
www.allitebooks.com

http://www.allitebooks.org

A CONCISE INTRODUCTION
TO DATA STRUCTURES USING

JAVA

www.allitebooks.com

http://www.allitebooks.org

CHAPMAN & HALL/CRC
TEXTBOOKS IN COMPUTING

Series Editors

Published Titles

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph, Foundations of
Semantic Web Technologies

Uvais Qidwai and C.H. Chen, Digital Image Processing: An Algorithmic Approach
with MATLAB®

Henrik Bærbak Christensen, Flexible, Reliable Software: Using Patterns and
Agile Development

John S. Conery, Explorations in Computing: An Introduction to Computer Science

Lisa C. Kaczmarczyk, Computers and Society: Computing for Good

Mark J. Johnson, A Concise Introduction to Programming in Python

Paul Anderson, Web 2.0 and Beyond: Principles and Technologies

Henry M. Walker, The Tao of Computing, Second Edition

Mark C. Lewis, Introduction to the Art of Programming Using Scala

Ted Herman, A Functional Start to Computing with Python

Mark J. Johnson, A Concise Introduction to Data Structures using Java

John Impagliazzo
Professor Emeritus, Hofstra University

Andrew McGettrick
Department of Computer
and Information Sciences
University of Strathclyde

Aims and Scope

This series covers traditional areas of computing, as well as related technical areas, such as
software engineering, artificial intelligence, computer engineering, information systems, and
information technology. The series will accommodate textbooks for undergraduate and gradu-
ate students, generally adhering to worldwide curriculum standards from professional societ-
ies. The editors wish to encourage new and imaginative ideas and proposals, and are keen to
help and encourage new authors. The editors welcome proposals that: provide groundbreaking
and imaginative perspectives on aspects of computing; present topics in a new and exciting
context; open up opportunities for emerging areas, such as multi-media, security, and mobile
systems; capture new developments and applications in emerging fields of computing; and
address topics that provide support for computing, such as mathematics, statistics, life and
physical sciences, and business.

www.allitebooks.com

http://www.allitebooks.org

Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

A CONCISE INTRODUCTION
TO DATA STRUCTURES USING

JAVA

Mark J. Johnson
Central College

Pella, Iowa

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131009

International Standard Book Number-13: 978-1-4665-8990-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

To Lyn

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

Code Listings ix

Tables xi

Preface xiii

About the Author xvii

1 A Brief Introduction to Java 1
1.1 Basics . 1
1.2 Strings . 11
1.3 Arrays . 15
1.4 Using Objects . 20
1.5 Writing Classes . 25

2 Algorithm Analysis 33
2.1 Big-O Notation . 33
2.2 Sorting: Insertion Sort . 38
2.3 Searching: Binary Search . 43

3 Integer Stacks 47
3.1 Stack Interface . 47
3.2 Array Implementation . 52
3.3 Linked Implementation . 57

4 Generic Stacks 65
4.1 Generic Types . 65
4.2 Generic Stack Implementations 69
4.3 Evaluating Expressions: Background 74
4.4 Evaluating Expressions: Implementations 80

5 Queues 85
5.1 Interface and Linked Implementation 85
5.2 Array Implementation . 90
5.3 Inheritance: Fixed-Length Queues 94
Project: Fixed-Length Queue Simulation 101

vii

www.allitebooks.com

http://www.allitebooks.org

viii

6 Lists 105
6.1 Interface . 105
6.2 Array Implementation . 109
6.3 Linked Implementation . 112
6.4 Iterators . 118

7 Recursion 123
7.1 Mathematical Functions . 123
7.2 Visualizing Recursion . 126
7.3 Recursive and Generalized Searches 129
7.4 Applications . 133

8 Trees 137
8.1 Definitions and Examples . 137
8.2 Traversals . 142
8.3 Binary Tree Abstract Class 145
Project: A Collection Hierarchy 148

9 Binary Search Trees 151
9.1 Queries . 151
9.2 Insertion . 156
9.3 Deletion . 159
9.4 Performance . 163

10 Heaps 167
10.1 Priority Queue Interface and Array-Based Heaps 167
10.2 Insertion and Deletion . 172
10.3 Buildheap and Heapsort . 177
Project: Event-Based Simulation 181

11 Hash Tables 185
11.1 Map Interface and Linked Implementation 185
11.2 Hash Tables . 188
11.3 Chaining . 192
11.4 Linear Probing . 195

Bibliography 201

Index 203

www.allitebooks.com

http://www.allitebooks.org

Code Listings

1.1 Factorial . 1
1.2 Count Substrings . 11
1.3 Linear Search . 16
1.4 Acronym . 21
1.5 Fraction Class . 26

2.1 Insertion Sort . 39
2.2 Random Data . 40
2.3 Binary Search . 44

3.1 Integer Stack Interface . 49
3.2 Integer Array Stack . 54
3.3 Node . 58
3.4 Integer Linked Stack . 61

4.1 Generic Node . 66
4.2 Generic Linked Stack . 70
4.3 Generic Array Stack . 73
4.4 Evaluate Postfix (Pseudocode) 77
4.5 Infix to Postfix (Pseudocode) 78
4.6 Operator Rank . 81
4.7 Infix to Postfix . 82

5.1 Resize Circular Array (Pseudocode) 93
5.2 Fixed-Length Queue . 97
5.3 Clock-Based Simulation (Pseudocode) 102
5.4 Generate Random Tasks (Pseudocode) 102

6.1 ArrayList Insertion . 110
6.2 Linked List Deletion and Helper 115
6.3 Linked List Iterator . 120

7.1 Recursive Factorial . 124
7.2 Generalized Recursive Binary Search 132
7.3 Longest Common Subsequence (Pseudocode) 134
7.4 Towers of Hanoi (Pseudocode) 135
7.5 Backtracking Solution To n-Queens (Pseudocode) 135

ix

www.allitebooks.com

http://www.allitebooks.org

x

8.1 Breadth-First Traversal (Pseudocode) 143
8.2 Binary Tree . 147

9.1 Binary Search Tree Search . 152
9.2 Binary Search Tree Predecessor 154
9.3 Binary Search Tree Insertion (Pseudocode) 157
9.4 Binary Search Tree Deletion (Pseudocode) 162

10.1 Heapify Up (Pseudocode) . 173
10.2 Heap Deletion (Pseudocode) 174
10.3 Heapify Down (Pseudocode) 175
10.4 Buildheap (Pseudocode) . 178
10.5 Heapsort (Pseudocode) . 180

11.1 Insertion with Linear Probing (Pseudocode) 197
11.2 Deletion with Linear Probing (Pseudocode) 198

Tables

1.1 Primitive Types . 3
1.2 Primitive Literal Values . 3
1.3 System.out Print Methods . 7
1.4 String Methods . 12
1.5 String Comparisons . 13
1.6 StringBuilder Methods . 23
1.7 String Tokenizing . 24

2.1 Common Time Complexities 35
2.2 System Timing . 36
2.3 java.util.Random Methods . 41

3.1 Integer Stack ADT . 48
3.2 java.util Exceptions . 55

4.1 Type Parameters . 65
4.2 Stack ADT . 66
4.3 Wrapper Classes . 67
4.4 Operator Notations . 76
4.5 Integer Conversion Methods 83

5.1 Queue ADT . 85
5.2 Object Methods . 99
5.3 Simulated Processor . 101

6.1 List ADT . 106
6.2 java.util.Iterator Interface . 118
6.3 Iterable Interface . 119

7.1 Comparable Interface . 131

8.1 Binary Tree API . 146

9.1 Binary Search Tree API . 151

10.1 Priority Queue ADT . 168

11.1 Map ADT . 186

xi

Preface

Welcome!

This text presents an introduction to data structures in Java™. It assumes
some prior programming experience but not necessarily in Java.

Data structures are the building blocks used to create any significant piece
of software. Just as smaller programs are made with functions, loops, and if-
statements, large-scale programs use stacks, queues, lists, and maps. Becom-
ing familiar with how to use, design, implement, and analyze these structures
is an important step on the path to becoming a skilled software developer.

One piece of advice for learning this material: do as many of the exercises as
you can. One of the nice things about writing programs is that you can run
them to see if your solutions work or not. That quick feedback is invaluable.

Enjoy.

To Instructors

This text is designed to support a second course in computer science with an
emphasis on elementary data structures. It takes a developmental approach
to enhance student learning:

• More code and guidance are provided at the beginning, allowing students
to adapt to Java and begin learning data structures. As students become
familiar with the landscape and more independent, less code is given and
more algorithms are outlined in pseudocode.

• Important concepts are introduced gradually and revisited with increas-
ing depth. For example, linked lists are introduced in the context of an
integer stack so that insertion and deletion are only at the front. Next
they are used to build a queue that adds support for generics and a tail
pointer. Finally, the linked implementation of the list ADT uses double
links, a dummy node, and insertion and deletion anywhere in the list.
By this point, students have built confidence in their ability to navigate
linked list code.

• The organization of topics is designed throughout to reinforce this de-
velopmental approach. For example, Chapter 3 develops an int-based
stack interface, array implementation, and linked implementation. This

xiii

xiv Preface

allows students to concentrate on stack essentials before tackling fully
generic stacks in Chapter 4. The List ADT follows stacks and queues for
the same reason: students are better prepared to handle its complexity
(particularly iterators) after learning stacks and queues first.

• Each section introduces only one or (rarely) two new concepts, allowing
students to focus on the new ideas without becoming overwhelmed. This
is particularly important during the first half of the course for newcomers
to Java.

Other features include:

• Clear, concise explanations of the essential content students need to
learn

• An introductory chapter to the basics of Java, allowing students for
whom Java is not their first language to quickly get up to speed

• Partial implementations of data structures so that instructors can de-
velop some methods as examples, and students can write other methods
as exercises

• Introduction to topics students will likely see later in other courses,
such as call stacks, analyzing recursive functions, sorting, inheritance,
and abstract classes

• Sections designed to fit approximately one class period each

For the most part, standard Java coding practices are followed, but there are
a handful of exceptions:

• Arrays are copied by hand, largely to support learning to resize circular
arrays in the queue implementation.

• Java collections are not used, because students are learning to build their
own. Most interfaces are close to their java.util counterparts, though.

• The unnamed package is used since these applications are all relatively
small, and it simplifies file management for beginners.

• The @Override annotation is not used for implementations of interface
methods, because that use of the term “override” seems likely to confuse
beginners.

With the exception of Chapters 10 and 11, which can be interchanged, chap-
ters are designed to be read in order. Section 5.3 should probably not be
skipped because it introduces inheritance and the Object class.

Java source files and other resources are posted at

http://www.central.edu/go/datastructures/

Preface xv

Feedback

Please send any comments or suggestions to johnsonm@central.edu. I look
forward to hearing from you.

Acknowledgments

Thanks to all of the students from COSC 130 for making this course so much
fun. I hope you can see and appreciate all of the improvements you inspired.
Thanks to Randi Cohen, editor at Chapman & Hall/CRC Press, for her on-
going support; I truly appreciate it. And thanks to my colleagues at Central
College, including Mark Babcock, director of the college-community chorus,
for his regular use of the technique “only one new thing at a time.”

About the Author

Mark J. Johnson is professor of computer science and mathematics at Cen-
tral College in Pella, Iowa, where he holds the Ruth and Marvin Denekas
Endowed Chair in Science and Humanities. Mark is a graduate of the Uni-
versity of Wisconsin-Madison (Ph.D., mathematics) and St. Olaf College. He
is the author of A Concise Introduction to Programming in Python, also pub-
lished by Chapman & Hall/CRC Press.

xvii

Chapter 1
A Brief Introduction to Java

Before beginning our study of data structures, we take a quick tour of the
main features of the Java programming language. More advanced features of
Java will then be introduced as they are needed. This chapter assumes that
you have some programming experience but not necessarily in Java.

A current Java Development Kit (JDK) is required to develop software in
Java. All of the examples in this text were written using Java SE 7.

1.1 Basics
We begin with an example that computes factorials in Listing 1.1.

Listing 1.1: Factorial

1 public class NumericFunctions {
2 public static int factorial(int n) {
3 int result = 1;
4 for (int i = 2; i <= n; i++) {
5 result *= i;
6 }
7 return result;
8 }
9

10 public static void main(String[] args) {
11 for (int n = 1; n <= 10; n++) {
12 System.out.print(n);
13 System.out.print(" ");
14 System.out.println(factorial(n));
15 }
16 }
17 }

Although this is a short program, it illustrates a number of features of the Java

1

www.allitebooks.com

http://www.allitebooks.org

2 A Concise Introduction to Data Structures Using Java

language. This section is therefore a bit longer than most, so don’t necessarily
try to remember everything on first reading. Instead, notice what is here, pay
attention to things that are different from what you expected, and plan to
refer back to this section as questions arise.

The Java Tutorial [13] is a good resource for learning Java, as is The Java
Programming Language [1]. The authoritative Java reference is the Java Lan-
guage Specification [8].

Classes

Almost all Java code is contained inside class definitions, as in Listing 1.1.
Class names are capitalized, and every class is usually stored in its own file,
named ClassName.java. For now, concentrate on the code inside the two
method definitions, factorial() and main(). Later, in Section 1.5, we will
look more closely at the structure of Java class definitions.

Types and Variables

Every variable in Java may only store one type of data, and that type must
be declared before the variable can be used. A variable declaration looks
like this:

type variableName;

Declaration is usually combined with initialization to give the variable a
value, as in line 3 of Listing 1.1:

type variableName = initialValue;

This is because local variables, which are defined inside blocks such as
method bodies, are not given a value until you assign one.

Every declaration limits the scope of the variable that is declared. The scope
of a variable is the area of a program in which the variable may be used. A
variable’s scope is limited to the set of braces that its declaration occurs in
(known as a block; see below). We generally follow the principle of making
the scope of a variable as small as possible; for example, the scope of the
variable i in Listing 1.1 is the for-loop in lines 4–6.

Variables that are declared with the final modifier are constant and can
never change once they have been set. Constants are usually written in all
capital letters with underscores between words.

Primitive and Reference Types

There are two main kinds of types: primitive and reference. Variables declared
with a primitive type store their data directly at the variable’s location in

A Brief Introduction to Java 3

memory. All other types in Java are reference types. References can be
thought of as pointers to objects rather than storage for the objects them-
selves. We concentrate on primitive types in this section, and then gradually
introduce reference types throughout the rest of this chapter.

Primitive Types

Java has eight primitive data types, listed in Table 1.1.

TABLE 1.1: Primitive Types
byte 8-bit integer
short 16-bit integer
char character (16-bit unsigned integer)
int 32-bit integer
long 64-bit integer

float 32-bit floating point
double 64-bit floating point

boolean true or false

The most commonly used primitive types are int, double, and boolean. Ta-
ble 1.2 shows the literal values that can be assigned to variables that have
been declared with primitive types.

TABLE 1.2: Primitive Literal Values
Examples

integer Optional 0x (hex), 0 (octal), or 0b (binary) 173, 0xa5
long Suffix L 25689L
floating pt Optional e for base 10 exponent 3.71e8
float Suffix f 17.0f
boolean true or false
char Single quotes ’c’

Notice that a stray 0 prefix on an integer constant will cause the value to be
interpreted in octal, which is base 8.

Casting can be used to translate between primitive numeric types (excluding
boolean). A cast tells the compiler to treat the expression as though it has
the specified type. The syntax of a cast is:

(type) expression

Casting a floating-point value to an integer truncates the fractional part. For
example,

int i = (int) 7.2913; // sets i to 7

4 A Concise Introduction to Data Structures Using Java

Operators

Java has the standard arithmetic operators +, -, *, and / for numeric types.
There is no exponentiation operator. Integer division truncates toward zero,
so 5 / 2 is 2 and -5 / 2 is -2. The remainder operator is %, defined so that
m % n is the remainder after dividing m by n. For example, 5 % 2 is 1. For
integer m and n, the following relationship is guaranteed:

(m / n) * n + m % n == m

Be aware that m % n can be negative: for example, -5 % 2 is -1 because

(-5 / 2) * 2 + -5 % 2 == -2 * 2 + -1 == -5

The remainder operator is also sometimes called amodulus ormod operator,
but that is technically inaccurate because modulus values are never negative.

Testing equality is done with == or != (not equals). Other comparisons are
<, >, <=, and >=. Each of these produces a boolean result, either true or false.
Boolean values may be combined with the boolean operators && (AND) or
|| (OR). Any boolean value may be negated by putting a ! (NOT) in front
of it.

The boolean operators && (AND) and || (OR) are conditional, meaning
that they only evaluate the second expression if necessary. For example, if j
is negative in this expression:

j >= 0 && key < data[j]

then the second part, key < data[j] will not be evaluated because the final
result is already known to be false. Conditional evaluation is also known as
short-circuiting the boolean operator.

Increment and Decrement

Numeric variables may be increased by one with the increment operator:

variable++

There is also a decrement operator --. Increment and decrement may be
used in a stand-alone statement or as part of a larger expression. When
present in an expression in the postfix form shown above, with the ++ after
the variable, the increment or decrement happens after retrieving the value
of the variable.

In prefix form:

++variable

A Brief Introduction to Java 5

the increment (or decrement) is done before determining the value of the
variable.

For example,

int x = 10;
int y = x++;

changes x to 11 and assigns the value 10 to y because the increment is done
after x is evaluated in the second line.

Statements and Blocks

Executable Java code is a sequence of statements, each ending with a semi-
colon. Braces ({}) may be used to group statements into blocks. Braces are
also known as squigglies or curly brackets. No semicolons are put after braces.

Blocks usually define the bodies of classes, methods, loops, and if-statements.
In general, a block may be used anywhere a single statement can occur—
and vice versa—because technically a block is considered a single compound
statement. For example, an if-statement may be written with a block:

if (test) {
body;

}

or with a single statement:

if (test)
singleStatement;

However, because of the danger of adding new statements to the single-
statement form without remembering to include the braces, it is better to
write single-statement bodies on the same line:

if (test) singleStatement;

The example statements that follow use the block form.

Assignment

An assignment statement evaluates the expression on the right and assigns
that value to the variable on the left:

variable = expression;

The type of the expression must be compatible with the type of the variable.

6 A Concise Introduction to Data Structures Using Java

Shorthands are available for many common assignments. For example, the *=
in line 5 of Listing 1.1:

result *= i;

is an abbreviation of the assignment:

result = result * i;

Similar shorthands are available for +=, -=, and /=.

Control Statements

Statements are executed in a Java program one after the other, in the or-
der they appear. The control statements that follow change the order in
which other statements are executed; in other words, they control the flow of
execution.

If Statements

An if-statement allows conditional execution by only executing its body if the
test is true:

if (test) {
body;

}

The test inside parentheses must produce a boolean value. There is an op-
tional else.

While Loops

A while-loop repeatedly executes its body until the boolean test is false:

while (test) {
body;

}

For Loops

A for-loop adds initialization and increment steps:

for (initialize; test; increment) {
body;

}

A Brief Introduction to Java 7

This loop works approximately like the following while-loop:

initialize;
while (test) {

body;
increment;

}

The initialize step may declare new variables, and any variables declared
in this way have their scope limited to the for-loop. The loop at line 4 of
Listing 1.1 declares the variable i in this way and executes its body once for
each i = 2, 3, . . . , n.

Notice that in a for-loop, the test is checked before the first execution of the
body, and the increment step is performed after every execution of the body.

Switch

A switch is an alternative to a long sequence of if and else if statements.

switch (expression) {
case value1:

statements
case value2:

statements
...
default:

statements
}

The default case is optional. When a switch executes, control jumps to
the matching case if there is one, and then execution continues from that
point on, with case statements themselves having no effect. In other words,
execution does not automatically stop at the end of a case. Thus, most switch
statements have a break statement at the end of every case, in order to cause
execution to skip the remaining cases.

Output Statements

Output is generated by the System.out functions in Table 1.3.

TABLE 1.3: System.out Print Methods
System.out.print(item)
Prints item without appending newline.

System.out.println(item)
Prints item, appending newline (\n).

8 A Concise Introduction to Data Structures Using Java

Other output functions offering more flexibility are available; consult the Java
documentation or tutorials for details on their use.

Methods

Functions in Java are usually referred to as methods because they must be
written inside a class. The general format of a method declaration is:

modifiers returnType name(parameterType parameter, ...) {
body;

}

The factorial() method in Listing 1.1 has modifiers public static, return
type int, and one parameter named n of type int. Method modifiers will
be discussed in Section 1.5. A method declares its return type to indicate
the type of data it will return. The void return type indicates that no value
will be returned. Thus, the factorial() method returns an int, whereas the
main() method returns nothing.

Values are returned from non-void methods with a return statement:

return expression;

The type of this expression must be compatible with the method’s return
type. When a return statement is reached, the method immediately stops
execution and returns the value of the expression to its caller. Because of
this behavior, a return statement with no expression may be used in a void
method to return to the caller without executing any more code within the
method.

Method parameters such as n in factorial(), must declare their type. Pa-
rameters are passed by value, meaning that the method receives a copy of
the value that is passed as the argument. For primitive types, this means
that a method can modify its copy of the parameter without affecting the
caller. Reference parameters will be considered briefly in Section 1.4.

Since Java code needs to be inside a class definition, there is no way to define
a function outside of a class, as is common in, say, C or Python. If you find
yourself wanting to write a stand-alone function in Java, then generally what
you want to write is a static method, such as factorial() and main() in
Listing 1.1. The reason for declaring these methods static will be explained
in Section 1.5.

A Brief Introduction to Java 9

Comments

Java comments come in three varieties:

Multiple line Text contained between /* and */ is ignored by the compiler
and meant for others who read your code.

Documentation Multiple line comments beginning with /** are documen-
tation comments that describe the following class or method.

Single line Any text that follows // to the end of the line is treated as a
comment, usually to explain a short section of code.

The javadoc tool converts documentation comments into Web pages that fol-
low the same style as the Java library documentation. Documentation com-
ments are not included in this text so that the code itself will be easier to read.

Compiling and Running Java Programs

To run Listing 1.1, save the code in a file named NumericFunctions.java.
This Java source code is compiled to Java bytecode with the command:

% javac NumericFunctions.java

Bytecode is like a low-level machine language, except that it consists of
instructions for the Java Virtual Machine or JVM rather than a par-
ticular CPU. The compiler stores the generated bytecode in a file named
NumericFunctions.class. Once this bytecode file has been created, the pro-
gram may be executed with the command:

% java NumericFunctions

This will automatically call the main() method from the NumericFunctions
class, as long as that method is declared public static void with a String[]
parameter, as on line 10. Integrated development environments (IDEs)
such as Netbeans or Eclipse make it easy to edit, compile, and run Java
programs without having to work from the command line. jGRASP [7] is an
IDE specifically designed for learning data structures.

Exercises

1. Suppose the int variables x and y have the values 5 and 10, respectively.
Give the value of both x and y after each of these Java statements runs,
starting over with the original values of x and y each time:

(a) x = ++y;

(b) x = --y;

(c) x = y++;

(d) x = y--;

10 A Concise Introduction to Data Structures Using Java

2. Write for-loops to produce the following values:

(a) i = 1, 2, 3, . . . , 100

(b) j = 0, 1, 2, 3, . . . , 9

(c) m = 0, 2, 4, 6, . . . , 100. (Hint: the increment step can be a shorthand
assignment.)

(d) n = 1, 2, 4, 8, . . . , 1024.

3. Write three different for-loops that will each execute their body ten
times. Do not just change the name of the loop variable; change all
three parts of the for-loop.

4. Modify main() in Listing 1.1 to include a call to factorial(0). Explain
why the correct result (0! = 1) is returned.

5. Modify main() in Listing 1.1 to include calls to factorial(n) with neg-
ative n. Does the program crash? Explain its behavior, focusing on the
for-loop on line 4.

6. Modify main() in Listing 1.1 to compute factorials up to n = 20.

(a) Determine the largest n for which the correct value is returned.

(b) Explain why some incorrect values are computed. Hint: a 32-bit
signed int can hold values between −231 and 231 − 1.

(c) Modify the factorial() function to use the long data type so
that larger factorials can be accurately computed. Determine the
largest n for which the correct value is returned by your modified
function.

7. Write a Java function pow(m, n) that computes mn for integers m and n,
assuming n ≥ 0. Use a loop to repeatedly multiply by m. Add the pow()
function to the NumericFunctions class and include code in main() to
compute pow(m, n) for all m and n between 1 and 9.

8. Write a Java function to implement Euclid’s algorithm for computing
the greatest common divisor gcd(m, n), which is the largest integer k
dividing both m and n. One form of Euclid’s algorithm is:

while n > 0
replace n with m % n
replace m with the previous value of n

When the loop stops, the gcd is in m. Add the gcd() function to
the NumericFunctions class and include code in main() to compute
gcd(m, n) for all m and n between 2 and 10.

A Brief Introduction to Java 11

1.2 Strings
In this section, we look at an example in Listing 1.2 featuring the Java String
type. Although we will only use strings occasionally, they provide a natural
first example of a reference type in Java.

Listing 1.2: Count Substrings

1 public class StringFunctions {
2 public static int count(String s, String target) {
3 int count = 0;
4 int n = target.length();
5 for (int i = 0; i <= s.length() - n; i++) {
6 String piece = s.substring(i, i + n);
7 if (piece.equals(target)) count++;
8 }
9 return count;

10 }
11

12 public static void main(String[] args) {
13 System.out.println("Number of this’s: " +
14 count("this and this and that and this", "this"));
15 }
16 }

The String class in Java provides support for working with character text.
As you may have noticed, string literals are contained in double quotes.

Concatenation

Strings may be combined via concatenation using + or the shorthand +=.
Thus, the sequence

String s = "abc";
s += "def";

results in s having the value "abcdef".

However, strings are immutable, meaning that once a String has been cre-
ated its contents can never change. What happens behind the scenes, then,
when executing

s += "def"

is that a new String object is created with the value "abcdef", and the ref-
erence s is changed to point to this new string instead of the old one that

www.allitebooks.com

http://www.allitebooks.org

12 A Concise Introduction to Data Structures Using Java

contained "abc". Thus, string concatenation is relatively inefficient because
it repeatedly generates new String objects. We will see a more efficient tech-
nique for building strings in Section 1.4.

Concatenation may also be used to combine strings with other types that are
capable of being converted to strings. This conversion is done automatically,
as in lines 13 and 14 of Listing 1.2. In that example, the int returned by
count() is automatically converted to a string so that it can be concatenated
with the literal string "Number of this’s: ".

String Methods

Recall that primitive types provide storage for a simple piece of data, such
as an integer or float. References that point to objects are capable of more
advanced behaviors, including method calls. We will discuss general object
behavior in Section 1.4; for now, Listing 1.2 demonstrates calling a few of the
string methods from Table 1.4.

TABLE 1.4: String Methods
char charAt(int i)
Character at position i.

int indexOf(String s)
Index of first occurrence of s in this string, −1 if not found.

int indexOf(String s, int start)
Index of first occurrence of s in this string starting at index start, −1 if
not found.

int length()
Number of characters in string.

String substring(int i)
Substring starting at index i.

String substring(int i, int j)
Substring from index i to j - 1.

String toLowerCase()
Returns copy in all lowercase.

String toUpperCase()
Returns copy in all uppercase.

String trim()
Returns copy with whitespace removed from each end.

Strings can be thought of as sequences of characters, indexed beginning at 0,
such as

0 1 2 3 4 5 6 7
A s t r i n g

Several of the methods in Table 1.4 are based on this indexing.

A Brief Introduction to Java 13

It is important to notice that methods whose names sound like they might
change the string (toLowerCase(), trim(), etc.) do not change the string
they are called on. This is because strings are immutable; they never change.
Instead, such methods always return a modified copy of the original string.

Consult the Java API documentation [10] for a complete list of string methods.

Comparing Strings

In general, reference types must be compared differently than primitives, both
for equality and inequalities. We will learn about those differences gradually,
but for now, we concentrate on how to compare strings. Table 1.5 lists the
main string comparison methods.

TABLE 1.5: String Comparisons
int compareTo(String s)
Returns negative if this string comes alphabetically before s, zero if
equal, and positive if alphabetically after.

int compareToIgnoreCase(String s)
Same as compareTo() except ignores upper and lowercase.

boolean equals(Object o)
Returns true if o is a string with the same contents as this string.

boolean equalsIgnoreCase(String s)
Returns true if s has the same contents as this string, ignoring case.

There are two basic rules for comparing strings:

Use equals() if you want to know if two strings have the same contents. Do
not use ==. Notice that line 7 in Listing 1.2 uses equals() to compare
each piece with the target.

Use compareTo() if you want to compare strings with respect to their al-
phabetical order. Do not try to use <, >, or other numeric comparisons.

Be careful: the compiler will allow you to use == with strings, but that will
almost never be what you want. On the other hand, the compiler will not
allow you to use other comparisons with strings.

The compareTo() method is based on the ASCII codes of the characters in
the strings, and so uppercase letters precede their lowercase equivalents. For
example,

"apple".equals("banana") \\ false
"apple".compareTo("banana") \\ negative
"apple".compareTo("BANANA") \\ positive
"apple".compareToIgnoreCase("BANANA") \\ negative

14 A Concise Introduction to Data Structures Using Java

Do not worry about the precise values returned by the compareTo() methods:
in programs, you will just need to test if values are positive or negative.

The difference between equals() and == applies to all Java objects, not just
strings, and so we will come back to that distinction in Section 1.4. Later, in
Section 5.3, we will explain the reason that the parameter to equals() is an
Object. For now, just think of it as a second string.

Exercises

1. Suppose s = "data structures". Give the value of each of these ex-
pressions:

(a) s.length()

(b) s.charAt(5)

(c) s.indexOf("a")

(d) s.indexOf("m")

(e) s.indexOf("struct")

(f) s.indexOf("t", 3)

(g) s.indexOf("t", 7)

(h) s.indexOf("d", 0)

(i) s.indexOf("d", 1)

(j) s.substring(5)

(k) s.substring(1, 3)

(l) s.toUpperCase()

2. Suppose t = "Java programming language". Give the value of each of
these expressions:

(a) t.length()

(b) t.charAt(0)

(c) t.indexOf("s")

(d) t.indexOf("n")

(e) t.indexOf("gram")

(f) t.indexOf("g", 9)

(g) t.indexOf("g", 16)

(h) t.indexOf("r", 6)

(i) t.indexOf("r", 7)

(j) t.substring(5)

(k) t.substring(5, 12)

(l) t.toLowerCase()

3. Suppose s = "stack", t = "queue", and u = "Stack". Give the value
of each of these expressions:

(a) s.equals(t)

(b) !s.equals(u)

(c) !t.equalsIgnoreCase(u)

(d) s.equalsIgnoreCase(u)

4. Suppose s = "stack", t = "queue", and u = "Stack". Decide whether
each of these is positive, negative, or zero:

(a) s.compareTo(t)

(b) s.compareTo(u)

(c) t.compareToIgnoreCase(u)

(d) s.compareToIgnoreCase(u)

A Brief Introduction to Java 15

5. Suppose s is a reference to a Java string. Write expressions to return
each of these values:

(a) The length of s

(b) The third character in s (as in, the third character of “abcd” is “c”)

(c) The substring of s consisting of its third through fifth characters

(d) The substring of s consisting of its fourth character to the end

6. Suppose s and t are references to Java strings.

(a) Write an if-statement that will execute its body only when s and t
have the same contents.

(b) Write an if-statement that will execute its body only when s and t
have different contents.

(c) Write an if-statement that will execute its body only when s comes
alphabetically before t.

7. Modify line 7 of Listing 1.2 to use == instead of equals(). Describe the
results.

8. Modify Listing 1.2 to write a method called countIgnoreCase() that
ignores case. Test your method in main().

9. Write a version of the count() method from Listing 1.2 called count2()
that uses a while-loop and the indexOf() string method to search for the
target. Use the version of indexOf() with two parameters. Add your
function to the StringFunctions class and test your method in main().

10. Determine how the value of the string compareTo() method is computed,
either through experimentation or by consulting the Java API documen-
tation.

1.3 Arrays
Arrays are a simple data structure that provide a basis for creating many of
the other, more complex structures we will study. They also provide a second
example of a reference type. Listing 1.3 demonstrates the use of arrays with
a standard search technique known as linear search.

An array is an ordered collection of variables, all of the same type. A reference
to an array then allows accessing any variable in the collection by its index.

16 A Concise Introduction to Data Structures Using Java

Listing 1.3: Linear Search

1 public class ArrayFunctions {
2 public static int linearSearch(int[] data, int target) {
3 for (int i = 0; i < data.length; i++) {
4 if (target == data[i]) return i;
5 }
6 return -1;
7 }
8

9 public static void main(String[] args) {
10 int[] data = {3, 14, 7, 22, 45, 12, 19, 42, 6};
11 System.out.println("Search for 7: " +
12 linearSearch(data, 7));
13 System.out.println("Search for 100: " +
14 linearSearch(data, 100));
15 }
16 }

Declaring Array References

The declaration:

type[] arrayRef;

declares arrayRef to be a reference to an array in which each variable has the
specified type. Thus, data is declared to be an array of int variables in line 10
of Listing 1.3.

No actual array is created by declaring a variable with an array type. This is
because array types are reference types, and so declaring an array type variable
simply sets aside storage for this variable to eventually hold a reference to an
actual array. Creating the array is a separate step.

Creating Arrays

There are two main ways to create an array: with an initializer or using new.
An initializer is appropriate when the array contains a small number of
known items, as in line 10 of Listing 1.3. The syntax of an array initializer is:

arrayRef = {item, item, ..., item};

A Brief Introduction to Java 17

More often, new is used with a type and square brackets to create an array of
a given size:

arrayRef = new type[N];

Here the type used with new must be compatible with the type that was used
to declare the array variable, and N specifies the size of the new array, also
known as its length. An array created with new begins with the default initial
value at each index. For numeric types, the default is zero; for reference types
the default is the null reference (see Section 1.4).

The length of an array is accessible in its length field:

arrayRef.length

See, for example, line 3 in Listing 1.3. The length of an array is fixed at the
time it is created and can never change. However, an array variable can be
reassigned at any time to point to a different array object that has a different
length.

Accessing Array Elements

Items in an array are accessed by their index or location in the array. Indices
are numbered starting at 0, so an array with 9 items in it such as data in
Listing 1.3 has indices 0 through 8. We visualize the data array like this:

0 1 2 3 4 5 6 7 8

3 14 7 22 45 12 19 42 6

The item at index i in an array is accessed using square brackets:

arrayRef[i]

For example, data[2] is 7, and data[7] is 42.

Java performs automatic bounds checking on all array accesses. If an in-
valid index is used, an ArrayIndexOutOfBoundsException is thrown, generally
stopping execution of your program.

18 A Concise Introduction to Data Structures Using Java

Enhanced For-Loop

Java collections, including arrays, support a simplified for statement that
allows looping over each item in the collection. Known as the enhanced
for-loop, the syntax is:

for (type variable : collection) {
body;

}

This loop will execute once for each item in the collection. Inside the body of
the loop, each item is stored in variable. The type specified for the variable
has to match the type of each item in the collection.

For example, consider the data array from the main() method in Listing 1.3.
It is declared as type int[], and so the item type for an enhanced for-loop
using that array should be int. This loop prints all of the items in the array:

for (int item : data) {
System.out.println(item);

}

The enhanced for-loop is quite nice in situations when you do not otherwise
need the array indices.

Linear Search

The method in Listing 1.3 solves the search problem:

Given an array data and a particular value target, determine
whether or not target appears as an element in data. If it does,
return the smallest index where it occurs; otherwise, return −1.

We solve the search problem by producing an algorithm. An algorithm is a
specific sequence of computable steps designed to solve a particular problem.
Notice that this definition contains several vague terms; for our purposes, an
algorithm will simply be a program that solves a problem.

Linear search, also known as sequential search solves the search problem
by examining each element in the array, one at a time beginning at item 0,
keeping track of the current index. If the item is found, the corresponding
index is returned; otherwise, if after looking at every element the item has not
been found, it returns −1.

Because the problem statement specifies returning the index where the element
is found, we need to loop over indices rather than, say, the elements in the
array.

A Brief Introduction to Java 19

Exercises

1. Write a Java statement to declare each of these array references:

(a) An int array named counts

(b) A double array named times

(c) A boolean array named visible

(d) A String array named names

2. Use an initializer to write a Java statement to declare and create each
of these arrays:

(a) An int array named counts with contents 18, 3, 9, 22, 11, 4.

(b) A double array named times with contents 1.52, 1.98, 1.44, 1.63,
1.67.

(c) A boolean array named visible with contents T, F, F, T, F.

(d) A String array named names with contents “Alice,” “Bob,” “Carol,”
“Dave.”

3. Write a Java statement to declare each of these array references and
create an array of the given length that the variable refers to.

(a) An int array named counts of length 10

(b) A double array named times of length 40

(c) A boolean array named visible of length 1000

(d) A String array named names of length 100

4. Write an enhanced for-loop to print every item in each of these arrays:

(a) An int array named counts

(b) A double array named times

(c) A boolean array named visible

(d) A String array named names

5. Use Listing 1.3 to:

(a) Determine the name and type of the one parameter to main().

(b) Explain why the test in the for-loop on line 3 uses less than rather
than less than or equal to.

(c) Trace the execution of the first call to linearSearch() on line 12.

(d) Trace the execution of the second call to linearSearch() on line 14.

6. Explain why an enhanced for-loop is not used in the linearSearch()
method of Listing 1.3.

20 A Concise Introduction to Data Structures Using Java

7. Explain why it works to use == in line 4 of the linearSearch() method.
Would substituting equals() also work?

8. Add an enhanced for-loop to main() in Listing 1.3 that searches for every
element in the array data.

9. Write a sum(int[] data) method for the ArrayFunctions class that re-
turns the sum of the elements in the given array. Test your implemen-
tation in main().

10. Write a max(int[] data) method for the ArrayFunctions class that re-
turns the value of the largest element in the given array. Assume the
array is nonempty, and test your implementation in main().

11. Write a min(int[] data) method for the ArrayFunctions class that re-
turns the value of the smallest element in the given array. You may
assume the array is nonempty. Test your implementation in main().

12. Write a display(int[] data) method for the ArrayFunctions class that
prints the contents of the given array on one line. Use print() for each
element, but finish with a final println() so that future output appears
on its own line. Test your implementation in main().

1.4 Using Objects
Java is an object-oriented programming language, and so, learning to use
objects is one of the keys to successfully adapting to the language. You have
seen two types of objects so far, strings and arrays. Each of those is somewhat
unique; this section uses a more representative example to convey the general
ideas.

Objects are defined by classes. In this section, we focus on how to use objects;
in the next section, we look at how to write our own classes. In addition to
using a new object, Listing 1.4 ties together some ideas from the last two
sections. Before looking at the details of how the StringBuilder class and
the split() method are used in it, we consider some general issues involved
in using Java objects.

Declaring Object References

Object references are declared in the same way as primitive variables:

type referenceVariable;

A Brief Introduction to Java 21

Listing 1.4: Acronym

1 // Add to class StringFunctions:
2

3 public static String acronym(String phrase) {
4 StringBuilder result = new StringBuilder();
5 for (String token : phrase.split("\\s+")) {
6 result.append(token.toUpperCase().charAt(0));
7 }
8 return result.toString();
9 }

The type that a reference is declared with defines the methods and fields that
may be used via the reference. However, as with strings and arrays, declaring
a reference variable does not create an object for the variable to refer to, and a
reference cannot “do” anything until it refers to an object. Once an object has
been created, we often talk about the reference variable as if it is the object
that it references.

Creating Objects

Objects are created in Java using new and the class constructor:

referenceVariable = new ClassName(arguments);

Constructors always have the same name as their class, and may take zero
or more parameters. In Listing 1.4, a StringBuilder object is created by
calling the constructor on line 4, and that object is then referenced by the
variable result.

Accessing Fields and Calling Methods

Objects store their data in fields defined by the class from which they were
created. Fields are accessed using dot notation:

object.field

We saw this notation in the last section for accessing the length field of an
array.

Methods are operations that may be performed on or with the data stored
in the object’s fields. Methods are called using the same dot notation:

object.method(arguments)

www.allitebooks.com

http://www.allitebooks.org

22 A Concise Introduction to Data Structures Using Java

There were several examples of String method calls in Section 1.2, and line 6
of Listing 1.4 calls the append() method on the StringBuilder object result.
It is also worth noting that print() and println() are method calls on the
System.out object.

Accessing a field or method of a reference variable using a dot is sometimes
called dereferencing the variable. Only variables declared with reference
types can be dereferenced. If you try to dereference a variable declared with
a primitive type, you well get an error.

Object References

Recall that reference types point to the object they refer to using a reference,
rather than directly storing data like primitives. Given these assignments:

int x = 17;
String s = "This is a string";

it is helpful to imagine the difference like this:

17x:

s: "This is a string"

because the actual contents of s are a reference to the string object. Java
references are also called pointers because they point to objects; be aware,
however, that in other languages there may be differences between pointers
and references. If another reference is created and given the same value as s:

String t = s;

then both references point to the same object:

t:

s: "This is a string"

Recall (page 8) that Java passes all method parameters by value. This means
that for object references, parameters always get a copy of the reference (in
the same way that t is a copy of the reference s in our example here), but
the reference points to the actual object. Generally, this is exactly what you
expect and need.

There is one literal reference, null, which refers to no object. Trying to access
a field or method of a null reference will generate a NullPointerException.

A Brief Introduction to Java 23

Using equals()

We can say a bit more now about the difference between == and equals() for
reference types. With all object types (including strings), == and != check
whether or not the two references refer to the same object. The equals()
method, on the other hand, is defined by classes such as String to check
whether or not the objects have the same content.

Thus, most of the time, when comparing objects, you want to compare their
contents and therefore use equals(). Direct comparisons with == are used
mostly with primitive types.

There is one caveat: Java arrays do not implement equals() to compare their
contents. If you need to compare the contents of arrays, use the equals()
method from the java.util.Arrays class.

Destroying Objects

There is no explicit way to destroy an object in Java after it has been created.
Instead, Java has a system of automatic garbage collection that is allowed
to reclaim memory once it is no longer being used. The garbage collector
determines that an object is no longer being used when there is no way to
reach it by following active references in the program. This automatic system
is nice; other languages may require you to take out your own trash.

However, there still may be times when we need to eliminate references to
objects that are no longer being used. In general, if x is a reference to an
object we no longer need, then setting x to null will alert the garbage collector
that the object can be deleted (assuming no other references point to it).

StringBuilders

Recall that string concatenation is inefficient because strings are immutable
(see Section 1.2). StringBuilder objects are specifically designed to perform
efficient string accumulation. Because they are mutable, their contents can
change and so they do not require creating new objects for every concatena-
tion.

The StringBuilder object referenced by result in Listing 1.4 is created
on line 4 by calling a constructor with new. Once the object exists, the
StringBuilder methods listed in Table 1.6 can be called on it.

TABLE 1.6: StringBuilder Methods
void append(String s)
Appends s to current contents.

String toString()
Converts contents to string.

24 A Concise Introduction to Data Structures Using Java

String Tokenizing

A common task is to break a given string into a collection of substrings called
tokens. In Listing 1.4, we need each word in the phrase in order to be able
to create the acronym. In that case, the tokens are the individual words,
separated by whitespace.

The String split()method, given in Table 1.7, provides a convenient method
for tokenizing strings, returning a String array that contains the tokens. The
split() method breaks a string into tokens at each occurrence of the expres-
sion passed as its parameter. For example,

"Name:Address:City:State:Zip".split(":")

returns the array

{"Name", "Address", "City", "State", "Zip"}

The split expression ":" is not kept as part of any of the tokens.

TABLE 1.7: String Tokenizing
String[] split(String expr)
Returns an array of strings created by splitting this string at each oc-
currence of expr.

The split expression can be any regular expression. The regular expression
used in Listing 1.4 matches any string of one or more characters of whites-
pace (spaces, tabs, or newlines). It works like this: the pattern “\s” matches
any single whitespace character. But to use the pattern “\s” in a string literal
(as here), the backslash must be escaped with another backslash; thus the
string literal pattern "\\s" matches any one character of whitespace. Ap-
pending a “+” to a pattern matches one or more occurrences of the pattern,
and so, "\\s+" matches any set of one or more characters of whitespace.

Exercises

1. Suppose Random is the name of a Java class with a constructor that takes
no parameters. Write a Java statement to declare and create a Random
object named gen.

2. Suppose Thread is the name of a Java class with a constructor that takes
no parameters. Write a Java statement to declare and create a Thread
object named t.

3. Suppose Button is the name of a Java class with a constructor that
takes a string parameter for the button’s label. Write a Java statement
to declare and create a Button object named goButton labeled “Go.”

A Brief Introduction to Java 25

4. Determine the values of these Java expressions:

(a) "This sentence has long gaps.".split("\\s+")

(b) "What about punctuation?".split("\\s+")

(c) "This is a sentence.".split("\\s")

(d) "This is a sentence.".split("s")

(e) "This is a sentence.".split("e")

5. Add the acronym() method from Listing 1.4 to the StringFunctions
class. Include code in main() to test it.

6. Rewrite the acronym()method from Listing 1.4 to use a regular indexing
for-loop instead of an enhanced for-loop. Name the method acronym2()
and test it in main().

7. Write a method countWord(String s, String target) that counts the
number of times the word target occurs in the string s. (Assume s
contains no punctuation so that words are delimited by whitespace.)
Add your method to the StringFunctions class and test it in main().

8. Write a method countWordIgnoreCase(String s, String target) that
counts the number of times the word target occurs in the string s,
ignoring case. (Assume s contains no punctuation so that words are
delimited by whitespace.) Add your method to the StringFunctions
class and test it in main().

9. Write a Java method reverse(String s) for the StringFunctions class
that returns a string consisting of the characters in s in reverse order.
For example, reverse("abc") should return the string "cba". Test your
method in main().

10. Add a new linearSearch() method to the ArrayFunctions class that
searches for a target string in an array of strings. Test your method
in main(). (Note: Java allows multiple versions of the same method as
long as they have different lists of parameter types; we will explain this
feature in the next section.)

1.5 Writing Classes
Classes allow us to define new data types in Java. Types defined by classes
are known as object types or class types, and all object types are reference
types. Listing 1.5 defines a Fraction type.

26 A Concise Introduction to Data Structures Using Java

Listing 1.5: Fraction Class

1 public class Fraction {
2 private int num;
3 private int den;
4

5 public Fraction(int num, int den) {
6 this.num = num;
7 this.den = den;
8 }
9

10 public Fraction(int n) {
11 this(n, 1);
12 }
13

14 public void addOn(Fraction f) {
15 num = num * f.den + den * f.num;
16 den *= f.den;
17 }
18

19 public static Fraction add(Fraction f1, Fraction f2) {
20 int n = f1.num * f2.den + f1.den * f2.num;
21 int d = f1.den * f2.den;
22 return new Fraction(n, d);
23 }
24

25 @Override
26 public String toString() {
27 return num + "/" + den;
28 }
29

30 public static void main(String[] args) {
31 Fraction f1 = new Fraction(3, 4);
32 Fraction f2 = new Fraction(1, 3);
33 System.out.print(f1 + " + " + f2 + " = ");
34 System.out.println(add(f1, f2));
35 f1.addOn(f2);
36 System.out.println("Using addOn() changes f1 to " + f1);
37 }
38 }

A Brief Introduction to Java 27

Class Definitions

A typical Java class definition looks like:

modifiers class ClassName {
// field declarations
// method definitions

}

The body of the class inside its braces defines the class members, usually
fields and methods. It is also possible to define classes within classes, known
as nested classes. We will see one use for this later when creating linked
structures.

Visibility

Java allows you to specify the visibility of a class and its members with access
modifiers. These modifiers control what other sections of code are able to
use the class or its members. If a class is declared public, the class may be
used by any other class. In general, a public class should be stored in a file
with the same name as the class.

For now, we will use two access modifiers for class members:

public Available anywhere the class is available.
private May only be accessed inside the class itself.

Protected access will be discussed in Section 5.3; package visibility will not be
used in this text.

The primary use of private visibility is to provide encapsulation for objects,
giving them an outer shell that other classes cannot break through. This
allows each class to manage its own objects by limiting other classes to using
only publicly declared members.

Declaring and Initializing Fields

A field declaration is simply a variable declaration inside the body of a class
that is not contained in the body of any method definition. For example,
lines 2 and 3 of Listing 1.5 define the two fields num and den in the Fraction
class. Fields are normally declared private so that other classes are forced to
use public methods to access class or object data.

Fields may be initialized at the time of declaration, or they may be assigned
values by a constructor. If not initialized, fields are given a default value
based on their type: generally, numeric types are set to 0 and object references
are null. The fields num and den are not initialized, so they are given default
values which will be reset by the constructor (see below).

28 A Concise Introduction to Data Structures Using Java

Writing Methods

You are already familiar with writing methods in classes, although prior to
this section, all of our methods have been static. As described in Section 1.1,
methods must declare their return type and the type of their parameters.
Each method may also declare its own visibility with an access modifier.

Inside non-static methods, the keyword this refers to the current object on
which the method was called. Thus, inside method bodies (including con-
structors), this syntax:

this.fieldName

references a field rather than some other variable such as a parameter or local
variable. In lines 6 and 7 of Listing 1.5, this allows the parameters of the
constructor to have the same names as the fields, instead of requiring the
programmer to choose different names for the parameters.

For example, in line 6:
this.num
↑

field

= num
↑

parameter

;

this.num on the left refers to the field named num, whereas num on the right
refers to the parameter. This is generally the only time we reuse field names;
otherwise, there is a danger that the fields will be hidden by local variables
or parameters. There is no need to use this if there is no name conflict.

Writing Constructors

Recall from the previous section that constructors are used with new in order
to create new objects. Thus, the primary purpose of a constructor is to set up
new objects in a valid state, meaning that its fields have meaningful values.
In the case of the Fraction class, there are no natural default values for the
numerator and denominator, so values for the numerator and denominator
must be specified when the fraction is created. Thus, instead of using field
initializers, we write constructors to provide convenient means for fraction
objects to be created.

Constructors always have the same name as the class and do not have a return
type. They may specify their own visibility.

Overloading Methods and Constructors

Java allows defining more than one version of a method or constructor as
long as each version has a unique signature. The signature of a method is
its name and list of parameter types. Neither the return type nor parameter

A Brief Introduction to Java 29

names are part of a signature. Defining multiple versions of a method is called
overloading the method.

In Listing 1.5, the constructor is overloaded; the signatures of the two con-
structors are:

Fraction(int, int)
Fraction(int)

When overloading constructors, this() may be used as the first statement of
a constructor in order to call a different constructor:

this(arguments);

This reduces duplication of code, usually by writing full code for the most
general constructor and then calling this() in the more specialized construc-
tors. For example, in Listing 1.5, the first constructor is a general constructor
for fractions n/d, while the second constructor calls this(n, 1) on line 11 to
create fraction objects for integers n = n/1.

Instance and Static Methods

The syntax for method calls described in Section 1.4 is the standard way of
calling instance methods, which are always called from an instance of a
class, meaning an object:

object.method(arguments)

Instance methods have no special designation in a class; in other words, all
methods are instance methods unless declared otherwise. In Listing 1.5, the
addOn() and toString() methods are instance methods. You can see the
above calling syntax used with the addOn() method in line 35. There, the
addOn()method is called on the instance f1, modifying f1 by adding f2 onto it.

In contrast, static methods do not need to be called from any object.1 They
are considered class methods rather than object methods. In fact, you can
think of “static” as a synonym for “class.” Methods are declared static with
the static modifer:

static returnType staticMethod(parameters) { ... }

Inside of its own class definition, a static method may be called by simply
providing the name of the method and its arguments:

staticMethod(arguments)

1They may be called from objects, but we will have no need to do that.

30 A Concise Introduction to Data Structures Using Java

This syntax is used in the call to add() in line 34, where the sum of f1 and
f2 is printed.

Compare the add() and addOn() methods to help understand the difference
between instance and static methods:

addOn() is an instance method so must be called from a particular frac-
tion. It modifies the fraction it is called on.

add() is a static method and adds two given fractions, returning a new
fraction as the result.

Because instance methods are more common than static methods, the term
“method” will normally refer to instance methods.

Calling Static Methods from Other Classes

Static methods from other classes are called by prefixing the method name
with the class name:

ClassName.staticMethod(arguments)

Instance and Static Fields

As with methods, there are also instance fields and static fields. An instance
field or instance variable is a variable for which each object has its own
separate storage. There is no special designation for instance fields, so once
again, all fields are instance fields unless specified static. Thus, in the Fraction
class,

private int num;
private int den;

both num and den are instance variables, and so every fraction stores its own
numerator and denominator.

Fields may be declared static, in which case the entire class shares a single
storage location for that field. Because of this, static fields can be thought of
as class variables. Static fields are not used as often as instance fields, so
the term “field” usually refers to instance variables.

toString() Methods

Any class may provide a toString() method to indicate how objects of that
type should be converted to strings. In Listing 1.5, the toString() method
of the Fraction class returns the string

num + "/" + den

A Brief Introduction to Java 31

One of the advantages of writing a toString() method is that it will be called
automatically by System.out.println() when printing an object of that type.
Thus, for example, when f1 is printed at line 33, its output will be “3/4.”

We will revisit toString() methods and the @Override annotation used in
Listing 1.5 in Section 5.3.

Exercises

1. Give the signatures of each of these methods from Listing 1.5:

(a) addOn()

(b) add()

(c) toString()

(d) main()

2. Give the signatures of each of these methods:

(a) factorial() from Listing 1.1

(b) count() from Listing 1.2

(c) linearSearch() from Listing 1.3

(d) acronym() from Listing 1.4

3. Explain why the methods listed in Exercise 2 were declared static.

4. Would Java allow the name of the addOn() method in Listing 1.5 to be
changed to add()? Explain why or why not.

5. Add code to the main() of Listing 1.5 to accomplish these tasks:

(a) Declare and create a Fraction named f with value 5/8. Print the
value of f.

(b) Declare and create a Fraction named g with value 17/3. Print the
value of g.

(c) Declare and create a Fraction named h with value f+g. Print the
value of h.

(d) Declare and create a Fraction named j with value 5. Print the
value of j.

(e) Increase the value of g by 5. Print the new value of g.

6. Add these methods to the Fraction class of Listing 1.5. Modify main()
to test your functions.

(a) subtractOff(Fraction f) to subtract f from this fraction

(b) multiplyBy(Fraction f) to multiply this fraction by f

(c) divideBy(Fraction f) to divide this fraction by f

(d) addOn(int n) to add the integer n to this fraction

www.allitebooks.com

http://www.allitebooks.org

32 A Concise Introduction to Data Structures Using Java

7. Add these methods to the Fraction class of Listing 1.5. Modify main()
to test your functions.

(a) subtract(Fraction f1, Fraction f2) to compute f1 - f2

(b) multiply(Fraction f1, Fraction f2) to compute f1 * f2

(c) divide(Fraction f1, Fraction f2) to compute f1 / f2

8. Write a reduce() method for the Fraction class of Listing 1.5 that
reduces this fraction to its lowest terms. Assume all terms are positive
and use the gcd() function from Exercise 8 in Section 1.1. Add calls
to the reduce() function to other methods in the class where they are
necessary.

9. Modify the reduce() method from the previous exercise to handle nega-
tive fractions correctly. Have the constructor make sure all denominators
are positive, so that negative fractions have a negative numerator. Use
the Math.abs() library function if you need absolute value.

Chapter 2
Algorithm Analysis

An important part of learning about data structures is understanding their
performance. There are at least two reasons:

Design should take performance into account. What might seem like a nat-
ural and easy to code design might be unacceptably slow.

Selection of a data structure for a particular task should also take perfor-
mance into account.

As you will see, data structures often get fast performance for some operations
by sacrificing the performance of others. Being aware of these tradeoffs is part
of becoming a good software developer.

There are also two main aspects to algorithm performance: time and space.
Time performance is simply how long it takes the algorithm to run, whereas
space is concerned with how much memory the algorithm requires. We will
concentrate mostly on time.

2.1 Big-O Notation

Big-O notation is an example of an asymptotic notation that captures the
overall behavior of an algorithm or mathematical function for large input
values. In order to get a feel for the usefulness of asymptotic notations, it will
help to look at an example.

Suppose we have three algorithms, A, B, and C, which take different numbers
of steps depending on their input size n:

Algorithm Number of Steps
A 10n+ 25
B 0.1n2 + n+ 28
C n2

33

34 A Concise Introduction to Data Structures Using Java

If we compute the number of steps each algorithm takes for different n, the
results look like this:

Input Size Algorithm A Algorithm B Algorithm C
10 125 48 100
20 225 88 400
40 425 228 1600
80 825 748 6400
160 1625 2748 25600
320 3225 10588 102400
640 6425 41628 409600
1280 12825 165148 1638400
2560 25625 657948 6553600
5120 51225 2626588 26214400
10240 102425 10496028 104857600

It appears that over the long run, algorithms B and C behave similarly, and
that algorithm A is faster than both of them.

We can extract these principles from the table:

Focus on large n Algorithm B is fastest for n < 100, but that is not a good
indicator of its overall performance. It is much slower than A for large n.

Focus on highest power The columns for n and algorithm A grow very
similarly, as do the columns for B and C. What these pairs have in
common is their highest power of n: for n and A it is n iteself; for B
and C it is n2.

Ignore other detail Compare the growth of algorithms B and C. The coef-
ficients and smaller terms in 0.1n2 + n+ 28 do not create an important
difference with n2 itself.

To be realistic, the table should have continued for much larger n, into the
millions and tens of millions. You can imagine what that would look like.

Big-O Notation

Big-O notation captures this overall behavior of an algorithm or mathematical
function for large n. We say that g(n) is O(f(n)) if there is a constant c so
that for all large n,

g(n) ≤ c · f(n)

An algorithm is considered O(f(n)) if it takes g(n) steps and g(n) is O(f(n)).
However, rather than using this precise definition, we will apply the principles
derived above to focus on highest powers and ignore other detail.

Algorithm Analysis 35

For example,

Algorithm A is O(n) because 10n+25 is O(n). The highest power is n and
we ignore the coefficient 10 and lower term.

Algorithm B is O(n2) because 0.1n2 +n+28 is O(n2). The highest power
is n2 and we ignore the coefficient and both lower terms.

Algorithm C is O(n2) because n2 is itself O(n2).

Notice how O() captures the sense we had of which algorithms had the “same”
performance.

Analyzing an algorithm’s running time using O() notation is known as study-
ing its time complexity, while space complexity describes memory re-
quirements. Most algorithms have one of the time complexities in Table 2.1,
ordered from fastest to slowest.

TABLE 2.1: Common
Time Complexities
O(1) Constant
O(log n) Log
O(n) Linear
O(n log n)
O(n2) Quadratic
O(n3) Cubic

What to Count

Depending on the situation, someone analyzing an algorithm might count
different things, such as instructions, comparisons, or element swaps. We will
generally think in terms of instructions, but one of the benefits of using O()
is that in the end, our specific choice probably won’t affect the result.

Best, Worst, and Average Case

Algorithms may perform very differently on different data sets. Thus, we may
be interested in any of these:

Best-case performance assumes that the data is arranged in such a way that
the algorithm performs optimally.

Worst-case performance assumes that the data is arranged as badly as pos-
sible for this particular algorithm.

Average-case performance averages over all possible data sets.

36 A Concise Introduction to Data Structures Using Java

Normally, best-case performance is not very helpful because it is more about
luck than anything else.

Because of the inequality in its official definition (g(n) ≤ c f(n)), big-O nota-
tion is ideally suited for worst-case analysis. Saying that an algorithm is O(n)
means that its performance is no worse than linear.

Performance Measurement

A useful counterpart to determining time complexity is to measure an algo-
rithm’s performance on an actual machine. Performance measurement
takes an empirical approach to the question of algorithm performance by
measuring the time it takes for code to execute on a particular machine.

Execution time can be measured in Java with the currentTimeMillis() func-
tion given in Table 2.2. Because it is a static method from another class
(the System class), this method must be called with a “System.” prefix (see
page 30).

TABLE 2.2: System Timing
static long currentTimeMillis()
Current time in milliseconds.

The idea is to check the time on a clock immediately before and immediately
after running the algorithm:

long start = System.currentTimeMillis();
execute algorithm here
long elapsed = System.currentTimeMillis() - start;

Be careful to only time the algorithm in question. Given the speed of current
computers, it is common to loop over several executions and then calculate
the average time.

An advantage of this approach is that it can be a reality check for an ab-
stract analysis. If your analysis is correct, then real performance times should
confirm it. However, beware of machine factors that may impact actual per-
formance, especially caches.

An advantage of O() analysis is that it does not depend on the particular
compiler, machine, or in some cases even language, used to code the algorithm.
For example, pseudocode, which describes algorithms in code-like steps, can
often be usefully analyzed using big-O notation.

In the next two sections, we practice algorithm analysis (and using Java ar-
rays) with a pair of examples: insertion sort and binary search.

Algorithm Analysis 37

Exercises

1. Classify these mathematical functions according to their O():

(a) 13n

(b) n2 + n+ 100

(c) 1024

(d)
n

100
+ 10000

(e) n2 + n3

(f) n2 + n log n+ n

(g) n3/2 + n

2. Determine the O() performance of each of these segments of code. Ex-
plain your answers.

(a) for (int i = 0; i < n; i++) {
count++;

}

(b) for (int i = 0; i < 1000; i++) {
count++;

}

(c) for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

count++;
}

}

(d) for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {

count++;
}

}

(e) for (int i = 0; i < n; i++) {
for (int j = 0; j < 1000; j++) {

count++;
}

}

3. Explain what it means for an expression to be O(1).

4. Explain what it means to say that an array provides O(1) access to any
element in it.

5. Determine the O() performance of the factorial() function in List-
ing 1.1 in terms of its parameter n. Explain your answer.

38 A Concise Introduction to Data Structures Using Java

6. Determine the O() best-case, worst-case, and average performance of
the linearSearch() function in Listing 1.3. Explain your answers.

7. Determine the O() best-case, worst-case, and average performance of the
sum() function from Exercise 9 in Section 1.3. Explain your answers.

8. Determine the O() best-case, worst-case, and average performance of the
max() function from Exercise 10 in Section 1.3. Explain your answers.

9. Determine the O() best-case, worst-case, and average performance of the
min() function from Exercise 11 in Section 1.3. Explain your answers.

2.2 Sorting: Insertion Sort

Sorting algorithms are an important family of computational algorithms. An
array of items named data with length n is called sorted if for all i < n− 1,

data[i] <= data[i+1]

Such an array is called nondecreasing; nonincreasing is defined similarly.

Insertion Sort

Insertion sort is often used by card players to sort their hands. The idea is
to view the data in two sections: the left section is a sorted subset of the data,
while the right section contains items that remain to be sorted. At each step
of the algorithm, we take the next element from the right section and insert
it into the left, in such a way that the left section remains sorted.

Example

Given the array

0 1 2 3 4 5 6 7 8

3 14 7 22 45 12 19 42 6

begin by viewing the first element as sorted (on its own):

0 1 2 3 4 5 6 7 8

3 14 7 22 45 12 19 42 6

Algorithm Analysis 39

Then take the next element in the right half and insert it in its proper, sorted
place on the left. In this case, 14 can stay where it is because 3 < 14.

0 1 2 3 4 5 6 7 8

3 14 7 22 45 12 19 42 6

The next element, 7, needs to be inserted between 3 and 14. This requires
saving the 7, copying 14 into slot 2, and then copying 7 into slot 1:

0 1 2 3 4 5 6 7 8

3 7 14 22 45 12 19 42 6

This process continues until there are no elements on the right, in which case
the array is sorted. Inserting one element at a time in this way is an example
of an incremental strategy.

Implementation

Listing 2.1 implements insertion sort for integer arrays in Java. Pay close
attention to the inner loop, which shifts elements in the array so that the key
can be inserted at its proper location.

Listing 2.1: Insertion Sort

1 // Add to class ArrayFunctions
2 public static void insertionSort(int[] data) {
3 for (int i = 1; i < data.length; i++) {
4 int key = data[i];
5 int j = i - 1;
6 while (j >= 0 && key < data[j]) {
7 data[j + 1] = data[j];
8 j--;
9 }

10 data[j + 1] = key;
11 }
12 }

Worst-Case Analysis

Insertion sort has a while-loop inside a for-loop. That makes it difficult to
analyze because we need to determine how many times the inner loop runs.

The outer loop on line 3 runs n− 1 times on an array of length n. The inner

40 A Concise Introduction to Data Structures Using Java

loop on line 6 depends on the data. In the worst case, the array will be in
reverse sorted order, and every item will have to move the largest possible dis-
tance. In that case, item i will cause the while-loop to run i times. Therefore,
the total number of inner loop iterations in the worst case is:

1 + 2 + · · ·+ (n− 1)

The question is: what is this expression in terms of O()? Sums like this occur
frequently in algorithm analysis, so it is good to know how to handle them.

A heuristic for finding this sum is to pair its elements from the outside in:

1 + 2 + 3 + · · ·+ (n− 3)

3+(n−3)=n

+(n− 2)

2+(n−2)=n

+(n− 1)

1+(n−1)=n

Each pair sums to n, and there are
n− 1

2
pairs, so the total is

Pair sum×Number of pairs =
n(n− 1)

2

which is O(n2).

Generating Random Data

It would be difficult to test insertion sort (and many other methods) without
the ability to generate random test data. Listing 2.2 shows how to use one
of the Java libraries to generate random values. It creates a generator object,
and then asks the generator for each value to put in the array.

Listing 2.2: Random Data

1 // Add to class ArrayFunctions:
2

3 import java.util.Random;
4

5 public static void randomFill(int[] data, int max) {
6 Random gen = new Random();
7 for (int i = 0; i < data.length; i++) {
8 data[i] = gen.nextInt(max);
9 }

10 }

The generator is created in line 6, and its nextInt() method is called in line 8
to fill in the next array value.

Algorithm Analysis 41

Using Java Libraries

To use Java libraries, it is standard practice to import the library classes
that you need at the top of your file:

import library.name;

In Listing 2.2, the name of the library being used is java.util, and the name
being imported on line 3 is the class Random. The full name of the class is
java.util.Random, and in fact, this name can be used at any time without an
import. As mentioned, though, it is a good idea to import such names at the
top of your class definition files.

A few instance methods from the java.util.Random class are listed in Ta-
ble 2.3. Consult the API documentation for further details and a complete
list.

TABLE 2.3: java.util.Random Methods
double nextDouble()
Double chosen uniformly from doubles in [0, 1).

double nextGaussian()
Double chosen from normal distribution with mean 0.0 and standard
deviation 1.0.

int nextInt()
Integer chosen uniformly from all possible int values.

int nextInt(int n)
Integer chosen uniformly from the set {0, 1, 2, . . . , n− 1}.

Exercises

1. Finish the example of insertion sort begun on page 38.

2. Explain why the worst case for insertion sort is with reverse-sorted data.

3. Show the operation of insertion sort on these arrays:

(a) {31, 7, 2, 34, 10, 5, 40, 22}

(b) {29, 12, 48, 41, 19, 6, 25, 33}

(c) {21, 31, 39, 22, 18, 38, 25, 6}

(d) {24, 43, 42, 33, 37, 31, 40, 8}

www.allitebooks.com

http://www.allitebooks.org

42 A Concise Introduction to Data Structures Using Java

4. Use Listing 2.1 to:

(a) Explain why the for-loop in line 3 starts at 1 instead of 0.

(b) Explain why the array access data[j] in line 6 is guaranteed to be
valid.

(c) Explain why the loop in line 6 runs at most i times. (Hint: look
at what happens to j.)

5. Analyze the best-case performance of insertion sort using O() notation.
Explain your work, and describe the data that leads to best-case perfor-
mance.

6. Analyze the average-case performance of insertion sort using O() nota-
tion by considering the average number of times the inner while-loop
will run. Explain your work.

7. Add insertionSort() from Listing 2.1 to the ArrayFunctions class.
Include code in main() to test insertion sort on a short array of integers.

8. Add randomFill() from Listing 2.2 to the ArrayFunctions class. Include
code in main() to test insertion sort on an array of 100 random integers.

9. Write an isSorted(int[] data) method in the ArrayFunctions class
that returns true if the array is sorted and false otherwise. Use it in
main() to test insertion sort.

10. Write an overloaded version of randomFill(int[] data) that does not
limit the size of the random integers it fills the array with. Test your
method in main().

11. Measure the performance of insertion sort on random integers. Begin
with an array of size n = 100 and double the array size up to 200,000.
Use the version of randomFill() from Exercise 10. Report your results
and observations.

12. Test these methods from the exercises of Section 1.3 on random integer
arrays of size 100:

(a) sum() method from Exercise 9.

(b) max() method from Exercise 10.

(c) min() method from Exercise 11.

(d) display() method from Exercise 12.

Algorithm Analysis 43

13. Selection sort is another natural sorting method that begins by finding
the smallest element in the array and swapping it with the first. Then
the second-smallest element is found and swapped with the second, and
so on until the array is sorted.

(a) Show the operation of selection sort on the arrays in Exercise 3.
(b) Implement a selectionSort() method in the ArrayFunctions class

with tests in main().
(c) Determine the O() time complexity of selection sort.
(d) Measure the performance of selection sort as in Exercise 11.
(e) Compare selection sort with insertion sort in terms of how sensitive

the performance of each is to the order of the original data.

2.3 Searching: Binary Search
We have already seen one search algorithm: linear search in Section 1.3. It
works by checking each item, one by one, until it finds the search target. Linear
search has O(n) performance, which is reasonable if the list of elements is not
too long.

However, if an array is sorted, then a more efficient divide-and-conquer
strategy can be used. It compares the target with the middle item in the array.
Because the array is sorted, if the target is smaller than the middle element,
then the entire upper half of the array can be eliminated from consideration.
Similarly, the lower half is eliminated if the target was larger than the middle
item. Repeating this process leads to the algorithm known as binary search.

Implementation

Binary search is delicate, in the sense that it can be difficult to write correctly
for all cases.1 The implementation in Listing 2.3 ensures that if the target is
in the array, then it must be trapped between two indices left and right:

target must be here︷ ︸︸ ︷
↑ ↑

left right

1See Column 4 from Bentley [2]. An interesting blog post by Bloch [3] points out an
error even in that version. The same error is in Listing 2.3 because this code is intended
for beginners, but interested readers are encouraged to find and fix it.

44 A Concise Introduction to Data Structures Using Java

At each stage, the item in the middle of this range is checked, and the algo-
rithm stops if left is ever greater than right.

Listing 2.3: Binary Search

1 // Add to class ArrayFunctions
2 public static int binarySearch(int[] data, int target) {
3 int left = 0;
4 int right = data.length - 1;
5 while (left <= right) {
6 int mid = (left + right) / 2;
7 if (target == data[mid]) {
8 return mid;
9 } else if (target < data[mid]) {

10 right = mid - 1;
11 } else {
12 left = mid + 1;
13 }
14 }
15 return -1;
16 }

Sample Trace

The trickiest part of binary search is updating either left or right when the
target is not at data[mid]. Tracing intricate code by hand is a good way
to understand how it works. For example, suppose we search for 15 in this
sorted array:

0 1 2 3 4 5 6 7 8

3 6 7 12 14 19 22 42 45 target: 15

Then at the start of the algorithm, we have:

left: 0 right: 8 mid: 4

Because target is greater than data[mid], left is changed to mid + 1, which
is 5, and the next mid is calculated (remember that integer division truncates
toward zero):

left: 5 right: 8 mid: 6

In this case, target is less than data[mid], so right is changed to 5:

left: 5 right: 5 mid: 5

Algorithm Analysis 45

The last step may be unexpected. Since target < data[mid], right is set to
mid - 1:

left: 5 right: 4

and this stops the binary search.

Analysis of Binary Search

Listing 2.3 looks difficult to analyze because of the unknown number of rep-
etitions in the loop on line 5. However, we can simplify a worst-case analysis
by assuming that the array size n is a power of 2.

If n = 2k, then in the worst case, binary search will divide the array in half
approximately k times. To see why, watch the approximate size of the region
data[left...right], where the target must be, after each iteration:

Size of data[left..right]
After 1 iteration 2k−1

After 2 iterations 2k−2

After 3 iterations 2k−3

. . .
After k iterations 2k−k = 20 = 1

This means that in the worst case, the loop runs approximately k times, and
so, binary search is O(k) for n = 2k. To obtain an expression in terms of n,
we use the fact:

If n = 2k, then k = log2 n

Thus, binary search is a O(log n) algorithm.

Exercises

1. Show how binary search works on the array

{2, 5, 7, 10, 22, 31, 34, 40}

when searching for each of the elements below. Show the values of left,
right, and mid as they change.

(a) 31

(b) 2

(c) 17

(d) 50

(e) 1

(f) 34

46 A Concise Introduction to Data Structures Using Java

2. Show how binary search works on the array

{10, 13, 24, 36, 37, 41, 44, 66, 86, 100}

when searching for each of the elements below. Show the values of left,
right, and mid as they change.

(a) 25

(b) 24

(c) 86

(d) 99

(e) 100

(f) 8

3. Explain why best-case performance is not helpful for search methods
like linear search or binary search.

4. Determine which is faster on unsorted data: linear search, or insertion
sort followed by binary search. Assume worst case.

5. Add binarySearch() from Listing 2.3 to the ArrayFunctions class, and
write code in main() to call binary search on a short, sorted array of
integers. Use an array initializer.

6. Test binarySearch() on a sorted array of 100 random integers. Use
insertionSort() from Section 2.2 to sort the random data.

7. It may seem as though lines 10 and 12 in Listing 2.3 are unnecessary
optimizations. Replace those lines of code with the simpler alternatives:

right = mid;

and

left = mid;

Describe the result.

Chapter 3
Integer Stacks

We now turn to the study of data structures. A data structure is just
a way of storing data, along with a set of operations for manipulating that
data. If you have used anything like a list, map, array, or dictionary, then you
already have some experience with data structures. Our purpose here is to
begin a systematic study of common data structures, focusing on their use,
implementation, and performance. More advanced features of Java will also
be described as we need them along the way.

We begin with a simple data structure known as a stack.

3.1 Stack Interface
A stack is an abstraction of a vertical stack of physical objects. For example,
imagine a tall stack of books. It is hard to pull a book out from the middle
or bottom of the stack. However, it is easy to add a new book to the top of
the stack; this is called pushing onto the stack. And it is similarly easy to
remove the top book from the stack, which is called popping the top of the
stack.

push pop

Stacks only allow these two ways of adding and removing items: pushing onto
the top and popping from the top. Stacks are also known as a last-in, first-
out (LIFO) data structures, because the last element inserted will be the
first one removed.

Table 3.1 gives a complete list of Integer Stack methods. With it, you can
begin writing code using stacks. Types described in this way, via a list of
public methods, are known as abstract data types.

47

48 A Concise Introduction to Data Structures Using Java

TABLE 3.1: Integer Stack ADT
boolean isEmpty()
Returns true if stack has no elements in it.

int peek()
Returns item at top of stack without removing it.

int pop()
Returns and removes item from top of stack.

void push(int item)
Adds item to top of stack.

int size()
Number of elements in stack.

Abstract Data Types

An abstract data type (ADT) defines the operations of a data type, also
known as its interface, without specifying the implementation of those op-
erations. This creates an abstraction, where interface is separated from
implementation in order to hide the details of the implementation:

Interface Implementation
What an object can do How it will be done

Abstract data types are usually described by their application program-
ming interface (API), which is a list of the public methods available for
that type. Table 3.1 gives the API of the Integer Stack ADT.

In fact, you already have experience with this idea. Think about the Java ob-
jects you have used so far, such as String, StringBuilder, or Random objects.
You did not need to know how any of these objects were implemented in order
to use them, as long as you knew their public interfaces. And the Java API
documentation [10] provides exactly this information—the public interface or
API—for all Java library classes.

Thus, all Java classes support abstract data types via their public methods
and documentation. But there is more.

Java Interfaces

Java interfaces allow us to express ADTs directly in code. Java interfaces
contain method declarations, describing what an object can do, but no im-
plementation code. It is up to classes to implement the interface and provide
code for implementation.

Integer Stacks 49

The syntax to define an interface simply uses the keyword interface instead
of class:

public interface InterfaceName {
// field declarations (must be static final)
// method declarations

}

All declarations inside an interface are assumed to be public. Interfaces may
also define nested classes and other interfaces, but those techniques are beyond
the scope of this text.

Listing 3.1 shows how to write the Integer Stack ADT from Table 3.1 as a
Java interface.

Listing 3.1: Integer Stack Interface

1 public interface IntStack {
2 boolean isEmpty();
3 int peek();
4 int pop();
5 void push(int item);
6 int size();
7 }

Normally, documentation comments would be included in Listing 3.1 to ex-
plain what each method is intended to do. Then javadoc would convert those
comments into a form like Table 3.1. We omit documentation comments to
help focus attention on the code.

Interface Types

Interfaces define new data types in Java, much like classes. Interface types
fall into the family of reference types:

All Types

Primitive Reference

Array Class Interface

One of the main purposes of an interface like IntStack is to use the type to
declare variables. The declaration

IntStack s;

50 A Concise Introduction to Data Structures Using Java

allows s to call any of the methods in IntStack. However, because it contains
no implementation code, an interface may not be used to create objects. That
means s cannot call any methods until it refers to an object that implements
the interface.

Classes Implement Interfaces

Classes that implement an interface must provide all of the methods listed
in the interface, and those methods must be declared public. The syntax to
declare that a class implements an interface uses the implements keyword:

public class ClassName implements InterfaceName { ... }

A class may implement more than one interface by separating the interface
names with commas.

Once a class implements an interface, it can be used to create objects that in-
terface variables refer to. For example, if the class IntArrayStack implements
IntStack, then this is valid:

IntStack s = new IntArrayStack();
s.push(10);
System.out.println(s.pop()); // output 10

If the IntArrayStack class has public members other than those in the in-
terface, the variable s cannot use them because it was declared with type
IntStack.

Programming to Interfaces

In general, try to declare variables with interface types rather than class types.
This technique, known as programming to the interface, allows greater
flexibility because it does not tie your code down to particular implementa-
tions. If you declare variables with interface types, then changing to a new
implementation for that variable reference is usually just a matter of calling
a different constructor, such as:

IntStack s = new IntLinkedStack();

No subsequent code using s should have to change because it is already using
the interface.

Integer Stacks 51

Exercises

1. Show the results of these operations on an initially empty IntStack s.
Draw the stack contents after each operation, making clear where the
top is, and indicate the return value of all non-void methods.

(a) s.push(5)
s.push(8)
s.peek()
s.push(3)
s.pop()
s.push(10)
s.size()
s.push(4)
s.pop()
s.pop()
s.isEmpty()

(b) s.push(1)
s.pop()
s.push(2)
s.peek()
s.pop()
s.push(3)
s.size()
s.pop()
s.push(4)
s.pop()
s.isEmpty()

(c) s.push(10)
s.push(20)
s.push(30)
s.peek()
s.push(40)
s.push(50)
s.size()
s.pop()
s.pop()
s.pop()
s.isEmpty()

2. Decide whether or not a stack would be an appropriate data structure
for each of these types of task lists. Assume that when a new task
arrives, it would be pushed, and when a task is chosen to work on, it
would be popped. Explain your answers.

(a) Tasks that may need to be done in any order.

(b) Tasks where the next one to work on is always the one that has
been waiting the longest.

(c) Tasks where the next one to work on is always the most recently
received.

(d) Tasks that need to be done in the order they are received.

(e) Tasks that may need to be shuffled or sorted.

3. Explain the difference between a class and an interface in your own
words.

4. Suppose IntArrayStack and IntLinkedStack implement the IntStack
interface. Write one Java statement to do each of these tasks:

(a) Declare s to be an IntStack.

(b) Set s from part (a) to refer to a new IntLinkedStack.

(c) Declare t to be an IntStack referring to a new IntArrayStack.

www.allitebooks.com

http://www.allitebooks.org

52 A Concise Introduction to Data Structures Using Java

5. Suppose s refers to an IntStack object. Write Java code to accomplish
these tasks:

(a) Add the value 100 to the top of s.

(b) Remove and print the value at the top of s.

(c) Print the value at the top of s without removing it.

(d) Remove and print every item in s until it is empty.

6. Write a Java interface named Runnable with one void method run that
takes no parameters.

7. Write a Java interface named Queue with two methods: a void method
enqueue that takes an int parameter, and a method dequeue with no
parameters that returns an int.

8. Suppose the classes LinkedQueue and ArrayQueue both implement the
Queue interface from Exercise 7. Write single Java statements for each
of these tasks:

(a) Declare a queue q1 that refers to a new array queue.

(b) Declare a queue q2 that refers to a new linked queue.

(c) Call the enqueue method on q1 with the value 19.

(d) Store the result of calling dequeue on q2 in a variable named result.

3.2 Array Implementation
In this section and the next, we write two very different implementations of
the IntStack interface. The first uses an array.

Suppose we plan to use an array to store the contents of a stack, and that
we begin with an empty stack and push the integers 10, 20, and 30 (in that
order). Then there are two natural options: store the top element at the front
of the array or in the back.

Top at front
0 1 2 3 4 5 6

30 20 10

↑
top

Integer Stacks 53

Top in back
0 1 2 3 4 5 6

10 20 30

↑
top

To get a feel for how these two options work, suppose the next operation is to
push 40.

Top at front The existing items have to shift to make room for the new
element:

0 1 2 3 4 5 6

40 30 20 10

↑
top

Shifting (and therefore pushing) takes O(n) time, because each element
has to move one space to the right. Popping is also O(n) because after
removing the top, the remaining elements have to each shift one space
left. Notice that it may also be difficult to know when the stack is empty.

Top in back In this case, 40 can go directly to slot 3:

0 1 2 3 4 5 6

10 20 30 40

↑
top

This takes O(1) time, as does popping, because no shifting is required.
The stack is empty whenever top is −1.

Given its superior performance, Listing 3.2 begins the implementation of an
integer stack using the second approach. As is, it will not compile because
the class does not completely implement the IntStack interface. You will be
asked to complete the IntArrayStack class in the exercises.

Throwing Exceptions

Line 18 of Listing 3.2 demonstrates how to handle an attempt to pop from an
empty stack. Without that if-statement, trying to pop from an empty stack
would cause an ArrayIndexOutOfBoundsException. However, someone using
the stack should know that they cannot pop from an empty stack, and the
isEmpty() method is provided to help them check. There is also no way to
“fix” this error—if the stack is empty, there is nothing that can be popped.

54 A Concise Introduction to Data Structures Using Java

Listing 3.2: Integer Array Stack

1 import java.util.EmptyStackException;
2

3 public class IntArrayStack implements IntStack {
4 private int top = -1;
5 private int[] data;
6 private static final int DEFAULT_CAPACITY = 10;
7

8 public IntArrayStack() {
9 data = new int[DEFAULT_CAPACITY];

10 }
11

12 public void push(int item) {
13 if (top == data.length - 1) resize(2 * data.length);
14 data[++top] = item;
15 }
16

17 public int pop() {
18 if (isEmpty()) throw new EmptyStackException();
19 return data[top--];
20 }
21

22 private void resize(int newCapacity) {
23 int[] newData = new int[newCapacity];
24 for (int i = 0; i <= top; i++) {
25 newData[i] = data[i];
26 }
27 data = newData;
28 }
29

30 public static void main(String[] args) {
31 IntStack s = new IntArrayStack();
32 for (int i = 0; i < 5; i++) {
33 s.push(i);
34 }
35 }
36 }

Integer Stacks 55

In situations like this, we pass the problem back to the caller by throwing an
exception:

throw new ExceptionName();

Throwing an exception causes the current method to stop execution immedi-
ately, and gives the caller a chance (and the responsibility) to deal with the
mistake. In this case, the empty stack exception is more informative than a
generic array index exception would have been.

Table 3.2 lists two of the exceptions available in the java.util library. Because
they come from a library, remember to import these exceptions before using
them.

TABLE 3.2: java.util Exceptions
EmptyStackException
Indicates the stack is empty.

NoSuchElementException
Indicates the requested element does not exist.

Resizing the Array

Recall that once an array has been created, its length can never be changed.
Therefore, if push() is called when the array is full, we need to create a new
array, copy the existing stack items into the new array, and then set data
to refer to the new array. We put this work into a private resize() method
in Listing 3.2. By doubling the length each time the array becomes full,
we minimize the impact of resizing on the performance of push(). However,
calculating that precise effect is beyond the scope of this text.

Java has built-in system methods for copying arrays that should be used in
production code, but we are doing it by hand to practice working with arrays.
In addition, the queue array implementation will need its own specialized
resizing method.

Exercises

1. Write the Java code to declare an IntStack named s that refers to an
IntArrayStack, and then push the values 10, 20, 30, and 40 onto s.

2. Write the Java code to declare an IntStack named operands referring
to an IntArrayStack, and then push the values 17, 0, −12, and 101
onto operands.

56 A Concise Introduction to Data Structures Using Java

3. Use Listing 3.2 to:

(a) Explain why the starting value of top is −1.
(b) Explain why the DEFAULT_CAPACITY variable is declared final and

static.
(c) Explain the use of prefix increment in line 14.
(d) Explain the use of postfix decrement in line 19.
(e) Explain why, without line 18, a call to pop() on an empty stack

would cause an ArrayIndexOutOfBoundsException.

4. Suppose s is a reference to an IntArrayStack. Explain the difference
between s.size() and s.data.length.

5. Draw the contents of the s.data array after the main() method of List-
ing 3.2 has run. Indicate the value of s.top.

6. Finish the IntArrayStack class of Listing 3.2 by adding these methods
from the IntStack interface:

(a) isEmpty()

(b) peek() Throw an exception if the stack is empty.
(c) size()

7. Modify Listing 3.2 to:

(a) Rewrite the push() method without using the prefix increment op-
erator. Discuss the tradeoffs.

(b) Rewrite the pop() method without using the postfix decrement
operator. Discuss the tradeoffs.

8. Modify the main() method of Listing 3.2 to:

(a) Pop and print each item in the stack until it is empty.
(b) Push and pop a large number of items to test the array resizing.
(c) Test the isEmpty() method both before and after items have been

pushed.
(d) Test the size() method before and after items have been pushed.

9. Explain why each of these IntArrayStack methods is O(1):

(a) isEmpty()

(b) peek()

(c) pop()

(d) push() Ignore resizing.
(e) size()

Integer Stacks 57

10. Modify Listing 3.2 to add a second constructor with one parameter spec-
ifying the starting capacity of the stack. Modify the existing constructor
to call the new constructor using this() (see page 29).

11. Modify the pop() method of Listing 3.2 to reduce the array length by
half if the number of elements in the stack is less than or equal to one-
fourth the current length of the array (but do not let the array have a size
smaller than 10). Include an output statement in the resize() method
to report each resizing, and then test your modification by pushing and
then popping a large number of elements.

12. Instead of having a top instance variable, the IntArrayStack class could
use a size instance variable that stores the number of elements in the
stack. Rewrite Listing 3.2 to use a size instance variable instead of top.
(In other words, your code should not use top at all; all calculations
should be done in terms of size.) Discuss the tradeoffs between these
two approaches.

3.3 Linked Implementation
Although the array implementation may seem natural, it is not the only way
to build a stack. Think again about the reason we didn’t keep the top of
the stack at the front of the array implementation (pages 52–53): pushing
and popping required shifting elements in the array to either make room or
close gaps. A linked implementation allows us to insert or remove items at
any location without having to shift elements already in place. The tradeoff is
that linked structures lack the direct, indexed access to every item that arrays
have.

Linked Lists

The simplest linked structure is a linked list, a collection of nodes in which
each node points to the node that follows it. We will use nodes with two fields:
data to hold whatever it is we are storing in the list, and a next reference that
refers to the next node in the list:

data next

Nodes link together to form a list:

58 A Concise Introduction to Data Structures Using Java

A head pointer is used to point to the front of the list, and the end of the list
is indicated by a node with a null reference in its next field.

head

Using a linked list to implement stacks will allow us to keep the top of the
stack at the front of the list, where it is easy to add and remove items without
having to move any of the other stack contents. Only a few references will
need to change.

Nodes

A Node class is used to represent the nodes that link together to form linked
lists. A typical Node class has only its two fields, data and next, and a
constructor, as in Listing 3.3.

Listing 3.3: Node

1 public class Node {
2 private int data;
3 private Node next;
4

5 public Node(int data, Node next) {
6 this.data = data;
7 this.next = next;
8 }
9 }

To implement a stack, we only need two linked list operations: insert and
remove from the front of the list.

Insertion at Front

Inserting a new item at the front of a linked list takes three steps:

1. Create a new node:

Node p = new Node(item, null);

p
item

Integer Stacks 59

2. Set the next field of the new node to point to the existing first node:

p.next = head;

p
item

head

3. Update head to point to the new node:

head = p;

p
item

head

That’s it. It helps to see these steps in sequence, but we can actually combine
them all into one line of code. The first two steps can be done in one by
providing the next field of the new node to the constructor:

Node p = new Node(item, head);

The third step changed head to point to the new node, so we can bypass that
as a separate step by avoiding the name p altogether and just setting head to
point to the new node. Thus, inserting a new node at the front of a linked
list boils down to one line of code:

head = new Node(item, head);

Assignment statements always evaluate the expression on the right first and
then assign that value to the variable on the left. Thus, the new node is
created using the old value of head as its next field, and then head is assigned
to the new node.

item

head 2

1

60 A Concise Introduction to Data Structures Using Java

Deletion at Front

Deleting a node at the front of a linked list is also one step. Just update head
to point to the second node:

head

The second node is referenced by head.next, and so the code is:

head = head.next;

If you need to recover data from the node that was deleted, then that has to
happen before the head pointer is changed.

Other linked list operations will be discussed later as we need them.

Linked Implementation

Listing 3.4 contains the core operations of a linked stack. The exercises ask
you to finish it.

Nested Classes

Because code outside the IntLinkedStack class has no reason to know about
nodes, the Node class is defined inside the body of IntLinkedStack. That
makes the Node class a nested class of IntLinkedStack. Nested classes are
considered members of their containing class, just like fields and methods.
Usually, nested classes are also declared private because they are implementa-
tion details of the containing class, similar to fields. Nested classes are always
visible to their containing class (and vice versa), even when declared private.

A static nested class has no access to the instance variables of the containing
class. In Listing 3.4, the only instance variable of the stack is top, and there
is no reason for every node to have access to the top of the stack. Most of
our linked structures will use static nested node classes, but we will see an
example of a non-static nested class in Chapter 6.

Null Pointer Exceptions

Recall (see page 22) that attempting to access a field or method of a null
reference generates a NullPointerException. Linked list code is particularly
susceptible to null pointer exceptions because of how often expressions like
p.next and p.next.next are used.

Integer Stacks 61

Listing 3.4: Integer Linked Stack

1 public class IntLinkedStack implements IntStack {
2 private Node top;
3

4 public void push(int item) {
5 top = new Node(item, top);
6 }
7

8 public int pop() {
9 int result = top.data;

10 top = top.next;
11 return result;
12 }
13

14 private class Node {
15 private int data;
16 private Node next;
17

18 private Node(int data, Node next) {
19 this.data = data;
20 this.next = next;
21 }
22 }
23 }

Thus, every time you access a field or method using dot notation such as

p.next
Whatever is here cannot be null

ask yourself how you know for sure that the reference is not null.

Exercises

1. Look again at Exercise 1 from Section 3.1. Do your answers to it depend
on whether the list uses an array or a linked implementation? Explain
why or why not.

2. Draw a linked list containing the elements {5, 10, 4, 8}.

3. Draw the linked list that results from running this segment of code:

Node head = new Node(1, null);
head = new Node(2, head);
head = new Node(3, head);

62 A Concise Introduction to Data Structures Using Java

4. Write Java statements using nodes, not stack operations, to create a
linked list with contents {7, 4, 18}.

5. Suppose p references the last node in a linked list, so that p.next is null.
Which of the following references (if any) will generate a null pointer
exception? Explain your answers.

(a) p

(b) p.next

(c) p.next.next

6. Modify Listing 3.4 so that it contains the same main() method as List-
ing 3.2, with the constructor call replaced by a call to IntLinkedStack().
Draw the contents of the linked list that results, including s.top.

7. Explain why, as written in Listing 3.4, trying to pop from an empty
stack would cause a null pointer exception.

8. Modify Listing 3.4 to throw an EmptyStackException if pop() is called
on an empty stack.

9. Finish the IntLinkedStack class of Listing 3.4 by adding these methods
from the IntStack interface:

(a) isEmpty()

(b) peek() Throw an exception if the stack is empty.

(c) size() Add a size instance variable and update it where neces-
sary.

10. Modify the main() method of the IntLinkedStack class to:

(a) Pop and print each item in the stack until it is empty.

(b) Push and pop a large number of items.

(c) Test the peek() method.

(d) Test the size() method.

(e) Test the isEmpty() method.

11. Explain why a constructor with a capacity parameter (as described for
the IntArrayStack class in Exercise 10 of Section 3.2) is not appropriate
for the IntLinkedStack class.

Integer Stacks 63

12. Explain why each of these IntLinkedStack methods is O(1):

(a) isEmpty()

(b) peek()

(c) pop()

(d) push()

(e) size() Is the performance the same if there is no size instance
variable? Explain.

Chapter 4
Generic Stacks

The previous chapter built an interface and two implementations for an inte-
ger stack. Suppose now that we need a stack to hold strings. (We are about to
need one, in fact, in Section 4.4.) With copy-paste and some careful editing,
we could create a StringStack interface and two corresponding string imple-
mentations. But then what if we need a stack to hold some other type? You
can see the problem: continuing to write new classes and interfaces for every
element type creates a lot of code that is essentially the same. What we need
is a type variable, so that each time we make a new stack, we can specify
the type that will be stored in it. This is known as generic programming.

4.1 Generic Types

Type Parameters

A generic type (interface or class) is defined by including one or more type
parameters in angle brackets at the end of the name of the interface or class:

public interface InterfaceName<TypeParameter, ...> { ... }

or

public class ClassName<TypeParameter, ...> { ... }

Type parameters are usually single capital letters, such as those in Table 4.1.

TABLE 4.1: Type Parameters
E Element type in a collection
K Key in a key-value pair
V Value in a key-value pair

T, U, S All-purpose

For example,

public interface Map<K, V> { ... }

defines a generic Map interface with two type parameters, K and V.

65

66 A Concise Introduction to Data Structures Using Java

Generic Stack ADT

Generic type parameters allow us to define the generic Stack ADT in Table 4.2,
corresponding to the Integer Stack ADT in Table 3.1. Most data structures
use the E type parameter for elements in a collection.

TABLE 4.2: Stack ADT
boolean isEmpty()
Returns true if stack has no elements in it.

E peek()
Returns item at top of stack without removing it.

E pop()
Returns and removes item from top of stack.

void push(E item)
Adds item to top of stack.

int size()
Number of elements in stack.

Type Parameters Inside Interface and Class Definitions

Inside a generic class or interface definition, the type parameter and the
generic type itself may be used for declarations as if they were regular types.
(There is an important limitation with arrays that will be addressed in the
next section.) For example, Listing 4.1 contains code for a generic Node class.

Listing 4.1: Generic Node

1 public class Node<T> {
2 private T data;
3 private Node<T> next;
4

5 public Node(T data, Node<T> next) {
6 this.data = data;
7 this.next = next;
8 }
9 }

Both T and Node<T> are used as types to declare variables inside the generic
Node class.

Generic Stacks 67

Type Arguments

In order to use a generic interface or class, a reference type must be specified
as a type argument for the type parameter. The type argument is then used
as the value of the type parameter.

For example, using the Node class above, we can write:

Node<String> p;

to declare a reference to a Node that stores a string. In this case, String
is supplied as the type argument for the type parameter T. This is exactly
analogous to providing arguments to method parameters, except that types
are involved.

Warning: Type arguments must be reference types; they cannot be prim-
itive. To store primitive data in a generic type, the corresponding wrapper
class must be used.

Wrapper Classes

Every primitive type has an associated class known as its wrapper class,
listed in Table 4.3. The idea is that the primitive is “wrapped” in an object
of the wrapper class type. Wrapper objects also provide many convenience
methods for working with their values; see the Java API [10] for details.

TABLE 4.3: Wrapper Classes
Primitive Type Wrapper Class
byte Byte
short Short
char Character
int Integer
long Long

float Float
double Double

boolean Boolean

Since primitive types cannot be used as generic type arguments, the corre-
sponding wrapper class must be used instead:

Node<int> p; // incorrect -- int is not a reference type
Node<Integer> p; // correct

Although working with primitive types and wrapper classes can be awkward
at times, Java attempts to make it as convenient as possible via automatic
boxing and unboxing.

68 A Concise Introduction to Data Structures Using Java

Automatic Boxing and Unboxing

If you use a primitive value where a corresponding wrapper object is expected,
Java will automatically box the primitive in an object; similarly, it will auto-
matically unbox a wrapped object to a primitive when necessary.

For example, if p refers to a Node<Integer> and x has type int, then Java
automatically handles the conversions between the Integer p.data and the
int x:

p.data = x; // x is automatically boxed
x = p.data; // p.data is automatically unboxed

Casting can also be used to explicitly box or unbox.

Creating Generic Objects

Beginning with Java 7, the diamond operator <> is used with new to create
all generic objects:

referenceVariable = new ClassName<>(arguments);

In other words, the type argument is not specified when creating objects, only
when declaring the type of the reference variable.

For example, the following creates an integer node referenced by p:

Node<Integer> p = new Node<>(item, null);

Earlier versions of Java require that you also specify the type argument (in
this case, Integer) inside the diamond.

Exercises

1. Write a generic interface Queue<E> with two methods: a void method
enqueue that takes a parameter of type E, and a method dequeue with
no parameters that returns an element of type E.

2. Suppose ArrayQueue<E> implements Queue<E> from Exercise 1. Write
a Java statement to declare and create an array queue q that contains
strings. Use the interface to declare the type.

3. Write a generic interface Map<K, V> with two methods: a void method
put that takes two parameters of type K and V, and a method get that
takes a parameter of type K and returns an item of type V.

4. Suppose LinkedMap<K, V> implements Map<K, V> from Exercise 3. Write
a Java statement to declare and create a linked map m that uses string
keys and integer values. Use the interface to declare the type.

Generic Stacks 69

5. Write a generic Java interface, Stack<E>, for the generic Stack ADT in
Table 4.2.

6. Suppose ArrayStack<E> implements the Stack<E> interface from Exer-
cise 5.

(a) Write a Java statement to declare and create a string array stack
operators. Use the interface to declare the type.

(b) Write a Java statement to declare and create an integer array stack
operands. Use the interface to declare the type.

(c) Write Java code to declare and create an integer array stack s, and
then push the values 0 through 9 onto the stack.

7. Suppose s is declared as a Stack<Integer> using the interface from
Exercise 5. Determine whether or not there is any automatic boxing or
unboxing in this code:

for (int i = 0; i < 100; i++) {
s.push(i);

}

8. Use the generic Node class in Listing 4.1 to:

(a) Declare and create an integer node named p containing the value 34.

(b) Declare and create a string node named q containing the value
“Java.”

(c) Build a linked list of doubles pointed to by head containing the
values 3.14, 2.72, and 0.58.

4.2 Generic Stack Implementations

Exercise 5 in the previous section asked you to define the generic stack inter-
face Stack<E>. In this section, we create generic versions of the linked list and
array stack implementations. The basic idea should be clear:

IntLinkedStack ⇒ LinkedStack<E>, using E instead of int
IntArrayStack ⇒ ArrayStack<E>, using E instead of int

Not surprisingly, there are a few complications. The linked implementation
has just a small one, so we address it first.

70 A Concise Introduction to Data Structures Using Java

Generic Nested Classes

The Node<T> class in Listing 4.1 is ready to be inserted as a nested class in the
generic LinkedStack<E> class, as long as its visibility is changed to private.
The Node<T> class uses the type parameter T intentionally: when declaring a
generic nested class, it is best to use a different type parameter than whatever
was used in the containing class.1

Thus, the LinkedStack<E> class should begin as in Listing 4.2. The type
parameter E should be used for defining all the methods in the LinkedStack<E>
class—T is only used to define the static Node class. The exercises ask you to
complete the LinkedStack<E> implementation.

Listing 4.2: Generic Linked Stack

1 public class LinkedStack<E> implements Stack<E> {
2 private Node<E> top;
3

4 // use E here
5

6 private static class Node<T> {
7 private T data;
8 private Node<T> next;
9

10 private Node(T data, Node<T> next) {
11 this.data = data;
12 this.next = next;
13 }
14 }
15 }

There are a few more difficulties in making a generic ArrayStack<E>. The
main issue is due to a limitation of generic arrays.

Generic Arrays

The data array in an IntArrayStack has type int[] because we store integers
in the stack. To make a generic array stack, the data array will need to store
values of type E, the generic type parameter.

Generic types may be used to declare array types:

private E[] data;

1The reasons are subtle; see Puzzle 89 from Bloch and Gafter [5].

Generic Stacks 71

However, generic types may not be used to create arrays:

data = new E[LENGTH];

No generic types allowed here

The reason creating generic arrays is prohibited is that the compiler needs to
know the array element type E in order to generate the correct code, but the
value of E will not be specified until each array stack is created.

The simplest solution is to create an Object array and cast it to the generic
type:

E[] arrayRef = (E[]) new Object[LENGTH];

The cast (see page 3) tells the compiler to treat the array as if it were of
type E[]. Because we plan to only push and pop elements of type E, this will
not be a problem. The nature of the Object class will be explained later in
Section 5.3; for now, think of it as a type that can be any object at all.

Once the array has been created and cast in this way, it can be treated as if
it has type E[].

Unchecked Casts

Unfortunately, the compiler cannot verify that casting an Object[] array to a
generic E[] array is safe, and so it will produce an unchecked cast warning.
(If the warning does not specify where the unchecked cast occurred, recompile
with the -Xlint:unchecked flag.)

Rather than ignoring the warning, a better solution is to squelch it by inform-
ing the compiler that—in this case—we know what we are doing by putting
the following annotation above the beginning of the method where the cast
is used:

@SuppressWarnings("unchecked")

Of course, this annotation should be used sparingly.

Obsolete References

Finally, because generic type arguments must be reference types, a new issue
arises from storing object references in the array instead of primitive types.
Although it is not serious, the same problem can occur with any data structure
that stores references in an array. Attending to it now will help build your
intuition about the differences between primitive and object types.

Consider what an array stack with initial capacity of 7 looks like if we push

72 A Concise Introduction to Data Structures Using Java

the integers 0 through 6:

0 1 2 3 4 5 6

0 1 2 3 4 5 6

↑
top

and then pop until the stack is empty (when the top is −1):

0 1 2 3 4 5 6

0 1 2 3 4 5 6

↑
top

We did not delete any of the items that were popped because there was no
reason to: no additional memory is used, and the stack does not allow any
access to items past the top.

The situation is different, however, with object references. If we push and
then pop the same number of objects, then their references will still be active
even when the stack is back to being empty:

0 1 2 3 4 5 6

↑
top

Obj 0 Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6

The stack prevents accessing any of those objects, but the objects’ memory
cannot be garbage collected, because it is still pointed to by active references.
As noted on page 23 (and Item 6 from Bloch [4]), the solution is to set those
references to null once they are no longer needed.

However, do not get carried away setting all of your references to null; this is
a relatively rare problem. And although setting popped entries to null is good
practice, do not rely on it to determine which array entries are being used for
the stack. The top instance variable should always be used to decide where
the top of the stack is.

Generic Array Stack

Putting these pieces together results in Listing 4.3, a start to the generic
ArrayStack<E> class. You will be asked to write the rest of the ArrayStack<E>
class in the exercises.

Generic Stacks 73

Listing 4.3: Generic Array Stack

1 public class ArrayStack<E> implements Stack<E> {
2 private E[] data;
3 private int top = -1;
4 private static final int DEFAULT_CAPACITY = 10;
5

6 @SuppressWarnings("unchecked")
7 public ArrayStack() {
8 data = (E[]) new Object[DEFAULT_CAPACITY];
9 }

10

11 public E pop() {
12 E result = data[top];
13 data[top--] = null;
14 return result;
15 }
16 }

Exercises

1. Complete the LinkedStack<E> class from Listing 4.2 by writing these
methods:

(a) isEmpty()

(b) peek() Throw an exception if the stack is empty.

(c) pop() Throw an exception if the stack is empty.

(d) push()

(e) size() Add a size instance variable and update it where neces-
sary.

2. Add a main()method to the LinkedStack<E> class to test the stack with:

(a) Integers

(b) Doubles

(c) Strings

3. Determine the O() performance of each of these LinkedStack<E> meth-
ods. Explain your answers.

(a) isEmpty()

(b) peek()

(c) pop()

(d) push()

(e) size()

74 A Concise Introduction to Data Structures Using Java

4. Complete the ArrayStack<E> class from Listing 4.3 by writing these
methods:

(a) isEmpty()

(b) peek() Throw an exception if the stack is empty.

(c) push() Double the length of the array if the array is full.

(d) size()

(e) Private resize()

(f) A second constructor with a starting capacity parameter. Modify
the existing constructor to call the new constructor using this().

(g) Modify pop() to throw an exception if the stack is empty.

(h) Modify pop() to reduce the length of the array by half if the number
of elements in the stack is less than or equal to one-fourth the
current length.

5. Add a main() method to the ArrayStack<E> class to test the stack with:

(a) Integers

(b) Doubles

(c) Strings

6. Determine theO() performance of each of these ArrayStack<E>methods.
Explain your answers.

(a) isEmpty()

(b) peek()

(c) pop()

(d) push() Ignore resizing.

(e) size()

4.3 Evaluating Expressions: Background

Stacks are particularly useful for evaluating numeric expressions. In fact, if
we break the evaluation process into two stages, a stack is the key component
in both steps. In order to describe this process, we need some terminology
first.

Generic Stacks 75

Binary Operations

Arithmetical operations like addition, subtraction, multiplication, and divi-
sion are called binary operations because they each combine exactly two
operands. While we might think the expression 1+ 2+3+4 combines more
than two operands, in a programming language such as Java, this expression
is actually evaluated two terms at a time, grouping from the left:

((1 + 2) + 3) + 4

Mathematically, the associative properties of addition guarantee that all
groupings produce the same result; Java chooses this grouping for addition
because it treats addition as left-to-right associative. Other operations,
such as assignment, are right-to-left associative, meaning that this code:

x = y = z = 10;

is evaluated right-to-left as:

x = (y = (z = 10));

However, associativity only applies to operators with the same precedence.
Operator precedence is used first to determine the order of operations when
parentheses have not been specified. These follow normal mathematical rules,
so multiplication and division have higher precedence than addition and sub-
traction. Consult the Java documentation for a complete list of precedence
and associativity rules.

Thus, the final order of operations for an expression in Java is determined by
applying each of these in order:

1. Parentheses

2. Operator precedence

3. Associativity among operators with the same precedence

Prefix, Infix, and Postfix

Strangely enough, all of the above rules for parentheses, operator precedence,
and associativity exist because we prefer writing binary operations in infix
form. Two other forms, prefix and postfix, are completely unambiguous and
require none of those additional rules.

Consider the simple binary operation “a + b.” Equivalent prefix and postfix
forms are shown in Table 4.4. Our goal is to become familiar with prefix
and postfix notations in order to develop an algorithm for evaluating infix
expressions using stacks.

76 A Concise Introduction to Data Structures Using Java

TABLE 4.4: Operator Notations
Prefix + a b Operator first
Infix a+ b

Postfix a b + Operator last

Example

When translating prefix or postfix expressions by hand, it can be helpful to
identify simple components first, with one operator and two operands, and
then build up from there.

For example, consider translating this prefix expression to infix:

- / + a b c * d + e f

Begin by finding the simple prefix components (operator operand operand):

- / + a b c * d + e f

Now treat the boxes as operands and repeat the process:

- / + a b c * d + e f

At this stage, we are have one (large) simple expression that can be translated
to infix:

/ + a b c - * d + e f

Work your way inward, translating each box to infix:

+ a b / c - d * + e f

a + b / c - d * e + f

Notice that when you write the infix expression, some of the boxes must be
written with parentheses to convey the correct expression:

(a + b) / c - d * (e + f)

Evaluating Postfix Algorithm

One can evaluate postfix expressions by hand in a similar way, and Listing 4.4
systemizes that process using a stack to hold the operands and, eventually,
the final result. We will assume all operands are integers.

Generic Stacks 77

Listing 4.4: Evaluate Postfix (Pseudocode)

1 For each term in expression
2 If term is an operator
3 Pop second operand
4 Pop first operand
5 Apply operator to operands and push result
6 Else
7 Push operand onto stack
8 Pop result

Example

To see how Listing 4.4 works, consider the postfix expression

3 5 1 - *

The first three terms are operands so they are pushed onto the stack:

1
5
3

The next term is the operator “−”, so we follow these steps:

Pop second operand Stack → 1
Pop first operand Stack → 5
Apply operator to operands 5− 1
Push result Stack ← 4

Notice the order the operands are popped: the second operand comes off the
stack first because of the order in which they were pushed. The stack contents
are now:

4
3

The last term is “∗”:
Pop second operand Stack → 4
Pop first operand Stack → 3
Apply operator to operands 3 ∗ 4
Push result Stack ← 12

and then the stack contains the final result, ready to be popped:

12

78 A Concise Introduction to Data Structures Using Java

Infix to Postfix Algorithm

Listing 4.5 outlines a similar algorithm to translate infix to postfix. It uses a
stack to hold operators and is slightly more complex than Listing 4.4 because
of the inner loop in lines 3 and 4. This algorithm assumes there are no
parentheses in the infix expression.

Listing 4.5: Infix to Postfix (Pseudocode)

1 For each term in expression
2 If term is an operator
3 Pop all operators of same or higher precedence
4 and copy each to output
5 Push this operator onto stack
6 Else
7 Copy operand to output
8 Pop remaining operators and copy to output

Example

Given the infix expression

a + b / c - d

we can trace Listing 4.5 by keeping track of the stack and accumulated output.
The first term, a, is copied to output. The second, +, is pushed onto the stack,
and the third, b, is copied to output.

At this point, we have:

+ Output: a b

The next term is the operator /. The + on top of the stack does not have the
same or higher precedence as this term, so nothing is popped and / is pushed:

/

+ Output: a b

The c is copied to output, and then the next term is the operator -:

/

+ Output: a b c

In this case, the / on the top of the stack does have the same or higher
precedence than the current term, so it is popped and copied to output:

+ Output: a b c /

Generic Stacks 79

The same is true for +, so it is popped and copied to output:

Output: a b c / +

At this point, the stack is empty, so the - is pushed:

- Output: a b c / +

Finally, the d is copied to output and any remaining operators on the stack
are popped and copied to the final output:

Output: a b c / + d -

The most difficult part of doing this algorithm by hand is keeping track of
when to pop operators and when to leave them on the stack.

The combination of Listings 4.4 and 4.5 gives an algorithm for evaluating infix
expressions, which we develop code for in the next section.

Exercises

1. Look up the precedence and associativity of these Java operators: &&,
++, <, and ==.

2. Convert these prefix expressions to infix and postfix:

(a) * + / - a b c d e

(b) / - a b * + c d e

(c) + - a * b c / d e

(d) - a / b * c + d e

3. Convert these postfix expressions to infix and prefix:

(a) a b c d e * + / -

(b) a b * c + d e / -

(c) a b c + / d e - f / -

(d) a b + c / d - e * f +

4. Convert these infix expressions to prefix and postfix (without using List-
ing 4.5, since most have parentheses):

(a) x + y + z * w - v / u

(b) (x + y + z) * (w - v) / u

(c) x * y / (z - w + v * u)

(d) (x - y) * (z + w) / (u + v)

80 A Concise Introduction to Data Structures Using Java

5. Evaluate these prefix expressions:

(a) + 3 * / 4 2 - 6 1

(b) / - * + 1 3 5 6 2

(c) - 4 / + 1 * 3 2 7

(d) * + 5 1 * - 4 2 / 9 3

6. Show how Listing 4.4 evaluates these postfix expressions, giving the
stack contents after each step:

(a) 1 6 4 5 * + 2 / -

(b) 6 5 * 3 + 4 2 / -

(c) 5 4 + 3 / 1 - 6 * 2 +

(d) 6 2 1 + / 9 1 - 4 / -

7. Show how Listing 4.5 converts these expressions without parentheses to
postfix, giving the stack contents after each step:

(a) a + b + c + d

(b) a + b * c - d + e

(c) a * b + c * d - e * f

(d) a / b / c + d * e * f

4.4 Evaluating Expressions: Implementations

The goal of this section is to implement the algorithms from Listings 4.4
and 4.5 as Java methods evalPostfix() and toPostfix(). The combination:

evalPostfix(toPostfix(expr))

will evaluate any infix expression. We assume all operands are integers, there
are no parentheses in the infix expression (until the exercises), and that all
terms are separated by spaces.

The evalPostfix() method is a little simpler than toPostfix(), and so it
will be outlined in the exercises. For toPostfix(), we first isolate the task of
determining an operator’s precedence.

Generic Stacks 81

Operator Precedence

One way to determine operator precedence is to define a rank function so that

rank(t) =

2 if t is * or /
1 if t is + or -
−1 otherwise

Then rank(t) > rank(u) means that t has higher precedence than u, and
rank(t) = rank(u) if t and u have the same precedence. This rank function
can also be used to determine whether a term is an operator or operand, since
only operators have rank greater than zero. Zero is reserved for later use with
parentheses (see Exercise 6).

As of Java 7, strings are allowed as switch expressions, and so Listing 4.6 uses
that technique to implement the rank function.

Listing 4.6: Operator Rank

1 public class Expression {
2 private static int rank(String op) {
3 switch (op) {
4 case "*":
5 case "/":
6 return 2;
7 case "+":
8 case "-":
9 return 1;

10 default:
11 return -1;
12 }
13 }
14 }

toPostfix() Implementation

Listing 4.7 uses the rank() function to implement the infix-to-postfix con-
version algorithm of Listing 4.5. It also uses the named constant SPACE to
help improve readability. Its code should be added to the Expression class of
Listing 4.6, in the same folder as your stack implementations.

Most of the code in the toPostfix() method should look familiar: it is
based on the pseudocode in Listing 4.5 and has a structure much like the
acronym() function in Listing 1.4, using a loop over tokens in a string and a
StringBuilder to efficiently accumulate the result.

82 A Concise Introduction to Data Structures Using Java

Listing 4.7: Infix to Postfix

1 // Add to Expression class
2 private static final String SPACE = " ";
3

4 public static String toPostfix(String expr) {
5 StringBuilder result = new StringBuilder();
6 Stack<String> operators = new ArrayStack<>();
7 for (String token : expr.split("\\s+")) {
8 if (rank(token) > 0) {
9 while (!operators.isEmpty() &&

10 rank(operators.peek()) >= rank(token)) {
11 result.append(operators.pop() + SPACE);
12 }
13 operators.push(token);
14 } else {
15 result.append(token + SPACE);
16 }
17 }
18 while (!operators.isEmpty()) {
19 result.append(operators.pop() + SPACE);
20 }
21 return result.toString();
22 }

Using Conditional Boolean Expressions

The difficult step in Listing 4.7 is the test in the while-loop on lines 9 and 10:

while (!operators.isEmpty() &&
rank(operators.peek()) >= rank(token)) { ... }

The key to this expression is its use of the conditional && (AND), see page 4.
The second half of the && is the main test:

rank(operators.peek()) >= rank(token)

If the operator at the top of the stack has the same or higher precedence, it
needs to be popped, which happens in the body of the loop. The first part of
the expression protects the peek() in case the stack is empty: remember that
code using a stack is responsible for not peeking when the stack is empty.

Because the && is conditional, the second half is evaluated only if the first half
is true, in which case the stack is not empty.

Generic Stacks 83

evalPostfix() Implementation

The algorithm to evaluate postfix is similar to the translation in toPostfix(),
and you will be asked to implement it in the exercises. To do that, you will
need to convert string operands to their integer value. Table 4.5 lists conve-
nience methods from the wrapper class Integer to convert in both directions.

TABLE 4.5: Integer Conversion Methods
static int parseInt(String s)
Converts string to decimal integer.

static String toString(int n, int b)
Converts integer n base b to a string.

Exercises

1. Explain why there are no break statements in the switch statement of
Listing 4.6.

2. Modify Listing 4.6 to use named constants such as PLUS and MINUS for
the operator symbols.

3. Write a main() method to test the toPostfix() method of Listing 4.7.

4. Add a static isOperator() method to the Expression class that returns
true if the precedence of the operator is greater than 0. Rewrite the
toPostfix() method to use isOperator().

5. Modify the Expression class so that toPostfix() allows exponentiation
using ^ in the infix expression. Give exponentiation a higher precedence
than the other four arithmetic operations.

6. Modify the Expression class so that the toPostfix() method handles
correctly balanced parentheses in the infix expression. Give parentheses
rank 0, and modify the main for-loop to check for parentheses:

if left paren, push onto stack
if right paren

pop and copy operators to output until left paren
pop the left paren

Do not copy any parentheses to the output, and put spaces around
parentheses in infix expressions so they are seen as separate tokens.

84 A Concise Introduction to Data Structures Using Java

7. Write an applyOperator(operator, op1, op2) method that takes an
operator with two operands and returns the value of the binary compu-
tation. For example,

applyOperator("*", 3, 7)

should return 21. Use a switch statement, and assume all operands are
integers.

8. Write the evalPostfix() method for the Expression class. Use the
applyOperator() method from Exercise 7.

9. Modify Exercise 8 to perform exponentiation, using Math.pow() to do
the calculation. You will need to cast the result back to an int.

10. Using Exercise 8, write an eval() method for the Expression class that
evaluates an infix expression by first converting it to postfix and then
evaluating the postfix. For example,

eval("1 + 2 * 3")

should return 7.

11. A stack can be used to determine whether or not an algebraic expression
has properly balanced parentheses. For example,

Balanced Not Balanced
(x+ y ∗ (z − w)) (x+ y ∗ (z − w)
((x+ (y)) ∗ (z − w)) x+ y ∗ (z − w))

The idea is to scan each character in the expression, and if the character
is a left parenthesis, push it on the stack. If it is a right parenthesis,
then there should be a corresponding left parenthesis on the stack to
pop. All other characters can be ignored.

(a) Write the algorithm idea as pseudocode that returns true if the
expression is balanced and false otherwise.

(b) Implement the parenthesis matching algorithm as a method in the
Expression class.

(c) Extend the previous exercise to write a different method in the
Expression class that checks parentheses (), square brackets [],
and braces {}. Note that different types of parentheses need to be
properly nested: for example, (x+ y ∗ [z − w]) is nested correctly,
but (x+ y ∗ [z − w)] is not.

Chapter 5
Queues

5.1 Interface and Linked Implementation

The close counterpart of a stack is a queue. In (primarily) British usage,
a queue is a waiting line. In computer science, a queue is a data structure
that acts like a waiting line, in which items are removed from the front of the
line, and new items are added to the rear of the line. A queue is a first-in,
first-out (FIFO) data structure, because the first element in will be the first
one out.

front

dequeue enqueue

rear

Adding to the rear of a queue is called enqueuing, and removing from the
front of a queue is called dequeuing (pronounced “DQ-ing”). The front is
drawn on the left here to match the linked lists we are about to consider.

Queue ADT

The Queue abstract data type in Table 5.1 is very similar to the Stack ADT.
The exercises ask you to write the ADT as a Java interface.

TABLE 5.1: Queue ADT
E dequeue()
Returns and removes item from front of queue.

void enqueue(E item)
Adds item to rear of queue.

boolean isEmpty()
Returns true if queue has no elements in it.

E peek()
Returns item at front of queue without removing it.

int size()
Number of elements in queue.

85

86 A Concise Introduction to Data Structures Using Java

Like a stack, a queue is a linear structure, meaning that elements are stored
in an ordered sequence, and so queues may be implemented with either arrays
or linked lists. As with stacks, the goal is to make all operations O(1) if we
can. The linked implementation is somewhat simpler than the array version,
so we begin with it.

Linked Implementation

Since a linked list has a natural “front” at the head, we begin by imagining
the front of the queue at the beginning of the list:

front

Then we need to work out how to efficiently provide the two main operations
in the ADT:

Dequeuing will be easy in O(1) time, because removing from the beginning
of a linked list is just a single reference change. It is the same as popping
from a linked stack.

Enqueuing is more difficult because we need to add new elements to the
end of the list. Moving to the end of the list (known as traversing the
list) will take O(n) time, so that should be avoided. We can enqueue
efficiently if we keep a separate tail pointer pointing to the last node
in the list.

The last node in a queue is the rear of the list, so we keep a second instance
variable named rear:

front

rear

Enqueuing a new item will then require adding a new node after rear.

Insertion After a Node

Because it is no more difficult, we solve the more general problem of adding
a new node after any given node p, not just after the last node.

.

p

Queues 87

The steps are similar to those for inserting at the front of a linked list (see
page 58):

1. Create a new node:

Node q = new Node<>(item, null);

q item

2. Set the next field of the new node to point to the node after p:

q.next = p.next;

.

p

q item

3. Change p.next to point to the new node:

p.next = q;

.

p

q item

As before, these steps can be combined into one:

p.next = new Node<>(item, p.next);

Deletion After a Node

Although we will not need this operation for queues, deleting the node after
a given node p is similar to inserting a new node after p because it is also
just a change to p.next. Instead of pointing to a new node, though, p.next is
updated to refer to the node that follows, which is pointed to by p.next.next.

.

p

88 A Concise Introduction to Data Structures Using Java

p.next = p.next.next;

The node to be deleted, pointed to by p.next, must exist, or the reference to
p.next.next will cause a null pointer exception.

Managing the Tail

The only remaining issue is to be careful to update the rear pointer during
enqueuing and dequeuing. The rear pointer begins null, like the front.

Enqueue If the queue is empty, create a node and set both front and rear
to point to it. Otherwise, add a new node after rear and then update
rear to point to the new node.

Dequeue Items are removed from the front, so the only time the rear pointer
is involved is if the last item is being dequeued. In that case, rear should
be set to null.

You will be asked to implement the LinkedQueue<E> class in the exercises.

Exercises

1. Show the results of these operations on an initially empty integer queue
named q. Draw the queue contents after each operation, making clear
where the front is, and give the return value of each non-void method.

(a) q.enqueue(5)
q.enqueue(8)
q.peek()
q.enqueue(3)
q.dequeue()
q.enqueue(10)
q.size()
q.enqueue(4)
q.dequeue()
q.dequeue()

(b) q.enqueue(1)
q.dequeue()
q.enqueue(2)
q.dequeue()
q.enqueue(3)
q.dequeue()
q.size()
q.enqueue(4)
q.peek()
q.dequeue()

(c) q.enqueue(10)
q.enqueue(20)
q.enqueue(30)
q.enqueue(40)
q.peek()
q.enqueue(50)
q.dequeue()
q.size()
q.dequeue()
q.dequeue()

Queues 89

2. Decide whether or not a queue would be an appropriate data structure
for each of these types of task lists. Assume that when a new task
arrives, it would be enqueued, and when a task is chosen to work on, it
would be dequeued. Explain your answers.

(a) Tasks that may need to be done in any order.

(b) Tasks where the next one to work on is always the one that has
been waiting the longest.

(c) Tasks where the next one to work on is always the most recently
received.

(d) Tasks that need to be done in the order they are received.

(e) Tasks that may need to be shuffled or sorted.

3. Write a generic Java interface Queue<E> for the Queue ADT in Table 5.1.

4. Develop the LinkedQueue<E> class, implementing the Queue<E> interface
from Exercise 3 with a linked list as described in this section. Write
these members:

(a) Private Node<T> class Include a second constructor that only takes
one parameter, the data item, and sets the next field to null.

(b) dequeue() Throw a NoSuchElement exception from java.util if
the queue is empty (see page 55).

(c) enqueue()

(d) isEmpty()

(e) peek() Throw a NoSuchElement exception if the queue is empty.

(f) size() Include a size instance variable and update it where nec-
essary.

5. Add a main() method to the LinkedQueue<E> class to test the queue
with:

(a) Integers

(b) Doubles

(c) Strings

6. Determine the O() time complexity of these LinkedQueue operations.
Explain your answers.

(a) dequeue()

(b) enqueue()

(c) isEmpty()

(d) peek()

(e) size()

90 A Concise Introduction to Data Structures Using Java

7. As described above, the enqueue method has to treat an empty queue
as a special case. To avoid this, a dummy node can be created at
the front of the list containing no data. This simplifies enqueuing, but
requires rewriting other methods to take the dummy node into account.
Write a DummyLinkedQueue<E> implementation of Queue<E> using this
approach. Discuss the tradeoffs.

5.2 Array Implementation
The linked queue was a bit more complicated than its stack counterpart, re-
quiring a second tail pointer to enqueue efficiently. In a similar way, the array
implementation of a queue will require extra work to achieve O(1) perfor-
mance. The main ideas are similar to an array stack, though, so we begin by
ignoring the complications.

Basic Idea

As with the array implementation of a stack, it is helpful to begin by imagining
a few elements being added to a queue. Suppose 10, 20, and 30 are enqueued
in that order; then it is natural to store them at the beginning of the array
(shown as primitives to simplify the pictures):

0 1 2 3 4

10 20 30

At this point, 10 is at the front of the queue and 30 is at the rear, so instance
variables should track those locations:

0 1 2 3 4

10 20 30 front: 0 rear: 2

If the next operation is to enqueue 40, then it goes to the rear of the queue:

0 1 2 3 4

10 20 30 40 front: 0 rear: 3
↑

Code to enqueue a new item like this is straightforward:

data[++rear] = item;

Queues 91

If the next operation is dequeue, then 10 should be returned and then front
increased:

0 1 2 3 4

10 20 30 40 front: 1 rear: 3
↓

and so the code to dequeue is:

return data[front++];

Problem: Drift

The problem with this basic idea is that the queue gradually moves to the
right in the array. Even if the queue never has more than a few elements in
it, if there is a lot of enqueuing and dequeueing, the queue will eventually fall
off the end of the array:

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

Shifting the queue elements back to the beginning of the array would take a
lot of time if the array was large, and increasing the size of the array would
be wasteful for only a handful of items. A better solution is to teach the array
to wrap around.

Circular Array

A circular array wraps around, so that incrementing the last index wraps
back around to the first index:

0 1 2 3 4 5 6

In the above example, that would mean “incrementing” 6 to get 0 instead of 7.

92 A Concise Introduction to Data Structures Using Java

The remainder operator % does this nicely:

(6 + 1) % 7 = 7 % 7 = 0

and so the general code to increment in a circular array is:

var = (var + 1) % array.length

This will be a common operation in the queue, so it might be worth keeping
a capacity instance variable storing the current length of the array. Then
updating front and rear become:

rear = (rear + 1) % capacity;
front = (front + 1) % capacity;

Modifying the basic operations:

data[++rear] = item; // enqueue
return data[front++]; // dequeue

to use circular increments instead of ++ will solve the drifting problem.

Resizing Circular Arrays

By solving one problem we have created another: resizing now has to take
circularity into account. To see the problem, suppose a queue has been in use
for some time, has elements 10, 20, . . . , 50 queued in that order, and is now
full:

0 1 2 3 4

40 50 10 20 30 front: 2 rear: 1

If we resize in the same way as an array stack (see Listing 3.2), then the result
would be:

0 1 2 3 4 5 6 7 8 9

40 50 10 20 30 front: 2 rear: 1

This will not work: the queue expects 40 to follow 30 (because it had in the
circular array), and even though there are empty slots, there is no room after
the end of the queue (i.e., after item 50). Therefore, we need to change the
resizing method so that the front of the queue is back in slot 0:

0 1 2 3 4

40 50 10 20 30 front: 2 rear: 1

0 1 2 3 4 5 6 7 8 9

10 20 30 40 50 front: 0 rear: 4

Queues 93

This looks like it would be tricky to write, but it’s not too bad with the
right organization. The idea is to loop over the new array locations with
one variable i, while updating a second variable j that loops through the old
circular array. Listing 5.1 outlines this approach. Notice in it how the for-loop
updates i, while j is updated for the old circular array inside the loop.

Listing 5.1: Resize Circular Array (Pseudocode)

1 j = front
2 for i = 0 to size - 1
3 newData[i] = data[j]
4 j = (j + 1) % capacity
5 Update front, rear, capacity, data

The exercises ask you to complete this implementation and the rest of the
ArrayQueue<E> class.

Exercises

1. Explain the use of prefix and postfix increment in the basic array queue
operations:

data[++rear] = item; // enqueue
return data[front++]; // dequeue

2. Determine the correct starting values for the front and rear array in-
dices of an array queue. Explain your answers.

3. In a circular array implementation of a queue:

(a) Explain why this relationship is true for both empty and full queues:

(rear + 1) % capacity == front

(b) If there were no size instance variable storing the number of items
in the queue, how might you tell the difference between an empty
queue and a full queue? Outline a strategy.

4. Circular arrays were introduced in part to avoid shifting elements to
reposition the queue at the front of the array. However, that is precisely
what the resize() method does, because of circularity. Is that a prob-
lem? In other words, does resizing with Listing 5.1 impact the queue’s
performance differently than resizing an array stack? Explain why or
why not.

94 A Concise Introduction to Data Structures Using Java

5. Develop the ArrayQueue<E> class, implementing the Queue<E> interface
with a circular array as described in this section. Use separate size and
capacity instance variables, and write these methods:

(a) dequeue() Throw a NoSuchElement exception if the queue is empty,
and set the obsolete reference (see page 71) to null.

(b) enqueue() Double the size of the array if the queue is full.

(c) isEmpty()

(d) peek() Throw a NoSuchElement exception if the queue is empty.

(e) size() Include a size instance variable and update it where nec-
essary.

(f) Private resize() Implement Listing 5.1.

(g) Two constructors: one default, and one that takes an initial capac-
ity as a parameter. The default constructor should call the other
constructor using this().

6. Add a main() method to the ArrayQueue<E> class to test the queue with:

(a) Integers

(b) Doubles

(c) Strings

7. Determine the O() time complexity of these ArrayQueue operations. Ex-
plain your answers.

(a) dequeue()

(b) enqueue() Ignore resizing.

(c) isEmpty()

(d) peek()

(e) size()

5.3 Inheritance: Fixed-Length Queues
Queues turn up in interesting places and are not always implemented in soft-
ware. For example, hardware queues are common components in systems
that receive data at a variable rate: the queue allows items to collect in a
waiting line until the processor is ready for more input. Both graphics pro-
cessing units and network routers use hardware queues to manage incoming
data in this way.

Queues 95

Examples: GPUs and Network Routers

Graphics processing units (GPUs) are constructed with a pipeline architec-
ture, which you can imagine as a sequence of stages connected by pipelines:

Input Vertex
Shading

Geometry
Shading

Fragment
Shading

Graphics data move down these pipelines from one stage to the next, with
hardware FIFO queues at each stage to prevent stalling when one of the
stages cannot keep up with the inputs coming into it.

Hardware queues are also used in network routers to hold incoming packets
before they are processed. Because of the importance of not dropping network
packets, routers usually also have other mechanisms including software queues
to handle full hardware queues.

In this section, we develop a fixed-length queue to model hardware queues
or other queues that have a fixed maximum capacity. Given such a queue,
attempting to enqueue into a full queue will result in the item being dropped,
like a dropped network packet.

Inheritance

Rather than writing a fixed-length queue class from scratch, it would be better
to take advantage of the work we’ve already done. The basic idea of inher-
itance is for one class (the subclass) to begin with the state and behavior
of another class (the superclass), but then be allowed to add new variables
and methods, as well as redefine how old methods work. The new class is said
to extend the old class and so is also known as an extension of the base
class.

Superclass (Base)

Subclass (Extension)

Inheritance Hierarchies

Sub- and superclass relationships between classes create an inheritance hi-
erarchy with more general classes towards the top and more specific classes
towards the bottom.

96 A Concise Introduction to Data Structures Using Java

For example, some of the classes you have seen so far are related by inheritance
in this way:

Object

Number

Int Double Float

String StringBuilder

This means that the Number class, which we have not seen yet, captures com-
mon state and behavior of all of the numeric wrapper classes, as well as other
numeric classes.

In fact, every Java class inherits from the Object class, either directly or indi-
rectly. In other words, the Object class is at the root of the entire inheritance
hierarcy. We will return to the role of the Object class at the end of this
section.

Is-A and Has-A Relationships

Inheritance models an is-a relationship:

A Double is a Number

A Number is an Object

A FixedLengthQueue is a Queue

Another common relationship is has-a, which is used when an object has a
component of that type:

An ArrayQueue has a size

A Fraction has a numerator

An array has a length

Has-a relationships are modeled by composition, which is simply using an
instance variable to store the component. Deciding between these two types
of relationships is an important part of software design.

Implementation

A fixed-length queue is close to an ArrayQueue, except that the size of its
underlying array should never change. Thus, we implement it in Listing 5.2
as an extension of the ArrayQueue class. If an attempt is made to enqueue
when the queue is full, instead of resizing the array, the item will be dropped
and the queue will track the total number of dropped items.

Queues 97

Listing 5.2: Fixed-Length Queue

1 public class FixedLengthQueue<E> extends ArrayQueue<E> {
2 private int drops;
3

4 public FixedLengthQueue(int capacity) {
5 super(capacity);
6 }
7

8 @Override
9 public void enqueue(E item) {

10 if (size == capacity) {
11 drops++;
12 } else {
13 super.enqueue(item);
14 }
15 }
16

17 public int drops() {
18 return drops;
19 }
20 }

Java Class Extensions

The extends clause is used to declare a new class as a subclass of an existing
class:

public class SubClass extends SuperClass { ... }

The subclass then inherits the class members (fields, methods, and nested
classes) from the specified superclass. New instance variables and methods
may also be declared inside the subclass, as on line 2 and beginning at line 17
of Listing 5.2.

If the superclass implements an interface, then so does the subclass since it
inherits the public members of the superclass.

Subclass Constructors

If you write a constructor for a subclass, the first thing it must do is call a
constructor from the superclass using super:

super(arguments);

98 A Concise Introduction to Data Structures Using Java

The only time this is not required is if the constructor is calling a different
constructor of the subclass using this(). The super() call in the constructor
on line 5 assumes that a constructor with an integer capacity parameter is
part of the ArrayQueue class (see Exercise 4).

Overriding Methods

Redefining a method from the superclass in a subclass is called overriding
the method. In this case, the enqueue() method is overridden beginning at
line 9 in order to check the size before actually enqueuing the item. The
@Override annotation signals to the compiler and readers that we intend to
override an existing method rather than define a new one.

Existing superclass methods may be called inside the body of an overridden
method using super:

super.method(arguments)

In Listing 5.2, once the enqueue() method has determined that the queue will
not overflow, the superclass method is called on line 13.

Protected Fields in the Superclass

One other change (in addition to making sure there is a constructor with a
capacity parameter) needs to be made to the existing ArrayQueue superclass
in order for this subclass to compile. As it is, the subclass cannot use the
instance variables size and capacity because they were (or should have been)
declared private in ArrayQueue. Class members declared private cannot be
used anywhere outside of their class, even in a subclass.

Because it is reasonable for a subclass to access some instance variables or
internal methods, Java provides a third visibility option, protected, for this
situation. Protected class members may be accessed by subclasses as well as
the class itself, but not by outside classes.1

The Object Class

Table 5.2 lists two of the most important methods defined in the Object
class. Because every class is an extension of the Object class, every Java
object—including arrays—inherits these methods, along with others listed in
the documentation.

1Protected members are also accessible by classes in the same package, but named pack-
ages are not used in this text.

Queues 99

TABLE 5.2: Object Methods
boolean equals(Object o)
True if this object and o are the same object.

String toString()
Returns string representing this object.

The default meaning of equals() for Objects is the same as ==, but classes
may override equals() to define their own notion of equality.2 The signature
of an overridden method must not change, so this explains why the String
equals() method (see Section 1.2) takes an Object parameter instead of a
String.

The Object implementation of toString() returns the class name and the
object’s hashcode (see Section 11.2) in hexadecimal. When a class like the
Fraction class in Section 1.5 defines a toString() method, it is overriding
the Object definition.

Finally, recall from Section 4.2 that the Object class was used to create generic
arrays, which were then cast to the type E[]. The reason this works is that
no matter what E is, it inherits from Object, and so an E object “is a” Object.

Exercises

1. Use Listing 5.2 to:

(a) List the new instance variables (if any) in the FixedLengthQueue
class.

(b) List the new methods (if any) in the FixedLengthQueue class.

(c) List the methods (if any) from ArrayQueue that have been overrid-
den.

2. Describe the difference between overloading and overriding a method in
Java.

3. Explain why we chose to have FixedLengthQueue extend ArrayQueue
rather than LinkedQueue. Could extending LinkedQueue be made to
work? Explain why or why not.

2Overriding equals() is not as straightforward as it might seem. See Items 8 and 9 from
Bloch [4] for details.

100 A Concise Introduction to Data Structures Using Java

4. Modify ArrayQueue to work with the FixedLengthQueue class by making
these changes:

(a) Implement Exercise 5g from Section 5.2 if you have not done so
already to have an ArrayQueue constructor with an integer capacity
parameter.

(b) Change the visibility of size and capacity so they may be used by
the subclass.

5. Decide whether inheritance, composition, neither, or both seem appro-
priate for each of these related classes. If inheritance fits, indicate the
subclass and superclass; if composition, indicate which object is the in-
stance variable in the other class. Explain your answers.

(a) A Person class and an Employee class in a human resources system.

(b) An Employee class and a Department class in a human resources
system.

(c) An Employee class and a Manager class in a human resources system.

(d) A Shape class and a Sphere class in a graphics system.

(e) A Cube class and a Sphere class in a graphics system.

6. Add a main() method to the FixedLengthQueue<E> class to test the
queue with:

(a) Integers

(b) Doubles

(c) Strings

7. Determine the O() time complexity of these FixedLengthQueue opera-
tions. Explain your answers.

(a) dequeue()

(b) enqueue()

(c) isEmpty()

(d) peek()

(e) size()

8. Consider the following code. Does it compile and run? If so, give the
output; if not, explain why not and how to fix it.

Queue<Integer> q = new FixedLengthQueue<>(50);
for (int i = 0; i < 100; i++) {

q.enqueue(i);
}
System.out.println(q.drops());

Queues 101

9. Using inheritance, write a FixedLengthStack<E> class to represent a
fixed-size stack that drops pushed elements if the stack is full. Include
any necessary changes to the superclass.

Project: Fixed-Length Queue Simulation
A natural question arises with fixed-length queues: how important is the size
of the queue under heavy traffic? If many items are being dropped, is it
worth investing in a larger queue? If so, how large? This project develops a
simulation to help answer questions like these.

Model

Imagine a generic “processor” with an input queue that receives tasks and
processes them, like the stages in a GPU or a network router. Each task has a
given integer length of time that it will take to complete on the processor. If
the processor is busy with one task and receives another, it uses a fixed-length
queue to store the waiting tasks. Once a processor finishes a task, it begins
working on the next task in its queue. A processor with no work to do is
considered free.

Table 5.3 lists a set of public methods for a simulated processor. Tasks are
represented simply by the integer amount of time they take to complete.

TABLE 5.3: Simulated Processor
void addTask(int taskTime)
Accepts new task of given length of time. If free, this becomes the
current task; otherwise, adds task to queue.

int drops()
Number of items dropped by queue.

boolean free()
True if not processing a task and queue is empty.

void tick()
Simulates one time step. If busy, does one unit of work on current task.
If current task finishes, checks queue for next one to start.

Clock-Based Simulations

Simulations often use an integer counter to simulate a clock, where increment-
ing or decrementing the counter corresponds to one tick of the clock. This

102 A Concise Introduction to Data Structures Using Java

processor simulation will randomly generate new tasks for a certain amount
of time minTime and then continue running until all tasks are finished. List-
ing 5.3 describes one way to organize the simulation with a clock variable t.

Listing 5.3: Clock-Based Simulation (Pseudocode)

1 t = 0
2 while (t < minTime or processor is busy)
3 if (t < minTime) randomly add new task to processor
4 simulate one time step on processor
5 t++

Random Tasks

Simulation-based programs use a variety of techniques to generate random
sequences of events. We will use the following simplified model to simulate a
random series of tasks for the processor: during each time step of the simu-
lation, there is probability taskChance (between 0 and 1) of creating a new
random task. Each task will require processing time of some random integer
number of steps between 1 and a fixed upper limit maxTaskTime. Listing 5.4
outlines this procedure in pseudocode.

Listing 5.4: Generate Random Tasks (Pseudocode)

1 r = random double from [0, 1)
2 if (r < taskChance)
3 taskTime = random int from 1 to maxTaskTime
4 add task with length taskTime to processor

Exercises

1. Write a Processor class to represent a single processor, implementing
the public methods from Table 5.3. The Processor constructor should
take a parameter specifying the capacity of its fixed-length queue.

Queues 103

2. Write a QueueSimulator class to drive the simulation of one processor.
Include one public method:

void run(int queueLength, int minTime, int maxTaskTime,
double taskChance)

that implements Listing 5.3. It should call a separate method imple-
menting Listing 5.4.

At the end of the run() method, display the number of tasks pro-
cessed, the percentage of tasks dropped, and the amount of extra time
(beyond minTime) needed for the processor to finish. Consider the
System.out.format() method for nice output.

3. Use the QueueSimulator from the previous exercise to explore a situation
when overcrowding is predictable, such as with taskChance = 0.3 and
maxTaskTime = 10. Use minTime = 10000 and queue lengths between 5
and 500. Discuss the impact of different queue lengths according to the
simulator. Is it what you expected?

Chapter 6
Lists

The power of stacks and queues as linear data structures lies in their limited
interface: elements may only be added or removed in specific ways. Control-
ling insertion and deletion in this way allows designing for O(1) performance
for those operations.

Lists, on the other hand, provide a very flexible interface that allows inserting
and removing elements anywhere in the list. This flexibility comes at a price,
though: operations will no longer necessarily be O(1).

6.1 Interface
The List ADT views its data much like an array does: elements are accessible
via consecutive indices.

List Indexing

Think of references in a list as stored at indices 0 through one less than the
number of elements in the list, just like an array:

0 1 2 . . . size− 1

This description implies:

Lists are dynamic because they continually grow and shrink as items are
added and removed. The length of a list always depends on the number
of elements in it and is not fixed like an array.

There are never gaps between items in a list because it is defined to use
indices 0 through size− 1.

Be aware that the list may not be implemented with an array, so this diagram
is just a way to think about how the elements are organized by the ADT. In
fact, a linked implementation will be developed in Section 6.3.

105

106 A Concise Introduction to Data Structures Using Java

List ADT

Whereas the stack or queue ADTs are fairly standard, the List abstract data
type has many variations and can be quite complex. We will use the set of
methods in Table 6.1.

TABLE 6.1: List ADT
void add(E item)
Adds item to end of list.

void add(int index, E item)
Inserts item at index, shifting items to right to make room. If index =
size, adds item to the end of the list.

E get(int index)
Returns item at index.

int indexOf(E item)
Index of first occurrence of item in list, −1 if not found.

boolean isEmpty()
True if list has no elements.

E removeAt(int index)
Removes and returns item at index, shifting remaining items to left.

E set(int index, E item)
Replaces item at index, returning the previous value.

int size()
Number of elements in list.

Shifting

Stacks and queues limit access to their contents, either through the top (stack)
or front and rear (queue). Because the List ADT allows accessing any element
at any time, some list methods affect the indices of other items in the list.
Both add() and removeAt() cause elements other than those being added or
removed to change position. For example, if a list contains

5, 8, 2, 1, 4, 7

then the operation add(3, 6) results in the list

5, 8, 2, 6, 1, 4, 7

The elements after 6 all now have a different index than they did prior to the
add(). Similarly, removeAt(1) returns 8 (the item in slot 1) and modifies the
list to be

5, 2, 6, 1, 4, 7

Lists 107

Again, remember that the list may not be implemented with an array, so no
actual shifting may occur. What changes from the perspective of the ADT
are the index locations of some of the elements in the list.

Overloading Methods

The List ADT overloads the add() method since two versions are given. Over-
loading is useful when more than one set of parameters may be convenient for
what is essentially the same method. In this case, adding an item to the end
of a list will likely be common, so it is given a simplified method call.

Arrays and Lists

In a sense, a list is a more powerful array that will grow as needed and shift
elements for insertion and deletion. And because it’s an ADT, a list can be
implemented in a variety of ways to provide different performance character-
istics.

In fact, most Java programming is done with lists from the java.util library
rather than arrays. The reason we have been using arrays is to study the low-
level implementation details of different data structures. Once you know how
those structures work, implementations of the List ADT are more powerful
and convenient.

Exercises

1. Show the results of these operations on an initially empty integer list
named items. Indicate the return value of all non-void methods and
draw the list contents after each operation.

(a) items.add(5)
items.add(8)
items.add(3)
items.removeAt(1)
items.add(10)
items.add(4)
items.removeAt(3)
items.removeAt(1)

(b) items.add(1)
items.set(0, 2)
items.add(3)
items.set(0, 4)
items.set(1, 5)
items.add(6)
items.removeAt(1)
items.get(1)

(c) items.add(10)
items.add(0, 20)
items.add(1, 30)
items.add(0, 40)
items.add(2, 50)
items.indexOf(10)
items.indexOf(20)
items.indexOf(30)

108 A Concise Introduction to Data Structures Using Java

2. Suppose items is a List containing {1, 7, 2, 4, 1, 8, 9, 7}. Show
the result of these operations, run in this sequence, and give the final
contents of the list.

items.size()
items.get(3)
items.indexOf(7)
items.removeAt(5)
items.add(0, 3)
items.add(2, 5)
items.removeAt(1)

3. Decide whether or not a list would be an appropriate data structure for
each of these types of task lists. Explain your answers.

(a) Tasks that may need to be done in any order.

(b) Tasks where the next one to work on is always the one that has
been waiting the longest.

(c) Tasks where the next one to work on is always the most recently
received.

(d) Tasks that need to be done in the order they are received.

(e) Tasks that may need to be shuffled or sorted.

4. Write a generic Java interface List<E> for the List ADT.

5. Suppose ArrayList<E> implements the List<E> interface from Exer-
cise 4.

(a) Write Java code to declare and create an integer array list items,
and then add the values 0 through 9 to items (in that order) so
that they are stored in increasing order.

(b) Write Java code to declare and create an integer array list items,
and then add the values 0 through 9 to items (in that order) so
that they are stored in decreasing order.

6. Describe how to implement push and pop operations for a stack using
the List ADT, trying to avoid shifting elements if at all possible. If it is
not possible to avoid shifting, explain why.

7. Describe how to implement enqueue and dequeue operations for a queue
using the List ADT, trying to avoid shifting elements if at all possible.
If it is not possible to avoid shifting, explain why.

Lists 109

6.2 Array Implementation
With its emphasis on indexing, an array implementation of the List ADT
should seem natural. The add() method developed below illustrates how to
address two issues that did not arise with stacks and queues: checking indices
and shifting to make room for the new item. Exercises ask you to finish the
ArrayList implementation.

Index Checking

By design, elements in a list have indices 0 through the one less than the cur-
rent size. Therefore, every method in the List ADT with an index parameter
has the responsibility to check that the index is valid before performing its
operation. Any invalid index should result in an IndexOutOfBoundsException.

The add() method is slightly different than other methods that only access
existing elements, since it is allowed to use the size of the list as an index.

Shifting in an ArrayList

Two types of shifting are needed in an array list: making room for a new item
in add(), and closing the gap created by removeAt(). To get the code right,
pay attention to where the open slot is and decide which element has to move
first.

For add(index, item), assuming there is room for the new item, the opening
is on the right, and so the item in slot size - 1 has to move first:

index size - 1

. . . ∗ . . . ∗−→

This suggests starting the loop at size - 1 and decrementing until index:

for (int i = size - 1; i >= index; i--) {
data[i + 1] = data[i];

}

In that case, the index i represents the index being copied from. An alter-
native is to loop from size down to index + 1, which would give the index
being copied to.

To close the gap in removeAt(index), the opposite needs to happen:

index size - 1

. . . ←−∗ . . . ∗

110 A Concise Introduction to Data Structures Using Java

In this case, the opening is on the left, and the item at index + 1 needs to
move first. The details for this case are left as an exercise.

Listing 6.1 demonstrates shifting and index checking for the ArrayList add()
method.

Listing 6.1: ArrayList Insertion

1 public void add(int index, E item) {
2 if (index < 0 || index > size)
3 throw new IndexOutOfBoundsException();
4 if (size == data.length) resize(2 * data.length);
5 // shift right to make space
6 for (int i = size - 1; i >= index; i--) {
7 data[i + 1] = data[i];
8 }
9 data[index] = item;

10 size++;
11 }

Exercises

1. Explain how the array list add()method in Listing 6.1 works when index
equals size; i.e., when adding to the end of the list.

2. Develop the ArrayList<E> class implementing the List<E> interface by
writing these methods:

(a) add(item) Double the length of the array if it is full.

(b) get()

(c) indexOf() Use linear search to find the first occurrence of the
item.

(d) isEmpty()

(e) removeAt() Set the obsolete reference (see page 71) to null.

(f) set()

3. Exercise 2a can be written in two ways, either from scratch or by calling
the add() method in Listing 6.1. Write both versions and discuss the
differences.

4. Modify the removeAt() method from Exercise 2e to reduce the array
length by half if the number of elements in the list is less than or equal
to one-fourth the current length of the array, but do not let the array
have a length smaller than 10.

Lists 111

5. Override the toString() method in the ArrayList class by calling the
toString() method of each list element and accumulating the results in
a StringBuilder.

6. In the previous exercise, explain how you know toString() can be called
on every list item if the list is generic.

7. Add a main() method to the ArrayList class to test the list with:

(a) Integers

(b) Doubles

(c) Strings

8. Determine the O() performance of each of these ArrayList methods.
Explain your answers.

(a) add(item) Ignore resizing.

(b) add(index, item) Ignore resizing.

(c) get()

(d) indexOf()

(e) isEmpty()

(f) removeAt() Ignore resizing from Exercise 4.

(g) set()

(h) size()

9. Assuming items is an ArrayList, determine the O() performance of each
of these fragments of code. Give your answers in terms of n, the number
of elements in items.

(a) for (int i = 0; i < items.size(); i++) {
System.out.println(items.get(i));

}

(b) while (!items.isEmpty()) {
System.out.println(items.removeAt(0));

}

(c) while (!items.isEmpty()) {
System.out.println(items.removeAt(items.size() - 1));

}

112 A Concise Introduction to Data Structures Using Java

10. Assuming items is an empty ArrayList, determine the O() performance
of each of these fragments of code. Give your answers in terms of n.

(a) for (int i = 0; i < n; i++) {
items.add(i);

}

(b) for (int i = 0; i < n; i++) {
items.add(0, i);

}

6.3 Linked Implementation
In contrast to the array implementation of the List ADT, a linked list imple-
mentation may seem less natural. Linked lists are good at moving from one
node to the next rather than directly to a particular index. However, keep
in mind that the array implementation has its own awkwardness: any time
an element is inserted or removed from the list, other items have to shift in
the array. A linked implementation never has to shift elements, since it can
simply reassign pointers.

Two linked list options are helpful for the List ADT: using a dummy node and
double links.

Dummy Nodes

Compare the steps for inserting and removing at the front of a linked list
(pages 58–60) with inserting and removing after a node (pages 86–88). The
front of the list is different from everywhere else because it requires changing
the head of the list.

Unlike stacks and queues, the List ADT allows inserting and removing any-
where in the list, so it would be helpful to not have to write a special case for
the front of the list. We can do this by creating a dummy node at the front
of the list:

head
null . . .

Then every insertion or deletion will occur “after a node,” and the head will
never change. The dummy node contains no data; its purpose is just to
simplify insertion and deletion code. If a dummy node is used, other nodes
are sometimes referred to as regular nodes.

Lists 113

Double Links

The linked lists we have used to this point are known as singly-linked lists
because each node has a single link to the next node. A doubly-linked list
has two pointers in each node, one to the previous node and one to the next:

prev data next

Single links were sufficient for stacks and queues (and are also sufficient for the
List ADT), but there is some convenience in using double links for insertion
and deletion in the middle of a list.

Be careful, though: double links make it easier to write code that generates
null pointer exceptions. The reason is that compound expressions such as
p.next.prev and p.prev.next become common. The key to writing such ex-
pressions was given in Section 3.3: make sure that variables being dereferenced
are not null. In a compound expression, there are two references to check:

p.next.prev p cannot be null

and

p.next.prev p.next cannot be null

Deletion with Double Links

To illustrate the use of double links, we develop the code to delete a given
node p.

.

p

To avoid compound expressions for now, assign references to the node before p
and the node after p:

Node<E> prev = p.prev;
Node<E> next = p.next;

The main step is the same as for deleting the node after prev (see page 87):

prev.next = next;

114 A Concise Introduction to Data Structures Using Java

Updating prev.next results in this change to the diagram:

.

p

If there is a dummy node, that step is safe, because prev must exist. However,
there is no guarantee that next is not null, and so the second connection
requires a check first:

if (next != null) next.prev = prev;

.

p

The complete removeAt() method is in Listing 6.2.

Traversals

Walking through the nodes of a linked list is known as traversing the list.
The idea of a full traversal is simple: start at the front of the list (or perhaps
skip the dummy node) and keep following next pointers until you reach null.
The Java implementation is a nice for-loop:

for (Node<T> p = head; p != null; p = p.next) {
// work with node pointed to by p

}

Recall that the three components of the for are initialize, test, and increment,
and those are exactly the steps needed for traversal.

Indexed Access

Because linked lists do not have direct indexed access to each element, it will
be helpful to write a private getNode() method that returns the node for a
given index. The getNode() method does a partial traversal until reaching
the desired index.

Listing 6.2 gives the implementation of getNode() and illustrates its use in
removeAt(). Rather than skipping the dummy node, the index −1 is allowed
in case the dummy node is needed by other methods. Because getNode() will
only be called by code internal to the class, it can assume the target index is
valid. Remember that nodes are an implementation detail of the linked list
and so should not be returned by public methods.

Lists 115

Listing 6.2: Linked List Deletion and Helper

1 public E removeAt(int index) {
2 if (index < 0 || index >= size)
3 throw new IndexOutOfBoundsException();
4 Node<E> p = getNode(index);
5 Node<E> prev = p.prev;
6 Node<E> next = p.next;
7 E result = p.data;
8 prev.next = next;
9 if (next != null) next.prev = prev;

10 size--;
11 return result;
12 }
13

14 private Node<E> getNode(int index) {
15 // assumes -1 <= index < size. -1 is dummy.
16 Node<E> p = head;
17 for (int i = -1; i < index; i++) {
18 p = p.next;
19 }
20 return p;
21 }

Performance

As an example of analyzing linked list operations, consider the performance
of the removeAt() method in Listing 6.2 in terms of n, the number of items in
the list. It appears to be a simple sequence of a fixed number of steps, which
would be O(1). But one of those steps is a call to getNode(), which traverses
the list. Thus, the performance of removeAt() is O(n) because the traversal
may take up to n steps.

Using Nodes and References

One last piece of advice for navigating linked list code: at times, you will need
to distinguish between a reference and the node it refers to. For example, using
single links for simplicity, we often view the node after the node referenced by
p “as” p.next:

. . .

“p.next”

. . .

p

116 A Concise Introduction to Data Structures Using Java

But if you need to change p.next, the reference p.next lives in the node
pointed to by p, along with p.data:

. . .

p.next

. . .

p

Understanding this difference between a reference and the node it refers to
will help you write correct code.

Exercises

1. Explain why getNode() was not used to find prev and next in the
removeAt() method of Listing 6.2. Could it have been used?

2. Describe the circumstances (i.e., which node or nodes are being deleted)
when the if-statement at line 9 prevents a null pointer exception in
Listing 6.2.

3. Rewrite the removeAt() method of Listing 6.2 to use compound expres-
sions instead of the separate variables prev and next.

4. Develop the LinkedList<E> class implementing the List<E> interface by
writing these class members. Use double links and a dummy node.

(a) Private Node<T> class Include a default constructor taking no pa-
rameters that sets all three fields to null.

(b) add(item)

(c) add(index, item)

(d) get()

(e) indexOf(). Use linear search to find the first occurrence of the
item.

(f) isEmpty()

(g) set()

(h) size()

5. Exercise 4b can be written in two ways, either from scratch or by calling
the other add() method. Write both versions and compare them.

6. Override the toString() method in the LinkedList class by writing
a traversal that calls the toString() method of each list element and
accumulates the results in a StringBuilder.

Lists 117

7. Add a main() method to the LinkedList class to test the list with:

(a) Integers

(b) Doubles

(c) Strings

8. Determine the O() performance of each of these LinkedList methods.
Explain your answers.

(a) add(item)

(b) add(index, item)

(c) get()

(d) indexOf()

(e) isEmpty()

(f) set()

(g) size()

9. Use the previous exercise to compare the performance of LinkedList
with ArrayList. Does one or the other have a clear advantage? Explain
your reasoning.

10. Assuming items is a LinkedList, determine the O() performance of each
of these fragments of code. Give your answers in terms of n, the number
of elements in items.

(a) for (int i = 0; i < items.size(); i++) {
System.out.println(items.get(i));

}

(b) while (!items.isEmpty()) {
System.out.println(items.removeAt(0));

}

(c) while (!items.isEmpty()) {
System.out.println(items.removeAt(items.size() - 1));

}

118 A Concise Introduction to Data Structures Using Java

11. Assuming items is an empty LinkedList, determine the O() perfor-
mance of each of these fragments of code. Give your answers in terms
of n.

(a) for (int i = 0; i < n; i++) {
items.add(i);

}

(b) for (int i = 0; i < n; i++) {
items.add(0, i);

}

6.4 Iterators
Exercise 10a in Section 6.3 exposes an unexpected flaw of the LinkedList
implementation: even though traversing a linked list is efficient, it becomes
inefficient if we use get() in a for-loop. In other words, the public interface
of LinkedList provides no way to efficiently traverse the list. Iterators allow
us to rectify this problem and support Java’s enhanced for-loop at the same
time.

Iterators

A Java iterator is an object designed for iterating through the items of a collec-
tion. The java.util.Iterator interface in Table 6.2 defines the functionality
of an iterator.

TABLE 6.2: java.util.Iterator Interface
boolean hasNext()
True if iterator has another element.

E next()
Returns next element and advances iterator.

void remove()
(Optional) Deletes last element returned by next(). May only be called
once per call to next().

Code using an iterator should call hasNext() before calling next() to be
sure there is an element available. If next() is called when hasNext() is
false, a java.util.NoSuchElementException is thrown. Iterators that do
not support the remove() method must have the remove() method throw
an UnsupportedOperationException.

Lists 119

Iterables

A collection that can provide an iterator is called iterable and implements the
Iterable interface in Table 6.3. That means it provides a public iterator()
method returning an object that implements the Iterator<E> interface. This
object is often defined by a private inner class.

TABLE 6.3: Iterable Interface
Iterator<E> iterator()
Returns an iterator for this collection.

The terminology of iterables can be difficult to follow, especially at first. De-
veloping a specific iterator for linked lists will help.

Linked List Iterator

The problem with repeatedly calling get() to traverse a linked list is that
getNode() has to start back over at the beginning of the list every time. The
linked list iterator will avoid this by remembering where it is.

The iterator will be a separate object from the list, with a pointer into the
list. Single links are shown for simplicity.

LinkedList

head next
item

. . .

LinkedListIterator

next

To do this, the LinkedListIterator class will need one instance variable, next,
that is a reference to where the next item in the list is. Its methods will be
(see the interface in Table 6.2):

next() will get the element from the node pointed to by next, move next to
point to the next node, and then return its result.

hasNext() will test that next is not null.

The next field starts at the first regular (non-dummy) node in the list.

Listing 6.3 shows how to put these pieces together into code that goes inside
the LinkedList class. The LinkedListIterator class defines this new iterator
object, and the public iterator() method simply creates and returns an it-
erator. Adding the public iterator() method to the LinkedList class allows
the LinkedList class to implement the Iterable interface (Table 6.3).

120 A Concise Introduction to Data Structures Using Java

Listing 6.3: Linked List Iterator

1 import java.util.Iterator;
2

3 public Iterator<E> iterator() {
4 return new LinkedListIterator();
5 }
6

7 private class LinkedListIterator implements Iterator<E> {
8 private Node<E> next = head.next; // skip dummy
9

10 public boolean hasNext() {
11 return next != null;
12 }
13

14 public E next() {
15 if (!hasNext()) throw new NoSuchElementException();
16 E result = next.data;
17 next = next.next;
18 return result;
19 }
20

21 public void remove() {
22 throw new UnsupportedOperationException();
23 }
24 }

Privacy Issues

It might seem strange that the iterator can have a pointer into the linked list
like this. Part of what makes it work is that the iterator class is nested inside
the linked list class; in other words, an outside class could not do this. The
second thing to notice is that the iterator class is also private, so the outside
world can only access the iterator through the public iterator() method.
That method and the public interface of the iterator itself tightly control how
the iterator can be used.

There is also a new mechanism being used here that gives the iterator access
to the nodes in the linked list: the iterator class is not static. It is our first
example of an inner class.

Inner Classes

Recall from Section 3.3 that our nested Node classes have been declared static
because they do not need access to any of the instance variables of their

Lists 121

containing class. You may have noticed that the nested class in Listing 6.3
is not static. An inner class is a non-static nested class, and it does have
access to the instance variables of its containing object. In Listing 6.3, the
iterator needs access to the head of the linked list, and so it must be an inner
class rather than a static nested class.

Extending Interfaces

One other point will be useful for completing this implementation. Recall (see
page 50) that a class may implement more than one interface, so we might
indicate that LinkedList implements Iterable like this:

public class LinkedList<E> implements List<E>, Iterable<E> ...

However, it is reasonable to expect all lists to be iterable, and this can be
done with interface inheritance. The extends keyword allows interfaces to
inherit from each other in the same way as classes:

public interface SubInterface extends SuperInterface { ... }

The subinterface inherits all methods from the superinterface and then adds
new methods of its own. Therefore, to require all lists to be iterable, we extend
the interface:

public interface List<E> extends Iterable<E> { ... }

Using Iterators

The motivation for creating an iterator was the inefficiency of this loop for a
linked list:

for (int i = 0; i < items.size(); i++) {
System.out.println(items.get(i));

}

Rewriting the loop to use an iterator looks like this, assuming items is an
Integer list:

Iterator<Integer> it = items.iterator();
while (it.hasNext()) {

System.out.println(it.next());
}

This provides the O(n) traversal we were seeking. It is a common enough
task that Java provides the enhanced for-loop (see page 18) for even more
convenience. The same loop can be written as:

for (Integer item : items) {
System.out.println(item);

}

122 A Concise Introduction to Data Structures Using Java

The enhanced for uses the iterator to get the same O(n) performance while
hiding all of the iterator details. All that is required to use it is that the object
have an iterator() method, which is the same as implementing the Iterable
interface (Table 6.3).

Exercises

1. Explain why a linked list iterator allows traversing the list in O(n) time.

2. Modify the List<E> interface to extend Iterable<E>.

3. Incorporate the modifications in this section to the LinkedList class so
that it implements the Iterable interface. Test the implementation by
explicitly using the iterator and with an enhanced for-loop.

4. Without an iterator, an ArrayList already provides efficient traversals
of its elements. Even so, describe an advantage of modifying ArrayList
to support the Iterable interface.

5. Modify the ArrayList class from Section 6.2 to support the Iterable
interface. Test the implementation with an enhanced for-loop. Hint:
draw a diagram like the one on page 119 and follow the steps used there
for linked lists.

Chapter 7
Recursion

7.1 Mathematical Functions
Consider the factorial function

n! = n · (n− 1) · (n− 2) · · · 2 · 1

The “· · · ” in this expression is a bit informal, even though we intuitively know
what it means. One way to precisely define factorial looks like this:

n! =

{
1 if n = 0

n · (n− 1)! if n > 0

If we use this definition to evaluate 3!, it unravels like this:

3! = 3 · 2!
= 3 · (2 · 1!)
= 3 · (2 · (1 · 0!))
= 3 · (2 · (1 · 1)) = 6

Notice that the first part of the definition causes the unraveling to stop.

This definition is recursive because it defines factorial in terms of another
factorial; in this case, n! is defined in terms of (n− 1)!. Recursive definitions
have two key features:

Recursive steps use smaller arguments. In this example, the factorial
of n is computed using the smaller argument n− 1.

Base cases cause recursion to stop. Here, the base case is that 0! is de-
fined to be 1. There is never any recursion in a base case—that is what
causes the recursion to stop. More than one base case may be necessary
if the recursive step uses more than one smaller argument.

Recursive Functions in Java

Like most modern programming languages, Java supports recursion by allow-
ing functions to call themselves. In fact, the mathematical definition of n!
above translates almost directly into the Java of Listing 7.1.

123

124 A Concise Introduction to Data Structures Using Java

Listing 7.1: Recursive Factorial

1 public class Recursion {
2 public static int factorial(int n) {
3 if (n <= 1) return 1;
4 return n * factorial(n - 1);
5 }
6 }

In code, base cases are normally tested first. Code may also take advan-
tage of small efficiencies, such as returning 1 immediately for both 0! and 1!.
Throughout this chapter we assume integer parameters n are nonnegative.

Tracing Recursive Calls

Tracing a recursive function call is like unraveling the mathematical definition,
except that in this case we can stop one step earlier:

factorial(3)

3 * factorial(2)

2 * factorial(1)

1

When factorial(1) returns 1, that allows the call to factorial(2) to return
2 ∗ 1 = 2, which then allows the call to factorial(3) to return 3 ∗ 2 = 6.

factorial(3)

3 * factorial(2)

2 * factorial(1)

1
2

6

Natural Recursions

The following structures are natural candidates for recursive function defini-
tions because they themselves can be defined recursively:

Natural numbers Recursive functions on natural numbers (the nonnegative
integers) usually call themselves on n− 1 or smaller values, and stop at
0 or 1.

Strings Recursive functions on strings usually call themselves on substrings
and stop on the empty string or null.

Lists Recursive functions on lists usually call themselves on sublists and stop

Recursion 125

on the empty list or null. This works naturally with linked lists because
any given node has a smaller list that follows it via the next pointer.

Any object types in Java being used for recursion usually include a test for
null as one of their base cases. Trees are another naturally recursive structure
we will study beginning in Chapter 8.

Exercises

1. Use this recursive definition of add(m,n) to:

add(m,n) =

{
m if n = 0

1 + add(m,n− 1) if n > 0

(a) Trace the call add(11, 3)

(b) Implement add(m, n) as a recursive Java function for integers m
and n.

2. Use this recursive definition of mul(m,n) to:

mul(m,n) =

{
0 if n = 0

m+mul(m,n− 1) if n > 0

(a) Trace the call mul(2, 4)

(b) Implement mul(m, n) as a recursive Java function for integers m
and n.

3. Use this recursive definition of pow(m,n) to:

pow(m,n) =

{
1 if n = 0

m · pow(m,n− 1) if n > 0

(a) Trace the call pow(3, 3)

(b) Implement pow(m, n) as a recursive Java function for integers m
and n.

4. Write a recursive Java function length(String s) that computes the
length of the string s.

5. Write a recursive Java function reverse(String s) that returns the
string s in reverse.

6. Write a recursive Java function fib(n) that computes the nth term in
the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

where each term is the sum of the two before it.

126 A Concise Introduction to Data Structures Using Java

7. Write a recursive Java function to implement Euclid’s algorithm for
computing the greatest common divisor gcd(m, n), which is the largest
integer k dividing both m and n. (See also Exercise 8 in Section 1.1.)
The recursive version of Euclid’s algorithm is based on these two facts:

gcd(m,n) = gcd(n,m mod n)

gcd(m, 0) = m

Notice that m mod n is always less than n.

8. Write a recursive Java function bits(n) that returns a string represent-
ing the nonnegative integer n in binary. Hint: the last bit is n % 2, and
you can get the other bits with recursion on n / 2. You may need more
than one base case.

7.2 Visualizing Recursion
In this section, we look at two techniques for visualizing recursion that can
help you follow how recursive functions work: call trees and the call stack.
The call stack will also begin to explain how function calls are implemented
in general.

Recursive Call Trees

A call tree diagrams the set of calls that are generated by a recursive function
call. It generalizes the idea of tracing a recursive function described in the
previous section by not following return values or calculations but only track-
ing the different function calls. Call trees are also often drawn for n rather
than tracing a specific value, in order to understand the overall behavior of
the function. The point of a call tree is usually to count the total number of
function calls.

For simple recursive functions, the call tree is a single chain of calls. For
example, the tree for factorial(n) is:

factorial(n)

factorial(n - 1)

factorial(n - 2)
. . .

factorial(1)

This indicates that a recursive call to factorial(n) generates approximately n
function calls.

Recursion 127

If a recursive function calls itself more than once, a tree of calls results. For
example, calling the recursive Fibonacci function fib(5) from Exercise 6 in
the previous section generates this tree:

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(2)

fib(3)

fib(2) fib(1)

Analyzing Recursive Functions

The call tree gives some intuition for the time complexity of a recursive func-
tion: for example, in the case of the Fibonacci function, a lot of calls means
a lot of work!

In simple cases, if each function call has O(1) steps, as in the case of the
factorial function, then counting the function calls gives us the total amount of
work. For the factorial function, since each call isO(1) and the tree generates n
calls, the total work is O(n).

More advanced techniques for analyzing recursive functions using recurrence
relations are studied in later courses.

Implementing Recursion

Imagine the call tree for fib(100), or even fib(10). How does a recursive
function keep track of where it is as it works through all of those function
calls? As functions return, where do their return values go? The answers to
these questions lie in how functions calls are implemented in most languages.

Function Call Stack

Every time a function call is made, a section of memory called a stack frame
is pushed on to the call stack. The call stack is just a regular stack that
happens to hold stack frames; it is also known as the run-time stack, and
the frames are sometimes called activation records.

A function is able to use its stack frame memory while it is active, and then
when the function call finishes, its stack frame is popped. Usually, the return
value of the function (if any) will be put in a special register or left at the top
of the stack.

128 A Concise Introduction to Data Structures Using Java

In general, stack frames contain the following basic information:

Local Variables
Return Address

Argument Values

The caller pushes the argument values and return address, and then the func-
tion being called pushes space for its local variables. When the function that
was called finishes, the frame is popped and the return address is used to jump
back to where it had been called from. This is how a function knows “where
it is,” in the sense asked above.

This general method for implementing function calls makes it so that nothing
special is required to support recursion. When a function calls itself, it sim-
ply pushes a new frame on the stack with the appropriate values. There is
generally a limited amount of memory available for the stack, however. Any
recursion without a base case (or simply generating too many calls) will result
in a stack overflow error.

Visualizing the Call Stack

The factorial method has no local variables, and so we can trace a call to
factorial(3) with this sequence of views of the call stack, showing only the
argument value of n inside each frame and return values left on the top of the
stack:

n: 3 ⇒
n: 2
n: 3 ⇒

n: 1
n: 2
n: 3 ⇒

1
n: 2
n: 3 ⇒

2
n: 3 ⇒ 6

The final value 6 is left on the top of the stack for whatever method called
factorial(3).

Stack Traces

The Java run-time environment will print a stack trace after an exception,
to allow you to see how the problem occurred. A stack trace simply shows the
functions currently on the call stack, beginning at the top. Many debuggers
also allow you to view the call stack during program execution.

Recursion 129

Exercises

1. Draw a call tree for the add(m, n) function in Exercise 1 of the previous
section. Use the tree to determine the O() performance of the function.

2. Draw a call tree for the mul(m, n) function in Exercise 2 of the previous
section. Use the tree to determine the O() performance of the function.

3. Draw a call tree for the pow(m, n) function in Exercise 3 of the previous
section. Use the tree to determine the O() performance of the function.

4. Write a recursive version of pow(m, n) to compute mn for n ≥ 0 that is
O(log n).

5. Count the number of times fib(1) and fib(2) appear in the call tree of
fib(100). Hint: draw the top of the tree, and count the number of times
each of fib(100), fib(99), fib(98), . . . appear. Look for a pattern; the
pattern changes slightly at n = 1. To see that change, look again at the
tree for fib(5).

6. Show how the call stack changes during the evaluation of factorial(4).

7. Show how the call stack changes as a result of calling these recursive
functions from the exercises in the previous section:

(a) add(7, 3)

(b) mul(5, 4)

(c) pow(2, 3)

(d) length("abc")

(e) reverse("Java")

(f) gcd(10, 6)

7.3 Recursive and Generalized Searches
Both linear and binary searches are good candidates for recursion. They
each check one element, and if it is not the target, continue searching on a
smaller list. The same process is used on the smaller list, and so it may be
accomplished by calling the same recursive method.

Linear search from Section 1.3 and binary search in Section 2.3 were also both
only designed for int arrays. As we revisit them, we generalize these searches
to work with other types.

130 A Concise Introduction to Data Structures Using Java

Public Wrapper Methods

There is really only one new concept needed to write recursive versions of
linear and binary search. Recursive functions work by calling themselves on
smaller parameters, but the parameters to linear and binary search leave no
room for that:

linearSearch(data, target)
binarySearch(data, target)

Furthermore, the users of these search methods should not know or care (un-
less it affects performance) whether these methods are implemented by recur-
sion or not, and so we do not want to change the parameter lists of the public
methods.

The solution is to use the public methods as wrappers that call private
recursive methods with additional parameters to drive their recursion:

Public wrapper linearSearch(data, target)

Private recursive linearSearch(data, target, left)

Public wrapper binarySearch(data, target)

Private recursive binarySearch(data, target, left, right)

The new parameters in the private methods control the section of the array
currently being searched, which is what needs to change during the recursion.
Binary search needs two parameters because it can work in from both ends,
whereas linear search only searches from one end.

All the wrapper methods do is get the recursion started with initial values for
the new parameters.

Generalized Linear Search: Objects

The linear search in Listing 1.3 works only with int arrays. To generalize it,
we only need to be able to tell if the target equals an array item. Because the
equals() method is defined in the Object class (see page 23), we can define
linear search on the Object type and then it will work for arrays using any
object type.

Generalized Binary Search: Comparables

Binary search requires more than testing for equality: we need to be able
to compare elements with respect to an ordering that works like less than
or greater than. Recall that Java strings have a compareTo() method (see
Table 1.5) that makes exactly this type of comparison by returning a positive,
negative, or zero integer value. Any type with such a compareTo() method
implements the generic Java Comparable<T> interface in Table 7.1.

Recursion 131

TABLE 7.1: Comparable Interface
int compareTo(T other)
Returns negative if this object is considered less than other, zero if
equal, and positive if greater.

For example, the String class implements Comparable<String>. In general,
classes that implement Comparable should also override equals() in a way
that is consistent with compareTo().

The generalized binary search is designed to work with any type implementing
the Comparable interface.

Generic Methods

Because the Comparable interface is generic, to write a generalized binary
search using that interface, we need to know how to declare a method with
a generic type in it. All of the other generic methods we have written have
been inside generic classes.

Java allows methods to introduce a generic type parameter; this is called
declaring a generic method. The type variables go in between the method
modifiers and the return type, like this:

modifiers <T> returnType name(parameters) { ... }

This allows the type parameter to be used anywhere in the rest of the method
definition. For example,

public static <T> int binarySearch(T[] data, T target) { ... }

defines binarySearch() so that the array type has to match the target type.

We still need to specify that elements of type T are comparable. The rough
idea is expressed like this:

<T extends Comparable<T>>

This says that objects of type T implement the Comparable interface. How-
ever, because of inheritance, that requirement is too restrictive. The right
declaration is:

<T extends Comparable<? super T>>

See Chapter 11 of The Java Programming Language [1] if you are interested
in the details.

Listing 7.2 shows how all of these ideas work together, providing a complete
implementation of recursive binary search as a generic method with public
wrapper.

132 A Concise Introduction to Data Structures Using Java

Listing 7.2: Generalized Recursive Binary Search

1 public static <T extends Comparable<? super T>> int
2 binarySearch(T[] data, T target) {
3 return binarySearch(data, target, 0, data.length - 1);
4 }
5

6 private static <T extends Comparable<? super T>> int
7 binarySearch(T[] data, T target, int low, int high) {
8 if (low > high) return -1;
9 int mid = (low + high) / 2;

10 int result = target.compareTo(data[mid]);
11 if (result == 0) {
12 return mid;
13 } else if (result < 0) {
14 return binarySearch(data, target, low, mid - 1);
15 } else {
16 return binarySearch(data, target, mid + 1, high);
17 }
18 }

Integer[] and int[]

Finally, because these generalized methods are written for object types, they
require arrays of objects rather than arrays of primitive types. In other words,
the new versions of linear and binary search will not work on int arrays.
Java automatically boxes and unboxes individual elements, but it will not
automatically convert between int[] arrays and Integer[] arrays.

Exercises

1. Suppose the Integer array data contains

8, 28, 31, 35, 39, 40, 44, 51

Draw the call tree for each of these calls to the private recursive binary
search function in Listing 7.2:

(a) binarySearch(data, 32, 0, 7)

(b) binarySearch(data, 51, 0, 7)

(c) binarySearch(data, 5, 0, 7)

2. Implement recursive linear search on Object types.

Recursion 133

3. Write a main() method to test recursive linear search from Exercise 2
on an array of:

(a) Integers
(b) Doubles
(c) Strings

4. Write a main() method to test binarySearch() from Listing 7.2 on an
array of:

(a) Integers
(b) Doubles
(c) Strings

5. Determine the O() performance of recursive linear search.

6. Determine the O() performance of recursive binary search.

7. Generalize insertion sort (not recursively) from Listing 2.1 to work on
any comparable type.

8. Generalize selection sort (not recursively) from Exercise 13 in Section 2.2
to work on any comparable type.

9. Modify the Fraction class from Listing 1.5 to implement the Comparable
interface. Assume all denominators are positive for simplicity.

7.4 Applications
The problems we solved with recursion to this point all have simple non-
recursive solutions that may even be preferable to their recursive counterparts.
The point of those examples was to get comfortable with recursion without
too much complication. The three problems in this section use recursion for
their solution in more substantial ways. In fact, you might think about how
to solve them without recursion.

Longest Common Subsequence

Given a string s, a subsequence of s is any string obtained by deleting
any number of characters from s (including none). For example, "acf" is a
subsequence of "abcdef" because the characters b, d, and e were deleted. Any
substring is also a subsequence, but as this example shows, subsequences do
not have to consist of consecutive characters.

134 A Concise Introduction to Data Structures Using Java

The longest common subsequence problem asks to find the longest string
lcs(s1, s2) that is a subsequence of both s1 and s2. For example,

lcs("xayzzbxyczxxdyxx", "ttsatbstcsstdt")

is the string "abcd". This problem arises naturally in genetics when deter-
mining how similar two strands of DNA are.

A recursive lcs(s1, s2) is described in Listing 7.3. This recursive solution is
very inefficient. However, it is the basis of a much more efficient solution using
dynamic programming that you may see in a later algorithms course.

Listing 7.3: Longest Common Subsequence (Pseudocode)

1 If s1 or s2 is empty, return the empty string
2 If first characters match
3 Return matching character + lcs(rest of s1, rest of s2)
4 Else
5 Return longer of lcs(s1, rest of s2) and lcs(rest of s1, s2)

Towers of Hanoi

The Towers of Hanoi is a puzzle with three posts and a stack of disks on
one of the posts that decrease in radius as they go up.

1
2
3
4

0 1 2

The object is to move all of the disks from post 0 to post 2 following these
rules: (1) only one disk may be moved from one post to another per turn, and
(2) a disk may never be moved onto a smaller disk.

The key insight for solving this puzzle is that if we could recursively move
disks 1–3 to post 1, then disk 4 could move to post 2. A second recursive call
could then finish by moving disks 1–3 from post 1 to post 2. To make this
work, both the number of disks and the roles of each post need to be able
to change for each recursive call. That means the recursive function needs
parameters for the number of disks, as well as which post is used for each role:
source, intermediate, and destination.

Listing 7.4 outlines a recursive hanoi(n, src, intermed, dest) based on
these ideas.

Recursion 135

Listing 7.4: Towers of Hanoi (Pseudocode)

1 Move n-1 disks from src to intermed using dest
2 Move disk n from src to dest
3 Move n-1 disks from intermed to dest using src

Backtracking

Problems that involve searching a large number of possibilities can make it
difficult to keep track of where an algorithm “is” currently in the search space.
Example problems of this type include mazes, puzzles such as crosswords or
Sudoku, and discrete optimization problems that attempt to maximize or min-
imize some quantity over a set of discrete objects. Recursive backtracking
solves problems like these by using the call stack to manage where it is and to
allow backing up to try something else if the current search path has failed.

The n-queens problem is a puzzle that requires placing n chess queens on
an n × n board so that none of the queens attack each other. Queens are
allowed to move horizontally, vertically, or diagonally any number of squares.
For example, with n = 4, the following is not a valid solution because two
queens attack each other along a diagonal:

Q
Q

Q
Q

A recursive backtracking solution to the n-queens problem reduces the prob-
lem to placing one queen in each column. Listing 7.5 describes a recursive
queens(board, column) function that moves across the board from left to
right, placing one queen per column.

Listing 7.5: Backtracking Solution To n-Queens (Pseudocode)

1 If finished, display board
2 Else
3 For each row
4 board[column] = row
5 If this is a legal position
6 queens(board, column + 1)

Where is the backtracking in this code? It is managed completely by the
recursion: if queens(board, column + 1) fails to find a solution, the for-loop
advances to check the next possible row.

136 A Concise Introduction to Data Structures Using Java

Exercises

1. Implement Listing 7.3 as a recursive function lcs(s1, s2) to return the
longest common subsequence of strings s1 and s2.

2. Implement Listing 7.4 as a recursive hanoi(n, src, intermed, dest)
to solve the Towers of Hanoi puzzle. Print a message like this for the
middle step of the method:

Move disk 3 from 0 to 2.

Do not forget a base case.

3. Determine the O() performance of the hanoi() function by counting the
number of function calls made with n disks.

4. Implement Listing 7.5 as a recursive function queens(board, column)
to solve the n-queens problem using backtracking.

5. Explain why the recursive backtracking solution to the n-queens problem
finds all solutions to the problem, rather than just one.

Chapter 8
Trees

Trees are non-linear, hierarchical, and recursive data structures with a wide
range of applications. In fact, we have already seen call trees in Section 7.2
as a useful model for tracking recursive computations.

8.1 Definitions and Examples
A tree is a (possibly empty) set of elements called nodes with one node
designated as the root. The root is connected via edges to some number of
child nodes, each of which is itself the root of a subtree. Thus, trees are
naturally recursive. A leaf is a node with no children; an internal node is
any non-leaf. A branch in a tree is a path of connected edges starting at the
root and ending in a leaf. Trees are usually drawn with the root at the top.

For example, in the tree below, 31 is the root, 7 is a child of 5, 24 is a leaf,
and 14 is an internal node.

31

14

37 13 36

24 5

7 31

25

The child relationship between nodes in a tree naturally leads to many other
familial terms for nodes, such as parent, grandparent, sibling, ancestor,
and descendant. Every node has exactly one parent, except for the root
which has no parent.

The depth or level of a node n in a tree is defined recursively:

depth(n) =

{
1 if n is the root
1 + depth(parent(n)) otherwise

The height of a tree is its maximum depth. The tree above has height 3, and
node 25 is on level 2.

137

138 A Concise Introduction to Data Structures Using Java

Among the most common trees are binary trees in which every node has
at most two children, usually named left and right. The following examples
illustrate just a few of the many uses of binary trees.

Expression Trees

Arithmetic expressions can be represented as binary trees by translating each
binary operation to a tree with its operator as the root and its two operands
as the operator’s children. For example, (a+ b) ∗ c can be represented as this
binary tree:

∗

+

a b

c

Such a tree is called an expression tree or parse tree, because it represents
the syntactic structure of the expression.

There is a natural correspondence between subexpressions and subtrees in
expression trees. For example, (a+ b) is a subexpression of (a+ b) ∗ c, and it
occurs as the left subtree of the expression tree, since it is the left operand of
the multiplication:

(a+ b) ≈

∗

+

a b

c

Thus, when drawing expression trees, it may be easier to start with subex-
pressions and build the tree from the bottom up rather than trying to work
from the top down.

Example

The expression tree corresponding to (a− c) ∗ d+ f

b+ e
is:

+

∗

−

a c

d

÷

f +

b e

Notice the subtrees corresponding to subexpressions such as (a−c), (a−c)∗d,
and b+ e.

Trees 139

Binary Search Trees

A binary search tree is a binary tree containing comparable values in which
the following property is true at every node p:

Every value in
left subtree of p < Value at p <

Every value in
right subtree of p

For example, here is a small binary search tree:

23

14

8 19

57

The inequalities above are strict because we assume binary search trees do
not contain duplicate elements; see Exercise 6 in Section 9.4 for the reason.
We will study binary search trees in depth in Chapter 9.

Representing General Trees as Binary Trees

Requiring every node in a tree to have at most two children might sound like
a serious limitation compared with allowing any number of children at any
node. At the same time, writing code that will store any number of children
will be far more complicated than nodes with two children, left and right.

Are general trees “more powerful” than binary trees in the sense that they can
store relationships that binary trees cannot? The answer is no: any tree can
be stored as a binary tree and converted back.

The left child/right sibling convention takes an arbitrary tree and has each
node point to its first child (if any) on the left, and its next sibling (if any) on
the right. For example, given this general tree:

15

2

46 8

33 19

5 22 61

24

the associated binary tree begins with 15 at the root and 2 on its left as its
first child. As the root, 15 has no siblings so has no right child:1

15

2

1Siblings of the root could be considered other roots in the same forest. This allows an
entire forest of general trees to be represented by one binary tree.

140 A Concise Introduction to Data Structures Using Java

Then 2 has 46 on the left as its first child and 33 on the right as its next
sibling:

15

2

46 33

The entire associated binary tree is:

15

2

46

8

33

19

5

22

61

24

Exercises

1. In a binary expression tree, what type of node are operators always in?

2. In a binary expression tree, what type of node are operands always in?

3. Draw a binary expression tree for each of these arithmetic expressions:

(a) x+ y + z ∗ w − v

u

(b)
a ∗ b
c
− d+ f ∗ g + h

(c) (x+ y + z) ∗ w − v
u

(d)
x ∗ y

z − w + v ∗ u
4. For each of these lists of elements, draw three binary search trees of

different heights containing exactly these items:

(a) 19, 27, 38, 42, 48, 49, 62

(b) 6, 10, 61, 77, 81, 84, 94

(c) 27, 48, 56, 61, 63, 76, 89

5. Determine the maximum height of a binary search tree with n nodes.

Trees 141

6. Determine the minimum height of a binary search tree with n nodes.

7. Draw the associated binary tree for each of these general trees using the
left child/right sibling convention:

(a)
58

53 63

50 89 75

13

20 37

91

(b)
90

23 12 9

42 33 58 17

94 8

8. Draw the associated general tree for each of these binary trees using the
left child/right sibling convention:

(a)
56

79

24 87

74

81

43 61

75

62

(b)
96

87

54

39 35

26

16

15

92

76

9. Draw a binary tree with five nodes that is its own associated general
tree using the left child/right sibling convention.

142 A Concise Introduction to Data Structures Using Java

8.2 Traversals
Recall that a tree has a root and then some number of children, each of which
is itself the root of a subtree. This recursive structure—that trees are built
from subcomponents that are also trees—leads to recursive traversal methods
for binary trees. As with linked lists (see Section 6.3), a traversal of a tree
is a method that visits every node in the tree.

Depth-First

If the tree is binary, then there are three ways to naturally order the steps of
a recursive traversal, depending on when the node itself is visited:

Preorder (node, left, right) visits the node, traverses the left subtree, and
traverses the right subtree.

Inorder (left, node, right) traverses the left subtree, visits the node, and
traverses the right subtree.

Postorder (left, right, node) traverses the left subtree, traverses the right
subtree, and visits the node.

Visiting a node just refers to whatever a method needs to do with each node,
such as printing, counting, or modifying the node.

Each of these traversals is depth-first because it traverses all the way down
some branch before backtracking to reach other nodes. Depth-first traversals
may be defined for other trees, as well, but we limit our use to binary trees.

Example

Consider this binary tree:

19

49

22 12

8 54

51

43 6

By hand, the preorder traversal is probably easiest because nodes are visited
first as you reach each subtree:

19 19L 19R
19 49 49L 49R 19R
19 49 22 49R 19R
19 49 22 12 8 54 19R
19 49 22 12 8 54 51 43 6

Trees 143

Inorder traversal, on the other hand, benefits from a top-down view:
19L 19 19R

49L 49 49R 19 51L 51 51R
22 49 12L 12 12R 19 43 51 6
22 49 8 12 54 19 43 51 6

If you write inorder traversals from beginning to end rather than top-down,
then you need to keep track of when subtrees are finished. For example, after
node 54, when the left subtree of 19 is finished, then you need to remember to
visit the 19 node. Postorder is similar to inorder except that the node itself
comes last:

19L 19R 19
49L 49R 49 51L 51R 51 19
22 12L 12R 12 49 43 6 51 19
22 8 54 12 49 43 6 51 19

Breadth-First

A breadth-first traversal visits nodes in level order: level 1 first, then level
2, and so on. Like preorder traversals, the root will always be visited first in
a breadth-first traversal. Breadth-first traversals are not naturally recursive.
In fact, relative to the connections that exist between parents and children, a
breadth-first traversal appears to jump around the tree.

Using a queue to keep track of the next nodes to visit leads to the nice al-
gorithm in Listing 8.1. Because any number of children may be enqueued in
step 4, the breadth-first traversal algorithm may be used with any tree.

Listing 8.1: Breadth-First Traversal (Pseudocode)

1 Enqueue root
2 While queue is not empty
3 Dequeue and visit node
4 Enqueue children of node

Example

Breadth-first traversals are easy by hand because you just trace across the
levels. To see how the queue works in Listing 8.1, consider this small binary
tree:

41

32

40 3

15

8

144 A Concise Introduction to Data Structures Using Java

Then the sequence of operations looks like this:

Dequeue and Visit Enqueue Queue Contents
41 41

41 32, 15 32, 15
32 40, 3 15, 40, 3
15 8 40, 3, 8
40 3, 8
3 8
8

Exercises

1. Describe the base case for the three recursive depth-first traversals.

2. List the order in which nodes are visited using each of these traversals
on the tree below:

47

13

36 4

85 82

60

93

3

13

(a) Preorder
(b) Inorder
(c) Postorder
(d) Breadth-first Show how the queue contents change using List-

ing 8.1, as in the example above.

3. List the order in which nodes are visited using each of these traversals
on the tree below:

72

16

69

95

98

87

42

40

23 43
(a) Preorder
(b) Inorder
(c) Postorder
(d) Breadth-first Show how the queue contents change using List-

ing 8.1, as in the example on page 143.

Trees 145

4. Give preorder, postorder, and inorder traversals of your answers to Ex-
ercise 3 from Section 8.1.

5. Describe the effect of each of the depth-first traversals on a binary ex-
pression tree.

6. Draw a binary expression tree corresponding to each of these:

(a) Postorder traversal is: a b c d e * + / -

(b) Postorder traversal is: a b * c + d e / -

(c) Preorder traversal is: / - a b * + c d e

(d) Preorder traversal is: + - a * b c / d e

7. Give preorder, postorder, and inorder traversals of your answers to Ex-
ercise 4 from Section 8.1.

8. Describe the effect of an inorder traversal on a binary search tree.

9. Draw a binary search tree corresponding to each of these:

(a) Breadth-first traversal is: 142 41 191 752 532 787 408 743 962 373

(b) Breadth-first traversal is: 81 26 561 509 921 265 586 899 693 779

(c) Breadth-first traversal is: 654 209 833 208 318 679 99 521 422 461

10. Listing 8.1 shows how a queue is used for a breadth-first traversal. Is
there a natural role for a stack in the depth-first traversals? If so, de-
scribe it; if not, explain why not.

8.3 Binary Tree Abstract Class

As a prelude to implementing binary search trees in Chapter 9, this section
develops a general BinaryTree class to represent any binary tree. It defines
the basic structure common to any binary tree: a root, a node structure, and
traversal methods. However, it will not be used for creating objects. It is
designed only to be extended by more specific classes like BinarySearchTree.

Table 8.1 gives the public API of the BinaryTree class. (Since BinaryTree is a
class and not an interface, we are not considering it an ADT.) The toString()
method will also be overridden to return one of these traversals.

146 A Concise Introduction to Data Structures Using Java

TABLE 8.1: Binary Tree API
String breadthFirst()
Returns breadth-first traversal of this tree.

String inorder()
Returns preorder traversal of this tree.

String preorder()
Returns preorder traversal of this tree.

String postorder()
Returns preorder traversal of this tree.

Abstract Classes

Java abstract classes are intended for exactly this purpose: providing part
of a class implementation but not a complete one. An abstract class may not
be used to create objects; it can only be extended via inheritance. Objects
are created by concrete classes that extend the abstract class and are not
abstract themselves.

The syntax for declaring an abstract class is to include the abstract keyword
as a modifier in the class definition:

public abstract class AbstractClass { ... }

Abstract classes may be generic and include type parameters. They may
define fields, methods, and constructors, although constructors are usually
declared protected because they are not meant to be called directly. In fact,
protected visibility is common in abstract classes because they are designed
to be extended.

Binary Tree Class

Listing 8.2 begins the BinaryTree implementation as an abstract class. Notice
its use of all three levels of visibility. The root and Node class (along with the
components of the Node class) are protected so they can be used by subclasses.
The preorder() method is part of the public interface and acts as a wrapper
to call a private recursive function. Not even subclasses have a need to know
about the private recursive function.

Also notice how toString() is used in Listing 8.2. The Node class overrides
toString(), returning data.toString() on line 24. Once this method has
been written, nodes can be inserted into string expressions with ease, as on
line 10 of the recursive preorder() method. This allows other methods in the
BinaryTree class and its subclasses to think in terms of nodes rather than
their components when building strings.

The exercises ask you to finish the implementation.

Trees 147

Listing 8.2: Binary Tree

1 public abstract class BinaryTree<E> {
2 protected Node<E> root;
3

4 public String preorder() {
5 return preorder(root);
6 }
7

8 private String preorder(Node<E> n) {
9 if (n == null) return "";

10 return (n + " " + preorder(n.left) + " " +
11 preorder(n.right)).trim();
12 }
13

14 protected static class Node<T> {
15 protected T data;
16 protected Node<T> left, right, parent;
17

18 protected Node(T data, Node<T> parent) {
19 this.data = data;
20 this.parent = parent;
21 }
22

23 public String toString() {
24 return data.toString();
25 }
26 }
27 }

Exercises

1. Add these public methods to the BinaryTree class in Listing 8.2:

(a) inorder() Use a private recursive traversal.

(b) postorder() Use a private recursive traversal.

(c) toString() Call one of the traversals.

2. Write a public breadthFirst() traversal method for the BinaryTree
class in Listing 8.2. Implement the algorithm from Listing 8.1, using
your own queue class and a StringBuilder to accumulate the results.
Set up the queue to store Node<E> objects, and be careful not to put
null entries in the queue.

148 A Concise Introduction to Data Structures Using Java

3. The call to trim() in line 11 of Listing 8.2 cleans up some extra spaces,
but it can still leave different numbers of internal spaces between items
in preorder and postorder traversals. Fix this problem so that there is
always one space between elements in the traversals.

Project: A Collection Hierarchy

You may have noticed some code duplication with the stack, queue, and list
data structures. Abstract classes can help reduce that duplication by defining
common fields and methods. There is no one best way to decide what goes
into an abstract superclass, but the idea is to aim for a design that minimizes
duplicate code.

If we map out what was common among stacks, queues, and lists, it looks
something like this:

All of the structures had size() and isEmpty() methods. Some also included
a size instance variable.

Array structures all had a data array instance variable, two constructors,
and a resize() method. The queue needed its own specialized version
of resize() and had a separate capacity instance variable.

Linked structures defined a private node class and had at least a head in-
stance variable.

These common features suggest the following inheritance hierarchy:

Collection<E>

ArrayCollection<E>

ArrayStack<E>

ArrayQueue<E>

ArrayList<E>

LinkedCollection<E>

LinkedStack<E>

LinkedQueue<E>

LinkedList<E>

Remember that in addition to inheriting fields and methods from their su-
perclass, subclasses may define new fields and methods, as well as override
existing methods.

Trees 149

Exercises

1. Develop a Collection hierarchy as described above. Write the necessary
abstract classes and modify the concrete classes to participate in the
hierarchy.

Although a general approach is suggested, you will still need to make
specific design decisions along the way. Write a short report explaining
the choices you make, including how you approached those decisions and
the alternatives you considered.

Chapter 9
Binary Search Trees

The next several chapters focus on data structures that provide fast search,
insertion, and deletion. Binary search trees generally give very good perfor-
mance on all three of these operations. Recall from Section 8.1 that we assume
binary search trees do not contain duplicate elements.

Table 9.1 lists the public API of the the BinarySearchTree class.

TABLE 9.1: Binary Search Tree API
void add(E item)
Adds item to tree if not already present.

boolean contains(E item)
True if item is in tree.

E min()
Returns smallest item in tree.

E max()
Returns largest item in tree.

E pred(E item)
Returns inorder predecessor of item in tree.

boolean remove(E item)
True if item is found and removed from tree.

E succ(E item)
Returns inorder successor of item in tree.

We begin with methods that query the tree.

9.1 Queries
Binary search trees are built for fast searching using an algorithm just like
binary search from Section 2.3. That algorithm required a sorted list, but
a binary search tree can be considered sorted if we use an inorder traversal.
Unlike a sorted list, however, many different binary search trees can be built
from the same set of elements.

151

152 A Concise Introduction to Data Structures Using Java

Search

The definition of binary search tree on page 139 is, as its name implies, built
for binary search:

Every value in
left subtree of p < Value at p <

Every value in
right subtree of p

The recursive algorithm for searching a binary search tree is based on com-
paring the search key to a node’s data value, beginning at the root. If the key
matches the node’s data value, it is found; otherwise, search in the left subtree
if the key is smaller than the node’s value or search in the right subtree if it
is larger. If the current node is ever null, then the item is not in the tree.

Listing 9.1 begins the BinarySearchTree class with the contains() method
and a private recursive findNode(). All binary search tree methods will be
written in the same way, with a public wrapper calling a private node-based
method, which may or may not be recursive. The findNode() method will
also be useful for other methods. Notice its similarity to the original binary
search in Listing 2.3 and recursive binary search in Listing 7.2.

Listing 9.1: Binary Search Tree Search

1 public class BinarySearchTree<E extends Comparable<? super E>>
2 extends BinaryTree<E> {
3 public boolean contains(E item) {
4 return findNode(item, root) != null;
5 }
6

7 private Node<E> findNode(E item, Node<E> n) {
8 if (item == null || n == null) return null;
9 int result = item.compareTo(n.data);

10 if (result == 0) {
11 return n;
12 } else if (result < 0) {
13 return findNode(item, n.left);
14 } else {
15 return findNode(item, n.right);
16 }
17 }
18 }

The BinarySearchTree class extends the BinaryTree class from Section 8.3.
And as in Section 7.3, the type parameter E needs to be declared as

<E extends Comparable<? super E>>

to guarantee that elements are comparable.

Binary Search Trees 153

Minimum and Maximum

The structure of a binary search tree allows easy access to the largest and
smallest elements in the tree. The smallest element is found by following left
links as far as possible, and the largest is found by following right links as far
as possible:

71

15

3
min

32

65

88

82

83

99
max

Thus, the minimum of this tree is 3 and the maximum is 99. These algorithms
can also be applied to any subtree to find the largest and smallest elements
of the subtree by simply beginning at the root of the subtree. For example,
going right as far as possible from 15 leads to 65, which is the maximum of
the subtree rooted at 15.

Predecessor and Successor

The predecessor of an element in a binary search tree is the element that
precedes it during an inorder traversal. The successor is defined similarly as
the element immediately following. The minimum in a tree has no predecessor,
and the maximum has no successor.

The predecessor is easy to find if the node has a left subtree: it is the maximum
of the left subtree. For example, the predecessor of 71 in the tree above is 65
because, as we found, 65 is the maximum of the left subtree rooted at 15.

However, if there is no left subtree, we need to move up the tree to find the
predecessor. Consider the node 82 in the same tree. The predecessor of 82
is found by moving up toward the root using parent links until a right-child
relationship is found. In this example, the link between 82 and 88 is a left-
child relationship, but the link between 71 and 88 is a right-child. Thus, 71
is the predecessor of 82:

71

15

3 32

65

88

82

83

L

99

R

Listing 9.2 gives the code for both the public pred() method and its private

154 A Concise Introduction to Data Structures Using Java

helper predNode(). Notice that pred() uses findNode() to get started, and
then predNode() uses a private maxNode() helper (see Exercise 5b) for the case
when n.left is not null.

Listing 9.2: Binary Search Tree Predecessor

1 public E pred(E item) {
2 Node<E> n = findNode(item, root);
3 if (n == null) return null;
4 Node<E> pred = predNode(n);
5 return (pred != null) ? pred.data : null;
6 }
7

8 private Node<E> predNode(Node<E> n) {
9 if (n.left != null) return maxNode(n.left);

10 Node<E> p = n.parent;
11 while (p != null && p.right != n) {
12 n = p;
13 p = n.parent;
14 }
15 return p;
16 }

Conditional Operator

Line 5 of Listing 9.2 uses the Java conditional operator. The conditional
operator “?:” creates an expression via this syntax:

test ? valueIfTrue : valueIfFalse

This expression has the value valueIfTrue if the boolean test is true; other-
wise, it has the value valueIfFalse. For example, the expression in line 5:

return (pred != null) ? pred.data : null;

returns pred.data if pred is not null, and returns null otherwise. It is exactly
equivalent to the longer

if (pred != null) {
return pred.data;

} else {
return null;

}

Binary Search Trees 155

Conditional expressions are useful for assignments or return statements like
this that involve a quick test. Parentheses around the test are optional, but
those in Listing 9.2 mimic the required parentheses in an if-statement.

Performance

All of the above queries in a binary search tree are O(h), where h is the height
of the tree. We postpone analyzing these operations in terms of n, the number
of nodes in the tree, until Section 9.4.

Exercises

1. Use this binary search tree to answer the questions below.

24

20

13

5

8

14

23

68

45

27

75

69

(a) List nodes in the order they are visited in a search for the key 14.

(b) List nodes in the order they are visited in a search for the key 51.

(c) List nodes in the order they are visited in a search for the key 22.

(d) List nodes in the order they are visited in a search for the key 69.

(e) Determine the minimum and maximum elements in the tree.

(f) Determine the predecessor and successor of 13 in the tree.

(g) Determine the predecessor and successor of 24 in the tree.

(h) Determine the predecessor and successor of 27 in the tree.

(i) Determine the predecessor and successor of 68 in the tree.

2. Give one reason the binary tree Node class in Listing 8.2 includes a parent
reference.

3. Describe the base case(s) for the recursion in the findNode() method of
Listing 9.1.

4. Could the predNode() method of Listing 9.2 be written recursively?
Explain why or why not.

156 A Concise Introduction to Data Structures Using Java

5. Implement the following methods in the BinarySearchTree class:

(a) min() Write a private minNode(n) that returns the node with the
smallest item in the subtree rooted at n.

(b) max() Write a private maxNode(n) that returns the node with the
largest item in the subtree rooted at n.

(c) succ() Write a private succNode(n) that returns the node con-
taining the successor of n.
Note: minNode() is needed for succNode().

(d) toString() Override the BinaryTree definition to force an inorder
traversal.

6. If your solution to Exercise 5a used a recursive minNode(), write a non-
recursive version, or vice versa.

7. If your solution to Exercise 5b used a recursive maxNode(), write a non-
recursive version, or vice versa.

8. Explain why each of these binary search tree queries is O(h), where h is
the height of the tree:

(a) Search
(b) Minimum
(c) Maximum
(d) Predecessor
(e) Successor

9.2 Insertion
Inserting into a binary search tree follows the same pattern as search. In
fact, an unsuccessful search ends at a null pointer that is exactly where the
item should be inserted. This idea is the basis for the add() method of the
BinarySearchTree class.

For example, to insert 24 in this binary search tree, the search path ends left
of 26:

49

23

15 26

56

71

64 87

Binary Search Trees 157

As with queries from the previous section, the public method add() will call
a private addNode().

The add() method handles a null item or changing the root. It should do the
following:

If the item to insert is null, do nothing
If the root is null, insert item at root
Else start addNode at the root

The private addNode() method is outlined in Listing 9.3. It has the same
structure as findNode(), except that it checks for a null child before making
its recursive calls. If the child in the correct direction is null, that is the place
to insert a new node.

Unlike findNode() and predNode(), addNode() is a void method because its
purpose is to insert a new node rather than to return a particular node. You
will be asked to implement this algorithm in the exercises.

Listing 9.3: Binary Search Tree Insertion (Pseudocode)

1 // Assume item != null and n != null
2 If item < n.data
3 If no left child, insert as n.left
4 Else call recursively on n.left
5 Else if item > n.data
6 If no right child, insert as n.right
7 Else call recursively on n.right
8 Else do nothing (to prevent inserting duplicates)

Java Assertions

Notice the comment on line 1 of Listing 9.3. If the public add() method has
done its job as described above, then neither the item nor the node n are
null at the start of addNode(). Furthermore, those conditions should continue
to be true at the start of any recursive call of addNode(). Such a boolean
condition that is expected to be true at the start of a method call is known
as a precondition of the method.

Unfortunately, comments are not executable, so there is nothing preventing
the programmer from making a mistake and violating the precondition. A
Java assert statement essentially makes the comment executable:

private void addNode(E item, Node<E> n) {
assert item != null && n != null;
...

}

158 A Concise Introduction to Data Structures Using Java

The syntax of an assertion is simple:

assert booleanCondition;

When assertions are enabled, this statement throws an AssertionError if
the condition is false; otherwise, it does nothing. Assertions are disabled by
default, so to enable them, use the “-ea” or “-enableassertions” flag on the
command line or add it to the list of runtime options in your IDE.

Assertions may also be used to check postconditions, expected to be true
at the end of a method call, or more general invariants that are expected to
remain true at any particular point in the code.

Exercises

1. Draw the binary search tree that results from inserting each of these
sequences of elements into an empty tree:

(a) 9, 10, 33, 43, 73, 47, 27, 67, 36, 49, 59, 89

(b) 74, 25, 94, 96, 67, 54, 69, 80, 38, 5, 23, 43

(c) 69, 49, 59, 21, 61, 82, 44, 91, 36, 1, 95, 74

(d) 5, 38, 39, 94, 95, 85, 44, 88, 60, 33, 1, 73

(e) 98, 65, 20, 44, 49, 97, 38, 75, 29, 43, 30, 79

2. Describe the base case(s) for the recursion in Listing 9.3.

3. Implement binary search tree insertion by writing these methods in the
BinarySearchTree class:

(a) add() See the discussion on page 157.

(b) addNode() Implement Listing 9.3. Use an assertion to test the
precondition, and remember to set the parent reference of the new
node.

4. Add assertions to the following methods in the BinarySearchTree class
to test appropriate preconditions:

(a) predNode()

(b) succNode()

5. Write a main() method for the BinarySearchTree class to insert random
integers into a binary search tree and print the result.

Binary Search Trees 159

6. Modify the previous exercise to test each of these queries:

(a) contains()

(b) min()

(c) max()

(d) pred()

(e) succ()

7. Write a main() method for the BinarySearchTree class to insert several
strings into a binary search tree and print the result.

8. Determine the O() performance of binary search tree insertion in terms
of h, the height of the tree. Explain your answer.

9.3 Deletion
Deleting from a binary search tree is more complex than other tree operations
because it may have to change the internal structure of the tree. For example,
insertion is simpler because the new node is always a leaf, which means there
is no impact on the rest of the tree.

The first step is to understand how deletion works on paper. Remember that
the end result always has to be a valid binary search tree.

Deleting By Hand

The process for deleting a node in a binary search tree depends on the number
of children it has.

0 Children Deleting a leaf by hand is easy because it doesn’t affect the rest
of the tree. For example, deleting 12 in this tree simply removes that
node:

38

25

12 31

28

51

61

54 76

⇒

38

25

31

28

51

61

54 76

160 A Concise Introduction to Data Structures Using Java

1 Child Deleting a node with one child such as 51 is also not difficult, since
we can move its one child 61 up to replace it:

38

25

12 31

28

51

61

54 76

⇒

38

25

12 31

28

61

54 76

2 Children However, there is no obvious way to delete a node with two
children without disrupting the binary search tree. Consider deleting 38
in the tree we just finished with:

38

25

12 31

28

61

54 76

Neither of its children can take 38’s place at the root: if 25 moves up,
there would be nodes on its left that are too big, and similarly, if 61
moves up, there would be nodes on its right that are too small. (It
is also not clear how we would handle the children of 25 or 61.) The
solution we adopt is to look elsewhere for a replacement: the inorder
predecessor, in this case, 31. It has the right relationship with the other
elements in the tree to take the position of 38:

12 25 28 31 38 54 61 76

For the same reason, the inorder successor could also be used.

This approach to deleting a node n with two children involves two steps:

1. Copy the predecessor’s value to n.
2. Delete the predecessor node.

For example, to delete 38 in this tree, find its predecessor, 31, and copy
that value to where 38 was:

38

25

12 31

28

61

54 76
⇒

31

25

12 31

28

61

54 76

Binary Search Trees 161

Then delete the predecessor node:

31

25

12 28

61

54 76

The result is a legal binary search tree without the node 38.

To develop the deletion algorithm, we combine the first two cases into one
because they need to do essentially the same work.

Nodes without Two Children

Deleting a node with one child involves replacing that node with its child. But
deleting a node with no children can be viewed in the same way: we replace
that node with one of its children—it’s just that the child happens to be null.
Thus, we develop a replace(n, child) method that replaces the given node
with its child in the tree, and allow for the fact that the child may be null.

There are still three cases to consider, depending on the relationship of n with
its parent: it might have no parent (being the root), be a left child, or be a
right child:

n

child

parent

n

child

parent

n

child

Replacing n with child in each of these cases is straightforward. Exercise 5b
asks you to implement this replace() method.

Putting everything together leads to Listing 9.4, which outlines the private
recursive removeNode() helper method.

Exercises

1. Suppose a node n has two children in a binary search tree.

(a) Explain where in the tree the predecessor of n must be located.

(b) Determine the number of children the predecessor of n has. Explain
your answer.

2. Is it always true that the predecessor of a node in a binary search tree
has no right child? Explain why or why not.

162 A Concise Introduction to Data Structures Using Java

Listing 9.4: Binary Search Tree Deletion (Pseudocode)

1 If n.left is null
2 Replace n with n.right
3 Else if n.right is null
4 Replace n with n.left
5 Else
6 Find predecessor of n
7 Copy data from predecessor to n
8 Recursively delete predecessor

3. Draw the binary search tree that results from each of the deletions listed
below. In each case, start over with the original tree.

24

20

13

5

8

14

23

22

21

50

45

27

26 38

46

75

69

53 71

(a) Delete 45

(b) Delete 75

(c) Delete 5

(d) Delete 20

(e) Delete 24

(f) Delete 50

4. For each of these sequences of elements, first draw the binary search tree
created by inserting the sequence into an empty tree. Then determine
the order in which the elements are removed if the root of the tree is
repeatedly deleted until the tree is empty.

(a) 58, 77, 98, 30, 93, 26, 46

(b) 64, 38, 6, 36, 57, 62, 40

Binary Search Trees 163

5. Implement binary search tree deletion in the BinarySearchTree class by
writing these methods:

(a) remove() Finds the node to delete and then calls the private
removeNode() method, returning its (boolean) result.

(b) replace() Private helper method outlined on page 161. The child
may be null, but if it is not null, it will need an updated parent
reference.

(c) removeNode() Implement Listing 9.4, returning true if the dele-
tion is successful.

6. Line 8 of Listing 9.4 suggests using recursion to delete the predecessor.

(a) Determine the maximum number of times this recursive function
could be called (to delete one element).

(b) Rewrite this step of removeNode() to directly remove the predeces-
sor without recursion.

7. Modify Exercise 5 from Section 9.2 to remove the random items, one by
one, printing the resulting tree after each deletion. Store the entries in
an array as they are inserted so that you have them available to remove.

8. Determine the O() performance of binary search tree deletion in terms
of h, the height of the tree. Explain your answer.

9.4 Performance
We began this chapter by expressing the goal of a data structure that provides
fast search, insertion, and deletion. To see how well binary search trees per-
form, it will help to review a few simpler alternatives. The tables below show
a single entry for searches because both successful and unsuccessful searches
exhibit similar O() performance, but keep in mind that in other circumstances,
they may be different.

Unsorted Lists

An unsorted list could be implemented with either an array or linked list.
Both display similar worst-case performance characteristics:

Search Insert Delete
Unsorted Array O(n) O(1) O(n)
Unsorted Linked List O(n) O(1) O(n)

164 A Concise Introduction to Data Structures Using Java

Sorted Lists

Sorted lists provide a potential advantage over unsorted lists in searching.
This gain is only for arrays, however, and even there, comes at a cost of
slower insertion:

Search Insert Delete
Sorted Array O(log n) O(n) O(n)
Sorted Linked List O(n) O(n) O(n)

Binary Search Trees

Our analysis of binary search trees to this point has been in terms of h, the
height of the tree. Their general performance is:

Search Insert Delete
Binary Search Tree O(h) O(h) O(h)

Analyzing these operations in terms of the number of nodes in the tree, n,
requires translating from h to n. The basic relationship between n and h is:

log n < h ≤ n

This numeric relationship is expressed visually by the vastly different shapes
binary search trees can have. Consider the two extremes when n = 7:

3

1

0 2

5

4 6

h ≈ log n

0

1

2

3

4

5

6

h ≈ n

Thus, the worst-case performance for search, insert, and delete in terms of n
does not look good:

Search Insert Delete
Binary Search Tree (Worst Case) O(n) O(n) O(n)

Binary Search Trees 165

The best case is much better:

Search Insert Delete
Binary Search Tree (Best Case) O(log n) O(log n) O(log n)

but we should be skeptical of best-case performance most of the time.

Intuitively, most trees will fall somewhere in between, but what will their
performance (and shape) look like? What is the shape of an “average” binary
search tree? One approach is to consider random elements added to an empty
binary search tree. In that case, h is O(log n) (see Cormen et al. [6] for a
proof), and so we can expect that performance with random data:

Search Insert Delete
Binary Search Tree (Random) O(log n) O(log n) O(log n)

It is important to understand this feature of binary search trees. Their per-
formance is generally fast for all operations, O(log n), but this bound is not
guaranteed. All that is guaranteed is O(h), and the worst case is still O(n).
Balanced binary search trees use various techniques to guarantee that h
is O(log n); see Cormen et al. [6] for the example of red-black trees.

Exercises

1. Briefly explain each of the entries for the worst-case performance of
unsorted lists.

2. Briefly explain each of the entries for the worst-case performance of
sorted lists.

3. Explain why log n < h ≤ n in any binary tree, where h is the height of
the tree and n is the number of nodes in the tree.

4. Average-case performance is easier to analyze for unsorted and sorted
lists than binary search trees.

(a) Create a table of the average-case performance of search, insert,
and delete for unsorted lists, explaining each entry.

(b) Create a table of the average-case performance of search, insert,
and delete for sorted lists, explaining each entry.

5. Draw all 14 different binary search trees with n = 4 elements, and then
use them to calculate the average height of a binary search tree of size
four.

166 A Concise Introduction to Data Structures Using Java

6. A simple method of allowing duplicate entries in a binary search tree is
to change the insertion algorithm in Listing 9.3 to add duplicates in one
direction:

If data < n.data
Insert on left

Else
Insert on right

(a) Modify your code to use this algorithm.

(b) Describe why this strategy may have a negative impact on perfor-
mance.

(c) Outline a different strategy that should reduce this negative impact.

(d) Implement your strategy.

7. Deleting the predecessor instead of the original node when a node has
two children may have a negative impact on performance over time.

(a) Explain the reason for this effect.

(b) Outline a different deletion strategy that should reduce this nega-
tive impact.

Chapter 10
Heaps

The heap data structure provides fast search, insertion, and deletion by lim-
iting the type of searches and deletions it will do. Like binary search trees,
heaps are binary trees, but they allow a looser relationship between elements
in order to guarantee their height is always O(log n).

10.1 Priority Queue Interface and Array-Based Heaps
Priority queues and heaps are closely related because heaps are often used
as the underlying data structure for the priority queue interface. However,
other structures may be used to implement priority queues, and heaps have
purposes beyond just implementing the priority queue interface.

Priority Queue Interface

A priority queue is an ordered structure in which items are removed in pri-
ority order rather than first-in, first-out like a regular queue. We assume that
priorities are assigned by the way in which the items in the queue implement
the Comparable interface.

The main operations in a priority queue are to insert a new item and to remove
the item in the queue with highest priority. Thus, the ADT in Table 10.1 is
very similar to that of a regular queue.

If you consider the other data structures we have studied (see Exercise 3),
none of them quite fit this interface. Heaps, on the other hand, work nicely.

Heap Data Structure

There are actually two types of heaps, max-heaps and min-heaps, since notions
of priority can be based on having either larger or smaller values.

Max-Heaps are complete binary trees (defined shortly) in which every ele-
ment has value greater than or equal to that of its children.

167

168 A Concise Introduction to Data Structures Using Java

TABLE 10.1: Priority Queue ADT
void add(E item)
Inserts item into priority queue.

boolean isEmpty()
True if priority queue has no elements.

E peek()
Returns highest priority item without removing.

E remove()
Removes and returns highest priority item.

int size()
Number of elements in priority queue.

Min-Heaps are complete binary trees in which every element has value less
than or equal to its children.

This requirement that parents have a larger or smaller value than their children
is known as the heap property.

The most important consequence of the heap property is that the largest
element in a max-heap is always at the top of the heap. Similarly, the smallest
element in a min-heap is at the top. This makes finding the item with highest
priority easy in a heap.

Complete Binary Trees

A complete binary tree is a binary tree in which every level except the last
has all possible nodes, and on the last level, nodes fill in from the left. For
example, the tree on the left is complete but the tree on the right is not:

*

*

*

* *

*

* *

*

*

*

*

Complete

*

*

*

* *

*

*

*

*

*

* *
Not Complete

The reason for defining “complete” in this way is that it allows for an efficient
array implementation.

Array-Based Binary Trees

General binary trees benefit from the flexibility of a node-based implemen-
tation because of the wide variety of shapes they can have. Putting a tight

Heaps 169

restriction on the tree shape by requiring it to be complete leads to an efficient,
array-based alternative to using linked nodes.

The idea is to store the complete tree at the beginning of the array, starting
with the root and moving down by levels. For example, in a heap of size 12,
there is this correspondence between tree locations and array indices:

0

1

3

7 8

4

9 10

2

5

11

6

Requiring the tree to be complete is the same as making sure there are no
wasted gaps between elements in the array.

Example

Here is an example of a max-heap with ten elements:

98

95

93

88 66

90

20

49

30 47

There appears to be less organization than in a binary search tree, because,
for example, the left half of the heap has really no relationship with the right
half, except that both contain values less than the root. Stored in an array,
this heap looks like:

0 1 2 3 4 5 6 7 8 9

98 95 49 93 90 30 47 88 66 20

Parents and Children

To maintain the heap property, we often need to compare the values between
parents and their children. Thus, it is helpful to work out the relationship
between the array index of a node and those of its parent and children. Using
the diagram of indices above, for the node at index i:

parent(i) = (i− 1)/2 (using integer division)
left(i) = 2i+ 1

right(i) = 2i+ 2

170 A Concise Introduction to Data Structures Using Java

Nicer formulas result if the heap starts at index 1, but that decision compli-
cates other code later.

Generic Arrays of Comparable Elements

The method we have used to create generic arrays does not work if the type
parameter E extends the Comparable interface. The statement

arrayRef = (E[]) new Object[LENGTH];

compiles, but if E is declared to extend Comparable:

<E extends Comparable<? super E>>

then the array creation fails at runtime because the Object type is not guar-
anteed to implement Comparable.

The solution is to create the array using Comparable instead of Object:

arrayRef = (E[]) new Comparable[LENGTH];

An alternative that avoids this problem is to declare the array to have type
Object[] instead of E[], but then every array access must be cast to type E.

Exercises

1. Show the results of these operations on an initially empty integer priority
queue named pq. Give the return value of each non-void operation, and
assume that larger values have higher priority. Give the queue contents
as a list sorted largest to smallest.

(a) pq.add(5)
pq.add(8)
pq.peek()
pq.add(3)
pq.remove()
pq.add(10)
pq.size()
pq.add(4)
pq.remove()
pq.remove()

(b) pq.add(10)
pq.add(20)
pq.add(30)
pq.add(40)
pq.peek()
pq.add(50)
pq.remove()
pq.size()
pq.remove()
pq.remove()

2. Write a generic Java interface PriorityQueue<E> for the Priority Queue
ADT in Table 10.1.

Heaps 171

3. Determine the O() worst-case performance for the add() and remove()
methods in the Priority Queue interface if each of these data structures
were to be used for the underlying implementation:

(a) Unsorted array

(b) Unsorted linked list

(c) Sorted array

(d) Sorted linked list

(e) Binary search tree

Explain your answers.

4. Explain why the largest element in a max-heap is at the top.

5. Explain why the smallest element in a min-heap is at the top.

6. Determine the index of the last element in any heap.

7. Explain why the height of a heap is O(log n).

8. Discuss the difference in memory usage between node-based and array-
based trees. Is there an advantage one way or the other? Explain.

9. Determine the parent, left, and right relationships if the heap is stored
beginning at index 1 instead of 0.

10. Begin the MaxHeap<E> class implementing PriorityQueue<E> by declar-
ing instance variables and writing these public methods:

(a) Constructor(s) Create arrays using Comparable instead of Object.

(b) size()

(c) isEmpty()

(d) peek() Throw a NoSuchElementException if the heap is empty.

(e) toString()

The other public methods will be developed in the next section.

11. Continue the previous exercise by writing these private helper methods:

(a) resize() Create arrays using Comparable instead of Object.

(b) parent(), left(), and right()

(c) swap(i, j) Swaps elements at indices i and j.

(d) isValid(i) Returns true if i is a valid heap array index based on
the current size of the heap.

(e) isLarger(i, j) Returns true if the item at index i is strictly
greater than the item at index j using compareTo().

172 A Concise Introduction to Data Structures Using Java

12. Repeat Exercises 10 and 11 to begin a MinHeap<E> implementation, re-
placing isLarger() with isSmaller().

13. Consider the amount of duplicate code shared between MaxHeap and
MinHeap. Reduce the duplication with an abstract Heap class (see Sec-
tion 8.3).

Define an abstract method isHigher(i, j) in the Heap class. Ab-
stract methods have no method body; just a declaration that forces any
concrete subclass to provide that method. The declaration looks like
this:

visibility abstract returnType methodName(params);

In this case, the concrete subclasses should override isHigher() by call-
ing either isLarger() or isSmaller().

The point of this abstract method is that it can be called in Heap class
methods, representing that item i is higher in the heap than item j,
even though it won’t be defined until later by concrete subclasses.

10.2 Insertion and Deletion
The key to understanding insertion and deletion in heaps is their shape: be-
cause heaps must always be complete binary trees, there is only one slot where
a new node can be added and one slot that can be removed.

In the following, we assume heaps are max-heaps; min-heaps work similarly.

Insertion and Heapifying Up

In order to stay complete, a heap must grow at the next open location in the
underlying array:

*

*

*

* *

*

* *

*

*

*

*

However, this might violate the heap property. If it does, that means the new
node is larger than its parent. If we swap the new node with its parent, then

Heaps 173

any sibling must be ok, and the only possible heap violation is now between
the parent and its parent. Continuing this process, called heapifying up,
works up the tree until we have a legal heap.

Example

Consider inserting 51 into the max-heap below. It begins in the first open
space:

77

23

11 5

52

45 39
⇒

77

23

11

51

5

52

45 39

The heap property is violated between 51 and 11, so they swap. At that point,
51 is again larger than its new parent, 23, so they also swap:

77

23

51

11

5

52

45 39
⇒

77

51

23

11

5

52

45 39

Now 51 is smaller than its parent, and the heap is valid.

Listing 10.1 outlines the algorithm to heapify up from the node i in pseudo-
code. It is important to check that the parent index is valid so that the
algorithm does not attempt to go past the top of the heap.

Listing 10.1: Heapify Up (Pseudocode)

1 If parent(i) is valid and i is larger than parent(i)
2 Swap i with parent(i)
3 Repeat

Deletion

Deleting from a max-heap means removing and returning the largest element,
which is always stored at the root. However, in order to maintain the shape
of a complete binary tree, the node that is actually deleted must be at the

174 A Concise Introduction to Data Structures Using Java

end of the heap, not the beginning. Therefore, we plan to copy the value from
the last node to the root and heapify down instead of up.

∗

∗

∗

∗ ∗

∗

∗ ∗

∗

∗

∗

∗

This is similar to the strategy used for deleting in binary search trees: we
copy a value from somewhere else and delete that node instead.

One step in the deletion algorithm is easy to miss, and so the process is out-
lined in Listing 10.2. It is important to change the heap size before heapifying
down; otherwise, the last element may participate in the heapification. Line 1
specifies swapping the first and last item instead of just copying the last item
for the sake of heapsort in the next section.

Listing 10.2: Heap Deletion (Pseudocode)

1 Swap the root with the last item
2 Update the heap size
3 Heapify down
4 Return the largest item

Heapifying Down

Heapifying down is more complicated than working up because if there is a
violation of the heap property, we can’t just look to the one parent—we need
to check both children.

Example

Suppose remove() is called on the heap we finished with in the last example.
Then 77 will be returned, and 11 will need to move to the top (for now, we
ignore swapping 77 to the last spot):

77

51

23

11

5

52

45 39

Heaps 175

To heapify down with 11 at the top, we need to consider both children and
decide which one to swap with 11:

11

51

23 5

52

45 39

If 11 swaps with 51, then the heap property will be violated between 51 and 52;
thus, we swap 11 with its larger child, 52. This process is repeated until we
have a valid heap.

52

51

23 5

11

45 39

⇒

52

51

23 5

45

11 39

Listing 10.3 gives one way to organize the steps in heapifyDown(i). The main
task is to decide which of the three items is largest: the value at i or one of
its two children. This algorithm needs to be careful not to go past the bottom
of the heap when accessing children.

Listing 10.3: Heapify Down (Pseudocode)

1 Set largest = i
2 If left child is valid and larger than largest, largest = left
3 If right child is valid and larger than largest, largest = right
4 If largest != i
5 Swap i with largest
6 Repeat

Exercises

1. Draw the max-heap that results from inserting these sequences of ele-
ments into an initially empty heap:

(a) 37, 17, 81, 74, 95, 52, 8, 83, 41
(b) 62, 13, 66, 36, 69, 70, 39, 95, 51
(c) 46, 78, 96, 74, 60, 99, 23, 29, 5
(d) 40, 60, 57, 82, 55, 4, 6, 97, 59

2. Draw the sequence of max-heaps that result from calling remove() three
times on the heaps from your answers to Exercise 1.

176 A Concise Introduction to Data Structures Using Java

3. Explain why, when heapifying up, if a node is swapped with its parent,
there is no violation of the heap property because of the node’s sibling.

4. Implement insertion for max-heaps by writing these methods in the
MaxHeap class:

(a) add() Resize if the array is full.

(b) heapifyUp() Implement Listing 10.1.

5. Implement deletion for max-heaps by writing these methods in the
MaxHeap class:

(a) remove() Implement Listing 10.2. Throw an exception if the heap
is empty.

(b) heapifyDown() Implement Listing 10.3.

6. Repeat Exercises 4 and 5 with MinHeap.

7. If your heapifyUp() method from Exercise 4b is recursive, write a non-
recursive version, or vice versa. Is one version preferable?

8. If your heapifyDown() method from Exercise 5b is recursive, write a
non-recursive version, or vice versa. Is one version preferable?

9. Write a main() method for the MaxHeap class to insert random integers
into a heap and then remove and print each item until the heap is empty.

10. Determine the O() performance of these private heap operations. Ex-
plain your answers.

(a) heapifyDown()

(b) heapifyUp()

11. Determine the O() performance of these heap operations. Explain your
answers.

(a) add()

(b) isEmpty()

(c) peek()

(d) remove()

(e) size()

12. Determine the O() performance for inserting n items into an empty
heap.

Heaps 177

10.3 Buildheap and Heapsort
Exercise 12 in the last section explored the cost of inserting n items into an
initially empty heap. It turns out there is a faster way to build a heap if all n
items are available to begin with.

Buildheap

The buildheap algorithm is based on the observation that if a node is above
two heaps:

node

heap heap

then calling heapifyDown() on the node results in a valid heap rooted at that
node. This is essentially what we did in the last section when heapifying down
after a deletion.

Buildheap works from the bottom up. Because single nodes are valid heaps,
heapifying down from the bottom of the heap can be used to gradually combine
nodes together into larger and larger heaps, until the entire tree is a heap.

Example

It is easiest to see how buildheap works with an example. Given the elements
31, 30, 36, 5, 72, 8, 76, 18, 44 in an array, view the array in its heap shape,
and focus on the parent of the last item in the heap, along with its children:

31

30

5

18 44

72

36

8 76

Considering just these three nodes, 5 is a node above two heaps, and so we
can heapify down at 5 to create a small, local heap within the larger structure:

44

18 5

178 A Concise Introduction to Data Structures Using Java

Back in context, we then move left one spot in the array to repeat the same
process with the next node:

31

30

44

18 5

72

36

8 76

This is also a node above two heaps, and so continuing to heapify down and
move left in the array results in this sequence of trees, the last of which is a
finished heap:

31

30

44

18 5

72

76

8 36

31

72

44

18 5

30

76

8 36

76

72

44

18 5

30

36

8 31

At each stage, because we are working from the bottom up, the two subtrees
must already be valid heaps.

Listing 10.4 translates this process into pseudocode.

Listing 10.4: Buildheap (Pseudocode)

1 For each node from the parent of the last node to the root
2 Heapify down

Buildheap Performance

The buildheap algorithm heapifies n/2 times, and each heapify is O(log n), so
an initial estimate of the work done is:

O(
n

2
log n) = O(n log n)

However, most of the heapifying is done on very short trees near the bottom,
and a more careful calculation that takes this into account (see Cormen et
al. [6] for details) shows that the worst-case performance of buildheap is O(n).

Heaps 179

Heapsort

Buildheap gives a very fast (linear time) way to take an array of items and
organize them into a heap. And even though a max-heap puts large elements
at the front of the array, it turns out that this organization leads to an efficient
sorting algorithm called heapsort.

After building the heap, heapsort repeatedly removes the largest item from
the heap. Implementing the swap from Line 1 of Listing 10.2 puts the largest
item at the end of the array, where it belongs in sorted order.

Example

Consider using heapsort on the array 38, 42, 24, 17, 81, 8, 78. The first step
runs buildheap to produce this heap:

81

42

17 38

78

8 24

Then the first remove() swaps 81 with 24 and calls heapifyDown() from the
root:

24

42

17 38

78

8 81

⇒

78

42

17 38

24

8 81

Remember that 81 is no longer in the heap because the size of the heap
changed before heapifying down—it stays in the array but not the heap. The
next removal swaps 78 and 8, and then heapifies:

8

42

17 38

24

78 81

⇒

42

38

17 8

24

78 81

This continues until all of the elements have been removed from the heap into
their sorted position in the array:

8

17

38 42

24

78 81

Like buildheap, the pseudocode for heapsort in Listing 10.5 is surprisingly
simple.

180 A Concise Introduction to Data Structures Using Java

Listing 10.5: Heapsort (Pseudocode)

1 Buildheap
2 While heap is not empty
3 Remove max

Exercises

1. Show the sequence of trees and final heap that result from running build-
heap on each of these initial arrays:

(a) 37, 17, 81, 74, 95, 52, 8, 83, 41

(b) 62, 13, 66, 36, 69, 70, 39, 95, 51

(c) 46, 78, 96, 74, 60, 99, 23, 29, 5

(d) 40, 60, 57, 82, 55, 4, 6, 97, 59

2. Show the operation of heapsort on each of these initial arrays. Show the
work of buildheap as one step.

(a) 99, 24, 15, 91, 25, 33, 28

(b) 7, 65, 29, 10, 39, 59, 79

(c) 16, 93, 67, 80, 34, 75, 5

(d) 19, 24, 87, 83, 25, 27, 38

3. Explain why, given a node above two heaps as on page 177, one call to
heapifyDown() results in a valid heap.

4. Explain in your own words how heapsort produces a sorted list.

5. Determine an expression for the index of the parent of the last node in a
heap. You may use the helper functions from Exercise 11 in Section 10.1.

6. Implement a public MaxHeap(E[] items) constructor for the MaxHeap
class that builds a heap from the given array of items. Use a private
buildHeap() helper method to implement Listing 10.4. Assume the
items array is full of elements, and keep a default constructor with no
parameters for the MaxHeap class.

7. Implement a public static heapSort(T[] items) method that imple-
ments Listing 10.5 to sort the given array of items.

8. Determine the worst-case O() performance of heapsort, and compare it
with insertion sort from Section 2.2. Explain your answer.

Heaps 181

Project: Event-Based Simulation
The project at the end of Chapter 5 developed a clock-based simulation in
which an integer clock variable kept track of the time, ticking along as the
program ran. At each time step, the program made decisions about what
happened next. This organization is natural but has a limitation: the pro-
grammer must decide ahead of time how frequently to tick the clock. The
choice is important, because if it doesn’t tick often enough, the simulation
may miss events, whereas a clock frequency that is too high wastes computa-
tion. Using events to organize a simulation instead of a clock eliminates this
difficulty.

Events

An event-based simulation shifts the focus from the clock to a set of event
objects. There is still a notion of time, but there is often no central clock.
Instead, each event has a time that it happens, and events are processed in
order of increasing time. When an event is processed, that time is considered
to have “happened,” and the event may generate other, later events. Managing
these events is easy with a priority queue implemented with a min-heap: events
may be added at any time and the next event is always available at the top
of the heap.

In an event-based simulation, the clock ticks implicitly when each event is
processed from the priority queue, rather than explicitly in a clock variable.
In a sense, this clock only ticks when something happens. This eliminates the
problem of having to decide how frequently the clock should tick.

Checkout Line Simulation

You may have noticed that some checkout areas with multiple cashiers have a
single waiting line that serves all cashiers, while others have separate waiting
lines for each. A natural question is whether one of the two methods is more
efficient than the other, and one way to approach that question is through
simulation.

An event-based checkout simulation might center around Arrival and Depar-
ture events. Both types of events store a customer and time, and are ordered
by their time. Departure events also store the cashier serving the customer.
When an Arrival event is processed, the customer is served by a service sys-
tem, which is based on either a single queue or multiple queues. The service
system either assigns the customer to a cashier or puts the customer in a queue
to wait. If there are multiple queues, the customer is put in the shortest line.

When customers are assigned to cashiers, a new Departure event is created

182 A Concise Introduction to Data Structures Using Java

based on the service time required by that customer. A Departure event
notifies the service system that the cashier is free so that a waiting customer
can be assigned to that cashier. The simulation can be initialized by putting
a set of Arrival events into the priority queue.

Modeling Customer Arrivals: Poisson Processes

Simulations often employ sophisticated mathematical models for their major
components. One of the key components of a checkout line simulation is when
customers arrive. A Poisson process is often used for this purpose because it
assumes no “memory” between arrivals: the time gap before the next customer
arrives does not depend on the gap before the previous customer.

If t is the arrival time, the following algorithm computes a sequence of t values
for a Poisson process with arrival rate λ > 0. Begin with t = 0, and then for
each customer, update t via

t = t− 1

λ
logU

where U is a random double between 0 and 1. Continue this process for the
desired length of total time. See Ross [11] for details.

Modeling Normal Distributions

Random number generators usually are designed to produce uniformly dis-
tributed values, meaning that each possible value is equally likely. However,
simulations also often require values with an approximately normal distri-
bution with a “bell curve” shape. Normal distributions are described by their
mean and standard deviation. See Ross [11] or a statistics textbook for
definitions of these terms and more information.

Table 2.3 lists the nextGaussian() method of the java.util.Random class for
generating values from a normal distribution. It assumes a fixed mean of 0.0
and standard deviation 1.0. To use it with different mean m and standard
deviation s, compute:

m + gen.nextGaussian() * s

where gen is a java.util.Random object.

Design

Here is a set of classes that may be helpful for implementing this project:

Customer has instance variables for arrival time, service time, and perhaps
a unique customer number.

Cashier has an instance variable for the current customer being served.

Heaps 183

Server is an abstract class storing an array of cashiers. It defines an

assign(customer, cashier, time)

method to assign a customer to a particular cashier at a given time. It
also defines three abstract methods (see page 172) that are implemented
by the concrete subclasses:

serve(customer)
clear(cashier, time)
printStats()

The subclasses are:

SingleQueueServer uses one queue to hold customers for all cashiers.

MultipleQueueServer has an array of queues for the cashiers.

Event is an abstract class with instance variables for the time and customer.
It overrides compareTo() so that events compare based on their time. It
has one abstract method:

process(server)

defined by its concrete subclasses:

Arrival events call the server’s serve() method.

Departure events call the server’s clear() method.

Simulator is a driver class to run the simulation.

Using this structure, the multiple queue server will need an array of queues
that each hold customers. The type of this array will be generic:

Queue<Customer>[] queues;

If you look ahead to page 193, the Object class cannot be used to create this
type of generic array; instead the Queue type must be used and then cast to
the generic type:

queues = (Queue<Customer>[]) new Queue[length];

Exercises

1. Implement a checkout line simulation as described above to compare the
performance of single queue and multiple queue service systems. Use a
Poisson process to model customer arrivals and a normal distribution
for their required service times. In order to compare the two systems,
you will need to submit the same set of customers to each.

184 A Concise Introduction to Data Structures Using Java

2. Add a model of the cashier’s efficiency to your simulation, using a normal
distribution to produce an efficiency rating for each cashier. Use the
efficiency rating as a multiplier on each customer’s service time, so that
a rating of 1.0 represents an average cashier.

Chapter 11
Hash Tables

Hash tables focus on providing a fast search for any item. They achieve
better search performance than even binary search trees by giving up one of
the defining features of both binary search trees and heaps: that elements are
stored according to their order.

11.1 Map Interface and Linked Implementation
The goal of a hash table is to provide close to O(1) search and insertion for
any element. This emphasis on searching leads to a new interface, one based
on looking up the value of a key.

Maps

A map is a set of key-value pairs in which each key is associated with
one value. The same value may be paired with more than one key, but the
point is that looking up a key returns the unique value that was stored for
that key. Maps are also known as associative maps, associative arrays,
dictionaries, or lookup tables.

The two main operations of the Map ADT in Table 11.1 are put() and get().
Deleting from a hash table can be complex, so remove() operations are some-
times optional in maps.

The Java convention is to use the type parameter K for key types and V for
value types. The key type K should be immutable so that keys do not change
after they have been put into a map.

Linked Map

A linked list provides a simple implementation of the map interface that is
useful for small sets of key-value pairs. The get() and containsKey() opera-
tions traverse the list until finding the key. The put() method also needs to
traverse the list to see if there is already an entry for the key, but if not, the
new entry can be inserted at the front of the list.

185

186 A Concise Introduction to Data Structures Using Java

TABLE 11.1: Map ADT
boolean containsKey(K key)
True if key has an entry in map.

V get(K key)
Returns value associated with key, null if none.

boolean isEmpty()
True if map has no key-value pairs.

V put(K key, V value)
Associates key with value in map. If key is already in map, the old
value is replaced and returned. Returns null for new entries.

V remove(K key)
(Optional) Removes entry for key in map, returning associated value or
null if none.

int size()
Number of key-value pairs in map.

Implementation of the LinkedMap<K, V> class is similar to other linked list
code we have written except for one detail: these nodes hold a key-value pair.

Map Entries

Because maps hold key-value pairs, it is useful to create a private nested
Entry<T, U> class to hold the pairs. Then nodes are declared as:

Node<Entry<K, V>>

and linked maps are structured like this:

.

key value key value key value

Exercises

1. Are binary search trees a good choice to implement the Map interface?
Explain why or why not.

2. Write a generic Java interface Map<K, V> for the Map ADT in Table 11.1.

3. Modify the Map interface from the previous exercise to include the op-
tional remove().

Hash Tables 187

4. Show the results of these operations on an initially empty linked map m.
Give the return value of each non-void operation, and draw the final
linked list, showing its entry nodes as above.

(a) m.put(5, "five")
m.put(3, "three")
m.containsKey(2)
m.put(5, "FIVE")
m.put(2, "two")
m.get(5)
m.put(1, "one")
m.size()

(b) m.put(1, "one")
m.put(2, "two")
m.put(2, "Two")
m.put(2, "TWO")
m.containsKey(2)
m.put(3, "three")
m.get(2)
m.size()

5. Develop a LinkedMap<K, V> implementation of the Map interface based
on a linked list. Include these members:

(a) Entry<T, U>

(b) Node<T>

(c) containsKey()

(d) get()

(e) isEmpty()

(f) put()

(g) size()

6. Write a main() method for the LinkedMap class that creates a linked
map, puts some values in the map, and looks them up.

7. Determine the O() performance of each of these LinkedMap operations:

(a) containsKey()

(b) get()

(c) isEmpty()

(d) put()

(e) size()

8. Implement the optional remove() method in the LinkedMap class. The
simplest way to do it is by keeping a prev pointer to the node before p
in the traversal.

188 A Concise Introduction to Data Structures Using Java

11.2 Hash Tables

Before describing hash tables, we briefly consider a simpler alternative that
can sometimes be useful. In this context, table is just another term for an
array.

Direct Addressing

The simplest way to get O(1) search and insertion for a map is if keys are
relatively small nonnegative integers. Then direct addressing can be used,
where a table stores values using the integer key as the index:

table[key] = value;

As long as the table can be allocated large enough to store any possible key,
this strategy is simple and efficient.

However, if the keys are not integers or the set of all possible key values is
much larger than the desired table size, then a hash function must be used.

Hash Tables

Suppose approximately 2000 records need to be stored, and each record has a
four-digit integer key. Then direct addressing is reasonable, because the table
will not be too large. However, if each record has a nine-digit integer key,
then direct addressing is impractical. The problem is the relationship of the
number of possible key values with the desired table size:

10,000
possible keys

1,000,000,000
possible keys

Table size M Table size M

Direct ?

A hash function solves this problem by mapping keys to valid table indices:

f(key) = index

A hash table is then an array that uses a hash function to compute the
indices of its table entries.

Hash Tables 189

Collisions

Of course, if the number of possible key values is much larger than the table
size, then collisions, in which the hash function maps different keys to the
same index, are inevitable.

We will look at two collision resolution strategies: chaining in Section 11.3
and linear probing in Section 11.4. First we consider how to define hash
functions.

Hash Functions

The main job of a hash function is to distribute keys among indices in an
approximately uniform way, so that, for example, most keys do not cluster
among just a few index values. The name comes from this purpose; it is
meant to evoke finely chopped meat and potatoes. A hash function should
also be fast to compute and use all aspects of the key.

Integer Keys

In a table of size M , valid array indices are 0, . . . ,M − 1, so the most natural
hash function for integer keys is the mod function:

f(k) = k modM

In Java, the remainder function k % M may be used for modulus as long as k
is not negative. This distinction is important for hashing: the Java remainder
function can be negative if k itself is negative. (For example, -1 % 3 is −1.)
Thus, when using remainder as a hash function, it is important to be sure the
value k is nonnegative.

In addition, the table size M should be chosen so that every bit in the key is
used. For example, if M = 2m, then only the last m bits of the key are used
to compute k % M; see Exercise 2. Because of this, M is often chosen to be
prime.

String and Object Keys

Map keys are not always integers, and in fact, are often strings. Each character
in a string can be thought of as an integer via its ASCII value. For example,

190 A Concise Introduction to Data Structures Using Java

the ASCII values of the characters in the word “scrape” are:

s c r a p e
115 99 114 97 112 101

Adding these values to get a single integer seems reasonable, but it would
cause anagrams of “scrape” like “parsec” to hash to the same value. That
should be avoided, because a good hash function ought to take into account
the order of the letters in the key, not just which letters appear.

The technique used in Java is to interpret the ASCII values as something like
a base 31 integer:

115 99 114 97 112 101

315 314 313 312 31 1

= 115 · 315 + 99 · 314 + 114 · 313 + 97 · 312 + 112 · 31 + 101

= 3387273908

This method takes into account the order of the characters in the key, although
it does produce very large values. The choice of 31 is somewhat arbitrary as
a small prime.

The same idea can be used to combine the hash values of multiple fields in an
object.

Java Hashcodes

The Java hashCode() method implements this algorithm for the String type.
A minimal hashCode() definition is also provided in the Object class, with the
intention that it be overridden1 if desired.

Unfortunately, the hashCode() method does not always produce valid table
indices. For example,

"scrape".hashCode()

returns −907693388. Why? Because the return type of hashCode() is int,
and the maximum value of an int is 231−1, which is smaller than the hashcode
of “scrape” computed above:

231 − 1 = 2,147,483,647 < 3,387,273,908

Therefore, the computation overflows, in this case to a negative value.

1If you override hashCode(), be sure to adhere to its contract, as specified in the Java API.
In particular, if equals() declares that two objects are the same, then they must return the
same hashCode().

Hash Tables 191

The result is that Java hashcodes must be forced nonnegative before using
them as table indices. A reliable way2 to do this is to set the first bit to 0:

key.hashCode() & Integer.MAX_VALUE

The bitwise & operator computes the bit-by-bit logical AND of the two
values; a single | is used for bitwise OR.

Exercises

1. For each of these contexts, decide whether direct addressing or hashing
is likely to be more appropriate. Explain your answers.

(a) About 500 records, each with a 3-digit unique id.

(b) About 1000 records, each with an 8-digit unique id.

2. Make a table of values of k and k % 8 in both decimal and binary to
help explain why using remainder with M = 2m only uses the last m
bits of the key. Choose your own values for k.

3. Give an example of two keys that collide using the hash function

f(k) = k mod 97

4. Give an example of two keys that collide using the hash function

f(k) = k mod 239

5. Calculate the Java hashCode() of each of these strings by hand:

(a) "Java"

(b) "table"

(c) "data"

(d) "Data"

6. Suppose student registration data will be stored in a hash table, where
each registration entry is identified by a numeric student id, a string
departmentName, and a numeric courseNumber. Design a hashCode() for
the registrations.

7. Suppose a calendar date is stored as three integers: day, month, and
year. Design a hashCode() for this date type.

2Absolute value is the obvious thing to try, but Math.abs() returns a negative value for
Integer.MIN_VALUE. Given how int values are represented, this problem with absolute value
is unavoidable, and so using the more complicated bit operation is a better choice.

192 A Concise Introduction to Data Structures Using Java

8. Explain what exactly happens in this bitwise operation for a 32-bit in-
teger k:

k & Integer.MAX_VALUE

9. Explain why Math.abs() returns a negative value (see the footnote on
page 191). You may need to do some research on integer representations.

11.3 Chaining
Collisions are inevitable when hashing, and one way to resolve collisions is to
put all of the items that hash to the same index in a linked list. This method
of resolving collisions is called chaining, and each linked list is referred to as
a chain.

...

Implementation

A natural way to approach writing a LinkedHashMap implementation of a hash
table with chaining is to write the linked list code from scratch, as we have
before. However, we’ve already done this work in Section 11.1 by writing the
LinkedMap class. So a better idea is to just have a linked map at each index
of the hash table:

Linked
Map

Linked
Map

Linked
Map

Linked
Map

Linked
Map

Hash Tables 193

Then each linked map is responsible for the chain at its index.

With this structure, the basic idea for each method in the LinkedHashMap class
is the same:

1. Use the hash function to compute an index in the hash table.

2. Call the corresponding method on the linked map at that index.

Few complications arise implementing this strategy. The one that may need
explanation involves generic arrays.

Generic Arrays Revisited

If each array index stores a reference to a linked map, the table declaration
in LinkedHashMap will need to be something like this:

private LinkedMap<K, V>[] table;

As we found with creating arrays for comparable types on page 170, the Object
class cannot be used to create this generic array. Instead, the LinkedMap type
must be used and then cast to the generic type:

table = (LinkedMap<K, V>[]) new LinkedMap[M];

The Object type only works for the plain E[] arrays we began with:

data = (E[]) new Object[capacity];

Any more specific (yet generic) type like LinkedMap<K, V> requires using the
corresponding non-generic LinkedMap type to create the array.

Performance

The linear performance of put() and get() in a linked map may not have
seemed very promising in Section 11.1. However, as chains in a hash table,
they are impressive because we can control the length of the chains.

The key to determining the performance of a hash table is its load factor

λ =
n

M

where n is the number of items stored in the hash table and M is the table
size. The important fact about the load factor with chaining is this:

If the hash function distributes keys uniformly between 0 andM−1,
then the average length of each chain is approximately λ.

194 A Concise Introduction to Data Structures Using Java

This principle leads to the following analysis:

Unsuccessful Search To search for a key that is not in the table, it takes
one step to compute the hash function, and then λ steps to check every
item in that chain. Thus, the expected number of steps is O(1 + λ).

Successful Search A successful search is similar to an unsuccessful one, ex-
cept that on average,3 it will only take λ/2 steps to walk down the chain
to find the item. Therefore, in this case, the expected number of steps

is O(1 +
λ

2
) = O(1 + λ).

Insert Insertion in a map requires checking first to see if the key is already
present, so the expected performance of insertion is the same as an
unsuccessful search, O(1 + λ).

Keep in mind that these values are expected, based on the ability of the hash
function to equally distribute keys. The worst case for each of these operations
is O(n).

Space-Time Tradeoff

A hash table is a perfect example of a data structure for which you can buy
faster performance with more space: a larger table size M gives a smaller λ
and therefore better performance. However, the value of M should be chosen
carefully, because ifM is much larger than n, most of the array will be wasted
storing empty chains.

Deletion

Deleting from a hash table using chaining is routine: it just involves removing
a node from the appropriate linked list.

Exercises

1. Show the results of inserting the sequence of keys below into a hash table
of size M = 11 if collisions are resolved by chaining. Insert new items
at the front of each chain.

(a) 59, 35, 73, 10, 39, 83, 46, 72, 34, 54

(b) 70, 8, 52, 95, 33, 99, 96, 44, 20, 18

(c) 28, 32, 13, 78, 86, 98, 20, 57, 68, 83

(d) 47, 69, 67, 13, 20, 26, 34, 41, 56, 63

3A careful analysis here is more complex than imagining walking halfway down the chain.
See Cormen et al. [6] for details.

Hash Tables 195

2. Show the results of inserting the sequence of keys below into a hash table
of size M = 13 if collisions are resolved by chaining. Insert new items
at the front of each chain.

(a) 59, 35, 73, 10, 39, 83, 46, 72, 34, 54
(b) 70, 8, 52, 95, 33, 99, 96, 44, 20, 18
(c) 28, 32, 13, 78, 86, 98, 20, 57, 68, 83
(d) 47, 69, 67, 13, 20, 26, 34, 41, 56, 63

3. Is a load factor λ > 1 possible if chaining is used to resolve collisions?
Explain why or why not.

4. Develop a LinkedHashMap<K, V> implementation of the Map interface
that uses chaining to resolve collisions. Use a LinkedMap to store each
chain. Include these members:

(a) Constructors Default constructor and a second that takes a table
size parameter.

(b) hash(key) Private method to compute the hash function.
(c) containsKey()

(d) get()

(e) isEmpty()

(f) put()

(g) size()

5. Write a main() method for the LinkedHashMap class that creates a hash
table using chains, puts some values in the table, and looks them up.

6. Explain why the worst-case performance for inserting and searching in
a hash table using chaining is O(n).

7. Implement the optional remove() method in the LinkedHashMap class
using the remove() method from the LinkedMap class (Exercise 8 in
Section 11.1).

8. Give the expected performance of deleting from a hash table using chain-
ing.

11.4 Linear Probing
An alternative to chaining in a hash table is to store all entries in the array
itself. This approach is called open addressing. Collisions occur in open

196 A Concise Introduction to Data Structures Using Java

addressing when a new element hashes to a location that is already filled in the
table. In this case, a probe sequence of other table slots is generated, and
the new element is stored in the first open slot found by the probe sequence,
indicated by a null value in the array:

↓
hash

not
null

not
null null

probe probe

Searching for a key follows the same path: it starts at the hashed location
and then uses the same probe sequence until either the key or an open slot is
found.

Linear Probing

The probe sequence generated by linear probing for a table of size M is
given by the function

i→ (i+ 1) modM

which corresponds to simply moving one slot to the right for each probe,
wrapping around to the beginning of the array if necessary.

Example

If the keys 14, 77, and 32 are inserted into a hash table of size 11 the result is
(showing primitives for simplicity):

0 1 2 3 4 5 6 7 8 9 10

77 14 32

If the next key is 66, it will also hash to 0 and cause a collision. Using linear
probing, the first open slot to the right is 1, and so 66 is stored there:

0 1 2 3 4 5 6 7 8 9 10

77 66 14 32

If the next key is 54, it hashes to 10, and the next open spot for it is index 2:

0 1 2 3 4 5 6 7 8 9 10

77 66 54 14 32

Notice the tendency for keys to cluster; this is one of the primary disadvan-
tages of linear probing.

Hash Tables 197

Implementation

As with the LinkedMap implementation, a static nested Entry<K, V> class is
useful for storing key-value pairs in a hash table using open addressing. A
separate probe(i) function that generates the probe sequence is also helpful
to allow easily changing to a different probing method.

Listing 11.1 outlines the method for inserting into a hash table using linear
probing. It ignores entries that would force λ ≥ 1.

Listing 11.1: Insertion with Linear Probing (Pseudocode)

1 If room in table
2 Hash key
3 While entry not null and not equal key
4 Probe to next entry
5 If entry is null insert new entry
6 Else update old entry

Performance

The performance of linear probing is much more complicated to analyze than
anything else we have considered to this point. We will simply state the results;
interested readers may find the original arguments in Knuth [9]. Sedgewick
and Wayne [12] give some intuition for the calculations.

To analyze any open addressing scheme, we need to estimate the number of
probes required for a search or insertion. And because we are using open
addressing, the load factor λ must be less than one; see Exercises 6 and 7.

Unsuccessful Search An unsuccessful search keeps probing until finding a
null table entry. Assuming the hash function distributes keys evenly, the
average number of probes for an unsuccessful search is approximately

1

2

(
1 +

1

(1− λ)2

)

Successful Search A successful search follows the same path that was used
to insert the element. However, the element may have been inserted
early with a very short path or later with a longer path. In this case,
the average number of probes is approximately

1

2

(
1 +

1

1− λ

)

198 A Concise Introduction to Data Structures Using Java

Insertion Inserting an element requires searching for the first open slot in
the probe sequence after hashing. This is the same as an unsuccessful
search and so the average number of probes is again approximately

1

2

(
1 +

1

(1− λ)2

)

Deletion

Deleting elements from a table using open addressing is problematic. To see
why, consider the example from page 196 created by inserting elements in the
order 14, 77, 32, 66, 54:

0 1 2 3 4 5 6 7 8 9 10

77 66 54 14 32

Now suppose 77 is deleted and we search for 54. The search will begin at slot
10, find null in slot 0, and therefore fail. The problem is that items can affect
the probe sequence of other elements inserted later than the element being
deleted.

There are ways to handle this problem, but none of them are ideal. One
option is to use a special deleted entry that searches can distinguish from
null. Another option is to rehash any elements whose searches would be
affected by the deletion (see Listing 11.2 and Exercise 16). However, in most
cases, if deletion is important, then a better solution is to use chaining.

Listing 11.2: Deletion with Linear Probing (Pseudocode)

1 Find index i containing entry
2 Delete entry
3 Probe to next i
4 While that entry is not null
5 Delete it
6 Rehash it back into the hash table
7 Probe to the next entry
8 Return deleted value

Other Probe Sequences

There are several alternatives to linear probing; one of the most useful is
known as double hashing. The idea in double hashing is to use a second
hash function h(k) to determine the step size instead of always taking steps
of size 1. This causes different keys to take steps of different sizes.

Hash Tables 199

For double hashing, the probe sequence for a key k is:

i→ (i+ h(k)) modM

Here it is important for h(k) to be relatively prime to M (see Exercise 13).
If M is prime, an easy way to ensure that is to use

h(k) = 1 + (k mod (M − 1))

Exercises

1. Show the results of inserting the sequence of keys below into a hash table
of size M = 11 if collisions are resolved by linear probing.

(a) 59, 35, 73, 10, 39, 83, 46, 72, 34, 54
(b) 70, 8, 52, 95, 33, 99, 96, 44, 20, 18
(c) 28, 32, 13, 78, 86, 98, 20, 57, 68, 83
(d) 47, 69, 67, 13, 20, 26, 34, 41, 56, 63

2. Show the results of inserting the sequence of keys below into a hash table
of size M = 13 if collisions are resolved by linear probing.

(a) 59, 35, 73, 10, 39, 83, 46, 72, 34, 54
(b) 70, 8, 52, 95, 33, 99, 96, 44, 20, 18
(c) 28, 32, 13, 78, 86, 98, 20, 57, 68, 83
(d) 47, 69, 67, 13, 20, 26, 34, 41, 56, 63

3. Repeat the previous exercise using double hashing with the suggested
second hash function h(k).

4. Determine a sequence of key insertions that results in the hash table
below if collisions are resolved by linear probing.

0 1 2 3 4 5 6 7 8 9 10

44 77 65 80 14 20 31

5. Calculate the expected number of probes using linear probing for both
successful and unsuccessful searches with load factors λ = 0.1, 0.5,
and 0.9.

6. Explain why a load factor λ > 1 is not possible with open addressing.

7. Explain why a load factor λ = 1 is not an option with open addressing.

8. What characteristics should a good probe sequence have for open ad-
dressing? Explain your answer.

200 A Concise Introduction to Data Structures Using Java

9. Consider the example hash table on page 196 containing the keys 77,
66, 54, 14, and 32. List all the hash values that will cause the existing
cluster to grow when inserting the next element.

10. Suppose there is a cluster of size m in a hash table of sizeM using linear
probing. Assuming the hash function distributes keys evenly, determine
the probability that the cluster will grow when the next key is added.

11. Develop a LinearProbeHashMap<K, V> implementation of the Map inter-
face that uses linear probing to resolve collisions. Include these members:

(a) Constructors Default constructor and a second that takes a table
size parameter.

(b) hash(key) Private method to compute the hash function.
(c) containsKey()

(d) get()

(e) isEmpty()

(f) put() Implement Listing 11.1.
(g) size()

12. Write a main() method for the LinearProbeHashMap class that creates a
hash table, puts some values in the table, and looks them up.

13. Explain why the values of the second hash function should be relatively
prime to the table size M for double hashing. Hint: try some examples
that are not relatively prime to see what happens.

14. Explain why values of the suggested second hash function

h(k) = 1 + (k mod (M − 1))

are guaranteed to be relatively prime to M if M is prime.

15. Array-based implementations of stacks, queues, and lists simply copied
their contents into a larger array when their capacity was exceeded.

(a) Explain why this basic strategy does not work for a hash table
using open addressing.

(b) Describe a strategy that does work.

16. Both chaining and open addressing require extra memory beyond what
the entries themselves use. Compare the extra space required for a hash
table using chaining with a table using linear probing. Does one method
have a clear advantage? Explain your reasoning.

17. Implement the optional remove() method in the LinearProbeHashMap
class. Use the strategy described earlier and outlined in Listing 11.2 of
rehashing entries whose searches might be affected by the deletion. Be
careful managing the number of entries in the table.

Bibliography

[1] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. The Java Series. Addison-Wesley, Upper Saddle River, NJ,
4th edition, 2006.

[2] Jon Bentley. Programming Pearls. ACM Press Books. Addison-Wesley,
Reading, MA, 2nd edition, 2000.

[3] Joshua Bloch. Extra, extra - read all about it: Nearly all binary searches
and mergesorts are broken. http://googleresearch.blogspot.com/
2006/06/extra-extra-read-all-about-it-nearly.html (accessed May
15, 2013), June 2006.

[4] Joshua Bloch. Effective Java. The Java Series. Addison-Wesley, Upper
Saddle River, NJ, 2nd edition, 2008.

[5] Joshua Bloch and Neal Gafter. Java Puzzlers: Traps, Pitfalls, and Corner
Cases. Addison-Wesley, Upper Saddle River, NJ, 2005.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, Cambridge, MA, 3rd
edition, 2009.

[7] James Cross. jGRASP. http://www.jgrasp.org/ (accessed May 15,
2013).

[8] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification. The Java Series. Addison-Wesley, Upper Saddle
River, NJ, 3rd edition, 2005. Available online http://docs.oracle.com/
javase/specs/ (accessed May 15, 2013).

[9] Donald E. Knuth. The Art of Computer Programming, volume 3: sorting
and searching. Addison-Wesley, Reading, MA, 2nd edition, 1998.

[10] Oracle Corporation. Java API Documentation. http://docs.oracle.
com/javase/7/docs/api/index.html (accessed May 15, 2013).

[11] Sheldon M. Ross. Simulation. Academic Press, San Diego, 3rd edition,
2002.

[12] Robert Sedgewick and Kevin Wayne. Algorithms. Pearson Education,
Upper Saddle River, NJ, 4th edition, 2011.

201

202 A Concise Introduction to Data Structures Using Java

[13] Sharon Biocca Zakhour, Sowmya Kannan, and Raymond Gallardo.
The Java Tutorial: A Short Course on the Basics. The Java Series.
Addison-Wesley, Upper Saddle River, NJ, 5th edition, 2013. Avail-
able online http://docs.oracle.com/javase/tutorial/ (accessed May
15, 2013).

	Front Cover
	Contents
	Tables
	Preface
	About the Author
	Chapter 1: A Brief Introduction to Java
	Chapter 2: Algorithm Analysis
	Chapter 3: Integer Stacks
	Chapter 4: Generic Stacks
	Chapter 5: Queues
	Chapter 6: Lists
	Chapter 7: Recursion
	Chapter 8: Trees
	Chapter 9: Binary Search Trees
	Chapter 10: Heaps
	Chapter 11: Hash Tables
	Back Cover

