




wxPython	Application	Development
Cookbook



Table	of	Contents

wxPython	Application	Development	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	wxPython	Starting	Points

Introduction

Creating	an	application	object

How	to	do	it…



How	it	works…

There’s	more…

See	also

Adding	the	main	frame

How	to	do	it…

How	it	works…

There’s	more…

Using	bitmaps

How	to	do	it…

How	it	works…

There’s	more…

Binding	to	events

How	to	do	it…

How	it	works…

There’s	more…

See	also

Understanding	the	hierarchy	of	the	UI

How	to	do	it…

How	it	works…

There’s	more…

See	also

Controlling	the	propagation	of	events

How	to	do	it…

How	it	works…

There’s	more…

Accessing	the	clipboard

How	to	do	it…

How	it	works…

There’s	more…

See	also

Supporting	drag	and	drop



How	to	do	it…

How	it	works…

There’s	more…

Handling	AppleEvents

How	to	do	it…

How	it	works…

There’s	more…

2.	Common	User	Controls

Introduction

Starting	with	the	easy	button

How	to	do	it…

How	it	works…

See	also

Pushing	all	the	buttons

How	to	do	it…

How	it	works…

There’s	more…

Offering	options	with	CheckBoxes

How	to	do	it…

How	it	works…

Using	TextCtrl

How	to	do	it…

How	it	works…

There’s	more…

See	also

Processing	key	events

How	to	do	it…

How	it	works…

There’s	more…

Picking	dates	with	DatePickerCtrl

How	to	do	it…



How	it	works…

There’s	more…

Exploring	menus	and	shortcuts

How	to	do	it…

How	it	works…

There’s	more…

See	also

Displaying	a	context	menu

How	to	do	it…

How	it	works…

See	also

Working	with	ToolBars

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Managing	UI	states

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

3.	UI	Layout	and	Organization

Introduction

Laying	out	controls	with	Sizers

How	to	do	it…

How	it	works…

See	also

Controlling	layout	behavior

Getting	ready

How	to	do	it…



How	it	works…

There’s	more…

Grouping	controls	with	a	StaticBox	control

How	to	do	it…

How	it	works…

There’s	more…

Creating	an	automatic	wrapping	layout

How	to	do	it…

How	it	works…

Using	the	standard	dialog	button	sizer

How	to	do	it…

How	it	works…

There’s	more…

Simplifying	the	panel	layout

How	to	do	it…

How	it	works…

There’s	more…

See	also

Making	dialog	layout	easy

Getting	ready

How	to	do	it…

How	it	works…

Building	XML	resource-based	layouts

How	to	do	it…

How	it	works…

There’s	more…

Extending	XRC	for	custom	controls

How	to	do	it…

How	it	works…

There’s	more…

Advancing	your	UI	with	AuiManager



How	to	do	it…

How	it	works…

There’s	more…

Additional	AuiPaneInfo	options

Saving	and	restoring	a	window’s	state

4.	Containers	and	Advanced	Controls

Introduction

Adding	tabs	with	the	Notebook	control

How	to	do	it…

How	it	works…

There’s	more…

See	also

Enhancing	ComboBox	with	bitmaps

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	properties

How	to	do	it…

How	it	works…

There’s	more…

Taking	control	with	FlatNotebook

How	to	do	it…

How	it	works…

There’s	more…

See	also

Styling	text	in	StyledTextCtrl

How	to	do	it…

How	it	works…

There’s	more…

See	also



Annotating	StyledTextCtrl

Getting	started

How	to	do	it…

How	it	works…

There’s	more…

Displaying	hierarchical	data	with	TreeCtrl

How	to	do	it…

How	it	works…

There’s	more…

Building	a	system	tray	application

Getting	started

How	to	do	it…

How	it	works…

There’s	more…

Surfing	the	Web	in	your	app

How	to	do	it…

How	it	works…

There’s	more…

5.	Data	Displays	and	Grids

Introduction

Displaying	lists	of	data

How	to	do	it…

How	it	works…

There’s	more…

See	also

Editing	data	lists

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Implementing	a	data	source



How	to	do	it…

How	it	works…

There’s	more…

See	also

Getting	started	with	the	data	grid

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Custom	Editors

Managing	Attributes

See	also

Displaying	dynamic	data

How	to	do	it…

How	it	works…

There’s	more…

See	also

Modeling	your	data

How	to	do	it…

How	it	works…

There’s	more…

See	also

Displaying	your	data	model

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

6.	Ways	to	Notify	and	Alert

Introduction

Showing	MessageBox

How	to	do	it…



How	it	works…

There’s	more…

Button	flags

Icon	flags

Using	InfoBar

How	to	do	it…

How	it	works…

There’s	more…

See	also

Providing	extra	tips	on	usage

How	to	do	it…

How	it	works…

Displaying	transient	notifications

How	to	do	it…

How	it	works…

There’s	more…

See	also

Making	a	splash	at	startup

How	to	do	it…

How	it	works…

There’s	more…

See	also

Giving	busy	feedback

How	to	do	it…

How	it	works…

Showing	information	about	your	app

How	to	do	it…

How	it	works…

There’s	more…

See	also

7.	Requesting	and	Retrieving	Information



Introduction

Selecting	files	with	FileDialog

Getting	ready

How	to	do	it…

How	it	works…

See	also

Searching	text	with	FindReplaceDialog

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Filtering	through	choices

How	to	do	it…

How	it	works…

There’s	more…

See	also

Retrieving	multiple	selections

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	Print	dialogs

How	to	do	it…

How	it	works…

There’s	more…

See	also

Guiding	selections	with	Wizard

How	to	do	it…

How	it	works…

There’s	more…

8.	User	Interface	Primitives



Introduction

Painting	in	your	UI

How	to	do	it…

How	it	works…

See	also

Drawing	basic	shapes

How	to	do	it…

How	it	works…

There’s	more…

Customizing	grid	labels

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Drawing	gradients	with	GraphicsContext

How	to	do	it…

How	it	works…

There’s	more…

Recreating	native	controls	with	RendererNative

How	to	do	it…

How	it	works…

There’s	more…

9.	Creating	and	Customizing	Components

Introduction

Making	your	own	dialog

How	to	do	it…

How	it	works…

There’s	more…

See	also

Validating	user	input



How	to	do	it…

How	it	works…

There’s	more…

Interacting	with	StatusBar

How	to	do	it…

How	it	works…

There’s	more…

Providing	your	own	information	window

How	to	do	it…

How	it	works…

See	also

Creating	a	managed	layout

How	to	do	it…

How	it	works…

Drawing	your	own	list	control

How	to	do	it…

How	it	works…

There’s	more…

Implementing	highlighting	in	StyledTextCtrl

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	composite	control

How	to	do	it…

How	it	works…

See	also

Designing	an	owner-drawn	control

Getting	ready

How	to	do	it…

How	it	works



See	also

10.	Getting	Your	Application	Ready	for	Release

Introduction

Storing	your	configuration	with	StandardPaths

How	to	do	it…

How	it	works…

There’s	more…

Saving	the	application’s	state

How	to	do	it…

How	it	works…

See	also

Supporting	internationalization

How	to	do	it…

How	it	works…

There’s	more…

See	also

Optimizing	for	OS	X

How	to	do	it…

How	it	works…

There’s	more…

ToolBars

See	also

Handling	errors	gracefully

How	to	do	it…

How	it	works…

Embedding	your	resources

How	to	do	it…

How	it	works…

There’s	more…

See	also

Distributing	an	application



Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Updating	your	software

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Index





wxPython	Application	Development
Cookbook





wxPython	Application	Development
Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1171215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-773-2

www.packtpub.com

http://www.packtpub.com




Credits
Author

Cody	Precord

Reviewers

Joran	Beasley

Jens	Göpfert

Acquisition	Editor

Usha	Iyer

Content	Development	Editor

Neeshma	Ramakrishnan

Deepti	Thore

Technical	Editor

Vijin	Boricha

Copy	Editor

Shruti	Iyer

Project	Coordinator

Shweta	H	Birwatkar

Proofreader

Safis	Editing

Indexer

Mariammal	Chettiyar

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite





About	the	Author
Cody	Precord	is	a	software	engineer	based	in	Minneapolis,	MN,	USA.	He	designs	and
writes	systems	and	application	software	for	Windows,	AIX,	Linux,	and	Macintosh	OS	X
using	primarily	C++,	C#,	C,	Perl,	Bash,	and	Python.	The	constant	need	for	working	on
multiple	platforms	naturally	led	Cody	to	the	wxPython	toolkit,	which	he	has	used	for
several	years.	He	is	the	author	of	wxPython	2.8	Application	Development	Cookbook,	Packt
Publishing	and	has	also	contributed	to	the	development	of	the	wxPython	library.	Cody	is
interested	in	promoting	cross	platform	development	practices	and	improving	usability	in
software.





About	the	Reviewers
Joran	Beasley	received	his	degree	in	computer	science	from	the	University	of	Idaho.	He
has	programmed	desktop	applications	in	wxPython	professionally	to	monitor	large-scale
sensor	networks	that	can	be	used	in	agriculture	for	the	last	7	years.	Joran	currently	lives	in
Moscow,	Idaho,	and	works	for	Decagon	Devices,	Inc.	as	a	software	engineer.

I	would	like	to	thank	my	wife,	Nicole,	for	putting	up	with	my	long	hours	hunched	over	a
keyboard	and	her	constant	support	and	help	in	raising	our	two	wonderful	children.

Jens	Göpfert	started	developing	applications	with	wxPyton	in	2003,	as	a	student	assistant
first	and	later	on	during	his	professional	career.	He	is	known	and	considered	by	peers	as	a
wxPython	expert.	Jens	has	developed	applications	for	engineers	in	the	automotive	domain,
where	he	further	gained	invaluable	experience	in	working	with	complex	and	easily
operable	user	interfaces.	With	this	knowledge,	he	started	using	wxPython	for	various
projects	in	his	spare	time	as	well.	Also,	as	a	user	of	the	underlying	C++	implementation,
Jens	applies	his	analytical	skills	to	better	understand	the	wxPython	functionality	and
address	problems	or	make	enhancements.

Special	thanks	go	to	my	wife,	Marlene,	and	my	two	children,	Melinda	and	Julius,	for
supporting	me	and	my	passion	for	developing	while	I	spent	a	lot	of	time	working	on	the
computer.





www.PacktPub.com



Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser



Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com




Preface
In	today’s	world	of	desktop	applications,	there	is	a	great	amount	of	incentive	in	being	able
to	develop	applications	that	can	run	in	more	than	one	environment.	Currently,	there	are	a
handful	of	options	available	for	cross	platform	frameworks	to	develop	desktop
applications	in	Python;	wxPython	is	one	such	cross	platform	GUI	toolkit	for	the	Python
programming	language.	It	allows	Python	programmers	to	simply	and	easily	create
programs	with	a	complete,	highly	functional	graphical	user	interface.	The	wxPython	code
style	has	changed	quite	a	bit	over	the	years	and	has	become	much	more	Pythonic.	The
examples	that	you	will	find	in	this	book	are	fully	up	to	date	and	reflect	this	change	in
style.	This	cookbook	provides	you	with	the	latest	recipes	to	quickly	create	robust,	reliable,
and	reusable	wxPython	applications.	These	recipes	will	guide	you	right	from	writing
simple,	basic	wxPython	scripts	all	the	way	through	complex	concepts	and	also	feature
various	design	approaches	and	techniques	in	wxPython.

This	book	starts	off	by	covering	a	variety	of	topics,	from	the	most	basic	requirements	of	a
wxPython	application	to	some	of	the	more	in-depth	details	of	the	inner	workings	of	the
framework,	thus	laying	a	foundation	for	any	wxPython	application.	It	then	explains	event
handling,	basic	and	advanced	user	interface	controls,	interface	design	and	layout,	creating
dialogs,	components,	extending	functionality,	and	so	on.	We	will	conclude	by	learning
how	to	build	and	manage	applications	for	distribution.

For	each	of	the	recipes,	there	is	first	an	introductory	and	then	more	advanced	examples
along	with	plenty	of	example	code	that	shows	you	how	to	develop	and	manage	user-
friendly	applications.	For	more	experienced	developers,	most	recipes	also	include	an
additional	discussion	of	the	solution,	allowing	you	to	further	customize	and	enhance	the
component.



What	this	book	covers
Chapter	1,	wxPython	Starting	Points,	teaches	the	basics	of	getting	started	with	building
applications	with	wxPython.

Chapter	2,	Common	User	Controls,	introduces	you	to	the	commonly	used	UI	components
and	how	use	them	in	wxPython.

Chapter	3,	UI	Layout	and	Organization,	shows	you	how	to	lay	out	and	present	user
controls	on	screen	using	Sizers.

Chapter	4,	Containers	and	Advanced	Controls,	introduces	you	to	various	container-type
and	specialized	controls,	such	as	web	browsers.

Chapter	5,	Data	Displays	and	Grids,	shows	you	how	to	display	and	work	with	data	using
the	Grids,	Lists,	and	DataView	controls.

Chapter	6,	Ways	to	Notify	and	Alert,	teaches	you	the	techniques	of	alerting	and	notifying
users	with	information.

Chapter	7,	Requesting	and	Retrieving	Information,	shows	you	how	to	prompt	users	for
information	and	input.

Chapter	8,	User	Interface	Primitives,	shows	you	how	to	use	DeviceContexts	to	draw	and
customize	your	own	UI	components.

Chapter	9,	Creating	and	Customizing	Components,	teaches	you	the	techniques	of
designing	and	creating	your	own	custom	controls.

Chapter	10,	Getting	Your	Application	Ready	for	Release,	shows	you	how	to	manage
application	configuration	and	build	packages	for	release.





What	you	need	for	this	book
All	the	recipes	in	this	book	were	written	using	the	following	software:

wxPython	3.0.2.0
Python	2.7.9

A	small	selection	of	recipes	requires	some	additional	external	Python	packages,	which	are
described	in	the	recipe.

In	addition	to	these	tools,	you	will	just	need	a	good	text	editor	that	can	work	with	Python
files.





Who	this	book	is	for
This	book	is	written	for	Python	programmers	wanting	to	develop	user	interfaces	for	their
applications.	An	understanding	of	the	Python	language	and	basic	object-oriented
programming	concepts	is	required	to	get	the	most	out	of	this	book.





Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:



Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.



How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.



How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.



There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.



See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“To
make	the	control	visible	to	the	user	we	call	the	Show	method.”

A	block	of	code	is	set	as	follows:

class	MyPanel(sized.SizedScrolledPanel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								self.SetSizerType("form")

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

class	MyPanel(sized.SizedScrolledPanel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								self.SetSizerType("form")

Any	command-line	input	or	output	is	written	as	follows:

python	main.py

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“So	now,	it’s	time	to
add	this	method	in	to	build	up	a	simple	File	and	Edit	menu.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	wxPython	Starting	Points
In	this	chapter,	we	will	cover:

Creating	an	application	object
Adding	the	main	frame
Using	bitmaps
Binding	to	events
Understanding	the	hierarchy	of	the	UI
Controlling	the	propagation	of	events
Accessing	the	clipboard
Supporting	drag	and	drop
Handling	AppleEvents



Introduction
In	this	chapter,	we	will	take	a	quick	overview	on	getting	started	with	wxPython,	including
how	to	get	an	app	started	as	well	as	handling	events	and	supporting	basic	integration	with
various	operating	system	features	for	the	environments	that	the	application	may	be
operated	in.	These	concepts	are	used	throughout	the	recipes	in	this	book	as	well	as	in	any
wxPython	application	you	may	develop.	The	recipes	throughout	this	book	target
wxPython	3.0	running	on	Python	2.7.	Many	features	exist	and	work	in	earlier	versions	of
wxPython	as	well,	but	your	mileage	may	vary	with	the	recipes	in	this	book	when	using	a
version	earlier	than	3.0.





Creating	an	application	object
The	App	object	is	an	object	that	all	wxPython	applications	must	create	before	any	other
GUI	object.	This	object	creates	the	application	and	provides	its	main	event	loop,	which	is
used	to	dispatch	events	and	connect	actions	in	the	UI	with	the	actions	in	your	programs.

This	recipe	will	introduce	how	to	create	a	minimal	wxPython	application,	which	will	be
used	as	foundation	for	every	other	recipe	in	this	book.



How	to	do	it…
Perform	the	following	steps:

1.	 Make	the	script	as	follows:

import	wx

class	MyApp(wx.App):

				def	OnInit(self):

								wx.MessageBox("Hello	wxPython",	"wxApp")

								return	True

if	__name__	==	"__main__":

				app	=	MyApp(False)

				app.MainLoop()

2.	 Run	the	script	and	take	a	look	at	the	result:



How	it	works…
There	are	three	things	to	take	note	of	in	this	simple	application:	the	first,	we	created	a
subclass	of	the	wx.App	object;	the	second,	we	overrode	the	OnInit	method;	and	the	third,
we	called	the	MainLoop	method	of	the	application	object.	These	simple	steps	set	up	the
base	for	any	application.

The	OnInit	method	is	called	by	the	application’s	MainLoop	method	when	it	is	started	and
provides	an	entry	point	to	start	up	the	main	logic	and	user	interface	of	your	application.	In
this	example,	we	just	used	it	to	show	a	simple	pop-up	dialog	box.	The	application’s
MainLoop	method	continues	to	run	until	the	last	window	associated	with	the	application	is
closed.	The	OnInit	method	must	return	true	in	order	to	continue	the	initialization	of	the
MainLoop	applications.

The	MainLoop	method	processes	and	dispatches	all	the	messages	that	are	needed	to	present
the	UI	and	direct	messages	for	user	actions	initiated	with	button	clicks.	When	the	OK
button	is	clicked	on	the	dialog,	it	sends	a	message	that	is	dispatched	by	the	MainLoop
method	to	close	the	dialog.	In	this	example,	once	the	dialog	has	returned,	OnInit	will	also
return,	and	there	will	be	no	window	objects	remaining.	So,	the	application’s	MainLoop
method	will	return	as	well,	and	this	script	will	exit.



There’s	more…
Though	generally	the	wx.App	object	is	created	as	we	did	in	this	example,	the	class
constructor	also	has	four	optional	keyword	arguments	that	can	be	used	to	modify	some	of
its	behavior:

		wx.App(redirect=False,	filename=None,	useBestVisual=False,	

clearSigInt=True)

The	four	optional	keyword	arguments	are	as	follows:

redirect:	If	set	to	True,	stdout	is	redirected	to	a	debug	window
filename:	If	redirect	is	True	and	this	is	not	None,	then	stdout	can	be	redirected	to	a
file	specified	by	this	argument
useBestVisual:	This	specifies	whether	the	application	should	try	to	use	the	best
visuals	provided	by	the	underlying	toolkit.	(This	has	no	effect	on	most	systems.)
clearSigInt:	Setting	this	to	True	will	allow	the	application	to	be	terminated	by
pressing	Ctrl+C	from	the	command	line.



See	also
The	Handling	errors	gracefully	recipe	in	Chapter	10,	Getting	Your	Application	Ready
for	Release,	provides	additional	information	on	methods	that	can	be	overridden	in
wx.App.





Adding	the	main	frame
Most	applications	have	some	sort	of	main	window	that	they	want	to	show	to	allow	their
users	to	interact	with	the	software.	In	wxPython,	this	window	is	called	a	frame.	The	frame
is	the	main	top-level	container	and	the	base	for	building	most	user	interfaces	in	wxPython.
This	recipe	will	show	how	to	create	a	frame	and	add	it	to	an	application.



How	to	do	it…
You	can	do	this	by	performing	the	following	steps:

1.	 Start	by	making	a	subclass	of	wx.Frame	with	the	following	code:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(MyFrame,	self).__init__(parent,	title=title)

								

								#	Set	an	application	icon

								self.SetIcon(wx.Icon("appIcon.png"))

								

								#	Set	the	panel

								self.panel	=	wx.Panel(self)

2.	 Next,	create	an	instance	of	the	frame	and	show	it	using	the	following	code:

class	MyApp(wx.App):

				def	OnInit(self):

								self.frame	=	MyFrame(None,	title="Main	Frame")

								self.frame.Show()

								return	True

3.	 Run	the	script	and	take	a	look	at	what	we	made:



How	it	works…
The	Frame	class	creates	a	top-level	window	that	can	be	used	to	present	any	number	of
other	controls.	A	frame	can	be	created	without	any	parent	window	and	will	remain	in	the
application	until	it	is	dismissed	by	the	user.

In	this	recipe,	we	set	up	a	couple	of	items	on	the	MyFrame	class:

1.	 We	called	SetIcon	to	set	the	custom	application	icon	on	the	title	bar	of	the	frame.
This	icon	was	created	from	the	appIcon.png	file,	which	exists	in	the	same	directory
as	the	script.

2.	 We	created	a	Panel	object	and	set	the	frame	as	its	parent	object.	A	panel	is	a	plain
rectangular	control	used	to	contain	other	controls	and	is	shown	as	the	rectangular	area
inside	the	frame’s	borders.	A	panel	must	have	a	parent	window	in	order	to	be	created.

Finally,	in	the	App	object’s	OnInit	method,	we	created	an	instance	of	the	frame	specifying
the	title	that	we	wanted	to	show	in	the	frame’s	title	bar	and	then	called	its	Show	method	to
display	it	on	the	screen.	This	recipe	can	be	used	as	the	preparation	to	create	any	wxPython
application.



There’s	more…
The	wx.Frame	constructor	has	several	style	flags	that	can	be	specified	in	its	constructor	to
modify	its	behavior	and	appearance.

Style	flag Description

wx.DEFAULT_FRAME_STYLE This	flag	is	a	bit	mask	of	all	the	other	flags	described	in	the	following	sections

wx.MINIMIZE_BOX This	displays	the	minimize	button	on	the	title	bar

wx.MAXIMIZE_BOX This	displays	the	maximize	button	on	the	title	bar

wx.RESIZE_BORDER This	allows	the	frame	to	be	resized	by	the	user

wx.CAPTION This	displays	a	title	caption	on	the	frames	title	bar

wx.CLOSE_BOX This	displays	the	close	button	on	the	title	bar

wx.SYSTEM_MENU
This	displays	a	system	menu	(the	menu	that	appears	when	clicking	on	the	frame	icon	on
Windows)

wx.CLIP_CHILDREN This	eliminates	the	flicker	caused	by	background	repainting	(Windows	only)

These	style	flags	can	be	passed	in	any	combination	using	a	bitwise	operator	to	turn	off	any
of	the	features	that	you	may	not	want	to	provide	on	all	frames.	Multiple	flags	can	be
combined	using	a	bitwise	or	operation.





Using	bitmaps
Bitmaps	are	the	basic	data	type	used	to	represent	images	in	an	application.	The	wx.Bitmap
object	can	seamlessly	load	and	decompress	most	common	image	file	formats	into	a
common	representation	that	is	usable	by	many	UI	controls.	Adding	bitmaps	to	the	controls
can	make	a	UI	more	intuitive	and	easier	to	use.



How	to	do	it…
Perform	the	following	steps:

1.	 Let’s	start	this	time	by	making	a	subclass	of	wx.Panel	to	use	as	the	container	for	the
control	that	will	show	our	bitmap	on	the	screen,	as	follows:

class	ImagePanel(wx.Panel):

				def	__init__(self,	parent):

								super(ImagePanel,	self).__init__(parent)

								

								#	Load	the	image	data	into	a	Bitmap

								theBitmap	=	wx.Bitmap("usingBitmaps.png")

								

								#	Create	a	control	that	can	display	the

								#	bitmap	on	the	screen.

								self.bitmap	=	wx.StaticBitmap(self,	bitmap=theBitmap)

2.	 Next,	we	will	create	an	instance	of	the	panel	in	a	frame:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(MyFrame,	self).__init__(parent,	title=title)

								

								#	Set	the	panel

								self.panel	=	ImagePanel(self)

3.	 Run	it	and	see	the	image	shown	on	the	panel:



How	it	works…
The	Bitmap	class	is	used	to	load	image	data	from	the	usingBitmaps.png	file,	which	is
located	in	the	same	directory	as	the	script.	This	loads	the	PNG	file	data	into	a	bitmap
object,	which	can	be	used	by	the	controls.

In	this	example,	we	used	the	StaticBitmap	control,	which	is	one	of	the	easiest	ways	to
display	a	bitmap	in	the	UI.	This	control	takes	the	bitmap	data	object	and	handles	drawing
it	on	the	screen.



There’s	more…
In	this	recipe,	we	used	a	PNG	file	as	the	source	for	the	bitmap,	but	wx.Bitmap	also
supports	a	wide	range	of	other	image	formats,	such	as	BMP,	GIF,	ICO,	ICON,	JPEG,	TIF,	XBM,
XPM,	and	several	others,	depending	on	the	build	of	wxWidgets	used	by	wxPython.





Binding	to	events
wxPython	is	an	event-driven	framework;	this	means	that	all	actions	and	the	running	of	the
UI	is	driven	by	events.	Events	are	fired	by	objects	to	indicate	that	something	has	happened
or	needs	to	happen.	MainLoop	then	dispatches	these	events	to	callback	methods	that	are
registered	to	be	notified	of	the	event.	This	recipe	will	show	how	to	bind	callback	functions
to	events.



How	to	do	it…
Perform	the	following	functions:

1.	 First,	start	by	creating	a	frame	and	binding	to	some	of	its	events	with	the	following
code:

class	MyApp(wx.App):

				def	OnInit(self):

								self.frame	=	wx.Frame(None,	title="Binding	Events")

								

								#	Bind	to	events	we	are	interested	in

								self.frame.Bind(wx.EVT_SHOW,	self.OnFrameShow)

								self.frame.Bind(wx.EVT_CLOSE,	self.OnFrameExit)

								

								#	Show	the	frame

								self.frame.Show()

								return	True

2.	 Next,	define	the	event	handler	callback	methods	we	specified	in	the	Bind	calls.	These
will	get	executed	when	the	bound	event	occurs,	as	follows:

				def	OnFrameShow(self,	event):

								theFrame	=	event.EventObject

								print("Frame	(%s)	Shown!"	%	theFrame.Title)

								event.Skip()

				def	OnFrameExit(self,	event):

								theFrame	=	event.EventObject

								print("Frame	(%s)	is	closing!"	%	theFrame.Title)

								event.Skip()



How	it	works…
In	the	OnInit	method,	we	created	a	frame	object	and	then	called	Bind	on	it	two	times	in
order	to	bind	our	own	two	callback	methods	to	these	events	that	the	frame	emits.	In	this
case,	we	bound	to	EVT_SHOW	and	EVT_CLOSE;	these	two	events	will	be	emitted	by	a	window
when	the	window	transitions	from	being	hidden	to	shown	on	screen	and	then	when	it	is
closed.	Binding	to	events	allows	us	to	add	some	application-specific	response	when	these
two	events	occur.	Now,	our	app’s	OnFrameShow	and	OnFrameExit	callbacks	will	be
executed	by	the	framework	in	response	to	the	event	and	allow	us	to	print	our	log
messages.

The	first	event,	EVT_SHOW,	happens	as	part	of	when	the	Show	method	is	called	on	the	frame
in	the	app’s	OnInit	method.	The	other	event,	EVT_CLOSE,	occurs	when	the	frame’s	close
button	is	clicked	on.

The	event	handler	methods	used	in	Bind	always	take	one	argument,	which	is	an	event
object.	This	object	is	passed	into	the	handler	by	the	framework	when	it	is	called.	The
event	object	contains	information	about	the	event,	such	as	a	reference	to	the	object	that
emitted	it	and	other	state	information	depending	on	what	type	of	event	was	emitted.



There’s	more…
The	Bind	function	can	also	take	some	additional	optional	parameters	to	set	more	fine-
grain	control	on	when	the	callback	should	be	executed,	as	follows:

Bind(event,	handler,	source=None,	id=-1,	id2=-1)

The	arguments	to	this	function	are	described	as	follows:

event:	This	is	the	event	to	bind	to.
handler:	This	is	the	event	handler	callback	function	to	bind.
source:	This	can	be	used	to	specify	the	window	object	that	is	the	source	of	the	event.
If	specified,	then	only	when	the	source	object	generates	the	event	will	the	handler	be
executed.	By	default,	any	event	of	the	type	that	gets	to	the	control	will	cause	the
handler	to	execute.
id1:	This	is	used	to	specify	the	source	object’s	ID	instead	of	using	the	instance.
id2:	When	specified	with	id1,	this	can	be	used	to	specify	a	range	of	IDs	to	bind	to.

There	are	many	kinds	of	events	that	can	be	bound	to	depending	on	the	type	of	control.	The
wxPython	and	wxWidgets	online	documentation	provides	a	fairly	complete	list	of	events
that	are	available	for	each	control	in	the	library.	Note	that	the	documentation	is	based	on
object	hierarchy,	so	you	may	have	to	look	to	the	base	classes	of	an	object	to	find	the	more
general	events	that	many	controls	share.	You	can	find	the	documentation	at
http://wxpython.org/onlinedocs.php.

http://wxpython.org/onlinedocs.php


See	also
Take	a	look	at	the	Controlling	the	propagation	of	events	recipe	section	in	this	chapter
for	information	on	the	behavior	of	events.





Understanding	the	hierarchy	of	the	UI
There	are	certain	rules	and	requirements	to	create	a	user	interface;	in	its	most	fundamental
form,	the	UI	is	just	a	collection	of	rectangles	contained	within	other	rectangles.	This
recipe	will	discuss	how	the	hierarchy	of	controls	is	linked	together.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 Let’s	start	by	defining	the	top-level	window	that	resides	at	the	top	of	the	hierarchy:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(MyFrame,	self).__init__(parent,	title=title)

								

								self.panel	=	MyPanel(self)

2.	 Next,	let’s	define	the	Panel	class,	which	will	serve	as	the	general	container	for	user
controls	and	give	it	a	child	control	through	the	following	code:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								

								self.button	=	wx.Button(self,	label="Push	Me")



How	it	works…
All	controls	have	an	argument	for	a	parent	in	their	constructor.	The	parent	is	the	container
that	the	child	control	belongs	to;	so,	in	the	first	snippet	when	the	MyPanel	object	was
created,	it	was	passed	into	the	Frame	object	as	its	parent.	This	caused	the	panel	rectangle
to	be	placed	inside	of	the	rectangle	of	the	Frame	object.	Then	again,	inside	of	the	MyPanel
object,	a	Button	object	was	created	with	Panel	as	the	parent,	which	instructed	the	button
rectangle	to	be	positioned	inside	the	area	owned	by	Panel.

There	are	three	layers	of	containment	in	the	window	hierarchy	for	different	categories	of
control	types:

Top-level	Windows	(Frames	and	Dialogs):	These	cannot	be	contained	by	any	type
of	container	when	displayed	on	screen.	They	are	always	at	the	top	of	the	visual
hierarchy.
General	Containers	(Panels,	Notebooks,	and	so	on):	These	are	general	container
windows	that	serve	the	purpose	of	grouping	other	controls	together	and	providing
layout.	They	can	contain	other	general	containers	or	controls.
Controls	(Buttons,	CheckBoxes,	ComboBoxes,	and	so	on):	These	are	user	controls
that	cannot	contain	any	other	controls.	They	are	the	leaves	at	the	bottom	of	the	tree.



There’s	more…
When	building	an	application	with	a	user	interface,	this	hierarchy	is	important	to
remember	as	it	plays	a	critical	role	in	how	the	layout	and	design	of	the	interface	is
performed.	Most	notably,	in	the	middle	general	containers	layer,	the	nesting	and
composition	of	the	control	layout	in	combination	with	event	handling	can	lead	to
unexpected	issues	if	this	hierarchy	is	forgotten.	So,	just	remember	this	tree	structure	when
building	out	your	application’s	interface:



See	also
The	Controlling	the	propagation	of	events	recipe	in	this	chapter	explains	the	way	this
hierarchy	affects	how	events	are	reported.





Controlling	the	propagation	of	events
There	are	two	main	types	of	events	in	wxPython:

Normal	events
Command	events

Understanding	how	these	events	travel	through	the	framework	is	important	to
understanding	how	to	develop	an	application	in	this	event-driven	framework.	This	recipe
will	develop	an	example	to	show	how	to	control	the	way	an	event	is	propagated.



How	to	do	it…
The	following	steps	can	help	us:

1.	 Let’s	start	by	creating	a	panel	that	has	two	buttons	in	it,	by	creating	the	following
class:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								

								sizer	=	wx.BoxSizer()

								self.button1	=	wx.Button(self,	label="Button	1")

								sizer.Add(self.button1)

								self.button2	=	wx.Button(self,	label="Button	2")

								sizer.Add(self.button2)

								self.SetSizer(sizer)

								

								self.Bind(wx.EVT_BUTTON,	self.OnButton)

2.	 Next,	let’s	define	the	event	handler	for	the	panel	to	handle	the	button	events	as
follows:

				def	OnButton(self,	event):

								button	=	event.EventObject

								print("Button	(%s)	event	at	Panel!"	%	button.Label)

								if	button	is	self.button1:

												event.Skip()

3.	 In	the	next	layer,	let’s	make	a	frame	to	hold	the	panel	and	also	set	it	up	to	catch
button	events	through	the	following	code:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(MyFrame,	self).__init__(parent,	title=title)

								

								self.panel	=	MyPanel(self)

								

								self.Bind(wx.EVT_BUTTON,	self.OnButton)

				def	OnButton(self,	event):

								button	=	event.EventObject

								print("Button	(%s)	event	at	Frame!"	%	button.Label)

								event.Skip()

4.	 Finally,	let’s	do	the	same	thing	at	the	app	level:

class	MyApp(wx.App):

				def	OnInit(self):

								self.frame	=	MyFrame(None,	title="Event	Propagation")

								self.frame.Show();

								

								self.Bind(wx.EVT_BUTTON,	self.OnButton)

								return	True

				def	OnButton(self,	event):



								button	=	event.EventObject

								print("Button	(%s)	event	at	App!"	%	button.Label)

								event.Skip()

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


How	it	works…
When	you	run	this	application	and	click	on	each	of	the	buttons,	you	should	see	two
distinct	differences	in	behavior	between	how	the	events	propagate.	When	clicking	on	the
first	button,	the	event	handlers	from	the	panel	to	the	frame	and	finally	to	the	app	will	be
executed,	whereas	when	clicking	the	second	button,	only	the	event	handler	at	the	panel	is
executed.

The	EVT_BUTTON	object	is	a	command	event,	meaning	it	will	propagate	upward	until	it	is
stopped	or	it	reaches	the	app.	In	this	example,	the	second	button	is	only	propagated	to	the
Panel	handler	because	we	called	event.Skip	when	the	event	originated	from	the	first
button.	Calling	the	Skip	method	tells	the	framework	to	propagate	the	event	to	the	next
handler	in	the	chain,	whereas	not	calling	the	Skip	method	tells	the	framework	that	the
event	has	been	handled	and	does	not	require	further	processing.	So,	it’s	important	to	know
when	to	call	Skip	and	when	not	to	as	sometimes	it	is	necessary	for	the	event	to	propagate
to	the	base	default	handler	in	order	for	additional	processing	to	occur.	Try	going	back	to
the	Binding	to	events	recipe	and	removing	the	call	to	Skip	in	OnFrameExit	to	ensure	that	it
prevents	the	frame	from	closing.



There’s	more…
As	discussed	at	the	beginning	of	this	recipe,	there	are	two	types	of	events.	This	recipe	only
explored	the	more	common	types	of	command	events	that	were	propagated.	Normal
events	stay	local	to	where	they	are	generated	and	do	not	propagate.

You	can	also	create	your	own	custom	events	if	you	want	to	use	the	event	loop	to	pass
messages	using	the	newevent	module	in	wx.lib,	as	follows:

import	wx

import	wx.lib.newevent

#	Create	a	special	event

MyEvent,	EVT_MYEVENT	=	wx.lib.newevent.NewCommandEvent();

This	creates	a	new	event	object	type	and	event	binder	object.	The	EVT_MYEVENT	binder
object	can	be	bound	to	as	any	other	event.	Then,	the	MyEvent	event	object	can	be	emitted
through	the	use	of	the	wx.PostEvent	function,	which	sends	the	instance	of	the	event
through	the	event	handler	chain.





Accessing	the	clipboard
The	clipboard	is	a	system	resource	used	to	pass	user	data	between	applications	in	the
operating	system.	This	is	most	often	associated	with	copying	and	pasting	actions	in	an
application.	This	recipe	will	show	some	basics	on	putting	and	getting	data	from	the
clipboard.



How	to	do	it…
1.	 Let’s	first	define	a	helper	function	to	get	some	text	from	the	clipboard,	as	follows:

def	GetClipboardText():

				text_obj	=	wx.TextDataObject()

				rtext	=	""

				if	wx.TheClipboard.IsOpened()	or	wx.TheClipboard.Open():

		if	wx.TheClipboard.GetData(text_obj):

				rtext	=	text_obj.GetText()

				wx.TheClipboard.Close()

				return	rtext

2.	 Now,	let’s	do	the	reverse	and	define	a	helper	function	to	put	text	into	the	clipboard,	as
done	with	the	following	code:

def	SetClipboardText(text):

				data_o	=	wx.TextDataObject()

				data_o.SetText(text)

				if	wx.TheClipboard.IsOpened()	or	wx.TheClipboard.Open():

								wx.TheClipboard.SetData(data_o)

								wx.TheClipboard.Close()



How	it	works…
Both	functions	work	by	creating	TextDataObject,	which	provides	a	platform-independent
way	to	represent	the	systems’	native	data	format.	Then,	TheClipboard	object	is	opened,
and	it	is	used	to	either	get	data	from	the	clipboard	of	the	given	type	or	put	data	in	the
clipboard	from	the	application.	This	can	be	boiled	down	to	a	simple	three	step	process	for
any	clipboard	interaction:

1.	 Open	clipboard
2.	 Set	or	get	DataObject
3.	 Close	the	clipboard

Closing	the	clipboard	after	using	is	very	important;	it	may	prevent	other	processes	from
accessing	it.	The	clipboard	should	only	be	kept	open	momentarily.



There’s	more…
The	clipboard	supports	many	other	datatypes	besides	plain	text,	which	can	be	used	based
on	the	situation	and	needs	of	the	application.

Datatypes Description

wx.BitmapDataObject This	is	a	bitmap	data	from	the	clipboard	(drag	and	drop)

wx.CustomDataObject This	is	a	base	class	to	represent	application-specific	data

wx.DataObjectSimple This	is	a	base	class	to	create	other	data	object	types

wx.DataObjectComposite This	is	a	base	class	to	support	multiple	formats

wx.FileDataObject This	is	the	data	object	for	filenames

wx.HTMLDataObject This	is	the	HTML-formatted	text	container

wx.URLDataObject This	is	the	URL	container	data	object



See	also
Take	a	look	at	the	next	recipe	in	this	chapter,	Supporting	drag	and	drop,	for	more	on
how	clipboard	data	objects	can	be	used	to	transfer	data	between	controls.





Supporting	drag	and	drop
Many	applications	allow	users	to	open	files	by	dragging	a	file	from	the	operating	system
and	dropping	it	in	the	application.	wxPython,	of	course,	provides	support	for	this	as	well,
through	its	controls	using	DropTargets.	This	recipe	will	show	how	to	set	up	a	DropTarget
to	allow	handling	the	dragging	and	dropping	of	files	in	an	application.



How	to	do	it…
1.	 First,	let’s	create	a	drop	target	object	to	accept	files	that	are	dragged	over	and	dropped

in	the	application	with	the	following	code:

class	MyFileDropTarget(wx.FileDropTarget):

				def	__init__(self,	target):

								super(MyFileDropTarget,	self).__init__()

								self.target	=	target

				def	OnDropFiles(self,	x,	y,	filenames):

								for	fname	in	filenames:

												self.target.AppendText(fname)

2.	 Next,	all	that	is	left	is	to	connect	the	drop	target	to	the	window	that	should	accept	the
dropped	file(s).	An	example	of	this	is	shown	in	the	following	code:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(MyFrame,	self).__init__(parent,	title=title)

								

								#	Set	the	panel

								self.text	=	wx.TextCtrl(self,	style=wx.TE_MULTILINE)

								self.text.AppendText("Drag	and	drop	some	files	here!")

								dropTarget	=	MyFileDropTarget(self.text)

								self.text.SetDropTarget(dropTarget)



How	it	works…
Drag	and	drop	functions	with	the	use	of	DropSources	and	DropTargets.	In	this	case,	we
wanted	to	allow	files	to	be	dropped	in	the	application,	so	FileDropTarget	was	created	and
associated	with	the	TextCtrl	window.	DropTargets	have	several	virtual	callback
functions	that	can	be	overridden	to	intercept	different	actions	during	the	drag	and	drop
events.	As	FileDropTarget	is	specialized	for	files,	it	only	required	overriding
OnDropFiles,	which	is	called	with	the	list	of	filenames	that	were	dropped	in	the
application.	It	is	necessary	to	subclass	the	drop	target	in	order	to	intercept	and	handle	the
data	it	receives.

In	order	for	a	window	to	accept	drag	and	drop	actions,	it	must	have	a	DropTarget	set;	the
DropTarget	then	gives	feedback	on	whether	the	data	can	be	accepted	or	not	as	well	as
handling	the	reception	of	the	data.	Try	out	the	example	code	with	this	recipe	and	you	will
see	the	mouse	cursor	change	as	you	drag	a	file	over;	then,	try	again	by	dragging	some	text
from	another	application	to	see	the	difference.



There’s	more…
It’s	also	possible	to	create	more	application-specific	drag	and	drop	handling	if	needed	for
custom	datatypes	by	deriving	a	custom	drop	target	class	from	PyDropTarget.	This	class
provides	several	more	overridable	methods	to	allow	the	handling	of	various	events	during
the	action.	Here’s	a	table	explaining	this:

Methods Description

OnEnter(x,	y,

dragResult)

This	is	called	when	a	drag	object	enters	the	window.	The	dragResult	value	returned	from	this	method
sets	the	custom	cursor	to	provide	feedback	to	the	user	(wx.DragCancel,	wx.DragCopy,	and	so	on).

OnDragOver(x,

y,

dragResult)

This	is	called	while	the	object	is	dragged	over	the	window.	It	returns	a	dragResult	to	give	visual
feedback.

OnLeave() This	is	called	when	the	drag	object	leaves	the	window.

OnDrop(x,	y)
This	is	called	when	the	drag	object	is	dropped	in	the	window.	This	method	should	return	True	if	the
data	is	accepted.

OnData(x,	y,

dragResult)

This	is	called	after	the	data	is	accepted	in	OnDrop.	The	dropped	data	object	is	contained	in	drop	targets
data	object	(refer	to	GetDataObject).	This	should	then	typically	just	return	the	default	passed	in
dragResult.





Handling	AppleEvents
AppleEvents	are	special	kinds	of	high-level	system	events	used	by	the	OS	X	operating
system	to	pass	information	between	processes.	In	order	to	handle	system	events,	such	as
when	a	file	is	dropped	in	the	application’s	Dock	icon,	it’s	necessary	to	handle
AppleEvents.	Implementing	the	handlers	for	these	methods	can	allow	your	app	to	behave
more	natively	when	run	on	OS	X.

Note
This	recipe	is	specific	to	the	OS	X	operating	system	and	will	have	no	effect	on	other
operating	systems.



How	to	do	it…
Perform	the	following	steps:

1.	 Define	an	app	object	in	which	we	will	override	the	available	AppleEvent	handlers
through	the	following	code:

class	MyApp(wx.App):

				def	OnInit(self):

								self.frame	=	MyFrame("Apple	Events")

								self.frame.Show()

								return	True

2.	 Override	the	handlers	that	are	available	to	deal	with	the	opening	of	files:

				def	MacNewFile(self):

								"""Called	in	response	to	an	open-application	event"""

								self.frame.AddNewFile()

				def	MacOpenFiles(self,	fileNames):

								"""Called	in	response	to	an	openFiles	message	in	Cocoa

								or	an	open-document	event	in	Carbon

								"""

								self.frame.AddFiles(fileNames)

3.	 Finally,	let’s	also	override	the	remaining	available	AppleEvent	handlers	that	are
defined	in	wx.App	and	have	them	redirected	to	some	actions	with	our	application’s
main	window.	The	following	code	can	help	us	do	this:

				def	MacOpenURL(self,	url):

								"""Called	in	response	to	get-url	event"""

								self.frame.AddURL(url)

def	MacPrintFile(self,	fileName):

								"""Called	in	response	to	a	print-document	event"""

								self.frame.PrintFile(fileName)

				def	MacReopenApp(self):

								"""Called	in	response	to	a	reopen-application	event"""

								if	self.frame.IsIconized():

												self.frame.Iconize(False)

								self.frame.Raise()



How	it	works…
In	the	Carbon	and	Cocoa	builds	of	wxPython,	these	additional	Mac-specific	virtual
overrides	are	available	for	apps	to	implement.	The	app	object	has	special	handling	for
these	events	and	turns	them	into	simple	function	calls	that	can	be	overridden	in	derived
applications	to	provide	an	app-specific	handling	of	them.

The	first	two	methods	that	we	overrode	are	called	in	response	to	creating	a	new	file	or
opening	existing	files,	such	as	when	a	file	is	dragged	and	dropped	in	the	application	icon
in	the	dock.	The	MacOpenFiles	method	is	new	since	wxPython	2.9.3	and	should	be	used
instead	of	the	MacOpenFile	method	that	was	provided	in	previous	versions.

The	other	method	that	most	apps	should	implement	in	some	form	is	the	MacReopenApp
method.	This	method	is	called	when	a	user	clicks	on	the	application	icon	in	the	dock.	In
this	implementation,	we	ensure	that	the	app	is	brought	back	to	the	foreground	in	response
to	this	action.



There’s	more…
If	there	are	other	OS	X-specific	actions	you	want	your	app	to	handle,	it	is	also	possible	to
add	support	for	additional	AppleEvents	to	a	wxPython	application.	It	is	not	a	particularly
easy	task	as	it	requires	writing	a	native	extension	module	to	catch	the	event,	block	the
event	loop,	and	then	restore	the	Python	interpreter’s	state	back	to	wx	after	handling	the
event.	There	is	a	pretty	good	example	that	can	be	used	as	a	starting	point	on	the	wxPython
Wiki	page	(refer	to
http://wiki.wxpython.org/Catching%20AppleEvents%20in%20wxMAC)	if	you	find
yourself	needing	to	venture	down	this	route.

http://wiki.wxpython.org/Catching%20AppleEvents%20in%20wxMAC




Chapter	2.	Common	User	Controls
In	this	chapter,	we	will	cover:

Starting	with	the	easy	button
Pushing	all	the	buttons
Offering	options	with	CheckBoxes
Using	TextCtrl
Processing	key	events
Picking	dates	with	DatePickerCtrl
Exploring	menus	and	shortcuts
Displaying	a	context	menu
Working	with	ToolBars
Managing	UI	states



Introduction
There	are	many	common	elements	that	can	be	found	in	nearly	any	software	application
that	has	a	user	interface.	These	elements	include	many	well-known	controls	such	as
buttons,	menus,	and	toolbars.	In	this	chapter,	we	will	take	a	look	at	how	to	start	using	and
integrating	these	common	user	controls	into	your	applications.	We	will	do	this	by	showing
you	how	to	create	and	add	the	controls	to	the	user	interface	as	well	as	how	to	make	use	of
many	of	the	common	events.	The	events	that	are	emitted	by	these	controls	are	used	to
allow	your	application	to	interact	and	respond	to	actions	initiated	by	the	users	of	the
interface.





Starting	with	the	easy	button
The	button	is	probably	one	of	the	most	commonly	used	UI	controls	in	any	application’s
user	interface.	The	button	control	in	wxPython	has	received	some	attention	in	recent
versions	and	has	had	some	useful	new	features	added	to	it	to	make	it	an	even	more
powerful	control	than	it	was	in	the	past.	In	this	recipe,	we	will	explore	some	of	the
functionalities	that	the	default	button	can	provide,	including	the	new	features	to	support
bitmaps	that	were	added	in	wxPython	2.9.1.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	let’s	define	a	Panel	class	and	start	adding	some	buttons	to	it.	It	will	act	as	the
container	to	hold	and	organize	the	buttons	we	make.	Using	the	following	code:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								#	Sizer	to	control	button	layout

								sizer	=	wx.BoxSizer(wx.HORIZONTAL)

2.	 Next,	we	will	create	a	simple	stock	button	using	a	common	ID	with	no	label	specified
and	add	it	with	the	following	code:

								#	Normal	stock	button

								button	=	wx.Button(self,	wx.ID_OK)

								sizer.Add(button)

3.	 Now,	let’s	make	a	button	that	has	a	custom	bitmap	and	label	applied	to	it	(this	is	new
since	2.9.1).	This	code	will	help	us	do	this:

								#	Button	with	a	bitmap

								button	=	wx.Button(self,	label="Play")

								bitmap	=	wx.Bitmap('monkeyTime.png')

								button.SetBitmap(bitmap)

								sizer.Add(button)

4.	 Then,	last	on	the	list,	we	will	make	a	button	and	specify	that	it	should	show	the
authorization	needed	icon.	(This	is	also	new	since	2.9.1).	This	is	mostly	a	Windows-
centric	feature	and	may	not	have	any	effect	on	some	platforms.	The	following	code	is
all	that	is	needed	for	this:

								#	Button	to	show	authorization	is	needed

								button	=	wx.Button(self,	wx.ID_APPLY)

								button.SetAuthNeeded()

								sizer.Add(button)

5.	 Finally,	to	wrap	it	up,	we	will	finish	the	layout	and	create	an	event	handler	for	the
buttons	through	the	following	code:

								self.SetSizer(sizer)

								self.Bind(wx.EVT_BUTTON,	self.OnButton)

				def	OnButton(self,	event):

								button	=	event.EventObject

								print("%s	was	pushed!"	%	button.Label)

								if	button.GetAuthNeeded():

												print("Action	requires	authorization	to	proceed!")

								event.Skip()



How	it	works…
Adding	this	panel	to	an	application	and	running	it	will	show	how	what	we	did	in	these
steps	modifies	the	appearance	of	the	buttons:

With	the	first	button,	the	framework	automatically	applies	the	appropriate	label	to	the
button	based	on	the	stock	ID	that	is	set	on	the	button.	Many	common	buttons	can	be
created	this	way,	which	allows	the	framework	to	apply	some	standard	native	behavior	and
labeling	to	them	in	some	cases,	depending	on	the	underlying	UI	toolkit	that	is	in	use.

The	second	button	displays	a	new	feature	that	is	added	version	2.9.1	onward.	The	standard
button	now	supports	having	bitmaps	displayed	with	text.	This	feature	has	now	made	the
need	to	use	a	BitmapButton	control	mostly	non-existent.	On	some	systems,	there	can	be
various	bitmaps	set	for	different	pressed	or	hover	states	of	the	mouse;	however,	on	OS	X,
the	default	bitmap	is	the	only	one	that	is	displayed.

Finally,	with	the	third	button,	we	can	take	a	look	at	how	to	add	the	authorization	needed
icon,	which	is	mostly	a	Windows-specific	feature	in	Windows	Vista	and	later	versions.
When	this	is	set,	you	can	check	in	the	event	handler	as	we	did	and	provide	a	confirmation
dialog	or	request	authorization	to	start	another	process	with	elevated	permissions.



See	also
Refer	to	the	Using	bitmaps	recipe	in	Chapter	1,	wxPython	Starting	Points,	for
information	on	how	bitmaps	are	handled.
We	made	use	of	BoxSizer	in	this	recipe.	If	you	want	more	information	on	how	sizer-
based	layouts	work,	take	a	look	ahead	at	Chapter	3,	UI	Layout	and	Organization.





Pushing	all	the	buttons
Even	though	the	standard	button	can	get	the	job	done	most	of	the	time,	there	are	other
cases	where	you	may	want	to	provide	a	different	look	and	feel	for	certain	situations.	So,	in
addition	to	the	standard	button,	wxPython	also	has	several	other	types	of	buttons	that
provide	additional	features	to	customize	their	look	and	feel.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 Let’s	start	simply	by	stubbing	out	our	panel	that	will	hold	the	buttons	in	this	example
through	this	code:

import	wx

import	wx.lib.platebtn	as	platebtn

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								#	Layout	sizers

								vsizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer	=	wx.BoxSizer(wx.HORIZONTAL)

								vsizer.Add(sizer)

2.	 Now,	let’s	create	a	couple	of	ToggleButton	controls,	as	follows:

								#	Toggle	Button

								toggle	=	wx.ToggleButton(self,	label="Toggle	Me")

								sizer.Add(toggle)

								toggle	=	wx.ToggleButton(self,	label="Me	Too")

								sizer.Add(toggle)

3.	 Next,	let’s	add	in	a	couple	of	custom	PlateButton	controls	from	wx.lib	to	the	panel.
To	do	so	see	the	following	code:

								#	PlateButton

								plate	=	platebtn.PlateButton(self,	label="PlateButton")

								sizer.Add(plate)

								plate	=	platebtn.PlateButton(self,	label="WithMenu")

								menu	=	wx.Menu("Action	Menu")

								menu.Append(wx.ID_OPEN,	"Open	it")

								menu.Append(wx.ID_CLOSE,	"Close	it")

								plate.SetMenu(menu)

								sizer.Add(plate)

4.	 Finally,	let’s	check	out	the	new	CommandLinkButton	control	that	is	added	to	the
library	version	2.9.2	onward	and	wrap	up	our	layout	as	well	as	bind	the	needed	event
handlers.	Use	this	code:

								note	=	"""Long	detail	message	that	informs	user

more	about	what	this	action	does."""

								lbl	=	"CommandLink"

								cmdLnk	=	wx.CommandLinkButton(self,

																																			mainLabel=lbl,

																																			note	=	note)	

								vsizer.Add(cmdLnk)

								self.SetSizer(vsizer)

								self.Bind(wx.EVT_TOGGLEBUTTON,	self.OnToggle)



								self.Bind(wx.EVT_BUTTON,	self.OnButton)

5.	 Now	that	all	the	buttons	are	created,	we	can	proceed	to	define	our	event	handler
methods	using	the	following	code:

				def	OnToggle(self,	event):

								button	=	event.EventObject

								print("%s	toggle	button	was	pushed!"	%	button.Label)

								print("ToggleState:	%s"	%	button.Value)

				def	OnButton(self,	event):

								button	=	event.EventObject

								print("%s	was	pushed!"	%	button.Label)

								event.Skip()



How	it	works…
Each	of	these	buttons	provides	a	unique	behavior	and	appearance;	so,	let’s	take	a	quick
look	at	what	each	looks	like	in	the	following	screenshot	before	we	get	into	the	details	of
each	button	type:

The	ToggleButton	control	is	much	like	the	normal	button	except	in	that	it	exhibits	two
unique	states.	It	can	either	be	pressed	or	not	pressed	in	order	to	toggle	some	action	in	the
UI.	This	button	emits	its	own	special	EVT_TOGGLEBUTTON	event	instead	of	the	standard
EVT_BUTTON	event	that	is	emitted	by	other	button	controls.

The	PlateButton	control	is	a	custom,	owner-drawn	control	provided	by	the
wx.lib.platebtn	module.	By	default,	this	control	provides	a	flat	transparent	button	that
becomes	highlighted	when	the	mouse	is	hovered	over	it.	In	addition	to	this,	it	also
supports	adding	a	custom	drop-down	menu	for	various	other	options	to	control	behavior
and	appearance.

Lastly,	we	looked	at	the	CommandLinkButton	control;	this	is	a	brand	new	control	added
since	version	2.9.2.	It	is	a	native	control	on	Windows	7	and	later	versions	but	implemented
as	a	generic	control	on	other	platforms.	It	provides	a	flat	clickable	area	that	supports	a
header	label	and	multiline	description	text	to	give	more	information	about	what	clicking
on	it	does.



There’s	more…
The	PlateButton	control	has	several	optional	style	flags	that	can	be	set	to	change	its
appearance	and	behavior.	Take	a	look	at	the	following	table:

Style	flag Description

PB_STYLE_NORMAL
This	is	the	default	style,	as	shown	in	the	preceding	example,	with	solid	highlight	color	and
rounded	edges.

PB_STYLE_GRADIENT When	specified,	this	flag	uses	a	gradient	to	draw	the	hover-over	highlighting.

PB_STYLE_SQUARE This	makes	a	button	be	drawn	as	a	rectangle	with	square	edges.

PB_STYLE_NOBG
This	is	a	Windows-only	style	flag.	It	turns	off	background	redrawing	and	can	set	this	flag	to	get
better	transparency	behavior	if	the	control’s	parent	window	is	owner	drawn.

PB_STYLE_DROPARROW
This	draws	the	drop	arrow	on	the	button.	This	area	generates	a	separate
EVT_PLATEBTN_DROPARROW_PRESSED	event	when	clicked	on.

PB_STYLE_TOGGLE
This	causes	a	button	to	operate	like	a	ToggleButton	control	and	generates	EVT_TOGGLEBUTTO	N
events	instead	of	regular	button	events	when	clicked	on.





Offering	options	with	CheckBoxes
The	CheckBox	control	in	its	usual	configuration	is	similar	to	a	type	of	binary	input;	it	is
either	checked	or	not	checked.	So,	as	such,	it	is	often	used	to	offer	selection	options	to
“yes/no”	questions	in	a	user	interface,	such	as	an	option	to	enable	or	disable	a	feature	in	an
application’s	configuration	screen.	In	this	recipe,	we	will	take	a	look	at	the	ways	of	using	a
CheckBox	control.



How	to	do	it…
To	offer	options	with	checkboxes,	you	need	to	do	the	following:

1.	 First,	we	will	start	by	making	a	panel	that	has	three	CheckBox	controls	on	it	through
the	following	code:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								#	Layout	sizers

								vsizer	=	wx.BoxSizer(wx.VERTICAL)

								#	Toggle	Button

								self.allCB	=	wx.CheckBox(self,	label="All	Selected",

																																	style=wx.CHK_3STATE)

								vsizer.Add(self.allCB)

								self.option1	=	wx.CheckBox(self,label="Option	1")

								vsizer.Add(self.option1,	flag=wx.LEFT,	border=10)

								self.option2	=	wx.CheckBox(self,	label="Option	2")

								vsizer.Add(self.option2,	flag=wx.LEFT,	border=10)

								self.SetSizer(vsizer)

								self.Bind(wx.EVT_CHECKBOX,	self.OnCheckBox)

2.	 Next,	let’s	define	the	OnCheckBox	method	to	handle	the	check	events.	We	will	use	this
handler	to	update	the	state	of	other	controls.	The	first	three-way	checkbox	will	act	as
an	indicator	and	a	way	to	select	or	unselect	all	the	suboptions:

				def	OnCheckBox(self,	event):

								check	=	event.EventObject

								if	check	is	self.allCB:

												self.option1.Value	=	check.Value

												self.option2.Value	=	check.Value

								else:

	values	=	[self.option1.Value,	self.option2.Value]

	if	all(values):

				self.allCB.Set3StateValue(wx.CHK_CHECKED)

	elif	any(values):

				self.allCB.Set3StateValue(wx.CHK_UNDETERMINED)

	else:

				self.allCB.Set3StateValue(wx.CHK_UNCHECKED)



How	it	works…
In	this	recipe,	we	saw	that	a	CheckBox	control	is	not	limited	to	only	two	states.	The	first
CheckBox	control	created	uses	the	CHK_3STATE	style	flag	to	enable	the	use	of	the	third
undetermined	state.	However,	when	clicked	on	by	a	user,	this	control	still	behaves	like	a
normal	checkbox,	but	it	has	a	third	visual	state	that	can	be	used	to	show	a	partial	selection.

The	OnCheckBox	event	handler	uses	check	events	from	each	of	the	checkboxes	to
determine	what	state	the	other	CheckBox	controls	should	be	set	to.	If	the	top	CheckBox
control	is	checked,	it	causes	all	the	other	checkboxes	to	be	checked.	If	one	of	the	two
lower	controls	is	checked	and	the	other	is	unchecked,	it	causes	the	top	CheckBox	control	to
display	the	third	state.	Using	a	technique	such	as	this,	can	give	good	visual	feedback	to
indicate	whether	a	full	set	of	features	is	enabled	or	not	and	also	give	the	user	an	easy	way
to	select	or	unselect	all	options.





Using	TextCtrl
The	TextCtrl	control	is	versatile;	it	allows	the	display	and	entry	of	textual	data	in	an
application.	In	its	default	form,	TextCtrl	is	a	single-line	entry	field	that	is	often	used	on
forms	to	allow	users	to	input	information	such	as	names,	places,	and	descriptions.	From
wxPython	2.9	onward,	TextCtrl	added	some	features	to	support	auto-completion	of	input.
This	feature	lets	some	input	help	be	shown	in	a	pop-up	list	that	filters	as	the	typing
narrows	down	the	available	options.	In	this	recipe,	we	will	explore	how	to	activate	and	use
some	of	these	features	by	making	a	custom	the	TextCtrl	control	that	remembers	previous
entries	that	were	made	in	it	and	offers	them	as	input	tips	the	next	time	data	is	typed	into
the	field.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	let’s	create	the	class’	definition	and	its	constructor	to	set	up	the	extensions	and
events	that	we	need	to	handle	in	order	to	add	the	memory	feature:

class	MemoryTextCtrl(wx.TextCtrl):

				"""TextCtrl	that	remembers	previous	entries"""

				def	__init__(self,	parent):

								super(MemoryTextCtrl,	self).__init__(parent)

								self._memories	=	set()

								self.Bind(wx.EVT_KILL_FOCUS,	

																		lambda	event:	self.Memorize())

								self.Bind(wx.EVT_SET_FOCUS,	

																		self.OnUpdateCompleteList)

2.	 Next,	we	will	define	the	OnUpdateCompleteList	event	handler	to	take	memories
from	previous	entries	in	the	control	and	set	them	to	the	AutoComplete	list,	as
follows:

				def	OnUpdateCompleteList(self,	event):

								#	Set	the	autocomplete	list	with	the

								#	latest	set	of	memories.

								self.AutoComplete(list(self._memories))

								event.Skip()

3.	 Lastly,	we	will	define	a	couple	of	API	functions	to	give	us	a	little	extra	control	over
how	the	control	behaves	with	this	new	feature:

				def	Memorize(self):

								"""remember	the	current	value"""

								if	self.Value:

												self._memories.add(self.Value)

				def	Forget(self):

								"""forget	all	remembered	words"""

								self._memories.clear()



How	it	works…
The	MemoryTextCtrl	control	has	the	added	ability	to	memorize	previous	entries	that	were
made	in	it	and	use	them	as	input	tips	the	next	time	values	are	added	to	the	control.	This	is
made	possible	by	binding	to	two	events:	EVT_KILL_FOCUS	and	EVT_SET_FOCUS.	When	the
user	enters	some	text	in	the	control	and	then	presses	Tab	or	clicks	on	another	control,	the
kill	focus	event	is	generated.	In	this	event	handler,	we	can	grab	the	current	value	of	the
control	and	store	it	in	the	control’s	memories.	Then,	the	next	time	the	control	is	tabbed	or
selected	by	the	user,	the	set	focus	event	will	be	generated;	during	this	event,	we	will	copy
all	memories	into	the	control’s	AutoComplete	choices	array.

When	values	are	present	in	the	AutoComplete	choices	array,	the	control	will	check	it
during	the	processing	of	the	keyboard	input	from	a	user.	As	characters	are	entered,	if	there
are	any	partial	matches,	the	control	will	pop	up	the	list	of	possible	matches	to	the	user	to
allow	a	quick	input	of	any	of	the	matches.

To	take	a	look	at	it	in	action,	try	out	the	sample	code	that	accompanies	this	recipe.	Enter	a
value	in	the	first	field,	and	then	tab	to	the	next	field	and	repeat.	If	you	start	typing	a	word
that	starts	with	same	letter	as	one	of	the	previous	ones,	the	auto-complete	pop-up	list	will
list	the	options	from	previous	entries.



There’s	more…
The	TextCtrl	control	also	has	a	couple	of	other	built-in	AutoComplete	methods	that
support	auto-completing	directory	paths	and	filenames.	These	features	are	easily	activated
by	just	calling	one	of	the	following	methods	on	TextCtrl:

Method Description

AutoCompleteDirectories()
This	displays	a	list	of	directories	if	the	beginning	of	a	directory	path	is	typed	into	the
control

AutoCompleteFileNames()
This	works	similarly	to	AutoCompleteDirectories,	but	it	also	includes	files	in	the	list	of
completion	choices



See	also
Also	take	a	look	at	the	Processing	key	events	recipe	in	this	chapter	for	some
additional	examples	on	using	TextCtrl	and	AutoComplete





Processing	key	events
The	KeyEvent	events	are	generated	in	any	control	that	accepts	keyboard	input	when	a	user
presses	keys	on	a	keyboard.	There	are	three	distinct	events	that	occur	for	a	single	key
press.	In	this	recipe,	we	will	use	KeyEvents	to	create	a	custom	TextCtrl	control	that	can
generate	a	dynamic	input	suggestion	list	similar	to	the	suggestions	that	Google	shows
when	one	types	into	the	search	box.



How	to	do	it…
You	need	to	do	the	following:

1.	 Firstly,	for	this	recipe,	we	need	to	include	a	couple	of	other	modules	from	the	Python
standard	library,	as	follows:

from	urllib	import	urlopen

import	re

from	abc	import	ABCMeta,	abstractmethod

import	wx

2.	 To	make	the	control’s	suggestion	provider	extensible,	we	will	first	define	a	simple
interface	class	that	will	be	responsible	for	providing	suggestion	options.	This	is
defined	as	an	abstract	base	class:

class	CompleterDataSource:

				__metaclass__	=	ABCMeta

				

				@abstractmethod

				def	getSuggestions(self,	phrase):

								"""return	list	of	strings"""

								pass

3.	 Now,	we	will	define	our	TextCtrl	subclass	that	uses	an	instance	of	the	preceding
data	source	interface.	The	constructor	requires	a	valid	instance	of	the	data	source;	we
will	show	how	to	invoke	one	with	the	following	code:

class	DataSourceTextCtrl(wx.TextCtrl):

				def	__init__(self,	parent,	dataSource):

								super(DataSourceTextCtrl,	self).__init__(parent)

								assert	isinstance(dataSource,	CompleterDataSource)

								self._dataSource	=	dataSource

								

								self.Bind(wx.EVT_KEY_DOWN,	self.OnKeyDown)

								self.Bind(wx.EVT_CHAR,	self.OnChar)

4.	 All	that’s	left	for	this	class	now	is	to	define	the	implementations	of	the	two	event
handlers	for	the	key	down	and	character	events.	We	will	use	EVT_KEY_DOWN	to	clear
the	previous	suggestion	list	and	EVT_CHAR	to	ask	the	data	source	for	a	new	list	of
suggestions.	Take	a	look	at	the	following	code:

				def	OnKeyDown(self,	event):

								self.AutoComplete([])

								event.Skip()

				def	OnChar(self,	event):

								char	=	unichr(event.KeyCode)

								if	not	char.isalnum():

												char	=	""

								query	=	self.Value	+	char



								tips	=	self._dataSource.getSuggestions(query)

								if	tips:

												self.AutoComplete(tips)

								event.Skip()



How	it	works…
The	DataSourceTextCtrl	control	requires	an	instance	of	a	CompleterDataSource	object
to	provide	it	with	suggestions	to	display	in	the	AutoComplete	list.	As
CompleterDataSource	is	an	abstract	base	class	(which	means	it	uses	ABCMeta	from	the
abc	module),	it	requires	a	specialized	class,	which	is	provided	by	the	calling	code.	This
data	source	is	called	on	during	key	processing	to	provide	tips	based	on	the	current	input
value.

The	EVT_KEY_DOWN	handler	is	called	when	TextCtrl	has	the	focus	and	a	key	is	pressed	on
the	keyboard.	This	event	is	the	first	in	the	chain	of	three	events	that	are	generated	for	a	key
press.	The	next	event	that	is	generated	is	the	EVT_CHAR	event,	which	contains	information
about	the	character	that	is	associated	with	the	key	that	is	pressed.	Following	this,	there	is
also	an	EVT_KEY_UP	event,	which	is	generated	when	the	key	is	no	longer	pressed	down.

When	the	OnChar	event	handler	is	in	use,	the	preceding	control	builds	a	query	from	the
existing	text	and	the	new	characters	that	are	entered	and	uses	it	to	ask	the	data	source
object	to	provide	a	list	of	suggestions.	These	suggestions	are	then	put	into	the
AutoComplete	list	for	the	control.	Then,	if	the	data	source	provides	any	tips,	they	are
presented	to	the	user.



There’s	more…
Check	out	the	sample	code	that	accompanies	this	recipe	for	an	extended	sample	that	uses
this	custom	implementation	of	CompleterDataSource	to	fetch	suggestion	text	from
Google	Search:

class	GoogleSuggestSource(CompleterDataSource):

				def	getSuggestions(self,	phrase):

								"""Query	google	for	suggestion	list"""

								url	=	"http://google.com/complete/search?output=toolbar&q="

								if	phrase:

												page	=	urlopen(url	+	phrase).read()

												suggestions	=	re.findall(r'data="([\w*\s*]+)"',	page)

												return	suggestions

This	class	requires	a	network	connection,	but	it	shows	how	powerful	using	a	decoupled
data	source	can	be	in	making	the	functionality	of	the	text	control	more	extensible.	The
same	pattern	can	be	used	to	fetch	data	from	any	other	sort	of	sources,	such	as	a	database	or
another	web	service.

This,	and	any	other	specialized	data	source,	can	be	attached	to	the	control	to	change	how	it
provides	tips,	as	follows:

textCtrl	=	DataSourceTextCtrl(self,	GoogleSuggestSource())

Once	the	control	is	created,	it	will	defer	all	requests	to	display	completion	tips	to	the
provided	data	source,	which	in	this	case	will	be	retrieved	from	a	Google	web	service,
similar	to	when	you	start	typing	into	the	search	box	on	Google’s	home	page.





Picking	dates	with	DatePickerCtrl
If	your	application	requires	getting	date	and/or	time	input	from	a	user,	this	can	be	a
difficult	task	due	to	the	possible	number	of	input	formatting	and	validation	issues.	There	is
no	need	to	fear,	though;	wxPython	has	several	specialized	controls	to	deal	with	date	and
time	input.	In	this	recipe,	we	will	take	a	look	at	using	DatePickerCtrl	to	select	dates.



How	to	do	it…
Here	are	the	steps	to	perform	for	this	recipe:

1.	 Firstly,	let’s	start	by	making	a	little	wrapper	class	around	DatePickerCtrl	to	fix	a
layout	issue	that	exists	on	some	versions	of	Windows,	with	the	native	control	being
in	use:

class	DatePicker(wx.DatePickerCtrl):

				def	__init__(self,	parent,	dt,	style=wx.DP_DEFAULT):

								super(DatePicker,	self).__init__(parent,	dt=dt,	

																																									style=style)

								self.SetInitialSize((120,	-1))

2.	 Next,	we	will	make	a	panel	to	contain	the	DatePicker	control,	as	follows:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								#	Layout	sizers

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								now	=	wx.DateTime.Now();

								self._dp	=	DatePicker(self,	now,	

																														wx.DP_DROPDOWN|wx.DP_SHOWCENTURY)

								sizer.Add(self._dp,	0,	wx.ALL,	20)

								

								self.SetSizer(sizer)

3.	 For	the	final	step,	we	will	use	the	following	code	to	create	the	frame	to	hold	the	panel
as	well	as	bind	to	the	EVT_DATE_CHANGED	event,	which	is	emitted	by	DatePicker
when	selections	are	made:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(MyFrame,	self).__init__(parent,	title=title)

								

								#	Set	the	panel

								self.panel	=	MyPanel(self)

								

								self.Bind(wx.EVT_DATE_CHANGED,	self.OnDateChange)

				def	OnDateChange(self,	evt):

								date	=	evt.GetDate()

								self.Title	=	date.Format()



How	it	works…
The	DatePickerCtrl	control	is	a	space-efficient	control	to	allow	the	selection	of	dates.
The	control	uses	a	wx.DateTime	object	to	hold	and	represent	the	data	being	presented	by
the	control.	The	control	can	function	in	two	primary	styles.	The	style	we	chose	in	this
recipe	is	DP_DROPDOWN.	With	this	style	set,	the	picker	control	is	much	similar	to	a	ComboBox
control,	where	when	the	drop	arrow	is	selected,	a	pop-up	window	displaying	a	calendar
control	is	shown:

The	other	default	style	allows	us	to	select	a	field	in	the	text	area	and	use	either	the	up	and
down	arrow	keys	or	a	button	to	increment	or	decrement	the	value.

When	the	selection	is	changed	in	the	control,	it	generates	an	EVT_DATE_CHANGED	event,
which	carries	the	new	updated	DateTime	value	that	can	be	accessed	by	the	event	object’s
GetDate	method.	We	used	this	value	in	the	frame’s	OnDateChanged	handler	to	update	the
title	bar	with	the	new	value	by	calling	Format	on	the	DateTime	object	to	convert	it	into	a
string.

Note
Note	that	we	explicitly	set	the	width	of	the	control	in	this	exercise	to	overcome	an
inconsistency	in	how	the	native	version	of	the	control	gets	sized	on	Windows.	The	control
tends	to	not	allocate	enough	minimal	horizontal	space,	which	causes	part	of	the	icon	on
the	button	to	not	be	shown.



There’s	more…
There	are	also	several	other	controls	available	to	display	and	select	date	and	time
information	in	wxPython.	Included	in	the	following	table	is	a	quick	reference	guide	to
some	additionally	available	options:

Control Description

GenericDatePickerCtrl This	is	a	wx	owner-drawn	version	of	the	DatePicker	control,	which	is	shown	in	this	recipe.

CalendarCtrl

This	control	provides	a	full	calendar	display.	It	is	located	in	the	wx.calendar	module,	which
needs	to	be	imported	in	addition	to	the	main	wx	module	to	get	access	to	the	control.	There	is
both	a	native	and	generic	version	of	this	control	available	in	the	module.	The	generic	one
may	be	preferable	in	some	cases	if	you	require	additional	features	and	control	over	the
appearance	or	want	to	include	special	markers	on	the	calendar.

TimeCtrl
This	control	provides	a	functionality	similar	to	DatePickerCtrl	but	for	time	values,	instead.
This	control	is	available	from	the	wx.lib.masked	module	as	a	custom	Python	control.





Exploring	menus	and	shortcuts
Menus	are	a	way	to	provide	the	user	with	a	number	of	actions	that	can	be	performed	by
either	clicking	on	them	or	using	an	associated	keyboard	shortcut.	Menus	allow	us	to
categorize	and	organize	any	number	of	actions	in	lists	and	trees	with	submenus,	all	while
keeping	them	out	of	sight	until	they	are	needed.	This	recipe	will	show	you	how	to	add
menus	to	a	frame	and	set	up	keyboard	shortcuts	to	activate	them	by	building	up	a	little	text
editor	application.



How	to	do	it…
Here	are	the	steps	to	be	performed:

1.	 First,	to	make	adding	icons	to	the	menus	in	this	application	easier,	let’s	define	a
custom	Menu	wrapper	class	that	will	automatically	get	a	bitmap	from	ArtProvider
when	one	is	available.	This	first	little	part	just	defines	a	way	to	map	control	IDs	to
ART	IDs,	as	follows:

class	EasyMenu(wx.Menu):

				_map	=	{	wx.ID_CUT	:	wx.ART_CUT,

													wx.ID_COPY	:	wx.ART_COPY,

													wx.ID_PASTE	:	wx.ART_PASTE,

													wx.ID_OPEN	:	wx.ART_FILE_OPEN,

													wx.ID_SAVE	:	wx.ART_FILE_SAVE,

													wx.ID_EXIT	:	wx.ART_QUIT,

											}

2.	 Now,	to	finish	up	this	class,	we	will	add	a	helper	method	to	attach	items	to	a	menu
that	uses	the	preceding	art	resource	map	through	the	following	method:

				def	AddEasyItem(self,	id,	label=""):

								item	=	wx.MenuItem(self,	id,	label)

								art	=	EasyMenu._map.get(id,	None)

								if	art	is	not	None:

												bmp	=	wx.ArtProvider.GetBitmap(art,	wx.ART_MENU)

												if	bmp.IsOk():

																item.SetBitmap(bmp)

								return	self.AppendItem(item)

3.	 With	our	helper	class	out	of	the	way,	we	can	now	define	our	Editor	class,	which	is	a
frame	that	contains	the	menus	and	TextCtrl	controls	in	it:

class	Editor(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(Editor,	self).__init__(parent,	title=title)

								

	#	Setup	the	menus

								menubar	=	wx.MenuBar()

								self.DoSetupMenus(menubar)

								self.SetMenuBar(menubar)

								#	Set	the	main	panel

								self.txt	=	wx.TextCtrl(self,	style=wx.TE_MULTILINE)

4.	 As	can	be	seen	in	the	class	declaration,	we	added	a	DoSetupMenus	method	to	hold	the
logic	in	order	to	build	up	the	application’s	menus.	So	now,	it’s	time	to	add	this
method	in	to	build	up	a	simple	File	and	Edit	menu,	as	shown	in	the	following	code:

				def	DoSetupMenus(self,	menubar):

								fileMenu	=	EasyMenu()

								self.RegisterMenuAction(fileMenu,	wx.ID_OPEN,	self.OnFile)

								self.RegisterMenuAction(fileMenu,	wx.ID_SAVE,	self.OnFile)

								fileMenu.AppendSeparator()

								self.RegisterMenuAction(fileMenu,	wx.ID_EXIT,	self.OnFile,	



																																"Exit\tCtrl+Q")

								menubar.Append(fileMenu,	"File")

								editMenu	=	EasyMenu()

								self.RegisterMenuAction(editMenu,	wx.ID_CUT,	self.OnEdit)

								self.RegisterMenuAction(editMenu,	wx.ID_COPY,	self.OnEdit)

								self.RegisterMenuAction(editMenu,	wx.ID_PASTE,

																																				self.OnEdit)

								menubar.Append(editMenu,	"Edit")

				def	RegisterMenuAction(self,	menu,	id,	handler,	label=""):

								item	=	menu.AddEasyItem(id,	label)

								self.Bind(wx.EVT_MENU,	handler,	item)

5.	 For	the	last	steps,	we	will	add	the	definitions	of	our	EVT_MENU	handlers.	For	the	File
menu,	we	will	leave	the	Open	and	Save	functionalities	unimplemented	in	this	recipe
and	come	back	to	it	in	Chapter	7,	Requesting	and	Retrieving	Information,	when	we
will	take	a	closer	look	at	the	FileDialog	class.	Use	the	following	code	for	this	step:

				def	OnFile(self,	event):

								if	event.Id	==	wx.ID_OPEN:

												raise	NotImplementedError("Open	not	implemented")

								elif	event.Id	==	wx.ID_SAVE:

												raise	NotImplementedError("Save	not	implemented")

								elif	event.Id	==	wx.ID_EXIT:

												self.Close()

								else:

												event.Skip()

6.	 Finally,	the	definition	for	the	handler	of	the	Edit	menu	actions	can	be	handled	by
using	the	following	code:

				def	OnEdit(self,	event):

								action	=	{	wx.ID_CUT	:	self.txt.Cut,

																			wx.ID_COPY	:	self.txt.Copy,

																			wx.ID_PASTE	:	self.txt.Paste	}

								if	action.has_key(event.Id):

												action.get(event.Id)()

								else:

												event.Skip()



How	it	works…
Note
Note	that	on	some	platforms,	even	if	you	have	set	a	bitmap,	it	may	be	ignored	due	to
system	settings	or	to	conform	to	the	native	platform’s	standards.	For	example,	on	Linux
systems,	the	GTK+	environment	has	a	global	setting	called	gtk-menu-images	that
determines	whether	images	are	shown	or	not.	(In	Gnome	2.28	and	higher	versions,	this	is
turned	off	by	default.)

Now	that	you	have	taken	a	look	at	the	code,	let’s	go	back	and	take	a	little	more	detailed
look	at	it,	starting	with	the	EasyMenu	class.	We	made	this	class	to	wrap	up	some	of	the
details	about	adding	MenuItem	to	a	menu	that	has	a	bitmap	on	it.	This	class	simply	uses	the
defined	control	ID	in	the	ART	ID	map	to	try	and	find	out	whether	there	is	an	appropriate
bitmap	available	in	the	system’s	ArtProvider	and	then	attaches	it	to	MenuItem.

Note
It’s	important	to	note	that	if	you	want	to	display	Bitmap	on	MenuItem,	Bitmap	must	be
attached	to	MenuItem	before	MenuItem	is	attached	to	Menu!

Next,	in	our	Editor	class,	we	created	a	MenuBar	object;	MenuBar	acts	as	the	container	for
Menu	objects	and	is	attached	to	Frame	through	the	frame’s	SetMenuBar	method.	In	the
DoSetupMenu	method,	we	created	all	the	Menu	objects	and	their	items	as	well	as	bound	the
event	handlers	to	the	menu	events.	This	is	done	by	first	creating	a	Menu	object,	and	then
appending	MenuItem	objects	to	it	using	the	AddEasyItem	method,	which	we	previously
added	to	the	EasyMenu	class.	An	important	point	to	note	here	is	that	MenuBar	objects
contain	Menu	objects,	and	Menu	objects	contain	MenuItem	objects.

In	this	recipe,	all	the	MenuItem	objects	that	we	created	use	the	stock	IDs	provided	by
wxPython	for	common	actions.	Using	the	stock	IDs,	most	of	our	items	automatically
gained	labels	and	shortcut	keys,	except	for	the	Exit	item,	where	we	needed	to	specify	our
own	shortcut.	When	a	MenuItem	object’s	label	contains	a	Tab	character	in	it,	the	label	is
automatically	parsed	for	the	text	following	the	Tab	to	specify	which	keyboard	shortcut	is
to	be	used.

To	react	to	MenuItem	clicks	or	the	selection	that	is	invoked	when	the	shortcut	is	activated,
we	bound	two	common	handlers	to	the	EVT_MENU	event	for	each	MenuItem	object.	Here,
the	event’s	ID	is	used	to	map	the	selection	to	the	appropriate	action	to	be	executed.



There’s	more…
When	there	is	a	large	number	of	actions	on	a	Menu	object	or	a	desire	to	categorize	items
with	a	menu,	they	can	be	grouped	together	by	appending	submenus.	This	can	be	done
using	the	Menu	object’s	AppendMenu	method	and	passing	it	another	Menu	object	to	append,
similar	to	how	MenuItem	is	added.

Additional	indicators	and	behaviors	can	be	associated	with	menu	items	besides	by	just
adding	bitmaps.	Using	the	MenuItem	constructor	or	the	kind	parameter	of	the	Menu	class’
Append	method,	a	MenuItem	object	can	have	either	a	CheckBox	(ITEM_CHECK)	or	a
RadioButton	(ITEM_RADIO)	control.



See	also
Refer	to	the	Working	with	ToolBars	and	Managing	UI	states	recipes	in	this	chapter,
where	we	will	add	some	extended	functionality	to	the	example	code	started	in	this
recipe
The	Selecting	files	with	a	FileDialog	recipe	in	Chapter	7,	Requesting	and	Retrieving
Information,	will	also	revisit	this	recipe	to	add	the	Open	and	Save	functionality





Displaying	a	context	menu
Sometimes,	an	individual	page	or	control	on	a	page	needs	a	way	to	give	some	additional
options	on	which	actions	are	available	to	be	performed.	The	use	of	a	context	(or	right-
click)	menu	is	often	used	to	fill	this	role.	In	this	recipe,	we	will	look	at	how	to	create,
show,	and	manage	a	context	menu.



How	to	do	it…
Here’s	how	you	can	display	a	context	menu:

1.	 In	order	to	help	manage	the	creation	and	destruction	of	a	Menu	object,	we	will	make	a
small	helper	class	that	will	be	responsible	for	the	Menu	object,	as	follows:

class	ContextMenuMgr(object):

				def	__init__(self,	parent):

								super(ContextMenuMgr,	self).__init__()

								assert	isinstance(parent,	wx.Window)

								assert	hasattr(parent,	'GetPopupMenu'),	\

															"parent	must	implement	GetPopupMenu"

								

								self.window	=	parent

								self.window.Bind(wx.EVT_CONTEXT_MENU,	

																									self.OnContextMenu)

2.	 This	helper	class	will	have	the	following	method,	which	is	bound	to	the	preceding
owning	Window	object	that	is	used	as	an	event	handler	for	the	show	context	menu
event:

				def	OnContextMenu(self,	event):

								menu	=	self.window.GetPopupMenu()

								if	menu:

												self.window.PopupMenu(menu)

												menu.Destroy()

3.	 Now,	to	start	the	example	code	that	will	use	the	preceding	class,	we	will	simply
define	a	couple	of	custom	window	IDs	to	use	in	the	menu:

ID_BLUE	=	wx.NewId()

ID_RED	=	wx.NewId()

4.	 For	the	example	usage	class	in	this	recipe,	we	will	make	a	panel	that	has	a
ContextMenuMgr	class	through	the	following	code:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

		self._menuMgr	=	ContextMenuMgr(self)

								self.Bind(wx.EVT_MENU,	self.OnMenu)

5.	 As	part	of	the	requirement	for	using	ContextMenuMgr,	this	class	must	also	give	us	a
GetPopupMenu	method	to	provide	the	Menu	object	to	be	displayed.	We	can	do	this
using	the	following	method:

				def	GetPopupMenu(self):

								menu	=	wx.Menu()

								menu.Append(ID_BLUE,	"Blue")

								menu.Append(ID_RED,	"Red")

								return	menu



6.	 Lastly,	we	will	add	a	menu	event	handler	to	the	panel	to	handle	events	using	context
menu	clicks,	as	follows:

				def	OnMenu(self,	event):

								evtId	=	event.Id

								if	evtId	==	ID_BLUE:

												self.BackgroundColour	=	wx.BLUE

												self.Refresh()

								elif	evtId	==	ID_RED:

												self.BackgroundColour	=	wx.RED

												self.Refresh()

								else:

												event.Skip()



How	it	works…
The	ContextMenuMgr	class	is	used	to	help	encapsulate	the	creation	and	destruction	of	a
context	menu.	Unlike	menus	attached	to	the	MenuBar	object,	the	ones	used	as	context
menus	require	the	caller	to	manage	their	lifetime.	So,	this	class	binds	its	OnContextMenu
method	to	its	parent	window’s	EVT_CONTEXT_MENU	event,	which	is	emitted	when	the
control	is	right-clicked	on	or	the	appropriate	keyboard	combination	is	pressed.	Once	this
handler	is	called,	it	requests	the	menu	object	from	the	window	and	then	shows	it	using	the
window’s	own	PopupMenu	method.	The	PopupMenu	method	returns	once	a	menu	selection
is	made	or	the	menu	is	dismissed;	at	this	point,	the	Menu	object	can	be	destroyed	to	free	up
the	resources.

Then,	in	the	example’s	usage,	the	Panel	class	simply	creates	a	ContextMenuMgr	class	and
registers	to	handle	EVT_MENU	events	that	may	be	emitted	by	the	menu.	If	ID_BLUE	or
ID_RED	is	perceived	by	the	handler,	it	would	change	its	background	color	to	match	the
selection.



See	also
Refer	to	the	Exploring	menus	and	shortcuts	recipe	in	this	chapter	for	more	examples
of	using	Menu	objects





Working	with	ToolBars
A	ToolBar	object	provides	a	quick	visual	way	to	display	a	series	of	icons	that	allow
actions	in	the	application	to	be	performed	by	clicking	on	an	icon	associated	with	the
desired	task.	A	ToolBar	object	provides	a	functionality	very	similar	to	Menu,	but	it	is	most
often	displayed	to	the	user	and	predominantly	uses	icons	for	identification	instead	of	text.
In	this	recipe,	we	will	look	at	how	to	set	up	a	ToolBar	object	on	a	Frame	object	by
extending	the	Editor	class	from	an	earlier	recipe	in	this	chapter.



Getting	ready
This	recipe	will	use	the	code	from	the	Exploring	menus	and	shortcuts	recipe	as	a	base	to
build	the	additional	use	of	a	ToolBar	upon.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 Much	as	we	did	in	the	Exploring	menus	and	shortcuts	recipe,	we	will	start	by	making
a	simple	wrapper	class	around	the	ToolBar	object	to	automatically	apply	bitmaps
when	possible	using	the	following	code:

class	EasyToolBar(wx.ToolBar):

				def	AddEasyTool(self,	id,	label=""):

								art	=	ArtMap.get(id,	None)

								if	art	is	not	None:

												bmp	=	wx.ArtProvider.GetBitmap(art,	wx.ART_TOOLBAR)

												if	bmp.IsOk():

																self.AddSimpleTool(id,	bmp)

2.	 Now,	just	to	make	the	new	changes	clearer,	we	will	create	a	subclass	of	the	Editor
frame	from	the	Exploring	menus	and	shortcuts	recipe	and	use	it	to	add	ToolBar	to	the
base	editor	through	the	following	class:

class	EditorWithToolBar(Editor):

				def	__init__(self,	parent,	title=""):

								super(EditorWithToolBar,	self).__init__(parent,	title)

								#	Add	in	the	toolbar

								toolbar	=	EasyToolBar(self)

								self.DoSetupToolBar(toolbar)

								toolbar.Realize()

								self.SetToolBar(toolbar)

3.	 As	the	last	step,	we	will	define	the	DoSetupToolBar	method	to	add	our	set	of	tools	to
the	toolbar,	as	follows:

				def	DoSetupToolBar(self,	toolbar):

								toolbar.AddEasyTool(wx.ID_OPEN)

								toolbar.AddEasyTool(wx.ID_SAVE)

								toolbar.AddSeparator()

								toolbar.AddEasyTool(wx.ID_CUT)

								toolbar.AddEasyTool(wx.ID_COPY)

								toolbar.AddEasyTool(wx.ID_PASTE)



How	it	works…
A	ToolBar	object	works	much	the	same	way	as	Menu.	So,	as	a	way	to	simplify	and	make
its	usage	consistent	with	the	EasyMenu	class	that	was	introduced	earlier,	we	added	the
EasyToolBar	class.	This	uses	the	same	ID	to	ART	ID	map	that	was	refactored	out	of	the
EasyMenu	class	and	into	a	shared	global	resource	to	simplify	getting	the	appropriate
bitmap	resource	to	be	displayed	for	a	tool	action.

The	ToolBar	object	is	added	to	Frame	much	the	same	way	as	a	MenuBar	object	using	the
Frame	object’s	SetToolBar	method,	which	adds	ToolBar	to	the	Frame	object’s	window
area.	An	important	thing	to	note	about	displaying	a	ToolBar	object	is	that	it	is	necessary	to
call	the	ToolBar	object’s	Realize	method	in	order	to	make	it	show	the	tool	icons	on
screen.	Failing	to	call	this	method	will	result	in	a	blank	and	empty	ToolBar	object	being
displayed.

The	last	thing	to	note	from	this	particular	example	is	that	we	did	not	bind	any	special
handlers	to	the	events	from	ToolBar.	This	is	because	the	EVT_TOOL	event	is	the	same	as
EVT_MENU,	so	all	tool	events	will	automatically	be	routed	to	the	already	existing	menu
handlers	for	the	same	actions.



There’s	more…
Newly	since	wxPython	2.9.1,	the	ToolBar	object	now	supports	adding	a	stretchable	space
between	tools	by	calling	the	AddStretchableSpace	method,	which	makes	it	possible	to
align	tools	away	from	the	left	side	of	the	ToolBar	object	as	the	parent	window	changes	its
size.

A	ToolBars	object	also	supports	adding	several	other	types	of	tools	in	addition	to	the
normal	icon	button-based	ones.	Take	a	look	at	the	following	table:

ToolBar
methods Description

AddControl
This	is	a	generic	method	to	add	a	simple	control	object	to	the	ToolBar	object,	such	as	a	button	or
TextCtrl

AddCheckTool This	adds	a	tool	that	can	be	toggled	similar	to	a	CheckBox	or	ToggleButton	control

AddRadioTool
This	adds	a	tool	that	behaves	similar	to	a	RadioButton	control,	where	only	one	of	the	tools	in	the	group
can	be	selected	at	a	time

The	standard	AddTool	method	also	supports	creating	several	special	kinds	of	toolbar
buttons	by	specifying	different	values	to	its	kind	parameter.	The	following	table	describes
the	different	values	that	this	parameter	can	be	provided	with:

Kind	value Description

wx.ITEM_NORMAL This	is	the	default	value	and	creates	a	normal	tool	button.

wx.ITEM_CHECK This	creates	a	toolbar	button	that	can	be	toggled	from	a	pressed	to	nonpressed	state.

wx.ITEM_RADIO
This	creates	a	toolbar	button	that	behaves	similarly	to	ITEM_CHECK	but	groups	other	items	of	the
same	type	together,	only	allowing	one	to	be	checked	at	a	time.

wx.ITEM_DROPDOWN

This	causes	a	menu	drop-down	button	to	be	shown	next	to	the	normal	tool	button.	It	is	necessary	to
call	SetDropdownMenu	on	the	toolbar	afterwards	to	associate	the	menu.	(This	feature	is	only
supported	on	Linux	and	Windows	currently.)



See	also
The	Managing	UI	states	recipe	in	this	chapter	shows	how	to	manage	the	enabled	and
disabled	states	of	ToolBar	items
The	Selecting	files	with	a	FileDialog	recipe	in	Chapter	7,	Requesting	and	Retrieving
Information,	will	revisit	this	recipe	to	add	the	Open	and	Save	functionalities





Managing	UI	states
In	order	to	give	good	visual	feedback	to	the	users	of	an	application,	the	user	interface
should	let	the	user	know	when	they	can	and	cannot	interact	with	an	action	that	is	provided
by	the	interface.	Managing	the	state	of	when	a	ToolBar	or	MenuItem	object	can	be
executed	may	quickly	become	a	difficult	and	messy	task	if	it	is	necessary	to	monitor	and
update	an	action	in	response	to	each	and	every	action	the	user	may	take	when	using	the
UI.	Fortunately,	the	EVT_UPDATE_UI	event	is	provided	to	give	the	application	an	easy	way
to	update	the	state	of	UI	elements	periodically	during	its	idle	time.



Getting	ready
This	recipe	builds	on	the	previous	recipe	in	this	chapter,	Working	with	ToolBars,	in	order
to	show	how	to	use	EVT_UPDATE_UI	to	manage	the	state	of	toolbar	icons.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 For	this	recipe,	we	will	make	a	simple	subclass	of	the	EditorWithToolBar	class	from
the	previous	recipe	just	to	separate	the	new	code	from	the	old	code	and	show	the	new
handling	of	EVT_UPDATE_UI,	as	follows:

class	EditorUpdateUI(EditorWithToolBar):

				def	__init__(self,	parent,	title=""):

								super(EditorUpdateUI,	self).__init__(parent,	title)

								self.Bind(wx.EVT_UPDATE_UI,	self.OnUpdateUI)

2.	 The	second	and	last	step	is	to	simply	define	the	OnUpdateUI	event	handler	method
that	is	bound	to	EVT_UPDATE_UI	in	the	constructor.	This	will	handle	the	updating	of
the	state	of	UI	elements	through	the	following	code:

				def	OnUpdateUI(self,	event):

								evtId	=	event.Id

								if	evtId	in	(wx.ID_COPY,	wx.ID_CUT):

												event.Enable(self.txt.HasSelection())

								elif	evtId	==	wx.ID_PASTE:

												event.Enable(self.txt.CanPaste())

								else:

												event.Skip()



How	it	works…
This	was	a	fairly	simple	recipe,	but	let’s	now	take	a	closer	look	at	how	it	works.	The
wxPython	application	will	emit	UpdateUIEvents	periodically	during	its	idle	time;	these
events	are	routed	to	each	control	in	order	to	give	it	a	chance	to	update	its	state	as	it	relates
to	the	current	state	of	the	application.	In	this	example,	the	Cut	and	Copy	actions	are	only
allowed	when	the	TextCtrl	control	has	some	text	selected;	otherwise,	they	are	disabled.
Likewise,	the	Paste	operation	is	only	allowed	when	there	is	text	in	the	clipboard	to	paste
into	the	TextCtrl	control,	which	is	checked	using	the	TextCtrl	control’s	CanPaste
method.	This	event	handler	can	be	seen	in	action	in	the	following	screenshots:

As	can	be	seen	in	the	first	image,	the	Cut	and	Copy	actions	are	grayed	out	and	disabled
until	a	selection	is	made	within	TextCtrl	in	the	second	image.	An	important	point	to	take
away	from	using	EVT_UPDATE_UI	is	that	the	state	of	the	control	being	managed	should	be
updated	through	the	use	of	methods	on	the	event	and	not	by	directly	modifying	the	control
itself.	This	is	in	order	to	allow	the	element	for	the	same	action	to	be	updated	regardless	of
the	type	of	element	being	updated.



There’s	more…
In	addition	to	enabling	or	disabling	a	control,	UpdateUIEvent	has	some	additional
methods	to	update	the	states	of	UI	elements	in	different	ways,	which	are	illustrated	in	the
following	table:

Method
name Description

Check This	is	used	to	check	or	uncheck	a	control,	such	as	CheckBox	or	a	checkable	menu	item.

SetText
This	is	used	to	update	the	text	shown	in	a	control.	This	applies	to	controls	with	labels	and	other	text
displays.

In	some	cases,	if	an	application	has	a	very	large	number	of	elements,	there	could	be	a
chance	for	some	performance	issues	from	the	overhead	of	handling	all	UpdateUIEvents.
To	counter	this,	it	is	possible	to	adjust	the	interval	period	using	the	static
SetUpdateInterval	method	on	the	UpdateUIEvent	class.	This	method	allows	us	to	set	the
update	interval	in	milliseconds,	which	can	help	adjust	and	reduce	the	number	of
EVT_UPDATE_UI	events	that	are	generated	during	runtime	to	reduce	overheads	when
necessary.





Chapter	3.	UI	Layout	and	Organization
In	this	chapter,	we	will	cover:

Laying	out	controls	with	Sizers
Controlling	layout	behavior
Grouping	controls	with	a	StaticBox	control
Creating	an	automatic	wrapping	layout
Using	the	standard	dialog	button	sizer
Simplifying	the	panel	layout
Making	dialog	layout	easy
Building	XML	resource-based	layouts
Extending	XRC	for	custom	controls
Advancing	your	UI	with	AuiManager



Introduction
Understanding	how	to	use	various	controls	and	putting	them	to	work	in	your	application	is
just	part	of	the	equation	in	developing	a	user	interface.	The	remaining	part	is	being	able	to
put	the	controls	together	in	a	functional	layout	on	screen.	The	standard	user	interface	on	a
computer	is	a	two-dimensional	plane	of	various	rectangles	being	positioned	and	sized
upon	it.

A	window	can	be	organized	using	a	static	positioning	of	controls	upon	the	two-
dimensional	plane,	but	what	happens	when	the	application	is	running	on	a	different	system
where	the	screen	resolution	may	be	different	or	the	native	controls	are	shaped	or	sized
slightly	differently?	Due	to	these	potential	issues	and	many	others,	avoiding	the	use	of
static	layouts	can	be	very	advantageous.	The	solution,	and	the	alternative,	is	to	use	the
Sizer	system	in	wxPython	to	create	dynamic	and	flexible	window	layouts	that	can	be
adjusted	according	to	changes.	Sizers	are	a	type	of	helper	class	that	all	container	windows
can	use	to	help	manage	the	sizing	and	positioning	of	their	child	controls	based	on
proportions	and	relative	positioning.

In	this	chapter,	we	will	take	a	look	at	using	Sizers	to	create	window	layouts	as	well	as
some	other	features	and	functionalities	available	through	the	wxPython	library	to	create
and	lay	out	your	user	interfaces.





Laying	out	controls	with	Sizers
All	container	controls	can	have	a	Sizer	class	associated	with	them;	this	Sizer	can	be	used
to	control	the	layout	of	the	direct	children	of	the	control	that	the	Sizer	belongs	to.	There
are	several	types	of	Sizer,	each	one	providing	slightly	different	capabilities	and	features	to
control	the	placement	and	sizing	of	the	controls	they	manage;	however,	they	all	work	on
the	same	two-dimensional	rectangle-based	plane.

Among	the	available	choices	for	Sizers,	BoxSizer	is	the	most	basic,	but	it	provides	a
simple	and	powerful	way	to	control	the	layout	of	controls.	This	Sizer	operates	in	one	of
two	modes.	It	can	lay	out	controls	in	either	a	single	rectangular	column	or	a	row.	Sizers
can	then	be	nested	inside	each	other	to	create	more	complex	layouts.	In	this	recipe,	we
will	explore	some	of	the	basics	of	using	BoxSizer	to	layout	controls	on	a	panel.



How	to	do	it…
For	this	recipe,	you	need	to	perform	the	following	steps:

1.	 First,	let’s	define	the	__init__	method	for	the	Panel	class	and	its	child	controls,	as
follows:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								#	Define	controls

								self.label	=	wx.StaticText(self,	label="Label:")

								choices	=	['a',	'b',	'c']

								self.choice	=	wx.Choice(self,	choices=choices)

								self.info	=	wx.StaticText(self)

								

								#	Do	Layout

								self._doLayout()

								self.Bind(wx.EVT_CHOICE,	self.OnChoice,	self.choice)

2.	 Next,	let’s	start	walking	through	the	_doLayout	method	and	create	the	main	BoxSizer
class	for	the	panel:

				def	_doLayout(self):

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.AddStretchSpacer()

3.	 Now,	we	will	create	another	nested	spacer	to	manage	the	first	StaticText	and
choice	controls	through	the	following	code:

								row	=	wx.BoxSizer(wx.HORIZONTAL)

								row.Add(self.label)

								row.AddSpacer(10)

								row.Add(self.choice)

4.	 With	this	horizontal	row	laid	out,	we	can	now	add	it	to	the	main	sizer	with	the
following	code:

								sizer.Add(row,	flag=wx.CENTER)

5.	 For	the	last	part	of	the	layout,	we	will	add	the	final	control	to	the	main	sizer	and	set
sizer	as	the	sizer	for	the	panel	using	the	following	code:

								sizer.Add(self.info,	flag=wx.CENTER)

								sizer.AddStretchSpacer()

								self.SetSizer(sizer)

6.	 The	last	step	in	this	recipe	is	defining	the	event	handler	for	the	Choice	selection.	The
following	code	can	be	used	for	this:

				def	OnChoice(self,	event):

								lbl	=	"'%s'	was	selected!"	%	event.String

								self.info.Label	=	lbl

								self.Layout()





How	it	works…
First,	let’s	take	a	look	at	a	graphical	breakdown	of	the	layout	that	was	produced	by	the
Sizers	that	we	used	in	the	_doLayout	method:

The	preceding	image	tries	to	label	the	areas	that	are	being	managed	by	items	added	to	the
Sizer.	Starting	at	the	outer	container,	we	can	see	the	main	sizer	class,	which	is	BoxSizer
with	the	VERTICAL	mode	set.	This	means	that	the	items	added	to	it	are	added	vertically
from	the	top	going	downward.	The	first	item	is	added	by	the	AddStretchSpacer	method,
which	adds	empty	space	that	will	expand	and	contract	as	the	outer	window	size	changes.

Next,	the	second	row	Sizer	is	created	with	the	HORIZONTAL	mode	set.	This	allows	items	to
be	added	from	left	to	right	instead	of	top	to	bottom	as	with	the	VERTICAL	mode.	This	is
used	to	allow	the	label	to	be	placed	beside	the	choice	control.	The	row	Sizer	is	then	added
to	sizer	to	let	it	become	the	next	row	in	the	layout	of	the	main	sizer.	After	this,	the
remaining	control	and	spacer	are	added	to	the	layout,	as	was	done	with	the	earlier	items.

The	last	point	to	pay	attention	to	in	this	recipe	is	the	OnChoice	event	handler.	Here,	after
assigning	a	new	label	to	the	StaticText	control,	there	is	a	call	to	the	Layout	method.	This
method	tells	the	window’s	Sizer	to	recalculate	the	layout	and	update	the	Sizers.	This	is
necessary	here	to	ensure	that	the	control	is	properly	repositioned	by	the	main	sizer	after
having	its	size	changed	by	the	new	text.



See	also
Refer	to	the	Understanding	the	hierarchy	of	the	UI	recipe	in	Chapter	1,	wxPython
Starting	Points,	for	a	review	and	explanation	of	the	different	types	of	UI	components
and	their	place	in	the	hierarchy	of	the	UI.
Refer	to	the	Controlling	layout	behavior	recipe	in	this	chapter	for	further	explanation
of	how	to	make	full	use	of	the	functionality	Sizers	provide.





Controlling	layout	behavior
In	this	recipe,	we	will	take	a	deeper	look	at	the	optional	parameters	that	can	be	applied	to
items	that	are	added	to	a	Sizer,	which	can	control	the	proportional	sizing	and	dynamic
alignment	of	controls.	Properly	making	use	of	these	behavioral	aspects	of	the	layout	can
make	the	difference	between	the	UI	looking	sloppy	and	great.	They	also	allow	the	app	to
take	advantage	of	various	screen	resolutions	as	well	as	allowing	the	components	that	make
up	the	UI	to	properly	adapt	as	the	items	around	them	change	in	size.	So,	in	this	recipe,	we
will	take	a	look	at	using	Sizer	flags,	borders,	and	proportions	and	how	they	affect	the
layout	of	controls.



Getting	ready
Ensure	that	you	have	taken	a	look	at	the	previous	recipe	in	this	chapter,	Laying	out
controls	with	Sizers,	to	get	an	overview	of	the	fundamentals	of	the	Sizer	API	before
proceeding	with	this	recipe,	which	focuses	on	the	behavioral	aspects	of	Sizer-based
layouts.



How	to	do	it…
For	this	recipe,	you	need	to	perform	the	following	steps:

1.	 First,	let’s	make	a	custom	Panel	class	and	instantiate	the	five	controls	that	will	be
used	in	the	layout,	as	follows:

class	RatingsPanel(wx.Panel):

				def	__init__(self,	parent):

								super(RatingsPanel,	self).__init__(parent)

								#	Define	controls

								self._chLabel	=	wx.StaticText(self,	

																																						label="Rating:")

								choices	=	["Excellent",	"Good",	"Average",	"Poor"]

								self._choice	=	wx.Choice(self,	choices=choices)

								

								self._cmtLabel	=	wx.StaticText(self,	

																																							label="Comment:")

								self._comment	=	wx.TextCtrl(self,	

																																				style=wx.TE_MULTILINE)

								self._submit	=	wx.Button(self,	label="Submit")

								#	Do	Layout

								self._doLayout()

2.	 Now,	let’s	take	a	detailed	walk	through	the	_doLayout	method,	starting	with	setting
up	the	layout	of	the	top	grouping	of	controls:

				def	_doLayout(self):

								main	=	wx.BoxSizer(wx.VERTICAL)

								

								topRow	=	wx.BoxSizer(wx.HORIZONTAL)

								topRow.Add(self._chLabel,	0,	

																			wx.RIGHT|wx.ALIGN_CENTER_VERTICAL,	10)

								topRow.Add(self._choice,	1,	

																			wx.EXPAND|wx.ALIGN_CENTER_VERTICAL)

								main.Add(topRow,	0,	wx.EXPAND|wx.ALL,	5)

3.	 Next,	let’s	add	the	comment	entry	field	and	its	label	using	the	following	code:

								commentRow	=	wx.BoxSizer(wx.HORIZONTAL)

								commentRow.Add(self._cmtLabel,	

																							flag=wx.RIGHT,	border=10)

								commentRow.Add(self._comment,	1,	wx.EXPAND)

								main.Add(commentRow,	1,	wx.EXPAND|wx.ALL,	5)

4.	 For	the	final	step,	we	will	add	a	button	and	attach	the	main	sizer	to	the	panel
through	this	code:

								main.Add(self._submit,	0,	wx.ALL|wx.ALIGN_RIGHT,	5)

								self.SetSizer(main)



How	it	works…
The	Add	method	of	the	Sizer	takes	many	optional	parameters,	which	are	used	to	influence
how	the	controls	are	laid	out	on	screen	and	how	they	react	to	changes	in	layout.	Take	a
look	at	the	following	script:

Add(item,	proportion,	flags,	border,	userData)

Here’s	how	this	code	can	be	broken	down:

Item:	This	is	the	object	being	added	to	the	Sizer.
Proportion:	This	is	used	to	indicate	whether	the	item	can	grow	in	proportion	to	its
siblings	and	in	the	direction	of	the	layout	of	the	Sizer:

0	means	it’s	not	changeable
>	0	allows	a	control	to	grow	or	shrink	proportionally	in	relation	to	the	value	of
the	other	children	in	the	same	Sizer

Flag:	This	is	the	bit	mask	field	that	affects	the	behavior	of	the	Sizer.
Border:	This	is	to	add	space	padding	around	the	item	in	pixels	when	a	border	flag	is
included	in	the	Flags	field.
userData:	This	is	a	custom	data	object	that	can	be	attached	to	pass	more	complex
sizing	information,	represented	with	the	flags	field.	This	is	only	really	useful	in
making	a	custom	Sizer	subclass.

Now,	armed	with	this	information,	let’s	take	a	look	at	the	layout	that	is	achieved	in	the
preceding	example	code:

On	the	first	row,	compare	the	alignment	of	the	label	and	Choice	control	to	that	of	the
previous	recipe.	Note	how	they	are	now	lined	up	nice	and	square	with	each	other	and	how
the	usage	of	the	EXPAND	flag	and	proportional	value	of	1	has	caused	the	Choice	control	to
stretch	and	fill	the	available	horizontal	space.

A	similar	approach	is	taken	on	the	second	row	for	the	Comment	field.	The	difference	is	that
when	the	HORIZONTAL	Sizer	is	added	to	the	VERTICAL	Sizer,	it	is	also	given	the	proportion
of	one	and	the	EXPAND	flag	of	the	other.	This	allows	the	text	control	to	expand	and	contract
in	both	the	horizontal	and	vertical	directions	as	the	available	area	changes.



Then,	in	the	last	row	for	the	button,	it	is	simply	given	a	padded	border	and	has	the
ALIGN_RIGHT	flag	applied	to	it	to	anchor	it	to	the	right	of	the	available	space.



There’s	more…
There	are	several	flags	that	can	be	applied	to	achieve	different	behaviors.	Take	some	time
to	experiment	with	the	example	code	in	this	recipe	to	remove	or	add	flags	and	take	a	look
at	how	they	affect	the	behavior	of	the	layout.	The	following	tables	include	some	of	the
different	flags	that	can	be	masked	together	when	placing	items	in	a	Sizer:

Border	flags

Flag Description

wx.TOP This	applies	border	padding	to	the	top	of	a	control

wx.BOTTOM This	applies	border	padding	to	the	bottom	of	a	control

wx.LEFT This	applies	border	padding	to	the	left	of	a	control

wx.RIGHT This	applies	border	padding	to	the	right	of	a	control

wx.ALL This	applies	border	padding	to	all	sides	of	a	control

Behavior	flags

Flag Description

wx.EXPAND This	makes	an	item	expand	to	fit	the	available	space

wx.SHAPED This	makes	an	item	expand	while	maintaining	aspect	ratio

wx.FIXED_MINSIZE This	keeps	an	item	at	its	initial	size

wx.RESERVE_SPACE_EVEN_IF_HIDDEN This	reserves	space	for	the	control	even	if	it	is	not	currently	visible

Alignment	flags

Flag Description

wx.ALIGN_CENTER This	aligns	control	toward	the	center	of	the	available	space

wx.ALIGN_LEFT This	aligns	control	to	the	left	of	the	available	space

wx.ALIGN_RIGHT This	aligns	control	to	the	right	of	the	available	space

wx.ALIGN_BOTTOM This	aligns	control	to	the	bottom	of	the	available	space

wx.ALIGN_CENTER_VERTICAL This	center-aligns	the	control	vertically	in	the	available	space

wx.ALIGN_CENTER_HORIZONTAL This	center-aligns	the	control	horizontally	in	the	available	space





Grouping	controls	with	a	StaticBox
control
The	StaticBox	control	is	a	type	of	static	control	that	is	used	to	group	or	organize	controls
that	perform	related	actions	together.	It	provides	a	label	text	and	an	outlining	border
around	the	grouped	controls.	In	previous	versions	of	wxPython,	StaticBox	had	an
irregular	sibling	relationship	with	the	controls	that	it	contained,	which	was,	needless	to
say,	outside	the	mold	of	the	overall	hierarchy	of	the	framework.	However,	starting	from
version	2.9	onward,	StaticBox	can	be	treated	similarly	to	a	special	panel	that	is	the	parent
of	the	controls	it	contains.	In	this	recipe,	we	will	take	a	quick	look	at	how	to	add	controls
to	StaticBox.



How	to	do	it…
Here	are	the	steps	for	this	recipe:

1.	 First,	let’s	start	off	by	making	a	little	wrapper	class	around	StaticBox	to	encapsulate
StaticBoxSizer	and	add	a	couple	of	convenience	methods,	as	follows:

class	GroupBox(wx.StaticBox):

				def	__init__(self,	parent,	orient,	label=""):

								super(GroupBox,	self).__init__(parent,	label=label)

								self._sizer	=	wx.StaticBoxSizer(self,	orient)

def	AddItem(self,	item,	proportion=0,	

												flag=wx.ALL,	border=5):

								self._sizer.Add(item,	proportion,	flag,	border)

				@property

				def	Sizer(self):

								return	self._sizer

2.	 The	next	step	is	to	put	this	class	to	use.	We	will	use	it	to	group	a	few	buttons	together
through	the	following	code:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								#	Layout	sizers

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sbox	=	GroupBox(self,	wx.HORIZONTAL,	

																								"Button	Group")

								for	x	in	range(1,	4):

												button	=	wx.Button(self,	label="Button	%d"	%	x)

												sbox.AddItem(button)

3.	 Lastly,	to	finish	off	the	layout	in	the	__init__	method,	we	need	to	add	GroupBox	to
the	panel’s	layout.	Take	special	note	here	that	we	will	add	GroupBoxes
StaticBoxSizer	to	the	layout	and	not	GroupBox	itself:

								sizer.Add(sbox.Sizer,	0,	wx.ALL,	20)

								self.SetSizer(sizer)



How	it	works…
The	StaticBox	control	requires	StaticBoxSizer	in	order	to	lay	out	itself	and	its	controls.
This	specialized	Sizer	must	be	used	to	get	the	controls	to	lay	out	correctly	in	StaticBox.
This	Sizer	shares	a	special	relationship	with	the	StaticBox	control	as	it	acts	as	a	layout
container	for	the	box’	child	controls	but	also	as	a	sort	of	container	for	the	StaticBox
control	itself.	As	you	can	see	in	Step	3,	we	added	StaticBoxSizer	to	the	Panel	layout
instead	of	the	control	itself.	This	is	slightly	irregular	from	normal	layout	patterns	as	the
Sizer	controls	the	layout	of	StaticBox	and	its	children	but	is	not	directly	owned	by
StaticBox.

When	displayed,	StaticBox,	as	can	be	seen	in	the	preceding	screenshot,	draws	a	border
around	the	controls	that	are	grouped	within	it	as	well	as	displaying	an	optional	group	label
to	give	the	user	some	context	to	what	the	purpose	of	the	group	of	controls	is.



There’s	more…
As	can	be	noticed	in	the	constructor	of	our	GroupBox	class,	the	orient	argument	is	used	to
specify	the	direction	of	the	box.	The	StaticBoxSizer	class	can	be	organized	into	either
rows	(wx.VERTICAL)	or	columns	(wx.HORIZONTAL),	as	we	did	in	this	example.	More
complex	layouts	can	also	be	achieved	by	the	nesting	of	other	Sizers	and	panels,	as	we	will
begin	to	look	at	in	more	detail	in	the	next	chapter.





Creating	an	automatic	wrapping	layout
Sizers	allow	the	dynamic	positioning	and	resizing	of	controls,	though	this	layout	is	still
typically	on	a	fixed	grid	or	in	a	single	direction	at	a	time,	similar	to	BoxSizer.	If	you	wish
to	allow	controls	to	wrap	and	flow	in	both	the	horizontal	and	vertical	directions	as	the
space	allows,	you	can	use	WrapSizer,	which	allows	only	this.	It	works	much	like
BoxSizer	in	that	it	has	a	primary	direction	of	layout,	but	as	the	space	in	the	primary
direction	is	used	up,	the	sizer	automatically	adds	new	columns	or	rows	in	the	secondary
direction.	In	this	recipe,	we	will	have	a	quick	introduction	to	using	WrapSizer.



How	to	do	it…
You	need	to	perform	these	steps:

1.	 The	usage	is	basically	similar	to	BoxSizer;	so,	let’s	just	set	up	a	panel	with	15
buttons	on	it	to	explore	how	this	sizer	works	through	the	following	code:

class	WrappingPanel(wx.Panel):

				def	__init__(self,	parent):

								super(WrappingPanel,	self).__init__(parent)

								sizer	=	wx.WrapSizer(wx.HORIZONTAL)

								

								#	Add	many	buttons

								for	x	in	range(15):

												button	=	wx.Button(self,	label="Button	%d"	%	x)

												sizer.Add(button,	0,	wx.ALL,	5)

								self.SetSizer(sizer)

								self.SetInitialSize()



How	it	works…
The	WrapSizer	class	is	set	up	to	use	HORIZONTAL	as	its	primary	layout	direction.	Controls
will	be	added	to	the	layout	from	left	to	right,	the	same	as	BoxSizer.	However,	once	the
available	horizontal	space	on	the	panel	is	used	up	by	the	buttons,	additional	rows	will	be
added	in	the	VERTICAL	direction	to	contain	the	additional	buttons.	As	the	outer	window
changes	size,	such	as	when	a	user	resizes	the	window,	the	available	space	is	recalculated
and	the	additional	rows	are	added	or	removed	as	needed	to	best	make	use	of	the	space.





Using	the	standard	dialog	button	sizer
Each	platform	has	varying	conventions	or	standards	for	the	way	buttons	are	displayed	on	a
dialog.	For	example,	on	Windows,	the	OK	button	is	to	the	left	of	the	Cancel	button;
however,	on	OS	X,	the	OK	button	is	to	its	right.	wxPython	provides	a	way	to	deal	with
these	platform	differences	without	the	need	for	platform-specific	code.	In	this	recipe,	we
will	explore	how	to	use	the	StdDialogButtonSizer	class	to	manage	the	layout	of	buttons
on	a	dialog	in	a	platform-independent	way.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform	for	this:

1.	 For	this	recipe,	we	will	make	a	custom	message	dialog	class	that	uses
StdDialogButtonSizer.	The	first	step	is	to	define	the	class’	special	text	Sizer	for	the
message,	which	can	be	done	through	the	following	code:

class	CustomMessageDialog(wx.Dialog):

				def	__init__(self,	parent,	title,	msg,	flags):

								super(CustomMessageDialog,	self).__init__(parent,	title=title)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								

								msgSizer	=	self.CreateTextSizer(msg)

								sizer.Add(msgSizer,	0,	wx.EXPAND|wx.ALL,	5)

								sizer.AddStretchSpacer()

2.	 The	next	and	final	step	is	to	use	the	dialog’s	convenience	function	to	create	the	button
sizer	using	the	flags	passed	on	to	the	constructor.	This	can	be	achieved	with	the
following	code:

								bSizer	=	self.CreateStdDialogButtonSizer(flags)

								sizer.Add(bSizer,	0,	wx.EXPAND|wx.BOTTOM,	5)

								self.SetSizer(sizer)

								self.SetInitialSize()



How	it	works…
The	CreateStdDialogButtonSizer	method	will	create	standard	stock	buttons	based	on
the	MessageBox	flags	that	are	passed	to	the	constructor.

As	can	be	seen	in	the	preceding	screenshot,	when	the	dialog	is	created	using
wx.OK|wx.CANCEL	flags,	an	OK	and	Cancel	button	are	also	created.	These	buttons	are	put
in	the	standard	order,	spaced,	and	positioned	based	on	the	platform’s	interface	guidelines.
In	this	example,	on	Windows,	the	buttons	are	grouped	to	the	right	with	the	OK	button	on
the	left-hand	side.	If	this	same	exact	code	is	run	on	OS	X,	the	standard	on	the	order	will	be
reversed:



There’s	more…
The	StdDialogButtonSizer	class,	as	used	in	this	example,	is	created	by	a	helper	method
in	the	dialog	class.	This	method	can	create	and	manage	the	layout	of	standard	buttons
using	any	of	the	standard	button	flag	values.	Take	a	look	at	the	following	table:

Flag Description

wx.OK This	creates	an	OK	button

wx.CANCEL This	creates	a	Cancel	button

wx.YES This	creates	a	Yes	button

wx.NO This	creates	a	No	button

wx.APPLY This	creates	an	Apply	button

wx.CLOSE This	creates	a	Close	button

wx.HELP This	creates	a	Help	button

wx.NO_DEFAULT This	creates	a	No	button	and	sets	it	as	the	default	action

This	Sizer	can	also	be	used	on	its	own	in	any	other	context	by	creating	it	and	using	its
AddButton	method	to	add	a	button	to	the	layout.	Note	that	it	is	necessary	to	use	the
AddButton	method	and	not	the	base	Add	method	to	achieve	the	proper	layout.	The	Sizer
also	only	treats	buttons	with	stock	ID’s	for	the	preceding	flags	as	well	(that	is,	wx.ID_OK).
Finally,	the	Sizer’s	Realize	method	must	be	called	after	the	buttons	are	added	to	tell	the
Sizer	to	put	them	in	the	correct	order	based	on	the	platform’s	standards.





Simplifying	the	panel	layout
If	you	find	yourself	using	the	normal	Sizer-based	layouts	to	be	somewhat	tedious	or
cumbersome,	there	are	some	other	options	through	the	sized_controls	library	available
in	the	wx.lib	namespace.	This	library	provides	a	number	of	specialized	controls	to	help
streamline	and	simplify	the	use	of	Sizers.	These	controls	automatically	create	Sizers	and
add	their	child	controls	to	them	based	on	the	layout	mode	of	SizedControl.	In	this	recipe,
we	will	give	an	introduction	to	this	library	by	making	use	of	SizedScrolledPanel	to	lay
out	a	number	of	controls.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	will	start	by	declaring	a	subclass	of	SizedScrolledPanel	and	setting	the
Sizer	layout	type	to	use	through	the	following	code:

class	MyPanel(sized.SizedScrolledPanel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								self.SetSizerType("form")

2.	 Now,	we	can	instantiate	the	controls	to	add	them	into	the	layout:

								label	=	wx.StaticText(self,	label="Field	1:")

								text	=	wx.TextCtrl(self)

								text.SetSizerProp("expand",	True)

								label2	=	wx.StaticText(self,	label="Field	2:")

								choice	=	wx.Choice(self,	choices=['1',	'2',	'3'])

								choice.SetSizerProp("expand",	True)



How	it	works…
When	the	sized_controls	module	is	imported,	it	adds	several	extension	methods	into
some	Windows-based	classes	to	use	to	manage	the	Sizer’s	properties.	They	are	added
because	SizedControls	classes,	such	as	SizedScrolledPanel,	automatically	add	their
child	controls	to	their	internally	managed	Sizers	as	each	control	is	instantiated.	So,	to
modify	the	layout’s	behavior,	it	is	necessary	to	call	extension	methods,	such	as
SetSizerProps,	to	change	the	sizer	flags	for	each	item	after	they	are	already	in	a	Sizer.

In	this	example,	we	used	SetSizerType	and	passed	it	form.	This	generates	a	two-column
grid	layout;	the	controls	are	added	to	the	layout	from	left	to	right	and	then	top	to	bottom.
This	means	that	when	using	SizedPanel,	the	order	in	which	the	controls	are	instantiated	is
important	as	it	determines	where	the	controls	are	placed	in	the	layout.



There’s	more…
The	SizedPanel	method	supports	several	types	of	layouts	through	the	use	of	the
SetSizerType	method.	The	available	Sizer	type	options	are	as	follows:

Sizer	type
argument Description

horizontal This	is	a	horizontal	BoxSizer	option

vertical This	is	a	vertical	BoxSizer	option

form This	is	a	row-column	grid	layout

table

This	is	a	configurable	table	layout;	it	requires	option	flags	to	be	passed	in	to	specify	the	number	of
rows	and	columns	to	use:

rows:	this	specifies	the	number	of	rows	to	make
cols:	this	specifies	the	number	of	columns	to	make

Grid

This	works	similarly	to	the	table	mode	but	also	supports	the	following	options	flags:

hgap:	this	specifies	the	pixel	amount	for	the	space	between	columns
vgap:	this	specifies	the	pixel	amount	for	the	space	between	rows

The	sizer	properties	for	each	item	can	be	applied	through	the	Windows	object’s
SetSizerProp	or	SetSizerProps	extension	method	with	any	of	the	following	options:

Flag Description

proportion This	is	a	number	to	set	the	control’s	proportional	value

hgrow This	is	used	to	set	a	proportion	to	allow	a	control	to	grow	horizontally

vgrow This	used	to	set	a	proportion	to	allow	a	control	to	grow	vertically

halign This	causes	a	control	to	align	horizontally;	the	value	can	be	left,	center,	or	right

valign This	causes	a	control	to	align	vertically;	the	value	can	be	top,	center,	or	bottom

align This	aligns	the	control	and	only	accepts	center	as	an	option

border This	is	used	to	set	the	border’s	direction;	the	value	can	be	left,	right,	top,	bottom,	or	all

minsize When	a	fixed	value	is	passed,	this	sets	a	fixed	minimum	size	for	an	item

expand This	passes	a	value	of	True	to	set	a	control	to	expand	and	use	the	available	space



See	also
Refer	to	the	next	recipe	in	this	chapter,	Making	dialog	layout	easy,	to	learn	more
about	using	SizedControls





Making	dialog	layout	easy
The	SizedControl	library,	in	addition	to	simplifying	the	layout	of	panels,	also	provides
some	integrated	solutions	for	dialogs.	Internally,	SizedDialog	uses	SizedPanel	to	manage
its	controls	as	well	as	support	the	layout	for	StdDialogButtonSizer.	This	recipe	will	take
a	look	at	using	SizedDialog	to	show	how	to	quickly	and	easily	build	custom	dialogs.



Getting	ready
Ensure	that	you	have	taken	a	look	at	the	previous	recipe	in	this	chapter,	Simplifying	the
panel	layout,	before	moving	on	to	the	rest	of	this	recipe	as	this	recipe	heavily	makes	use
of	the	content	covered	in	the	preceding	one.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 In	this	recipe,	we	will	mock	up	a	dialog	to	configuring	proxy	settings.	The	first	step
is	to	derive	a	class	from	SizedDialog:

class	ProxyConfigDlg(sized.SizedDialog):

				def	__init__(self,	parent,	title):

								super(ProxyConfigDlg,	self).__init__(parent,	title=title)

2.	 Now,	we	need	to	set	up	the	type	of	layout	by	getting	a	reference	to	SizedPanel:

								pane	=	self.GetContentsPane()

								pane.SetSizerType("grid",	{"rows":3,	"cols":2})

3.	 With	the	layout	style	set	up,	it’s	time	to	instantiate	the	controlscontrols,	as	is	done	in
the	following	code:

								proxyLbl	=	wx.StaticText(pane,	label="Proxy	URL:")

								url	=	wx.TextCtrl(pane)

								url.SetSizerProps(expand=True)

								

								nameLbl	=	wx.StaticText(pane,	label="Username:")

								name	=	wx.TextCtrl(pane)

								name.SetSizerProps(expand=True)

								

								passLbl	=	wx.StaticText(pane,	label="Password:")

								name	=	wx.TextCtrl(pane,	style=wx.TE_PASSWORD)

								name.SetSizerProps(expand=True)

4.	 For	the	final	step,	we	will	create	and	add	StdDialogButtonSizer,	as	follows:

								bsz	=	self.CreateButtonSizer(wx.CANCEL|wx.OK))

								self.SetButtonSizer(bsz)

								self.SetInitialSize((300,	175))

								self.Fit()



How	it	works…
The	SizedDialog	basically	just	wraps	up	SizedPanel	in	an	easy-to-use	package	to	build	a
dialog.	The	important	point	to	note	is	that	it	is	necessary	to	call	GetContentPane	to	get	a
reference	to	this	panel.	This	panel	must	be	used	as	the	parent	for	the	controls	in	order	to
allow	SizedPanel	to	manage	the	layout.	In	addition	to	this,	the	SetButtonSizer	method
should	be	used	to	add	dialog	buttons	to	the	layout.	This	method	ensures	the	correct
placement	of	StdDialogButtonSizer	in	relation	to	SizedPanel.





Building	XML	resource-based	layouts
wxPython	also	supports	designer-like	layout	mechanisms	using	XML-based	resource	files,
called	XRC,	that	are	supported	by	several	wx-centric	IDEs,	such	as	XRCed,
wxFormBuilder,	and	DialogBlocks.	XRC	uses	hierarchical	XML	data	to	construct	a
window	layout.	This	recipe	will	show	you	how	to	get	started	with	XRC	by	building	up	a
simple	dialog.



How	to	do	it…
1.	 We	will	start	by	going	through	an	example	XRC	file	that	will	be	used	to	build	a

dialog.	The	first	part	will	declare	the	dialog	and	a	Sizer	to	lay	out	the	contents	of	the
dialog.	Take	a	look	at	this	code:

<?xml	version="1.0"	?>

<resource>

		<object	class="wxDialog"	name="xrctestdlg">

				<title>Xrc	Test	Dialog</title>

				<style>wxDEFAULT_DIALOG_STYLE|wxRESIZE_BORDER</style>

				<object	class="wxBoxSizer">

						<orient>wxVERTICAL</orient>

						<object	class="spacer">

								<option>1</option>

								<flag>wxEXPAND</flag>

						</object>

2.	 Next,	we	will	add	a	CheckBox	control	to	the	Sizer	using	the	following	code:

						<object	class="sizeritem">

								<object	class="wxCheckBox"	name="check_box">

										<label>CheckBox	Label</label>

								</object>

								<flag>wxALL|wxALIGN_CENTRE_HORIZONTAL</flag>

								<border>5</border>

						</object>

3.	 For	the	last	part	of	the	XRC	file,	we	will	add	a	button	Sizer	with	some	buttons,	as
follows:

						<object	class="sizeritem">

										<object	class="wxStdDialogButtonSizer">

														<object	class="button">

																<object	class="wxButton"	name="wxID_OK"/>

														</object>

														<object	class="button">

																<object	class="wxButton"	name="wxID_CANCEL"/>

														</object>

										</object>

								<flag>wxEXPAND|wxALL</flag>

								<border>5</border>

						</object>

				</object>

		</object>

</resource>

4.	 Now,	we	will	make	a	little	example	wrapper	class	to	load	the	resource	file	into	a
dialog	through	the	following	class:

class	ResourceDialog(object):

				def	__init__(self,	parent):

								super(ResourceDialog,	self).__init__()

								resource	=	xrc.XmlResource("xrcdlg.xrc")



								self.dlg	=	resource.LoadDialog(parent,	"xrctestdlg")

								

								checkId	=	resource.GetXRCID("check_box")

								self.dlg.Bind(wx.EVT_CHECKBOX,	self.OnCheck,							

																						id=checkId)

5.	 For	the	last	step,	we	will	finish	up	the	class	by	defining	the	checkbox	event	handler
and	method	to	show	the	dialog	object	created	from	XRC:

				def	OnCheck(self,	event):

								print("Checked:	%s"	%	event.IsChecked())

				def	ShowModal(self):

								result	=	self.dlg.ShowModal()

								if	result	==	wx.ID_OK:

												print("Ok	Clicked!")

								else:

												print("Cancel	Clicked!")



How	it	works…
The	XRC	format	is	a	series	of	object	nodes	that	defines	the	type	of	object	and	can	contain
other	object	nodes	for	objects	that	should	be	contained	within	the	outer	one.	This	builds	up
the	structure	of	the	UI,	which	in	this	recipe	is	a	Dialog	object	that	contains	a	Sizer.	This	in
turn	contains	a	CheckBox	control	and	StdDialogButtonSizer.

To	make	use	of	the	resource	file,	the	wx.xrc	module	needs	to	be	imported	to	get	access	to
the	XmlResource	class,	which	is	used	to	load	the	file.	The	resource	object	has	several
methods	to	load	different	types	of	objects.	We	used	the	LoadDialog	method	that	passes	the
parent	window	and	the	name	of	the	dialog	resource	from	the	xrctestdialog	file.	This
loads	a	resource’s	definition	and	uses	it	to	create	the	Dialog	object.

The	ResourceDialog	class	also	showed	a	way	to	bind	events	to	XRC-created	controls.
The	XmlResource	object	can	be	used	to	look	up	the	ID	of	any	item	by	doing	a	name
lookup	in	the	resource	with	the	GetXRCID	method	and	using	the	resulting	ID	to	bind	to	the
EVT_CHECKBOX	event	handler.



There’s	more…
The	XmlResource	class	also	has	methods	to	load	several	other	types	of	resource	objects
from	an	XRC	file.	The	following	table	is	provided	as	a	quick	reference	guide:

Method Description

LoadBitmap(name) This	is	used	to	load	and	return	the	named	bitmap

LoadDialog(parent,	name) This	is	used	to	load	and	return	the	named	dialog

LoadFrame(parent,	name) This	is	used	to	load	and	return	the	named	frame

LoadIcon(name) This	is	used	to	load	and	return	the	named	icon

LoadMenu(name) This	is	used	to	load	and	return	the	named	menu

LoadMenuBar(parent,	name) This	is	used	to	load	and	return	the	named	menu	bar

LoadObject(parent,	name,	className) This	is	used	to	load	and	return	the	named	object	of	the	classNam	e	type

LoadPanel(parent,	name) This	is	used	to	load	and	return	the	named	panel

LoadToolBar(parent,	name) This	is	used	to	load	and	return	the	named	toolbar





Extending	XRC	for	custom	controls
If	you	have	built	up	some	of	your	own	custom	controls,	there	won’t	be	a	built-in	handler
for	them	in	XRC.	However,	it’s	still	possible	to	use	XRC	with	your	custom	controls	as
XRC	can	be	extended	by	defining	custom	XML	handlers	to	instantiate	your	controls.	In
this	recipe,	we	will	show	you	how	to	create	a	custom	XRC	resource	handler	to	load
custom	user-defined	controls	from	an	XRC	file.



How	to	do	it…
Here	are	the	steps:

1.	 First,	we	will	define	the	custom	XRC	handler	to	load	a	custom	class	called
PhoneButtonPanel.	The	handler	requires	overriding	two	methods	to	check	whether
the	handler	can	handle	the	XML	tag	and	then	create	an	instance	of	the	object	from	the
tag.	The	following	code	will	help	us	do	this:

class	PhoneBtnPanelHandler(xrc.XmlResourceHandler):

				def	CanHandle(self,	node):

								return	self.IsOfClass(node,	"PhoneButtonPanel")

				def	DoCreateResource(self):

								panel	=	PhoneButtonPanel(self.GetParentAsWindow())

								self.SetupWindow(panel)

								self.CreateChildren(panel)

								return	panel

2.	 Next,	we	will	define	a	simple	custom	XmlResource	class	to	make	use	of	this	new
handler	through	the	following	code:

class	CustomXmlResource(xrc.XmlResource):

				def	__init__(self,	fileName):

								super(CustomXmlResource,	self).__init__(fileName)

								

								#	insert	custom	handler(s)

								self.InsertHandler(PhoneBtnPanelHandler())

3.	 For	the	final	step,	let’s	take	a	look	at	an	XRC	file	that	has	a	node	for	the	custom
PhoneButtonPanel	in	it,	as	follows:

<?xml	version="1.0"?>

<resource>

		<object	class="wxPanel"	name="dialog_panel">

				<object	class="wxBoxSizer">

						<orient>wxVERTICAL</orient>

						<object	class="sizeritem">

								<object	class="wxTextCtrl"	name="display">

												<style>wxTE_READONLY|wxTE_RIGHT</style>

								</object>

								<flag>wxEXPAND</flag>

						</object>

						<object	class="sizeritem">

								<object	class="PhoneButtonPanel"	name="buttons"/>

								<flag>wxALL|wxEXPAND</flag>

								<border>5</border>

						</object>

				</object>

		</object>

</resource>



How	it	works…
The	XmlResource	object	is	a	SAX	parser	for	the	XML	in	an	XRC	file;	it	processes	nodes
in	the	file	as	they	are	seen	and	looks	for	a	handler	in	its	collection	to	find	one	that	can
handle	the	nodes	as	they	are	encountered.	So,	in	order	to	handle	custom	control	nodes,	it	is
as	simple	as	adding	another	handler	to	the	chain	of	resource	handlers.

The	XmlResourceHandler	has	a	number	of	methods	to	process	the	XML,	but	in	most
simple	cases,	it	is	only	necessary	to	override	CanHandle	and	DoCreateResource.	The	first
method	is	called	by	the	SAX	processor	to	see	whether	the	handler	object	can	handle
processing	a	specific	node.	The	DoCreateResource	method	is	used	to	create	the	resource
object	represented	by	the	node.

With	the	PhoneBtnPanelHandler	installed	in	the	CustomXmlResource	method’s	chain	of
handlers,	it	is	now	able	to	process	the	XRC	file	shown	in	Step	3,	which	contains	an	object
node	with	PhoneButtonPanel	in	it.



There’s	more…
Check	out	the	sample	code	that	accompanies	this	chapter	for	an	example	application	that
creates	a	dialog	using	the	resources	from	the	XRC	file	in	this	recipe.





Advancing	your	UI	with	AuiManager
The	AuiManager	provides	a	docking	panel	layout	framework	for	a	frame.	Panels	can	be
added	to	the	frame’s	layout	through	AuiManager.	Users	can	be	given	options	to	rearrange
the	layout	by	undocking	and	redocking	them	where	they	like.	The	panes	can	also	be	pulled
out	into	floating	windows	or	closed	and	hidden	altogether.	wxPython	currently	has	two
versions	of	AUI	libraries:	there	is	the	original	C++	version	in	the	wx.aui	module	as	well
as	the	new	updated	version	in	the	wx.lib.agw.aui	module.	In	this	recipe,	we	will	work
with	the	newer	wx.lib	version,	which	has	a	more	complete	implementation	and	feature	set
available.	So,	let’s	get	started	with	an	introduction	to	using	AuiManager	to	generate	an
advanced	window	layout.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 AuiManager	works	with	a	frame,	so	we	will	start	by	defining	a	frame	that	has	some
custom	panels	in	it	through	the	following	code:

import	wx

import	wx.lib.mixins.listctrl	as	listmix

import	wx.lib.sized_controls	as	sized

import	wx.lib.agw.aui	as	aui

class	AuiFrame(wx.Frame):

				def	__init__(self,	*args,	**kwargs):

								super(AuiFrame,	self).__init__(*args,	**kwargs)

								#	Attributes

								self._mgr	=	aui.AuiManager(self)

								#	Panels

								self._phone	=	PhoneDialerPanel(self)

								self._contacts	=	ContactList(self)

								self._callLog	=	wx.ListBox(self)

								#	Layout

								self.SetupMgr()

								self.SetInitialSize((750,	350))

2.	 Next,	let’s	step	through	the	SetupMgr	method,	beginning	by	adding	the	central	pane
using	the	following	method:

				def	SetupMgr(self):

								#	Contacts	Pane

								info	=	aui.AuiPaneInfo().Center().Name("Contacts")

								

								lbl	=	"Contact	List"

								info	=	info.CloseButton(False).Caption(lbl)

								self._mgr.AddPane(self._contacts,	info)

3.	 Now	that	the	central	pane	is	added,	let’s	add	the	docked	phone	panel	to	its	right:

								#	Phone	dialer	pane

								self._phone.SetInitialSize()

								size	=	self._phone.BestSize

								info	=	aui.AuiPaneInfo().Right().Name("Phone")

								info	=	info.BottomDockable(False).TopDockable(False)

								info	=	info.Layer(0).Caption("Phone")

								info	=	info.Fixed()

								self._mgr.AddPane(self._phone,	info)

4.	 To	wrap	it	up,	we	can	just	add	the	ListBox	being	used	as	a	call	log	display	right
below	the	phone	and	tell	the	manager	to	update	its	layout.	The	following	code	will
help:

								#	Call	Log



								info	=	aui.AuiPaneInfo().Right().Layer(0).Position(1)

								info	=	info.Name("Log").Caption("Call	Log")

								info	=	info.BestSize(size).MinSize(size)

								self._mgr.AddPane(self._callLog,	info)

								#	Commit	layout	to	manager

								self._mgr.Update()



How	it	works…
The	AuiManager	manages	a	collection	of	AuiPaneInfo	objects	that	are	associated	with
different	window	objects.	Each	AuiPaneInfo	object	instructs	the	manager	on	how	the	pane
is	to	be	presented	within	the	frame.

The	three	panes	that	we	added	in	this	recipe	result	in	the	preceding	layout	being	created	by
the	manager.	Each	pane	gets	its	own	title	bar	by	default	that	can	be	used	as	a	grab	location
to	drag	the	panel	out	into	its	own	floating	window	or	to	redock	it	in	another	location.	The
Contact	List	pane	is	set	as	the	Center	pane	and	cannot	be	undocked	or	relocated.	To	have
panes	stack	on	top	of	each	other,	like	the	Phone	and	Call	Log	panes,	their	pane
information	should	indicate	the	same	Layer	value	and	then	use	Position	to	control	their
position	within	the	layer.	Directional	properties,	such	as	Right,	Left,	Top,	or	Bottom,	are
used	to	instruct	which	side	of	the	Center	pane	to	dock	the	pane	on.

New	items	can	be	added	and	removed	or	the	pane	information	can	be	modified	on	the
items	in	the	manager	at	any	time.	However,	to	reflect	the	changes	in	the	display,	it	is
necessary	to	call	Update	on	the	AuiManager	object	to	instruct	it	to	regenerate	the	layout.



There’s	more…
The	AuiManager	has	a	large	number	of	features	and	possible	ways	to	use	it.	Included	in	the
following	table	are	some	additional	pointers	to	explore.

Additional	AuiPaneInfo	options
The	number	of	options	available	to	configure	pane	behaviors	is	large,	and	we	only	covered
a	small	number	of	options	in	this	recipe.	Included	here	is	a	list	of	some	additional	options
that	can	be	set	to	control	which	buttons	are	shown	on	the	caption	bar:

Property Description

CloseButton(bool) This	is	True	by	default	but	can	be	set	to	False	to	hide	the	close	button	on	a	pane.

MaximizeButton(bool)
This	puts	a	maximize	button	on	the	caption	bar.	When	clicked	on,	the	pane	will	be	expanded
to	take	over	all	the	space	in	the	manager,	making	it	the	only	visible	pane.

MinimizeButton(bool)

This	puts	a	minimize	button	on	the	caption	bar.	When	clicked	on,	the	pane	will	be	minimized
to	an	icon	on	a	toolbar	in	the	manager.	This	behavior	can	be	further	customized	through	the
use	of	the	MinimizeMode	property.	(This	only	works	in	the	wx.lib	version.)

PinButton(bool)
This	sets	whether	a	pin	button	should	be	shown	on	the	caption	bar.	This	allows	a	quick	click
to	pop	the	pane	out	into	a	floating	window.

Saving	and	restoring	a	window’s	state
Another	great	feature	of	AuiManager	is	that	it	allows	for	the	layout	to	be	serialized	to	a
plain	text	format	to	allow	the	saving	and	restoring	of	specific	window	layouts	and
configurations	to	your	app’s	user	configuration	or	them	to	be	used	as	prebaked	layouts.
Once	all	panes	are	loaded	into	the	manager,	its	SavePerspective	method	captures	the
state	of	all	the	AuiPaneInfo	objects	in	a	string.	Each	pane	is	identified	by	its	Name
property	when	a	perspective	is	loaded	back	into	the	manager	using	the	LoadPerspective
method.

So,	if	you	wish	to	use	LoadPerspective	to	reload	a	window’s	layout	on	the	application’s
startup,	you	must	first	be	sure	to	create	all	the	panes	and	add	them	to	the	manager	and	then
call	LoadPerspective	afterwards	to	restore	the	state	of	the	pane	info	objects	back	to	the
previously	saved	state.





Chapter	4.	Containers	and	Advanced
Controls
In	this	chapter,	we	will	cover:

Adding	tabs	with	the	Notebook	control
Enhancing	ComboBox	with	bitmaps
Configuring	properties
Taking	control	with	FlatNotebook
Styling	text	in	StyledTextCtrl
Annotating	StyledTextCtrl
Displaying	hierarchical	data	with	TreeCtrl
Building	a	system	tray	application
Surfing	the	Web	in	your	app



Introduction
In	earlier	chapters,	we	looked	at	and	learned	a	number	of	things	about	the	fundamentals	of
building	an	application	with	wxPython.	In	this	chapter,	we	will	begin	to	take	a	look	at
some	of	the	slightly	more	advanced	controls	that	can	be	used	to	display	more	complex
data	to	users	of	the	application	in	useful	and	compelling	ways.	Throughout	this	chapter,
we	will	build	a	number	of	small	applications,	each	showing	how	to	take	advantage	of
some	of	the	great	user	interface	features	that	each	control	provides.	Through	these
exercises,	we	will	try	to	highlight	some	of	the	possibilities	that	you	could	put	these
controls	to	work	for	in	your	own	applications.





Adding	tabs	with	the	Notebook	control
The	Notebook	control	is	the	basic	means	of	creating	a	tabbed	interface,	which	is	a
common	way	of	allowing	users	to	switch	between	pages	or	views	in	an	application.	The
use	of	tabbed	interfaces	is	one	of	the	most	prevalent	ways	to	allow	multidocument	views
in	applications	that	show	files	or	in	any	modern	web	browser.	This	recipe	will	show	you
how	to	set	up	NotebookCtrl	and	get	started	with	creating	tabbed	interfaces.



How	to	do	it…
Here	are	the	steps	you	need	to	perform:

1.	 First,	we	will	create	a	subclass	of	wx.Notebook,	as	follows:

class	MyNotebook(wx.Notebook):

				def	__init__(self,	parent):

								super(MyNotebook,	self).__init__(parent)					

								#	Setup	an	image	list

								self.il	=	wx.ImageList(16,	16)

								print	self.il.Add(wx.Bitmap("smile.png"))

								self.AssignImageList(self.il)

								self.Bind(wx.EVT_NOTEBOOK_PAGE_CHANGING,	

																		self.OnChanging)

								self.Bind(wx.EVT_NOTEBOOK_PAGE_CHANGED,	

																		self.OnChanged)

2.	 Next,	we	need	to	define	the	event	handlers	for	the	Notebook	events	that	are	bound	to
the	constructor.	Use	the	following	methods:

				def	OnChanging(self,	event):

								result	=	wx.MessageBox("Allow	Page	Change?",

																															"Allow?",	wx.YES_NO)

								if	result	==	wx.NO:

												event.Veto()

				def	OnChanged(self,	event):

								print	"Page	Changed",	event.Selection

3.	 To	finish	up	this	recipe,	we	will	add	in	a	quick	example	of	using	the	preceding
Notebook	class.	Take	a	look	at	this	class:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(MyFrame,	self).__init__(parent,	title=title)

								

								#	Set	the	panel

								sizer	=	wx.BoxSizer()

								self.nb	=	MyNotebook(self)

								sizer.Add(self.nb,	1,	wx.EXPAND)

								self.SetSizer(sizer)

								#	Add	some	pages

								page1	=	wx.TextCtrl(self.nb,	style=wx.TE_MULTILINE)

								self.nb.AddPage(page1,	"Page	1")

								page1	=	wx.TextCtrl(self.nb,	style=wx.TE_MULTILINE)

								self.nb.AddPage(page1,	"Page	2",	imageId=0)

								self.SetInitialSize((400,250))



How	it	works…
The	Notebook	control	supports	displaying	images	as	well	as	text	on	tabs	for	its	pages.
Images	are	provided	to	the	control	through	an	ImageList	object,	which	can	be	loaded	up
with	a	collection	of	bitmaps	that	can	then	be	assigned	to	pages	through	an	index	ID	in
ImageList.

There	are	two	control-specific	events	that	can	be	handled	to	control	or	react	to	page
selection	changes	in	the	control.	The	EVT_NOTEBOOK_PAGE_CHANGING	event	is	emitted
when	a	new	page	is	clicked	on	but	before	the	change	occurs.	This	event	handler	allows
blocking	and	prevents	the	page	from	changing	by	calling	Veto	on	the	event	object.	This
can	be	useful	if	the	user	needs	to	be	notified	and	is	asked	to	make	a	decision,	such	as
applying	some	changes.	The	EVT_NOTEBOOK_PAGE_CHANGED	event,	on	the	other	hand,	is
called	after	the	newly	selected	page	is	activated.

Adding	additional	tabs	to	Notebook	simply	requires	that	the	window	objects	being	added
are	created	as	children	of	the	Notebook	control.	The	Add	method	takes	a	window	object
and	page	title	to	label	the	tab	with.	It	also	has	an	optional	select	value	to	specify	whether
the	page	should	be	selected	when	it’s	added	as	well	as	an	optional	index	value	to	identify
an	item	from	an	assigned	ImageList	to	be	displayed	on	the	tab	as	well.



There’s	more…
The	Notebook	control’s	InsertPage	method	allows	new	pages	to	be	inserted	at	a	specific
page	index.	The	index	starts	from	left	to	right,	beginning	at	page	0,	or	from	top	to	bottom
in	a	Notebook	control	that	uses	either	a	NB_LEFT	or	NB_RIGHT	style.

Pages	can	also	be	removed	from	the	notebook	in	a	few	different	ways.	The	RemovePage
method	removes	the	tab	from	Notebook	but	does	not	destroy	the	page.	The	DeletePage
method,	on	the	other	hand,	removes	it	from	Notebook	and	also	destroys	it.	To	remove	all
pages	from	a	Notebook	control,	the	DeleteAllPages	method	can	be	called	to	handle	the
task.



See	also
Refer	to	the	Taking	control	with	FlatNotebook	recipe	later	in	this	chapter	for
examples	of	an	alternate	Notebook	control	implementation





Enhancing	ComboBox	with	bitmaps
The	ComboBox	control	is	similar	to	a	Choice	control,	in	that	it	allows	us	to	make	a	single
selection	from	a	pop-up	list	of	options.	The	list	of	options	is	configured	as	a	list	of	strings,
which	in	some	cases	may	be	slightly	inconvenient	for	users	to	locate	the	choice	they	wish
to	select.	This	can	be	alleviated	to	some	extent	in	certain	circumstances	by	also	displaying
a	related	icon	next	to	the	choice	to	help	make	it	more	recognizable.	In	this	recipe,	we	will
make	a	ComboBox	control	to	select	a	language	option.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	for	this	recipe	we	need	to	import	a	few	submodules,	which	are	as	follows:

import	wx

import	wx.lib.langlistctrl	as	langlist

import	wx.combo

2.	 Next,	we	will	make	a	subclass	of	BitmapComboBox	that	enumerates	all	the	possible
language	options	in	wxPython:

class	LanguageComboBox(wx.combo.BitmapComboBox):

				def	__init__(self,	parent):

								super(LanguageComboBox,	self).__init__(parent)

								for	x	in	dir(wx):

												if	x.startswith("LANGUAGE_"):

																langID	=	getattr(wx,	x)

																flag	=	self.GetFlag(langID)

																name	=	wx.Locale.GetLanguageName(langID)

																

																self.Append(name,	flag)

3.	 For	the	last	step,	we	will	add	a	method	to	pull	bitmaps	from	the	langlistctrl
module	and	associate	them	with	the	items	added	in	the	previous	step	through	the
following	code:

				def	GetFlag(self,	langID):

								flag	=	langlist.GetLanguageFlag(langID)

								if	flag.IsOk():

												if	flag.Size	!=	(16,	11):

																img	=	wx.ImageFromBitmap(flag)

																img.Rescale(16,	11)

																flag	=	img.ConvertToBitmap()

								return	flag



How	it	works…
The	BitmapComboBox	control	from	the	wx.combo	module	provides	a	ready	built	ComboBox
control	that	can	display	images	in	its	pop-up	list.	In	the	constructor	of	the
LanguageComboBox	control,	we	used	introspection	to	enumerate	all	the	language	ID	values
defined	in	the	in	the	wx	module.	The	language	IDs	can	be	used	to	retrieve	the	associated
bitmaps	from	the	langlistctrl	module,	which	contains	a	collection	of	bitmap	resources.
The	GetFlag	method	is	provided	to	ensure	that	all	the	flag	images	returned	are	of	the	same
dimensions	as	the	BitmapComboBox	requires	that	all	images	are	of	the	same	size.	Lastly,
the	name	for	each	language	can	be	retrieved	through	the	wx.Locale	object	using	the
language	ID,	similar	to	how	the	bitmap	is	retrieved	from	the	langlistctrl	module.



There’s	more…
As	hinted	at	in	this	recipe,	there	is	another	similar	custom	control	provided	by	the
langlistctrl	module,	which	provides	similar	functionality	in	the	form	of	ListCtrl.	The
LanguageListCtrl	module	also	supports	filtering	based	on	the	languages	that	are	detected
as	available	or	by	showing	all	possible	languages,	as	was	done	in	this	recipe.

The	LanguageListCtrl	module’s	SetUpFilter	method	takes	a	filter	flag	of	LC_ONLY,
LC_AVAILABLE,	or	LC_ALL.	The	LC_ONLY	filter	applies	to	the	optional	list	of	language	IDs
that	can	be	passed	into	the	SetupFilter	method.	The	LC_AVAILABLE	filter	looks	at	the
Locale	object	to	check	whether	there	are	catalogs	available	for	the	language.	The	LC_ALL
filter,	as	the	name	suggests,	enumerates	all	the	language	IDs	on	the	system.



See	also
Take	a	look	at	the	Supporting	internationalization	recipe	in	Chapter	10,	Getting	Your
Application	Ready	for	Release,	for	a	recipe	on	how	to	make	your	app	capable	of
being	displayed	in	multiple	languages





Configuring	properties
The	PropertyGrid	control	provides	a	highly	customizable,	specialized	grid	to	edit	name
and	value	pairs.	If	you	have	ever	used	Visual	Studio,	it’s	very	similar	to	the	Property
Editor	window.	Each	named	property	can	be	set	up	with	varying	types	of	editor	controls
in	the	grid	that	suits	the	needs	of	the	specific	property’s	data.	This	control	can	be	used	to
create	a	way	to	edit	configuration	values	for	any	sort	of	data	type	as	well	as	to	view	the
property	information	of	an	item.	In	this	recipe,	we	will	make	use	of	PropertyGrid	to
display	and	edit	the	attributes	of	a	Python	object.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	let’s	set	up	our	module	with	the	necessary	imports	and	class	constructor	for	the
custom	PropertyGrid	control,	with	the	following	code:

import	inspect

import	wx

import	wx.propgrid	as	propgrid

class	ObjectInspector(propgrid.PropertyGrid):

				def	__init__(self,	parent):

								super(ObjectInspector,	self).__init__(parent)

								self.Bind(propgrid.EVT_PG_CHANGED,	self.OnChange)

2.	 Next	is	the	event	handler	for	the	change	event	that	was	bound	to	the	preceding	code.
This	will	attempt	to	set	a	new	value	to	the	object	for	the	changed	property,	as	follows:

				def	OnChange(self,	event):

								prop	=	event.GetProperty()

								name	=	prop.GetName()

								val	=	prop.GetValue()

								try:

												setattr(self.obj,	name,	val)

								except	Exception,	err:

												print(err)

3.	 The	next	method	is	used	to	set	the	object	that	has	its	properties	displayed.	We	will
break	it	in	two	parts	here,	beginning	with	the	first	part	that	filters	the	methods	and
appends	all	the	attribute	fields.	Take	a	look	at	the	following	code:

				def	SetObject(self,	obj):

								self.Clear()

								self.obj	=	obj

								methods	=	list()

								if	obj	is	not	None:

												prop	=	propgrid.PropertyCategory("Attributes")

												self.Append(prop)

												for	name,	val	in	inspect.getmembers(obj):

																if	callable(val):

																				methods.append((name,	val))

																else:

																				self.AddAttribute(name,	val)

4.	 For	the	second	half,	we	will	do	the	same	with	all	the	methods	and	put	them	in	their
own	category	section,	as	follows:

												#	Add	Method	category

												self.Append(propgrid.PropertyCategory("Methods"))

												for	name,	val	in	methods:

																self.AddMethod(name,	val)

								self.GetGrid().FitColumns()



5.	 The	next	method	is	a	helper	method	used	to	map	a	Python	type	to	a	PropertyGrid
field	type:

				def	GetProperty(self,	attr,	val):

								pmap	=	{	bool	:	propgrid.BoolProperty,

																	int	:	propgrid.IntProperty,

																	str	:	propgrid.StringProperty,

																	unicode	:	propgrid.StringProperty,

																	wx.Colour	:	propgrid.ColourProperty,

																	wx.Font	:	propgrid.FontProperty

															}

								prop	=	pmap.get(type(val))

								if	prop	is	None:

												sval	=	str(val)

												prop	=	propgrid.StringProperty(attr,	value=sval)

												prop.Enable(False)

												return	prop

								return	prop(attr,	value=val)

6.	 This	next	method	is	used	to	add	individual	attributes	to	the	grid,	as	follows:

				def	AddAttribute(self,	name,	val):

								prop	=	self.Append(self.GetProperty(name,	val))

								if	val	is	None:

												prop.Enable(False)

								elif	isinstance(val,	bool):

												prop.SetAttribute("UseCheckbox",	True)

7.	 The	last	method	in	this	recipe	is	used	to	populate	the	method	section.	It	attempts	to
get	the	docstring	for	each	method	and	display	it	as	the	value	for	the	method	in	the
grid:

				def	AddMethod(self,	name,	m):

								doc	=	inspect.getdoc(m)

								if	doc	is	None:

												doc	=	"No	Description"

								prop	=	propgrid.StringProperty(name,	value=doc)

								prop.Enable(False)

								self.Append(prop)



How	it	works…
The	PropertyGrid	control	uses	PGProperty	objects	to	control	the	display	and	control	of
each	individual	row	in	the	grid.	Various	Property	objects,	such	as	BoolProperty	and
IntProperty	in	this	recipe,	are	specialized	subclasses	that	are	used	to	handle	specific
types	of	data.	As	can	be	seen	in	the	following	screenshot,	the	BoolProperty	object	for	the
AutoLayout	property	shows	a	checkbox	and	the	ColourProperty	object	for	the
BackgroundColour	property	shows	a	color-select	dialog	when	clicked	on:

This	recipe	made	use	of	the	inspect	module	from	the	Python	standard	library	to	inspect
the	object	passed	in	the	control’s	SetObject	method.	Then,	some	basic	introspection	is
used	to	interrogate	the	types	of	each	member	in	the	object	to	attempt	to	map	them	to	the
best	suited	property	type.

When	a	value	changes	in	the	right-hand	side	column	of	the	PropertyGrid	object,	the
EVT_PG_CHANGED	event	is	emitted.	The	event	object	has	a	reference	to	the	Property	object
that	was	modified	and	generates	the	event.	Our	OnChange	event	handler	for	this	method
retrieves	the	name	and	value	from	the	property	grid	and	uses	them	to	try	and	set	the	new
value	back	to	the	object.



There’s	more…
The	wx.propgrid	module	provides	a	fair	number	of	Property	field	types	for	the	most
common	types.	However,	if	you	need	to	support	some	unsupported	or	custom	type,	it	is
also	possible	to	make	a	custom	property	object	to	handle	it.	The	PyProperty	class
provides	a	virtual	interface	that	can	be	overridden	to	describe	the	handling	needed	for	the
property	type.	At	a	minimum,	the	custom	property	class	needs	to	override	the
ValueToString	and	StringToValue	methods	to	convert	the	property’s	value	type	back	and
forth.	Refer	to	the	sample	code	that	accompanies	this	chapter	for	a	simple	example	of	the
use	of	a	property	class	to	handle	a	wx.Size	object.





Taking	control	with	FlatNotebook
The	FlatNotebook	control	is	a	custom	notebook	control	provided	by	the	wx.lib	module.
It	offers	many	additional	basic	and	advanced	features	over	the	simple	wx.Notebook	class
that	is	offered	by	the	main	library.	For	example,	tabs	are	able	to	have	close	buttons	on
them	along	with	several	different	visual	display	styles,	and	tabs	can	be	dragged	and
reordered.	As	FlatNotebook	is	an	owner-drawn	control,	it	provides	a	lot	more	options	for
taking	control	of	the	behavior	of	your	application.	In	this	recipe,	we	will	take	a	look	at
some	of	the	useful	features	that	FlatNotebook	has	to	offer.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	will	define	the	constructor	for	a	subclass	of	FlatNotebook,	as	follows:

import	wx

import	wx.lib.agw.flatnotebook	as	fnb

class	EditorBook(fnb.FlatNotebook):

				def	__init__(self,	parent):

								mystyle	=	fnb.FNB_DROPDOWN_TABS_LIST|\

																		fnb.FNB_FF2|\

																		fnb.FNB_SMART_TABS|\

																		fnb.FNB_X_ON_TAB

								super(EditorBook,	self).__init__(parent,	

																																									agwStyle=mystyle)					

								self.Bind(fnb.EVT_FLATNOTEBOOK_PAGE_CLOSING,	

																		self.OnClosing)

2.	 Next,	we	will	define	the	event	handler	for	the	page-closing	event	through	the
following	code:

				def	OnClosing(self,	event):

								pgNum	=	event.GetSelection()

								page	=	self.GetPage(pgNum)

								if	page.IsModified():

												msg	=	"Document	is	modified	continue	closing?"

												resp	=	wx.MessageBox(msg,	"Close	Page?",	

																																	wx.YES_NO|wx.CENTER|	\

																																	wx.ICON_QUESTION)

												if	resp	==	wx.NO:

																event.Veto()

																return

								event.Skip()



How	it	works…
The	FlatNotebook	control	provides	a	very	similar	feature	set	to	that	of	the	regular
notebook	that	we	looked	at	earlier	in	this	chapter.	In	this	little	example,	though,	we	can	see
a	number	of	differences	that	can	be	activated	using	the	special	style	flags	that	are	supplied
to	the	agwStyle	keyword	of	the	FlatNotebook	object’s	constructor.	Take	note	that	this
additional	style	keyword	was	added	in	wxPython	2.8	onward	to	handle	AGW-specific
styles	that	can	be	applied	to	widgets	in	the	wx.lib.agw	modules.	The	list	of	style	flags
used	in	this	recipe	enables	a	number	of	features	that	are	not	available	on	the	basic
Notebook	control.	The	first	style	flag,	FNB_DROPDOWN_TABS_LIST,	adds	a	drop-down	menu
to	the	tab	area	to	list	all	the	tabs	and	allow	selection.	The	FNB_FF2	flag	is	simply	a	style
flag	that	draws	the	flags	with	a	look	and	feel	similar	to	the	tabs	in	the	Firefox	2	web
browser.	The	FNB_SMART_TABS	flag	enables	switching	tabs	via	a	keyboard	shortcut:	Alt	+
Tab.	The	last	flag	used	is	FNB_X_ON_TAB,	which	enables	a	close	button	on	each	tab.

Unlike	the	basic	notebook,	it	is	also	possible	to	allow	users	to	directly	close	tabs	in	the
control.	In	this	recipe,	we	used	the	EVT_FLATNOTEBOOK_PAGE_CLOSING	event	to	get	notified
when	a	page	is	being	closed.



There’s	more…
The	appearance	and	behavior	of	FlatNotebook	can	be	customized	greatly	depending	on
the	agwStyle	flags	that	are	passed	in	to	the	constructor.	Included	here	is	a	quick	reference
to	the	styles	and	what	they	do:

Tab	style	flag Description

FNB_DEFAULT These	are	the	default	FlatNotebook	style	tabs

FNB_FANCY_TABS These	are	square	tabs	with	gradient	filling

FNB_FF2 These	are	Firefox	2-style	tabs

FNB_RIBBON_TABS These	are	Ribbon	bar-style	tabs

FNB_VC71 These	are	Visual	Studio	2003-style	tabs

FNB_VC8 These	are	Visual	Studio	2005-style	tabs

Appearance	flags Description

FNB_TABS_BORDER_SIMPLE This	uses	a	thin	border	around	the	page

FNB_BOTTOM This	places	tabs	at	the	bottom	of	a	window	instead	of	at	the	top

FNB_BACKGROUND_GRADIENT This	paints	the	tab	background	with	a	gradient

FNB_COLOURFUL_TABS This	is	for	us	to	use	colorful	tabs	(VC8	tab	style	only)

Behavior	flags Description

FNB_NO_X_BUTTON This	doesn’t	display	the	close	button	on	the	right-hand	side	of	the	tab	area

FNB_NO_NAV_BUTTONS This	doesn’t	display	the	tab	navigation	buttons	on	the	right-hand	side	of	the	tab	area

FNB_MOUSE_MIDDLE_CLOSES_TABS Through	this	flag,	the	middle	mouse	button	can	be	used	to	let	the	user	close	tabs

FNB_NODRAG This	doesn’t	allow	tabs	to	be	reordered	by	dragging	and	dropping

FNB_X_ON_TAB This	puts	a	close	button	on	each	tab

FNB_DCLICK_CLOSES_TABS Through	this,	tabs	can	be	closed	by	double-clicking	on	them

FNB_SMART_TABS Through	this,	a	selected	tab	can	be	changed	by	the	Alt	+	Tab	keyboard	shortcut

FNB_DROPDOWN_TABS_LIST This	makes	a	button	show	a	pop-up	menu	for	changing	a	selected	tab

FNB_ALLOW_FOREIGN_DND
This	allows	tab	dragging	and	dropping	operations	between	different	FlatNotebook
controls

FNB_HIDE_ON_SINGLE_TAB



This	hides	the	tab	area	when	only	one	tab	is	in	the	notebook

FNB_NO_TAB_FOCUS This	doesn’t	allow	tabs	to	get	focus

FNB_HIDE_TABS This	doesn’t	show	the	tab	area

FNB_NAV_BUTTONS_WHEN_NEEDED This	hides	the	navigation	buttons	when	all	the	tabs	fit	in	the	available	space



See	also
Refer	to	the	Adding	tabs	with	the	Notebook	control	recipe	earlier	in	this	chapter	for
examples	of	some	basic	notebook	features	which	can	also	be	used	in	the
FlatNotebook





Styling	text	in	StyledTextCtrl
The	StyledTextCtrl	class	is	an	advanced	text-editing	component	provided	by	the	wx.stc
module.	This	class	is	a	wx	wrapper	around	the	Scintilla	code	editor	control.	This	control	is
primarily	geared	toward	editing	source	code	files.	It	provides	a	large	set	of	features	for
enhanced	code-editing	support.	In	this	recipe,	we	will	look	at	how	to	set	up	syntax
highlighting	for	Python	source	code	files	using	StyledTextCtrl.



How	to	do	it…
Perform	the	following	steps:

1.	 This	recipe	will	be	split	into	two	classes.	Starting	here	with	a	base	class	to	set	up
some	programming	language-independent	settings	on	StyledTextCtrl.	Take	a	look
at	the	following	code:

import	wx

import	wx.stc	as	stc

import	keyword

class	CodeEditorBase(stc.StyledTextCtrl):

				def	__init__(self,	parent):

								super(CodeEditorBase,	self).__init__(parent)

								#	Attributes

								font	=	wx.Font(10,	wx.FONTFAMILY_MODERN,

																											wx.FONTSTYLE_NORMAL,

																											wx.FONTWEIGHT_NORMAL)

								self.face	=	font.GetFaceName()

								self.size	=	font.GetPointSize()

								#	Setup

								self.SetupBaseStyles()

2.	 Next,	we	will	add	a	helper	function	to	toggle	showing	and	hiding	the	line	number
margin:

				def	EnableLineNumbers(self,	enable=True):

								if	enable:

												self.SetMarginType(1,	stc.STC_MARGIN_NUMBER)

												self.SetMarginMask(1,	0)

												self.SetMarginWidth(1,	25)

								else:

												self.SetMarginWidth(1,	0)

3.	 Now,	we	will	just	add	some	methods	to	set	up	the	base	text	styling	and	help	with
styling	in	the	subclasses	through	the	following	code:

				def	GetFaces(self):

								return	dict(font=self.face,	size=self.size)

				def	SetupBaseStyles(self):

								faces	=	self.GetFaces()

								default	=	"face:%(font)s,size:%(size)d"	%	faces

								self.StyleSetSpec(stc.STC_STYLE_DEFAULT,	default)

								line	=	"back:#C0C0C0,"	+	default

								self.StyleSetSpec(stc.STC_STYLE_LINENUMBER,	line)

								self.StyleSetSpec(stc.STC_STYLE_CONTROLCHAR,

																										"face:%(font)s"	%	faces)

4.	 With	the	base	class	defined,	let’s	turn	our	attention	to	creating	a	specialized	editor	for
Python	source	files.	Define	the	following	subclass:



class	PythonCodeEditor(CodeEditorBase):

				def	__init__(self,	parent):

								super(PythonCodeEditor,	self).__init__(parent)

								#	Setup

								self.SetLexer(wx.stc.STC_LEX_PYTHON)

								self.SetupKeywords()

								self.SetupStyles()

								self.EnableLineNumbers(True)

5.	 The	STC_LEX_PYTHON	lexer	supports	keyword	highlighting;	so	now,	let’s	tell	it	what
the	keywords	for	the	language	are	by	getting	them	from	the	keyword	module,	as
follows:

				def	SetupKeywords(self):

								kwlist	=	"	".join(keyword.kwlist)

								self.SetKeyWords(0,	kwlist)

6.	 For	the	last	two	steps,	we	need	to	set	the	styles	for	each	lexer	token	type.	In	this	first
part,	we	will	define	some	style	description	template	strings	and	set	up	the	styles	on
some	of	the	basic	syntax	items	in	a	Python	code	file	through	the	following	code:

				def	SetupStyles(self):

								#	Python	styles

								faces	=	self.GetFaces()

								fonts	=	"face:%(font)s,size:%(size)d"	%	faces

								tmpl	=	"fore:%s,"	+	fonts

								default	=	"fore:#000000,"	+	fonts

								#	Default	

								self.StyleSetSpec(stc.STC_P_DEFAULT,	default)

								#	Comments

								self.StyleSetSpec(stc.STC_P_COMMENTLINE,	tmpl	%	"#007F00")

								#	Number

								self.StyleSetSpec(stc.STC_P_NUMBER,	tmpl	%	"#007F7F")

								#	String

								self.StyleSetSpec(stc.STC_P_STRING,	tmpl	%	"#7F007F")

								#	Single	quoted	string

								self.StyleSetSpec(stc.STC_P_CHARACTER,	tmpl	%	"#7F007F")

								#	Keyword

								self.StyleSetSpec(stc.STC_P_WORD,	tmpl	%	"#00007F,bold")

7.	 Now,	just	to	finish	it	up	for	the	remaining	lexer	syntax	items,	we	will	add	the
following	code:

								#	Triple	quotes

								self.StyleSetSpec(stc.STC_P_TRIPLE,	tmpl	%	"#7F0000")

								#	Triple	double	quotes

								self.StyleSetSpec(stc.STC_P_TRIPLEDOUBLE,	tmpl	%	"#7F0000")

								#	Class	name	definition

								self.StyleSetSpec(stc.STC_P_CLASSNAME,	tmpl	%	"#0000FF,bold")

								#	Function	or	method	name	definition

								self.StyleSetSpec(stc.STC_P_DEFNAME,	tmpl	%	"#007F7F,bold")

								#	Operators

								self.StyleSetSpec(stc.STC_P_OPERATOR,	"bold,"	+	fonts)

								#	Identifiers



								self.StyleSetSpec(stc.STC_P_IDENTIFIER,	default)

								#	Comment-blocks

								self.StyleSetSpec(stc.STC_P_COMMENTBLOCK,	tmpl	%	"#7F7F7F")

								#	End	of	line	where	string	is	not	closed

								eol_style	=	"fore:#000000,back:#E0C0E0,eol,"	+	fonts

								self.StyleSetSpec(stc.STC_P_STRINGEOL,	eol_style)



How	it	works…
The	StyledTextCtrl	class	supports	building	syntax	highlighting	for	many	different
programming	languages.	To	activate	this,	the	lexer	needs	to	be	selected	using	the
SetLexer	method	and	by	passing	it	a	corresponding	lexer	ID.	All	lexer	IDs	are	defined	in
the	wx.stc	module	and	begin	with	STC_LEX_.	Each	lexer	has	a	corresponding	set	of	syntax
IDs	that	are	used	by	the	lexer	to	style	sections	of	text.	In	this	recipe,	we	made	use	of	the
Python	lexer	to	apply	the	styles	defined	in	the	SetStyles	method	to	set	the	text	styling
properties	in	the	display.

The	StyleSetSpec	method	takes	a	string	to	define	the	styling	for	the	text	associated	with
the	style	ID.	The	style	spec	string	is	formatted	as	follows:

ATTRIBUTE:VALUE,ATTRIBUTE,VALUE,MODIFIER

Take	a	look	at	the	following	table:

Attribute Description

fore This	is	the	foreground	color;	this	can	either	be	a	color	name	or	a	hex	color	code

back This	is	the	background	color;	this	can	either	be	a	color	name	or	a	hex	color	code

face This	is	the	name	of	the	font	to	be	used

size This	is	a	point	size	for	the	font	to	use

The	modifiers	that	can	optionally	follow	a	value	are	as	follows:

Modifier Description

bold This	makes	the	text	bold

italic This	italicizes	the	text

eol This	extends	the	specified	background	style	to	the	end	of	the	current	line

underline This	underlines	the	text

Some	lexers,	such	as	the	Python	lexer,	have	one	or	more	keyword	styles;	in	this	case,	the
keyword	style	is	STC_P_WORD,	the	SetKeywords	method	tells	the	text	control	what	the
keywords	are	by	passing	a	list	of	strings,	and	the	first	number	argument	is	the	keyword
index.	This	will	usually	be	zero	unless	the	lexer	supports	multiple	different	keyword	sets.



There’s	more…
The	StyledTextCtrl	class	has	built-in	lexers	and	syntax	highlighting	for	over	100
different	types	of	programming	languages	and	other	plain	text	format	files.	So,	it	can	be
leveraged	to	provide	syntax	highlighting	and	other	advanced	features	for	probably	every
programming	language	you	may	have	ever	heard	of	and	more.	There	are	too	many	to	list
here,	but	you	can	easily	find	the	list	of	available	lexers	by	looking	at	all	the	lexer	IDs	that
are	prefixed	with	STC_LEX_	in	the	wx.stc	module.



See	also
Refer	to	Annotating	StyledTextCtrl	for	another	recipe	that	explores	some	of	the
features	available	in	this	control
Take	a	look	at	Chapter	9,	Creating	and	Customizing	Components,	for	a	recipe	about
making	your	own	text-styling	lexer	using	StyledTextCtrl





Annotating	StyledTextCtrl
The	new	version	of	the	StyledTextCtrl	class	in	wxPython	3.0	uses	an	updated	version	of
Scintilla,	which	has	added	a	new	feature	to	add	annotations	to	the	text	being	shown	in	the
buffer.	Annotations	can	be	used	to	display	read-only	text	underneath	each	line	of	editable
text.	The	annotations	can	be	used	to	display	inline	diagnostic	messages	to	the	user.	In	this
recipe,	we	will	use	them	to	extend	PythonCodeEditor	from	the	previous	recipe	to	show
pep8	warning	messages	in	the	editor.



Getting	started
This	recipe	uses	an	external	module	called	pep8,	which	should	be	installed	prior	to	trying
this	recipe.	The	pep8	module	can	be	installed	using	pip	or	by	downloading	it	from	pypi
(https://pypi.python.org/pypi/pep8).

https://pypi.python.org/pypi/pep8


How	to	do	it…
1.	 First,	we	need	to	import	some	extra	modules	from	stdlib	as	well	as	the	pep8	module

to	help	us	out	this	time	as	well	as	bringing	in	the	sample	module	from	the	previous
recipe.	Take	a	look	at	the	following	code:

import	sys

import	pep8

import	StringIO

import	wx

import	wx.stc	as	stc

#	Recipe	5	module

import	codeEditor

#	Constants

ANNOTATION_ERROR	=	20

ANNOTATION_WARN	=	21

2.	 Now,	we	will	subclass	PythonCodeEditor,	enable	the	use	of	annotations	in	it,	and
define	two	styles	that	can	be	used	in	the	annotations	through	the	following	code:

class	Pep8Editor(codeEditor.PythonCodeEditor):

				def	__init__(self,	parent):

								super(Pep8Editor,	self).__init__(parent)

								#	Setup	annotation	settings

								self.AnnotationSetVisible(stc.STC_ANNOTATION_BOXED)

								errStyle	=	"fore:#8B0000,bold,back:#FF967A"

								self.StyleSetSpec(ANNOTATION_ERROR,	errStyle)

								warnStyle	=	"fore:#DD6A00,bold,back:#F5DEB3"

								self.StyleSetSpec(ANNOTATION_WARN,	warnStyle)

3.	 To	perform	the	pep8	check,	we	will	override	the	SaveFile	method	of	the	control	and
use	this	as	the	signal	to	run	the	check.	See	this	code:

def	SaveFile(self,	fileName="",	

													fileType=wx.TEXT_TYPE_ANY):

								super(Pep8Editor,	self).SaveFile(fileName,	fileType)

								#	perform	pep8	analysis	after	save

								self.AnnotationClearAll()

								self.DoPep8Check(fileName)

4.	 The	DoPep8Check	method	will	redirect	the	output	of	the	checker	and	use	the	output	to
generate	annotations,	as	follows:

				def	DoPep8Check(self,	fileName):

								checker	=	pep8.Checker(fileName)

								

								stdio	=	sys.stdout

								sys.stdout	=	results	=	StringIO.StringIO()

								try:

												checker.check_all()

								finally:

												sys.stdout	=	stdio



								results.seek(0)

								findings	=	results.readlines()

								if	findings:

												processed	=	self.ProcessFindings(findings)

												self.AddFindings(processed)

5.	 The	text	captured	from	stdout	is	processed	into	a	series	of	line	number	and	message
pairs	by	the	following	ProcessFindings	method::

				def	ProcessFindings(self,	findings):

								processed	=	dict()

								for	finding	in	findings:

												finding	=	finding.strip()

												parts	=	finding.split(':')

												line	=	int(parts[1])	-	1

												msg	=	parts[-1].strip()

												if	processed.has_key(line):

																processed[line]	+=	"\n"	+	msg

												else:

																processed[line]	=	msg

								return	[	(l,	m)	for	l,	m	in	processed.iteritems()	]

6.	 The	last	step	takes	the	processed	findings	and	creates	annotations	in	the	control	to
display	directly	below	the	line	that	the	pep8	finding	is	associated	with.	Here’s	the
code	to	be	executed	for	this:

				def	AddFindings(self,	findings):

								for	line,	msg	in	findings:

												self.AnnotationSetText(line,	msg)

												if	msg.startswith("E"):

																self.AnnotationSetStyle(line,	ANNOTATION_ERROR)

												else:

																self.AnnotationSetStyle(line,	ANNOTATION_WARN)



How	it	works…
In	the	class	constructor,	we	set	up	some	basic	settings	for	using	annotations.	The
AnnotationSetVisible	method	sets	whether	the	annotations	are	visible	and	how	they	are
displayed.	There	are	three	possible	options	to	pass	to	this	method:

STC_ANNOTATION_HIDDEN:	The	annotations	are	hidden
STC_ANNOTATION_BOXED:	The	annotations	are	displayed	within	a	box
STC_ANNOTATION_STANDARD:	The	annotations	are	displayed	as	inline	text

Adding	an	annotation	to	a	line	of	text	just	requires	calling	the	AnnotationSetText
method,	which	takes	the	message’s	text	and	attaches	it	as	an	annotation	to	the	given	line.
Annotations	can	be	made	multiline	by	including	\n	to	separate	each	line	in	the	annotation.
In	the	following	screenshot,	you	can	take	a	look	at	how	annotations	are	added	to	the	text
buffer.	When	this	recipe	runs	a	pep8	check	on	itself,	there	were	two	findings	for	line	61,
which	are	accumulated	together	by	the	ProcessFindings	method:

The	AnnotationSetStyle	method	is	used	to	set	how	the	text	is	styled	in	the	annotation.
This	method	takes	a	line	that	the	annotation	is	on,	and	a	style	ID	of	any	style	that	the	text
buffer	is	set	up	to	use	currently	can	be	applied	to	style	the	text	in	the	annotation.	In	this
recipe,	we	defined	two	new	style	IDs	using	some	arbitrary	numbers	that	are	outside	the
style	ID	range	used	by	the	Python	lexer.	The	two	styles	are	an	error	and	a	warning	style	to
differentiate	the	two	types	of	messages	from	the	pep8	checker.	All	error	messages	start
with	an	E	followed	by	an	error	ID.



There’s	more…
Within	an	annotation,	individual	lines	and	even	individual	characters	can	be	styled	in	more
than	one	style.	The	AnnotationSetStyle	method	works	similarly	to
AnnotationSetStyle,	but	takes	a	byte	array	to	describe	the	style	of	each	individual
character	instead.	The	API	for	this	method	is	quite	cumbersome	to	use	and	very	lightly
documented,	but	hopefully,	with	the	following	additional	pointers,	you	will	find	a	way
through.

The	second	parameter	for	AnnotationSetStyle	should	be	a	string	containing	an	octal
byte,	which	in	turn	contains	the	style	ID	for	each	character	in	the	annotation,	including
whitespace	characters.	So,	for	our	preceding	example,	the	\024	octal	would	set	the	error
style	for	the	corresponding	character,	and	\025	would	set	the	warning	style.	So,	consider
the	following	annotation	string:

"hello	world"

Here,	the	following	style	string	would	set	hello	to	be	displayed	using	the	error	style	and
world	to	be	displayed	in	the	warning	style:

"\024\024\024\024\24\24\025\025\025\025\025"





Displaying	hierarchical	data	with	TreeCtrl
TreeCtrl	provides	a	way	to	create	and	display	data	in	a	hierarchy.	The	control	contains	a
series	of	nodes	that	can	have	child	nodes,	which	in	turn	can	have	their	own	child	nodes.
This	nested	data	display	allows	users	to	expand	and	collapse	the	nodes	to	see	more	or	less
as	need	be.	In	this	recipe,	we	will	use	TreeCtrl	to	create	an	outline	view	of	an	XML	file.



How	to	do	it…
Perform	the	following	steps:

1.	 For	this	recipe,	in	addition	to	the	wx	module,	we	will	use	the	ElementTree	module
from	the	Python	standard	library.	Take	a	look	at	the	following	script:

import	xml.etree.ElementTree	as	ET

import	wx

2.	 Next,	let’s	start	on	a	custom	subclass	of	wx.TreeCtrl	to	specialize	it	to	display	XML
data	using	the	following	code:

class	XMLOutliner(wx.TreeCtrl):

				def	__init__(self,	parent,	xmlText):

								super(XMLOutliner,	self).__init__(parent)

								

								rootElement	=	ET.fromstring(xmlText)

								root	=	rootElement.tag

								self._root	=	self.AddRoot(root)

								self.SetPyData(self._root,	rootElement)

								self._populateTree(self._root,	rootElement)

								self.Bind(wx.EVT_TREE_ITEM_GETTOOLTIP,	self.OnToolTip)

3.	 The	_populateTree	method	is	a	simple	recursive	method	for	walking	through	XML
data	and	creating	TreeCtrlItems	for	each	XML	node,	as	seen	in	the	following	code:

				def	_populateTree(self,	parentNode,	element):

								for	child	in	element:

												node	=	self.AppendItem(parentNode,	child.tag)

												self.SetPyData(node,	element)

												self._populateTree(node,	child)

4.	 The	next	two	methods	are	used	to	handle	the	get	tooltip	event	that	was	bound	to	in
the	constructor.	When	the	user	lets	the	mouse	hover	over	an	item	in	the	tree	node,	we
will	display	the	XML	text	as	a	tooltip	through	the	following	code:

				def	_getDetails(self,	element):

								xmlText	=	ET.tostring(element)

								items	=	xmlText.split('\n')

								return	items[0]

				def	OnToolTip(self,	event):

								node	=	event.GetItem()

								data	=	self.GetPyData(node)

								tip	=	self._getDetails(data)

								event.SetToolTip(tip)



How	it	works…
A	TreeCtrl	control	is	a	series	of	connected	nodes	very	similar	to	how	an	XML	file	is	a
structured	collection	of	nodes.	To	simplify	converting	raw	XML	text	to	display	in	the
TreeCtrl	object,	the	ElementTree	module	from	the	Python	standard	library	is	used	to
parse	text	into	Element	objects.	The	TreeCtrl	control	requires	a	root	node	to	attach	other
child	nodes	to,	so	in	the	constructor,	we	used	the	tag	name	of	the	XML	file’s	root	node	as
the	root	node	of	TreeCtrl.

Once	the	root	node	is	created	in	TreeCtrl,	we	can	begin	appending	the	child	nodes
beginning	at	the	root.	The	_populateTree	method	recursively	loops	over	each	child	node
and	its	child	nodes	until	all	the	leaf	nodes	are	attached.	Each	time	a	node	is	attached,	the
SetPyData	method	is	used	to	attach	the	related	Element	object	as	client	data	to	TreeItem.
Attaching	this	data	to	the	item	will	allow	us	to	easily	retrieve	it	later	when	an	action	with
the	given	node	is	performed.

The	TreeCtrl	control’s	EVT_TREE_ITEM_GETTOOLTIP	event	is	fired	when	the	mouse	cursor
hovers	over	TreeItem	for	a	few	moments.	This	event	handler	allows	the	application	to
provide	a	ToolTip	string	to	display	as	hover-over	information	in	TreeCtrl.	For	this
recipe,	we	used	the	raw	XML	string	from	the	Element	object	that	we	saved	in	each
TreeItem	after	creating	them	to	show	the	full	details	of	the	node	as	it	was	in	the	text	file.



There’s	more…
The	TreeCtrl	control	is	fairly	versatile,	with	a	large	feature	set.	There	are	a	large	number
of	style	flags	and	events	that	can	be	used	to	modify	its	appearance	and	behavior	to	suit	the
application’s	needs.	Let’s	take	a	quick	look	at	the	available	style	flags	and	some	of	the
events	that	can	be	used	to	further	enhance	the	use	of	TreeCtrl:

Style	flag Description

TR_EDIT_LABELS
This	allows	the	user	to	edit	the	labels	of	TreeItems.	When	used,	the	user	can	cause	a
TextCtrl	control	to	show	up	when	clicking	on	the	node.

TR_NO_BUTTONS
This	doesn’t	show	any	buttons	next	to	the	TreeItems.	This	hides	the	normal	buttons	for
expanding	and	contracting	the	nodes.

TR_HAS_BUTTONS This	shows	the	buttons	next	to	the	TreeItems.

TR_NO_LINES This	doesn’t	show	the	vertical	lines	that	connect	the	nodes.

TR_FULL_ROW_HIGHLIGHT This	extends	the	selected	background	color	across	the	whole	row	of	TreeItems.

TR_LINES_AT_ROOT
This	is	used	to	only	show	connecting	lines	between	root	nodes,	and	it	only	applies	if
TR_HIDE_ROOT	is	applied	and	TR_NO_LINES	is	not	applied.

TR_HIDE_ROOT This	doesn’t	display	the	root	node.

TR_MULTIPLE This	allows	multiple	items	to	be	selected	at	a	time.

TR_SINGLE This	only	allows	a	single	selection	at	a	time.

As	mentioned,	TreeCtrl	also	has	many	events	that	can	be	bound	to.	Listed	here	is	just	a
partial	collection	of	some	of	the	more	commonly	useful	ones:

Event Description

EVT_TREE_BEGIN_LABEL_EDIT

This	event	is	raised	if	the	TreeCtrl	control	uses	the	TR_EDIT_LABELS	style,	and	the	user
has	attempted	to	initiate	an	edit	session.	The	application	can	call	Veto()	on	the	event
object	to	prevent	TextCtrl	from	being	shown.

EVT_TREE_ITEM_ACTIVATED
This	is	raised	when	the	user	activates	a	TreeItem,	either	by	selecting	it	and	pressing	the
Enter	key	or	by	double-clicking	on	it.

EVT_TREE_ITEM_EXPANDING

This	is	raised	when	a	node	is	about	to	be	expanded.	It	can	be	used	to	either	prevent	the
node	from	expanding	by	calling	Veto()	on	the	event	object	or	to	allow	delaying
actually	appending	the	nodes	until	they	need	to	be	displayed.

EVT_TREE_ITEM_MENU

This	is	similar	to	EVT_TREE_ITEM_GETTOOLTIP,	but	is	instead	called	when	the	context
menu	for	an	item	is	requested.	We	can	handle	this	event	to	provide	a	custom	context
menu	for	TreeItems.





Building	a	system	tray	application
If	you	want	to	build	a	simple	menu-based	application	that	does	not	require	a	full	GUI,	the
TaskBarIcon	class	provides	a	way	to	build	a	TaskBar	application	that	integrates	with	the
operating	system’s	window	manager,	such	as	TaskBar	(Windows/Linux),	Dock,	or	status
area	on	OS	X.	This	recipe	will	show	you	how	to	build	a	simple	weather	checker
application	using	the	TaskBarIcon	class	in	wxPython.



Getting	started
This	recipe	uses	the	OpenWeatherMap	API	to	get	weather	information.	From	October	2015,
they	require	that	you	have	an	API	key	to	use	this	service.	Obtaining	a	key	is	free	and
simply	requires	signing	up	on	their	site.	So,	before	starting	this	recipe,	visit
http://openweathermap.org/appid#get	to	learn	how	to	get	an	API	key.

http://openweathermap.org/appid#get


How	to	do	it…
Perform	the	following	steps:

1.	 Firstly	for	this	recipe,	we	will	need	a	couple	of	extra	imports	from	the	Python
standard	library	to	help	us	out	and	define	some	menu	IDs	for	later	use.	We	can	use
the	following	code	for	this:

import	urllib

import	json

import	wx

URL	=	"http://api.openweathermap.org/data/2.5/weather?q=%s"

ID_GET_CITY	=	wx.NewId()

ID_ENTER_KEY	=	wx.NewId()

2.	 Define	the	constructor	for	our	custom	TaskBarIcon	class	using	the	following:

class	WeatherTray(wx.TaskBarIcon):

				def	__init__(self,	frame):

								super(WeatherTray,	self).__init__()

								self.apiKey	=	""

								self.frame	=	frame

								self.data	=	{	'desc'	:	"Unknown",	'temp'	:	"??"	}

								self.UpdateData("London,UK")

								self.Bind(wx.EVT_MENU,	self.OnMenu)

3.	 This	next	method	is	used	to	as	a	helper	method	to	build	up	the	URL	to	query	the
OpenWeatherMap	website	with:

				def	GetRequestURL(self,	city):

								formatted	=	city.replace('	',	"%20")

								query	=	URL	%	formatted

								

								#	Add	User	API	Key

								apiKey	=	"&APPID=%s"

								query	+=	(apiKey	%	self.apiKey)

								return	query

4.	 The	UpdateData	method	fetches	JSON	that	contains	the	weather	data	for	the
currently	specified	city	from	the	OpenWeatherMap	API	service.	Take	a	look	at	this
method:

				def	UpdateData(self,	city):

								try:

												#	Query	the	OpenWeatherMap	site

												query	=	self.GetRequestURL(city)

												url	=	urllib.urlopen(query)

												j	=	json.load(url)

												weather	=	j['weather'][0]

												temp	=	j['main']['temp']

												self.data	=	dict()

												self.data['desc']	=	weather['main']

												self.data['icon']	=	weather['icon']



												c	=	float(temp)	-	273.15

												self.data['temp']	=	c

								except	Exception,	err:

												print	"Error	getting	data:	%s"	%	err

								self.city	=	city

								self.UpdateIcon()

5.	 Next,	the	UpdateIcon	function	tries	and	retrieves	the	icon	for	the	current	weather
from	the	same	web	service	to	use	as	its	display	icon	in	the	tray,	as	follows:

				def	UpdateIcon(self):

								img	=	None

								try:

												loc	=	"http://openweathermap.org/img/w/%s.png"

												url	=	urllib.urlopen(loc	%	self.data['icon'])

												img	=	wx.ImageFromStream(url,	wx.BITMAP_TYPE_PNG)

												img	=	wx.BitmapFromImage(img)

								except:

												img	=	wx.Bitmap('errIcon.png')

								icon	=	wx.IconFromBitmap(img)

								self.SetIcon(icon)

6.	 When	TaskBarIcon	is	right-clicked	on,	the	framework	calls	the	CreatePopupMenu
method	on	the	object.	So	here,	we	will	override	this	method	in	order	to	make	the	pop-
up	menu	that	will	be	used	by	this	application.	For	this,	use	the	following	code:

				def	CreatePopupMenu(self):

								menu	=	wx.Menu()

								

								data	=	(self.city,	

																"Weather:	%s"	%	self.data['desc'],	

																"Temp:	%s	C"	%	self.data['temp'])

								for	d	in	data:

												item	=	menu.Append(wx.ID_ANY,	d)

												item.Enable(False)

								

								menu.AppendSeparator()

								menu.Append(ID_GET_CITY,	"Enter	city	name…")

								menu.Append(ID_ENTER_KEY,	"Enter	API	Key…")

								menu.AppendSeparator()

								menu.Append(wx.ID_CLOSE)

								return	menu

7.	 The	pop-up	menu	contains	four	items,	but	only	two	of	them	are	clickable;	one	is	to
close	the	application,	and	another	allows	the	city	to	be	changed.	So	here,	we	will
define	the	menu	event	handler	to	perform	these	actions:

				def	OnMenu(self,	event):

								if	event.Id	==	wx.ID_CLOSE:

												self.Destroy()

								elif	event.Id	==	ID_GET_CITY:

												msg	=	"Enter	City	Name	(City,Country):"

												t	=	wx.GetTextFromUser(msg,																																					

																																			default_value=self.city)

												if	t:



																self.UpdateData(t)

								elif	event.Id	==	ID_ENTER_KEY:

												t	=	wx.GetTextFromUser("Enter	OpenWeatherMap	Key:",	

																																			default_value=self.apiKey)

												if	t:

																self.apiKey	=	t

																self.UpdateData(self.city)

								else:

												event.Skip()

8.	 The	final	step	is	to	create	the	App	object	and	TaskBarIcon	instance,	as	follows:

class	WeatherTrayApp(wx.App):

				def	OnInit(self):

								#	Make	a	hidden	frame	as	some	platforms	require

								#	a	top	level	window	to	keep	the	app	loop	running.

								frame	=	wx.Frame(None)

								self._trayIcon	=	WeatherTray(frame)

												return	True



How	it	works…
When	started,	WeatherTrayApp	creates	an	instance	of	WeatherTray.	The	use	of
TaskBarIcon	requires	that	its	SetIcon	method	is	called	to	set	the	image	used	as	the	UI
component	of	the	control.	Once	this	is	set,	it	appears	as	an	icon	in	the	system	tray,	as
shown	by	the	little	cloud	in	the	following	screenshot.	To	get	started	using	this	example
app,	right-click	on	the	icon	and	enter	your	API	key:

When	right-clicked	on,	the	framework	will	call	TaskBarIcon’s	CreatePopupMenu	method,
which	is	overridden	by	our	subclass.	In	this	method,	we	created	and	returned	the	menu
object	to	present	it	to	the	user.	The	top	three	items	of	this	menu	are	read-only	to	the	user,
showing	detailed	information	about	the	weather	that	was	retrieved	from	the	weather
service	during	UpdateData.	Two	additional	options	are	available	to	allow	the	city	to	be
changed	as	well	as	to	exit	the	application.

When	the	city	is	changed,	the	new	value	is	used	to	requery	the	openweathermap	service	to
get	the	new	data	for	the	requested	city.	This	data	is	then	used	to	update	the	icon	as	well	as
the	data	that	would	be	shown	on	the	next	menu	click.



There’s	more…
New	on	the	OS	X	platform,	in	wxPython	3.0,	the	TaskBar	icon	can	be	set	up	to	be	showed
in	either	the	Dock	or	the	main	system	status	bar	area	by	specifying	an	optional	argument
to	the	object	constructor.	Take	a	look	at	the	following	table:

Icon	type	ID Description

wx.TBI_CUSTOM_STATUSITEM
This	creates	the	icon	in	the	system	status	area	(which	is	the	common	menu	bar	area	on
top	of	the	screen).

wx.TBI_DEFAULT_TYPE This	is	the	default	parameter	as	of	wxPython	3.0;	it	is	the	same	as	TBI_DOCK.

wx.TBI_DOCK
This	creates	the	application	as	an	icon	in	the	Dock.	This	is	the	default	behavior	that	was
available	in	earlier	versions	of	the	library.





Surfing	the	Web	in	your	app
Another	great	feature	available	in	wxPython	3.0	is	the	new	full-featured	web	browser
control	available	in	the	wx.html2	module.	This	control	provides	a	full	rendering	engine	for
the	display	of	HTML	with	CSS	and	JavaScript.	It	uses	a	Webkit	backend	on	GTK/OSX
and	an	IE	backend	on	MSW.	This	control	provides	a	great	way	to	display	the
documentation	or	HTML-based	help	files.	It	also	lets	us	be	leveraged	to	make	a	hard
client	for	web-based	applications	that	you	may	want	to	provide	direct	access	for	within
your	app.	In	this	recipe,	we	will	show	how	to	get	started	with	the	WebView	class	by
implementing	a	very	simple	web	browser	application	using	it.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 First,	let’s	take	a	look	at	the	modules	that	need	to	be	imported	for	this	application,	as
follows:

import	wx

import	wx.html2	as	html2

2.	 Next,	this	application	will	consist	of	two	main	components:	a	navigation	bar	and	a
browser	window.	First,	we	will	start	by	defining	the	navigation	bar	class,	as	follows:

class	NaviBar(wx.Panel):

				def	__init__(self,	parent,	browser):

								super(NaviBar,	self).__init__(parent)

								self._url	=	wx.TextCtrl(self,	

																																style=wx.TE_PROCESS_ENTER)

								self._url.SetHint("Enter	URL	here	and	press	enter…")

								back	=	wx.Button(self,	style=wx.BU_EXACTFIT)

								back.Bitmap	=	wx.ArtProvider.GetBitmap(wx.ART_GO_BACK,	

																																															wx.ART_TOOLBAR)

								fw	=	wx.Button(self,	style=wx.BU_EXACTFIT)

								fw.Bitmap	=	wx.ArtProvider.GetBitmap(wx.ART_GO_FORWARD,

																																													wx.ART_TOOLBAR)

3.	 With	all	the	controls	for	the	navigation	bar	defined,	the	layout	is	next,	as	shown	in	the
following	code:

								sizer	=	wx.BoxSizer(wx.HORIZONTAL)

								sizer.Add(back,	0,	wx.ALL,	5)

								sizer.Add(fw,	0,	wx.ALL,	5)

								sizer.Add(self._url,	1,	wx.EXPAND)

								self.SetSizer(sizer)

4.	 To	finish	up	the	navigation	bar,	all	we	have	left	to	do	is	bind	the	events,	as	is	done
here:

								b	=	browser

								self.Bind(wx.EVT_TEXT_ENTER,	

																		lambda	event:	b.LoadURL(self._url.Value))

								self.Bind(wx.EVT_BUTTON,	lambda	event:	b.GoBack(),	back)

								self.Bind(wx.EVT_BUTTON,	lambda	event:	b.GoForward(),	fw)

								self.Bind(wx.EVT_UPDATE_UI,

																		lambda	event:	event.Enable(b.CanGoBack()),

																		back)

								self.Bind(wx.EVT_UPDATE_UI,

																		lambda	event:	event.Enable(b.CanGoForward()),

																		fw)

5.	 With	NaviBar	out	of	the	way,	the	next	is	to	define	the	web	browser	frame,	we	will
use	the	following	class	for	this:

class	WebFrame(wx.Frame):



				def	__init__(self,	parent,	title):

								super(WebFrame,	self).__init__(parent,	title=title)

								

								self._browser	=	html2.WebView_New(self)

								self._bar	=	NaviBar(self,	self._browser)

								

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.Add(self._bar,	0,	wx.EXPAND)

								sizer.Add(self._browser,	1,	wx.EXPAND)

								self.SetSizer(sizer)

								

								self.Bind(html2.EVT_WEBVIEW_TITLE_CHANGED,	

																		self.OnTitle)

				def	OnTitle(self,	event):

								self.Title	=	event.GetString()



How	it	works…
Wow,	look	at	that!	With	less	than	70	lines	of	code,	we	built	a	very	simple	yet	functional
cross	platform	web	browser	application	that	supports	browsing	to	a	specified	URL	as	well
as	basic	forward	and	backward	history	navigation.

The	NaviBar	class	provides	a	means	of	interaction	with	the	user	by	providing	back	and
forward	buttons	as	well	as	TextControl	to	accept	URL	entry.	The	TextControl	control
uses	the	TE_PROCESS_ENTER	style	to	allow	event	handling	when	the	Enter	key	is	pressed.	I
used	this	event	handler	to	get	the	text	from	TextControl	and	pass	it	as	a	URL	to
WebView’s	LoadURL	method.	This	method	handles	everything	related	to	opening	the
HTML	file,	which	can	be	local	or	at	an	internet	address	as	shown	in	the	following
screenshot.	The	buttons	are	also	linked	to	execute	the	methods	available	in	the	WebView
control	to	check	whether	there	is	any	browser	history	to	enable	or	disable	the	buttons	and
to	instruct	WebView	to	navigate	in	the	requested	direction.

The	WebView	control	does	many	of	its	actions	asynchronously,	such	as	the	loading	or
reloading	of	pages.	There	are	a	handful	of	events	that	can	be	handled	to	get	callbacks
during	parts	of	the	loading	process.	In	this	example,	we	handled
EVT_WEBVIEW_TITLE_CHANGED	in	order	to	get	notifications	when	a	new	title	is	found	in	a
loaded	URL.	When	this	event	occurs,	our	application	uses	it	to	update	the	frame’s	title	to
match	that	of	the	website.



There’s	more…
As	mentioned,	there	are	several	other	events	that	can	be	handled	on	the	WebView	control.
Included	here	is	a	quick	reference	for	the	additionally	available	events	that	can	be	bound
to:

Event Description

EVT_WEBVIEW_NAVIGATING
This	is	called	before	the	control	tries	to	get	a	resource.	It	can	be	used	to	allow	or	disallow
navigation	to	the	resource.

EVT_WEBVIEW_NAVIGATED This	is	called	after	it	is	confirmed	that	the	resource	would	be	requested.

EVT_WEBVIEW_LOADED This	is	called	after	a	resource	is	fully	loaded	and	displayed.

EVT_WEBVIEW_ERROR This	is	called	if	a	navigation	error	occurs.

EVT_WEBVIEW_NEWWINDOW This	is	called	if	the	browser	requests	a	new	window	to	be	created	to	load	content	into.





Chapter	5.	Data	Displays	and	Grids
In	this	chapter,	we	will	cover:

Displaying	lists	of	data
Editing	data	lists
Implementing	a	data	source
Getting	started	with	the	data	grid
Displaying	dynamic	data
Modeling	your	data
Displaying	your	data	model



Introduction
The	primary	purpose	of	many	computer	applications	is	to	display	and	analyze	data.	Many
types	of	data	can	be	represented	in	a	tabular	format,	and	wxPython	has	several	different
controls	to	help	in	displaying	this	type	of	data.	In	this	chapter,	we	will	take	a	tour	of	some
of	the	main	ways	to	display	data	in	a	wxPython	application.	This	includes	recipes	on	how
to	use	ListCtrls,	Grids,	and	DataViewCtrls	components	to	display	and	interact	with	data	in
various	ways	within	an	application.





Displaying	lists	of	data
If	your	application	needs	to	generally	display	small	amount	of	tabular	data,	the	standard
ListCtrl	component	can	be	a	quick	and	easy	way	to	present	this	data	to	users.	ListCtrl
can	operate	in	a	number	of	visual	modes	that	present	data	in	a	different	way	to	the	user.
The	report	mode	is	the	mode	that	we	are	going	to	take	a	look	at	in	this	recipe	as	it	allows
us	to	build	a	multicolumn	table	to	display	the	data	in.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	let’s	make	a	custom	ListCtrl	base	class	to	add	some	useful	helper	functions	to,
as	follows:

class	BaseList(wx.ListCtrl):

				def	__init__(self,	parent):

								super(BaseList,	self).__init__(parent,	

																																							style=wx.LC_REPORT)

								self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK,	self.OnRClick)

								self.Bind(wx.EVT_MENU,	self.OnMenu,	id=wx.ID_COPY)

								self.Bind(wx.EVT_MENU,	self.OnMenu,	id=wx.ID_SELECTALL)

2.	 Next,	let’s	define	the	event	handlers	that	were	specified	in	the	constructor	using	this
code:

				def	OnRClick(self,	event):

								menu	=	wx.Menu()

								menu.Append(wx.ID_COPY)

								menu.Append(wx.ID_SELECTALL)

								self.PopupMenu(menu)

								menu.Destroy()

				def	OnMenu(self,	event):

								if	event.Id	==	wx.ID_COPY:

												self.Copy()

								elif	event.Id	==	wx.ID_SELECTALL:

												self.SelectAll()

								else:

												event.Skip()

3.	 To	support	the	event	handlers,	let’s	add	some	methods	to	get	data	out	of	ListCtrl
through	the	following:

				def	Copy(self):

								"""Copy	selected	data	to	clipboard"""

								text	=	self.GetSelectedText()

								data_o	=	wx.TextDataObject()

								data_o.SetText(text)

								if	wx.TheClipboard.IsOpened()	or	wx.TheClipboard.Open():

												wx.TheClipboard.SetData(data_o)

												wx.TheClipboard.Flush()

												wx.TheClipboard.Close()

4.	 This	next	method	retrieves	all	the	selected	text	from	the	control:

				def	GetSelectedText(self):

								items	=	list()

								nColumns	=	self.ColumnCount

								for	item	in	range(self.ItemCount):

												if	self.IsSelected(item):

																items.append(self.GetRowText(item))

								text	=	"\n".join(items)



								return	text

5.	 This	method	is	used	to	get	the	text	from	a	specific	row	in	ListCtrl:

				def	GetRowText(self,	idx):

								txt	=	list()

								for	col	in	range(self.ColumnCount):

												txt.append(self.GetItemText(idx,	col))

								return	"\t".join(txt)

6.	 To	wrap	up	this	base	class,	this	last	method	provides	a	Select	all	items	function	in
the	control:

				def	SelectAll(self):

								"""Select	all	items"""

								for	item	in	range(self.ItemCount):

												self.Select(item,	1)

7.	 Now,	with	the	base	class	defined,	let’s	make	a	specific	instance	of	it	to	display	a	list
of	employees	as	an	example,	with	the	following	code:

class	PersonnelList(BaseList):

				def	__init__(self,	parent):

								super(PersonnelList,	self).__init__(parent)

								#	Add	column	headers

								self.InsertColumn(0,	"ID")

								self.InsertColumn(1,	"Name")

								self.InsertColumn(2,	"Email")

								self.InsertColumn(3,	"Phone#")

				

				def	AddEmployee(self,	id,	name,	email,	phone):

								item	=	self.Append((id,	name,	email,	phone))



How	it	works…
The	BaseList	class	is	defined	to	provide	some	common	useful	functions	that	are	not
available	in	the	ListCtrl	class.	This	base	class	specifies	the	LC_REPORT	style,	which
means	that	the	list	can	be	built	with	one	or	more	columns	with	a	header:

The	OnRClick	event	handler	displays	a	context	menu,	and	the	OnMenu	event	handler
provides	the	handling	of	the	events	from	the	context	menu.	When	an	item	in	the	list	is
right-clicked	on,	the	context	menu	is	shown	and	the	OnMenu	handler	performs	the	Copy	or
SelectAll	action,	depending	on	what	is	selected.

The	Copy	method	is	added	to	copy	the	text	of	the	selected	items	to	the	clipboard.	Getting
at	the	text	in	each	cell	of	the	control	can	be	a	little	inconvenient	with	the	base	API,	so	two
additional	helper	methods	are	also	created	to	support	the	Copy	action.	The
GetSelectedText	method	iterates	over	each	item	in	the	control	to	find	selected	rows.
Then,	for	each	selected	row,	it	iterates	over	each	of	the	columns	in	the	row	to	get	text	from
each	cell.	This	is	necessary	as	the	text	for	each	cell	is	stored	in	ListItem,	which	represents
each	cell	in	the	control.	The	strings	retrieved	from	each	cell	are	then	joined	together	in	a
single	formatted	string	before	being	placed	on	the	clipboard.

The	PersonnelList	class	is	added	as	an	example	of	how	to	set	up	the	columns	in
ListCtrl.	The	InsertColumn	method	takes	an	index	and	label	value	to	create	the	column
and	its	header.	The	label	value	is	used	as	the	header	text	for	the	column.	To	add	items	to	a
multicolumn	ListCtrl	component,	the	values	are	passed	in	as	a	tuple	of	strings—one
tuple	per	row	and	one	item	in	the	tuple	per	column—as	can	be	seen	in	the	AddEmployee
convenience	method.



There’s	more…
The	ListCtrl	component	can	operate	in	a	number	of	visual	modes	that	produce	different
layouts	for	data.	Take	a	look	at	the	following	table:

Style	flag Description

LC_LIST The	control	will	have	a	single	column	and	operate	similar	to	a	ListBox	component

LC_ICON This	displays	a	grid	of	large	icons,	similar	to	the	icon	view	in	Windows	Explorer

LC_SMALL_ICON This	displays	a	grid	of	small	icons

LC_REPORT This	creates	a	single	or	multicolumn	report	view	with	an	optional	header

The	LC_REPORT	mode	used	in	this	recipe	also	has	some	additional	style	flags	that	can	be
applied	to	modify	the	behavior	of	the	control	and	how	it	is	displayed.	Take	a	look	at	the
following	table:

Style	flag Description

LC_VIRTUAL

The	application	stores	and	provides	data	to	the	control	on	demand.	This	mode	is	useful	to	improve
performance	when	there	is	a	larger	amount	of	data	to	be	displayed.	When	using	this	style,	the	control
should	override	the	OnGetItemText,	OnGetItemImage,	and	OnGetItemAttr	methods	to	provide	the
requested	data	on	demand.

LC_NO_HEADER This	hides	the	header	row	of	the	list.

LC_HRULES This	adds	horizontal	divider	lines	between	rows.

LC_VRULES This	adds	vertical	divider	lines	between	columns.



See	also
Refer	to	the	next	recipe	in	this	chapter,	Editing	data	lists,	to	use	some	of	the
ListCtrl	component’s	additional	features





Editing	data	lists
ListCtrl	provides	a	nice	way	to	display	tabular	data	to	users,	though	in	its	normal	form,	it
only	offers	a	read-only	display	of	data.	If	you	also	wish	to	allow	users	to	interact	with	and
edit	data,	there	are	some	additional	steps	that	need	to	be	taken.	The	LC_EDIT	style	flag	can
be	used	to	allow	the	editing	of	data,	but	this	only	works	for	the	first	column	of	ListCtrl.
Luckily,	to	overcome	this	limitation	and	enable	the	editing	of	any	cell	in	LC_REPORT	mode,
the	wx.lib.mixins.listctrl	module	has	a	mixin	class	to	help	provide	this	functionality.
So,	let’s	take	a	look	at	how	to	make	a	ListCtrl	editable.



Getting	ready
We	will	use	the	example	code	from	the	previous	recipe	in	this	chapter,	Displaying	lists	of
data,	as	a	base	for	showing	the	extended	functionality	of	editing	ListCtrl	in	this	recipe.
So,	ensure	that	you	check	over	the	contents	of	the	preceding	recipe	before	continuing	with
this	one.



How	to	do	it…
Here	are	the	steps	to	perform	in	this	recipe:

1.	 First,	we	need	a	few	extra	modules	to	help	us	with	this	recipe,	which	are	as	follows:

import	re

import	wx

import	wx.lib.mixins.listctrl	as	listmix

#	Module	from	recipe	1

import	baseList

RE_NAME	=	"[A-Z][a-z]*"

RE_EMAIL	=	".+@email\.com"

RE_PHONE	=	"[0-9]{3}\-[0-9]{4}"

2.	 Next,	we	will	define	a	subclass	of	PersonnelList	from	the	previous	recipe,	which
uses	TextEditMixin,	using	the	following	code:

class	PersonnelEditList(baseList.PersonnelList,

																								listmix.TextEditMixin):

				def	__init__(self,	parent):

								super(PersonnelEditList,	self).__init__(parent)

								listmix.TextEditMixin.__init__(self)

								

								self.Bind(wx.EVT_LIST_BEGIN_LABEL_EDIT,	self.OnEdit)

								self.Bind(wx.EVT_LIST_END_LABEL_EDIT,	self.OnValidate)

3.	 Now,	let’s	define	the	OnEdit	event	handler,	which	we	will	use	to	allow	or	disallow
editing	on	some	columns:

				def	OnEdit(self,	event):

								if	event.Item.Column	==	0:

												#	Don't	allow	edit	of	ID	column	values

												event.Veto()

								else:

												event.Skip()

4.	 All	that’s	left	now	is	to	define	the	OnValidate	event	handler	to	check	user	data	and
prevent	bad	input:

				def	OnValidate(self,	event):

								"""Check	input	values	and	reject	if	bad	data	is	present"""

								item	=	event.Item

								validator	=	{	1	:	RE_NAME,

																						2	:	RE_EMAIL,

																						3	:	RE_PHONE	}.get(item.Column)

								ok	=	re.match(validator,	item.Text)

								if	not	ok:

												event.Veto()

								else:

												event.Skip()



How	it	works…
The	TextEditMixin	component	adds	a	pop-up	TextCtrl,	which	is	shown	over	a	cell	in	the
ListCtrl	when	a	selected	cell	is	clicked	on	a	second	time	or	when	using	the	Tab	key	to
traverse	from	one	editor	cell	to	the	next.	The	TextEditMixin	component	raises	the
EVT_LIST_BEGIN_LABEL_EDIT	event	prior	to	showing	TextCtrl.	As	was	done	in	this
recipe,	this	event	can	be	used	to	prevent	TextCtrl	from	being	shown	by	calling	Veto	on
the	event	for	columns	that	should	not	allow	editing.	When	the	TextCtrl	loses	focus	or	the
Enter	key	is	pressed,	the	TextEditMixin	raises	the	EVT_LIST_END_LABEL_EDIT	event.	In
this	recipe,	we	used	this	event	to	check	whether	the	data	that	was	entered	was	valid	for	the
given	column.	If	the	text	that	was	entered	did	not	match	the	given	pattern,	Veto	would	be
called	on	the	event	to	prevent	the	cell	from	being	updated	to	the	user’s	input.



There’s	more…
The	wx.lib.mixins.listctrl	module	also	has	a	number	of	other	mixin	classes	that	can
be	used	to	further	extend	and	enhance	a	ListCtrl	with	additional	features	and
capabilities.	Take	a	look	at	the	following	table:

Mixin	class Description

CheckListCtrlMixin This	adds	checkboxes	to	the	first	column	of	ListCtrl

ColumnSorterMixin
This	adds	some	helper	methods	to	support	sorting	ListCtrl	when	a	column	header	is
clicked	on

ListCtrlAutoWidthMixin This	automatically	resizes	the	set	column	to	take	up	any	remaining	width	that	is	available

ListRowHighlighter This	automatically	changes	the	background	color	of	alternating	rows	in	ListCtrl





Implementing	a	data	source
For	most	usages	of	the	grid	control,	your	application	must	define	a	custom	data	source	to
provide	the	data	on	demand	when	the	grid	requests	to	display	it.	The	use	of	a	data	source
allows	virtualizing	data	storage	to	prevent	duplicating	the	storage	of	data	in	both	the
control	and	the	backing	data	field.	In	this	recipe,	we	will	take	a	look	at	how	to	create	a
custom	PyGridTableBase	to	use	as	a	data	source	for	grid.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	in	this	recipe,	we	will	retrieve	backing	data	from	the	GitHub	API,	so	we	need	to
import	a	few	extra	modules	from	the	Python	standard	library.	We	will	do	this	as
follows:

import	urllib

import	json

import	wx

import	wx.grid	as	gridlib

2.	 Let’s	start	by	defining	the	custom	PyGridTableBase	class	to	provide	data	to	the	grid:

class	MyDataSource(gridlib.PyGridTableBase):

				def	__init__(self):

								super(MyDataSource,	self).__init__()

								

								#	Github	change	history	for	wxPython

								self._RetrieveData()

				def	_RetrieveData(self):

								url	=	"https://api.github.com/repos/RobinD42/wxPython/"

								query	=	"commits?path=%s&per_page=100"

								changes	=	query	%	"CHANGES.txt"

								fp	=	urllib.urlopen(url+changes)

								headers	=	dict(fp.info())

								self._data	=	json.load(fp)

3.	 Now,	there	are	a	handful	of	methods	that	must	be	overridden;	these	first	two	tell	the
grid	the	number	of	rows	and	columns	available	from	the	data	source.	Define	the
following	methods:

				def	GetNumberRows(self):

								"""Override	to	tell	grid	how	many	columns	to	show"""

								return	len(self._data)

				def	GetNumberCols(self):

								"""Override	to	tell	grid	how	many	rows	

								of	data	there	are"""

								return	3

4.	 This	next	override	is	called	by	the	grid	every	time	it	needs	a	value	to	display	for	a
given	cell:

				def	GetValue(self,	row,	col):

								"""Get	the	value	for	a	specific	cell	from	data	source"""

								data	=	self._data[row]['commit']

								keys	=	{	0	:	('author',	'date'),

																	1	:	('author',	'name'),

																	2	:	('message',)	}

								value	=	""

								temp	=	data

								for	key	in	keys[col]:



												value	=	temp[key]

												temp	=	value

								return	value

5.	 These	last	two	overrides	are	optional	and	are	used	to	customize	the	labels	on	the	row
and	column	headers:

				def	GetColLabelValue(self,	col):

								"""Get	the	label	for	the	column"""

								cols	=	["Date",	"Name",	"Comment"]

								return	cols[col]

				def	GetRowLabelValue(self,	row):

								"""Get	label	for	the	given	row"""

								return	str(row	+	1)

6.	 For	the	last	step,	we	will	create	a	simple	grid	and	assign	it	to	use	an	instance	of	the
preceding	data	source	with	the	following	code:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title):

								super(MyFrame,	self).__init__(parent,	title=title)

								sizer	=	wx.BoxSizer()

								self._grid	=	gridlib.Grid(self)

								self._data	=	MyDataSource()

								self._grid.SetTable(self._data)

								self._grid.EnableEditing(False)

								self._grid.AutoSizeColumns()

								

								sizer.Add(self._grid,	1,	wx.EXPAND)

								self.SetSizer(sizer)

								self.SetInitialSize()



How	it	works…
The	PyGridTableBase	object’s	job	is	to	take	raw	data	from	whichever	source	it	may	come
and	to	provide	the	grid	with	the	data	through	a	common	well-defined	interface.	The
example	in	this	recipe	shows	the	basic	methods	that	must	be	implemented	and	overridden
by	a	subclass	of	PyGridTableBase	in	order	for	it	to	fulfill	its	role	of	the	Grid	object	that	is
responsible	for	displaying	the	data.

The	data	source	in	this	recipe	uses	a	fixed	query	to	get	a	set	of	JSON	result	values	about
the	first	100	revisions	of	the	wxPython	changelog	from	GitHub.	The	JSON	data	is
downloaded	when	the	data	source	is	first	created	and	then	provided	to	the	grid	on	demand
by	the	GetValue	method,	which	is	used	to	return	data	for	a	specific	cell	in	the	grid.
Through	the	GetValue	method,	the	data	source	projects	only	three	columns	from	the
returned	JSON	data,	the	commit	timestamp,	the	author’s	name,	and	the	check-in	comment.

The	other	overrides	are	called	by	Grid	in	a	similar	way	to	help	set	up	the	scroll	bar’s
virtual	space	by	asking	the	GetNumberRows	method	to	find	out	how	many	rows	of	data
there	are.	Likewise,	it	gets	the	number	of	columns	in	the	horizontal	direction	by	asking	the
GetNumberCols	method.	The	values	returned	by	these	two	simple	methods	set	up	the
overall	dimensions	of	the	grid	and	are	used	by	the	grid	to	determine	how	many	cells	there
are	and	what	values	can	be	passed	into	GetValue	to	get	the	actual	string	to	display.



There’s	more…
In	this	recipe,	the	custom	data	source	is	implemented	as	a	read-only	view	of	data.
However,	it’s	also	possible	to	allow	data	to	be	modified	by	implementing	some	additional
overrides	available	on	the	PyGridTableBase	class,	which	are	as	follows:

Overridable	method Description

SetValue(row,	col,

value)

This	is	similar	to	GetValue	but	is	called	to	update	a	value	in	the	data	source	if	a	user	edits	a
cell	in	the	UI

DeleteRows(pos,	num) This	deletes	a	number	of	records	from	the	data	source,	starting	at	pos

InsertRows(pos,	num) This	inserts	some	new	empty	rows	at	the	given	index	position

AppendRows(num) This	adds	a	number	of	empty	rows	at	end	of	the	data	table



See	also
Refer	to	the	next	recipe	in	this	chapter,	Getting	started	with	the	data	grid,	for	some
additional	examples	on	using	a	grid	table	data	source	and	formatting	data	in	the
display





Getting	started	with	the	data	grid
The	Grid	control	provides	a	spreadsheet-like	display	of	data	using	a	separate	data	source
that	provides	the	data	to	the	Grid	control.	The	Grid	control	in	wxPython	is	a	generic
widget	used	to	display	tabular	data.	In	this	recipe,	we	will	explore	some	of	the	basic
capabilities	of	the	grid	control	by	creating	a	grid	that	can	be	used	to	edit	CSV-formatted
files.



Getting	ready
This	recipe	will	assume	some	basic	familiarity	with	the	PyGridTableBase	class	that	was
discussed	in	the	previous	recipe,	Implementing	a	data	source;	so,	ensure	that	you	take	a
quick	review	of	the	preceding	recipe	before	getting	into	this	one.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform	in	this	recipe:

1.	 First,	we	will	use	a	couple	of	extra	imports	from	the	standard	library	to	help	out	in
this	recipe,	so	let’s	add	them	in,	as	follows:

import	csv

from	StringIO	import	StringIO

import	wx

import	wx.grid	as	gridlib

2.	 Next,	let’s	start	on	the	data	source	for	the	grid	by	defining	the	following	class:

class	CSVDataSource(gridlib.PyGridTableBase):

				def	__init__(self):

								super(CSVDataSource,	self).__init__()

								self._data	=	None

								self._header	=	None

								self._readOnly	=	list()

								

								self._roAttr	=	gridlib.GridCellAttr()

								self._roAttr.SetReadOnly()

								c	=	wx.SystemSettings.GetColour(wx.SYS_COLOUR_GRAYTEXT)

								self._roAttr.TextColour	=	c

3.	 This	next	method	is	to	help	support	importing	CSV	data	into	the	grid:

				def	LoadFile(self,	fileName):

								reader	=	csv.reader(file(fileName,	'r'))

								self._data	=	[row	for	row	in	reader]

								self._header	=	self._data.pop(0)

								self._readOnly	=	list()

4.	 Now,	we	also	need	a	method	to	get	the	data	back	out	of	the	data	source	in	the	CSV
format.	We	can	do	this	with	the	following:

				def	GetData(self):

								if	not	self._data:

												return	""

								buff	=	StringIO()

								writer	=	csv.writer(buff)

								writer.writerow(self._header)

								writer.writerows(self._data)

								return	buff.getvalue()

5.	 The	following	two	methods	are	to	make	it	easy	to	disable	editing	on	a	single	column.
The	GetAttr	method	is	called	by	grid	when	it	needs	to	get	information	on	how	to
display	the	cell:

				def	SetColReadOnly(self,	col):

								self._readOnly.append(col)

				def	GetAttr(self,	row,	col,	kind):

								if	col	in	self._readOnly:



												self._roAttr.IncRef()

												return	self._roAttr

								return	None

6.	 The	following	helper	function	is	to	support	data	sorting:

				def	Sort(self,	col,	ascending):

								self._data.sort(None,	

																								lambda	data:	data[col],	not	ascending)

7.	 The	next	group	of	methods	are	basic	overrides	of	the	base	table	object	needed	to
represent	data	in	grid:

				def	GetNumberRows(self):

								return	len(self._data)	if	self._data	else	0

				def	GetNumberCols(self):

								return	len(self._header)	if	self._header	else	0

				def	GetValue(self,	row,	col):

								if	not	self._data:

												return	""

								else:

												return	self._data[row][col]

				def	SetValue(self,	row,	col,	value):

								if	self._data:

												self._data[row][col]	=	value

				def	GetColLabelValue(self,	col):

								return	self._header[col]	if	self._header	else	None

8.	 With	the	data	source	now	out	of	the	way,	let’s	work	on	a	custom	Grid	class	to	use	this
data	source:

class	CSVEditorGrid(gridlib.Grid):

				def	__init__(self,	parent):

								super(CSVEditorGrid,	self).__init__(parent)

								self._data	=	CSVDataSource()

								self.SetTable(self._data)

								self.Bind(gridlib.EVT_GRID_COL_SORT,	self.OnSort)

9.	 This	event	handler	is	called	when	a	column	header	is	clicked	on	to	sort	the	data	based
on	the	given	column:

				def	OnSort(self,	event):

								self._data.Sort(event.Col,

																								self.IsSortOrderAscending())

10.	 To	support	the	easy	loading	and	exporting	of	data	from	grid,	the	following	two
methods	are	added:

				def	LoadFile(self,	fileName):

								self._data.LoadFile(fileName)

								self.SetTable(self._data)



								self.AutoSizeColumns()

				def	SaveFile(self,	fileName):

								with	file(fileName,	'w')	as	fileObj:

												fileObj.write(self._data.GetData())

11.	 Finally,	to	finish	it	up,	a	simple	accessor	method	to	set	a	grid	column	as	read-only
can	be	defined	as	follows:

				def	SetColReadOnly(self,	col):

								self._data.SetColReadOnly(col)



How	it	works…
With	a	relatively	less	amount	of	code,	we	created	a	control	that	can	be	used	as	an	editing
component	for	pretty	much	any	type	of	CSV	files.	Grid	gets	most	of	its	capabilities	from
what	is	provided	by	its	data	source.	The	LoadFile	method	of	the	data	source	processes	the
CSV	file	and	loads	it	into	memory.	Here,	the	first	row	of	the	data	is	treated	as	column
header	labels.	The	GetData	method,	on	the	other	hand,	takes	the	latest	version	of	the	data
and	converts	it	back	into	a	CSV	string.

The	grid	queries	the	data	source	for	information	about	cells	with	the	GetAttr	method.	The
GridCellAttribute	class	returned	by	this	method	can	be	used	to	modify	the	appearance
or	behavior	of	an	individual	cell	in	the	grid.	In	this	recipe,	we	used	this	capability	to	add	a
quick	way	to	disable	editing	in	individual	columns	of	data	by	returning	a
GridCellAttribute	class.	This	will	display	grayed-out	text	and	has	a	read-only	attribute
set,	as	can	be	seen	in	the	following	example	application:

Now,	in	the	actual	Grid	window	class,	there	isn’t	much	to	do	as	most	of	the	heavy	lifting
had	already	been	taken	care	of	by	the	data	source,	though	we	did	add	a	few	features	to
help	support	user	interaction.	The	EVT_GRID_COL_SORT	event	is	used	to	get	a	notification
when	a	column	header	is	clicked	on,	and	this	is	then	used	to	resort	the	data	in	the	data
source,	which	in	turn	causes	the	grid	display	to	be	resorted.

The	LoadFile	method	on	the	Grid	class	is	used	to	tell	the	data	source	to	load	a	new	data
file	into	memory,	and	then	SetTable	is	called	to	reset	the	grid’s	data	source.	We	are
reusing	the	same	data	source	instance,	but	calling	SetTable	is	necessary	as	it	is	the	easiest
way	to	get	grid	to	refresh	the	display	when	the	underlying	table	changes.



There’s	more…
The	following	two	sections	include	some	additional	details	on	customizing	and	managing
GridCellAttributes.

Custom	Editors
The	GridCellAttribute	class	provides	a	large	number	of	options	to	customize	the
appearance	and	even	the	type	of	editor	control	used	when	a	cell	needs	to	be	edited.	The
data	source’s	default	editor	is	TextCtrl,	but	this	can	be	customized	to	a	number	of	other
controls	by	overriding	GetAttr	and	returning	GridCellAttribute,	which	uses	SetEditor
to	set	a	specialized	editor	type.

Managing	Attributes
If	you	use	more	than	just	a	couple	of	GridCellAttribute	classes,	using
GridCellAttrProvider	can	help	simplify	the	management	and	application	of	the
attributes.	This	class	provides	a	way	to	set	a	common	attribute	per	row	or	column,	quite
similar	to	how	we	manually	managed	disabling	columns	in	this	recipe.	An	instance	of
GridCellAttrProvider	can	be	created,	and	then	we	can	use	the	SetAttr,	SetRowAttr,	or
SetColAttr	methods	to	load	it	up	with	GridCellAttributes	for	specific	cells,	rows,	or
columns.	The	provider	can	then	be	assigned	to	the	GridTableBase	object	using	its
SetAttrProvider	method.

The	GridTableBase	object’s	overridden	GetAttr	method	can	be	used	to	further	customize
grid	attributes	on	the	fly.	In	this	overridden	method,	we	can	simply	get	the	attribute	from
the	provider	and	apply	any	overriding	modifications	to	the	attribute	prior	to	returning	it	to
the	grid.



See	also
Refer	to	the	Displaying	dynamic	data	recipe	in	this	chapter	for	another	example	of
using	the	grid	to	display	dynamic	data
Refer	to	the	Customizing	grid	labels	recipe	in	Chapter	8,	User	Interface	Primitives,
for	a	recipe	on	how	to	use	custom	grid	renderers





Displaying	dynamic	data
In	the	previous	two	recipes	in	this	chapter,	we	looked	at	how	to	work	with	GridTableBase
to	make	a	data	source	and	considered	some	additional	information	about	grid	itself.	In
these	previous	examples,	we	worked	with	static	data	that	was	preloaded	into	the	data
table;	however,	in	this	recipe,	we	will	work	with	a	dynamic	data	source	that	can	update
grid	dynamically	when	the	data	in	the	data	source	changes.



How	to	do	it…
Perform	the	following	steps	for	this	recipe:

1.	 First,	let’s	import	all	the	libraries	we	will	need	for	this	recipe,	which	are	as	follows:

import	os

import	stat

import	time

import	wx

import	wx.grid	as	gridlib

2.	 Next,	let’s	start	by	making	a	little	data	class	to	help	put	information	about	a	file	in	a
human	readable	format:

class	FileInfo:

				def	__init__(self,	path):

								self.path	=	path

								fstat	=	os.stat(path)

								ltime	=	time.localtime(fstat[stat.ST_MTIME])

								self.modified	=	time.asctime(ltime)

								self.type	=	"Directory"	if	os.path.isdir(path)	else	"File"

								self.size	=	self.DisplaySize(fstat[stat.ST_SIZE])

				def	DisplaySize(self,	bits):

								for	unit	in	['B','KB','MB','GB']:

												if	abs(bits)	<	1024.0:

																return	"%3.1f%s"	%	(bits,	unit)

												bits	/=	1024.0

								return	"%.1f%s"	%	(bits,	'TB')

3.	 Now,	we	are	ready	to	start	on	the	data	source.	This	data	source	will	monitor	a
directory	for	new,	deleted,	or	renamed	files.	The	following	class	will	handle	this:

class	DirDataSource(gridlib.PyGridTableBase):

				def	__init__(self,	directory):

								super(DirDataSource,	self).__init__()

								self._dir	=	directory

								self._snapshot	=	os.listdir(self._dir)

								self._timer	=	wx.Timer()

								self._timer.Start(1000)

								

								self._timer.Bind(wx.EVT_TIMER,	self.OnRefresh)

4.	 The	next	methods	provide	the	interface	to	supply	data	to	the	grid:

			def	GetNumberRows(self):

								return	len(self._snapshot)

				def	GetNumberCols(self):

								return	4	#	file,	modified,	type,	size

				def	GetValue(self,	row,	col):

								fname	=	self._snapshot[row]

								path	=	os.path.join(self._dir,	fname)



								info	=	FileInfo(path)

								val	=	[fname,	info.modified,	info.type,	info.size]

								return	val[col]

				def	GetColLabelValue(self,	col):

								cols	=	("File",	"Modified",	"Type",	"Size")

								return	cols[col]

5.	 Now,	here	is	the	part	that	is	used	to	check	for	changes	in	the	monitored	directory.
This	event	handler	is	invoked	by	the	Timer	object	once	a	second:

				def	OnRefresh(self,	event):

								currentData	=	os.listdir(self._dir)

								if	currentData	==	self._snapshot:

												return	#	no	change

								curNumRows	=	len(self._snapshot)

								newNumRows	=	len(currentData)

								self._snapshot	=	currentData

								if	curNumRows	!=	newNumRows:

												self.ProcessUpdates(curNumRows,	newNumRows)

								msgId	=	gridlib.GRIDTABLE_REQUEST_VIEW_GET_VALUES

								msg	=	gridlib.GridTableMessage(self,	msgId)	

								self.View.ProcessTableMessage(msg)

6.	 The	last	is	another	helper	method	to	inform	grid	that	the	number	of	rows	in	the	table
has	changed.	Take	a	look	at	the	following	code:

				def	ProcessUpdates(self,	curNumRows,	newNumRows):

								self.View.BeginBatch()

								if	newNumRows	<	curNumRows:

												msg	=	gridlib.GridTableMessage(self,

																								gridlib.GRIDTABLE_NOTIFY_ROWS_DELETED,

																								curNumRows	-	newNumRows,

																								curNumRows	-	newNumRows)

												self.View.ProcessTableMessage(msg)

								if	newNumRows	>	curNumRows:

												msg	=	gridlib.GridTableMessage(self,

																								gridlib.GRIDTABLE_NOTIFY_ROWS_APPENDED,

																								newNumRows	-	curNumRows)

												self.View.ProcessTableMessage(msg)

								self.View.EndBatch()



How	it	works…
This	recipe	uses	simple	time-based	polling	to	check	for	changes	in	a	directory,	specifically
to	find	out	whether	files	were	added,	removed,	or	renamed.	When	a	change	is	detected	in
the	directory,	GridTable	uses	its	reference	to	the	grid	window	to	invoke
ProcessTableMessage.	Depending	on	the	message	that	is	sent	for	processing,	the	grid
begins	to	redo	its	layout	by	rerequesting	information	from	GridTable.

The	GRIDTABLE_NOTIFY_ROWS_DELETED	message	takes	two	parameters:	the	first	is	the
index	of	the	first	row	that	is	deleted,	and	the	second	is	the	number	of	rows	that	are	deleted.
The	first	parameter	does	not	really	matter	in	this	case	as	we	follow	this	message	with
GRIDTABLE_REQUEST_VIEW_GETVALUES,	which	tells	grid	to	refresh	the	values	in	the	visible
cells.	The	GRIDTABLE_NOTIFY_ROWS_APPENDED	message	takes	one	parameter,	which	is	the
number	of	rows	that	are	added	to	the	end	of	the	grid.	Again,	as	the	get	value’s	message
follows,	the	important	part	about	sending	this	message	is	to	tell	the	grid	that	the	number	of
items	has	changed,	so	it	can	adjust	the	scrolling.



There’s	more…
The	methods	to	manage	dynamic	data	presented	in	this	recipe	can	be	readily	applied	to
more	practical	applications,	where	your	data	source	may	be	a	database	or	another	network
location.	For	example,	if	you	set	a	watch	on	a	database	table	for	anything	inserted	or
deleted	from	a	background	thread,	you	can	use	the	trigger	notification	and	requery	to	get
the	data	and	then	update	the	view,	as	we	did	in	this	recipe.



See	also
Refer	to	Chapter	8,	User	Interface	Primitives,	for	a	recipe	about	providing	custom
renders	in	Grid	to	see	how	the	display	of	the	grid	can	be	customized





Modeling	your	data
The	DataViewCtrl	control	allows	a	flexible	way	to	display	rich	data.	The	DataViewCtrl
control	can	use	different	data	model	classes	to	represent	and	provide	data	to	the	view	that
can	then	present	the	data,	such	as	ListCtrl	or	TreeCtrl.	In	this	recipe,	we	will	take	a
look	at	getting	started	with	DataViewCtrl	by	creating	a	custom	DataViewModel	class	to
provide	data	to	the	control.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	need	to	import	an	extra	module	as	DataViewCtrl	and	related	classes	are	in	a
submodule	of	the	wx	namespace:

import	inspect

import	wx

import	wx.dataview	as	dv

2.	 Next,	let’s	define	a	Python	object	that	will	be	our	data	model.	This	class	will	be	used
to	represent	the	structure	of	class	inheritance	for	a	Python	object,	as	follows:

class	HierarchyInfo:

				def	__init__(self,	item,	parent):

								self.item	=	item

								self.parent	=	parent

								self.name	=	item.__name__

								self.docs	=	item.__doc__

								if	self.docs:

												self.docs	=	self.docs.replace("\n",	"")

								self.subs	=	list()

								

								self._searchSubs()

				def	_searchSubs(self):

								if	hasattr(self.item,	'__subclasses__'):

												for	t	in	self.item.__subclasses__():

																self.subs.append(HierarchyInfo(t,	self))

3.	 Now,	let’s	start	by	creating	a	custom	PydataViewModel	to	serve	data	to
DataViewCtrl,	as	follows:

class	ClassDataModel(dv.PyDataViewModel):

				def	__init__(self,	data):

								super(ClassDataModel,	self).__init__()

								self.data	=	data

								self.objmapper.UseWeakRefs(True)

4.	 This	and	the	subsequent	methods	are	overrides	used	to	adapt	data	to	the	view.	This
first	method	is	used	by	the	control	to	build	a	structure	of	DataViewItems	to	be	used
by	the	view:

				def	GetChildren(self,	parent,	children):

								#	check	root	node

								if	not	parent:

												for	item	in	self.data:

																children.append(self.ObjectToItem(item))

												return	len(self.data)

								node	=	self.ItemToObject(parent)

								for	item	in	node.subs:

												children.append(self.ObjectToItem(item))



								return	len(node.subs)

5.	 This	override	tells	the	container	how	many	columns	the	data	model	has:

				def	GetColumnCount(self):

								return	3

6.	 This	next	override	is	overridden	to	always	return	true	as	we	want	to	display	all
columns’	data	for	the	parent	nodes:

				def	HasContainerColumns(self,	item):

								return	True

7.	 This	method	is	called	to	check	whether	a	given	DataViewItem	has	child	items	or	not.
Returning	True	results	in	the	node	being	expandable	in	the	view,	as	follows:

				def	IsContainer(self,	item):

								if	not	item:

												return	True

								obj	=	self.ItemToObject(item)

								return	len(obj.subs)	>	0

8.	 The	next	override	is	called	when	the	view	needs	to	find	the	parent	item	when
expanding	nodes:

				def	GetParent(self,	item):

								if	not	item:

												return	dv.NullDataViewItem

								obj	=	self.ItemToObject(item)

								if	obj.parent	is	None:

												return	dv.NullDataViewItem

								else:

												return	self.ObjectToItem(obj.parent)

9.	 The	GetValue	method	must	be	overridden	to	return	the	value	for	the	requested
column	of	the	given	item.	So,	we	will	simply	map	the	correct	property	of	the	object
to	the	requested	column:

				def	GetValue(self,	item,	col):

								obj	=	self.ItemToObject(item)

								vMap	=	{	0	:	obj.name,

																	1	:	str(len(obj.subs)),

																	2	:	obj.docs

															}

								return	vMap[col]

10.	 We	will	not	allow	the	editing	of	data	in	this	model,	so	we	will	just	provide	an	empty
implementation	for	SetValue	using	the	following	code:

				def	SetValue(self,	value,	item,	col):

								pass

11.	 Now,	to	wrap	up	this	class,	we	will	add	one	more	optional	override	to	control	the
appearance	of	the	subclass	count	column	and	display	its	values	in	bold	text,	as



follows:

				def	GetAttr(self,	item,	col,	attr):

								if	col	==	1:

												attr.Bold	=	True

												return	True

								return	False

12.	 For	the	last	step,	let’s	put	the	data	model	to	use	through	the	following	code:

class	ClassViewer(wx.Frame):

				def	__init__(self,	parent,	title):

								super(ClassViewer,	self).__init__(parent,	title=title)

								#	Look	at	all	classes	in	wx	namespace

								data	=	list()

								for	x	in	dir(wx):

												item	=	getattr(wx,	x)

												if	inspect.isclass(item):

																data.append(HierarchyInfo(item,	None))

								dvc	=	dv.DataViewCtrl(self,	style=dv.DV_VERT_RULES)

								model	=	ClassDataModel(data)

								dvc.AssociateModel(model)

								

								autosize	=	wx.COL_WIDTH_AUTOSIZE

								dvc.AppendTextColumn("Class",	0,	width=autosize)

								dvc.AppendTextColumn("Subclasses",	1,	width=autosize,	

																													align=wx.ALIGN_CENTER)

								dvc.AppendTextColumn("Docstring",	2,	width=autosize)

								sizer	=	wx.BoxSizer()

								sizer.Add(dvc,	1,	wx.EXPAND)

								self.SetSizer(sizer)

								self.SetInitialSize((500,400))



How	it	works…
We	did	quite	a	few	things	in	this	recipe,	but	before	we	get	to	the	details,	let’s	take	a	quick
look	at	what	we	built:

Starting	with	the	HierarchyInfo	class,	we	built	a	data	structure	to	represent	the	class
hierarchy	of	a	class	object	that	was	passed	in.	The	_searchSubs	method	looks	at	all	the
known	subclasses	and	attaches	additional	HierarchyInfo	classes	all	the	way	down	the
class	tree	until	it	hits	a	leaf	class	that	has	no	more	additional	subclasses.	A	collection	of
this	data	is	used	by	the	ClassDataModel	class,	which	is	used	by	DataViewCtrl	to	translate
raw	data	into	a	format	that	the	view	can	display.

Making	a	custom	data	model	class,	as	we	did	in	this	recipe,	requires	overriding	several
virtual	methods,	which	each	allow	the	view	to	acquire	some	information	about	the	data
that	it	needs	to	display	as	well	as	how	to	display	it.	The	GetChildren	method	is	called	to
build	up	and	describe	the	data	structure	of	each	item	to	the	view.	The	parent	parameter	is
the	node	that	is	queried	about,	and	the	child	parameter	is	an	output	list	that	all	the	children
of	the	given	node	should	be	added	to.	It’s	during	this	function	that	the	objects	are
converted	to	DataViewItem	for	the	view	to	manage.

The	important	point	to	note	when	working	on	implementing	these	methods	is	the	mapping
of	the	data	object	back	from	and	forth	to	(HierarchyInfo)	DataViewItem.	This	is
accomplished	using	the	ItemToObject	and	ObjectToItem	methods.	Internally,	in	your
model,	you	would	want	to	work	with	the	object,	but	when	handing	it	back	to	the	view,	it
needs	to	be	passed	as	DataViewItem.



There’s	more…
In	this	recipe,	we	built	a	custom	data	model	using	the	basic	model	type.	There	are,
however,	some	other	built-in	model	types	that	can	be	used	to	help	model	the	basic	list	or
tree	structured	data.	Take	a	look	at	the	following	table:

Data	model	class Description

DataViewIndexListModel This	provides	a	simple	model	API	to	address	an	item	by	an	index	in	a	list	or	collection.

DataViewVirtualListModel

This	is	similar	to	IndexListModel,	but	the	view	does	not	store	the	items.	The	data	model
keeps	the	data	and	the	view	asks	for	only	the	data	it	needs	to	display	at	the	time.	This
allows	an	optimized	display	of	a	large	amount	of	data.

DataViewListStore
This	provides	a	ListCtrl-like	API	to	build	up	a	model	to	display	a	list	or	tabular	data.	The
class	stores	the	data	and	can	be	used	directly	without	the	need	to	derive	a	subclass.

DataViewTreeStore
This	provides	a	TreeCtrl-like	API	to	build	up	a	model	for	hierarchical	data.	This	model
can	be	used	directly	without	subclassing.



See	also
Refer	to	the	next	recipe	in	this	chapter,	Displaying	your	data	model,	for	some	more
information	on	working	with	DataViewCtrl	to	manage	the	display	of	data





Displaying	your	data	model
The	DataViewCtrl	control	has	several	different	ways	to	display	the	data	that	is	provided
by	its	data	model	object.	The	view	and	the	model	objects	both	influence	each	other;	the
view	contains	settings	for	the	columns	of	data	that	are	shown,	and	it	sets	what	type	of	data
they	should	display.	The	model	is	responsible	for	providing	data	to	the	view	in	the
appropriate	format	when	the	view	requests	it.	The	model	also	has	some	control	over	how
the	data	is	displayed	by	way	of	providing	DataViewItemAttr	objects	to	control	the	styling
of	text.	In	this	recipe,	we	will	explore	the	use	of	DataViewCtrl	a	little	further	by	looking
at	some	of	its	custom	column	types	and	how	to	access	data	from	its	event	handlers.



Getting	ready
In	this	recipe,	we	will	extend	and	reuse	the	data	model	class	from	the	previous	recipe,	so
ensure	that	you	take	a	look	over	the	preceding	topic	prior	to	continuing	with	this	one.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	need	to	import	some	modules	to	help	with	this	recipe,	including	a	module
with	some	of	the	code	from	the	previous	recipe.	For	this,	we	will	use	the	following
code:

import	inspect

import	wx

import	wx.dataview	as	dv

#	Recipe	6	module

import	dataModel	as	dm

2.	 Now,	we	will	make	a	few	small	extensions	to	the	base	model	class	to	support	some
additional	display	options	that	we	will	enable	in	the	view	later	on	using	the	following
code:

class	ExtendedModel(dm.ClassDataModel):

				def	GetValue(self,	item,	col):

								obj	=	self.ItemToObject(item)

								bmp	=	wx.ArtProvider.GetIcon(wx.ART_FOLDER_OPEN,	

																																					wx.ART_MENU,	(16,16))

								sf	=	dv.DataViewIconText(self.GetSourceFile(obj),	bmp)

								vMap	=	{	0	:	obj.name,

																	1	:	str(len(obj.subs)),

																	2	:	self.IsBase(obj),

																	3	:	sf

															}

								return	vMap[col]

3.	 The	next	two	methods	are	some	helper	methods	used	by	the	preceding	overridden
GetValue	method:

				def	IsBase(self,	obj):

								bases	=	obj.item.__bases__

								lcount	=	len(bases)

								return	lcount	==	0	or	(lcount	==	1	and	object	in	bases)

				def	GetSourceFile(self,	obj):

								try:

												return	inspect.getsourcefile(obj.item)

								except:

												return	"Unknown"

4.	 Now,	let’s	make	a	subclass	of	DataViewCtrl	to	encapsulate	our	custom	settings	using
the	following	code:

class	ClassDataView(dv.DataViewCtrl):

				def	__init__(self,	parent,	data):

								style	=	dv.DV_ROW_LINES	|	dv.DV_HORIZ_RULES

								super(ClassDataView,	self).__init__(parent,	style=style)

								self.model	=	ExtendedModel(data)



								self.AssociateModel(self.model)

								flags	=	dv.DATAVIEW_COL_SORTABLE|\

																dv.DATAVIEW_COL_RESIZABLE

								autosize	=	wx.COL_WIDTH_AUTOSIZE

								self.AppendTextColumn("Class",	0,	width=autosize,	

																														flags=flags)

								self.AppendTextColumn("Subclasses",	1,	width=autosize,	

																														align=wx.ALIGN_CENTER)

								self.AppendToggleColumn("IsBase",	2,	width=autosize)

								self.AppendIconTextColumn("Source	File",	3,	

																																		width=autosize,	flags=flags)

								self.Bind(dv.EVT_DATAVIEW_ITEM_CONTEXT_MENU,	

																		self.OnContext)

5.	 For	the	last	step	to	wrap	it	up,	we	will	define	the	OnContext	event	handler	to	take	a
look	at	how	we	can	access	data	in	the	model	from	DataViewEvent	through	the
following:

				def	OnContext(self,	event):

								menu	=	wx.Menu()

								iconTxt	=	self.model.GetValue(event.GetItem(),	3)

								fname	=	iconTxt.GetText()

								menu.Append(wx.ID_OPEN,	"Open	Module	'%s'"	%	fname)

								

								obj	=	self.model.ItemToObject(event.GetItem())

								docLbl	=	obj.docs	or	"No	info	Available"

								item	=	menu.Append(wx.ID_ANY,	docLbl)

								item.Enable(False)

								self.PopupMenu(menu)

								menu.Destroy()



How	it	works…
Let’s	take	a	look	at	the	changes	we	made	to	how	data	is	displayed	compared	to	how	it	was
displayed	in	the	previous	recipe:

As	can	be	seen	in	the	preceding	screenshot,	we	used	two	additional	types	of	columns	in
the	view.	The	first	is	added	by	AddToggleColumn,	which	uses	a	checkbox	to	display	a
Boolean	value.	To	support	the	use	of	this	column,	the	GetValue	method	in	the	model	must
return	a	Boolean	value.	The	last	column	is	changed	to	an	icon	text	column,	and	instead	of
displaying	the	docstring,	it	now	shows	the	file	that	the	class	is	located	in.	For	columns
appended	using	the	AppendIcontTextColumn	method,	the	data	model	must	return	a
DataViewIconText	object	that	contains	the	label	and	text	to	display	in	the	cell.

In	the	ClassDataView	class,	we	bound	to	the	context	menu	event	for	DataViewCtrl.	This
event	handler	is	called	when	an	item	is	right-clicked	on.	The	event	handler	is	passed	a
DataViewEvent	object	that	contains	information	about	what	is	clicked	on	to	raise	the
event.	This	event	object	has	several	properties	and	methods	to	access	data	related	to	the
item	in	the	control.	However,	they	currently	return	references	to	typed	items	from	the
underlying	C++	code,	which	provides	limited	help	in	our	Python	application.

To	help	work	around	these	current	limitations,	we	kept	a	reference	to	the
PyDataViewModel	object	directly	in	the	class	in	order	to	maintain	access	to	its
ItemToObject	method	to	convert	the	DataViewItem	to	Python	objects.	The	DataViewCtrl
class	has	a	Model	property	already,	but	this	property	returns	a	DataViewModel	that	does	not
have	the	object	mapper	methods	exposed.	This	is	why	we	need	to	keep	an	extra	reference
to	the	custom	ExtendedModel	instance	that	we	are	using.	So,	between	this	and	the	access
to	DataViewItem	that	the	event’s	GetItem	method	returns,	we	can	gain	access	to	Python
data	objects	and	use	the	data	in	event	handlers,	as	was	done	to	make	the	pop-up	menu	in
this	recipe.



There’s	more…
In	addition	to	the	built-in	column	types	that	use	their	own	renderers	to	render	nonstring
data,	you	can	also	create	your	own	custom	renders	to	display	or	style	the	data	in	any	way
you	want.	A	custom	render	allows	you	to	define	how	the	cell	is	drawn	by	overriding	some
methods	and	using	a	provided	DeviceContext	(refer	to	Chapter	8,	User	Interface
Primitives,	for	using	DeviceContext).

To	use	a	custom	renderer,	it	is	necessary	to	create	a	subclass	of
PyDataViewCustomRenderer	and	override	the	necessary	virtual	methods	to	define	the
custom	behavior	of	how	the	cell	is	rendered.	Then,	to	add	a	column	to	the	view	that	uses
the	custom	renderer,	a	DataViewColumn	object	should	be	created	that	is	assigned	an
instance	of	the	renderer,	and	the	column	object	should	be	added	to	the	view	with	the
view’s	AppendColumn	method.





Chapter	6.	Ways	to	Notify	and	Alert
In	this	chapter,	we	will	cover	the	following	recipes:

Showing	MessageBox
Using	InfoBar
Providing	extra	tips	on	usage
Displaying	transient	notifications
Making	a	splash	at	startup
Giving	busy	feedback
Showing	information	about	your	app



Introduction
Nearly	all	software	applications	that	have	a	user	interface	need,	at	some	point	in	time,	to
alert	or	notify	their	users	about	events	that	occur	in	the	application	or	to	simply	display
information.	There	are	many	ways	to	display	information	and	notify	that	may	be	more
appropriate	than	others,	depending	on	the	circumstances.	Some	notifications	may	require
acknowledgement	from	the	user	while	others	may	not.	In	this	chapter,	we	will	take	a	look
at	several	different	ways	to	display	information	and	provide	feedback	and	notifications	to
the	user.





Showing	MessageBox
MessageBox	is	one	of	the	most	common	and	recognizable	UI	components	of	nearly	any
application	on	any	platform.	It	provides	a	very	simple	way	to	present	information	to	the
user	and	requires	their	acknowledgement	of	the	information	that	is	presented.	It	can	also
be	used	as	a	way	to	request	and	get	responses	to	questions	and	decisions	that	the	program
may	need	to	ask	the	user	about.	In	this	recipe,	we	will	take	a	look	at	some	of	the	different
ways	to	show	MessageBox.



How	to	do	it…
Perform	the	following	steps:

1.	 Let’s	make	a	simple	Frame	class	that	will	show	MessageBox	when	a	button	is	clicked
on.	The	first	step	is	to	define	the	class	and	do	a	simple	layout,	as	follows:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title):

								super(MyFrame,	self).__init__(parent,	title=title)

								panel	=	wx.Panel(self)

								button	=	wx.Button(panel,	label="Show	MessageBox")

								hsizer	=	wx.BoxSizer()

								hsizer.AddStretchSpacer()

								hsizer.Add(button,	0,	wx.ALIGN_CENTER_VERTICAL)

								hsizer.AddStretchSpacer()

								vsizer	=	wx.BoxSizer(wx.VERTICAL)

								vsizer.Add(hsizer,	1,	wx.ALIGN_CENTER_HORIZONTAL)

								panel.SetSizer(vsizer)

								

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.Add(panel,	1,	wx.EXPAND)

								self.SetSizer(sizer)

								

								self.Bind(wx.EVT_BUTTON,	self.OnButton,	button)

2.	 Now,	for	the	second	and	last	step,	let’s	define	the	event	handler	method	and	show
MessageBox,	with	the	following	code:

def	OnButton(self,	event):

				style	=	wx.YES_NO|wx.CENTER|wx.ICON_INFORMATION

								result	=	wx.MessageBox("Heres	the	message	text!",

																															"Here	is	the	Title",

																															style)

								if	result	==	wx.NO:

												print("Answer	was	no!")

								else:

												print("Answer	was	yes!")



How	it	works…
The	first	thing	to	take	note	of	is	that	wx.MessageBox	is	a	function	and	not	a	class.	This
function	takes	some	input	parameters	that	describe	what	kind	of	MessageDialog	and
message	to	display.	It	then	displays	a	modal	MessageDialog,	and	then	when	the	dialog	is
dismissed,	it	returns	a	return	code	to	indicate	how	the	dialog	is	dismissed.

In	this	instance,	as	shown	in	the	preceding	image,	we	decided	to	show	Yes	and	No	buttons,
which	are	specified	with	the	wx.YES_NO	style	flag	as	well	as	an	icon	that	indicates	that	the
message	box	contains	an	informational	message.	So,	when	this	dialog	is	closed,	the
MessageBox	function	will	return	either	wx.YES	or	wx.NO	for	a	return	value,	which	can	be
used	to	determine	the	decision	that	the	user	has	made.



There’s	more…
The	wx.MessageBox	function	supports	showing	several	variations	of	a	MessageDialog,
depending	on	the	style	parameter	flags	passed	in.	Included	here	is	a	quick	reference	for	the
available	styles	that	can	be	used.

Button	flags
The	flags	in	the	following	table	can	be	used	to	determine	the	kinds	of	buttons	are	placed	in
the	dialog:

Style	flag Description

wx.OK This	shows	an	Ok	button

wx.CANCEL This	shows	a	Cancel	button

wx.YES_NO This	shows	Yes	and	No	buttons

wx.HELP This	shows	a	Help	button

wx.NO_DEFAULT This	makes	the	No	button	the	default	one

wx.CANCEL_DEFAULT This	makes	the	Cancel	button	the	default	one

wx.OK_DEFAULT This	makes	the	Ok	button	the	default	one

Icon	flags
One	of	these	flags	can	be	combined	with	the	preceding	flags	to	set	the	icon	type	of	the
dialog.	Note	that	the	requested	icon	may	be	ignored	or	not	shown	in	some	cases,
depending	on	the	interface	guidelines	for	the	platform.	Take	a	look	at	the	following	table:

Style	flag Description

wx.ICON_NONE This	doesn’t	show	an	icon	if	the	platform	allows	it

wx.ICON_WARNING This	shows	a	warning	icon

wx.ICON_ERROR This	shows	an	error	icon

wx.ICON_QUESTION This	shows	a	question	mark	icon

wx.ICON_INFORMATION This	shows	an	information	symbol	icon





Using	InfoBar
The	InfoBar	control	is	a	new	control	that	was	added	in	wxPython	3.0.	This	control	acts
similarly	to	the	small	informational	bar	that	pops	into	view	at	the	top	of	some	web
browsers.	It	can	be	used	to	present	simple	messages	or	get	responses	to	questions,	just	as	a
MessageBox	function	can,	but	it	is	presented	in	a	less	obtrusive	way,	which	does	not
require	acknowledgement	from	the	user	or	prevents	them	from	continuing	to	use	the
program.	In	this	recipe,	we	will	look	at	how	to	integrate	an	InfoBar	control	into	your
application’s	frames.



How	to	do	it…
You	would	need	to	perform	the	following	steps:

1.	 First,	let’s	start	by	making	a	subclass	of	InfoBar	that	we	will	add	an	Auto	Dismiss
feature	to	through	the	following	code:

class	AutoDismissInfo(wx.InfoBar):

				def	__init__(self,	parent,	hideAfter=-1):

								super(AutoDismissInfo,	self).__init__(parent)

								self._timer	=	wx.Timer(self)

								self._limit	=	hideAfter

								

								self.Bind(wx.EVT_TIMER,	lambda	event:	self.Dismiss(),	

																		self._timer)

2.	 Next,	we	will	override	the	ShowMessage	method	to	start	the	timer	that	is	used	to
automatically	dismiss	InfoBar	using	this	method:

				def	ShowMessage(self,	msg,	flags):

								if	self._timer.IsRunning():

												self._timer.Stop()

								super(AutoDismissInfo,	self).ShowMessage(msg,	flags)

								if	self._limit	>	0:

												self._timer.Start(self._limit,	True)

3.	 Now,	let’s	put	the	InfoBar	control	to	use	in	a	simple	Frame	class,	as	follows:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title):

								super(MyFrame,	self).__init__(parent,	title=title)

								#	Hide	messages	after	3	seconds

								self.info	=	AutoDismissInfo(self,	3000)

								self.CreateStatusBar()

								self.SetStatusText("Move	the	mouse	over	the	window!")

								panel	=	wx.Panel(self)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.Add(self.info,	0,	wx.EXPAND)

								sizer.Add(panel,	1,	wx.EXPAND)

								self.SetSizer(sizer)

								

								panel.Bind(wx.EVT_ENTER_WINDOW,	self.OnEnter)

								panel.Bind(wx.EVT_LEAVE_WINDOW,	self.OnLeave)

4.	 The	last	step	is	to	define	the	event	handler	functions	that	we	will	use	to	display	the
InfoBar	control.	Whenever	the	mouse	cursor	enters	or	leaves	the	window,	we	will
update	a	new	informational	message:

				def	OnEnter(self,	event):

								self.info.ShowMessage("Mouse	has	entered	the	window!",



																														wx.ICON_INFORMATION)

				def	OnLeave(self,	event):

								self.info.ShowMessage("Mouse	has	left	the	window!",

																														wx.ICON_WARNING)



How	it	works…
As	you	just	saw,	the	usage	of	InfoBar	is	quite	simple	as	in	its	basic	usage,	it	only	requires
to	be	created	and	added	as	either	the	first	or	last	item	in	its	parent	window’s	Sizer.	The
InfoBar	control	can	only	be	displayed	at	the	top	or	bottom	of	the	window;	this	is
important	in	how	it	is	placed	in	the	layout.

Other	than	this,	the	bar	can	be	shown	or	updated	by	calling	its	ShowMessage	method,
which	pops	the	bar	into	view	if	it’s	not	currently	shown,	and	we	can	update	the	display
text	with	the	latest	that’s	passed	in.	In	this	recipe,	we	used	an	event	where	the	mouse
cursor	enters	or	leaves	the	panel	as	the	trigger	for	when	to	show	and	update	the	message.



There’s	more…
The	InfoBar	control	can	also	support	some	message-box-like	functionality	by	adding
buttons	to	the	bar.	The	InfoBar	control’s	AddButton	method	can	be	used	to	add	buttons	to
the	bar.	When	a	button	is	clicked	on,	the	bar	will	be	closed.	Take	note,	though,	that	the
InfoBar	object	will	consume	the	button	event,	and	it	will	not	be	propagated	to	the	parent
window.	So,	in	order	to	handle	the	button	event,	it	is	necessary	to	use	Bind	with	the
EVT_BUTTON	event	handler	directly	to	the	InfoBar	object.	In	the	event	handler,	also	make
sure	to	call	skip	on	the	event	to	let	the	base	handler	receive	the	event	and	dismiss	the
window.



See	also
Also,	check	out	the	Displaying	transient	notifications	recipe	later	in	this	chapter	for
another	way	to	display	transient	or	noncritical	messages	in	an	application





Providing	extra	tips	on	usage
ToolTips	are	small,	transient	pop-up	windows	that	are	automatically	displayed	when	the
mouse	cursor	is	hovered	over	a	window.	These	popups	can	be	used	to	provide	context-
sensitive	help	messages	about	what	changing	the	state	of	a	control	might	do	or	what	a
field	in	a	dialog	is	for.	Nearly	every	control	type	can	have	a	ToolTip	associated	with	it.
This	recipe	shows	how	to	add	ToolTip	text	to	windows	in	your	application.



How	to	do	it…
1.	 First,	let’s	define	a	Panel	subclass	with	some	controls	on	it	through	the	following

code:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								self._timer	=	wx.Timer(self)

								self._countDown	=	10

								

								self._msg	=	wx.StaticText(self,	label="")

								self._go	=	wx.Button(self,	label="Go")

								tip	=	"Start	a	countdown	to	exit	the	application."

								self._go.ToolTipString	=	tip

								self._stop	=	wx.Button(self,	label="Stop")

								self._stop.Enable(False)

								tip	=	"Cancel	the	application	exit."

								self._stop.ToolTipString	=	tip

								self._doLayout()

								self.Bind(wx.EVT_BUTTON,	self.OnButton)

								self.Bind(wx.EVT_TIMER,	self.OnTimer)

2.	 Next,	let’s	do	the	layout	of	the	controls,	as	follows:

				def	_doLayout(self):

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								

								sizer.Add(self._msg,	0,	

																		wx.ALIGN_CENTER_HORIZONTAL|wx.ALL,	10)

								bsizer	=	wx.BoxSizer(wx.HORIZONTAL)

								bsizer.Add(self._go,	0,	wx.ALL,	5)

								bsizer.Add(self._stop,	0,	wx.ALL,	5)

								sizer.Add(bsizer,	0,	

																		wx.ALIGN_CENTER_HORIZONTAL|wx.BOTTOM,	10)

								

								self.Sizer	=	sizer

3.	 Now,	let’s	define	the	button	event	handler	using	this	method:

				def	OnButton(self,	event):

								if	event.EventObject	is	self._go:

												self._timer.Start(1000)

												self._go.Enable(False)

												self._stop.Enable(True)

								else:

												self._timer.Stop()

												self._go.Enable(True)

												self._stop.Enable(False)

4.	 The	final	step	is	to	define	the	onTimer	event	handler,	with	this	code:

				def	OnTimer(self,	event):



								if	self._countDown	>	0:

												self._countDown	-=	1

												msg	=	"Exiting	in	%d	seconds…"	%	self._countDown

												self._msg.Label	=	msg

												self.Layout()

								else:

												wx.GetApp().Exit()



How	it	works…
This	recipe	is	quite	simple	as	the	framework	takes	care	of	most	the	work.	In	the	Panel
constructor,	we	just	used	each	of	the	buttons’	ToolTipString	properties	to	set	the	ToolTip
message	to	be	shown.	The	ToolTip	messages	are	added	to	give	more	context	to	the	action
that	each	button	performs.	When	the	mouse	cursor	hovers	over	the	enabled	button	and
pauses	for	a	moment,	the	ToolTip	message	will	be	shown,	and	then	as	the	mouse	moves
again,	the	tip	will	be	automatically	dismissed.

Using	the	ToolTipString	property	of	a	window	is	the	easiest	way	to	add	a	tool	tip.
However,	if	you	need	a	little	more	control	over	how	long	the	delay	should	be	before	it’s
shown	or	its	maximum	width,	you	can	also	create	a	ToolTip	object,	set	up	its	behavior,
and	assign	it	directly	to	a	window’s	ToolTip	property	instead.





Displaying	transient	notifications
If	your	application	needs	to	occasionally	get	the	user’s	attention	and	present	some
information	that	may	not	be	critical	or	require	acknowledgement,	the	ToasterBox	window
can	be	a	nice	and	unobtrusive	way	to	show	simple	messages	to	the	user.	In	this	recipe,	we
will	make	a	small	TrayIcon	application	that	acts	as	a	timer,	which	pops	up	a	notification
every	time	a	set	amount	of	time	has	elapsed.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	we	need	an	additional	import	from	wx.lib	to	access	ToasterBox.	For	this,	we
will	uses	the	following	code:

import	wx

import	wx.lib.agw.toasterbox	as	tb

ID_GET_DUR	=	wx.NewId()

ID_START	=	wx.NewId()

2.	 Next,	let’s	make	a	custom	TaskBarIcon	object	to	manage	our	alarm	notifications,	as
follows:

class	AlarmIcon(wx.TaskBarIcon):

				def	__init__(self,	topWindow):

								super(AlarmIcon,	self).__init__()

								self._topWindow	=	topWindow

								self._timer	=	wx.Timer(self)

								self._duration	=	10

								bmp	=	wx.Bitmap("clock.png")

								icon	=	wx.IconFromBitmap(bmp)

								self.SetIcon(icon,	"Alarm	Clock")

								self.ResetAlarm()

								

								self.Bind(wx.EVT_MENU,	self.OnMenu)

								self.Bind(wx.EVT_TIMER,	self.OnAlarm)

3.	 Now,	let’s	add	a	pop-up	menu	to	the	icon	to	give	some	options	and	control	over	the
application	to	the	user	through	the	following	code:

				def	CreatePopupMenu(self):

								menu	=	wx.Menu()

								menu.Append(ID_GET_DUR,	"Set	Duration")

								menu.AppendSeparator()

								item	=	menu.Append(ID_START,	"Start")

								item.Enable(not	self._timer.IsRunning())

								item	=	menu.Append(wx.ID_STOP)

								item.Enable(self._timer.IsRunning())

								menu.AppendSeparator()

								menu.Append(wx.ID_EXIT)

								return	menu

4.	 Next,	we	need	to	define	the	menu’s	event	handler.	This	is	defined	by	the	following
method:

				def	OnMenu(self,	event):

								if	event.Id	==	ID_GET_DUR:

												msg	=	"Enter	the	alarm	timer	duration."

												num	=	wx.GetNumberFromUser(msg,	"Duration	(sec):",	

																																							"Timer	Setting",	



																																							self._duration,	0,	360)

												self._duration	=	num

												self.ResetAlarm()

								elif	event.Id	==	ID_START:

												self.ResetAlarm()

								elif	event.Id	==	wx.ID_STOP:

												self._timer.Stop()

								elif	event.Id	==	wx.ID_EXIT:

												self._topWindow.Destroy()

												self.Destroy()

								else:

												event.Skip()

5.	 Next,	let’s	define	the	Timer	event	handler	and	the	helper	function,	as	follows:

				def	OnAlarm(self,	event):

								notify	=	tb.ToasterBox(None,	

																															closingstyle=tb.TB_ONCLICK)

								notify.SetPopupPauseTime(self._duration	*	1000)

								msg	=	"Its	time!	Its	time!\nClick	to	dismiss!"

								notify.SetPopupText(msg)

								notify.SetPopupPositionByInt(3)	#	bottom	right

								notify.Play()

				def	ResetAlarm(self):

								if	self._timer.IsRunning():

												self._timer.Stop()

								self._timer.Start(self._duration	*	1000)

6.	 For	the	final	step,	we	just	need	to	wrap	the	icon	up	in	an	app	object:

class	AlarmClock(wx.App):

				def	OnInit(self):

								frame	=	wx.Frame(None)

												self.icon	=	AlarmIcon(frame)

												return	True



How	it	works…
In	the	preceding	recipe,	we	built	a	small	tray	icon	application	that	runs	a	timer	and
displays	a	ToasterBox	window	as	a	notification	every	time	the	timer	reaches	its	set
interval.	We	also	created	a	hidden	Frame	object	so	that	the	application	has	a	top-level
window.	This	is	done	as	some	platforms	require	a	top-level	window	to	keep	the	main	loop
running.

A	ToasterBox	object	is	created	in	the	Timer	event	and	set	up	to	display	notifications	to	the
user.	The	ToasterBox	object	is	displayed	when	its	Play	method	is	called;	this	begins	the
animation	to	show	the	message	on	screen.	The	ToasterBox	object	can	be	configured	in
several	ways	to	set	how	it	should	be	shown.	In	our	application,	we	set	the	display	period	to
be	until	the	next	notification	period	by	calling	its	SetPopupPauseTime	method.	The
TB_ONCLICK	option	passed	to	the	ToasterBox	constructor	allows	the	user	to	dismiss	the
notification	sooner	by	clicking	on	it.	Lastly,	the	SetPopupPositionByInt	method	takes	a
0-3	value	to	specify	a	screen-based	location	to	display	the	notification	at.	The	value	3	used
by	this	application	specifies	the	lower	right-hand	side	of	the	screen.	An	important	note	to
take	away	from	using	this	control	is	to	not	keep	references	or	attempt	to	reuse	instances.
Each	instance	will	auto-destroy	itself	after	it	is	dismissed,	and	attempting	to	reuse	the
object	will	result	in	undefined	behavior.



There’s	more…
By	default,	ToasterBox	provides	a	simple	window	that	slides	into	view,	displays	some
text,	and	then	disappears	after	a	moment.	However,	being	a	generic	control	in	wx.lib,	it
can	also	be	customized	to	the	application’s	needs.	By	making	use	of	the	TB_COMPLEX	style
flag,	which	can	be	provided	to	ToasterBox’s	tbstyle	constructor	parameter,	it	is	possible
to	customize	the	display	window	and	even	add	any	other	additional	controls	to	the	display
that	you	wish.	This	can	be	accomplished	by	calling	ToasterBox’s	GetToasterBoxWindow
method,	which	will	return	a	panel	that	can	have	controls	added	to	it	similar	to	any	panel.



See	also
See	the	Using	InfoBar	recipe	earlier	in	this	chapter	for	another	way	to	display
transient	informational	notifications





Making	a	splash	at	startup
Splash	windows	can	be	used	to	show	information	during	the	launching	of	a	program	and
are	most	commonly	used	for	applications	that	require	some	time	to	initialize.	They
provide	a	means	to	give	quick	feedback	to	the	user	to	show	that	the	application	is	in	the
process	of	starting	up	and	that	it	is	not	hung	or	nonresponsive.	In	this	recipe,	we	will	show
how	to	create	an	advanced	splash	screen	control	that	is	capable	of	displaying	progress
messages	during	the	startup	of	an	application.



How	to	do	it…
1.	 First,	let’s	start	by	defining	the	custom	SplashScreen	class,	with	the	following	code:

class	ProgressSplash(wx.SplashScreen):

				def	__init__(self,	bmp,	splashStyle,	timeout,	parent):

								super(ProgressSplash,	self).__init__(bmp,	splashStyle,

																																													timeout,	parent)

								self._msg	=	wx.StaticText(self)

								#	Create	status	display	area

								self.CreateStatusBar()

								sbarHeight	=	self.StatusBar.Size.height

								self.SetSize((self.Size.width,	

																						sbarHeight	+	bmp.Height))

2.	 We	will	also	override	the	PushStatusText	method	of	the	splash	screen	to	ensure	that
StatusBar	is	refreshed	after	each	text	update	through	the	following	code:

				def	PushStatusText(self,	text,	number=0):

								super(ProgressSplash,	self).PushStatusText(text,	number)

								#	Force	ui	update

								self.StatusBar.Refresh()

								self.StatusBar.Update()

3.	 Now,	let’s	start	on	making	a	sample	application	that	shows	how	to	use	the	customized
splash	screen:

class	SlowStartingApp(wx.App):

				def	OnInit(self):

								self.mainw	=	wx.Frame(None,	title="MyApp")

								

								bmp	=	wx.Bitmap('splash_img.png')

								splashStyle	=	wx.SPLASH_CENTRE_ON_SCREEN|\

																						wx.SPLASH_NO_TIMEOUT

								self.splash	=	ProgressSplash(bmp,	splashStyle,	

																																					-1,	self.mainw)

								self.splash.Show()

								#	Begin	the	application	setup	tasks

								#	on	next	iteration	of	event	loop

								wx.CallAfter(self.Initialize)

								return	True

4.	 Now,	let’s	take	a	look	at	how	updates	can	be	pushed	to	the	splash	window	during	the
application’s	initialization	method:

				def	Initialize(self):

								self.LoadConfig()

								self.ConnectToServer()

								self.InitializeUI(mainw)

				def	LoadConfig(self):

								#	simulate	long	configuration	load

								self.splash.PushStatusText("Loading	config…")



								wx.Sleep(1)

				def	ConnectToServer(self):

								#	simulate	setting	up	connections

								self.splash.PushStatusText("Connecting…")

								wx.Sleep(2)

								self.splash.PushStatusText("Connection	Ok…")

								wx.Sleep(1)

				def	InitializeUI(self,	window):

								#	simulate	setup	of	UI

								self.splash.PushStatusText("Initializing	UI…")

								wx.Sleep(1)

								window.Show()



How	it	works…
A	splash	window	is	really	just	a	specialized	Frame	class	that	is	set	up	to	display	an	image;
however,	in	this	recipe,	we	extended	it	by	adding	StatusBar	to	display	the	status
messages	that	the	main	application	can	push	to	it	during	startup.	The	example	application
creates	and	shows	an	instance	of	the	ProgressSplash	class.	Then,	it	begins	its
initialization	procedures.	As	this	code	could	block	the	main	loop,	we	used	CallAfter	to
defer	the	execution	of	the	method	until	the	next	iteration	of	the	main	loop.	This	should
ensure	that	the	messages	showing	the	progress	dialog	are	processed	before	the	startup
procedures	begin.	Then,	in	several	places	during	startup,	which	might	take	some	time	to
complete,	an	update	message	is	pushed	to	the	window	to	give	feedback	to	the	user	about
the	progress	of	what	is	happening.	We	overrode	the	PushStatusText	method	to	force	a
synchronous	redrawing	of	StatusBar	each	time	a	message	is	pushed	to	ensure	that	it	is
visible	before	another	task	starts,	which	might	block	the	event	being	processed	on	the
main	loop.	Finally,	once	all	the	startup	steps	are	completed,	the	ProgressSplash	window
is	dismissed	by	calling	its	Destroy	method,	and	the	application’s	main	window	is	shown.



There’s	more…
There	is	another	splash	window	implementation	in	the	wx.lib.agw.advancedsplash
module.	This	extended	splash	window	implementation	has	some	features	to	display	a
shaped	window	by	specifying	the	AS_SHADOW_BITMAP	style	and	a	shadowcolour	mask
value	to	be	used	to	mask	out	the	portions	of	the	bitmap	that	should	be	displayed	as
transparent	on	the	screen.	So,	go	ahead	and	check	out	this	alternate	implementation	if	you
want	to	display	a	non-rectangular-shaped	splash	screen.



See	also
Continue	to	the	next	recipe	in	this	chapter,	Giving	busy	feedback,	for	another	way	to
give	progress	feedback	to	users	during	long-running	tasks





Giving	busy	feedback
Sometimes,	applications	require	some	time	to	process	a	command,	and	while	doing	so,	the
user	has	to	be	given	some	feedback	so	that	he/she	doesn’t	think	that	the	application	is
frozen.	This	can	be	accomplished	in	several	ways,	but	one	common	way	is	to	provide
animated	feedback	in	the	form	of	a	progress	bar	or	gauge.	In	this	recipe,	you	will	see	how
to	animate	a	gauge	to	give	feedback	while	a	long-running	task	is	completed	on	a
background	thread.



How	to	do	it…
Here	are	the	steps	to	be	performed:

1.	 First,	we	need	to	import	some	extra	modules	for	this	recipe,	so	let’s	take	a	quick	look
at	the	needed	imports:

import	threading

import	wx

2.	 Next,	we	will	use	a	background	thread	to	do	the	calculations.	For	this,	see	the
following:

class	FibonacciCalc(threading.Thread):

				def	__init__(self,	n,	completeFunc):

								super(FibonacciCalc,	self).__init__()

								assert	callable(completeFunc)

								self.n	=	n

								self.complete	=	completeFunc

				def	run(self):

								def	fib(n):

												a,b	=	1,1

												for	i	in	xrange(n	-	1):

																a,b	=	b,a+b

												return	a

								val	=	fib(self.n)

								self.complete(val)

3.	 Now,	let’s	start	building	up	the	UI	that	the	user	can	use	to	invoke	the	calculation.
Here’s	the	class	that	will	define	this:

class	ResultDisplay(wx.Frame):

				def	__init__(self,	parent,	title):

								super(ResultDisplay,	self).__init__(parent,	

																																												title=title)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								panel	=	self._BuildPanel()

								sizer.Add(panel,	1,	wx.EXPAND)

								self.SetSizer(sizer)

								

								self.SetInitialSize()

4.	 Next,	we	will	build	up	the	controls	for	the	display	as	follows:

				def	_BuildPanel(self):

								panel	=	wx.Panel(self)

								msg	=	"Enter	the	nth	Fibonacci	#	to	calculate:"

								self.msg	=	wx.StaticText(panel,	label=msg)

								self.ntxt	=	wx.TextCtrl(panel,	value="500000")

								style	=	wx.TE_READONLY|wx.TE_RICH2

								self.result	=	wx.TextCtrl(panel,	style=style)

								self.calc	=	wx.Button(panel,	label="Calculate")

								self.calc.Bind(wx.EVT_BUTTON,	self.OnCalculate)



								self.gauge	=	wx.Gauge(panel)

								self.timer	=	wx.Timer(self)

								self.Bind(wx.EVT_TIMER,	

																		lambda	e:	self.gauge.Pulse(),

																		self.timer)

								return	self._LayoutPanel(panel)

5.	 Next,	let’s	finish	up	the	layout	of	the	panel:

				def	_LayoutPanel(self,	panel):

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								hsizer	=	wx.BoxSizer(wx.HORIZONTAL)

								hsizer.Add(self.msg,	0,	wx.ALL,	5)

								hsizer.Add(self.ntxt,	0,	wx.RIGHT,	5)

								sizer.Add(hsizer,	0,	wx.ALIGN_CENTER_HORIZONTAL)

								

								flags	=	wx.EXPAND|wx.ALIGN_CENTER_HORIZONTAL

								sizer.Add(self.result,	1,	flags)

								sizer.Add(self.gauge,	0,	flags,	5)

								self.gauge.Show(False)

								sizer.Add(self.calc,	0,	wx.ALIGN_CENTER_HORIZONTAL)

								panel.SetSizer(sizer)

								return	panel

6.	 Now,	when	a	calculation	is	requested,	we	will	show	the	progress	bar	and	start	its
feedback	while	the	calculation	is	started	on	a	background	thread,	as	follows:

				def	OnCalculate(self,	event):

								self.ShowFeedBack(True)

								self.calc.Enable(False)

								num	=	int(self.ntxt.Value)

								t	=	FibonacciCalc(num,	self.OnComplete)

								t.start()

7.	 The	next	step	is	to	handle	the	result	when	it	is	reported	from	the	other	thread.	Use	the
following	code:

				def	OnComplete(self,	value):

								def	SafeUpdate(value):

												self.ShowFeedBack(False)

												self.result.Value	=	str(value)

												self.calc.Enable(True)

								wx.CallAfter(SafeUpdate,	value)

8.	 The	last	part	is	the	helper	method	to	show	and	hide	the	progress	bar:

				def	ShowFeedBack(self,	show):

								self.gauge.Show(show)

								self.result.Show(not	show)

								if	show:

												self.timer.Start(250)

								else:

												self.timer.Stop()

								self.Layout()





How	it	works…
The	example	application	in	this	recipe	performs	a	calculation	that	may	take	a	noticeable
time	to	complete.	Prior	to	starting	the	calculation,	a	gauge	is	shown	to	notify	the	user	that
the	application	is	busy.	While	the	background	thread	is	working,	a	timer	is	used	to	pulse
the	gauge	and	update	its	current	position	to	give	continuous	feedback	to	the	user:

Once	the	calculation	is	completed	on	the	background	thread,	it	uses	the	provided	callback
function	to	signal	that	the	calculation	is	done	and	updates	the	UI	with	the	result.	As
OnComplete	is	called	from	a	background	thread,	which	is	not	the	same	thread	that	the	UI	is
running	in,	it	is	necessary	to	use	CallAfter.	The	CallAfter	method	can	be	used	to	pass
the	execution	of	a	function	back	to	the	main	thread,	where	it	is	safe	to	make	updates	to	the
state	of	the	UI.





Showing	information	about	your	app
If	you	are	planning	on	distributing	your	application	to	others,	it	may	be	a	good	idea	to	add
AboutBox	as	a	place	to	show	some	general	information	about	your	application.	This
information	commonly	includes	the	application’s	version	number,	author	or	company
name,	and	any	copyright	information.	In	this	recipe,	we	will	make	a	simple	application
and	show	how	to	incorporate	AboutBox	in	it.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	let’s	create	a	Frame	that	has	a	Menu	option	to	show	AboutBox,	as	follows:

class	AboutRecipeFrame(wx.Frame):

				def	__init__(self,	parent,	title):

								super(AboutRecipeFrame,	self).__init__(parent,	title=title)

								#	Attributes

								self.panel	=	wx.Panel(self)

								#	Setup	Menus

								menubar	=	wx.MenuBar()

								helpmenu	=	wx.Menu()

								helpmenu.Append(wx.ID_ABOUT,	"About")

								menubar.Append(helpmenu,	"Help")

								self.SetMenuBar(menubar)

								#	Setup	StatusBar

								self.CreateStatusBar()

								self.PushStatusText("See	About	in	the	Menu")

								#	Event	Handlers

								self.Bind(wx.EVT_MENU,	self.OnAbout,	id=wx.ID_ABOUT)

2.	 All	that’s	left	now	is	to	put	together	the	information	we	want	to	show	and	then	use	it
to	create	an	AboutBox.	Here’s	how:

				def	OnAbout(self,	event):

								"""Show	the	about	dialog"""

								info	=	wx.AboutDialogInfo()

								#	Make	a	template	for	the	description

								desc	=	["\nwxPython	Cookbook	Chapter	6\n",

																"Platform	Info:	(%s,%s)",

																"License:	Public	Domain"]

								desc	=	"\n".join(desc)

								#	Get	the	platform	information

								py_version	=	[sys.platform,

																						",	Python	",

																						sys.version.split()[0]]

								platform	=	list(wx.PlatformInfo[1:])

								platform[0]	+=	("	"	+	wx.VERSION_STRING)

								wx_info	=	",	".join(platform)

								#	Populate	with	information

								info.SetName("AboutBox	Recipe")

								info.SetVersion("1.0")

								info.SetCopyright("Copyright	(C)	Joe	Programmer")

								info.SetDescription(desc	%	(py_version,	wx_info))

								#	Create	and	show	the	dialog

								wx.AboutBox(info)





How	it	works…
The	first	part	of	this	recipe	is	the	creation	of	the	About	menu	item.	This	item	is	a	standard
item	on	each	platform.	On	Windows	and	GTK,	it	appears	in	the	Help	menu,	and	on	OS	X,
it	appears	in	the	Application	menu.	As	the	standard	ID_ABOUT	ID	is	used,	wxPython	will
automatically	move	the	About	menu	item	to	the	appropriate	location	when	run	on	OS	X.

Next	is	the	AboutDialogInfo	class,	which	is	used	to	contain	the	data	to	show	in	AboutBox.
This	object	is	populated	by	using	its	various	set	functions	to	put	in	the	information	to
display.	In	this	recipe,	we	just	used	a	small	number	of	them	to	ensure	that	we	ended	up
with	a	native	dialog.	There	are	many	additional	fields	that	can	be	filled	out	to	include	the
application’s	licensing	information	as	well	as	lists	of	contributors,	but	using	the	additional
fields	may	result	in	a	generic	dialog	being	used	on	some	platforms.	Once	the
AboutDialogInfo	object	is	populated	with	all	the	information	that	you	want	to	display,
you	can	use	the	AboutBox	function	to	create	and	show	a	dialog	that	presents	all	the
information	as	a	modal	dialog:



There’s	more…
As	mentioned,	the	AboutDialogInfo	class	supports	a	number	of	additional	parameters	that
can	be	used	to	add	additional	information	to	AboutBox.	Only	the	GTK	platform	supports
most	of	these	additional	fields	natively,	so	using	them	will	result	in	the	framework	falling
back	to	the	generic	version	of	the	dialog	on	Windows	and	OS	X.	Take	a	look	at	the
following	table:

Additional	fields Description

SetArtists This	sets	a	list	of	names	to	give	credits	to	graphic	artists

SetDevelopers This	sets	a	list	of	names	to	give	credits	to	developers

SetDocWriters This	sets	a	list	of	names	to	give	credits	to	documentation	writers

SetIcon This	sets	a	custom	display	icon	on	the	dialog

SetLicense This	sets	a	full	license	text	to	be	displayed

SetTranslators This	sets	a	list	of	names	to	give	credits	to	translators

SetWebsite This	sets	a	URL	to	create	a	hyperlink	from



See	also
The	Exploring	menus	and	shortcuts	recipe	in	Chapter	2,	Common	User	Controls,	for
more	examples	on	using	menus	and	stock	IDs





Chapter	7.	Requesting	and	Retrieving
Information
In	this	chapter,	we	will	cover:

Selecting	files	with	FileDialog
Searching	text	with	FindReplaceDialog
Filtering	through	choices
Retrieving	multiple	selections
Using	Print	dialogs
Guiding	selections	with	Wizard



Introduction
Being	able	to	retrieve	input	from	users	in	an	application	is	a	critical	task	that	nearly	any
application	needs	to	perform.	There	are	many	common	types	of	input	information	that
applications	use	to	perform	a	wide	array	of	common	tasks.	This	includes	operations	such
as	opening	and	saving	files,	choosing	documents	to	print,	getting	search	queries	to	use	to
perform	searches	on	data,	and	many	others.	In	this	chapter,	we	will	take	a	look	at	several
commonly	provided	controls	and	dialogs	in	the	wxPython	library	to	discuss	how	to
perform	many	of	these	common	everyday	tasks	as	well	as	discuss	a	few	of	the	less-known
controls	to	consider	the	kinds	of	tasks	that	they	can	help	you	solve.





Selecting	files	with	FileDialog
Many	applications	operate	on	files	as	their	input	and	output;	FileDialog	is	the	standard
way	to	allow	users	to	either	choose	files	to	open	or	input	a	file	path	to	save	the	current
document	on.	In	this	recipe,	we	will	take	a	look	at	how	to	use	FileDialog	to	open	and
save	text	files.



Getting	ready
This	recipe	will	add	the	Open	and	Save	functionalities	to	the	text	editor	application	that	we
started	back	in	Chapter	2,	Common	User	Controls.	It	only	covers	the	functionality	of
FileDialog,	but	you	may	want	to	jump	back	to	the	Exploring	menus	and	shortcuts	and
Working	with	ToolBars	recipes	from	Chapter	2,	Common	User	Controls,	for	a	refresher	on
how	the	base	code	in	this	recipe	is	started.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	let’s	start	by	importing	the	needed	modules	and	overriding	the	base	class’
constructor,	as	follows:

import	wx

#	Code	from	Chapter	2	Working	with	Toolbars

import	chapter2Editor	as	c2e

class	FileEditor(c2e.EditorWithToolBar):

				def	__init__(self,	parent,	title):

								super(FileEditor,	self).__init__(parent,	title)

								

								types	=	["Python	(*.py)|*.py",

																	"Text	Files	(*.txt)|*.txt"]

								self.wildcard	=	"|".join(types)

								self._file	=	None

2.	 Now,	let’s	add	a	property	to	keep	track	of	the	path	of	the	file	that	we	are	editing:

				@property

				def	file(self):

								return	self._file

				@file.setter

				def	file(self,	value):

								self._file	=	value

								if	self._file:

												self.Title	=	self._file

3.	 Next,	we	need	to	override	the	event	handler	for	the	menu	and	toolbar	events	to	add	in
handlers	for	the	Save	and	Open	actions:

				def	OnFile(self,	event):

								"""Override	base	event	handler"""

								if	event.Id	==	wx.ID_OPEN:

												self.OpenFile()

								elif	event.Id	==	wx.ID_SAVE:

												self.SaveFile()

								else:

												super(FileEditor,	self).OnFile(event)

4.	 Now	that	everything	is	set	up,	it’s	time	to	first	use	FileDialog	in	Open	mode	to	open
files.	We	can	do	this	using	the	following	code:

				def	OpenFile(self):

								dlg	=	wx.FileDialog(self,	"Open	File",	

																												wildcard=self.wildcard,	

																												style=wx.FD_OPEN)

								if	dlg.ShowModal()	==	wx.ID_OK:

												path	=	dlg.GetPath()

												with	open(path,	"rb")	as	handle:

																text	=	handle.read()



																self.txt.SetValue(text)

																self.file	=	path

								dlg.Destroy()

5.	 The	last	step	is	to	add	support	to	save	the	changes	back	in	a	file	on	the	disk:

				def	SaveFile(self):

								if	self.txt.IsModified():

												if	self.file	is	None:

																#	Save	As

																style	=	wx.FD_SAVE|wx.OVERWRITE_PROMPT

																dlg	=	wx.FileDialog(self,	"Save	As",	

																																				wildcard=self.wildcard,	

																																				style=style)

																if	dlg.ShowModal()	==	wx.ID_OK:

																				self.file	=	dlg.GetPath()

												self.WriteToDisk(self.file)

				def	WriteToDisk(self,	fileName):

								with	open(fileName,	"wb")	as	handle:

												handle.write(self.txt.Value)

												self.file	=	fileName



How	it	works…
Starting	in	the	constructor,	we	defined	a	wildcard	string.	This	is	a	specially	formatted
string	used	by	FileDialog	to	set	up	filters	of	the	file	types	that	users	are	allowed	to	open.
This	string	is	formatted	as	a	series	of	pipes	(|)	or	delimited	tokens.	The	first	part	is	a	free
description	string,	and	the	second	token	is	a	list	of	wildcard	patterns	to	match	the	file	type.
Multiple	patterns	can	be	specified	for	a	given	file	type	by	separating	each	wildcard	with	a
semicolon	(;).

FileDialog	operates	primarily	in	two	different	modes:	Open	or	Save.	The	only	real
difference	between	the	two	is	in	the	appearance	and	text	on	the	affirmative	button	of	the
dialog.	In	each	case,	users	have	the	ability	to	either	select	or	enter	a	filename	at	a	given
path	on	the	system.	Once	the	dialog	is	dismissed,	the	full	entered	path	can	be	retrieved
from	the	dialog	with	its	GetPath	method.

In	the	save	dialog	case,	we	first	checked	whether	we	already	have	a	path,	and	if	so,	we
could	simply	use	this	to	save	the	text	from	the	control	to	the	file.	If	not,	we	could	show
FileDialog	to	get	the	path	for	the	new	file	from	the	user	to	write	the	data	to.



See	also
Take	a	look	at	the	Exploring	menus	and	shortcuts	recipe	in	Chapter	2,	Common	User
Controls,	to	note	where	the	example	application	in	this	recipe	was	started





Searching	text	with	FindReplaceDialog
In	many	applications	that	display	textual	data,	it	can	be	useful	to	provide	a	way	to	search
this	data	for	keywords	or	sequences	of	text.	FindReplaceDialog	can	be	used	for	this	task.
The	dialog	allows	us	several	options	to	control	how	a	search	is	to	be	carried	out	as	well	as
to	specify	the	string	that	is	being	looked	for	in	the	data.	However,	it	is	the	application’s
responsibility	to	take	this	data	and	perform	the	actual	search.	In	this	recipe,	we	will	take	a
look	at	how	to	retrieve	data	from	the	dialog	and	use	it	to	perform	a	basic	search.



Getting	ready
This	recipe	will	use	the	class	created	in	the	previous	recipe	of	this	chapter,	Selecting	files
with	FileDialog,	as	a	base	to	show	how	to	use	FindReplaceDialog,	so	you	may	want	to
take	a	quick	look	back	at	the	preceding	recipe	before	proceeding	with	this	one.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	we	need	to	import	the	code	from	the	previous	recipe	and	extend	the	art	map,	as
follows:

import	wx

import	fileEditor	as	FE	#	previous	recipe	module

#	extend	the	art	map

FE.ArtMap[wx.ID_FIND]	=	wx.ART_FIND

FE.ArtMap[wx.ID_REPLACE]	=	wx.ART_FIND_AND_REPLACE

2.	 Next,	we	need	to	subclass	FileEditor	and	add	some	attributes	to	manage
FindDialog:

class	TextEditorWithFind(FE.FileEditor):

				def	__init__(self,	parent,	title):

								super(TextEditorWithFind,	self).__init__(parent,	title)

								self.finddlg	=	None

								self.finddata	=	wx.FindReplaceData()

								self._SetupFindActions()

3.	 This	next	function	adds	the	menu,	toolbar,	and	event	handlers	for	the	search	feature
that	we	will	add:

				def	_SetupFindActions(self):

								menub	=	self.MenuBar

								editMenu	=	menub.GetMenu(1)

								editMenu.AppendSeparator()

								self.RegisterMenuAction(editMenu,	wx.ID_FIND,	

																																self.OnEdit)

								self.RegisterMenuAction(editMenu,	wx.ID_REPLACE,	

																																self.OnEdit)

								

								toolb	=	self.ToolBar

								toolb.AddSeparator()

								toolb.AddEasyTool(wx.ID_FIND)

								toolb.AddEasyTool(wx.ID_REPLACE)

								toolb.Realize()

								#	Find	Dialog	actions

								self.Bind(wx.EVT_FIND,	self.OnFind)

								self.Bind(wx.EVT_FIND_NEXT,	self.OnFind)

								self.Bind(wx.EVT_FIND_REPLACE,	self.OnReplace)

								self.Bind(wx.EVT_FIND_REPLACE_ALL,	self.OnReplaceAll)

								self.Bind(wx.EVT_FIND_CLOSE,	self.OnFindClose)

4.	 The	next	method	is	used	to	create	FindReplaceDialog	in	the	mode,	depending	on
whether	a	find	or	replace	action	is	requested:

				def	_InitFindDialog(self,	mode):

								if	self.finddlg:



												self.finddlg.Destroy()

								style	=	(wx.FR_NOUPDOWN|wx.FR_NOMATCHCASE

																	|wx.FR_NOWHOLEWORD)

								if	mode	==	wx.ID_REPLACE:

												style	|=	wx.FR_REPLACEDIALOG

												title	=	"Find/Replace"

								else:

												title	=	"Find"

								dlg	=	wx.FindReplaceDialog(self,	self.finddata,

																																			title,	style)

								self.finddlg	=	dlg

5.	 Now,	we	will	override	the	event	handler	to	show	the	dialog.	Execute	the	following
for	this:

				def	OnEdit(self,	event):

								if	event.Id	in	(wx.ID_FIND,	wx.ID_REPLACE):

												self._InitFindDialog(event.Id)

												self.finddlg.Show()

								else:

												super(TextEditorWithFind,	self).OnEdit(event)

6.	 Now	that	we	have	everything	in	place	to	show	FindReplaceDialog,	we	will	start
adding	event	handlers	for	the	buttons	on	the	dialog	through	the	following	code:

				def	OnFind(self,	event):

								findstr	=	self.finddata.GetFindString()

								if	not	self.FindString(findstr):

												wx.Bell()	#	beep	at	the	user	for	no	match

7.	 These	next	two	methods	handle	the	Replace	buttons	on	the	dialog:

				def	OnReplace(self,	event):

								rstring	=	self.finddata.GetReplaceString()

								fstring	=	self.finddata.GetFindString()

								cpos	=	self.GetInsertionPoint()

								start,	end	=	cpos,	cpos

								if	fstring:

												if	self.FindString(fstring):

																start,	end	=	self.txtctrl.GetSelection()

								self.txtctrl.Replace(start,	end,	rstring)

				def	OnReplaceAll(self,	event):

								rstring	=	self.finddata.GetReplaceString()

								fstring	=	self.finddata.GetFindString()

								text	=	self.txt.GetValue()

								newtext	=	text.replace(fstring,	rstring)

								self.txt.SetValue(newtext

8.	 When	the	dialog	is	closed,	it	sends	an	event;	we	will	use	an	event	handler	for	this
event	to	destroy	the	dialog,	as	follows:

				def	OnFindClose(self,	event):

								if	self.finddlg:

												self.finddlg.Destroy()

9.	 The	last	step	is	a	helper	function	that	finds	and	highlights	matches	in	the	text	control:



				def	FindString(self,	findstr):

								text	=	self.txt.GetValue()

								csel	=	self.txt.GetSelection()

								if	csel[0]	!=	csel[1]:

												cpos	=	max(csel)

								else:

												cpos	=	self.txt.GetInsertionPoint()

								if	cpos	==	self.txt.GetLastPosition():

												cpos	=	0

								#	Simple	case	insensitive	search

								text	=	text.upper()

								findstr	=	findstr.upper()

								found	=	text.find(findstr,	cpos)

								if	found	!=	-1:

												end	=	found	+	len(findstr)

												self.txt.SetSelection(end,	found)

												self.txt.SetFocus()

												return	True

								return	False



How	it	works…
The	FindReplaceDialog	dialog’s	appearance	is	controlled	by	the	flags	set	in
FindReplaceData,	which	is	passed	to	the	dialog’s	constructor.	We	kept	a	reference	to	this
data	because	the	dialog	also	uses	this	data	object	as	a	way	to	pass	information	about	the
kind	of	search	to	perform	back	on	the	parent	window:

The	data	entered	in	the	Find	what	or	Replace	with	field	is	copied	into	the
FindReplaceData	object	when	one	of	the	action	buttons	is	clicked	on	in	the	dialog.	For
example,	in	the	OnFind	event	handler	that	is	executed	when	the	Find	Next	button	is
clicked	on,	we	retrieved	the	search	string	that	is	entered	in	the	dialog	by	calling	the
GetFindString	method	of	FindReplaceData.	Then,	in	FindString,	we	used	the	current
cursor	position	as	a	starting	point	to	begin	the	search;	if	a	match	is	found,	the	method	will
set	the	selection	in	the	control	to	highlight	the	match	and	make	it	visible	to	the	user.



There’s	more…
In	this	recipe,	we	disabled	some	of	the	search	options	in	the	dialog	that	allow	the	user	to
specify	whether	the	search	is	for	Match	whole	word	only	and/or	Match	case.	When	these
options	are	available,	it	is	also	necessary	to	factor	them	in	to	how	the	search	is	performed.
In	order	to	check	whether	the	user	has	selected	either	of	these	options,	the
FindReplaceData	object’s	GetFlags	method	can	be	used	to	retrieve	a	bitmask	that	can	be
checked	to	see	which	options	were	selected	if	any.	Take	a	look	at	the	following	table:

Find	option
flags Description

wx.FR_DOWN The	down	option	is	selected,	and	the	search	should	be	done	going	toward	the	end	of	the	document

wx.FR_MATCHCASE The	Match	case	check	box	is	selected,	and	the	search	should	be	performed	as	case	sensitive

wx.FR_WHOLEWORD
The	Match	whole	word	only	check	box	is	selected,	and	the	search	should	be	performed	to	match
the	entire	word





Filtering	through	choices
Sometimes,	there	is	a	need	to	present	users	with	the	number	of	times	they	need	to	choose
some	or	all	of	the	items.	There	are	several	ways	to	perform	this	task,	one	of	which	is	using
the	ItemsPicker	control.	This	control	allows	presenting	a	list	of	choices	in	the	ListBox
control	and	filtering	them	into	another	ListBox	control	of	selections.	In	this	recipe,	we
will	see	how	to	make	use	of	ItemsPicker	to	select	from	a	group	of	choices.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	let’s	make	a	window	to	hold	the	ItemsPicker	control,	as	follows:

class	ListMaker(wx.Frame):

				def	__init__(self,	parent,	choices,	title):

								super(ListMaker,	self).__init__(parent,	title=title)

								style	=	IP.IP_REMOVE_FROM_CHOICES

								self.picker	=	IP.ItemsPicker(self,	choices=choices,	

																																					ipStyle=style)

								style	=	wx.TE_RICH2|wx.TE_MULTILINE

								self.txt	=	wx.TextCtrl(self,	style=style)

								self._DoLayout()

								self.picker.Bind(IP.EVT_IP_SELECTION_CHANGED,	

																									self.OnChange)

2.	 Next,	let’s	do	the	layout	of	ItemsPicker	and	TextCtrl	using	the	following	code:

				def	_DoLayout(self):

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.Add(self.picker,	1,	wx.EXPAND)

								sizer.Add(self.txt,	1,	wx.EXPAND)

								self.Sizer	=	sizer

								self.SetInitialSize()

3.	 For	the	last	step,	we	just	need	to	define	the	event	handler	for	when	the	selections
change	in	the	picker,	as	follows:

				def	OnChange(self,	event):

								msg	=	"Shopping	List:\n\n"

								items	=	"\n".join(event.GetItems())

								self.txt.Value	=	msg	+	items



How	it	works…
The	ItemsPicker	control	is	a	composite	control	made	up	of	a	panel	with	two	ListBox
controls	and	two	buttons.	The	choices	that	are	provided	to	the	control’s	constructor	are
filled	into	the	ListBox	control	on	the	left-hand	side	of	the	control.	Then,	any	selected
items	can	be	moved	to	the	selection’s	ListBox	control	on	the	right-hand	side.	The
Remove	button	can	be	used	to	move	selected	items	from	the	ListBox	control	on	the	right-
hand	side	back	to	the	unselected	items	on	the	left-hand	side.	Each	time	one	of	the	control’s
buttons	is	clicked	on,	the	control	emits	the	EVT_IP_SELECTION_CHANGED	event	to	notify	the
application	of	the	changes	in	the	state	of	the	control.	In	this	recipe,	we	used	the	event	to
update	the	shopping	list	in	TextCtrl	at	the	bottom	of	the	window.



There’s	more…
The	ItemsPicker	control	has	a	few	optional	style	flags	that	can	be	applied	to	modify	its
behavior.	Take	a	look	at	the	following	table:

Style	flag Description

IP_DEFAULT_STYLE
The	items	are	inserted	in	the	order	that	they	are	moved	and	copied	from	the	choices	box	to
the	selected	box	in

IP_SORT_CHOICES This	sorts	the	items	in	the	choice’s	ListBox	control

IP_SORT_SELECTED This	sorts	the	items	in	the	selected	ListBox	control

IP_REMOVE_FROM_CHOICES
This	removes	items	from	one	box	to	another	when	the	Add	or	Remove	buttons	are	clicked
on



See	also
Take	a	look	at	the	next	recipe	in	this	chapter,	Retrieving	multiple	selections,	for
another	way	to	request	and	retrieve	multiple	choices	from	a	user





Retrieving	multiple	selections
For	a	quick	and	ready-to-use	way	to	pop	up	and	retrieve	multiple	selections	from	a	user,
MultiChoiceDialog	can	be	used	to	provide	a	simple	and	quick	way	for	users	to	select
multiple	items	by	enabling	checkboxes	next	to	items	in	a	list.	The	use	of	checkboxes
provides	a	simple	way	for	users	to	make	selections	without	having	to	perform
multiselections	using	the	Shift	or	Ctrl	keys	when	clicking	on	items	in	the	list.	So,	in	this
recipe,	we	will	use	MultiChoiceDialog	to	request	the	user	to	provide	a	list	of	the	bitmap
resources	that	they	would	like	to	see	displayed	in	the	application.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	let’s	make	a	simple	panel	that	we	will	use	to	display	the	chosen	bitmaps	with,
as	follows:

class	BitmapPanel(wx.Panel):

				def	__init__(self,	parent):

								super(BitmapPanel,	self).__init__(parent)

								sizer	=	wx.WrapSizer(wx.HORIZONTAL)

								self.Sizer	=	sizer

				def	AddBitmap(self,	artID):

								bmp	=	wx.ArtProvider.GetBitmap(artID)

								sbmp	=	wx.StaticBitmap(self,	bitmap=bmp)

								self.Sizer.Add(sbmp,	0,	wx.ALL,	8)

								self.Layout()

2.	 Next,	we	will	make	a	panel	to	contain	BitmapPanel	and	a	Button	using	the	following
code:

class	MainPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MainPanel,	self).__init__(parent)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								self.panel	=	BitmapPanel(self)

								sizer.Add(self.panel,	1,	wx.EXPAND)

								button	=	wx.Button(self,	label="Pick	Images")

								sizer.Add(button,	0,	wx.ALIGN_CENTER_HORIZONTAL)

								button.Bind(wx.EVT_BUTTON,	self.OnGetChoices)

								self.Sizer	=	sizer

3.	 Now,	let’s	define	the	event	handler	to	show	MuliChoiceDialog	and	get	the	choices
from	the	user	through	the	following	script:

				def	OnGetChoices(self,	event):

								msg	=	"Pick	the	are	resources	to	view."

								ids	=	[	x	for	x	in	dir(wx)	

															if	x.startswith("ART_")	]

								dlg	=	wx.MultiChoiceDialog(self,	msg,	

																																			"Pick	Images",	ids)

								if	(dlg.ShowModal()	==	wx.ID_OK):

												for	selection	in	dlg.GetSelections():

																theId	=	getattr(wx,	ids[selection])

																self.panel.AddBitmap(theId)

4.	 For	the	last	step,	let’s	wrap	up	MainPanel	into	a	Frame:

class	BitmapViewer(wx.Frame):

				def	__init__(self,	parent,	title):

								super(BitmapViewer,	self).__init__(parent,	

																																											title=title)



								sizer	=	wx.BoxSizer(wx.VERTICAL)

								self.panel	=	MainPanel(self)

								sizer.Add(self.panel,	1,	wx.EXPAND)

								self.Sizer	=	sizer



How	it	works…
MultiChoiceDialog	takes	a	list	of	strings	to	display	in	a	list.	Each	of	the	items	in	the	list	is
displayed	with	a	checkbox	that	can	be	clicked	on	to	select	it.	In	this	recipe,	we	populated
the	dialog	with	all	of	the	art	resource	IDs	that	are	built	into	the	wxPython	library.	When
the	dialog	is	displayed,	the	user	can	select	the	art	resource	that	they	would	like	to	view	in
the	main	window	of	the	application:

An	important	point	to	note	is	that	it	is	necessary	to	keep	a	reference	to	the	list	of	strings
that	were	passed	into	the	dialog,	as	was	done	in	the	OnGetChoices	method.	This	is
necessary	as	the	GetSelections	method	of	the	dialog	only	returns	the	indexes	of	the
selected	items	and	not	the	actually	selected	values.	So,	after	retrieving	the	selected
indexes,	we	must	use	the	indexes	to	get	the	values	from	the	source’s	list	of	choices.

After	getting	all	the	selected	art	resource	IDs,	they	are	used	to	look	up	the	bitmap
resources	from	ArtProvider	and	then	put	them	into	the	StaticBitmap	controls	to	be
displayed	in	the	BitmapPanel	class.



There’s	more…
Selections	in	the	dialog	can	be	preselected	before	showing	the	dialog	using	the	dialog’s
SetSelections	method.	This	method	takes	a	list	of	index	values	to	select.	Each	item	in
the	list	specifies	the	index	of	an	item	in	the	list	of	choices	that	should	have	its	checkbox
selected.



See	also
Refer	to	the	Showing	MessageBox	recipe	in	Chapter	6,	Ways	to	Notify	and	Alert,	for	a
recipe	about	the	standard	MessageBox	dialog





Using	Print	dialogs
Adding	printing	support	to	an	application	can	be	a	difficult	task,	as	there	are	a	number	of
tasks	that	need	to	be	handled.	These	include	selecting	and	configuring	a	printer,	translating
your	on-screen	presentation	to	paper	and	ultimately	sending	the	data	to	the	printer.

In	wxPython,	there	are	three	dialog	classes	related	to	printing:	PageSetupDialog,
PreviewFrame,	and	Printer.	In	addition	to	these,	there	are	a	number	of	supporting	classes
that	must	be	used	in	conjunction	with	these	dialogs	in	order	to	add	printing	support	to	an
application.	This	recipe	shows	some	of	the	basics	of	how	to	use	the	wxPython	printing
framework	by	creating	a	class	that	encapsulates	the	usage	of	the	three	printing	dialogs	and
allows	an	application	to	print	a	bitmap.



How	to	do	it…
Here	are	the	steps	to	perform	in	this	recipe:

1.	 First,	we	will	make	a	subclass	of	wx.Printout.	This	object	is	used	by	the	print
framework	to	control	how	the	printout	is	rendered	to	the	media,	as	follows:

class	BitmapPrintout(wx.Printout):

				def	__init__(self,	bmp,	data):

								super(BitmapPrintout,	self).__init__()

								self.bmp	=	bmp

								self.data	=	data

2.	 Next,	there	are	some	virtual	methods	that	we	need	to	override	in	Printout.	These
first	two	methods	are	used	by	the	framework	to	query	information	about	the	print	job.
They	are	quite	simple	here	as	we	will	only	support	single-page	printing	in	this	recipe,
as	follows:

				def	GetPageInfo(self):

								#	min,	max,	from,	to

								return	(1,	1,	1,	1)

				def	HasPage(self,	page):

								return	page	==	1

3.	 Now,	to	finish	up	this	class,	we	need	to	override	the	OnPrint	method	to	render	the
page:

				def	OnPrintPage(self,	page):

								dc	=	self.GetDC()

								bmpW,	bmpH	=	self.bmp.GetSize()

								#	Check	if	we	need	to	scale	the	bitmap	to	fit

								self.MapScreenSizeToPageMargins(self.data)

								rect	=	self.GetLogicalPageRect()

								w,	h	=	rect.width,	rect.height

								if	(bmpW	>	w)	or	(bmpH	>	h):

												#	Image	is	large	so	apply	some	scaling

												self.FitThisSizeToPageMargins((bmpW,	bmpH),

																																										self.data)

												x,	y	=	0,	0

								else:

												#	try	to	center	it

												x	=	(w	-	bmpW)	/	2

												y	=	(h	-	bmpH)	/	2

								#	Draw	the	bitmap	to	DC

								dc.DrawBitmap(self.bmp,	x,	y)

								return	True

4.	 With	the	Printout	object	defined,	let’s	now	make	a	helper	class	to	manage	the	print
dialogs	and	data:



class	BitmapPrinter(object):

				def	__init__(self,	parent):

								super(BitmapPrinter,	self).__init__()

								self.parent	=	parent

								self.print_data	=	wx.PrintData()

5.	 This	next	method	is	a	helper	method	to	create	the	Printout	object	for	use	by	the
print	dialogs:

				def	CreatePrintout(self,	bmp):

								assert	bmp.IsOk(),	"Invalid	Bitmap!"

								data	=	wx.PageSetupDialogData(self.print_data)

								return	BitmapPrintout(bmp,	data)

6.	 Now,	we	can	get	to	using	PageSetupDialog	through	the	following	code:

				def	PageSetup(self):

								#	Make	a	copy	of	our	print	data	for	the	setup	dialog

								dlg_data	=	wx.PageSetupDialogData(self.print_data)

								print_dlg	=	wx.PageSetupDialog(self.parent,	dlg_data)

								if	print_dlg.ShowModal()	==	wx.ID_OK:

												#	Update	the	printer	data

												newdata	=	dlg_data.GetPrintData()

												self.print_data	=	wx.PrintData(newdata)

												paperid	=	dlg_data.GetPaperId()

												self.print_data.SetPaperId(paperid)

								print_dlg.Destroy()

7.	 Next,	let’s	add	a	function	to	show	PreviewFrame,	as	follows:

				def	Preview(self,	bmp):

								printout	=	self.CreatePrintout(bmp)

								printout2	=	self.CreatePrintout(bmp)

								preview	=	wx.PrintPreview(printout,	printout2,

																																		self.print_data)

								preview.SetZoom(100)

								if	preview.IsOk():

												pre_frame	=	wx.PreviewFrame(preview,

																																								self.parent,

																																								"Print	Preview")

												#	Default	size	of	the	preview	frame	needs	help

												dsize	=	wx.GetDisplaySize()

												width	=	self.parent.GetSize()[0]

												height	=	dsize.GetHeight()	-	100

												pre_frame.SetInitialSize((width,	height))

												pre_frame.Initialize()

												pre_frame.Show()

								else:

												wx.MessageBox("Failed	to	create	print	preview",

																										"Print	Error",

																										style=wx.ICON_ERROR|wx.OK)

8.	 The	last	part	to	wrap	up	this	helper	class	is	a	method	to	show	the	Print	dialog:

				def	Print(self,	bmp):

								pdd	=	wx.PrintDialogData(self.print_data)



								printer	=	wx.Printer(pdd)

								printout	=	self.CreatePrintout(bmp)

								result	=	printer.Print(self.parent,	printout)

								if	result:

												#	Store	copy	of	print	data	for	future	use

												dlg_data	=	printer.GetPrintDialogData()

												newdata	=	dlg_data.GetPrintData()

												self.print_data	=	wx.PrintData(newdata)

								elif	printer.GetLastError()	==	wx.PRINTER_ERROR:

												wx.MessageBox("Printer	error	detected.",

																										"Printer	Error",

																										style=wx.ICON_ERROR|wx.OK)

								printout.Destroy()



How	it	works…
The	BitmapPrinter	class	encapsulates	the	three	main	print-related	tasks	that	an
application	may	need	to	support:	printer	setup,	print	preview,	and	printing.	This	class	is
the	interface	that	any	application	wanting	to	allow	printing	bitmaps	would	use	for	all	of	its
printing	needs.	All	that	the	application	requires	is	a	bitmap,	and	all	that	it	needs	to	do	is	to
use	one	of	the	three	methods:	PageSetup,	Preview,	and	Print.	So,	let’s	take	a	look	at	how
this	class	and	these	three	methods	work.

The	constructor	takes	one	argument	for	a	parent	window.	This	is	used	as	the	parent
window	for	all	the	dialogs.	This	will	typically	be	an	application’s	main	window.	We	will
also	create	and	store	a	reference	to	a	PrintData	object	in	the	constructor.	All	print	dialogs
use	PrintData	in	one	form	or	another	as	a	way	to	pass	around	and	retrieve	the	settings	to
be	used	in	the	print	job.	This	allows	us	to	save	any	print	configuration	changes	a	user	may
make	while	using	one	of	the	dialogs.

The	PageSetup	method	is	used	to	create	and	show	PageSetupDialog.	To	use
PageSetupDialog,	we	will	first	create	a	PageSetupDialogData	object	by	passing	our
PrintData	object	to	its	constructor,	so	it	will	use	any	settings	that	may	already	be
persisted	in	our	data	object.	We	will	then	simply	create	the	dialog	by	passing	in	the
PageSetupDialogData	object.	If	the	dialog	is	closed	by	the	OK	button,	we	would	then	get
PrintData	from	the	dialog	and	make	a	copy	of	it	to	store.	It	is	important	to	make	a	copy
because	when	PageSetupDialog	is	destroyed,	it	will	delete	the	data.

The	Preview	method	creates	a	preview	of	what	the	printout	will	look	like	and	shows	it
with	PreviewFrame.	PreviewFrame	requires	a	PrintPreview	object.	To	create	the
PrintPreview	object,	it	must	be	passed	two	Printout	objects	and	a	PrintData	object.	A
Printout	object	does	the	actual	work	of	rendering	what	will	be	printed	by	the	printer.	We
will	come	back	to	the	details	of	how	printout	works	when	we	get	to	our	BitmapPrintout
class.	The	first	Printout	object	is	used	for	PreviewFrame,	and	the	second	one	is	used	for
the	actual	printing	if	the	user	clicks	on	the	Print	button	of	PreviewFrame.

The	Print	method	creates	a	printer	object	that	will	show	the	printer	dialog	when	its
Print	method	is	called.	As	with	the	Preview	object,	the	printer	object	is	created	with
some	PrintData	and	an	instance	of	a	printout	object.	When	the	Print	dialog’s	Print
button	is	clicked	on,	it	uses	the	printout	object	to	tell	the	physical	printer	what	to	draw
on	the	paper.

The	BitmapPrintout	class	implements	a	printout	object	that	is	used	to	print	a	single
bitmap	on	a	single	sheet	of	paper	at	a	time.	The	printout	objects	must	always	be
subclassed	in	order	to	implement	the	application-specific	requirements	of	the	data	that
needs	to	be	printed	as	the	base	class	only	provides	an	interface	of	virtual	methods	to	be
overriden	in	the	subclass.	In	our	class,	we	overrode	three	methods:	GetPageInfo,	HasPage,
and	OnPrintPage.	The	first	two	are	used	to	return	information	about	the	number	of	pages
that	will	be	printed;	as	we	are	only	supporting	one	page,	these	are	quite	trivial	in	this
recipe.	The	OnPrintPage	method	does	the	actual	drawing	on	the	printer’s	device	context.
This	method	gets	called	to	do	the	drawing	of	each	page	that	will	be	printed.



The	drawing	of	the	printout	object	is	done	using	the	device	context	object	returned	by
the	call	to	GetDC.	The	use	of	device	contexts	is	covered	in	detail	in	Chapter	8,	User
Interface	Primitives;	so,	just	to	keep	things	simple,	all	we	did	here	was	set	the	scale	of	the
canvas	calculations	to	try	and	center	the	image	on	the	paper	and	then	use	DC’s
DrawBitmap	method	to	draw	the	bitmap	to	the	device	context.	For	an	example	of	the
BitmapPrinter	class	in	action,	refer	to	the	sample	code	that	accompanies	this	chapter.



There’s	more…
Take	a	look	at	the	example	code	that	comes	with	this	chapter	for	an	example	that	shows
how	to	use	BitmapPrinter	in	a	sample	application.	Try	and	extend	this	example	to
support	printing	multiple	pages	by	allowing	more	than	one	image	to	be	selected	and
overriding	some	of	the	additional	virtual	methods	in	your	Printout	class.	The
OnPreparePrinting	method	can	be	overridden	and	used	to	calculate	how	many	pages	the
job	may	have	based	on	the	contents.



See	also
Refer	to	Chapter	8,	User	Interface	Primitives,	for	more	information	on	how	to	use
DeviceContexts





Guiding	selections	with	Wizard
Sometimes,	it	is	necessary	to	guide	a	user	through	a	series	of	actions	to	complete	some
choices.	Wizard	provides	a	way	to	accomplish	this	task	by	chaining	a	number	of	panels
together	in	a	special	dialog	that	guides	users	through	a	series	of	sequential	choices.	In	this
recipe,	we	will	take	a	look	at	what	it	takes	to	put	together	a	Wizard	dialog	in	the	wxPython
framework.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	need	to	import	an	extra	submodule	to	get	access	to	the	Wizard	classes,	as
follows:

import	wx

import	wx.wizard	as	WIZ

2.	 Next,	let’s	make	a	base	class	to	use	for	the	pages	in	the	custom	Wizard	class	that	we
will	make:

class	PageBase(WIZ.WizardPageSimple):

				def	__init__(self,	parent,	title):

								super(PageBase,	self).__init__(parent)

								

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								label	=	wx.StaticText(self,	label=title)

								font	=	wx.Font(18,	wx.SWISS,	wx.NORMAL,	wx.BOLD)

								label.SetFont(font)

								sizer.Add(label,	0,	wx.ALIGN_CENTER)

								line	=	wx.StaticLine(self)

								sizer.Add(line,	0,	wx.EXPAND|wx.ALL,	5)

								self.Sizer	=	sizer

				def	IsValid(self):

								return	True

3.	 Now,	we	will	make	one	more	page	class	that	has	an	input	field	to	capture	the
responses	from	the	user:

class	QuestionPage(PageBase):

				def	__init__(self,	parent,	title):

								super(QuestionPage,	self).__init__(parent,	title)

								self.field	=	wx.TextCtrl(self)

								self.Sizer.Add(self.field,	0,	wx.ALL|wx.EXPAND,	5)

				def	IsValid(self):

								val	=	self.field.Value.lower()

								if	not	val	or	"	dont	"	in	val:

												return	False

								return	super(QuestionPage,	self).IsValid()

4.	 The	next	step	is	to	start	defining	our	Wizard	class,	as	follows:

class	MyWizard(WIZ.Wizard):

				def	__init__(self,	parent,	title):

								bmp	=	wx.Bitmap("Monty_python_foot.gif")

								super(MyWizard,	self).__init__(parent,	

																																							title=title,	

																																							bitmap=bmp)

								self._pages	=	list()

								self._SetupPages()

								



								self.Bind(WIZ.EVT_WIZARD_PAGE_CHANGING,

																		self.OnChanging)

5.	 This	next	function	sets	up	all	the	pages	in	Wizard	and	links	them	together:

				def	_SetupPages(self):

								page1	=	QuestionPage(self,	"What	is	your	Name?")

								self._pages.append(page1)

								page2	=	QuestionPage(self,	"What	is	your	Quest?")

								self._pages.append(page2)

								WIZ.WizardPageSimple.Chain(page1,	page2)

								q3	=	"What	is	your	Favorite	Color?"

								page3	=	QuestionPage(self,	q3)

								self._pages.append(page3)

								WIZ.WizardPageSimple.Chain(page2,	page3)

6.	 This	event	handler	is	used	to	see	whether	the	request	on	the	current	page	has	been
successfully	entered	by	the	user:

				def	OnChanging(self,	event):

								if	not	event.Page.IsValid():

												event.Veto()

												wx.MessageBox("Into	the	Volcano!",	"Fail!")

												self.Close()

								elif	event.Page.GetNext()	is	None:

												wx.MessageBox("Go	on.	Off	you	go.",	"Success!")

7.	 For	the	last	step,	we	will	add	a	convenience	method	to	start	the	Wizard	by	using	the
following	code:

				def	Run(self):

								firstPage	=	self._pages[0]

								self.FitToPage(firstPage)

								return	self.RunWizard(firstPage)



How	it	works…
As	can	be	seen	in	the	following	screenshot,	the	pages	are	displayed	in	the	area	to	the	right
of	the	bitmap	and	above	the	buttons.	The	rest	of	the	area	is	a	part	of	the	Wizard	dialog:

The	Wizard	dialog	is	initialized	by	being	given	a	starting	page	to	run	from;	each	of	the
pages	that	it	can	navigate	to	are	discovered	through	GetNext/GetPrev	interface	methods	of
WizardPage.	When	the	Wizard	dialog’s	Next	or	Back	buttons	are	clicked	on,	it	queries	the
current	page	to	find	which	page	should	be	navigated	to.	Once	it	finds	the	last	page	in	the
chain,	the	Next	button	becomes	a	Finish	button	to	exit	Wizard.

In	our	PageBase	class,	we	added	an	additional	IsValid	interface	method	that	our
OnPageChanging	method	uses	to	check	whether	the	user	entered	a	valid	answer	to	the
question.	If	a	valid	answer	is	entered,	then	the	page	change	is	allowed	to	continue;
otherwise,	a	failure	message	is	displayed	and	Wizard	is	closed.



There’s	more…
If	you	find	yourself	needing	more	control	over	how	the	pages	transition,	such	as	allowing
pages	to	be	skipped	or	dynamically	changing	the	content	of	the	pages,	you	can	derive	your
Wizard	pages	from	PyWizardPage,	which	has	virtual	versions	of	the	navigation	methods
that	can	be	overridden	to	dynamically	decide	which	pages	are	next	or	to	modify	the
contents	of	the	next	page.





Chapter	8.	User	Interface	Primitives
In	this	chapter,	we	will	cover:

Painting	in	your	UI
Drawing	basic	shapes
Customizing	grid	labels
Drawing	gradients	with	GraphicsContext
Recreating	native	controls	with	RendererNative



Introduction
At	times,	you	may	find	yourself	running	into	needs	in	your	application	that	cannot	be
solved	in	the	way	you	want	by	any	of	the	default	controls	provided	by	the	library.
Alternatively,	there	may	be	cases	where	the	control	works	but	doesn’t	fit	the	look	and	feel
you	wish	to	provide	in	your	application.	This	is	where	the	use	of	user	interface	primitives
comes	in;	these	primitives	are	the	basic	drawing	routines	that	are	used	to	draw	and	display
all	of	the	visible	content	of	the	graphical	user	interface	on	screen.

The	wxPython	library	provides	access	to	a	number	of	classes	that	can	be	used	to	draw
custom	displays	on	screen.	These	functions	include	DeviceContexts,	pens,	brushes,	colors,
and	a	number	of	other	high-level	functions	that	allow	you	to	create	and	draw	whatever	you
like	on	a	canvas	or,	in	some	cases,	even	provide	custom	renders	to	customize	the	existing
controls.	In	this	chapter,	we	will	take	an	overview	of	how	to	use	DeviceContexts	to	draw
custom	controls	and	graphics	on	screen.





Painting	in	your	UI
All	the	controls	that	are	visible	on	screen	are	created	by	being	painted	to	DeviceContext.
wxPython	offers	the	EVT_PAINT	event	to	allow	user	codes	to	paint	their	own	custom
displays	on	a	canvas,	such	as	a	window,	control,	or	panel.	With	this	level	of	control	on
how	the	UI	is	painted,	your	imagination	is	the	limit;	however,	in	this	recipe,	we	will	start
simple	with	just	the	basics	of	using	EVT_PAINT	and	PaintDC.	We	will	use	these	features	to
make	a	custom	panel	control	that	can	use	bitmaps	as	its	background.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 First,	let’s	start	by	defining	the	custom	Panel	class	that	will	use	a	bitmap	for	the
background,	as	follows:

class	ImageBackground(wx.Panel):

				def	__init__(self,	parent,	bitmap):

								super(ImageBackground,	self).__init__(parent)

								self.bitmap	=	bitmap

								self.width	=	bitmap.Size.width

								self.height	=	bitmap.Size.height

								self.Bind(wx.EVT_PAINT,	self.OnPaint)

2.	 Next,	we	will	define	the	OnPaint	event	handler,	which	will	draw	the	bitmap	on	the
panel:

				def	OnPaint(self,	event):

								dc	=	wx.PaintDC(self)

								w,	h	=	self.Size

								cols	=	(w	/	self.width)	+	1

								rows	=	(h	/	self.height)	+	1

								x	=	y	=	0

								#	Tile	the	image	on	the	background

								for	r	in	range(rows):

												for	c	in	range(cols):

																dc.DrawBitmap(self.bitmap,	x,	y,	True)	

																x	+=	self.width

												y	+=	self.height

												x	=	0

3.	 Now	that	we	have	the	custom	panel	defined,	let’s	put	it	to	use	by	making	a	subclass
of	it:

class	BinaryInput(ImageBackground):

				def	__init__(self,	parent,	bmp):

								super(BinaryInput,	self).__init__(parent,	bmp)

								self._DoLayout()

								self.Bind(wx.EVT_BUTTON,	self.OnButton)

4.	 Next,	it’s	time	to	do	the	layout	on	the	panel:

				def	_DoLayout(self):

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								self.txt	=	wx.TextCtrl(self,	style=wx.TE_MULTILINE)

								sizer.Add(self.txt,	0,	wx.EXPAND|wx.ALL,	5)

								hsizer	=	wx.BoxSizer()

								hsizer.AddStretchSpacer()

								btn0	=	wx.Button(self,	label="0")



								btn1	=	wx.Button(self,	label="1")

								hsizer.AddMany([(btn0,),	((20,	20),),	(btn1,)])

								hsizer.AddStretchSpacer()

								sizer.Add(hsizer,	0,	wx.EXPAND)

								self.Sizer	=	sizer

5.	 Next,	let’s	make	an	event	handler	for	the	button,	as	follows:

				def	OnButton(self,	event):

								obj	=	event.EventObject

								lbl	=	obj.Label

								self.txt.AppendText(lbl)

6.	 For	the	last	step,	let’s	wrap	the	panel	up	in	a	frame	and	set	it	up	with	a	bitmap	to	use
for	the	background.	Use	the	following	code	for	this:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title):

								super(MyFrame,	self).__init__(parent,	title=title)

								sizer	=	wx.BoxSizer()

								bmp	=	wx.Bitmap("binary.png")

								self.panel	=	BinaryInput(self,	bmp)

								sizer.Add(self.panel,	1,	wx.EXPAND)

								self.Sizer	=	sizer

								self.SetInitialSize((400,	200))



How	it	works…
As	can	be	seen	in	the	following	screenshot,	a	panel	is	displayed	with	a	custom	background
that	is	created	from	a	bitmap,	which	was	given	to	the	ImageBackground	class	that	we
made	at	the	beginning	of	this	recipe:

The	important	point	to	take	note	of	in	this	recipe	is	the	use	of	the	EVT_PAINT	event	and	the
OnPaint	function	that	we	defined.	When	using	EVT_PAINT,	it	is	required	to	create	PaintDC
in	the	event	handler	that	is	bound	to	it.	Failing	to	do	so	will	result	in	an	error	on	some
platforms.	Inside	OnPaint,	we	do	some	simple	calculations	to	see	how	many	times	we
need	to	tile	and	repeat	the	image	on	the	background	to	fill	the	space.	Then,	in	the	loop,	we
will	use	the	DrawBitmap	method	of	PaintDC	to	draw	a	bitmap	at	a	given	point	on	the
panel.

The	point	is	represented	by	an	x	and	y	coordinate	system	on	the	two-dimensional	plane.
This	point	is	where	the	upper-left	corner	of	the	bitmap	will	be	drawn	from;	using	this,	we
can	draw	one	column	of	the	bitmap	at	a	time	by	moving	the	x	position	over	by	the	width
of	the	bitmap,	and	it	needs	to	be	repeated	each	time.	Then,	we	can	continue	down	for	each
row	the	same	way	by	moving	the	y	position	by	the	height	of	the	bitmap.

The	OnPaint	event	handler	gets	called	automatically	every	time	the	framework	detects
that	the	screen	should	be	redrawn.	This	happens,	for	example,	every	time	the	window	is
resized	or	something	is	dragged	over	the	top	of	the	window.



See	also
Refer	to	the	next	recipe	in	this	chapter,	Drawing	basic	shapes,	for	some	more
examples	of	the	functionality	a	DeviceContext	such	as	PaintDC	can	provide





Drawing	basic	shapes
The	DeviceContext	API	in	wxPython	provides	several	methods	to	draw	different	kinds	of
shapes.	These	primitive	shapes	can	be	used	as	the	basis	for	creating	controls,	animations,
and	anything	else	that	you	may	want	to	draw	on	the	screen.	In	this	recipe,	we	will	use
several	DeviceContext	drawing	routines	in	order	to	paint	a	little	scene	on	a	panel.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	let’s	set	up	a	panel	to	use	as	the	canvas	for	the	little	scene	that	we	will	draw	in
this	recipe,	as	follows:

import	wx

class	Canvas(wx.Panel):

				def	__init__(self,	parent):

								super(Canvas,	self).__init__(parent)

								self.Bind(wx.EVT_PAINT,	self.OnPaint)

								self.Bind(wx.EVT_ERASE_BACKGROUND,	self.OnBackground)

2.	 Now,	we	will	define	the	EVT_ERASE_BACKGROUND	handler	to	fill	the	background:

				def	OnBackground(self,	event):

								sky	=	wx.TheColourDatabase.FindColour("SKY	BLUE")

								event.DC.SetBrush(wx.Brush(sky))

								event.DC.DrawRectangleRect(self.Rect)

3.	 Next,	we	will	define	the	EVT_PAINT	handler	to	draw	the	shapes	to	make	up	the	simple
scene	that	we	will	draw	in	this	recipe:

				def	OnPaint(self,	event):

								dc	=	wx.PaintDC(self)

								w,	h	=	self.Size

								self.DrawSun(dc,	h,	w)

								self.DrawGrass(dc,	h,	w)

								self.DrawStopSign(dc,	h,	w)

4.	 The	DrawSun	method	here	shows	you	how	to	draw	a	circle:

				def	DrawSun(self,	dc,	h,	w):

								dc.SetBrush(wx.YELLOW_BRUSH)

								dc.SetPen(wx.RED_PEN)

								dc.DrawCircle(w	-	55,	55,	50)

5.	 The	DrawGrass	method	here	uses	a	filled	rectangle	to	represent	the	grass:

				def	DrawGrass(self,	dc,	h,	w):

								dc.SetBrush(wx.GREEN_BRUSH)

								dc.SetPen(wx.GREEN_PEN)

								dc.DrawRectangle(0,	h	-	75,	w,	75)

6.	 For	the	last	step,	we	will	draw	a	stop	sign	with	the	DrawPolygon	method:

				def	DrawStopSign(self,	dc,	h,	w):

								dc.SetBrush(wx.RED_BRUSH)

								dc.SetPen(wx.BLACK_PEN)

								dc.DrawPolygon([(70,	190),	(70,	215),	(85,	230),	

																								(110,	230),	(125,	215),	(125,	190),

																								(110,	175),	(85,	175)])

								dc.SetTextForeground(wx.WHITE)



								dc.DrawText("STOP",	80,	193)

								dc.DrawLine(97,	230,	97,	h	-	75)



How	it	works…
The	EVT_ERASE_BACKGROUND	event	is	fired	when	the	PaintDC	object	is	created	in	the
EVT_PAINT	handler.	It	allows	the	window	to	paint	the	background	before	the	contents.	We
used	DrawRectangleRect	to	fill	the	background	with	a	light	blue	color.

Then,	once	OnBackground	completes	its	work,	the	OnPaint	method	will	continue	to
execute.	In	each	of	the	methods,	we	can	get	a	look	at	some	of	the	ways	to	draw	different
shapes.	Starting	in	DrawSun,	we	set	Brush	and	Pen	on	the	PaintDC	object;	Brush	will	be
used	to	fill	the	shape,	and	Pen	will	be	used	to	draw	the	outline.	Using	the	built-in
DrawCircle	method,	all	that	is	required	are	the	x	and	y	coordinates	for	where	the	center	of
the	circle	should	be	placed	on	the	panel	and	then	to	give	the	radius	of	the	circle	to	draw	it.

Moving	on	to	DrawGrass,	we	changed	which	Brush	and	Pen	were	in	use	in	order	to	draw	a
rectangle	to	represent	the	grass	in	the	scene.	Then,	as	a	way	to	show	how	to	draw	more
complex	shapes,	we	used	the	DrawPolygon	method	to	draw	a	stop	sign	in	the
DrawStopSign	method.	The	DrawPolygon	method	takes	a	list	of	points	in	the	(x,	y)
coordinate	system	and	then	draws	a	line	to	connect	the	points	from	the	first	to	last.	Finally,
we	used	the	DrawText	and	DrawLine	methods	to	finish	up	the	sign	by	adding	the	label	and
signpost.



There’s	more…
The	PaintDC	object	has	several	other	drawing	methods	that	can	be	used	to	draw	different
shapes	or	effects.	Take	a	look	at	the	following	table:

Method	name Description

DrawArc This	draws	an	arc	of	a	circle	centered	on	a	point

DrawBitmap This	draws	a	bitmap	with	its	upper-left	corner	at	a	given	point

DrawCheckMark This	draws	a	check	mark

DrawEllipse This	draws	an	ellipse

DrawImageLabel This	draws	a	bitmap	and	then	a	text	label	on	top	of	it

DrawPoint This	draws	a	point	(dot)	at	a	given	coordinate

DrawRotatedText This	draws	text	at	a	rotated	angle

DrawRoundedRectangle This	draws	a	rectangle	with	rounded	corners

DrawSpline This	draws	a	spline	between	a	series	of	points





Customizing	grid	labels
Many	owner-drawn	controls,	such	as	grid,	allow	client	code	to	override	or	customize	the
look	of	the	control	by	installing	custom	renderers.	This	is	possible	because	the	controls	are
owner	drawn	in	the	wx	framework	and	not	by	the	underlying	system	toolkit.	Also,	the	Grid
control	itself	provides	a	wide	array	of	options	for	customization.	In	this	recipe,	we	will
take	a	look	at	the	GridWithLabelRendererMixin	class	to	discuss	a	convenient	way	to
customize	how	row	and	column	labels	are	rendered	in	the	Grid	control.



Getting	ready
This	recipe	will	assume	that	you	are	familiar	with	the	basics	of	using	a	DeviceContext,	so
if	you	haven’t	already,	you	may	want	to	take	a	quick	review	of	the	earlier	recipes	in	this
chapter.



How	to	do	it…
Perform	the	following	for	this	recipe:

1.	 First,	let’s	look	at	the	imports	we	need	and	define	a	grid	class	that	uses	the	mixin.
Run	the	following	code:

import	wx

import	wx.grid	as	gridlib

import	wx.lib.mixins.gridlabelrenderer	as	glr

class	FancyGrid(gridlib.Grid,	glr.GridWithLabelRenderersMixin):

				def	__init__(self,	parent):

								gridlib.Grid.__init__(self,	parent)

								glr.GridWithLabelRenderersMixin.__init__(self)

2.	 Next,	we	will	define	a	custom	render	to	use	on	the	row	labels,	as	follows:

class	FancyRowLabelRenderer(glr.GridLabelRenderer):

				def	__init__(self,	color):

								super(FancyRowLabelRenderer,	self).__init__()

								self.color	=	color

				def	Draw(self,	grid,	dc,	rect,	row):

								dc.SetBrush(wx.Brush(self.color))

								dc.DrawRoundedRectangleRect(rect,	-0.4)

								text	=	grid.GetRowLabelValue(row)

								hAlign,	vAlign	=	grid.GetRowLabelAlignment()

								self.DrawText(grid,	dc,	rect,	text,	hAlign,	vAlign)

3.	 Similarly,	we	will	also	define	a	render	to	customize	the	column	labels:

class	FancyColLabelRenderer(glr.GridLabelRenderer):

				def	__init__(self,	color):

								super(FancyColLabelRenderer,	self).__init__()

								self.color	=	color

								

				def	Draw(self,	grid,	dc,	rect,	col):

								dc.SetBrush(wx.Brush(self.color))

								dc.DrawRoundedRectangleRect(rect,	-0.4)

								text	=	grid.GetColLabelValue(col)

								hAlign,	vAlign	=	grid.GetColLabelAlignment()

								self.DrawText(grid,	dc,	rect,	text,	hAlign,	vAlign)

4.	 To	finish	up	the	renders,	we	will	define	one	more	to	control	how	the	corner	cell	is
displayed,	as	follows:

class	FancyCornerLabelRenderer(glr.GridLabelRenderer):

				def	__init__(self,	color):

								super(FancyCornerLabelRenderer,	self).__init__()

								self.color	=	color

				def	Draw(self,	grid,	dc,	rect,	rc):

								dc.SetBrush(wx.Brush(self.color))

								dc.DrawRectangleRect(rect)

								bmp	=	wx.ArtProvider.GetBitmap(wx.ART_HARDDISK)



								x	=	rect.left	+	(rect.width	-	bmp.Width)	/	2

								y	=	rect.top	+	(rect.height	-	bmp.Height)	/	2

								dc.DrawBitmap(bmp,	x,	y,	True

)

5.	 Now,	for	the	last	step,	let’s	take	a	look	at	how	to	put	it	all	together:

class	GridPanel(wx.Panel):

				def	__init__(self,	parent):

								super(GridPanel,	self).__init__(parent)

								self.grid	=	FancyGrid(self)

								squareGrid	=	5

								self.grid.CreateGrid(squareGrid,	squareGrid)

								#	Assign	our	custom	corner	renderer

								corRender	=	FancyCornerLabelRenderer("#FF6666")

								self.grid.SetCornerLabelRenderer(corRender)

								#	Assign	column	and	row	renderers

								rowRender	=	FancyRowLabelRenderer("#6666FF")

								self.grid.SetDefaultRowLabelRenderer(rowRender)

								colRender	=	FancyColLabelRenderer("#66FF66")

								self.grid.SetDefaultColLabelRenderer(colRender)

								self.Sizer	=	wx.BoxSizer()

								self.Sizer.Add(self.grid,	1,	wx.EXPAND)



How	it	works…
The	GridWithLabelRenderersMixin	class	adds	several	methods	to	the	grid	to	simplify	the
applying	of	renderers	to	the	labels	of	the	grid.	It	allows	us	to	assign	renderers	to	customize
how	the	columns,	rows,	and	corner	headers	of	the	grid	look:

The	mixin	makes	use	of	the	objects	derived	from	GridLabelRender.	These	objects	have	a
virtual	Draw	method	that	needs	to	be	overridden	to	customize	the	drawing	of	the	headers.
The	Draw	method	is	called	with	a	reference	to	the	grid	that	it’s	drawing	on,	a
DeviceContext	to	draw	in,	the	dimensions	of	the	label,	and	the	index	of	the	row	or
column	that	is	being	drawn.

For	each	of	the	three	regions,	we	created	a	separate	renderer	that	customizes	the	display	of
each	region.	The	renderers	for	the	column	and	row	headers	are	quite	similar,	in	that	they
draw	the	labels	as	rounded	rectangles	filled	with	a	specified	color	and	then	draw	the	label
at	the	center	of	the	rounded	rectangle.	For	the	corner	cell,	we	instead	opted	to	fill	the
rectangle	with	a	specified	color	and	draw	a	bitmap	in	the	space,	which	in	this	example,	is	a
generic	image	of	a	hard	disk	retrieved	from	the	system	art	provider.

Finally,	to	put	it	all	together,	we	created	an	instance	of	each	renderer	and	used	them	as	the
default	renderers	for	different	areas.	This	way,	a	single	renderer	can	be	applied	to	all
columns	or	rows	in	the	grid	with	no	further	interaction	needed	from	our	application.



There’s	more…
If	there	is	a	need	to	add	a	special	indicator	or	to	show	some	rows	or	columns	differently,
then	each	can	row	or	column	can	optionally	be	assigned	its	own	specific	renderer	instance
to	further	customize	how	it	is	displayed.	This	is	achieved	using	either	the
SetRowLabelRenderer	or	SetColLabelRenderer	methods	that	are	added	to	the	grid	by	the
mixin	used	in	this	recipe.	These	methods	each	take	an	index	to	specify	which	row	or
column	and	GridLabelRenderer	instance	to	use	for	this	column.



See	also
For	an	additional	example	of	the	uses	of	grid,	refer	to	the	recipes	found	in	Chapter	5,
Data	Displays	and	Grids





Drawing	gradients	with	GraphicsContext
GraphicsContext	is	another	drawing	utility	class,	similar	to	a	DeviceContext,	which
provides	some	higher-level	or	advanced	functionality	for	drawing	on	screen.	The
GraphicsContext	is	a	new	feature	that	was	added	back	in	wxPython	2.8,	which	can	be
used	to	access	some	of	the	platform’s	higher-level	drawing	functionality-supporting
features,	such	as	antialiasing,	a	floating	point	precision	coordinate	system,	alpha	blending,
gradient	brushes,	and	a	handful	of	other	advanced	methods.	In	this	recipe,	we	will	make
use	of	some	of	these	features,	most	notably	the	gradient	brush,	to	draw	a	custom	control
that	uses	gradient	shading	to	give	more	depth	to	the	control’s	appearance.



How	to	do	it…
Here	are	the	steps	you	need	to	perform:

1.	 First,	we	will	start	by	deriving	a	class	from	PyControl	to	use	it	as	a	custom
StaticText-like	control,	as	follows:

class	PodLabel(wx.PyControl):

				def	__init__(self,	parent,	label,	color):

								super(PodLabel,	self).__init__(parent,

																																							style=wx.NO_BORDER)

								self._label	=	label

								self._color	=	color

								self.Bind(wx.EVT_PAINT,	self.OnPaint)

2.	 Next,	we	need	to	override	a	virtual	method	to	determine	the	best	size	for	the	control
based	on	the	specified	label:

				def	DoGetBestSize(self):

								txtsz	=	self.GetTextExtent(self._label)

								size	=	wx.Size(txtsz[0]	+	10,	txtsz[1]	+	6)

								return	size

3.	 Next,	we	will	implement	the	EVT_PAINT	event	handler	to	draw	the	control:

				def	OnPaint(self,	event):

								gcdc	=	wx.GCDC(wx.PaintDC(self))

								gc	=	gcdc.GetGraphicsContext()

								#	Get	the	working	rectangle	we	can	draw	in

								rect	=	self.GetClientRect()

								#	Setup	the	GraphicsContext

								pen	=	gc.CreatePen(wx.TRANSPARENT_PEN)

								gc.SetPen(pen)

								rgb	=	self._color.Get(False)

								alpha	=	self._color.Alpha()	*.2	#	fade	to	transparent

								color2	=	wx.Colour(*rgb,	alpha=alpha)

								x1,	y1	=	rect.x,	rect.y

								y2	=	y1	+	rect.height

								gradbrush	=	gc.CreateLinearGradientBrush(x1,	y1,

																																																	x1,	y2,

																																																	self._color,

																																																	color2)

								gc.SetBrush(gradbrush)

								#	Draw	the	background

								gc.DrawRoundedRectangle(rect.x,	rect.y,

																																rect.width,	rect.height,

																																rect.height/2)

								#	Use	the	GCDC	to	help	draw	the	aa	text

								gcdc.DrawLabel(self._label,	rect,	wx.ALIGN_CENTER)

4.	 For	the	last	step,	we	will	create	a	few	instances	of	the	preceding	custom	control	to



show	an	example	of	how	to	use	it:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								vsizer	=	wx.BoxSizer(wx.VERTICAL)

								for	color	in	(wx.RED,	wx.GREEN,	wx.BLUE):

												hsizer	=	wx.BoxSizer(wx.HORIZONTAL)

												label	=	PodLabel(self,	"Label	String",	color)

												hsizer.Add(label,	0,	wx.ALIGN_CENTER_VERTICAL)

												hsizer.Add(wx.TextCtrl(self),	1,	

																							wx.EXPAND|wx.ALIGN_CENTER_VERTICAL)

												vsizer.Add(hsizer,	0,	wx.EXPAND|wx.ALL,	5)

								self.Sizer	=	vsizer



How	it	works…
In	this	recipe,	we	created	a	custom	StaticText-like	control	that	has	a	rounded	appearance
and	gradient-filled	background,	which	is	shown	in	the	following	screenshot:

There	are	two	important	points	to	take	from	this	recipe.	The	first	is	the	overriding	of	the
DoGetBestSize	method,	which	is	used	to	return	the	suggested	“best”	size	that	the	control
should	be	sized	to	when	it	is	contained	in	a	sizer-controlled	layout.	We	used	this	method	to
set	the	size	of	the	control	to	be	just	a	little	wider	and	taller	than	the	space	needed	for	the
label	to	be	displayed.	This	method	is	an	important	override	to	provide	when	making
custom	controls	such	as	this.

The	second	point	and	the	main	focus	of	this	recipe	is	the	use	of	GraphicsContext	in	the
OnPaint	method.	We	indirectly	created	GraphicsContext	using	the	required	PaintDC	class
to	create	GCDC.	This	object	wraps	the	DeviceContext	and	provides	a	DC,	such	as	an	API,
while	using	GraphicsContext	internally.

Here,	we	used	GCDC	primarily	to	get	access	to	GraphicsContext	to	create	GraphicsBrush
that	is	capable	of	drawing	a	blended	gradient	when	it	is	used	to	fill	the	background	of	the
control.	The	brush	is	created	by	specifying	the	points	that	specify	the	rectangle	of	a
gradient	pattern	that	will	be	used	to	fill	the	background	and	the	colors	to	start	and	end	the
gradient	with.	The	brush	we	created	is	to	specify	the	size	of	the	rectangle	for	our	PodLabel
so	that	one	smooth	gradient	is	drawn	from	the	top	to	the	bottom	of	the	control.



There’s	more…
The	GraphicsContext,	in	addition	to	the	linear	gradient	brush,	also	supports	a	radial
gradient	brush	through	its	CreateRadialGradientBrush	method,	which	results	in	creating
a	brush	that	draws	a	gradient	in	a	circular	pattern	radiating	from	the	center	outward.

Take	this	chance	to	play	with	the	sample,	and	switch	the	brush	type	or	adjust	the
parameters	on	the	gradient	brush	used	in	this	recipe	to	see	how	adjusting	these	parameters
affects	the	way	the	background	gets	filled.





Recreating	native	controls	with
RendererNative
The	RendererNative	class	is	a	drawing	class	that	encapsulates	and	exposes	routines	for
drawing	parts	of	the	native	system’s	UI	components.	It	provides	high-level	drawing
functions	that	allow	you	to	draw	items	such	as	a	Button	or	CheckBox	control	in	a
DeviceContext	without	needing	to	know	any	of	the	details	of	how	it	is	done.	This	is	a
powerful	feature	that	can	allow	you	to	create	your	own	custom	widgets	that	still	maintain
a	native	look.	In	this	recipe,	we	will	recreate	the	CheckBox	control	to	add	support	to	align
the	label	below	the	CheckBox	control.



How	to	do	it…
Perform	the	following:

1.	 First,	we	will	start	with	the	constructor	for	our	custom	CheckBox	control:

class	CustomCheckBox(wx.PyControl):

				def	__init__(self,	parent,	label,	style=0):

								style	|=	wx.NO_BORDER

								super(CustomCheckBox,	self).__init__(parent,

																																													style=style)

								self.Label	=	label

								self._value	=	False

								self._style	=	style

								self._clickIn	=	False

								self.Bind(wx.EVT_PAINT,	self.OnPaint)

								self.Bind(wx.EVT_LEFT_DOWN,	self.OnLeftDown)

								self.Bind(wx.EVT_LEFT_UP,	self.OnLeftUp)

								self.Bind(wx.EVT_ENTER_WINDOW,	

																		lambda	event:	self.Refresh())

								self.Bind(wx.EVT_LEAVE_WINDOW,	

																		lambda	event:	self.Refresh())

2.	 Next,	we	need	to	add	a	few	methods	to	help	match	the	CheckBox	API	to	get	and	set
its	value:

				def	GetValue(self):

								return	self._value

				def	SetValue(self,	value):

								self._value	=	value

				Value	=	property(GetValue,	SetValue)

3.	 Next,	we	will	define	the	event	handlers	to	catch	when	the	user	clicks	on	the	control:

				def	OnLeftDown(self,	event):

								self._clickIn	=	True

				def	OnLeftUp(self,	event):

								if	self._clickIn:

												self.Value	=	not	self.Value

								self._clickIn	=	False

								#	generate	a	checkbox	event

								etype	=	wx.wxEVT_COMMAND_CHECKBOX_CLICKED

								event	=	wx.CommandEvent(etype)

								event.EventObject	=	self

								event.Checked	=	self.Value

								self.ProcessEvent(event)

								self.Refresh()

4.	 Next,	we	will	override	DoGetBestSize	to	calculate	the	size	needed	for	the	control,	as
follows:



				def	DoGetBestSize(self):

								txtsz	=	self.GetTextExtent(self.Label)

								cboxsz	=	(16,	16)

								size	=	None

								if	self._style	&	wx.ALIGN_BOTTOM:

												size	=	wx.Size(txtsz[0]	+	4,	

																											txtsz[1]	+	cboxsz[1]	+	6)

								else:

												size	=	wx.Size(txtsz[0]	+	cboxsz[0]	+	6,

																											max(txtsz[1],	cboxsz[1])	+	4)

								return	size

5.	 This	next	method	is	a	helper	method	that	we	will	use	to	help	determine	how	to	draw
the	CheckBox	control	depending	on	what	state	it	is	currently	in.	These	flags	are
passed	to	RendererNative	when	drawing	the	control:

				def	GetFlags(self):

								flag	=	0

								pt	=	self.ScreenToClient(wx.GetMousePosition())

								hitResult	=	self.HitTest(pt)

								if	not	self.Enabled:

												flag	|=	wx.CONTROL_DISABLED

								elif	hitResult	==	wx.HT_WINDOW_INSIDE:

												flag	|=	wx.CONTROL_CURRENT

								if	self.Value:

												flag	|=	wx.CONTROL_CHECKED

								return	flag

6.	 For	the	final	step,	we	just	need	to	define	the	OnPaint	handler	and	draw	the	control
based	on	the	style	flags	and	current	state	of	the	control:

				def	OnPaint(self,	event):

								dc	=	wx.GCDC(wx.PaintDC(self))

								renderer	=	wx.RendererNative.Get()

								txtsz	=	dc.GetTextExtent(self.Label)

								cboxsz	=	(16,	16)

								

								cx,	cy,	lx,	ly	=	2,	2,	2,	2

								if	self._style	&	wx.ALIGN_BOTTOM:

												cx	+=	(self.Rect.Width	/	2)	-	(cboxsz[0]	/	2)

												ly	+=	(2	+	cboxsz[1])

								else:

												cy	+=	(self.Rect.Height	/	2)	-	(cboxsz[1]	/	2)

												lx	+=	(2	+	cboxsz[0])

												ly	+=	(self.Rect.Height	/	2)	-	(txtsz[1]	/	2)

								cboxRect	=	wx.Rect(cx,	cy,	cboxsz[0],	cboxsz[1])

								flag	=	self.GetFlags()

								renderer.DrawCheckBox(self,	dc,	cboxRect,	flag)

								dc.DrawText(self.Label,	lx,	ly)



How	it	works…
The	default	wxPython	CheckBox	control	allows	the	label	to	be	either	to	its	right	or	left.	In
this	recipe,	we	created	a	new	CheckBox	control	that	looks	similar	to	the	native	one
provided	by	the	system	but	is	completely	owner-drawn	and	supports	having	the	label	to
the	right	of	or	below	the	control.

We	recreated	this	custom	CheckBox	control	by	handling	a	few	mouse	events	and
EVT_PAINT	to	draw	the	control.	The	cursor	enters	and	leaves	window	events	are	used	to
tell	the	control	to	refresh	so	that	OnPaint	is	called	to	update	the	control	with	any	hover-
over	highlighting	that	needs	to	be	drawn.	The	left-click	events	are	used	to	capture	and
toggle	the	state	of	the	control	to	update	its	value	from	True	to	False,	and	vice	versa,	as
well	as	to	emit	a	CheckBox	event	so	that	users	of	the	control	can	get	EVT_CHECKBOX	events
when	the	value	changes.

In	order	to	draw	this	control,	we	had	to	do	some	calculations	to	determine	the	necessary
space	to	reserve	for	the	control	in	DoGetBestSize.	Then,	in	OnPaint,	we	get	a	reference	to
the	renderer	using	the	static	Get	method	of	the	RendererNative	class.	Then,	calling	the
renderer’s	DrawCheckBox	method	will	draw	a	CheckBox	control	of	the	given	size	and
position	defined	by	Rect	passed	to	the	method	using	the	provided	DC.	The	use	of	the	flag
mask	that	is	determined	in	GetFlags	is	used	to	tell	the	renderer	what	state	to	draw	the
control	in.

The	GetFlags	method	checks	a	few	things	about	the	current	state	of	the	control	in	order	to
ensure	that	it	is	drawn	with	an	expected	appearance.	The	current	position	of	the	mouse
cursor	is	checked	to	see	whether	it’s	over	the	control	to	apply	the	hover-over	affect	if	it	is
supported	by	the	system.	If	the	control	is	currently	not	enabled,	the	CONTROL_DISABLED
flag	is	applied.	Finally,	the	current	value	of	the	control	is	checked	to	see	whether	the
CheckBox	control	should	be	drawn	in	a	checked	state	or	not.



There’s	more…
The	RendererNative	class	is	capable	of	drawing	several	other	common	UI	components	as
well;	included	here	is	a	list	some	of	the	available	methods:

Method Description

DrawChoice This	draws	a	Choice	control.

DrawComboBox This	draws	a	ComboBox	control.

DrawComboBoxDropButton This	draws	the	button	of	a	ComboBox	control.

DrawDropArrow This	draws	a	drop	arrow	such	as	on	the	ComboBox	button	but	with	a	transparent	background.

DrawFocusRect
This	draws	a	focus	rectangle.	This	is	the	rectangle	drawn	around	some	controls	when	they
have	the	focus.

DrawHeaderButton This	draws	the	header	button	as	is	found	in	ListCtrl.

DrawPushButton This	draws	a	normal	button,	such	as	wx.Button.

DrawRadioButton This	draws	a	RadioButton	control.

DrawTextCtrl This	draws	TextCtrl.

DrawTreeItemButton
This	draws	a	button	that	is	the	same	as	what	is	used	to	expand/contract	nodes	in	a
TreeCtrl.

As	we	discussed	with	DrawCheckBox,	the	renderer’s	Draw	method	takes	flags	to	draw	the
controls	in	different	states.	The	following	table	contains	a	list	of	flags	that	can	be	applied
to	get	different	effects	out	of	what	is	drawn	by	the	renderer:

Flag Description

CONTROL_CHECKABLE An	item	can	be	checked

CONTROL_CHECKED CheckBox	or	RadioButton	is	checked

CONTROL_CURRENT The	mouse	is	currently	over	the	control

CONTROL_DISABLED The	control	is	disabled

CONTROL_EXPANDED TreeItemButton	is	expanded

CONTROL_FLAT This	draws	CheckBox	with	a	flat	border

CONTROL_FOCUSED The	control	has	a	keyboard	focus

CONTROL_ISDEFAULT The	draws	a	button	as	default	button

CONTROL_PRESSED The	draws	a	button	in	a	pressed	state



CONTROL_UNDETERMINED CheckBox	in	an	undetermined	state





Chapter	9.	Creating	and	Customizing
Components
In	this	chapter,	we	will	cover:

Making	your	own	dialog
Validating	user	input
Interacting	with	StatusBar
Providing	your	own	information	window
Creating	a	managed	layout
Drawing	your	own	list	control
Implementing	highlighting	in	StyledTextCtrl
Creating	a	composite	control
Designing	an	owner-drawn	control



Introduction
Throughout	the	earlier	chapters	of	this	book,	we	looked	at	many	individual	components
and	features	provided	by	the	wxPython	library.	There	is	a	large	amount	of	functionalities
provided	through	the	standard	components	of	the	library;	however,	as	your	applications
and	skills	mature,	you	will	undoubtedly	begin	to	recognize	the	need	for	additional
functionalities	or	behaviors	to	enhance	your	applications.

In	this	chapter,	we	will	explore	some	approaches	to	building	new	advanced	controls	from
existing	components	as	well	as	creating	our	own	new	components	from	scratch	in	order	to
handle	new	use	cases	and	provide	additional	features	in	our	applications	that	wxPython
does	not	provide	out	of	the	box.





Making	your	own	dialog
Even	though	wxPython	provides	a	large	number	of	dialog	options	that	can	be	used	for
most	standard	actions	that	any	general	application	may	need	to	perform,	there	will	almost
certainly	come	a	time	when	you	need	to	make	your	own	custom	dialog.	There	are	many
actions	that	can	be	better	customized	for	a	given	application	through	their	own	dialogs.
For	example,	wxPython	provides	PasswordEntryDialog,	but	this	dialog	only	has	one	field
for	a	password;	if	your	application	requires	a	login	dialog,	this	likely	won’t	meet	your
needs.	So,	in	this	recipe,	we	will	take	a	look	at	how	to	create	custom	dialogs	by	making	a
user	login	dialog.



How	to	do	it…
For	this	recipe,	perform	the	following	steps:

1.	 First,	let’s	begin	by	defining	the	dialog	subclass	and	its	major	parts	using	the
following	code:

class	LoginDialog(wx.Dialog):

				def	__init__(self,	parent,	title="Login"):

								super(LoginDialog,	self).__init__(parent,	title=title)

								self._user	=	wx.TextCtrl(self)

								self._pass	=	wx.TextCtrl(self,	style=wx.TE_PASSWORD)

								

								self.__DoLayout()

								self.SetInitialSize((350,	-1))

2.	 Next,	we	will	finish	building	the	UI	by	performing	the	layout,	as	follows:

				def	__DoLayout(self):

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								

								fieldSz	=	wx.FlexGridSizer(2,	2,	5,	8)

								fieldSz.AddGrowableCol(1,	1)

								userLbl	=	wx.StaticText(self,	label="Username:")

								fieldSz.Add(userLbl,	0,	wx.ALIGN_CENTER_VERTICAL)

								fieldSz.Add(self._user,	1,	wx.EXPAND)

								passLbl	=	wx.StaticText(self,	label="Password:")

								fieldSz.Add(passLbl,	0,	wx.ALIGN_CENTER_VERTICAL)

								fieldSz.Add(self._pass,	1,	wx.EXPAND)

								

								sizer.Add((10,	10))

								sizer.Add(fieldSz,	1,	wx.ALL|wx.EXPAND,	5)

								btnSz	=	self.CreateButtonSizer(wx.OK|wx.CANCEL)

								sizer.Add(btnSz,	0,	wx.EXPAND|wx.BOTTOM|wx.TOP,	5)

								

								self.Sizer	=	sizer

3.	 For	the	last	step,	we	just	need	to	define	a	couple	of	properties	to	give	access	to	the
dialog’s	data:

				@property

				def	Username(self):

								return	self._user.Value

				@property

				def	Password(self):

								return	self._pass.Value



How	it	works…
The	wx.Dialog	class	is	quite	well	equipped	to	make	it	an	easy	task	for	you	to	build	your
own	custom	dialogs.	It	has	built-in	handling	to	generate	return	codes	from	ShowModal
based	on	the	affirmative	or	escape	buttons	on	the	dialog.	In	this	recipe,	we	created	OK	and
Cancel	buttons	using	the	built-in	CreateButtonSizer	method	of	the	dialog,	which	creates
StdDialogButtonSizer	that	contains	the	requested	buttons	and	does	the	proper	platform-
dependent	layout.

With	the	built-in	handling	of	the	buttons,	the	dialog	is	dismissed	when	the	user	clicks	on
the	OK	or	Cancel	button.	This	choice	determines	the	return	value	from	ShowModal,	which
will	be	either	ID_OK	or	ID_CANCEL.	After	the	dialog	is	closed,	the	controlling	application
can	retrieve	the	user’s	entries	through	the	two	properties	that	were	provided	to	verify	that
the	credentials	were	correctly	entered.



There’s	more…
The	Dialog	class	also	provides	means	to	hook	custom	buttons	into	the	default	handling	of
nonstandard	buttons.	The	SetAffirmativeId	method	can	be	used	to	associate	a	user-
defined	button	ID	with	the	OK	button,	which	will	invoke	any	dialog	validation	as	well	as
exit	the	dialog	with	the	affirmative	ID.	Likewise,	SetEscapeId	can	be	used	to	associate	a
user-defined	button	as	the	Cancel	button	for	the	dialog.

If	you	want	to	handle	exiting	the	dialog	yourself	in	your	event	handler,	you	can	call
EndModal	to	end	the	modal	state	of	the	dialog	and	set	the	desired	return	code.



See	also
Take	a	look	at	the	Using	the	standard	dialog	button	sizer	recipe	in	Chapter	3,	UI
Layout	and	Organization,	for	more	details	on	StdDialogButtonSizer
Also,	check	out	the	Making	dialog	layout	easy	recipe	in	Chapter	3,	UI	Layout	and
Organization,	for	another	way	to	make	a	custom	dialog





Validating	user	input
There	may	be	times	where	you	need	to	validate	the	input	of	a	field	before	accepting	a
value	from	users.	This	validation	could	be	done	manually	in	the	close	handler	for	the
dialog,	but	this	leads	to	lots	of	duplicated	and	specialized	code	that	would	need	to	be
copied	to	other	dialogs.	In	order	to	help	avoid	this	and	provide	a	common	way	of
validating	user	input,	the	wxPython	library	provides	a	Validator	API	that	allows	you	to
create	custom	Validator	objects	that	can	be	assigned	to	controls.	When	a	dialog’s
Validate	method	is	called,	all	child	controls	of	the	dialog	have	their	validation	methods
called	as	well	to	validate	the	input.	In	this	recipe,	we	will	discuss	how	to	make	a	custom
validator	that	can	be	used	in	TextCtrl.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	will	create	a	subclass	of	wx.PyValidator	to	implement	our	field-checking
logic:

class	InputValidator(wx.PyValidator):

				def	__init__(self,	checker	=	lambda	s:	s):

								super(InputValidator,	self).__init__()

								assert	callable(checker),	"Checker	must	be	callable"

								self._checker	=	checker

2.	 Next,	it	is	necessary	to	provide	a	Clone	method	as	the	validator	needs	to	be	copied	in
some	cases	by	the	framework:

				def	Clone(self):

								return	InputValidator(self._checker)

3.	 Now,	the	next	method	is	a	required	override	to	perform	the	validation	of	the	data:

				def	Validate(self,	win):

								ok	=	False

								txt	=	self.GetWindow();

								if	self._checker(txt.Value):

												txt.BackgroundColour	=	wx.NullColour

												txt.ForegroundColour	=	wx.NullColour

												ok	=	True

								else:

												#	Indicate	the	invalid	field

												txt.BackgroundColour	=	wx.RED

												txt.ForegroundColour	=	wx.WHITE

								txt.Refresh()

								return	ok

4.	 For	the	last	step,	there	are	two	additional	required	overrides	that	we	will	just	provide
default	implementations	for	as	we	don’t	need	to	use	this	functionality:

				def	TransferToWindow(self):

								return	True

				def	TransferFromWindow(self):

								return	True



How	it	works…
The	validator	class	we	created	in	this	recipe	is	intended	for	use	with	TextCtrl.	The
TextCtrl	constructor	can	optionally	refer	to	a	Validator	object,	as	shown	in	the
following	snippet.	In	this	example,	we	will	use	InputValidator	to	add	some	simple	sanity
checks	to	the	two	fields.	The	Username	field	uses	the	validator	to	ensure	that	the	field	is
not	empty,	while	the	Password	field	verifies	that	at	least	three	characters	are	input:

class	LoginDialog(wx.Dialog):

				def	__init__(self,	parent,	title="Login"):

								super(LoginDialog,	self).__init__(parent,	title=title)

								self._user	=	wx.TextCtrl(self,	

																																	validator=InputValidator(),

																																	name="Username")

								pvalid	=	InputValidator(lambda	pw:	pw	and	len(pw)	>	2)

								self._pass	=	wx.TextCtrl(self,	

																																	validator=pvalid,

																																	style=wx.TE_PASSWORD,

																																	name="Password")

								

								self.__DoLayout()

								self.SetInitialSize((350,	-1))

When	a	Dialog	constructor	that	has	control	on	it	is	dismissed	with	its	affirmative	button,	it
calls	the	Validate	method	on	itself.	This	results	in	the	Validate	method	being	called	on
the	validators	of	each	of	its	child	controls.	Our	implementation	of	Validate,	as	used	by
TextCtrl,	will	turn	the	field	red	and	return	False	when	the	input	does	not	meet	the
criteria	set	by	the	optional	checker	method.	The	checker	method’s	default
implementation	returns	True	when	there	is	any	text	in	the	field,	but	it	returns	False	when
a	field	is	left	empty.	When	a	Validate	method	returns	False,	the	validation	for	the	dialog
fails	and	prevents	the	dialog	from	being	dismissed.



There’s	more…
The	TransferToWindow	and	TransferFromWindow	methods	can	be	implemented	to	transfer
data	to	a	control	from	a	data	structure	and	from	the	control	back	to	the	data	structure,
providing	a	way	to	collect	data	from	the	dialog.

For	example,	if	your	dialog	provides	a	data	property	that	was	a	dictionary	mapping	field
name	to	value,	then	during	TransferToWindow,	which	is	called	when	a	dialog	is
initialized,	validator	can	populate	the	field	with	its	initial	value.	In	this	case,	during
TransferFromWindow,	which	is	called	after	a	successful	Validate	method,	the	current
value	from	the	field	can	be	copied	back	to	the	data	dictionary.	This	can	be	a	useful	feature
to	implement	for	dialogs	that	have	many	fields	or	complex	data	structures	that	need	to	be
returned	to	the	caller.





Interacting	with	StatusBar
The	StatusBar	area	is	a	common	component	to	display	information	messages	at	the
bottom	of	a	frame.	In	its	default	form,	it	is	really	just	a	specialized	panel	that	allows	us	to
create	separate	regions	for	the	displaying	of	read-only	text	fields.	Normally,	this	control	is
a	static	control	that	the	user	cannot	interact	with;	however,	with	a	little	customization,	it	is
possible	to	add	controls	and	other	ways	for	users	to	interact	with	the	StatusBar	area.	In
this	recipe,	we	will	discuss	how	to	add	clickable	area	to	StatusBar	and	use	it	to	show	a
pop-up	menu.



How	to	do	it…
Here	are	the	steps	to	be	performed:

1.	 First,	let’s	define	the	constructor	to	set	up	our	custom	StatusBar	subclass,	as	follows:

import	wx

CSB_MSG	=	0

CSB_ICON	=	1

class	CustomStatusBar(wx.StatusBar):

				def	__init__(self,	parent):

								super(CustomStatusBar,	self).__init__(parent)

								self.err,	self.info	=	self._GetIcons()

								self.img	=	wx.StaticBitmap(self)

								self.menu	=	wx.Menu()

								self.menu.Append(wx.ID_COPY)	

								

								self.SetFieldsCount(2)

								self.SetStatusWidths([-1,	24])

								self.Bind(wx.EVT_LEFT_UP,	self.OnLeftUp)

								self.Bind(wx.EVT_MENU,	self.OnMenu)

								self.Bind(wx.EVT_SIZE,	self.OnSize)

2.	 Next	is	a	simple	helper	function	to	get	some	bitmaps	from	ArtProvider:

				def	_GetIcons(self):

								errBmp	=	wx.ArtProvider.GetBitmap(wx.ART_ERROR,	

																																										wx.ART_MENU,

																																										(16,16))

								infoBmp	=	wx.ArtProvider.GetBitmap(wx.ART_INFORMATION,

																																											wx.ART_MENU,

																																											(16,16))

								return	errBmp,	infoBmp

3.	 This	next	method	is	the	event	handler	for	when	the	mouse’s	left	button	is	clicked.	We
will	use	it	to	check	and	decide	whether	to	show	a	pop-up	menu	or	not:

				def	OnLeftUp(self,	event):

								pt	=	event.GetPosition()

								if	self.GetFieldRect(CSB_MSG).Contains(pt):

												rect	=	self.GetFieldRect(CSB_MSG)

												self.PopupMenu(self.menu,	(rect.x,	rect.Bottom))

4.	 When	the	menu	item	in	the	pop-up	menu	is	selected,	it	will	be	handled	by	the
following	event	handler:

				def	OnMenu(self,	event):

								if	event.Id	==	wx.ID_COPY:

												msg	=	self.GetStatusText()

												if	wx.TheClipboard.Open():

																data	=	wx.TextDataObject(msg)

																wx.TheClipboard.SetData(data)



5.	 In	order	to	support	the	positioning	of	StaticBitmap	on	StatusBar,	we	must
manually	respond	to	the	EVT_SIZE	events	and	update	the	position	of	StaticBitmap	as
the	size	of	StatusBar	changes:

				def	OnSize(self,	event):

								rect	=	self.GetFieldRect(CSB_ICON)

								w,	h	=	self.img.Size

								xpad	=	(rect.width	-	w)	/	2

								ypad	=	(rect.height	-	h)	/	2

								self.img.SetPosition((rect.x	+	xpad,	rect.y	+	ypad))

								event.Skip()

6.	 For	the	final	step,	we	just	need	to	add	a	couple	methods	to	put	different	types	of
messages	in	StatusBar,	which	will	update	the	indicator	bitmap	according	to	the
message’s	type.	For	this,	we	will	use	the	following	code:

				def	PushInfoMsg(self,	msg):

								self.img.SetBitmap(self.info)

								self.img.Show()

								self.PushStatusText(msg)

				def	PushErrorMsg(self,	msg):

								self.img.SetBitmap(self.err)

								self.img.Show()

								self.PushStatusText(msg)



How	it	works…
In	this	recipe,	we	created	a	StatusBar	area	that	supports	a	context	menu	as	a	way	to	show
how	users	can	interact	with	this	area	of	the	UI	as	well	as	how	to	place	a	child	control	on
StatusBar.

In	order	to	show	the	menu,	we	bound	to	the	EVT_LEFT_UP	event,	which	will	be	fired	when
the	left	mouse	button	is	clicked	on	the	StatusBar	area.	The	handler	for	this	shows	how
you	can	determine	which	of	the	status	fields	was	clicked	in.	This	can	be	useful	if	you	have
multiple	fields	and	want	to	invoke	different	actions	depending	on	the	portion	of	the	control
that	is	clicked	on.

In	order	to	support	StaticBitmap	being	displayed	in	StatusBar,	we	had	to	bind	to
EVT_SIZE.	This	event	will	be	fired	every	time	StatusBar	changes	size.	When	the	size	of
the	control	changes,	we	need	to	recalculate	where	StaticBitmap	should	be	positioned,	and
reset	its	position	so	that	it	still	shows	up	in	the	correct	relative	location.

Finally,	we	added	a	couple	of	new	methods	to	use	to	push	text	to	StatusBar;	these
methods	allow	specifying	whether	the	message	is	an	error	or	just	information	and	provide
additional	feedback	to	users	by	switching	between	an	error	and	information	icon	so	as	to
indicate	the	severity	of	the	message.



There’s	more…
The	same	strategy	for	control	placement	can	be	used	to	place	almost	any	control	in
StatusBar.	For	example,	if	you	wanted	to	add	a	Gauge	control	to	show	the	progress
feedback	of	a	long-running	task,	the	steps	would	be	very	similar	to	what	was	done	with
the	status	indicator	of	StaticBitmap	in	this	recipe.	You	just	need	to	create	a	status	field
and	then	use	the	size	event	to	adjust	the	position	and	size	of	the	Gauge	control.





Providing	your	own	information	window
When	the	screen’s	real	estate	is	at	a	premium	or	you	just	need	to	show	some	additional
information	that	may	not	fit	in	with	your	main	user	interface,	a	floating	MiniFrame	or	tool
window	can	be	a	nice	way	to	show	this	information	while	giving	the	user	the	ability	to
place	it	where	they	like	or	to	dismiss	it	entirely	when	it	is	no	longer	needed.	In	this	recipe,
we	will	use	a	MiniFrame	to	make	a	file	information	window	that	shows	detailed
information	about	a	file	selected	from	the	user’s	hard	drive.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	we	need	to	import	some	additional	modules	from	Python’s	standard	library,	as
follows:

import	os

from	time	import	asctime,	localtime

import	stat

import	mimetypes

import	wx

2.	 Next,	we	will	define	a	subclass	of	MiniFrame	to	wrap	a	panel	that	we	will	use	to
display	the	file’s	information:

class	FileInfoDlg(wx.MiniFrame):

				def	__init__(self,	parent,	fname):

								style	=	wx.DEFAULT_DIALOG_STYLE

								super(FileInfoDlg,	self).__init__(parent,	

																																										style=style)

								sizer	=	wx.BoxSizer()

								panel	=	FileInfoPanel(self,	fname)

								sizer.Add(panel,	1,	wx.EXPAND)

								self.Sizer	=	sizer

								

								self.Title	=	panel.Label

								self.Fit()

								self.Bind(wx.EVT_CLOSE,	self.OnClose)

				def	OnClose(self,	event):

								self.Destroy()

								event.Skip()

3.	 Next,	we	need	to	define	the	constructor	for	the	display	panel:

class	FileInfoPanel(wx.Panel):

				def	__init__(self,	parent,	fname):

								super(FileInfoPanel,	self).__init__(parent)

								self._file	=	fname

								self.Label	=	os.path.basename(fname)

								

								self._DoLayout()

4.	 Now,	we	can	create	the	controls	and	lay	out	the	panel	using	the	following	function:

				def	_DoLayout(self):

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								bmp	=	wx.ArtProvider.GetBitmap(wx.ART_INFORMATION,	

																																							wx.ART_CMN_DIALOG)

								staticBmp	=	wx.StaticBitmap(self,	bitmap=bmp)

								sizer.Add(staticBmp,	0,	wx.ALIGN_CENTER_HORIZONTAL)



								

								info	=	self._GetInfo()

								isize	=	wx.FlexGridSizer(len(info),	2,	3,	5)

								for	k,v	in	info:

												label	=	wx.StaticText(self,	label="%s:"	%	k)

												isize.Add(label,	0,	wx.ALIGN_RIGHT)

												isize.Add(wx.StaticText(self,	label=v),	0)

								

								sizer.Add(isize,	0,	wx.EXPAND|wx.ALL,	5)

								self.Sizer	=	sizer

5.	 The	following	is	a	helper	function	used	to	get	detailed	information	about	the	file:

				def	_GetInfo(self):

								fstat	=	os.stat(self._file)

								info	=	[

								("Kind",	GetFileType(self._file)),

								("Size",	GetSizeLabel(fstat[stat.ST_SIZE])),

								("Created",	asctime(localtime(fstat[stat.ST_CTIME]))),

								("Modified",	asctime(localtime(fstat[stat.ST_MTIME])))

								]

								return	info

6.	 For	the	last	step,	we	will	define	a	couple	of	utility	methods	to	format	the	information
on	display,	as	follows:

def	GetSizeLabel(bits):

				val	=	('bytes',	'KB',	'MB',	'GB',	'TB')

				ind	=	0

				while	bits	>	1024	and	ind	<	len(val)	-	1:

								bits	=	float(bits)	/	1024.0

								ind	+=	1

				rval	=	"%.2f"	%	bits

				rval	=	rval.rstrip('.0')

				if	not	rval:

								rval	=	'0'

				rval	=	"%s	%s"	%	(rval,	val[min(ind,	4)])

				return	rval

def	GetFileType(fname):

				if	os.path.isdir(fname):

								return	"Folder"

				mtype	=	mimetypes.guess_type(fname)[0]

				if	mtype	is	not	None:

								return	mtype

				else:

								return	"Unknown"



How	it	works…
The	usage	of	MiniFrame	is	nearly	the	same	as	that	of	Frame,	except	that	it	provides	a
slightly	more	compact	top-level	window	that	stays	at	the	top	of	its	parent	window—it	is
similar	to	a	dialog,	except	that	it	is	not	modal.	This	means	that	it	can	be	displayed,	and
users	can	still	continue	to	use	the	main	window	while	MiniFrame	is	shown.

In	this	recipe,	we	used	MiniFrame	as	a	container	to	display	some	detailed	information
about	a	file.	FileInfoDlg	takes	the	path	to	a	file	as	an	argument	to	its	constructor,	and
then	performs	a	file	stat	operation	to	gather	details	about	the	file.	Then,	some	basic
formatting	is	applied	to	the	data	to	change	it	into	a	more	human	readable	representation,
which	is	then	displayed	in	the	dialog	using	the	StaticText	controls.



See	also
Refer	to	the	Selecting	files	with	FileDialog	recipe	in	Chapter	7,	Requesting	and
Retrieving	Information,	for	more	options	on	working	with	files





Creating	a	managed	layout
Though	the	wxPython	Sizer	API	provides	a	relatively	convenient	way	to	handle
programmatically	laying	out	controls,	you	may	find	yourself	repeating	common	layout
patterns	in	your	application.	If	your	application	has	some	common	layout	patterns	that	can
be	reused	in	many	places,	it	can	be	convenient	to	encapsulate	and	hide	some	of	the	layout
in	some	reusable	Panel	classes	that	manage	specific	ways	of	presenting	the	controls.	In
this	recipe,	we	will	create	a	managed	layout	panel	that	supports	displaying	a	main	content
pane	as	well	as	a	specialized	function	panel,	which	can	be	used	to	create	and	display
application-defined	buttons.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	will	define	a	class	to	be	used	as	the	layout	manager	and	container	for	the
function	bar,	as	follows:

class	FunctionPanel(wx.Panel):

				def	__init__(self,	parent):

								super(FunctionPanel,	self).__init__(parent)

								self._pane	=	None

								self._bar	=	FunctionBar(self)

								self.Sizer	=	wx.BoxSizer(wx.VERTICAL)

								self.Sizer.Add(self._bar,	0,	wx.EXPAND)

								self.Bind(wx.EVT_BUTTON,	self.OnButton)

2.	 Next,	we	need	to	define	the	button	handler	to	allow	hiding	FunctionBar:

				def	OnButton(self,	event):

								if	event.Id	==	wx.ID_CLOSE:

												self.ShowFunctionBar(False)

								else:

												event.Skip()

3.	 The	next	two	methods	are	used	to	access	and	manage	the	main	content	area	of	the
FunctionPanel:

				@property

				def	ContentPane(self):

								return	self._pane

				def	SetContentPane(self,	pane):

								if	self._pane	==	None:

												self.Sizer.Insert(0,	pane,	1,	wx.EXPAND)

								else:

												self.Sizer.Replace(self._pane,	pane)

												self._pane.Destroy()

								self._pane	=	pane

								self.Layout()

4.	 For	the	last	three	methods	of	this	class,	we	will	add	some	API	to	manage
FunctionBar,	which	is	owned	by	FunctionPanel,	as	follows:

				def	AddFunctionButton(self,	id,	label=wx.EmptyString):

								self._bar.AddFunctionButton(id,	label)

				def	IsBarShown(self):

								return	self._bar.IsShown()

				def	ShowFunctionBar(self,	show=True):

								self._bar.Show(show)

								self.Layout()

5.	 For	the	last	step	of	this	recipe,	we	will	define	the	FunctionBar	class,	which	is	a



simple	panel-based	class	that	has	a	close	button	and	can	manage	the	layout	of	a
number	of	user-defined	buttons.	Execute	the	following	code:

class	FunctionBar(wx.PyPanel):

				def	__init__(self,	parent):

								super(FunctionBar,	self).__init__(parent)

								cbmp	=	wx.ArtProvider.GetBitmap(wx.ART_CLOSE,	

																																								wx.ART_MENU)

								self._close	=	wx.BitmapButton(self,	wx.ID_CLOSE,	cbmp)

								self.Sizer	=	wx.BoxSizer(wx.HORIZONTAL)

								self.Sizer.Add(self._close,	0,	wx.ALL,	5)

				def	AddFunctionButton(self,	id,	label=wx.EmptyString):

								button	=	wx.Button(self,	id,	label)

								self.Sizer.Add(button,	0,	wx.ALL,	5)



How	it	works…
FunctionPanel	acts	as	the	main	container	that	can	be	used	to	display	an	application-
defined	content	panel	as	its	main	display	area.	When	SetContentPane	is	called,	the	panel
that	is	passed	in	is	inserted	into	the	sizer-based	layout	in	position	zero.	FunctionBar	is
kept	at	position	one	in	the	sizer,	which	keeps	it	below	the	main	ContentPane.

During	construction	of	FunctionPanel,	an	empty	FunctionBar	is	created	and	placed	in
the	layout	of	FunctionPanel.	Any	application’s	code	using	FunctionPanel	must	call	its
AddFunctionButton	method	to	add	application-defined	buttons	to	the	layout.	The	user,	or
the	application	code,	can	also	control	whether	FunctionBar	is	visible	or	not	by	either
clicking	on	its	close	button	or	by	invoking	its	ShowFunctionBar	method	to	toggle	its
visible	states.

With	these	two	classes,	we	can	now	create	and	reuse	a	common	layout	that	has	multiple
controls	and	views	without	having	to	directly	interact	with	the	Sizers	that	are	managed
internally	by	each	of	the	controls.





Drawing	your	own	list	control
If	you	need	to	display	a	list	of	some	data	but	would	like	more	control	over	how	it	looks,
the	VListBox	control	provides	an	interface	to	create	an	owner-drawn	ListBox-like	control.
This	control	works	by	providing	a	number	of	pure	virtual	callback	methods	that	you	must
override	in	your	subclass	in	order	to	draw	the	list	of	items	on	demand.	In	this	recipe,	we
will	see	how	to	create	our	own	custom	list	of	controls	using	VListBox.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	we	will	start	by	creating	a	simple	little	data	class	to	hold	information	about	the
custom	list	of	items	that	we	will	create	a	display	for,	as	follows:

import	wx

class	UserInfo(object):

				def	__init__(self,	name,	email):

								super(UserInfo,	self).__init__()

								self.name	=	name

								self.email	=	email

2.	 Next,	we	will	start	declaring	our	custom	list	box	control	that	will	be	used	to	display
this	data	using	the	following	code:

class	UserListBox(wx.VListBox):

				def	__init__(self,	parent,	users):

								super(UserListBox,	self).__init__(parent)

								self.bmp	=	wx.Bitmap("system-users.png",

																													wx.BITMAP_TYPE_PNG)

								self.bh	=	self.bmp.GetHeight()

								self.users	=	users

								self.SetItemCount(len(self.users))

3.	 This	next	method	is	a	required	override	that	is	called	to	allow	the	subclass	to	provide
the	measured	height	of	each	item:

				def	OnMeasureItem(self,	index):

								bmpHeight	=	self.bh	+	4

								nsize	=	self.GetTextExtent(self.users[index].name)

								esize	=	self.GetTextExtent(self.users[index].email)

								return	max(bmpHeight,	nsize[1]	+	esize[1]	+	6)

4.	 The	following	override	is	used	to	draw	the	separator	between	items	in	the	list:

				def	OnDrawSeparator(self,	dc,	rect,	index):

								oldpen	=	dc.GetPen()

								dc.SetPen(wx.Pen(wx.BLACK))

								dc.DrawLine(rect.x,	rect.y,

																				rect.x	+	rect.width,

																				rect.y)

								rect.Deflate(0,	2)

								dc.SetPen(oldpen)

5.	 Now,	this	last	override	draws	an	individual	row	item	in	the	list	itself:

				def	OnDrawItem(self,	dc,	rect,	index):

								#	Draw	the	bitmap

								dc.DrawBitmap(self.bmp,	rect.x	+	2,

																						((rect.height	-	self.bh)	/	2)	+	rect.y)



								#	Draw	the	name	label	to	the	right	of	the	bitmap

								textx	=	rect.x	+	2	+	self.bh	+	2

								lblrect	=	wx.Rect(textx,	rect.y,

																										rect.width	-	textx,

																										rect.height)

								user	=	self.users[index]

								dc.DrawLabel(user.name,	lblrect,

																					wx.ALIGN_LEFT|wx.ALIGN_TOP)

								dc.DrawLabel(user.email,	lblrect,

																					wx.ALIGN_LEFT|wx.ALIGN_BOTTOM)

6.	 To	finish	it	up,	we	will	add	a	few	methods	to	allow	adding,	removing,	and	accessing
the	control’s	data	after	it	was	created:

				def	AddItem(self,	user):

								self.users.append(user)

								self.SetItemCount(len(self.users))

				def	GetItem(self,	index):

								return	self.users[index]

				def	RemoveItem(self,	index):

								self.users.remove(index)

								self.SetItemCount(len(self.users))



How	it	works…
This	new	UserListBox	control	is	specialized	to	display	a	list	of	users	and	their	e-mail
addresses	along	with	a	bitmap:

This	control	works	based	on	a	few	pieces	of	information	that	we	give	to	the	base	class
about	our	data.	In	the	constructor,	we	tell	the	base	class	how	many	items	are	initially	in	the
control	by	calling	SetItemCount.	This	lets	the	control	know	how	many	times	it	needs	to
call	OnMeasureItem,	which	is	used	to	calculate	the	height	of	each	item	in	the	control	The
returned	heights	are	used	to	calculate	the	virtual	space	and	scrollbar	dimensions	as	well	as
to	build	the	Rect	objects	that	are	later	passed	to	OnDrawSeparator	and	OnDrawItem,	which
are	used	to	draw	the	item	and	its	data	in	the	list	box.



There’s	more…
There	are	a	couple	of	additional	methods	that	can	be	useful	when	implementing	VListBox.
Take	a	look	at	the	following	table:

Method Description

OnDrawItemBackground

This	method	can	be	overridden	to	customize	how	the	background	of	an	item	is	drawn.	The
default	base	class	implementation	does	the	reasonable	thing	of	drawing	the	background	with
the	default	color	as	well	as	of	handling.

IsSelected

This	method	can	be	used	to	check	whether	an	item	is	currently	the	selected	item.	We	can
check	this	in	OnDrawItem	if	we	want	to	add	different	effects,	such	as	bolding	the	text	in	a
selected	item.





Implementing	highlighting	in
StyledTextCtrl
The	StyledTextCtrl	provides	a	vast	number	of	built-in	lexers	to	provide	syntax
highlighting	of	various	types	of	programming	languages.	Its	API	also	allows	us	to	extend
these	capabilities	by	providing	our	own	custom	styling	of	text	in	the	buffer.	This	can	be
useful	to	create	a	text	editor	for	your	own	custom	markup	or	for	special	text	formatting.	In
this	recipe,	we	will	take	a	look	at	how	to	implement	custom	text	styling	in
StyledTextCtrl.



Getting	ready
If	you	haven’t	already,	you	may	want	to	jump	back	and	take	a	look	at	the	other
StyledTextCtrl	recipes	in	Chapter	4,	Containers	and	Advanced	Controls,	to	get	some
familiarity	with	StyledTextCtrl	prior	to	continuing	with	this	recipe.



How	to	do	it…
Here	are	the	steps	for	this	recipe:

1.	 First,	we	need	to	import	the	wx.stc	submodule	and	define	a	couple	of	IDs	to	use	for
our	custom	lexer’s	different	styles,	as	follows:

import	wx

import	wx.stc	as	stc

#	Style	IDs	for	the	KeywordLexer

STC_STYLE_KW_DEFAULT,	\

STC_STYLE_KW_KEYWORD	=	range(2)

2.	 Next,	we	will	define	a	new	class	to	manage	the	styling	of	the	text	in
StyledTextCtrl:

class	KeywordLexer(object):

				def	__init__(self):

								super(KeywordLexer,	self).__init__()

								self._kw	=	list()

				def	SetKeywords(self,	kws):

								self._kw	=	kws

3.	 This	next	method	will	perform	custom	highlighting	on	StyledTextCtrl	and	allow	us
to	specify	and	do	the	highlighting	of	user-assigned	keywords:

				def	StyleText(self,	event):

								buffer	=	event.EventObject

								lastStyled	=	buffer.GetEndStyled()

								startPos	=	buffer.PositionFromLine(lastStyled)

								startPos	=	max(startPos,	0)

								endPos	=	event.GetPosition()

								

								curWord	=	""

								while	startPos	<	endPos:

												c	=	chr(buffer.GetCharAt(startPos))

												curWord	+=	c

												if	c.isspace():

																curWord	=	curWord.strip()

																if	curWord	in	self._kw:

																				style	=	STC_STYLE_KW_KEYWORD

																else:

																				style	=	STC_STYLE_KW_DEFAULT

																wordStart	=	max(0,	startPos	-	(len(curWord)))

																buffer.StartStyling(wordStart,	0x1f)

																buffer.SetStyling(len(curWord),	style)

																buffer.SetStyling(1,	STC_STYLE_KW_DEFAULT)

																curWord	=	""

												startPos	+=	1

4.	 Now,	we	will	make	a	simple	subclass	of	StyledTextCtrl	that	can	make	use	of	the
KeywordLexer	class,	as	follows:



class	KeywordSTC(stc.StyledTextCtrl):

				def	__init__(self,	parent):

								super(KeywordSTC,	self).__init__(parent)

								self._lexer	=	None

								self.Bind(stc.EVT_STC_STYLENEEDED,	self.OnStyle)

				def	OnStyle(self,	event):

								if	self._lexer:

												self._lexer.StyleText(event)

								else:

												event.Skip()

5.	 To	finish	up	this	subclass,	we	will	override	a	couple	of	methods	to	inject	the	usage	of
KeywordLexer	into	StyledTextCtrl:

				def	SetKeyWords(self,	idx,	keywords):

								if	self._lexer:

												self._lexer.SetKeywords(keywords.split())

								else:

												super(KeywordSTC,	self).SetKeyWords(idx,	keywords)

				def	SetLexer(self,	lexerID):

								if	lexerID	==	stc.STC_LEX_CONTAINER:

												self._lexer	=	KeywordLexer()

								super(KeywordSTC,	self).SetLexer(lexerID)

6.	 For	the	final	step,	we	will	show	how	to	use	this	new	class	by	putting	it	inside	a
simple	frame:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title):

								super(MyFrame,	self).__init__(parent,	title=title)

								sizer	=	wx.BoxSizer()

								self.stc	=	KeywordSTC(self)

								sizer.Add(self.stc,	1,	wx.EXPAND)

								self.stc.SetLexer(stc.STC_LEX_CONTAINER)

								self.stc.SetKeyWords(0,	"Hello	World	Highlight	Me")

								self.stc.StyleSetSpec(STC_STYLE_KW_DEFAULT,	

																														"fore:#0000FF,back:#FFFFFF")

								self.stc.StyleSetSpec(STC_STYLE_KW_KEYWORD,

																														"fore:#FF0000,bold")

								self.Sizer	=	sizer

								self.SetInitialSize((400,	300))



How	it	works…
The	EVT_STC_STYLEDNEEDED	event	is	fired	by	StyledTextCtrl	every	time	there	is	a
change	in	the	buffer	that	requires	the	styling	to	be	updated.	StyledTextCtrl	only	raises
this	event	when	the	current	lexer	is	set	to	STC_LEX_CONTAINER,	which	specifies	that	the
container	window	is	to	provide	the	styling	of	the	text.

We	created	KeywordLexer	as	a	separate	object	that	StyledTextCtrl	delegates	the	handling
of	its	styling	to	in	the	OnStyle	event	handler.	The	StyleText	method	of	KeywordLexer
first	uses	some	information	from	the	text	control	and	event	to	determine	the	line	in	the	text
control	that	requires	styling.	It	then	looks	through	each	character	in	the	line	until	it	finds	a
word.	Once	a	word	is	found,	the	keyword	list	is	checked	to	see	whether	it	is	one	of	the
keywords	that	the	keyword	style	should	be	applied	to.	If	not,	it	uses	the	default	style	ID.
The	StartStyling	is	called	to	set	the	current	styling	position	to	the	beginning	of	the	word,
followed	by	two	calls	to	SetStyling	to	style	the	word	with	the	selected	style	and	then	the
space	character	using	the	default	style.

As	per	the	example	usage	shown	in	the	MyFrame	class,	the	text	buffer	displays	all	normal
text	in	blue	and	any	of	the	keywords	Hello,	World,	Highlight,	or	Me	in	bold	red	text	as
they	are	typed	into	the	buffer.



See	also
Take	a	look	at	the	Styling	text	in	StyledTextCtrl	recipe	in	Chapter	4,	Containers	and
Advanced	Controls,	for	an	example	of	using	a	built-in	lexer
Refer	to	the	Annotating	StyledTextCtrl	recipe	in	Chapter	4,	Containers	and	Advanced
Controls,	for	some	tips	on	using	additional	features	of	StyledTextCtrl





Creating	a	composite	control
Sometimes,	there	are	already	controls	that	provide	some	functionalities	that	can	meet	most
of	your	application’s	needs	but	maybe	just	not	in	the	right	way,	or	you	find	that	you	are
missing	some	basic	fundamental	need	that	can	be	provided	by	another	control.	If	you	find
yourself	in	this	situation,	it	can	be	convenient	to	encapsulate	the	functionality	of	multiple
controls	into	a	single	composite	control	that	provides	the	combined	functionality	that	is
needed	from	both	controls.	In	this	recipe,	we	will	make	a	composite	control	that	is	made
up	of	the	TextCtrl	and	ColourSelect	controls,	which	provides	both	a	visual	and	textual
representation	of	the	color	on	screen.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	will	start	by	deriving	a	class	from	PyPanel	to	use	as	the	base	container	for
our	composite	control,	as	follows:

import	wx

import	wx.lib.colourselect	as	CSEL

class	ColourEntry(wx.Panel):

				def	__init__(self,	parent,	colour=wx.NullColour):

								super(ColourEntry,	self).__init__(parent)

								self._cs	=	CSEL.ColourSelect(self,	colour=colour)

								self._txt	=	wx.TextCtrl(self,	style=wx.TE_READONLY)

								self._Synch()

								self.__DoLayout()

								

								self.Bind(CSEL.EVT_COLOURSELECT,	self.OnCSel)

2.	 Next,	we	need	to	do	the	layout	to	group	the	individual	controls	into	a	single
composite	control:

				def	__DoLayout(self):

								self.Sizer	=	wx.BoxSizer(wx.HORIZONTAL)

								

								self.Sizer.Add(self._txt,	0,	wx.EXPAND|wx.ALL,	3)

								tsize	=	self._txt.Size

								self._cs.SetMinSize((tsize[1],	tsize[1]))

								self.Sizer.Add(self._cs,	0,	wx.EXPAND|wx.ALL,	3)

3.	 This	next	method	is	used	internally	by	the	control	to	keep	the	TextCtrl	display	value
in	sync	with	ColourSelect	control:

				def	_Synch(self):

								c	=	self.Colour

								self._txt.Value	=	c.GetAsString(wx.C2S_HTML_SYNTAX)

4.	 For	the	next	step,	we	will	intercept	ColourSelectEvent	to	resync	the	text	control	as
well	as	change	the	source	of	the	event	from	ColourSelect	to	our	composite	control,
as	follows:

				def	OnCSel(self,	event):

								self._Synch()

								#	Reassign	object	to	the	ColourEntry	instance

								event.SetEventObject(self)

								event.Skip()	#	allow	propagation

5.	 For	the	last	step,	we	will	add	some	properties	to	extend	the	PyPanel	API	and	give
access	to	the	values	of	the	composite	control	via	the	following	properties:

				@property

				def	Colour(self):



								return	self._cs.GetColour()

				@Colour.setter

				def	Colour(self,	colour):

								self._cs.SetColour(colour)

								self._Synch()

				@property

				def	ColourCode(self):

								return	self._txt.Value



How	it	works…
A	PyPanel	API	is	used	to	group	the	TextCtrl	and	ColourSelect	controls	into	a	single
composite	control	that	provides	both	a	way	to	select	a	color	as	well	as	one	to	display	the
hex	code	for	the	color.	The	use	of	TextCtrl	also	means	that	the	user	can	copy	the	hex
value	of	the	control	to	paste	elsewhere	if	they	would	like	to	do	so:

For	simplicity	and	convenience,	we	reused	ColourSelectEvent,	which	is	emitted	by	the
ColourSelect	control	for	this	custom	control.	However,	in	order	to	provide	access	to	the
ColourCode	property	of	the	new	ColourEntry	control,	we	switched	out	EventObject	to
refer	to	the	ColourEntry	control	instead	of	ColourSelect.	When	this	event	is	raised,	it
means	the	user	has	selected	a	different	color	from	ColourSelect,	so	we	also	used	this
opportunity	to	synchronize	TextCtrl	to	show	the	new	hex	code	for	the	currently	selected
color.



See	also
Take	a	look	at	the	Laying	out	controls	with	Sizers	recipe	in	Chapter	3,	UI	Layout	and
Organization,	where	the	concept	of	Sizer-based	layouts	is	introduced
Refer	to	the	Controlling	the	propagation	of	events	recipe	in	Chapter	1,	wxPython
Starting	Points,	for	more	information	on	the	propagation	of	events	and	how	to	make
custom	event	objects





Designing	an	owner-drawn	control
If	you	find	a	need	in	your	UI	that	can’t	be	filled	in	just	the	right	way	by	the	controls
provided	in	the	wxPython	library,	you	may	find	that	you	need	to	make	your	own.	In	the
previous	chapters	of	this	book,	we	covered	many	of	the	building	blocks	that	we	can	now
look	at	for	ways	to	leverage	and	combine	to	build	our	own	controls.	In	this	recipe,	we	will
build	our	own	container	control	that	has	a	custom-drawn	border	and	appearance.



Getting	ready
Ensure	that	you	have	taken	a	look	at	Chapter	8,	User	Interface	Primitives,	before
continuing	with	this	recipe.	This	recipe	will	combine	the	use	of	DeviceContext	and	Sizer
to	create	a	custom	control.



How	to	do	it…
1.	 First,	we	will	start	by	defining	a	subclass	of	PyPanel	to	derive	our	new	control	from,

as	follows:

class	CaptionBox(wx.PyPanel):

				def	__init__(self,	parent,	caption,	flag=wx.VERTICAL):

								super(CaptionBox,	self).__init__(parent,

																																									style=wx.NO_BORDER)

								self.Label	=	caption

								self._csizer	=	wx.BoxSizer(flag)

								self.__DoLayout()

								self.Bind(wx.EVT_PAINT,	self.OnPaint)

2.	 In	this	next	method,	we	will	set	up	the	internal	Sizer	layout	of	the	control	to	reserve
some	space	at	the	top,	where	we	will	draw	the	header	box	and	caption:

				def	__DoLayout(self):

								msizer	=	wx.BoxSizer(wx.VERTICAL)

								tsize	=	self.GetTextExtent(self.Label)

								msizer.AddSpacer(tsize[1]	+	3)	#	extra	space	for	caption

								msizer.Add(self._csizer,	0,	wx.EXPAND|wx.ALL,	8)

								self.SetSizer(msizer)

3.	 The	DoGetBestSize	method	is	a	virtual	one	exposed	by	PyPanel	in	our
implementation.	We	will	use	the	base	method	but	adjust	the	width	to	ensure	that	the
caption	can	fit	in	cases	when	the	caption	is	larger	than	the	controls:

				def	DoGetBestSize(self):

								size	=	super(CaptionBox,	self).DoGetBestSize()

								#	Make	sure	there	is	room	for	the	label

								tsize	=	self.GetTextExtent(self.Label)

								size.SetWidth(max(size.width,	tsize[0]+20))

								return	size

4.	 This	next	method	can	be	called	by	the	user	code	to	add	child	controls	into
CaptionBox:

				def	AddItem(self,	item):

								self._csizer.Add(item,	0,	wx.ALL,	5)

5.	 Now,	in	OnPaint,	we	will	draw	the	custom	portions	of	the	control,	which	includes	a
border	and	a	small	caption	label	at	the	top,	as	follows:

				def	OnPaint(self,	event):

								dc	=	wx.PaintDC(self)

								rect	=	self.ClientRect

								#	Get	the	system	color	to	draw	the	caption

								ss	=	wx.SystemSettings

								color	=	ss.GetColour(wx.SYS_COLOUR_ACTIVECAPTION)

								txtcolor	=	ss.GetColour(wx.SYS_COLOUR_CAPTIONTEXT)

								dc.SetTextForeground(txtcolor)



								#	Draw	the	border

								self.OnDrawBorder(dc,	color,	rect)

								#	Add	the	Caption

								self.OnDrawCaption(dc,	color,	rect)

6.	 The	next	two	methods	are	called	during	OnPaint	to	draw	the	border	and	caption
section.	They	were	extracted	so	that	user-defined	subclasses	could	override	them	to
provide	additional	custom	behavior	if	desired:

				def	OnDrawBorder(self,	dc,	color,	rect):

								rect.Inflate(-2,	-2)

								dc.SetPen(wx.Pen(color))

								dc.SetBrush(wx.TRANSPARENT_BRUSH)

								dc.DrawRectangleRect(rect)

				def	OnDrawCaption(self,	dc,	color,	rect):

								tsize	=	dc.GetTextExtent(self.Label)

								rect	=	wx.Rect(rect.x,	rect.y,

																							rect.width,	tsize[1]	+	3)

								dc.SetBrush(wx.Brush(color))

								dc.DrawRectangleRect(rect)

								rect.Inflate(-5,	0)

								dc.SetFont(self.GetFont())

								dc.DrawLabel(self.Label,	rect,	wx.ALIGN_LEFT)



How	it	works
The	CaptionBox	class	that	we	created	in	this	recipe	can	be	used	much	in	the	same	way	as
StaticBox.	It	supports	a	VERTICAL	or	HORIZONTAL	layout	as	well	as	a	caption	label	to	be
displayed	at	the	top	of	the	box.	The	CaptionBox	class	is	a	custom	control	that	can	be	used
as	a	container	for	other	controls,	as	is	shown	in	the	following	screenshot:

This	control	works	using	a	PyPanel	API	and	Sizer	to	control	the	space	and	size	of	the
control.	A	PyPanel	API	is	functionally	equivalent	to	a	normal	panel,	except	that	it
provides	additional	access	to	the	protected	virtual	methods	of	the	underlying	C++	control.
We	overrode	one	of	these	methods,	DoGetBestSize,	in	order	to	measure	the	size	of	the
label.	The	measurement	is	used	to	increase	the	overall	size	of	the	control	to	accommodate
the	header	caption	area	in	addition	to	the.

During	OnPaint,	the	control’s	rectangle	is	used	to	define	where	the	border	should	be
drawn,	and	then,	the	space	that	was	reserved	at	the	top	of	the	control	is	filled	in	with	the
caption	bar	and	label.	After	this,	the	control	is	managed	through	its	AddItem	method,
which	allows	users	to	place	other	controls	inside	of	the	CaptionBox	class.



See	also
Refer	to	the	Recreating	native	controls	with	RendererNative	recipe	in	Chapter	8,	User
Interface	Primitives,	for	another	example	of	creating	an	owner-drawn	control





Chapter	10.	Getting	Your	Application
Ready	for	Release
In	this	chapter,	we	will	cover:

Storing	your	configuration	with	StandardPaths
Saving	the	application’s	state
Supporting	internationalization
Optimizing	for	OS	X
Handling	errors	gracefully
Embedding	your	resources
Distributing	an	application
Updating	your	software



Introduction
Once	you	master	how	to	build	user	interfaces	for	your	Python	applications	using
wxPython,	the	last	important	step	is	learning	how	to	build	the	application	and	its
supporting	features.	This	includes	managing	user	configuration,	error	handling,
translations,	and	the	building	of	an	installer.	In	this	chapter,	we	will	explore	all	of	these
important	aspects	of	putting	together	an	application	for	release.	Each	recipe	will	provide
you	with	detailed	steps	and	explanations	on	how	to	make	use	of	the	features	available	in
the	wxPython	framework	to	build	your	application’s	infrastructure	in	order	to	make	your
application	ready	to	be	released	to	your	users.





Storing	your	configuration	with
StandardPaths
You	have	built	your	cross	platform	application,	but	in	order	to	run	your	application	on
multiple	platforms,	you	also	need	a	standard	way	to	access	external	resources,	such	as
icons	and	user	configuration	data.	Luckily,	wxPython	also	has	a	cross	platform	way	to
access	standard	system	paths.	There	are	the	platform-specific	locations	where	applications
store	their	user	configuration	data,	which	can	be	accessed	through	the	StandardPaths
singleton.	In	this	recipe,	we	will	take	a	look	at	how	to	set	up	and	access	application
configuration	data	using	StandardPaths.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	will	start	by	defining	a	class	to	help	manage	the	configuration	of	an
application:

import	os

import	json

import	wx

class	AppConfig(object):

				_instance	=	None

				def	__init__(self):

								super(AppConfig,	self).__init__()

								#	create	base	dir	if	it	doesnt	exist

								if	not	os.path.exists(self.UserConfigDir):

												os.mkdir(self.UserConfigDir)

								self.data	=	dict()

								if	os.path.exists(self.ConfigFile):

												with	open(self.ConfigFile)	as	dataFile:

																self.data	=	json.load(dataFile)

2.	 Next,	we	will	define	a	couple	of	properties	to	give	easy	access	to	where	the
configuration	is	stored,	as	follows:

				@property

				def	UserConfigDir(self):

								return	wx.StandardPaths_Get().GetUserDataDir()

				@property

				def	ConfigFile(self):

								appName	=	wx.GetApp().AppName

								return	os.path.join(self.UserConfigDir,	

																												"%s.json"	%	appName)

3.	 These	next	two	methods	can	be	used	to	access	or	create	application-defined
configuration	files	or	additional	resources:

				def	GetConfigFile(self,	relPath):

								return	os.path.join(self.UserConfigDir,	relPath)

				def	ConfigFileExists(self,	relPath):

								path	=	self.GetConfigFile(relPath)

								return	os.path.exists(path)

4.	 The	following	group	of	methods	allow	us	to	access,	update,	and	add	configuration
data	to	the	managed	configuration	data	object,	which	is	stored	as	the	main
application’s	configuration:

				def	GetValue(self,	key,	default=None):

								return	self.data.get(key,	default)



				def	WriteValue(self,	key,	value):

								self.data[key]	=	value

				def	SaveConfig(self):

								with	open(self.ConfigFile,	'w')	as	configFile:

												json.dump(self.data,	configFile)

5.	 To	finish	up	this	class,	we	will	add	a	static	singleton	accessor	method	to	ensure	that
the	application	can	use	a	shared	instance	of	the	common	configuration	data,	as
follows:

				@staticmethod

				def	Instance():

								if	AppConfig._instance	is	None:

												AppConfig._instance	=	AppConfig()

								return	AppConfig._instance



How	it	works…
When	an	instance	of	the	AppConfig	class	is	created,	such	as	when	the	Instance	method	is
accessed,	the	application’s	configuration	folder	is	checked	for	and	created	in	the	proper
location.	The	name	of	the	folder	and	the	configuration	file	is	based	on	the	Name	property	of
the	wx.App	object	that	is	created.	This	object	stores	data	in	a	dictionary	in	memory	during
runtime	using	a	simple	key-to-value	mapping.	Then,	when	the	SaveConfig	method	is
called,	the	data	is	dumped	into	a	JSON	file	in	UserConfigDir	that	is	named	the	same	way
as	App.

The	application	can	get	and	store	its	configuration	values	to	AppConfig	using	the
GetValue	and	WriteValue	methods.	For	example,	to	get	a	stored	configuration	value	from
the	AppConfig	object,	we	just	need	to	call	its	GetValue	method	with	the	key	and	optional
default	value	to	return	when	value	is	not	set	in	the	configuration	file.	Here’s	the	code	we
executed	for	this:

cb1	=	wx.CheckBox(self,	label="Option	1",	name="opt1")

cb1.Value	=	AppConfig.Instance().GetValue(cb1.Name,	False)

Then,	to	store	a	value	related	to	a	control	such	as	this	for	AppConfig	to	persist,	the
application	would	call	the	WriteValue	method,	as	in	the	following	example	snippet:

				def	OnCheck(self,	event):

								obj	=	event.EventObject

								AppConfig.Instance().WriteValue(obj.Name,	obj.Value)

								event.Skip()



There’s	more…
The	wx.StandardPaths	object	provides	several	other	additional	methods	to	access
common	configuration,	installation,	and	system	paths.	The	following	table	lists	some	of
the	additional	methods	available:

Method Description

GetConfigDir This	lets	us	access	the	parent	directory	for	system	configuration	files.

GetDataDir This	lets	us	access	the	application’s	global	data	directory.

GetUserConfigDir
This	lets	us	access	users’	parent	configuration	directory.	This	is	usually	the	home
directory	for	the	user.

GetUserLocalDataDir
This	is	the	same	as	GetUserDataDir,	except	that	on	Windows,	it	returns	the	one	under
local	settings.

GetAppDocumentsDir This	lets	us	access	the	document	directory	for	the	application	under	GetDocumentsDir.

GetDocumentsDir This	lets	us	access	the	current	users’	document	directory.

GetExecutablePath This	gets	us	the	absolute	path	to	the	running	executable.

GetInstallPrefix This	gets	us	the	program	installation	prefix;	it	only	has	any	meaning	on	Linux.

GetLocalDataDir
This	is	the	same	as	GetDataDir,	except	that	on	Unix,	it	returns	the	app-specific	directory
under	/etc/.

GetLocalizedResourcesDir
This	gets	us	access	to	the	location	where	localized	resources	should	be	stored	or	located
for	the	application.

GetPluginDir This	gets	us	the	path	to	where	plugins	or	loadable	resources	are	located.

GetResourcesDir This	lets	us	access	the	location	where	auxiliary	resource	files	should	be	located.

GetTempDir This	gets	us	the	location	of	the	system	temp	directory.





Saving	the	application’s	state
Many	applications	provide	some	functionality	that	remembers	the	window	size,	location,
and	other	visual	settings	that	a	user	may	have	left	the	UI	in	during	its	last	usage.	Adding
such	a	feature	can	be	accomplished	in	different	ways.	The	wx.lib	package	provides	a
PersistentControls	library	that	can	be	used	to	store	the	state	of	a	window	and	its	child
controls	to	a	file	and	can	then	restore	the	state	to	the	controls	at	the	next	launch	of	the
application.	In	this	recipe,	we	will	take	a	look	at	how	to	integrate	PersistentControls
into	an	application.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	we	will	define	our	app’s	App	object	and	set	AppName:

import	wx

import	wx.lib.agw.persist	as	PERSIST

class	MyApp(wx.App):

				def	OnInit(self):

								self.SetAppName("PersistControls")

								self.frame	=	MyFrame(None,	title="Save	State")

								self.frame.Show()

								return	True

2.	 Next,	we	will	make	a	Panel	for	the	app’s	main	window	that	has	a	couple	of	CheckBox
controls	on	it,	as	follows:

class	MyPanel(wx.Panel):

				def	__init__(self,	parent):

								super(MyPanel,	self).__init__(parent)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								cb1	=	wx.CheckBox(self,	label="Option	1",	name="opt1")

								cb2	=	wx.CheckBox(self,	label="Option	2",	name="opt2")

								sizer.AddMany([(cb1,	0,	wx.ALL,	10),	

																							(cb2,	0,	wx.ALL,	10)])

								self.Sizer	=	sizer

3.	 Now,	we	will	start	to	define	our	main	window	class	using	the	following	code:

class	MyFrame(wx.Frame):

				def	__init__(self,	parent,	title):

								super(MyFrame,	self).__init__(parent,	title=title,	

																																						name="MyAppsFrame")

								sizer	=	wx.BoxSizer()

								sizer.Add(MyPanel(self),	1,	wx.EXPAND)

								self.Sizer	=	sizer

								

								self.Register(self)

								self.Bind(wx.EVT_CLOSE,	self.OnExit)

4.	 Next	is	the	Register	method,	which	we	will	use	to	register	our	named	controls	with
PersistenceManager,	as	follows:

				def	Register(self,	win):

								mgr	=	PERSIST.PersistenceManager.Get()

								if	win	and	win.Name	not	in	PERSIST.BAD_DEFAULT_NAMES:

												mgr.RegisterAndRestore(win)

								for	child	in	win.Children:

												self.Register(child)

5.	 For	the	last	step,	we	need	to	tell	PersistenceManager	when	our	windows	are	being



destroyed	so	that	it	can	save	their	state:

				def	OnExit(self,	event):

								mgr	=	PERSIST.PersistenceManager.Get()

								mgr.SaveAndUnregister()

								event.Skip()



How	it	works…
PersistenceManager	works	by	managing	the	properties	of	named	windows	and	controls
in	an	application.	To	use	PersistenceManager,	each	window	instance	that	is	managed
must	have	a	unique	name.	In	this	recipe,	we	added	a	Register	method	to	our	Frame	class
to	handle	registering	all	the	windows	and	controls	that	are	contained	within	the	frame	with
PersistenceManager.	This	is	accomplished	by	recursively	calling	Register	on	each	child
window	of	the	frame	until	all	are	registered.

When	the	frame’s	EVT_CLOSE	event	is	fired,	the	OnExit	event	handler	calls
SaveAndUnregister	on	PersistenceManager	to	tell	it	to	save	the	current	state	of	all	the
registered	controls	to	the	application’s	data	directory.	This	will	result	in	the	current
position	and	size	of	the	frame	being	saved	as	well	as	the	current	value	of	each	of	the	two
named	CheckBox	controls	owned	by	Panel.

Then,	the	next	time	the	application	is	started,	these	persisted	values	will	be	restored	to
each	of	the	controls	during	the	same	RegisterAndRestore	call	that	is	used	to	register	the
window	with	the	manager.



See	also
Take	a	look	at	the	Advancing	your	UI	with	AuiManager	recipe	in	Chapter	3,	UI
Layout	and	Organization,	for	another	way	to	persist	the	state	of	a	user	interface	that
uses	AUI	components





Supporting	internationalization
If	you	are	creating	an	app	for	more	than	just	yourself,	you	should	consider	building	in
support	for	internationalization	into	your	UIs.	Adding	in	the	appropriate	hooks	for
supporting	interface	translations	in	wxPython	is	quite	simple	if	you	plan	ahead	and	do	it
from	the	beginning	of	your	application’s	development.	In	this	recipe,	we	will	look	at	how
to	make	use	of	and	enable	support	for	translations	in	your	wxPython	application.



How	to	do	it…
Here	are	the	steps	to	be	performed	for	this	recipe:

1.	 First,	we	will	set	up	the	imports	and	create	a	function	alias	through	the	following
lines	of	code:

import	wx

import	os

#	Function	alias

_	=	wx.GetTranslation

2.	 Next,	we	will	define	our	app’s	subclass	to	set	up	the	application’s	locale	object
based	on	user-configured	settings:

class	TranslatableApp(wx.App):

				def	OnInit(self):

								self.SetAppName("I18NTestApp")

								

								#	Get	user	configured	language	if	set

								config	=	wx.Config()

								lang	=	config.Read('lang',	'LANGUAGE_DEFAULT')

								

								#	Setup	the	Local

								self.locale	=	wx.Locale(getattr(wx,	lang))

								path	=	os.path.abspath('./locale')	+	os.path.sep

								self.locale.AddCatalogLookupPathPrefix(path)

								self.locale.AddCatalog(self.AppName)

								

								self.frame	=	TestFrame(None,	title=_("Sample	App"))

								self.frame.Show()

								return	True

3.	 For	the	next	couple	of	steps,	we	will	create	a	simple	UI	to	demonstrate	how	to	make
use	of	translations.	Take	a	look	at	the	following:

class	TestFrame(wx.Frame):

				def	__init__(self,	parent,	title=""):

								super(TestFrame,	self).__init__(parent,	title=title)

								self.panel	=	TestPanel(self)

								

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.Add(self.panel,	1,	wx.EXPAND)

								self.Sizer	=	sizer

								self.SetInitialSize((350,	200))

								

								self.Bind(wx.EVT_BUTTON,	self.OnButton)

				def	OnButton(self,	event):

								if	event.Id	==	wx.ID_CLOSE:

												self.Close()

4.	 Next,	we	will	make	the	Panel	class	that	will	hold	the	controls	to	allow	the	user	to



select	a	different	language	to	use,	as	follows:

class	TestPanel(wx.Panel):

				def	__init__(self,	parent):

								super(TestPanel,	self).__init__(parent)

								self.closebtn	=	wx.Button(self,	wx.ID_CLOSE)

								self.langch	=	wx.Choice(self,	

																																choices=[_("English"),	

																																									_("Japanese")])

								self.__DoLayout()

								self.Bind(wx.EVT_CHOICE,	self.OnChoice)

5.	 Next,	we	will	do	the	layout	for	Panel	via	the	following	code:

				def	__DoLayout(self):

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								

								greeting	=	wx.StaticText(self,	label=_("Hello"))

								sizer.Add(greeting,	0,	wx.ALIGN_CENTER_HORIZONTAL)

								

								langsz	=	wx.BoxSizer(wx.HORIZONTAL)

								langlbl	=	wx.StaticText(self,	label=_("Language"))

								langsz.Add(langlbl,	0,	

																			wx.ALL|wx.ALIGN_CENTER_VERTICAL,	5)

								langsz.Add(self.langch,	1,	

																			wx.ALIGN_CENTER_VERTICAL|wx.EXPAND)

								sizer.Add(langsz,	0,	wx.ALL|wx.EXPAND,	5)

								

								sizer.Add(self.closebtn,	0,	

																		wx.ALIGN_RIGHT|wx.RIGHT,	5)

								self.Sizer	=	sizer

6.	 For	the	final	step,	we	will	define	the	OnChoice	handler	to	do	some	simple
configuration	setting	changes	for	the	selected	language:

				def	OnChoice(self,	event):

								if	self.langch.Selection	==	0:

												val	=	'LANGUAGE_ENGLISH'

								else:

												val	=	'LANGUAGE_JAPANESE'

								config	=	wx.Config()

								config.Write('lang',	val)



How	it	works…
One	of	the	main	points	to	take	note	of	in	this	application	is	how	we	wrapped	all	the	strings
that	appear	in	the	UI	to	the	user	with	the	wx.GetTranslation	function.	This	function	uses
the	application’s	current	locale	object	to	check	whether	any	language	catalogues	are
registered	for	the	application.	In	the	catalogues,	it	looks	for	a	match	to	the	passed	in	string
and	returns	the	translated	version	of	the	string	instead.

Next,	in	the	OnInit	method	of	our	application,	we	created	a	locale	object	and	added	a
lookup	path	that	points	to	the	directory	that	our	application	keeps	its	translations	in.	This
enables	GetTranslation	to	locate	any	translations	for	catalogs	that	are	found	on	the	path
for	the	locale	object’s	currently	set	language.

When	this	sample	application	starts,	it	uses	the	default	locale	as	the	Config	object	has	no
stored	setting	in	it.	Once	a	language	is	selected	in	the	choice	control	and	the	application	is
restarted,	you	can	see	how	the	display	strings	are	now	translated	from	English	on	the	left
to	Japanese	on	the	right	in	the	preceding	image.



There’s	more…
The	wxPython	translation	system	uses	gettext	formatted	files	to	load	translated	resource
strings	from.	There	are	two	files	for	each	translation:	the	.po	file	(Portable	Object)	and
the	.mo	file	(Machine	Object).	The	Portable	Object	file	is	the	source	file	that	is	edited	to
create	the	mapping	of	the	default	string	to	the	translated	version.	The	Machine	Object	file
is	a	compiled	version	of	the	.po	file.	To	compile	a	.po	file	with	a	.mo	file,	you	need	to	use
either	msgfmt	or	Poedit,	both	of	which	are	free	tools	available	on	any	platform	that	has
wxPython.



See	also
Refer	to	the	Enhancing	ComboBox	with	bitmaps	recipe	in	Chapter	4,	Containers	and
Advanced	Controls,	for	an	example	of	a	custom	control	that	can	be	used	to	select	a
language





Optimizing	for	OS	X
Even	though	wxPython	is	a	native	cross	platform	user	interface	library,	it	can	still	leave
gaps	on	some	platforms	due	to	various	reasons.	Historically,	the	support	in	wxPython	for
Windows	and	Linux	(GTK)	has	been	fairly	complete	and	consistent;	however,	for	OS	X,
due	to	its	different	conventions,	available	features,	as	well	as	user	expectations,	it	requires
special	attention	when	developing	your	application.	In	this	recipe,	we	will	look	at	some	of
the	important	small	details	to	keep	in	mind	when	developing	a	wxPython	application	that
may	be	deployed	on	OS	X.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	let’s	add	some	code	to	our	app’s	OnInit	method	to	enable	wx.SystemOption,	as
follows:

class	OSXApp(wx.App):

				def	OnInit(self):

								if	wx.Platform	==	'__WXMAC__':

												spellcheck	=	"mac.textcontrol-use-spell-checker"

												wx.SystemOptions.SetOptionInt(spellcheck,	1)

												self.SetMacHelpMenuTitleName("&Help")

								self.frame	=	OSXFrame(None,	"Optimize	for	OSX")

								self.frame.Show()

								return	True

				def	MacReopenApp(self):

								self.GetTopWindow().Raise()

2.	 Next,	we	will	create	a	Frame	class	with	TextCtrl	to	show	how	SystemOption	from
step	one	affects	TextCtrl	via	the	following	class:

class	OSXFrame(wx.Frame):

				def	__init__(self,	parent,	title):

								super(OSXFrame,	self).__init__(parent,	title=title)

								self._SetupMenus()

								self.text	=	wx.TextCtrl(self,	style=wx.TE_MULTILINE)

								sizer	=	wx.BoxSizer()

								sizer.Add(self.text,	1,	wx.EXPAND)

								self.Sizer	=	sizer

								self.SetInitialSize((350,	200))

3.	 Now,	we	will	create	a	number	of	standard	menus	using	the	stock	IDs	by	executing
the	following	code:

				def	_SetupMenus(self):

								mb	=	wx.MenuBar()

								fmenu	=	wx.Menu()

								fmenu.Append(wx.ID_OPEN)

								fmenu.Append(wx.ID_EXIT)

								mb.Append(fmenu,	"&File")

								emenu	=	wx.Menu()

								emenu.Append(wx.ID_COPY)

								emenu.Append(wx.ID_PREFERENCES)

								mb.Append(emenu,	"&Edit")

								hmenu	=	wx.Menu()

								hmenu.Append(wx.NewId(),	"&Online	help…")

								hmenu.Append(wx.ID_ABOUT,	"&About…")

								mb.Append(hmenu,	"&Help")

								self.MenuBar	=	mb



How	it	works…
We	did	several	small	things	in	this	recipe	to	highlight	some	things	to	take	note	of	when
developing	an	application	that	will	be	run	on	a	Macintosh	system.

First,	we	enabled	SystemOption	to	turn	on	the	native	spell	checking	that	is	available	in
TextCtrl	on	OS	X	10.4	or	higher.	Next,	we	called	SetMacHelpMenuTitleName	to	inform
the	application	which	menu	is	our	Help	menu.	We	needed	to	do	this	because	all	OS	X
applications	by	default	have	a	Help	menu,	and	as	we	used	an	accelerator	character	(&)	in
the	title	to	allow	keyboard	shortcuts	in	our	application	on	Windows	and	Linux,	the	menu
title	text	does	not	match	the	default	name	Help.	Not	calling	SetMacHelpMenuTitleName	in
this	case	could	result	in	two	Help	menus	being	displayed	as	the	framework	would	not
recognize	our	menu	as	the	Help	menu.

Some	additional	things	to	note	about	the	other	standard	menu	items	that	were	created	in
_SetupMenus	is	that	items	such	as	Preferences,	Exit,	and	About	will	be	automatically
moved	to	the	app	menu.	This	happens	because	all	OS	X	applications	have	these	standard
items	located	there,	and	to	help	make	your	application	appear	similar	to	a	native	OS	X
application,	the	framework	will	make	these	modifications	for	you.



There’s	more…
There	are	some	other	additional	Macintosh-specific	methods	that	belong	to	the	wx.App
object	that	can	be	used	to	customize	the	handling	for	three	special	menu	items.	These
methods	are	a	no-op	when	called	from	other	platforms.	Take	a	look	at	the	following	table:

Method Description

SetMacAboutMenuItemId
This	changes	the	ID	used	to	identify	the	About	menu	item	from	ID_ABOUT	to	a
custom	value

SetMacExitMenuItemId
This	changes	the	ID	used	to	identify	the	Exit	menu	item	from	ID_EXIT	to	a	custom
value

SetMacPreferencesMenuItemId
This	changes	the	ID	used	to	identify	the	Preferences	menu	item	from
ID_PREFERENCES	to	a	custom	value

SetMacSupportPCMenuShortcuts This	enables	the	use	of	menu	mnemonics	on	OS	X

SetMacHelpMenuTitleName This	sets	a	custom	title	text	for	the	Help	menu

ToolBars
When	using	a	ToolBar	in	your	application	on	OS	X,	there	are	a	couple	special	things	to
take	note	of	to	ensure	that	it	works	well	when	your	application	is	run	on	OS	X:

1.	 Firstly,	the	order	in	which	the	ToolBar	is	created	and	attached	to	the	frame	matters	on
OS	X.	The	ToolBar	should	be	created	and	attached	to	the	frame,	and	then	we	should
call	Realize	in	that	order,	as	shown	here:

class	MyFrame(wx.Frame):

def	__init__(self,	parent):

				super(MyFrame,	self).__init__(parent)

				toolbar	=	wx.ToolBar(self)

				#	add	icons	to	the	toolbar	here…

				self.SetToolBar(toolbar)

				toolbar.Realize()

2.	 Secondly,	applications	on	OS	X	tend	to	use	32x32-pixel-sized	tool	icons	on	the
toolbar	as	a	standard.	So,	if	you	are	using	custom	icons	in	your	application’s	toolbar,
you	should	keep	at	least	two	sizes—16x16	for	Windows	and	32x32	for	OS	X—and
load	the	appropriate	one	depending	upon	which	platform	the	application	is	running
on.	Not	doing	this	would	result	in	the	small	icons	being	stretched	on	OS	X,	leading	to
fuzzy-looking	icons.



See	also
Take	a	look	at	the	Handling	AppleEvents	recipe	in	Chapter	1,	wxPython	Starting
Points,	for	another	OS	X-specific	recipe	for	handling	special	system	events	on	OS	X
Refer	to	Starting	with	the	easy	button	recipe	in	Chapter	2,	Common	User	Controls,
for	more	details	about	using	stock	IDs	in	controls





Handling	errors	gracefully
In	even	simple	applications,	it	can	be	difficult	to	know	or	account	for	all	the	possible	error
conditions	that	could	occur	during	the	execution	of	a	program.	So,	it	is	important	to	build
in	a	way	to	catch	all	the	errors	that	slip	by	normal	handling	and	provide	as	graceful	a
handling	of	them	as	possible.	This	can	be	the	difference	between	your	users	thinking	your
application	is	buggy	or	doesn’t	work	and	continuing	to	give	it	another	chance.	In	this
recipe,	we	will	discuss	how	to	install	an	exception	hook	to	give	feedback	to	users	when	an
unexpected	error	occurs.



How	to	do	it…
Here	are	the	steps	that	you	need	to	perform:

1.	 First,	we	need	to	start	by	importing	a	few	extra	modules	to	help	out	with	this	recipe,
as	follows:

import	sys

import	traceback

import	wx

import	wx.lib.dialogs	as	DIA

2.	 Next,	let’s	define	an	app	object	that	can	deal	with	unhandled	exceptions	through	the
following	code:

class	ErrorHandlingApp(wx.App):

				def	OnInit(self):

								sys.excepthook	=	self.ExceptionHook

								

								self.frame	=	TestFrame(None,	"Unhandled	error")

								self.frame.Show()

								return	True

3.	 Next,	we	will	define	our	custom	exception	hook	function,	as	follows:

				def	ExceptionHook(self,	errType,	value,	trace):

								err	=	traceback.format_exception(errType,	

																																									value,	trace)

								errTxt	=	"\n".join(err)

								msg	=	"An	unexpected	error	has	occurred:\n%s"	%	errTxt

								if	self	and	wx.Thread_IsMain()	\

																and	self.IsMainLoopRunning():

												#	only	use	UI	notification	if	APP	is	running

												if	not	self.HandleError(value):

																DIA.scrolledMessageDialog(None,	msg,	

																																										"Unexpected	Error")

																self.Exit()

								else:

												sys.stderr.write(msg)

4.	 With	the	exception	hook	in	place	we	will	use	the	following	script	to	also	add	an
overridable	method	that	subclasses	can	use	to	provide	custom	error	handling	or
ignore	certain	exceptions:

				def	HandleError(self,	error):

								"""Override	in	subclass	to	handle	errors

								@return:	True	to	allow	program	to	continue	running

								"""

								return	False

5.	 For	the	final	step,	we	will	just	create	a	sample	Frame	class	that	has	a	button,	which
causes	an	unhandled	exception	to	be	thrown:

class	TestFrame(wx.Frame):

				def	__init__(self,	parent,	title):



								super(TestFrame,	self).__init__(parent,	title=title)

								panel	=	wx.Panel(self)

								psz	=	wx.BoxSizer()

								btn	=	wx.Button(panel,	wx.NewId(),	"Cause	Error")

								psz.Add(btn,	0,	wx.ALIGN_CENTER|wx.ALL,	100)

								panel.Sizer	=	psz

								

								sizer	=	wx.BoxSizer()

								sizer.Add(panel,	1,	wx.EXPAND)

								self.Sizer	=	sizer

								self.SetInitialSize()

								self.Bind(wx.EVT_BUTTON,	self.OnError,	btn)

				def	OnError(self,	event):

								#	cause	an	unhandled	exception

								x	=	1	/	0



How	it	works…
This	application	object	installs	an	exception	hook	to	replace	sys.excepthook.	Whenever
Python	encounters	an	unhandled	exception	thrown	by	an	application,	it	invokes	the
exception	hook.	You	can	make	use	of	this	functionality,	as	we	did	in	this	example
application,	to	catch	the	error	and	provide	the	user	with	some	sort	of	error	message	or
information	to	let	them	know	that	the	application	needs	to	be	shut	down.	It	also	gives	you
an	opportunity	to	log	the	error	and	save	any	state	that	your	application	may	need	to	be	in
during	a	normal	shutdown.	For	this	application,	we	just	provided	a	simple	interface	that
allows	subclasses	to	do	a	special	handling	and	even	suppress	errors	by	overriding	the
HandleError	method.	When	the	error	remains	unhandled	by	HandleError,	a	simple
notification	dialog	is	shown	to	display	the	stack	trace	of	the	error,	and	the	application	is
finally	exited	after	it’s	dismissed.





Embedding	your	resources
Though	it’s	relatively	easy	to	load	bitmap	resources	from	files	local	to	your	scripts	on	your
development	machine,	this	task	can	add	complexity	and	fail	points	to	your	application
when	it	is	deployed	in	different	environments	or	locations	that	you	may	not	have
accounted	for.	Luckily,	wxPython	also	has	some	additional	tools	built	in	that	allow	you	to
embed	images	into	Python	code	modules,	so	you	can	reference	them	in	your	application	as
with	any	other	variable.	In	this	recipe,	we	will	show	you	how	to	make	a	module	that	has
embedded	images	as	well	as	how	to	use	these	embedded	images	in	an	application.



How	to	do	it…
Perform	the	following	steps:

1.	 First,	we	need	to	import	some	extra	modules	to	help	out	in	this	recipe,	as	follows:

import	sys

import	os

import	glob

import	wx.tools.img2py	as	img2py

2.	 This	next	function	is	used	to	enumerate	all	the	PNG	files	in	a	directory,	and	then
img2py	is	used	to	embed	them	in	a	module:

def	generateIconModule(sourcePath,	outModule):

				search	=	os.path.join(sourcePath,	"*.png")

				lst	=	glob.glob(search)

				splitext	=	os.path.splitext

				basename	=	os.path.basename

				i	=	0

				for	i,	png	in	enumerate(lst):

								name	=	splitext(basename(png))[0]

								name	=	name.replace('-',	'	').title()

								name	=	name.replace('	',	'')

								img2py.img2py(png,	outModule,	i	>	0,	imgName=name)

				return	i

3.	 The	last	step	is	the	main	section	for	the	execution	of	our	little	utility	script:

def	printHelp():

				print("PNG	image	file	embedder")

				print("embedded.py	imgDirectory	resource.py")

if	__name__	==	'__main__':

				if	len(sys.argv)	!=	3:

								printHelp()

								sys.exit()

				dName	=	sys.argv[1]

				print("Locating	PNG	images	in	%s"	%	dName)

				modName	=	sys.argv[2]

				n	=	generateIconModule(dName,	modName)

				print("%d	images	embedded	in	%s"	%	(n,	modName))



How	it	works…
The	img2py	function	in	the	img2py	module	reads	in	the	raw	image	data	and	then	uses
Base64	to	encode	it	into	a	string	that	can	be	stored	as	a	resource	in	the	module	as	with	any
other	Python	string.	This	string	is	then	stored	into	a	PyEmbeddedImage	object	and	assigned
to	a	global	variable	in	the	specified	output	module.	The	output	module	can	then	be
imported	into	any	Python	script	and	used	to	provide	access	to	the	bitmaps.	Take	a	look	at
the	following	code:

class	ImagePanel(wx.Panel):

				def	__init__(self,	parent):

								super(ImagePanel,	self).__init__(parent)

								sz	=	wx.BoxSizer()

								sb	=	wx.StaticBitmap(self,	

																													bitmap=resource.FaceGlasses.Bitmap)

								sz.Add(sb,	0,	wx.ALIGN_CENTER|wx.ALL,	100)

								self.Sizer	=	sz

The	preceding	code	snippet	shows	how	bitmap	resources	can	be	accessed	from	a	resource
module.	The	PyEmbeddedImage	object	provides	a	bitmap,	an	icon,	and	image	properties	to
give	the	application	access	to	the	image	data	in	all	the	three	formats	that	can	be	used	by
different	application	components.



There’s	more…
The	img2py	module	itself	can	be	run	from	the	command	line	to	embed	images	into	a
module.	This	recipe	just	made	another	wrapper	script	to	help	simplify	generating	and
regenerating	a	resource	module	from	a	directory	of	images.	When	executed	as	a	script,
this	module	can	take	several	optional	arguments	on	how	to	generate	the	resource	data	for
the	image.	Consider	the	following	table:

Command	line
option Description

-a This	appends	the	image	data	to	the	output	file.

-n This	expects	a	value	argument	along	with	it	that	specifies	the	image’s	variable	name	to	use.

-m
This	specifies	a	mask	color	for	the	image	using	a	value	argument	that	is	the	hex	color	code	value	of
the	mask	color.

-i
This	generates	a	function	that	returns	an	icon	version	of	the	image.	This	only	applies	when	we	use
the	compatibility	mode.

-c
This	generates	a	catalog	in	the	output	module.	This	is	a	global-level	dictionary	that	gives	access	to
the	embedded	images	by	name.

-f This	generates	a	module	interface	compatible	with	the	old	img2py	formatting.

-F
This	uses	the	new	style	embedded	resource	module	that	uses	PyEmbeddedImage	objects	and	no
module-level	get	functions.



See	also
Refer	to	the	Using	bitmaps	recipe	in	Chapter	1,	wxPython	Starting	Points,	for	a
recipe	showing	how	to	load	bitmaps	from	normal	image	files





Distributing	an	application
Once	you	reach	the	point	of	being	ready	to	share	your	application	with	others,	you	will
need	a	way	to	package	it	up	and	ship	it	out.	wxPython	applications	can	be	distributed	in	a
similar	way	to	any	other	Python	application	or	script—by	creating	a	setup.py	script	and
using	the	distutils	module’s	setup	function.	However,	this	recipe	focuses	on	how	to
build	standalone	executables	for	Windows	and	OS	X	so	that	your	users	don’t	need	to
install	all	the	dependencies	that	your	application	has	from	your	development	environment.
This	can	be	accomplished	using	py2exe	on	Windows	and	py2app	on	OS	X.	So,	in	this
recipe,	we	will	consider	how	to	make	a	setup.py	script	to	leverage	these	tools	and
generate	standalone	executables.



Getting	ready
This	recipe	requires	that	you	have	installed	the	appropriate	extension	module	for	your
target	platform.	So,	if	you	haven’t	already	installed	either	py2exe	or	py2app	for	the
version	of	Python	and	wxPython	you	are	using,	do	so	now.



How	to	do	it…
Perform	the	following	steps	for	this	recipe:

1.	 First,	we	will	import	the	needed	modules	and	define	some	constants	that	will	be	used
for	either	platform’s	build:

import	wx

import	sys

import	platform

APP	=	"EditorApp.py"

NAME	=	"FileEditor"

VERSION	=	"1.0"

AUTHOR	=	"Author	Name"

AUTHOR_EMAIL	=	"authorname@someplace.com"

URL	=	"http://fileeditor_webpage.foo"

LICENSE	=	"wxWidgets"

YEAR	=	"2015"

2.	 Next,	we	will	make	a	function	to	encapsulate	building	our	standalone	application
using	py2exe:

def	BuildPy2Exe():

				from	distutils.core	import	setup

				try:

								import	py2exe

				except	ImportError:

								print	"\n!!	You	dont	have	py2exe	installed.	!!\n"

								exit()

				

				archDat	=	platform.architecture()

				is32	=	"32bit"	in	archDat

				bundle	=	2	if	is32	else	3

				OPTS	=	{"py2exe"	:	{"compressed"	:	1,

												"optimize"	:	1,

												"bundle_files"	:	bundle,

												"includes"	:	["fileEditor",	"EditorApp"],

												"excludes"	:	["Tkinter",],

												"dll_excludes":	["MSVCP90.dll"]}}

				setup(name	=	NAME,

										version	=	VERSION,

										options	=	OPTS,

										windows	=	[{"script":	APP,

																						"icon_resources":	[(1,	"Icon.ico")],

										}],

										description	=	NAME,

										author	=	AUTHOR,

										author_email	=	AUTHOR_EMAIL,

										license	=	LICENSE,

										url	=	URL,

										)

3.	 Next	is	the	definition	to	build	an	OS	X	app	using	py2app.	Take	a	look	at	the



following	code:

def	BuildOSXApp():

				"""Build	the	OSX	Applet"""

				from	setuptools	import	setup

				copyright	=	"Copyright	%s	%s"	%	(AUTHOR,	YEAR)

				appid	=	"com.%s.%s"	%	(NAME,	NAME)

				PLIST	=	dict(CFBundleName	=	NAME,

																	CFBundleIconFile	=	'Icon.icns',

																	CFBundleShortVersionString	=	VERSION,

																	CFBundleGetInfoString	=	NAME	+	"	"	+	VERSION,

																	CFBundleExecutable	=	NAME,

																	CFBundleIdentifier	=	appid,

																	CFBundleTypeMIMETypes	=	['text/plain',],

																	CFBundleDevelopmentRegion	=	'English',

																	NSHumanReadableCopyright	=	copyright

				)

				PY2APP_OPTS	=	dict(iconfile	=	"Icon.icns",

																							argv_emulation	=	True,

																							optimize	=	True,

																							plist	=	PLIST)

				setup(app	=	[APP,],

										version	=	VERSION,

										options	=	dict(	py2app	=	PY2APP_OPTS),

										description	=	NAME,

										author	=	AUTHOR,

										author_email	=	AUTHOR_EMAIL,

										license	=	LICENSE,

										url	=	URL,

										setup_requires	=	['py2app'],

				)

4.	 The	last	step	is	to	check	the	platform	when	this	setup.py	script	is	run	and	delegated
to	the	appropriate	setup	function.	We	can	do	this	via	the	following:

if	__name__	==	'__main__':

				if	wx.Platform	==	'__WXMSW__':

								#	Windows

								BuildPy2Exe()

				elif	wx.Platform	==	'__WXMAC__':

								#	OSX

								BuildOSXApp()

				else:

								print	"Unsupported	platform:	%s"	%	wx.Platform



How	it	works…
With	this	setup.py	script,	we	can	build	either	an	executable	for	Windows	or	an	applet	for
OS	X	out	of	the	text	editor	application	that	we	built	through	the	earlier	chapters	in	this
book.	After	building	the	application	with	this	script,	all	the	items	needed	to	run	it	will	be
bundled	together	in	the	dist	directory	that	is	created	by	the	setup	method.

To	build	the	py2exe	version	of	the	application,	the	script	must	be	run	as	follows:

python	setup.py	py2exe

When	this	is	run	on	Windows,	it	invokes	our	BuildPy2exe	method,	which	builds	up	the
list	of	options	needed	to	build	the	application.	The	first	of	these	options	that	we	set	is	the
bundle_files	option,	which	is	used	to	bundle	files	into	library.zip.	The	lower	the
number,	the	more	the	files	that	will	be	bundled	in.	We	did	a	check	for	whether	the	system
is	32-bits	as	bundle_files	with	values	less	than	three	does	not	work	on	64-bit	systems
currently.

Building	the	py2app	version	of	the	application	can	be	done	in	a	similar	way	by	running	the
following	command:

python	setup.py	py2app

When	the	script	is	executed	with	this	command	on	a	Macintosh	operating	system,	the
BuildOSXApp	method	is	executed	to	build	up	the	applet.	To	build	the	OS	X	app,	we
constructed	a	dictionary	that	py2app	will	use	to	convert	the	application’s	PList.	This	is
similar	to	a	manifest	on	Windows	and	contains	several	bits	of	information	that	help	the
application	be	integrated	into	the	system.	Specifically	for	this	text	editor	application,	we
can	specify	file	types	to	the	CFBundleTypeMIMETypes	argument,	which	will	tell	the	OS	that
this	application	is	capable	of	opening	and	working	with	the	specified	types	of	files.	The
rest	of	the	arguments	to	the	setup	method	are	quite	similar	to	building	the	py2exe
executable.



There’s	more…
When	using	py2exe,	it	may	not	include	all	the	needed	DLLs	when	it	builds	your
application.	The	DLLs	that	were	excluded	will	be	listed	when	the	setup	script	finishes
running;	most	that	are	listed	are	usually	system	DLLs	that	can	be	ignored	and	don’t	need
to	be	included.	There	are	however	some	DLLs	that	are	needed	by	Python	or	wxPython	to
enable	your	standalone	application	to	run.	It	is	sometimes	necessary	to	either	include	some
additional	DLLs	(gdiplus.dll,	msvcrXX.dll)	with	your	application	or	instruct	your	users
to	install	the	freely	available	Visual	Studio	redistributable	package	when	trying	to	run	it	on
other	systems.

Also,	if	you	are	targeting	installs	on	older	versions	of	Windows,	such	as	Windows	XP,	you
may	also	need	to	modify	the	setup	script	used	here	to	include	an	appropriate	manifest	in
the	executable.	This	is	necessary	in	some	cases	in	order	to	make	the	user	interface	use	the
modern	styling	over	the	older	Windows	2000-style	UI.



See	also
Take	a	look	at	the	Searching	text	with	FindReplaceDialog	recipe	in	Chapter	7,
Requesting	and	Retrieving	Information,	for	the	code	that	this	recipe’s	setup.py	script
builds	an	app	for





Updating	your	software
No	matter	what	you	do	to	try	and	make	your	first	release	perfect	and	defect-free,	there	will
always	be	something	that	will	come	up	and	raise	the	need	to	make	an	update	to	your
application.	Notifying	your	users	of	the	update	and	making	it	easy	for	them	to	install	it	is
an	important	step	toward	ensuring	that	they	have	the	latest	patched	versions	with	all	the
newest	features	you	add.	Starting	in	wxPython	2.9.2.2,	an	extension	module	was	added
that	provides	a	convenient	mixin	class	for	wx.App	called	SoftwareUpdate,	which
integrates	the	update	features	of	the	Esky	(https://pypi.python.org/pypi/esky)	auto-update
framework	into	a	wxPython	application.	In	this	recipe,	you	will	learn	how	to	bundle	an
Esky	package	for	your	wxPython	application	as	well	as	how	make	use	of	the
SoftwareUpdate	mixin.

https://pypi.python.org/pypi/esky


Getting	ready
For	this	recipe,	you	will	need	to	ensure	that	you	review	the	previous	recipe	about	building
an	application	for	distribution.

We	will	also	need	to	install	some	extension	packages	for	this	recipe	as	well,	so	ensure	that
you	install	the	Esky	package.	If	you	are	on	Windows,	also	ensure	that	you	have	the
pywin32	extension	modules	installed	as	well.



How	to	do	it…
You	need	to	perform	the	following	steps:

1.	 First,	we	need	to	rework	the	setup.py	file	that	was	developed	in	the	previous	recipe
in	order	to	build	an	Esky	compatible	bundle.	In	this	first	section,	the	important
changes	have	been	highlighted:

import	wx

import	sys

from	esky	import	bdist_esky

from	setuptools	import	setup

import	version

APP	=	"EditorApp.py"

NAME	=	"FileEditor"

VERSION	=	version.VERSION

AUTHOR	=	"Author	Name"

AUTHOR_EMAIL	=	"authorname@someplace.com"

URL	=	"http://fileeditor_webpage.foo"

LICENSE	=	"wxWidgets"

YEAR	=	"2015"

2.	 Next,	the	BuildPy2Exe	method	has	to	be	reworked	to	build	up	a	set	of	options	to	pass
the	Esky	build:

def	BuildPy2Exe():

				import	py2exe

				opts	=	dict(compressed	=	0,

																optimize	=	0,

																bundle_files	=	3,

																includes	=	["fileEditor",	"EditorApp"],

																excludes	=	["Tkinter",],

																dll_excludes	=	["MSVCP90.dll"])

				icon	=	"Icon.ico"

				BundleEsky("py2exe",	opts,	icon)

3.	 Similarly,	the	BuildOSXApp	method	also	needs	to	be	updated	to	pass	the	py2app
options	to	the	Esky	build:

def	BuildOSXApp():

				"""Build	the	OSX	Applet"""

				copyright	=	"Copyright	%s	%s"	%	(AUTHOR,	YEAR)

				appid	=	"com.%s.%s"	%	(NAME,	NAME)

				plist	=	dict(CFBundleName	=	NAME,

																	CFBundleIconFile	=	'Icon.icns',

																	CFBundleShortVersionString	=	VERSION,

																	CFBundleGetInfoString	=	NAME	+	"	"	+	VERSION,

																	CFBundleExecutable	=	NAME,

																	CFBundleIdentifier	=	appid,

																	CFBundleTypeMIMETypes	=	['text/plain',],

																	CFBundleDevelopmentRegion	=	'English',

																	NSHumanReadableCopyright	=	copyright

				)

				icon	=	"Icon.icns"



				opts	=	dict(iconfile	=	icon,

																argv_emulation	=	True,

																optimize	=	True,

																plist	=	plist)

				

				BundleEsky("py2app",	opts,	icon)

4.	 Finally,	the	BundleEsky	method	takes	the	appropriate	platform	options	and	builds	the
esky	bundle,	as	follows:

def	BundleEsky(freezer,	options,	icon):

				app	=	[bdist_esky.Executable(APP,	gui_only=True,	

																																						icon=icon),]

				eskyOps	=	dict(freezer_module	=	freezer,

																			freezer_options	=	options,

																			enable_appdata_dir	=	True,

																			bundle_msvcrt	=	True)

				data	=	[	icon,	]

				setup(name	=	NAME,

										scripts	=	app,

										version	=	VERSION,

										author	=	AUTHOR,

										author_email	=	AUTHOR_EMAIL,

										license	=	LICENSE,

										url	=	URL,

										data_files	=	data,

										options	=	dict(bdist_esky	=	eskyOps))

5.	 Now,	with	the	setup	file	updated,	to	build	an	Esky-compatible	bundle	we	need	to
make	a	small	update	to	our	App	object	to	have	it	check	for	updates	at	startup.	The
parts	that	are	important	for	the	SoftwareUpdate	mixin	are	highlighted	in	the
following	code:

import	wx.lib.softwareupdate	as	UPDATE

class	MyApp(wx.App,	UPDATE.SoftwareUpdate):

				def	OnInit(self):

								self.SetAppDisplayName("Cookbook	Text	Editor")

								#	Use	local	host	as	update	url	for	example

								url	=	"http://127.0.0.1:8000"

								self.InitUpdates(url)

								self.CheckForUpdate(True)

								name	=	"TextEditor	%s"	%	version.VERSION

								self.frame	=	TextEditorWithFind(None,	title=name)

								self.frame.Show();

								return	True



How	it	works…
The	SoftwareUpdate	mixin	class	only	works	with	frozen	Esky-compatible	application
bundles.	So,	the	first	thing	we	did	was	make	a	setup.py	script	that	can	use	Esky	to	bundle
a	py2exe	or	py2app	build	version	of	the	application.	When	built,	this	will	bundle	the
application	into	a	special	ZIP	file,	which	will	have	its	name	formatted	with	some	platform
and	version	information.	This	file	can	then	be	deployed	to	a	web	server	to	automatically
make	updates	available	to	users	of	the	application.

The	SoftwareUpdate	mixin	makes	using	the	auto-update	features	of	Esky	quite	simple	to
do.	All	that	is	needed	is	to	mix	in	the	class	with	the	application’s	App	object.	Then,	use	it
to	check	for	updates,	such	as	in	OnInit	or	in	a	check	for	updates	action	somewhere	else	in
the	application.	In	order	to	check	for	and	download	any	updates,	all	that	needs	to	be	done
is	call	two	methods	that	the	SoftwareUpdate	mixin	adds	to	the	App	object:

The	first	is	to	call	InitUpdates	with	the	URL	to	the	path	that	contains	the	uploaded
application	bundle.
The	second	is	to	call	CheckForUpdate	to	have	Esky	check	the	URL	for	newer
versions	of	the	application.	If	one	is	found,	a	dialog	will	pop	up	asking	the	user	if
he/she	would	like	to	update	to	the	new	version.

If	the	user	chooses	to	accept	the	update,	the	framework	will	automatically	download	and
deploy	the	update	to	the	system.



There’s	more…
To	make	use	of	this	recipe	for	your	application,	you	will	need	to	have	a	web	server	setup
to	distribute	your	updates	from.	The	example	code	in	OnInit	uses	a	localhost	with	a	server
running	on	port	8000	as	the	update	server.	Take	a	look	at	the	README_FIRST	file	in	the
example	code	that	comes	with	this	recipe	for	how	to	set	up	a	simple	HTTP	server	on	this
address	on	your	computer	to	try	and	test	out	this	recipe.



See	also
Refer	to	the	Distributing	an	application	recipe	earlier	in	this	chapter	for	more	details
about	using	py2exe	and	py2app	with	a	wxPython	application



Index
A

AboutBox
used,	for	displaying	app	information	/	Showing	information	about	your	app,
How	to	do	it…,	How	it	works…,	There’s	more…

AboutDialogInfo	class,	parameters
SetArtists	/	There’s	more…
SetDevelopers	/	There’s	more…
SetDocWriters	/	There’s	more…
SetIcon	/	There’s	more…
SetLicense	/	There’s	more…
SetTranslators	/	There’s	more…
SetWebsite	/	There’s	more…

AddTool	method,	values
wx.ITEM_NORMAL	/	There’s	more…
wx.ITEM_CHECK	/	There’s	more…
wx.ITEM_RADIO	/	There’s	more…
wx.ITEM_DROPDOWN	/	There’s	more…

app
web	browser,	surfing	/	Surfing	the	Web	in	your	app,	How	to	do	it…,	How	it
works…,	There’s	more…

app	information
displaying,	with	AboutBox	/	Showing	information	about	your	app,	How	to	do
it…,	How	it	works…,	There’s	more…

AppleEvents
handling	/	Handling	AppleEvents,	How	it	works…,	There’s	more…

application
distributing	/	Distributing	an	application,	How	to	do	it…,	How	it	works…,
There’s	more…

application’s	state
saving,	with	PersistentControls	library	/	Saving	the	application’s	state,	How	to
do	it…,	How	it	works…

application	object
creating	/	Creating	an	application	object,	How	to	do	it…,	How	it	works…

AuiManager
used,	for	advancing	UI	/	Advancing	your	UI	with	AuiManager,	How	to	do	it…,
How	it	works…,	There’s	more…
window’s	state,	saving	/	Saving	and	restoring	a	window’s	state
window’s	state,	restoring	/	Saving	and	restoring	a	window’s	state

AuiPaneInfo
CloseButton(bool)	property	/	Additional	AuiPaneInfo	options
MaximizeButton(bool)	property	/	Additional	AuiPaneInfo	options



MinimizeButton(bool)	property	/	Additional	AuiPaneInfo	options
PinButton(bool)	property	/	Additional	AuiPaneInfo	options

automatic	wrapping	layout
creating	/	Creating	an	automatic	wrapping	layout



B
basic	shapes

drawing	/	Drawing	basic	shapes,	How	to	do	it…,	How	it	works…
bitmaps

using	/	Using	bitmaps,	How	it	works…
used,	for	enhancing	ComboBox	/	Enhancing	ComboBox	with	bitmaps,	How	it
works…

buttons
using	/	Starting	with	the	easy	button,	How	it	works…
implementing	/	Pushing	all	the	buttons,	How	it	works…



C
CalendarCtrl

about	/	There’s	more…
callback	functions

binding,	to	events	/	Binding	to	events,	How	it	works…,	There’s	more…
CheckBoxes

options,	offering	/	Offering	options	with	CheckBoxes,	How	it	works…
clipboard

accessing	/	Accessing	the	clipboard,	There’s	more…
ComboBox

enhancing,	with	bitmaps	/	Enhancing	ComboBox	with	bitmaps,	How	it	works…
command	line	option

-a	/	There’s	more…
-n	/	There’s	more…
-m	/	There’s	more…
-i	/	There’s	more…
-c	/	There’s	more…
-f	/	There’s	more…
-F	/	There’s	more…

composite	control
creating	/	Creating	a	composite	control,	How	to	do	it…,	How	it	works…

configuration
storing,	with	StandardPaths	/	Storing	your	configuration	with	StandardPaths,
How	to	do	it…,	How	it	works…

context	menu
displaying	/	Displaying	a	context	menu,	How	it	works…

controls
laying	out,	with	Sizers	/	Laying	out	controls	with	Sizers,	How	to	do	it…,	How	it
works…
layout	behavior,	controlling	/	Controlling	layout	behavior,	How	to	do	it…,	How
it	works…,	There’s	more…
grouping,	with	StaticBox	control	/	Grouping	controls	with	a	StaticBox	control,
How	it	works…

custom	controls
XRC,	extending	/	Extending	XRC	for	custom	controls,	How	it	works…

custom	dialog
creating	/	Making	your	own	dialog,	How	it	works…

custom	list	control
drawing	/	Drawing	your	own	list	control,	How	to	do	it…,	How	it	works…



D
data

modeling,	DataViewCtrl	control	used	/	Modeling	your	data,	How	to	do	it…,
How	it	works…

data	grid
displaying,	with	Grid	control	/	Getting	started	with	the	data	grid,	How	to	do	it…,
How	it	works…,	There’s	more…

data	lists
displaying	/	Displaying	lists	of	data,	How	to	do	it…,	How	it	works…,	There’s
more…
editing	/	Editing	data	lists,	How	to	do	it…,	How	it	works…

data	model
displaying	/	Displaying	your	data	model,	How	to	do	it…,	How	it	works…,
There’s	more…

data	model	class
DataViewIndexListModel	/	There’s	more…
DataViewVirtualListModel	/	There’s	more…
DataViewListStore	/	There’s	more…
DataViewTreeStore	/	There’s	more…

data	source
implementing	/	Implementing	a	data	source,	How	to	do	it…,	How	it	works…

datatypes,	clipboard
wx.BitmapDataObject	/	There’s	more…
wx.CustomDataObject	/	There’s	more…
wx.DataObjectSimple	/	There’s	more…
wx.DataObjectComposite	/	There’s	more…
wx.FileDataObject	/	There’s	more…
wx.HTMLDataObject	/	There’s	more…
wx.URLDataObject	/	There’s	more…

dates
selecting,	with	DatePickerCtrl	/	Picking	dates	with	DatePickerCtrl,	How	it
works…,	There’s	more…

dialog	layout
creating	/	Making	dialog	layout	easy,	How	to	do	it…,	How	it	works…

drag	and	drop
supporting	/	Supporting	drag	and	drop,	How	it	works…,	There’s	more…

Draw	method,	flags
CONTROL_CHECKABLE	/	There’s	more…
CONTROL_CHECKED	/	There’s	more…
CONTROL_CURRENT	/	There’s	more…
CONTROL_DISABLED	/	There’s	more…
CONTROL_EXPANDED	/	There’s	more…
CONTROL_FLAT	/	There’s	more…



CONTROL_FOCUSED	/	There’s	more…
CONTROL_ISDEFAULT	/	There’s	more…
CONTROL_PRESSED	/	There’s	more…
CONTROL_UNDETERMINED	/	There’s	more…

dynamic	data
displaying	/	Displaying	dynamic	data,	How	to	do	it…,	How	it	works…,	There’s
more…



E
errors

handling	/	Handling	errors	gracefully,	How	to	do	it…,	How	it	works…
Esky

about	/	Updating	your	software
URL	/	Updating	your	software

events
callback	functions,	binding	to	/	Binding	to	events,	How	it	works…,	There’s
more…
normal	events	/	Controlling	the	propagation	of	events
command	events	/	Controlling	the	propagation	of	events
propagation,	controlling	/	How	to	do	it…,	How	it	works…



F
feedback

providing	/	Giving	busy	feedback,	How	to	do	it…,	How	it	works…
FileDialog

used,	for	selecting	files	/	Selecting	files	with	FileDialog,	How	to	do	it…,	How	it
works…

files
selecting,	with	FileDialog	/	Selecting	files	with	FileDialog,	How	to	do	it…,	How
it	works…

FindReplaceData	object,	option	flags
wx.FR_DOWN	/	There’s	more…
wx.FR_MATCHCASE	/	There’s	more…
wx.FR_WHOLEWORD	/	There’s	more…

FindReplaceDialog
used,	for	searching	text	/	Searching	text	with	FindReplaceDialog,	How	to	do
it…,	How	it	works…

FlatNotebook
using	/	Taking	control	with	FlatNotebook,	How	it	works…,	There’s	more…
tab	style	flag	/	There’s	more…
appearance	flags	/	There’s	more…
behavior	flags	/	There’s	more…



G
GenericDatePickerCtrl

about	/	There’s	more…
gradients

drawing,	with	GraphicsContext	/	Drawing	gradients	with	GraphicsContext,	How
to	do	it…,	How	it	works…

GraphicsContext
used,	for	drawing	gradients	/	Drawing	gradients	with	GraphicsContext,	How	to
do	it…,	How	it	works…

GridCellAttribute	class
custom	editors	/	Custom	Editors
attributes,	managing	/	Managing	Attributes

Grid	control
data	grid,	displaying	/	Getting	started	with	the	data	grid,	How	to	do	it…,	How	it
works…,	There’s	more…

grid	labels
customizing	/	Customizing	grid	labels,	How	to	do	it…,	How	it	works…



H
hierarchical	data

displaying,	with	TreeCtrl	/	Displaying	hierarchical	data	with	TreeCtrl,	How	to
do	it…,	How	it	works…,	There’s	more…



I
icon	type	ID

wx.TBI_CUSTOM_STATUSITEM	/	There’s	more…
wx.TBI_DEFAULT_TYPE	/	There’s	more…
wx.TBI_DOCK	/	There’s	more…

InfoBar
using	/	Using	InfoBar,	How	to	do	it…,	How	it	works…

information	window
providing	/	Providing	your	own	information	window,	How	to	do	it…,	How	it
works…

internationalization
supporting	/	Supporting	internationalization,	How	to	do	it…,	How	it	works…,
There’s	more…

ItemsPicker
used,	for	filtering	through	choices	/	Filtering	through	choices,	How	it	works…

ItemsPicker,	style	flag
IP_DEFAULT_STYLE	/	There’s	more…
IP_SORT_CHOICES	/	There’s	more…
IP_SORT_SELECTED	/	There’s	more…
IP_REMOVE_FROM_CHOICES	/	There’s	more…



K
key	events

processing	/	Processing	key	events,	How	to	do	it…,	How	it	works…,	There’s
more…



L
ListCtrl	component,	style	flag

LC_LIST	/	There’s	more…
LC_ICON	/	There’s	more…
LC_SMALL_ICON	/	There’s	more…
LC_REPORT	/	There’s	more…
LC_VIRTUAL	/	There’s	more…
LC_NO_HEADER	/	There’s	more…
LC_HRULES	/	There’s	more…
LC_VRULES	/	There’s	more…



M
.mo	file	(Machine	Object)

about	/	There’s	more…
main	frame

adding	/	Adding	the	main	frame,	How	to	do	it…,	How	it	works…,	There’s
more…

managed	layout
creating	/	Creating	a	managed	layout,	How	to	do	it…,	How	it	works…

menus
exploring	/	Exploring	menus	and	shortcuts,	How	to	do	it…,	How	it	works…

MessageBox
displaying	/	Showing	MessageBox,	How	to	do	it…,	How	it	works…
button	flags	/	Button	flags
icon	flags	/	Icon	flags

mixin	class
CheckListCtrlMixin	/	There’s	more…
ColumnSorterMixin	/	There’s	more…
ListCtrlAutoWidthMixin	/	There’s	more…
ListRowHighlighter	/	There’s	more…

multiple	selections
retrieving	/	Retrieving	multiple	selections,	How	it	works…



N
native	controls

recreating,	with	RendererNative	/	Recreating	native	controls	with
RendererNative,	How	to	do	it…,	How	it	works…,	There’s	more…

Notebook	control
tabs,	adding	/	Adding	tabs	with	the	Notebook	control,	How	it	works…,	There’s
more…



O
OpenWeatherMap	API

URL	/	Getting	started
OS	X

optimizing	/	Optimizing	for	OS	X,	How	it	works…,	There’s	more…
optimizing,	with	ToolBars	/	ToolBars

owner-drawn	control
designing	/	Designing	an	owner-drawn	control,	How	to	do	it…,	How	it	works



P
.po	file	(Portable	Object)

about	/	There’s	more…
PaintDC	object

DrawArc	method	/	There’s	more…
DrawBitmap	method	/	There’s	more…
DrawCheckMark	method	/	There’s	more…
DrawEllipse	method	/	There’s	more…
DrawImageLabel	method	/	There’s	more…
DrawPoint	method	/	There’s	more…
DrawRotatedText	method	/	There’s	more…
DrawRoundedRectangle	method	/	There’s	more…
DrawSpline	method	/	There’s	more…

panel	layout
simplifying	/	Simplifying	the	panel	layout,	How	it	works…,	There’s	more…

pep8	module
about	/	Getting	started
URL	/	Getting	started

PersistentControls	library
used,	for	saving	application’s	state	/	Saving	the	application’s	state,	How	to	do
it…,	How	it	works…

PlateButton	control,	style	flag
PB_STYLE_NORMAL	/	There’s	more…
PB_STYLE_GRADIENT	/	There’s	more…
PB_STYLE_SQUARE	/	There’s	more…
PB_STYLE_NOBG	/	There’s	more…
PB_STYLE_DROPARROW	/	There’s	more…
PB_STYLE_TOGGLE	/	There’s	more…

Print	dialogs
using	/	Using	Print	dialogs,	How	to	do	it…,	How	it	works…,	There’s	more…

properties
configuring	/	Configuring	properties,	How	to	do	it…,	How	it	works…

PyDropTarget	class
OnEnter()	method	/	There’s	more…
OnDragOver()	method	/	There’s	more…
OnLeave()	method	/	There’s	more…
OnDrop()	method	/	There’s	more…
OnData()	method	/	There’s	more…

PyGridTableBase	class
SetValue(row,	col,	value)	method	/	There’s	more…
DeleteRows(pos,	num)	method	/	There’s	more…
InsertRows(pos,	num)	method	/	There’s	more…
AppendRows(num)	method	/	There’s	more…



R
RendererNative

used,	for	recreating	native	controls	/	Recreating	native	controls	with
RendererNative,	How	to	do	it…,	How	it	works…,	There’s	more…

RendererNative	class
DrawChoice	method	/	There’s	more…
DrawComboBox	method	/	There’s	more…
DrawComboBoxDropButton	method	/	There’s	more…
DrawDropArrow	method	/	There’s	more…
DrawFocusRect	method	/	There’s	more…
DrawHeaderButton	method	/	There’s	more…
DrawPushButton	method	/	There’s	more…
DrawRadioButton	method	/	There’s	more…
DrawTextCtrl	method	/	There’s	more…
DrawTreeItemButton	method	/	There’s	more…

resources
embedding	/	Embedding	your	resources,	How	to	do	it…,	How	it	works…



S
SetSizerProp	method,	options

proportion	/	There’s	more…
hgrow	/	There’s	more…
vgrow	/	There’s	more…
halign	/	There’s	more…
valign	/	There’s	more…
align	/	There’s	more…
border	/	There’s	more…
minsize	/	There’s	more…
expand	/	There’s	more…

SetSizerType	method,	arguments
horizontal	/	There’s	more…
vertical	/	There’s	more…
form	/	There’s	more…
table	/	There’s	more…
Grid	/	There’s	more…

shortcuts
exploring	/	Exploring	menus	and	shortcuts,	How	to	do	it…,	How	it	works…

Sizers
used,	for	laying	out	controls	/	Laying	out	controls	with	Sizers,	How	to	do	it…,
How	it	works…
border	flags	/	There’s	more…
behavior	flags	/	There’s	more…
alignment	flags	/	There’s	more…

software
updating	/	Updating	your	software,	How	to	do	it…,	There’s	more…

splash	screen
creating	/	Making	a	splash	at	startup,	How	to	do	it…,	How	it	works…

standard	dialog	button	sizer
using	/	Using	the	standard	dialog	button	sizer,	How	it	works…,	There’s	more…

StandardPaths
configuration,	storing	/	Storing	your	configuration	with	StandardPaths,	How	to
do	it…,	How	it	works…

StaticBox	control
used,	for	grouping	controls	/	Grouping	controls	with	a	StaticBox	control,	How	it
works…

StatusBar
interacting	with	/	Interacting	with	StatusBar,	How	to	do	it…,	How	it	works…

StdDialogButtonSizer	class
flags	/	There’s	more…

StyledTextCtrl
text,	styling	/	Styling	text	in	StyledTextCtrl,	How	to	do	it…,	How	it	works…,



There’s	more…
annotating	/	Annotating	StyledTextCtrl,	How	to	do	it…,	How	it	works…,
There’s	more…
syntax	highlighting,	implementing	/	Implementing	highlighting	in
StyledTextCtrl,	How	to	do	it…,	How	it	works…

style	flags
wx.DEFAULT_FRAME_STYLE	/	There’s	more…
wx.MINIMIZE_BOX	/	There’s	more…
wx.MAXIMIZE_BOX	/	There’s	more…
wx.RESIZE_BORDER	/	There’s	more…
wx.CAPTION	/	There’s	more…
wx.CLOSE_BOX	/	There’s	more…
wx.SYSTEM_MENU	/	There’s	more…
wx.CLIP_CHILDREN	/	There’s	more…

system	tray	application
building	/	Building	a	system	tray	application,	How	to	do	it…,	How	it	works…



T
tabs

adding,	with	Notebook	control	/	Adding	tabs	with	the	Notebook	control,	How	it
works…,	There’s	more…

text
styling,	in	StyledTextCtrl	/	Styling	text	in	StyledTextCtrl,	How	to	do	it…,	How
it	works…,	There’s	more…
searching,	with	FindReplaceDialog	/	Searching	text	with	FindReplaceDialog,
How	to	do	it…,	How	it	works…

TextCtrl
using	/	Using	TextCtrl,	How	to	do	it…,	How	it	works…
AutoCompleteDirectories()	method	/	There’s	more…
AutoCompleteFileNames()	method	/	There’s	more…

TimeCtrl
about	/	There’s	more…

ToolBars
working	with	/	Working	with	ToolBars,	How	it	works…,	There’s	more…
AddControl	method	/	There’s	more…
AddCheckTool	method	/	There’s	more…
AddRadioTool	method	/	There’s	more…
used,	for	optimizing	OS	X	/	ToolBars

ToolTips
adding	/	Providing	extra	tips	on	usage,	How	it	works…

transient	notifications
displaying	/	Displaying	transient	notifications,	How	to	do	it…,	How	it	works…

TreeCtrl
used,	for	displaying	hierarchical	data	/	Displaying	hierarchical	data	with
TreeCtrl,	How	to	do	it…,	How	it	works…,	There’s	more…
style	flag	/	There’s	more…
events	/	There’s	more…



U
UI

hierarchy	/	Understanding	the	hierarchy	of	the	UI,	How	it	works…,	There’s
more…
states,	managing	/	Managing	UI	states,	How	it	works…,	There’s	more…
advancing,	with	AuiManager	/	Advancing	your	UI	with	AuiManager,	How	to	do
it…,	How	it	works…,	There’s	more…
painting	/	Painting	in	your	UI,	How	to	do	it…,	How	it	works…

UpdateUIEvent
Check	method	/	There’s	more…
SetText	method	/	There’s	more…

user	input
validating	/	Validating	user	input,	How	it	works…,	There’s	more…



V
VListBox

OnDrawItemBackground	method	/	There’s	more…
IsSelected	method	/	There’s	more…



W
web	browser

surfing,	in	app	/	Surfing	the	Web	in	your	app,	How	to	do	it…,	How	it	works…,
There’s	more…

WebView	control
events	/	There’s	more…

window	hierarchy
top-level	windows	/	How	it	works…
general	containers	/	How	it	works…
controls	/	How	it	works…

Wizard
used,	for	guiding	selections	/	Guiding	selections	with	Wizard,	How	to	do	it…,
There’s	more…

wx.App	object
SetMacAboutMenuItemId	method	/	There’s	more…
SetMacExitMenuItemId	method	/	There’s	more…
SetMacPreferencesMenuItemId	method	/	There’s	more…
SetMacSupportPCMenuShortcuts	method	/	There’s	more…
SetMacHelpMenuTitleName	method	/	There’s	more…

wx.StandardPaths	object
GetConfigDir	method	/	There’s	more…
GetDataDir	method	/	There’s	more…
GetUserConfigDir	method	/	There’s	more…
GetUserLocalDataDir	method	/	There’s	more…
GetAppDocumentsDir	method	/	There’s	more…
GetDocumentsDir	method	/	There’s	more…
GetExecutablePath	method	/	There’s	more…
GetInstallPrefix	method	/	There’s	more…
GetLocalDataDir	method	/	There’s	more…
GetLocalizedResourcesDir	method	/	There’s	more…
GetPluginDir	method	/	There’s	more…
GetResourcesDir	method	/	There’s	more…
GetTempDir	method	/	There’s	more…

wxPython
URL	/	There’s	more…
reference	link	/	There’s	more…



X
XML	resource-based	layouts

building	/	Building	XML	resource-based	layouts,	How	to	do	it…,	How	it
works…

XmlResource	class
LoadBitmap(name)	method	/	There’s	more…
LoadDialog(parent,	name)	method	/	There’s	more…
LoadFrame(parent,	name)	method	/	There’s	more…
LoadIcon(name)	method	/	There’s	more…
LoadMenu(name)	method	/	There’s	more…
LoadMenuBar(parent,	name)	method	/	There’s	more…
LoadObject(parent,	name,	className)	method	/	There’s	more…
LoadPanel(parent,	name)	method	/	There’s	more…
LoadToolBar(parent,	name)	method	/	There’s	more…

XRC
extending,	for	custom	controls	/	Extending	XRC	for	custom	controls,	How	it
works…


	wxPython Application Development Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. wxPython Starting Points
	Introduction
	Creating an application object
	How to do it…
	How it works…
	There's more…
	See also
	Adding the main frame
	How to do it…
	How it works…
	There's more…
	Using bitmaps
	How to do it…
	How it works…
	There's more…
	Binding to events
	How to do it…
	How it works…
	There's more…
	See also
	Understanding the hierarchy of the UI
	How to do it…
	How it works…
	There's more…
	See also
	Controlling the propagation of events
	How to do it…
	How it works…
	There's more…
	Accessing the clipboard
	How to do it…
	How it works…
	There's more…
	See also
	Supporting drag and drop
	How to do it…
	How it works…
	There's more…
	Handling AppleEvents
	How to do it…
	How it works…
	There's more…
	2. Common User Controls
	Introduction
	Starting with the easy button
	How to do it…
	How it works…
	See also
	Pushing all the buttons
	How to do it…
	How it works…
	There's more…
	Offering options with CheckBoxes
	How to do it…
	How it works…
	Using TextCtrl
	How to do it…
	How it works…
	There's more…
	See also
	Processing key events
	How to do it…
	How it works…
	There's more…
	Picking dates with DatePickerCtrl
	How to do it…
	How it works…
	There's more…
	Exploring menus and shortcuts
	How to do it…
	How it works…
	There's more…
	See also
	Displaying a context menu
	How to do it…
	How it works…
	See also
	Working with ToolBars
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing UI states
	Getting ready
	How to do it…
	How it works…
	There's more…
	3. UI Layout and Organization
	Introduction
	Laying out controls with Sizers
	How to do it…
	How it works…
	See also
	Controlling layout behavior
	Getting ready
	How to do it…
	How it works…
	There's more…
	Grouping controls with a StaticBox control
	How to do it…
	How it works…
	There's more…
	Creating an automatic wrapping layout
	How to do it…
	How it works…
	Using the standard dialog button sizer
	How to do it…
	How it works…
	There's more…
	Simplifying the panel layout
	How to do it…
	How it works…
	There's more…
	See also
	Making dialog layout easy
	Getting ready
	How to do it…
	How it works…
	Building XML resource-based layouts
	How to do it…
	How it works…
	There's more…
	Extending XRC for custom controls
	How to do it…
	How it works…
	There's more…
	Advancing your UI with AuiManager
	How to do it…
	How it works…
	There's more…
	Additional AuiPaneInfo options
	Saving and restoring a window's state
	4. Containers and Advanced Controls
	Introduction
	Adding tabs with the Notebook control
	How to do it…
	How it works…
	There's more…
	See also
	Enhancing ComboBox with bitmaps
	How to do it…
	How it works…
	There's more…
	See also
	Configuring properties
	How to do it…
	How it works…
	There's more…
	Taking control with FlatNotebook
	How to do it…
	How it works…
	There's more…
	See also
	Styling text in StyledTextCtrl
	How to do it…
	How it works…
	There's more…
	See also
	Annotating StyledTextCtrl
	Getting started
	How to do it…
	How it works…
	There's more…
	Displaying hierarchical data with TreeCtrl
	How to do it…
	How it works…
	There's more…
	Building a system tray application
	Getting started
	How to do it…
	How it works…
	There's more…
	Surfing the Web in your app
	How to do it…
	How it works…
	There's more…
	5. Data Displays and Grids
	Introduction
	Displaying lists of data
	How to do it…
	How it works…
	There's more…
	See also
	Editing data lists
	Getting ready
	How to do it…
	How it works…
	There's more…
	Implementing a data source
	How to do it…
	How it works…
	There's more…
	See also
	Getting started with the data grid
	Getting ready
	How to do it…
	How it works…
	There's more…
	Custom Editors
	Managing Attributes
	See also
	Displaying dynamic data
	How to do it…
	How it works…
	There's more…
	See also
	Modeling your data
	How to do it…
	How it works…
	There's more…
	See also
	Displaying your data model
	Getting ready
	How to do it…
	How it works…
	There's more…
	6. Ways to Notify and Alert
	Introduction
	Showing MessageBox
	How to do it…
	How it works…
	There's more…
	Button flags
	Icon flags
	Using InfoBar
	How to do it…
	How it works…
	There's more…
	See also
	Providing extra tips on usage
	How to do it…
	How it works…
	Displaying transient notifications
	How to do it…
	How it works…
	There's more…
	See also
	Making a splash at startup
	How to do it…
	How it works…
	There's more…
	See also
	Giving busy feedback
	How to do it…
	How it works…
	Showing information about your app
	How to do it…
	How it works…
	There's more…
	See also
	7. Requesting and Retrieving Information
	Introduction
	Selecting files with FileDialog
	Getting ready
	How to do it…
	How it works…
	See also
	Searching text with FindReplaceDialog
	Getting ready
	How to do it…
	How it works…
	There's more…
	Filtering through choices
	How to do it…
	How it works…
	There's more…
	See also
	Retrieving multiple selections
	How to do it…
	How it works…
	There's more…
	See also
	Using Print dialogs
	How to do it…
	How it works…
	There's more…
	See also
	Guiding selections with Wizard
	How to do it…
	How it works…
	There's more…
	8. User Interface Primitives
	Introduction
	Painting in your UI
	How to do it…
	How it works…
	See also
	Drawing basic shapes
	How to do it…
	How it works…
	There's more…
	Customizing grid labels
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Drawing gradients with GraphicsContext
	How to do it…
	How it works…
	There's more…
	Recreating native controls with RendererNative
	How to do it…
	How it works…
	There's more…
	9. Creating and Customizing Components
	Introduction
	Making your own dialog
	How to do it…
	How it works…
	There's more…
	See also
	Validating user input
	How to do it…
	How it works…
	There's more…
	Interacting with StatusBar
	How to do it…
	How it works…
	There's more…
	Providing your own information window
	How to do it…
	How it works…
	See also
	Creating a managed layout
	How to do it…
	How it works…
	Drawing your own list control
	How to do it…
	How it works…
	There's more…
	Implementing highlighting in StyledTextCtrl
	Getting ready
	How to do it…
	How it works…
	See also
	Creating a composite control
	How to do it…
	How it works…
	See also
	Designing an owner-drawn control
	Getting ready
	How to do it…
	How it works
	See also
	10. Getting Your Application Ready for Release
	Introduction
	Storing your configuration with StandardPaths
	How to do it…
	How it works...
	There's more...
	Saving the application's state
	How to do it…
	How it works...
	See also
	Supporting internationalization
	How to do it…
	How it works…
	There's more…
	See also
	Optimizing for OS X
	How to do it…
	How it works…
	There's more…
	ToolBars
	See also
	Handling errors gracefully
	How to do it…
	How it works…
	Embedding your resources
	How to do it…
	How it works…
	There's more…
	See also
	Distributing an application
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Updating your software
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Index

