’ve	used	negative	gravity	(think	of	it	that
way).	If	you	want	to	limit	the	effective	region	of	your	noise	field	on	your	reference	view,
simply	set	the	region	property	of	your	field.	This	is	of	type	UIRegion.

Now	create	your	UI	exactly	as	you	did	in	Recipe	13.1.	You	should	have	an	orange	view
that	is	accessible	through	the	orangeView	property	of	your	view	controller.	Create	a
collision	detector	and	an	animator	using	what	you	learned	in	the	aforementioned	recipe.
Now	go	ahead	and	create	your	noise	field:

 lazy var noise: UIFieldBehavior = {

 let noise = UIFieldBehavior.noiseFieldWithSmoothness(0.9,

 animationSpeed: 1)

 noise.addItem(self.orangeView)

 return noise

 }()

Add	the	noise	field	to	your	animator:

 override func viewDidLoad() {

 super.viewDidLoad()

 animator.addBehavior(collision)

 animator.addBehavior(noise)

 }

Last	but	not	least,	handle	your	pan	gesture	recognizer’s	event,	so	that	when	the	user	starts
dragging	the	orange	view	across	the	screen,	your	dynamic	behaviors	will	shut	down.	And
as	soon	as	the	user	is	done	with	dragging,	they	will	come	back	up:

 @IBAction func panning(sender: UIPanGestureRecognizer) {

 switch sender.state{

 case .Began:

 collision.removeItem(orangeView)

 noise.removeItem(orangeView)

 case .Changed:

 orangeView.center = sender.locationInView(view)

 case .Ended, .Cancelled:

 collision.addItem(orangeView)

 noise.addItem(orangeView)

 default: ()

 }

 }

See	Also
Recipe	13.5

13.5	Creating	a	Magnetic	Effect	Between	UI
Components

Problem
You	want	to	create	a	magnetic	field	between	two	or	more	UI	elements.

Solution
Follow	these	steps:

1.	 Create	your	animator	(see	Recipe	13.1).

2.	 Create	a	collision	detector	of	type	UICollisionBehavior.

3.	 Create	a	magnetic	field	of	type	UIFieldBehavior	using	the	magneticField()	class
method	of	UIFieldBehavior.

4.	 Add	your	magnetic	field	and	collision	detector	to	your	animator.

NOTE
I	am	basing	this	recipe	on	what	we	learned	in	Recipe	13.4	and	Recipe	13.1.

Discussion
Create	a	UI	that	looks	similar	to	Figure	13-6.

Figure	13-6.	Place	three	colorful	views	on	your	UI

Then	link	all	views	to	an	outlet	collection	called	views	in	your	code:

class ViewController: UIViewController {

 @IBOutlet var views: [UIView]!

 ...

Now	that	you	have	an	array	of	views	to	which	you	want	to	apply	a	noise	field	and	a
magnetic	field,	it’s	best	to	extend	UIFieldBehavior	so	that	you	can	pass	it	an	array	of	UI
elements	instead	of	one	element	at	a	time:

extension UIFieldBehavior{

 func addItems(items: [UIDynamicItem]){

 for item in items{

 addItem(item)

 }

 }

}

Also,	it’s	best	to	extend	UIDynamicAnimator	so	that	you	can	add	all	our	behaviors	to	your
animator	at	once:

extension UIDynamicAnimator{

 func addBehaviors(behaviors: [UIDynamicBehavior]){

 for behavior in behaviors{

 addBehavior(behavior)

 }

 }

}

Now	add	a	noise	and	collision	behavior,	plus	your	animator,	using	what	you	learned	in
Recipe	13.4.	I	won’t	repeat	that	code	here.	Create	a	magnetic	field	and	enable	it	on	all
your	views	(see	Figure	13-7):

 lazy var magnet: UIFieldBehavior = {

 let magnet = UIFieldBehavior.magneticField()

 magnet.addItems(self.views)

 return magnet

 }()

Last	but	not	least,	add	your	behaviors	to	the	animator:

 var behaviors: [UIDynamicBehavior]{

 return [collision, noise, magnet]

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 animator.addBehaviors(behaviors)

 }

Run	the	app	and	see	the	results	for	yourself.

Figure	13-7.	The	magnetic	field	causes	all	the	views	to	attract	one	another

See	Also
Recipe	13.2,	Recipe	13.1,	and	Recipe	13.4

13.6	Designing	a	Velocity	Field	on	Your	UI

Problem
You	want	to	apply	force,	following	a	vector,	onto	your	UI	components.

Solution
Follow	these	steps:

1.	 Create	an	animator	of	type	UIDynamicAnimator	(see	Recipe	13.1).

2.	 Create	your	collision	detector	of	type	UICollisionBehavior.

3.	 It’s	best	to	also	have	gravity	or	other	forces	applied	to	your	field	(see	Recipe	13.1
and	Recipe	13.2).

4.	 Create	your	velocity	of	type	UIFieldBehavior	using	this	class’s
velocityFieldWithVector(_:)	method	and	supplying	a	vector	of	type	CGVector.

5.	 Set	the	position	property	of	your	velocity	field	to	an	appropriate	point	on	your
reference	view.

6.	 Set	the	region	property	of	your	velocity	to	an	appropriate	region	(of	type	UIRegion)
of	your	reference	view.

7.	 Once	done,	add	your	behaviors	to	your	animator.

NOTE
I	recommend	that	you	have	a	look	at	Recipe	13.1	where	I	described	most	of	the	basics	of	setting	up	a	scene
with	gravity	and	an	animator.	I	won’t	go	into	those	in	detail	again.

In	this	recipe,	I	am	also	going	to	use	a	few	extensions	that	we	coded	in	Recipe	13.5.

Discussion
A	velocity	field	applies	a	force	toward	a	given	direction	to	dynamic	items,	such	as	UIView
instances.	In	this	recipe,	I	am	going	to	design	a	field	that	looks	like	our	field	in	Recipe
13.5.	On	top	of	that,	I	am	going	to	apply	a	slight	upward	and	leftbound	force	that	is
positioned	smack	dab	in	the	center	of	the	screen.	I	am	also	going	to	position	an	orange
view	on	my	main	storyboard	and	have	all	the	forces	applied	to	this	little	poor	guy.	I	will
then	place	the	orange	view	on	top	of	the	reference	view	so	that	when	I	run	the	app,	a	few
things	will	happen:

1.	 The	southeast-bound	gravity	will	pull	the	orange	view	to	the	bottom	right	of	the
screen.

2.	 The	orange	view	will	keep	falling	down	until	it	hits	the	northwest-bound	velocity
field,	at	which	point	the	orange	view	will	get	uncomfortable	and	move	up	and	left	a
bit	a	few	times,	and	keep	falling	until	it	gets	out	of	the	velocity	field.

3.	 The	orange	view	will	then	eventually	settle	at	the	bottom	right	of	the	view.

I	now	need	you	to	set	up	your	gravity,	animator,	and	collision	detector	just	as	you	did	in
Recipe	13.2	so	that	I	don’t	have	to	repeat	that	code.	Then	set	up	the	velocity	field:

 lazy var velocity: UIFieldBehavior = {

 let vector = CGVector(dx: -0.4, dy: -0.5)

 let velocity = UIFieldBehavior.velocityFieldWithVector(vector)

 velocity.position = self.view.center

 velocity.region = UIRegion(radius: 100.0)

 velocity.addItem(self.orangeView)

 return velocity

 }()

Then	batch	up	all	your	forces	into	one	variable	that	you	can	give	to	our	animator,	using	the
extension	we	wrote	in	Recipe	13.5:

 var behaviors: [UIDynamicBehavior]{

 return [self.collision, self.gravity, self.velocity]

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 animator.addBehaviors(behaviors)

 }

And	when	the	user	starts	panning	your	orange	view	around,	stop	all	the	forces,	then	restart
them	when	she	is	done	dragging:

 @IBAction func panning(sender: UIPanGestureRecognizer) {

 switch sender.state{

 case .Began:

 collision.removeItem(orangeView)

 gravity.removeItem(orangeView)

 velocity.removeItem(orangeView)

 case .Changed:

 orangeView.center = sender.locationInView(view)

 case .Ended, .Cancelled:

 collision.addItem(orangeView)

 gravity.addItem(orangeView)

 velocity.addItem(orangeView)

 default: ()

 }

 }

See	Also
Recipe	13.2,	Recipe	13.3,	and	Recipe	13.4

13.7	Handling	Nonrectangular	Views

Problem
You	want	to	create	nonrectangular-shaped	views	in	your	app,	and	want	your	collision
detection	to	work	properly	with	these	views.

Solution
Follow	these	steps:

1.	 Subclass	UIView	and	override	the	collisionBoundsType	variable	of	type
UIDynamicItemCollisionBoundsType.	In	there,	return
UIDynamicItemCollisionBoundsType.Path.	This	makes	sure	that	you	have	your
own	Bezier	path	of	type	UIBezierPath,	and	you	want	that	to	define	the	edges	of
your	view,	which	are	essentially	the	edges	that	your	collision	detector	has	to	detect.

2.	 Override	the	collisionBoundingPath	variable	of	type	UIBezierPath	in	your	view
and	in	there,	return	the	path	that	defines	your	view’s	edges.

3.	 In	your	UIBezierPath,	create	the	shape	you	want	for	your	view.	The	first	point	in
this	shape	has	to	be	the	center	of	your	shape.	You	have	to	draw	your	shape	in	a
convex	and	counterclockwise	manner.

4.	 Override	the	drawRect(_:)	method	of	your	view	and	draw	your	path	there.

5.	 Add	your	behaviors	to	your	new	and	awesome	view	and	then	create	an	animator	of
type	UIDynamicAnimator	(see	Recipe	13.1).

6.	 Optionally,	throw	in	a	noise	field	as	well	to	create	some	random	movements	between
your	dynamic	items	(see	Recipe	13.4).

NOTE
I	am	going	to	draw	a	pentagon	view	in	this	recipe.	I	won’t	teach	how	that	is	drawn	because	you	can	find	the
basic	rules	of	drawing	a	pentagon	online	and	that	is	entirely	outside	the	scope	of	this	book.

Discussion
Here,	we	are	aiming	to	create	a	dynamic	field	that	looks	like	Figure	13-8.	The	views	I
have	created	are	a	square	and	a	pentagon.	We	will	have	proper	collision	detection	between
the	two	views.

Figure	13-8.	Square	and	pentagon	with	collision	detection

Let’s	start	off	by	creating	a	little	extension	on	the	StrideThrough	structure.	You’ll	see
soon,	when	we	code	our	pentagon	view,	that	I	am	going	to	go	through	five	points	of	the
pentagon	that	are	drawn	on	the	circumference	of	the	bounding	circle,	plot	them	on	the
path,	and	draw	lines	between	them.	I	will	use	stride(from:through:by:)	to	create	the
loop.	I	would	like	to	perform	a	function	over	every	item	in	this	array	of	numbers,	hence
the	following	extension:

extension StrideThrough{

 func forEach(f: (Generator.Element) -> Void){

 for item in self{

 f(item)

 }

 }

}

Let’s	move	on	to	creating	a	class	named	PentagonView	that	subclasses	UIView.	I	want
this	view	to	be	constructed	only	by	a	diameter.	This	will	be	the	diameter	of	the	bounding
circle	within	which	the	pentagon	will	reside.	Therefore,	we	need	a	diameter	variable,
along	with	our	constructor	and	perhaps	a	nice	class	method	constructor	for	good	measure:

class PentagonView : UIView{

 private var diameter: CGFloat = 0.0

 class func pentagonViewWithDiameter(diameter: CGFloat) -> PentagonView{

 return PentagonView(diameter: diameter)

 }

 init(diameter: CGFloat){

 self.diameter = diameter

 super.init(frame: CGRectMake(0, 0, diameter, diameter))

 }

 required init?(coder aDecoder: NSCoder) {

 super.init(coder: aDecoder)

 }

 var radius: CGFloat{

 return diameter / 2.0

 }

 ...

We	need	next	to	create	our	UIBezierPath.	There	are	five	slices	inside	a	pentagon	and	the
angle	between	each	slice,	from	the	center	of	the	pentagon,	is	360/5	or	72	degrees.	Using
this	knowledge,	we	need	to	be	able	to,	given	the	center	of	our	pentagon,	plot	the	five
points	onto	the	circumference	of	the	bounding	circle:

 func pointFromAngle(angle: Double) -> CGPoint{

 let x = radius + (radius * cos(CGFloat(angle)))

 let y = radius + (radius * sin(CGFloat(angle)))

 return CGPoint(x: x, y: y)

 }

 lazy var path: UIBezierPath = {

 let path = UIBezierPath()

 path.moveToPoint(self.pointFromAngle(0))

 let oneSlice = (M_PI * 2.0) / 5.0

 let lessOneSlice = (M_PI * 2.0) - oneSlice

 oneSlice.stride(through: lessOneSlice, by: oneSlice).forEach{

 path.addLineToPoint(self.pointFromAngle($0))

 }

 path.closePath()

 return path

 }()

That	was	the	most	important	part	of	this	recipe,	if	you	are	curious.	Once	we	have	the	path,
we	can	draw	our	view	using	it:

 override func drawRect(rect: CGRect) {

 guard let context = UIGraphicsGetCurrentContext() else{

 return

 }

 UIColor.clearColor().setFill()

 CGContextFillRect(context, rect)

 UIColor.yellowColor().setFill()

 path.fill()

 }

The	next	and	last	step	in	creating	our	pentagon	view	is	to	override	the
collisionBoundsType	and	the	collisionBoundingPath	variable:

 override var collisionBoundsType: UIDynamicItemCollisionBoundsType{

 return UIDynamicItemCollisionBoundsType.Path

 }

 override var collisionBoundingPath: UIBezierPath{

 let path = self.path.copy() as! UIBezierPath

 path.applyTransform(CGAffineTransformMakeTranslation(-radius, -radius))

 return path

 }

NOTE
I	am	applying	a	translation	transform	on	our	Bezier	path	before	giving	it	to	the	collision	detector.	The
reason	behind	this	is	that	the	first	point	of	our	path	is	in	the	center	of	our	shape,	so	we	need	to	subtract	the	x
and	y	position	of	the	center	from	the	path	to	translate	our	path	to	its	actual	value	for	the	collision	detector	to
use.	Otherwise,	the	path	will	be	outside	the	actual	pentagon	shape.	Because	the	x	and	y	position	of	the
center	of	our	pentagon	are	in	fact	the	radius	of	the	pentagon	and	the	radius	is	half	the	diameter,	we	provide
the	radius	here	to	the	translation.

Now	let’s	extend	UIView	so	that	we	can	add	a	pan	gesture	recognizer	to	it	with	one	line	of
code.	Both	the	square	and	our	pentagon	view	will	easily	get	a	pan	gesture	recognizer:

extension UIView{

 func createPanGestureRecognizerOn(obj: AnyObject){

 let pgr = UIPanGestureRecognizer(target: obj, action: "panning:")

 addGestureRecognizer(pgr)

 }

}

Let’s	move	on	to	the	view	controller.	Add	the	following	components	to	your	view
controller,	just	as	we	did	in	Recipe	13.4:

An	animator	of	type	UIDynamicAnimator

A	collision	detector	of	type	UICollisionBehavior

A	noise	field	of	type	UIFieldBehavior

Let’s	bundle	the	collision	detector	and	the	noise	field	into	an	array.	This	lets	us	add	them
to	our	animator	faster	with	the	extensions	that	we	created	in	Recipe	13.5:

 var behaviors: [UIDynamicBehavior]{

 return [self.collision, self.noise]

 }

The	next	step	is	to	create	our	square	view.	This	one	is	easy.	It	is	just	a	simple	view	with	a
pan	gesture	recognizer:

 lazy var squareView: UIView = {

 let view = UIView(frame: CGRect(x: 0, y: 0, width: 100, height: 100))

 view.createPanGestureRecognizerOn(self)

 view.backgroundColor = UIColor.brownColor()

 return view

 }()

The	juicy	part,	now!	The	pentagon	view.	Create	it	with	the	constructor	of	PentagonView
and	then	place	it	in	the	center	of	your	view:

 lazy var pentagonView: PentagonView = {

 let view = PentagonView.pentagonViewWithDiameter(100)

 view.createPanGestureRecognizerOn(self)

 view.backgroundColor = UIColor.clearColor()

 view.center = self.view.center

 return view

 }()

Group	your	views	up	and	add	them	to	your	reference	view:

 var views: [UIView]{

 return [self.squareView, self.pentagonView]

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 view.addSubview(squareView)

 view.addSubview(pentagonView)

 animator.addBehaviors(behaviors)

 }

Last	but	not	least,	handle	panning.	As	soon	as	the	user	starts	to	pan	one	of	our	views
around,	pause	all	the	behaviors.	Once	the	panning	is	finished,	reenable	the	behaviors:

 @IBAction func panning(sender: UIPanGestureRecognizer) {

 switch sender.state{

 case .Began:

 collision.removeItems()

 noise.removeItems()

 case .Changed:

 sender.view?.center = sender.locationInView(view)

 case .Ended, .Cancelled:

 collision.addItems(views)

 noise.addItems(views)

 default: ()

 }

 }

Wrapping	up,	I	want	to	clarify	a	few	things.	We	extended	UIDynamicAnimator	and	added
the	addBehaviors(_:)	method	to	it	in	Recipe	13.5.	In	the	same	recipe,	we	added	the
addItems(_:)	method	to	UIFieldBehavior.	But	in	our	current	recipe,	we	also	need
removeItems(),	so	I	think	it’s	best	to	show	that	extension	again	with	the	new	code:

extension UIFieldBehavior{

 public func addItems(items: [UIDynamicItem]){

 for item in items{

 addItem(item)

 }

 }

 public func removeItems(){

 for item in items{

 removeItem(item)

 }

 }

}

Please	extend	UICollisionBehavior	in	the	exact	same	way	and	add	the	addItems(_:)
and	removeItems()	methods	to	that	class	as	well.

Index

Symbols
#available	syntax,	Solution

.TextInput,	Solution

3D	globe	map	display,	Problem

A
accelerometer	data,	Problem

(see	also	Core	Motion	framework)

accelerometerDataFrom(_:to:)	function	,	Solution

access	control	flags,	Solution

(see	also	Security	framework)

access	privileges	(address	book),	Contacts

Accessibility	Inspector	(Xcode),	UI	Testing

acknowledgement	handler	function,	Discussion

Add	Missing	Constraints	option,	Discussion

addContact(_:toContainerWithIdentifier:)	method,	Solution

addItem(_:)	method,	Problem

addKeyCommand(_:)	method,	Solution

address	book,	ensuring	access	to,	Contacts

(see	also	contacts)

Alex	(Siri),	Problem

allowsBackgroundLocationUpdates	property,	Solution

anchored	constraints,	creating,	Problem

animated	backgrounds,	disabling,	Discussion

animationSpeed	property	,	Discussion

animator	objects,	UI	Dynamics

API	availability,	checking	for,	Problem

Apple	Watch

audio	recording,	Problem

audio/video	playback,	Problem

basic	app	setup,	Apple	Watch

complications,	custom,	Problem

complications,	date	display,	Problem

complications,	small	with	text/images,	Problem

complications,	time	display,	Problem

complications,	time	interval	display,	Problem

complications,	time	offset	display,	Problem

data	transfer,	small	amounts,	Problem

dictionary	transfer,	FIFO	fashion,	Problem

file	downloads	to,	Problem

file	transfer,	to	and	from,	Problem

interactive	communication	with,	Problem

pairing	state	change	notification,	Problem

“time	travel”	feature,	Discussion

watchOS	2	benefits,	Apple	Watch

Application	Transport	Security	(ATS),	Security

Arabic	language	internationalization,	Problem

assetDownloadTaskWithURLAsset(_:destinationURL:options)	method,	Solution

assets

categorizing	and	downloading,	Problem

remote	media	download	and	playback,	Problem

specifying	device-specific,	Problem

Attributes	inspector	(Xcode),	Solution

audio

default	Siri	Alex	voice,	Problem

(see	also	AVFoundation	framework)

downloading,	Problem

enabling	spoken	audio	sessions,	Problem

noise	effeccts,	Problem

playing	local	and	remote	on	Apple	Watch,	Problem

recording	on	Apple	Watch,	Problem

authorizationStatusForEntityType(_:)	class	method,	Contacts

Auto	Layout,	resolving	issues	with,	Discussion,	Discussion,	Discussion

availableCategories	property,	Solution

availableModes	property,	Solution

AVAssetDownloadDelegate	protocol,	Solution

AVAssetDownloadTask,	Solution

AVAssetDownloadURLSession,	Solution

AVAudioSessionCategoryPlayback,	Solution

AVAudioSessionModeSpokenAudio,	Solution

AVFoundation	framework

default	Siri	Alex	voice,	Problem

enabling	spoken	audio	sessions,	Problem

remote	media	playback,	Problem

AVPictureInPictureController	class,	Solution

AVPlayerLayer,	Solution

AVSpeechSynthesisVoice,	Solution

AVSpeechSynthesisVoiceIdentifierAlex,	Solution

AVURLAsset,	Solution

B
background	apps,	disabling,	Discussion

backgroundSessionConfigurationWithIdentifier(_:)	class,	Discussion,	Solution

bar	buttons,	adding	multiple,	Problem

battery	power,	Problem

behavior	property,	Solution

binaries

achieving	smaller,	Problem

device-specific,	Problem

bitcode,	Discussion

bookmarks	(see	Shared	Links	Extension)

break	statements,	Discussion

buttons

adding	multiple	to	navigation	bar,	Problem

UI	testing	of,	Problem

C
caches	folder,	Discussion

cadence,	Core	Motion

(see	also	Core	Motion	framework)

calculateETAWithCompletionHandler(_:)	method,	Solution

canOpenUrl(_:)	method,	Solution

Capabilities	tab	(Xcode),	Discussion

case	statements,	fallthrough	command	and,	Discussion

cases,	designing	in	switch	statements,	Problem

CFAbsoluteTimeGetCurrent	function,	Solution

CGPoint,	Solution

CGVector	parameter,	Solution,	Solution

Circular	Small	complication,	Discussion

classes,	showing	header	view	of,	Problem

CLKComplicationDataSource	protocol,	Solution

CLKComplicationTimelineEntry,	Solution

CLKDateTextProvider	class,	Solution

CLKRelativeDateTextProvider,	Solution

CLKTextProvider,	Solution

CLKTimeIntervalTextProvider,	Solution

CLKTimeTextProvider,	Solution

CLLocationManager	class,	Solution

CMPedometer,	Core	Motion

CMRecordedAccelerometerData,	Solution

CMSensorDataList,	Solution

CMSensorRecorder,	Solution

CNContact	class,	Contacts,	Solution

CNContact	object,	Contacts

CNContactFormatter	class,	Solution

CNContactPickerViewController	class,	Solution

CNContactStore	class,	Contacts

CNContactViewController,	Solution

CNEntityType	parameter,	Contacts

CNMutableContact	class,	Contacts,	Solution

CNPostalAddressFormatter	class,	Solution

CNSaveRequest,	Solution,	Solution,	Solution

coalescedTouchesForTouch(_:)	method,	Solution

code	blocks,	ensuring	execution	of,	Problem

collections,	looping	conditionally	through,	Problem

collision	detection,	UI	Dynamics,	Problem

collisionBoundingPath	variable,	Solution

collisionBoundsType,	Solution

Command-Alt-Control-N	key	combination,	Discussion

Command-N	key	combination,	Discussion

compass,	displaying	on	map,	Problem

ComplicationController	class,	Solution,	Discussion

complicationEnabled	property,	Discussion

complications

categories	of,	Discussion

displaying	dates	in,	Problem

displaying	time	intervals	in,	Problem

displaying	time	offsets	in,	Problem

displaying	times	in,	Problem

enabling,	Apple	Watch

setting	up	custom,	Problem

small	with	text/images,	Problem

components

arranging	horizontally	or	vertically,	Problem

arranging	with	layout	anchors,	Discussion

creating	magnetic	effect	between,	Problem

finding	in	UI	testing,	Problem

conditional	looping,	Problem

connections,	secure	vs.	non-secure,	Problem

(see	also	Security	framework)

Contacts	framework

address	book	access	privileges,	Contacts

contact	creation,	Problem

contact	data	formatting,	Problem

contact	deletion,	Problem

contact	search,	Problem

contact	updates,	Problem

creating	contacts	with	prebuilt	UI,	Problem

displaying	contacts	with	prebuilt	UE,	Problem

identifier	property,	Discussion

immutable/mutable	classes	in,	Contacts

partial	contacts,	Contacts

picking	contacts	with	prebuilt	UIs,	Problem

Swift	compatibility,	Contacts

thread-safe	operations	in,	Contacts

contain	function,	Problem

content	blockers,	Problem

content,	protecting	secure,	Problem

Core	Motion	framework

CMPedometer,	Core	Motion

CMSensorRecorder,	Solution

key	terms	used,	Core	Motion

querying	pace	and	cadence	information,	Problem

recording/reading	accelerometer	data,	Problem

CoreLocation	framework	(see	maps	and	location)

CoreSpotlight	framework,	Discussion

CSSearchableIndex	class,	Solution,	Solution

CSSearchableItem	class,	Solution

CSSearchableItemAttributeSet	object,	Solution

current	location,	requesting,	Problem

(see	also	maps	and	location)

currentCadence	property,	Solution

currentItem.status	property,	Solution

currentPace	property,	Solution

CustomDebugStringConvertible	protocol,	Solution

D
data

bundling/reading	device-specific,	Problem

transferring	to/from	Apple	Watch,	Problem

debugEnabled	property,	Discussion

Deep	Press,	simulating,	Solution

defer	syntax,	Solution

deleteAllSearchableItemsWithCompletionHandler(_:),	Solution

deleteContact(_:)	function,	Solution

deleteSearchableItemsWithDomainIdentifiers(_:completionHandler:),	Solution

deleteSearchableItemsWithIdentifiers(_:completionHandler:),	Solution

detailCalloutAccessoryView	property,	Solution

dictionaries,	transferring	to/from	Apple	Watch,	Problem

dismissAudioRecordingController()	method,	Solution

dismissMediaPlayerController()	method,	Solution

display	refresh	rate,	Discussion

do,	try,	catch	syntax,	Solution

doubleTap()	method,	Solution

drawRect(_:)	method,	Solution

E
eBooks,	Problem

eligibleForPublicIndexing	property,	Solution

eligibleForSearch	property,	Solution

enumerateContactsWithFetchRequest(_:usingBlock:)	method,	Solution

equality-checking	functionality,	Problem

error	handling,	Problem

estimated	time	of	arrival	(ETA),	Problem

evaluateAccessControl(_:operation:localizedReason:)	method,	Solution

exceptions,	Problem

executeSaveRequest(_:),	Solution

executeSaveRequest(_:)	method,	Solution,	Solution

extensions

basics	of,	Extensions

conditional,	Solution

Safari	Content	Blockers,	Problem

Shared	Links	Extension,	Problem

Spotlight	Index	Extension,	Problem

external	keyboards,	Problem

F
Facebook	profile,	adding	to	contact	database,	Discussion

fallthrough	syntax,	Solution

FIFO,	Problem

files

downloading	onto	Apple	Watch,	Problem

transferring	to/from	Apple	Watch,	Problem

flags	parameters,	Solution

Flickr	profile,	adding	to	contact	database,	Discussion

flyover	map	mode,	Problem

for	loops,	Solution

for	x	in	y	where	syntax,	Solution

forContact	initializer,	Problem

G
Generated	Interface	Assistant	Editor,	Solution

Geo	JSON	files,	Solution

gesture	recognizers

long-press,	Discussion

pan,	Discussion

tap,	Discussion

Get	Latitude	Longitude	website,	Discussion

getNextRequestedUpdateDateWithHandler(_:)	method,	Solution

getPlaceholderTemplateForComplication(_:withHandler:)	method,	Discussion,
Discussion

getSupportedTimeTravelDirectionsForComplication(_:withHandler:)	method,
Solution

getTimelineEndDateForComplication(_:withHandler:)	method,	Solution

getTimelineEntriesForComplication(_:afterDate:limit:withHandler:)	method,
Solution

getTimelineEntriesForComplication(_:beforeDate:limit:withHandler:)	method,
Solution

getTimelineStartDateForComplication(_:withHandler:)	method,	Solution

GitHub	repo,	Preface,	Additional	Resources,	Discussion,	Discussion,	Discussion,
Discussion

glance	scene,	enabling,	Apple	Watch

globe	(flyover)	map	display,	Problem

gravity	fields

linear,	Problem

radial,	Problem

guard	syntax,	Solution

H
header	view,	showing,	Problem

HTTPS	channels,	Problem

I

icons,	adding	to	app	bundles,	Discussion

identifier	initializer,	Solution

identifier	property	(contacts),	Discussion

indexed	content,	maintaining,	Problem

IndexRequestHandler	class,	Discussion

Interface	Builder

+	buttons	in,	Discussion

creating	anchored	constraints,	Discussion

detaching	views	in,	Solution

language	internationalization,	Solution

Refactor	to	Storyboard	feature,	Solution

interface	objects,	designing	interactive,	Problem

internationalization,	Problem

invalidateAndCancel()	method,	Discussion

iOS	9	(new	features)

app	content,	enabling	search,	Problem

bitcode,	Discussion

unified	contacts,	Solution

user	activities,	enabling	search,	Problem

iOS	maps	app,	Problem

iOS	versions,	checking	for	specific,	Problem

isAccelerometerRecordingAvailable()	class	function,	Solution

isCadenceAvailable()	class	method,	Core	Motion

isDownloadFinished,	Discussion

isPaceAvailable()	class	function,	Core	Motion

K
keyboard	shortcuts,	Problem

keychain	items

binding	to	passcode	and	Touch	ID,	Problem

reading	secure	content	in,	Problem

kSecAttrAccessControl,	Solution

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,	Solution

kSecUseAuthenticationContext	key,	Solution

kSecUseAuthenticationUI,	Solution

kSecUseAuthenticationUIAllow,	Solution

KVO	listener,	Solution

L
labels,	UI	testing	of,	Problem

LAContext,	Solution

landscape	mode,	Discussion

language	internationalization,	Problem

latitude/longitude,	obtaining,	Discussion

LATouchIDAuthenticationMaximumAllowableReuseDuration,	Solution

layout	anchors,	Problem

leadingAnchor	property,	Solution

linear	gravity	fields,	Problem

linearGravityFieldWithVector(_:)	class	method,	Solution

LinkedIn	profile,	adding	to	contact	database,	Discussion

links,	shared,	Problem

local	notifications,	text	responses	to,	Problem

localization,	of	contact	data,	Problem

location	(see	maps	and	location)

locationManager(_:didFailWithError:),	Solution

locationManager(_:didUpdateLocations:)	delegate	method,	Solution

long-press	simulations,	Problem

loops

conditional,	Problem

for,	Solution

low	power	mode,	Problem

LSApplicationQueriesSchemes	key,	Solution

M
magnetic	fields,	Problem

magneticField()	class	method,	Solution

mail	pulls,	disabling	automatic,	Discussion

maps	and	location

flyover	mode,	Problem

latitude/longitude,	obtaining,	Discussion

launching	iOS	maps	app,	Problem

location	requests,	Problem

location	updates,	Problem

pin	color	customization,	Problem

pin	information	customization,	Problem

providing	ETA	by	transit	type,	Problem

traffic,	scale	and	compass	indicators,	Problem

margins,	Discussion

methods

ensuring	code	block	execution	in,	Problem

specifying	preconditions	for,	Problem

MKAnnotationView,	Solution

MKDirectionsRequest	class,	Solution

MKLaunchOptionsDirectionsModeKey	key,	Solution

MKMapItem,	Solution

MKPinAnnotationView	class,	Solution

MobileCoreServices	framework,	Discussion

Modular	Large	complication,	Discussion,	Discussion

Modular	Small	complication,	Solution,	Problem

motion	sensor	(see	Core	Motion	framework)

multimedia	(see	AVFoundation	framework)

multitasking

low	power	mode	and	alternatives,	Problem

picture-in-picture	playback,	Problem

mutableCopy()	method,	Solution

N
navigation	bar,	adding	multiple	buttons	to,	Problem

network	connections,	protecting	with	ATS,	Problem

noise	effects,	Problem

noiseFieldWithSmoothness(_:animationSpeed:)	class	method,	Problem

non	rectangular-shaped	views,	Problem

non-secure	vs.	secure	connections,	Problem

(see	also	Security	framework)

notifications,	text	responses	to,	Problem

NSAllowsArbitraryLoads	key,	Discussion

NSAppTransportSecurity	dictionary	key,	Solution

NSAttributedString,	Discussion

NSBundleResourceRequest	class,	Solution

NSCalendar,	Discussion

NSCharacterEncodingDocumentAttribute,	Discussion

NSDate,	Solution,	Problem,	Solution

NSDateComponents,	Discussion

NSDocumentTypeDocumentAttribute,	Discussion

NSExceptionAllowsInsecureHTTPLoads	key,	Discussion

NSExceptionDomains	dictionary	key,	Solution

NSExceptionMinimumTLSVersion	key,	Discussion

NSFastEnumeration	protocol,	Discussion

NSIncludesSubdomains	key,	Discussion

NSLayoutAnchor	class,	Discussion

NSProcessInfo,	Solution

NSProcessInfoPowerStateDidChangeNotification	notifications,	Discussion

NSRequiresCertificateTransparency	key,	Discussion

NSRTFTextDocumentType,	Discussion

NSURLSession,	Solution

NSURLSessionConfiguration,	Discussion,	Solution

NSURLSessionDelegate,	Discussion

NSURLSessionDownloadDelegate,	Discussion,	Discussion

NSURLSessionDownloadDelegate	protocol	,	Discussion

NSUserActivity,	Problem

O
openMapsWithItems(_:launchOptions:)	class	method,	Solution

openUrl(_:)	method,	Solution

optimization,	whole	module,	Problem

options	dictionary,	Discussion

OptionSetType	protocol,	Solution

P
pace,	Core	Motion

(see	also	Core	Motion	framework)

paired	property,	Discussion

pan	gesture	recognizer,	Discussion

partial	contacts,	Contacts

passcodes,	binding	to	keychain	items,	Problem

pedometers,	Core	Motion

(see	also	Core	Motion	framework)

Persian	language	internationalization,	Problem

picture-in-picture	playback,	Problem

pictureInPicturePossible	property,	Solution

pins

customizing	colors,	Problem

detailed	annotations	for,	Problem

pinTintColor	property,	Solution

play()	function,	Solution

playgrounds,	designing	interface	objects	in,	Problem

plist-serializable	content,	Problem

portrait	mode,	Discussion

position	property,	Solution

postal	addresses,	localization	of,	Problem

power	management,	Problem

preconditions,	specifying	for	methods,	Problem

predictedTouchesForTouch(_:)	method,	Solution

presentAudioRecorderControllerWithOutputURL(_:preset:options:completion:)
method,	Solution

presentMediaPlayerControllerWithURL(_:options:completion:)	instance	method,
Solution

presentViewController(_:animated:completion:)	method	,	Solution

pressForDuration(_:)	method,	Solution

previewControllerDelegate	property,	Solution

protection	parameters,	Solution

(see	also	Security	framework)

protocols

AVAssetDownloadDelegate,	Solution

CLKComplicationDataSource,	Solution

CustomDebugStringConvertible,	Solution

equality-checking	functionality	in,	Solution

extending,	Solution

NSFastEnumeration,	Discussion

NSURLSessionDownloadDelegate,	Discussion

OptionSetType,	Solution

RPPreviewViewControllerDelegate,	Solution

RPScreenRecorderDelegate,	Solution

WCSessionDelegate,	Solution

push	notifications,	text	responses	to,	Problem

Q
queries,	for	finding	UI	components,	Solution

R
radial	gravity	fields,	Problem

radialGravityFieldWithPosition(_:)	class	method,	Solution

reachability	flag,	Discussion

readableContentGuide	property,	Solution

Reader	Mode	(Safari),	Problem

ReadyToPlay	status,	Solution

recordAccelerometerFor(_:)	function,	Solution

Refactor	to	Storyboard	(Interface	Builder),	Solution

reference	views,	UI	Dynamics

refresh	rate,	Discussion

region	property,	Solution

remote	notifications,	text	responses	to,	Problem

removeKeyCommand(_:)	method,	Solution

replay	functionality,	Problem

ReplayKit,	Solution

requestAccessForEntityType(_:completionHandler:)	method,	Contacts

requestAlwaysAuthorization()	function,	Solution

requestLocation()	method,	Solution

resources

downloading	from	GitHub	repo,	Preface,	Additional	Resources,	Discussion,
Discussion,	Discussion,	Discussion

downloading	packs	dynamically,	Solution

respondsToSelector:	method,	Discussion

resume()	method,	Solution

right-to-left	languages,	Problem

routing	options,	Problem

RPPreviewViewController	class,	Solution

RPPreviewViewControllerDelegate	protocol,	Solution

RPScreenRecorder,	Solution

RPScreenRecorderDelegate	protocol,	Solution

S
Safari	Content	Blockers,	Problem

Safari	view	controller,	Problem

SafariServices	framework

content	blockers,	Discussion

showing	web	content	in	Safari	view	controller,	Solution

scale	indicator,	displaying	on	map,	Problem

search	indexes

best	practices,	Discussion

deleting	app’s	searchable	content,	Problem

internal	app	content,	Problem

maintaining	indexed	content,	Discussion

user	activities,	Problem

searchableIndex(_:reindexAllSearchableItemsWithAcknowledgementHandler:)
method,	Discussion

searchableIndex(_:reindexSearchableItemsWithIdentifiers:acknowledgementHandler:)
method,	Discussion

SecAccessControlCreateFlags.TouchIDAny,	Solution

SecAccessControlCreateWithFlags,	Solution,	Solution

SecItemCopyMatching	function,	Solution

Security	framework

HTTPS	channels,	Problem

opening	URLs	safely,	Problem

passcode	and	Touch	ID,	Problem

Touch	ID	and	timeout,	Problem

semanticContentAttribute	property,	Solution

sendMessage(_:replyHandler:errorHandler:)	method,	Solution

session(_:didFinishFileTransfer:error:)	delegate	method,	Solution

session(_:didReceiveApplicationContext:)	delegate	method,	Solution

session(_:didReceiveFile:)	delegate	method,	Solution

session(_:didReceiveMessage:),	Solution

session(_:didReceiveMessage:replyHandler:)	method,	Solution

session(_:didReceiveUserInfo:)	method,	Solution

sessionReachabilityDidChange(_:)	method,	Solution

sessionWatchStateDidChange(_:)	method,	Solution

set	types,	creating,	Problem

setCategory(_:withOptions:)	method,	Solution

SFSafariViewController	class,	Solution

Shared	Links	Extension,	Problem

SharedCode	framework,	Discussion

showsCompass	property,	Solution

showsScale	property,	Solution

showsTraffic	property,	Solution

simulator

Deep	Press	simulation,	Solution

resetting	address	book	contents	on,	Contacts

running	apps	on,	Apple	Watch

working	with	content	blockers	on,	Discussion

Siri,	Problem

size	class	customization,	Solution

social	media	profiles,	adding	to	contact	database,	Discussion

speech	synthesis,	Problem

Spotlight	Index	Extension,	Problem

stack	views

customizing	screen	sizes,	Problem

horizontal	or	vertical	components,	Problem

programatic	control	of,	Problem

startPedometerUpdatesFromDate(_:withHandler:)	function,	Solution

startPictureInPicture()	function,	Solution

startRecordingWithMicrophoneEnabled(_:handler:)	method,	Solution

state	changes,	listening	for,	Discussion

stopPedometerUpdates()	function,	Discussion

stopRecordingWithHandler(_:),	Solution

storyboards

interactive	interface	objects	and,	Solution

linking	separate	together,	Problem

strength	property,	Discussion

stringFromContact(_:)	function,	Discussion

Swift	2.0	(new	features)

#available	syntax,	Problem

code	optimization,	Problem

conditional	looping,	Discussion

creating	set	types	in,	Problem

defer	syntax,	Problem

fallthrough	syntax,	Problem

for	x	in	y	where	syntax,	Solution

guard	syntax,	Problem

protocol	extensions,	Solution

showing	class	header	view,	Problem

throwing/catching	exceptions	in,	Problem

swiping,	UI	testing	for,	Problem

switch	statements,	grouping	cases	together,	Problem

T
tap()	method,	Solution,	Solution

tapping,	UI	testing	for,	Problem

testing	(see	UI	testing)

text	fields,	UI	testing	of,	Problem,	Problem

text-based	content,	Problem

textFields	property,	Solution

3D	globe	map	display,	Problem

throw	syntax,	Solution

time	offsets,	displaying	in	complications,	Problem

“time	travel”	feature	(Apple	Watch),	Discussion

timeouts,	for	access	control,	Problem

touch	events,	Problem

Touch	ID,	Problem

and	passcodes,	Problem

and	timeouts,	Problem

touch	scan	rate,	Discussion

touchIDAuthenticationAllowableReuseDuration	property,	Solution

traffic,	displaying	on	map,	Problem

trailingAnchor	property,	Solution

transferFile(_:metadata:)	method,	Solution

transferUserInfo(_:)	method,	Solution

transportType	property,	Solution

turbulence	effects,	Problem

turbulenceFieldWithSmoothness(_:animationSpeed:)	class	method,	Solution

Twitter	profile,	adding	to	contact	database,	Discussion

twoFingerTap(),	Solution

types

creating	set	types,	Problem

equality	functionality	in,	Problem

extending	conditionally,	Problem

typeText(_:)	method,	Solution

U
UI	design

arranging	components	without	constraints,	Problem

creating	anchored	constraints	in	code,	Problem

customizing	screen	sizes,	Problem

enabling	Safari	functionalities,	Problem

keyboard	shortcuts,	Problem

programatic	control	of	stack	views,	Problem

recording/sharing	screen	videos,	Problem

right-to-left	languages,	Problem

text	responses	to	notifications,	Problem

text-based	content	layout	control,	Problem

touch	rate	improvement,	Problem

UI	Dynamics	framework

animator	objects	in,	UI	Dynamics

benefits	of,	UI	Dynamics

linear	gravity	fields,	Problem

magnetic	fields,	Problem

noise	effects,	Problem

non	rectangular-shaped	views,	Problem

radial	gravity	fields,	Problem

turbulence	effects,	Problem

velocity	fields,	Problem

UI	Testing	framework

Accessibility	Inspector	(Xcode),	UI	Testing

automating	test	scripts,	Problem

finding	UI	components,	Problem

long-press	simulations,	Problem

preparing	apps	for	testing,	Problem

swipes,	Problem

tapping,	Problem

text	fields,	buttons,	and	labels,	Problem

typing	inside	text	fields,	Problem

UIBarButtonItem,	Problem

UIBezierPath,	Solution

UIButton,	Problem

UICollisionBehavior,	Solution,	Solution

UIDynamicAnimator,	UI	Dynamics-Discussion

UIDynamicItemCollisionBoundsType,	Solution

UIEvent	class,	Solution

UIFieldBehavior,	Solution-Discussion

UIKeyCommand	class,	Solution

UILabel,	Problem

UIRegion,	Solution,	Solution

UISemanticContentAttribute,	Solution

UIStackView,	Solution

UITextField,	Problem

UIUserNotificationAction	class,	Solution

UIView

anchor	properties,	Solution

language	internationalization,	Solution

non-rectangular	views,	Solution

readableContentGuide	property,	Solution

velocity	fields	and,	Discussion

unified	contacts,	Solution

unifiedContactsMatchingPredicate(_:keysToFetch:)	method,	Solution

unifiedContactWithIdentifier(_:keysToFetch:)	method,	Solution

updateApplicationContext(_:)	method,	Solution

updateContact(_:)	method,	Solution

URLs

creating	background,	Discussion

opening	safely,	Problem

URLSession(_:downloadTask:didFinishDownloadingToURL:)	method,	Discussion,
Discussion

user	authentication,	Problem

userInterfaceLayoutDirectionForSemanticContentAttribute(_:)	class	method,
Solution

Utilitarian	Small/Large	complications,	Discussion

V
velocity	fields,	Problem

velocityFieldWithVector(_:)	method,	Solution

video

picture-in-picture	playback,	Problem

playing	local	and	remote	on	Apple	Watch,	Problem

recording/sharing	screen	videos,	Problem

view	controllers,	associating	keyboard	shortcuts	with,	Problem

visual	effects,	disabling,	Discussion

VPlayerItem,	Solution

W
watchAppInstalled	property,	Discussion

WatchConnectivity	framework,	Solution

watchDirectoryURL	property,	Discussion

WatchKit	App,	Apple	Watch

watchOS	2	(see	Apple	Watch)

WCSession,	Solution,	Solution

WCSessionDelegate,	Solution

WCSessionDelegate	protocol,	Solution

WCSessionFile	type,	Solution

web	content,	showing	in	Safari	view	controller,	Problem

where	clauses,	Solution

whole	module	optimization,	Problem

WKAudioRecorderControllerOptions,	Solution

WKInterfaceController,	Solution

WKInterfaceController	class,	Solution

WKMediaPlayerControllerOptions,	Discussion

X
Xcode

Accessibility	Inspector,	UI	Testing

asset	tagging,	Solution

automating	UI	test	scripts,	Problem

bitcode	functionality,	Discussion

Build	Settings,	Discussion

Capabilities	tab,	Discussion

exporting	device-specific	binaries,	Solution

Generated	Interface	Assistant	Editor,	Solution

multiple	bar	buttons,	Solution

record	button	in,	Solution

setting	new	target	in,	Apple	Watch

size	class	customization	features,	Solution

XCUIElement,	Solution

XCUIElementQuery,	Solution

XCUIKeyboardKeyReturn,	Solution

About	the	Author
Vandad	Nahavandipoor	currently	lives	in	Sweden	and	is	an	iOS	and	OS	X	programmer
for	an	international	media	group	with	over	7,000	employees	in	more	than	29	countries.
Previously	he	worked	for	Lloyds	Banking	Group	in	England	to	deliver	their	iOS	apps	to
millions	of	users	in	the	UK.	He	has	led	an	international	team	of	more	than	30	iOS
developers,	and	some	of	the	projects	he	has	overseen	include	the	NatWest	and	RBS	iOS
apps	running	on	millions	of	iPhones	and	iPads	in	the	UK.	Vandad	received	his	B.Sc	and
M.Sc	in	Information	Technology	for	E-Commerce	from	the	University	of	Sussex	in
England.

Vandad’s	programming	experience	started	when	he	first	learned	Basic	on	his	father’s
Commodore	64.	He	then	took	this	experience	and	applied	it	on	his	uncle’s	computer,
running	Basic	on	DOS.	At	this	point,	he	found	programming	for	personal	computers
exciting	indeed	and	moved	on	to	learn	Object	Pascal.	This	allowed	him	to	learn	Borland
Delphi	quite	easily.	He	wrote	a	short	400-page	book	on	Borland	Delphi	and	dedicated	the
book	to	Borland.	From	then,	he	picked	up	x86	Assembly	programming	and	wrote	a	hobby
32-bit	operating	system	named	Vandior.	It	wasn’t	until	late	2007	when	iOS	programming
became	his	main	focus.

Colophon
The	red-billed	tropicbird	(Phaethon	aethereus)	is	also	called	the	boatswain	bird.
Tropicbirds	look	like	terns	but	are	not	genetically	related	to	them;	in	fact,	tropicbirds	have
no	close	living	relative	species,	making	them	a	bit	of	an	evolutionary	mystery.	The	red-
billed	tropicbird	was	featured	on	the	Bermudan	$50	bill	starting	in	2009,	but	it	was
subsequently	replaced	by	the	native	white-tailed	tropicbird,	which	has	a	higher	population
in	Bermuda.

Red-billed	tropicbirds	are	large,	with	long	tails,	white	bodies,	and	the	eponymous	red	bill
that	curves	downward.	With	the	tail	feathers	included,	they	are	almost	40	inches	long;	a
wingspan	of	one	meter	balances	out	their	bodies	and	makes	them	graceful	flyers.	They
have	black	markings	on	their	flight	feathers	and	in	their	eyes.	Male	and	female	birds	look
similar,	but	males	can	have	longer	tails.	Red-billed	tropicbirds’	feet	are	located	very	far
back	on	their	bodies,	so	their	movements	on	land	are	almost	comically	awkward	and	occur
mostly	on	their	bellies.	They	are	not	nimble	swimmers	either,	but	they	move	comfortably
through	the	air	over	the	ocean,	where	they	hover	in	hopes	of	catching	flying	fish.	Flying
fish	appear	to	be	a	favorite	prey,	but	tropicbirds	will	eat	other	fish	and	even	cephalopods
as	well.

Red-billed	tropicbirds	live	in	places	like	the	Galápagos,	the	Cape	Verde	islands,	the	West
Indies,	and	even	the	Persian	Gulf.	Despite	their	preference	for	warm,	tropical	waters,	a
particular	single	red-billed	tropicbird	keeps	returning	to	Seal	Island	in	coastal	Maine	every
year.	There	is	a	large	seabird	population	in	that	part	of	the	state,	but	this	individual	is	the
only	one	of	his	kind	to	be	found	that	far	north.	Some	years	ago,	locals	placed	a	wood
decoy	carving	of	a	tropicbird	out	and	the	inexplicable	visitor	tried	to	court	and	mate	with
it.	The	chance	of	seeing	this	bird	has	meant	good	business	for	the	boat	charters	that	take
birdwatchers	out	to	see	the	puffins	and	black	Guillemots	that	otherwise	dominate	the	local
bird	scene.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	the	Riverside	Natural	History.	The	cover	fonts	are	URW
Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is
Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Preface
Audience

Organization	of	This	Book

Additional	Resources

Using	Code	Examples

Acknowledgments

Swift	2.0,	Xcode	7,	and	Interface	Builder
1.1.	Handling	Errors	in	Swift

1.2.	Specifying	Preconditions	for	Methods

1.3.	Ensuring	the	Execution	of	Code	Blocks	Before	Exiting	Methods

1.4.	Checking	for	API	Availability

1.5.	Categorizing	and	Downloading	Assets	to	Get	Smaller	Binaries

1.6.	Exporting	Device-Specific	Binaries

1.7.	Linking	Separate	Storyboards	Together

1.8.	Adding	Multiple	Buttons	to	the	Navigation	Bar

1.9.	Optimizing	Your	Swift	Code

1.10.	Showing	the	Header	View	of	Your	Swift	Classes

1.11.	Creating	Your	Own	Set	Types

1.12.	Conditionally	Extending	a	Type

1.13.	Building	Equality	Functionality	into	Your	Own	Types

1.14.	Looping	Conditionally	Through	a	Collection

1.15.	Designing	Interactive	Interface	Objects	in	Playgrounds

1.16.	Grouping	Switch	Statement	Cases	Together

1.17.	Bundling	and	Reading	Data	in	Your	Apps

Apple	Watch
2.1.	Downloading	Files	onto	the	Apple	Watch

2.2.	Noticing	Changes	in	Pairing	State	Between	the	iOS	and	Watch	Apps

2.3.	Transferring	Small	Pieces	of	Data	to	and	from	the	Watch

2.4.	Transferring	Dictionaries	in	Queues	to	and	from	the	Watch

2.5.	Transferring	Files	to	and	from	the	Watch

2.6.	Communicating	Interactively	Between	iOS	and	watchOS

2.7.	Setting	Up	Apple	Watch	for	Custom	Complications

2.8.	Constructing	Small	Complications	with	Text	and	Images

2.9.	Displaying	Time	Offsets	in	Complications

2.10.	Displaying	Dates	in	Complications

2.11.	Displaying	Times	in	Complications

2.12.	Displaying	Time	Intervals	in	Complications

2.13.	Recording	Audio	in	Your	Watch	App

2.14.	Playing	Local	and	Remote	Audio	and	Video	in	Your	Watch	App

The	User	Interface
3.1.	Arranging	Your	Components	Horizontally	or	Vertically

3.2.	Customizing	Stack	Views	for	Different	Screen	Sizes

3.3.	Creating	Anchored	Constraints	in	Code

3.4.	Allowing	Users	to	Enter	Text	in	Response	to	Local	and	Remote
Notifications

3.5.	Dealing	with	Stacked	Views	in	Code

3.6.	Showing	Web	Content	in	Safari	View	Controller

3.7.	Laying	Out	Text-Based	Content	on	Your	Views

3.8.	Improving	Touch	Rates	for	Smoother	UI	Interactions

3.9.	Supporting	Right-to-Left	Languages

3.10.	Associating	Keyboard	Shortcuts	with	View	Controllers

3.11.	Recording	the	Screen	and	Sharing	the	Video

Contacts
4.1.	Creating	Contacts

4.2.	Searching	for	Contacts

4.3.	Updating	Contacts

4.4.	Deleting	Contacts

4.5.	Formatting	Contact	Data

4.6.	Picking	Contacts	with	the	Prebuilt	System	UI

4.7.	Creating	Contacts	with	a	Prebuilt	System	UI

4.8.	Displaying	Contacts	with	a	Prebuilt	System	UI

Extensions
5.1.	Creating	Safari	Content	Blockers

5.2.	Creating	Shared	Links	for	Safari

5.3.	Maintaining	Your	App’s	Indexed	Content

Web	and	Search
6.1.	Making	Your	App’s	Content	Searchable

6.2.	Making	User	Activities	Searchable

6.3.	Deleting	Your	App’s	Searchable	Content

Multitasking
7.1.	Adding	Picture	in	Picture	Playback	Functionality

7.2.	Handling	Low	Power	Mode	and	Providing	Alternatives

Maps	and	Location
8.1.	Requesting	the	User’s	Location	a	Single	Time

8.2.	Requesting	the	User’s	Location	in	Background

8.3.	Customizing	the	Tint	Color	of	Pins	on	the	Map

8.4.	Providing	Detailed	Pin	Information	with	Custom	Views

8.5.	Displaying	Traffic,	Scale,	and	Compass	Indicators	on	the	Map

8.6.	Providing	an	ETA	for	Transit	Transport	Type

8.7.	Launching	the	iOS	Maps	App	in	Transit	Mode

8.8.	Showing	Maps	in	Flyover	Mode

UI	Testing
9.1.	Preparing	Your	Project	for	UI	Testing

9.2.	Automating	UI	Test	Scripts

9.3.	Testing	Text	Fields,	Buttons,	and	Labels

9.4.	Finding	UI	Components

9.5.	Long-Pressing	on	UI	Elements

9.6.	Typing	Inside	Text	Fields

9.7.	Swiping	on	UI	Elements

9.8.	Tapping	UI	Elements

Core	Motion
10.1.	Querying	Pace	and	Cadence	Information

10.2.	Recording	and	Reading	Accelerometer	Data

Security
11.1.	Protecting	Your	Network	Connections	with	ATS

11.2.	Binding	Keychain	Items	to	Passcode	and	Touch	ID

11.3.	Opening	URLs	Safely

11.4.	Authenticating	the	User	with	Touch	ID	and	Timeout

Multimedia
12.1.	Reading	Out	Text	with	the	Default	Siri	Alex	Voice

12.2.	Downloading	and	Preparing	Remote	Media	for	Playback

12.3.	Enabling	Spoken	Audio	Sessions

UI	Dynamics
13.1.	Adding	a	Radial	Gravity	Field	to	Your	UI

13.2.	Creating	a	Linear	Gravity	Field	on	Your	UI

13.3.	Creating	Turbulence	Effects	with	Animations

13.4.	Adding	Animated	Noise	Effects	to	Your	UI

13.5.	Creating	a	Magnetic	Effect	Between	UI	Components

13.6.	Designing	a	Velocity	Field	on	Your	UI

13.7.	Handling	Nonrectangular	Views

Index

	Preface
	Audience
	Organization of This Book
	Additional Resources
	Using Code Examples
	Acknowledgments

	1. Swift 2.0, Xcode 7, and Interface Builder
	1.1. Handling Errors in Swift
	1.2. Specifying Preconditions for Methods
	1.3. Ensuring the Execution of Code Blocks Before Exiting Methods
	1.4. Checking for API Availability
	1.5. Categorizing and Downloading Assets to Get Smaller Binaries
	1.6. Exporting Device-Specific Binaries
	1.7. Linking Separate Storyboards Together
	1.8. Adding Multiple Buttons to the Navigation Bar
	1.9. Optimizing Your Swift Code
	1.10. Showing the Header View of Your Swift Classes
	1.11. Creating Your Own Set Types
	1.12. Conditionally Extending a Type
	1.13. Building Equality Functionality into Your Own Types
	1.14. Looping Conditionally Through a Collection
	1.15. Designing Interactive Interface Objects in Playgrounds
	1.16. Grouping Switch Statement Cases Together
	1.17. Bundling and Reading Data in Your Apps

	2. Apple Watch
	2.1. Downloading Files onto the Apple Watch
	2.2. Noticing Changes in Pairing State Between the iOS and Watch Apps
	2.3. Transferring Small Pieces of Data to and from the Watch
	2.4. Transferring Dictionaries in Queues to and from the Watch
	2.5. Transferring Files to and from the Watch
	2.6. Communicating Interactively Between iOS and watchOS
	2.7. Setting Up Apple Watch for Custom Complications
	2.8. Constructing Small Complications with Text and Images
	2.9. Displaying Time Offsets in Complications
	2.10. Displaying Dates in Complications
	2.11. Displaying Times in Complications
	2.12. Displaying Time Intervals in Complications
	2.13. Recording Audio in Your Watch App
	2.14. Playing Local and Remote Audio and Video in Your Watch App

	3. The User Interface
	3.1. Arranging Your Components Horizontally or Vertically
	3.2. Customizing Stack Views for Different Screen Sizes
	3.3. Creating Anchored Constraints in Code
	3.4. Allowing Users to Enter Text in Response to Local and Remote Notifications
	3.5. Dealing with Stacked Views in Code
	3.6. Showing Web Content in Safari View Controller
	3.7. Laying Out Text-Based Content on Your Views
	3.8. Improving Touch Rates for Smoother UI Interactions
	3.9. Supporting Right-to-Left Languages
	3.10. Associating Keyboard Shortcuts with View Controllers
	3.11. Recording the Screen and Sharing the Video

	4. Contacts
	4.1. Creating Contacts
	4.2. Searching for Contacts
	4.3. Updating Contacts
	4.4. Deleting Contacts
	4.5. Formatting Contact Data
	4.6. Picking Contacts with the Prebuilt System UI
	4.7. Creating Contacts with a Prebuilt System UI
	4.8. Displaying Contacts with a Prebuilt System UI

	5. Extensions
	5.1. Creating Safari Content Blockers
	5.2. Creating Shared Links for Safari
	5.3. Maintaining Your App’s Indexed Content

	6. Web and Search
	6.1. Making Your App’s Content Searchable
	6.2. Making User Activities Searchable
	6.3. Deleting Your App’s Searchable Content

	7. Multitasking
	7.1. Adding Picture in Picture Playback Functionality
	7.2. Handling Low Power Mode and Providing Alternatives

	8. Maps and Location
	8.1. Requesting the User’s Location a Single Time
	8.2. Requesting the User’s Location in Background
	8.3. Customizing the Tint Color of Pins on the Map
	8.4. Providing Detailed Pin Information with Custom Views
	8.5. Displaying Traffic, Scale, and Compass Indicators on the Map
	8.6. Providing an ETA for Transit Transport Type
	8.7. Launching the iOS Maps App in Transit Mode
	8.8. Showing Maps in Flyover Mode

	9. UI Testing
	9.1. Preparing Your Project for UI Testing
	9.2. Automating UI Test Scripts
	9.3. Testing Text Fields, Buttons, and Labels
	9.4. Finding UI Components
	9.5. Long-Pressing on UI Elements
	9.6. Typing Inside Text Fields
	9.7. Swiping on UI Elements
	9.8. Tapping UI Elements

	10. Core Motion
	10.1. Querying Pace and Cadence Information
	10.2. Recording and Reading Accelerometer Data

	11. Security
	11.1. Protecting Your Network Connections with ATS
	11.2. Binding Keychain Items to Passcode and Touch ID
	11.3. Opening URLs Safely
	11.4. Authenticating the User with Touch ID and Timeout

	12. Multimedia
	12.1. Reading Out Text with the Default Siri Alex Voice
	12.2. Downloading and Preparing Remote Media for Playback
	12.3. Enabling Spoken Audio Sessions

	13. UI Dynamics
	13.1. Adding a Radial Gravity Field to Your UI
	13.2. Creating a Linear Gravity Field on Your UI
	13.3. Creating Turbulence Effects with Animations
	13.4. Adding Animated Noise Effects to Your UI
	13.5. Creating a Magnetic Effect Between UI Components
	13.6. Designing a Velocity Field on Your UI
	13.7. Handling Nonrectangular Views

	Index

