
•HistoryofTPMsandwhyTPM2.0wasneeded
•Securityfundamentals
•TPM2.0architectureindetail,includingusecases
•Applicationdevelopmentoptionsanddebuggingtips
•HowmajorplatformtechnologiesmakeuseofTPM2.0

Challener

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ... xxi

About the Technical Reviewers .. xxiii

Acknowledgments ..xxv

Introduction ..xxvii

Chapter 1: History of the TPM ■ .. 1

Chapter 2: Basic Security Concepts ■ ... 7

Chapter 3: Quick Tutorial on TPM 2.0 ■ ... 23

Chapter 4: Existing Applications That Use TPMs ■ 39

Chapter 5: Navigating the Specification ■ 51

Chapter 6: Execution Environment ■ ... 71

Chapter 7: TPM Software Stack ■ .. 77

Chapter 8: TPM Entities ■ .. 97

Chapter 9: Hierarchies ■ .. 105

Chapter 10: Keys ■ .. 119

Chapter 11: NV Indexes ■ .. 137

Chapter 12: Platform Configuration Registers ■ 151

Chapter 13: Authorizations and Sessions ■ 163

Chapter 14: Extended Authorization (EA) Policies ■ 217

Chapter 15: Key Management ■ .. 249

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

vi

Chapter 16: Auditing TPM Commands ■ .. 263

Chapter 17: Decrypt/Encrypt Sessions ■ 271

Chapter 18: Context Management ■ .. 289

Chapter 19: Startup, Shutdown, and Provisioning ■ 301

Chapter 20: Debugging ■ ... 311

Chapter 21: Solving Bigger Problems with the TPM 2.0 ■ 323

 Chapter 22: Platform Security Technologies ■
That Use TPM 2.0 .. 331

Index .. 349

www.allitebooks.com

http://www.allitebooks.org

xxvii

Introduction

“Seminal!”
“Riveting! I couldn’t put it down until the last page.”
“I’m exhausted from reading this book! It kept me up three nights in a row. Where’s

my Ambien when I need it?”
“he suspense was killing me. I just had to read it straight through!”
Although these responses to our book would be gratifying, it’s doubtful that any book

on digital security will ever garner this type of reaction. Digital security is the computer
equivalent of disaster insurance. Few people care very much about it or give it much
thought, and everyone hates paying for it … until a catastrophe hits. hen we are either
really glad we had it or really sad that we didn’t have enough of it or didn’t have it at all.

We may sound like Chicken Little crying the “the sky is falling, the sky is falling,”
but mark our words: a digital security catastrophe is headed your way. We could quote
a plethora of statistics about the rising occurrence of digital security threats, but you’ve
probably heard them, and, quite frankly, you don’t care, or at least you don’t care enough.
It’s questionable whether any preaching on our part will make you care enough until
you’re personally impacted by such a calamity, but we’ll try anyway.

When your reputation is tarnished, your inances are impacted, your identity is
stolen, your physical well-being is threatened, your company’s reputation and inances
are harmed, and, quite possibly, your country is overthrown, then you’ll wake up to the
need for cyber security. But it might be too late then. Like people living in a lood zone,
the question isn’t whether the lood is coming, but rather when the disaster will hit and
whether you’ll be prepared for it. he time to buy digital-security lood insurance is now!
Don’t wait until the lood hits.

A Practical Guide to TPM 2.0 can be part of your digital-security insurance policy.
he TPM was designed as one of the core building blocks for digital security solutions. he
November 2013 “Report to the President: Immediate Opportunities for Strengthening the
Nation’s Cybersecurity” recommends “the universal adoption of the Trusted Platform
Module (TPM), an industry-standard microchip designed to provide basic security-
related functions, primarily involving encryption keys, including for phones and tablets.”
Computers and devices that incorporate a TPM are able to create cryptographic keys and
encrypt them so they can be decrypted only by the TPM. A TPM provides this limited
but fundamental set of capabilities that higher layers of cybersecurity can then leverage.
Today, TPMs are present in many laptop and desktop personal computers. hey’re used
by enterprises for tasks like secure disk encryption, but they have yet to be incorporated
to any signiicant extent in smartphones, game consoles, televisions, in-car computer
systems, and other computerized devices and industrial control systems. his needs to
happen for such devices to be trustworthy constituents of the increasingly interconnected
device ecosystem.

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xxviii

Our passion in writing this book is to empower and excite a rising generation of IT
managers, security architects, systems programmers, application developers, and average
users to use the TPM as the bedrock of increasingly sophisticated security solutions that
will stem the rising tide of threats that are being aimed at us, our employers, and our civil
institutions. Furthermore, the TPM is just plain cool. How many engineers, as children,
played with simple cryptography for fun? he ability to send an encrypted message to
a friend appeals to the secretive part of our human nature—the same part that enjoyed
playing spy games when we were young. And besides being fun, there’s something
inherently, morally right about protecting people’s assets from being stolen.

he TPM 2.0 technology can accomplish this. We believe in this technology and hope
to make believers of you, our readers, as well. Our hope is that you’ll get as excited about
this technology as we are and “go out and do wonderful things” with it, to paraphrase
Robert Noyce, one of Intel’s founders.

Why a Book?
Technical speciications are typically poor user manuals, and TPM 2.0 is no exception.
One reader of the speciication claimed it was “security through incomprehensibility.”
Although the speciication attempts to describe the functionality as clearly as possible,
its prime objective is to describe how a TPM should work, not how it should be used. It’s
written for implementers of TPMs, not for application writers using TPMs.

Also, for better or for worse, the detailed operations of the TPM commands are
speciied in C source code. he structures are deined with various keywords and
decorations that permit the Word document to be parsed into a C header ile. Microsoft
agreed with TCG that the source code in the speciication would have an open source
license and could be used to implement a TPM. However, although C can describe
actions very precisely, even the best code isn’t as readable as text. One of the major
purposes of this book is to interpret the speciication into language that is more
understandable to average software developers, especially those who need to understand
the low-level details of the speciication.

Many readers don’t need to understand the detailed operation of the TPM and
just want to know how to use the various functions. hese readers expect TSS (the TCG
software stack) middleware to handle the low-level details. hey’re interested in how to
use the new TPM features to accomplish innovative security functions. hus, this book is
just as concerned with describing how the TPM can be used as it is with explaining how
it works. hroughout the book, as features are described, use cases for those features are
interwoven. he use cases aren’t complete—they describe what the TPM 2.0 speciication
writers were thinking about when those features were designed, but the speciication is so
rich that it should be possible to implement many things beyond these use cases.

Audience
In writing this book, we’re trying to reach a broad audience of readers: low-level
embedded system developers, driver developers, application developers, security
architects, engineering managers, and even non-technical users of security applications.
We hope to encourage the broadest possible adoption and use of TPMs.

www.allitebooks.com

http://www.allitebooks.org

■INTRODUCTION

xxix

Non-technical readers will want to focus on the introductory material, including
the history of the TPM (Chapter 1), basic security concepts (Chapter 2), and existing
applications that use TPMs (Chapter 4). Visionaries who know what they want to
accomplish but aren’t themselves programmers will also beneit from reading these
chapters, because knowing the basic ways in which TPMs can be used may provide
inspiration for new use cases.

Engineering managers, depending on their needs and technical expertise, can go
as deep as they need to or want to. We hope that executives will read the book, see the
possibilities provided by TPMs, and subsequently fund TPM-related projects. When they
realize, for example, that it’s possible for an IT organization to cryptographically identify
all of its machines before allowing them onto a network, that true random number
generators are available to help seed OSs’ “get random number” functions, and that
weaker passwords can be made stronger using the anti-dictionary-attack protections
inherent in the TPM design, they may decide (and we hope they will) to make these
features easily available to everyday people.

Security architects deinitely need to understand the functions provided by TPM 2.0
and, depending on the applications being developed, dive deep into how the TPM works
in order to understand the security guarantees provided. Linking disparate machines or
diferent functions to provide trusted software and networks should be possible using
TPM functionality as security architects get creative. Commercial availability of this
capability is long overdue.

Application developers, both architects and implementers, are a signiicant focus
of this book. hese readers need to understand the TPM from a high-level viewpoint
and will be especially interested in the use cases. TPM 2.0 is feature rich, and the use
cases we describe will hopefully inspire creativity in developing and inventing security
applications. Developers have to know the basics of symmetric and asymmetric keys and
hashes in developing their applications—not the bit-by-bit computations, which are done
in the TPM or support software—but rather the types of guarantees that can be obtained
by using the TPM correctly.

We also want the book to be useful to embedded system developers, middle ware
developers, and programmers integrating TCG technology into operating systems and
boot code. he TPM now exposes more general-purpose cryptographic functions, which
are useful when a crypto library isn’t available due to either resource constraints or
licensing issues. We hope that low-level developers will ind that this book goes as deep
as they need it to and that it serves as a critical tool in interpreting the speciication.
Toward this end, diagrams and working code examples are used to help clarify many
concepts. We expect that embedded systems will increasingly use TPMs as the cost of
the technology is reduced (making cryptographic computations cheap to integrate into
embedded software) and as attacks on embedded software become more active.

Roadmap
If you’re new to security or need a refresher, Chapter 2 gives an overview of the security
concepts required to understand the book. his chapter provides high-level knowledge
of cryptography: we explain symmetric and asymmetric keys, secure hash algorithms,
and how a message authentication code (MAC) can be used as a symmetric key digital

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xxx

signature. his chapter doesn’t delve into the underlying math used to implement
cryptographic algorithms; this isn’t intended as a general-purpose security or
cryptography textbook, because there is no need for most TPM 2.0 developers to possess
that depth of knowledge.

Chapter 3 presents a high-level tutorial on TPM 2.0 and the design rationale behind
it. It begins with applications and use cases enabled by TPM 1.2, all of which are also
available in TPM 2.0, and then continues by describing the new capabilities that are
available with the TPM 2.0 speciication. his chapter should help you understand why
people are excited about the technology and want to use it in their applications and
environments.

Chapter 4 describes existing applications that use TPMs (currently, mostly 1.2). We
assume that many of these applications will be ported to TPM 2.0. Some are open source,
some are demonstration code written by academics to demonstrate what the TPM can
do, some are applications that have been around a long time and that can be linked to use
TPM features, and some are generally available applications written speciically to take
advantage of the TPM’s capabilities.

Chapter 5 provides a high-level orientation to the TPM 2.0 speciication, ofers
pointers to critical parts of the speciication, and explores some best practices for using
the speciication.

Chapter 6 describes the setup and use of the execution environments available for
running TPM 2.0 code examples.

Chapter 7 discusses the trusted software stack (TSS). his is presented early in the
book because succeeding code examples use various layers of the TSS.

Chapter 8 begins the deep dive into TPM 2.0 functionality with a description of
TPM 2.0 entities: keys, data blobs, and NV indices.

Chapter 9 discusses hierarchies.
Chapter 10 covers keys.
Chapter 11 discusses NV indexes.
Chapter 12 explores PCRs and attestation.
Chapter 13 is one of the most in-depth chapters and is crucial if you’re developing

low-level code or architecting systems that make extensive use of sessions and
authorizations.

Chapter 14 discusses enhanced authorization.
Chapter 15 explains key management.
Chapter 16 describes the TPM’s auditing capabilities.
Chapter 17 examines decryption and encryption sessions and how to set them up.
Chapter 18 describes object, sequence, and session context management and the

basic functionality of a resource manager.
Chapter 19 discusses TPM startup, initialization, and provisioning. In typical usage,

these occur before keys and sessions are used, but knowledge of TPM entities and
sessions is a prerequisite to understanding TPM initialization and provisioning. his is
why we include this chapter after the previous three chapters.

Chapter 20 presents best practices for debugging TPM 2.0 applications.
Chapter 21 examines high-level applications that could use TPM 2.0 functionality.
Chapter 22 discusses platform-level security technologies that incorporate TPM 2.0

devices into their security solutions.

www.allitebooks.com

http://www.allitebooks.org

■INTRODUCTION

xxxi

Assumptions
Although this is a technology book, we have tried to assume as little about our readers as
possible. Code examples use C, and a working knowledge of C is useful. However, most of
the concepts stand alone, and much of the book should be comprehensible to
non-programmers. Security concepts are explained at a high level, and every attempt is
made to make them understandable.

Some knowledge of the TPM 1.2 and 2.0 speciications is deinitely beneicial but not
required. We encourage you to download the TPM 2.0 speciications from
www.trustedcomputinggroup.org so that you can refer to them as you read the book.

www.allitebooks.com

www.trustedcomputinggroup.org
http://www.allitebooks.org

1

CHAPTER 1

History of the TPM

A Trusted Platform Module, also known as a TPM, is a cryptographic coprocessor that
is present on most commercial PCs and servers. In terms of being present in computers,
TPMs are nearly ubiquitous, but until recently they’ve been mostly invisible to users due
to lack of compelling applications that use them. That situation is rapidly changing. With
the recent awarding of Federal Information Processing Standards (FIPS) certification to
various TPM designs, and recommendations from the President’s Council of Advisors
that the United States government begin using TPMs to defend the nation’s computers,
the TPM has become a strategic asset for computer owners to defend their cryptographic
assets. It is still true that very few people know enough about TPMs to use them in an
advantageous manner, a situation that motivated the writing of this book. This chapter
introduces you to TPMs, starting with TPM 1.1b, and describes the history of TPM 2.0’s
predecessors.

Why a TPM?
In the 1990s, it became increasingly obvious to people in the computer industry that
the Internet was going to change the way personal computers were connected, and
that commerce was going to move toward this environment. This immediately led to a
realization that there was a need for increased security in personal computers. When
PCs were first designed, little thought was given to their security, so the hardware did not
support it. Additionally, software was designed without any thought to security—ease of
use was the main driving force in software development.

The computer engineers who got together to develop the first TPMs—and who were
part of what came to be known as the Trusted Computing Group (TCG)—were trying to
reverse this trend and create a hardware anchor for PC system security on which secure
systems could be built. Cost pressures dictated that any such solution had to be very
cheap. The result was a hardware TPM chip intended to be physically attached to the
motherboard of a PC. The TPM command set was architected to provide all functions
necessary for its security use cases, detailed in Chapter 3; but anything not absolutely
necessary was moved off chip to software, to keep the cost down. As a result, the
specification was hard to read, because it wasn’t obvious how commands were to be used
when a lot of the logic was left to software. This started a trend in unreadability that has
continued through all the updates to the specification.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ HISTORY OF THE TPM

2

Hardware security is not an easy topic to begin with, and it doesn’t help to have
a specification that is hard to understand. A good starting place to understand this
technology is the history of its development.

History of Development of the TPM Specification
from 1.1b to 1.2
The first widely deployed TPM was TPM 1.1b, which was released in 2003. Even at this
early date, the basic functions of a TPM were available. These included key generation
(limited to RSA keys), storage, secure authorization, and device-health attestation. Basic
functionality to help guarantee privacy was available through the use of anonymous
identity keys, based on certificates that could be provided with the TPM; owner
authorization was required to create those identity keys. A new network entity called a
privacy certificate authority (CA) was invented to provide a means to prove that a key
generated in the TPM came from a real TPM without identifying which TPM it came from.

Areas of dynamic memory inside the TPM, called Platform Configuration
Registers (PCRs), were reserved to maintain the integrity of a system’s boot-sequence
measurements. PCRs, together with identity keys, could be used to attest to the health of
the system’s boot sequence. This began the building of a secure architecture based on the
TPM anchor, one of the key aims of the TCG.

One specific non-goal of the TCG was making the TPM design immune to physical
attacks. Although such capabilities are possible, it was decided to leave physical
protections to the manufacturers as an area where they could differentiate. Any software
attacks are within scope for TPM-based security, however.

In a manner similar to smart-card chips attached to the motherboard, IBM PCs
were the first to use TPMs (similar security coprocessors had been used in mainframe
computers for decades). HP and Dell soon followed suit in their PCs, and by 2005 it was
difficult to find a commercial PC that did not have a TPM.

One drawback of TPM 1.1b was incompatibilities at the hardware level. TPM vendors
had slightly different interfaces, requiring different drivers, and package pinouts were not
standardized. TPM 1.2 was developed from 2005–2009 and went through several releases.
Its initial improvements over 1.1b included a standard software interface and a mostly
standard package pinout.

The TCG realized that although TPM 1.1b protected keys against attackers who did not
know a key’s authorization password, there was no protection against an attacker trying one
password after another in an attempt to guess a correct password. Attackers who do this usually
try passwords from a dictionary of common passwords; this is known as a dictionary attack.
The TPM 1.2 specification required that TPMs have protection against dictionary attacks.

Privacy groups complained about the lack of implementations of privacy CAs. This
led to the inclusion in TPM 1.2 of new commands for a second method of anonymizing
keys to help address this concerns—direct anonymous attestation (DAA)—and a method
of delegating key authorization and administrative (owner-authorized) functions.

CHAPTER 1 ■ HISTORY OF THE TPM

3

It turned out that shipping a machine with a certificate for its TPM’s endorsement
keys on the hard disk was in many case impractical, because IT organizations often
erased the hard disk when they received it and installed their own software load. When
they did so, the certificate was deleted. In order to provide a solution, a small amount of
nonvolatile RAM (usually about 2KB) was added in TPM 1.2; it had specialized access
controls along with a small number of monotonic counters.

The 1.1b specification had a means of copying migratable keys from one TPM to
another TPM in case a machine died or needed to be upgraded. This process required the
approval of the key owner and the TPM owner. It was designed with the assumption that
an IT administrator would be the TPM owner and the user would be the key owner. But in
1.2, the user needed to be able to use the TPM owner authorization to mitigate dictionary
attacks and create NVRAM, which made this design impractical. Therefore, in 1.2,
another technique was designed to let users create keys that could only be migrated by a
designated third party. Such keys could be certified to this effect and hence were called
Certified Migratable Keys (CMKs).

Signing keys are often used to sign contracts, and having a timestamp of when the
signing takes place is useful. The TCG considered putting a clock into the TPM, but the
problem was that the TPM loses power whenever the PC is turned off. Although putting
a battery in the TPM is possible, it is unlikely that the increased function would be worth
the higher cost. Therefore the TPM was given the ability to synchronize an internal
timer with an external clock and then to sign with the value of the internal timer. As an
example, this combination could be used to determine when a contract was signed. This
functionality also lets the TPM be used to distinguish how much time elapsed between
two signature operations performed by the TPM.

No changes were made to existing application programming interfaces in 1.2, which
preserved binary compatibility of software written to the 1.1b specification. A side effect
was that the TPM 1.2 specification became even more complex, because special cases
had to be used to maintain compatibility.

Before TPMs became ubiquitous, security coprocessors such as smart cards were
used by some applications to store keys to identify users and keys to encrypt data at rest.
TPMs are well equipped to take over this task. But they can do much more: because the
security coprocessor is integrated onto the system’s motherboard in the form of a TPM, it
has additional uses (such as device identification) that are detailed in Chapter 3.

TPM 1.2 was deployed on most x86-based client PCs from 2005 on, began to appear
on servers around 2008, and eventually appeared on most servers. Just having hardware
does nothing, however—software needs to use it. In order to make use of the TPM
hardware, Microsoft supplied a Windows driver, and IBM open sourced a Linux driver.
Software began to be deployed, as described in Chapter 4.

How TPM 2.0 Developed from TPM 1.2
In early 2000, when the TCG was faced with the choice of a hash algorithm, it had two
choices: MD5, which was most widely deployed; and SHA-1, which was stronger and was
deployed widely, although not as widely as MD5. SHA-1 was the strongest commercial
algorithm at the time and could feasibly be used in a small, cheap package. This was a
fortunate choice, because MD5 weaknesses became apparent shortly afterward.

CHAPTER 1 ■ HISTORY OF THE TPM

4

Around 2005, cryptographers published the first significant attack on the SHA-1
digest algorithm. The TPM 1.2 architecture relied heavily on the SHA-1 algorithm and
had hard-coded SHA-1 everywhere. Although an analysis of the attack showed that it did
not apply to the ways SHA-1 was used in the TPM, a common axiom in cryptography is
that cryptographic algorithms only become weaker over time, never stronger. The TCG
immediately began work on a TPM 2.0 specification that would be agile with respect
to digest algorithms. That is, the specification would not hard-code SHA-1 or any other
algorithm, but rather would incorporate an algorithm identifier that would permit design
of a TPM using any algorithm without changing the specification. With this change (and
other changes allowing all cryptographic algorithms to be agile), the TCG hoped the new
specification could be the last major TPM specification to be released.

The original mandate of the TPM 2.0 Work Group within the TCG was only that:
digest agility. However, even a cursory look at the TPM 2.0 specification shows that it’s far
more than TPM 1.2 plus an algorithm identifier. How did that happen?

TPM 1.1b had carefully crafted structures so that serialized versions (the structures
translated into byte streams) were compact enough to be encrypted with a 2,048-bit RSA
key in a single encryption. That meant there were only 2,048 bits (256 bytes) to work
with. No symmetric encryption algorithms were required in the design, which kept the
cost down and avoided problems when exporting designs that could do bulk symmetric
encryption. RSA was the only required asymmetric algorithm, and performance required
that structures be encrypted in one operation.

TPM 2.0 had to provide for digests that were larger than SHA-1’s 20 bytes, so it was
clear the existing structures were too large. An RSA key could not directly encrypt the
serialized structures in one operation. Using multiple operations to encrypt the structures
in blocks was impractical, because RSA operations are slow. Increasing the size of the
RSA key would mean using key sizes that were not widely used in the industry and would
also increase the cost, change the key structures, and slow the chip. Instead, the TPM
Work Group decided the specification had to use the common practice of encrypting a
symmetric key with the asymmetric key and the data with the symmetric key. Symmetric
key operations are well suited for encrypting large byte streams, because they are much
faster than asymmetric operations. Symmetric key encryption thus removed the barrier
on the size of structures. This freed the specification developers to use their creativity to
architect several functions that were distinct from TPM 1.2.

It is said that the best designs come about when the architects make a design and
then, having learned all the problems they will encounter, throw away the first design and
start over with a second. TPM 2.0 gave the architects the opportunity to do this. However,
they still had to make sure that the opportunities for software development that were
enabled by the TPM 1.2 design were not lost with the new architecture.

History of TPM 2.0 Specification Development
The specification made slow but steady progress for several years, with features being
debated, added, and deleted. David Grawrock of Intel was the chair of the specification
committee; under his leadership, the group selected the major features of the design and
settled on a basic feature set and high-order design. At this point, the committee decided
to change all the structures to allow for algorithm independence in the specification—
this is called algorithm agility. All the authentication techniques were unified with

CHAPTER 1 ■ HISTORY OF THE TPM

5

a technique originally called generalized authorization and now called enhanced
authorization (EA). This increased the flexibility of authorization while simultaneously
reducing the cost of the implementation and reducing the cognitive difficulty of
understanding the specification. All objects and entities use the same authentication
techniques. Many discussions took place regarding the problems created by having
algorithm flexibility while still allowing a user to determine precisely what algorithms
were used, both by a given key and also to protect the key, so the overall security of any
key held by the TPM could be determined.

When Grawrock left the chairmanship due to changing responsibilities at
Intel, Microsoft contributed a full-time editor, David Wooten, and HP took over the
chairmanship. It was decided at this point that the specification should be compilable,
which drove Wooten to create an emulator while writing the specification. A compilable
specification has the advantage of much-reduced ambiguity: if there is doubt about how
the specification is supposed to work, it can be compiled into an authoritative emulator.
Additionally, the generalized authentication structure was moved from Polish notation
(such as used in a TI calculator) to Reverse Polish notation (such as used in an HP
calculator), which made implementing the specification easier (but made understanding
the specification harder). The committee decided to add multiple key hierarchies to
accommodate different user roles.

Wooten worked tirelessly to develop an implementation of the specification and
provided strong leadership that drove the specification to its current feature set. When
HP’s Graeme Proudler stepped down from the chairmanship, David Challener of Johns
Hopkins Applied Physics Laboratory formed a joint chairmanship first with Julian
Hammersly of AMD, and later with Ari Singer of DMI. Kenneth Goldman (of IBM) took
over the editorship from David Wooten after the first release, reprising a role he held for
many years with the TPM 1.2 specification.

As new members joined the group over the years and began trying to understand the
specification, some of them, notably Will Arthur and Kenneth Goldman, dove deep into
the specification line by line. They submitted many bug and readability fixes to the TPM
Work Group, and most of those resulted in changes to the specification that enhanced its
consistency and readability. Even with these changes, it still is not easy reading, which led
to the original impetus for this book.

Summary
The TPM specification has been developed twice. The first time, it developed from 1.1b
to 1.2, evolving to incorporate capabilities as they came to be known to the specification
committee. This feature-creep form of evolution made the final specification very
complicated. In the second generation, TPM 2.0, after the cryptographic weaknesses
of SHA-1 caused the need for a change, the architecture was redesigned from scratch—
resulting in a much more integrated and unified design. The next chapter introduces the
cryptographic concepts that will be used throughout the rest of the book. A good high-level
understanding of these is imperative for you to understand TPM 2.0.

7

CHAPTER 2

Basic Security Concepts

This chapter provides an overview of security concepts and their application to the TPM.
It is not important that you understand the underlying mathematics of those concepts,
so they will not be described. Instead, the chapter discusses the behavior of the various
cryptographic algorithms so you can understand how they are used in the TPM 2.0
specification.

Security experts can skip this chapter. If you have less or somewhat rusty knowledge,
you are advised to skim it to refresh your memory or learn how basic cryptographic concepts
are used in TPMs. If you have little or no TPM knowledge, this chapter is a must read.

All the cryptographic algorithms included in TPM 2.0 are based on public
standards that have been extensively reviewed. Creating custom algorithms that
are cryptographically strong has generally proven to be very difficult. Many years of
cryptanalysis must be performed before an algorithm is considered strong by the
community, and only algorithms that have met that criteria are approved for use in the
TPM by the Trusted Computing Group (TCG). This chapter describes three types of these
algorithms: hash algorithms used mostly for integrity, symmetric-encryption algorithms
used mostly for confidentiality, and asymmetric-encryption algorithms used mostly for
digital signatures and key management. Specifically, we explore secure hash algorithms
the Advanced Encryption Standard (AES); and two asymmetric standards,
RSA and elliptic curve cryptography (ECC). But before considering the actual algorithms,
you need to know what they are used to defend against.

The chapter begins with a description of the two attack classes: brute force and
cryptanalysis. It then defines some fundamental concepts: messages, secrecy, integrity,
authentication, and authorization, along with two higher-layer concepts, anti-replay and
nonrepudiation. It finishes with a listing of the cryptographic algorithm classes used in
the TPM.

For the most part, these are general security principles. They are used throughout
the TPM design, and a description of their specific application to TPM 2.0 will be given as
they are used throughout the book. In the few cases where the TPM uses cryptography in
a less common way, or where the specification introduces a new cryptographic term, we
explain it here. (The extend operation is an example of both cases: it’s a general security
concept that has been applied in a new way in TPMs.)

Everything done in a TPM is related in some way to mitigating cryptographic attacks.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

8

Cryptographic Attacks
Cryptography is all about preventing attackers from doing malicious things. Security
systems that use cryptography are designed to prevent bad people from having their
way with your data, impersonating you, or changing documents without being detected.
These attackers may attempt to compromise the security of a cryptographic design in
two basic ways: either by deeply understanding the mathematics of the algorithms and
protocols and using that knowledge to look for and exploit a flaw in the design, or by
using brute force.

If you use well-vetted algorithms and protocols, and use them the way they were
designed to be used, your design will probably be immune to the first type of attacks.
That is why you need to take care to use accepted algorithms and protocols in your design.
In a brute-force attack, the attacker tries every possible key, input, or password, trying to
guess the secrets used to protect the design.

Brute Force
Cryptographers don’t like to claim that anything is impossible. Rather, they say something
is “computationally infeasible,” meaning it would take an impractical amount of time to
attack the cryptography by trying every combination. For the Data Encryption Standard
(DES), 2^56 possible keys could be used. This number is large: 72,057,594,037,927,936.
Although breaking the DES algorithm might seem to be computationally infeasible, in
1998, a machine was developed that did exactly that.1

Passwords are also often attacked using brute force—first dictionary words are tried,
then combinations of words and numbers, and even special characters. Attackers may
even try Klingon words or words from the Harry Potter books or The Lord of the Rings!
RainbowCrack (www.project-rainbowcrack.com/) is a well-known program used to
crack even fairly long passwords using brute force.

A cryptographic algorithm is well designed if the strength of the algorithm is not
dependent on keeping the algorithm secret. The algorithm is infeasible to break if this is
true and if it is infeasible to guess the algorithm secret, commonly called a key. Defending
against brute force attacks is about picking key sizes so large that it is infeasible to try
them all, or reducing the number of attacks that can be performed in a period of time.

TCG assumes that all the algorithms it approves are well designed. This may
not be true. Because the specification is not wedded to a particular algorithm, if one is
found to be weak at some point in the future, then instead of the specification having to
be rewritten, just that algorithm can be removed from the list of approved algorithms.

The strength of an algorithm that is well designed is measured by its immunity to
mathematical attacks. The strength of an implementation depends on both the type
of algorithm and the size of the key used.

1http://en.wikipedia.org/wiki/Data_Encryption_Standard#Chronology.

http://www.project-rainbowcrack.com/
http://en.wikipedia.org/wiki/Data_Encryption_Standard#Chronology

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

9

Calculating the Strength of Algorithms by Type

Symmetric algorithms are used for traditional encryption, where the same key is used for
encryption and decryption. For a well-designed symmetric algorithm, the strength of the
cryptographic algorithm should depend exponentially on the size of the key used. Thus if
a key is only 4 bits long, there are 24 or 16 possible keys. A brute-force attacker who tried
all 16 keys would break the encryption; but on average the attacker would have to try
only half of them, or 8 keys, before finding the correct key. Because the numbers get
large quickly via exponentiation, the strength of algorithms is generally quoted in bits.
A well-designed symmetric algorithm has a strength equal to the number of bits in its key.
In a TPM, the symmetric algorithms usually have key sizes of 128, 192, or 256 bits.

A secure hash algorithm is sort of like an algorithm that encrypts but cannot decrypt.
This may sound non-useful, but it has a number of very interesting uses. A secure hash
algorithm always produces the same size output, independent of the input. A wonderful
property of a secure hash algorithm is that given the input, you always get the same output;
but given just the output, you can’t calculate the input. The strength of such an algorithm
can be calculated two ways:

The number of tries that would have to be attempted to guarantee •
finding an input that produces a given hash output. For a well-
designed hash algorithm, this is assumed to be the size of the
output in bits.

The number of tries that would have to be attempted to have a •
50% chance of finding two inputs with exactly the same output.
For a well-designed hash algorithm, this is half the size of the
output in bits.2

Depending on how the secure hash is used, either can be correct; but because
cryptographers tend to be P3 people (Paid Professional Paranoids), the latter is generally
used for the strength of a well-designed secure hash algorithm.

Asymmetric algorithms are strange at first introduction: The encryption algorithm is
different from the decryption algorithm, and the two use different keys, which together
form a public and private key pair. There are two asymmetric algorithms you should
be concerned about and that are described later in this chapter: RSA (named after its
inventors, Rivest, Shamir, and Adleman) and Elliptic Curve Cryptography (ECC).

For asymmetric algorithms, it is difficult to calculate strength corresponding to
a particular key size. For RSA, there are tables you can consult. Those tables say that
2048 bits in an RSA asymmetric key corresponds to 112 bits in a symmetric key; 3,076
bits corresponds to 128 bits; and 15,360 bits corresponds to 256 bits of key strength. For
ECC, the strength is considered to be half the number of bits of its key’s size. Therefore, a
256-bit ECC key is the same strength as a 128-bit symmetric key, and a 384-bit ECC key
corresponds to a 192-bit symmetric key.

2Thiskindofattackisgenerallycalledabirthdayattack,becauseofanoldpartytrick.Ifthereare
23(whichisclosetothesquarerootof365)peopleinaroom,thechancesof2ofthemhavingthe
samebirthdayis50%.Iftherearesubstantiallymorepeopleintheroom,theprobabilityrises
accordingly.Ifthereare40people,theprobabilityisalmost90%.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

10

If brute-force attacks are infeasible due to a large key size, the attacker may seek to
analyze the mathematics of the cryptographic algorithm or protocol with the hope of
finding a shortcut.

Attacks on the Algorithm Itself
Cryptographic algorithm design is a bit of an art. The mathematics are based on how hard
it is to solve a particular type of problem, and that difficulty in turn is based on current
knowledge. It’s very difficult to design an algorithm against which no attacks can ever
be mounted.

An attack on the SHA-1 hash algorithm3 was one of the motivations for moving
from TPM 1.2 to TPM 2.0. Under normal circumstances, a brute-force birthday attack on
SHA-1 would take about 280 calculations, with a cryptographic strength of 80. The attack,
which was based on a weakness in the underlying mathematics, successfully reduced the
number of calculations required for a successful attack to 263—a cryptographic strength
of 63. TPM 1.2 used SHA-1 throughout the design. With 56-bit DES encryption defeated
by brute-strength attacks in 1998, it was clear that 63 bits was not enough for the industry.
For that reason, TPM 2.0 removed this dependency on the SHA-1 algorithm. To defend
against such an attack ever happening again, the specification was made algorithm
agile—algorithms can be added to or subtracted from the specification without requiring
that the entire specification be rewritten.

To summarize, in order to be secure, cryptographic algorithms must not have the
following vulnerabilities:

• Weaknesses in algorithms: You can avoid weak algorithms by
using well-vetted, internationally accepted, widely reviewed
standards.

• Brute-force attacks: By choosing large key sizes and by allowing
the end user to pick the key size they wish to use, you can avoid
this vulnerability. Today 128 bits is generally considered a safe
value for symmetric algorithms, but some researchers and
security agencies insist on 192 bits.

Now that you’ve seen the attacks you’re defending against, we can discuss the basic
cryptography constructs used in the TPM specification. Let’s begin with some definitions.

Security Definitions
Several concepts are important for understanding the TPM architecture and
cryptographic concepts. People often equate security solely with secrecy: the inability of
an attacker to decode a secret message. Although secrecy is certainly important, there
is much more to security. It’s easiest to understand these concepts by considering an

3XiaoyunWang,YiqunLisaYin,andHongboYu,“FindingCollisionsintheFullSHA-1,”
AdvancesinCryptology–CRYPTO2005.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

11

example. Because electronic business was a big motivator in the design of the TPM, the
following example comes from e-business.

An electronic order is transmitted from a buyer to a seller. The seller and buyer may
want to keep details (credit card numbers, for example) of the purchase secret. However,
they may also want to ensure that the order really came from the buyer, not an attacker;
that the order went only to the seller; that the order wasn’t altered in transit (for example,
by changing the amount charged); and that it was sent exactly once, not blocked or sent
multiple times. Finally, the seller may wish to verify that the buyer is permitted by their
company to buy the item and to spend the total amount of the purchase order. All these
aspects are the problems that cryptography and security protocols attempt to solve.

Based on this example, we can describe several commonly used security terms and
concepts, and then explain how they can be used to provide the various aspect of security.

• Message: An array of bytes sent between two parties.

• Secrecy: A means of preventing an unauthorized observer of a
message from determining its contents.

• Shared secret: A value that is known to two parties. The secret can
be as simple as a password, or it can be an encryption key both
parties know.

• Integrity: An indication that a message has not been altered
during storage or transmission.

• Authentication: A means of indicating that a message can be tied
to the creator, so the recipient can verify that only the creator
could have sent the message.

• Authorization: Proof that the user is permitted to perform an
operation.

• Anti-replay: A means of preventing an attacker from reusing a
valid message.

• Nonrepudiation: A means of preventing the sender of a message
from claiming that they did not send the message.

Let’s consider how each of these security concepts fits into the electronic purchase
order example. The message is the number of items ordered and any confidential
customer information, such as a credit card number. Integrity ensures that the order has
not been altered in transit—for instance, from 3 items to 300 items. Authentication proves
that the order came from the buyer. Authorization checks that the buyer is permitted
to purchase the items on behalf of their company. Anti-replay prevents the attacker
from sending the buyer’s message again to purchase three items multiple times. And
nonrepudiation means the buyer can’t claim they never ordered the items.

To provide these security guarantees, designers of a security system have a toolbox
of cryptographic functions that have been developed, analyzed, and standardized. Some
items are fundamental mathematical building blocks, such as the SHA-256 secure hash
algorithm or the RSA asymmetric-key encryption calculation. Other items, such as digital
signatures, build on these fundamentals by using the RSA algorithm. These cryptographic
functions are described next.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

12

Cryptographic Families
Trust us, there’s no math in this section. We won’t be describing prime number
algorithms and elliptic curves. But it’s important to understand some cryptographic
operations and how they relate to the basic security principles you’ve already seen.

A secure hash algorithm is used to provide integrity. It can be combined with a
shared-secret signing key in an HMAC algorithm to ensure authentication. HMAC is in
turn the basis for a cryptographic ticket and key-derivation functions. A shared secret
provides secrecy when used in symmetric-key encryption. A nonce provides anti-replay
protection. An asymmetric key used as a signing key offers nonrepudiation. The TPM also
uses an asymmetric key for secrecy in some protocols. All these concepts are described in
the following sections.

Secure Hash (or Digest)
Most computer science students are familiar with hashes; simple hashes are used to
speed searches. A more advanced form of a hash is a checksum that is used to detect
random errors in data. But cryptographers are concerned with malicious attackers trying
to break a system, so they need a secure cryptographic hash with very specific properties.

A cryptographic hash, like its much simpler cousins, takes a message of any length
and compresses it to a hash of fixed length. For example, a SHA-256 hash is 256 bits or
32 bytes. For security purposes, the important properties of a secure hash are as follows:

It’s infeasible, given a message, to construct another message with •
the same hash.

It’s infeasible to construct two messages with the same hash.•

It’s infeasible to derive the message given its hash.•

As an example, you can observe that even a very small change in a message causes a
large change in the digest produced by the hash. For example, using SHA-1, the message
“Hello” hashes to:

fedd18797811a4af659678ea5db618f8dc91480b

The message “hello” with the first character changed to lowercase hashes to:

aa5916ae7fd159a18b1b72ea905c757207e26689

The TPM 2.0 specification allows for a number of different types of hash
algorithms—SHA-1, SHA-256, and SHA-384 are just some of them. Typically, TPMs
implement only a few of the allowed hashes. One problem that vexed the developers for
a long time was how to integrate multiple hash algorithms (which are used to maintain
integrity) if one of those hash algorithms was later broken. This is harder than it sounds,
because usually hash algorithms themselves are used to provide integrity to reports, and
if the hash algorithm can’t be trusted, how can you trust a report of which hash algorithm
is being used? The design that was chosen managed to avoid this problem: tags are used
throughout the design in data elements that identify the hash algorithms used.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

13

In the TPM, a secure hash is a building block for other operations, such as hash-extend
operations, HMACs, tickets, asymmetric-key digital signatures, and key-derivation
functions, all described next.

Hash Extend
The term extend is not a common cryptographic term, but this operation is used
throughout the TPM. An extend operation consists of the following:

1. Start with an existing value, A.

2. Concatenate another value, B (the value to be extended) to it,
creating the message, A || B.

3. Hash the resulting message to create a new hash, hash(A || B).

4. This new hash replaces the original value, A.

The whole process can be summarized as: A ← hash (original A || B).
As an example, using SHA-1, extending the digest of the message 'abc' to an initial

value of all zero yields this result:

ccd5bd41458de644ac34a2478b58ff819bef5acf

The extend value that results from a series of extend operations effectively records a
history of the messages extended into it. Because of the properties of a secure hash, it is
infeasible to back up to a previous value. Thus, once a message is extended, there is no
“undo” to go backward—to reverse the calculation and erase past history. However, the
actual size of the value, such as 32 bytes for the SHA-256 hash algorithm, never changes,
no matter how many messages are extended. The fixed length of an extend value coupled
with its ability to record a virtually unlimited history of extend operations is critical in the
memory-constrained TPM.

Extend is used to update platform configuration register (PCR) values. A PCR is
a TPM register holding a hash value. The values extended into the PCR can represent
the platform state. Suppose the PCR indicates an untrusted state, but an attacker wants
to change the PCR to a trusted value. To do this, the attacker would have to construct
another message, starting with the current PCR value, whose resulting hash was a trusted
value. The properties of a secure hash dictate that this is infeasible.

Extend is also used in TPM audit logs. The audit logs record TPM commands and
responses. Because of the extend properties, an item cannot be removed from the log
once it has been added, and the size of the log in the TPM remains constant no matter
how many commands are audited.

In addition, extend is used in creating policies that represent how a TPM can be
authenticated. This is described in the chapter on extended authorization.

Hashes are also used in a simpler form of authorization, which was also used in the
TPM 1.1 and TPM 1.2, called an HMAC.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

14

HMAC: Message Authentication Code
An HMAC is a keyed hash. That is, it performs a secure-hash operation but mixes in a
shared secret key, the HMAC key. Because of the properties of a secure hash, given a
message, only a party with knowledge of the HMAC key can calculate the result. Applying
a key to a message in this way is known as “HMACing” the message.

TPM 1.2 used HMACs throughout to prove to the TPM that the user knew a TPM
entity’s authorization data, which was used as the HMAC key. TPM 2.0 can also authorize
entities this way. The HMAC key is a shared secret between the TPM and the caller. As an
example, a TPM object, such as a signing key, may have an associated authorization value
that is known to both the TPM and an authorized user of the key. The user constructs a
TPM command to use the object and calculates an HMAC over the command message
using an HMAC key that is derived in part from the object’s authorization value. The TPM
receives the command message and performs the same HMAC operation using the same
HMAC key. If the results are the same, the TPM knows the command has not been altered
(integrity) and that the caller knew the object’s HMAC key, which in turn means the caller
knew the authorization value. Thus the caller was authorized.

The TPM also uses HMAC for integrity of structures that may at times be stored
externally—in other words, proof that an attacker has not altered a value. Here, the HMAC
key is a secret known only to the TPM, not shared with any party outside the TPM. When
the TPM outputs a value to be stored for later use, it includes an HMAC using its secret.
When the value is later input, the TPM verifies the HMAC to detect any external alteration
of the value. Essentially, the HMAC key is a shared secret between the TPM and itself
across a time interval: from the time the value is stored externally to the time the value is
input to the TPM. One example of this use of HMACs is an authentication ticket. The TPM
uses these tickets to prove to itself that it did an operation by producing an HMAC of a
digest of the result of the operation, using an internal secret that only it knows.

HMACs can also be used to derive keys, using something called a key derivation
function.

KDF: Key Derivation Function
A manufacturer might want to ship a TPM with certificates for multiple key sizes for
multiple algorithms. But a TPM has a limited amount of space to store these keys. Further,
many TPM protocols require more than one secret. For example, one secret may be
required to symmetrically encrypt a message, and a second may be used to HMAC the
result. In order to reduce the cost of manufacturing a TPM, the TPM has the ability to
create multiple keys from a single secret. This secret is called a seed, and the algorithm
used to derive multiple secrets from this seed is called a key derivation function (KDF).
The TPM can use KDFs to derive both symmetric and asymmetric keys.

Because, as explained earlier, encryption doesn’t provide integrity, the usual pattern
is to encrypt with a symmetric key and then HMAC with an HMAC key. The question
that arises is, “Does this mean there must be two shared secrets?” Not usually. The
design pattern is to share one secret, a seed. From this one seed, a KDF is used to derive a
symmetric encryption key and an HMAC key.

The TPM uses an HMAC as a KDF based on an algorithm specified by NIST in
Special Publication 800-108. In a typical case, it HMACs some varying data using the seed

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

15

as the HMAC key to derive the keys. The varying data always includes a string of bytes
describing the application of the keys. This ensures that, when the same seed is used for
different applications, different keys are used. This satisfies a basic crypto rule: never use
the same key for two different applications. The other data also includes values unique
to the operation. If you need two keys with the same description, you must use different
unique values to guarantee that unique keys are created.

Authentication or Authorization Ticket
A ticket is a data structure that contains an HMAC that was calculated over some data.
The ticket allows the TPM to validate at a later time that some operation was performed
by the TPM. The HMAC asserts that some operation has been previously performed
correctly and need not be performed again. In practice, the data is often not the actual
message, which may be too large to fit in the ticket, but a digest of the message. The TPM
uses tickets when it splits cryptographic operations into multiple operations with respect
to time. Here, the HMAC key used to generate the HMAC is not a shared secret, but a
secret known only to the TPM.

For example, the TPM uses a ticket when it calculates a hash over a message that it
will later sign. It produces a ticket that says, “I calculated this hash and I assert that it is a
hash that I will sign.” It signs the ticket by producing an HMAC using a secret only the TPM
knows. Later, the HMAC is presented along with the ticket. The ticket is verified using the
same secret HMAC key. Because only the TPM knows the HMAC key, it knows the ticket
was produced by the TPM (authenticity) and that it has not been altered (integrity).

The TPM can do something similar when storing data outside the TPM. It can
encrypt that data with a secret only it knows and then decrypt it again when loading it
back inside the TPM. In this case, a symmetric key is used for encryption.

Symmetric-Encryption Key
A symmetric-encryption key is a key used with a symmetric-encryption algorithm.
Symmetric algorithms use the same key for both encryption and decryption. (An HMAC
key is also a symmetric key, but it’s used for signing, not encryption.)

A typical symmetric-key algorithm is the Advanced Encryption Standard (AES).
Other algorithms are supported by the specification, including Camellia and SM4; but
because they all work pretty much the same, all of this book’s examples use AES. The
TPM uses symmetric-key encryption in three different ways:

• Keeping TPM data secret from all observers: The symmetric key
isn’t shared outside the TPM. It’s generated by and known only to
the TPM. For example, when a key is cached (offloaded) from the
TPM in order to free memory for other TPM operations, the TPM
encrypts the key using symmetric encryption. This symmetric key
is known only to the TPM.

• Encrypting communications to and from the TPM: Here, the
symmetric key is generated based on a secret agreed on by the
sender and the TPM. Then parameters are passed to the TPM
encrypted, and the results are returned encrypted from the TPM
to the user.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

16

• Using the TPM as a cryptographic coprocessor: Because the TPM
knows how to encrypt things using symmetric keys, you can use
the TPM to do that. You can load a key into the TPM and then ask
the TPM to encrypt data with that key. TPMs usually aren’t very
fast at doing this, so this is typically only done for a small amount
of data, but it can prevent an application programmer from
having to use a cryptographic library for some programs. When
specified as optional by the platform-specific TPM specifications,
it’s likely that TPM vendors and/or platform manufacturers
will exclude symmetric encryption and decryption commands,
because a hardware device that can do bulk symmetric-key
operations can be subject to export (or perhaps import)
restrictions or licensing.

Symmetric-key encryption is a little more complicated than just picking an algorithm
and a key. You also need to select a mode of encryption. Different modes are used in
different protocols.

Symmetric-Key Modes

Typical symmetric-key encryption algorithms like AES work on blocks of data. Two problems
must be solved when using block-mode encryption:

If blocks are simply encrypted with the key, the same block will •
always produce the same result. This is called electronic codebook
(ECB) mode. If a bitmap picture is encrypted using ECB, all that
happens is that the colors are changed.4 Obviously this isn’t useful
if the data being encrypted is large.

To counter this, the TPM supports several other modes:
cipher-block chaining (CBC), cipher-feedback (CFB), output-
feedback (OFB), and counter (CTR). All these modes have the
property that if the same block is encrypted more than once in
the same message, the result is different each time.

Some modes, like CBC, require that the output be an exact •
multiple of the block size of the underlying algorithm. If the
input isn’t a multiple of the block size (which is usually 128 bits
or 16 bytes), it is padded to make this true. When this input is
encrypted, the output is larger than the initial data by the size of
the padding. For applications where the output can be a different
size than the input (such as offloading a key), this isn’t a problem;
but it’s inappropriate when the input and output must be the
same size (such as when you’re encrypting a TPM command).

4http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation.

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

17

In this second case, you can use CFB or CTR mode. In CFB
mode, a symmetric key encrypts an initialization vector, with
the result being used as the initialization vector for the next
block. In CTR mode, the symmetric key is used to encrypt
incrementing counter values. In both modes, the resulting
byte stream is XORed with the input to produce the output.
As many bytes of the stream as necessary are used, and extra
bytes are discarded, so the output is the same size as the input.

A property of CFB and CTR modes (actually a property of XOR) is that flipping a bit
in the encrypted stream flips exactly the same bit in the decrypted stream. The attacker
may not know the message but can certainly alter it. An attacker can flip a bit in a message
encrypted using CBC mode as well, but more bits will change in the decrypted data.

This leads to an important (and often missed) point. Encryption provides secrecy,
but it does not provide integrity or authenticity. To ensure those latter properties, the
TPM uses an HMAC on the encrypted data. It does not depend on the decrypted data
“looking funny” to detect alteration. Indeed, by calculating the HMAC of the encrypted
message first, the TPM will not even attempt to decrypt it unless it is first determined that
the message’s integrity is intact and that it is authentic.

Additionally, encryption does not provide evidence that the message was produced
recently. That is done with a nonce.

Nonce
A nonce is a number that is used only once in a cryptographic operation. It provides
protection against a replay attack. In order to guarantee that a message hasn’t been
replayed, the recipient generates the nonce and sends it to the sender. The sender includes
that nonce in the message. Because the sender presumably has no way of knowing what
nonce the recipient will choose, they can’t replay a message that was prepared earlier. But
of course, you must take care that a previously prepared message can’t just be minimally
modified. When sending commands to a TPM and receiving the results back, nonces
provide proof to the user that the results of the command were sent by the TPM.

In a typical TPM use, the nonce is included in the calculation of the HMAC of a
command message. After an operation using the message is complete, the TPM changes
the nonce. If the caller attempts to replay the message which had an HMAC that used the
previous nonce, the TPM will attempt to verify the HMAC of the replayed message using
the new nonce, and this verification will fail.

For many applications, a nonce can simply be a number that increments at each use
and is large enough to never wrap around. However, this would require the TPM to keep
track of the last-used value. Instead, the TPM takes advantage of its random-number
generator. It uses random numbers as its nonces, and it uses large enough values (for
example, 20 bytes) that the odds of a repeat are nil.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

18

Asymmetric Keys
Asymmetric keys are used by asymmetric algorithms for digital identities and key
management. They are actually a key pair: a private key known only to one party and
a public key known to everyone. Asymmetric keys make use of mathematical one-way
functions. These functions have the property that calculating the public key from the
private key is relatively easy computationally, but calculating the private key from
the public key is computationally infeasible.

You all have window seats in The Restaurant at the End of the Universe

—Mullen 2011

If the owner of the private key uses it to encrypt some data (and the key is large
enough), everyone can use the public key to decrypt the data, but everyone will know that
only the holder of the private key could have encrypted that data. This is called signing
the data. There are some complications to using this securely—the data that is signed
should be in a particular format called a signing scheme, but the TPM ensures sure that
the correct format is used.

If someone wants to share data (usually a symmetric key) with the owner of a private
key in a secure way, they can provide the data to the owner by encrypting it with the
owner’s public key. Then they can be certain that only the owner will be able to recover
the shared data by using the owner’s private key. This is done in different ways depending
on the type of asymmetric algorithm, but we skip these deep mathematical details here.

RSA Asymmetric-Key Algorithm

RSA is a well-known asymmetric-key algorithm. It uses the factoring of large numbers
into large primes as its one-way function. RSA has an interesting property: If the private
key is first applied to a message and then the public key is applied to the result, the
original message is obtained. Alternatively, if the public key is applied to a message and
then the private key is applied to the result, again the original message is obtained.

Thus, RSA can be used for both encryption and digital signatures. In encryption and
decryption, the public key is used to encrypt data, and the private key is used to decrypt
data. For digital signatures, the private key is used to digitally sign, and the public key is
used to verify signatures.

RSA for Key Encryption

To encrypt using the asymmetric keys, you apply the recipient’s public key, which is known
to you because it’s public, to the message. The holder of the private key can apply their key to
recover the message. It is secret from everyone else because the private key is, well, private.

In practice, messages are not typically encrypted directly with an asymmetric key. The
data size is limited, based on the size of the key. Breaking up the message into smaller pieces
is possible but impractical because asymmetric-key operations are typically very slow.

The usual pattern is to encrypt a symmetric key with the asymmetric public key,
send the encrypted symmetric key to the recipient, and then encrypt the message with
that symmetric key. The recipient decrypts the symmetric key using their private key and
then decrypts the message with the much faster symmetric-key algorithm.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

19

RSA for Digital Signatures

A digital signature is similar to an HMAC but has additional properties. To create an
asymmetric-key digital signature, the signer applies their private key to a message. The
verifier applies the public key to the signature to recover and verify the message.

A digital signature permits the recipient to know that a message has integrity and is
authentic, qualities that an HMAC also possesses. An asymmetric-key digital signature
goes further:

Because the verification key is public, multiple parties can verify •
the signature. With an HMAC, the verification key is a shared secret,
and only a holder of the shared secret can verify the message.

Because a private key is used to generate the signature, only the •
sender (the holder of the private key) could have generated the
signature, and the recipient can prove it to a third party. With
an HMAC, a shared secret is used, and both the sender and the
recipient know the shared secret. The recipient can verify that
the signature was generated by the sender, but the recipient can’t
prove this to a third party, because, for all the third party knows,
the recipient could also have generated the signature.

As with asymmetric-key encryption, the digital signature isn’t typically applied
directly to the message, because the message would be limited based on the key size.

The usual pattern is to digest the message and apply the private key to the smaller
digest. The verifier applies the public key to the signature to recover the signed digest
and compares that digest to one calculated from the message. This works because it is
infeasible for an attacker to construct a second message with the same digest.

RSA is not the only asymmetric-key algorithm. Elliptic curve cryptography (ECC) is
gaining popularity and is included in the latest specification.

ECC Asymmetric-Key Algorithm

ECC is another type of asymmetric mathematics that is used for cryptography. Unlike
RSA, which uses an easily understood mathematical operation—factoring a product
of two large primes—ECC uses more difficult mathematical concepts based on elliptic
curves over a finite field. We will not describe the mathematics but instead describe how
it is used. Just like every other asymmetric algorithm, ECC has a private and public key
pair. The public key can be used to verify something signed with the private key, and the
private key can be used to decrypt data that was encrypted using the public key.

For equivalent strength, ECC keys are much smaller than RSA keys. The strength of
an ECC key is half the key size, so a 256-bit ECC key has 128 bits of strength. A similarly
strong RSA key is 3,076 bits long. Smaller key sizes use fewer resources and perform faster.
For encryption, a procedure known as Elliptic Curve Diffie-Hellman (ECDH) is used with
ECC. For signing, Elliptic Curve Digital Signature Algorithm (ECDSA) is used.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

20

ECDH Asymmetric-Key Algorithm to Use Elliptic Curves to
Pass Keys

When using ECC to encrypt/decrypt asymmetrically, you use the ECDH algorithm. The
main difference between ECC and RSA for encryption/decryption is that the process
of using an ECDH key takes two steps, whereas RSA takes only one. When encrypting a
symmetric key with a TPM-based RSA key, you use the TPM RSA’s public key to encrypt it.
When encrypting a symmetric key with a TPM-based ECDH key, two steps are required:
Generate (in software) another ECDH key; and then use the private key of the newly
generated ECDH key and the public portion of the TPM ECDH key to generate a new
ephemeral random number, which is input to a KDF to generate a symmetric key. To put
this more succinctly, with RSA you can supply the symmetric key to be encrypted, but
with ECDH the process generates the symmetric key.

To recover the symmetric key, the public portion of the software-generated ECDH
key is given to the TPM. It uses it together with the private portion of its own ECDH key
to regenerate the ephemeral random number, which it inputs into a KDF internally to
regenerate the symmetric key.

ECDSA Asymmetric-Key Algorithm to Use Elliptic Curves
for Signatures

ECDSA is used as an algorithm with ECC to produce signatures. Just as with RSA, in
ECDSA the private key is used to sign and the public key is used to verify the signature.
The main difference (other than the mathematical steps used) is that when using an
ECC key, because it’s much smaller than an RSA key, you have to ensure that the hash
of the message you’re signing isn’t too big. The ECDSA signature signs only n bits of
the hash, where n is the size of the key. (This is also true of RSA; but RSA keys sizes are
typically >=1,024 bits and hash sizes top out at 512 bits, so this is never a problem.)

Whereas with RSA you can typically sign a message with any hash algorithm, with
ECC you typically use a hash algorithm that matches the size of the key: SHA-256 for
ECC-256 and SHA-384 for ECC-384. If you used SHA-512 (which produces 512-bit hashes)
with an ECC-384 key, ECDSA would sign only the first 384 bits of the hash. You can sign
smaller hashes without any problem, of course, so an ECC 384-bit key could be used to
sign SHA-384, SHA-256, or SHA-1 (160 bits) hashes.

One problem with all signing protocols is that the recipient of the signature needs to
be assured that the public key they use to verify the signature really belongs to the owner
of the private key who signed it. This is handled with public key certificates.

Public Key Certification
Certification is part of an asymmetric-key protocol and solves the following problem:
How do you trust the public key? After all, it accomplishes nothing to verify a digital
signature with a public key if you don’t know whose public key you’re using. Secrecy
won’t be preserved if you encrypt a message with the attacker’s public key. Establishing
trust in a TPM public key includes knowing that the key really came from whom it was
supposed to come from—in this case, a TPM.

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

21

The solution is to create a digital certificate. A certificate includes the public part
of the key being certified plus attributes of that key. The certificate is then signed by a
certificate authority (CA) key. It’s possible that the CA public key is in turn certified by
another CA key, forming a hierarchy (a certificate chain). At some point, this certificate
chain terminates at a root certificate. The root public key must be conveyed to a verifier
out of band and is declared trusted without cryptographic proof.

The X.509 standard5 describes a widely used certificate format. The TPM, as a
limited-resource device, neither creates nor consumes X.509 certificates. The TCG
Infrastructure work group does specify some X.509 certificate formats, and the TPM
typically stores them. This storage is simply for provisioning convenience, pairing a
certificate with its key, not to achieve any security goal.

In the TPM space, there are several certification processes:

The TPM vendor and platform manufacturer may provision the •
TPM with TPM vendor and platform endorsement keys (EKs)
and corresponding certificates before shipment to the end user.
The TPM vendor certificate asserts, “This endorsement key is
resident on an authentic TPM manufactured by me.” The platform
manufacturer certificate asserts, “This key is resident on a TPM
that is part of my platform, and this platform supports certain
TPM features.” These certificates typically use X.509 format.

If the TPM keys (and their corresponding certificates) just •
described exist as signing keys, they can be used to certify other
keys as being resident on the TPM and having certain properties.
The TPM 2.0 specification provides commands to create
certificates. These TPM-generated certificates do not use X.509,
which is too complex for the limited on-chip resources of the TPM.

Essentially, digital certificates rest on the integrity of the CA. The CA is considered to
be a neutral party that can be trusted by two parties: the parties that create the certificates
and those that use them. A CA’s functioning is similar to an escrow agent that mediates
fund transfers in a real-estate transaction. If the CA is worthy of trust, all is good. If not,
all bets are off.

When a TPM manufacturer produces a certificate for a TPM, the manufacturer faces
a quandary. What algorithm should be used for the key? The manufacturer doesn’t know
if the end user will want RSA-2048, ECC2-56, ECC-384, or some other algorithm. And it
also needs to know what hash algorithm and symmetric algorithm should be used in the
creation of the key. To solve this problem, the TPM is designed to allow the creation of
many keys derived from a single large random number, using a key-derivation function,
as described earlier. You see in the chapter on hierarchies how this is used to provide
many certificates for multiple algorithms without using up space in the TPM.

5www.ietf.org/rfc/rfc2459.txt.

http://www.ietf.org/rfc/rfc2459.txt

CHAPTER 2 ■ BASIC SECURITY CONCEPTS

22

Summary
By examining a sample use case, you’ve seen all the major security operations and
concepts that are used in the rest of the book to explain the creation and use of the
TPM. This isn’t surprising, because the TPM was designed with use cases in mind,
and one of the major ones was e-commerce. By starting with the attacks cryptographic
operations need to defend against, you saw why cryptographic algorithms are chosen
from well-vetted internationally recognized algorithms and how key strengths are
chosen. You reviewed the concepts of confidentiality, integrity, electronic identity, and
nonrepudiation and how they relate to the standard classes of algorithms: symmetric,
asymmetric, hash, and HMAC. Finally, you learned about some specific new features in
the TPM specification that use those algorithms: extend, tickets, and certificates. You’re
ready to consider all the use cases the TPM was design to solve.

www.allitebooks.com

http://www.allitebooks.org

23

CHAPTER 3

Quick Tutorial on TPM 2.0

This chapter describes the major uses of TPM capabilities. The use cases for which TPM
1.2 was designed still pertain to TPM 2.0, so we begin by exploring those use cases and
the designed functionality that enables them. Then we move to new aspects of the TPM
2.0 design and the use cases enabled by those capabilities.

As noted in Chapter 1, the rise of the Internet and the corresponding increase in
security problems, particularly in the area of e-business, were the main driving forces for
designing TPMs. A hardware-based standardized security solution became imperative.
At the same time, due to the lack of a legacy solution, security researchers were presented
with a golden opportunity to design a new security system from the ground up. It has long
been a dream of security architects to not merely patch problems that existed in earlier
designs, but also provide a security anchor on which new architectures can be built.

The TPM 1.2 specification was the Trusted Computing Group’s (TPG’s) first attempt to
solve this problem and was aimed at addressing the following major issues in the industry:

• Identification of devices: Prior to the release of the TPM
specification, devices were mostly identified by MAC addresses or
IP addresses—not security identifiers.

• Secure generation of keys: Having a hardware random-number
generator is a big advantage when creating keys. A number of
security solutions have been broken due to poor key generation.

• Secure storage of keys: Keeping good keys secure, particularly from
software attacks, is a big advantage that the TPM design brings to
a device.

• NVRAM storage: When an IT organization acquires a new
device, it often wipes the hard disk and rewrites the disk with the
organization’s standard load. Having NVRAM allows a TPM to
maintain a certificate store.

• Device health attestation: Prior to systems having TPMs, IT
organizations used software to attest to system health. But if a system
was compromised, it might report it was healthy, even when it wasn’t.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

24

The TPM 2.0 implementations enable the same features as 1.2, plus several more:

• Algorithm agility: Algorithms can be changed without revisiting
the specification, should they prove to be cryptographically
weaker than expected.

• Enhanced authorization: This new capability unifies the way
all entities in a TPM are authorized, while extending the TPM’s
ability to enable authorization policies that allow for multifactor
and multiuser authentication. Additional management functions
are also included.

• Quick key loading: Loading keys into a TPM used to take a
relatively long time. They now can be loaded quickly, using
symmetric rather than asymmetric encryption.

• Non-brittle PCRs: In the past, locking keys to device states caused
management problems. Often, when a device state had to go
through an authorized state change, keys had to be changed as
well. This is no longer the case.

• Flexible management: Different kinds of authorization can be
separated, allowing for much more flexible management of TPM
resources.

• Identifying resources by name: Indirect references in the TPM 1.2
design led to security challenges. Those have been fixed by using
cryptographically secure names for all TPM resources.

TPM 1.2 was a success, as indicated by the fact that more than 1 billion TPMs using
the 1.2 specification have been deployed in computer systems. TPM 2.0 expands on TPM
1.2’s legacy. Currently, many vendors are developing implementations for TPM 2.0, and
some are shipping them. Microsoft has a TPM 2.0 simulator that can also act as a software
implementation of TPM 2.0. Some vendors are in the process of sampling hardware
TPMs, and other companies are working on firmware TPMs.

Scenarios for Using TPM 1.2
In general, the TPM 2.0 design can do anything a TPM 1.2 chip can do. Thus, in
considering applications that can use a TPM 2.0 chip, it’s wise to first examine the
applications that were enabled by the TPM 1.2 design.

Identification
The use envisioned for the first embedded security chip was device identification (DeviceID).
Smart cards use their keys for this purpose. The private key embedded in the chip
identifies the card on which it resides, an authentication password or PIN is used to
authenticate a person to the card, and together they form “the thing you have” and “the
thing you know” for authentication. Nothing keeps several people from using the same

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

25

smart card, as long as they all know the PIN. There is also nothing that ties the smart card
to a particular machine, which is an advantage when the smart card is used as a proxy
for identifying an individual instead of a machine.

By embedding a private key mechanism in a personal computing device, that device
can be identified. This is a big advantage for an IT organization, which owns the device
and is in control of its software load and security protections. But as computers became
more portable with the production of smaller and lighter laptops, the PC itself began to
be useful as “the thing you have” in place of a smart card. It turned out that many times,
when a smart card was used to authenticate a person to a computer network, the user left
the smart card with the device. If one was stolen, both were stolen. As a result, there was
no advantage to keeping the two separate.

However, if the password of a key stored in a security chip inside a personal
computer was going to be used as a proxy for an individual, it was clear that the key could
not reside in a single computer. The key has to be able to exist in multiple machines,
because individuals tend to use more than one device. Further, machines are upgraded
on average every 3 to 5 years, and keys must move from an old system to a new system in
order to make system management possible.

These realizations led to two of the objectives of the original embedded security
chips. They needed keys that identified the device—keys that couldn’t be moved to
different machines. And they needed keys that identified individuals—keys that could
be duplicated across a number of machines. In either case, the keys had to be able to be
deleted when an old system was disposed of.

What is the identification used for? There are a large number of uses, including these:

• VPN identifying a machine before granting access to a network: An IT
organization can be certain that only enterprise-owned machines
are allowed on the enterprise’s network.

• VPN identifying a user before granting access to a network: An IT
organization can be certain that only authorized personnel are
granted access to an enterprise’s network.

• User signing e-mail: The recipient of an e-mail can know with
some certainty who sent the e-mail.

• User decrypting e-mail sent to them: This allows for confidentiality
of correspondence.

• User identifying themselves to their bank: A user can prevent
others from logging in to their account.

• User authorizing a payment: A user can prevent others from
making payments in their name.

• User logging in remotely to a system: Only authorized personnel
can log in to a remote system.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

26

Encryption
The second use case for a security chip embedded on systems was to provide a means
of encrypting keys that were used in turn to encrypt files on the hard drive or to decrypt
files that arrived from other systems. Export regulations made putting a bulk encryption/
decryption engine in the security chip a nonstarter; but using the chip to store encryption
keys was allowed, so that functionality was included. The chip already had to do public/
private encryption in order to perform cryptographic signing, so it was inexpensive to add
the ability to decrypt a small amount of data containing a key that was encrypted with a
public key, if the chip knew the private portion of the key.

Once this basic capability was available, it enabled a number of scenarios such as the
following:

File and folder encryption on a device•

Full disk encryption•

Encryption of passwords for a password manager•

Encryption of files stored remotely•

Key Storage
One basic question the designers of the TPM had for possible users was, “How many keys
do you think people will want to use with this chip?” If the answer had been “One or two,”
there would have been sufficient room in the chip to store those keys. However, the answer
received was “More than three.” Thus cost reasons made it infeasible to store all the keys on
the chip, as was done in a smart card. However, the chip is used in PCs, which have hard disks
and hence almost unlimited storage for keys—and TPG decided to make use of that fact.

The TPM has access to a self-generated private key, so it can encrypt keys with a
public key and then store the resulting blob on the hard disk. This way, the TPM can keep
a virtually unlimited number of keys available for use but not waste valuable internal
storage. Keys stored on the hard disk can be erased, but they can also be backed up,
which seemed to the designers like an acceptable trade-off. Cheap keys associated with a
TPM enable a number of scenarios like these:

• Privacy-sensitive solutions that use different keys to provide only a
minimum of information to a requestor: You don’t need a single
identity key that includes a user’s age, weight, marital status,
health conditions, political affiliation, and so on.

• Different keys for different security levels: Personal, financial, and
business data as well as data that is contractually restricted all
require different levels of confidentiality.

• Different keys for multiple users of the same PC: Sometimes several
people share a computer. If that is the case, they typically don’t
want to give each other complete access to their files.

• “Hoteling” of PCs in an office: Keys are stored on a server and
downloaded and used on a PC as required.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

27

Random Number Generator
In order to generate keys, a random number generator (RNG) is necessary, and early
PCs generally didn’t contain good RNGs. There have been several cases where poor
key generation was used to break security protocols. This is true. So the standards body
required that a RNG be one of the components of the first TPM.

Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.1

—Von Neumann

There are many uses for a good RNG:

Seeding the OS random number generator•

Generating nonces (random numbers) used in security protocols•

Generating ephemeral (one-time use) keys for file encryption•

Generating long-term use keys (such as keys used for storage)•

Seeding Monte Carlo software routines•

NVRAM Storage
A small amount of NVRAM storage that has restricted access-control properties can be
very useful in a PC. It can store keys that shouldn’t be available when the machine is off,
give faster access to data than decryption using public/private key pairs can, and provide a
mechanism to pass information back and forth between different parts of a system. NVRAM
in TPMs can be configured to control read and write capabilities separately, which means
some data can be provided to a user without worrying that it will be erased by accident or
malicious intent. Additionally, you can use NVRAM to store keys that are used when the
PC doesn’t have access to its main storage. This can happen early during the boot cycle or
before a self-encrypting drive has been given its password, allowing it to be read.

Having NVRAM provides the following:

• Storage for root keys for certificate chains: These are public keys to
which everyone should have access—but it’s very important that
they not be changed.

• Storage for an endorsement key (EK): An EK is stored by the
manufacturer and used to decrypt certificates and pass passwords
into the TPM during provisioning. In spite of misleading statements
made on the Internet, the EK was designed to be privacy sensitive.

• Storage for a representation of what the state of the machine
ought to be: This is used by some Intel implementations using
TPMs and Intel Trusted Execution Technology (TXT), where

1MonteCarloMethod(1951),JohnvonNeumann.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

28

it’s called a launch control policy. Like the public root key used
in Unified Extensible Firmware Interface (UEFI) secure-boot
implementations, this is used by the system owner to specify
the state they want the machine to be in when it goes through a
controlled launch, usually of a hypervisor. The advantage over the
UEFI secure-boot method is that with the TPM, the end user has
full control over the contents of the NVRAM storage.

• Storage for decryption keys used before the hard disk is available: For
example, a key used for a self-encrypting drive.

Platform Configuration Registers
One unique thing about a TPM that can’t be guaranteed with smart cards is that it’s on the
motherboard and available before the machine boots. As a result, it can be counted on
as a place to store measurements taken during the boot process. Platform Configuration
Registers (PCRs) are used for this purpose. They store hashes of measurements taken by
external software, and the TPM can later report those measurements by signing them
with a specified key. Later in the book, we describe how the registers work; for now, know
that they have a one-way characteristic that prevents them from being spoofed. That is, if
the registers provide a representation of trusted software that behaves as expected, then
all the register values can be trusted.

A clever thing that’s done with these registers is to use them as a kind of
authentication signal. Just as, for example, a time lock won’t allow a bank vault to unlock
unless the time is during business hours, you can create a key or other object in a TPM
that can’t be used unless a PCR (or PCRs) is in a given state. Many interesting scenarios
are enabled by this, including these:

A VPN may not allow a PC access to a network unless it can prove •
it’s running approved IT software.

A file system may not obtain its encryption key unless its MBR has •
not been disturbed and the hard disk is on the same system.

Privacy Enablement
The architects of the first TPM were very concerned about privacy. Privacy is of major
importance to enterprises, because losing systems or data that contain personally
identifiable information (PII) can cause an enormous loss of money. Laws in many states
require enterprises to inform people whose private data has been lost; so, for example,
if a laptop containing a database of Human Resources data is stolen, the enterprise is
required to notify everyone whose data might have been compromised. This can cost
millions of dollars. Before the advent of embedded security systems, encryption of private
files was nearly impossible on a standard PC because there was no place to put the key.
As a result, most encryption solutions either “hid” the key in a place that was easily
found by the technically adept, or derived a key from a password. Passwords have a
basic problem: if a person can remember it, a computer can figure it out. The best way
to prevent this is to have hardware track when too many wrong attempts are made to
guess a password and then cause a delay before another attempt is allowed. The TPM

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

29

specification requires this approach to be implemented, providing an enormous privacy
advantage to those who use it.

The second privacy-related problem the architects tried to solve was much harder:
providing a means to prove that a key was created and was protected by a TPM without
the recipient of that proof knowing which TPM was the creator and protector of the key.
Like many problems in computer science, this one was solved with a level of indirection.
By making the EK a decryption-only key, as opposed to a signing key, it can’t be (directly)
used to identify a particular TPM. Instead, a protocol is provided for making attestation
identity keys (AIKs), which are pseudo-identity keys for the platform. Providing a protocol
for using a privacy CA means the EKs can be used to prove that an AIK originated with
a TPM without proving which TPM the AIK originated from. Because there can be an
unlimited number of AIKs, you can destroy AIKs after creating and using them, or have
multiple AIKs for different purposes. For instance, a person can have three different AIKs
that prove they’re a senior citizen, rich, and live alone, rather than combining all three
into one key and exposing extra information when proving one of their properties.

Additionally, some clever cryptographers at Intel, IBM, and HP came up with a
protocol called direct anonymous attestation (DAA), which is based on group signatures
and provides a very complicated method for proving that a key was created by a TPM
without providing information as to which TPM created it. The advantage of this protocol
is that it lets the AIK creator choose a variable amount of knowledge they want the privacy
CA to have, ranging from perfect anonymity (when a certificate is created, the privacy
CA is given proof that an AIK belongs to a TPM, but not which one) to perfect knowledge
(the privacy CA knows which EK is associated with an AIK when it’s providing a
pseudonymous certificate for the AIK). The difference between the two is apparent when
a TPM is broken and a particular EK’s private key is leaked to the Internet. At this point,
a privacy CA can revoke certificates if it knows a certificate it created is associated with
that particular EK, but can’t do so if it doesn’t know.

PCR sensitivity to small changes in design, implementation, and use of PCs makes
PCRs for the most part irreversible. That is, knowing a PC’s PCR values provides almost
no information about how the PC is set up. This is unfortunate for an IT organization that
notices a change in PCR values and is trying to figure out why. It does provide privacy to
end users, though.

Scenarios for Using Additional TPM 2.0 Capabilities
Lessons learned in the use of TPM 1.2 led to a number of changes in the architecture of
TPM 2.0. In particular, the SHA-1 algorithm, on which most 1.2 structures were based,
was subjected to cryptographic attacks. As a result, the new design needed to not be
catastrophically broken if any one algorithm used in the design become insecure.

Algorithm Agility (New in 2.0)
Beginning in TPM 2.0, the specification allows a lot of flexibility in what algorithms a TPM
can use. Instead of having to use SHA-1, a TPM can now use virtually any hash algorithm.
SHA 256 will likely be used in most early TPM 2.0 designs. Symmetric algorithms like
Advanced Encryption Standard (AES) are also available, and new asymmetric algorithms
such as elliptic curve cryptography (ECC) are available in addition to RSA.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

30

The addition of symmetric algorithms (enabled by the weakening of export-control
laws) allows keys to be stored off the chip and encrypted with symmetric encryption
instead of asymmetric encryption. With this major change to the method of key storage,
TPM 2.0 allows any kind of encryption algorithm. This in turn means if another algorithm
is weakened by cryptanalysis in the future, the specification won’t need to change.

Ideally, the key algorithms should be matched in strength. Table 3-1 lists the key
strengths of approved algorithms according to the National Institute of Standards and
Technology NIST).2

Table 3-1. Approved algorithms

Type Algorithm Key strength (bits)

Asymmetric RSA 1024 80

Asymmetric RSA 2048 112

Asymmetric RSA 3072 128

Asymmetric RSA 16384 256

Asymmetric ECC 224 112

Asymmetric ECC 256 128

Asymmetric ECC 384 192

Asymmetric ECC 521 260

Symmetric DES 56

Symmetric 3DES (2 keys) 127

Symmetric 3DES (3 key) 128

Symmetric AES 128 128

Symmetric AES 256 256

Hash SHA-1 65

Hash SHA 224 112

Hash SHA 256 128

Hash SHA 384 192

Hash SHA 512 256

Hash SHA-3 Variable

2NIST,“RecommendationforKeyManagement–Part1:General(Revision3),”SpecialPublication
800-57,http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_
general.pdf.

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

31

AES is typically used for the symmetric algorithm today. At 128 bits, the two most
frequently used asymmetric algorithms are RSA 2048 or ECC 256. RSA 2048 isn’t quite
as strong as ECC 256 and is much slower. It also takes up a lot more space. However, the
patents on RSA have expired, and it’s compatible with most software today, so many
people still use it. Many people are using RSA 2048 together with SHA-1 and AES-128,
even though they’re far from a matched set, because they’re free and compatible. Most of
the examples in this book use both RSA and ECC for encryption and decryption, but SHA
256 is used exclusively for hashing.

SHA-1 has been deprecated by NIST, and it won’t be accepted after 2014 for any use
for signatures (even though most uses of SHA-1 in TPM 1.2 don’t fall prey to the types
of attacks that are made possible by current cryptanalysis). The bit strength of SHA-1 is
significantly weaker than that of the other algorithms, so there doesn’t appear to be any
good reason to use it other than backward compatibility.

TCG has announced the families of algorithms that can be supported by publishing
a separate list of algorithm IDs that identify algorithms to be used with a TPM. This
includes the hash algorithms to be used by the PCRs. This list may change with time.

Algorithm agility enables a number of nice features, including the following

Using sets of algorithms compatible with legacy applications•

Using sets of algorithms compatible with the US Government’s •
Suite B for Secret

Using sets of algorithms compatible with the US Government’s •
Suite B for Top Secret

Using sets of algorithms compatible with other governments’ •
requirements

Upgrading from SHA-1 to SHA 256 (or other more secure •
algorithms)

Changing the algorithms in a TPM without revisiting the •
specification

Enhanced Authorization (New in 2.0)
The TPM 1.2 specification accrued a number of new facilities over the years. This
resulted in a very complicated specification with respect to means and management
of authentication. The TPM was managed using either physical presence or owner
authorization. Use of the EK was gated by owner authorization. Keys had two
authorizations: one for use of the key and one to make duplicates of the key (called
migration in the TPM 1.2 specification). Additionally, keys could be locked to localities
and values stored in PCRs.

Similarly, the NVRAM in TPM 1.2 could be locked to PCRs and particular localities,
and to two different authorizations—one for reading and one for writing. But the only way
the two authorizations could differ was if one of them were the owner authorization.

Certified migratable keys had the same authorizations as other keys; but to complete
the migration, a migration authority had to sign an authorization, and that authorization
had to be checked by the TPM. This process also required owner authorization.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

32

Making things even more complicated, the use of certain owner-authorized
commands and keys could be delegated to a secondary password. However, the owner of
the primary authorization knew those passwords, and delegation used precious NVRAM
in the TPM. Even worse, the technique was difficult to understand and, as a result, was
never employed to our knowledge.

The 2.0 specification has a completely different take, called enhanced authorization
(EA). It uses the following kinds of authorizations:

• Password (in the clear): This was missing in TPM 1.2. In some
environments, such as when BIOS has control of a TPM before
the OS has launched, the added security obtained by using a hash
message authentication code (HMAC) doesn’t warrant the extra
software cost and complexity of using an HMAC authorization to
use the TPM’s services.

• HMAC key (as in 1.2): In some cases, particularly when the OS
that is being used as an interface to talk with the TPM isn’t trusted
but the software talking to the TPM is trusted, the added cost and
complexity of using an HMAC for authorization is warranted. An
example is when a TPM is used on a remote system.

• Signature (for example, via a smart card): When an IT employee
needs to perform maintenance on a TPM, a smart card is a good
way to prevent abuse of an IT organization’s privileges. The smart
card can be retrieved when an employee leaves a position, and it
can’t be exposed as easily as a password.

• Signature with additional data: The extra data could be, for
example, a fingerprint identified via a particular fingerprint
reader. This is a particularly useful new feature in EA. For
example, a biometric reader can report that a particular person
has matched their biometric, or a GPS can report that a machine
is in a particular region. This eliminates the TPM having to match
fingerprints or understand what GPS coordinates mean.

• PCR values as a proxy for the state of the system, at least as it
booted: One use of this is to prevent the release of a full-disk
encryption key if the system-management module software has
been compromised.3

3YuriyBulygin,AndrewFurtak,andOleksandrBazhaniuk,“ATaleofOneSoftwareBypassof
Windows8SecureBoot”(presentation,BlackHat2013),https://www.blackhat.com/us-13/
briefings.html#Bulygin.

www.allitebooks.com

https://www.blackhat.com/us-13/briefings.html#Bulygin
https://www.blackhat.com/us-13/briefings.html#Bulygin
http://www.allitebooks.org

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

33

• Locality as a proxy for where a particular command came from:
So far this has only been used to indicate whether a command
originated from the CPU in response to a special request, as
implemented by Intel TXT and AMD in AMD-v. Flicker,4 a free
software application from Carnegie Mellon University, used this
approach to provide a small, secure OS that can be triggered when
secure operations need to be performed.

• Time: Policies can limit the use of a key to certain times. This is
like a bank’s time lock, which allows the vault to be opened only
during business hours.

• Internal counter values: An object can be used only when an
internal counter is between certain values. This approach is useful
to set up a key that can only be used a certain number of times.

• Value in an NV index: Use of a key is restricted to when certain
bits are set to 1 or 0. This is useful for revoking access to a key.

• NV index: Authorization is based on whether the NV index has
been written.

• Physical presence: This approach requires proof that the user is
physically in possession of the platform.

This list isn’t complete, but it gives examples of how the new policy authorization
scheme can be used. Additionally, you can create more complicated policies by
combining these forms of authorization with logical AND or OR operations such as these:

Mary identifies herself with an HMAC key and a smart card •
associated with a public key.

Joe identifies himself with a fingerprint authentication via a •
particular reader identified by the public key.

This key can be used by Mary OR Joe.•

Policies can be created that are either simple or complex, and all objects or entities
of the TPM (including the TPM’s hierarchies) can have policies associated with them.
EA has enormously extended the possible uses of the TPM, particularly in managing
authorizations; yet the net result has been to reduce the amount of code necessary to
create a TPM, eliminate the NVRAM that was used for delegation, and eliminate all the
previously existing special cases (thus lowering the learning curve for using a TPM).

Clever policy designs can allow virtually any restriction on key use that you can
envision, although some (such as restricting use of a document to only one kind of
document processor) would be exceptionally difficult, if possible at all.5 The new EA
allows a number of new scenarios, including the following:

4http://sourceforge.net/p/flickertcb/wiki/Home/.
5E.W.Felten,“UnderstandingTrustedComputing:WillItsBenefitsOutweighItsDrawbacks?”
IEEESecurity&Privacy1,no.3(2003):60–62.

http://sourceforge.net/p/flickertcb/wiki/Home/

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

34

Multifactor authentication of resources•

Multiuser authentication of resources•

Resources used only • n times

Resources used only for certain periods of time•

Revocation of use of resources•

Restricting ways resources can be used by different people•

Quick Key Loading (new in 2.0)
In the TPM 1.2 specification, when a key was initially loaded, it had to go through a
time-consuming private-key decryption using the key’s parent’s private key. To avoid
having to do this multiple times during a session, it was possible to cache loaded keys by
encrypting them with a symmetric key that only the TPM knew. During that power cycle,
the TPM could reload the key using a symmetric-key operation, which was faster even if
the parent no longer resided in the TPM. Once the TPM was turned off, the symmetric key
was erased: the next time the key was loaded, it again required a private key operation.

In 2.0, except for the case of a key being imported into a TPM’s key structure from outside,
keys stored by the TPM using external memory are encrypted using a symmetric-key
operation. As a result, the keys are loaded quickly. There is little reason to cache keys out
to disk (unless a parent key becomes unavailable), because loading them is usually as fast
as recovering them from a cached file.

This quicker loading enables multiple users to use a TPM without noticing a long
delay. This in turn makes it easier to design a system on which multiple applications
appear to have unfettered access to a TPM.

Non-Brittle PCRs (New in 2.0)
Fragility of PCR values was one of the most annoying problems with the 1.0 family of
TPMs. PCR values typically represent the state of the machine, with lower-numbered
PCRs representing the process of booting of the system and higher-numbered ones
representing events after the kernel has booted. Both keys and data can be locked to
certain PCRs having particular values, an action called sealing. But if keys or data are
locked to a PCR that represents the BIOS of a system, it’s tricky to upgrade the BIOS. This
is PCR fragility. Typically, before a BIOS upgrade was performed on TPM 1.2 systems, all
secrets locked to PCR 0, for example (which represents the BIOS), had to be unsealed and
then resealed after the upgrade was done. This is both a manageability nightmare and a
nuisance to users.

In the TPM 2.0 specification, you can seal things to a PCR value approved by a
particular signer instead of to a particular PCR value (although this can still be done if you
wish). That is, you can have the TPM release a secret only if PCRs are in a state approved
(via a digital signature) by a particular authority.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

35

In typical usage, an IT organization may approve BIOS versions for PCs and then
provide signatures of the PCRs that would result from approved BIOS versions being
installed on PC clients. Values that formerly could be recovered in only one of those states
become recoverable in any of them.

This is done via the TPM2_PolicyAuthorize command, which you can also use many
other ways. It’s a general-purpose way of making any policy flexible.

This new capability enables a number of different use cases, such as these:

Locking resources to be used on machines that have any BIOS •
signed by the OEM

Locking resources to be used on machines that have any kernels •
signed by an OEM

Locking resources to be used on machines that have any set of •
values for PCRs that are approved by the IT organization

Flexible Management (New in 2.0)
In the 1.0 family of TPM specifications, only two authentications existed in a TPM at a
time: the owner authorization and the storage root key (SRK) authorization. Because
the SRK authorization was usually the well-known secret (20 bytes of 0s), the owner
authorization was used for many purposes:

To reset the dictionary-attack counter•

To reset the TPM back to factory settings•

To prevent the SRK from having its password changed by •
someone who knew the well-known secret

To provide privacy to the end user by preventing creation of AIKs •
except by the owner of the TPM

To avoid NVRAM wearout in the TPM by preventing creation and •
deletion of NVRAM indexes except by those who knew the owner
authorization

The problem with giving the same authorization to so many different roles is that it
becomes very difficult to manage those roles independently. You might want to delegate
some of those roles to different people. For example, privacy controls like those used to
restrict creation of AIKs are very different from controls used to reset the dictionary-attack
counter or manage SRK authorization.

In the TPM 1.2 family, you could delegate the owner-authorization role to different
entities using the Delegate commands in the TPM, but those commands were fairly
complicated and used up valuable NVRAM space. We know of no applications that
actually used them.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

36

An additional problem with TPM 1.2–enabled systems was that the TPM couldn’t
be guaranteed to be enabled and active (meaning the TPM couldn’t be used). So, many
OEMs were unwilling to create software that relied on the TPM to do cryptographic
things such as setting up VPNs during the boot process or verifying BIOS software before
installation. This inhibited use of the TPM. In TPM 2.0, the OEM can rely on the platform
hierarchy always being enabled.

In the TPM 2.0 family, the roles represented by the various uses of the TPM 1.2
owner authorization are separated in the specification itself. This is done by giving them
different authorizations and policies, and also by having different hierarchies in the
TPM. One is the dictionary-attack logic, which has its own password for resetting the
dictionary-attack counter. The others are covered by several hierarchies in TPM 2.0:

• Standard storage hierarchy: Replicates the TPM 1.0 family SRK for
the most part

• Platform hierarchy: Used by the BIOS and System Management
Mode (SMM), not by the end user

• Endorsement hierarchy or privacy hierarchy: Prevents someone
from using the TPM for attestation without the approval of the
device’s owner

• Null hierarchy: Uses the TPM as a cryptographic coprocessor

Each hierarchy (except the null hierarchy) has its own authorization password and
authorization policy. The dictionary-attack logic also has an associated policy. All Entities
on the TPM with an authorization value also have an associated authorization policy.

Identifying Resources by Name (New in 2.0)
In the TPM 1.2 specification, resources were identified by handle instead of by a
cryptographically bound name. As a result, if two resources had the same authorization,
and the low-level software could be tricked into changing the handle identifying the
resource, it was possible to fool a user into authorizing a different action than they
thought they were authorizing.6

In TPM 2.0, resources are identified by their name, which is cryptographically bound
to them, thus eliminating this attack. Additionally, you can use a TPM key to sign the
name, thus providing evidence that the name is correct. Because the name includes the
key’s policy, this signature can be used as evidence to prove what means are possible for
authorizing use of a key. The chapter on enhanced authorization describes this in detail.
If the key can be duplicated, this signature can also be used to provide a “birth certificate”
for the key, proving which TPM was used to create the key.

6Sigrid Gürgens of Fraunhofer SIT found this attack.

CHAPTER 3 ■ QUICK TUTORIAL ON TPM 2.0

37

Summary
This chapter has described at a high level the use cases enabled by TPM 1.2 and 2.0.
The capabilities of TPM 1.2 are the basis for trusted computing—an anchor for secure
generation, use, and storage of keys and for storage and attestation of a PC’s health
status. TPM 2.0 enhanced this functionality by adding sophisticated management and
authorization capabilities, as well as algorithm agility that prevents new cryptographic
attacks from breaking the specification.

The next chapter examines applications and SDKs that take advantage of those
capabilities to solving existing problems. These include solutions for securing data at
rest, like BitLocker and TrueCrypt; for PC health attestation and device identification, like
Wave Systems, strongSwan and JW Secure; and a number of SDKs you can use to create
applications with that functionality.

39

CHAPTER 4

Existing Applications
That Use TPMs

Even though more than 1 billion TPMs are deployed in the market, and they exist on almost
all commercial PCs and servers, very few people know about them. And many people who
do know about TPMs are surprised to discover that many applications are written for them.
There are also a large number of ways to easily write applications that take advantage of
TPM 1.2 devices. Because TPM 2.0 devices are just beginning to appear on the market, it’s
perhaps not surprising that not as many applications can use TPM 2.0 directly. The purpose
of this book is to enable you to write programs that take advantage of all the features of
TPM 2.0, both basic and advanced.

This chapter starts by looking at the various application interfaces that are used by
programs to interface with the TPM hardware. Then you examine a number of applications
that already use TPMs. Perhaps the most interesting part of the chapter—and one we hope
you will help make out of date—is a short list of types of programs that should use TPMs
but don’t.

We follow up with some considerations that any programmer using a TPM must take
into account, and a description of how some existing programs have handled them.

Application Interfaces Used to Talk to TPMs
A number of different types of applications have been written already for use with TPM
1.2 and 2.0. These can be classified by the programming interface they use:

Proprietary applications written directly to the TPM (available for •
both 1.2 and 2.0).

Legacy applications that use a middleware interface to talk with •
the TPM, specifically Public-Key Cryptography Standard (PKCS)
#11 and Microsoft Cryptographic Application Programming
Interface (CAPI). When PKCS #11 stacks are available for TPM
2.0, they work with it as well. They are available for TPM 1.2 in
all operating systems. Beginning with Windows 8, Microsoft has
made its cryptographic interfaces able to use both TPM 1.2 and
TPM 2.0.

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

40

Applications that use the TCG Software Stack (TSS) interface •
to talk with the TPM (multiple proprietary TSSs are available
from IBM, Infineon, and NCP; an open source TSS code named
TrouSerS is also available for multiple OSs). These are 1.2
implementations. TSS 2.0 is in development.

Applications that use Java interfaces to talk with the TPM. So •
far, only 1.2 implementations that interface between Java code
and the TPM exist, but 2.0 versions should soon appear. Mobile
devices, especially those running the Android OS, use Java
interfaces.

Applications that use the Microsoft TPM Base Services (TBS) •
library: These can be used with either TPM 1.2 or TPM 2.0. Some
functions work with either. Those that use new capabilities of the
TPM 2.0 only work with it.

Microsoft TSS.net works with TPM 2.0 and comes with a TPM 2.0 •
emulator! TSS.net is not compatible with the TCG standards, and
only currently works on Microsoft products.

The first applications to use the TPM were proprietary applications that were shipped
with the machines that had the first versions of TPMs. These included IBM’s password
manager and file and folder encryption, which used the TPM to store encryption keys.
Dell, HP, and Infineon have their own varieties of these applications. Generally speaking,
they work well, but are intended to focus on very specific usage models.

The next type of applications that use TPMs use it through cryptographic service
providers (CSPs). There are two main kinds: those that use CAPI and those that use
the RSA Corporation’s PKCS #11. Any application written to use either of these APIs
for cryptographic services can use a TPM via a standard means of pointing those
cryptographic services to the TPM. Fortunately, most software that uses cryptography
uses one of these two services, for good reason. Cryptographic services are notoriously
difficult to program correctly, particularly if the programmer is worried about weak
implementations that may be vulnerable to attacks such as side-channel attacks.1 The
best practice is to rely on experts to write those cryptographic services. Additionally,
those cryptographic services may be certified by NIST as providing validated services that
behave as expected, and hence can be used in government institutions.

Both of these APIs contain hooks that allow other cryptographic services to be
substituted for those done in software by the service. This lets software take advantage of
a hardware interface that provides protection against software attacks by implementing
cryptographic services in a separate memory space. Such CSPs are available for Windows
for both CAPI and PKCS. These implementations are available from Security Innovation,
Wave Systems, Infineon, and Lenovo for a fee. They’re often bundled with computers
from major manufacturers. Infineon’s CSP is noteworthy in that it can find applications
on the machine that can use its services and give the user the opportunity to use the

1Side-channelattacksoccurwhenthetimeorpowerittakestoperformacalculationcangivehints
toanattackeraboutwhatkeyisbeingused.

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

41

TPM with them. In other OSs, such as Linux, BSD, MAC OS, and Solaris, PKCS #11
implementations allow the substitution of TPM functions for public-key generation and
random-number creation; these are available for free. Additionally, some companies,
such as Charismathics, have made middleware suites that can use the TPM to provide
cryptographic services.

The problem with using legacy interfaces (PKCS #11 and MS CAPI) is that they only
utilize basic services available with a TPM, such as key generation and signing. Advanced
applications that use the TPM’s ability to attest to the health of the machine or allow
controlled migration of keys without exposing them in the clear aren’t available using
these middleware solutions. As a result, TSS was created. An open source implementation
called TrouSerS was implemented by IBM and ported to Windows by the University
Politecnico di Torino in Italy.2 Proprietary implementations are also shipped by a number
of companies. TSS is currently available for TPM 1.2; an updated specification and
implementation are being developed for TPM 2.0.

The TSS library is much more suitable to C programming than Java programming.
Therefore, some people at MIT created a Java interface to the TPM. It is available from MIT.3

Microsoft, starting with Windows Vista, provides almost direct access to the TPM
through a programming interface called TPM Base Services (TBS). The TBS interface
accepts TPM-formatted byte streams and returns TPM-formatted responses or errors. Because
this is a low-level interface, you’re expected to use one of the many libraries that convert
high-level-language callable functions to the underlying TPM byte-stream representation.

TBS performs several additional functions. First, it provides multiprocess,
multithread access to the TPM by “maintaining” an internal queue of commands
submitted. Second, the TPM performs under-the-covers TPM context management
by using the TPM context save and load commands. This allows TBS to present each
application with a virtual TPM that appears to have essentially unlimited resources
like key slots, and ensures that one application cannot interfere with the keys or slots
created by another. Third, TPM commands are submitted via a TBS context, and TBS
automatically cleans up resources when the context is closed or the process dies.

Windows also layers additional security mechanisms on top of the TPM’s
administrative controls. The problem addressed is that the use of certain TPM commands
can impact the stability or correct operation of the operating system or other applications,
but the TPM commands are not properly protected by the TPM’s protection mechanisms.
For example, most Platform Configuration Registers (PCRs) should be updated only
by the trusted computing base, but the TPM does not require special authorization to
extend a PCR. In Windows Vista and 7, Windows limited TBS access to administrative
applications only. In Windows 8, commands are grouped into three sets:

• No Access: Including TPM2_ContextSave and TPM2_ContextLoad

• Administrative-token processes only: Including TPM2_PCR_Extend
and privacy-sensitive operations

• Standard-use access: Creation and use of keys, and so on

2http://security.polito.it/trusted-computing/trousers-for-windows/.
3http://projects.csail.mit.edu/tc/tpmj/.

http://security.polito.it/trusted-computing/trousers-for-windows/
http://projects.csail.mit.edu/tc/tpmj/

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

42

The set of standard-use and administrative commands can be edited by the
operating system administrator. The OS keeps copies of the TPM’s authorization values
in access-protected entries in the registry. This behavior is described in much more detail
in the document Using the Windows 8 Platform Crypto Provider and Associated TPM
Functionality.4

In addition to the low-level TPM access provided by TBS, Windows also exposes a
subset of TPM behavior through five much higher-level interfaces.

TPM Administration and WMI
Windows exposes many common TPM administrative tasks through GUI tools and
through a scriptable and remote programming interface called Windows Management
Instrumentation (WMI). This interface lets an administrator switch on TPMs, clear them,
disable them, and so on. It transparently supports both TPM 1.2 and TPM 2.0.

The Platform Crypto Provider
Most Windows programs use cryptography through a set of interfaces called Cryptography
Next Generation (CNG). CNG provides a uniform library for performing both
software-based and hardware (such as High Security Module) based cryptography.
Windows 8 lets you specify the TPM as a key protector for a subset of TPM-supported
cryptography by specifying use of the Platform Crypto Provider. The Platform Crypto
Provider has been extended to include a few specific TPM-like behaviors, such as quoting
and key certification.

Virtual Smart Card
Windows 8 further extracts the TPM to behave like a smart card in any and all cases where
a smart card can be used. This includes both enterprise and web logon.

Applications That Use TPMs
Table 4-1 lists applications that are currently available that use the TPM, along with the
interface they use and the OS on which they run. All these work with TPM 1.2. Some of
them, as noted, also work with TPM 2.0.

4http://research.microsoft.com/en-us/downloads/74c45746-24ad-4cb7-ba4b-
0c6df2f92d5d/.

http://research.microsoft.com/en-us/downloads/74c45746-24ad-4cb7-ba4b-0c6df2f92d5d/
http://research.microsoft.com/en-us/downloads/74c45746-24ad-4cb7-ba4b-0c6df2f92d5d/

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

43

Table 4-1. Applications and SDKs That Use TPMs, by Interface and OS

Application Type Application Name Interface OS

VPN StrongSwan clients (used
in Linux, BSD, Solaris, and
so on)

TrouSerS (1.2) Linux

Cisco client VPNs. Wave Systems
(MS CAPI)

Charismathics

(1.2)

Windows

Microsoft embedded VPN
or DirectAccess can directly
use either TPM 1.2 or TPM
2.0 in Windows 8.

Microsoft TBS TPM
Base Services

(1.2 or 2.0)

Windows

Checkpoint Firewall VPN
can use the TPM.

(1.2)

TypeSafe (TPM-backed TLS). jTSS (1.2) Linux

Attestation Wave Systems Embassy
client/ERAS server package.

TrouSerS (1.2) Windows

Wave Systems Endpoint
Monitor

TrouSerS (1.2) Windows

Strong Swan TNC solution
hooked to the TPM with PTS.

(1.2) Linux

NCP’s Secure VPN GovNet
Box (a separate box
interposed between a
computer and the network
that establishes a secure
VPN). The software is tested
using TPM attestation.

(1.2) Unknown

AnyConnect (1.2)

JW Secure has written an
application that is Kerberos-
like for Windows.

Microsoft TBS TPM
Base Services

(2.0)

Windows

Integrity Measurement
Architecture.

TrouSerS (1.2) Linux,
Unix-like
OSs

(continued)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

44

Table 4-1. (continued)

Application Type Application Name Interface OS

TPM Quote tools
(SourceForge)

TrouSerS (1.2) Linux,
Windows

TrustedGRUB Direct (1.2) Linux

TVE Trousers(1.2) Linux

Tboot Direct(1.2) Windows,
Linux

Flicker Direct / Trousers (1.2) Windows

Full disk
encryption

Microsoft BitLocker Microsoft TBS TPM
Base Services (1.2, 2.0)

Windows

dm-crypt Direct (1.2) Linux,
Android

SecureDoc

File and folder
encryption

Pretty Good Privacy (PGP) PKCS #11 (1.2) Windows

OpenPGP PKCS #11(1.2) Linux

E-mail Thunderbird for encrypted
e-mail and signed e-mail

PKCS #11(1.2) Windows,
Linux

Outlook MS CAPI(1.2, 2.0) Windows

Web browsers Internet Explorer MS CAPI(1.2, 2.0) Windows

Firefox PKCS #11(1.2) Windows
Linux

Chrome PKCS #11(1.2) Windows
Linux

TPM Manager TPM Manager
(SourceForge)

microTSS (1.2) Linux

5SeeEllenMessmer,NetworkWorld(2010),“PwCLaudsTrustedPlatformModuleforStrong
Authentication,”www.networkworld.com/news/2010/091510-trusted-platform-
authentication.html.

As the table demonstrates, many applications use TPMs. There are even some large
companies that use them.5 BitLocker is one of the most widely used of these programs that use
extended capabilities of the TPM. Wave Systems Embassy Suite is another. Often, conflicting
management software requires multiple TPM programs to be used on the same system.

http://www.networkworld.com/news/2010/091510-trusted-platform-authentication.html
http://www.networkworld.com/news/2010/091510-trusted-platform-authentication.html

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

45

With a 1.2 TPM, there was a single storage root key (SRK), which had to have an
authorization that was shared by all applications using the TPM. Unfortunately, there
was not unanimity in how to create the SRK—it could be created without needing any
authentication, needing only a well-known secret of 20 bytes of 0, or needing the hash of
a well-known secret for its password. Additionally, there was an owner authorization that
was somewhat sensitive, because it was used to reset the dictionary attack mechanism as
well as reset the TPM or create an attestation key (thought by some to be privacy sensitive).

Unfortunately, the owner authorization was also used to authorize allocation of
non-volatile RAM space, which meant applications that needed to allocate nonvolatile RAM
space had to know it. But if a different application took ownership of the TPM and set the
owner authorization to a random number, protected by a back-end management function,
it was unknown even to the end user. Some applications did this. If applications did not know
how to coordinate with that back-end management application, they could not function.

The result was that the user was restricted to using a single suite of applications
with the TPM, in order to allow all applications to have access to the authorizations they
needed. In practice, this meant software that directly used the TPM had to be from the
same developer as the management software used to set up the TPM.

This issue was somewhat mitigated when using only PKCS #11 or MS CAPI enabled
applications, because they only required that there be a single application for managing
the TPM; but they also couldn’t use the higher functions of the TPM, such as attestation.
This problem seems to be gradually disappearing. For example, Wave Systems software
can manage TPMs for attestation and also for BitLocker.

TPM 2.0 still requires some coordination for authorization; but it lets you use
multiple SRKs with the TPM, allowing completely separate applications to use the TPM
with less coordination.

In researching applications that use the TPM, most of the use cases that come
quickly to mind are supported by commercial software. However, some obvious use cases
for software that uses a TPM, don’t seem to exist in the marketplace.

Applications That Should Use the TPM but Don’t
In the past few years, the number of web-based applications has increased. Among them
are web-based backup and storage. A large number of companies now offer such services,
but as far as we are aware, none of the clients for these services let the user lock the key
for the backup service to a TPM. If this were done, it would certainly be nice if the TPM
key itself were backed up by duplicating it on multiple machines. This appears to be an
opportunity for developers.

Another application that has become more useful recently is remote management.
Many companies now offer ways of allowing one computer to “take over” management of
another computer. For instance, you can use this functionality to monitor your network
remotely or to give troubleshooting advice to remote members of your family. But again,
the security models we are familiar with, use passwords to gate the remote access.
Although long, hard-to-remember passwords can provide some security, they aren’t fun
to use. This seems to be an ideal place for TPMs to be used—restricting remote access to
machines that have been linked together with public/private keys. There do not appear to
be any commercial applications that use the TPM for this—most commercial applications

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

46

don’t even support use of other cryptographic devices, including smart cards, for
increased security. This is not due to lack of software development kits for writing such
software, because several of these kits exist.

Building Applications for TPM 1.2
When you’re building an application that will use a TPM, it is important to first decide if
you are going to use the advanced facilities of the TPM beyond those that are exposed by
PKCS or MS CAPI. If not, then it makes the most sense to write your application to these
interfaces. This way, your application can be used on those machines with and without
TPMs. But to use unique TPM features such as attestation, extended authorization,
localities, an NVRAM locations, you have no choice but to use one of the custom
TPM interfaces.

A number of API libraries are available for writing applications using custom interfaces.
TSS 1.2 had a reputation for being hard to learn, so other suites were developed. TPM/J was
developed at MIT to provide an object-oriented means of programming to the TPM.6
Institute for Applied Information Processing and Communication (IAIK), of Graz
University also delivered a version of Java integration with the TPM through trustedJava.7
Sirrix provided a microTSS, an attempt to simplify the TSS specification.8

Additionally, command-line tools for the TPM were released by IBM together
with a TPM emulator on SourceForge. As a result, it was possible to exercise TPM base
commands in batch file.

Microsoft’s TBS interface started out as a basic interface with the TPM, but its API
is growing, and it may turn into a very nice means of programming TPMs. The biggest
news in TBS programming came in Windows 8, where the TBS interface abstracted the
difference between TPM 1.2 and TPM 2.0 so that all the APIs work with either chip. This is
particularly useful for applications that use only those APIs, but it doesn’t (yet) expose the
new functions in the TPM 2.0 specification. TSS.net, which Microsoft also released, lets
all commands be sent directly to the TPM, although it doesn’t, as yet, have a high-level
interface for the new TPM 2.0 commands.

TSS.Net and TSS.C++
Windows 8 and TPM 2.0 were released before there were standards for TPM programming.
To fill this gap, Microsoft developed and open sourced two libraries that let application
programmers develop more complicated TPM-based applications than CNG or virtual
smart cards allowed.

TSS.Net and TSS.C++ provide a thin veneer over TPM 2.0 for both managed code (such
as C#) and native code (C++) applications. Both libraries allow applications to be built for a
real TPM device (on TBS) or a TPM simulator (over a TCP/IP network connection.)

6http://projects.csail.mit.edu/tc/tpmj/.
7http://trustedjava.sourceforge.net/.
8 http://www.filewatcher.com/p/tpmmanager-0.8.tar.gz.3959086/tpmmanager-0.8/src/
microtss/TSS.cpp.html.

http://projects.csail.mit.edu/tc/tpmj/
http://trustedjava.sourceforge.net/
http://www.filewatcher.com/p/tpmmanager-0.8.tar.gz.3959086/tpmmanager-0.8/src/microtss/TSS.cpp.html
http://www.filewatcher.com/p/tpmmanager-0.8.tar.gz.3959086/tpmmanager-0.8/src/microtss/TSS.cpp.html

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

47

Although the TSS.Net and TSS.C++ libraries are low level, the authors have made
every effort to make programming the TPM easy. For instance, here is a complete
program for obtaining random numbers from the TPM:

void GetRandomTbs()
{
 // Create a TpmDevice object and attach it to the TPM. Here you
 // use the Windows TPM Base Services OS interface.
 TpmTbsDevice device;

 if (!device.Connect()) {
 cerr << "Could not connect to the TPM device";
 return;
 }

 // Create a Tpm2 object "on top" of the device.
 Tpm2 tpm(device);

 // Get 20 bytes of random data from
 std::vector<BYTE> rand = tpm.GetRandom(20);

 // Print it out.
 cout << "Random bytes: " << rand << endl;

 return;
}

All of these interfaces work, but of course some, such as TBS, are specific to the
Windows OS. If you want to write programs that are portable to other OSs, you are better
off with one of the others. For TPM 1.2, TSS was the interface with the broadest OS
adoption. The next section considers an application that was written using TSS to take
advantage of advanced TPM functions.

Wave Systems Embassy Suite
Wave Systems has written software to a TPM-specific interface, rather than to a higher-level
interface such as PKCS #11. It needed to be done that way, to take advantage of the
TPM’s attestation capabilities. Because these capabilities aren’t addressed in any other
crypto-coprocessor, they aren’t available in standard interfaces such as PKCS #11. Wave
Systems uses the TCG TSS interface implemented in TrouSerS to talk to the TPM, manage
the TPM owner password, create attestation identity keys (AIKs), and attest to those
values via a standard called Trusted Network Connect, which communicates back to
an administrative server. This server notices when PCR values have changed, and it can
send alerts to IT staff when that happens. Some PCRs (like 0, which represents the BIOS
firmware) should not change, unless the BIOS of a device has been upgraded, an event
that IT should be aware of. TSS 1.2 was available for Windows, Linux, Solaris, BSD, and
even the MAC OS. TSS 2.0 will be a good selection for the same reasons, if you want to be
able to port your code to other OSs.

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

48

TSS 2.0 has been designed specifically with the aim of making programming TPM
2.0 as easy as possible. It is designed in layers so that at the lowest level, direct access to
the TPM is still possible. Common design patterns that use a cryptographic coprocessor
are made particularly easy to use at the highest application level programming interface.
However, there are still some ground rules that every application developer should
remember when developing applications that use a TPM.

Rocks to Avoid When Developing TPM Applications
When using the TPM in an application, there are two major pitfalls to avoid. First, the
TPM (or another component on the motherboard) may die, or users may upgrade their
equipment. If the motherboard is replaced, any keys that are locked to the TPM go away.
Second, if data is locked to PCRs (a process called sealing), and the things measured into
the PCRs are updated, that data is no longer unsealable.

Both of these problems amount to the same thing: management of the keys and data
locked to a TPM needs to be carefully considered. An example of how do this well is found
in Microsoft’s BitLocker application, which first came out with Windows Vista Enterprise.

Microsoft BitLocker
Microsoft gave careful consideration to both of the previously described problems when it
created the BitLocker application, originally embedded in the Enterprise edition of Vista.
This program was used to do full-disk encryption of the hard disk on which Windows
resided. To do this, early in the boot sequence BitLocker obtained a key from the TPM.
This key was sealed to PCRs that represented the boot sequence of the computer up to
the point where the kernel was loaded into memory. BitLocker could also require the
user to enter a password. To enable management of the encryption key used for full-disk
encryption, the sealed key was used as a key encrypting key (KEK) and used to encrypt
the full-disk encryption key. The actual key used for the full-disk encryption key could be
then backed up by also encrypting it using a very long random password. This password
could be kept secure elsewhere (for example, on a USB key locked in a safe). This way,
if the motherboard was replaced, the TPM died, or the hard disk was moved into a new
system, the data stored on it was still accessible.

Additionally, Microsoft gave thought to the problem caused by people upgrading
their BIOS. Such an upgrade prevented the TPM from being able to unseal the KEK.
Although the random-number backup sufficed for recovery in this case, Microsoft
decided it would make more sense for an administrator doing the BIOS upgrade, who
already had access to the decrypted data, to have a means to temporarily leave the full-
disk encryption key in the clear while the BIOS upgrade was performed and then reseal it
to the TPM’s new PCR values after the BIOS upgrade. It is important to realize that making
things easy for the user at a small cost to security (leaving the drive open for the brief time
while a BIOS upgrade was taking place) is usually a good tradeoff. Security that is hard to
use is seldom used.

When IBM came out with its first TPM solutions, several years before BitLocker saw
the light of day, it also had to keep manageability problems in mind.

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

49

IBM File and Folder Encryption
IBM had a similar problem when it allowed storage keys to be used for file and folder
encryption to the TPM, and it solved the issue in a similar way. Instead of generating a
random number, IBM wanted to let users type the answer to questions in order to recover
the disk encryption key; this key was normally encrypted with the KEK, which in turn
was protected by the TPM. This can be dangerous, because it may allow an attacker to
simply try many answers to these questions in the hope of generating the correct answer
and unlocking the drive. IBM’s solution to this problem was clever. The company realized
that although in normal use the key needed to be available almost immediately, in the
case of recovery, it was fine if it took several minutes to recover the data. Therefore IBM
performed a hash operation on the answers to the questions over and over again until
a few minutes had passed, noted the number of operations, and then used the resulting
value as a key to encrypt the file and folder encryption key. It then stored the number
of operations and the encrypted blob on the hard disk. In order to decrypt this blob,
someone had to spend several minutes for every attempt to answer the questions. This
quickly becomes impractical for an attacker, but it costs a user only a few minutes in the
case of recovery.

When TPM 2.0 was being designed, the architects had experience with the multitude
of problems caused by managing TPMs, so new features were built into 2.0 to help solve
these issues. One specific problem that is encountered repeatedly in security software
is the need to manage authorizations (passwords). For example, someone changes a
password while on a plane or late at night at a hotel, when they aren’t connected to the
network; then, the next day, they can’t remember their password. Or someone working
for a corporation quits or (worse yet) dies and leaves important corporate data encrypted
on their hard disk without telling anyone their password. IT organizations are assumed
to be able to fix problems like this—but it’s hard to see how they can. TPM 2.0 enhanced
authorization was designed to help fix the issue of managing passwords.

New Manageability Solutions in TPM 2.0
Programs to solve the manageability problem can use the same techniques used with
TPM 1.2 devices; but with TPM 2.0, a number of new solutions are available. Loss of a
password or authorization is unfortunately a big issue in the industry—in an enterprise,
many people forget their passwords or lose their smart cards every day. There’s no shame
in admitting it: we’ve all done it.

Generally, setting up a certified key on a TPM takes some effort, but doing this during
provisioning time in TPM 2.0 is much easier. If users need their TPMs reprovisioned in
the field, this burdens IT staff. Because IT staff are major players in computer purchasing
decisions, the architects of the TPM specification needed to solve this problem. The TPM
2.0 design allows management not just of keys (so they can be duplicated on other TPMs),
but also of authorizations; this is demonstrated in detail in the chapter on enhanced
authorization. For now, suffice it to say that major TPM 2.0 enhancements were designed
to solve this problem.

CHAPTER 4 ■ EXISTING APPLICATIONS THAT USE TPMS

50

Summary
In this chapter, you have seen that many different software interfaces can be used to take
advantage of TPM capabilities, and many currently available applications use TPMs.
Some of these only take advantage of standard capabilities such as those in any crypto
coprocessor—creating, storing, and using keys. These basic interfaces, such as MS CAPI
and PKCS, exist in a large number of applications. Taking advantage of higher-level
capabilities, such as those used in attestation software, requires talking to TPM-specific
interfaces instead of generic cryptographic interfaces. There are several of those for TPM
1.2 and currently at least two, Microsoft TBS and TCG’s TSS, for the TPM 2.0 interface.

Finally, you saw that when creating applications that use a crypto coprocessor
such as a TPM, there are rocks to avoid: the cryptographic processor may die, or a
motherboard to which it’s attached may have to be replaced. Even worse, the only user
who knows a password may become unavailable. For the sake of manageability, you need
a strategy to recover functionality after such an occurrence. Enhanced authorization, a
new feature in TPM 2.0, meets this need; it is explained in chapter 14.

To continue your journey into the TPM 2.0 universe, in the next chapter we kick-start
your ability to read and understand the TPM 2.0 specification.

51

CHAPTER 5

Navigating the Specification

The TPM 2.0 specification is not an easy read by any means. Although this is true of most
technical specifications, TPM 2.0 presents some unique challenges. The specification
is long—1,000 pages at last count—and written in a very concise and formal syntax that
often attaches significant functional meaning to what appear to be rather insignificant
punctuation marks. Part 2 of the specification was written to be parsed by code-generator
tools in order to generate C headers and some marshaling and unmarshalling functions,
which explains the emphasis on punctuation marks and the style of the specification’s
tables. At times, explanations of important concepts are tersely expressed and difficult to
find. Although technically correct, these explanations can be hard to follow. And while
the single-minded desire for conciseness and avoidance of redundancy at all costs in
writing the specification enhances maintainability, it also adversely affects readability.
The goal was a specification that was highly maintainable; we think the developers
succeeded admirably, perhaps even too well!

On the other hand, from a technical perspective, the specification is very robust; the
information you need is there—the challenge is to find it. It’s like putting together a really
large puzzle; you have all the pieces, but they aren’t always where you expect them to be.
This chapter aims to help you put the pieces together much faster by passing on some
hard-earned lessons that we, the authors, have learned as we have negotiated this terrain.
We urge you to keep in mind that the specification is quite logical once you get used to it.
You will be assimilated!

To summarize, learning TPM 2.0 isn’t a trivial task. But the good news for you is that
we intend to give you a huge boost.

This chapter discusses the following:

The high-level structure of the TPM 2.0 library specification•

Some definitions that are required to understand the specification•

The command schematic tables•

Some details of the data structures•

Table decorations•

Command schematic syntax•

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

52

Tips on where to find crucial and commonly used information•

Some other TPM 2.0-related specifications you need to •
know about

Our strategies for learning the specification•

Note ■ This chapter doesn’t proceed through the four parts of the specification in

sequential order. That might seem logical, but having tried it, we can vouch that it’s not the

best way for newcomers to understand the specification. In order to jump-start your

understanding, we alter the order in a way that we hope enhances the learning process.

TPM 2.0 Library Specification: The Parts
The TPM 2.0 library specification is the most important and base-level specification for
TPM 2.0. This specification describes the core TPM 2.0 functionality that is common to all
TPM 2.0 implementations.

The library specification consists of four parts:

• Part 1, Architecture: This lives up to its name and is the most
important part to read in detail. In text form, it describes the
TPM operation and much of the rationale behind the design.
It also contains many of the practical details of how the TPM
operates. For instance, this is the only place that describes how to
create sessions, which are used to authorize, audit, and encrypt
commands. As such, it describes all variations of session types in
great detail.

• Part 2, Structures: This presents the data types, structures, and
unions that are used by TPM 2.0, and is analogous to a description
of data types in a programming guide. Included in the definitions
are the error codes returned when commands fail.

• Part 3, Commands: This presents the TPM 2.0 commands, which
are analogous to function descriptions in a programming guide.
It describes the input and output parameters for each of the
TPM 2.0 commands and the command-specific error conditions.
The actions performed by the command are precisely described
by the included C code. This code calls many supporting routines
that aren’t in Part 3; these routines and their error codes are
described in Part 4.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

53

• Part 4, Supporting Routines: This section contains the code for the
supporting routines called by the code in Part 3 as well as the error
codes output by that code. This code explains the guts of the
TPM 2.0 operation in excruciating detail. When stepping through
the simulator code to understand why a particular error is
occurring, you will spend a lot of time here. So, one way or another,
you’re going to become familiar with significant parts of this code.

Some Definitions
Before we get started, some definitions are in order so that you can better understand the
specification. This is a good section to bookmark, because you’ll refer to these definitions
frequently as you read the specification and the rest of this book. Don’t get discouraged
if you’re unable to completely comprehend these definitions at first; aim for a high-level
understanding for the first reading, and then bookmark this section for future referral.

General Definitions
The following definitions pertain to both commands and responses:

• Authorization: Proves the right to access some entity in the TPM.
TPM 2.0 uses three types of authorizations:

• Password authorization: this is a one shot clear text authorization.

• HMAC authorization: Uses a hash message authentication
code (HMAC) for the authorization. The HMAC key is derived
using a shared secret that is the basis of the authorization.

• Policy or enhanced authorization (EA): Uses policy
assertions that must be satisfied in order to authorize an
action on an object. Policy assertions are commands that are
sent to the TPM before the command being authorized.

• Session: As defined in the TPM 2.0 specification, a “collection
of TPM state that changes after each use.” Unfortunately, this
definition is too general and not very informative. A better
understanding of sessions comes from knowing how they are
used. Sessions are used for authorizations and per-command
actions (encryption, decryption, audit, and a few others) in
a session. In the case of HMAC and policy sessions, sessions
are created and then used for multiple commands. Password
authorizations are a special case of sessions that don’t carry
any state across multiple commands. The different types and
uses of sessions are discussed at length in later chapters; for
now it suffices to have a high-level understanding.

• Handle: An identifier that uniquely identifies a TPM resource that
occupies TPM memory.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

54

• Byte stream: On a command, the actual bytes sent to the TPM. On
a response, the actual bytes received from the TPM.

• Canonicalized data: The command schematics in Part 3 describe
the inputs and outputs from the TPM with C structures. These
structures are often much larger than the data sent to the TPM. For
instance, some structures contain unions consisting of elements
of widely varying sizes. For a given instance of one of these unions,
only the data required by the particular union element being
used when sending the command is sent to the TPM. In addition,
all data sent to and received from the TPM is in big-endian byte
order. Data that meets these characteristics is canonicalized.
The aggregation and ordering of all the canonicalized inputs to a
command forms the byte stream sent to the TPM. Response data
from the TPM is also in canonicalized format.

• Unmarshalled data: Data in its C structure format.

• Marshalled data: Data in its canonicalized form—that is, the form
sent to or received from the TPM.

Definitions of the Major Fields of the Command
Byte Stream
The following items are described in the order in which they appear in the command
byte stream:

• Command header: A common area for all commands. It consists
of the tag, commandSize, and commandCode fields, described next.

• tag: Identifies whether the command contains sessions—that
is, whether it contains an authorization area (defined shortly).

• commandSize: The size of the command byte stream,
including all fields of the header.

• commandCode: Identifies the TPM command to be executed,
and controls the interpretation of the rest of the command
byte stream.

• Handle area: Contains between zero and three handles as
specified by the Part 3 command schematics.

• Authorization area: Contains command session data. Multiple
sessions can be associated with a single command, so this area
can contain the parameters for between zero and three sessions.
It contains authorization information, per-command session use
modifiers, and some session state information that needs to be
communicated between the application and the TPM.

• Parameter area: Contains command-specific parameters as
described in Part 3 of the specification.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

55

Definitions of the Major Fields of the Response
Byte Stream
The following items are described in the order in which they appear in the response
byte stream:

• Response header: A common area for all responses. It consists of
the tag, responseSize, and responseCode fields, as described
next:

• tag: Identifies whether the response contains sessions.

• responseSize: The size of the response byte stream,
including all fields of the header.

• responseCode: Identifies the whether the TPM command
succeeded and, if not, what specific error occurred.

• Handle area: Contains between zero and three handles, as
specified by the Part 3 response schematics.

• Parameter area: Contains the command-specific response
parameters, as described in Part 3 of the specification.

• Authorization area: Contains response session data. Multiple
sessions can be associated with a single command, so this area
can contain the parameters for between zero and three sessions.
It contains authorization information, per-command session use
modifiers, and some session state information that needs to be
communicated between the application and the TPM.

Getting Started in Part 3: the Commands
If you’re like most programmers, you’ll start in Part 3. Seriously, who has time to read a
lengthy specification? And after all, the goal is to just “Git ‘er done,” right? That’s typically
the mindset of busy engineers, and it’s actually a good approach, except that it will
quickly bring you face to face with some of the harsh realities of the TPM 2.0 specification.
In order to help you over some of the hurdles we’ve encountered when using the
specification, here are a few things you need to know before you delve into Part 3.

The generic byte structure for all TPM 2.0 commands and responses is described
in Part 1 in the section titled “Command/Response Structure.” The Separators table
and Command Structure and Response Structure figures are particularly helpful. We
recommend that you place a bookmark at these sections in the specification, because
you’ll be referring to them often.

To make this discussion a bit more practical, we describe in detail two types of
commands—a command without authorizations (TPM2_Startup) and a command with
authorizations (TPM2_Create)—and explain some of nuances of the command byte
stream. We start with TPM2_Startup, because it’s the first command that must be sent to
the TPM and is one of the simplest TPM 2.0 commands.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

56

If you look at the Part 3 section that describes the TPM2_Startup command, you see
three sections:

• “General Description”: Describes the command in text form,
details some of the constraints on the inputs, and discusses error
conditions.

• “Command and Response”: A data schematic for the inputs to
the command (Command) and the outputs from the command
(Response). We discuss these tables in detail in a moment.

• “Detailed Actions”: Contains code and a table of the error
conditions that are returned by the command’s code (not
including the ones sent by the supporting code).

This three-part format is used for all commands. For the purposes of our current
topic, we mainly look at the Command and Response tables. For the TPM2_Startup
command, these tables are shown in Table 5-1 and Table 5-2.

Table 5-1. TPM2_Startup Command (Table 5 in Part 3 of the TPM 2.0 Specification)

The Type column shows the data type for each field of the command. These types are
defined in Part 2 of the specification. The Name column is self-explanatory: it contains
the name of the parameter to be passed to or from the TPM. This is also the name of the
parameter in the Part 3 source code. The Description column describes the field along
with any field-specific requirements. TPM2_Startup has two field-specific requirements:
tag must be TPM_ST_NO_SESSIONS, and commandCode must be TPM_CC_Startup. The {NV}
is a table decoration that means the command may update nonvolatile memory inside the
TPM. (Table decorations are described in the Table Decorations section early in Part 3.)

The format of the first three fields—tag, commandSize, and commandCode—is the same
for all commands. These fields form the command header.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

57

Following are explanations of the command fields:

• tag: Indicates whether the command has sessions. Because the
TPM2_Startup command can never take sessions, this tag must
always be set to TPM_ST_NO_SESSIONS.

• commandSize: The size in bytes of the entire command stream sent
to the TPM.

• commandCode: Indicates which command is being sent. This tells
the TPM how to interpret the rest of the command data.

Now notice the line following the command code:

This line indicates that any fields following are in the parameter area. In this case,
startupType is the only parameter in this area. In general, this area contains fields
that configure any command-specific parameters for the command. The meaning of
these lines and other table decorations are described in two sections of Part 3: “Table
Decorations” and “Handle and Parameter Demarcation.” You will want to refer to these
two sections frequently when reading Part 3 of the spec.

Table 5-2. TPM2_Startup Response (Table 6 in Part 3 of the TPM 2.0 Specification)

Type Name Description

TPM_ST Tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Following are explanations of the response fields:

• tag: Indicates whether the response has sessions. Because this
command never has sessions, tag is always TPM_ST_NO_SESSIONS.

• responseSize: The size in bytes of the entire response byte
stream.

• responseCode: Indicates whether the command passed or failed.
TPM_RC_SUCCESS indicates passing. Other codes indicate failure.

Notice that TPM2_Startup has no return parameters.
Now we’ll look at a much more complicated command, TPM2_Create. This

command is used to create objects such as keys or data objects. Table 5-3 shows its
Command table.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

58

Following are explanations of the command fields:

• tag: In this case, TPM_ST_SESSIONS to indicate that the command
must have sessions. Another indication is the @ sign in front of the
parentHandle handle name; this means an authorization session
is required with this handle. More on that later.

• commandSize: Size of the total byte stream including authorization
data.

• commandCode: The command code for this command.

Note this separator. Now things get more interesting; this separator didn’t exist the
TPM2_Startup command:

This line indicates that the following fields are in the handle area, as described in the
“Handle and Parameter Demarcation” section of Part 3. Handles are 32-bit references
to various entities in the TPM. parentHandle is the only handle parameter for this
command. Commands can take up to two handles in this area.

Notice the @ character in front of parentHandle. This is a table decoration; it means
this handle requires that an associated authorization be included in the authorization
section. This and other table decorations are described in the “Table Decorations” section
early in Part 3.

Also notice the “Auth Index: 1” text in the description. This indicates the ordering
of the authorization in the authorization section. In this case, the authorization for the
parentHandle must be the first authorization in the authorization section. All commands
that take authorizations can take up to three authorizations. When a command has an
@ sign in front of one or more handles, the command requires an authorization for each
such handle. In this case one authorization is required.

Table 5-3. TPM2_Create Command (Table 19 in Part 3 of the TPM 2.0 Specification)

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

59

Notice the Auth Role: USER text. This is a further qualification on the authorization,
which is described in the chapter on enhanced authorization. Auth roles are analogous
to privilege levels in an operating system. They control who can get access to
certain entities.

Handles behave differently from parameters in a command: handles aren’t used
in computing the cpHash, which is a hash of the input parameters. This hash is used in
calculating HMACs and, in some cases, policy digests. The purpose of this separation is
to allow a resource manager to virtualize the handles in order to swap objects in and out
of the TPM, much like a virtual memory manager swaps memory contents between disk
drives and memory. Later chapters describe HMACs, policy digests, and the resource
manager in detail. For now, it’s sufficient to understand that handles and parameters are
separated into different fields in the byte stream in order to facilitate some key differences
in functionality.

Now you see a line you’re familiar with from the Startup command. Again, it
indicates the start of the parameter area:

But in this case, because tag is equal to TPM_ST_SESSIONS, indicating that this
command requires an authorization session, this separator also indicates where
the authorization data is inserted into the command byte stream. This command’s
authorization area can have between one and three sessions, all of which are inserted
here. We describe the authorization area in detail in chapter 13.

This command takes four parameters: insensitive, inPublic, outsideInfo, and
creationPCR. Part 2 describes the data structure types for each of these.

Table 5-4 shows the TPM2_Create command’s Response table.

Table 5-4. TPM2_Create Response (Table 20 in Part 3 of the TPM 2.0 Specification)

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

60

Following are explanations of the response fields:

• tag, responseSize, and responseCode are as described earlier, except
that if the command passes, tag is TPM_RC_SESSIONS to indicate the
presence of sessions in the response. There are three cases here:

If the command has no sessions, the response will have no •
sessions. For this command, the tag is always set to
TPM_ST_NO_SESSIONS.

If the command has sessions and returns success, the •
response tag is TPM_ST_SESSIONS, indicating that the
response, too, has sessions.

If the command has sessions but fails, the response tag is •
TPM_ST_NO_SESSIONS. Failing commands never have sessions
or response parameters in their response.

When the following line is present in a response schematic, it indicates the start of
the response handle area. In this command, there are no response handles, so this line
isn’t present:

Now you see your old friend the parameter demarcation line:

Unlike for the command data, for the response, this is simply the dividing line for
parameters; the authorization area isn’t located here, but appears later in the byte stream.
This command returns five response parameters: outPrivate, outPublic, creationData,
creationHash, and creationTicketNotice.

The response authorization area is tacked on to the last line the in the schematic,
after all the parameters. This means the response authorization area is the last area in the
response byte stream.

Now that we’ve described the overall command and response structures, we’ll
discuss some commonly used data types.

Data Details
If you’re writing low-level TPM code, this section is crucial to understand because the
majority of your bugs will be in this area. When debugging low-level TPM 2.0 code, you
need to understand this section in order to properly decode the byte streams being sent
to and received from the TPM. The important data concepts to understand are common
data structure constructs, canonicalization of the byte stream, and endianness.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

61

Table 5-5. Definition of the TPM2B_DATA Structure (Table 71 in Part 2 of the TPM 2.0
Specification)

Parameter Type Description

size UINT16 size in octets of the buffer field; may be 0

buffer[size]{:sizeof(TPMT_HA)} BYTE the buffer area that contains the
algorithm ID and the digest

Common Structure Constructs
This section describes some commonly used data structures. A good understanding of
these is vital because you will see them often.

TPM2B_XXX Structures

All structures that start with a TPM2B_ prefix are sized-byte buffers. Each sized-byte buffer
consists of a size and an array of size bytes. Table 5-5 shows a typical structure of this type.

The corresponding C structure looks like this:

typedef struct {
 UINT16 size; /* size in octets of the buffer field;

may be 0 */
 BYTE buffer[sizeof(TPMT_HA)]; /* the buffer area that contains the

algorithm ID and
 the digest */
} TPM2B_DATA;

Structure with Union
A union is often contained within a structure and preceded by a union selector. Table 5-6
is an example.

Table 5-6. Definition of the TPMT_HA Structure (Table 69 in Part 2 of the TPM 2.0
Specification)

Parameter Type Description

hashAlg +TPMI_ALG_HASH selector of the hash contained in the digest that
implies the size of the digest

NOTE The leading “+” on the type indicates that
this structure should pass an indication to the
unmarshaling function for TPMI_ALG_HASH
so that TPM_ALG_NULL will be allowed if a use
of a TPMT_HA allows TPM_ALG_NULL.

[hashAlg] digest TPMU_HA the digest data

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

62

This structure has two elements: hashAlg, which is used as the selector for the
digest union. This is indicated by the brackets surrounding hashAlg in front of the digest
parameter. In Table 5-6, hashAlg is the selector for the digest union.

The definition of TPM_HA is shown in Table 5-7.

Table 5-7. Definition of the TPMU_HA Union (Table 68 in Part 2 of the TPM 2.0
Specification)

Parameter Type Selector Description

sha1 [SHA1_DIGEST_SIZE] BYTE TPM_ALG_SHA1

sha256 [SHA256_DIGEST_SIZE] BYTE TPM_ALG_SHA256

sm3_256 [SM3_256_DIGEST_SIZE] BYTE TPM_ALG_SM3_256

sha384 [SHA384_DIGEST_SIZE] BYTE TPM_ALG_SHA384

sha512 [SHA512_DIGEST_SIZE] BYTE TPM_ALG_SHA512

Null TPM_ALG_NULL

In general, in a structure, when there is a parameter A that is enclosed in brackets
and is in front of parameter B’s name, parameter A is a selector for the type of parameter B.
In Table 5-7, if hashAlg is set to TPM_ALG_SHA1, then the union element is sha1
[SHA1_DIGEST_SIZE].

The C code generated by Table 5-6 and Table 5-7 is as follows:

typedef struct {
 TPMI_ALG_HASH hashAlg;
 TPMU_HA digest;
} TPMT_HA;

typedef union {
 BYTE sha1 [SHA1_DIGEST_SIZE]; /* TPM_ALG_SHA1 */
 BYTE sha256 [SHA256_DIGEST_SIZE]; /* TPM_ALG_SHA256 */
 BYTE sm3_256 [SM3_256_DIGEST_SIZE]; /* TPM_ALG_SM3_256 */
 BYTE sha384 [SHA384_DIGEST_SIZE]; /* TPM_ALG_SHA384 */
 BYTE sha512 [SHA512_DIGEST_SIZE]; /* TPM_ALG_SHA512 */
} TPMU_HA;

Canonicalization
The data that is sent to the TPM and received from the TPM is minimized to eliminate
any unnecessary bytes in the data stream. This guarantees maximum byte-stream
transfer rates to the TPM, because TPMs are often connected to rather slow interface
buses such as LPC and SPI. This minimized form of data is called canonical data and is
not equivalent to the C-like data structures described in Part 2 of the specification. This
concept is crucial to understand if you’re dissecting the data stream.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

63

As an example, look at the MAX_NV_BUFFER_2B structure:

typedef struct {
 UINT16 size;
 BYTE buffer[MAX_NV_BUFFER_SIZE];
} MAX_NV_BUFFER_2B;

This structure has a size field and a buffer that is MAX_NV_BUFFER_SIZE bytes long.
In the reference implementation, MAX_NV_BUFFER_SIZE is 1,024 bytes. But when this
data is sent to the TPM, only the size and the number of bytes specified by the size field
are actually sent down the wire. If size equals 10 bytes, only 12 bytes are sent for this
structure: 2 for the size field and 10 for the buffer.

In C, unions are used to overlap different types of data structure in a common
union. The union’s size is the size of the largest type included in the union. A TPM 2.0
data structure that includes a union typically includes a selector that tells what type of
data is in the union. A canonical representation of the data only contains the
selector and the canonical representation of the structure selected from the union. For
example, in the TPMT_HA structure, if the selector, hashAlg, is set to TPM_ALG_SHA1, the
digest is SHA1_DIGEST_SIZE bytes, which is much shorter than the maximum size of
the union.

Endianness
TPM data is always in big-endian format when transmitted to or received from the TPM.
This means little-endian CPUs, such as the x86 architecture, must always swap bytes
before sending data to the TPM and after receiving data from the TPM.

Part 2: Notation Syntax
The “Notation” section in Part 2 of the specification is very important to understand; we
often refer to it when studying the TPM 2.0 data structures. You are highly encouraged to
read this entire section of the specification, so we don’t repeat all the information here;
but we’ll touch on a few critical areas (this is another good section to bookmark, because
you’ll will refer to it often):

In an enumeration table, a • # character specifies the return type
when the marshalling of an enumerated value fails: that is, when
the passed-in value doesn’t match any of the allowed values.

A • $ character specifies that a parameter can be one of a previously
defined range of values.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

64

A • + character prefix to a value name in an enumeration means
the value is a conditional type: it’s optional in an enumeration.
Whether the optional value is allowed in a particular use of
an enumeration is determined by whether the + character is
appended to the type specification

A • null parameter in a union definition means the union can
be empty.

If a union member has • no selector, it means the member is
common to all the union types. The no-selector member is a
superclass of the members that have selectors.

• {} specifies parameter limits. Read the “Parameter Limits” section
for details.

Part 3: Table Decorations
The “Command Modifiers and Table Decorations” section in Part 3 describes the
special notation used in the command schematics in Part 3; this is another good area to
bookmark. We describe some of the more commonly used ones here, but please refer to
the section in the specification for a complete list:

• +: Similar to the notation used in Part 2 for conditional types.
When appended to the type, indicates that the null value of the
variable can be used.

• @r: When used as a prefix to the name of a handle parameter,
indicates that an authorization is required for that handle. This
also means the tag for the command must be TPM_ST_SESSIONS.

• +PP, +{PP}: Suffixes to TPM_RH_PLATFORM that indicate an
authorization using this handle is or may be, respectively,
required to have physical presence asserted.

• Auth Index: In the description, indicates the number of required
handles. (From our viewpoint, this seems redundant. The order of
the handles is already indicated by their order in the table.)

• Auth Role: In the description for a required handle, indicates
the role of the authorization: USER, ADMIN, or DUP. These roles are
described in detail in chapter 13.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

65

Commonly Used Sections of the Specification
Following is a list of some of the most commonly used sections of the specification:

Command codes are listed in Part 2, in the section •
“TPM_CC Listing.”

Error codes are found in multiple places:•

Part 2, “TPM_RC (Response Codes),” lists all the response •
codes.

Part 1, “Response Code Details,” shows a flow chart for •
decoding the error codes. A software decoder application
for automating this process is highly advised. After spending
months hand-decoding error codes, one of the authors wrote
one that he’s found extremely useful.

Parts 3 and 4 describe the error codes returned by TPM •
commands and the subroutines called by those commands.
A key point with respect to error codes is that Part 3 doesn’t
describe all the error codes that may be output when a TPM
command is executed. The command-specific code in Part 3
calls routines in Part 4, and these also output error codes.
This has tripped up many an unwary TPM 2.0 developer.

The “Table Decorations” and “Handle and Parameter •
Demarcation” sections near the beginning of Part 3 are very
helpful for understanding the Part 3 command tables. Don’t
overlook these sections!

To understand the data structures in Part 2, the “Notation” section •
is very helpful. It describes many of the obscure characters and
what they mean. Don’t overlook these special characters!

The various types of sessions and authorizations are described in •
the “Authorizations and Acknowledgements” section in Part 1.
These aren’t described to this level anywhere else. It is crucial to
know where this section is and refer to it often when decoding
command and response byte streams.

The handle types are described in the “TPM Handles” section of •
Part 1. Of particular interest is the most significant octet, which
describes the type of resource being referred to by the handle. The
“TPM_HT (Handle Types)” section in Part 2 describes the various
types of handles.

Names of various entities and how they are derived are described •
in the “Names” section of Part 1. This is crucial in order to
understand how session HMACs and policy digests are created.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

66

To understand policy session operations, the following sections in •
Part 1 are very helpful:

“Policy Example.”•

“Trial Policy Modification of Policies.”•

“TPM2_PolicySigned(), TPM2_PolicySecret(), and TPM2_•
PolicyTicket().” This section provides details for these rather
complicated policy commands.

How to Find Information in the Specification
You can use a PDF reader to search all four parts of the specification. Sometimes the bit of
information you’re looking for isn’t where you might think it would be. For instance, even
though Part 1 isn’t normative and isn’t targeted at describing structures, it often has the
best descriptions of the functionality of certain data structures and their fields.

If you have access to a TPM library header file, you may be able to use the header
to find a complete description of how the structure is used. The easiest way to do this is
as follows:

1. Find the data structure of interest in the C header file that
describes the TPM 2.0 data structures.

2. A well-written instantiation of this header file lists the table
number for the structure in comments above the data
structure or type. Find this table number in Part 2 of the spec;
the descriptive text above the table provides the additional
information needed to understand the structure. This is one
of the most useful tricks to know.

Strategies for Ramping Up on TPM 2.0
Engineers come in many flavors, so there are many approaches to cracking a specification
like TPM 2.0. As authors, we have different personalities and have used different
strategies to approach this spec. In this section we describes how we ramped up on
TPM 2.0 and what worked best for us. You may pick and choose from one or all three of
our approaches or develop your own. We hope our journeys will facilitate yours.

Will
I am the newbie of the bunch. I started working on TPM 2.0 in May 2012. I had worked
previously with TPM 1.2 but only with the functionality I needed to know for enabling
Intel Trusted Execution Technology (Intel TXT). This means I had never learned about
sessions and how they worked in TPM 1.2, and I didn’t know much about keys and key
management.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

67

As an engineer with product schedules to meet, my goal was to “Get ‘er done.” I
first tried to read through the spec but quickly bogged down in the massive quantities
of unfamiliar terms and what was, to me, confusing lingo. So, I started figuring out
which TPM 2.0 functions I needed and how to implement them. This led me to Part 3 of
the specification as a starting point. As I tried running my coded functions against the
simulator, I quickly ran into errors that I couldn’t explain, and this caused me to single-
step through the simulator. This was when I first understood the difference between
the canonical byte stream data that the TPM understands and the C structures used to
specify the inputs to TPM 2.0 commands. Painstakingly, I debugged all the functionality
needed for a TPM 2.0–enabled TXT prototype in order to meet my scheduled deliverable.
In parallel, I began to develop the TSS 2.0 system API code. This required a greater depth
of TPM 2.0 knowledge, which came as I simultaneously coded, read the specification,
and debugged through the simulator. To be honest, there were still parts of the spec that
resisted my attempts at comprehension—my only remedy was telephone consultations
with the TPM Working Group chairman, who was extremely helpful in answering my
questions about HMAC and policy sessions. As understanding dawned during my
consultations with him, we developed some graphical representations of the different
types of sessions and how they relate to each other, some of which appear in this book;
and thus my idea for this book was born.

After completing much of the TSS system API development work, I had enough
knowledge to go back and do a deep dive through the specification; this was largely
motivated by the need to prepare training slides for an upcoming TPM 2.0 training
session I was slated to present at Intel. For three months, I read the spec from cover to
cover, and for the most part, it made sense. This wouldn’t have happened if I had tried
a deep dive from the very beginning. Here’s another tip, which may sound strange: I’ve
found it very effective to read the specification from my Kindle while exercising at the
gym. I think the physical exercise keeps me alert; if I did this at my desk, I would be
battling to stay awake. And 30 to 45 minutes per day seems to be the right amount of time
to make progress, stay alert, and avoid completely overloading my brain.

To summarize my strategy:

Initially read some of Parts 1, 2, and 3 but struggled to •
comprehend them. In spite of the difficulties, this initial read
helped me get an overview of what’s different from TPM 1.2.

Focused on a bare-bones TPM 2.0 development deliverable by •
beginning with the Part 3 descriptions of TPM 2.0 functions.

Developed the TSS system API while reading the spec, developing •
code, debugging through the simulator, and consulting with an
expert more or less in parallel.

Did a deep dive through the spec by reading 30–45 minutes •
per day.

Some final pieces of advice: start somewhere, and don’t sweat all the details at first.
Get a high-level understanding, and then keep digging progressively deeper. And don’t be
afraid to ask for help when you get stuck. I’m still learning myself.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

68

Ken
I was involved with developing the specification from the start. My input takes the form of
advice, rather than a narrative of my own personal experience.

The TPM specification combines the styles of both a user manual (Part 1) and a
reference manual (Parts 2 and 3). If you have no prior experience with a TPM, or just
TPM 1.2 experience, I recommend reading Part 1, or at least the sections relevant to your
application. Even if you don’t immediately grasp all its complexities, you will become
familiar with the technical jargon and the TPM features and gain some sense of how they
fit together.

Once you know what you want to do and have some sense of the command flow,
Part 3 gives the details for each command. The description and command and response
tables should be sufficient. Users in general won’t have to read the code in Parts 3 and 4.

I anticipate that most users won’t be constructing command streams. Middleware
libraries such as a TPM Software Stack (TSS) normally perform those tasks. If you’re
writing or needing to debug through such middleware, Part 2 gives the details for each
structure, with the names of the structure members, data types, and possible parameters.
The platform-specific specification goes further, describing the parameters for a TPM
implementation.

Part 4 describes, in C code, the details of TPM operation. Application and
middleware developers should rarely have to refer to Part 4.

Dave
I was part of the development of TPM 1.2 and 2.0 from the start. I ramped up by first
reading Part 3. It made perfect sense to me, except that it omitted anything about how to
actually authorize a command. So for commands that did not require authorization, like
TPM2_GetRandom, Part 3 told me everything I need to know: what parameters needed to go
where, what size they were, and so on. The first parameter was a bit of a challenge until I
realized that it was always likely to be NO_SESSIONS, because I wasn’t going to be auditing
the TPM2_GetRandom command. The parameters are described in detail in Part 2 and were
mostly pretty easy to understand for commands that don’t require authorization.

Next I dug into doing simple authorizations using the password session. This was
nice because the password session always exists, and I didn’t need to do any encryption/
decryption, salting, or auditing of the session. It was just a simple password, which was in
the clear. Reading the section “Password Authorizations” in Part 1 explained these easily.
I started by changing the basic passwords associated with taking ownership of the TPM.

Next I tackled creating a key. This was a more complicated task, because I needed
to understand the unions for defining the algorithms and other parameters associated
with the key I was creating. I started with a key that only had a password authorization (as
opposed to a policy or HMAC authorization), because it was easier. Basically I created a
storage root key (SRK) for the TPM.

Then I tackled policy authorizations. Because I wanted to create a signing key whose
password I could change, I created keys locked to the password of an NV index. That
meant I had to create an NV index; and I wanted one that couldn’t be removed and
re-created with a different password, which is what I did. See Chapter 14 later in this book
for a description of how I did this.

CHAPTER 5 ■ NAVIGATING THE SPECIFICATION

69

I wanted to play with types of sessions, so I authorized a key using an HMAC. Then I
audited the command. After successfully auditing, I used a decrypt session to pass in the
password. Finally I used a salted HMAC session.

Next I did a more complicated policy, using TPM2_PolicyOr and TPM2_PolicyAuthorize.
At this point I felt like I had a pretty good handle on how things worked.

Other TPM 2.0 Specifications
Platform specifications augment the library specification to enable the creation of TPM
definitions that are platform specific. They list what is mandatory, optional, or excluded;
define minimum and maximum values; add initialization and provisioning requirements;
and detail the physical interface.

You may need to reference the following platform-specific specifications:

• TCG PC Client Platform TPM Profile (PTP) Specification: Defines
platform specifics for PCs and server platforms.

• TPM 2.0 Mobile Reference Architecture: “[D]efines a reference
architecture for the implementation of a TPM in modern mobile
platforms using a Protected Environment (section 7). This type
of TPM is known as a TPM Mobile” (TPM 2.0 Mobile Reference
Architecture).

Summary
Although the climb is steep, you can ramp up on TPM 2.0 much more efficiently with a
good overview of the specification and some tips from early explorers. In this chapter
we’ve shared our somewhat hard-earned expertise to assist you. The assimilation process
has begun!

The next chapter describes the commonly available execution environments. It
prepares you for the code examples that we present in later chapters.

71

CHAPTER 6

Execution Environment

Future chapters in this book present code examples to illustrate concepts. In order for
you to be able to build and run these code examples, this chapter describes how to set
up an execution environment and build TPM 2.0 sample applications. An execution
environment consists of two things: a TPM and a software stack to communicate with the
TPM. You can use a hardware or software TPM to run the code examples. In this chapter
you learn how to set up the Microsoft TPM 2.0 simulator, a software implementation of
TPM 2.0. For software stacks, currently there are two software API environments for TPM
2.0 programming: Microsoft’s TSS.net and TSS 2.0. This chapter demonstrates how to set
up both of these environments.

Setting Up the TPM
All TPM 2.0 programming environments require a TPM to run code against. For
developers, the TPM that is easiest to use is the Microsoft TPM 2.0 simulator. Of course,
you can also use other TPM 2.0 devices, hardware, and firmware, as they become
available, to run the code examples. Because communication with a hardware or
firmware TPM is platform specific, you must use the correct driver; setting up this driver
isn’t described here.

Microsoft Simulator
Provided by Microsoft, the Microsoft simulator is a full TPM 2.0 device implemented
completely in software. Application code can communicate with the simulator via
a sockets interface. This means the simulator can be run on the same system as the
application or on a remote system connected via a network.

Two versions of the simulator are available. A binary-only version can be
downloaded from: http://research.microsoft.com/en-US/downloads/35116857-
e544-4003-8e7b-584182dc6833/default.aspx. For TCG members, the second, and
better, option is to obtain the TPM 2.0 simulator source code and build it. The advantage
of doing this is that it allows an application developer to step through the simulator itself,
which is often quite useful when debugging errors. In either case, the simulator can only
run under Windows.

http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx

CHAPTER 6 ■ EXECUTION ENVIRONMENT

72

You will first learn how to build the simulator from source code and set it up. Then,
for non-TCG members, you will learn how to get the TSS.net or simulator binary and use
the simulator executable. Finally, the chapter presents a simple Python program that you
can use to test that the simulator is working.

Building the Simulator from Source Code
This option is available only to TCG members, because it requires downloading source
code from TCG’s web site. Go to the www.trustedcomputinggroup.org web site,
click Member Login at top right, click the Groups pull-down at left, select TPMWG
under My Groups, and then click Documents. At this point you should be at this web
site: https://members.trustedcomputinggroup.org/apps/org/workgroup/tpmwg/
documents.php. Find the latest version of the simulator, and download it; it will be
called something like TPM 2.0 vX.XX VS Solution.

Building the simulator requires that Visual Studio 2012 or later be installed. Follow
the directions in the TPM 2.0 Simulator release notes file to build the simulator.

Setting Up a Binary Version of the Simulator
Download the simulator from http://research.microsoft.com/en-US/
downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx. Unzip the file into
the directory of your choice.

Running the Simulator
Search for the simulator binary, simulator.exe, in the install directory, and start it.
In some settings, you may need to configure the port numbers that the simulator listens
to for commands. You can do this on the simulator command line.

The simulator uses two ports:

• TPM command port: Used for sending TPM commands and
receiving TPM responses. The default port is 2321; if you need to
change this, you can set it on the command line as follows:

> simulator <portNum>

• Platform command port: Used for platform commands such as
power on/off. The platform command port is always one greater
than the TPM command port. For example, the default platform
port number is 2322; and if you use the command-line option to
set the TPM command port, the platform port is 1 greater than the
command-line value.

http://www.trustedcomputinggroup.org/
https://members.trustedcomputinggroup.org/apps/org/workgroup/tpmwg/documents.php
https://members.trustedcomputinggroup.org/apps/org/workgroup/tpmwg/documents.php
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx

CHAPTER 6 ■ EXECUTION ENVIRONMENT

73

There are two reasons to use a port other than the default port:

If the network you’re running on is using the default port for some •
other use

If you want to run two instances of the simulator on the same •
machine, in which case you need to run one on a different port

Testing the Simulator
Let’s look at three ways to test that the simulator is working: a simple Python script, TSS.
net, and the system API test code.

Python Script

To test that the simulator is running correctly, you can use this Python script:

#!/usr/bin/python

import os
import sys
import socket
from socket import socket, AF_INET, SOCK_STREAM

platformSock = socket(AF_INET, SOCK_STREAM)
platformSock.connect(('localhost', 2322))
Power on the TPM
platformSock.send('\0\0\0\1')

tpmSock = socket(AF_INET, SOCK_STREAM)
tpmSock.connect(('localhost', 2321))
Send TPM_SEND_COMMAND
tpmSock.send('\x00\x00\x00\x08')
Send locality
tpmSock.send('\x03')
Send # of bytes
tpmSock.send('\x00\x00\x00\x0c')
Send tag
tpmSock.send('\x80\x01')
Send command size
tpmSock.send('\x00\x00\x00\x0c')

CHAPTER 6 ■ EXECUTION ENVIRONMENT

74

Send command code: TPMStartup
tpmSock.send('\x00\x00\x01\x44')
Send TPM SU
tpmSock.send('\x00\x00')
Receive the size of the response, the response, and 4 bytes of 0's
reply=tpmSock.recv(18)
for c in reply:
 print "%#x " % ord(c)

The script sends the TPM startup command to the TPM. If the startup command
works correctly, you should see the following output from the for loop print statement:

>>>for c in reply:
... print "%#x " % ord(c)
...
0x0
0x0
0x0
0xa
0x80
0x1
0x0
0x0
0x0
0xa
0x0
0x0
0x1
0x0
0x0
0x0
0x0
0x0

If you’re getting this result, the simulator is running correctly.

TSS.net

TSS.net is a C# library of code for communicating with the TPM. Download it from
https://tpm2lib.codeplex.com, install it, and run a code example as described shortly.

System API Test Code

Follow the directions in the section “TSS 2.0” for the System API library and test code.
If any TPM 2.0 command is successfully sent to the TPM, the simulator is working.

https://tpm2lib.codeplex.com/

CHAPTER 6 ■ EXECUTION ENVIRONMENT

75

Setting Up the Software Stack
The two software stacks you can use to communicate with the TPM are TSS 2.0 and TSS.net.

TSS 2.0
TSS is a TCG standard for the TCG software stack. TSS 2.0 can be built on (and link to
applications for) Windows and Linux. It consists of five or six layers and is implemented
in C code except for a couple of Java layers. The layers at which TPM 2.0 code can be
developed are as follows:

• System API (SAPI): The lowest layer in TSS 2.0, which provides
software functions for performing all variants of all TPM 2.0
functions. This layer also has tests that you can run against it.
It requires detailed knowledge about TPM 2.0.

• Enhanced System API (ESAPI): The next layer in TSS 2.0. It sits
directly on top of the SAPI. This layer provides a lot of the glue
code for doing encryption and decryption, HMAC sessions, policy
sessions, and auditing. It also requires detailed knowledge about
TPM 2.0, but it makes session handling much easier.

• Feature API: The layer to which most applications should be
written. It provides APIs that isolate you from the messiness of the
TPM 2.0 specification.

• Feature API Java: Layer that sits on top of the C code and performs
the translation between C and Java so that Java applications can
use TSS.

As of this writing, TSS 2.0 is implemented only at the System API level and includes a
linked-in device driver for talking to the simulator. Currently, this code is only available to
TCG members at https://github.com/. To access to the code, you must contact the TCG
TSS workgroup chair to get permission. Follow the directions in the readme.docx file to
install it and run the test code against the simulator.

TSS.net
As noted previously, you can download TSS.net from https://tpm2lib.codeplex.com,
and then install it. To understand it, review the file: Using the TSS.Net Library.docx.
Unfortunately, this doesn’t tell you how to build and run the code examples. The
samples\Windows8 directory contains separate directories for sample projects; you can
follow these directions for the GetRandom example and then apply those steps to other
examples:

1. In Windows Explorer, open the solution file: tss.net\tss.sln.

2. Respond with OK to the prompts for loading the various projects.

https://github.com/
https://tpm2lib.codeplex.com/

CHAPTER 6 ■ EXECUTION ENVIRONMENT

76

3. Select Build > Build Solution.

4. Start the simulator. (See the earlier directions.)

5. Run the GetRandom executable: tss.net\samples\Windows8\
GetRandom\bin\Debug\GetRandom.exe -tcp 10 (10 is the
number of random bytes).

You can now run other sample programs in a similar manner. Try them out!

Summary
Now that you have an execution environment (or maybe both of them) set up, you’re
ready to run the code samples from the following chapters of the book.

The next chapter describes the TCG Software Stack, TSS. This software stack is
currently being defined and implemented and will be freely available under an open
source license to application programmers. It’s used for some of the subsequent code
examples in this book.

77

CHAPTER 7

TPM Software Stack

This book is primarily about TPM 2.0 devices. However, a TPM without software is like
a car with a full tank of gas but no driver; it has great potential but isn’t going anywhere.
This chapter, in preparation for the rest of the book, introduces you to the TPM’s “driver”1,
the TPM Software Stack (TSS). A good understanding of this topic will enable you to
understand subsequent code examples in this book.

The TSS is a TCG software standard that allows applications to intercept the stack,
that is, be written to APIs in the stack at various levels in a portable manner. Applications
written to the TSS should work on any system that implements a compliant TSS. This
chapter describes the layers of the TSS with a particular focus on the System API and
Feature API layers. The other layers are described at a high level.

The Stack: a High-Level View
The TSS consists of the following layers from the highest level of abstraction to the lowest:
Feature API (FAPI), Enhanced System API (ESAPI), System API (SAPI), TPM Command
Transmission Interface (TCTI), TPM Access Broker (TAB), Resource Manager (RM), and
Device Driver.2

Most user applications should be written to the FAPI, because it’s designed to
capture 80% of the common use cases. Writing to this layer is the TPM equivalent of
writing in Java, C#, or some other higher-level language.

The next layer down is the ESAPI, which requires a lot of TPM knowledge but
provides some session management and support for cryptographic capabilities. This is
like writing in C++. At the time of this writing, the ESAPI specification is still a work in
progress, so it isn’t described in this chapter.

Applications can also be written to the SAPI layer, but this requires much more
TPM 2.0 expertise. This is analogous to programming in C instead of a higher-level
language. It provides you with access to all the functionality of the TPM but requires a
high level of expertise to use.

1ThisisnottobeconfusedwithanOSdevicedriver.
2Thedevicedriverisn’tofficiallypartoftheTCG-definedTSS,butitmakessensetodiscussitin
thischapterbecauseit’soneofthelayersinaTPMsoftwarestack.

CHAPTER 7 ■ TPM SOFTWARE STACK

78

TCTI is the layer used to transmit TPM commands and receive responses.
Applications can be written to send binary streams of command data to the TCTI and
receive binary data responses from it. This is like programming in assembly.

The TAB controls multiprocess synchronization to the TPM. Basically it allows
multiple processes to access the TPM without stomping on each other.

The TPM has very limited on-board storage, so the Resource Manager is used in a
manner similar to a PC’s virtual memory manager to swap TPM objects and sessions in
and out of TPM memory. Both the TAB and the RM are optional components. In highly
embedded environments that don’t have multiprocessing, these components are neither
needed nor, in some cases, desired.

The last component, the device driver, handles the physical transmission of data to
and from the TPM. Writing applications to this interface is possible as well and would be
like programming in binary.

Figure 7-1 illustrates the TSS software stack. Some points to note:

Although typically there is only one TPM available to applications, •
multiple TPMs could be available. Some of these could be
software TPMs, such as the Microsoft simulator; others may be
accessed remotely over the network—for instance, in the case of
remote administration.

Generally, components from the SAPI on up the stack are •
per-process components.

Components below the SAPI are typically per-TPM components.•

Although Figure • 7-1 doesn’t show it, TCTI may be the interface
between the RM and the device driver. In this case, the TCTI
appears at multiple layers in the stack.

At this time, we think the most common implementation will •
combine the TAB and the RM into a single module.

CHAPTER 7 ■ TPM SOFTWARE STACK

79

The following sections describe each of the TSS layers.

Feature API
The TSS Feature API (FAPI) was created specifically to make the most-used facilities of
the TPM 2.0 easily available to programmers. As such, it does not allow use of all the
corner cases that a TPM is capable of doing.

It was designed with the hope that 80% of programs that would eventually use the
TPM could be written by using the FAPI without having to resort to using other TSS APIs.
It was also designed to minimize the number of calls you have to use and the number of
parameters you have to define.

One way this was accomplished was by using a profile file to create default selections
so you don’t have to select algorithms, key sizes, crypto modes, and signing schemas
explicitly when creating and using keys. It’s assumed that users are normally the ones

Figure 7-1. TSS diagram

CHAPTER 7 ■ TPM SOFTWARE STACK

80

who wish to select a matched set of algorithms, and you can default to user-selected
configurations. In cases where you want to explicitly select a configuration file, you
may do this as well, but default configurations are always selected by the user. FAPI
implementations ship with pre-created configuration files for most common choices. For
example:

The • P_RSA2048SHA1 profile uses RSA 2048-bit asymmetric keys
using PKCS1 version 1.5 for a signing scheme, SHA-1 for the
hash algorithm, and AES128 with CFB mode for asymmetric
encryption.

The • P_RSA2048SHA256 profile uses RSA 2048-bit asymmetric keys
using PKCS#1 version 1.5 for a signing scheme, SHA-256 for the
hash algorithm, and AES-128 with CFB mode for asymmetric
encryption.

The • P_ECCP256 profile uses NIST ECC with prime field 256-bit
asymmetric keys using ECDSA as a signing schema, SHA-1 for
the hash algorithm, and AES-128 with CFB mode for asymmetric
encryption.

Path descriptions are used to identify to the FAPI where to find keys, policies, NV, and
other TPM objects and entities. Paths have a basic structure that looks like this:

<Profile name> / <Hierarchy> / <Object Ancestor> / key tree

If the profile name is omitted, the default profile chosen by the user is assumed.
If the hierarchy is omitted, then the storage hierarchy is assumed. The storage hiearchy
is H_S, the Endorsement hiearchy is H_E, and the Platform hierarchy is H_P. The object
ancestor can be one of the following values:

• SNK: The system ancestor for non-duplicable keys

• SDK: The system ancestor for duplicable keys

• UNK: The user ancestor for non-duplicable keys

• UDK: The user ancestor for duplicable keys

• NV: For NV indexes

• Policy: For instances of policies

The key tree is simply a list of parent and children keys separated by / characters.
The path is insensitive to capitalization.

Let’s look at some examples. Assuming the user has chosen the configuration file
P_RSA2048SHA1, all of the following paths are equivalent:

P_RSA2048SHA1/H_S/SNK/myVPNkey

H_S/SNK/myVPNkey

SNK/myVPNkey

CHAPTER 7 ■ TPM SOFTWARE STACK

81

P_RSA2048SHA1/H_S/SNK/MYVPNKEY

H_S/SNK/MYVPNKEY

SNK/MYVPNKEY

An ECC P-256 NIST signing key under a user’s backup storage key might be:

P_ECCP256/UDK/backupStorageKey/mySigningKey

The FAPI also has some basic names for default types of entities.

Keys:

• ASYM_STORAGE_KEY: An asymmetric key used to store other
keys/data.

• EK: An endorsement key that has a certificate used to prove that
it (and, in the process, prove that other keys) belongs to a
genuine TPM.

• ASYM_RESTRICTED_SIGNING_KEY: A key like the AIK of 1.2, but that
can also sign any external data that doesn’t claim to come from
the TPM.

• HMAC_KEY: An unrestricted symmetric key. Its main use is as an
HMAC key that can be used to sign (HMAC) data that isn’t a hash
produced by the TPM.

NV:

• NV_MEMORY: Normal NV memory.

• NV_BITFIELD: a 64-bit bitfield.

• NV_COUNTER: A 64-bit counter.

• NV_PCR: A NV_PCR that uses the template hash algorithm.

• NV_TEMP_READ_DISABLE: Can have its readability turned off for a
boot cycle.

Standard polies and authentications:

• TSS2_POLICY_NULL: A NULL policy (empty buffer) that can never
be satisfied.

• TSS2_AUTH_NULL: A zero-length password, trivially satisfied.

• TSS2_POLICY_AUTHVALUE: Points to the object’s authorization
data.

• TSS2_POLICY_SECRET_EH: Points to the endorsement hierarchy’s
authorization data.

• TSS2_POLICY_SECRET_SH: Points to the storage hierarchy’s
authorization data.

CHAPTER 7 ■ TPM SOFTWARE STACK

82

• TSS2_POLICY_SECRET_PH: Points to the platform hierarchy’s
authorization data.

• TSS2_POLICY_SECRET_DA: Points to the dictionary attack handle’s
authorization data.

• TSS2_POLICY_TRIVIAL: Points to a policy of all zeroes. This is easy
to satisfy because every policy session starts with its policy buffer
equal to this policy. This can be used to create an entity that can
be trivially satisfied with the FAPI.

All objects created and used by FAPI commands are authorized by a policy. This
doesn’t mean the authorization value can’t be used: it can be used if the policy is
TSS2_POLICY_AUTHVALUE. However, under the covers, a password session is never used.
And if an authorization value is used, it’s always done with a salted HMAC session.

One structure used constantly in the FAPI is TSS2_SIZED_BUFFER. This structure
consists of two things: a size and a pointer to a buffer. The size represents the size of the
buffer:

typedef struct { size_t size;
 uint8_t *buffer;
 } TSS2_SIZED_BUFFER;

You need to know one more thing before writing a program: at the beginning of your
program, you must create a context, which you must destroy when you’re done with it.

Let’s write an example program that creates a key, uses it to sign “Hello World,” and
verifies the signature. Follow these steps:

1. Create a context. Tell it to use the local TPM by setting the
second parameter to NULL:

TSS2_CONTEXT *context;
Tss2_Context_Intialize(&context, NULL);

2. Create a signing key using the user’s default configuration.
Here you explicitly tell it to use the P_RSA2048SHA1 profile
instead of the default. By using the UNK, you tell it that it’s a
user key that is non-duplicable. Name it mySigningKey.

Using ASYM_RESTRICTED_SIGNING_KEY makes the key a signing
key. You also give it a trivially satisfied policy and a password
of NULL:

Tss2_Key_Create(context, // pass in the context I just created
 "P_RSA2048SHA1/UNK/mySigningKey", // non-duplicable
RSA2048
 ASYM_RESTRICTED_SIGNING_KEY, // signing key
 TSS2_POLICY_TRIVIAL, // trivially policy
 TSS2_AUTH_NULL); // the password is NULL

CHAPTER 7 ■ TPM SOFTWARE STACK

83

3. Use the key to sign “Hello world.” First you have to hash “Hello
World” with an OpenSSL library call:

TSS2_SIZED_BUFFER myHash;
myHash.size=20
myHash.buffer=calloc(20,1);
SHA1("Hello World",sizeof("Hello World"),myHash.buffer);

4. The Sign command returns everything necessary to verify the
signature. Because you just created this key, the certificate
comes back with a certificate that is empty:

TSS2_SIZED_BUFFER signature, publicKey,certificate;

Tss2_Key_Sign(context, // pass in the context
 "P_RSA2048SHA1/UNK/mySigningKey", // the signing key
 &myHash,
 &signature,
 &publicKey,
 &certificate);

5. At this point you could save the outputs, but instead let’s
check them:

if (TSS_SUCCESS!=Tss2_Key_Verify(context ,&signature,

&publicKey,&myHash))
{
 printf("The command failed signature verification\n");
}
else printf("The command succeeded\n");

6. Destroy the buffers that have been allocated, now that you’re
done with them:

free(myHash.buffer);
free(signature.buffer);
free(publicKey.buffer);
/* I don’t have to free the certificate buffer, because
it was empty */
Tss2_Context_Finalize(context);

It’s easy to see that this example cheats a little. In particular, the key doesn’t require
any type of authorization. Next you will learn what to do if authentication is required.

All FAPI functions assume that keys are authenticated only through policy. If a key is
to be authenticated with a password, then the password is assigned to the key, and a policy
is created using TPM2_PolicyAuthValue. The predefined TSS2_POLICY_AUTHVALUE does
this. However, this leaves you with the bigger question of how to satisfy the policy.

CHAPTER 7 ■ TPM SOFTWARE STACK

84

Policy commands come in two flavors. Some policy commands require interaction
with the outside world:

• PolicyPassword: Asks for a password

• PolicyAuthValue: Asks for a password

• PolicySecret: Asks for a password

• PolicyNV: Asks for a password

• PolicyOR: Asks for a selection among choices

• PolicyAuthorize: Asks for a selection among authorized choices

• PolicySigned: Asks for a signature from a specific device

Other policy commands don’t require outside interaction:

• PolicyPCR: Checks the values of the TPM’s PCRs

• PolicyLocality: Checks the locality of the command

• PolicyCounterTimer: Checks the counter internal to the TPM

• PolicyCommandCode: Checks what command was sent to the TPM

• PolicyCpHash: Checks the command and parameters sent to
the TPM

• PolicyNameHash: Checks the name of the object sent to the TPM

• PolicyDuplicationSelect: Checks the target of duplication of a key

• PolicyNVWritten: Checks if an NV index has ever been written

Many policies require a mix of the two. If a policy requires one of the authorizations
of the second type, it’s the responsibility of the FAPI to handle it. If it’s an authorization of
the first type, then you’re responsible for providing to the FAPI the parameters it doesn’t
have access to.

This is done via a callback mechanism. You must register these callbacks in your
program so that FAPI knows what do to if it requires a password, selection, or signature.
The three callbacks are defined as follows:

• TSS2_PolicyAuthCallback: Used when a password is required

• TSS2_PolicyBranchSelectionCallback: Used when the user
needs to select from among more than one policy in a TPolicyOR
or TPM2_PolicyAuthorize

• TSS2_PolicySignatureCallback: Used when a signature is
required to satisfy the policy

The first is easiest. After a context is registered, you have to create a callback function
that is used when the FAPI is asked to execute a function that requires interaction
with the user asking for a password. In this case, the FAPI sends back to the program
the description of the object that needs to be authorized and requests the authorization

CHAPTER 7 ■ TPM SOFTWARE STACK

85

data. The FAPI takes care of salting and HMACing this authorization data. The user must
do two things: create the function that asks the user for their password, and register this
function so that the FAPI can call it.

Here is a simple password-handler function:

myPasswordHandler (TSS2_CONTEXT context,
 void *userData,
 char const *description,
 TSS2_SIZED_BUFFER *auth)
{
/* Here the program asks for the password in some application specific
way. It then puts the result into the auth variable. */
return;
}

Here is how you register it with the FAPI so it knows to call the function:

Tss2_SetPolicyAuthCallback(context, TSS2_PolicyAuthCallback, NULL);

Creating and registering the other callbacks is very similar.
At the time of writing this book, the specification for using XML to write a policy for a

command has not yet been written, although it’s likely to come out in 2014. However, one
thing is known: it will be possible for hardware OEMs (for example, a smartcard provider)
to provide a library that contains these callback functions. In this case, the callback
function will be registered in the policy rather than in the program, so you won’t need to
provide it. Similarly, software libraries can be used to provide these callback functions in
policies. If this is done, you won’t have to register any callbacks.

System API
As mentioned earlier, the SAPI layer is the TPM 2.0 equivalent of programming in the
C language. SAPI provides access to all the capabilities of TPM 2.0; as is often said in this
business when describing low-level interfaces, we give application writers all the rope
they need to hang themselves. It’s a powerful and sharp tool, and expertise is required to
use it properly.

The SAPI specification can be found at www.trustedcomputinggroup.org/
developers/software_stack. The design goals of the SAPI specification were the
following:

Provide access to all TPM functionality.•

Be usable across the breadth of possible platforms, from highly •
embedded, memory-constrained environments to multiprocessor
servers. To support small applications, much consideration was
given to minimizing, or at least allowing minimization, of the
memory footprint of the SAPI library code.

http://www.trustedcomputinggroup.org/developers/software_stack
http://www.trustedcomputinggroup.org/developers/software_stack

CHAPTER 7 ■ TPM SOFTWARE STACK

86

Within the constraint of providing access to all functionality, •
make programmers’ jobs as easy as possible.

Support both synchronous and asynchronous calls to the TPM.•

SAPI implementations aren’t required to allocate any memory. •
In most implementations, the caller is responsible to allocate all
memory used by the SAPI.

There are four groups of SAPI commands: command context allocation, command
preparation, command execution, and command completion. Each of these groups is
described in this section. Within the command preparation, execution, and completion
groups, there are some utility functions that are used regardless of which TPM 2.0
command in Part 3 of the TPM specification is being called; others are specific to each
Part 3 command.

First we will describe each of the four groups of commands at a high level. As these
commands are described, we will show code fragments for a very simple code example,
a TPM2_GetTestResult command. At the end, we will combine these fragments into a
single program to do a TPM2_GetTestResult command using three different methods:
one call, asynchronous, and synchronous multi-call. Code examples for SAPI functions
that require knowledge of sessions and authorizations and encryption and decryption are
deferred until Chapters 13 and 17; the SAPI functions that support these features will only
make sense after you understand the features. This chapter ends with a brief description
of the test code that is distributed with the System API code.3

Command Context Allocation Functions
These functions are used to allocate a SAPI command context data structure, an opaque
structure that is used by the implementation to maintain any state data required to
execute the TPM 2.0 command.

The Tss2_Sys_GetContextSize function is used to determine how much memory
is needed for the SAPI context data structure. The command can return the amount of
memory required to support any TPM 2.0 Part 3 command, or the caller can provide
a maximum command or response size and the function calculates the context size
required to support that.

Tss2_Sys_Initialize is used to initialize a SAPI context. It takes as inputs a
pointer to a memory block of sufficient size for the context, the context size returned by
Tss2_Sys_GetContextSize, a pointer to a TCTI context (described in the later “TCTI” section)
used to define the methods for transmitting commands and receiving responses, and the
calling application’s required SAPI version information.

3ThecodeinthisSAPIsectionisworkingcodethatisincludedintheSAPIandtestcodepackage.
ThispackageiscurrentlysharedamongTCGmembersviaaGitHubsite.TCGmemberscan
contactTSSWorkgroupmemberstogainaccesstoit.Itisexpectedthatthiscodewillbeopen
sourcedbeforeorshortlyafterthisbookispublished.

CHAPTER 7 ■ TPM SOFTWARE STACK

87

Note ■ One note about the following code: rval is shorthand for return value and is a

32-bit unsigned integer. This is used repeatedly in upcoming code examples.

Here’s a code example for a function that creates and initializes a system context
structure.

Note ■ The function that follows is declared to return a pointer to a TSS2_SYS_CONTEXT

structure. This structure is defined as follows:

typedef struct _TSS2_SYS_OPAQUE_CONTEXT_BLOB TSS2_SYS_CONTEXT;

But the opaque structure is never defined anywhere. This works because TSS2_SYS_CONTEXT

structures are always referenced by a pointer. Basically, this is a compiler trick that provides

an advantage over using void pointers: it performs some compile time type checking.

//
// Allocates space for and initializes system
// context structure.
//
// Returns:
// ptr to system context, if successful
// NULL pointer, if not successful.
//
TSS2_SYS_CONTEXT *InitSysContext(
 UINT16 maxCommandSize,
 TSS2_TCTI_CONTEXT *tctiContext,
 TSS2_ABI_VERSION *abiVersion
)
 UINT32 contextSize;
 TSS2_RC rval;
 TSS2_SYS_CONTEXT *sysContext;

 // Get the size needed for system context structure.
 contextSize = Tss2_Sys_GetContextSize(maxCommandSize);

 // Allocate the space for the system context structure.
 sysContext = malloc(contextSize);
 if(sysContext != 0)
 {
 // Initialize the system context structure.
 rval = Tss2_Sys_Initialize(sysContext,
 contextSize, tctiContext, abiVersion);

CHAPTER 7 ■ TPM SOFTWARE STACK

88

 if(rval == TSS2_RC_SUCCESS)
 return sysContext;
 else
 return 0;
 }
 else
 {
 return 0;
 }
}

The last function in this group is Tss2_Sys_Finalize, which is a placeholder for
any functionality that may be required to retire a SAPI context data structure before its
allocated memory is freed. Here’s an example of how this might be used:

void TeardownSysContext(TSS2_SYS_CONTEXT *sysContext)
{
 if(sysContext != 0)
 {
 Tss2_Sys_Finalize(sysContext);

 free(sysContext);
 }
}

Note ■ In this case, Tss2_Sys_Finalize is a dummy function that does nothing, because

the SAPI library code doesn’t need it to do anything. Note that the system context memory is

freed after the Finalize call.

Command Preparation Functions
As explained in Chapters 13 and 17, HMAC calculation, command parameter encryption,
and response parameter decryption often require pre- and post-command processing.
The command preparation functions provide the pre-command execution functions that
are needed before actually sending the command to the TPM.

In order to calculate the command HMAC and encrypt command parameters, the
command parameters must be marshalled. This could be done with special application
code, but because the SAPI already contains this functionality, the API designers decided
to make this functionality available to the application. This is the purpose of the
Tss2_Sys_XXXX_Prepare functions. Because the command parameters are unique for each
Part 3 command, there is one of these functions for each TPM command that needs it.
The “XXXX” is replaced by the command name; for instance, the Tss2_Sys_XXXX_Prepare

CHAPTER 7 ■ TPM SOFTWARE STACK

89

function for TPM2_StartAuthSession is Tss2_Sys_StartAuthSession_Prepare. Following
is a call to the prepare code for TPM2_GetTestResult:

rval = Tss2_Sys_GetTestResult_Prepare(sysContext);

Note ■ The only parameter to this function is a pointer to the system context, because

TPM2_GetTestResult has no input parameters.

After the Tss2_Sys_XXXX_Prepare call, the data has been marshalled. To get the
marshalled command parameter byte stream, the Tss2_Sys_GetCpParam function is
called. This returns the start of the cpBuffer, the marshalled command parameter
byte stream, and the length of the cpBuffer. How this is used is described further in
Chapters 13 and 17.

Another function that is needed to calculate the command HMAC is
Tss2_Sys_GetCommandCode. This function returns the command code bytes in CPU
endian order. This function is also used in command post-processing.

The Tss2_Sys_GetDecryptParam and Tss2_Sys_SetDecryptParam functions are
used for decrypt sessions, which you learn about in Chapter 17. For now, the
Tss2_Sys_GetDecryptParam function returns a pointer to the start of the parameter to be
encrypted and the size of the parameter. These two returned values are used by the
application when it calls Tss2_Sys_SetDecryptParam to set the encrypted value into the
command byte stream.

The Tss2_Sys_SetCmdAuths function is used to set the command authorization areas
(also called sessions) in the command byte stream. This is explained in detail in Chapter 13,
when sessions and authorizations are discussed.

Command Execution Functions
This group of functions actually sends commands to and, receives responses from the
TPM. The commands can be sent synchronously or asynchronously. There are two ways
to send commands synchronously: via a sequence of three to five function calls; and via
a single “does everything” call, the one-call. Support for asynchronous vs. asynchronous
and one-call vs. a finer-grained multi-call approach arose from the desire to support as
many application architectures as possible.

Tss2_Sys_ExecuteAsync is the most basic method of sending a command. It sends
the command using the TCTI transmit function and returns as quickly as possible. Here’s
an example of a call to this function:

rval = Tss2_Sys_ExecuteAsync(sysContext);

CHAPTER 7 ■ TPM SOFTWARE STACK

90

Tss2_Sys_ExecuteFinish is the companion function to ExecuteAsync. It calls the
TCTI function to receive the response. It takes a command parameter, timeout, that tells
it how long to wait for a response. Here’s an example that waits 20 msec for a response
from the TPM:

rval = Tss2_Sys_ExecuteFinish(sysContext, 20);

Tss2_Sys_Execute is the synchronous method and is the equivalent of calling
Tss2_Sys_ExecuteAsync followed by Tss2_Sys_ExecuteFinish with an infinite timeout.
Here’s an example:

rval = Tss2_Sys_Execute(sysContext);

The last function in the execution group, Tss2_Sys_XXXX, is the one-call or “do
everything” function. This function assumes that authorizations aren’t needed, a simple
password authorization is being used, or that authorizations such as HMAC and policy
have already been calculated. There is one of these commands for each Part 3 command.4
As an example, the one-call function for the Tpm2_StartAuthSession command is
Tss2_Sys_StartAuthSession. When used with the associated Tss2_Sys_XXXX_Prepare call,
the one-call interface can do any type of authorization. An interesting side effect of this is that
the command parameters are marshalled twice: once during the Tss2_Sys_XXXX_Prepare
call and once during the one-call function call. This was a design compromise because the
one-call needed to be capable of being used as a standalone call and paired with the
Tss2_Sys_XXXX_Prepare call. Here’s an example of the one-call with no command or
response authorizations:

rval = Tss2_Sys_GetTestResult(sysContext, 0, &outData, &testResult, 0);

Note ■ The function takes a pointer to a system context structure; a pointer to a

 command authorization’s array structure; two output parameters, outData and testResult;

and a pointer to a response authorization structure. The parameters that are 0 are the

command and response authorization array structures. For this very simple example, these

aren’t necessary, so NULL pointers are used. Use of these is explained in Chapter 13.

Command Completion Functions
This group of functions enables the command post-processing that is required. This
includes response HMAC calculation and response parameter decryption if the session
was configured as an encrypt session.

4Part3doesdescribesomehardware-triggeredcommands.Thesestartwithanunderscorecharacter
andaren’tincludedintheSAPI.

CHAPTER 7 ■ TPM SOFTWARE STACK

91

Tss2_Sys_GetRpBuffer gets a pointer to and the size of the response parameter byte
stream. Knowing these two values enables the caller to calculate the response HMAC and
compare it to the HMAC in the response authorization areas.

Tss2_Sys_GetRspAuths gets the response authorization areas. These are used
to check the response HMACs in order to validate that the response data hasn’t been
tampered with.

After validating the response data, if the response was sent using an encrypt session,
Tss2_Sys_GetEncryptParam and Tss2_Sys_SetEncryptParam can be used to decrypt
the encrypted response parameter and insert the decrypted response parameter into
the byte stream prior to unmarshalling the response parameters. These two functions
are described in greater detail in Chapter 17 in the discussion of decrypt and encrypt
sessions.

After the response parameter has been decrypted, the response byte stream can
be unmarshalled. This is done by a call to Tss2_Sys_XXXX_Complete. Because each
command has different response parameters, there is one of these per Part 3 command.5
An example of this call is as follows:

rval = Tss2_Sys_GetTestResult_Complete(sysContext, &outData, &testResult);

You’ve now seen all the SAPI calls. Some of these are specific to Part 3 commands,
and some apply regardless of which Part 3 command is being executed.

Simple Code Example
The next code example, from the SAPI library test code, performs a TPM2_GetTestResult
command three different ways: one-call, synchronous calls, and asynchronous calls.
Comments help delineate the tests of the three different ways:

Note ■ CheckPassed() is a routine that compares the passed-in return value to 0. If they

aren’t equal, an error has occurred, and the routine prints an error message, cleans up, and

exits the test program.

void TestGetTestResult()
{
 UINT32 rval;
 TPM2B_MAX_BUFFER outData;
 TPM_RC testResult;
 TSS2_SYS_CONTEXT *systemContext;

 printf("\nGET TEST RESULT TESTS:\n");

5Commandsthathavenoresponseparametersdon’thaveacorrespondingCompletecall.

CHAPTER 7 ■ TPM SOFTWARE STACK

92

 // Initialize the system context structure.
 systemContext = InitSysContext(2000, resMgrTctiContext, &abiVersion);
 if(systemContext == 0)
 {
 Handle failure, cleanup, and exit.
 InitSysContextFailure();
 }

Test the one-call API.

 //
 // First test the one-call interface.
 //
 rval = Tss2_Sys_GetTestResult(systemContext, 0, &outData, &testResult,
 0);
 CheckPassed(rval);

Test the synchronous, multi-call APIs.

 //
 // Now test the synchronous, non-one-call APIs.
 //
 rval = Tss2_Sys_GetTestResult_Prepare(systemContext);
 CheckPassed(rval);
 // Execute the command synchronously.
 rval = Tss2_Sys_Execute(systemContext);
 CheckPassed(rval);

 // Get the command results
 rval = Tss2_Sys_GetTestResult_Complete(systemContext, &outData,
 &testResult);
 CheckPassed(rval);

Test the asynchronous, multi-call APIs.

 //
 // Now test the asynchronous, non-one-call interface.
 //
 rval = Tss2_Sys_GetTestResult_Prepare(systemContext);
 CheckPassed(rval);

CHAPTER 7 ■ TPM SOFTWARE STACK

93

 // Execute the command asynchronously.
 rval = Tss2_Sys_ExecuteAsync(systemContext);
 CheckPassed(rval);

 // Get the command response. Wait a maximum of 20ms
 // for response.
 rval = Tss2_Sys_ExecuteFinish(systemContext, 20);
 CheckPassed(rval);

 // Get the command results
 rval = Tss2_Sys_GetTestResult_Complete(systemContext, &outData,

&testResult);
 CheckPassed(rval);

 // Tear down the system context.
 TeardownSysContext(systemContext);
}

System API Test Code
As mentioned, the previous GetTestResult test is included as one of the tests in the SAPI
test code. This section briefly describes the structure of the test code and some design
features.

Many other tests in this code test various SAPI capabilities. But you should beware
that this test suite is by no means comprehensive; there are too many permutations and
not enough time for a single developer to write all the tests. These tests were written to
provide sanity checks and, in some cases, more detailed tests of targeted functionality.

The test code resides in the Test\tpmclient subdirectory. In this directory, the
tpmclient.cpp file contains the test application’s initialization and control code as well
as all the main test routines. Subdirectories of tpmclient provide support code needed
for the tests. The simDriver subdirectory contains a device driver for communicating
with the TPM simulator. The resourceMgr subdirectory contains code for a sample RM.
And the sample subdirectory contains application-level code that performs the following
tasks: maintaining session state information, calculating HMACs, and performing
cryptographic functions.

A major design principle of the SAPI test code was to use the TPM itself for all
cryptographic functions. No outside libraries such as OpenSSL are used. The reason for
this was twofold. First, it increased the test coverage of the SAPI test code by calling TPM
cryptographic commands. Second, it allowed the test application to be a stand-alone
application with no dependency on outside libraries. And there was a third reason: the
developer thought it was kind of a cool thing to do! The SAPI test code can be used as a
starting point for developers: find a command you want to use that’s called in the test
code, and it will give you a significant boost in your code development.

The SAPI test code uses other elements of the TSS stack to perform its tests: the
TCTI, TAB, and RM. Because SAPI uses the TCTI to send commands to the TAB, TCTI is
described next.

CHAPTER 7 ■ TPM SOFTWARE STACK

94

TCTI
You’ve seen the system API functions, but the question that hasn’t been answered yet is
how command byte streams are transmitted to the TPM and how the application receives
response byte streams from the TPM. The answer is the TPM Command Transmission
Interface (TCTI). You saw this briefly in the description of the Tss2_Sys_Initialize call.
This call takes a TCTI context structure as one of its inputs. Now we will describe this
layer of the stack in detail.

The TCTI context structure tells the SAPI functions how to communicate with
the TPM. This structure contains function pointers for the two most important TCTI
functions, transmit and receive, as well as less frequently used functions such as
cancel, setLocality, and some others described shortly. If an application needs to talk
to more than one TPM, it creates multiple TCTI contexts and sets each with the proper
function pointers for communicating with each TPM.

The TCTI context structure is a per-process, per-TPM structure that is set up by
initialization code. It can be set up at compile time or dynamically when the OS is booted.
Some process has to either discover the presence of TPMs (typically a local TPM) or have
a priori knowledge of remote TPMs and initialize a TCTI context structure with the proper
function pointers for communication. This initialization and discovery process is out of
scope of the SAPI and TCTI specification.

The most frequently used and required function pointers, transmit and receive,
do what you’d expect them to. Both of them get a pointer to a buffer and a size parameter.
The SAPI functions call them when they’re ready to send and receive data, and the
functions do the right thing.

The cancel function pointer supports a new capability in TPM 2.0: the ability to cancel
a TPM command after it’s been transmitted to the TPM. This allows a long-running TPM
command to be cancelled. For example, key generation can take up to 90 seconds on some
TPMs. If a sleep operation is initiated by the OS, this command allows early cancellation of
long-running commands so that the system can be quiesced.6

The getPollHandles function pointer comes into play when SAPI is using the
asynchronous method of sending and receiving responses—that is, the
Tss2_Sys_ExecuteAsync and Tss2_Sys_ExecuteFinish functions. This is an OS-specific
function that returns the handles that can be used to poll for response-ready conditions.

The last function pointer, finalize, is used to clean up before a TCTI connection is
terminated. Actions that are required upon connection termination, if any, are performed
by this function.

TCTI can be used at any level in the TPM stack where marshalled byte streams are
being transmitted and received. Currently, the thinking is that this occurs at two places:
between the SAPI and the TAB, and between the RM and the driver.

6ThecancelcapabilityisspecifiedintheTCGPCClientPlatformTPMProfile(PTP)
Specification.TPMsthatsupportotherplatformsmaynotincludethecancelcommand.

CHAPTER 7 ■ TPM SOFTWARE STACK

95

TPM Access Broker (TAB)
The TAB is used to control and synchronize multiprocess access to a single shared TPM.
When one process is in the middle of sending a command and receiving a response, no
other process is allowed to send commands to or request responses from the TPM. This is
the first responsibility of the TAB. Another feature of the TAB is that it prevents processes
from accessing TPM sessions, objects, and sequences (hash or event sequences) that they
don’t own. Ownership is determined by which TCTI connection was used to load the
objects, start the sessions, or start the sequences.

The TAB is integrated with the RM into a single module in most implementations.
This makes sense because a typical TAB implementation can consist of some simple
modifications to the RM.

Resource Manager
The RM acts in a manner similar to the virtual memory manager in an OS. Because TPMs
generally have very limited on-board memory, objects, sessions, and sequences need
to be swapped from the TPM to and from memory to allow TPM commands to execute.
A TPM command can use at most three entity handles and three session handles. All
of these need to be in TPM memory for the TPM to execute the command. The job of
the RM is to intercept the command byte stream, determine what resources need to be
loaded into the TPM, swap out enough room to be able to load the required resources,
and load the resources needed. In the case of objects and sequences, because they can
have different handles after being reloaded into the TPM, the RM needs to virtualize the
handles before returning them to the caller.7 This is covered in more detail in Chapter 18;
for now, this ends the brief introduction to this component.

The RM and TAB are usually combined into one component, the TAB/RM, and as a
rule there is one of these per TPM; that’s an implementation design decision, but this is
typically the way it’s done. If, on the other hand, a single TAB/RM is used to provide access
to all the TPMs present, then the TAB/RM needs a way to keep track of which handles
belong to which TPMs and keep them separated; the means of doing this is outside
the scope of the TSS specifications. So, whether the boundary is enforced by different
executable code or different tables in the same code module, clear differentiation must be
maintained in this layer between entities that belong to different TPMs.

Both the TAB and RM operate in a way that is mostly transparent to the upper layers
of the stack, and both layers are optional. Upper layers operate the same with respect to
sending and receiving commands and responses, whether they’re talking directly to a
TPM or through a TAB/RM layer. However, if no TAB/RM is implemented, upper layers
of the stack must perform the TAB/RM responsibilities before sending TPM commands,
so that those commands can execute properly. Generally, an application executing
in a multithreaded or multiprocessing environment implements a TAB/RM to isolate
application writers from these low-level details. Single-threaded and highly embedded
applications usually don’t require the overhead of a TAB/RM layer.

7Forthisreason,handlesaren’tincludedinauthorizationcalculations.Otherwise,authorizations
wouldfailbecausetheapplicationonlyseesvirtualhandles.Namesareusedinstead,andthese
namesaren’taffectedbyvirtualizationofthehandles.

CHAPTER 7 ■ TPM SOFTWARE STACK

96

Device Driver
After the FAPI, ESAPI, SAPI, TCTI, TAB, and RM have done their jobs, the last link, the
device driver, steps up to the plate. The device driver receives a buffer of command bytes
and a buffer length and performs the operations necessary to send those bytes to the
TPM. When requested by higher layers in the stack, the driver waits until the TPM is ready
with response data and reads that response data and returns it up the stack.

The physical and logical interfaces the driver uses to communicate with the TPM are
out of scope of the TPM 2.0 library specification and are defined in the platform-specific
specifications. At this time, the choice for TPMs on PCs is either the FIFO8 or Command
Response Buffer (CRB) interface. FIFO is first-in, first-out byte-transmission interface that
uses a single hardcoded address for data transmission and reception plus some other
addresses for handshaking and status operations. The FIFO interface remained mostly
the same for TPM 2.0, with a few small changes. FIFO can operate over serial peripheral
interface (SPI) or low pin count (LPC) interface busses.

The CRB interface is new for TPM 2.0. It was designed for TPM implementations that
use shared memory buffers to communicate commands and responses.

Summary
This completes the discussion of the TSS layers, which provide a standard API stack for
“driving” the TPM. You can intercept this stack at different levels depending on your
requirements. These layers, especially FAPI and SAPI, are used in the following chapters,
so please refer to this this chapter while studying the code examples.

8TheFIFOinterfaceismostlyidenticaltotheinterfaceusedbytheTPMInterfaceSpecification
(TIS)forTPM1.2devices.TheTISspecificationincludedmuchmorethantheinterface,suchas
thenumberofPCRs,aminimumsetofcommands,andsoon,sotheuseof“TIS”hasbeen
deprecatedforTPM2.0.

97

CHAPTER 8

TPM Entities

A TPM 2.0 entity is an item in the TPM that can be directly referenced with a handle.
The term encompasses more than objects because the specification uses the word object
to identify a very specific subset of entities. This can be confusing, so this chapter briefly
describes all of the entity types: permanent entities (hierarchies, the dictionary attack
lockout mechanism, and PCRs); nonvolatile entities (NVRAM indexes), which are similar to
permanent entities; objects (keys and data); and volatile entities (sessions of various types).

After this introduction, the following chapters discuss each entity and its uses in
more detail. In particular, the next chapter delves into hierarchies, a collection of entities
that are related and managed as a group.

Permanent Entities
A permanent entity is one whose handle is defined by the TPM specification and can’t be
created or deleted. In TPM 1.2, PCRs and the owner were the only permanent entities; the
storage root key (SRK) did have a fixed handle but wasn’t a permanent entity. In TPM 2.0,
there are more: three persistent hierarchies, the ephemeral hierarchy, the dictionary attack
lockout reset, PCRs, reserved handles, the plaintext password authorization session, and
the platform hierarchy NV enable. The following sections discuss each in turn.

Persistent Hierarchies
TPM 2.0 has three persistent hierarchies (platform, storage, and endorsement), each
referenced by a permanent handle: TPM_RH_PLATFORM (0x4000000C), TPM_RH_OWNER
(0x40000001), and TPM_RH_ENDORSEMENT (x4000000B). Permission to use these hierarchies
is granted through authorizations, so each has both an authorization value and a
policy. Either can be changed at the will of the hierarchy’s administrator (defined as
anyone who can authorize such a change). The authorization value or policy value may
change, but whenever we refer to, for example, the platform authorization, we mean
the same entity. Persistent hierarchies can never be deleted, but they may be disabled
by the administrator of the platform or the administrator of the hierarchy. These three
hierarchies may have associated chains of keys and data, which can be wiped by clearing
the hierarchy.

CHAPTER 8 ■ TPM ENTITIES

98

The next chapter describes the hierarchies in detail, including each hierarchy’s
management and use cases. At this point, it’s sufficient to understand that the persistent
hierarchies are permanent entities. They can’t be created or deleted.

Other permanent entities similar to the hierarchies listed here are the ephemeral
hierarchy and the dictionary attack lockout reset mechanism.

Ephemeral Hierarchy
TPM 2.0 has an ephemeral hierarchy called the NULL hierarchy, which is also referenced
by a permanent handle: TPM_RH_NULL (0x40000007). This hierarchy is utilized when
the TPM is being used as a cryptographic coprocessor, as described in Chapter 9. Its
authorization value and policy are both always NULL.

Similar to the persistent hierarchies, the ephemeral hierarchy is permanent. It can’t
be deleted. However, unlike the persistent hierarchies, it’s automatically cleared every
time the TPM goes through a power cycle. See Chapter 9 for details.

Dictionary Attack Lockout Reset
Similar to the hierarchies is the dictionary attack lockout mechanism, which has the
handle TPM_RH_LOCKOUT (0x4000000A). It also has both an authorization and a policy.
Like the three persistent hierarchies, these authorizations can be changed at the will
of the administrator of this hierarchy. It has no key or object hierarchy. Instead, this
mechanism is used to reset the dictionary attack lockout mechanism if it has triggered,
or to clear the TPM_RH_OWNER hierarchy. It generally represents the IT administrator of the
TPM storage hierarchy.

EXAMPLE: FAILURE COUNT RESET

A TPM is configured to lock out a user for 24 hours after 5 password entry failures.

Lock out means the user can’t successfully authorize any entity that is subject to

this dictionary attack protection. The user convinces an IT administrator this this

wasn’t an attack but rather was just a mistake. The administrator, using lockout

authorization, resets the failure count so the user doesn’t have to wait for the

24-hour lockout period to expire.

Platform Configuration Registers (PCRs)
The TPM has a number of PCRs, which are accessed using their index. Depending on
the platform-specific specification, they can have one or more algorithms. They also
have an authentication value and a policy, chosen by the specification (generally NULL),
which may be used to change the value stored in the PCR via a PCR extend. Reading the
value stored in a PCR doesn’t require authentication. The PC Client platform specifies
a minimum of 24 PCRs. Only one bank (a set of PCRs with the same hash algorithm) is
mandatory, programmable to either SHA-1 or SHA-256 at boot time.

CHAPTER 8 ■ TPM ENTITIES

99

Because it’s a permanent entity, there is no command to create or delete a PCR; you
can only change its attributes or the PCR value. Chapter 12 discusses these permanent
entities in detail.

Reserved Handles
Vendor-specific reserved handles may be present in a TPM if a platform-specific
specification decides to use them. Such handles are meant to be used by a vendor in
the case of a catastrophic security failure of the firmware in the TPM, allowing the TPM
to testify to the hash of the software stored in the TPM. At the date of this writing, no
reserved handles are specified by any platform specification.

Password Authorization Session
There is one session that is permanent as well, called a password authorization session
at handle TPM_RS_PW (0x40000009). A caller uses this handle for plaintext password
(as opposed to HMAC) authorization.

Platform NV Enable
The TPM_RH_PLATFORM_NV handle (0x4000000D) controls the platform hierarchy NV enable.
When it’s clear (disabled), access to any NV index in the platform hierarchy is denied.

NV indexes can belong to either the platform or the storage hierarchy. The storage
hierarchy enable controls NV indexes in the storage hierarchy. However, the platform
enable doesn’t control platform hierarchy NV indexes. That uses is a separate control:
platform NV enable. Having two controls permits independent control of the platform
hierarchy (for example, keys) and these platform NV indexes.

USE CASE: STORING BOOT PARAMETERS

Platform firmware can use the TPM as a convenient NV space for boot parameters.

This space must remain readable even if the TPM platform hierarchy is disabled.

Next let’s examine some entities that are similar to permanent entities: nonvolatile
indexes, which are nonvolatile but not architecturally defined.

Nonvolatile Indexes
An NVRAM index in a TPM is a nonvolatile entity. There is a certain amount of
nonvolatile space in a TPM that a user can configure for storage. When configured, it’s
given an index and a set of attributes, chosen by the user.

CHAPTER 8 ■ TPM ENTITIES

100

NVRAM indexes aren’t considered objects by the TPM specification, because
they have more attributes than a standard object. Reading and writing them can be
individually controlled. They can be configured as entities that look like PCRs, counters,
or bit fields. They can be made into “write once” entities as well. Chapter 11 explains their
properties and use cases.

NVRAM indexes have both an associated authorization value and an authorization
policy. The authorization value can be changed at the will of the owner of the index, but
the policy can’t be changed once it’s set at the creation of the NVRAM index. NVRAM
indexes are associated with a hierarchy when they’re created. Hence, when the hierarchy
is cleared, the NVRAM indexes associated with that hierarchy are deleted.

Objects are similar to NVRAM in that they belong to a hierarchy and have data and
authorization mechanisms, but they have fewer attributes.

Objects
A TPM object is either a key or data. It has a public part and perhaps a private part such
as an asymmetric private key, a symmetric key, or encrypted data. Objects belong to
a hierarchy. All objects have both associated authorization data and an authorization
policy. As with NV indexes, an object’s policy can’t be changed after it’s created.

When an object is used in a command, some commands are considered
administrative and others are considered user commands. At object creation, the user
decides which of these commands can be performed with the authorization data and
which can exclusively be done with a policy. This comes with a caveat: certain commands
can only be done with a policy no matter how the attributes are set at key creation.

Like NVRAM indexes, all objects belong to one of the four hierarchies: platform,
storage, endorsement, or NULL. When a hierarchy is cleared, all objects belonging to that
hierarchy are also cleared.

Typically, most objects are keys. They’re described in detail in the Chapter 10.
Using keys or other objects requires the use of a TPM non-persistent entity: the session.

Nonpersistent Entities
A nonpersistent entity never persists through power cycles.1 Although a nonpersistent
entity can be saved (see TPM2_ContextSave), a TPM cryptographic mechanism prevents
the saved context from being loaded after a power cycle, thus enforcing volatility.
This type of entity has several classes.

Authorization sessions, including HMAC and policy sessions, are perhaps the
most widely used, permitting entity authorization, command and response parameter
encryption, and command audit. Chapter 13 is devoted to their use.

1Tobeprecise,itdoesn’tpersistthroughwhatthespecificationreferstoasaTPMReset(areboot).
ItdoespersistthroughaTPMRestart(resumefromhibernate)orTPMResume(resumefromsleep).

CHAPTER 8 ■ TPM ENTITIES

101

Hash and HMAC event sequence entities hold the intermediate results of the typical
crypto library “start, update, complete” design pattern. They permit the hashing or HMAC
of data blocks that are larger than the TPM command buffer. Chapter 9 describes their
application.

In contrast to a nonpersistent entity, a persistent entity persists through power cycles.

Persistent Entities
A persistent entity is an object that the owner of a hierarchy has asked to remain resident
in the TPM through power cycles. It differs from a permanent entity (which can never be
deleted) in that the owner of the hierarchy to which a permanent entity belongs can evict
it. A TPM has a limited amount of persistent memory, so you should be sparing in your
use of persistent entities. There are, however, some valuable use cases.

USE CASE: VPN KEY ACCESS

A signing key is needed for VPN access early in a boot cycle. At that time, the disk

isn’t available. The application transfers the key to TPM persistent storage, where it’s

immediately available for use in early boot cryptographic operations.

USE CASE: PRIMARY KEY OPTIMIZATION

A primary storage key (the equivalent to a TPM 1.2 SRK) is routinely used as the root

of a key hierarchy. Key generation is often the most time-consuming cryptographic

calculation. After creation, the key is moved to persistent storage to avoid the

performance penalty of recalculating the key on every boot cycle.

USE CASE: IDENTITY KEY PROVISIONING

An enterprise provisions a motherboard with a restricted signing key that is fixed

to the TPM. The enterprise uses this key to identify the platform. If the motherboard

fails and the TPM is thus replaced, this existing key can no longer be loaded. The IT

department wishes to provision spare motherboards with new signing keys. Because

a motherboard has no disk, the IT department generates the key and moves it to

TPM persistent storage. The signing key now travels with the motherboard when it

replaces a failed one in a platform.

Usually, primary storage keys (such as an SRK), primary restricted signing keys
(such as an attestation identity key [AIK]), and possibly endorsement keys (EK) are the only
entities that remain persistent in a TPM. These are discussed in more detail in Chapter 10.

CHAPTER 8 ■ TPM ENTITIES

102

Entity Names
The Name of an entity is a TPM 2.0 concept, invented to solve a problem noticed with the
TPM 1.2 specification. A paranoid security analyst (and all security analysts are paranoid)
noticed that it might be possible for an attacker to intercept data as it was being sent to
the TPM. The TPM design had protections against such an attack changing most data
that was sent to the TPM. However, the TPM has very few resources, so it allowed a key
manager to load and unload keys into the TPM as necessary. After keys were loaded, they
were referred to by a handle, a shorthand for the location in memory where the key was
loaded. Because the software might not realize that a key manager had been relocating
keys in the TPM to free up space, the handle itself wasn’t protected against manipulation,
and middleware would patch the data that was sent to the TPM to point to the correct
handle location.

Normally this wouldn’t be a problem. But if someone decided to give the same
password to more than one key, then it would be possible for one of those keys to be
substituted for another by an attacker, and the attacker could then authorize the wrong
key to be used in a command. You might think such an attack would be unlikely, but the
people who wrote the TPM specification also tend to be paranoid and decided this was
unacceptable behavior. Instead of just warning everyone not to use the same password
for multiple keys, they decided to give every entity a unique Name, and that Name is used
in the HMAC authorization calculation sent when executing a command that uses that
entity. The handle may change, but the name doesn’t.

The command parameter stream that is hashed and then HMACed implicitly includes
the Name of each entity referred to by handle, even though the command parameters
may not include the Name. An attacker can change the handle but can’t change the
corresponding Name value after it’s authorized through the HMAC calculation.

The Name is the entity’s unique identifier. Permanent entities (PCRs and hierarchy
handles) have handles that never change, so their Name is simply their handle. Other
entities (NV indexes and loaded objects) have a calculated name that is essentially a hash
of the entity’s public data. Both the TPM and caller independently calculate the Name
value for use during authorization.

For security, it’s extremely important that the Name is calculated and stored when
the entity is created. A naïve implementation might offer to help by providing a “handle
to Name” function that reads the TPM handle and uses the resulting public area to
generate the Name. This would defeat the entire purpose of using the Name in the HMAC
calculation, because the result is the Name of the entity currently at the handle, not the
Name the authorizer expected.

Following are some examples of how the Name is used.

CHAPTER 8 ■ TPM ENTITIES

103

EXAMPLE: ATTACKER CLEARING A BIT-FIELD NV INDEX

A key owner uses an NV bit-field index in the key’s policy, with a set bit 3 revoking

the key for a key user. The revoked user / attacker deletes the NV index and re-creates

it with the same policy. When the key owner wants to set bit 5, they use the

handle-to-Name function to calculate the Name. The key owner uses the result for

authorization, and sets bit 5. However, bit 3 is now clear because the TPM initializes

bit fields to all bits clear.

If the key owner had properly stored the Name and used it for authorization, the

authorization would fail. This would happen because, when the attacker re-created

the index, the “written” bit in the public area attributes would go from set to clear,

changing the Name on the TPM.

The Name of an NV index is a digest of its public area. An attacker can delete and
redefine an index, but unless the public area (the index value, its attributes, and its
policy) is the same, the Name will change and the authorization will not verify.

EXAMPLE: ATTACKER READING A SECRET

The user defines an ordinary index intended to hold a secret. The index policy is

such that only the user can read the secret. Before the secret is written, an attacker

deletes the index and redefines it with a different policy, such that the attacker can

also read the secret. The attack fails because the policy change causes the Name to

change. When the user tries to write the secret, the authorization fails because the

original name was used to calculate the command parameter hash.

The Name of a transient or persistent entity is also a digest of its public area.
The public area varies with the type of entity.

USE CASE: PERMITTING A RESOURCE MANAGER TO SECURELY
MANAGE TPM KEYS

The user loads a key and receives back a handle for the loaded key. The user

authorizes the key with an HMAC of the command parameters, which implicitly

includes the Name. Unknown to the user, a resource manager had unloaded the key,

and now loads it. Keep in mind, however, that the handle changes. The resource

manager replaces the user’s handle with the new handle value. The authorization

still verifies, because the calculation didn’t include the handle (which changed), only

the Name (which didn’t).

CHAPTER 8 ■ TPM ENTITIES

104

USE CASE: ATTACKER REPLACING A KEY AT THE SAME HANDLE

The user loads a key and receives a handle. The user authorizes that key with an

HMAC. However, an attacker replaces the key on the TPM with their own key, and

the attacker’s key has the same handle. The attack fails because the attacker’s key

has a different Name, so the HMAC authorization fails.

Summary
The TPM has several types of entities: items that can be referred to by a handle.
Permanent entities have a handle that is fixed by the TPM specification. The handle
value can’t change; nor can such an entity be created or deleted. Its data can be either
persistent or volatile. Nonvolatile indexes can be created or deleted at a user-specified
handle, and they persist through TPM power cycles. Objects — entities that are attached
to a hierarchy — may have a private area and can be volatile or made persistent. When
the object is made persistent, it’s called a persistent entity.

An entity’s Name is its unique identifier. It’s used in authorization calculations rather
than the entity’s handle because the handle may change over time as a resource manager
loads and flushes entities.

This chapter has summarized the entity types and provides a road map to the
chapters that follow. The details come next, with chapters on hierarchies (permanent
entities), keys (objects), NV indexes (persistent entities), PCRs (permanent entities),
and sessions (nonpersistent entities).

105

CHAPTER 9

Hierarchies

A hierarchy is a collection of entities that are related and managed as a group. Those
entities include permanent objects (the hierarchy handles), primary objects at the root
of a tree, and other objects such as keys in the tree. NV indexes belong to a hierarchy but
aren’t in a tree. Entities, other than permanent entities, can be erased as a group.

The cryptographic root of each hierarchy is a seed: a large random number that the
TPM generates and never exposes outside its secure boundary. The TPM uses the seed
to create primary objects such as storage root keys. Those keys form the parent at the top
of a hierarchy and are used to encrypt its children. Chapter 15 goes into far more detail
about keys.

Each hierarchy also has an associated proof value. The proof can be independently
generated or derived from the hierarchy seed. The TPM uses the proof value to ensure
that a value supplied to the TPM was originally generated by that TPM. Often, the TPM
derives an HMAC key from the proof, and HMACs data that the TPM itself generates
internally. When the data is later supplied back to the TPM, the HMAC is checked to
verify the authenticity of the data.

A hierarchy can be persistent (retained through a reboot) or volatile (erased at
reboot). Each hierarchy is targeted at specific use cases: for the platform manufacturer,
for the user, for privacy-sensitive applications, and for ephemeral requirements.

Three Persistent Hierarchies
TPM 1.2 has one hierarchy, represented by the owner authorization and storage root key
(SRK). There can be only one SRK, always a storage key, which is the lone parent at the
base of this single hierarchy. The SRK is generated randomly and can’t be reproduced
once it’s erased. It can’t be swapped out of the TPM. Child keys can’t be created and
wrapped with (encrypted by) the SRK, and these child keys may in turn be storage keys
with children of their own. However, the key hierarchy is under the control of the one
owner authorization; so, ultimately, TPM 1.2 has only one administrator.

TPM 2.0, on the other hand, expands to three persistent hierarchies (platform, storage,
and endorsement) to permit several use cases:

Using the TPM as a cryptographic coprocessor•

Enabling or disabling parts of the TPM•

Separating privacy-sensitive and -nonsensitive applications•

CHAPTER 9 ■ HIERARCHIES

106

The three hierarchies have some common traits:

Each has an authorization value and a policy.•

Each has an enable flag.•

Each has a seed from which keys and data objects can be derived. •
The seed is persistent.

Each can have primary keys from which descendants •
can be created.

The primary keys are somewhat analogous to the TPM 1.2 SRK. You could create a
single RSA 2048-bit with a SHA-1 primary storage key, which would then be equivalent to
the SRK.

However, TPM 2.0 adds more flexibility. First, primary keys aren’t limited to storage
keys. They can also be asymmetric or symmetric signing keys. Second, there can be more
than one (indeed, an unlimited number of) primary keys. This is useful because you
might want keys of different types (storage, signing) and of different algorithms
(RSA, ECC, SHA-1, SHA-256). Third, because there can be a large number of primary keys,
it’s impractical to store them all in TPM NV memory. Therefore, unlike the TPM 1.2 SRK,
the primary keys are derived from the secret seeds. The process is repeatable: the same seed
value and key properties always result in the same key value. Rather than store them all, you
can regenerate the keys as needed. Essentially, the seeds are the actual cryptographic roots.
A primary key can be swapped out of the TPM, context-saved, and loaded for the duration
of a power cycle, to eliminate the time required to regenerate the keys.

Because the hierarchies have independent authorization controls (password and
policy), they can naturally have separate administrators. The TCG chose the three
hierarchies and their slightly different operations to accommodate different use cases,
which are somewhat reflected in their names. They’re next described in detail, along with
the intended use cases.

Platform Hierarchy
The platform hierarchy is intended to be under the control of the platform manufacturer,
represented by the early boot code shipped with the platform.1 The platform hierarchy is
new for TPM 2.0. In TPM 1.2, the platform firmware could not be assured that the TPM
was enabled. Thus, platform firmware developers could not include tasks that relied on
the TPM.

1Inanx86PCplatform,thisearlybootcodewascalledBIOS.Morerecently,it’scalledUEFI
firmware.

CHAPTER 9 ■ HIERARCHIES

107

USE CASE: UEFI

The platform firmware must verify an RSA digital signature to authenticate software

as part of the Unified Extensible Firmware Interface (UEFI) secure boot process. The

platform OEM stores a public key, or a digest of a list of trusted public keys, in a

TPM NV index. The controls on the index permit only the platform OEM to update it.

During boot, the platform firmware uses this trusted public key to verify a signature.

The TPM provides two benefits. First, it provides a secure location to store the public

key. Second, it offers the RSA algorithm, so it need not be implemented in software.

Here are the steps:

1. TPM_NV_Read

2. TPM2_LoadExternal

3. TPM2_VerifySignature

Unique among the hierarchies, at reboot, the platform hierarchy is enabled, the
platform authorization value is set to a zero-length password, and the policy is set to
one that can’t be satisfied. The intent is that the platform firmware will generate a strong
platform authorization value (and optionally install its policy). Unlike the other hierarchies,
which may have a human enter an authorization value, the platform authorization is
entered by the platform firmware. Therefore, there is no reason to have the authorization
persist (and to find a secure place to store it) rather than regenerate it each time.

Because the platform hierarchy has its own enable flag, the platform firmware
decides when to enable or disable the hierarchy. The intent is that it should always be
enabled and available for use by the platform firmware and the operating system.

Storage Hierarchy
The storage hierarchy is intended to be used by the platform owner: either the enterprise
IT department or the end user. The storage hierarchy is equivalent to the TPM 1.2 storage
hierarchy. It has an owner policy and an authorization value, both of which persist
through reboots. The intent is that they be set and rarely changed.

The hierarchy can be disabled by the owner without affecting the platform
hierarchy. This permits the platform software to use the TPM even if the owner disables
its hierarchy. In TPM 1.2, turning off the single storage hierarchy disabled the TPM.
Similarly, this hierarchy can be cleared (by changing the primary seed and deleting
persistent objects) independent of the other hierarchies.

The storage hierarchy is intended for non-privacy-sensitive operations, whereas the
endorsement hierarchy, with separate controls, addresses privacy.

CHAPTER 9 ■ HIERARCHIES

108

Endorsement Hierarchy
The endorsement hierarchy is the privacy-sensitive tree and is the hierarchy of choice
when the user has privacy concerns. TPM and platform vendors certify that primary keys
in this hierarchy are constrained to an authentic TPM attached to an authentic platform.
As with TPM 1.2, a primary key can be an encryption key; and certificates can be created
using TPM2_ActivateCredential, equivalent to the TPM 1.2 activate identity command.
Unlike with TPM 1.2, a primary key can also be a signing key. Creating and certifying such
a key is privacy sensitive because it permits correlation of keys back to a single TPM.

Because the endorsement hierarchy is intended for privacy-sensitive operations,
its enable flag, policy, and authorization value are independent of the other hierarchies.
They’re under the control of a privacy administrator, who may be the end user. A user
with privacy concerns can disable the endorsement hierarchy while still using the storage
hierarchy for TPM applications and permitting the platform software to use the TPM.

Privacy
Privacy, as used here, means the inability of remote parties receiving TPM digital
signatures to correlate them—to cryptographically prove that they came from the same
TPM. A user can use different signing keys for different applications to make correlation
difficult. The attacker’s task is to trace these multiple keys back to a single user.

Privacy sensitivity is most applicable to home users who own and control their
platform. In an enterprise, the IT department may control the platform completely
and weaken the privacy features. This discussion is also concerned mostly with remote
correlation—it doesn’t consider an attacker who can confiscate a platform.

The requirement for correlation is ensuring that the signing keys came from a
single, authentic TPM. If the key can be duplicated on another TPM or is from a software
implementation, the signature can’t be traced back to a single device.

The TPM vendor generates an endorsement primary seed, generates one or
more primary keys from this seed, and then generates certificates for these keys. The
certificates attest that the key is from an authentic TPM manufactured by the vendor. The
platform manufacturer may create an analogous platform certificate. From primary keys,
other keys are in some way certified.

If a primary key is a signing key and directly certifies other signing keys, correlation
is simple, because all signatures converge at the same certificate. An attester seeing the
certificate chain could prove that the attestation came from an authentic device. Further,
the certificate chain can indicate that the key was fixed to that particular TPM. For this
reason, primary keys in the endorsement hierarchy are typically encryption keys, not
signing keys.

When the primary key is an encryption key, the process to create a descendent key
certificate uses a more complicated flow, called activating a credential. The certificate
authority is referred to as a privacy CA, because it’s trusted not to leak any correlation
between the keys it has certified.

CHAPTER 9 ■ HIERARCHIES

109

Activating a Credential
The TPM doesn’t mandate a credential format, but the intent is something like an X.509
certificate, where a credential provider such as a CA signs a public signing key and
a statement about the key’s attributes. The credential process in the TCG model has
multiple goals:

The credential provider can be assured of the key attributes it’s •
certifying.

Receivers of the TPM key signatures can’t determine that the •
multiple keys are resident on the same TPM.

The certificate authority could provide this correlation, but you can assume that this
privacy CA would not normally do so.

In TPM 1.2, a key that can be activated is restricted to be an identity key (AIK), which
isn’t migratable (can’t be backed up), is restricted to signing only TPM-generated data,
and is always a child of the SRK. In TPM 2.0, all these restrictions have been removed
while still achieving both of the previously stated goals.

In this description, recall that a TPM 2.0 key’s Name is a digest of its public data.
It completely identifies the key. The digest includes the public key and its attributes.

The simplified concept is that the primary key is a decryption key, not a signing key.
The CA constructs a certificate and encrypts it with the primary key public key. Only the
TPM with the corresponding private key can recover the certificate. See Figure 9-1.

Figure 9-1. Activating a Credential

CHAPTER 9 ■ HIERARCHIES

110

The following happens at the credential provider:

1. The credential provider receives the Key’s public area and
a certificate for an Encryption Key. The Encryption Key
is typically a primary key in the endorsement hierarchy,
and its certificate is issued by the TPM and/or platform
manufacturer.

2. The credential provider walks the Encryption Key certificate
chain back to the issuer’s root. Typically, the provider verifies
that the Encryption Key is fixed to a known compliant
hardware TPM.

3. The provider examines the Key’s public area and decides
whether to issue a certificate, and what the certificate should
say. In a typical case, the provider issues a certificate for a
restricted Key that is fixed to the TPM.

4. The requester may have tried to alter the Key’s public area
attributes. This attack won’t be successful. See step 5 in the
process that occurs at the TPM.

5. The provider generates a credential for the Key

6. The provider generates a Secret that is used to protect the
credential. Typically, this is a symmetric encryption key, but it
can be a secret used to generate encryption and integrity keys.
The format and use of this secret aren’t mandated by the TCG.

7. The provider generates a ‘Seed’ to a key derivation function
(KDF). If the Encryption Key is an RSA key, the Seed is
simply a random number, because an RSA key can directly
encrypt and decrypt. If the Decryption Key is an elliptic curve
cryptography (ECC) key, a more complex procedure using a
Diffie-Hellman protocol is required.

8. This Seed is encrypted by the Encryption Key public key. It
can later only be decrypted by the TPM.

9. The Seed is used in a TCG-specified KDF to generate a
symmetric encryption key and an HMAC key. The symmetric
key is used to encrypt the Secret, and the HMAC key provides
integrity. Subtle but important is that the KDF also uses the
key’s Name. You’ll see why later.

10. The encrypted Secret and its integrity value are sent to the
TPM in a credential blob. The encrypted Seed is sent as well.

CHAPTER 9 ■ HIERARCHIES

111

If you follow all this, you have the following:

A credential protected by a Secret•

A Secret encrypted by a key derived from a Seed and •
the key’s Name

A Seed encrypted by a TPM Encryption Key•

These things happen at the TPM:

1. The encrypted Seed is applied against the TPM Encryption
Key, and the Seed is recovered. The Seed remains inside
the TPM.

2. The TPM computes the loaded key’s Name.

3. The Name and the Seed are combined using the same
TCG KDF to produce a symmetric encryption key and an
HMAC key.

4. The two keys are applied to the protected Secret, checking its
integrity and decrypting it.

5. This is where an attack on the key’s public area attributes
is detected. If the attacker presents a key to the credential
provider that is different from the key loaded in the TPM, the
Name will differ, and thus the symmetric and HMAC keys will
differ, and this step will fail.

6. The TPM returns the Secret.

Outside the TPM, the Secret is applied to the credential in some agreed upon way.
This can be as simple as using the Secret as a symmetric decryption key to decrypt the
credential.

This protocol assures the credential provider that the credential can only be
recovered if:

The TPM has the private key associated with the Encryption •
Key certificate.

The TPM has a key identical to the one presented to the •
credential provider.

The privacy administrator should control the use of the endorsement key, both as
a signing key and in the activate-credential protocol, and thus control its correlation to
another TPM key.

Other Privacy Considerations
The TPM owner can clear the storage hierarchy, changing the storage primary seed and
effectively erasing all storage hierarchy keys.

CHAPTER 9 ■ HIERARCHIES

112

The platform owner controls the endorsement hierarchy. The platform owner
typically doesn’t allow the endorsement primary seed to be changed, because this would
render the existing TPM certificates useless, with no way to recover.

The user can create other primary keys in the endorsement hierarchy using a
random number in the template. The user can erase these keys by flushing the key from
the TPM, deleting external copies, and forgetting the random number. However, these
keys do not have a manufacturer certificate.

When keys are used to sign (attest to) certain data, the attestation response structure
contains what are possibly privacy-sensitive fields: resetCount (the number of times the
TPM has been reset), restartCount (the number of times the TPM has been restarted or
resumed), and the firmware version. Although these values don’t map directly to a TPM,
they can aid in correlation.

To avoid this issue, the values are obfuscated when the signing key isn’t in the
endorsement or platform hierarchy. The obfuscation is consistent when using the same
key so the receiver can detect a change in the values while not seeing the actual values.

USE CASE: DETECTING A REBOOT BETWEEN ATTESTATIONS

An attestation server polls a platform at set intervals, verifying either that the PCRs

haven’t changed or that the new PCR values are trusted. In TPM 1.2, the platform

may have transitioned to an untrusted state and then rebooted back to a trusted

state. The server can’t detect the reboot.

In TPM 2.0, the attestation data includes boot-count information. Although

attestations in the storage hierarchy have the information obfuscated, the server can

still tell that a value changed and thus that a reboot occurred.

Here are the steps:

1. Execute the TPM2_Quote command periodically.

2. Each quote returns a TPM2B_ATTEST structure.

3. The quote includes the TPM2B_ATTEST->TPMS_CLOCK_INFO->
resetCount value.

4. resetCount is obfuscated with a symmetric key based on

the quote key Name.

5. For the same key, the obfuscated resetCount has the same

value if resetCount doesn’t change.

6. For a different key, the obfuscated resetCount has a

different value, preventing correlation.

Separate from the three persistent hierarchies is the one volatile hierarchy, called the
NULL hierarchy.

CHAPTER 9 ■ HIERARCHIES

113

NULL Hierarchy
The NULL hierarchy is analogous to the three persistent hierarchies. It can have primary
keys from which descendants can be created. Several properties are different:

The authorization value is a zero-length password, and the policy •
is empty (can’t be satisfied). These can’t be changed.

It can’t be disabled.•

It has a seed from which keys and data objects can be derived. •
The seed isn’t persistent. It and the proof are regenerated with
different values on each reboot.

A subtle use case, which the normal end user doesn’t see, is that sessions, saved
context objects, and sequence objects (digest and HMAC state) are in the NULL hierarchy.
This permits them to be voided on reboot, because the seed and proof change. A user
typically doesn’t change the endorsement hierarchy seed (because it would invalidate
certificates), the storage hierarchy seed (because it would invalidate keys with a long
lifetime), or the platform hierarchy seed (because the user may not have that capability).

Ephemeral keys are keys that are erased at reboot. An entire hierarchy, primary keys,
storage keys, and leaf keys can be constructed in the NULL hierarchy. On reboot, as the
seed changes, the entire key hierarchy is cryptographically erased. That is, the wrapped
keys may exist on disk, but they can’t be loaded.

The TPM can be used as a cryptographic coprocessor, performing cryptographic
algorithms on externally generated keys. Keys that have both a public and a private part are
loaded in the NULL hierarchy, because they may not become part of a persistent hierarchy.

Cryptographic Primitives
TPM 2.0 can function purely as a cryptographic coprocessor. Although the following
applications can be performed using any hierarchy, they’re best suited for the NULL
hierarchy because it’s always enabled and the authorization is always a zero-length
password. It’s thus always available.

I hesitate to call the TPM a crypto accelerator, because it’s likely to be slower than a
pure software implementation. However, there are a few niche applications where these
features are useful:

A resource-constrained environment, such as early boot software, •
may not want to implement complex crypto math.

In a low-performance application, it may be easier for a developer •
to use the TPM than to procure commercial software or vet an
open source license.

Applications may deem hardware superior to software.•

Applications could require a certified implementation, assuming •
the TPM is certified.

The TPM primitives, random numbers, digests, HMAC, and symmetric and
asymmetric key operations are described next.

CHAPTER 9 ■ HIERARCHIES

114

Random Number Generator
The TPM offers a simple interface to a hardware random number generator. It’s
particularly useful when another source of entropy may not be available. Examples are
embedded systems or early in a platform boot cycle.

The TPM can be considered a more trusted source of random numbers than the
software generator. See the paper “Ron was wrong, Whit is right”2 for a discussion of
issues resulting from poor software random number generators.

Digest Primitives
TPM 2.0 offers two cryptographic digest primitive APIs. Both are hash agile, permitting
the hash algorithm to be specified in the call.

The simpler but less flexible option is TPM2_Hash. The caller inputs the message, and
the TPM returns the digest. The message length is limited by the TPM input buffer size,
typically 1 or 2 KB. The other API implements the usual start/update/complete pattern
using TPM2_HashSequenceStart, TPM2_SequenceUpdate, and TPM2_SequenceComplete.

USE CASE: HASHING A LARGE FILE

In this use case, assume that the TPM input buffer is 2 KB. The user desires to

SHA-256 hash a 4 KB file. The user uses the TPM because the SHA-256 algorithm

isn’t available in software. The user uses the sequence commands because the file

is larger than 2 KB.

Here are the steps:

1. TPM2_HashSequenceStart, specifying the SHA-256

algorithm.

2. TPM2_SequenceUpdate two times, with a sequence of

2 KB buffers.

3. TPM2_SequenceComplete to return the result.

This API is similar to that of TPM 1.2, but it has several enhancements:

It supports multiple hash algorithms.•

The • start function returns a handle. More than one digest

operation can be in progress at a time.

2ArjenK.Lenstra,JamesP.Hughes,MaximeAugier,JoppeW.Bos,ThorstenKleinjung,and
ChristopheWachter,“Ronwaswrong,Whitisright,”InternationalAssociationforCryptologic
Research,2012,https://eprint.iacr.org/2012/064.pdf.

https://eprint.iacr.org/2012/064.pdf

CHAPTER 9 ■ HIERARCHIES

115

The • update function isn’t restricted to a multiple of

64 bytes.

The • complete function can be more than 64 bytes.

The • complete function can return a ticket, which is used

when signing with a restricted key. See the discussion of

TPM_GENERATED for details.

USE CASE: TRUSTED BOOT

CRTM software would like to verify a signed software update. Because it’s resource

constrained, it uses the TPM to digest the update, avoiding the need to implement

the digest calculation in the CRTM.

TPM 2.0 offers TPM2_EventSequenceComplete as an alternative to

TPM2_SequenceComplete. This command can only terminate a digest process where

no algorithm was specified. This null algorithm causes the TPM to calculate digests

over the message for all supported algorithms.

The command, an extension of TPM 1.2’s TPM_SHA1CompleteExtend, has two

enhancements:

It permits the result of the digest operation to be extended •
into a PCR. One PCR index is specified, but all PCRs at

that index (that is, all banks) are extended with a digest

corresponding to that PCR bank’s algorithm. Multiple digests

are returned, one for each supported algorithm.

The SHA-1 algorithm is being deprecated in favor of •
stronger algorithms such as SHA-256. This command,

which can do both algorithms simultaneously, permits a

staged phase-out of SHA-1, because it can return multiple

results and extend multiple PCR banks.

USE CASE: TRUSTED BOOT

TPM2_EventSequenceComplete allows software to measure (digest and extend)

software using the TPM. It avoids the need for the measuring software to implement

a digest algorithm.

CHAPTER 9 ■ HIERARCHIES

116

USE CASE: MULTIPLE SIMULTANEOUS TPM DIGEST ALGORITHMS

In one pass, the software can measure into PCR banks for several algorithms. A TPM

may be unlikely to support multiple simultaneous PCR banks (multiple sets of PCRs

with different algorithms). The current PC Client TPM doesn’t require this. But if one

ever does, the TPM API supports it.

HMAC Primitives
TPM 2.0 supports HMAC as a primitive, whereas TPM 1.2 offered only the underlying
digest API. The HMAC key is a loaded, keyed, hash TPM object. For a restricted key, the
key’s algorithm must be used. For an unrestricted key, the caller can override the key’s
algorithm. As with any key, the full complement of authorization methods is available.

As with digests, there are both simple and fully flexible APIs. TPM2_HMAC is the simpler
API. You input a key handle, a digest algorithm, and a message, and the TPM returns the
HMAC. The other API again implements the usual start/update/complete pattern, using
TPM2_HMAC_Start, TPM2_SequenceUpdate, and TPM2_SequenceComplete.

USE CASE: STORING LOGIN PASSWORDS

A typical password file stores salted hashes of passwords. Verification consists

of salting and hashing a supplied password and comparing it to the stored value.

Because the calculation doesn’t include a secret, it’s subject to an offline attack on

the password file.

This use case uses a TPM-generated HMAC key. The password file stores an HMAC

of the salted password. Verification consists of salting and HMACing the supplied

password and comparing it to the stored value. Because an offline attacker

doesn’t have the HMAC key, the attacker can’t mount an attack by performing the

calculation.

Here are the steps:

1. TPM2_Create, specifying an HMAC key (called a keyedHash

object) that can be used with a zero-length, well-known

password.

2. TPM2_Load to load the HMAC key, or optionally load and

then TPM2_EvictControl to make the key persistent.

3. TPM2_HMAC to calculate an HMAC of the salted password.

CHAPTER 9 ■ HIERARCHIES

117

RSA Primitives
Two commands offer raw RSA operations: TPM2_RSA_Encrypt and TPM2_RSA_Decrypt.
Both operate on a loaded RSA key. Both permit several padding schemes: PKCS#1, OAEP,
and no padding. The loaded key’s padding can’t be overridden. The caller can, however,
specify a padding scheme if the key’s scheme is null.

TPM2_RSA_Decrypt is the private key operation. The decryption key must be
authorized, and padding is validated and removed before the TPM returns the plaintext.

TPM2_RSA_Encrypt is the public key operation. A key and a message must be
specified, but no authorization is required for this public key operation. Padding is added
before the encryption.

USE CASE: CRTM SIGNATURE VERIFICATION

A platform implements CRTM updates. The design requires that updates be signed,

because compromising the CRTM subverts the entire platform. However, the CRTM

is constrained in both code and data space. The CRTM would like to use the TPM to

verify the signature.

The CRTM uses a hard-coded public key blob in a format ready to be loaded

on the TPM. The key has a null padding scheme. The CRTM then uses the

TPM2_RSA_Encrypt command to apply the public key to the signature, specifying

no padding. Finally, the CRTM does a simply byte compare on the result against a

padded digest of the update.

Symmetric Key Primitives
TPM2_EncryptDecrypt permits the TPM to perform symmetric key encryption and
decryption. The function operates on a small number of blocks due to the TPM input
buffer size. However, the API includes an initialization vector (IV) on input and a chaining
value on output, so a larger number of blocks can be operated on in parts.

As with an HMAC key, a restricted key has a fixed mode. The caller can specify the
mode when using an unrestricted key.

The key must be a symmetric cipher object. It must be authorized, and the full set of
authorization options are available.

Symmetric key encryption is a sensitive subject. Although the TPM isn’t very fast, its
hardware-protected keys are far more secure than software keys. It thus may be subject to
import controls and may draw the attention of government agencies. For this reason, the
PC Client platform specifies this command as optional.

CHAPTER 9 ■ HIERARCHIES

118

Summary
The TPM has three persistent hierarchies. The platform hierarchy is generally used by the
platform OEM, as represented by early boot code. The platform OEM can depend on this
hierarchy being enabled, even if the end user turns off the other hierarchies. The storage
hierarchy is under the control of the user and is used for non-privacy-sensitive operations.
The endorsement hierarchy, with its TPM vendor and OEM certificates, is under the control
of a privacy administrator and is used for privacy-sensitive operations. The privacy-sensitive
credential activation is typically performed in the endorsement hierarchy.

The NULL hierarchy is volatile. Sessions, contexts, and sequence objects are in this
hierarchy, but an entire tree of volatile keys and objects can also be created here, ensuring
that they’re deleted on a power cycle.

Besides its secure storage features, the TPM can be used as a cryptographic
coprocessor, performing cryptographic algorithms on externally generated secrets or
algorithms for which no secrets are needed. Its capabilities include a random number
generator, digest and HMAC algorithms, and symmetric and asymmetric key operations.

119

CHAPTER 10

Keys

As a security device, the ability of an application to use keys while keeping them safe in a
hardware device is the TPM’s greatest strength. The TPM can both generate and import
externally generated keys. It supports both asymmetric and symmetric keys. Chapter 2
covered the basic principles behind these two key types.

As a memory-constrained device, it acts as a key cache, with the application securely
swapping keys in and out as needed. This key cache operation is discussed in the “Key
Cache” section.

There are three key hierarchies under the control of different security roles, and each
can form trees of keys in a parent-child relationship. Chapter 9 covered the hierarchies
and their use cases.

Each key has individual security controls, which can include a password, an
enhanced authorization policy, restrictions on duplication to another parent or another
TPM, and limits on its use as a signing or decryption key. Keys can be both certified and
used to certify other keys. Attributes specific to keys are discussed in the “Key Types and
Attributes” section. The details of authorization common to all TPM entities, including
password and policy, are deferred to Chapters 13 and 14.

Key Commands
Following is a summary of the TPM commands most often used with keys. It isn’t a
complete list. See the TPM 2.0 specification, Part 3, for the complete command set and
API details. They’re used in the descriptions and use cases that follow, as well as in
subsequent chapters:

• TPM2_Create and TPM2_CreatePrimary create all key types from
templates.

• TPM2_Load (for wrapped private keys) and TPM2_LoadExternal
(for public keys and possibly plaintext private keys) load keys onto
the TPM.

• TPM2_ContextSave and TPM2_ContextLoad are used to swap keys
in and out of the TPM key cache. TPM2_FlushContext removes
a key from the TPM. TPM2_EvictControl can make a loaded key
persistent or remove a persistent ley from the TPM. These functions
and their applications are explained in detail in Chapter 18.

CHAPTER 10 ■ KEYS

120

• TPM2_Unseal, TPM2_RSA_Encrypt, and TPM2_RSA_Decrypt use
encryption keys.

• TPM2_HMAC, TPM2_HMAC_Start, TPM2_SequenceUpdate, and
TPM2_SequenceCompete use symmetric signing keys and the
keyed-hash message authentication code (HMAC) algorithm.

• TPM2_Sign is a general-purpose signing command, and
TPM2_VerifySignature verifies a digital signature.

• TPM2_Certify, TPM2_Quote, TPM2_GetSessionAuditDigest,
and TPM_GetTime are specialized signing commands that sign
attestation structures. In particular, TPM2_Certify can be used to
have a TPM key sign another key (specifically its Name). Thus, the
TPM can be used as a certificate authority, where the issuer key
attests to the properties of the subject key.

Key Generator
Arguably, the TPM’s greatest strength is its ability to generate a cryptographic key and
protect its secret within a hardware boundary. The key generator is based on the TPM’s
own random number generator and doesn’t rely on external sources of randomness.
It thus eliminates weaknesses based on weak software random number generators or
software with an insufficient source of entropy.

Primary Keys and Seeds
TPM keys can form a hierarchy, with parent keys wrapping their children. Primary keys
are the root keys in the hierarchy. They have no parent. Chapter 9 discussed the general
concept of hierarchies and their use cases. Their specific application to keys is discussed
under “Key Hierarchy.”

This section describes, in a linear flow, the creation and destruction of primary
keys. In the narrative, the caller is some software that is provisioning the TPM, sending
commands and receiving responses, whereas the TPM is the device that processes
the commands. Provisioning software (see Chapter 19) typically performs these steps.
Although end users may use primary keys, they would not typically be creating them.

Primary keys are created with the aptly named command TPM2_CreatePrimary.
If you’re familiar with TPM 1.2, you know that it has one key equivalent to the TPM 2.0
primary key: the storage root key (SRK), which is persistently stored in the TPM.
TPM 2.0 permits an unlimited number of primary keys, which don’t need to be persistent.
Although you might think the number would be limited by the TPM persistent storage,
it’s not. Primary seeds, described shortly, permit the expansion.

There were two reasons TPM 1.2 could function with one SRK. First, it had only one
algorithm and key size for wrapping keys, RSA-2048. The design of TPM 2.0, of course,
permits multiple algorithms and key sizes. Second, TPM 1.2 has only one key hierarchy:
the storage hierarchy. TPM 2.0 has three hierarchies, each with at least one root. Chapter 9
discussed the general concept of hierarchies and their use cases.

CHAPTER 10 ■ KEYS

121

How can a TPM with limited persistent storage have an unlimited number of root
keys? A root can’t exist outside the TPM because it has no parent to wrap its secret parts.
The answer is the primary seeds.

Each of the three persistent hierarchies has an associated primary seed: the
endorsement primary seed, the platform primary seed, and the storage primary seed.
These seeds never leave the TPM. They’re the secret inputs to key-derivation functions.
When the TPM creates a primary key, it uses a primary seed plus a public template. The
template includes all the items you would normally expect when specifying a key: the
algorithms and key size, its policy, and the type of key (signing, encryption, and so on).
The caller can also provide unique data in the template. The unique data is input in the
public key area of the template.

The key-derivation function is fixed and repeatable. For the same seed, the same
template always produces the same key. By varying the unique data in the template, the
caller can create an unlimited number of primary keys.

When the TPM creates a primary key, it remains on the TPM in volatile memory.
The caller now has two choices. A limited number of primary keys can be moved to
persistent memory using the TPM2_EvictControl command. Other keys can remain in
volatile memory.

If more primary keys are needed than can fit in persistent storage or volatile memory,
some can be flushed (from volatile storage) or moved from persistent storage and then
flushed. Because the seed is persistent, the key isn’t lost forever. If the caller knows the
template, which may be completely public, the TPM can re-create the identical key on
demand. If the key being regenerated is an RSA key, this process may take a lot of time. If
the key is an elliptic curve cryptography (ECC), AES, or HMAC key, the process of creating
a primary key is very fast. In most use cases, at least one storage primary key is made
persistent in the TPM for the storage hierarchy, to act in a manner similar to the SRK.

How would this work in practice? In TPM 1.2, there was one endorsement key and
an associated certificate signed by the TPM vendor. They resided in persistent storage,
so that when the final user got a system with a TPM on it, the user also had a certificate
stored in the TPM’s NVRAM that matched the endorsement key stored in the TPM. In
TPM 2.0, there can be many key/certificate pairs—at least one for each algorithm the
TPM implements. However, the end user may not want to consume valuable persistent
storage for keys and certificates that aren’t being used, even if they could fit.

A possible solution, which TPM vendors are expected to implement, is to have the
manufacturer use the endorsement seed to generate several endorsement primary keys
and certificates using a standard set of algorithms, each with a well-known template. One
popular key, say RSA-2048, and its certificate can be moved to persistent storage. The
vendor flushes the other keys but retains the certificates.

The TCG Infrastructure work group has defined several such templates for
endorsement primary keys. The RSA template uses RSA 2048, SHA-256, and AES-128.
The ECC template uses ECC with the NIST P256 curve, SHA-256, and AES-128. Both
use the same authorization policy, which requires knowledge of the endorsement
hierarchy password. This delegates the key authorization to the endorsement hierarchy
administrator. The unique data is empty, a trivial well-known value. The attributes (see
“Key Types and Attributes”) are fixedTPM and fixedParent true, as expected for an
endorsement key that should never be duplicated. userWithAuth and adminWithPolicy

CHAPTER 10 ■ KEYS

122

are specified so that a policy must always be used, not a password, which is appropriate
because the TPM vendor has no way of passing a password to the end user. The key is a
restricted decrypt key: that is, a storage key.

Suppose the end user desires a different primary key. That user can flush the one that
was provisioned with the TPM and generate a new one with their algorithm of choice.

Magic happens now! Because the seed is unchanged and the user creates the
primary key using the same template, they get the exact same key that the TPM vendor
created. The user can treat the public part as an index into a TPM vendor certificate list.
That list could even be on a public server. The user retrieves the certificate and is ready to
go. This key-generation repeatability (the same seed and the same template always yield
the same key) permits the TPM vendor to generate many keys and certificates during
manufacturing, but not have to store them in the limited TPM nonvolatile storage.
The end user can regenerate them as needed.

Note that the vendor must generate all needed primary keys and vendor certificates
in advance. Because the seed is secret, the vendor would otherwise not be able to
determine that a public key value came from the vendor’s TPM.

Once a seed is changed, the primary keys can no longer be re-created, and any keys
residing in the TPM based on the old seed are flushed. This means any certificates the
vendor created also become worthless. Creating a new certificate for a TPM endorsement
key (EK) signed by the vendor would be very difficult. Because of this, changing the seed
to the endorsement hierarchy is controlled by the platform hierarchy, which in practice
means the OEM. This makes it difficult for an end user to change this seed. On the other
hand, by simply choosing a random input in the template, the end user can create their
own set of endorsement keys that are totally independent of the EKs the vendor produced.

USE CASE: MULTIPLE PRIMARY KEYS

The user has several primary storage keys that serve as the root for a key hierarchy.

They can’t all fit in persistent storage. If the user creates the keys using well-known

templates, they can be re-created as needed.

The TPM commands are as follows:

 • TPM2_NV_Read: Reads the well-known template from TPM

NV space. The TPM vendor may provision several templates

(for example, one for RSA and one for ECC) on the TPM, and

these templates match the provisioned key certificates. The

user may also have enterprise-wide templates.

 • TPM2_CreatePrimary: Specifying the template.

 • TPM2_EvictControl: Can optionally be used to make

several keys persistent. Especially for RSA keys, this saves

the time required to regenerate them. Keys can also remain

in volatile memory and be re-created after each power

cycle.

CHAPTER 10 ■ KEYS

123

USE CASE - CUSTOM PRIMARY KEYS:

The user wishes to create a primary key using a user secret in the template rather

than using a well-known template. Again, there are more primary keys than can fit

in persistent storage. The user stores the secret in a TPM NV index, with suitable

read access control, and retrieves it when needed to re-create the primary key.

The TPM commands are as follows:

 • TPM2_NV_Write: Writes and protects a user secret.

 • TPM2_NV_Read: Reads the secret using appropriate

authorization. The secret is inserted into the key template.

 • TPM2_CreatePrimary: Specify the template, which

includes a user secret, to generate a custom primary key.

Persistence of Keys
A user calls the TPM2_EvictControl command to move a key from volatile to nonvolatile
memory so it can remain loaded (persist) though power cycles. No key needs to be made
persistent to be used. Typically, we expect that a small number of primary keys, perhaps
one per hierarchy, will be made persistent to improve performance.

Keys in the endorsement, storage, and platform hierarchies, other than primary
keys, can also be made persistent. A use case would be early in a boot cycle, when a key is
needed before a disk is available. Another use case is a limited-resource platform such as
an embedded controller, which may not have any external persistent storage.

No keys in the NULL hierarchy can be made persistent. All are voided at reboot.1

Only a limited number of keys can be persistent, but the TPM can handle an
unlimited number of keys. The application does this by using the TPM as a key cache.

Key Cache
For keys other than primary keys, the TPM serves as a key cache. That is, the
TPM2_Create command creates a key, wraps2 (encrypts) it with the parent, and returns the
wrapped key to the caller. The caller saves the key external to the TPM, perhaps on disk.
To use the key, the user must first load it into the TPM under its parent using
TPM2_Load. When finished, the caller can free memory using TPM2_FlushContext.
This is different from a primary key, which has no parent and remains in the TPM after
it’s created.

1Chapter9discussedtheuniquepropertiesoftheNULLhierarchy.
2Wrappingisacommondesignpatternforhardwaresecuritymodules.Thewrappingkeyisan
encryptionkey,sometimescalledakeyencryptingkeyormasterkey.TheTCGcallsitastorage
key.Thewrappingkeyandthewrappedkeyformaparent-childrelationship.

CHAPTER 10 ■ KEYS

124

A typical hardware TPM may have five to ten key slots: memory areas where a key can
be loaded. TPM management middleware is responsible for swapping keys in and out of
the cache.

If you read Chapter 13, you may notice that the key handle isn’t included in the TPM
parameters that are authorized. Rather, the key’s Name is used. The reason is the key cache
and swapping. A platform may have a large number of application keys on disk, perhaps
identified by a user’s handle. There are many more of these handles than key slots. When
a user asks to use a key, the command includes the user’s handle. However, when the
middleware loads the key, it gets a different handle, related to the TPM key slot rather
than the user’s handle. The middleware must thus replace the user’s handle with the TPM
handle. If the authorization included the user’s handle, the substitution would cause an
authorization failure.

You may now ask, “If the handle can be replaced, then if I have two keys with the
same authorization secret, how do I know that the middleware didn’t use a different key
than the one I wanted?” This was indeed a potential problem in TPM 1.2.

TPM solves this problem by using the key’s Name, a digest of the key’s public area,
in the authorization. The middleware can replace the key handle (which was not
authorized) but can’t replace the Name (which was authorized).

The root keys (the parents) and the key cache (the children) form a tree of keys. The
TPM provides for four of these trees, each with different controlling roles. The trees are
called hierarchies.

Key Authorization
Although hardware protection of private or symmetric keys alone is a major improvement
over software-generated keys, the TPM also offers strong access control. A software key
often uses a password for access control, to protect the key. For example, the secret key
may be encrypted with a password. This protection is only as strong as the password,
and the secret key is vulnerable to an offline hammering attack. That is, once an attacker
obtains the encrypted key, extracting the key is reduced to cracking the password. The
key owner can’t prevent a high-speed attack that tries an unlimited number of passwords.
This attack can be parallelized, with many computers trying different passwords
simultaneously. The cloud has made this kind of attack very feasible.

The TPM improves on software keys in two respects. First, when the key leaves the
TPM (see the “Key Hierarchy” section), it’s wrapped (encrypted) with a strong parent key
encrypting key. The attacker now has to crack a strong key rather than a weak password.
Second, when a key is loaded in the TPM, it’s protected by what the specification
calls dictionary attack protection logic. Each time an attacker fails to crack the key’s
authorization,3 this logic logs the failure. After a configurable number of failures, the TPM
blocks further attempts for a configurable amount of time. This limits, possibly severely,
the speed at which an attacker can try passwords. The rate limiting can make even a
weak TPM key password much more time consuming to crack than a strong software key
password, where the attack isn’t rate limited. Chapter 13 describes password and HMAC
authorization in detail.

3Chapters13and14discussthedetailsofTPMauthorization.

CHAPTER 10 ■ KEYS

125

The TPM provides many access-control mechanisms beyond a simple password.
However, it’s the hardware protection of the dictionary-attack protection logic that makes
a TPM key password resistant to attack.

Key Destruction
Sometimes a key should be destroyed. Perhaps the authorization has been exposed.
Perhaps the machine is being repurposed. Keys that are stored in software can never be
destroyed, because they may have been copied almost anywhere. But TPM keys have
parents or are primary keys.

As described in Chapter 9, there are three persistent hierarchies (endorsement,
storage, and platform) plus one volatile hierarchy (the null hierarchy). Each hierarchy has
its unique primary seed. Erasing a primary seed prevents re-creation of primary keys in
that hierarchy—obviously a drastic and rarely performed action. Erasing the primary keys
then prevents their children from being loaded in the TPM. Any key with attributes that
prove it can only exist in the TPM is then destroyed.

Key Hierarchy
A hierarchy can be thought of as having parent and child keys, or ancestors and
descendants. All parent keys are storage keys, which are encryption keys that can wrap
(encrypt) child keys. The storage key thus protects its children, offering secrecy and
integrity when the child key is stored outside the secure hardware boundary of the TPM.
These storage keys are restricted in their use. They can’t be used for general decryption,
which could then leak the child’s secrets.

The ultimate parent at the top of the hierarchy is a primary key. Children can be
storage keys, in which case they can also be parents. Children can also be non-storage
keys, in which case they’re leaf keys: children but never parents.

Key Types and Attributes
Each key has attributes, which are set at creation. They include the following:

Use, such as signing or encryption•

Overall type, symmetric or asymmetric, and the algorithm•

Restrictions on duplication•

Restrictions on use•

CHAPTER 10 ■ KEYS

126

Symmetric and Asymmetric Keys Attributes
TPM 2.0 supports a variety of asymmetric algorithms, unlike TPM 1.2, which was fixed to
RSA. TPM 2.0 also introduces some entirely new key types.

A symmetric signing key can be used in TPM HMAC commands. TPM 2.0 can do
symmetric signing (a MAC) with a key that is never in the clear outside the TPM.

The TPM library specification includes symmetric encryption keys that can be used
for general-purpose encryption such as AES. It’s uncertain whether TPM vendors will
include these functions, due to potential export restrictions. The commands are optional
in the PC Client platform specification. Historically, TPM vendors haven’t implemented
optional TPM features.

Duplication Attributes
Duplication is the process of copying a key from one location in a hierarchy to another.
The key can become the child of another parent key. The hierarchy or parent can be
on the same or a different TPM. Primary keys can’t be duplicated; they’re fixed to one
hierarchy on one TPM.

A primary use case for duplication is key backups. If a key were locked forever to
one TPM, and the TPM or its motherboard failed, the key would be lost permanently.
A second use case is the sharing of keys among several devices. For example, a user’s
signing key may be duplicated among a laptop, tablet, and mobile phone.

TPM 1.2 has a similar process called migration. The term migration implies that a
key is moved: that is, that it would now exist at the destination location but no longer exist
at the source. This implication was incorrect. After migration, the key could exist at both
the destination and the source. For that reason, the TPM 2.0 term was changed to the
more accurate duplication.

TPM 2.0 keys have two attributes that control duplication. At one extreme, a key may
be locked to a single parent on a single TPM, and never duplicated. The opposite extreme
is a key that may be freely duplicated to another parent on the same or another TPM.

The intermediate case is a key that is locked to a parent but that can be implicitly
duplicated if the parent is moved. This case offers the possibility of duplicating an entire
branch of a tree. If the parent is duplicated, all children wrapped to that parent are
available at the destination, on down through all descendants.

The TPM specification talks of a duplication root and a duplication group. The root is
a key that can be duplicated. The duplication process acts explicitly on that key. The group
represents all descendants of that root. The entire duplication group duplicates implicitly
when the root duplicates. The children, which aren’t explicitly duplicated, remain with
their parent. However, as the parent is copied, the children are implicitly copied with it.

The controlling key attributes are defined as follows:

• fixedTPM: A key with this attribute set to true can’t be duplicated.
Although the name seems to permit duplicating a key from one
location in a hierarchy to another within a TPM, this isn’t the case.

• fixedParent: A key with this attribute set to true can’t be
duplicated to (rewrapped to) a different parent. It’s locked to
always have the same parent.

CHAPTER 10 ■ KEYS

127

These two boolean attributes define four combinations.

1. The easiest case to understand is fixedTPM true and
fixedParent false, because it isn’t permitted. A key with
fixedTPM true can’t be duplicated, whereas fixedParent false
says it can be moved to a different parent The TPM checks for
and doesn’t allow this inconsistency.

2. fixedTPM true and fixedParent true defines an object that
can’t be duplicated, either explicitly or implicitly.

3. fixedTPM false and fixedParent true indicates a key that
can’t be directly duplicated. It’s fixed to a parent. However,
if an ancestor is duplicated, this key naturally moves with it.
That is, it may be in a duplication group, but it isn’t the root
of a group.

4. fixedTPM false and fixedParent false indicates a key that can
be duplicated. If it’s a parent, a duplication root, its children
move with it.

The fourth case is perhaps the most interesting, because the key may be
a duplication root. For example, it permits backup of a group of keys, called a
duplication group in the specification. That is, once this parent is duplicated, all
descendants are immediately duplicated to the new location without the need to
duplicate each child individually. It also simplifies the task of tracking the location of a
key. You need only track the parent, not children with fixedParent true, which remain
with their parent.

Observe also that these children are still wrapped by their original parent. The key
being duplicated must have fixedParent false. The children can be loaded into the TPM
where their parent is loaded, regardless of where their parent was originally loaded.
fixedParent determines whether a key can be directly duplicated, not whether it can
or can’t be duplicated by implication when its parent is duplicated. In other words, the
child wasn’t duplicated through any operation involving the TPM. Once its parent is
duplicated, the child can be simply moved to the new location (for example, with a file
copy of the wrapped child key) and loaded.

A child can have more than one parent. The duplication process establishes a new
parent-child relationship but doesn’t destroy the old one.4 The key is now a child of both
the original parent and the new parent. A key can be part of more than one duplication
group if more than one of its ancestors has fixedParent false. That is, a child key in a tree
can have more than one ancestor that is a duplication root. If any root is duplicated, the
child is duplicated.

4It’sforthisreasonthattheTPM1.2termmigrationwaschangedtoduplication.Migrationimplied
thattheoldparent-childrelationshipwassevered,whichisn’ttrueeveninTPM1.2.

CHAPTER 10 ■ KEYS

128

The TPM puts a restriction on the relationship between parent and child. A child can
only be created with fixedTPM true if:

1. Its parent also has fixedTPM true (the parent can’t be explicitly
duplicated).

2. Its parent has fixedParent true (the parent can’t be implicitly
duplicated).

The TPM enforces this restriction back to the primary keys, which are by nature fixed
to their TPM.

Restricted Signing Key
A variation on the key attribute sign (a signing key) is the restricted attribute. The use
case for a restricted key is signing TPM attestation structures. These structures include
Platform Configuration Register (PCR) quotes, a TPM object being certified, a signature
over the TPM’s time, or a signature over an audit digest. The signature is, of course, over
a digest, but the verifier wants assurance that the digest was not simply created externally
over bogus values and delivered to the TPM for signing. For example, a quote is a
signature over a set of PCR values, but the actual signing process signs a digest.
A user could generate a digest of any PCR values and use a nonrestricted key to sign it.
The user could then claim that the signature was a quote. However, the relying party
would observe that the key was not restricted and thus not trust the claim. A restricted
key provides assurance that the signature was over a TPM generated digest.

A restricted signing key can only sign a digest produced by the TPM. This is a
generalization of the TPM 1.2 Info keys and attestation identity key (AIKs), which could
only sign a TPM internally created structure. For internal TPM data, this assurance is
easy, because the TPM created the digest from its internal data at signing time.

However, a restricted key can also sign data supplied to the TPM, as long as the
TPM performed the digest using either TPM2_SequenceComplete or TPM2_Hash.
Because the digest is later supplied to the TPM for signing, how does the TPM know that
it calculated the digest?

The answer is a ticket. When the TPM calculates the digest, it produces a ticket that
declares that the TPM itself calculated that digest. When the digest is presented to
TPM2_Sign, the ticket must accompany it. If not, the restricted key doesn’t sign.

So what? How does this restrict what can be signed? If you can digest any external
data and obtain a ticket, why would it matter where the digest was calculated?

The answer is a 4-byte magic value called TPM_GENERATED. Each of the attestation
structures—the structures the TPM constructs from internal data—begins with this magic
number. If the TPM is digesting externally supplied data, it produces a ticket only if the
data did not begin with the magic number.

The net result is that you can sign almost any externally supplied data with a
restricted key. The only data that you can’t sign is data beginning with TPM_GENERATED.
This prevents you from spoofing TPM attestation structures, which all start
with that value.

CHAPTER 10 ■ KEYS

129

Restricted Decryption Key
A restricted decryption key is in fact a storage key. This key only decrypts data that has a
specific format, including an integrity value over the rest of the structure.

Only these keys can be used as parents to create or load child objects or to activate
a credential. These operations place restrictions on the result of the decryption. For
example, loading doesn’t return the result of the decryption.

An unrestricted key can perform a general-purpose decryption on any supplied data
and return the result. If it were permitted to be used as a storage key, it could decrypt and
return the private key of a child. If it could be used on sealed data, it would return the data
without checking the unseal authorization.

Context Management vs. Loading
Loading a key involves supplying the wrapped (encrypted) key and specifying a loaded
parent. The TPM parent key unwraps (decrypts) the child key and holds it in a volatile
key slot.

Context management involves context-saving a loaded key off the TPM and then
context-loading it onto the TPM at a later time. When the key is saved, it’s wrapped with
a symmetric key derived from a hierarchy secret, called a hierarchy proof. Upon load, it’s
unwrapped with the same key. A context-saved key has no parent, but it’s connected to a
hierarchy.

Why use one or the other? In TPM 1.2, context management was important, because
child keys were always wrapped with a parent RSA key. The load operation required a
time-consuming RSA decryption. Context-saved keys were wrapped with a symmetric
key and thus were much faster. In TPM 2.0, child keys are wrapped with the symmetric
key of the parent, even if the parent is itself an asymmetric key. All storage keys have a
symmetric secret. Thus, reloading a key using its parent should be as fast as a context load
and of course eliminates the context save.

So why ever use context management to load a key? The use case for context-
loading keys is when the parent isn’t loaded. The key could be a descendent deep
down a hierarchy. Loading it could require loading a long chain of ancestors. A parent
authorization may require an inconvenient password prompt. A parent authorization
may be impossible if, for example, its policy requires a PCR state that has passed.

Specifically, suppose a key is four layers of parent down from a primary key. The
first child is loaded under its parent. That parent is no longer needed and can be flushed
from the TPM’s key cache. Now the next child is loaded, and the process repeats four
times until the final leaf key is reached. Once the leaf key is loaded, all its ancestors can be
flushed. However, if the leaf key is flushed, the entire process must repeat. The alternative
is to context-save the leaf key. Then it can be context-loaded independent of its ancestors.
Chapter 18 explains this process in detail.

CHAPTER 10 ■ KEYS

130

NULL Hierarchy
In addition to the three persistent hierarchies, the TPM has a NULL hierarchy.5 This
hierarchy has its own unique seed, and both primary and descendent keys can exist in
this hierarchy. However, neither the seed nor primary keys can be persistent. A new seed
is created on each TPM reset. Thus, keys in this hierarchy are ephemeral: they’re erased
on a reset.

Certification
The TPM can of course act as a certificate authority. In fact, even before you consider
unique TPM features such as PCR, authorization policies, audit, and hierarchies, it’s
valuable simply as a hardware key store. The private signing key is protected by the
hardware and a wide range of authorization options, but it can be easily backed up. This
widely available and very inexpensive part offers far better protection than a software key.

A third-party certificate authority can also sign a X.509 certificate for a TPM key.
For decryption keys, there is a complication due to a typical CA requirement for proof of
possession. The certificate requestor must provide evidence to a CA that it possesses the
private key. This is typically done by self signing the certificate signing request (CSR).6

For decryption keys, the TPM can’t simply sign the CSR, because these keys are
restricted to decryption and can’t sign. The TPM has a workaround (see “Activating a
Credential” in Chapter 9), but this requires a nonstandard CA.

Less obvious is that the TPM can certify data located on the device. The TPM offers
several commands to support this feature.

TPM2_Certify asserts that an object with a Name is loaded on the TPM. Because the
name cryptographically represents the object’s public area, a relying party can be assured
that the object has an associated private part. The Name also incorporates the key’s
attributes, including whether it’s restricted, fixed to a parent or fixed to a TPM, and the
authorization policy.

USE CASE: CERTIFYING A TPM QUOTE KEY

A signing key is used for attestation: for example, to quote (sign) a set of PCR values.

The quote is far more useful if the relying party verifying the quote is assured that

the signing key is restricted to the TPM, and therefore that the PCR values were

actually on the TPM. The party first uses TPM2_Certify to get a certificate over the

quote key’s public area.

Naturally, the certifying key itself requires a certificate. Eventually, a useful certificate

chain leads back to a root. Chapter 19 explains how TPM key certificates are

provisioned and how these chains can be validated back to a trusted root key.

5Chapter9discussestheNULLhierarchy.
6See,forexamplethePKCS#10standardinIETFRFC2986.

CHAPTER 10 ■ KEYS

131

USE CASE: CREATING A CERTIFICATE CHAIN

A signing key is located deep in a key hierarchy. A relying party wants to be

assured that all keys in the chain back to a primary key are suitably protected, that

all encryption algorithms and key sizes are of sufficient strength. The party uses

TPM2_Certify to get a certificate chain that cryptographically signs the public areas

of all keys in the chain.

TPM2_Certify signs the entire public area, including a key’s policy. This leads to
other use cases.

USE CASE: ASSURING THAT A KEY’S AUTHORIZATION
REQUIRES A DIGITAL SIGNATURE

A relying party wants assurance that only a restricted role can use a signing key,

indicated by a signature with a particular authorizing key. It uses TPM2_Certify to

certify a key. It then validates that the policy includes a TPM2_PolicySigned with

the public key corresponding to that role.

In this case, the policy need not have a policyRef parameter. The digital signature

is over the challenge but not over any additional information specific to the signer.

USE CASE: ASSURING THAT A KEY’S AUTHORIZATION
REQUIRES A BIOMETRIC

A relying party can validate that a signing key’s policy includes a fingerprint

authorization, indicated by a TPM2_PolicySigned with the fingerprint reader’s

public key and a policyRef parameter referring to a particular user identity.

This case is a variation of the previous case. The fingerprint reader signs not only

the challenge but also a policyRef. The digital signature proves both possession

of the private key and that the correct user’s finger was supplied.7

TPM2_NV_Certify serves a similar purpose for an NV defined index. It certifies that
the data at an NV index is indeed on the TPM. See Chapter 11 for details on the NV index
options.

7Chapter14discussesthedetailsofpolicies—inparticular,thevariationsoftheTPM2_
PolicySignedcommand.

CHAPTER 10 ■ KEYS

132

USE CASE: ASSURANCE OF NV DATA

An application is using an NV index as a counter or bit map together with a policy

for a signing key. The index is used to revoke key usage: for example, when a count

is reached or when a bit is set in a bit map. The application wants certainty that the

NV index has been updated and uses TPM_NV_Certify to get a signature over the

NV data.

USE CASE: QUOTE EQUIVALENT FOR AN NV EXTEND INDEX

An application is using a hybrid index as an extend index to effectively create a new

PCR that is authorized, under control of the application. (Using a hybrid extend index

as a PCR is explained in Chapter 11.) The explicit quote command only reports

the standard PCR values. The application can use TPM_NV_Certify to sign the

equivalent of a quote.

As with TPM2_Certify, TPM2_NV_Certify signs the NV index policy. The relying party
can validate the NV index access policy before entrusting the NV index value in another
policy.

Keys Unraveled
TPM keys have many layers of nested structures. For reference, here are several structures
unrolled down to primitive types.

The following is a typical RSA key:

TPM2B_PUBLIC

size UINT16
publicArea TPMT_PUBLIC
 type TPMI_ALG_PUBLIC = TPM_ALG_RSA
 nameAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 objectAttributes TPMA_OBJECT
 authPolicy TPM2B_DIGEST
 size UINT16
 buffer BYTE
 parameters TPMU_PUBLIC_PARMS
 rsaDetail TPMS_RSA_PARMS = TPM_ALG_RSA
 symmetric TPMT_SYM_DEF_OBJECT
 For AES example
 Algorithm TPMI_ALG_SYM_OBJECT
 keyBits TPMU_SYM_KEY_BITS->TPMI_AES_KEY_BITS

CHAPTER 10 ■ KEYS

133

 mode TPMU_SYM_MODE->TPMI_ALG_SYM_MODE
 details TPMU_SYM_DETAILS
 scheme TPMT_RSA_SCHEME
 scheme TPMI_ALG_RSA_SCHEME = e.g., TPM_ALG_OAEP
 details TPMU_ASYM_SCHEME = e.g., TPMS_SCHEME_OAEP
 keyBits TPMI_RSA_KEY_BITS = e.g. 2048
 exponent UINT32 = default 2^16 + 1
 unique TPMU_PUBLIC_ID->TPM2B_PUBLIC_KEY_RSA
 size UINT16
 buffer BYTE

TPMT_SENSITIVE

sensitiveType TPMI_ALG_PUBLIC = TPM_ALG_RSA
authValue TPM2B_AUTH (TPM2B_DIGEST)
seedValue TPM2B_DIGEST
sensitive TPMU_SENSITIVE_COMPOSITE,TPM2B_PRIVATE_KEY_RSA
 size UINT16
 buffer BYTE

This is a typical HMAC key:

TPM2B_PUBLIC

size UINT16
publicArea TPMT_PUBLIC
 type TPMI_ALG_PUBLIC = TPM_ALG_KEYEDHASH
 nameAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 objectAttributes TPMA_OBJECT -> UINT32
 authPolicy TPM2B_DIGEST
 size UINT16
 buffer BYTE
 parameters TPMU_PUBLIC_PARMS
 keyedHashDetail TPMS_KEYEDHASH_PARMS
 scheme TPMT_KEYEDHASH_SCHEME
 scheme TPM_ALG_HMAC
 details TPMU_SCHEME_KEYEDHASH
 hmac TPMS_SCHEME_HMAC
 hashAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 unique TPMU_PUBLIC_ID
 keyedHash TPM2B_DIGEST
 size UINT16
 buffer BYTE

CHAPTER 10 ■ KEYS

134

TPMT_SENSITIVE

 sensitiveType TPMI_ALG_PUBLIC = TPM_ALG_KEYEDHASH
 authValue TPM2B_AUTH
 size UINT16
 buffer BYTE
 seedValue TPM2B_DIGEST
 size UINT16
 buffer BYTE
 sensitive TPMU_SENSITIVE_COMPOSITE
 bits TPM2B_SENSITIVE_DATA
 size UINT16
 buffer BYTE

And this is a typical ECC key:

TPM2B_PUBLIC

size UINT16
publicArea TPMT_PUBLIC
 type TPMI_ALG_PUBLIC = TPM_ALG_ECC
 nameAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 objectAttributes TPMA_OBJECT
 authPolicy TPM2B_DIGEST
 size UINT16
 buffer BYTE
 parameters TPMU_PUBLIC_PARMS
 eccDetail TPMS_ECC_PARMS
 symmetric TPMT_SYM_DEF_OBJECT
 For AES example
 Algorithm TPMI_ALG_SYM_OBJECT = TPM_ALG_AES
 keyBits TPMU_SYM_KEY_BITS->TPMI_AES_KEY_BITS
 mode TPMU_SYM_MODE->TPMI_ALG_SYM_MODE = TPM_ALG_CBC
 details TPMU_SYM_DETAILS
 scheme TPMT_ECC_SCHEME
 scheme TPMI_ALG_ECC_SCHEME = TPM_ALG_ECDSA
 details TPMU_SIG_SCHEME
 ecdsa TPMS_SCHEME_ECDSA
 TPMS_SCHEME_SIGHASH
 hashAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 curveID TPMI_ECC_CURVE = TPM_ECC_NIST_P256
 kdf TPMT_KDF_SCHEME
 scheme TPMI_ALG_KDF = TPM_ALG_NULL
 details TPMU_KDF_SCHEME
 unique TPMU_PUBLIC_ID
 ecc TPMS_ECC_POINT
 x TPM2B_ECC_PARAMETER

CHAPTER 10 ■ KEYS

135

 size UINT16
 buffer BYTE
 y TPM2B_ECC_PARAMETER
 size UINT16
 buffer BYTE

TPMT_SENSITIVE

sensitiveType TPMI_ALG_PUBLIC = TPM_ALG_ECC
authValue TPM2B_AUTH
 TPM2B_DIGEST
 Size UINT16
 Buffer BYTE
seedValue TPM2B_DIGEST
 size UINT16
 buffer BYTE
sensitive TPMU_SENSITIVE_COMPOSITE
 ecc TPM2B_ECC_PARAMETER
 size UINT16
 buffer BYTE

Summary
A primary use of a TPM is as a hardware security module to safely store keys. The TPM
stores keys on one of four hierarchies. Each hierarchy has primary (root) parent keys and
trees of child keys. A parent is an encryption key, and a parent key wraps (encrypts) child
keys before they leave the TPM secure boundary.

Keys can be duplicated (wrapped with a different parent), and all children are
duplicated when the parent is duplicated. Duplication is subject to restrictions. Some
keys are fixed to the TPM; they can’t be duplicated. Some are fixed to their parent and so
can only be duplicated when the parent is duplicated.

Keys can have use restrictions as well. They can be specified as only signing or only
decryption keys, and they can be restricted to only signing or decrypting certain data.
Finally, keys can be certified by other TPM keys, and a relying party can validate the
public key, the key’s attributes, and even its policy.

137

CHAPTER 11

NV Indexes

The TPM requires the use of nonvolatile memory for two general classes of data:

Data structures defined by the TPM architecture.•

Unstructured data defined by a user or a platform-specific •
specification

One use of TPM nonvolatile memory is for architecturally defined data, or fields
defined in the TPM library specification. This includes hierarchy authorization values,
seeds and proofs, and private data that the TPM won’t reveal outside its secure boundary.
It also includes counters, a clock, and more: nonvolatile data that the caller can read.
Nonvolatile memory can also hold structured data made persistent, such as a key.

This section describes a second use of NV memory: unstructured platform or user-
defined space. This is sometimes called a user-defined index, because the user assigns an
index (a handle) to each area and accesses data using the index value.

TPM 1.2 includes user-defined indexes that can hold unstructured data. The
user defines the size and attributes of the index. The user can write data without any
restriction on the data value. The TPM provides authorization, controlling access to the
index via a shared secret keyed-hash message authentication code (HMAC) key, Platform
Configuration Register (PCR) values, locality, and physical presence, and provides
various read and write locks.

TPM 2.0 expands the 1.2 features in several ways:

An index can have the state “uninitialized, not yet written.” Reads •
will fail until the index is first written. Further, the index can’t be
used in a policy. A party relying on a value can be assured that a
party with write authority initialized the index and that the data
doesn’t simply have a default or uninitialized value.

As with any other protected entity, TPM 2.0 indexes may have •
either an authorization value or a policy.

Another entity’s policy can include an NV index value. The policy •
specifies an operation to be performed on all or part of the index
value: a comparison to policy data. The operations include equal,
not equal, signed, and unsigned comparisons, and a check for bits
set or clear.

CHAPTER 11 ■ NV INDEXES

138

Another new NV index feature is the data type. It augments the 1.2 unstructured data
type (now called ordinary) with three others, giving four NV index types:

Ordinary•

Counter•

Bit field•

Extend•

NV Ordinary Index
An ordinary index is like a TPM 1.2 index. It holds unstructured data of arbitrary length.
In contrast with counter, bit-field, and extend indexes, there is no restriction on the type
of data that can be written.

USE CASE: STORING A SECRET

A platform contains a 20-byte secret that must be available early in a boot cycle. It

stores the secret in an NV index. The index attribute TPMA_NV_PPREAD specifies

that reads require platform authorization. The platform software, running early in the

boot cycle, knows this authorization and so can read the secret. It’s trusted not to

reveal the secret once it completes its task. Because other software later in the boot

cycle or beyond doesn’t know the platform authorization, it can’t read the secret.

The TPM commands are as follows:

 • TPM2_NV_DefineSpace: Create an ordinary index,

size = 20 bytes, with platform authorization to read and write

 • TPM2_NV_Read: Uses platform authorization

CHAPTER 11 ■ NV INDEXES

139

USE CASE: STORING A CERTIFICATE

A platform OEM creates a certificate stating that an endorsement key is fixed to the

platform and that the platform was manufactured with certain security guarantees.

The OEM stores the certificate in NV during manufacturing. Read access is

unrestricted. Write access is restricted by policy to the OEM and is used to update

the certificate.

The TPM commands are as follows:

 • TPM2_NV_DefineSpace: Create an ordinary index, size

of certificate, platform authorization to write, read with

authorization value, and a null (zero-length) password

 • TPM2_NV_Write: Run with platform authorization

 • TPM2_NV_Read: Run with a null password

USE CASE: STORING A COMMON PASSWORD

A user creates a set of keys with an identical policy, authorizing use if a password in

the NV authorization field is known. The user permits access to all keys by supplying

the correct secret value. The user writes one NV location to change the common

password for all keys.

The TPM commands are as follows:

1. TPM2_NV_DefineSpace: ordinary index, size = 0 bytes

(the NV data is not used in this use case), common

password, policy password to change authorization.

2. Create a common policy: TPM2_PolicySecret with the

name of the NV index.

3. TPM2_Create: Creates multiple keys with the common

policy. userWithAuth is clear so that a policy is

mandatory.

4. TPM2_NV_ChangeAuth: Changes the password for all keys

in one operation, using the current password.

CHAPTER 11 ■ NV INDEXES

140

USE CASE: STORING A ROOT PUBLIC KEY

The IT administrator places the hash of a public key in NVRAM, which is locked

so the user can’t write to it. It’s used to verify a public key, which is used in turn

to verify that signatures are from IT. Or it’s the hash of the root public key of the

certificate chain.

The TPM commands are as follows:

1. IT creates the signing key and digests the public key.

2. Create a read policy: TPM2_PolicyCommandCode with the

command TPM2_NV_Read. This policy allows anyone to

read the index essentially without authorization.

3. TPM2_NV_DefineSpace - ordinary index, size = digest

size, IT administrator password, password to write, policy to

read with the above read policy.

4. TPM2_NV_Write - with the IT admin password, storing the

public key digest.

And here’s how to verify a signature:

1. TPM2_NV_Read read the public key digest.

2. Validate the public key against the digest.

3. Validate the signature against the public key.

USE CASE: STORING AN HMAC KEY

In the Linux Integrity Measurement Architecture (IMA) Extended Verification Module

(EVM), store an HMAC key that is released to the kernel early in the boot and then

used by the kernel to verify the extended attributes of files to see that they have

been approved for loading or use by the kernel.

The TPM commands are as follows:

 • TPM2_NV_DefineSpace - ordinary index, size = HMAC key

size, IT administrator password, password to write, policy to

read with the above (anyone can read) read policy

 • TPM2_NV_Write: With the IT admin password, stores the

HMAC key

 • TPM2_NV_Read: Reads the HMAC key

CHAPTER 11 ■ NV INDEXES

141

NV Counter Index
An NV counter is a 64-bit value that can only increment. At the beginning of the first
increment command, it’s initialized to the largest value that any counter has ever had on
the TPM. This includes counter indexes currently defined and counters that were defined
in the past but are no longer on the TPM. Thus a counter can never roll back, even by
deleting and re-creating the index.

TPM 1.2 users might be familiar with monotonic counters. These NV counters are
the equivalent, but the user is free to define none or as many as are needed up to TPM
resource limits.

USE CASE: REVOKING ACCESS TO A KEY

A key holder wants to revoke access to a key. The key is created with a policy that

says the key can be used (the policy can be satisfied) as long as the counter value is

equal to its current value. Incrementing the counter revokes access.

The TPM commands are as follows:

TPM2_NV_DefineSpace: counter index, password of key holder, password to write,

and a policy to read. The policy is TPM2_PolicyCommandCode with the command

TPM2_PolicyNV. This policy allows anyone to use the index in a policy essentially

without authorization.

TPM2_Create: Create a key with userWithAuth clear, requiring a policy to

authorize the key. The policy is TPM2_PolicyNV with the NV value equal to all zero.

TPM2_NV_Increment: Revokes authorization to use the key.

NV Bit Field Index
A bit field contains 64 bits, initialized to all bits clear at the beginning of the first write,
which can also optionally set bits. A bit (or bits) can then be set but never cleared.

USE CASE: MULTIPLE-USER KEY REVOCATION

A key holder wants to grant and later revoke access to a key for up to 64 users.

The key is created with a policy with up to 64 OR terms. Each term combines some

authorization specific to each user (a biometric or smart card digital signature, for

example) and an assigned bit being clear. The key is revoked for that user by setting

the bit in the NV bit field.

CHAPTER 11 ■ NV INDEXES

142

The TPM commands are as follows:

TPM2_NV_DefineSpace: bit field index, password of key holder, password to write,

and a policy to read. The policy is TPM2_PolicyCommandCode with the command

TPM2_PolicyNV. This policy allows anyone to use the index in a policy essentially

without authorization.

TPM2_Create: Create a key with userWithAuth clear, requiring a policy to

authorize the key. The policy is TPM2_PolicyNV with the operand TPM_EO_
BITCLEAR (the bit assigned to the user is clear).

TPM2_NV_SetBits: Setting the bit assigned to the user, thus revoking authorization

to use the key.

NV Extend Index
An extend index is defined with a specified hash algorithm, and it’s fixed for the lifetime
of the index. The data size of the index is based on its hash algorithm. It’s initialized to all
zero before the first write. The write is an extend operation, similar to that performed on
a PCR.

The most likely use case combines an extend and a hybrid index to create flexible
PCRs, as discussed in the “Hybrid Index” section. Another general use case is a secure audit
log, because any extend operation creates a cryptographic history that can’t be reversed.

USE CASE: SECURE AUDIT LOG OF CA KEY USE

A certificate authority wants to log each time its key is used to sign a certificate.

It wants to be able to detect whether the log, kept on disk, has been altered. It creates

an NV extend index for which it has exclusive write authority through a policy.

Each time the CA signs a new certificate, it logs the certificate and extends a digest

of the certificate into the NV index. To validate the log, it walks the log, re-creating

the extend value, and compares it to the NV index value. For additional security, it

can even get a signature over the NV index value.

The TPM commands are as follows:

 • TPM2_NV_DefineSpace: extend index, policy to write

by CA, and a policy to read by anyone. The CA signs a

certificate, logs the certificate in an audit log, and digests

the certificate.

 • TPM2_NV_Extend: Adds the digest to the NV audit log. If

the certificate is small enough, it can be extended directly.

However, it’s probably faster to digest outside the TPM and

extend just a digest.

CHAPTER 11 ■ NV INDEXES

143

Hybrid Index
Yet another new TPM 2.0 feature is the hybrid index. As with a nonhybrid, the NV index
metadata (its index handle, size, attributes, policy, and password) are nonvolatile; its
data is created in volatile memory. Except for hybrid counters (described later) the index
data is only written to NV memory on an orderly shutdown. Any of the four index types
(ordinary, counter, bit-field, or extend) can be a hybrid index.

Hybrid indexes may be appropriate when the application expects frequent writes.
Because NV technology is often subject to wear out, a TPM may protect itself by refusing
to write at a high rate. Volatile memory doesn’t have wear-out issues, so a hybrid index
can be written as often as required.

Hybrid index data may only be present in volatile memory if the index is deleted
before an orderly shutdown. An application could define the index, write data, use the
values in a policy, and then delete the index.

USE CASE: ADDITIONAL PCRS

The simplest use case is adding PCRs beyond the number the TPM vendor provides,

typically 24 for a PC Client TPM. As with the permanent PCRs, the index persists

through power cycles, but the value is reset back to zero. This means PCRs are no

longer a scarce resource (“beach front property,” in TCG work group slang).

The TPM commands are as follows:

 • TPM2_NV_DefineSpace: hybrid extend index, well known

null password, so that anyone can read and extend

 • TPM2_NV_Extend: Now equivalent to TPM2_PCR_Extend

USE CASE: PCRS WITH DIFFERENT ATTRIBUTES

An application requires PCRs, but the standard TPM PCRs have fixed attributes

specified by the platform. For example, the operating system may restrict access,

the application may want PCR authorization restrictions, the application may need

a hash algorithm different from those in effect for the TPM PCRs, or the application

might want extends restricted to an extended locality.

The application creates a hybrid extend index with the desired attributes,

uses them as PCRs, and then deletes the index when the application terminates.

Note that, because the index is a hybrid, the extend doesn’t write NV memory,

avoiding performance and wear-out issues.

CHAPTER 11 ■ NV INDEXES

144

The TPM commands are as follows:

 • TPM2_NV_DefineSpace: hybrid extend index, application-

specific digest algorithm, application-specific extend policy

more restrictive than “anyone can extend.”

 • TPM2_NV_Extend: as needed by the application.

 • TPM2_NV_UndefineSpace: when the application

terminates.

These PCRs can have read authorizations: policy authorizations for either read

or write different from those of the platform. They can be used in virtual TPMs

to record the state of a helper VM inside the vTPM of a VM (see the Virtualization

Specification).

USE CASE: VIRTUALIZATION

A VMM creates an NV extend hybrid index for each VM. When the VMM creates a

VM, it creates a corresponding PCR using a hybrid extend index. As the VMM starts

the VM, it uses introspection to read and measure the VM’s boot code, extending the

measurements into the VM’s PCR.

This requires a single command:

TPM2_NV_DefineSpace: Create a hybrid extend index

Hybrid ordinary, extend, and bit-field indexes are only written to NV memory on an
orderly shutdown. Hybrid counters are more complicated because of the restriction that
they never roll back or miss an increment operation. This must be ensured even if the
shutdown isn’t orderly, when the volatile value would be written to NV memory.

To achieve this, the value is written (flushed) to NV memory every so many
increments. Thus a hybrid counter may not be solely in volatile memory, even if it’s
deleted before an orderly shutdown. If an application wants to avoid the flush, or at least
determine when it will occur, a get capability command can report the flush period.

The second hybrid counter complication occurs on startup. If the most recent value
wasn’t flushed to NV (through an orderly shutdown), the count is set to the highest value
it could have had without causing a flush. That is, it might skip some counts, but it will
never roll back or miss an increment.

NV Access Controls
We previously discussed the major NV attributes: whether it’s an ordinary, counter,
bit-field, or extend index, and whether it’s a hybrid index. An NV index also has unique
controls that are different from objects like keys. Perhaps the most interesting is that it can

CHAPTER 11 ■ NV INDEXES

145

have separate controls for read and write. In particular, each index can be defined to use
its policy, its password authorization, or the owner password or authorization, and the
attributes can be set independently for read and write.

The TPM supports a set of NV index read and write locks. An index may be write-
locked permanently. It can be write- or read-locked until the next TPM reset or restart.
An index may be part of one set of indexes that can be locked in one operation (a global
lock), again until the next reset or restart.

Finally, many TPM entities are protected by the dictionary-attack protection
mechanism. After some number of failed authorization attempts, the TPM rejects
authorization until a certain amount of time has passed. An NV index may be protected
as well, but an attribute can be set to remove the protection. Removing the protection
might be applicable if the authorization password is known to be a strong secret.

NV Written
Each NV index, when first created, has an implied value: not written. In TPM 1.2, an
index was always created with all-zero data. A read could not distinguish between all-zero
data and a not-yet-written index. In TPM 2.0, not written is a separate state. A policy can
specify that the index must or must not be written.

USE CASE: WRITE-ONCE NV INDEX

The creator wants an index that can be written exactly once, perhaps during

provisioning. Once written, it can be read by anyone with the correct password.

To implement this, create an OR policy with two terms. The first term permits the

NV Write command code only if the index has not been written. The second term

permits a read if the index has been written and the password is supplied.

Here are the steps:

 1. Create a policy with two terms:

 • TPM2_PolicyCommandCode (TPM2_NV_Write) AND

TPM2_PolicyNvWritten (writtenSet clear)

 • TPM2_PolicyCommandCode (TPM2_NV_Read) AND

TPM2_PolicyPassword

 2. TPM2_NV_DefineSpace - create an ordinary index, policy

to write and read.

CHAPTER 11 ■ NV INDEXES

146

NV Index Handle Values
When the user creates an NV index, the user assigns an index value.1 In TPM 1.2, certain
bits had special properties, such as the D bit used for locking. In the TPM 2.0 library
specification, there is no index assignment other than an overall handle range, and no
bits of the index value have any special meaning. The TPM doesn’t enforce any index
properties based on the index value. However, platform-specific specifications or a global
TCG registry can assign index values.

For example, the TCG registry assigns handle ranges to the TPM manufacturer
(specifically, 0 to 0x3fffff), to the platform manufacturer, and for endorsement and
platform certificates. It further reserves ranges for platform-specific specifications, such
as the PC Client, server, mobile, and embedded platforms. All these assignments are by
convention and aren’t enforced in any way by (current) TPMs.

USE CASE: STANDARD CERTIFICATES

We expect that the TCG Infrastructure work group will define standard NV indexes

for endorsement key certificates. Whereas TPM 1.2 has two such certificates, for the

TPM vendor and for the platform OEM, TPM 2.0 can have certificates for multiple key

algorithms and even different creation templates.

Although the previous assignments are solely by convention, a TCG work group can
also assign NV index values with implicit hardware properties. For example, the TPM may
contain special hardware-package pins for general-purpose IO, called GPIO pins in the
library and platform specifications. The platform specification determines the properties
of the GPIO pins, including the following:

The number of pins•

The assignment of a pin to an NV index value•

Whether a pin is mandatory or optional•

Whether the pin is fixed as an input or output, or is programmable•

Whether an output is volatile or persistent•

Whether the assignment is fixed by the TPM vendor firmware •
during manufacturing, or the index must be defined
programmatically by the end user using the TPM_NV_DefineSpace
command

The NV data is a hardware pin, but the NV metadata is identical to that of other
indexes. Thus the GPIO comes with the full range of NV index controls, including an
authorization value or policy, read and write controls, and locking features.

1Thisisdifferentfromstartingasessionorloadinganobject,wheretheTPMassignsthehandle.

CHAPTER 11 ■ NV INDEXES

147

NV Names
The Name of a TPM entity uniquely (and cryptographically) defines the entity and is used for
authorization. For an NV index, it’s a hash of the public area, which includes the index (the
handle), the attributes (including whether it has been written), the policy, and the size.

TPM2_PolicyNV permits an NV index value to be used in a policy. The policy can be
based on a range of logical and arithmetic operations on the index. If the policy were
based merely on the NV index value, it would offer little security: an attacker could delete
the index and replace it with one with different access controls. For that reason, TPM2_
PolicyNV uses the Name.

An example might help. Suppose you create an NV bit-field index that you intend
to use for key revocation. The policy for the key includes a TPM2_PolicyNV term that can
only be satisfied if the NV bit 0 is clear. The policy for the NV index says only the owner of
a private key can write the index (TPM2_PolicySigned). To revoke the key, the owner signs
a nonce to satisfy the NV policy and then sets bit 0 (TPM2_NV_SetBits).

Now suppose an attacker tries to remove the key revocation. They can’t clear
bit 0, because a bit-field index bit can only be set, never cleared. So, the attacker tries
something more promising: they delete the index and re-create it with exactly the same
Name. This fails because TPM2_PolicySigned fails on an index that has not yet been
written. The attacker can’t write the index because it can’t satisfy the NV index policy
TPM2_PolicySigned term.

The attacker makes one final attempt. They delete the index and re-create it with a
policy that they can satisfy. They then write the index so that bit 0 is clear and use that
index to authorize the key’s policy using TPM2_PolicyNV. Because bit 0 is clear, it appears
that the policy should succeed. However, the attacker had to change the policy, which
causes the Name to change. When the new Name is used in TPM2_PolicyNV, the key’s policy
evaluation fails.

In summary, the “delete and re-create an index” attack fails because of two TPM
features:

An NV index can’t be used in a policy until it has been written.•

The NV index in a policy uses the entire • Name (public area), not
just the index handle.

USE CASE: WRITE ONCE, READ ALWAYS NV INDEX

The user desires to create an index that they can write exactly once and that can

then be read by anyone. An example is provisioning the TPM with a certificate.

The index has two OR terms. The first policy term is satisfied when the index has not

been written and the owner supplies the correct password; it permits only the NV

write command. The second term is satisfied once the index has been written; it

permits only the NV read command.

Another subtle point is that the Name changes when the index is written, because the
index public area includes the written attribute.

CHAPTER 11 ■ NV INDEXES

148

USE CASE: SECURING A POLICY SECRET

A policy secret permits authorization for a set of objects to be linked to a single

secret. For example, a set of keys can have identical policies that authorize the key

if an NV index-authorization password is known. The policy would use the NV index

Name after it has been written.

Note ■ TPM2_PolicySecret ties authorization to the NV password. TPM2_PolicyNV ties autho-

rization to the NV data.

If the Name didn’t change when the index was written, an attacker could delete the
index and create a new one with the same Name but their own secret and thus gain access
to keys tied to the secret. The attack doesn’t work, because the attacker’s index has not
been written and thus has a different Name than the one required in the key’s policy.

It’s assumed here that the NV index policy (part of the Name) prevents the attacker
from writing the index. For example, the NV write policy might require authentication
with a public key (TPM2_PolicySigned).

Note ■ Observe that the data value written to NV doesn’t matter and serves only to prove

that the index creator can write the index. The key policy is tied to the NV password, not the

NV data.

The previous use case demonstrates an interesting property. You can create an NV
index with a Name that no one else can reproduce. If the Name includes having written
set, and the policy is such that only you can write the index, then only you can create that
Name. This ensures that a policy points to your NV index, not one that an attacker created.

Further, the same NV index with the same Name can be created on multiple TPMs.

USE CASE DUPLICATING A SET OF KEYS

In the previous use case, the authorization for a set of keys was tied to an NV index

password. A user can duplicate a set of keys to another TPM. Then the user can

create an NV index with the same Name on that TPM so that the key’s policy can be

satisfied on the new TPM.

CHAPTER 11 ■ NV INDEXES

149

NV Password
A subtlety of the TPM is that a user can’t really change an object’s password. The
TPM2_ObjectChangeAuth command can create an object with the new password, but the
original object still exists. The user can delete all existing copies of the object, but the
TPM can’t enforce this.

This quirk isn’t true of an NV index. The index exists only on the TPM. It can never be
context-saved or in any way moved off the TPM. Thus, TPM2_NV_ChangeAuth really does
change the password.

Separate Commands
The TPM API defines a set of commands dedicated to NV. TPM2_NV_DefineSpace creates
an NV index. The caller specifies the NV metadata, including the size for an ordinary
index, the policy, attributes, and the password. As explained earlier, a newly created index
isn’t initialized, or written, yet. It has no data.

The write commands are as follows:

• TPM2_NV_Write writes an ordinary index. Depending on the
attributes, partial writes may or may not be permitted.

• TPM2_NV_Increment increments a counter index. Depending
on the attributes and the count value, this may cause a write to
nonvolatile memory.

• TPM2_NV_Extend extends arbitrary data (not necessarily a hash
value) to an extend index.

• TPM2_NV_SetBits sets bits in a bit-field index. It ORs the current
value and the input. An input of all zero is legally and useful. It
makes the index written and initializes it to all zero.

TPM2_NV_Read reads any index data. A read can only occur after the index has been
written at least once. TPM2_NV_ReadPublic reads the index public data. In combination
with the session audit feature, a user can get a signature over the public area to prove its
properties.

Several commands are dedicated to locking an index. The index attributes determine
whether these locks can be set against a particular index:

• TPM2_NV_WriteLock can lock an index, forbidding further writes
until the next boot cycle or forever.

• TPM2_NV_GlobalWriteLock can lock a set of indexes, again either
forever or until the next boot cycle.

• TPM2_NV_ReadLock locks an index, preventing further reads until
the next boot cycle.

CHAPTER 11 ■ NV INDEXES

150

TPM2_NV_ChangeAuth changes the index password. TPM2_NV_Certify can create
a signature over index data. This command is optional in the PC Client specification.
However, a similar result can be obtained by reading the index in an audit session and
then getting a signed audit digest.

Summary
TPM 2.0 has four types of NV indexes: ordinary (unstructured data), bit-field, counter,
and extend data indexes. An index can be read or written using the standard TPM
password and policy controls. Hybrid indexes normally exist in volatile memory, but an
orderly shutdown can save them to NV memory. They can avoid performance and wear-
out issues. When an index is created, its state is “not written”. Its data can’t be read or used
in a policy until it’s written, and the “not written” state itself can be used on a policy.

Basic applications include provisioning with certificates or public keys. More
advanced applications use an NV authorization in a policy, permitting it to be shared
among entities. A policy referring to a bit-field or counter index value can be used
for key revocation. An extend index offers PCR equivalents with different algorithms,
authorizations, or lifetimes.

NV indexes have a separate set of commands and unique attributes to control
authorization, read and write locking, and dictionary-attack protection.

151

CHAPTER 12

Platform Configuration
Registers

Platform Configuration Registers (PCRs) are one of the essential features of a TPM.
Their prime use case is to provide a method to cryptographically record (measure)
software state: both the software running on a platform and configuration data used by
that software. The PCR update calculation, called an extend, is a one-way hash so that
measurements can’t be removed. These PCRs can then be read to report their state. They
can also be signed to return a more secure report, called an attestation (or quote). PCRs
can also be used in an extended authorization policy to restrict the use of other objects.

The TPM never passes judgment on the measurements. Internally, it doesn’t know
which measurements are good or bad, or more or less secure or trusted. At the time
of measurement, TPM PCRs just record values. Security or trust comes later, when an
application uses PCR values in an authorization policy, or a remote party asks for a signed
attestation (quote) of the values and judges their trustworthiness.

New for TPM 2.0, TPMs no longer hard-code the SHA-1 algorithm for PCRs. The
algorithm can be changed. Some implementations include banks of PCRs, with each
bank implementing a different algorithm.

A TPM implements a number of PCRs: for example, 24 for a PC TPM. The PCRs
are allocated by convention to the various software layers, from early boot code to the
operating system and applications. They’re also allocated for both the software to be run
(often the even-numbered PCRs) and the configuration files that customize the boot
process (typically the odd-numbered PCRs.)

PCR Value
The primary use case for a PCR is to represent the platform software state, the history of the
critical software (and configurations) that have run on the platform until the present. The
TPM initializes all PCRs at power on, typically to either all zeroes or all ones, as specified
by the TPM platform specification. The caller can’t directly write a PCR value. Rather, a
PCR value is changed through what the TPM calls an extend operation, as described in
Chapter 2. Cryptographically, it is as follows:

PCR new value = Digest of (PCR old value || data to extend)

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

152

In words, it takes the old PCR value and concatenates some data to be extended.
The data to be extended is almost always a digest, although the TPM can’t enforce this.
The TPM digests the result of the concatenation and stores the resulting digest as the new
PCR value.

After reboot, a platform begins with trusted software called the core root of trust
measurement (CRTM). The CRTM measures (calculate a digest of) the next software
to be run and extends that digest into an even PCR. It then extends that software’s
configuration data into an odd PCR. This software, perhaps a BIOS, in turn measures
and extends the next software, perhaps a master boot record. The measurement chain
continues through the early OS kernel code and perhaps further. Security-critical
configuration files are also measured.

The net result is that the PCR value represents the history of all measurements
extended into it. Because of the one-way nature of a secure digest, there is no way to undo
a measurement (to extend the PCR back to a desired value).

As a typical example, the PC Client specification allocates the PCRs as shown in
Table 12-1.

Table 12-1. Example PCR Allocation

PCR Number Allocation

0 BIOS

1 BIOS configuration

2 Option ROMs

3 Option ROM configuration

4 MBR (master boot record)

5 MBR configuration

6 State transitions and wake events

7 Platform manufacturer specific measurements

8–15 Static operating system

16 Debug

23 Application support

The security of this process depends on the security of the CRTM. The CRTM, being
the first software to run, can’t be measured or validated. It’s a root of trust. The platform
manufacturer can protect the CRTM from attack by making it immutable, putting it in
ROM, or otherwise preventing software updates. Because this precludes bug fixes, an
alternate method is to use signed code and have the current CRTM validate the signature
before updating itself.

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

153

The Linux open source Integrity Measurement Architecture (IMA) integrates boot-time
measurements into the kernel. An IMA policy determines which software elements are
measured. These typically include libraries and executables run under root privilege
during boot, as well as Linux configuration files that determine the boot path. It doesn’t
typically measure user-level applications.

Number of PCRs
In practice, a TPM contains multiple PCRs. The PC Client platform requires 24 PCRs, and
this minimum is expected to be the actual number in PCs. Automotive TPMs may have
many more. The platform TPM specification specifies the PCR attributes, and a platform
software specification standardizes what measurements go into which PCRs.

The platform specifications may set aside several PCRs for user-level applications.
And one PCR (16), the debug PCR, is reserved for testing software. As such, it’s resettable
without a power cycle.

As described in Chapter 11, TPM 2.0 provides for user-defined NV extend indexes,
which are essentially PCRs. They have additional flexibility in that the hash algorithm,
password, and policy can be individually set for each index. The metadata (mainly
algorithm and authorization) is nonvolatile, whereas the actual data values are likely to
be volatile through the use of a hybrid index.

The remainder of this chapter is limited to architecturally defined PCRs.

PCR Commands
PCR commands include the following:

• TPM2_PCR_Extend: Likely to be the most-used PCR command.
Extends a digest into a PCR.

• TPM2_PCR_Event: Permits the TPM to do the digest and then
extend the digest in one operation. The message is limited to
1,024 bytes.

• TPM_PCR_Read: Reads a PCR, which is useful when validating an
event log as described later.

• TPM2_PCR_Reset: Resets a PCR, which is useful for some
application-defined PCRs that permit this. Most PCRs can’t be
reset.

• TPM_PCR_Allocate: Assigns digest algorithms to PCRs. This is
likely to be done once at most, if the default algorithm is to be
changed.

• TPM2_PCR_SetAuthPolicy: Assigns an authorization policy to a
PCR group. It isn’t required in the PC Client.

• TPM2_PCR_SetAuthValue: Assigns an authorization value to a PCR
group. It isn’t required in the PC Client.

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

154

PCRs for Authorization
Authorization is a common use for PCRs. An entity can have a policy that prevents it from
being used unless specific PCRs have specific values. Chapter 14 explains this in detail.
The policy can specify a subset of PCRs and a value for each. Unless the PCRs are in this
state, the policy is not satisfied and the entity can’t be accessed.

USE CASE: SEALING A HARD DISK ENCRYPTION KEY
TO PLATFORM STATE

Full-disk encryption applications are far more secure if a TPM protects the

encryption key than if it’s stored on the same disk, protected only by a password.

First, the TPM hardware has anti-hammering protection (see Chapter 8 for a detailed

description of TPM dictionary attack protection), making a brute-force attack on the

password impractical. A key protected only by software is far more vulnerable to a

weak password. Second, a software key stored on disk is far easier to steal. Take

the disk (or a backup of the disk), and you get the key. When a TPM holds the key,

the entire platform, or at least the disk and the motherboard, must be stolen.

Sealing permits the key to be protected not only by a password but by a policy.

A typical policy locks the key to PCR values (the software state) current at the

time of sealing. This assumes that the state at first boot isn’t compromised. Any

preinstalled malware present at first boot would be measured into the PCRs, and

thus the key would be sealed to a compromised software state. A less trusting

enterprise might have a standard disk image and seal to PCRs representing that

image. These PCR values would be precalculated on a presumably more trusted

platform. An even more sophisticated enterprise would use TPM2_PolicyAuthorize,

and provide several tickets authorizing a set of trusted PCR values. See Chapter

14 for a detailed description of policy authorize and its application to solve the PCR

brittleness problem.

Although a password could also protect the key, there is a security gain even without

a TPM key password. An attacker could boot the platform without supplying a TPM

key password but could not log in without the OS username and password. The OS

security protects the data. The attacker could boot an alternative OS, say from a live

DVD or USB stick rather that from the hard drive, to bypass the OS login security.

However, this different boot configuration and software would change the PCR

values. Because these new PCRs would not match the sealed values, the TPM would

not release the decryption key, and the hard drive could not be decrypted.

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

155

These are the steps to seal:

1. Construct the policy, a TPM2_PolicyPCR, specifying the

PCR values that must be present at the time of the unseal

operation.

2. Use either of the following (similar to TPM 1.2 seal)

• TPM2_GetRandom() to create the symmetric key

external to the TPM

• TPM2_Create(), specifying the symmetric key and

the policy to create the sealed object

or (new TPM 2.0 alternative)•

• TPM2_Create(), specifying just the policy, to let the

TPM create the symmetric key used in the sealed data

object

Use the following to unseal:

• TPM2_Load() to load the object

• TPM2_PolicyPCR() to satisfy the sealed object policy

 · TPM2_Unseal() to return the symmetric key

USE CASE: VPN KEYS

Similar to the previous use case, a VPN private key can be locked to PCRs. The TPM

permits the use of the VPN to connect to the enterprise intranet only if the software

is in an approved state.

USE CASE: SECURELY PASSING A PASSWORD FROM THE OS
PRESENT TO OS ABSENT ENVIRONMENT

A platform administrator (for example, the IT administrator) wishes to grant the

end user permission to change a BIOS setting, perhaps changing the boot order.

The BIOS needs the administrator password. The administrator must pass the

privileged-access password to the BIOS but doesn’t want to reveal the password to

the end user.

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

156

The administrator seals the password to the PCR state present while the BIOS is

running (after a reboot). The admin supplies this sealed password to the user at the

OS level. The user can’t unseal the password while the OS is running, but the BIOS

can unseal and use it after a reboot.

These are the steps at the OS level:

1. Construct a policy, a TPM2_PolicyPCR specifying that

PCR[2] is all zeroes. This PCR will only have this value very

early in the boot cycle, when the CRTM passes control to the

first part of the BIOS.

2. Use TPM2_Create(), specifying the password and the

policy to create the sealed object. The password is supplied

via an encrypted session (see Chapter 17), essentially a

secure tunnel into the TPM.

These are the steps at the BIOS level:

3. Use TPM2_Load() to load the object.

4. Use TPM2_PolicyPCR() to satisfy the sealed object policy.

5. Use TPM2_Unseal() to return the secret.

A typical use of PCRs for authorization would be to tie the use of an entity to the
platform software state, but other uses are possible. For example, a password can be
extended into a PCR, thus unlocking access. When access is no longer desired, the PCR
can be reset (if permitted) or just extended with some other value.

PCRs for Attestation
Attestation is a more advanced use case for PCRs. In a non-TPM platform, remote software
can’t usually determine a platform’s software state. If the state is reported through strictly
software means, compromised software can simply lie to the remote party.

A TPM attestation offers cryptographic proof of software state. Recall that a
measurement can’t be undone. A PCR can’t be rolled back to a previous value. The
attestation is a TPM quote: a number of PCR are hashed, and that hash is signed by a
TPM key. If the remote party can validate that the signing key came from an authentic
TPM, it can be assured that the PCR digest report has not been altered.

We say this is a more advanced use because it’s insufficient to simply validate the
signature and the key’s certificate. The party has to next validate that the digest of the PCR
matches the reported PCR values. This is straightforward.

Next, the party has to read an event log—a log of all software and other states
measured, with their hashes—and validate that the event log matches the PCR values.
This is still not too hard; it just involves some math.

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

157

The TCG Infrastructure Work Group (IWG) and PC Client Work Group specify the
details of the event log format. The Platform Trust Services (PTS) specification from the
IWG specifies how to report measurements through Trusted Network Connect (TNC).
Standardizing the logging and reporting formats permits standard software to parse and
validate the log against the attestation (quote).

The Integrity Measurement Architecture (IMA) for Linux specifies an event-log
file format. Typical entries looks like this and includes a PCR index, a template hash, a
template name, the file hash, and a hint (untrusted) as to the file name:

10 88da93c09647269545a6471d86baea9e2fa9603f ima
a218e393729e8ae866f9d377da08ef16e97beab8 /usr/lib/systemd/systemd

10 e8e39d9cb0db6842028a1cab18b838d3e89d0209 ima
d9decd04bf4932026a4687b642f2fb871a9dc776 /usr/lib64/ld2.16.so

10 babcdc3f576c949591cc4a30e92a19317dc4b65a ima
028afcc7efdc253bb69cb82bc5dbbc2b1da2652c /etc/ld.so.cache

10 68549deba6003eab25d4befa2075b18a028bc9a1 ima
df2ad0965c21853874a23189f5cd76f015e348f4 /usr/lib64/libselinux.so.1

The hardest part comes next. Through the TPM signed attestation quote, the party
knows the platform software state. It now has to decide whether that software state is
secure. The party has to match the measurement hashes against a whitelist, potentially
requiring cooperation from third-party software providers.

This is the essence of the Trusted Computing concept. PCRs provide a means to trust
that a list of software modules indeed reflects the software state of a platform. It doesn’t
make any value judgments as to whether that software is secure.

USE CASE: QUOTE

A networking device wants to decide whether to let a client platform connect to a

network. It wants to know whether the platform is running fully patched software.

The device quotes the TPM PCR and validates the result against a whitelist of

patched software modules. If the platform is current, it’s permitted on the network.

If not, it’s routed to a patch server but not otherwise permitted network access.

The StrongSwan open source VPN solution can use the TCG TNC standard,

combining TPM quotes and a policy to gate access to a VPN.1

1http://wiki.strongswan.org/projects/strongswan/wiki/TrustedNetworkConnect.

http://wiki.strongswan.org/projects/strongswan/wiki/TrustedNetworkConnect

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

158

The Kaspersky antivirus software end user license agreement (EULA) permits the
software to report on the files processed, versions of the software, and more. The license
permits use of the TPM, if present, to authenticate the report.2

PCR Quote in Detail
It’s interesting to examine the quote data in detail. Through this data, the reader can
understand the security properties of the quote. A quote’s structure—the structure that is
hashed and signed—contains these fields:

• Magic number TPM_GENERATED: Prevents an attacker from signing
arbitrary data with a restricted signing key and claiming later that
it was a TPM quote. See Chapter 10 for the interaction between
restricted signing keys and TPM_GENERATED.

• Qualified name of the signing key: A key could appear strong
but be protected by an ancestor with a weaker algorithm.
The qualified name represents the entire ancestry of the key.

• Extra data provided by the caller: This data is typically an
anti-replay nonce, which is proof that the quote is current.

• TPM firmware version: Included so that the verifier can decide if it
trusts a particular TPM code version.

• TPM clock state: The variable resetCount is of particular
importance for the next use case. For privacy, the clock
information is obfuscated when signing with a key outside the
endorsement hierarchy.3 This isn’t an issue, because the attester
only wants to detect if resetCount changes, not read its actual
value.

The type of attestation structure (a quote, in this case).•

The selection of PCRs included in the quote.•

A digest of those selected PCRs.•

2http://support.kaspersky.com/8752.
3Foradetailedexplanationofthisprivacyissue,seethe“OtherPrivacyConsiderations”sectionof
Chapter9.

http://support.kaspersky.com/8752

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

159

USE CASE: DETECTING A REBOOT BETWEEN TRANSACTIONS

A platform is performing financial transactions. A monitoring device performs a

quote every 15 minutes to detect changes to the platform software state. However,

an attacker sneaks in between quotes, reboots into compromised software, performs

an unauthorized transaction, and then reboots the platform back to the trusted state.

The next quote will show the same trusted PCR values. However, the resetCount

change tells the monitoring software that two unexpected reboots occurred.

PCR Attributes
Each PCR comes with several attributes. The attributes are defined in the TPM library
specification, but which PCR indexes have which attributes is left to the platform-specific
specification. Generally, most PCR indexes are assigned by convention to specific
software, but a few are unassigned and open for use by applications.

The PCR Reset attribute indicates whether the PCR can be reset using the TPM2_PCR_
Reset command. Typically, the reset value is all zeroes. Most PCRs are not resettable,
because this would permit compromised software to set the PCR value to a known good
state. Some PCRs are resettable only in a certain locality, corresponding to dynamic root
of trust measurement (DRTM) sequences.

The PCR Extend attribute indicates whether the PCR can be extended using the
TPM2_PCR_Extend or TPM2_PCR_Event command. Obviously, a PCR that couldn’t be
extended would be useless, but some can be extended only in some localities.

The PCR Reset attribute via DRTM indicates whether a PCR can be extended
through writes directly to the TPM interface, as opposed to the normal TPM command
format. These are both platform specific and linked to the particular TPM hardware
interface. This attribute typically varies by locality.

All PCRs are reset at reboot when TPM2_Startup is issued with the CLEAR parameter.
Most are typically reset to all zeroes, but some can have other values, such as all ones or a
value related to the locality at which the startup command was issued.

The No Increment attribute is tied to the TPM2_PolicyPCR command. A policy tied
to a PCR is an immediate assertion. The PCR values at the time of the TPM2_PolicyPCR
command are extended into the policy session hash. However, a PCR value could change
after the immediate assertion, which should normally invalidate the policy session. This
invalidation is implemented though a counter that is normally incremented whenever a
PCR is changed. The policy session records the value during TPM2_PolicyPCR and then
checks it when the session is used. If the count values aren’t equal, the TPM knows that a
PCR changed, and the policy session use fails.

Note the word normally in the previous paragraph. The TPM specification provides
the No Increment attribute. PCRs with this attribute, when changed, don’t increment
the counter and thus don’t invalidate policy sessions in use. Most PCRs don’t have this
attribute, but the PC Client specification assigns it to a debug PCR and a few reserved for
applications.

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

160

USE CASE: NO INCREMENT ATTRIBUTE PCRS FOR VMS

An application-level PCR may be assigned to measure a virtual machine. This PCR

is reset because the VM is instantiated and extended frequently over the lifetime of

the VM. If each extend invalidated a policy session, the TPM2_PolicyPCR command

would be useless.

USE CASE: NO INCREMENT ATTRIBUTE PCRS FOR AUDIT

An application-level PCR may be assigned to secure an audit log. See Chapter 16

for details on this use case. This PCR is reset when the audit log is initialized and

is extended as the log is updated. If each extend invalidated a policy session, the

TPM2_PolicyPCR command would be useless.

PCR Authorization and Policy
As with other entities, a PCR may have an authorization value or policy. The library
specification permits either to be set per PCR or per group of PCRs.

The PC Client TPM has neither. No authorization is required to access the PCR.
The rationale is that authorization would increase the boot time, which is often an
important parameter.

PCR Algorithms
The first requirement that led to TPM 2.0 was the removal of TPM 1.2’s hard-coding of
the SHA-1 hash algorithm. Because PCRs are closely tied to hash algorithms, TPM 2.0
theoretically offers many PCR possibilities through the TPM2_PCR_Allocate command.

The key word is theoretically. PCRs can be allocated in banks, with each bank
corresponding to a hash algorithm. The command permits PCRs to be allocated in any
combination, and a PCR can be assigned to more than one bank and have more than
one algorithm. The TPM2_Extend command must now specify not only a PCR index and a
digest but also an algorithm. If no index exists with that algorithm, the extend operation is
ignored.

So, in theory, software would perform multiple measurements, create multiple
digests, and then extend each digest into the appropriate bank. What does the PC Client
specification do in practice?

That specification requires only one bank with all PCRs in it. The bank defaults to
SHA-1 but can be changed to SHA-256. Although a TPM vendor is free to implement more
complicated combinations, we expect most TPMs to be operated as either purely SHA-1
or purely SHA-256. The supporting software knows the TPM’s algorithm and measures,
digests, and extends accordingly.

CHAPTER 12 ■ PLATFORM CONFIGURATION REGISTERS

161

Further, we expect that TPMs won’t change algorithms very often. If fact, the most
likely scenario is that it’s shipped with SHA-256 and remains SHA-256 forever, or that
it’s shipped with SHA-1 and then updates to SHA-256 once as the support software is
simultaneously updated.

Summary
PCRs have two basic uses. Their value may be reported in a signed attestation quote,
permitting a relying party to determine the platform software’s trust state. They may be
used in a policy to authorize the use of other objects based on PCR values. Whereas
TPM 1.2 PCRs were hard-coded to use the SHA-1 algorithm, TPM 2.0 PCRs can use other
hash algorithms.

163

CHAPTER 13

Authorizations and Sessions

Authorizations and sessions are among the most important concepts in TPM 2.0.
Authorizations control access to entities in the TPM, providing many of the security
guarantees of the TPM. Sessions are the vehicle for authorizations and maintain state
between subsequent commands; additionally, sessions configure some per-command
attributes such as encryption and decryption of command and response parameters and
auditing. This chapter describes sessions as they relate to authorization of actions on
entities. Chapters 16 and 17 describe details of the per-command session use modifiers.

Authorizations and sessions represent a large topic, so this chapter will proceed as
follows:

1. You’ll learn some new terms specific to sessions and
authorizations. You are advised to review the definitions in
Chapter 5 as well.

2. You’ll see password, HMAC, and policy authorizations at a
high level, along with the security properties of each.

3. The chapter clarifies the differences and commonalities
between sessions and authorizations, as well as some aspects
of the specification that can be confusing.

4. You’ll drill down into some aspects of authorizations that
apply to all three types of authorizations: password, HMAC,
and policy. You will learn about the authorization roles and
the authorization area in the command and response byte
streams.

5. You will examine the different types of authorizations in
detail, from simplest to most complex: password, HMAC, and
policy. After looking at password authorizations, you will see
some common aspects of HMAC and policy authorizations,
followed by the details of HMAC and policy authorizations.

6. Finally, all the authorization types are tied together into a
combined authorization lifecycle.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

164

This chapter doesn’t describe the various policy authorization commands. Nor does it
describe decrypt, encrypt, and audit sessions, other than to note that sessions are the
vehicle for setting these.

This chapter uses diagrams, logical flows, and working code examples to illustrate
how authorizations and sessions work. This material is foundational to understanding
TPM 2.0. Get ready for a deep but rewarding dive.

Session-Related Definitions
Before you delve into this subject, you need to clearly understand some new terms. These
are in addition to the terms described in Chapter 5; you should refer to those definitions
as well as these while reading this chapter:

• Session creation variations: These are set at session creation
time and last for the lifetime of the session. They determine how
the session and HMAC keys are created and how the HMAC is
generated. There are two choices here: bound vs. unbound, and
salted vs. unsalted. The combination of these two choices results
in four session variations. These are discussed in detail later. For
now, here are high-level descriptions:

Bound sessions essentially “bind” the authorization to ·
some entity’s authorization value. This binding is done by
including the bind entity’s authorization value in the session
key generation. This affects all calculations that depend on
the session key, including HMAC, policy, encryption, and
decryption calculations.

An unbound session doesn’t use a bind entity’s authorization ·
in the session key generation.

A salted session adds extra entropy, the · salt, into the session
key generation; similar to bound sessions, this affects all
calculations that depend on the session key. The extra
entropy is sent to the TPM in encrypted form, the encrypted
salt parameter which is passed in to the
TPM2_StartAuthSession command.

An unsalted session doesn’t add entropy in this way. ·

• Session use modifiers: These modify the actions of an HMAC
or policy session on a per-command basis. Continue, encrypt,
decrypt, and audit are the more commonly used modifiers:

 · Continue: If not set, the session is terminated after a
successful command.

 · Decrypt: Indicates that the first TPM2B command parameter
is sent to the TPM in encrypted form.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

165

 · Encrypt: Causes the first TPM2B response parameter to be
returned from the TPM in encrypted form.

 · Audit: Causes a command using the session to be audited.

Based on an understanding of these terms, I can now describe the different types of
sessions.

Password, HMAC, and Policy Sessions:
What Are They?
All three types of sessions are a means of authorizing actions and, in the case of HMAC
and policy sessions, configuring sessions on a per-command basis. Password sessions
are the simplest type of authorization: a clear text password is passed down to the TPM
to authorize an action. This has obvious security issues if the TPM is being accessed
remotely; the intended use of password sessions is for local access. In the TPM, there
is a single, always-available password session that is used to authorize a single TPM
command with no state preserved between subsequent uses. Because of this, the
password session never needs to be started.

HMAC authorizations are a way of using a simple password in a more secure
manner; once the calling application and the TPM agree on the password (at the time
the entity is created or its authorization value is modified), there is never a need to
communicate the password again. This one-time communication of the password
to the TPM can be accomplished in a secure manner: that is, the password can be
communicated to the TPM in encrypted form. An HMAC session accomplishes this
greater level of security by using the password (authValue, as it’s called in the TPM 2.0
specification) as one of the inputs into an HMAC that is calculated on commands and
responses. On a command, the calling application calculates the HMAC and inserts it
in the command byte stream. When the TPM receives the command byte stream, if the
TPM determines that the HMAC is calculated correctly, the action is authorized. On a
response, the TPM calculates an HMAC on the response and inserts it into the response
byte stream. The caller independently calculates the response HMAC and compares it to
the response byte stream’s HMAC field. If they match, the response data can be trusted.
All this works only if both the calling application and the TPM know and agree on the
authValue.

HMAC sessions use two nonces—one from the caller (nonceCaller) and one from
the TPM (nonceTPM)—to prevent replay attacks. These nonces factor into the HMAC
calculation. Because nonceTPM changes for every command that is sent, and the calling
application can, if it wants to, change nonceCaller on every command, an attacker
can’t replay command byte streams. Replayed command bytes streams that use HMAC
authorization will always fail because the nonces will be different on the replay.

HMAC sessions maintain state during the lifetime of the session and can be used
to authorize multiple actions on TPM entities. An HMAC session is started using the
TPM2_StartAuthSession command. When started, HMAC sessions can be configured
as bound vs. unbound and salted vs. unsalted sessions. The combination of these two
options results in four variations of HMAC sessions; these four variations determine how
the session key and HMACs are calculated.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

166

Policy sessions, otherwise known as Enhanced Authorization (EA), are built on top of
HMAC sessions and add an extra level of authorization. Whereas HMAC authorizations
are based only on an authorization value or password, policy authorizations enhance this
with authorizations based on TPM command sequences, TPM state, and external devices
such as fingerprint readers, retina scanners, and smart cards, to name a few. Many
conditions can be ANDed and ORed together into complex authorization trees, providing
unlimited authorization possibilities.

Table 13-1 shows a high-level summary of the various types of authorizations.

Table 13-1. Comparison of the Three Types of Sessions

Password HMAC Policy

State/Other Info No state is
maintained
between
subsequent uses.

State is maintained
for the lifetime of the
session.

State is maintained
for the lifetime of the
session.

Built on top of HMAC
sessions.

Security The password is
in the clear on
every command;
a snooper could
easily grab the
password.

Much more secure
than a password
(especially when
sending commands to
remote a TPM).

Nonces are used to
prevent replay attacks.

Enhanced security
by allowing complex
sequences of
commands and
internal and external
states to authorize.

Nonces are used to
prevent replay attacks
if an HMAC is being
used.

Method of Starting None TPM2_
StartAuthSession

TPM2_
StartAuthSession

Per-Command

Session Modifiers

None Decrypt, encrypt,
audit

Decrypt and encrypt

With that under your belt, let’s look at some important nuances in how the
specification uses the terms session and authorization. Pay attention here; understanding
these will greatly enhance your ability to read and understand the TPM 2.0 specification
as well as the rest of this chapter.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

167

Session and Authorization: Compared and
Contrasted
Sessions and authorizations are closely related and sometimes overlapping concepts
in the TPM 2.0 specification, but they are not synonymous terms. Sessions are the
vehicle for authorizations, but they’re also used for purposes other than authorization,
in conjunction with authorizations or completely independent of them. For example,
sessions used for authorization can also be used to specify per-command modifiers
such as encrypt, decrypt, and audit. Sessions can also be used for these per-command
modifiers without being simultaneously used for any authorizations at all.

The TPM 2.0 specification itself often overlaps the terms session and authorization.
Here are some examples of this in the specification:

The • authorization area1 in commands is used for both
authorizations and sessions. But sessions can be used in ways
that have nothing to do with authorization. For instance, they
can be used to set up encryption and decryption of command
and response parameters and to enable auditing of commands.
Sessions that have nothing to do with authorization can be
configured for these purposes.

The • TPM_ST_NO_SESSIONS and TPM_ST_SESSIONS tags are used to
indicate whether an authorization area is present in a command,
an obvious lack of consistency in nomenclature.

Sessions are started with the • TPM2_StartAuthSession command.
The name of the command indicates that an authorization
is being started, but in fact a session is being started by this
command.2 The session being started might never be used for
authorization.

Another case is password authorizations. Technically these •
are sessions, but no state is maintained between subsequent
commands, and TPM2_StartAuthSession isn’t used to start
a password “session”. A password authorization is a one-shot
authorization that applies to only one command.

The reason for noting these aspects is to help you comprehend the specification.
Understanding the distinctions between these blurred usages of terms helped me as I
was struggling to understand these concepts. As a result, I developed diagrams to help
categorize the various types of authorizations, sessions, and session modifiers. Hopefully
these will help you, too.

1Amoretechnicallyaccuratenameforthiswouldhavebeenthesessionsarea.
2AmoretechnicallyaccuratenameforthiscommandwouldhavebeenTPM2_StartSession.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

168

The following points are of special note in this diagram:

Authorizations can be password, HMAC, or policy authorizations.•

Password authorizations can never be used for session use •
modifiers.

Note ■ In Figure 13-1, audit, encrypt, or decrypt are the only session use modifiers

shown, but there are others. These three are shown because they’re the more commonly

used ones.

Figure 13-1. Authorizations and sessions Venn diagram

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

169

HMAC and policy sessions can be used for authorizations but •
can also be used to set session-use modifiers apart from any
authorization. This why the HMAC and policy sessions straddle
the authorization circle’s boundary.

The command’s authorization area is where all of these •
authorizations, sessions, and session modifiers are specified.

Command modifiers can be used in sessions used for •
authorization as well as those that aren’t, which is why the audit,
encrypt, and decrypt circles straddle the authorization circle’s
boundary.

Sessions that aren’t used for authorization can also be in the •
authorization area of the command and response byte streams.

Policy sessions can be used for encrypt or decrypt, but not for audit.• 3

HMAC sessions can be used for encrypt, decrypt, and/or audit.•

Figure 13-2. Authorizations and sessions block diagram

3AccordingtotheTPM2.0specificationdevelopers,thiswasanoptimizationandnotduetoany
fundamentaltechnicaldifficulty.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

170

Figure 13-2 illustrates the relationship somewhat differently. Note the following
points in this diagram:

The authorization area can specify the parameters for password, •
HMAC, or policy sessions. The authorization area is described in
detail in the next section.

Sessions started with the • TPM2_StartAuthSession command can
be HMAC, policy, or trial policy sessions.

HMAC sessions can be configured on a per-command basis to be •
audit, decrypt, and/or encrypt sessions.

Policy sessions can be configured on a per-command basis to be •
decrypt and/or encrypt sessions. They cannot be used for audit.

The four session initialization variations can apply to HMAC, •
policy, or trial policy sessions.

The important things to remember are that sessions are the vehicle for
authorizations but can also be used apart from any authorizations for per-command
actions that are set by session modifiers.

Regardless of how the sessions are used or the type of authorization, if any, the
command and response authorization areas are used to communicate the authorization
and session data to and from the TPM. Before I describe the details of command and
response areas, you need to understand the functions of authorization roles.

Authorization Roles
Authorization roles for each command are specified in Part 3’s descriptions of
commands. These roles and the rules related to them act in a manner similar to access
control lists (ACLs) for computer directories. Authorization roles control the types of
authorizations that can be used to run commands, which essentially means they control
who gets to run specific commands and under what circumstances.

There are three possible roles: USER, ADMIN, and DUP. USER is used for normal uses of
the entity, ADMIN role is used for system management tasks, and DUP, a narrowly focused
role, is the only role allowed for the TPM2_Duplicate command.

Two attributes of entities that determine the type of authorization required are
userWithAuth and adminWithPolicy. These attributes either are set explicitly (at object
creation time for objects) or determined by other means for certain permanent handles
and NV indices:

• userWithAuth:

 · Set means USER role authorization can be provided by a
password, HMAC, or policy session.

 · Clear means USER role authorization must be provided by a
policy session.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

171

• adminWithPolicy:

 · Set means ADMIN role authorization must be provided by a
policy session.4

 · Clear means ADMIN role authorization can be provided by a
password, HMAC, or policy session.

If the authorization role is ADMIN:

For object handles, the required authorization is determined by •
the object’s adminWithPolicy attribute, which is set when the
object is created.

For the handles • TPM_RH_OWNER, TPM_RH_ENDORSEMENT, and
TPM_RH_PLATFORM, the required authorization is as if
adminWithPolicy is set.

For NV indices, the required authorization is as if the •
adminWithPolicy attribute was set when the NV index was
created.

If authorization role is USER:

For object handles, the required authorization is determined by •
the object’s userWithAuth attribute, which is set when the object
is created.

For the handles • TPM_RH_OWNER, TPM_RH_ENDORSEMENT, and
TPM_RH_PLATFORM, the required authorization is as if
userWithAuth is set.

For NV index handles, the required authorization is determined •
by the following NV index attributes:
TPMA_NV_POLICYWRITE, TPMA_NV_POLICYREAD, TPMA_NV_
AUTHWRITE, and TPMA_NV_AUTHREAD. These attributes are set
when the NV index is created.

4AmoreaccuratenameforthisattributewouldhavebeenadminOnlyWithPolicy.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

172

If the authorization role is DUP:

The authorization must be a policy authorization.•

• The DUP role is only used for objects.

If the authorization role is DUP or ADMIN, the command being authorized must be
specified in the policy.

Now that you understand roles, let’s look at the authorization area.

Command and Response Authorization
Area Details
Chapter 5 described the command and response data schematics but purposely left
out one important area in commands and responses: the authorization area. This area
is where sessions and authorizations are specified in the command and response byte
stream, and a detailed discussion was deferred until this chapter.

To make the concepts more practical, this section examines these two areas using
the TPM2_NV_Read command. The same general format is followed for authorization areas
for all commands that can have authorization areas.

Command Authorization Area
Figure 13-3 shows the TPM2_NV_Read command and response data schematics and
the location of the authorization areas in the command. Note that these areas aren’t
specifically called out in the Part 3 schematics, but they’re implied; this is why they’re
shown in boxes off to the left side of the command and response schematic tables. For all
commands that take authorizations, the authorization area for the command is located
after the handles area and before the parameters area. The authorization area for the
response is located at the end of the response after the response parameters.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

173

For any command that can take authorizations, there can be up to three
authorization structures in the authorization area. For a successful TPM 2.0 command,
the number of authorization structures in the response is always equal to the number of
authorization structures in the command. For a TPM 2.0 command that fails, the number
of authorization structures in the response is always 0.

Figure 13-3. NV_Read command and response schematic from TPM 2.0 spec, Part 3, and
the location of authorization areas. The boxes to the left indicate where the authorization
areas are sandwiched in. This is often confusing to new readers of the specification but is very
important to grasp.

5ThetermoctetisusedintheTPMspecificationtodenote8bits,whichisoften,although
somewhatinaccurately,referredtoasabyte.Becausesomecomputersusebytesthathavea
differentnumberofbits,theTPM2.0architectsusedthetermoctet.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

174

For the command, notice the @ sign in front of authHandle: this means an
authorization structure is required to authorize actions on the entity corresponding to the
authHandle. Further notation in the description column, “Auth role: USER,” indicates the
authorization role required.

Command Authorization Structures
The command authorization structure, TPMS_AUTH_COMMAND, is illustrated in Figure 13-4.
This shows the details of the command authorization area box from Figure 13-3.

Figure 13-4. Command authorization structure, TPMS_AUTH_COMMAND

Although not strictly part of the authorization structure in the current TPM 2.0
specification, the authorizationSize field in a command is present if the command
tag is TPM_ST_SESSION, which indicates that the authorization area is present. This
authorizationSize field allows code that is parsing the command to determine how
many sessions are in the authorization area and where to find the parameters. The field
immediately precedes the authorization area as shown in Figure 13-5.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

175

Response Authorization Structures
For a response, the authorization structure, TPMS_AUTH_RESPONSE, is shown in Figure 13-6.
This shows the details of the response authorization area box from Figure 13-3.

Figure 13-5. Command structure showing where the command authorization area(s) are
located

Figure 13-6. Response authorization structure, TPMS_AUTH_RESPONSE

The response authorization area is at the very end of the response. To make it easy
to find, a parameterSize field, a UINT32, is inserted before the response parameter area
for all responses that contain an authorization area. Code that is parsing the response can
use the parameterSize field to skip past the response parameters to find the response
authorization area. The parameterSize field isn’t present when a response doesn’t
include an authorization area (see Figure 13-7).

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

176

Now that you know what the authorization areas look like, let’s look at the three types
of authorizations in detail.

Password Authorization:
The Simplest Authorization
Password authorizations are the simplest authorizations, so I will describe them first.
This section presents the password authorization lifecycle: how to create a password
authorized entity, how to alter the authorization for an existing entity, and how to use a
password authorization to authorize an action.

Password Authorization Lifecycle
A password authorization has a very simple lifecycle: create an entity using a password as
the authorization, and then authorize actions on the entity. In more detail, the high-level
steps required to create and use a password authorization are as follows:

1. Create an entity that will use an authorization value, or
change the authorization value for an existing entity. This step
is typically performed once per entity.

2. Authorize actions using the password authorized entity. This
step can be performed multiple times for a particular entity
and can occur any time after the entity’s password has been set,
whether by creating the entity or by changing its authorization.

Figure 13-7. Response Structure, showing where the response authorization area(s) and
parameterSize fields are located

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

177

First let’s look at step 1, creating an entity to use a password authorization or altering
the password for an existing entity.

Creating a Password Authorized Entity
To create an entity, use the following commands: TPM2_CreatePrimary, TPM2_Create,
and TPM2_NV_DefineSpace.6 Each of these has a parameter field for passing in the
authValue that will be used to authorize actions on the entity. This authValue can be
used either as a simple plaintext password or as an input to an HMAC authorization, but
since this section is describing a password session, it just describes its use as a password.
HMAC authorizations are described after we finish with passwords.

Here are some more details about the three TPM commands used to create entities:

• TPM2_CreatePrimary is used to create primary objects
(objects directly under the primary seed) in a hierarchy. The
USER authorization can be a password authorization if the
inPublic parameter’s userWithAuth attribute is set; this means
authorization for actions that require the USER role can be
performed by a password or HMAC. The authValue, a password
in this case, is passed in by setting the userAuth field of the
inSensitive parameter to the password.

• TPM2_Create is used to create objects that can be loaded into
the TPM. The authorization type, userWithAuth, and the
authValue are configured by setting the same fields used by
TPM2_CreatePrimary.

• TPM2_NV_DefineSpace is used to define an NV index. A password
authorization can be used if the attributes TPMA_NV_AUTHREAD
and/or TPMA_NV_AUTHWRITE are set. The input parameter,
authValue (the password), is passed in as the auth parameter of
the TPM2_NV_DefineSpace command.

Changing a Password Authorization for an
Already Created Entity
To change the password of an entity, these commands are used:

• TPM2_ObjectChangeAuth: Can be used to change the
authorization of objects that aren’t primary objects.

• TPM2_HierarchyChangeAuth: Used to change the authorization for
a hierarchy (platform, owner, or endorsement) or for the lockout
authority.

• TPM2_NV_ChangeAuth: Changes the authorization value for an NV
index.

6AllofthesecommandshavetheabilitytosettheauthorizationtouseanauthValueand/ora
policy,butonlytheuseofauthValueisdescribedhere.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

178

Now let’s look at step 2, authorizing actions using a password authorization.

Using a Password Authorization
A password authorization is the simplest authorization. To use a password authorization,
no session needs to be started. The caller simply fills in the command authorization block
as shown in Figure 13-8.

Figure 13-9. Password acknowledgement in response8, 9

Figure 13-8. Password authorization command7

The response authorization area looks like Figure 13-9.

Code Example: Password Session
Listing 13-1 shows a code example of a password session using the password session
test from the TSS SAPI test code. This code uses the TSS System API that was described
in Chapter 7. Because you hadn’t yet learned about authorizations and sessions, a
description of the authorization-related structures and functions was deferred until this

7Becausethepasswordsessionisalwaysavailable,continueSessionhasnoeffect.
8ThecontinueSessionflagisanexceptiontothis.Forpasswordsessions,thecontinueSession
flagisalwayssetintheresponse.
9Thisfieldiscalledhmacinthespecification,butitisn’treallyanHMAC.Actuallyit’snotanything
atall,becauseit’sazero-lengthbuffer.Probablythespecificationwriterscalledithmactokeepit
consistentwithHMACauthorizationareas.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

179

chapter. In order to follow the code example, you need to understand these session and
authorization related System API data structures:

• TSS2_SYS_CMD_AUTHS: Specifies the number of authorization areas
for the command and the specific authorization areas to be used.
The structure looks like this:

typedef struct {
 uint8_t cmdAuthsCount;
 TPMS_AUTH_COMMAND **cmdAuths;
} TSS2_SYS_CMD_AUTHS;

• TSS2_SYS_RSP_AUTHS: In a like manner, specifies the number
of authorization areas in a response and the specific response
authorization areas. The structure looks like this:

typedef struct {
 uint8_t rspAuthsCount;
 TPMS_AUTH_RESPONSE **rspAuths;
} TSS2_SYS_RSP_AUTHS;

Note ■ The CheckPassed and CheckFailed functions used in the code example are the

same as those described in the code example in the SAPI section of Chapter 7.

Now that you understand the new structures, let’s look at the code. I’ve added notes
for each major block of the code to help you follow it better.

Listing 13-1. Password Authorization: Code Example

// Password used to authorize access to the NV index.
char password[] = "test password";

// NV Index used for the password test.
#define TPM20_INDEX_PASSWORD_TEST 0x01500020

void PasswordTest()
{
 UINT32 rval;
 int i;

 Create an authorization area for the command and response.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

180

 // Authorization structure for command.
 TPMS_AUTH_COMMAND sessionData;

 // Authorization structure for response.
 TPMS_AUTH_RESPONSE sessionDataOut;

 // Create and init authorization area for command:
 // only 1 authorization area.
 TPMS_AUTH_COMMAND *sessionDataArray[1] = { &sessionData };

 // Create authorization area for response:
 // only 1 authorization area.
 TPMS_AUTH_RESPONSE *sessionDataOutArray[1] = { &sessionDataOut };

 // Authorization array for command (only has one auth structure).
 TSS2_SYS_CMD_AUTHS sessionsData = { 1, &sessionDataArray[0] };

 // Authorization array for response (only has one auth structure).
 TSS2_SYS_RSP_AUTHS sessionsDataOut = { 1, &sessionDataOutArray[0] };
 TPM2B_MAX_NV_BUFFER nvWriteData;

 printf("\nPASSWORD TESTS:\n");

Create an NV index.

 // Create an NV index that will use password
 // authorizations. The password will be
 // "test password".
 CreatePasswordTestNV(TPM20_INDEX_PASSWORD_TEST, password);

 //
 // Initialize the command authorization area.
 //

 // Init sessionHandle, nonce, session
 // attributes, and hmac (password).
 sessionData.sessionHandle = TPM_RS_PW;

 // Set zero sized nonce.
 sessionData.nonce.t.size = 0;

 // sessionAttributes is a bit field. To initialize
 // it to 0, cast to a pointer to UINT8 and

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

181

 // write 0 to that pointer.
 *((UINT8 *)&sessionData.sessionAttributes) = 0;

 // Init password (HMAC field in authorization structure).
 sessionData.hmac.t.size = strlen(password);
 memcpy(&(sessionData.hmac.t.buffer[0]),
 &(password[0]), sessionData.hmac.t.size);

 Do writes, one with the correct password and one with an incorrect one; then verify the

results.

 // Initialize write data.
 nvWriteData.t.size = 4;
 for(i = 0; i < nvWriteData.t.size; i++)
 nvWriteData.t.buffer[i] = 0xff - i;

 // Attempt write with the correct password.
 // It should pass.
 rval = Tss2_Sys_NV_Write(sysContext,
 TPM20_INDEX_PASSWORD_TEST,
 TPM20_INDEX_PASSWORD_TEST,
 &sessionsData, &nvWriteData, 0,
 &sessionsDataOut);
 // Check that the function passed as
 // expected. Otherwise, exit.
 CheckPassed(rval);

 // Alter the password so it's incorrect.
 sessionData.hmac.t.buffer[4] = 0xff;
 rval = Tss2_Sys_NV_Write(sysContext,
 TPM20_INDEX_PASSWORD_TEST,
 TPM20_INDEX_PASSWORD_TEST,
 &sessionsData, &nvWriteData, 0,
 &sessionsDataOut);
 // Check that the function failed as expected,
 // since password was incorrect. If wrong
 // response code received, exit.
 CheckFailed(rval,
 TPM_RC_S + TPM_RC_1 + TPM_RC_AUTH_FAIL);

 Delete the NV index.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

182

 // Change hmac to null one, since null auth is
 // used to undefine the index.
 sessionData.hmac.t.size = 0;

 // Now undefine the index.
 rval = Tss2_Sys_NV_UndefineSpace(sysContext, TPM_RH_PLATFORM,
 TPM20_INDEX_PASSWORD_TEST, &sessionsData, 0);
 CheckPassed(rval);
}

A good understanding of password authorizations and the data structures used to
enable them provides a foundation for understanding the other types of authorizations.
Next I describe HMAC and policy authorizations: specifically, how to start them.

Starting HMAC and Policy Sessions
Both HMAC and policy sessions are started using the TPM2_StartAuthSession command.
When a session is started, it must be one of the following session types: HMAC, policy,
or trial policy. Earlier I described HMAC and policy sessions at a high level, but those
descriptions didn’t mention trial policy sessions. Trial policy sessions are neutered policy
sessions: they can’t authorize any actions, but they can be used to generate policy digests
before creating entities (more on that later). For the purposes of this section, policy and
trial policy sessions are grouped together.

When a session is started, basic characteristics of the session are determined.
Specifically, whether the session is bound or unbound, whether the session is salted or
unsalted, the strength of the session key, the strength of the anti-replay protections, the
strength of parameter encryption and decryption, and the strength of the session HMACs
are determined by the parameters used to call TPM2_StartAuthSession.

Some terms need to be understood before this section describes the process of
starting HMAC and policy sessions:

• KDFa: The key-derivation function used to create session keys.10
An HMAC function is used as the pseudo-random function for
generating the key. The inputs to the KDFa are a hash algorithm;
an HMAC key, K (described next); a 4-byte string used to identify
the usage of the KDFa output; contextU and contextV (variable-
length strings); and the number of bits in the output. These
parameters are cryptographically combined by the KDFa function
to create the session key, described below.

• K: The key used as input to the KDFa function. For session-key
creation, K is the concatenation of the authValue (of the entity
corresponding to the bind handle) and the salt parameter
passed to the TPM2_StartAuthSession command.

10KDFaisusedformanyotherthingsintheTPM,butthissectiononlydiscussesitsuseinsessions.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

183

• sessionKey: A key created when an HMAC or policy session is
started.11 For session key creation, the KDFa function takes the
following as inputs:

 · sessionAlg (a hash algorithm)

K (the HMAC key used as input to the KDFa’s HMAC ·
function)

A unique 4 byte label, · ATH (three characters plus the string
terminator)

Two nonces, · nonceTPM and nonceCaller (corresponding to
contextU and contextV in the KDFa)

The number of bits in the resulting key ·

• nonceCaller: The nonce sent by the caller to the
TPM2_StartAuthSession command.

• nonceTpm: The nonce generated by the TPM in response to the
TPM2_StartAuthSession command and returned to the caller.

TPM2_StartAuthSession Command
As noted earlier, the parameters to the TPM2_StartAuthSession function determine many
of the session’s characteristics, including the session’s security properties. The command
schematic for this command is shown in Figure 13-10; the response is shown in
Figure 13-11.

11Itisimportanttoavoidconfusingtermshere;specifically,sessionKeyshouldnotbeconfused
withhmacKey.ThehmacKeyisn’tdeterminedatsessioncreationtime,butit’spartiallydetermined
bytheparametersusedtostartthesession.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

184

Figure 13-10. TPM2_StartAuthSession command

Figure 13-11. TPM2_StartAuthSession response

This command takes the following handles and parameters as inputs:

Two handles:•

If · tpmKey is TPM_RH_NULL, the session is an unsalted session;
otherwise, it’s a salted session, and the encryptedSalt
parameter is decrypted by the TPM to get the salt value
used to add entropy. The TPM uses the loaded key pointed to
by the tpmKey handle to do the decryption of encryptedSalt.

If · bind is TPM_RH_NULL, the session is an unbound session.
Otherwise, it’s a bound session, and the authValue of the entity
pointed to by the bind handle is concatenated with the salt
value to form K, which is used in calculating the sessionKey.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

185

Five parameters:•

 · nonceCaller is the first nonce set by the caller and sets the
size for all subsequent nonces returned by the TPM.

 · encryptedSalt is used only if the session is salted as
described earlier in the discussion of tpmKey. If the session is
unsalted, this parameter must be a zero-sized buffer.

 · sessionType determines the type of the session: HMAC,
policy, or trial policy.

 · symmetric determines the type of parameter encryption that
will be used when the session is set for encrypt or decrypt.

 · authHash is the algorithm ID for the hash algorithm that will
be used by the session for HMAC operations.

When a session is started, the TPM processes the command and generates a session
handle, computes a nonceTPM, and calculates a session key. This key is used to generate
HMACs, encrypt command parameters, and decrypt response parameters. After the
session is created, the session key remains the same for the lifetime of the session. The
session handle and the nonceTPM are returned by the command.

The session key is determined by these command parameters passed in to
TPM2_StartAuthSession: tpmKey, bind, encryptedSalt, nonceCaller, and authHash.
The response parameter, nonceTPM, also figures into the session key.12 Use of the nonceTPM
in creating the session key guarantees that using the same authValue, salt, and
nonceCaller will generate a different session key.

Because the calling application also has to know the session key, it duplicates the
TPM’s calculations using the nonceTPM along with the input variables to perform this
calculation. At this point, the session has started, and both the caller and the TPM know
the session key.

Session Key and HMAC Key Details
Table 13-2 describes the variations of sessions and how the sessionKey and HMAC key
are created for each case. Having all this information in a single table can be very helpful,
which is why it’s included here.

12ThesymmetricparametertoTPM2_StartAuthSessionisonlyusedforencryptionanddecryption
ofcommandandresponseparameters,soitisn’tdescribedinthischapter.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

186

T
a

b
le

 1
3

-2
.

V
a

ri
a

ti
o

n
s

o
f S

es
si

o
n

s
a

n
d

 S
es

si
o

n
 K

ey
 C

re
a

ti
o

n

S
es

si
o

n
 V

ar
ia

ti
o

n
b

in
d

tp
m

K
ey

K
se

ss
io

n
K

ey
H

M
A

C
 k

ey

U
n

b
o

u
n

d
/

U
n

sa
lt

e
d

TP
M_
RH
_N
UL
L

TP
M_
RH
_N
UL
L

N
u

ll
N

U
L

L
 k

e
y

E
n

ti
ty

 a
u

th
o

ri
za

ti
o

n

va
lu

e,
 a
ut
hV
al
ue

en
ti

ty

B
o

u
n

d
N

o
t

TP
M_
RH
_N
UL
L

TP
M_
RH
_N

UL
L

bi
nd

 e
n

ti
ty

’s

a
u

th
o

ri
za

ti
o

n

va
lu

e,

au
th
Va
lu
e b

in
d

K
D

F
a

 (
se
ss
io
nA
lg

,
au
th
Va
lu
e b

in
d
,

“A
T

H
”,
no
nc
eT
PM

,
no
nc
eC
al
le
r,

 b
it

s)
1

3

if
 e

n
ti

ty
 =

=
 b

in
d

 e
n

ti
ty

A

N
D

 n
o

t
a

 p
o

li
cy

 s
es

si
o

n
:

se
ss
io
nK
ey

if
 e

n
ti

ty
 !=

 b
in

d
 e

n
ti

ty

O
R

 s
es

si
o

n
 is

 a
 p

o
li

cy

se
ss

io
n

1
4
:

se
ss
io
nK
ey

 ||

au
th
Va
lu
e en

ti
ty

S
a

lt
e

d
TP
M_
RH
_N
UL
L

N
o

t

TP
M_
RH
_N
UL
L

sa
lt

K
D

F
a

(s
es
si
on
Al
g,

sa
lt

, “
A

T
H

”,
no
nc
eT
PM

,
no
nc
eC
al
le
r,

 b
it

s)

se
ss
io
nK
ey

 ||

au
th
Va
lu
e en

ti
ty

B
o

u
n

d
/S

a
lt

e
d

N
o

t

TP
M_
RH
_N
UL
L

N
o

t

TP
M_
RH
_N
UL
L

au
th
Va
lu
e b

in
d
 ||

sa
lt

K
D

F
a

 (
se
ss
io
nA
lg

,

(a
ut
hV
al
ue

b
in

d
 ||

sa
lt

),
 “

A
T

H
”,
no
nc
eT
PM

,
no
nc
eC
al
le
r,

 b
it

s)

If
(

en
ti

ty
 =

=
 b

in
d

 e
n

ti
ty

A

N
D

 n
o

t
a

 p
o

li
cy

 s
es

si
o

n
:

se
ss
io
nK
ey

if
 e

n
ti

ty
 !=

 b
in

d
 e

n
ti

ty
 O

R

se
ss

io
n

 is
 a

 p
o

li
cy

 s
es

si
o

n
:

se
ss
io
nK
ey

 ||

au
th
Va
lu
e en

ti
ty

13
In

cl
ud

in
g

th
e

tw
o

no
nc

es
,n
on
ce
Ca
ll
er

a
nd

n
on
ce
TP
M,

in
th

e
se

ss
io

n-
ke

y
cr

ea
tio

n
m

ak
es

it
st

at
is

tic
al

ly
im

po
ss

ib
le

to
c

re
at

e
tw

o
se

ss
io

ns
w

ith
th

e
sa

m
e

se
ss

io
n

ke
y.

T
hi

sp
ro

pe
rty

o
fT

PM
se

na
bl

es
se

cu
rit

y
an

al
ys

is
.

14
A

p
ol

ic
y

se
ss

io
n

al
w

ay
sa

ct
sa

si
fi

t’s
a

n
un

bo
un

d
se

ss
io

n.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

187

Guidelines for TPM2_StartAuthSession Handles and
Parameters
From the details in Table 13-2, we can deduce some guidelines for choosing the TPM2_
StartAuthSession parameters. The strength of the session key is determined by the
combination of the bind and tpmKey handles, encryptedSalt, nonceCaller, and the hash
algorithm used for the session.

The strongest possible session key is provided with the bind handle pointing to a
TPM entity (bound session), the tpmKey handle pointing to a loaded key (salted session),
and nonceCaller’s size set to the size of the hash algorithm’s output.

With bind and tpmKey set to TPM_RH_NULL, the result is a zero-length session key—a
very weak session key. However, as long as the entity’s authValue is strong, the HMAC
key is still strong. As will be detailed in Chapter 17, the strength of the session key directly
affects the strength of the encryption and decryption of the command and response
parameters.

The length of the nonceCaller parameter determines the length of the nonceTPMs
used in the session. The bigger the nonce, the better the protection against replay attacks.

The session key and the entity’s authorization value are used in generating session
HMACs, so again, a stronger session key and stronger authorization value result in greater
security.

Programmers making calls to TPM2_StartAuthSession should consider carefully
which properties are desired when selecting the parameters to use.

Session Variations
Now let’s examine the meaning of bound vs. unbound sessions and salted vs. unsalted
sessions in detail. I will also describe some use cases for them.

Salted vs. Unsalted

Both HMAC and policy sessions can be salted or unsalted. A salted session adds more
entropy to the session key creation. Whether a session is salted or not is determined by
the tpmKey parameter to the TPM2_StartAuthSession command. This decrypted salt is
added into the session key creation process. If the authValue is weak, salting the session
helps to prevent offline hammering attacks. An offline hammering attack consists of trying
different values of authValue to see if the correct HMAC can be generated. If successful, the
authValue has been discovered. Salting of sessions raises the bar for this type of attack.

Bound vs. Unbound

Similarly, both HMAC and policy sessions can be set to be either bound or unbound. A
bound session means the session is “bound” to a particular entity, the “bind” entity; a
session started this way is typically used to authorize multiple actions on the bind entity.
The bind entity’s authorization value is used to calculate the session key but isn’t needed
after that. This can be advantageous from a security perspective, because the calling

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

188

application doesn’t need to keep prompting for the authorization value (password) or
maintain it in memory.

Bound sessions can also be used to authorize actions on other entities, and in that
case, the bind entity’s authValue adds entropy to the session key creation, resulting in
stronger encryption of command and response parameters—sort of a poor man’s salt.
The authorization values for both the bind entity and the entity being authorized figure
into the HMAC calculation.

An unbound session is used to authorize actions on many different entities. A policy
session is most commonly configured as an unbound session. With the security offered
by policy sessions, an HMAC isn’t as important, and using policy sessions without having
to calculate and insert HMACs is much easier.

Use Cases for Session Variations

Now let’s answer the obvious question: what are the major use cases for bound/unbound
and salted/unsalted sessions? There are many possibilities, but the most common ones
are as follows:

• Unbound sessions are most commonly used for two cases:

If the session is also unsalted, this combination is often ·
used for policy sessions that don’t require an HMAC. This
is okay because policy sessions use policy commands and
HMAC authorization isn’t really required in many cases. This
simplifies the use of the policy session by eliminating the
overhead of calculating the HMACs. The use case for this is
any policy authorization that doesn’t include the
TPM2_PolicyAuthValue command.

They can also be used by HMAC sessions to authorize ·
actions on many different entities.

• Bound sessions have two cases:

 · Authorizing actions on the bind entity: This HMAC
authorization can be used to authorize many actions on
the bind entity without prompting for the password each
time. For example, an employee might want to view their
personnel file many times; this type of authorization would
work for that.

 · Authorizing actions on an entity other than the bind entity:
In this case, both the bind entity’s authValue and the
authValue of the entity being authorized figure into the
HMAC calculation. This results in a stronger session key and
stronger encryption and decryption keys.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

189

• Unsalted session: when the authValue of the bind entity is
deemed strong enough to generate strong session and strong
encryption and decryption keys. If a system administrator can
enforce sufficient controls on the strength of a password, an
unsalted session using that password may be sufficient.

• Salted session: when the authValue isn’t considered strong
enough for generating secure session and encryption/decryption
keys. A web site could request two different passwords from a user:
one to be used as the authorization value for use of an encryption
key, and the other to be used for the salt. The combination of the
two would be much stronger than using a single password, as long
asa cryptographically strong salt was used.

Now that you have a foundation for starting sessions, let’s see some differences
between HMAC and policy sessions.

HMAC and Policy Sessions: Differences
HMAC and policy sessions differ primarily in how actions are authorized. Commands
sent using HMAC sessions are successful only if the HMAC sent with the command is
correct. In order to generate the correct HMAC, knowledge of a secret (authValue) that is
shared between the caller and TPM is required. In other words, knowledge of the session
key and authValue enable the calculation of the correct HMAC, effectively granting
authorization to perform an action on the entity. An agent that doesn’t know either
the session key or the authValue can’t calculate the correct HMAC, which causes the
command to fail.

Policy sessions authorize actions based on the correct sequence of policy commands
and, in many cases, conditions required by those commands. This is a very simple
description of this rich and complicated type of authorization. The details are described
in Chapter 14, but suffice it to say that policy sessions authorize actions using the
following:

A sequence of policy commands before the command whose •
action is being authorized. The presence of this sequence is
proven by checking the policyDigest. Each policy command
hash-extends policy command-specific data into the session’s
policyDigest. In the simplest case, a comparison between the
session’s policyDigest and that of the entity being accessed will
determine whether the proper policy commands were performed
beforehand.

A set of conditions that must be met before and/or during the •
execution of the command whose action is being authorized.
If these conditions aren’t met, the policy commands fail or the
command being authorized fails. This is described in detail later.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

190

Interestingly enough, policy sessions can still have an HMAC in their authorization
areas, even though the most common use of policy sessions doesn’t, according to Part 1
of the TPM 2.0 specification. This most common use assumes that the session is unbound
and unsalted. But when an HMAC is used in the authorization area (whether because
the session is bound and/or salted or the TPM2_PolicyAuthValue command is used),
contrary to HMAC sessions, the HMAC is always calculated as if the session isn’t bound
to any entity.15 In policy sessions, the bind entity’s authValue is only used for session key
creation and never for HMAC calculation. Applications using the TPM need to account
for this during HMAC calculation.

To summarize, HMAC authorizations are more secure than password authorizations,
and policy authorizations are the most complex and rich authorizations. HMAC
authorizations use a properly calculated HMAC as the means to prove knowledge of
the authorization secret(s). Policy authorizations require a set of policy commands and
a specific set of conditions required by those policy commands in order to authorize
an action. In both HMAC and policy authorizations, HMACs can be used to guarantee
command and response integrity.

Now let’s look at HMAC authorization in detail.

HMAC Authorization
This section dives into the details of HMAC authorizations. It describes the high-level
HMAC authorization lifetime and each of the steps in that lifetime: entity creation or
alteration, HMAC session creation, and HMAC session use. The section ends with a
description of the security properties of an HMAC session.

As you read this section, I recommend that you reference the example code section. The
discussion refers to line numbers in the code where applicable. This section mainly focuses
on describing the steps leading up to and including the NV index’s write. The NV index’s
read code is very similar, and mapping of these steps to that code is left as a reader exercise.

HMAC Authorization Lifecycle
The steps for creating and authorizing actions on HMAC authorized entities are the following:

1. Create the entity that will use an authorization value, or
change the authorization value for an existing entity. This step
is typically performed once per entity.

2. Create an HMAC session.

3. Use the HMAC session to perform operations on the entity.
This operation can occur any time after steps 1 and 2 and can
occur multiple times. A single HMAC session can be used to
authorize multiple actions.

15Thisisanoptimization:thesessioncontextspacenormallyusedforthebindvalueisusedfor
policy-specificparameters.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

191

Altering or Creating an Entity That Requires HMAC Authorization

For the purposes of entity creation, the method of specifying the authValue is exactly the
same as described earlier in the password authorization lifecycle. The same is true for
altering the authValue for an existing entity. In both of these operations, the authValue is
treated exactly the same for HMAC and password authorizations.

In the example code, lines 19–26, 42–44, and 55 set up the authValue and
authPolicy for creating the NV index. Lines 101, 104–105, and 112 set up the NV attributes.
And lines 115–117 create the NV index that we’re going to authorize.

Creating an HMAC Session

An HMAC session is started with a TPM2_StartAuthSession command that has the
sessionType field set to TPM_SE_HMAC. When the HMAC session is started, the TPM
creates a session key using the formula described previously. This session key is
created in the TPM. After TPM2StartAuthSession returns, the caller also recreates
the session key, using the bind entity’s authValue, the salt, and the nonceCaller
parameters sent to the TPM by the TPM2StartAuthSession command, and the
nonceTPM returned by the TPM.

Lines 140, 143, and 150 set up the parameters for starting the session, and
lines 154–156 actually create the session.

Using an HMAC Session to Authorize a Single Command

The mechanics of a single command during an HMAC session are described in
Figure 13-12.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

192

To use an HMAC session for authorizing commands, the steps are as follows (see
Figure 13-12 while reading the example code):

1. The input parameters are marshalled and concatenated into
a single sized byte buffer, cpParams. The Tss2_Sys_NV_Write_
Prepare call on lines 183–185 performs this task and puts the
cpParams buffer into the sysContext structure.

2. The caller calculates the cpHash, a hash of the marshalled
command parameters contained in the cpParams buffer. This
is done in the ComputeCommandHmacs call on lines 202–205.

3. The caller calculates an HMAC for the command. The cpHash
is one of the inputs to this calculation. This is done by the
ComputeCommandHmacs call on lines 202–205.

Figure 13-12. HMAC session: single command. Note that this diagram assumes the use of
the TSS SAPI layer. The TAB and resource manager layers are omitted for simplicity. Also, this
diagram shows how HMAC sessions operate using the TSS SAPI Tss2_Sys_XXXX_Prepare
and one-call interfaces

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

193

4. The calculated HMAC is copied into the HMAC
session’s HMAC field. This is done automatically by the
ComputeCommandHmacs call—-notice the pointer to nvCmdAuths
being passed in on lines 202–205.

5. The complete command including header, sessions, and
parameters must be marshalled into a byte stream and sent to
the TPM. This is done in the one-call function call at
lines 211–214.

6. The response must be read from the TPM. This is also done in
the one-call function on lines 211–214.

7. After receiving the response, the caller calculates the rpHash,
a hash of the marshalled response parameters in the byte
stream. This is done in the CheckResponseHmacs call on
lines 224–226.

8. The caller calculates the expected response HMAC. The
rpHash is one of the inputs to this calculation. This is also
done by the CheckResponseHmacs call on lines 224–226.

9. The caller compares this calculated response HMAC to the
HMAC field of the response’s HMAC session. If they aren’t
the same, the response parameters have been corrupted
and none of the data can be trusted. If they are the same,
then the response parameters have been received correctly.
This is performed by CheckResponseHmacs, lines 224–226. It
calculates what the response HMAC should be and compares
it to the HMAC returned in nvRspAuths.

10. If the response HMAC is correct, the response parameters
can be unmarshalled into C structures for use by the caller;
this is performed by the one-call function on lines 211–214.
Note that for the one-call, the code assumes that the HMAC
is correct and unmarshals the response parameters. Later, if
the response HMAC is proven incorrect, the unmarshalled
response parameters can be ignored.

HMAC and Policy Session Code Example
Listing 13-2 presents a simple example of how to execute HMAC and policy sessions. This
function is known to work, and all of its support routines are available in the TSS SAPI test
code described in Chapter 7. To keep the code as simple as possible, it uses an unbound
and unsalted session. If you’d like to see more complicated examples, all variations of
bound/unbound and salted/unsalted are tested in the HmacSessionTest in the TSS SAPI
test code.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

194

Note ■ Managing HMAC sessions and calculating HMAC authorizations are complicated

tasks. Some of the functions called in Listing 13-2 are only explained at a high level. The goal

was to demonstrate the high-level flow of an HMAC authorization without overwhelming

you with low-level details. If you want to dig deeper, the source code for all the subroutines

is available at the web site noted for the TSS SAPI test code in Chapter 7.

To help compare HMAC and policy sessions, this code does HMAC or policy
authorizations, depending on the value of the hmacTest input parameter; if conditional
statements using the hmacTest parameter are used for all the HMAC- or policy-specific
code. For now, because this section is about HMAC authorizations, ignore all the parts of
the code that only pertain to policy sessions (these areas are shaded).

Some notes about this code:

The code does a write to an NV index followed by a read of the •
same NV index. Both the read and write are authorized using an
HMAC authorization.

To authorize the read and write operations, this code uses •
either an HMAC session or a policy session with a TPM2_
PolicyAuthValue command. This provides similar capability
(both sessions use an HMAC for authorization), and thus provides
a useful vehicle for comparing HMAC and policy sessions.

The • RollNonces function does what it says: it copies nonceNewer
to nonceOlder and copies the new nonce to nonceNewer. The
nonces must be rolled before each command and after each
response. This is described more in the section “Using an HMAC
Session to Send Multiple Commands (Rolling Nonces).” Here’s
the complete code for this function:

void RollNonces(SESSION *session, TPM2B_NONCE *newNonce)
{
 session->nonceOlder = session->nonceNewer;
 session->nonceNewer = *newNonce;
}

 This code example uses a single byte nonceCaller for both the NV write and read

commands. This isn’t a recommended usage—typically, to maximize replay protection, you

would use a nonce that is the size of the session’s selected hash algorithm, and you would

use different randomly generated nonces for each command being authorized.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

195

This code relies heavily on an application-level structure, •
SESSION, that maintains all session state information including
nonces. There are many ways this can be done—this just happens
to be the implementation I chose. This structure looks like this:

typedef struct {
 // Inputs to StartAuthSession; these need to be saved
 // so that HMACs can be calculated.
 TPMI_DH_OBJECT tpmKey;
 TPMI_DH_ENTITY bind;
 TPM2B_ENCRYPTED_SECRET encryptedSalt;
 TPM2B_MAX_BUFFER salt;
 TPM_SE sessionType;
 TPMT_SYM_DEF symmetric;
 TPMI_ALG_HASH authHash;

 // Outputs from StartAuthSession; these also need
 // to be saved for calculating HMACs and
 // other session related functions.
 TPMI_SH_AUTH_SESSION sessionHandle;
 TPM2B_NONCE nonceTPM;

 // Internal state for the session
 TPM2B_DIGEST sessionKey;
 TPM2B_DIGEST authValueBind; // authValue of bind object
 TPM2B_NONCE nonceNewer;
 TPM2B_NONCE nonceOlder;
 TPM2B_NONCE nonceTpmDecrypt;
 TPM2B_NONCE nonceTpmEncrypt;
 TPM2B_NAME name; // Name of the object the session handle
 // points to. Used for computing HMAC for
 // any HMAC sessions present.
 //
 void *hmacPtr; // Pointer to HMAC field in the marshalled
 // data stream for the session.
 // This allows the function to calculate
 // and fill in the HMAC after marshalling
 // of all the inputs is done.
 //
 // This is only used if the session is an
 // HMAC session.
 //
 UINT8 nvNameChanged;// Used for some special case code
 // dealing with the NV written state.
} SESSION;

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

196

• StartAuthSessionWithParams starts the session, saves its state
in a SESSION structure, and adds the SESSION structure to the
application’s list of open sessions.

• EndAuthSession is used to remove the SESSION structure from the
application’s list of open sessions after the session has ended.

Listing 13-2. Simple HMAC and Policy Code Example

 1 void SimpleHmacOrPolicyTest(bool hmacTest)
 2 {
 3 UINT32 rval, sessionCmdRval;
 4 TPM2B_AUTH nvAuth;
 5 SESSION nvSession, trialPolicySession;
 6 TPMA_NV nvAttributes;
 7 TPM2B_DIGEST authPolicy;
 8 TPM2B_NAME nvName;
 9 TPM2B_MAX_NV_BUFFER nvWriteData, nvReadData;
 10 UINT8 dataToWrite[] = { 0x00, 0xff, 0x55, 0xaa };
 11 char sharedSecret[] = "shared secret";
 12 int i;
 13 TPM2B_ENCRYPTED_SECRET encryptedSalt;
 14 TPMT_SYM_DEF symmetric;
 15 TPMA_SESSION sessionAttributes;
 16 TPM_SE tpmSe;
 17 char *testString;

 Set up authorizations for NV index creation and deletion.

 18 // Command authorization area: one password session.
 19 TPMS_AUTH_COMMAND nvCmdAuth = { TPM_RS_PW, };
 20 TPMS_AUTH_COMMAND *nvCmdAuthArray[1] = { &nvCmdAuth };
 21 TSS2_SYS_CMD_AUTHS nvCmdAuths = { 1, &nvCmdAuthArray[0] };
 22
 23 // Response authorization area.
 24 TPMS_AUTH_RESPONSE nvRspAuth;
 25 TPMS_AUTH_RESPONSE *nvRspAuthArray[1] = { &nvRspAuth };
 26 TSS2_SYS_RSP_AUTHS nvRspAuths = { 1, &nvRspAuthArray[0] };
 27
 28 if(hmacTest)
 29 testString = "HMAC";
 30 else
 31 testString = "POLICY";
 32
 33 printf("\nSIMPLE %s SESSION TEST:\n", testString);
 34

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

197

 35 // Create sysContext structure.
 36 sysContext = InitSysContext(1000, resMgrTctiContext, &abiVersion);
 37 if(sysContext == 0)
 38 {
 39 InitSysContextFailure();
 40 }

 Create the NV index, with either an HMAC or a policy authorization required.

 41 // Setup the NV index's authorization value.
 42 nvAuth.t.size = strlen(sharedSecret);
 43 for(i = 0; i < nvAuth.t.size; i++)
 44 nvAuth.t.buffer[i] = sharedSecret[i];
 45
 46 //
 47 // Create NV index.
 48 //
 49 if(hmacTest)
 50 {
 51 // Set NV index's authorization policy
 52 // to zero sized policy since we won't be
 53 // using policy to authorize.
 54
 55 authPolicy.t.size = 0;
 56 }
 57 else
 58 {
 59
 60 // Zero sized encrypted salt, since the session
 61 // is unsalted.
 62
 63 encryptedSalt.t.size = 0;
 64
 65 // No symmetric algorithm.
 66 symmetric.algorithm = TPM_ALG_NULL;
 67
 68 //
 69 // Create the NV index's authorization policy
 70 // using a trial policy session.
 71 //
 72 rval = StartAuthSessionWithParams(&trialPolicySession,
 73 TPM_RH_NULL, TPM_RH_NULL, &encryptedSalt,
 74 TPM_SE_TRIAL,
 75 &symmetric, TPM_ALG_SHA256);
 76 CheckPassed(rval);
 77

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

198

 78 rval = Tss2_Sys_PolicyAuthValue(sysContext,
 79 trialPolicySession.sessionHandle, 0, 0);
 80 CheckPassed(rval);
 81
 82 // Get policy digest.
 83 rval = Tss2_Sys_PolicyGetDigest(sysContext,
 84 trialPolicySession.sessionHandle,
 85 0, &authPolicy, 0);
 86 CheckPassed(rval);
 87
 88 // End the trial session by flushing it.
 89 rval = Tss2_Sys_FlushContext(sysContext,
 90 trialPolicySession.sessionHandle);
 91 CheckPassed(rval);
 92
 93 // And remove the trial policy session from
 94 // sessions table.
 95 rval = EndAuthSession(&trialPolicySession);
 96 CheckPassed(rval);
 97 }
 98
 99 // Now set the NV index's attributes:
100 // policyRead, authWrite, and platormCreate.
101 *(UINT32 *)(&nvAttributes) = 0;
102 if(hmacTest)
103 {
104 nvAttributes.TPMA_NV_AUTHREAD = 1;
105 nvAttributes.TPMA_NV_AUTHWRITE = 1;
106 }
107 else
108 {
109 nvAttributes.TPMA_NV_POLICYREAD = 1;
110 nvAttributes.TPMA_NV_POLICYWRITE = 1;
111 }
112 nvAttributes.TPMA_NV_PLATFORMCREATE = 1;
113
114 // Create the NV index.
115 rval = DefineNvIndex(TPM_RH_PLATFORM, TPM_RS_PW,
116 &nvAuth, &authPolicy, TPM20_INDEX_PASSWORD_TEST,
117 TPM_ALG_SHA256, nvAttributes, 32);
118 CheckPassed(rval);
119
120 // Add index and associated authorization value to
121 // entity table. This helps when we need
122 // to calculate HMACs.
123 AddEntity(TPM20_INDEX_PASSWORD_TEST, &nvAuth);
124 CheckPassed(rval);

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

199

125
126 // Get the name of the NV index.
127 rval = (*HandleToNameFunctionPtr)(
128 TPM20_INDEX_PASSWORD_TEST,
129 &nvName);
130 CheckPassed(rval);

 Start the HMAC or policy session.

131 //
132 // Start HMAC or real (non-trial) policy authorization session:
133 // it's an unbound and unsalted session, no symmetric
134 // encryption algorithm, and SHA256 is the session's
135 // hash algorithm.
136 //
137
138 // Zero sized encrypted salt, since the session
139 // is unsalted.
140 encryptedSalt.t.size = 0;
141
142 // No symmetric algorithm.
143 symmetric.algorithm = TPM_ALG_NULL;
144
145 // Create the session, hmac or policy depending
146 // on hmacTest.
147 // Session state (session handle, nonces, etc.) gets
148 // saved into nvSession structure for later use.
149 if(hmacTest)
150 tpmSe = TPM_SE_HMAC;
151 else
152 tpmSe = TPM_SE_POLICY;
153
154 rval = StartAuthSessionWithParams(&nvSession, TPM_RH_NULL,
155 TPM_RH_NULL, &encryptedSalt, tpmSe,
156 &symmetric, TPM_ALG_SHA256);
157 CheckPassed(rval);
158
159 // Get the name of the session and save it in
160 // the nvSession structure.
161 rval = (*HandleToNameFunctionPtr)(nvSession.sessionHandle,
162 &nvSession.name);
163 CheckPassed(rval);

 Do an NV write using either an HMAC or a policy authorization.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

200

164 // Initialize NV write data.
165 nvWriteData.t.size = sizeof(dataToWrite);
166 for(i = 0; i < nvWriteData.t.size; i++)
167 {
168 nvWriteData.t.buffer[i] = dataToWrite[i];
169 }
170
171 //
172 // Now setup for writing the NV index.
173 //
174 if(!hmacTest)
175 {
176 // Send policy command.
177 rval = Tss2_Sys_PolicyAuthValue(sysContext,
178 nvSession.sessionHandle, 0, 0);
179 CheckPassed(rval);
180 }
181
182 // First call prepare in order to create cpBuffer.
183 rval = Tss2_Sys_NV_Write_Prepare(sysContext,
184 TPM20_INDEX_PASSWORD_TEST,
185 TPM20_INDEX_PASSWORD_TEST, &nvWriteData, 0);
186 CheckPassed(rval);
187
188 // Configure command authorization area, except for HMAC.
189 nvCmdAuths.cmdAuths[0]->sessionHandle =
190 nvSession.sessionHandle;
191 nvCmdAuths.cmdAuths[0]->nonce.t.size = 1;
192 nvCmdAuths.cmdAuths[0]->nonce.t.buffer[0] = 0xa5;
193 *((UINT8 *)(&sessionAttributes)) = 0;
194 nvCmdAuths.cmdAuths[0]->sessionAttributes = sessionAttributes;
195 nvCmdAuths.cmdAuths[0]->sessionAttributes.continueSession = 1;
196
197 // Roll nonces for command
198 RollNonces(&nvSession, &nvCmdAuths.cmdAuths[0]->nonce);
199
200 // Complete command authorization area, by computing
201 // HMAC and setting it in nvCmdAuths.
202 rval = ComputeCommandHmacs(sysContext,
203 TPM20_INDEX_PASSWORD_TEST,
204 TPM20_INDEX_PASSWORD_TEST, &nvCmdAuths,
205 TPM_RC_FAILURE);
206 CheckPassed(rval);
207
208 // Finally!! Write the data to the NV index.
209 // If the command is successful, the command
210 // HMAC was correct.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

201

211 sessionCmdRval = Tss2_Sys_NV_Write(sysContext,
212 TPM20_INDEX_PASSWORD_TEST,
213 TPM20_INDEX_PASSWORD_TEST,
214 &nvCmdAuths, &nvWriteData, 0, &nvRspAuths);
215 CheckPassed(sessionCmdRval);

 Get the response from the NV write. If it’s an HMAC session, verify the response HMAC.

216 // Roll nonces for response
217 RollNonces(&nvSession, &nvRspAuths.rspAuths[0]->nonce);
218
219 if(sessionCmdRval == TPM_RC_SUCCESS)
220 {
221 // If the command was successful, check the
222 // response HMAC to make sure that the
223 // response was received correctly.
224 rval = CheckResponseHMACs(sysContext, sessionCmdRval,
225 &nvCmdAuths, TPM20_INDEX_PASSWORD_TEST,
226 TPM20_INDEX_PASSWORD_TEST, &nvRspAuths);
227 CheckPassed(rval);
228 }
229
230 if(!hmacTest)
231 {
232 // Send policy command.
233 rval = Tss2_Sys_PolicyAuthValue(sysContext,
234 nvSession.sessionHandle, 0, 0);
235 CheckPassed(rval);
236 }

 Do an NV read, using an HMAC or a policy session. If it’s an HMAC session, verify the

 response HMAC. Finally, test the read data against the write data to make sure they’re equal.

237 // First call prepare in order to create cpBuffer.
238 rval = Tss2_Sys_NV_Read_Prepare(sysContext,
239 TPM20_INDEX_PASSWORD_TEST,
240 TPM20_INDEX_PASSWORD_TEST,
241 sizeof(dataToWrite), 0);
242 CheckPassed(rval);
243
244 // Roll nonces for command
245 RollNonces(&nvSession, &nvCmdAuths.cmdAuths[0]->nonce);
246

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

202

247 // End the session after next command.
248 nvCmdAuths.cmdAuths[0]->sessionAttributes.continueSession = 0;
249
250 // Complete command authorization area, by computing
251 // HMAC and setting it in nvCmdAuths.
252 rval = ComputeCommandHmacs(sysContext,
253 TPM20_INDEX_PASSWORD_TEST,
254 TPM20_INDEX_PASSWORD_TEST, &nvCmdAuths,
255 TPM_RC_FAILURE);
256 CheckPassed(rval);
257
258 // And now read the data back.
259 // If the command is successful, the command
260 // HMAC was correct.
261 sessionCmdRval = Tss2_Sys_NV_Read(sysContext,
262 TPM20_INDEX_PASSWORD_TEST,
263 TPM20_INDEX_PASSWORD_TEST,
264 &nvCmdAuths, sizeof(dataToWrite), 0,
265 &nvReadData, &nvRspAuths);
266 CheckPassed(sessionCmdRval);
267
268 // Roll nonces for response
269 RollNonces(&nvSession, &nvRspAuths.rspAuths[0]->nonce);
270
271 if(sessionCmdRval == TPM_RC_SUCCESS)
272 {
273 // If the command was successful, check the
274 // response HMAC to make sure that the
275 // response was received correctly.
276 rval = CheckResponseHMACs(sysContext, sessionCmdRval,
277 &nvCmdAuths, TPM20_INDEX_PASSWORD_TEST,
278 TPM20_INDEX_PASSWORD_TEST, &nvRspAuths);
279 CheckPassed(rval);
280 }
281
282 // Check that write and read data are equal.
283 if(memcmp((void *)&nvReadData.t.buffer[0],
284 (void *)&nvWriteData.t.buffer[0], nvReadData.t.size))
285 {
286 printf("ERROR!! read data not equal to written data\n");
287 Cleanup();
288 }

 Cleanup: remove the NV index.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

203

289
290 //
291 // Now cleanup: undefine the NV index and delete
292 // the NV index's entity table entry.
293 //
294
295 // Setup authorization for undefining the NV index.
296 nvCmdAuths.cmdAuths[0]->sessionHandle = TPM_RS_PW;
297 nvCmdAuths.cmdAuths[0]->nonce.t.size = 0;
298 nvCmdAuths.cmdAuths[0]->hmac.t.size = 0;
299
300 // Undefine the NV index.
301 rval = Tss2_Sys_NV_UndefineSpace(sysContext,
302 TPM_RH_PLATFORM, TPM20_INDEX_PASSWORD_TEST,
303 &nvCmdAuths, 0);
304 CheckPassed(rval);
305
306 // Delete the NV index's entry in the entity table.
307 rval = DeleteEntity(TPM20_INDEX_PASSWORD_TEST);
308 CheckPassed(rval);
309 }

I’ve demonstrated how to send single commands using an HMAC session. Now we
need to consider multiple commands and how the nonces work.

Using an HMAC Session to Send Multiple Commands
(Rolling Nonces)
The nonceTPM changes after every successful TPM command executed within a session.
nonceCaller can be changed if the caller so desires. Because the nonces figure into the
HMAC calculation, replay attacks are prevented. The HMAC calculation is as follows:

authHMAC := HMAC

sessionAlg
 ((sessionKey || authValue), (pHash || nonceNewer ||
nonceOlder

 { || nonceTPMdecrypt } { || nonceTPMencrypt }
 || sessionAttributes))

In this equation, notice the nonceNewer and nonceOlder parameters. On a
command, nonceNewer is the nonceCaller, and nonceOlder is the last nonceTPM. For a
response, nonceNewer is the current nonceTPM, and nonceOlder is the nonceCaller from
the command. For now, ignore the decrypt and encrypt nonces because they’re only

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

204

used for decrypt and encrypt sessions.16 This section describes the mechanics of how
the nonces are used in multiple commands in an HMAC session. A sequence of multiple
commands in an HMAC session works like this (refer to Figure 13-13 and Listing 13-2):

1. When an HMAC session is started, nonceCaller1 is sent to the
TPM and nonceTPM1 is received from the TPM. This happens
in the StartAuthSessionWithParams call, lines 72–75 in
Listing 13-2.

2. Every time a command is successfully authorized, a new
nonceTPM is generated. This is called “rolling” the nonce. The
caller can also change the nonceCaller before each command
that is sent using the session, if desired. Look at the calls to
RollNonces in Listing 13-2 on lines 198, 217, 245, and 269.

3. On the next session command:

a. For the command HMAC, nonceTPM1 is used as the
nonceOlder parameter. nonceCaller2, sent with this
command in the authorization area for the session, is
used as nonceNewer.

b. For the response HMAC, nonceCaller2 is used as
nonceOlder. nonceTPM2, sent with the response in the
authorization area for the session, is used as nonceNewer.

4. For subsequent commands, this pattern repeats, with
nonceCaller and nonceTPM flip-flopping between
nonceNewer and nonceOlder in the HMAC calculation
depending on whether the HMAC is being calculated on the
command or response.

5. This pattern repeats until the session is closed. The nonces
changing and the fact that they’re used in command and
response HMAC calculations prevent replay attacks.

16BecausethenonceTPMfiguresintoboththecommandandresponseHMACs,theobviousquestion
is,what’sthepurposeofthenonceCaller?Theanswer(fromtheTPMspecificationwriter)isthat
ifthecallerdidn’ttrusttheTPMtogeneratenonceTpmvalueswithenoughrandomness,thecaller
couldspecifysufficientlyrandomnonceCallervaluestoovercomethisdeficiency.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

205

HMAC Session Security
What makes HMAC sessions secure? Basically, three aspects of HMAC sessions are used
to secure commands:

• Session key: The bind authValue and salt are secrets that should
be known only to the caller and the TPM. Both of these values are
used in calculating the session key. An attacker who doesn’t know
these values can’t calculate the session key. Because the session
key is used to create the HMAC key, this means the attacker can’t
successfully send commands to or receive responses from the
TPM. This this prevents man-in-the-middle attacks.

• HMAC: The session key and the entity’s authValue are used
to generate the HMAC key. The authValue of the entity being
accessed is a secret that should only be known to the caller and
the TPM. Again, this means the attacker can’t successfully mount
man-in-the-middle attacks.

• Nonces: The nonces are used to prevent replay attacks. The
nonces figure into the HMAC calculation, which can’t be properly
performed without using the correct nonces. Since the nonces
keep changing, a command byte stream can’t be replayed.

As long as the secrecy of the bind authValue, salt, and entity authValue are
maintained, attackers can’t authorize actions on the entity, and the rolling nonces
prevent replay of commands.

Figure 13-13. Nonces used in an HMAC session to prevent replay attacks

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

206

The code that fills in the command authorization blocks is in Listing 13-2 on
lines 19–21, 150, 189–195, 198 (sets the tpmNonce), and 202–205 (sets the HMAC in the
authorization area).

The response authorization area looks like Figure 13-15.

Figure 13-14. Command HMAC authorization area

Figure 13-15. Response HMAC authorization area

HMAC Session Data Structure
To use an HMAC authorization, the caller fills in the command authorization block as
shown in Figure 13-14.

The code that sets up the response authorization blocks is in Listing 13-2 on
lines 24–26. The call to the one-call function returns the authorization area from the TPM
in nvRspAuths, and the call to CheckResponseHMACs on lines 224–226 verifies that the
HMAC in the response authorization is correct.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

207

This concludes the deep dive into HMAC sessions. Now the water gets even deeper
with a discussion of the most feature-rich and complicated authorizations: policy or
extended authorization.

Policy Authorization
Policy authorization, also known as Extended Authorization (EA), is the Swiss army
knife of TPM authorizations. With the right expertise, you can do just about any kind of
authorization with it. This section and the following chapter, Chapter 14, aim to give you
the knowledge required to use the incredible power of EA. In this section, we describe
how EA works at a high level, the high-level policy authorization lifetime, and each of the
steps in that lifetime: policy hash creation, entity creation or alteration, policy session
creation, and policy session use. We will also explore the security properties of EA. As
much as possible, this section doesn’t describe individual policy commands; the next
chapter describes those in detail.

How Does EA Work?
At a high level, EA enables very expressive policies. EA, like HMAC and password
authorizations, is used to authorize actions on a TPM entity. Some examples of the
controls that can be enforced before authorizing an action are:

Requiring certain values in a specified set of PCR registers•

Requiring a certain locality•

Requiring a certain value or range of values in an NV index•

Requiring a password•

Requiring physical presence•

Requiring sequences of conditions•

And there are many more. These can be combined in AND and OR combinations that
result in an infinite number of policy variations. Policy authorizations allow considerable
complexity and creativity in authorizations. Policy authorizations are the “mother of all
complex authorizations.”

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

208

For a command to be authorized by a policy authorization, two things
must be correct:

Each policy command “asserts” that some condition(s) are true. •
If the specified conditions for each policy command aren’t true,
then the authorization fails. This failure can happen either:

 · At the time of the policy command: This is an immediate
assertion, and this failure occurs before ever getting to
the command to be authorized. This failure means the
policyDigest for the session isn’t hash-extended
by the policy command. If the policy command is
successful, the policyDigest is hash-extended with
the proper values.

 · At the time of the command being authorized: This is a
deferred assertion. In this case, the policyDigest is
hash-extended with data that indicates that the particular
policy command was executed. Testing of the conditions is
deferred until the time of the action being authorized.

Note ■ Some commands can be combined assertions, which means both immediate

and deferred conditions must be valid for the assertion to pass.

At authorization time:•

Any deferred conditions are checked. If any of these fail, the ·
command isn’t authorized.

The entity’s · authPolicy is compared to the policy session’s
policyDigest. If they’re equal, the command is authorized,
and it executes. If they aren’t equal, the authorization fails.
Basically, if the authPolicy is equal to the policyDigest, this
is proof that the required policy commands were executed,
any immediate assertions generated by those commands
passed, and that all this occurred in the correct sequence
before the command being authorized.

Now you’ve seen two time-related terms: policy command time and authorization
time. All the time intervals related to policy authorizations need to be defined precisely in
order for you to understand policy authorizations.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

209

Policy Authorization Time Intervals
In working with policy authorizations, four distinct time intervals must be considered.
These are implied by various sections of the specification but not specifically delineated:

• Build Entity Policy time: The time interval when the authPolicy
used to create an entity is built. There are two ways to create this
authPolicy:

Software can replicate the policy calculations done by ·
the TPM.

A trial policy session can be created. The policy commands ·
used to generate the policyDigest are sent to the TPM.
During a trial policy session, all assertions pass; the purpose
of the trial policy session is to generate the policyDigest as
if all the assertions passed. After all the policy commands
are sent to the TPM, the policyDigest can be read from the
TPM using the TPM2_GetPolicyDigest command.

Note ■ Policies may be, and often are, reused for creating multiple entities and for

authorizing many actions.

• Create Entity time: The time when the entity is created. If the
entity will use an authPolicy, the policy digest created at Build
Entity Policy time is used to create the entity.

Note ■ Because an entity’s name is created at Create Entity time, the policy digest input

when creating the entity (for example, authDigest) can’t include the entity’s name.

• Build Policy Digest time: After a policy session is started, during
this time interval, policy commands are sent to the TPM in
preparation for a command to be authorized. These commands
cause the session’s policyDigest, which is maintained inside the
TPM, to be hash-extended with policy command-specific values.

• Authorization time: The time when the command to be
authorized is sent to the TPM. At this time the session’s
policyDigest must match the entity’s authPolicy, and any
deferred assertions must pass.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

210

To summarize, a policy calculation is usually performed twice—once at Build Entity
Policy time and once at Build Policy Digest time:17

The first time is to create a policy hash used as the • authPolicy
when creating an entity.

The second time occurs before authorizing an action on an entity: •
a policy hash is built up in the session context inside the TPM.
When the command to be authorized is executed, the session’s
policy hash is compared to the authPolicy of the entity. If they
match, the authorization is successful.

All policy commands do two or three things, and they do these things at the
following time intervals:

They check a condition or conditions (the • assertion). This
is done at Build Policy Digest time (immediate assertion) or
Authorization time (deferred assertion), or some combination of
the two (combined assertion).

They hash-extend the current session policy digest with policy •
command-specific data. This is done at Build Entity Policy time
and Build Policy Digest time.

They • may update other session state. This session state is used
for deferred or combined assertions to indicate what deferred
conditions should be tested at authorization time. These updates
are done at Build Policy Digest time.

Now that you understand the various time intervals, let’s look at a typical policy
session lifetime.

Policy Authorization Lifecycle
The typical steps in a policy authorization lifecycle are very similar, with some additions,
to the lifecycle steps used for password and HMAC sessions:

1. Build the entity policy.

2. Create the entity using the policy digest created in step 1.

17Itshouldbenotedthatinsomecases,asinglerealpolicysessioncanbeusedtogeneratethe
policyforboththecreationoftheentityandauthorizingactionswithinthesession;inthiscase,
thepolicydigestiscalculatedonlyonce.Forinstance,thefollowingsequencewouldwork:starta
realpolicysession,sendtheTPM2_PolicyLocalitycommand,getthepolicydigest,createthe
entityusingthepolicydigest,andauthorizeacommandusingthepolicysession.Thisreverses
theusualorderofcreatingtheentityandthenstartingtherealpolicysession.Itprobablyisn’tvery
usefulformostnormaluses,butanunderstandingofthisprovidesinsightintohowpolicysessions
operate.Thisonlyworksforcaseswherethepolicyassertionscanbecanbesatisfiedbeforethe
entityiscreated.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

211

Note ■ Steps 1 and 2 are typically performed long before the remaining steps. And the

remaining steps can occur multiple times to authorize multiple actions on the entity.

3. Start a policy session.

4. Using the policy session, send policy commands to fulfill the
required authorization.

5. Perform the action on the entity that requires authorization.

Let’s look at each of these steps in detail, with the applicable line numbers from
Listing 13-2. For brevity’s sake, line numbers are listed only for code that is unique to
policy sessions.

Building the Entity’s Policy Digest

The first task in using a policy session is to determine what the authorization policy
will be: for example, what entities need to be protected, what actions on those entities
need to be restricted, and the exact nature of those restrictions. Then, the policy digest
must be created; this step corresponds to the Build Entity Policy time interval described
previously. There are two ways to create a policy digest: use a trial policy session, or
create the policy digest with software that emulates the actions of the TPM in creating a
policy digest. I will describe both of these using a simple example; the code uses a trial
policy session.

An example policy might allow an NV index of 0x01400001 to be written or read by
someone who knows its authValue. In this case, building the entity policy using a trial
policy session can be done as follows:

1. Start a trial policy session using the TPM2_StartAuthSession
command. The main inputs of concern for a policy session are:

a. sessionType = TPM_SE_TRIAL. This is what configures
the session as a trial policy session.

b. authHash = TPM_ALG_SHA256. This sets the hashing
algorithm used for generating the policyDigest. I chose
SHA256, but any hashing algorithm supported by the
TPM can be used here.

 This command returns a policy session handle, call it H
ps

.
Lines 63, 66, and 72–75 start the trial policy session.

2. Send a TPM2_PolicyAuthValue command with the following
inputs (see lines 78–79): policySession = H

ps
.

 This command extends the session’s policy digest as follows:

policyDigest

new
 := H

policyAlg
(policyDigest

old
 || TPM_CC_PolicyAuthValue)

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

212

 where policyAlg is the hash algorithm set by the TPM2_StartAuthSession

command, and policyDigest
old

 is the buffer of length equal to the size of

the policy digest that corresponds to the policyAlg with all bytes set to 0.

3. Send a TPM2_GetPolicyDigest command (lines 83–85). This
command returns the policy digest, digest

ps
.

Alternatively, to calculate digest
ps

 in software, the software needs to duplicate the
policy digest calculation in step 2. Appropriate calls to a crypto library such as OpenSSL
can be used to accomplish this.

Once the policyDigest has been calculated or created, the NV index can be created
to use the policyDigest for authorization of write operations to the index. Unlike a
password or HMAC authorization, after the NV index is created the policyDigest
used to access an NV index or any other entity can’t be directly changed. There are
advanced policy commands that can accomplish this through a policy-specific method of
indirection, but that topic is described in the next chapter.

Creating the Entity to Use the Policy Digest

Now we need to create the index in such a way as to allow writes with the policy
authorization; this step corresponds to the Create Entity time interval described
previously. This is done by sending a TPM2_NV_DefineSpace command with the following
inputs (this is done by the call to the DefineNvIndex function):

• auth = TPM2B that contains the authValue used to access this NV
index (lines 42-44).

• publicInfo.t.nvPublic.nvIndex = 0x01400001 (lines 115-117).

• publicInfo.t.nvPublic.nameAlg = TPM_ALG_SHA256. This is
the hash algorithm used to calculate the index’s name, and this
algorithm must be the same as the policyAlg used to calculate
the policyDigest, whether this was done by a trial session or by
software. See lines 115-117.

• publicInfo.t.nvPublic.attributes.TPMA_NV_POLICYWRITE = 1
and publicInfo.t.nvPublic.attributes.TPMA_NV_POLICYREAD
= 1. This configures the index to allow reads and writes only if the
policy is satisfied. See lines 109–110.

• publicInfo.t.nvPublic.authPolicy = the TPM2B that contains
the policyDigest, digest

ps
. See lines 83-85 and 115-117.

• publicInfo.t.nvPublic.dataSize = 32. This indicates the size
of the data contained in the NV index; in this case, the index is
configured to be only 32 bytes wide. See lines 115-117.

Set the NV index’s • auth value. See lines 42–44.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

213

This command creates an NV index that can only be written if the policy is satisfied.
The next step is to create a real—that is, non-trial—policy session and use it to authorize
writes to the NV index.

Starting the Real Policy Session

Start a real policy session using the TPM2_StartAuthSession command. The main inputs
of concern for a policy session are as follows (see lines 152 and 154-156):

• tpmKey = TPM_RH_NULL

• bind = TPM_RH_NULL

Note ■ The tpmKey and bind settings mean this is an unbound and unsalted session.

These settings were chosen in order to keep this example as simple as possible; they’re

also the most common way that policy sessions are used. The goal here is to understand the

process and avoid low-level details as much as possible.

• sessionType = TPM_SE_POLICY. This is what configures the
session as a real—that is, non-trial—policy session.

• authHash = TPM_ALG_SHA256. This sets the hashing algorithm
used for generating the policyDigest. Because we used SHA256
when creating the policyDigest, we must use this same
algorithm when starting the real policy session.

This command returns a policy session handle, H
ps

. Now we can use this policy
session to send commands to authorize actions on the NV index.

Sending Policy Commands to Fulfill the Policy

Using the policy session created in the previous step, the code now sends the same
sequence of policy commands that it used to create the NV index’s policyDigest at Build
Entity Policy time; this step corresponds to the Build Policy Digest time interval described
previously. In this case, the sequence is very simple, and we only need to send one policy
command, a TPM2_PolicyAuthValue command with the following input (lines 177–179):
policySession = H

ps
.

In response to this command, the TPM does two things:

It extends the policy session’s policy digest just as it did for the •
trial session at Build Entity Policy time.

Because • TPM2_PolicyAuthValue is a deferred assertion, it saves
some state information into the policy session’s context so that it
knows to check the HMAC at Authorization time.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

214

At this point, the policy authorization is completely “locked and loaded” to authorize
the action. The next thing that happens is that we attempt to write to the NV index.

Performing the Action That Requires Authorization

This step corresponds to the Authorization time interval described earlier. We write to the
NV index, and, if it’s been authorized correctly, the write completes successfully. To do
this step, send the TPM2_NV_Write command with the following inputs:

• authHandle = 0x01400001. This handle indicates the source of
the authorization. See lines 211-214.

• nvIndex = 0x01400001. This is the NV index to be authorized.
See lines 211-214.

The authorization area for • authHandle must have the following
settings:

 · authHandle = the policy session handle, H
ps

. See lines 189-190.

 · nonceCaller = whatever nonce the caller wants to use. This
can even be a zero-sized nonce. See lines 191-192.

 · sessionAttributes = 0. See lines 193-194.

 · hmac.t.buffer is set to the HMAC of the command.
The HMAC key is the session key concatenated with the
authValue of the NV index. See lines 202-205.

• data = 0xa5. See lines 166-169 and 211-214.

• offset = 0. See lines 211-214.

In response to this command, the TPM checks that policySession->policyDigest
matches the authPolicy of the entity being accessed. Then it checks that the HMAC is
correct. If both checks pass, the write proceeds and the command completes successfully.

Note ■ You may have noticed that in Listing 13-2, because the policy case uses a

TPM2_PolicyAuthValue command, the HMAC and policy cases are very similar. The main

difference is that the policy case requires more work. The obvious question is, if a policy

session that uses TPM2_PolicyAuthValue requires more work, why wouldn’t we just use an

HMAC session? The answer, which is expanded in the next chapter, is that a policy session

allows many other factors besides the authorization value to be combined, creating a much

more configurable and, possibly, secure authorization.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

215

You’ve now seen a complete policy authorization from cradle to grave. This was
a very simple example, but it should form a good basis for understanding the more
complex policy authorizations in the next chapter.

To finish this chapter, we unify the lifecycles for password, HMAC, and policy
authorizations into one single lifecycle.

Combined Authorization Lifecycle
The typical steps in an authorization lifecycle are the following:

1. For HMAC or policy sessions, an authValue or authPolicy
must be determined before creating the entity:

a. If actions on the entity will be authorized using a policy
session, precalculate the authPolicy policy hash.

b. If actions on the entity will be authorized using a
password or HMAC session, determine what the shared
secret will be.

2. Create the entity to be accessed using an authorization value
(authValue) and/or policy hash (authPolicy), or change
the authValue value for an existing entity (changing the
authPolicy for an entity is done by a different means and is
described in the next chapter):

a. The entity’s authValue will be used for either password
authorizations or HMAC authorizations. For password
authorizations, the authValue will be used as a clear-text
password. For HMAC authorizations, the authValue will
be used to generate session HMACs.

b. The entity’s authPolicy is used to determine if the proper
policy assertions have passed before the command to
be authorized. This policy hash must be precalculated
before creating the entity; hence step 1a.

3. Calculate the HMAC. For policy sessions that don’t use an
HMAC, this step can be skipped.

4. In the case of an HMAC or policy authorization, start the
HMAC or policy session.

5. Do an authorized action using the authorization. The
authorization passes if:

a. The password sent during the command matches the
entity’s authValue.

b. The HMAC sent during the command matches the
HMAC calculated by the TPM. Both of these HMACs are
derived, in part, from the authValue of the entity.

CHAPTER 13 ■ AUTHORIZATIONS AND SESSIONS

216

c. The policyDigest of the policy session at Authorization
Time matches the authPolicy of the entity. This policy
hash derives from a variety of factors determined by the
policy command(s) used to create the policyDigest.
Also, any deferred assertions must pass for the
authorization to be successful.

6. In the case of an HMAC session, calculate the expected
response HMAC, and verify it against the one returned
by the TPM.

These steps are represented in relative time order, but many other actions could
occur between them. Also, a single policyDigest can be used to authorize multiple
actions to multiple entities. Similarly, a single HMAC session can be used to authorize
multiple actions to multiple entities. The exact mechanics of these steps vary with the
authorization type, and these differences were described previously, but each of these
steps must be performed for all authorizations with the following exceptions:

Steps 3–4 aren’t required for password authorizations.•

Step 6 isn’t required for password or policy authorizations.•

For more code examples of policy sessions, see the TestPolicy function in the TSS
SAPI test code.

Summary
This concludes the discussion of authorizations and sessions. Congratulations on
making it this far! If you understand this chapter, you’re well on your way to becoming
a TPM 2.0 master.

This chapter described the general concepts of authorizations and sessions and tried
to clarify their differences. You looked at the command and response authorization areas,
and lifecycles for password, HMAC, and policy authorizations. Then you saw an overall
authorization lifecycle.

This may have felt like drinking from a fire hose, and that’s because it was! This is one
of the most difficult areas of the TPM to understand; good comprehension of this material
will aid you immeasurably in understanding and using TPM 2.0 devices. The next chapter
describes the most powerful of authorizations—policy authorizations—in detail, with a
description of each of the policy authorization commands and use cases for them.

217

CHAPTER 14

Extended Authorization
(EA) Policies

TPM 2.0 has unified the way that all entities controlled by the TPM may be authorized.
Earlier chapters have discussed authorization data used for passwords and HMAC
authorization. This chapter goes into detail about one of the most useful new forms of
authorization in the TPM, starting with a description of why this feature was added to the
TPM and then describing in broad brushstrokes the multifaceted approach that
was taken.

This new approach for authorization has many capabilities. As a result, if a user
wants to restrict an entity so it can be used only under specific circumstances, it’s possible
to do so. The sum total of restrictions on the use of an entity is called a policy. Extended
authorization (EA) policies can become complex very quickly. Therefore this chapter’s
approach is incremental, first describing very simple policies and gradually adding
complexity. This is done by examining how to build the following:

Simple assertions•

Command-based assertions•

Multifactor authentication•

Multiuser/compound authorization•

Flexible policies that can be changed on the fly•

Throughout this chapter, you see examples of practical policies like those used in
most cases. It turns out that building policies is different than using them, so you learn
how a user satisfies a policy; at that point it should become clear why policies are secure.

Finally, you consider some policies that can be used to solve certain special cases.
This section may spur your creativity—you’ll see that there are many more ways of using
policies than you’ve thought of.

Let’s begin by comparing EA policies to using passwords for authentication.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

218

Policies and Passwords
All entities in the TPM can be authorized in two basic ways. The first is based on a
password associated with the entity when it’s created. The other is with a policy that is
likewise associated with the entity when it’s created. A policy is a means of authorizing
a command that can consist of almost any approach to authorization that someone can
think of. Some entities (hierarchies and dictionary attack reset handles) are created by
the TPM and thus have default passwords and policies. The TPM-assigned name of these
entities is fixed, not dependent on the policy that is used to authorize them. Such entities’
policies can be changed.

All other entities—NVRAM indexes and keys—have their name calculated in part
from the policy that is assigned when they’re created. As a result, although their password
can be changed, they have policies that are immutable. As you’ll see, some policies can be
made flexible so they can be easily managed in spite of this immutability.

Anything that can be done directly with a password can also be done with a policy,
but the reverse isn’t true. Some things (like duplicating a key) can only be authorized
using a policy command. (However, making things more complicated, you can still use
a password to authorize duplicating a key, by using a policy that describes a password
authorization.)

A policy can be fine-tuned—everything is possible, from setting a policy to be the
NULL policy that can never be satisfied, to having different authentication requirements
for individual commands or for different users when applied to an entity. Thus EA is able
to solve many issues that application developers need to deal with.

Why Extended Authorization?
EA in the TPM was created to solve the basic problem of manageability of TPM entity
authorization. It makes it easier to learn how to use a TPM by having all TPM entities be
authorized the same way, and it also allows a user to define authorization policies that
can solve the following problems:

Allow for multiple varieties of authentication (passwords, •
biometrics, and so on).

Allow for multifactor authentication (requiring more than one •
type of authentication).

Allow for creation of policies without the use of a TPM. Policies •
don’t contain any secrets, so they can be created entirely in
software. That doesn’t mean secrets aren’t needed to satisfy
a policy.

Allow attestation of the policy associated with an entity. It should •
be possible to prove what authorization is necessary in order to
use an entity.

Allow for multiple people or roles to satisfy a policy.•

Allow restriction of the capabilities of a particular role for an •
object to particular actions or users.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

219

Fix the PCR brittleness problem. In TPM 1.2, once an entity was •
locked to a set of PCRs that measured particular configurations,
if the configurations ever had to be changed, the entity could no
longer be used.

Create a means to change how a policy behaves, providing •
flexibility.

Multiple Varieties of Authentication
Today, many different kinds of techniques and devices are used for authentication.
Passwords are the oldest (and perhaps weakest) form of authentication. Biometrics such
as fingerprints, iris scans, facial recognition, penned signatures, and even cardiac rhythm
are used for authentication. Digital signatures and HMACs are forms of cryptographic
authentication used in tokens or keys. Time clocks in banks use the time of day as a form
of authentication and don’t allow a vault to be opened except during business hours.

The TPM was designed so that objects can use almost any kind of authentication
conceivable, although many forms require additional hardware. A policy can consist of a
single type of authentication or multiple varieties.

Multifactor Authentication
Multifactor authentication is one of the most important forms of security and is
popular today. It requires more than one means of authentication in order to provide
authorization to execute a command. Those authentications may take many forms—
smart cards, passwords, biometrics, and so on. The basic idea is that it’s harder to defeat
multiple authentication formats than it is to defeat a single one. Different forms of
authentication have different strengths and weaknesses. For example, passwords can be
easily supplied remotely—fingerprints less so, especially if the design is done correctly.

The TPM 2.0 design allows for many different forms of authentication and provides
facilities to add even more using external hardware. Each mechanism that can be used for
authentication is called an assertion. Assertions include the following:

Passwords•

HMACs•

Smart cards providing digital signatures•

Physical presence•

State of the machine (Platform Configuration Register [PCR])•

State of the TPM (counters, time)•

State of external hardware (who has authenticated to a fingerprint •
reader, where a GPS is located, and so on)

A policy can require that any number of assertions be true in order to satisfy it. The
innovation behind EA in the TPM is that it represents in a single hash value a complex
policy consisting of many assertions.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

220

How Extended Authorization Works
A policy is a hash that represents a set of authentications that together describe how
to satisfy the policy. When an entity (for example, a key) is created, a policy may be
associated with it. To use that entity, the user convinces the TPM that the policy has been
satisfied.

This is done in three steps:

1. A policy session is created. When a policy session with the
TPM is started, the TPM creates a session policy buffer for that
session. (The size of the session policy buffer is the size of the
hash algorithm chosen when the session was started, and it’s
initialized to all zeroes.)

2. The user provides one or more authentications to the TPM
session, using TPM2_PolicyXXX commands. These change the
value in that session policy buffer. They also may set flags in
the session that represent checks that must be done when a
command is executed.

3. When the entity is used in a command, the TPM compares the
policy associated with the entity with the value in the session
policy buffer. If they aren’t the same, the command will not
execute. (At this point, any session flags associated with policy
authorizations are also checked. If they aren’t also satisfied,
this command isn’t executed.)

Policies don’t contain any secrets. As a result, all policies can be created purely
in software outside a TPM. However, the TPM must be able to reproduce policies (in a
session’s policy digest) in order to use them. Because the TPM has this ability, it makes
sense for the TPM to allow the user to use this facility to produce policies. This is done by
using a trial session. A trial session can’t be used to satisfy a policy, but it can be used to
calculate one.

Policy sessions used to satisfy policies can be somewhat more complicated than
the creation of a policy. Some policy commands are checked immediately and update a
policy buffer stored in the session. Others set flags or variables in the session that must
be checked when the session is used to authorize a command. Table 14-1 shows which
policy commands require such checks.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

221

Table 14-1. Policy Commands that Set Flags

Command Sets Flag or Variable in Session Requiring the TPM to

Check Something at Execution Time

TPM_PolicyAuthorize No

TPM_PolicyAuthValue Yes—sets a flag that requires an HMAC session to be
used at command execution

TPM_PolicyCommandCode Yes—checks that a particular command is being
executed

TPM_PolicyCounterTimer Yes—performs logical check against
TPMS_TIME_INFO structured

TPM_PolicyCpHash Yes—checks that the command and parameters have
certain values

TPM_PolicyLocality Yes—checks that the command is being executed from
a particular locality

TPM_PolicyNameHash Yes—identifies objects that will be checked to be
sure they have specific values when the command is
executed

TPM_PolicyOR No

TPM_PolicyTicket No

TPM_PolicyPCR Yes—checks that PCRs have not changed when the
command is executed

TPM_PolicySigned No

TPM_PolicySecret No

TPM_PolicyNV No

TPM_PolicyDuplicationSelect Yes—specifies where a key can be moved

TPM_PolicyPassword Yes—sets a flag that requires a password at command
execution

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

222

Creating Policies
Incredibly complicated policies are possible but are unlikely to be used in real life. In
order to explain the creation of policies, this chapter introduces an artificial distinction
between different kinds of policies, which are described in detail:

• Simple assertion policy: Uses a single authentication to create a
policy. Examples include passwords, smart cards, biometrics,
time of day, and so on.

• Multi-assertion policy: Combines several assertions, such as
requiring both a biometric and a password; or a smart card and a
PIN; or a password, a smart card, a biometric, and a GPS location.
Such as policy is equivalent to using a logical AND between
different assertions.

• Compound policy: Introduces a logical OR, such as “Bill can
authorize with a smart card OR Sally can authorize with her
password.” Compound policies can be made from any other
policies.

• Flexible policy: Uses a wild card or placeholder to be defined
later. A policy can be created in which a specific term can be
substituted with any other approved policy. It looks like a simple
assertion, but any approved (simple or complicated) policy can
be substituted for it.

As mentioned, a policy is a digest that represents the means of satisfying the policy.
A policy starts out as a buffer that is the size of the hash algorithm associated with an
entity, but set to all zeroes. As parts of the policy are satisfied, this buffer is extended with
values representing what has happened. Extending a buffer is done by concatenating the
current value with new data and hashing the resulting array with the designated hash
algorithm. Let’s demonstrate this with the simplest of all polices: those than require only
one type of authorization to be satisfied.

Simple Assertion Policies
A simple Extended Authorization (EA) policy: the simple assertion policy, which consists
of a single authentication, can be one of the following types:

Password or HMAC (policies that require proof of knowledge of •
an object’s password)

Digital signatures (smart cards)•

Attestation of an external machine (a particular biometric reader •
attests that a particular user has matched, or a particular GPS
attests that the machine is in a particular location)

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

223

Physical presence (an indication such as a switch that proves •
a user is physically present at the TPM. While this is in the
specification, it is not likely to be implemented, so we will ignore
it in the following.)

PCRs (state of the machine on which the TPM exists)•

Locality (the software layer that originated the TPM command)•

Internal state of the TPM (counter values, timer values, and so on)•

Creating simple assertion policies can be done using the TPM itself, in three steps:

1. Create the trial session. This is as simple as executing the
following command:

TPM2_StartAuthSession

It’s passed a parameter TPM_SE_TRIAL to tell the TPM to start
a trial session, and a hash algorithm to use for calculating the
policy. This returns (among other things) the handle of a trial
session. It’s referred to as myTrialSessionHandle.

2. Execute TPM2 policy commands that describe the policy
(described shortly).

3. Ask the TPM for the value of the policy created with the
command by executing

TPM2_PolicyGetDigest

and passing it the handle of the trial session: myTrialSessionHandle).

4. End the session (or reset it if you want to use it again) by executing

TPM2_FlushContext

again passing it the name of the trial session: myTrialSessionHandle.

Because steps 1, 3, and 4 are common to all simple assertions, they aren’t repeated in
the following; we merely describe the second step for each command.

Passwords (Plaintext and HMAC) of the Object

Passwords are the most basic form of authentication used today, but they’re far from the
most secure. Nonetheless, because they’re in use in so many devices, it was important
that the TPM support them. (The TPM 1.2 did not support passwords in the clear—only
proof of knowledge of the password using an HMAC. The TPM 2.0 supports both.) It’s
assumed that when a password is used, the device provides for a trusted path between
the password entry and the TPM. If this doesn’t exist, facilities are present in the TPM 2.0

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

224

architecture to allow for using a salted HMAC session to prove knowledge of a password
without sending it in the clear, as seen in Chapter 13. When an object is loaded into a
TPM, the TPM knows its associated password. Therefore, the policy doesn’t need to
include the password. Thus the same policy can be used with different entities that have
different passwords.

Creating a simple assertion policy can be reduced to four steps:

1. Set the policy buffer to all zeroes, with the length equal to the
size of the hash algorithm.

2. Concatenate TPM_CC_PolicyAuthValue to this buffer.

3. Substitute the value of TPM_CC_PolicyAuthValue from its
value in part 2 of the specification.

4. Calculate the hash of this concatenation, and put the result in
the buffer. This end result is the policy for a simple assertion.

Figure 14-1. Initializing the Policy

Figure 14-4. Hashing the result provides a new value for the buffer

Figure 14-2. Concatenation of the buffer with the policy data per the Specification

Figure 14-3. Substituting the value of TPM_CC_PolicyAuthValue

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

225

When this policy command is executed, the policy buffer of the session is set to this
final value. In addition, a flag is set in the TPM’s session specifying that when a command
with an object in it that requires authorization is used, a password session must be
provided with that command and the password provided must match that of the object.

Similarly, when a policy is created to use the HMAC assertion (TPM2_PolicyAuthValue),
two things happen

1. The policy is extended with the value TPM_CC_PolicyAuthValue.

2. A flag is set in the TPM’s session indicating that when objects
requiring authorization are used, a separate HMAC session
is required. The TPM checks the password HMAC against the
object’s authorization data and allows access if they match
(see Chapter 13.)

If you’re using a trial session to create the policy, you accomplish this by executing
the command TPM2_PolicyAuthValue and passing it the handle of the trial session.

This inherently means that when you’re using passwords, either in plaintext or as
an HMAC, either the plaintext password or the HMAC must be included to authorize a
command with a policy session. The fact that TPM_CC_PolicyAuthValue appears twice
in the previous explanation isn’t a typo: the repetition means the choice of password
or HMAC isn’t decided when the policy is created, but rather when the non-policy
command is executed. It’s up to the user of the entity, not the creator of the entity, to
decide how they will prove their knowledge of the password to the TPM.

Passwords aren’t the most secure means of authentication. A much more secure
approach is to use a digital signature, often implemented with a smart card such as a
United States Department of Defense (DoD) Common Access Card (CAC card) or United
States Federal Personal Identity Verification (PIV) card.

Passwords of a Different Object

A new (and very useful) assertion policy in TPM 2.0 is an assertion that the user knows
the password of an entity different from the one being used. Although this might seem odd
at first, it’s particularly useful because of the difference in the behavior of NVRAM entities
versus key objects. When the password of a key object is changed with TPM2_ChangeAuth,
what is really happening is that a new copy of the key is being created that has a new
password. There is no guarantee that the old copy is discarded. This is because key objects
normally reside in files outside the TPM, and the TPM therefore can’t guarantee that the
old copy of the key file has been erased. However, NV entities reside entirely in the TPM:
if their password is changed, it really is changed. The old copy can no longer be used.

This means if a key is created and a policy is created for it that requires the user
to prove knowledge of an NV entity’s password, it’s possible to change the password
necessary to use the key without worrying that the old password can still be used to
authorize the key. In this case, changing the password of the NV entity effectively changes
the password of the key. TPM 2.0 allows you to make authorization of a key dependent on
knowing an NVRAM entity’s password.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

226

This further provides opportunities to manage the passwords of a large number of
entities. Suppose you create a policy that points to a particular NV index’s password, and
then you associate that policy with a large number of keys. You can effectively change the
password of all those keys by changing the password of the one NV index.

The TPM2_PolicySecret command requires you to pass in the name of the object
whose password is required to satisfy the policy. It’s perhaps not obvious, but when
creating the policy for an object, you can’t pass in the name of the object being created.
This is because the name of the object depends on the policy, and if the policy depends
on the name of the object, a vicious circle is created. This explains why the
TPM2_PolicyAuthValue command is also needed. It provides a way of pointing to the
authorization of the object being authorized.

To calculate the policy in a trial session, you execute the command TPM2_PolicySecret
and pass it the handle of the trial session, as well as the handle of the object whose
authorization will be used. Doing so extends the session policy buffer with
TPM_CC_PolicySecret || authObject→Name || policyRef. The variable of note that
is passed to the command is, of course, a handle for the object whose authorization will
be used. As explained regarding names, although the handle of that object is passed to
the TPM when executing TPM_CC_PolicySecret, the TPM internally uses the Name of the
object in extending the session policy buffer. This prevents a change in the handle from
causing a security exposure.

Technically, you need to include an authorization session for the handle of the
object being authorized when executing this command. Although the specification
indicates that it doesn’t need to be satisfied in a trial session, most implementations
require it. Therefore you must also include a correct password or HMAC session when
executing this command. If you instead calculate the policy without using the TPM, this
requirement isn’t necessary.

Digital Signatures (such as Smart Cards)

It wasn’t generally possible to authenticate use of a TPM 1.2 entity using a private key.
In TPM 2.0, this has changed. It’s now possible to require a digital signature as a form of
access control. When a policy is formed using this assertion, the policy value is extended
with three values: TPM_CC_PolicySigned, SHA2561(publicKey) and a policyRef.
(A policyRef is used to identify precisely how the signed assertion will be used. Often it
will be left as an Empty Buffer, but if a person is asked to authorize an action remotely,
that person may want to precisely identify what action is being authorized. If the
policyRef is part of the policy, the authorizing party will have to sign that value when
authorizing the action.)

This can be done using a trial session by using the TPM2_PolicySigned command;
but before this can be done, the TPM must know the public key used to verify the
signature. This is done by loading that public key into the TPM first. The easy way to do
this is to use a TPM2_LoadExternal command and load the public key into the
TPM_RH_NULL hierarchy. You do so with the command TPM2_LoadExternal, passing in
the public key structure.

1SHA256isusedthroughoutthisbookasthehashalgorithmforeverythingexceptPCRs.However,
technicallyyoucanuseanyhashalgorithmthatmatchesthatchosenwhenthepolicyiscreated.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

227

This returns a handle to the loaded public key, for now called aPublicHandle. Then
you execute the command TPM2_PolicySigned, passing in the handle of the trial session
and the handle of the loaded public key.

Satisfying this policy is trickier. Proving to the TPM that the user has the smart card
with the private key that corresponds to this public key is a bit more involved. This is done
by using the private key to sign a nonce produced by the TPM. You see this in detail at the
end of this chapter.

Another assertion can be required: that the TPM resides in a machine that is healthy.
This is done with PCRs.

PCRs: State of the Machine

Platform Configuration Registers (PCRs) in a TPM are typically extended by preboot or
postboot software to reflect the basic software running on a system. In the 1.2 design, only
a few things could use this authorization. Further, because using PCRs to restrict use of
TPM 1.2 keys is a brittle operation, the restriction made this feature difficult to use.

In the 2.0 design it’s possible to require that PCRs contain particular values for
authorizing any command or entity. The policy merely has to specify which PCRs are
being referenced and the hash of their values. Additionally, TPM 2.0 includes multiple
ways of handling the brittleness. Again, all policies begin as a variable of size equal to the
hash algorithm and initialized to zero. To use the PCR assertion, the policy is extended with
TPM_CC_PolicyPCR || PCRs selected || digest of the values to be in the PCRs selected.

If a trial session is being used to calculate this policy, the user first selects the PCRs
they wish to have defined values and puts them into a TPML_PCR_SELECTION. The user
then calculates the hash of the concatenation of the defined values, calling the result
pcrDigest. Then the user executes the command TPM2_PolicyPCR, passing in again the
handle of the trial session and the PCRs selected and the pcrDigest just calculated.

When a user wishes to use an entity locked to PCRs, they execute the TPM2_PolicyPCR
command, passing it the list of PCRs selected and the expected value of pcrDigest.
Internally the TPM calculates the digest of the then-current values of those PCRs, checks
it against the passed in value, and, if they match, extends the session’s digest with
TPM_CC_PolicyPCR || PCRs selected || digest of the values currently in the PCRs selected.

This might leave a security hole—what if the PCR values change after the assertion
is made? The TPM protects against this by recording its PCR-generation counter in the
TPM session state as TPM_PolicyPCR is executed. Each time any PCR is extended, the
TPM generation counter is incremented. When the policy session is used to authorize a
command, the current state of the generation counter is matched against the recorded
value. If they don’t match, it indicates that one or more PCRs have changed, and the
session is unable to authorize anything.

As added flexibility, the platform-specific specification can indicate that certain
PCRs will not increment the TPM generation counter. Changes to those PCRs will not
invalidate the session.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

228

Locality of Command

The 1.2 design had a characteristic called locality that was used to designate which
software stack originated a command when it was sent to the TPM. The main usage in
1.2 was to provide proof that a command originated when the CPU was in a peculiar mode
caused by entering either the Intel TXT or AMD-V command (in Intel or AMD processors,
respectively). These commands are used for the Dynamic Root of Trust Measurement
(DRTM) when the machine is put into a vanilla trusted state while in the midst of
operations, so that the state of the machine’s software can be reported in a trusted manner.

In 2.0, just as PCR assertions are extended for use whenever authorization can
be used, locality is extended to a general-purpose assertion. When locality is used as an
assertion in a policy, the session policy digest is extended with TPM_CC_PolicyLocality ||
locality(ies).

When using the trial session to calculate the policy, you execute the command
TPM2_PolicyLocality, passing in the handle of the trial session and the locality structure,
TPMA_LOCALITY, found in part 2 of the specification.

When satisfying a locality for a session, the user uses TPM2_PolicyLocality to pass
the localities to which the session is to be bound. Then two things happen:

1. The session digest is extended with TPM_CC_PolicyLocality
|| locality(ies).

2. A session variable is set, recording the locality passed in.

When a command is then executed with that session, the locality from which the
command is coming is compared to the locality variable set in the session. If they don’t
match, the command will not execute.

In the 1.2 specification, there were five localities—0, 1, 2, 3, and 4—which were
represented by a bitmap in a single byte. This allowed you to select several localities at
a time: for example, 0b00011101 represented the selection of localities 0, 2, 3, and 4. In
the 2.0 specification, this result can be easily achieved using the PolicyOr command;
but to reduce the cognitive load on people moving from 1.2 to 2.0, the localities 0–4 are
represented the same way as before.

The problem with this solution is that it limits the number of localities available. It
was possible to add three more localities, represented by bits 5, 6, and 7. However, the
mobile and virtualization workgroups in TCG wanted more. This resulted in a bit of a
hack in the specification. To extend the number of localities, the byte values above the
fifth bit are used to represent single localities. This results in localities of the form 0, 1, 2,
3, 4, 32, 33, 34, ...255. That is, there is no way to represent localities 5–31. This is shown in
Table 14-2. Note the change that happens when the value is 32.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

229

Localities can be used in a number of places. They can represent the origin of a
command used to create an entity. They can also be used to lock functions so they can be
used only if the command originates from a certain location. In 1.2, the locality was used
to allow the CPU to control resetting and extending certain PCRs (for example, 17 and 18)
to record putting the PC in a known state before doing a DRTM. Trusted Boot (tboot) is a
program available on SourceForge2 that shows how this is used; Flicker,3 a program from
CMU, used tboot to do run security-sensitive operations in a memory space separate
from the OS.

Localities therefore tell the TPM where a command originated. The TPM inherently
knows the values of its internal data, and localities can also be used for authorization
restrictions.

Table 14-2. Locality Representations and the Locality(ies) They Represent

Value Binary Representation Locality(ies) Represented

0 0b00000000 None

1 0b00000001 Locality 0

2 0b00000010 Locality 1

3 0b00000011 Localities 0, 1

4 0b00000100 Locality 2

5 0b00000101 Localities 0, 2

6 0b00000110 Localities 1, 2

7 0b00000111 Localities 0, 1, 2

8 0b00001000 Locality 3

9–30

31 0b00011111 Localities 0, 1, 2, 3, 4

32 0b00100000 Locality 32

33 0b00100001 Locality 33

34 0b00100010 Locality 34

35–254

255 0b11111111 Locality 255

2http://sourceforge.net/projects/tboot/.
3http://flickertcb.sourceforge.net.

http://sourceforge.net/projects/tboot/
http://flickertcb.sourceforge.net/

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

230

Internal State of the TPM (Boot Counter and Timers)

TPM 1.2 had both an internal timer that measured the amount of time elapsed since
the TPM was last powered on (and that could be correlated with an external time) and
internal monotonic counters. Neither could be used as authentication elements. TPM 2.0
has a timer, a clock, and boot counters, which can be used in complicated formulas to
provide for new assertions. A boot counter counts the number of times the machine has
been booted. The timer is the amount of time since the TPM started up this time. The
clock is similar to a timer, except that it (mostly) can only go forward in time, can be set
equal to an external time, and stops whenever the TPM loses power.

These can be used to restrict usage of a TPM entity to only work when a boot counter
remained unchanged, or when the clock is read between certain times. The entity’s use
can also be restricted to daylight hours. The latter is the most likely use case—restricting a
computer to accessing files only during business hours helps protect data if a hacker gets
access to the network at night.

The TPM can always check the values stored in its internal clock and boot counter, so
they’re referred to as internal states. Internal state assertions require that a policy session
be created before the command is executed and that the assertion be satisfied before the
command is executed. They need not be true when the command is actually executed.

This is done by extending a policy with TPM_CC_PolicyCounterTimer || HASH(Time
or Counter value || offset to either the internal clock or the boot
counter || operation). The operation parameter indicates the comparison being
performed. The table of operations is in part 2 of the specification: a set of two-byte values
representing equality, non-equality, greater than, less than, and so on.

Using the trial session to create such a policy involves sending TPM2_
PolicyCounterTimer with four parameters: the handle of the trial session; an indication
as to whether the comparison is being done to the timer, the clock, or the boot counter;
something to compare that value to; and the comparison being done.

Although these values are considered the TPM’s internal state values, it’s also true
that the TPM can read values that are in any of its NV index locations. Those can also be
used for policy commands.

Internal Value of an NV RAM Location

A new command for the TPM 2.0 specification allows the use of an entity based on the
value stored in a particular NVRAM location. For example, if an NV index is associated
with 32 bits of memory, you can gate access to a TPM entity based on whether one of
those bits is a zero or a one. If each bit is assigned to a different user, a user’s access to a
particular entity can be revoked or enabled by simply changing a single bit in an NVRAM
location. Of course, this means the person with authority to write to that NVRAM location
has the ultimate authority for using the key.

This command is more powerful than that, because logical operations on the
NVRAM location are allowed. So you could say that the entity could be used only if

6 <= NVRAM location <8 OR 9 < NVRAM location < 23

was a true statement.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

231

NVRAM locations in a 2.0 TPM can be set to be counters. This means you can use
them in clever manipulations in a policy that can make a counter useable only n time. An
example of this is shown later in the chapter.

This works by extending the policy buffer with TPM_CC_PolicyNV || calculated
Value || name of NV location. The calculated value is HASH(value to compare to
|| offset into the NVRAM location || number that represents the operation),
where the operation is one of the following:

Equals.•

Not equal.•

Signed greater than.•

Unsigned greater than.•

Signed less than.•

Unsigned less than.•

Unsigned greater than or equal.•

Signed greater than or equal.•

Unsigned less than or equal.•

Signed greater than or equal.•

All bits match the challenge.•

If a bit is clear in the challenge, it’s also clear in memory.•

Using these functions, you can allow all values greater than 1 or less than 1,000.
When you get to multifactor authentication, you can combine these to have a value that is
between 1 and 1000, including or not including the endpoints.

You can use a trial session to create this policy by executing TPM2_PolicyNV with the
same parameters used in the TPM2_PolicyCounterTimer command: the handle of the
trial session, the index being compared (and the offset from the beginning of the index),
the thing to compare against, and how it is to be compared.

If you consider an entity like a lock, the value of the NVRAM is like the tumblers.
If their state is correct, the entity can be used. Locks open if their internal state is correct.

However, TPM 2.0 allows something more interesting: an entity can be used according
to the state of a device external to the TPM.

State of the External Device (GPS, Fingerprint Reader,

and So On)

Perhaps one of the most interesting new assertions in the TPM design is the ability
to use an assertion that is dependent on the state of an external device. The device is
represented by a public/private key pair. The state of the device may be anything the
device can use its private key to sign (together with a nonce from the TPM). If the device
is a biometric, it may be as simple as “Bob just authenticated himself to me.” If it’s a
GPS unit, it may be “My current position is Baltimore.” If it’s a time service, it may be

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

232

“The current time is business hours.” The assertion identifies both the public key that
represents the external device and the value expected. The TPM does nothing more
than compare the signature and the identified information with what it’s expecting. It
doesn’t perform calculations on the resulting information, so the device making the
representation needs to decide if its input matches the thing it’s signing.

This provides flexibility for a biometric: if Bob has registered several fingerprints
with the matcher, the TPM doesn’t need to know which one was signed with—just that
the match corresponds to “Bob.” A GPS coordinate need not be exact—just in a specified
area. The assertion need not specify an exact time, but rather an identifier for the range
of times that are acceptable. However, the flexibility isn’t entirely general. This doesn’t
say “Some fingerprint reader attests that Bob has authenticated to the device”; it says
“This particular fingerprint reader (as demonstrated by a signature) attests that Bob has
authenticated to the device.” This allows the creator of the policy to determine which
biometric (or other devices) it trusts to not be easily spoofed.

Once this policy is satisfied, there are no further checks, so it’s possible for an
assertion to no longer be satisfied when the TPM actually executes the command.

Creating the policy is done by starting with a variable of size equal to the hash
algorithm and initialized to zero. This is then extended with TPM_CC_PolicySigned ||
SHA256(publicKey) || stateOfRemoteDevice, where stateOfRemoteDevice consists of
two parts: the size of the description followed by the description.

If you’re using a trial session to create this policy, you execute the command
TPM2_PolicySigned. Again, you must pass the handle of the trial session, the handle
of the public key that corresponds to the private key of the device, and the state of the
remote device that it will sign when the policy is satisfied. For example, if the remote
device is a fingerprint reader, the device may sign “Sally correctly authenticated.”

Sometimes the object’s creator doesn’t really know under what circumstances they
want a key to be used. Perhaps the key will be used in case of an emergency, and the
creator doesn’t know who will use the key or how. This is a use case for a wild card policy.

Flexible (Wild Card) Policy

One major problem with the TPM 1.2 design was the brittleness of PCRs. When an entity
was locked to a PCR, it was not possible to change the required values of the PCR after
it was so locked. PCR0 represents the BIOS firmware, which is security critical. If PCR0
changed, it could indicate a security breach. As a result, applications like Microsoft
BitLocker use it for security. However, BIOS firmware may need to be upgraded. When it’s
upgraded, the value of PCR0 will change, which makes anything locked to that PCR no
longer useable.

Programs got around this limitation by decrypting keys, upgrading the BIOS, and
then re-encrypting the keys to the new value of PCR0. However, this process is messy
and leaves keys exposed for a short period of time while the upgrade is taking place. As
a result, it was important that EA be able to allow for changing of the values to which a
PCR was locked without decrypting the locked data. But it needed to also be obvious
to anyone who wished to check the policy under what circumstances the policy could
be changed. A number of possibilities were considered, including having yet another
authorization whose only use was to change the policy.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

233

The solution chosen was clever and is given using the command
TPM2_PolicyAuthorize, which I call a wild card policy. A wild card policy is owned by
a private key whose public key is associated with the wild card. In poker, a wild card
can substitute for any card the holder of the wild card wishes. A wild card policy can
substitute for any policy the owner of wild card wishes. Any policy approved by the owner
of a wild card can be used to satisfy the wild card policy. Policies also can be restricted
with a wildCardName that can be given to the wild card when it’s created. This allows
the owner of the wild card to specify that only wild cards with a particular name can
substitute for a particular policy. A wild card associated with an OEM’s BIOS signing key
could theoretically be used to approve any BIOS signed by the OEM.

The wild card policy is created in a way similar to the command used for the state
of an external device, by extending a policy session with TPM_CC_PolicyAuthorize
|| keySign→nameAlg || keyName || wildCardName. Just as with the PolicySigned
assertion, if you’re using a trial session to create a wild card policy, you first have to load
the public key into the TPM (using the TPM2_LoadExternal command) and then execute
the PolicyAuthorize command.

TPM2_LoadExternal returns the handle of the loaded public key, here called
aPublicHandle. Then you can execute TPM2_PolicyAuthorize, passing it the handle of
the trial session, wildCardName, and aPublicHandle.

TPM2_PolicyAuthorize is one of the most useful policies in the TPM, because it’s
the only way to effectively change a policy after an object has been created. This means
if objects have been locked to one set of PCR values (corresponding to a particular
configuration), and the configuration has to change, the objects’ policy can be effectively
changed to match the new set of configuration values. You see a number of other uses as
well in the “Examples” section.

Command-Based Assertions
Although not strictly an assertion, it’s possible to restrict a policy so that it can only be
used for a particular command. For example, you can restrict a key so that it can be used
for signing but not to certify other keys. If this is done, then the policy can only be used
to do that one particular command. Generally this isn’t done as a single assertion, but
it could be. By declaring in a key’s policy that it can only be used for signing, the key is
prevented either from certifying another key or from itself being certified. This is because
when a key is certifying or being certified, it needs to provide an authorization that can’t
be provided.

To create such a policy assertion, you create a policy variable of size equal to the
hash algorithm and initialize it to zero. It’s then extended with the value
TPM_CC_PolicyCommandCode || the command code to which the policy
is to be restricted.4 If you’re using a trial session to create this policy, you execute
TPM2_PolicyCommandCode, passing it the handle of the trial session and the command code.

Usually, if you’re restricting a TPM entity like a key to only be used in a single
command, you also want to authenticate use of that key for that command. This requires
that more than one restriction be placed on the key, which is the subject of multifactor
authentication.

4TheTPM_CClistingtableisfoundinpart2ofthespecification.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

234

Multifactor Authentication
The TPM knows how to authenticate using assertions. It also can be told to require more
than one of them. For example, it may be asked to specify that both a fingerprint and a
smart card be used to provide authentication to log in to a PC.

Policies, as you’ll see, build together in a way similar to the way PCRs are extended.
They start with an initial value of all zeroes (the number of zeroes depends on the size
of the hash algorithm used to create the policy). When a policy command is invoked,
the current policy value is extended by appending a new parameter to the old value,
hashing the result, and then replacing the old value with the result of this calculation.
This calculation is called extending in PCRs. A logical AND in a policy is accomplished
by extending the new assertion into the policy. Just like a PCR, the policy is initialized to
all zeroes before the first assertion, but later assertions build on the value created by the
previous assertion.

This means if you’re using a trial session to build this kind of policy, you start and
end exactly the same way—you just add more commands in the middle to correspond to
the various ANDed assertions.

Example 1: Smart card and Password

If you wish to require that both a smart card that signs with a key, whose public part is S,
and a password be used in a policy, you create a policy by first extending

TPM_CC_PolicySigned || SHA256(publicKey) || 0x0000 = 0x0000060 || SHA256(S)
||0x00005

into a buffer of all zeroes. You then extend a requirement for proving knowledge of a
password by extending

TPM_CC_PolicyAuthValue=0x00000016B

into the result.

If you wish to also require that the command be executed in locality 4, you extend

TPM_CC_PolicyLocality || locality4

Extending a new requirement is equivalent to a logical AND.
Using a trial session, you first load the public key into the TPM and then execute

the three commands used in each of the simple assertion policies: TPM2_PolicySigned,
TPM2_PolicyAuthValue, and TPM2_PolicyLocality.

5Inthiscaseyoudon’tassignaPolicyReferencetothissignature,sothelastappendedvalueis
0x0000,whichis2bytesof0,whichmeansthevalueofthePolicyReferenceofthesignature
isEmptyBuffer.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

235

Example 2: A Policy for a Key Used Only for Signing

with a Password

In this example, Bob creates a key that requires a key only be used for signing, and only if
a password is presented for the key. Start with a policy of all zeroes, and first extend it with

TPM_CC_PolicyCommandCode || TPM_CC_Sign = 0x0000016C || 0x0000015D

Then extend it again with

TPM_CC_PolicyAuthValue =0x000016B

Example 3: A PC state, a Password, and a Fingerprint

In this example, Bob creates a key which requires that PCR1 be equal to an
approvedPCRdigest, a password, and a fingerprint. When crafting a policy that involves
a PCR digest, it’s generally good practice to start with that term first. This is because if it
fails, there is no need to bother the user with a password and a fingerprint.

You use the TPM to create this policy value as follows:

1. Start a trial session.

2. Use TPM2_PolicyPCR to lock the policy to approvedPCRdigest.

3. Use TPM2_PolicyAuthValue (to require a password at execution).

4. Load the publicKey of the fingerprint reader.

5. Use TPM2_PolicySigned pointing to the public key and
stateOfRemoteDevice (which is “Bob’s finger”).

6. Get the value of the policy from the TPM.

7. End the session.

Example 4: A Policy Good for One Boot Cycle

In this example, the IT administrator gives permission (for example, to a technician) for
a previously created key to be used only during this boot cycle. First the administrator
creates a key that has a policy controlled by a wild card. When the administrator wants
to allow the technician to use the key, the admin reads the current boot counter value
from the PC using TPM2_GetCapability and authorizes a policy for the key that states that
the value of the boot counter must be its current value. The admin does this using their
private key to sign this new policy, called newPolicy. If the key is in his own TPM, he can
use the command TPM2_Sign to sign it. The admin sends this policy and signature to
the technician.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

236

The technician loads the public key into the TPM, using TPM2_LoadExternal, and then
uses the TPM2_VerifySignature command to verify the signature of the new policy. This
command returns a ticket to the technician.

The technician uses the key by starting a policy session and then executing
TPM2_PolicyCounterTimer with an offset pointing to the boot counter. This satisfies
the newPolicy. The technician then executes TPM2_PolicyAuthorize, feeding it the
newPolicy and the ticket, and points to the admin’s public key. The TPM verifies that the
ticket is valid for the newPolicy, using the admin’s public key, and then substitutes the
current policy buffer with the wildCardPolicy. At this point, the technician can use the
key during this boot cycle.

When the PC is rebooted, the boot counter is incremented. If the technician tries to
use the policy again, they can never satisfy newPolicy, so they can’t use the key.

Example 5: A Policy for Flexible PCRs

In this example, an IT administrator wants to lock a full-disk-encrypting software key
to a set of PCRs that represent (among other things) the BIOS firmware. But the admin
realizes that the BIOS might need to be updated and so uses TPM2_PolicyAuthorize to
provide flexibility as to what PCR values are used to release the hard-disk encryption keys.

The admin’s key is created with only TPM2_PolicyAuthorize, but the admin authorizes
a new policy that requires the PCRs to be equal to the initial PCR values. The admin then
uses TPM2_VerifySignature to create a ticket that can be used to validate use of that
new policy.

When the disk-encryption key is to be decrypted, the machine needs to do the
following:

1. Start a new policy session.

2. Use TPM2_PolicyPCR to replicate the new policy in the TPM.

3. Use TPM2_PolicyAuthorize (with the public administrator
key, the new policy, and the policy ticket) to cause the TPM to
change the internal policy buffer of its session to the original
PolicyAuthorize policy.

4. Use the satisfied policy session to release the disk-encryption key.

If the admin ever needs to change the PCR values that are validated, the admin can
send the user a newly signed policy corresponding to the new PCR values, and the user
can use that to create a new ticket to use after the PCRs have changed.

Example 6: A Policy for Group Admission

In this example, a group of people are given access to use a department key. But as
people come and go from the department, some people’s access is removed and
other people’s access is granted. Each member of the department has access to a
private key that represents them. You can do this with a clever use of TPM2_PolicyNV,
TPM2_PolicyAuthorize, and TPM2_PolicySigned.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

237

First you create a NV index that has 64 bits (assuming there will never be more than
64 people in your department). Write authority is given only to the IT administrator, using
the admin’s private key. The admin writes it with all zeroes, noting the value of the index
name. The admin then creates the department key with only a PolicyAuthorize policy,
with the public key corresponding to the IT administrator of the department.

The IT administrator assigns each member of the group a bit in the NV space. To
give a user the right to use the key, the admin creates and approves a policy that requires
the corresponding bit of the NVRAM index to be a 1 (using PolicyNV) and that the
appropriate user use their private key for authentication, using PolicySigned. When the
admin wants to remove a user’s ability to use the key, the admin changes the bit in the
NVIndex that corresponds to that user to a 0. The admin then signs each of these new
policies and gives them to the appropriate user.

When a user wants to use the key, they do the following:

1. Start a policy session.

2. Executed a PolicyNV command to verify the user is still in the
department.

3. Execute a PolicySigned command to prove the user is the
corresponding person.

4. Execute a PolicyAuthorize command to change the TPM’s
internal policy buffer to the PolicyAuthorize policy.

5. Use the key.

Example 7: A Policy for NV RAM between 1 and 100

As noted earlier, this is as simple as executing two commands: one to say the NV RAM
value is greater than 1 and another to say it’s less than 100. This only allows values
2, 3, 4, ...99.

Compound Policies: Using Logical OR in a Policy
The TPM2_PolicyOR command completes the logical constructions that can be done
with policies and makes it possible to create useful policies that will do anything logically
feasible. It lets you join more than one policy in multiple branches, any of which can be
taken in satisfying a compound policy, as shown in Figure 14-5.

Although TPM2_PolicyOR commands can be used in more complicated settings, it’s
easiest to create individual policies for specific means of authorizing use of an entity and
then use TPM2_PolicyOR to create a compound policy. Usually this is done by creating
simple policies by ANDing assertions together to represent either a person or a role, and
then ORing the simple policies together.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

238

Suppose the following things happen:

1. Dave authorizes himself using a policy created by a fingerprint
together with a password when at one machine.

2. Dave authorizes himself using a password and smart card.

3. Sally uses her smart card and an iris scanner to authorize herself.

4. The IT administrator can only use his authorization to
duplicate a key and must use a smart card when the system is
in a state defined by PCR0-5 having specific values.

This can be represented pictorially using circuit diagrams as follows.

Figure 14-5. A Compound Policy as a Circuit Diagram

The easy way to create this compound policy is to start by creating four individual
branch policies corresponding in the picture to Dave1, Dave2, Sally, and IT.

The first policy (Dave1) defines that Dave must authenticate himself with an external
device (a fingerprint reader) and have it testify that Dave has authenticated himself. Dave
must then present a password to the TPM. As you have seen, this is as simple as doing
the following:

1. Start a trial session.

2. Use TPM2_PolicySigned (with the fingerprint reader’s public
key and appropriate policyRef).

3. Use TPM2_PolicyAuthValue.

4. Get the value of the policy from the TPM. Call this policyDave1.

5. End the session.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

239

The second policy (Dave2) has Dave present a password to the TPM and then use
his smart card to sign a nonce from the TPM to prove his is the authorized owner of the
smart card:

1. Start a trial session.

2. Use TPM2_PolicyAuthValue.

3. Use TPM2_PolicySigned (with the smart card’s public key).

4. Get the value of the policy from the TPM. Call this
policyDave2.

5. End the session.

The third policy states that Sally must first use her smart card to sign a nonce from
the TPM to prove she is the authorized owner of her smart card and then authorize
herself to an external device, an iris scanner, and have the external device testify to the
TPM that Sally has authenticated herself:

1. Start a trial session.

2. Use TPM2_PolicySigned (with the smart card’s public key).

3. Use TPM2_PolicySigned (with the iris scanner’s public key
and appropriate policyRef).

4. Get the value of the policy from the TPM. Call this
policySally.

5. End the session.

Finally, the IT administrator’s policy requires the administrator to use his smart
card to sign a nonce produced by the TPM and then also check that PCRs 0–5 are in the
expected state. Furthermore, the IT administrator can only use this authorization to
duplicate the key:

1. Start a trial session.

2. Use TPM2_PolicySigned (with the smart card’s public key).

3. Use TPM2_PolicyPCR (with PCRs selected and their
required digest).

4. Use TPM2_PolicyCommandCode with TPM_CC_Duplicate.

5. Get the value of the policy from the TPM. Call this policyIT.

6. End the session.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

240

Making a Compound Policy
Each of these policies, by itself, could be assigned to a TPM entity such as a key. However,
you wish to allow any of the policies to be used to authenticate access to a key, and you do
this using the TPM2_PolicyOR command:

1. Start a trial session.

2. Use TPM2_PolicyOR, giving it the list of policies to be allowed:
policyDave1, policyDave2, policySally, and policyIT.

3. Get the value of the policy from the TPM. Call this policyOR.

4. End the session.

Policies created this way on one TPM will work fine on any TPM. One restriction
on PolicyOr is that it can only be used to OR together up to eight policies. However, just
as with electronic circuit design, PolicyORs can be compounded together to create the
equivalent of an unlimited number of ORs. For example, if X is the result of 8 policies
ORed together with TPM2_PolicyOR, and Y is the result of a different 8 policies ORed
together with PolicyOR, you can apply TPM2_PolicyOR to X and Y to create the equivalent
of a PolicyOr of 16 different policies.

Example: A Policy for Work or Home Computers
John has a home PC with a fingerprint reader and a work PC with a smart-card reader.
He wants to authorize reading his cloud-based encrypted data from either computer.
He does this by locking a key to a policy that requires a fingerprint reader from his home
computer and his smart card (using his work PC’s smart-card reader) for work.

He first creates a policy for his home computer. He gets the public key of the
fingerprint reader and sets it up to sign “John’s fingerprint” when he swipes his finger on
that reader:

1. Start a trial session.

2. Use TPM2_LoadExternal to load the fingerprint reader’s public
key into the home computer’s TPM.

3. Use TPM2_PolicySigned (with the fingerprint reader’s public
key and appropriate policyRef).

4. Get the value of the policy from the TPM. Call this
HomeFingerprintPolicy.

5. End the session.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

241

John now goes to his work computer:

1. Start a trial session.

2. Use TPM2_LoadExternal to load the smart card’s public key
into the work computer’s TPM.

3. Use TPM2_PolicySigned (with the smart card’s public key and
NULL policyRef).

4. Get the value of the policy from the TPM. Call this policy
WorkSmart cardPolicy.

5. End the session.

Now John can create the combined policy, which can be satisfied with both
computers:

1. Start a trial session.

2. Use TPM2_PolicyOr with both HomeFingerprintPolicy and
WorkSmart cardPolicy listed.

3. Get the value of the policy from the TPM. Call this policy
WorkOrHomePolicy.

4. End the session.

This is the policy John uses when creating a key that he will use to identify himself to
the cloud. He duplicates this key to his other computer, and then he can securely use this
key on either computer.

Considerations in Creating Policies
In most cases, policies should be considered to represent roles when using TPM
entities—and usually there are only a few possible roles.

End User Role
This represents the authentication that is satisfied for a user to use an entity. Using an
entity means doing something like one of the following:

Signing with a key•

Reading a NV location•

Writing an NV location•

Quoting with a key•

Creating keys•

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

242

Administrator Role
An administrator of an entity may do different things for different entities. For NVRAM,
they may be given the responsibility of managing the limited resource of available
NVRAM. This would include the following:

For NV:•

Creating and destroying NV indexes•	

For keys:•

Authorizing duplication•	

Changing authorization with •	 PolicyAuthorize

Understudy Role
In the event that the user of a key leaves the company or is unable to use a key necessary
to obtain some enterprise data, it’s important that another person (for example, the user’s
manager) be able to use the key. This is an understudy role.

Office Role
An office role consists of a combination (PolicyOr) of an enterprise administrator role
and the user’s role.

Home Role
A home role consists of a combination of a user acting as an administrator and acting as an
end user. It may also include using different roles for using an entity on different machines,
because different forms of authentication may be available on different machines. (For
example, one machine may have a biometric reader and another may not.)

Once the roles are defined, policies can be created for them. Once the policies are
created, they can be reused whenever entities are created, obviating the need to re-create
the policies each time.

Using a Policy to Authorize a Command
You’ve seen how to satisfy a number of simpler policies. In order to satisfy any policy so
that an object that requires the policy can be used, the steps are always the same:

1. Start a policy session.

2. Satisfy the policy for that session (this can require multiple steps).

3. Execute the command.

4. End the session.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

243

This is very similar to the way policies are created, but satisfying a policy often
requires additional steps. In a high-level API, most of the grunt work of satisfying a policy
is done for you; but if you’re talking directly to the TPM, some details are required to
achieve this.

Starting the Policy
Starting the PolicySession is easy, as shown in Chapter 13. It’s done with the command
TPM2_StartAuthSession. This command returns a bunch of stuff, including a session
handle, here called myPolicySessionHandle; and a nonce, created by the TPM, here
called nonceTPM. You need both of these variables to satisfy the policy.

Satisfying a Policy
The considerations for satisfying the different kinds of policies—simple assertions,
multifactor assertions, compound assertions, and flexible assertions—are slightly
different, so let’s consider them separately. It’s important to remember that the order
in which a policy is satisfied is important. A policy constructed with a TPM2_PolicyPCR
followed by TPM2_PolicyPassword is different from a policy constructed with
TPM2_PolicyPassword followed by TPM2_PolicyPCR. In general, policy commands
aren’t commutative.

Simple Assertions and Multifactor Assertions

Most simple assertions are easy to apply to a policy. Password, PCR, locality, TPM
internal state, internal state of an NV RAM location, and command-based assertions are
asserted in the same way as when the policy was created, except instead of using a trial
policy, you use the policy handle myPolicySessionHandle. Other commands that require
signature verification (the TPM2_PolicySigned command with or without a policyRef)
require more work.

For example, if you’re asserting that a password must be used to satisfy the policy,
you execute the command TPM2_PolicyPassword. The password isn’t actually passed at
this time. This is just telling the session that when the command is finally executed with
the object, the user must prove at that time that they know the password by passing it in
either as a plaintext password or as an HMAC in the session.

To satisfy TPM2_PolicySigned, a signature is needed, and the signature is over a
hash that is formed in part from the nonceTPM returned by the last use of the session.
Additionally, the TPM must have the public key loaded so that it can verify the signature.

Loading the public key is done exactly the same way you did it to create the session,
using the TPM2_LoadExternal command. This returns a handle to the loaded public key,
here called aPublicHandle. You use this when calling the PolicySigned command, but
first you have to pass in a signature. To do this, you first need to form a hash and sign it.
The hash is formed by

aHash = HASH(nonceTPM || expiration =0 || cpHashA = NULL || policyRef = 0x0000)

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

244

where nonceTPM was returned by the TPM when the session was created, expiration is all
zeroes (no expiration), cpHashA = Empty Auth, and policyRef is emptyBuffer. (If you’re
using this for verification of a biometric reader, then policyRef is equal to the name of
the person whose biometric was verified). The private key is used to sign this hash; and
when signed, the result is called mySignature.

Next you execute the TPM2_PolicySigned command, passing in the handle of the
session, APublicHandle, and mySignature. At this point, the TPM checks the signature
internally using the public key, and if it’s verified, extends its internal session policy buffer
as desired. Now any command with an object whose policy that matches that policy
buffer can be executed.

If the Policy Is Compound
If a policy is compound—that is, it’s a logical OR of several branches—the user knows
which branch they’re going to try to satisfy. Once the user picks the branch, they
satisfy that branch and then execute a TPM2_PolicyOR command with the TPM, which
transforms the satisfied branch into the final policy, ready for execution. See Figure 14-6.

Figure 14-6. An example of using an OR policy

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

245

This figure shows that there are four different ways to satisfy this policy. You can
satisfy it with the first branch, Dave1, by using a fingerprint reader and a password:

1. Start a policy session.

2. Satisfy the Dave1 branch of the policy:

a. Satisfy the fingerprint assertion using TPM2_
PolicySigned.

b. Satisfy the password assertion using TPM2_
PolicyPassword.

3. This sets a flag in the session, telling it that a password must
be sent in when the final command is executed.

4. Transform the TPM’s session policy buffer to the final session
value using TPM2_PolicyOR.

5. Execute the command, including both the policy session
and another session that satisfies the flag, by passing in the
password (which can be done using the password [PWAP]
permanent session).

Note: As a side note, the policy session can be told to
automatically close after this command is completed.
Failing that, you can close the session manually.

In order to satisfy the first assertion in the policy, you have to get the fingerprint
reader to attest to the TPM that Dave’s fingerprint has been matched by the reader with the
public key aPub. To do this, you need to pass a message to sign in to the fingerprint reader,
which is calculated in part from nonceTPM, which the TPM returned when you created the
policy. This value is sent to the fingerprint reader. Then Dave swipes his finger along the
fingerprint reader, and when the fingerprint reader matches his fingerprint, it signs

aHash = SHA256(nonceTPM || expiration=0 || cpHashA=NULL || state Of
Remote Device)

using its private key aprivate. Note here the PolicyRef is the state of the remote device.
In particular, the fingerprint reader needs to sign the fact that Dave has just swiped one
of his fingerprints on the device and it has matched the template the device stored. The
result is called fingerprint_Signature.

Next you have to load the fingerprint reader’s public key into the TPM. Recall that
this public key’s handle is aPub.

Finally, the TPM is sent proof that the fingerprint reader successfully identified Dave
using the command TPM2_PolicySigned, passing in aPub and fingerprint_Signature.

Next you execute the PolicyAuthValue command, which promises that when you
eventually ask the TPM to perform a command with an object, that user will present
evidence that they know the password associated with the object. This is done by
executing TPM2_PolicyAuthValue.

Now that you’ve satisfied one of the branches of the policy, you can execute
TPM2_PolicyOR to change the internal buffer of the session to equal the compound policy
by passing it a list of the ORed policies.

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

246

If the Policy Is Flexible (Uses a Wild Card)
Satisfying a wild card policy is more complicated than creating one. For one thing, when
the wild card policy is created, only the public key of the party who can authorize the
eventually satisfied policy is identified. When one is used, an authorized policy must
have been created, and a ticket proving that it’s authorized must be produced. Then a
user satisfies the approved policy and runs TPM2_PolicyAuthorize. The TPM checks that
the policy buffer matches the approvedPolicy and that the approvedPolicy is indeed
approved (by using the ticket), and if it is, changes the policy buffer to the flexible policy.

Preparing a policy to be used is then a two-step process. First, the authorizing party
has to approve a policy by using their private key to sign Hash(approved Policy ||
wildCardName=policyRef). This is then sent to the user.

The user loads the public key of the authorizing party in their TPM and uses
TPM2_VerifySignature against this signature, pointing to the handle of the public key.
Upon verification, the TPM produces a ticket for this policy.

When the user wants to use this new approved policy, the user first satisfies the
approved policy the way they ordinarily would and then gets the TPM to switch the
approved policy to the flexible policy by calling TPM2_PolicyAuthorize, giving it as
parameters the name of the session that has satisfied the approved policy, the approved
policy, wildCardName, keyName, and the ticket. The TPM verifies that the ticket is correct
and matches the approved policy in the session policy buffer. If so, it changes the session
policy buffer to be the value of the flexible policy.

Thus creating a flexible policy is really a two part process.
Recapitulating: First the policy itself is created:

Start a Trial Session•

Load the administrator’s public key•

Use TPM2_PolicyAuthorize pointing to the administrator’s public key•

Get the Value of the policy from the TPM. We call this policy •
workSmartcardPolicy

End the session•

Then an authorized policy is created using the administrator’s private key

Create a policy•

Load the administrator’s private key•

Use the administrator’s private key to sign the policy•

Use the TPM on which the approved policy is to be used to verify •
the signature (this produces a ticket)

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

247

Satisfying the Approved Policy

Satisfying the approved policy is done just as though it were the only policy you had to
worry about. It doesn’t matter if the approved policy is simple, compound, or flexible.
After it’s satisfied, it’s then transformed.

Transforming the Approved Policy in the Flexible Policy

Now that the TPM’s buffer is equal to the approved policy, you can transform it into the
flexible policy by executing TPM2_PolicyAuthorize, passing the current value of the
session policy buffer, PolicyTicket, and AdministratorPublicKeyHandle. The TPM
checks that the policy buffer matches the approved policy and that the approved policy is
indeed approved (by using the ticket) and, if it is, changes the policy buffer to the flexible
policy. At this point, commands can be executed on an object that requires this particular
flexible policy.

Although flexible policies were introduced to the TPM in order to provide a solution
to the brittleness of PCRs, they can be used to solve many more conundrums than that.
They allow an administrator to decide after an object is created how the policy for that
object can be satisfied. Because the name of an object (or NV index) is calculated from
its policy, it isn’t possible to change the policy of an NV index or a key. However, using a
flexible policy, you can change the way a policy is satisfied after the fact.

Suppose a key is given a flexible policy when it’s created, and later the administrator
of the flexible policy wants to make it be the policy in Figure 14-6. The admin can
accomplish this by signing the policy represented by Figure 14-6 and sending it to the
user. Someone must do the preparatory step of creating a ticket by running
TPM2_VerifySignature, but after that the user only has to satisfy the policy given by
Figure 14-6 and then run PolicyAuthorize to prove that the policy has been approved.

Certified Policies
One last thing you can do with policies is prove that a policy is bound to a particular
entity. When ink is used to sign a contract, the signature that is formed is irrevocably
tied to the person signing it via a biometric that represents the way the person’s muscles
and nerves are formed. That is what produces the characteristic swirls of a signature.
Electronic signatures have never been tied to a person in the same way. Typically,
electronic signatures have been tied to a password (something a person knows) or a
smart card (something a person has), or sometimes (usually in addition to the others)
a biometric. Biometric devices can break, so in most implementations, there is always a
backup password that can be used if the biometric doesn’t work. (Interestingly, the ink
signature has a similar problem, because people can break their hands.)

With the TPM 2.0, it’s possible to tie the use of a key directly to a biometric and
prove that it’s so tied. First a non-duplicatable key is created, with its authValue set so
that a password isn’t useful for authorization. This means only the policy can be used to
authorize use of the key. The policy is set to only allow use of the key when authorized by

CHAPTER 14 ■ EXTENDED AUTHORIZATION (EA) POLICIES

248

a biometric reader, using TPM2_PolicySign and a policyRef that is produced and signed
by the biometric reader when it matches the person. This produces a key that can only be
used to sign something if the biometric reader is convinced the person is who it thinks the
person is. We call this key A.

Next a credentialed non-duplicable restricted signing key is used with TPM2_Certify
to produce a signature over the name of key A. This signature binds the public portion
of key A (which is in the name), the authValue (which are in the name), and the policy
(which is in the name). By checking the credential of the restricted signing key, an
attesting agent can verify that the certificate produced by TPM2_Certify is valid. Then, by
hashing the public data of the key, the agent can verify that the name is correct. This then
validates that the only way the key could be used for signing is by satisfying the policy,
not by a password. The policy is then examined and, using the public key of the biometric
device, is validated to be satisfied only if the user swiped their finger over the reader.

In this way, the electronic signature with the key becomes tied to the fingerprint
biometric. In a similar way, producing certificates binding policies to keys can be used
to prove to an auditor that the policies being used for keys meet a corporate standard for
security. This in turn satisfies the last of the problems that EA was created to solve.

Summary
This chapter has examined the new enhanced authorization in the TPM 2.0, which can
be used to authorize any entity in the TPM. You have seen that EA policies can be used to
create logical combinations (AND and OR) of multiple kinds of assertions—everything
from passwords and smart cards to the state of the TPM or the state of a remote machine.
You have looked at examples of using EA for multiple users, multifactor authorization,
and the means to create policies that allow flexible management. Many examples
demonstrated the ways these commands can be used to solve varied problems. Then you
saw how such policies can be satisfied. Finally, you saw how a key can be bound to its
policy. EA in the TPM 2.0 is one of the most complex but also most useful new capabilities
in the TPM 2.0 design.

249

CHAPTER 15

Key Management

There are many considerations when designing a key-management system with a TPM.
If keys are going to be used for critical operations, such as encryption or identification,
it’s vital that an architecture be used to provide a standard means of managing the key’s
lifetime and prepare for problems if hardware breaks. Such an architecture must be able
to handle key generation, key distribution, key backup, and key destruction. The design
of the TPM was architected with these things in mind. This chapter describes the various
options possible for these steps in a key’s life.

Key Generation
When generating a key, the most important thing the user has to consider is that the key
be generated randomly. If a poor random number generator is chosen, the key that is
picked won’t be secure. The second most important thing to consider is keeping the key
material confidential. TPMs are designed to be secure against software-based threats.
Hardware threats can be protected against by the manufacturer, but that isn’t part of the
design per se. However, the design does allow for key split creation of keys, where entropy
used to generate a key is stored in both in and outside the TPM, so that when the TPM
isn’t in use, keys remain secure even with physical access.

There are three ways that keys can come to reside in a TPM. They can be generated
from a seed, generated using a random number generator in the TPM, or imported.
Primary keys are generated using a seed that exists in the TPM. The seed used for
generating the EK is associated with the Endorsement hierarchy and isn’t likely to be one
that the end user can change.

The seed associated with the storage hierarchy, on the other hand, changes
whenever a TPM_Clear command is issued. This can be done either via the BIOS, which
uses the platform hierarchy authorization, or by the end user using the dictionary-attack
reset password.

As stated in Chapter 10, primary keys are generated using a FIPS-approved key
derivation function (KDF), which hashes together the primary seed together with a key
template. The template for key generation is in two parts. The first part is a description of
the kind of key to generate—whether it’s a signing key or an encryption key, asymmetric
or symmetric, what type of signing scheme it uses if it’s a signing key, the algorithm and
key size, and so on. The other part is a place where entropy can be introduced to the
command to be used in generating the key. In most cases, the second part is set to all

CHAPTER 15 ■ KEY MANAGEMENT

250

zeros (as in the TCG Infrastructure Work Group’s published EK template). However, if the
user doesn’t trust the entropy generator in the TPM, they can use this facility to provide a
key split.

A key split is a cryptographic construct where two sets of entropy—each with as
much entropy as the final key—are used to produce a key. Neither one alone is able to
provide even a single bit of the final key’s entropy—both are necessary. Thus, one can be
held separate from the TPM, and one held inside the TPM.

In case of a primary key, one split of the key is the hierarchy’s seed, inside the TPM.
The other, which can be stored securely when not in use (for example, in a smart card or
safe) is held outside the TPM in the template.

Primary storage keys have an associated symmetric key which is generated when
the primary key is generated and is associated with it. This is also derived from the
primary seed and introduces entropy. As long as the seed associated with a hierarchy isn’t
changed, using the same template will generate the same primary key and associated
symmetric key. Because both the primary key and the symmetric key use the template in
generation, if entropy is introduced there, the entropy in the template also acts as a key
split for them.

Why would anyone split a key? The main reason is usually that the user is worried
that it might be possible for someone to get hold of one of the two key splits. Either
they’re worried that the TPM’s seed was squirted into the TPM at manufacturing time and
someone still has a copy, or they’re worried that someone will de-layer the TPM, as was
done with an Infineon 1.2 chip years ago.1 These attacks are mostly worries for the truly
paranoid—the Infineon attack was successful only after destroying a handful of TPMs,
and at a cost of over $200,000. But people in the security space tend to be paranoid types.

Generating a primary key can either take a relatively long time (if the key is an
RSA key) or be virtually instantaneous (if it’s an ECC key.) If the key takes a long time to
generate (or if the secret entropy introduced in its generation isn’t generally available),
then the user may decide to store the key in the persistent memory of the TPM using the
TPM2_EvictControl command, which requires the associated hierarchy’s authorization.
In this case, the key is given a persistent handle, and a power cycle doesn’t affect the
presence of the key in the TPM. It can be evicted with the same command. Depending on
what attacks a user is worried about, the user may or may not decide to make their key
persistent.

If a user is worried that the TPM seed has been compromised, then they’re worried
that primary keys may be compromised. If the primary key is compromised, all keys
stored using the primary key are also compromised. In this case, the user can use a key
split to introduce their own entropy into primary keys via the template, make the key
persistent, and then escrow the key’s template somewhere where an attacker can’t get it.
This prevents an attacker who knows the TPM’s seed (generated at manufacturing time)
from being able to determine the secrets of the primary key.

1WilliamJackson,“EngineerShowsHowtoCracka‘Secure’TPMChip,”GCN,February2,2010,
http://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx.

http://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx

CHAPTER 15 ■ KEY MANAGEMENT

251

Alternatively, a primary key can be generated and used only to create another
storage key child of the primary key. The storage key is then loaded into the TPM under
the primary key of the TPM. The new child storage key is then made persistent. This
key behaves similarly to a TPM 1.2 SRK. It’s generated by the TPM’s random number
generator, not from the seed. However, it exists in encrypted form for a short period of
time outside the TPM after it’s created, but before it’s reloaded—which results in a slight
risk of attack if the primary key were compromised.

If a user is worried about physical attacks against the TPM, they may wish to use
entropy encoded into the key’s template in a second factor and present that entropy each
time the primary seed is to be generated, but not store the primary key in the TPM. (If
the primary key is stored persistently, then a physical attack may be able to recover it.)
In this case, each time the TPM is power cycled, all traces of the primary key disappear
from the TPM. This is of course hard to manage, because the template must be kept secret
(possibly in a USB key), separate from the TPM, and then introduced each time the key is
to be loaded into the TPM.

Similarly, for the truly paranoid, who not only are worried about the TPM seed but
also don’t trust the TPM’s random number generator, an external key can be generated
by a trusted entropy source and then wrapped so that it can be imported into the TPM by
a primary (or any storage) key (generated with entropy that is later discarded) and made
persistent; and then the primary key is evicted. If additionally this person is worried
about their system being stolen and the TPM de-layered to reveal its secrets, they should
not make keys persistent in the TPM, but rather should redo this complicated loading of a
key every time they power on the TPM.

USE CASE: CREATION OF DIFFERENT SRKS FOR DIFFERENT USERS

If a system has several users, they may want to have completely different sets of

keys. If this is the case, they may all generate their own SRKs (individual primary

restricted storage keys). This is easily possible if they each use different entropy

in their template when creating their primary seed to use as their SRK. In order

to make sure the same key isn’t generated for each user, the templates used to

generate the keys must be distinct. For example, they could use the hash of a user

secret as entropy in the key’s template. However, different users might pick the

same user secret. It’s probably better to have the TPM use its hardware random

number generator to create a key under the SRK for each user.

CHAPTER 15 ■ KEY MANAGEMENT

252

THE RULE OF THUMB

There are only three reasons to make a key persistent. The key may be an RSA key

and hence may take an unreasonably long time to re-generate, the key may be one

created using a secret entropy source in the template that isn’t always available,

or there may not be enough (or any) persistent memory outside the TPM to store a

key template. The last may be the case if the TPM is being used in a constrained

environment, such as during a boot cycle. In any other case, a key should be

generated as necessary. This is different from the 1.2 design, because in a 2.0

design, key loading is done with symmetric decryption and hence is very quick.

Templates
There are standard templates for creating keys, and generally it makes sense to use those
rather than create your own. Templates typically use matched algorithm strengths. The
one time you might not use matched algorithm strengths is when choosing the symmetric
key. Because the symmetric key is used for loading other keys into the TPM rather than
the asymmetric key, it’s possible to design a system where a symmetric key with a higher
strength than the asymmetric key is used for the primary key. Once this is done, no keys
generated on the TPM are exposed to the weakness of the asymmetric key or algorithm.

Key Trees: Keeping Keys in a Tree with the Same
Algorithm Set
Although it’s technically possible to mix algorithms—make a key with one set of
algorithms and then store it under a key with a different set of algorithms—it’s a bad
practice (and one, as you have seen, that the TSS Feature Application Programming
Interface [FAPI] won’t allow.) The problem is that the strength of a set of keys is dictated
by the strength of the weakest key in a chain. This means not only should algorithm sets
not be mixed, but chains of keys (with one key wrapping another one) should generally
be kept fairly short. If any key in a chain is broken, then all keys below it are broken. So a
key chain of four keys is four times weaker than a chain with one link when exposed to a
brute force attack. (Of course, given a reasonable key size, a factor of 4 is unimportant.)

The reason you might decide to have a longer chain is manageability. A user may
want to migrate their entire set of keys or a subset of those keys from one system to
another system, or duplicate their set of keys among two or more computers. In order to
make this easy, it’s likely that the user will wish to rewrap only one key—at the top of a
tree of keys—with the public key on a different system and then copy the encrypted blobs
that represent their other keys to the appropriate location in the other system.

You might want to keep enterprise keys separate from personal keys, and different
department keys separate in an enterprise, as shown in Figure 15-1. Nevertheless, it’s best
to keep key trees as short as possible.

CHAPTER 15 ■ KEY MANAGEMENT

253

Duplication
In the key tree in Figure 15-1, the keys that might be duplicated are the Personal Key, the
Enterprise Key, the Financial Keys (both Personal and Enterprise), the Entertainment
Key, or the HR Key. In order to do this, all of these keys must be created to be duplicable,
and they must have a policy created for them that has TPM2_Policy_CommandCode
with TPM2_Duplicate selected (along with whatever restrictions are associated with
duplicating a key). In most cases, a user creates two different duplication policies—one
for personal keys and one for business keys—and associates those policies with a parent
personal duplicable key (PDK) and a business duplicable key (BDK).

If a key isn’t going to be duplicated, it can be made fixedParent. If a key under the
SDK or UDK is going to be duplicated apart from the SDK or UDK, then it also must have
a policy that allows for duplication.

With TPM 1.2, it wasn’t possible to create a key that could be duplicated only to
a few specified new parents and no others. With TPM 2.0, this is now possible using a
command called TPM2_DuplicationSelect. This command allows you to specify exactly
which parent (or parents) a key is targeted to be duplicated to. The main reason for using
this command is in conjunction with PolicyAuthorize. By using PolicyAuthorize, an
IT organization can change the target backup key for duplication. So if the organization
normally backs up keys to a specified server, and that server dies, then by signing a TPM2_
DuplicationSelect command that selects a new server, the organization can mail out
a new signed policy to employees, knowing that they now are allowed to duplicate their
keys to the new server. This allows the new duplication target without allowing employees
to back up their keys to their home computers (which may not be trusted).

Figure 15-1. Example key tree

CHAPTER 15 ■ KEY MANAGEMENT

254

Because TPM2_Duplicate and TPM2_DuplicateSelect can’t be authorized with a
password or an HMAC session, in order to duplicate a key, you must first start a policy
session and then satisfy the branch of the policy that has the TPM2_PolicyCommandCode
linked with TPM2_Duplicate or TPM2_DuplicationSelect. Then you can execute the
appropriate command to duplicate the key to a new parent.

USE CASE: A SET OF SERVERS ACTS AS ONE

In this use case, a set of SSL servers acts as a failover for one another or for load

balancing. The company doesn’t want users to need to know which server they’re

connected to—it isn’t something users care about. So the company needs the same

key to exist on all the servers that are being used to service its web page. (This also

means the company has to get only one certificate for this key, instead of a separate

key for each server.)

The company creates a duplicable key with a PolicyAuthorize command as

the policy and then uses the private key associated with the PolicyAuthorize

command to sign several TPM2_DuplicationSelect commands, each of which

points to a different server. A user gets this key certified and puts a copy of the

certificate on each server. The user then duplicates the key from the original server

to all the other servers, and finally imports the key using TPM2_Import into each of

the other servers. At this point, all the servers look identical to an outside user.

Steps

1. Create policy P using TPM2_PolicyAuthorize, an enterprise

public signing key, and a policyRef of SSL.

2. Create a duplicable key using policy P on the initial SSL server.

3. Create restricted storage keys on all the other SSL servers using

TPM2_Create, and call them SRK
i
.

4. Use the enterprise private key to sign

TPM2_PolicyDuplicateSelect, selecting the SRK
i public

 as

the target of duplication. Do this once for each SRK
i
.

5. Use TPM2_VerifySignature on the initial SSL server to

create a ticket for each signed policy. This allows that signed

policy to be used by the initial SSL server for duplication.

CHAPTER 15 ■ KEY MANAGEMENT

255

6. For each policy, create a duplicated key that can be loaded by

SRK
i
 by doing the following on the initial SSL server:

a. Load the enterprise public signing key using TPM2_Load.

b. Load the SRK
i
 public key into the initial SSL server using

TPM2_LoadExternal.

c. Use TPM2_StartAuthSession to start a policy session.

d. Execute TPM2_PolicyDuplicationSelect, selecting

the SRK
i
 of one of the target servers.

e. Execute TPM2_PolicyAuthorize, using the policy, a

policyRef of SSL, and the Ticket corresponding

to SRK
i.

f. Execute TPM2_Duplicate, passing it the handle of the

loaded SRK
i
 public and the handle of the enterprise

signing key.

g. The result of the TPM2_Duplicate command is an

encrypted version of the enterprise signing key. Send it to

the server with SRKi.

h. Import the duplication blob into the server with SRKi.

7. Copy the certificate of the enterprise signing key to that server.

At this point, the key is the same on all the servers and can be used for SSL

identification and communication.

Key Distribution
In some cases, keys need to be distributed long after a system is initially set up. Being
able to distribute keys securely is very important in these cases. The TPM design makes
this easy. When each system is set up, a non-duplicable storage key is generated on the
system, and a central system keeps a record associating this key with the system name
(or perhaps the system serial number). This can be done in an Active Directory or LDAP
database. Additionally, at provisioning time, the local platform gets a public key of the
central system that corresponds to a signing key. At some later point, if the central system
wants to distribute an HMAC key to the system, the following takes place:

1. The central IT system creates an HMAC key using
TPM2_GetRandom.

2. The central IT system encrypts the HMAC key with the public
portion of the target client’s storage key.

CHAPTER 15 ■ KEY MANAGEMENT

256

3. The central IT system signs the encrypted HMAC key with its
private signing key. This is done so the local platform knows
that what is being sent is authorized by IT.

4. The encrypted HMAC key is sent to the client along with a
signature that proves it came from the central IT system.

5. The client verifies the signature on the encrypted key by
loading the central server’s public key. (This can be done
with the TPM using TPM2_Load and then using
TPM2_VerifySignature, if you like.)

6. The client imports the verified, encrypted HMAC key into its
system using TPM2_Import, getting out a loadable, encrypted
blob containing the HMAC key.

7. The client loads the HMAC key when the user wishes to use
it, using TPM2_Load, and uses it as normal. At this point, the
local platform has received an HMAC key from the IT central
system that has never been decrypted in the local system’s
memory.

Key Activation
Because of the ability to create and re-create keys from the seed in the TPM, it’s possible
to use multiple key templates at provisioning time of a system and have a central IT
system record the key template and corresponding public portion of the keys associated
with the system. Central IT can then power cycle the TPM, destroying the system’s copy
of the key. Thus when the system is distributed to an end user, it doesn’t have any of these
keys available.

Later, when IT wants to activate those keys, it need only send the key template used
to create the key to the end user and allow the system to re-generate the key from the
template using TPM2_CreatePrimary. Note that the key template includes the policy of
the key so generated, but not the password associated with it, which is chosen whenever
the key is re-generated. If the central system wishes to avoid the use of that password
when controlling the key, two bits in the template can be selected: userWithAuth and
adminWithPolicy. These can be set in such a way as to make the password unable to
control the key. If userWithAuth is set FALSE, and adminWithPolicy is set TRUE, then the
password can’t cause the key to perform any functions.2

In using this technique, the templates should be chosen in such a way as to include
random entropy. Without the template, the key can’t be re-created, so the central system
can be sure the key isn’t used until the template is received by the client.

2Becausetheseflagsarepartofthetemplate,ifausertriestochangethem,theusergetsa
differentkey.

CHAPTER 15 ■ KEY MANAGEMENT

257

There is another way to do key activation, similar to what was possible with
TPM 1.2: using migratable keys. When a key is duplicated, you can doubly encrypt it:
once using the parent key of the system to which it’s being duplicated, and once using
a symmetric key that is inserted when the duplication is done. The produces a key blob
that is encrypted twice. The outside encryption is gated by the new parent’s private key.
The inner encryption is done with a symmetric key. In this case, when a TPM2_Import
command is executed, the TPM must have the private asymmetric key already loaded; its
handle is given to TPM2_Import, and a secret is passed into the TPM2_Import command as
a parameter. The secret is used in calculating the symmetric key, which in turn is used to
decrypt the inner encryption. The command flow is as follows:

1. A duplicable key is generated on a central system.

2. The key is duplicated to the client system using the symmetric
key option. This parameter is called encryptionKeyIn in the
TPM2_Duplicate function.

3. The key blob is signed by the central system and sent to the
client, but the encryptionKeyIn parameter is kept safe by the
IT administrator.

4. When the IT administrator wishes to allow the key be
used, encryptionKeyIn is provided to the client system,
allowing the client system to import it using the TPM2_Import
command.

Key Destruction
Once a key has been created, it’s sometimes important to be able to destroy it as well. One
example is if a user is going to sell, surplus, or recycle a computer and wants to make sure
data that was encrypted on that system with that key is no longer available. TPMs provide
this facility in a number of easy ways.

If the key used is a primary key, the easiest way to destroy it is to ask the TPM to
change its copy of the seed of the hierarchy on which it was created (usually the storage
hierarchy). TPM2_Clear does this for the storage hierarchy. Clearing the TPM destroys all
non-duplicable keys that are associated with the hierarchy, evicts all keys in the hierarchy
from the TPM, and changes the seed, preventing any primary keys previously associated
with that hierarchy from being re-generated. It also flushes the endorsement hierarchy,
but it doesn’t change that seed.3 Duplicable keys can no longer be loaded into the system,
although if they have been duplicated to a different system, they may not be destroyed.

3Thisway,theEKandTPMvendorcertificatesarestillvalid.

CHAPTER 15 ■ KEY MANAGEMENT

258

If such a drastic step isn’t necessary (perhaps the machine is only going to be loaned
for a time to a different employee, or multiple employees are using the machine), other
things can be done, if preparations are made ahead of time. For example, if a primary
key is generated with secret entropy in the template and then made into a persistent key,
then the only thing that needs to be done to destroy the key is to destroy the copies of
the template and evict the primary key from the persistent storage. Once this is done, the
key is gone and can’t be re-generated. Because there can be multiple trees underneath
different primary keys, this provides a way to destroy a particular tree of keys without
destroying all the trees of keys in a TPM. This may be important if multiple users are using
the same TPM.

It’s even possible to destroy keys that are generated outside the TPM, imported into
the TPM, and then made persistent. If the copies outside the TPM are destroyed (which
may be possible if the import was done in a controlled facility), then merely evicting the
key from persistent memory also destroys the key.

Putting It All Together
This section provides two examples of how different types of businesses might decide to
manage TPM entities. We start with a simple case, which might apply to a small business,
and then consider a large enterprise.

Example 1: Simple Key Management
An end user is handling all of their own keys. The user has two systems: a primary system
and a backup system for backing up keys. Here are the steps the user follows to manage
the keys:

1. Create an SRK on each system using a standard non-
duplicable key template. Set userWithAuth to TRUE,
adminWithPolicy to FALSE, and the policy to a NULL policy.
This means the policy is disabled and the password can be
used to authorize use of the SRK. The user sets the password
to a well-known password when using the
TPM2_CreatePrimary command to create the SRKs.

2. Create a duplicable storage key (DSK) under the SRK on
the primary system. Use TPM2_Create to create this key.
It has userWithAuth set to TRUE and adminWithPolicy set to
TRUE. This allows the password to authorize using the key
and the policy for duplicating the key. (Remember that keys
can only be duplicated using a policy.) It has a policy that
specifically has a branch with TPM2_PolicyCommandCode
with TPM2_Duplicate selected, together with
TPM2_PolicyAuthValue. This policy requires the user to
prove knowledge of the key’s password in order to duplicate it.

CHAPTER 15 ■ KEY MANAGEMENT

259

3. Load the public key of the new SRK to which the key is to be
duplicated.

4. Duplicate this storage key to the backup system by
creating a policy session, executing TPM2_PolicyCommandCode
with TPM2_PolicyDuplicate, and then executing
TPM2_PolicyAuthValue. Then an HMAC session is started
(using the DSK password). The two sessions are referenced
when executing the TPM2_Duplicate command, passing it the
handle of the DSK and the public key of the SRK of the backup
system. This produces a blob that contains the duplicated key
and is encrypted in a way that can be imported into the TPM,
which knows the SRK private portion.

5. Move the blob to the backup system, and use TPM2_Import
to import the key into the backup system. This produces
another blob, which can be loaded into the backup system on
demand.

6. As new keys are created under the DSK on the primary
system, send copies of those key blobs to the backup system,
where they can also be loaded using the copy of the DSK, and
used.

7. To decommission the primary system, use TPM2_Clear, using
the lockout password to clear the TPM’s storage hierarchy.

8. To migrate all keys to a new system, create an SRK on the new
primary system.

9. Repeat the process of duplication from step 4. This time, the
new parent is the SRK of the new primary system.

10. Copy all other keys blobs onto the new primary system.

Example 2: An Enterprise IT Organization with
Windows TPM 2.0 Enabled Systems
In this case, the enterprise doesn’t want to use EKs that are potentially known outside the
organization. The enterprise wants to use its own EKs after the machines are provisioned,
but use the OEM EK to prove to itself that the system is genuine. The organization
provisions each system as it comes in, as follows:

1. Generate the OEM EK using TPM2_CreatePrimary and the
TCG Infrastructure Workgroup’s standard EK template.
Compare it to the vendor EK certificate that came with the
system. Check the certificate as well, using the vendor’s
public key.

2. Run TPM2_Clear to wipe the TPM’s storage and EK
hierarchies.

CHAPTER 15 ■ KEY MANAGEMENT

260

3. In a trusted location, evict the OEM EK, ask the TPM for
a random number, repopulate the EK template with this
entropy, and read out the EK public portion, making the
enterprise’s own certificate for this key.

4. Change the storage hierarchy, endorsement hierarchy, and
dictionary-attack authorization values to random values,
storing them in an LDAP server.

5. Create a restricted encryption key and make it persistent, for
use as an SRK. This key has an authorization value of NULL
and a policy of NULL. This allows anyone to use it who
wishes to.

6. Create a restricted signing key and make it persistent, for use
as an AIK. This key also has an authorization value of NULL
and a policy of NULL, so that TNC software can use it.

7. Store a copy of the SRK’s public key in the enterprise’s LDAP
associated with this machine.

8. Create a certificate of the AIK that associates it with this
machine. This certificate is stored both on the LDAP and on
the system itself.

9. Uses the AIK to quote the current PCR values, and check them
against golden measurements that came with the system.

10. Change the software load and configuration of the system to
match the enterprise’s own policies.

11. Use the AIK to quote the current PCR values, and store them
in the LDAP associated with this system. These are used as a
new set of golden measurements.

12. Create virtual smartcards on the machine using the TPM, and
set up the Windows VPN server to accept the certificate of
this key.

13. Set up another virtual smartcard on the machine using the
TPM, and set up a Radius server to accept it for connections to
the enterprise’s wireless network, using WPA2 in
Enterprise mode.

14. Create a 32-byte NV index, and store a hash of the enterprise’s
IT organization public key there. The policy of the key only
allows this same key to be used to write to the index. This key
will be used later to check software updates before they’re
installed, to see if they’re approved by IT.

CHAPTER 15 ■ KEY MANAGEMENT

261

15. Install Wave software to report the PCR measurements on
each boot, sending an alert to the IT organization if they aren’t
correct. (Alternatively, a StrongSwan VPN can be used, which
doesn’t grant access to the network unless the PCRs pass
muster.)

16. Create a policy for allowing duplication of a key to the IT
backup server’s TPM, and store it on the system. This policy is
signed with the IT private key.

17. The user’s boss provides a policy that allows the boss to use
the keys in their employee’s absence.

18. When the user gets the system, the user creates a duplicable
restricted decryption (storage) key, under which the user
stores all their enterprise keys. The policy the user gives it is
the OR of the policies in steps 16 and step 17. Before doing
this, the user checks the policy’s signature using the hash of
the public key stored in step 14.

19. The user duplicates their duplicable storage key to the IT
organization’s backup server and then its wrapped keys in
their normal backup.

20. If the user quits or the machine is to be recycled, use the
stored owner authorization to send the system a notice that it
should execute TPM2_Clear, thus wiping all the keys stored on
the system. The OEM EK is used to restart the process.

21. If the user is moved to a new system or their motherboard
dies, re-duplicate their backed-up key (stored in step 18) to
their new system, and copy their other key blobs from backup
to the new system. The user can then continue working.

Summary
You’ve seen that the facilities of the TPM allow for very sophisticated or very simple key
management, depending on the needs of the end user. These needs can range from those
of a paranoid enterprise worried about industrial espionage, including theft of machines,
to those of a non-paranoid home user, who merely wishes to keep their keys safe on their
home system. By crafting the key hierarchies and setting up authorizations and policies
correctly, you can keep keys safe and usable.

263

CHAPTER 16

Auditing TPM Commands

As used in the TPM, audit is the process of logging TPM command and response
parameters that pass between the host and the TPM. The host is responsible for
maintaining the log, which may be in host memory or on disk. An auditor can later use
the TPM to attest to the log’s integrity (that it has not been altered) and authenticity (that
it was logging TPM transactions).

The underlying audit concept is similar to that of attestation using PCRs. The TPM
extends command and response parameter hashes into an audit digest. The auditor
can later request a signed audit digest and verify the signature and certificate chain. The
auditor can then walk their local copy of the audit log to validate its integrity.

Audit always records both command and response parameters and only audits a
successful command. The latter requirement vastly simplifies an implementation.1

This chapter first gives a rationale as to why you may want to audit, then describes
the audit types, and finally goes on to the details of the audit mechanism.

Why Audit
Why would an auditor want a certified list of command and response parameters? This
section provides several use cases, from auditing a single command to auditing an atomic
sequence of commands to auditing a continuous stream of commands.

In the simplest case, the TPM can audit one command. In a sense, this is a
generalization of a TPM quote, which signs PCRs. In fact, you could do a quote using
audit: start an audit log, read a set of PCRs, end the audit log, and request a signed audit
digest. Although it’s simpler to use TPM2_Quote for a PCR attestation, it can’t be used to
quote NV PCRs.2 Audit is the only way to quote an NV PCR.

While there is already a TPM point solution for getting a signature over PCRs, audit
provides a slightly more complicated but more flexible facility.

1Historically,TPM1.2didnotatfirsthavethisrequirement.Thisledtomanycornercaseswhere
thefailurewasitselfduetotheaudit,wheretheauditdigestwaspartiallyupdatedbutthenthe
commandfailed,andsoon.LateinTPM1.2,therequirementwaschangedto“onlyauditsuccessful
commands,”andthiswascarriedforwardtoTPM2.0.
2SeeChapter11foranexplanationofhowtocreateanNVextendindexPCR.

CHAPTER 16 ■ AUDITING TPM COMMANDS

264

USE CASE: WHAT TPM AM I CONNECTED TO?

An auditor wants to know the precise TPM properties: manufacturer,

firmware revision, and so on. The auditor starts an audit log, runs several

TPM2_GetCapability commands to read the properties of interest, and then

validates the audit log to ensure that the responses are legitimate.

The TPM commands are as follows:

 • TPM_StartAuthSession: Start a session to be used

for audit

 • TPM2_GetCapability: Set the audit attribute, read the

manufacturer and firmware version, and keep a log of the

results

 • TPM2_GetSessionAuditDigest: Get a signature over

a digest of the log. The auditor uses the signature to

verify that the log containing the capabilities has not been

tampered with.

USE CASE: WHAT IS THE STATE OF AN NV INDEX,
COUNTER, OR BIT-FIELD INDEX?

These indexes might be used to revoke the use of another entity through the entity’s

policy. That policy would use the TPM2_PolicyNV command, where the NV index is

either a counter or a bit field. Chapter 14 explains the policy use case. Here, the caller

is concerned that the NV index might not have been updated correctly. For example,

the caller wants to ensure that a counter has been incremented or a bit set in a bit

field. The caller can audit a read of this index to get a signed digest of its value. In

some cases, where the index is authorized using an HMAC, the response HMAC itself

provides response integrity. However, if the index is password or policy authorized, or

if the caller doesn’t have the HMAC key, audit provides the required integrity.

The TPM commands are as follows:

 • TPM2_StartAuthSession: Start a session to be used for

audit

 • TPM2_NV_Read: Set the session attribute and read the

index being used in the policy. The caller keeps an audit log.

 • TPM2_GetSessionAuditDigest: Get a signature over

a digest of the log. The caller uses the signature to verify

that the audit log containing the NV read data has not been

tampered with.

CHAPTER 16 ■ AUDITING TPM COMMANDS

265

USE CASE: NV INDEX USED AS A PCR

As described in Chapter 11, a hybrid extend index can be used to implement

PCRs beyond the platform-specified value. These can’t be attested to using the

TPM2_Quote command, but a signed audit gives equivalent integrity.

The TPM commands are as follows:

 • TPM2_StartAuthSession: Start a session to be used

for auditing.

 • TPM2_NV_Read: Set the session attribute and read the

index being used as a PCR. The caller keeps an audit log.

 • TPM2_GetSessionAuditDigest: Get a signature over

a digest of the log. The caller uses the signature to verify

that the audit log containing the NV PCR value has not been

tampered with.

Audit Commands
This is a summary of the TPM commands used for audit. See the TPM 2.0 specification
Part 3 for the complete command set and API details:

• TPM2_StartAuthSession is used to start a session that can be used
for audit.

• TPM2_GetSessionAuditDigest returns the session audit digest
and optionally a signature over the digest.

• TPM2_GetCommandAuditDigest returns the command audit digest
and optionally a signature over the digest.

• TPM2_SetCommandCodeAuditStatus determines which commands
are included in a command audit digest.

Audit Types
The TPM library supports two audit types: command audit and session audit.

Command Audit
Command audit has two important traits, which it shares with TPM 1.2 audit.

First, it’s on a per-command basis. Most commands include an attribute that, when
set, indicates that the TPM should audit all instances of the command. There is a global,
TPM-wide audit digest, and an auditor can request a signature over that digest.

CHAPTER 16 ■ AUDITING TPM COMMANDS

266

Second, it’s optional in the PC Client TPM specification. In TPM 1.2, to keep down
development and test costs, vendors routinely ignored optional commands. Hardware 1.2
TPMs didn’t implement command audits. Software can’t rely on command audit being
implemented in all TPM 2.0 devices.3

USE CASE: AUDITING THE TPM USED AS A CERTIFICATE AUTHORITY

A TPM can be used as a certificate authority (CA). As a hardware security module, it

protects its private signing key far better than a software solution. A CA might want

a verifiable list of all certificates that it signed. By setting a command audit of the

TPM2_Sign command, the auditor can verify the list of signatures and detect any

tampering of the list.

The TPM commands are as follows:

 • TPM2_SetCommandCodeAuditStatus: Make TPM2_Sign

be audited.

 • TPM2_Sign: Uses the TPM as a CA to sign certificates. The

caller keeps an audit log.

 • TPM2_GetCommandAuditDigest: Gets a signature over a

digest of the log containing the certificate hashes that were

certified. The caller can use the signature to verify that the

audit log has not been tampered with.

Session Audit
Session audit is new for TPM 2.0. It’s mandatory in the PC platform specification, so it’s
likely to be widely available.

As the name suggests, session audit provides for an audit digest per session. An
authorization session can additionally be used as an audit session by simply setting the
audit attribute in each command to be audited. That is, a session doesn’t become an
audit session at the time it’s started, but rather when it’s used with the audit attribute set.
For commands that don’t require authorization, or to decouple audit from authorization,
the audit session can be a separate session.

For example, TPM2_Create requires one authorization session to authorize the parent
key. This session can also be marked as an audit session. Alternatively, a second session
can be included with the command, this one marked for audit. TPM2_GetCapability
requires no authorization and is normally used with no sessions. However, a session can
be used for audit.

A command with multiple sessions can mark only one as an audit session.

3TPM2_GetCapabilitywiththeparameterTPM_CAP_COMMANDSretrievesalistofimplemented
commands.

CHAPTER 16 ■ AUDITING TPM COMMANDS

267

Audit Log
The beginning of the chapter said that command and response parameter hashes are
logged on the host, and the auditor can validate the signed log. This section outlines the
required steps:

1. The auditor retrieves a list of command and response
parameters from an audit log that the host stored as it
executed the commands. From these, command parameter
and response parameter hashes are calculated.

a. Fortunately, the command-parameter and response-
parameter hash calculations used for audit are exactly
the same as those used for authorization. The command
and response parameters are serialized (marshaled), and
a digest over the resulting byte stream is calculated.

b. For a command, the hash calculation, which requires
marshaled parameters, should be straightforward. A TSS
would naturally expose command-parameter marshaling
to assist in the command-parameter authorization
operation. Responses are trickier, because a TSS naturally
unmarshals responses but doesn’t marshal them. One
approach is for the audit log to hold the marshaled
response as well as the response parameters. The auditor
can use the TSS to unmarshal and then validate those
response parameters. If the TSS doesn’t expose the
unmarshal function, or if the audit log doesn’t hold the
marshaled response, the auditor has no choice but to
write or obtain a marshaling function. Because a TPM
naturally has this function, it’s possible that it can be
copied from a future open source TPM implementation.

c. Either way, at the end of this step, the auditor should
have command and response parameter hashes that are
cryptographically validated against the command and
response parameters.

2. The auditor performs the equivalent of an extend calculation,
accumulating each command plus response parameter hash
from step 1 into an audit digest.

3. The digital signature is verified. The calculated audit digest
from step 2 is validated against the TPM signature and a
public key.

4. The auditor walks a certificate chain back to a trusted root
certificate, thereby establishing trust in the verification
public key.

For continuous auditing, it’s likely that the public key will be cached.

CHAPTER 16 ■ AUDITING TPM COMMANDS

268

USE CASE: USING THE TPM TO SECURE AN APPLICATION AUDIT LOG

In addition to auditing TPM functions, the TPM audit facility can secure an

application audit log. The application creates an NV extend index to record its

events. Each time it records an event, it first extends that event into the NV index. It

later gets a signature over the NV index data and uses it to verify that the event log

has not been tampered with.

The TPM commands are as follows:

 • TPM2_NV_DefineSpace: Define a hybrid extend index

 • TPM2_NV_Extend: Extends the application event while also

recording the event in the application event log.

When the application wishes to validate the audit log:

 • TPM2_StartAuthSession: Starts the audit session

 • TPM2_NV_Read: Reads the event digest

 • TPM2_GetSessionAuditDigest: Gets a signature over

the NV read data

If available, TPM2_NV_Certify can be used to get a signature over the NV read

data, but that command may not be present on all TPMs.

Audit Data
The session audit digest is read using the TPM2_GetSessionAuditDigest command. In
the typical use case, a signing key is supplied and the response is signed.

The digital signature isn’t merely over the audit digest. As with other attestation
functions, the TPM wraps the digest in a structure that includes other information. The
TPM specification Part 2 describes this wrapping, where a TPMS_ATTEST wraps a TPMU_
ATTEST union, which is a TPMS_SESSION_AUDIT_INFO structure.

The TPMS_ATTEST fields were covered in Chapter 12, including TPM_GENERATED, the
qualified name of the signing key, the “extra data,” the clock, and firmware information.
Their security properties are the same here.

TPMS_SESSION_AUDIT_INFO includes, as expected, the session audit digest. It also
includes a flag indicating the “exclusive” status of the session. See the following section.

Exclusive Audit
Exclusive audit permits an auditor to validate that a sequence of commands in an
audit log was contiguous—that no other commands were interleaved with the exclusive
sequence. A caller can designate only one session as an exclusive session. The caller sets
the audit session auditExclusive attribute as part of a command. Assuming there was no

CHAPTER 16 ■ AUDITING TPM COMMANDS

269

exclusive session already in progress, this session becomes the exclusive session, and the
attribute is echoed in the response.

Once a session becomes the exclusive session, it can be used for several commands.
However, any intervening command not using this exclusive audit session causes it to
no longer be the exclusive session. That is, an exclusive session in progress doesn’t block
another command but does record that another command intervened.

When the audit digest is returned, the structure includes a flag, exclusiveSession,
which is true if there were no intervening commands.

USE CASE: ENSURE THAT PCRS DO NOT CHANGE DURING
A COMMAND SEQUENCE

A user wants to run a sequence of commands at a specific trust state. PCR values

indicate the trust state of the platform. The user therefore wants to ensure that PCR

values don’t change during a sequence of commands. The user runs the sequence

in an exclusive session. If there was a PCR extend between two commands, it

changes the current exclusive session. When the caller next tries to use the original

exclusive session, the TPM returns an error, indicating an intervening command.

The TPM commands are as follows:

 • TPM2_StartAuthSession: Starts a session to be used for

the exclusive audit.

TPM command sequence that should be run without •
an intervening PCR extend. Set the audit and

auditExclusive session attributes.

If there was an intervening command, the request for an •
exclusive audit session returns TPM_RC_EXCLUSIVE.

Summary
Audit in the TPM is the process of logging command and response parameters. The TPM
logs these parameters with an extend operation, similar to that used for PCRs, while the
host saves the actual parameters. Later, the TPM can return a signed digest of the audit
log. The recipient can validate the signature and thus verify the integrity of the log.

The TPM offers two audit options. Command audit records all instances of a selected
group of commands, regardless of the session. Session audit records all commands in a
session, regardless of the command. An exclusive session permits the recipient to detect
whether an audit session was interrupted by an intervening, non-audited command. It
can also provide a guarantee that there was no intervening command.

271

CHAPTER 17

Decrypt/Encrypt Sessions

2B or not 2B, that is the question.

Dave Challener,
During TCG TSS Working Group discussion of

decrypt/encrypt sessions

Chapter 13 briefly touched on decrypt and encrypt sessions. As you may remember, these
are per-command session modifiers. This chapter describes these two session modifiers
in detail: what they do, practical uses of them, some limitations on them, how to set them
up, and some code examples.

What Do Encrypt/Decrypt Sessions Do?
In a nutshell, decrypt and encrypt sessions protect secrets being transmitted over an
insecure medium. A caller, to protect the confidentiality of data, can encrypt it with a
command encryption key known only to the caller and the TPM. The encryption key
is determined, in part, by the parameters used to start the session (more on that later).
A decrypt session then informs the TPM that the first parameter is encrypted. This
means after receiving the parameter, the TPM must decrypt it—hence the name, decrypt
session. For a response, an encrypt session indicates that the TPM has encrypted the first
response parameter before returning it to the caller, which is why it’s called an encrypt
session. After receiving the encrypted response parameter, the caller uses the response
decryption key to decrypt the data.

Two different symmetric-key modes can be used for decrypt and encrypt sessions: XOR
and CFB. CFB mode offers stronger encryption but requires that the TPM and the caller
both have access to a hashing algorithm and an encryption algorithm. XOR requires only a
hashing algorithm and is the right choice for very small code size, but it is less secure.

Practical Use Cases
So, what are these symmetric key modes good for? The quick answer is that there
are many ways to use them; just look in Part 3 of the TPM 2.0 specification for every
command that has a TPM2B as a first command and/or first response parameter. All of
those parameters are possible candidates to be encrypted.

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

272

A small sampling of common use cases are as follows:

• Tpm2_Create: The first command parameter to this command,
inSensitive, is a structure which contains the password (called
userAuth in the structure description) in one of its fields. This
should probably be sent to the TPM encrypted, which would
require that the session be set up as a decrypt session.1

Confidential data being written to or read from TPM NV indexes. •
Suppose you want to use the TPM NV indexes to save password
information or personal credit card information. Encrypting
this data before sending it to or receiving it from the TPM helps
protect it.

Use of decrypt and encrypt sessions becomes even more •
important when communicating with a remote TPM over the
network. Suppose you want to store keys on a remote server
and recover them from client machines. Sending these in the
clear over the network is obviously insecure. SSL sessions can
remedy the network snooping vulnerability, but the keys are still
in the clear in multiple software layers on the client and server
machines. Encrypt and decrypt sessions can vastly reduce the
attack surface.

Decrypt/Encrypt Limitations
There are some limitations on which parameters can be encrypted and decrypted and the
number of encrypt and decrypt sessions per command.

Only the first command parameter can be encrypted and only the first response
parameter can be decrypted, and in both cases, only if that first parameter is a TPM2B as
defined in Chapter 5. Commands that don’t have a TPM2B as the first command parameter
cannot be sent to the TPM using sessions set for decrypt; likewise, if a response’s first
parameter isn’t a TPM2B, the response can’t be received using an encrypt session.

As you learned in Chapter 13, commands can be sent with up to three sessions.
But a maximum of one session per command can be set for decrypt and a maximum of
one for encrypt. If a command allows the use of both decrypt and encrypt sessions, the
same session can be used to set both attributes or separate sessions can be used, one for
each attribute.

So how do you enable decrypt and encrypt sessions?

1There’saninterestingwrinklerelatedtothefirstresponseparameterfromTpm2_Create:even
thoughthisparameterisaTPM2Bandcouldbeencryptedbysettingthesessionasanencrypt
session,it’salwaysencryptedbytheTPM.Encryptingitagainwouldseemtobeoflittlevalue.

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

273

Decrypt/Encrypt Setup
At first glance, configuring sessions as decrypt and/or encrypt sessions is very easy.
For an open session, all you have to do is set either or both of the session attributes
bits in the authorization area for the command: sessionAttributes.decrypt and/or
sessionAttributes.encrypt.

Of course, things are rarely that simple, and it’s certainly true here. For a decrypt session,
the caller has to properly encrypt the first parameter. Likewise for an encrypt session, the
caller has to properly decrypt the first response parameter after receiving it from the TPM;
otherwise, it will be meaningless gibberish to the caller. Two modes of encryption are used for
decrypt and encrypt sessions: XOR and CFB mode. These modes are set when the session is
created. Both modes have the property that the plain text and ciphertext are the same length,
so the byte stream lengths don’t change. Session nonces figure into the encryption, which
ensures that the encryption and decryption operations function as one-time pads.

For XOR mode, a mask (one-time pad) is generated and XORed with the data to
be encrypted or decrypted. The mask is generated by passing the hashAlg (authHash
parameter used when the session was started), the HMAC key, the string “XOR”,
nonceNewer, nonceOlder, and the message size to the key derivation function (KDFa).
The output is a mask that is as long as the message to be decrypted or encrypted. A simple
XOR of the mask with the data completes the encryption or decryption operation.

For CFB mode, the KDFa is used to generate the encryption key and initialization
vector (IV). The inputs to the KDFa are hashAlg (the authHash parameter used when the
session was started), sessionKey, the “CFB” string, nonceNewer, nonceOlder, and the
number of bits (bits) needed for the symmetric key plus the IV. The output is a string of
bits length, with the key in the upper octets and the IV in the lower octets. The IV size is
determined by the block size of the encryption algorithm. The key and IV are used as inputs
to the encryption algorithm to perform the required encryption or decryption operation.

For both XOR and CFB modes, nonceNewer and nonceOlder figure into the
encryption. For XOR mode, because the nonces change, a different mask is generated
for encryption of command parameters than the one used for response parameters.
Likewise, for CFB mode, a different encryption key and IV are generated for commands
and responses. In both XOR and CFB modes, because the nonces roll for every usage of
the session, encrypt and decrypt sessions act as one-time pads.

Pseudocode Flow
As you may recall from Chapter 13, sessions can be one of three types: HMAC, policy,
or trial policy sessions. HMAC and policy sessions can be used as decrypt or encrypt
sessions; trial policy sessions cannot.

To keep things very simple, the following example uses an unbound, unsalted
policy session that isn’t being used for authorization.2 The only use of this session is for
decryption and encryption of command and response parameters. A separate password
session is used for authorization. This means the test code doesn’t need to calculate
HMACs or manage the policyDigest for the encrypt and decrypt session.

2Unboundandunsaltedsessionsdon’tyieldstrongencryptionkeysandshouldnotnormallybeused
fordecryptorencryptsessions.Thiswasdonetokeeptheexampleassimpleaspossible.

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

274

When a session is started, the TPM generates a session key. To use decrypt and
encrypt sessions, the caller needs to independently generate that session key, just as he
had to do in order to use HMAC and policy sessions.

To unify all this into a single flow, the steps in decrypt and encrypt session lifecycles
are as follows:

1. Start the session using Tpm2_StartAuthSession, and set the
symmetric parameter to

CFB mode:•

// AES encryption/decryption and CFB mode.
symmetric.algorithm = TPM_ALG_AES;
symmetric.keyBits.aes = 128;
symmetric.mode.aes = TPM_ALG_CFB;

XOR mode:•

// XOR encryption/decryption.
symmetric.algorithm = TPM_ALG_XOR;
symmetric.keyBits.exclusiveOr = TPM_ALG_SHA256;

2. Generate the session key, and save it.

3. For a command that has a TPM2B as the first parameter, if you
desire to encrypt that parameter, do the following:

a. Generate the HMAC key for this use of the session.
The session key figures into the generation of this key.

b. For CFB mode:

Generate the encryption key and IV using the session •
hash algorithm, HMAC key, special label (“CFB”),
nonceNewer, nonceOlder, and the number of bits to be
encrypted.

Encrypt the first parameter, using the encryption key •
and IV.

c. For XOR mode:

Generate the mask using the HMAC key, the session •
hash algorithm, nonceNewer, nonceOlder, and the
number of bytes to be encrypted.

XOR the clear text data with the mask to generate the •
encrypted data.

d. Set the sessionAttributes.decrypt bit.

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

275

4. If the first response parameter is a TPM2B and you want the
TPM to send that parameter in encrypted format, set the
sessionAttributes.encrypt bit.

5. Send the command to the TPM.

6. Receive the response from the TPM.

7. If the first response parameter is a TPM2B and the
sessionAttributes.encrypt bit is set, do the following:

a. Generate the HMAC key for this use of the session.
The session key figures into the generation of this key.

b. For CFB mode:

Generate the encryption key and IV using the session •
hash algorithm, HMAC key, special label (“CFB”),
nonceNewer, nonceOlder, and the number of bits to be
decrypted.

Decrypt the first parameter, using the encryption key •
and IV.

c. For XOR mode:

Generate the mask using the HMAC key, the session •
hash algorithm, nonceNewer, nonceOlder, and the
number of bytes to be decrypted.

XOR the encrypted data with the mask to generate the •
clear data.

For details on CFB and XOR decryption/encryption see the “Session-based encryption”

section of Part 1 of the TPM 2.0 specification.

Sample Code
This section shows an example of actual working code for doing decrypt and encrypt
sessions. First some notes about this code:

This code does a write of encrypted data to an NV index (• decrypt
session attribute set) followed by two reads from the same
NV index: a plain text read (encrypt attribute not set) and a
ciphertext read (encrypt session attribute set). After both reads,
the read data is compared to the plain text write data.

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

276

Note ■ The reason for doing the plain text read is to verify that the NV index was written

with plain text, not encrypted data. If you didn’t set the decrypt session attribute, encrypted

data would be written to the NV index. But the test would still appear to be working because

the encrypted data would be written to the TPM, read back, and decrypted by the calling

application, and the test to verify the read and write data would pass. This was actually a

mistake that I made on my first pass at writing this code.

To catch this issue, do a plain text read of the NV index and compare this to the unencrypted

write data. They should be equal.

This function tests both CFB and XOR mode encryption. CFB is •
done on the first pass and XOR on the second pass.

The code demonstrates some new features of the TSS system API •
code that couldn’t be discussed earlier:3

 · Getting and setting of encrypt and decrypt parameters: These
calls enable the caller to get the plain text unencrypted
command parameters (Tss2_Sys_GetDecryptParam), encrypt
them, and then set the encrypted command parameters in the
command byte stream (Tss2_Sys_SetDecryptParam) before
sending the command. Likewise, Tss2_Sys_GetEncryptParam
and Tss2_Sys_SetEncryptParam enable the caller to properly
process response parameters that were encrypted by the TPM.

 · Asynchronous execution (Tss2_Sys_ExecuteAsync and
Tss2_Sys_ExecuteFinish): This mode of execution allows the
application to send the command (Tss2_Sys_ExecuteAsync),
do some work while waiting for the response, and then get
the response (Tss2_Sys_ExecuteFinish) with a configurable
timeout.

 · Synchronous execution calls (Tss2_Sys_Execute): This
function will wait forever for a response, so it assumes that
the TPM eventually responds.

3FordetailsonthesesystemAPIcalls,reviewtheTSSSystemLevelAPIandTPMCommand
TransmissionInterfaceSpecificationatwww.trustedcomputinggroup.org/developers/
software_stack.

http://www.trustedcomputinggroup.org/developers/software_stack
http://www.trustedcomputinggroup.org/developers/software_stack

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

277

 · Setting command authorizations (Tss2_SetCmdAuths) and
getting response authorizations (Tss2_GetRspAuths): These
functions are used to set command authorization area
parameters and get response area parameters, including
nonces, session attributes, passwords (for password
sessions), and command and response HMACs. In this
example they will be used for nonces, session attributes, and
the password. Access to the command and response HMACs
isn’t needed in this code since the code doesn’t use HMACs.

This code relies heavily on an application-level structure, •
SESSION, that maintains all session state information including
nonces. There are many ways this can be done—this just happens
to be the implementation I chose. This structure looks like this:

typedef struct {
 // Inputs to StartAuthSession; these need to be saved
 // so that HMACs can be calculated.
 TPMI_DH_OBJECT tpmKey;
 TPMI_DH_ENTITY bind;
 TPM2B_ENCRYPTED_SECRET encryptedSalt;
 TPM2B_MAX_BUFFER salt;
 TPM_SE sessionType;
 TPMT_SYM_DEF symmetric;
 TPMI_ALG_HASH authHash;

 // Outputs from StartAuthSession; these also need
 // to be saved for calculating HMACs and
 // other session related functions.
 TPMI_SH_AUTH_SESSION sessionHandle;
 TPM2B_NONCE nonceTPM;

 // Internal state for the session
 TPM2B_DIGEST sessionKey;
 TPM2B_DIGEST authValueBind; // authValue of bind object
 TPM2B_NONCE nonceNewer;
 TPM2B_NONCE nonceOlder;
 TPM2B_NONCE nonceTpmDecrypt;
 TPM2B_NONCE nonceTpmEncrypt;
 TPM2B_NAME name; // Name of the object the session handle
 // points to. Used for computing HMAC for
 // any HMAC sessions present.
 //
 void *hmacPtr; // Pointer to HMAC field in the marshalled
 // data stream for the session.
 // This allows the function to calculate

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

278

 // and fill in the HMAC after marshalling
 // of all the inputs is done.
 //
 // This is only used if the session is an
 // HMAC session.
 //
 UINT8 nvNameChanged;// Used for some special case code
 // dealing with the NV written state.
} SESSION;

The • RollNonces function does what it says: it copies nonceNewer
to nonceOlder and copies the new nonce to nonceNewer. The
nonces must be rolled before each command and after each
response, as described in Chapter 13. Here’s the complete code
for this function:

void RollNonces(SESSION *session, TPM2B_NONCE *newNonce)
{
 session->nonceOlder = session->nonceNewer;
 session->nonceNewer = *newNonce;
}

The • StartAuthSessionWithParams function starts the session,
saves its state in a SESSION structure, and adds the SESSION
structure to a list of open sessions.

The • EndAuthSession function is used to remove the SESSION
structure from the list of open sessions after the session has
ended.

• EncryptCommandParam encrypts command parameters, and
DecryptResponseParam decrypts response parameters. Both
functions examine the authorization structures’ TPMA_SESSION
bits to determine if the decrypt and/or encrypt bits are set. This
chapter doesn’t describe the details of these functions, but they
perform the encryption and decryption operations as explained
in Part 1 of the TPM 2.0 specification.

For some of the common routines and data structures that aren’t •
described here, please refer to Chapters 7 and 13 as well as the
TSS System API specification.

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

279

This working code can be downloaded in source form as part of the TSS System API
library code and tests. Because the code is a bit long, to help you better understand the
flow, notes are interspersed before each major block of functionality. And now for the
actual code:

UINT32 writeDataString = 0xdeadbeef;

void TestEncryptDecryptSession()
{
 TSS2_RC rval = TSS2_RC_SUCCESS;
 SESSION encryptDecryptSession;
 TPMT_SYM_DEF symmetric;
 TPM2B_MAX_NV_BUFFER writeData, encryptedWriteData;
 TPM2B_MAX_NV_BUFFER encryptedReadData, decryptedReadData,
 readData;
 size_t decryptParamSize;
 uint8_t *decryptParamBuffer;
 size_t encryptParamSize;
 uint8_t *encryptParamBuffer;
 TPM2B_AUTH nvAuth;
 TPM2B_DIGEST authPolicy;
 TPMA_NV nvAttributes;
 int i;
 TPMA_SESSION sessionAttributes;

The following lines set up the authorization used for the NV Undefine command.

// Authorization structure for undefine command.
TPMS_AUTH_COMMAND nvUndefineAuth;

// Create and init authorization area for undefine command:
// only 1 authorization area.
TPMS_AUTH_COMMAND *nvUndefineAuthArray[1] = { &nvUndefineAuth };

// Authorization array for command (only has one auth structure).
TSS2_SYS_CMD_AUTHS nvUndefineAuths = { 1, &nvUndefineAuthArray[0] };

printf("\n\nDECRYPT/ENCRYPT SESSION TESTS:\n");

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

280

Copy the write data array into a TPM2B structure.

writeData.t.size = sizeof(writeDataString);
memcpy((void *)&writeData.t.buffer, (void *)&writeDataString,
 sizeof(writeDataString));

Create the NV index.

// Create NV index with empty auth value.
*(UINT32 *)((void *)&nvAttributes) = 0;
nvAttributes.TPMA_NV_AUTHREAD = 1;
nvAttributes.TPMA_NV_AUTHWRITE = 1;
nvAttributes.TPMA_NV_PLATFORMCREATE = 1;

// No authorization required.
authPolicy.t.size = 0;
nvAuth.t.size = 0;
rval = DefineNvIndex(TPM_RH_PLATFORM, TPM_RS_PW,
 &nvAuth, &authPolicy, TPM20_INDEX_TEST1,
 TPM_ALG_SHA1, nvAttributes,
 sizeof(writeDataString));

//
// 1st pass with CFB mode.
// 2nd pass with XOR mode.
//
for(i = 0; i < 2; i++)
{

Set up authorization structures for NV read and write commands and responses.

// Authorization structure for NV
// read/write commands.
TPMS_AUTH_COMMAND nvRdWrCmdAuth;

// Authorization structure for
// encrypt/decrypt session.
TPMS_AUTH_COMMAND decryptEncryptSessionCmdAuth;

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

281

// Create and init authorization area for
// NV read/write commands:
// 2 authorization areas.
TPMS_AUTH_COMMAND *nvRdWrCmdAuthArray[2] =
 { &nvRdWrCmdAuth, &decryptEncryptSessionCmdAuth };

// Authorization array for commands
// (has two auth structures).
TSS2_SYS_CMD_AUTHS nvRdWrCmdAuths =
 { 2, &nvRdWrCmdAuthArray[0] };

// Authorization structure for NV read/write responses.
TPMS_AUTH_RESPONSE nvRdWrRspAuth;

// Authorization structure for decrypt/encrypt
// session responses.
TPMS_AUTH_RESPONSE decryptEncryptSessionRspAuth;

// Create and init authorization area for NV
// read/write responses: 2 authorization areas.
TPMS_AUTH_RESPONSE *nvRdWrRspAuthArray[2] =
 { &nvRdWrRspAuth, &decryptEncryptSessionRspAuth };

// Authorization array for responses
// (has two auth structures).
TSS2_SYS_RSP_AUTHS nvRdWrRspAuths =
 { 2, &nvRdWrRspAuthArray[0] };

Set the session for CFB or XOR mode encryption/decryption, depending on which pass

through the code is being run. Then start the policy session.

// Setup session parameters.
if(i == 0)
{
 // AES encryption/decryption and CFB mode.
 symmetric.algorithm = TPM_ALG_AES;
 symmetric.keyBits.aes = 128;
 symmetric.mode.aes = TPM_ALG_CFB;
}
else
{
 // XOR encryption/decryption.
 symmetric.algorithm = TPM_ALG_XOR;
 symmetric.keyBits.exclusiveOr = TPM_ALG_SHA256;
}

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

282

// Start policy session for decrypt/encrypt session.
rval = StartAuthSessionWithParams(&encryptDecryptSession,
 TPM_RH_NULL, TPM_RH_NULL, 0, TPM_SE_POLICY,
 &symmetric, TPM_ALG_SHA256);
CheckPassed(rval);

Write the NV index using a password session for authorization and a policy session for

encryption/decryption. First marshal the input parameters (Tss2_Sys_NV_Prepare).

//
// Write TPM index with encrypted parameter used
// as the data to write. Set session for encrypt.
// Use asynchronous APIs to do this.
//
// 1st time: use null buffer, 2nd time use populated one;
// this tests different cases for SetDecryptParam function.
//

// Prepare the input parameters, using unencrypted
// write data. This will be encrypted before the
// command is sent to the TPM.
rval = Tss2_Sys_NV_Write_Prepare(sysContext,
 TPM20_INDEX_TEST1, TPM20_INDEX_TEST1,
 (i == 0 ? (TPM2B_MAX_NV_BUFFER *)0 : &writeData),
 0);
CheckPassed(rval);

Set the authorization structures (Tss2_Sys_SetCmdAuths) for the command.

// Set up password authorization session structure.
nvRdWrCmdAuth.sessionHandle = TPM_RS_PW;
nvRdWrCmdAuth.nonce.t.size = 0;
*((UINT8 *)((void *)&nvRdWrCmdAuth.sessionAttributes)) = 0;
nvRdWrCmdAuth.hmac.t.size = nvAuth.t.size;
memcpy((void *)&nvRdWrCmdAuth.hmac.t.buffer[0],
 (void *)&nvAuth.t.buffer[0],
 nvRdWrCmdAuth.hmac.t.size);

// Set up encrypt/decrypt session structure.
decryptEncryptSessionCmdAuth.sessionHandle =
 encryptDecryptSession.sessionHandle;
decryptEncryptSessionCmdAuth.nonce.t.size = 0;
*((UINT8 *)((void *)&sessionAttributes)) = 0;

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

283

decryptEncryptSessionCmdAuth.sessionAttributes =
 sessionAttributes;
decryptEncryptSessionCmdAuth.sessionAttributes.continueSession
 = 1;
decryptEncryptSessionCmdAuth.sessionAttributes.decrypt = 1;
decryptEncryptSessionCmdAuth.hmac.t.size = 0;

rval = Tss2_Sys_SetCmdAuths(sysContext, &nvRdWrCmdAuths);
CheckPassed(rval);

Get the location and size of the decrypt parameter in the byte stream

(Tss2_Sys_GetDecryptParam), encrypt the write data (EncryptCommandParam), and copy

the encrypted write data into the byte stream (Tss2_Sys_SetDecryptParam).

// Get decrypt parameter.
rval = Tss2_Sys_GetDecryptParam(sysContext,
 &decryptParamSize,
 (const uint8_t **)&decryptParamBuffer);
CheckPassed(rval);

if(i == 0)
{
 // 1st pass: test case of Prepare inputting a NULL decrypt
 // param; decryptParamSize should be 0.
 if(decryptParamSize != 0)
 {
 printf("ERROR!! decryptParamSize != 0\n");
 Cleanup();
 }
}

// Roll nonces for command.
RollNonces(&encryptDecryptSession,
 &decryptEncryptSessionCmdAuth.nonce);

// Encrypt write data.
rval = EncryptCommandParam(&encryptDecryptSession,
 (TPM2B_MAX_BUFFER *)&encryptedWriteData,
 (TPM2B_MAX_BUFFER *)&writeData, &nvAuth);
CheckPassed(rval);

// Now set decrypt parameter.
rval = Tss2_Sys_SetDecryptParam(sysContext,
 (uint8_t)encryptedWriteData.t.size,
 (uint8_t *)&encryptedWriteData.t.buffer[0]);
CheckPassed(rval);

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

284

Write the NV data (Tss2_Sys_ExecuteAsync and Tss2_Sys_ExecuteFinish). The write uses

asynchronous calls to illustrate this feature of the TSS System API.

// Now write the data to the NV index.
rval = Tss2_Sys_ExecuteAsync(sysContext);
CheckPassed(rval);

rval = Tss2_Sys_ExecuteFinish(sysContext, -1);
CheckPassed(rval);

Get the response authorizations to set up for the next use of the sessions

(Tss2_Sys_GetRspAuths).

rval = Tss2_Sys_GetRspAuths(sysContext, &nvRdWrRspAuths);
CheckPassed(rval);

// Roll the nonces for response
RollNonces(&encryptDecryptSession,
 &nvRdWrRspAuths.rspAuths[1]->nonce);

// Don't need nonces for anything else, so roll
// the nonces for next command.RollNonces(&encryptDecryptSession,
 &decryptEncryptSessionCmdAuth.nonce);

Read the data back as plain text to be sure the decrypt session worked correctly during the

NV write operation.

// Now read the data without encrypt set.
nvRdWrCmdAuths.cmdAuthsCount = 1;
nvRdWrRspAuths.rspAuthsCount = 1;
rval = Tss2_Sys_NV_Read(sysContext, TPM20_INDEX_TEST1,
 TPM20_INDEX_TEST1, &nvRdWrCmdAuths,
 sizeof(writeDataString), 0, &readData,
 &nvRdWrRspAuths);
CheckPassed(rval);
nvRdWrCmdAuths.cmdAuthsCount = 2;
nvRdWrRspAuths.rspAuthsCount = 2;

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

285

// Roll the nonces for response
RollNonces(&encryptDecryptSession,
 &nvRdWrRspAuths.rspAuths[1]->nonce);

// Check that write and read data are equal. This
// verifies that the decrypt session was set up correctly.
// If it wasn't, the data stored in the TPM would still
// be encrypted, and this test would fail.
if(memcmp((void *)&readData.t.buffer[0],
 (void *)&writeData.t.buffer[0], readData.t.size))
{
 printf("ERROR!! read data not equal to written data\n");
 Cleanup();
}

Now read the NV data encrypted using an encrypt session. This time, use a synchronous

call, Tss2_Sys_Execute. The reason is simply to demonstrate another method; you could

use asynchronous calls similar to how the NV write was performed.

//
// Read TPM index with encrypt session; use
// synchronous APIs to do this.
//

rval = Tss2_Sys_NV_Read_Prepare(sysContext, TPM20_INDEX_TEST1,
 TPM20_INDEX_TEST1, sizeof(writeDataString), 0);
CheckPassed(rval);

// Roll the nonces for next command.
RollNonces(&encryptDecryptSession,
 &decryptEncryptSessionCmdAuth.nonce);

decryptEncryptSessionCmdAuth.sessionAttributes.decrypt = 0;
decryptEncryptSessionCmdAuth.sessionAttributes.encrypt = 1;
decryptEncryptSessionCmdAuth.sessionAttributes.continueSession = 1;

rval = Tss2_Sys_SetCmdAuths(sysContext, &nvRdWrCmdAuths);
CheckPassed(rval);

//
// Now Read the data.
//
rval = Tss2_Sys_Execute(sysContext);
CheckPassed(rval);

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

286

Use Tss2_Sys_GetEncryptParam and Tss2_Sys_SetEncryptParam combined with

DecryptResponseParam to decrypt the response data.

rval = Tss2_Sys_GetEncryptParam(sysContext, &encryptParamSize,
 (const uint8_t **)&encryptParamBuffer);
CheckPassed(rval);

rval = Tss2_Sys_GetRspAuths(sysContext, &nvRdWrRspAuths);
CheckPassed(rval);

// Roll the nonces for response
RollNonces(&encryptDecryptSession,
 &nvRdWrRspAuths.rspAuths[1]->nonce);

// Decrypt read data.
encryptedReadData.t.size = encryptParamSize;
memcpy((void *)&encryptedReadData.t.buffer[0],
 (void *)encryptParamBuffer, encryptParamSize);

rval = DecryptResponseParam(&encryptDecryptSession,
 (TPM2B_MAX_BUFFER *)&decryptedReadData,
 (TPM2B_MAX_BUFFER *)&encryptedReadData, &nvAuth);
CheckPassed(rval);

// Roll the nonces.
RollNonces(&encryptDecryptSession,
 &nvRdWrRspAuths.rspAuths[1]->nonce);

rval = Tss2_Sys_SetEncryptParam(sysContext,
 (uint8_t)decryptedReadData.t.size,
 (uint8_t *)&decryptedReadData.t.buffer[0]);
CheckPassed(rval);

// Get the command results, in this case the read data.
rval = Tss2_Sys_NV_Read_Complete(sysContext, &readData);
CheckPassed(rval);

printf("Decrypted read data = ");
DEBUG_PRINT_BUFFER(&readData.t.buffer[0], (UINT32)readData.t.size);

CHAPTER 17 ■ DECRYPT/ENCRYPT SESSIONS

287

// Check that write and read data are equal.
if(memcmp((void *)&readData.t.buffer[0],
 (void *)&writeData.t.buffer[0], readData.t.size))
{
 printf("ERROR!! read data not equal to written data\n");
 Cleanup();
}

rval = Tss2_Sys_FlushContext(sysContext,
 encryptDecryptSession.sessionHandle);
CheckPassed(rval);

rval = EndAuthSession(&encryptDecryptSession);
CheckPassed(rval);
 }

Delete the NV index.

 // Set authorization for NV undefine command.
 nvUndefineAuth.sessionHandle = TPM_RS_PW;
 nvUndefineAuth.nonce.t.size = 0;
 *((UINT8 *)((void *)&nvUndefineAuth.sessionAttributes)) = 0;
 nvUndefineAuth.hmac.t.size = 0;

 // Undefine NV index.
 rval = Tss2_Sys_NV_UndefineSpace(sysContext,
 TPM_RH_PLATFORM, TPM20_INDEX_TEST1, &nvUndefineAuths, 0);
 CheckPassed(rval);
}

Summary
As you can see, there is a fair amount of work involved in using decrypt and encrypt
sessions. Abstracting this work into well-designed functions or even using a higher-level
API such as the Feature API helps to reduce this work.

Decrypt and encrypt sessions provide secrecy for sensitive information while
in transit to and from the TPM. You’ve seen what they do, some use cases, and how
to program them using the TSS System API, and you’ve learned about some new
functionality in the System API.

The next chapter focuses on TPM context management.

289

CHAPTER 18

Context Management

In general, we don’t prevent things unless there is a good reason for that.
Put another way, we try to allow anything that doesn’t cause a security
problem.

David Wooten,
During an e-mail exchange about context management

TPMs, for all their tremendous capability, are very limited in their memory, largely to
reduce cost. This means objects, sessions, and sequences must be swapped in and out of
the TPM as needed, much like a virtual memory manager swaps memory pages to and
from disk drives. In both cases, the calling application thinks it has access to many more
objects and sessions (in the TPM case) or much more memory (in the virtual memory
case) than can actually be present at any given time.

For a system where only a single application sends commands to the TPM, these
swapping operations can be performed by the application itself.1 However, when multiple
applications and/or processes are accessing the TPM, two components of the TSS stack
are required: the TPM Access Broker (TAB) and the resource manager (RM).

This chapter describes the high-level architecture of the TAB and RM. Then it
describes the features and commands of the TPM that support swapping objects,
sessions, and sequences in and out of TPM memory, the details of how different
swappable entities are handled by the related commands, and some special cases.

TAB and the Resource Manager: A High-Level
Description
The TAB and RM were first described in Chapter 7 as layers in the TSS. This section
provides some insights into the internals of the TAB and RM.

The TAB and RM transparently isolate TPM applications and processes from the
messiness of arbitrating multiprocess access to the TPM and swapping objects, sessions,
and sequences in and out of TPM memory as needed. The TAB and RM are closely

1Eveninthiscase,theuseofanRMisadvantageousbecauseitrelievestheapplicationofthe
burdenofperformingtheswapping.

CHAPTER 18 ■ CONTEXT MANAGEMENT

290

related and typically integrated into the same software module. Depending on system
design, they may reside in the top layer of a TPM device-driver stack, or they may be
integrated as a daemon process sandwiched between the TSS system API layer above and
the TPM device driver below.

TAB
The TAB’s responsibility is fairly simple: arbitrate multiple processes accessing the TPM.
At a minimum, all processes must be guaranteed that, between the time their command
byte stream begins to be transmitted to the TPM and the time the response byte stream
is fully received from the TPM, no other processes communicate with the TPM. Some
examples of multiprocess collisions that could occur in the absence of a TAB are as follows:

Process A’s command byte stream begins to be transmitted to •
the TPM, and before it’s done, process B’s command byte stream
starts being transmitted. The byte stream sent to the TPM will be
a mix of command bytes from both processes, and the TPM will
probably return an error code.

Process A sends a command, and Process B reads the response.•

Process A’s command byte stream is transmitted, and then, while •
its response is being read, Process B’s byte stream starts being
transmitted.

Process A creates and loads a key exclusively for its own use. •
Process B context saves (using the TPM2_ContextSave command)
the key and then, sometime later, context loads it (using the
TPM2_ContextLoad command) and uses it for its own purposes.

A TAB can be implemented in a couple of different ways: either with a TPM lock or
without one.

In the lock architecture, a software method of sending a “lock” down to the TAB
could be designed. This would signal the TAB that no other process would be allowed
access to the TPM until the process that locked it is completes. This would have the
advantage of allowing a TAB to complete multiple commands to the TPM without
interruption. And interestingly enough, this architecture would eliminate the need for an
RM, assuming you could make it work. An application could claim a lock on the TPM and
send commands to the TPM while managing all TPM contexts itself (this management
includes cleaning up after itself by evicting all objects, sequences, and sessions before
releasing the lock). The Achilles heel of this architecture is that the application might fail
to release the lock, starving all other applications. There could be some sort of timeout
mechanism, but that would place artificial limits on the time that an application could
exclusively use the TPM. This in turn would force applications to do some fairly complex
management of corner cases related to TPM contexts since they couldn’t depend on the
lock being active long enough to complete their TPM operations. This approach was
initially considered by the TCG TSS working group and rejected after some very wise
advice from Paul England of Microsoft.

CHAPTER 18 ■ CONTEXT MANAGEMENT

291

The simpler lock-less architecture allows the transmission of a TPM command
and reception of its response atomically without interruption from any other processes’
interactions with the TPM. This reduces the time that the process exclusively accesses
the TPM to the time it takes to send a command and receive a response. This architecture
requires an underlying RM because competing applications cannot be in the business of
managing each other’s objects, sessions, and sequences. For example:

1. Process A happens to be the only application accessing the
TPM for a while, and during this time it starts three sessions
and loads three keys.

2. Then process B decides it’s ready to talk to the TPM and wants
to create a session and a key. If the TPM has only three session
slots and three object slots, process B must first unload at least
one of process A’s sessions and one of its objects.

3. This forces process B to manage process A’s TPM contexts—
an untenable position in terms of inter-process isolation
(security) and software complexity. Without a central RM,
applications must manage all TPM contexts themselves. It’s
almost impossible to make this work, and it guarantees that
processes can mess with each other’s TPM contexts.

Hence the need for an RM.

Resource Manager
The RM is responsible for transparently handling all the details of swapping objects,
sessions, and sequences in and out of the TPM. Very highly embedded, single-user
applications may choose to handle these tasks themselves, but, as discussed previously,
most systems are multiuser and require an RM. As an analogy, imagine if all PC
applications had to manage memory swapping in and out of memory and the hard disk
themselves instead of relying on the operating system to do this. The RM performs a
similar function for processes that access TPMs.

Resource Manager Operations
At the risk of stating the obvious, if a transient entity is used in a command, it must be
loaded into TPM memory. This means that an RM must parse the command byte stream
before the command is sent to the TPM and take any actions required to ensure that
all transient objects used by that command are loaded into the TPM. This includes all
sessions referenced in the authorization area and all objects, sessions, and sequences
whose handles are in the command’s handle area.

CHAPTER 18 ■ CONTEXT MANAGEMENT

292

The basic operations that an RM must perform are as follows2:

Virtualize all object and sequence handles sent to and received •
from the TPM. Because more of these can be active than can be in
the TPM’s internal memory, they must be virtualized.3

Maintain tables to keep track of contexts for objects and •
sequences.

Maintain a virtual-to-TPM handle mapping for objects and •
sequences that are loaded in the TPM.

For commands being sent to the TPM:•

Capture all command byte streams before they’re sent ·
to the TPM.

Check for any handles in the authorization area or handle ·
area. If these handles represent objects, sequences, or
sessions, ensure that the saved contexts for these are loaded
into the TPM so that the command can successfully execute.
For objects and sequences, replace the virtual handles in the
command byte stream with the real handles returned from the
load commands before sending the command to the TPM.

Note ■ Session handles do not need to be virtualized, because they are constant for the

lifetime of the session: that is, when a session is reloaded, it keeps the same handle. The

“why” of this is discussed later. For now, it’s sufficient to understand the difference between

objects and sequences, which get new handles every time they’re context loaded, and

sessions, which do not.

For responses from the TPM:•

Capture these responses before they are returned to higher ·
layers of software.

Virtualize any object or sequence handles in the responses, ·
and replace the handles returned by the TPM in the response
byte stream with these virtualized handles.

It must either proactively guarantee that commands will never •
fail due to being out of memory in the TPM or reactively fix the
problem when the required contexts can’t be loaded into the TPM.

2ForareferenceimplementationofaresourcemanagerseetheTest/tpmclient/ResourceMgr
directoryintheSAPIlibraryandtestcode.ThelocationforthiswasdescribedinChapter7.
3TPMhandlevirtualizationisnottobeconfusedwithOSlevelvirtualizationofhardware
oroperatingsystems.

CHAPTER 18 ■ CONTEXT MANAGEMENT

293

There are two possible ways to implement the proactive •
approach:

The simplest proactive approach requires that, after ·
completion of each TPM command from software layers
above the RM, all objects, sessions, and sequences must be
context saved and removed from TPM internal memory.
This is inherently a simpler approach, but it does cause more
commands to be sent to the TPM. For example, after a load
command for an object, the object is unloaded even though
it might be used in the next command.

The second proactive approach is to examine the ·
command’s handle and session area before executing it, to
find all the objects, sequences, and sessions that must be
loaded into the TPM. Next, enough of the objects, sequences,
and sessions currently loaded into the TPM are evicted that
the required ones can be context loaded. Then the required
ones that aren’t already loaded into the TPM are loaded.

Note ■ A hardware-triggered command, _TPM_Hash_Start, is discussed later in this

chapter. This command implicitly, and transparently to the RM, evicts an object or session.

This imposes some special requirements on the second type of proactive approach.

The reactive approach takes actions after a command fails when •
the response code indicates that the TPM was out of memory.
When this type of error code is received, the RM must remove
objects, sessions, or sequences until enough memory is freed to
load the objects, sessions, and sequences required for the current
command. Then the original command must be replayed.

Note ■ From hard-earned experience, the reactive approach is extremely difficult to code

and even harder to debug. I highly recommend one of the proactive approaches. I tried the

reactive approach and it didn’t end well, resulting in a recoding effort. Enough said.

The RM must properly handle object, sequence, and session •
contexts across reset events, as described in the previous section.

The above covers the basic requirements. Others for handling corner cases and
some more esoteric functionality are detailed in the “TSS TAB and Resource Manager
Specification”.

Now let’s examine the TPM features that support RMs.

CHAPTER 18 ■ CONTEXT MANAGEMENT

294

Management of Objects, Sessions, and
Sequences
Because the TPM has limited internal memory, objects, sessions, and sequences
need to be dynamically swapped in and out of memory. As an example, the reference
implementation of a TPM 2.0 implemented by the Microsoft simulator only allows room
for three object slots. An object slot is internal TPM memory for an object or sequence.
There are also three session slots. Hence the need for virtualization of transient entities
(here, the term transient entities describes transient objects, sessions, and sequences).
This section describes the TPM capabilities and commands that are used to accomplish
this virtualization.

TPM Context-Management Features
The TPM capabilities used to manage transient entities are capability properties that can
be queried, special error codes, three TPM commands, and some special handling for
TPM2_Startup and TPM2_Shutdown. These capabilities are used by the caller or, preferably,
a dedicated RM to virtualize and manage transient entities.

TPM Internal Slots

TPM internal memory for transient entities consists of slots. A maximum number of slots
are available for loaded objects and sequences (MAX_LOADED_OBJECTS), and a similar
maximum for loaded sessions (MAX_LOADED_SESSIONS). Both of these maximums can be
queried using the TPM2_GetCapability command. The RM can query these maximums
and use them to manage the loaded contexts. Or it can rely on error codes returned by
the TPM. Because of a special case related to _TPM_Hash_Start, some RMs require a
combination of these.

Special Error Codes

Special error codes are used to tell the RM that the TPM is out of memory, meaning
no slots are available, and the RM must do something: TPM_RC_OBJECT_MEMORY (out of
memory for objects and sequences), TPM_RC_SESSION_MEMORY (out of session memory),
or TPM_RC_MEMORY (out of memory in general).

These error codes are returned by commands that need to use object, sequence, or
session slots in the TPM. For example the TPM2_Load command tries to load an object,
and if there is no memory, TPM_RC_OBJECT_MEMORY or TPM_RC_MEMORY may be returned.
The commands that explicitly use object or sequence slots are TPM2_CreatePrimary,
TPM2_Load, TPM2_LoadExternal, TPM2_HashSequenceStart, TPM2_HMAC_Start, and
TPM2_ContextLoad (when the context being loaded is an object or sequence context).

Additionally, three commands implicitly use an object slot. TPM2_Import uses one
slot for scratchpad memory; the slot is freed after the command completes. Likewise, any
command that operates on a persistent handle uses one slot for scratchpad operations

CHAPTER 18 ■ CONTEXT MANAGEMENT

295

and frees the slot after completion. Both types of commands return one of the above error
codes if no slots are available. In response, the RM must evict a transient entity and retries
the command.

The third command that implicitly uses an object slot is kind of strange: _TPM_Hash_Start.
This command is typically triggered by hardware events, and it doesn’t return an error
code if no slots are available. Instead, it kicks an object out and provides no indication
of which object was evicted. This means the RM and/or calling applications had better
make sure one of the following is true during any time period when this command
could be triggered by hardware:4

One slot is available. The RM can use the • TPM2_GetCapability
command and query the MAX_LOADED_OBJECTS property. Based on
the response, the RM can offload an object to free a slot. 5

The contexts for all objects or sequences that currently occupy the •
TPM’s slots are saved. Otherwise, an object will be evicted with no
ability to be reloaded.

The contexts for all objects or sequences that currently occupy the •
TPM’s slots are unneeded. In this case, it doesn’t matter if one is
evicted with no chance of being reloaded.6

The commands that explicitly use session slots are TPM2_StartAuthSession,
TPM2_ContextLoad (when the context being loaded is a session context), and all commands
that use sessions (except for those that use sessions for password authorization).

TPM Context-Management Commands

The TPM commands that enable transient entity management are TPM2_ContextSave,
TPM2_ContextLoad, and TPM2_FlushContext. These commands have different effects
depending on the type of transient entity being operated on.

TPM2_ContextSave saves the context of a transient entity and returns the entity’s
context. The returned context is encrypted and integrity protected. This is done in a
manner that only allows the context to be loaded on the exact same TPM that saved it; a
saved context can’t be loaded into a different TPM. It is important to note that saving the
context saves it into system memory, which may be volatile. Some other mechanism is
required if the saved context needs to preserved across events that might erase memory
contents, such as hibernation or sleep. For the PC, in the case of hibernation, the system
saves all memory contents to some form of nonvolatile storage, such as a disk drive; for a
sleep event, the memory remains powered on, which preserves the memory contents.

4ThisarguesinfavorofthesimplestproactiveapproachtoRMdesign,describedearlierinthis
chapter.Inthatcase,forthemostpart,noneofthesemitigationsisrequired.Thereisstillasmall
vulnerability:thetimewindowfromthetimetheRMcompletesthecommandtothetimeitisdone
evictingobjectsandsessions.Ifthe_TPM_Hash_Startistriggeredinthistimewindow,anobjector
sequencecontextwillbelost.
5Thebestwaytodothiswouldbefortheprocessthat’sgoingtotriggerthe_TPM_Hash_Start
commandtosendarequesttotheRMtofreeupanobjectslot.
6SincetheRMreallyhasnowaytodothis,theOSwouldhavetohavesomewayofensuringthis.

CHAPTER 18 ■ CONTEXT MANAGEMENT

296

After the context is saved, if the entity is an object or a sequence, the entity still
resides in the TPM and has the same handle. The saved context is a new copy of the
object or sequence context.

A session, however, is handled differently. When a session’s context is saved by the
TPM2_ContextSave command, it is evicted from TPM memory. A session’s context handling
is unique: the context can either be evicted and in system memory, or it can be loaded on
the TPM, but not both. Regardless of where the session’s context resides, it always has the
same handle and it’s always “active” until its context is flushed by the TPM2_FlushContext
command or a command is sent using the session with the continueSession flag cleared.

The reason for this special handling of sessions’ handles is to prevent multiple copies
of sessions and, hence, session replay attacks. A small piece of session context is retained
inside the TPM after the context is saved.

For objects, sequences, and sessions, TPM2_FlushContext removes all of the transient
entity’s context from the TPM. In the case of an object or a sequence, the object—which
still resides in the TPM after the TPM2_ContextSave command—is completely removed,
but the saved context can still be reloaded. In the case of a session, the remaining session
context is removed, which means the session is no longer active, the session context
cannot be reloaded, and the session handle is freed for use by another session.

TPM2_ContextLoad is used to reload a saved context into the TPM.7

For an object or sequence, the context is loaded and a new handle is created for the
object. An object or sequence context can be reloaded multiple times, returning a new
handle each time. This means multiple copies of an object or sequence can reside in the
TPM at any given time.8

For a session, the TPM2_ContextLoad command reloads the session and returns the
same session handle. Also, a session’s context can only be reloaded once after its context
was saved in order to prevent session replay attacks.

Special Rules Related to Power and Shutdown Events
TPM Restart, TPM Reset, and TPM Resume are described in detail in Chapter 19. There
are some special context-handling rules related to these events. This section describes the
high-level “why” of these rules and then the details of the rules themselves.

A TPM Reset is like a cold power reboot, so session, object, and sequence contexts saved
before a TPM Reset can’t be reloaded afterward. Because TPM2_Shutdown(TPM_SU_CLEAR)
was performed or no TPM2_Shutdown at all was executed, none of the information required to
reload saved contexts was saved.

7Itshouldbenotedthatalthoughthenamesaresimilar,theTPM2_LoadandTPM2_ContextLoad
commandsarequitedifferent.TPM2_Loadperformstheinitialloadofanobjectaftercreationby
TPM2_Create.Thisloadcommandcan’tbeusedforsessions,norcanitbeusedtoloadanobject’s
orsequence’ssavedcontext.TPM2_ContextLoadloadsatransiententityafteritscontexthasbeen
savedbytheTPM2_ContextSavecommand.Thesimilarnamesandoverlapinfunctionality(inthe
caseofobjects)hastrippedupmanyanunwarydeveloper,includingmeattimes.
8HavingmultiplecopiesofanobjectorasequenceloadedintheTPMservesnousefulpurposeand
usesupmoreofthelimitedslotsavailableintheTPM.ThequotebyDavidWootenatthebeginning
ofthischapterresultedfromadiscussionaboutthis.Eventhoughitservesnousefulpurpose,
itdoesn’tposeasecurityrisk,sotheTPMallowsitintheinterestofinternalTPMfirmware
simplicity.

CHAPTER 18 ■ CONTEXT MANAGEMENT

297

A TPM Restart is used to boot after the system hibernated, and a TPM Resume is
used to turn on your computer after a sleep state has been entered. For both of these
cases, because TPM2_Shutdown(TPM_SU_STATE) was executed, saved session, object, and
sequence contexts can be reloaded; the one exception is that objects with the stClear bit
set cannot be reloaded after a TPM Restart.

The detailed rules are as follows:

Any type of TPM reset removes transient entities from the TPM. •
If the transient entity’s context wasn’t saved, there is no way to
reload the entity.

As for the case of the context being previously saved, if:•

 · TPM Resume occurs: Saved contexts can be context loaded.

•	 TPM Restart occurs and the object has the stClear bit cleared:
The object’s saved context can be context loaded.

 · TPM Reset or a TPM Restart occurs with the object’s stClear
bit set: The saved object’s context can’t be context loaded.

For a session, if the session’s context was saved:•

The context can be context loaded after a TPM Resume or ·
TPM Restart.

The context can’t be context loaded after a TPM Reset. ·

State Diagrams
Because of all these complicated rules, some diagrams may help to illustrate both the
normal handling and the special rules related to TPM Reset, TPM Restart, and TPM
Resume (see Figure 18-1).

Figure 18-1. TPM state diagram for objects and sequences

CHAPTER 18 ■ CONTEXT MANAGEMENT

298

Some notes about this diagram:

Even though the word • objects is used, this refers to both objects
and sequences.

The • Load and ContextLoad arcs can be performed multiple times.
Each instance results in a new copy of the object in the TPM with
a new handle. Other than the handle, this object is identical to the
other copies. Having multiple copies loaded in the TPM serves no
useful purpose, as noted earlier.8

The • ContextSave arc can occur multiple times. Each instance
results in a new copy of the object’s context.

For sequences, the diagram is the same except for the following: •
a sequence’s context must be saved after each SequenceUpdate.
Otherwise a ContextSave followed by a ContextLoad would result
in a bad hash or HMAC computation.

The state diagram for sessions is relatively simple compared to objects and
sequences (see Figure 18-2). The important differences to note are as follows:

Objects and sequences can exist both on and off the TPM •
simultaneously, whereas sessions can’t.

Objects can be flushed and then reloaded. Sessions, when •
flushed, are terminated, and their saved contexts can’t be
reloaded.

Unlike objects and sequences, active sessions always keep the •
same handle.

Sessions can be “active” whether loaded in the TPM or not. •
They only become inactive when they are terminated
(Session Ended state).

CHAPTER 18 ■ CONTEXT MANAGEMENT

299

Summary
This concludes the discussion of context management. The TPM provides all the
functionality needed to implement a resource manager. Although there are probably
many ways to design a resource manager, at a high level, the simplest proactive approach
is recommended.

Figure 18-2. TPM state diagram for sessions

301

CHAPTER 19

Startup, Shutdown,
and Provisioning

Startup here is defined as software operations that occur each time a platform boots. The
boot can be a cold boot, or it can be what in PC terms is called a resume from suspend or a
boot from hibernate. The TPM holds several classes of volatile state, including PCR values,
loaded sessions and keys, enables, authorization and policy values, hybrid NV indexes,
and clock state. Based on the type of power cycle, this volatile state must either persist or
be initialized. The TPM provides two commands that, in various combinations, permit
external software to manage the power-cycle requirements.

Provisioning, on the other hand, is a rare occurrence. It might happen only once over
the lifetime of the platform. A TPM vendor, platform manufacturer, IT department, or end
user generates keys and other secrets, inserts certificates, and enables or disables certain
TPM features. The other side of provisioning is deprovisioning: what the parties do before
they repurpose, surplus, or discard a platform to ensure that secrets are erased.

This chapter discusses startup first, followed by the TPM provisioning tasks that
various parties may perform. Those parties may include the TPM manufacturer, the
platform manufacturer (also called the OEM), and the end user (either an individual or
an IT department).

Startup and Shutdown
Startup (and shutdown as well) is handled by low-level software. On a PC platform, this
is the BIOS and operating system. The intent is that state is reset or restored as required
so that resuming applications are unaware of these events. For example, an application
doesn’t expect loaded keys or sessions to suddenly disappear. It may not be able to
reload keys, and it may not want to rerun a policy evaluation because a session vanished.
The TPM, with support from the operating system and boot code, makes power cycling
transparent to applications by saving volatile state to its nonvolatile memory on power
down and restoring state on power up.

The TPM specification defines three startup events: TPM Reset, TPM Resume, and
TPM Restart. They follow a signal called TPM Init during a platform reset. In a typical
hardware TPM, Italicize is assertion of the TPM reset pin, possibly preceded by a power
cycle. At this time, it’s assumed the TPM’s volatile state is lost, and only the saved (if any)
nonvolatile state remains.

CHAPTER 19 ■ STARTUP, SHUTDOWN, AND PROVISIONING

302

TPM Reset normally occurs when the platform is booting after a power on or
rebooting without a power cycle. The TPM receives a startup command to reset the TPM
volatile state. Reset in this case can mean either setting state to a specified initial value or
generating new random values for nonces. TPM Reset establishes a new trusted platform
state. All required software components are measured into the set of reset PCRs. All the
TPM’s resources are reset to their default provisioned state.

TPM Resume typically occurs when the platform resumes from suspend, sometimes
also called a sleep state or low-power state. Because the platform is continuing rather
than rebooting, all state, including PCR values, is restored. TPM Resume restores the
TPM’s state to that before the power loss or reset, because the platform trust state has not
changed since the reset or power off.

TPM Restart typically occurs when the platform comes out of hibernation. Before the
power cycle, the TPM receives a command to save state, and most of the state is restored
at startup. The exception is PCR values, which are initialized, not restored. This permits a
booting platform to extend new measurements to the TPM, while the TPM state used by
the operating system and applications are restored. TPM Restart is a special case where
the platform reestablishes its trusted state (by creating new measurements), but the user’s
state (operating system and applications) is restored.

The TPM provides two commands to support these startup events: TPM2_Shutdown
and TPM2_Startup. Shutdown is typically performed by the operating system just before
transitioning to a platform reset or power down. TPM2_Shutdown has two options:
CLEAR and STATE. Startup is executed by the root of trust for measurement (RTM) in the
initialization firmware (for example, BIOS on the PC). TPM2_Startup also has two options:
CLEAR and STATE.

Here are the commands in combination:

TPM Reset (reboot) is • TPM2_Shutdown with the CLEAR option
(or no shutdown command) followed by TPM2_Startup with the
CLEAR option.

TPM Restart (hibernate) is • TPM2_Shutdown with the STATE option
followed by TPM2_Startup with the CLEAR option.

TPM Resume (suspend, sleep) is • TPM2_Shutdown with the STATE
option followed by TPM2_Startup with the STATE option.

The following is a brief overview of the command behaviors. There are many details
surrounding the clock and time counters, session context, hybrid NV indexes, and more.
These are discussed in other parts of the book as the concepts are introduced:

• TPM2_Shutdown with the CLEAR option is an orderly shutdown
before the platform powers down or reboots. The TPM saves
certain volatile values to nonvolatile memory: the clock and NV
indexes with the orderly attribute that are normally shadowed in
volatile memory.

• TPM2_Shutdown with the STATE option is a shutdown typically due
to hibernation or suspend. The TPM stores the previously listed
items plus tracking for session contexts, PCRs that the platform
specification mandates should be saved, certain NV index flags,
and state associated with audit.

CHAPTER 19 ■ STARTUP, SHUTDOWN, AND PROVISIONING

303

• TPM2_Startup with the CLEAR option initializes TPM volatile
state, including PCR and NV volatile state; enables the three
hierarchies; and clears the platform authorization and policy.

• TPM2_Startup with the STATE option is only permitted after
TPM2_Shutdown with the STATE option. PCRs are restored or
initialized based on the platform specific specification.1

For example, the detailed behavior and rationale for PCRs though the three
power-cycle types are as follows:2

On a reboot, • TPM Reset, all PCRs must be initialized. The
TPM2_Startup with the CLEAR option always initializes PCRs,
regardless of the type of shutdown.

On a resume from hibernation, • TPM Restart, the platform is
rerunning BIOS code and doing its measurements, so the PCRs
must be initialized. TPM2_Startup with the CLEAR option again
initializes PCRs, even though they were saved during the
power-down sequence.

On a resume from suspend, • TPM Resume, the PCR values may
be lost on power down. However, the platform resumes without
rerunning BIOS, boot, or OS initialization code. PCR values must
therefore be restored. TPM2_Shutdown with the STATE option saves
volatile PCRs as the platform suspends. TPM2_Startup with the
STATE option restores those values.3

Startup Initialization
The TPM has several parameters that must be initialized at each startup. In TPM 1.2,
there was one hierarchy with one owner authorization, and that authorization was
persistent. It had one disabled and one deactivated flag. As described in Chapter 9, TPM 2.0
has three hierarchies, each with an authorization secret, a policy, and an enable flag.

TPM 2.0 has a platform hierarchy with a volatile authorization value and policy,
which are reset on TPM Reset or TPM Restart. Software early in the boot cycle is expected
to set these values. It also has a hierarchy enable flag, enabled at startup. We expect
that platform OEMs will not provide a means for the operating system or applications
to disable the platform hierarchy, because OEMs may use the platform hierarchy for
runtime functions.

1ThePCClientspecificationmandatesrestoringPCRs0-15andinitializingPCRs16-23.
2Chapter18discussesthemanagementofobjectsandsessionsindetail.
3Theplatform-specificspecificationindicateswhichPCRindexesmustberestoredandwhichmust
beinitialized.

CHAPTER 19 ■ STARTUP, SHUTDOWN, AND PROVISIONING

304

Platform policy is straightforward. If it isn’t set, it’s empty: a policy that can never
be satisfied. If the platform OEM has a policy for platform-hierarchy control, its boot
software sets the policy value using TPM2_SetPrimaryPolicy. The policy contains no
secrets, but its value must be protected from tampering while in the boot software.
If the OEM has no such policy, it leaves the platform policy empty, so the policy can’t
be satisfied.

Platform authorization (HMAC shared secret–style authorization) works differently.
The TPM architecture expects the platform to set the platform authorization value to a
strong secret using TPM2_HierarchyChangeAuth and make this value inaccessible to the
operating system or applications. Alternatively, if the OEM has no need for the platform
authorization, it can set it to a random value and then “forget” the value by erasing it from
system memory. The platform hierarchy is still enabled, but it can’t be authorized using a
password or HMAC.

The specification designers first considered a persistent value, similar to the TPM 1.2
owner authorization. This raised two questions: how would the platform software remember
the shared secret through boot cycles, and how would the platform ensure that a strong
secret is used? The solution was to use a volatile value: a large, random number set at startup.
The random number can even be obtained from the TPM random number generator. Now
the platform software doesn’t have to remember the value through power cycles. It’s stored
in platform volatile memory that’s accessible only to the platform software.

We expect that the platform authorization value may not be set immediately.
Because the platform software trusts itself, it may leave the value empty, a very easy value
to remember, and set it later, before exiting to option ROMs or other untrusted software,
to protect the platform hierarchy from other software.

Other hierarchies are persistent and need not be initialized at startup. These include
the (storage hierarchy) owner authorization and policy, endorsement authorization and
policy, and the lockout authorization and policy.

The storage and endorsement hierarchy enables are set at TPM Reset and
TPM Restart. The platform is expected to remember the owner’s and privacy
administrator’s requested state and disable them if required.

Provisioning
Here, provisioning includes all TPM setup that occurs less frequently than once per boot
cycle. In a typical TPM lifetime, these actions may be performed only once.

This book divides the provisioning operations among three parties: the TPM
manufacturer, the platform manufacturer (often referred to as the OEM), and the end
user. Although this is a typical partition, the TPM doesn’t enforce it, and enterprises may
deviate from this pattern based on their trust model. For example, a platform in a large
enterprise may further partition end-user provisioning between an actual user and an IT
department administrator. A high security use case may replace a TPM vendor-supplied
endorsement primary key or certificate with its own.

In TPM 1.2, certain provisioning steps could only be performed once. For example,
although it had the concept of a revocable endorsement key that could be deleted and
regenerated with a different value, this was optional and not implemented in commercial
hardware TPMs.

CHAPTER 19 ■ STARTUP, SHUTDOWN, AND PROVISIONING

305

In the TPM 2.0 architecture, there are no once-per-lifetime values. However, a
platform specification may, for example, make TPM2_ChangeEPS optional, and a vendor
may not implement it. In that case, an endorsement key created with a known template
(see Chapter 15 for details) could not be permanently destroyed, although it could be
flushed from the TPM. TPM 2.0 can also provision additional endorsement keys.

TPM Manufacturer Provisioning
The TPM manufacturer is uniquely qualified to certify that its hardware is authentic.
Once the TPM part enters the supply chain, most purchasers don’t have the expertise to
distinguish a counterfeit from a genuine part.

The TPM generates4 a primary seed in the endorsement hierarchy when it’s first
powered on. The TPM manufacturer then uses TPM2_CreatePrimary one or more
times to create endorsement primary keys—the ones at the root of the endorsement
hierarchy.5 This command returns the public key, which the manufacturer uses to
create a certificate.

The certificate, typically in X.509 format, asserts that the public key belongs to a
genuine vendor TPM. It typically includes manufacturer identification. There is no
security-related reason for the vendor to store either the primary key or its certificate on
the TPM. Practical concerns drive the decision.

The primary key is generated from the primary seed and a caller-supplied template.
The template contains the key algorithm and size, and possibly other entropy. If the seed
isn’t changed, the same template will always generate the same key. Thus, the vendor
need not ship the TPM with the key stored in persistent memory. The user can re-create
it at any time. This avoids consuming valuable NV memory in cases where the TPM
vendor generates many primary keys for different templates, or when the key is likely to
be used infrequently.

Why does the TPM use seeds? TPM 1.2 generated the endorsement key directly,
but there was one algorithm (RSA) and one key size (2,048 bits). TPM 2.0 can have
many algorithms and key sizes. If the TPM 1.2 pattern was used, each key would have
to be stored on the TPM, consuming valuable NV memory. The TPM 2.0 design requires
only a single persistent seed. The derived keys can be generated (and then discarded)
as needed.

The advantage of shipping the TPM with a primary endorsement key is performance.
Why have the user create the primary key when the vendor has already created it?

In practice, the TCG platform working groups are expected to specify one or more
standard templates based on anticipated application needs. The TPM vendor will
generate multiple keys but only provision one for a commonly used algorithm and size
on the part before shipment.

4Themanufacturerispermittedtocreatetheendorsementprimaryseedexternallyand“squirt”it
intotheTPMinavendor-specificprocess.Thispotentiallysavesmanufacturingtime,becausethe
primarykeyscanalsobecalculatedexternaltotheTPM.
5Chapter10explainsthegeneralprocessofcreatingprimarykeys,andChapter15goesintoeven
moredetail.

CHAPTER 19 ■ STARTUP, SHUTDOWN, AND PROVISIONING

306

A similar practical concern determines whether the TPM ships with certificates.
Although it’s true that a user can usually ask the TPM manufacturer for a certificate
corresponding to their public key, it’s certainly more convenient to read it from TPM NV
storage. There may be use cases where the platform isn’t connected to a public network,
making certificate retrieval even more inconvenient. In practice, we expect the TPM
vendor to provision a certificate corresponding to the one or more primary keys. The
certificate likely resides in the TPM’s NV storage.

There can be use cases where the user doesn’t completely trust the TPM vendor
processes. Other use cases require an end user such as a government agency to prevent
any link in the supply chain from tracking which machines are used by that agency.
They want to remove any unique key that may aid in that tracking. This user can use
TPM2_ChangeEPS to change the endorsement primary seed;6 generate new, different
primary keys;7 and sign their own certificates. The user can also change the template to
include a random number, which is unknown to the vendor, thus generating an endorsement
primary key unknown to the vendor without invalidating existing primary key certificates.

In summary, the four differences from TPM 1.2 that contribute to these scenarios are
as follows:

Primary endorsement keys can be re-created at any time as long •
as the primary seed doesn’t change and the template is known.

Because primary endorsement keys can be re-created, they need •
not be stored long term in the TPM.

Because TPM 2.0 supports multiple algorithms and added •
template entropy, there can be more than one primary
endorsement key.

If rolling the EPS is supported, endorsement keys can be deleted, •
and thus the certificates invalidated.

Platform OEM Provisioning
Platform OEM provisioning has two concerns:

Authenticity•

Control•

As with the TPM manufacturer, a platform manufacturer certificate8 (typically in
X.509 format) asserts that the hardware is authentic. It asserts that the TPM is attached
to the OEM’s platform. It further asserts that the platform software meets certain
TCG recommended standards. For a PC client, this includes a CRTM that performs
measurements of software and extends those measurements to PCRs.

6RollingtheEPSalsodeletesanyprimaryordescendentkeysinthehierarchy.
7KeysgeneratedusingthenewEPSarecryptographicallyunrelatedtothosegeneratedusingthe
oldEPS.
8WeknowofnoOEMthatcurrentlyisprovisioningplatformcertificates.

CHAPTER 19 ■ STARTUP, SHUTDOWN, AND PROVISIONING

307

Although an attacker could physically remove a TPM from the OEM platform and put
it in a counterfeit, the TCG technology doesn’t defend against physical attacks. Further,
this would compromise only one platform per attack. On the other hand, a successful
attack that extracts a primary seed from a TPM would permit the attacker to manufacture
an unlimited number of counterfeits.

Platform certification typically begins with an endorsement primary key generated
by the TPM at the TPM manufacturer. The OEM wants to verify that the TPM is authentic
before asserting that its platform is authentic. It reads the TPM certificate and validates
it; it may go further, reading the public key and verifying that it matches, or even use the
private key to prove that the key pair is present.

As with the TPM vendor endorsement key certificate, there is no security-related
reason to store the platform certificates on the TPM before shipping the platform.
Practical considerations will likely drive the OEM to include a certificate in the TPM’s
persistent memory, corresponding to the vendor TPM certificate.

TPM 2.0 specifies a platform hierarchy. The platform OEM may optionally provision
that hierarchy with a platform policy. As explained earlier, the TPM initializes this policy
to empty: a policy that can never be satisfied. The OEM must provision it at startup using
TPM2_SetPrimaryPolicy.

Where does the platform policy value (a hash) come from? We expect that the
value will be embedded in early platform boot software, protected by the same OEM
mechanism that protects the CRTM. So, this value is provisioned during platform
manufacturing not into the TPM, but into the platform CRTM. It’s inserted into the TPM
at startup.

End User Provisioning
The term end user is used loosely here. For a home computer, the end user is typically the
literal user of the computer. For an enterprise, centrally managed platform, the end user
may be the actual user or support personnel.

The end user must provision the endorsement and storage hierarchies. This is a case
where an IT organization may decide to provision the endorsement hierarchy and/or the
dictionary-attack reset authorizations, and leave the provisioning of the storage hierarchy
to the person who is actually using the platform.

The first consideration is whether to disable the hierarchies (always enabled at
startup) using TPM2_HierarchyControl. The method of disabling a hierarchy is platform
specific. We expect something equivalent to a BIOS screen, with a means of disabling a
hierarchy for the remainder of a boot cycle or having it persist through boot cycles.
 (We hope to present enough valuable use cases that you will never dream of disabling
the TPM.)

Next, the end user must provision the endorsement and storage hierarchy, and the
dictionary-attack protection policies and authorization values. Owner authorization is
initially empty (no authorization required), as is owner policy (no policy is present).
TPM2_HierarchyChangeAuth and TPM2_SetPrimaryPolicy change these values, which
persist until cleared. The endorsement authorization and policy are set and changed
using the same commands. The owner authorization and endorsement authorization
should be set to high-entropy values, because they aren’t guarded by the
dictionary-attack protection.

CHAPTER 19 ■ STARTUP, SHUTDOWN, AND PROVISIONING

308

The dictionary-attack logic has both a policy and an authorization value. The same
party may provision all policies and authorization values, but they may choose different
logic and values. It’s particularly important to provision the dictionary-attack reset policy.
If triggered, the dictionary-attack password can be used only once before a large wait is
enforced. However, the policy can be used to reset the dictionary-attack counter even
when the dictionary-attack password has been locked out.

The endorsement primary seed is generated during TPM vendor manufacturing. The
end user doesn’t typically change this value.

The storage primary seed is similarly generated during TPM vendor manufacturing.
The end user can either use this value or generate a new one. Generating a new
one invalidates all objects in the storage and endorsement hierarchies except the
endorsement hierarchy primary keys. Thus, the endorsement primary key certificate is
still useful.

Deprovisioning
Deprovisioning is primarily the process of removing secrets from the TPM, although a
user may wish to remove public but unique data as well. A user typically deprovisions
before surplusing a platform in an enterprise, selling used equipment, or scrapping
the system.

What secrets aren’t touched? Those in the platform hierarchy (if any) are controlled
by the platform manufacturer. The endorsement hierarchy primary seed is typically fixed
for the lifetime of the TPM. Changing this seed would invalidate endorsement primary
keys and thus make their certificates useless.

A platform OEM may be tempted to use NV space to store end-user settings. For
example, consider the BIOS configuration. Such an index could have a policy permitting
the end user to write a value and anyone (specifically, the BIOS) to read it. Such use is
discouraged if any value is even remotely secret or privacy sensitive, because end-user
deprovisioning is easy to overlook.

Deprovisioning uses the TPM2_Clear command. Note that the authorization for this
command is not, as you may expect, TPM_RH_OWNER, the role that controls the storage
hierarchy. Rather, it’s either TPM_RH_LOCKOUT (the dictionary-attack reset authorization)
or TPM_RH_PLATFORM (platform authorization).

Lockout authorization is a reasonable choice. It’s likely that the user knows this
authorization. The TPM probably uses this value rather than owner authorization
because, in some situations, the owner authorization may be more widely known.
Because deprovisioning has wide-ranging effects, it’s better to assign it to a more
restrictive role.

Platform authorization is trickier, because it’s available only early in the boot cycle,
not at the OS level. This poses two problems. First, none but the most tech-savvy users
can be expected to do any operation at the BIOS-screen level. Second, BIOS screens
preclude remote deprovisioning, which is a requirement for cloud-type data centers. The
solution to this dilemma is a platform policy, the alternative to a simple platform HMAC
or password-based authorization. For example, suppose the platform owner wishes to
allow a user to run the TPM2_Clear command with owner authorization. A platform
policy includes an OR term that says, “command code = TPM2_Clear AND Policy Secret’s
handle == TPM_RH_OWNER”. This policy permits owner authorization to be used, and the
user can apply this authorization at the OS level.

CHAPTER 19 ■ STARTUP, SHUTDOWN, AND PROVISIONING

309

What does TPM2_Clear do? Quite a lot. First, shProof and ehProof are changed.
These proofs serve as HMAC keys for saved (nonresident) contexts. Once the proof
changes, contexts in the storage and endorsement hierarchies can no longer be loaded.
Next, any TPM-resident objects in either the storage or platform hierarchy are flushed.
The storage primary seed is changed; this prevents primary storage keys from being
regenerated, and thus, any object created under these keys can no longer be loaded.
Finally, any NV index created by the owner is deleted. This is an improvement over
TPM 1.2, where some indexes have to be individually deleted.

TPM2_Clear also prepares the TPM for the next owner. It resets authorization
values. The lockout authorization is cleared (to a zero-length password), and the policy is
cleared (to no policy in effect). The owner and endorsement authorization and policy are
similarly reset. The storage and endorsement hierarchies are enabled; this is a departure
from TPM 1.2, which required a reboot after an owner clear before a new owner
could be installed.

The dictionary-attack mechanism count of failed authorization tries is reset.
The clock is reset so that the new owner can accurately set it as desired. (The clock can’t
normally go back in time.) Reset count and restart count, which track boot cycles,
are reset.

Summary
There are three startup cases, roughly corresponding to a PC cold boot, resume from
suspend, and power up after hibernate. The TPM provides startup commands to reset or
restore its state as appropriate for these cases.

So that startup authorization secrets need not be saved in the clear off the TPM
or be accessible during boot, the TPM resets certain values and expects them to be
provisioned during startup. Before it reaches the end user, the TPM may be provisioned
with keys and certificates. These include TPM manufacturer-provisioned endorsement
primary keys and corresponding certificates, and perhaps another set created by the
platform manufacturer. The end-user provisioning steps include initialization of the
storage hierarchy and installing endorsement and storage hierarchy authorization
keys or policies.

Finally, deprovisioning through TPM2_Clear removes secrets and NV-defined
indexes, resets authorizations and policies, and resets other values in preparation for the
new owner.

311

CHAPTER 20

Debugging

“I still remember my early days of Z80 assembly language programming:
a couple of times, just to get a reaction, I bragged that I could write bug free
code the first time. Just write, assemble, link and voila, a perfectly working
program! I was scoffed at and justifiably so—truthfully, in over 30 years of
experience, I’ve never achieved that and probably never will.”

Will Arthur, reflecting while writing this chapter

It is possible that somebody somewhere has written a significant program that ran
without bugs the first time, but if so, it’s in the noise, statistically speaking. Because the
process of programming seems to also be the process of inserting bugs, the need for
debugging is an inexorable law of the programming world.

This chapter aims to educate you about some specific tools and methods for
debugging TPM 2.0 programs as well as debugging common bug areas. We will discuss
two major areas of debugging: lower-level applications that communicate with the TPM
and higher-level applications that use the Feature API to communicate with the TPM.
Lower-level applications include applications that use the ESAPI and SAPI, as well as
implementations of specialized TSS layers such as the SAPI library, TPM Access Broker
(TAB) and Resource Manager (RM). Most of the text for the lower-level applications
flows directly from the experience of that section’s author in developing the System API,
TAB, RM, and TPM 2.0 device driver, all very low-level pieces of software. Because of the
current lack of implementations for the Feature API and Enhanced System API layers of
the TSS stack, no TSS 2.0–specific tribal knowledge is available for debugging those areas.
For this reason, the chapter relies on debugging experiences from TSS 1.2, because we
expect that many of the issues are similar.

Low-Level Application Debugging
Because low-level applications are the only ones we have actual experience debugging for
TPM 2.0, we discuss them first.

CHAPTER 20 ■ DEBUGGING

312

The Problem
When a TPM command has an error, an error code is returned. The TPM 2.0 specification
writers worked very hard to design error codes that facilitate debugging. Many times,
the error code tells you exactly what’s wrong, but due to lack of familiarity with the
specification, you’re left scratching your head. And in a few cases, the error code only
indicates an area to look for the error, without the granularity needed to identify the exact
cause. Either way, whether due to knowledge or specification deficiencies, you, the poor
programmer, are left wondering what to do.

This section describes a few different error conditions and illustrates a hierarchy of
techniques used to debug these types of problems, from simplest to more complex:

• Error code analysis: Many simple errors can be completely
debugged this way.

• Debug trace analysis: This requires instrumenting the low-level
driver to spit out the command byte stream being sent to the TPM
and the response byte stream received from the TPM. Quite often,
comparing known good debug trace data to bad data quickly
highlights the problem.

• More complicated errors: These take more work to debug.
An HMAC authorization error is quickly spotted by the error code,
but debugging it requires detailed examination of all the steps
that were used to generate the HMAC.

• The hardest errors to debug: These require stepping through
the TPM 2.0 simulator with a debugger in order to understand
what the TPM is unhappy about. Often, after debugging through
the simulator code, the answer becomes obvious. A better
understanding of the specification would have uncovered the
problem. Human nature being what it is, we often get distracted
by the forest and fail to see the particular tree that needs to be
eradicated. Hence, this technique is often needed. The author of
this section has debugged many errors this way both for himself
and for others within Intel developing TPM 2.0 code.

Analyze the Error Code
The first step when you get an error is decoding the error code. This decoding is
described in the “Response Code Details” section of Part 1 of the TPM 2.0 specification.
The “Response Code Evaluation” flowchart in that section is particularly helpful.

CHAPTER 20 ■ DEBUGGING

313

The first example error involves the TPM2_Startup command. The following
code snippet generates an error (this is a slight modification of the TPM2_Startup test
described in Chapter 7:

rval = Tss2_Sys_Startup(sysContext, 03)1;
CheckPassed(rval);

The call to CheckPassed fails because an error code of 0x000001c4 was returned
instead of 0 (TPM2_RC_SUCCESS). Following the flowchart mentioned previously, you can
decode this error as follows:

Bit 8: 1
Bit 7: 1
Bit 6: 1

These bits indicate that the error code is in bits 5:0 and the parameter number is in
bits 11:8.2 So, parameter #1 is bad, and the specific error is TPM_RC_VALUE from the “TPM_
RC Values” section of Part 1 of the TPM 2.0 specification. The text description for this error
is, “value is out of range or isn’t correct for the context.” This means parameter #1 was
bad for this command. In looking at the description of the TPM2_Startup command, it’s
easy to see that the only values allowed for this parameter are TPM_SU_CLEAR(0x0000) and
TPM_SU_STATE (0x0001). Obviously, using 0x3 for the parameter is the source of our error.

We strongly encourage the use of a tool for decoding errors, because hand-decoding
errors can become burdensome for repeated debug sessions. Sample output of such a
tool looks like this3:

>tpm2decoderring /e 1c4

ERROR: PARAM #1, TPM_RC_VALUE: value is out of range or is not correct for
the context

Debug Trace Analysis
Quite often, due to lack of TPM knowledge or, in some cases, obscurity of the error,
error-code analysis is insufficient. Additionally, if a program was previously working, a
comparison to the output from the previously working program can highlight the error
much more quickly. For this reason, we highly recommend instrumenting

1Experiencedprogrammerswillimmediatelynoticetheuseofa“magic”numberinthislineof
code.ThereisnoconstantdefinedintheTPMspecificationforabadparametertothestartup
command.Althoughnotgenerallyagoodprogrammingpractice,inthiscasehardcodingthenumber
seemsbetterthandefiningaspecialvalueforusehere.
2Insomecases,theerrorcodemayindicateaparameter,session,orhandlenumberof0.This
indicatesanerrorwithaparameter,session,orhandle,buttheTPMisn’tgivinganyindicationof
whichone.
3ThisistheoutputfromanIntelinternaltool.Thistoolhasn’tbeenreleasedpublicly,but
developmentofsuchatoolforpublicuseisstronglyencouraged.

CHAPTER 20 ■ DEBUGGING

314

the TPM device driver with code that displays the command bytes sent to the TPM
and the response bytes received from the TPM. This feature has saved many weeks of
debugging time over the past two years of TPM 2.0 development work.

In the case of the previous program, the trace dump from the command from a good
program looks like this:

Cmd sent: TPM2_Startup
Locality = 3
80 01 00 00 00 0c 00 00 01 44 00 00

Response Received:
80 01 00 00 00 0a 00 00 00 00
 passing case: PASSED!

The trace dump from the bad program, with the differences highlighted, looks like this:

cmd sent: TPM2_Startup
Locality = 3
80 01 00 00 00 0c 00 00 01 44 00 03

Response Received:
80 01 00 00 00 0a 00 00 01 c4
 passing case: FAILED! TPM Error -- TPM Error: 0x1c4

Use of a good compare utility quickly highlights the bad value, 00 03, in the bad
command.

One caveat in this method is that much of the TPM output is randomized, and
often these randomized outputs are fed back as inputs to other commands. This
means these randomized parts of your trace data need to be ignored when you visually
compare output. Experience will help you quickly learn which areas to ignore and which
differences to focus on. It’s not nearly as hard as it sounds.

Another good way to use trace dumps is when comparing multiple traces coming
from different layers in the stack. For instance, you might have a trace dump from the
ESAPI layer, one from the driver layer, and maybe even one from the TPM simulator. It
can be challenging to synchronize these trace dumps. Session nonces, because they are
random, unique, and the same no matter where in the stack they appear, can be used to
synchronize these trace dumps. Find a nonce being returned in a session in one trace
dump, and then search for where that same nonce is returned in the other trace dumps.

CHAPTER 20 ■ DEBUGGING

315

More Complex Errors
An example of a more complex error is an HMAC authorization error. This error is
indicated by the error code, TPM_RC_AUTH_FAIL. The description of this error is, “the
authorization HMAC check failed and DA counter incremented,” and high-order bits in
the error code tell which session is seeing the HMAC error.

Unfortunately, it isn’t nearly so easy to debug this error. Many steps go into
calculating the HMAC: key generation, hashing of input and/or output parameters, and
the HMAC calculation. There are also many input parameters that feed into these steps:
nonces, keys, and the type of authorization session. Any error in the data or steps used to
generate the HMAC will result in a bad HMAC.

The only effective way we’ve found to debug these errors is to enhance the debug
trace capabilities to display all the inputs and outputs for the key generation, hashing, and
HMAC calculation steps. A very careful analysis of these inputs while carefully comparing
to the TPM specification usually pinpoints the failure. This type of debugging requires
very detailed knowledge of the TPM 2.0 specification—in particular, all the nuances of
how HMACs are calculated.

Last Resort
The last category of errors consists of those that resist all other attempts at debugging.
Typically these occur when implementing new TPM commands or features. There’s
no debug trace data from a previously working program to compare to, and error-code
analysis doesn’t pinpoint the problem. Fortunately, the situation isn’t at all desperate;
with the simulator, these errors can be easily debugged.

A common error in this category is a scheme error, TPM_RC_SCHEME. This error
indicates something wrong with the scheme for a key, either when creating it or when
using it. Schemes are typically unions of structures, each of which contains multiple
fields. Much of the understanding of how to set up schemes is non-intuitive, especially to
newcomers to TPM 2.0.

Often, the best way to debug these errors or any other errors that have resisted easier
debugging techniques is to run the code against the TPM 2.0 simulator and single-step
through the simulator. This provides an inside view of what the TPM is expecting to
receive and why it’s returning an error. Of course, this assumes that you have access to the
source code of the simulator.4 With the TPM source code, you can step into the TPM 2.0
simulator and figure out exactly why the TPM is complaining.

4CurrentlyallTCGmembershaveaccesstothissourcecode.

CHAPTER 20 ■ DEBUGGING

316

The steps to debug this way are as follows:

1. Build and start the TPM 2.0 simulator on a Windows system5
in Visual Studio. Review the instructions in Chapter 6 that
describe how to do this. Select the “Debug” pull-down tab,
and select “Start Debugging” to start the simulator running in
debug mode.

2. Port your failing program to run against the simulator. The
easiest way to do this is to create a subroutine using the
System API functions and then add that subroutine to the list
of test routines called by the System API test code. This way,
because the System API test code, by default, communicates
with the simulator, you don’t have to develop a TPM 2.0 driver
to talk to the simulator or deal with the simulator-specific
platform commands to turn on the simulator, set the locality,
and so on. You also get a TAB and resource manager for free.
If you don’t go this route, you must do all this work yourself.

3. Start your failing program in the debugger of your choice,6
step to the place where it sends the failing command, and
stop. Use a combination of single-stepping and breakpoints to
get to this place.

4. Pause the simulator in its instance of Visual Studio by
selecting the “Debug” pull-down and selecting “Break All”.

5. Set a breakpoint in the simulator at an entry point that
you know you’ll hit. If you’re new to the simulator, set a
breakpoint at the _rpc__Send_Command function in the
TPMCmdp.c source file.

6. Start the simulator running again, by selecting the Debug
pull-down and selecting Continue.

7. In the test program’s debugger, select the proper command
to cause the test program to continue running from the
breakpoint where it was stopped.

8. The simulator stops at the breakpoint you selected in the
simulator code. From here you can debug into various
subroutines and eventually figure out why the TPM is
generating the error.

5Currently,onlyoneTPM2.0simulatorisavailable,anditonlyrunsunderMicrosoftVisualStudio.
Ifandwhenthischanges,allstepsrelatedtodebuggingthroughthesimulatorwillneedtobealtered
accordingly.
6BecausecommunicationwiththeTPM2.0simulatorisviasockets,thetestprogramcanbebuilt
anddebuggedonaremotesystemrunninganyoperatingsystem.Thismeansanydebuggercanbe
usedtodebugthetestprogram.Chapter6describeshowtorunthetestprogramonaremotesystem.

CHAPTER 20 ■ DEBUGGING

317

Common Bugs
Now that we’ve discussed debugging techniques for TPM 2.0 programs, we’ll briefly
describe some of the common bug areas. Again, keep in mind that these are all based on
our experience with fairly low-level programming. These bugs are the types of issues that
low-level TPM 2.0 programmers are likely to encounter. These bugs fall into the following
categories: endianness, marshalling/unmarshalling errors, bad parameters (including the
scheme errors mentioned earlier), and authorization errors.

When programming on a little-endian system such as an x86 system, endianness has
to be properly altered during marshalling and marshalling of data. This is a very common
source of errors, and it can typically be spotted by a careful analysis of the TPM trace data.

Marshalling and unmarshalling errors are closely related to endianness errors and
in a similar manner can be easily debugged by looking at the trace data. This requires
understanding the details of the TPM 2.0 specification, specifically Parts 2 and 3.

Bad parameters, including bad fields in schemes, are sometimes harder to spot.
They require a very detailed understanding of all three parts of the TPM 2.0 specification
in order to diagnose from the trace data. For this reason, debugging these often requires
stepping into the simulator.

The last category of errors—authorization errors, whether HMAC or policy—
requires a detailed analysis of the whole software stack that was used to generate the
authorization. As mentioned earlier, this can be accelerated by enhanced trace messages
that display the inputs and outputs to all the operations leading up to the command being
authorized.

Debugging High-level Applications
Debugging applications, specifically those using the Feature API of the TSS, requires
a different approach than debugging low-level software such as the TSS itself. This is
because the expected errors are different. An application developer using a TSS shouldn’t
have to deal with bugs caused by parameter marshalling or unmarshalling, command
and response packet parsing, and malformed byte stream errors. The reason is simple:
the TSS libraries already perform those steps. Thus there should hopefully be no need to
trace or decompose the command and response byte streams.

Our experience with TPM 1.2 applications—which we expect to carry forward
to TPM 2.0—suggests that you should begin with the simulator. And we don’t mean,
“begin with the simulator after you hit a bug,” but rather, start your developing using the
simulator instead of a hardware TPM device. This approach offers several advantages:

At least initially, hardware TPM 2.0 platforms may be scarce. The •
simulator is always available.

A simulator should be faster than a hardware TPM, which is •
important when you start running regression tests. This becomes
apparent when a test loop may generate a large number of RSA
keys, or when NV space is rapidly written and a hardware TPM
would throttle the writes to prevent wear-out.

CHAPTER 20 ■ DEBUGGING

318

The simulator and TSS connect through a TCP/IP socket •
interface. This permits you to develop an application on one
operating system (that might not yet have a TPM driver) while
running the simulator on its supported platform.

It’s easy to restore a simulated TPM to its factory state by simply •
deleting its state file. A hardware TPM is harder to de-provision:
you would have to write (and debug) a de-provisioning
application.

The normal TPM security protections (such as limited or no •
access to the platform hierarchy) don’t get in the way.

It’s easy to “reboot” a simulated TPM without rebooting the •
platform. This eases tests for persistence issues and power
management (suspend, hibernate) problems. It also speeds
debugging.

Finally, when it’s time to debug, you already have the simulator •
environment set up.

Our experience with TPM 1.2 is that, once an application works with the simulator, it
works unmodified with the hardware TPM.

Debug Process
Unlike the IBM TPM 1.2 simulator, the current Microsoft TPM 2.0 simulator, available to
TCG members, has no tracing facility. You can’t simply run the application and read the
simulator’s output. It’s also unclear whether the TSS implementation will have a tracing
capability. Trousers, the TPM 1.2 TSS, had little beyond command and response packet
dumps.

However, the simulator source is available. The process is thus the same for nearly
any application bug:

1. Run the application to failure, and determine which TPM
command failed.

2. Run the simulator in a debugger, and set a breakpoint at the
command. Each TPM 2.0 command has a C function call that
has exactly the same name as the Part 3 command.

3. Step through the command until the error is detected.

4. It may be necessary to run again, stepping into the Part
4 subroutines, but our experience is that this is often
unnecessary.

Typical Bugs
This section presents some TPM 1.2 application bugs in the hope that they may carry over
to 2.0. We also list a few new anticipated error possibilities for TPM 2.0.

CHAPTER 20 ■ DEBUGGING

319

Authorization

TPM 2.0 plain text password authorization should be straightforward. However, HMAC
authorization failures are common. The approach is the usual “divide and conquer.”
Trace the command (or response) parameter hash, the HMAC key, and the HMAC value.
If the hash differs, the parameters that were used in the calculation were different from
those sent to the TPM. If the HMAC keys differ, most likely the wrong password was
used or the wrong entity was specified. If the HMAC value differs, either it was passed in
differently or the salt or bind value was wrong.

Disabled Function

Perhaps the most common TPM 1.2 error we’ve seen is trying to use a disabled function.
TPM 1.2 had disabled and deactivated flags, and TPM 2.0 has the corresponding
hierarchy enabled.

TPM 2.0 has an additional HMAC error case: the entity may have been created
in a way that disallows HMAC authorization. See the attributes userWithAuth and
adminWithPolicy in Part 1 of the TPM 2.0 specification.

Missing Objects

A typical TPM 1.2 misunderstanding was that creating a key simply returned the key
wrapped with the parent—that is, encrypted with the parent’s key. It doesn’t actually load
the key into the TPM; a separate command is required to do that.

TPM 2.0 has an additional case. The TPM 1.2 SRK was inherently persistent.
TPM 2.0 primary keys are transient and must be made persistent. Thus, primary keys may
be missing after a reboot.

Finally, an object may have been loaded but is no longer there. You can break at the
flush call (or add a printf to the flush call) and the failing command to determine when
the object was flushed.

Similarly, a common error for TSS 1.2 was a resource leak—objects (or sessions) were
loaded and not flushed, so the TPM eventually filled all its slots. Tracking the load and
flush pairs should expose the missing flush, and this will also be true for TSS 2.0.

Wrong Type

In TPM 1.2, keys are basically signing keys or decryption/storage keys. Stepping through
the function that performs the type check should uncover the error.

TPM 2.0 adds the concept of restricted keys, which introduce two new error cases.
First a restricted key might may be used where only a nonrestricted key is permitted.
Second, the user may try to change an algorithm, but restricted keys are created with an
algorithm set that can’t be changed at time of use.

There is also far more variability with respect to algorithms than TPM 1.2 has, where
there were just a few padding schemes. Even PCRs have variable algorithms, which may
lead to failures during an extend operation.

CHAPTER 20 ■ DEBUGGING

320

In addition, TPM 2.0 NV space has four types (ordinary, bit field, extend, and
counter). This will undoubtedly lead to errors such as trying to write ordinary data into a
bit-field index.

Bad Size

Asymmetric key operations are limited in the data size they can operate on. A common
bug is trying to sign or decrypt (unseal) data that exceeds the capacity of the key and
algorithm. For example, an RSA 2,048-bit key can operate on somewhat less than 256
bytes. The “somewhat” accounts for prepended data that includes padding and perhaps
an object identifier (OID).

Policy

TPM 2.0 introduces policy authorization, which is very flexible but may prove hard to
debug. Fortunately, the TPM itself has a debug aid, TPM2_PolicyGetDigest. Although
you can’t normally look inside the TPM or dump the contents of internal structures, this
command is an exception and does exactly that.

Recall that an entity requiring authorization has a policy digest, which was
precalculated and specified when the key was created. The value is computed by
extending each policy statement. At policy-evaluation time, a policy session starts with
a zero session digest. As policy commands are executed, the session digest is extended.
If all goes well, the session digest eventually matches the policy digest, and the key is
authorized for use.

However, in this chapter, the presupposition is that all isn’t well. The digests don’t
match, and the authorization fails. We anticipate that the debug process will again
consist of “divide and conquer.” First determine which policy command failed, and then
determine why.

Some policy commands, such as TPM2_PolicySecret, are straightforward, because
they return an error immediately if authorization fails. Others—deferred authorizations
like TPM2_PolicyCommandCode—are harder to debug because failure is only detected at
time of use.

To determine which policy command failed, we suggest that you save the
calculations used to calculate the policy hash. That is, the first hash value is all zeroes,
there is an intermediate hash value for each policy statement, and there is a final value
(the policy hash). Then, at policy-evaluation time, after each policy command, use
TPM2_PolicyGetDigest to get the TPM’s intermediate result. Compare the expected value
(from the policy precalculation) to the actual value (from the TPM). The first miscompare
isolates the bug to that policy statement.

One author’s dream is that a premium TSS Feature API (FAPI) implementation
will perform these steps. It has the policy, an XML document, so it can recalculate the
intermediate hashes (or even cache them in the XML policy). It could implicitly send a
TPM2_PolicyGetDigest after each policy evaluation step. This way, the evaluation could
abort with an error message at the first failure rather than waiting until time of use, where
it can only return a generic, “it failed, but I’m not sure where” message.

CHAPTER 20 ■ DEBUGGING

321

Determining why it failed strongly depends on the policy statement. Debugging the
“why” is left as an exercise for you, the reader.

Summary
This chapter has described many of the best-known methods we’ve found for debugging
TPM applications. Hopefully these will give you a good start in debugging, and you’ll go
on to discover even better techniques.

323

CHAPTER 21

Solving Bigger Problems
with the TPM 2.0

Throughout this book, we have described examples of how you can use particular TPM
commands in programs. This chapter looks at how some of those commands can be
combined to create programs that use multiple features of the TPM. These ideas couldn’t
be implemented easily with TPM 1.2, but TPM 2.0 has added features that make it easy to
solve these problems.

Remote Provisioning of PCs with IDevIDs
Using the EK
Each client’s TPM comes with an endorsement key (EK). This is a storage key, and
it comes with a certificate indicating that it’s from an authentic TPM. An enterprise
may also have a list of EK certificates, corresponding to client machines it has bought.
Enterprises would like to have a unique signing key on each system (usually called a
device identity [IDevID]), which can be used to initiate a VPN connection. But, being a
storage key, the EK can’t be used as a VPN key. TPM 1.2 had a complicated protocol that
could be used to create a certificate for a signing key created in the TPM, which proved
that the key was generated in a TPM. However, no commercially available CAs followed
that protocol.

TPM 2.0 has an EK that is slightly more robust than the 1.2 EK. A 2.0 EK can be
used to wrap other keys. In particular, it’s possible for an enterprise to create a restricted
signing key and encrypt it such in a way that only the TPM that has that EK can import
it. This is similar to (although more secure than) the “send a PKCS #12 file” technique
used today to provision keys. Using this approach, PKCS #12 files that contain the private
key are created and sent to clients. Clients are then given a password through a side
channel, which they use to decrypt the PK12 file; they then store the private portion in a
(hopefully) secure place. This technique exposes the private key at some point and is only
as secure as the password. The TPM protocols are much more secure.

CHAPTER 21 ■ SOLVING BIGGER PROBLEMS WITH THE TPM 2.0

324

There are basically three ways you can name the signing key that is being created as
an IDevID:

• Technique 1: Create the IDevID in a server-side TPM or TPM
emulator, and use the standard CA to create a certificate for it.
Then duplicate this key so that it can be imported into a system
that has the client’s EK resident. This is called duplicating the key
so that its new parent is the EK.

• Technique 2: Create the IDevID and certify it. Wrap it up so that
it looks like a duplicated TPM key and can be imported into the
client’s EK.

• Technique 3: Create the IDevID and certify it. Import it locally into
a TPM or TPM emulator, and then duplicate it to have its new
parent be the client TPM’s EK.

These three techniques are implemented slightly differently, as discussed in the
following sections.

Technique 1
In this case, because the key is to be duplicated by the TPM, several things must be
true. First, the key must be duplicable. This means it isn’t a fixedTPM key, and it isn’t a
fixedParent key. Further, it must have a policy, because only keys with a policy can be
duplicated. One of the following must be true for that policy:

Use • TPM2_PolicyCommandCode with TPM2_Duplicate as a
parameter

Use • TPM2_PolicyDuplicateSelect

Either of these must be in at least one branch of the policy. You don’t want the key
to be duplicated beyond the target TPM, so if you use the first option, you have to add a
further restriction to that policy branch—perhaps a TPM2_PolicySigned. In this case, the
second solution is better: you simply fix the target of duplication (the new parent of
the key) to be the EK public key.

Further, for the IDevID key to act like an AIK, it must be a restricted signing key.
Use TPM2_Create to create the key on the server.

Next you have to use your enterprise CA to make a certificate for this key. Before this
is done, the EK’s certificate is checked to make certain it’s valid. Then the certificate can
say that the IDevID belongs to the PC with that EK. Because the key is a signing key, this
shouldn’t be difficult—a normal CA protocol should work.

CHAPTER 21 ■ SOLVING BIGGER PROBLEMS WITH THE TPM 2.0

325

To duplicate the key, you now create three files, each of which represents a parameter
that will be used to import the IDevID key into the target PC with the specified EK.
You use the TPM (or emulator) with TPM2_Duplicate command to do this. (Of course,
you first have to start and satisfy the branch of the policy that allows duplication.) This
command has three outputs, which will be put into three different files:

• TPM2B_PUBLIC: This structure is a description of the IDevID key,
including its public part

• TPM2B_PRIVATE: This structure contains the private portion of the
IDevID, symmetrically encrypted; and an HMAC value that binds
it to the public portion

An encrypted value that allows a TPM with the correct EK to •
regenerate a seed

These three outputs are inputs to the TPM2_Import command. The seed is used by
the TPM to generate an AES key, which is used to decrypt the private key, and an HMAC
key, which is used to verify that the public and private portions of the key haven’t been
meddled with.

Finally, you send the three files to the target PC. There, if the EK isn’t currently
resident, it’s regenerated using TPM2_CreatePrimary. Then you use TPM2_Import, passing
it the three files that were given to the PC as parameters. The TPM2_Import command
returns a normal TPM-encrypted blob, which can be used to load the IDEVID key into the
TPM using the TPM2_Load command whenever the EK is present in the TPM.

The advantage of this technique is that the TPM (or emulator) does much of the
work. The disadvantage is that the end user has to create a policy and also has to rely
on the random number generator of the TPM or emulator. A hardware random number
generator may be too slow, and a software one may not be high enough quality.

Technique 2
If you want to use a TPM to do duplication, you have to use a policy. But you can create
the key entirely outside a TPM and wrap it up like a duplicated key, ready to be imported
into the TPM with the referenced EK. If you do this, you don’t need to associate a policy
(other than the empty buffer) with the key. In this case, you need to write software that
creates the three files to be used as parameters in the TPM2_Import command.

The first file contains the public data of the IDevID; the second holds the private
data of the IDevID, encrypted with an AES key, together with an HMAC of both the public
and private portions of the IDevID; and the third allows the TPM with the referenced
EK to calculate a seed from which the AES key and the HMAC key are derived. If the
EK is an RSA key, the third file is merely the seed, encrypted with the public EK. A
number of details must be determined to create these files; they’re described well in the
specification, particularly in parts 1 and 2.

CHAPTER 21 ■ SOLVING BIGGER PROBLEMS WITH THE TPM 2.0

326

If the IDevID is an RSA public key, it uses the TPM2B_PUBLIC structure (defined in
Part 2, section 12.2.5.) This structure refers to a TPMT_PUBLIC structure, which is defined
in section 12.2.4. The TPMT_PUBLIC structure in turn refers to a number of other
structures and parameters:

The • TPMI_ALG_PUBLIC, which is TPM_ALG_RSA

The • TPMI_ALG_HASH, which is TPM_ALG_SHA256

A • TPMA_OBJECT bitmap, which describes the kind of key (you
specify whether it’s a signing key, duplicable, and so on, just as
though you were creating the key)

The next two parameters in the TPMT_PUBLIC structure are unions:

• TPMU_PUBLIC_PARMS (see section 12.2.3.7). Given that your key is
TPM_ALG_RSA, it becomes TPMS_RSA_PARMS. (12.2.3.5)

• TPMU_PUBLIC_ID (12.2.3.2). Given that your key is TPM_ALG_RSA, it
becomes TPMS_PUBLIC_KEY_RSA (the length and contents of the
RSA public key).

We create the third file before the second one, though logically the public and private
files go together. This is because we will need the third file to encrypt the second one. The
third file is a seed encrypted with the new parent object. The seed can be generated using
any random number generator (the TPM has a good one), and it should be the size of the
hash—in this case, 256 bits long. Once you have this seed, you can use it to calculate two
keys: an HMAC key to be used to prove the integrity of the linkage between the public and
private sections of the key, and a symmetric encryption key to encrypt the private section.
The HMAC key is found using equation 37, in section 22.5 of Part 1:

HMACkey := KDFa (pNameAlg, seedValue, "INTEGRITY", NULL, NULL, bits)

The encryption key you use is found in equation 35, just above the previous one:

symKey := KDFa (pNameAlg, seedValue, "STORAGE", name, NULL, bits)

You now must encrypt the seed with the EK public key. This is done in accordance
with the annexes in Part 1. In particular for RSA, B.10.3 indicates that Optimal
Asymmetric Encryption Padding (OAEP) using the RSA public key is used (as described
in more detail in B.4, using DUPLICATE as the L parameter).

The private data is a TPM2B_PRIVATE structure, found in Part 2 12.3.7. It consists of a
size and an encrypted private area. The encrypted private area consists of two pieces: an
integrity area and a sensitive area. The sensitive area is calculated first.

The sensitive area consists of a TPMT_SENSITIVE area found in table 188 of 12.3.2.4.
This is the TPMU_SENSITIVE_COMPOSITE, which table 187 says (for a TPM_ALG_RSA key) is a
TPM2B_PRIVATE_KEY_RSAj. Table 160 specifies that this is one of the two primes, preceded
by a 2-byte field containing the number of bits in the prime. It’s encrypted using AES in
cipher-feedback mode, where the IV is zero. This is found in equation 36, section 22.4, Part 1.

CHAPTER 21 ■ SOLVING BIGGER PROBLEMS WITH THE TPM 2.0

327

The integrity digest is an HMAC over the public and encrypted private data using the
HMAC key calculated from the seed. This is calculated using the following equation:

outerHMAC := SHA256 (HMACkey, encrypted Sensitive area || TPM2B_PUBLIC)

The integrity digest is prepended to the sensitive area, and a size of the result
(2 bytes) is prepended to this, to create the final private data structure. Once this is done,
these three files can be sent to the remote client PC, where they are imported using
TPM2_Import and the EK as the new parent.

This technique is somewhat complicated, but it lets you create the key in any manner
the administrator wishes and is the only way to create a duplicated key that has a null
policy. This approach guarantees that it isn’t possible to duplicate the key from the target
PC’s TPM to any other TPM, because the TPM always requires a policy to duplicate a key.

Technique 3
If you would like to generate your IDevID key yourself, perhaps because you have a
trusted random number generator, but you don’t wish to do the hard part of generating
the three files, you can import the key directly into a local TPM (or emulator) and let it do
the hard work of duplicating the key. This still requires the end user to generate the public
data of the key in TPM format, including having a policy that allows for duplication. But
the generation of the seed—deriving an AES key from the seed and encrypting the private
portion, generating the HMAC from the seed, and calculating the HMAC of the public
and private portions of the data—is left to the TPM to accomplish.

This approach uses the TPM2_LoadExternal command, which doesn’t require that
the private key be encrypted when it’s loaded. At this point the user continues using the
same steps in as Technique 1 after the key was created. Then the user loads the public
portion of the EK, satisfies the policy for duplication, and duplicates the key to the EK.
Doing so produces the three files, which the user can load into the TPM once the user is
assured that the EK is indeed loaded on their system.

Data Backups
Most PCs today have a lot of extra space on their hard drives. Most enterprises have many
PCs with data that should be periodically backed up. It would be ideal if those PCs could
back up their data on other PCs in the business. That way, as an enterprise expands with
more PCs, the need to back up data and the available space on which to back up the data
grow at the same rate. There are algorithms for backing up data in m copies, so that only n
of the m copies need to be present to recover the data, and these algorithms can be made
space efficient. However, this book doesn’t describe those techniques, because we’re
concerned with another problem with this approach: how do you keep this backed-up
data secure?

First, of course, the data must be encrypted in a way that only allows the owner of the
data to access it. This can be done by having the TPM create an HMAC key and loading it
in the TPM’s persistent storage using TPM2_EvictControl. The filename can be HMACed
to create a derived AES key that can then be used to encrypt the file before it’s backed up.

CHAPTER 21 ■ SOLVING BIGGER PROBLEMS WITH THE TPM 2.0

328

(This provides a different key for each file and makes it easy to recover the AES key for
those with access to use the HMAC key.) Alternatively, you can ask the TPM to generate
an AES key (using its random number generator, so the key is unique for each file); that
key can be encrypted with a public key whose private key is known to the TPM, and that
AES key is used to encrypt the file. In either case, the HMAC key or private key should be
backed up to another system’s TPM in case of TPM failure.

Separation of Privilege
The end user today has to select and set authorization values for the storage hierarchy
(owner authorization) for security, endorsement hierarchy (for privacy administration),
and dictionary attack reset parameter (for TPM administration). This splits control
of the TPM for different type of administrators. But finer control of these commands
(particularly the owner authorization) may be required.

Chapter 10 gave a number of examples of different policies, but didn’t examine
how a policy for the storage hierarchy can be split. The owner of the storage hierarchy
can create NV indexes, create primary storage hierarchies, and make keys persistent (and
evict them from persistency), among other things. An administrator may very well want
to allow an end user to create primary keys but not make them persistent, or make NV
indexes but not evict persistent keys in the storage hierarchy.

If a storage root key (SRK) is made by an administrator and made persistent,
then without owner authorization, it isn’t possible to change the authorization value
associated with this key. This is important, because that authorization is usually the
empty buffer, in order to allow any software to use the SRK value stored in the TPM. If
malicious code were to evict this key and then re-create it with a different authorization, it
would be a type of denial of service attack.

But the end user may wish to allow software to use different algorithms than the
default algorithm set chosen for the SRK. In this case, the owner may wish to allow the
creation of SRK-like keys with different algorithm sets. As a result, the owner may wish
software to be able to use keys created with TPM2_CreatePrimary. However, the owner
may not wish to allow those keys to become persistent, because that uses precious
resources in the TPM—another form of denial of service.

Finally, the owner may wish to allow software to create some NV RAM indexes that
have a limited amount of space. But not all of these things can be done by choosing a
correct policy.

To separate privilege, the owner first creates a long, random password for the owner-
authorization value and then makes sure it’s held secure. This requires that the end user
use the policy to accomplish their goals. Next, branches of that policy are created for
each command code that the owner wishes the end user to be able to use. To allow use of
TPM2_CreatePrimary, one branch can be TPM2_PolicyCommandCode with
TPM2_CreatePrimary as a parameter. To allow only the creation of certain NVRAM
indexes, the TPM2_PolicyCpHash command is used, with parameters for
TPM2_NV_DefineSpace and specific parameters indicating the index to be created and
the public parameters of that index, for each index that the owner wishes the end user
to be able to create. (This is similar to opening a port in a firewall—just because it’s there
doesn’t mean it will be used.)

CHAPTER 21 ■ SOLVING BIGGER PROBLEMS WITH THE TPM 2.0

329

Securing a Server’s Logon
Passwords are weak. Originally, usernames and passwords were stored on servers. That
approach was vulnerable if someone got hold of the list. So, a shadow file system was set
up to make it harder to get to the real list. But that was still too weak. Instead of storing
passwords, the hashes of the passwords were stored. However, dictionary attacks and
rainbow tables made this technique also vulnerable. Next, salted hashes (concatenating
a random number before a password was hashed) were tried, but the salt itself had to be
available for the computer to use to verify the password. In this case, very fast computers
could do dictionary attacks against a salted list of passwords. So the server started doing
many iterations of a hash—hashing the hash of the hash of the password, perhaps 1,000
times—to try to make dictionary attacks more expensive while not doing so many hashes
that verifying a password took too long. Then cloud computing came along, making even
this defense insufficient.

The TPM can be used to solve this problem. Instead of having the salt in the clear,
a keyed hash can be used with the key stored in the TPM. The HMAC is over the user
ID and password. If this is done, then even if the entire list of HMACed passwords were
published, it wouldn’t do an attacker any good—not having the key, they would have to
rely on the TPM to do the HMACing. This reduces the risk of parallelization attacks or
offline attacks using very fast computers.

Implementing this is relatively easy. In Linux, authentication is done using pluggable
authentication modules (PAMs); they’re designed specifically to allow different forms of
authentication to be added to Linux.

First a large random number is created—say, a 256-bit number—which you use as
your HMAC key. This is created with the TPM2_GetRandom command of the TPM or the
Tpm2_GetRandom function in the FAPI. These commands ask how many bytes you want: in
this case, you ask for 32 bytes. You call this result M and store it in a safe in case your TPM
ever dies or the motherboard is replaced.

Next you need to load M into the TPM. You can do this with the TPM2_Load command.
You choose an empty buffer password for M, because you want to use it without
authorization. (You want to store M persistently, so you can’t use the TPM2_LoadExternal
command.) You load it into the storage hierarchy using the owner authorization.
Then you use TPM2_EvictControl to make M persist in the TPM. This call also gives it a
persistent handle, which can thereafter be used to identify M in the TPM.

Now you need to write a PAM (which is outside the scope of this book). When given
a new password, it uses the TPM2_HMAC command to HMAC the user ID and password
with M. When a user ID and password are passed in for authorization, the PAM likewise
HMACs them with M and then compares the result with what is in the user ID / HMAC list.

The HMAC command is relatively fast, so this shouldn’t delay the authentication
procedure significantly, but it should be a good defense against attacks that steal the
password file and try to reverse-engineer it with offline attacks of any sort.

CHAPTER 21 ■ SOLVING BIGGER PROBLEMS WITH THE TPM 2.0

330

Locking Firmware in an Embedded System,
but Allowing for Upgrades
Healthcare systems need to be secure. Unfortunately, there has been a lot of research
showing that devices such as pacemakers and glucose-control systems aren’t terribly
secure. One way of making a system more secure is to be certain the firmware used to run
the device is approved by the manufacturer. This means a public key has to be available
to the device, to verify that the firmware that is being loaded has been correctly signed by
the manufacturer. But where can you store the key?

The obvious solution is to store the key in the TPM. This public key can be
loaded using the TPM2_LoadExternal command and then made persistent using the
TPM2_EvictControl command. Now commands that are used to update the firmware
can use the certified TPM2_VerifySignature command to verify that the new firmware
is indeed signed by the manufacturer before it’s loaded. Writing cryptographic code isn’t
easy to do without making mistakes, so having certified code to do the cryptographic
calculations is a real advantage.

As a side note, a similar approach could be used for documents: passports or even
currency could come with signatures. A portable scanner with a TPM in it could have
public keys preloaded that match the authority that made the documents and could be
quickly used to verify the signature. If a counterfeiter started producing large numbers
of fake bills, they would first require a large number of real bills from which to copy the
signatures. If they copied only a few bills, once found, those certificates could be easily
revoked.

Summary
TPM 2.0 is more than just a collection of algorithms that can be performed in hardware.
It’s an enabler of new functionality. The examples in this chapter haven’t (to our
knowledge) been attempted in commercial or open source software yet, but we’re excited
to see that happen. Even if only the solution for strengthening the storage of passwords
were implemented, it would be a big win for the community. Security problems are
everywhere, and TPM 2.0 can be used as a tool to provide solutions for those problems.

331

CHAPTER 22

Platform Security
Technologies That Use
TPM 2.0

Okay, we’ve written a whole book on TPMs, and you’ve apparently read the whole
thing. Perhaps our attempts to keep the book interesting were successful. . .or you’re
extraordinarily persistent. . .or maybe you just cheated and skipped to the conclusion.

Either way, we’ve reached the end of the matter. TPMs are great and awesome, the
security equivalent of sliced bread, no doubt about it. And TPMs by themselves offer a
good level of security. For instance, an application like Microsoft’s BitLocker can use a
TPM to securely store a hard disk encryption key and control access to the key.

But there are also platform-level technologies that combine TPMs with other
platform- and vendor-specific security features to produce even stronger solutions. The
goal of this chapter is to describe three of those technologies and how they integrate with
TPMs.

The Three Technologies
Three major platform technologies use TPMs. This chapter describes these three
technologies at a high level, how they make use of TPM 2.0 devices, and how they
empower applications to use TPMs. This chapter aims to be non-partisan and, for that
reason, steers clear of comparisons of these three technologies and avoids marketing-
oriented statements.1 This is a TPM 2.0 book, so the focus is on how TPMs are used in
each of these environments. In the interests of maintaining neutrality and accuracy,
the sections on the technologies were written by experienced current and former
representatives of the companies mentioned.

1ItshouldbenotedthatIntelsponsoredthepublishingofthisbook,includingthepublishingcosts.
IntelseekstoadvancetheadoptionofTPM2.0devicesforthebettermentofthecomputingsecurity
ecosystem.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

332

Some Terms
Before we go any further, we need to define some terms:

• Trusted computing base (TCB): Everything in a computer system
that provides a secure environment. Basically, it’s the set of
hardware and software components that must trusted in order to
provide security to the system.

• Measured boot: A boot method where each component is
measured by its predecessor before being executed. Typically
these measurements are accumulated in PCRs via extend
operations.

• Chain of trust: A chain of operations that comprise a measured
boot.

• Root of trust for measurement (RTM): The base component of a
chain of trust that is implicitly trusted. As such, it must be small
and immutable (in ROM or protected by hardware).

• Static root of trust (SRTM): The base component of the chain of
trust that starts at power-on and extends to sometime before the
OS boots. In the server version of Intel TXT, the SRTM is the CPU
microcode. In other architectures, the SRTM is a ROM image.

• Dynamic root of trust (DRTM): The chain of trust that starts after
the OS has booted in non-secure mode. This allows the dynamic
establishment of a measured boot environment. In Intel TXT,
the CPU microcode is also the DRTM. DRTM is sometimes called
delayed launch.

• Authenticated code module (ACM): ACMs are Intel TXT digitally
signed code modules that are invoked by the special Intel TXT
GETSEC instruction. ACMs are the next components to execute
after the SRTM and DRTM components execute. Which ACM is
invoked and which sub-functionality is invoked is determined by
a register setting when the GETSEC instruction is executed.

• Unified extensible firmware interface (UEFI): A standardized
version of BIOS that is CPU independent and standardizes boot
and runtime services.

• SEC phase: The security phase of the UEFI BIOS. This is the first
code to execute after reset.

• PEI phase: The pre-EFI phase of UEFI BIOS. This is the next phase
after the SEC phase. The SEC and PEI phases together comprise
what used to be called the BIOS boot block.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

333

Intel® Trusted Execution Technology (Intel® TXT)
Intel TXT has been shipping since 2002 in client machines and since 2010 in servers.
Intel TXT provides a chain of trust that is rooted in the microprocessor’s hardware and is
extended in stages to the OS and even to applications, depending on how higher levels of
software make use of it.

This section describes Intel TXT at a high level first, including its features that offer
advantages over a TPM-only solution, and then delves into the details of how it uses
TPM 2.0’s capabilities. At a high level, the advantages of Intel TXT over a TPM-only
solution are a hardware-based root of trust, a smaller TCB, and specific checks of the
hardware and software configuration performed by the ACMs. This section highlights
how these advantages are implemented.

Other Intel technologies use TPMs, including Intel Boot Guard. This chapter doesn’t
describe these technologies or how they use TPM 2.0 devices, because Intel TXT is
currently the most prevalent technology and a representative example of how TPM 2.0
devices are used. Also note that there are two flavors of Intel TXT: one for client platforms
and one for server platforms. Many of the principles of operation are shared, but we focus
on the server version, because it uses a superset of TPM functionality.

High-Level Description
Intel TXT for servers can defend against BIOS attacks, reset attacks, rootkits, and software
attacks and allows the system integrator and user many options for configuring the level
of protection. Although it does prevent or mitigate some attacks, its primary purpose is
to notify the user and system software of the presence of a possible attack and prevent
a verified launch if an attack is detected. Intel TXT hardware and software and the TPM
are tightly integrated in a way that protects both the TPM and the TXT registers from
unauthorized access. Critical measurements stored in the TPM cannot be spoofed, and
the TPM protects OEM and user policies from unauthorized alteration.

How does it do this? A short description is that a chain of trust is extended from the
Intel processor and/or chipset hardware through the BIOS. Then, after the OS has booted,
if the user desires to enter secure mode at the OS level, a measured launch sequence
is initiated by the OS or a software program running on top of the OS (DRTM). This
measured launch ensures that there are no security holes in the system before launching
the OS and entering secure mode. Basically, a chain of trust may be extended from the
hardware all the way up to the highest levels of software, enabling a system administrator
or user to create and use security policies. This chain of trust always measures
components before actually executing them.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

334

Intel TXT Platform Components

There are many components to Intel TXT:

• CPU and chipset hardware: The chipset contains special Intel TXT
registers, many of which are readable and/or writeable only by
Authenticated Code Modules and CPU microcode.

• CPU microcode: This is hardwired firmware inside the
microprocessor for executing groups of micro-operations that are
combined to perform assembly language instructions as well as
other internal CPU functions.

• Intel Authenticated Code Modules (ACMs): These ACMs can
only be created by Intel and are digitally signed with a private
key that is only known to Intel. The public key is hardwired into
hardware registers in the chipset, and only a module signed with
the matching private key is allowed to execute. ACMs are invoked
by Intel microcode, and they function as extensions of microcode.
For server Intel TXT, there are two ACMs, the BIOS ACM and the
SINIT (measured launch initialization) ACM:

The BIOS ACM contains several sub-functions (calls), two of ·
which are:

The · Startup ACM2 call is called by CPU microcode at
power-on to start the SRTM. It typically measures the
BIOS boot block, or, as it’s called in UEFI, the SEC and
PEI phases of BIOS.

The · Lock Config call is made by the BIOS just before
it exits the part of the BIOS measured by the Startup
ACM. This performs some bookkeeping and locks some
registers to prevent hostile software or firmware from
changing critical hardware settings.

The SINIT ACM contains only one call and is called by the ·
OS or applications running under the OS in order to perform
a measured launch (DRTM).

Both ACMs always run in a special internal CPU memory that
prevents DMA accesses to the memory and any snooping of
the ACM code and data.

2TheStartupACMisn’taseparateACM,butafunctioncontainedintheBIOSACM.The
misleadingnamehashistoricalroots.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

335

• GETSEC: This is a special Intel TXT assembly language instruction
that invokes a function determined by a register setting. These
functions invoke microcode flows used to enter, launch, and exit
ACMs and exit the measured launch environment (MLE).3 Which
sub-functionality (leaf4) is invoked by the GETSEC instruction is
determined by a register setting. This is how the BIOS ACM Lock
Config and SINIT ACM calls are invoked.

• BIOS enabling for Intel TXT: There is a table inside the BIOS, the
firmware interface table (FIT), that tells the microcode and ACM
whether Intel TXT is enabled, where the BIOS ACM is located,
and which sections of BIOS to measure.

• TPM:

PCRs in the TPM are used to store measurements of ·
components involved in the boot process. Some of these
PCRs can only be extended by microcode, and some are
only extended by ACMs.

NV indices are used to track some state information required ·
by the verified launch process.

The specifics of PC-compatible TPMs are described in detail
in the TCG PC Client Platform TPM Profile (PTP) Specification.
That specification describes the accessibility and number of the
PCRs, special interfaces for measuring BIOS boot code, and
other special TPM features used to support PC platforms.

• OS/middleware enabling for Intel TXT: The OS or middleware
has to start the measured launch. In some cases, this might be an
application or module running under the OS; in others, it might
be a commercial virtual machine manager (VMM) software
package.

• High level applications that use Intel TXT to make security
decisions: Intel’s Mount Wilson software is an example of this. For
more examples and a much more detailed explanation of such
high-level descriptions, read the book Building the Infrastructure
for Cloud Security: A Solutions View (Apress, 2014).

All of these components work together to enable Intel TXT.

3Forafulldescriptionofthisinstructionanditsleaves,seethe“SaferModeExtensions”chapterin
theIntel64andIA-32ArchitecturesSoftwareDeveloper’sManual,Volume2B.Thismanualcanbe
downloadedfromwww.intel.com.
4LeafisTXTjargonforasub-functionwithinanACM.

http://www.intel.com/

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

336

Intel TXT Boot Sequence

Let’s look at one possible boot sequence at a medium level of detail. If you desire more
details, see the book Intel Trusted Execution Technology for Server Platforms
(Apress, 2013).

One quick note about error handling so that we don’t have to describe it repeatedly
in the following sequence: if a failure occurs at any point in the sequence, a chipset
register is written with an error indication. This chipset register, TXT.ERRORCODE, is only
writable by ACMs and microcode to prevent less privileged and possibly hostile code
from clearing it. An error value in this register prevents a measured launch later in the
boot cycle, as described shortly.

Figure 22-1 and Figure 22-2 illustrate the Intel measured launch process and how
various components interact with the TPM. Figure 22-1 is a complete timeline from
power-on through launching a trusted OS. This includes the SRTM before OS boot and
the DRTM initiated by the OS. Figure 22-2 provides more detail about the secure launch
sequence, specifically the steps taken to verify that both the platform and the system
software are trusted.

Figure 22-1. Intel TXT boot timeline

Figure 22-2. Breakout of measured launch details

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

337

The boot sequence is illustrated by Figure 22-1 and consists of two stages: the SRTM
stage and the DRTM stage. The SRTM stage starts with the CPU microcode and extends
up to OS boot. The DRTM stage starts when the SINIT ACM is invoked and extends
through OS boot.

The first part of the sequence (SRTM) starts at power-on and protects against BIOS
and reset attacks:

1. Microcode: When reset is de-asserted, the microcode checks
the BIOS FIT to determine where the BIOS ACM is located
in the BIOS image. The microcode verifies the signature of
the BIOS ACM and does some other sanity checks on the
ACM. If all is well—the ACM is uncorrupted, and it’s the
correct ACM—then the microcode starts the ACM running in
protected CPU internal memory.

2. Startup ACM: The BIOS ACM contains a few different entry
points that can be invoked by microcode or the BIOS. The
Startup ACM call is invoked by microcode when the platform
is powered-on or reset. This call’s main function is to measure
certain portions of the BIOS that must be trusted to operate
correctly in order to guarantee system integrity, as well as to
extend those BIOS measurements into PCR0. The regions
of BIOS to be measured are specified by entries in the FIT
table which are configured by the BIOS OEM. Some critical
regions of the FIT table itself as well as the reset vector and
some other regions of BIOS are required to be measured, and
the BIOS ACM ensures that this is the case. Other regions
of BIOS can be optionally measured, and it’s up to the BIOS
developer to properly configure the table to measure the
correct regions of BIOS. The whole BIOS image doesn’t
need to be measured, and any regions of flash memory that
can change under normal boot situations aren’t measured,
because this will cause false failures. At a minimum, to
guarantee system integrity, the boot block of the BIOS must
be measured—this block includes the basic system and
memory initialization code. If the Startup ACM detects an
error (probably indicating some sort of security issue), it sets
an error code in TXT.ERRORCODE register and resets the CPU,
and then the microcode directs the CPU to the reset vector. In
this case, only a non-verified launch is possible. If the Startup
ACM code completes successfully, the BIOS is executed.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

338

3. BIOS continues the static chain of trust: The BIOS continues
the chain of trust by measuring any additional BIOS code
to PCR0 and measures other platform components to other
PCRs. BIOS also creates a log of everything measured to
the PCRs. All code in the BIOS trust boundary must be
measured before that module executes. And before the BIOS
executes any unmeasured code (code outside the BIOS
trust boundary), it calls the BIOS ACM to lock the platform
configuration to prevent untrusted code from altering the
platform configuration. These calls to the BIOS ACM also test
and perform security checks to ensure system integrity.

4. Option ROMs: Unless provided by the OEM, option ROMs are
outside the trust boundary and option ROM code is measured
into PCR2 while any option ROM configuration is measured
into PCR3.

5. OS boot: When the BIOS completes, it boots to the OS loaded
on the system. The OS is running in normal, non-verified boot
mode, but it’s locked and loaded to perform the DRTM phase
of booting.

The second part of the sequence (DRTM) starts at the GETSEC(SENTER) leaf, which is
invoked by the OS or a software component running in the OS. This provides a dynamic
root of trust for measurement that measures the SINIT ACM and the MLE, which is
sometimes the VMM.

6. Measured launch: When the OS wants to boot into trusted
mode, it executes the GETSEC(SENTER) instruction. This
causes a microcode flow that verifies the SINIT ACM in a
manner similar to the BIOS ACM (see steps 1 and 2), loads it,
and starts executing it.

7. SINIT ACM: The SINIT ACM verifies that no other security
issues have occurred by checking the TXT.ERRORCODE register.
It does some hardware configuration checks for certain
security issues. It then measures the trusted OS code. The
ACM also includes a Launch Control Policy (LCP) engine
that performs policy checks, which includes checking the
measured OS code and PCRs against lists of known good
values. If any checks fail in the SINIT ACM, a platform reset
is performed. If all is well, the ACM performs the measured
launch and the OS enters secure mode. This is referred to as
the Measured Launch Environment (MLE). Measurements of
the SINIT ACM, policies, and measured OS code are extended
into PCR17 and 18.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

339

8. Trusted mode: At this point, the trusted environment has
been enabled, and the OS has access to Locality 2 and thus
the dynamic PCRs. The trusted OS continues the dynamic
chain of trust by measuring additional OS components and
configuration into PCRs 18–22.

9. Applications: Local applications can use the values in PCRs to
seal secrets that can only be unsealed when the platform is in
that same trusted environment. For example, the OS can seal
an encryption key it uses to encrypt private and privileged
information. Only when the platform successfully performs
the measured launch can the OS recover the key and decrypt
the data. This is sometimes referred to as local attestation.
Remote attestation is where external agents use the PCR
values to make a trust decision—perhaps quarantining an
untrusted platform while connecting trusted platforms to the
production network.

10. Termination: The final stage is when the OS terminates the
trusted environment. This can either shut down the platform
(power-off or restart) or just exit the trusted mode, in which
case the OS can re-enter it by performing another measured
launch without the need to reset the platform. After the MLE
shutdown, the OS no longer has Locality 2 access to the TPM.

This seems like a lot of detail, but we’ve actually skipped the low-level details of the
Intel TXT policy, the security checks performed by the ACMs, the details of how TPM NV
indices are used for communicating TXT status, and the BIOS enabling and provisioning
of TXT.

How TPM 2.0 Devices Are Used
So, how do TPMs fit in this picture? Intel TXT uses PCRs and NV indices, primarily.
Other TPM 2.0 features figure into how PCRs and NV indices are accessed and used:
special hardware-triggered TPM commands, policy commands, and localities. These are
described at a high level here.5

5TPM1.2alsohadPCRs,NVindices,hardware-triggeredTPMcommands,andlocalities.Policies
andalgorithmagilityarethenewTPM2.0featuresusedbyTXT.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

340

NV Indices

NV Indices play an important role in Intel TXT. They are used to do the following:

Securely pass information and states between ACMs•

Securely maintain state between platform resets and power cycles•

Allow OEM and platform owner to provide hashes of two policy •
lists, platform supplier and platform owner, of known good
platform configurations

Protect OEM and user policies from malicious alteration•

Access to these indices is controlled by index attributes and a combination of
password and index policy authorizations as described in Chapters 13 and 14 of this
book. The ACM verifies that the attributes are correct before trusting their content.

PCRs

PCRs are used by both ACMs. Because TPM 2.0 supports algorithm agility, Intel TXT
supports this agility at all levels from ACMs through Intel TXT launch-measured policies
and BIOS trust policies. The details of this agility support are described in detail in the
Measured Launched Environment Developer’s Guide, which you can download from
Intel’s web site, and the Intel TXT BIOS Writer’s Guide, which is available to OEMs.

The BIOS ACM extends the BIOS measurements and other early initialization values
into PCR0. BIOS extends measurements of other platform configuration components into
PCR0-7.

When doing a measured launch, the GETSEC(SENTER) instruction microcode
performs the special hardware-triggered _TPM_Hash_Start, _TPM_Hash_Data, and
_TPM_Hash_End commands. These commands are triggered by writing to special TPM
interface registers that can only be written from Locality 4. Chipset hardware restricts
access to these Locality 4 registers to hardware or, in this case, microcode. The special
hash commands extend PCR17 with measured launch measurements during the
microcode’s execution of the GETSEC(SENTER) instruction.

After entering the SINIT ACM, this ACM extends other dynamic launch
measurements into PCR17 and PCR18. If the Intel TXT measured launch policies are
satisfied, then the OS is trusted and has access to PCRs 17-22; the OS uses these to
measure additional OS code and OS configuration. Later, when higher-level software
makes decisions about levels of trust, these measurements are used.

Conclusion: Intel TXT

This completes a high-level view of how Intel TXT uses TPM 2.0 devices. If you’re
interested, you can dive into the details by accessing the Intel documents referenced
earlier.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

341

ARM® TrustZone®

ARM TrustZone has been a feature of the ARM processor architecture since 2002 and
first appeared in real processors—specifically the 1176JZF™—shortly afterward in 2003.
Since then, not much has changed with TrustZone itself, but many additional features,
technologies and use cases have grown up around it.

It’s not uncommon for TrustZone and Intel TXT to be compared and/or lumped
together as each architecture’s ‘security extension’, but below a rather superficial level
the two aren’t particularly similar and such comparison doesn’t aid understanding.
This section explores a little of what TrustZone is, how it works, and how it relates to
TPM technology. At a high level, TrustZone provides a safe place for a software TPM
implementation to execute.

High-Level Description
At the simplest level, TrustZone provides a facility to create a virtual second processor
inside a single system on chip (SoC). Through the implementation of a special operating
mode, the SoC is able to create two separate parallel software stacks (or ‘worlds’): the
Normal World (NWd), which runs the main OS and user interface, and the Secure
World6 (SWd), which runs a trusted software stack implementing security features. The
two worlds are kept separate by the SoC hardware so that the main OS can’t interfere
with programs or data in the SWd. This enables users to retain trust in the integrity and
confidentiality of SWd data even when they can’t trust the state of the device as a whole.

Typically, a system designer doesn’t want to impact the user experience of the device
and so keeps the SWd hidden away, often using it to create a virtual security processor
that the main OS calls when needed. For the most part, this idea of a virtual security
processor is useful, but one very important detail must be made clear: while the SWd is
completely protected from direct access by untrusted NWd code, the reverse isn’t true.
SWd code can, in principle, access any memory or device in the system. This asymmetric
setup has many positive implications—high-speed data transfer and the ability to
integrity-check NWd memory among them—but it also gives the SWd control over the
entire device, not just the security module it implements.

TrustZone Is an Architectural Feature

The first thing to understand about TrustZone is that it’s an architectural feature of ARM.
And to understand that, you need to remember how the ARM partner ecosystem works.

6Noteaslightproblemofterminologyhere.Theoriginalnamingofthesearchitecturalfeatures
followsasecurevs.non-securetheme,butasweallknow,thereisnosuchthingasabsolute
security:everyprotectionsystemhasitslimits.Inrecentyears,thisterminologyhasgivenwayto
themoresubjectivetrustedvs.normalconcept,butremnantsofthesecurenamingremaininthe
namesofvariouscomponents.Thischapterusesthe(non-)secureand(un-)trustedterms
interchangeably.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

342

ARM (the company) doesn’t make chips itself: it designs processors and subsystems
and controls an architecture specification that other companies take as the blueprint for
their own chips. An architectural feature is something that is baked into the architecture
specification and is implemented through standard mechanisms and signals (not
as software or an auxiliary module/IP block) and is promised to be compatible on
any ARM-based SoC regardless of any differentiating features they may implement.
ARM-based SoCs are required to conform to the architecture specification (and pass a
conformance test), so by specifying it in the architecture, it’s assured that all such SoCs7
have TrustZone.8

Another principal driver for implementing TrustZone as an architectural feature is
that the security separation is then enforced by the chip hardware and doesn’t rely on
software or logical access control systems (which always fall to bugs in the end). This
benefit is realized in ideal conditions and makes TrustZone extremely elegant and robust,
although there are practical limitations on how much device makers can rely on this in
the real world.

Protection Target

TrustZone is designed primarily to defeat software-borne attacks9 such as those coming
from rogue websites, errant downloads, root kits, and the like. It isn’t designed to protect
against concerted, targeted hardware penetration or lab attacks (like a smartcard might
be). This makes sense when we consider the evolution of computing devices over the
past decade or so: they have become increasingly networked, connected, and dynamic.
Bulk data transfer is the norm, and data and applications flow seamlessly from one
device to another with limited checks and balances. In such an environment, the growth
in potential for scalable indiscriminate software attacks far outstrips those for targeted
physical intrusion.

To be clear, in the TrustZone threat model, all software in the NWd is considered
potentially hostile (either by rootkit infection or by deliberate replacement of kernel or
similar). So while the SWd and NWd kernel often work together to provide overall device
and application security, the SWd should never rely on information it receives from the
NWd when making security decisions. This is important when considering TPM-like
use cases.

7SpecificallyCortex™-Aclass(orapplication)processors.ARMalsodesignsR(realtime)andM
(microcontroller)classprocessors,whichdon’thavethekindofTrustZonefeaturedescribedhere.
8Asyou’llseelater,simplyhavingTrustZoneisn’tnecessarilyuseful.Itdoeshavetobe
implementedcorrectly,somethingthatrequiresskillandcare.
9ThetermshackattackissometimesusedinassociationwithTrustZonetodescribealow-value,
low-skilltypeofphysicalattacksomewherebetweentheall-softwarehackattackandthehigh-end,
skilled,andexpensivelabattack.Anexampleofashackattackmightbenondestructivebusprobing
onexposedwires.ThedegreetowhichanSoCcanprotectagainstshackattacksdependsonthe
chiphardwaredesignandisn’tinherenttotheTrustZonesystem.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

343

System-Wide Security

ARM often describes TrustZone as system security,10 but what does that mean? In this
case, the system refers to everything in the SoC connected to the central processor by the
AMBA®11 AXI™ bus.12 So in addition to providing simple memory and process separation
for the two-worlds model, it also extends protection to data and interrupts handled by
peripherals.13

Bus masters can be marked secure, meaning they’re controlled by software running
in the SWd, or insecure, meaning they can be accessed by either world.14 When a secure
peripheral interacts with the system, nothing in the untrusted world can see it or directly
interfere with it: not even kernel code. Typical use cases for such a thing would be a
Secure Element chip (cryptographic key storage device not accessible to normal code) or
a touchscreen UI (trusted user interaction).

Implementation of TrustZone
The successful implementation of TrustZone in an SoC and system depends on many
aspects of design but there are three major pieces to consider: the NS bit, the Monitor,
and secure interrupt handling.

The NS bit

The NS (or ‘Non-Secure’) bit is the central manifestation of TrustZone in the ARM
processor architecture. It’s a control signal that accompanies all read and write
transactions to system bus masters, including memory devices. As the name suggests, the
NS bit must be set low in order to access SWd resources.

To understand how something so simple can reliably achieve world separation, it’s
sometimes useful to think of NS as an extra address bit15 that effectively partitions the
memory space into two parallel logical regions: 32-bit space plus NS. This analogy makes
TrustZone isolation and error behavior intuitive: attempts from NWd to access SWd
memory will fail, even if it knows the exact 32-bit address it wishes to attack, because the
33rd bit is different and so doesn’t map to the desired memory location.

10www.arm.com/products/processors/technologies/trustzone/index.php.
11AdvancedMicrocontrollerBusArchitecture.Seehttp://en.wikipedia.org/wiki/Advanced_
Microcontroller_Bus_Architectureforfurtherdefinitionsandacronyms.
12Technicalnote:OnlyAXImastersareabletocorrectlypreserveTrustZonesignals.Workis
requiredtosecurelyintegrateAHB™orAPB™devices.
13Again,peripheralherereferstomastersconnecteddirectlytotheAMBAAXIbusinsidetheSoC.
Itdoesn’tmeanexternaldeviceslikeVDUsorprinters.
14RemembertheasymmetricalnatureofTrustZone:SWdcanaccesseverything.
15The“33rd(or41stor65th)addressbit”analogycanfailwhenyoulookatcertaindeepdetails,but
it’scloseenoughtobeuseful.

http://www.arm.com/products/processors/technologies/trustzone/index.php
http://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture
http://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

344

Clearly the security of the system would break down if NWd code were somehow
able to set the NS bit in resource requests directly, so it’s set, maintained, and checked
by processor registers and bus components such as the memory controller and address
space controller. Returning to the 33rd bit analogy for a moment, code makes a normal
32-bit request; and the processor hardware, knowing that the code is executing in
insecure mode, adds NS=1 to the transaction.

The Monitor

Of course, nothing is ever quite as simple as a single bit in the architecture. A small
amount of firmware is required to coordinate the two worlds, facilitate switching, and so
on. This firmware16 component is called the Monitor.

Alongside the two explicit operating modes (Secure and Non-Secure), there is a third
processor mode called Monitor mode that runs a third separate software stack. In order
to transition from NWd to SWd (or vice versa), requests must transition through Monitor
mode and the Monitor firmware ensures that the transition is allowed, orderly, and
secure.

The Monitor is able to access all the crucial security data in the system, so its quality
and integrity are paramount. The code should be as small as possible and tested and
reviewed17 regularly in order to be, if such a thing is possible, bug-free.

World Switching

When NWd software wishes to contact SWd, it must issue a Secure Monitor Call (SMC)
instruction. This invokes the Monitor, which must set the state of the NS bit in the Secure
Configuration Register in the System Control Processor (CP15) (so that bus and memory
devices know which world is executing and therefore calling them) and bank-sensitive
registers to keep the system secure and consistent.

SMC calls are very simple: they take a single 4-byte immediate value that indicates
to the software in the SWd what service is being requested, and the SWd runs that service.
It’s the responsibility of the system designer(s) to agree on conventional numbering and
meanings for each value.18

16Noteacomingconfusion:fromARMV8,thereisanofficialdefinitionoffirmwareforException
Level3(highprivilegelevel)thatismorethanjusttheMonitorcomponents.Thistextonlyrefers
tothecoderesponsibleforcoordinatingworldswitching,notanyotherfirmwaredutiessuchas
powermanagement.
17TheMonitormayevenbealegitimatetargetforformallyprovencode.
18Tohelpwiththis,ARMpublishesvariousrecommendedcallingconventions,butthesystemisn’t
requiredtofollowthem.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

345

Interrupts

Earlier we introduced the idea that interrupts from secure peripherals can be routed
directly to the SWd without ever passing through any untrusted code at any privilege
level. At this point, it’s important to introduce another configuration for peripherals: not
secure or insecure, but switchable. Some peripherals (a touchscreen, for example) only
need to be secured part of the time: when executing sensitive transactions. At all other
times, it’s acceptable, even required, for the NWd to have control.

To police this and ensure that the correct software stack has control at the correct
time, all such interrupts are actually caught by the Monitor, and the Monitor decides
(based on a configuration table) which driver (SWd or NWd) should receive the interrupt.
When entering a secure transaction, the SWd can reserve the peripheral, meaning it
receives all the interrupts. When it has finished, it can release the peripheral, informing
the Monitor that it should send interrupts on to the NWd driver instead.

To deal with the various practical issues of performance, potential conflicts, and so
on, a typical ARM system reserves the two interrupt signals for separate purposes: IRQ19
for normal interrupts and FIQ20 for secure.21 This allows certain efficiencies such as static
routing tables for certain events.

Relationship to TPMs

Historically, ARM SoCs have been most prevalent in mobile devices: smartphones,
tablets, and the like. As such, TrustZone systems haven’t typically used a separate
hardware TPM, but rather have used TrustZone as the TPM.

Starting around a decade ago with the Mobile Trusted Module specification, and
continuing today with the TPM 2.0 Mobile and PC Client specifications, the trusted
computing community has developed the concept of a firmware TPM. With fTPM, rather
than relying on separate hardware chips, the TPM functionality is implemented in a
protected firmware execution space such as TrustZone and then called by the NWd OS
for measurements, sealing, and so on in the normal way.

While no hard-and-fast requirements or architecture are specified for the precise
implementation of the fTPM (beyond conformance to the TPM 2.0 library specification of
course), the operating environment is required to provide some fundamental protection
for the TPM roots of trust and PCRs. In keeping with the TrustZone protection target, no
software outside of the TPM implementation should be able to modify or access roots of
trust directly, or manipulate PCRs except though the authorized interfaces.

A well-implemented TrustZone system is able to provide these guarantees (and,
indeed, several implementations are commercially available).

19Aninterruptrequest(IRQ)isasignalsentfromahardwareperipheraltoalerttheprocessortoan
event.
20Afastinterruptrequest(FIQ)isanadditionalsignallikeIRQbutis(supposedly)handledfaster.
21Althoughnotactuallyrequired,therearetworeasonsforthisrecommendation:compatibility
(existingNWdsoftwaremakesmuchmoreuseofIRQthanFIQ)andsecurity(theARM
architectureallowsformaskingcontrolofFIQinCP-15butnotIRQ).

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

346

AMD Secure Technology™
The AMD Secure Processor™ (formerly known as the Platform Security Processor [PSP])
is a dedicated hardware security subsystem that runs independently from the platform’s
main core processors and is integrated into the SoC. It provides an isolated environment
in which security-sensitive components can run without being affected by the software
running as the main system workload. The PSP can execute system workloads as well as
workloads provided by trusted third parties. Although system workloads are preinstalled
and provide SoC-specific security services, the system administrator has complete control
over whether and which third-party workloads are installed on the PSP. The PSP is made
up of the following components:

Dedicated 32-bit microcontroller (ARM with TrustZone •
technology)

Isolated on-chip ROM and SRAM•

DRAM carved out via hardware barrier and encrypted•

Access to system memory and resources•

Secure off-chip NV storage access for firmware and data•

Platform-unique key material•

Hardware logic for secure control of CPU core boot•

Cryptographic coprocessor (CCP)•

The PSP uses the ARM TrustZone architecture, as described in the section on ARM
TrustZone, but there are some differences: rather than being a virtual core, the PSP is a
physically disparate core integrated into the SoC that has dedicated SRAM and dedicated
access to the CCP. The PSP provides the immutable hardware root of trust that can be
used as the basis for optionally providing the chain of trust from the hardware up to
the OS.

The CCP is made up of a random number generator (RNG), several engines to
process standard cryptographic algorithms (AES, RSA, and others depending on
processor model), and a key storage block. The key storage block contains two key storage
areas: one dedicated to storing system keys that can be used by privileged software but
that are never readable; and the other into which keys can be loaded, used, and evicted
during normal operation by software running either on the PSP or on the main OS.
During boot, SoC-unique e-fused keys are distributed to the CCP system key
storage block.

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

347

Hardware Validated Boot
Hardware Validated Boot (HVB) is an AMD-specific form of secure boot that roots
the trust to hardware in an immutable PSP on-chip ROM and verifies the integrity of
the system ROM firmware (BIOS). The PSP ROM contains the initial immutable PSP
code. The PSP ROM validates a secure boot key and then uses the key to validate the
PSP firmware, which it reads from system flash. The PSP firmware loads and starts the
system application execution. The system manufacturer can choose whether the PSP
validates the BIOS platform-initialization code. The PSP then initiates BIOS execution.
The PSP completes its own initialization and enters steady state while the BIOS and OS
finish booting on the x86. The platform manufacturer decides whether to implement
UEFI secure boot. The platform manufacturer also decides what interfaces are provided
for the user to select whether UEFI secure boot is enforced. In this way, the platform
manufacturer decides when to terminate the chain of trust that was rooted in the
immutable hardware.

Figure 22-3 shows the scope of HVB as it relates to the UEFI secure boot.

Figure 22-3. Hardware Validated Boot Overview

CHAPTER 22 ■ PLATFORM SECURITY TECHNOLOGIES THAT USE TPM 2.0

348

TPM on an AMD Platform
As a founding member of the Trusted Computing Group, AMD strives to support a wide
range of options for the OEM and platform owner. To this end, platform manufacturers
have several choices when integrating TPMs into AMD-based platforms. Platform
manufacturers can continue to choose among the discrete TPM hardware options that
are widely available; or the platform manufacturer can choose to integrate an AMD-
provided TPM application as one of the system applications running on the PSP SWd.
This firmware TPM utilizes the CCP for cryptographic processing.

SKINIT
SKINIT is the instruction that initiates the late launch CPU reinitialization to start the
DRTM. SKINIT takes one parameter: the address of the Security Loader (SL) code. The
SL must fit within 64KB of memory known as the Security Loader Block (SLB), which
is protected from tampering and snooping. CPU microcode ensures that the CPU is
reinitialized to a known state so that the developer can launch whatever SL code they
need to run in the secured state. The SL is expected to validate and initialize a Security
Kernel (SK) and then to transition control to the SK. The SKINIT instruction writes the
contents of the SLB to an address that is redirected into the TPM via the _Hash_Init,
_Hash_Start, and _Hash_End signals. These signals measure the contents of the SLB into
PCR 17. Further details about the CPU characteristics that are validated and how the
SKINIT instruction works are available in the AMD64 Architecture Programmer’s Manual
Volume 2: System Programming.22

This concludes a whirlwind overview of AMD Secure Technology™ that covers the
high points of the introduction of an on-chip hardware root of trust into AMD SoCs.
More information can be found on AMD’s web site: www.amd.com/en-us/innovations/
software-technologies/security.

Summary
This chapter has discussed three platform technologies that use TPM 2.0: Intel TXT,
ARM TrustZone, and AMD Secure Technology. There are other technologies on PCs and
other platforms that also use TPM 2.0, and, we hope, many more will be developed in the
future. And this is where you, the reader, come in. Go out and do wonderful things
with TPMs!

22http://developer.amd.com/resources/documentation-articles/developer-guides-
manuals/.

http://www.amd.com/en-us/innovations/software-technologies/security
http://www.amd.com/en-us/innovations/software-technologies/security
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/

A���������
adminWithPolicy, 256
Advanced encryption standard (AES), 29
Asymmetric algorithms, 9
Attestation identity keys (AIKs), 29, 101
Auditing commands

audit log, 264, 267
bit ield, 264
command audit, 265
data, 268
exclusive audit, 268
PCR implementation, 265
session audit, 266
TPM2_GetCommandAuditDigest, 265
TPM2_GetSessionAuditDigest, 265
TPM2_SetCommandCode

AuditStatus, 265
TPM2_StartAuthSession, 265

Authenticated code module (ACM), 332
Authorizations

ADMIN, 171
audit usage, 168
block diagram, 169
command authorization area, 172
command authorization structures, 174
DUP, 172
encrypt/decrypt usage, 168
HMAC, 165

authorizing commands, 192
code implementation, 195
data structure, 206
entity creation, 191
Nonces, 203
RollNonces function, 194
security, 205
session key creation, 191

password
code implementation, 178
command authorization block, 178
lifecycle, 176
TPM2_Create command, 177
TPM2_CreatePrimary

command, 177
TPM2_HierarchyChangeAuth

command, 177
TPM2_NV_ChangeAuth

command, 177
TPM2_NV_DeineSpace

command, 177
TPM2_ObjectChangeAuth

command, 177
policy

entity’s policy digests, 211
real policy session, 213
time intervals, 209
TPM2_NV_DeineSpace

command, 212
TPM2_NV_Write command, 214
TPM2_PolicyAuthValue

command, 213
response authorization structures, 175
speciication, 167
USER, 171

B���������
Boot sequence

DRTM
breakout measured

launch, 336
local applications, 339
measured launch, 338
SINIT ACM, 338

Index

349

■INDEX

350

termination, 339
trusted mode, 339

SRTM
BIOS trust boundary, 338
Microcode, 337
option ROMs, 338
OS boot, 338
Startup ACM, 337

timeline, 336
Brute force

asymmetric algorithms, 9
attacks, 10
ECC, 9
key, 8
SHA, 9
symmetric algorithms, 9

Business duplicable key (BDK), 253

C���������
Certiicate authority (CA), 266
Certiicate signing request (CSR), 130
Certiied migratable keys (CMKs), 3, 31
Chain of trust, 332
Context management

error codes, 294
internal slots, 294
Microsoft simulator, 294
power and shutdown events, 296
resource manager

embedded, 291
proactive approach, 293
reactive approach, 293
single-user applications, 291
TPM response, 292
virtual-to-TPM handle

mapping, 292
state diagrams, 297
TAB, 290
TPM2_ContextLoad command, 296
TPM2_ContextSave command, 295–296
TPM2_FlushContext command, 296
transient entities, 294

Core root of trust measurement (CRTM),
115, 152

Cryptographic algorithms
asymmetric keys, 18

ECC (see Elliptic curve
cryptography (ECC))

function, 18

RSA (see Rivest, Shamir, and
Adleman (RSA))

attack classes, 7
brute force (see Brute force)
SHA-1 hash algorithm, 10
weaknesses algorithms, 10

authentication/authorization ticket, 15
block-mode encryption, 16
extend operation, 13
HMAC key, 12, 14
KDFs, 14
nonce, 17
PCR, 13
public key certiication, 20
secure hash, 12
security protocols, 11
symmetric-encryption key, 15

Cryptographic service providers (CSPs), 40

D���������
Debugging

authorization errors, 317
bad parameters, 317
high-level applications

bad size, 320
debug process, 318
disabled function, 319
FAPI, 311
hardware TPM advantages, 317
missing objects, 319
password authorization, 319
policy authorization, 320
wrong type, 319

low-level application
API, 311
complicated errors, 312, 315
debug trace analysis, 312–313
error code analysis, 312
hardest errors, 312
last resort, 315
RM, 311
TAB, 311

marshalling/unmarshalling
errors, 317

Decrypt/encrypt sessions
application-level structure, 277
asynchronous calls, 285
asynchronous execution, 276
authorization structures, 280, 282
creating NV index, 280

Boot sequence (cont.)

■INDEX

351

DecryptResponseParam decrypts
response parameters, 278

EncryptCommandParam encrypts
command parameters, 278

EndAuthSession function, 278
function tests, 276
limitations, 272
location and size, 283
NV index deleted, 280
parameters, 271, 276
password session, 282
policy session, 281
pseudocode low

HMAC and policy sessions, 273
lifecycles, 274
password session, 273

RollNonces function, 278
setting command authorizations, 277
StartAuthSessionWithParams

function, 278
synchronous call, 285
synchronous execution calls, 276
Tss2_Sys_ExecuteAsync, 284
Tss2_Sys_ExecuteFinish, 284
Tss2_Sys_GetEncryptParam, 286
Tss2_Sys_GetRspAuths, 284
Tss2_Sys_SetEncryptParam, 286
Undeine command, 279
write data array, 280
write operation, 284
XOR and CFB modes, 271, 273

Deprovisioning process, 308
Dictionary-attack logic, 308
Direct anonymous attestation (DAA), 2
Duplicable storage key (DSK), 258
Dynamic root of trust measurement

(DRTM), 159, 332

E���������
Electronic codebook (ECB) mode, 16
Elliptic curve cryptography (ECC), 9, 121

ECDH algorithm, 20
ECDSA algorithm, 20

Elliptic curve Diie-Hellman (ECDH), 19
Elliptic curve digital signature algorithm

(ECDSA), 19
encryptionKeyIn parameter, 257

Endorsement key (EK), 101, 323
End user license agreement (EULA), 158
Enhanced authorization (EA), 166
Enterprise key, 253
Entertainment key, 253
Execution environment

software stacks
TSS 2.0, 75
TSS.net, 75

TPM
binary version, 72
Microsoft simulator, 71
Platform command port, 72
Python Script, 73
source code, 72
system API test code, 74
TPM command port, 72
TSS.net, 74

Extended authorization (EA) policies
administrator role, 242
approved policy, 247
certiied policies, 247
command-based assertions, 233
compound policies, 222, 237
deinition, 217
end user role, 241
lexible policy, 222
home role, 242
multi-assertion policy, 222
multifactor authentication, 219, 234
oice role, 242
policies and passwords, 218
policy commands, 221
PolicySession, 243
simple assertion policy, 222

digital signatures, 226
external device, 231
lexible (Wild Card) policy, 232
locality of command, 228
NV RAM location, 230
passwords, 223
PCRs, 227
TPM internal state, 230

simple assertions and multifactor
assertions, 243

TPM2_PolicyXXX commands, 220
understudy role, 242
wild card policy, 246

■INDEX

352

F���������
Feature API (FAPI), 320

ASYM_RESTRICTED_SIGNING_
KEY, 81

ASYM_STORAGE_KEY, 81
callback function, 84–85
endorsement key, 81
HMAC_KEY, 81
NV, 81
object ancestor, 80
password-handler function, 85
path descriptions, 80
policy commands, 84
proile ile, 79
Sign command, 83
standard policy and authentications, 81

Feature Application Programming
Interface (FAPI), 252

Financial key, 253

G���������
GetDecryptParam function, 89
getPollHandles function, 94
GPIO pins, 146

H���������
Hash message authentication

code (HMAC)
authorization error, 315
keys, 14

Hierarchies
cryptographic primitive

digest primitives, 114
random number generator, 114

deinition, 105
disabling method, 307
endorsement hierarchy, 108
HMAC primitives, 116
NULL hierarchy, 113
platform hierarchy, 106
privacy

credential format, 109
privacy considerations, 111

proof value, 105
RSA primitives, 117
storage hierarchy, 107
TPM 1.2 SRK, 106
TPM 2.0, 105
UEFI, 107

I, J���������
Infrastructure Work Group (IWG), 157
Institute for Applied Information

Processing and Communication
(IAIK), 46

Integrity Measurement Architecture
(IMA), 153, 157

Intel TXT
boot sequence (see Boot sequence)
components

BIOS ACM, 334
BIOS enabling for Intel TXT, 335
CPU and chipset hardware, 334
CPU microcode, 334
GETSEC, 335
high level applications, 335
Intel authenticated code modules

(ACMs), 334
OS/middleware, 335
SINIT ACM, 334
TPM, 335

features, 333
NV indices, 340
PCRs, 340
servers platform, 333

K, L���������
Key derivation function (KDF), 14
Key duplication, 324
Key management system

activation, 256
backup system, 259
destruction, 257
distribution, 255
generation

primary key, 250
SRKs creation, 251
templates, 252
thumb rule, 252

primary system, 258
tree (see Key tree)
Windows 8+, 259

Keys
authorization, 124
cache, 123
certiication

digital signature, 131
ingerprint authorization, 131
hybrid index, 132
NV index, 132

■INDEX

353

signing key, 130–131
X.509 certiicate, 130

commands, 119
context management vs. loading, 129
destruction, 125
duplication attributes, 126
generator, 120
hierarchy, 125
NULL hierarchy, 130
persistence, 123
primary key

ECC key, 134
endorsement key, 122
HMAC key, 133
key-derivation function, 121
persistent hierarchies, 121
persistent storage/volatile

memory, 121
provisioning software, 120
RSA key, 132
SRK, 120
templates, 121
TPM commands, 122
TPM2_CreatePrimary(), 120

restricted decryption key, 128–129
symmetric and asymmetric keys

attributes, 126
Key tree

algorithm set, 252
duplication, 253
SSL servers, 254

M���������
Measured boot, 332
Migratable key, 257
Monitor mode, 344

N���������
National Institute of Standards and

Technology (NIST), 30
Nonpersistent entity, 100
NULL hierarchy, 98
NV index

access controls, 144
bit ield, 141
counter, 141
extend, 142
hybrid index, 143
names, 147

ordinary
certiicate stating, 139
common password, 139
HMAC key, 140
platform authorization, 138
public key, 140

password, 149
TCG registry, 146
TPM 1.2 features, 137
TPM2_NV_Extend, 149
TPM2_NV_GlobalWriteLock, 149
TPM2_NV_Increment writes, 149
TPM2_NV_ReadLock locks, 149
TPM2_NV_SetBits, 149
TPM2_NV_WriteLock, 149
TPM2_NV_Write writes, 149
user-deined index, 137
written index, 145

NVRAM index, 99

O���������
Owner authorization, 35

P, Q���������
P_ECCP256 proile, 80
PEI phase, 332
Permanent entity

dictionary attack lockout reset, 98
ephemeral hierarchy, 98
password authorization session, 99
PCR, 98
persistent hierarchies, 97
platform NV enable, 99
reserved handles, 99

Persistent entity, 101
Personal duplicable key (PDK), 253
Personal key, 253
Personally identiiable information (PII), 28
Platform Coniguration Registers (PCRs),

2, 13, 28, 41, 98, 128, 219,
221, 227

allocation, 152
attestation/quote, 151

algorithms, 160
attributes, 159
authorization and policy, 160
cryptographic proof, 156
EULA, 158
event-log ile format, 157

■INDEX

354

quote data, 158
Trusted Computing concept, 157

authorization
BIOS, 155–156
full-disk encryption

applications, 154
OS level, 156
OS security, 154
sealing, 154–155
TPM2_PolicyAuthorize, 154
unseal, 155
VPN private key, 155

commands, 153
CRTM, 152
debug, 153
extend, 151
IMA policy, 153
metadata, 153
NV extend indexes, 153
PC Client platform, 153
SHA-1 algorithm, 151
software state, 151
TPM implementation, 151

Platform security processor (PSP), 346
Platform Trust Services (PTS), 157
Pluggable authentication modules

(PAMs), 329
PolicyAuthorize, 254
Private key mechanism, 25
Provisioning operation

certiicate, X.509 format, 305
deprovisioning, 308
end user, 307
OEM platform, 306
primary endorsement key, 305
primary key, 305
TPM manufacturer, 305

P_RSA2048SHA1 proile, 80
P_RSA2048SHA256 proile, 80
Public key certiication, 20

R���������
Random number generator (RNG), 27
Resource manager (RM), 95

embedded, 291
proactive approach, 293
reactive approach, 293
single-user applications, 291

TPM response, 292
virtual-to-TPM handle mapping, 292

Rivest, Shamir, and Adleman (RSA), 9
digital signature, 19
encryption keys, 18

Root of trust for measurement (RTM), 332

S���������
SEC phase, 332
Secure hash algorithm (SHA), 9
Security problems

data backup, 327
irmware lock, 330
IDevIDs, 323
key generation, 327
key import, 325
privilege separation, 328
server’s Logon, 329

Sessions vs. authorization
audit usage, 168
block diagram, 169
encrypt/decrypt usage, 168
HMAC, 165–166

bound sessions, 188
key-derivation function, 182
key (K), 182
vs. policy sessions, 189
salted session, 187, 189
sessionKey, 183, 185
TPM2_StartAuthSession

command, 182–183
TPM2_StartAuthSession handles

and parameters, 187
unbound sessions, 188
unsalted session, 187, 189

password, 165–166
policy, 166

bound sessions, 188
vs. HMAC, 189
key-derivation function, 182
key (K), 182
salted session, 187, 189
sessionKey, 183, 185
TPM2_StartAuthSession

command, 182–183
TPM2_StartAuthSession handles

and parameters, 187
unbound sessions, 188
unsalted session, 187, 189

session creation variations, 164

Plat form Coniguration
Registers (PCRs) (cont.)

■INDEX

355

speciication, 167
use modiiers, 164

Signing scheme, 18
Single storage root key (SRK), 45
Startup deinition, 301
Static root of trust (SRTM), 332
Storage root key (SRK), 35, 101, 120, 328
Symmetric algorithms, 9
System API (SAPI)

asynchronous test, 92
command

completion functions, 90
context allocation functions, 86
execution functions, 89
preparation functions, 88

one-call API test, 92
speciication, 85
synchronous test, 92
test code, 93

T���������
TestSession, 223
TPM. See Trusted platform module (TPM)
TPM 1.2

device identiication, 24
encryption, 26
key storage, 26
NVRAM storage, 27
platform coniguration registers, 28
privacy enablement, 28
random number generator, 27
resource identiication, 36
speciication, 23

TPM 2.0
algorithm agility, 29
clever policy, 33
EA, 32
lexible management, 35
non-brittle PCRs, 34
quicker loading key, 34
resource identiication, 36
symmetric-key operation, 34

TPM 2.0 speciications
Auth role, 59
command ields, 58
comman use, 65
data structures

canonicalization, 62
endianness, 63
hashAlg, 62

TPMU_HA Union, 62
typedef struct, 62
typedef union, 62
union, 61

deinitions
byte stream, 54
canonicalized data, 54
command byte stream, 54
enhanced authorization, 53
handle, 53
HMAC authorization, 53
marshalled data, 54
response byte stream, 55
session, 53
unmarshalled data, 54

header ile structure, 66
library

architecture, 52
commands, 52
structures, 52
supporting routines, 53

notation syntax, 63
parameters, 59
platform-speciic, 69
ramped up strategies

Dave, 68
Ken, 68
Will, 66

response ields, 57, 60
response parameters, 60
table decorations, 64
TPM2B_DATA Structure, 61
TPM2_Create Command, 58
TPM2_Create Response, 59
TPM2_Startup command (see TPM2_

Startup command)
TPM2_Startup Response, 57
TPMT_HA Structure, 61

TPM2_Clear, 257
TPM2_CreatePrimary, 256, 258
TPM2_Duplicate, 255
TPM2_Duplicate command, 325
TPM2_DuplicationSelect, 253
TPM2_EvictControl command, 330
TPM2_Import, 257
TPM2_Import command, 325
TPM2_Load, 255
TPM2_Load command, 329
TPM2_LoadExternal

command, 327, 330
TPM2_PolicyDuplicateSelect, 324

■INDEX

356

TPM2_Startup command, 56
command

code, 57
ields, 57
and response, 56

detailed actions, 56
general description, 56

TPM2_VerifySignature, 254
TPM access broker (TAB), 95
TPM Base Services (TBS), 41
Trusted platform module (TPM)

Name
HMAC calculation, 102
NV index, 103
paranoid security analyst, 102
public area, 103

non-persistent entity, 100
non-volatile entity, 99
objects, 100
permanent entity

dictionary attack lockout reset, 98
ephemeral hierarchy, 98
password authorization session, 99
PCR, 98
persistent hierarchies, 97
platform NV enable, 99
reserved handles, 99

persistent entity, 101
TPM Software Stack (TSS)

device driver, 96
feature API (FAPI)

ASYM_RESTRICTED_SIGNING_
KEY, 81–82

ASYM_STORAGE_KEY, 81
callback function, 84–85
endorsement key, 81
HMAC_KEY, 81
NV, 81
object ancestor, 80
password-handler function, 85
path descriptions, 80
policy commands, 84
proile ile, 79
Sign command, 83
standard policy and

authentications, 81
user’s default coniguration, 82

SAPI
asynchronous test code, 92
command completion functions, 90

command context allocation
functions, 86

command execution functions, 89
command preparation functions, 88
one-call API test code, 92
resource manager, 95
speciication, 85
synchronous test code, 92
test code, 93
TPM2_GetTestResult command, 86
TPM2_Startup command, 86

schematic diagram, 79
TAB, 95
TCTI, 94

TPMT_SENSITIVE area, 326
TPMU_PUBLIC_ID, 326
TPMU_PUBLIC_PARMS, 326
Trusted computing base (TCB), 332
Trusted Computing Group (TCG), 1
Trusted Network Connect (TNC), 157
Trusted platform module (TPM)

AMD Secure Processor
AMD platform, 348
hardware validated boot (HVB), 347
SKINIT, 348

applications
back-end management function, 45
BitLocker, 44, 48
CAPI and PKCS, 40
cryptographic devices, 46
functions, 41
IBM ile and folder encryption, 49
manageability solutions, 49
programming interface, 39
SRK, 45
TBS interface, 41
TrouSerS, 41
TSS.Net and TSS.C++, 46
Wave System, 47
web-based applications, 45
WMI, 42

ARM TrustZone, 341
architectural feature, 341
mobile devices, 345
monitor, 344
NS bit, 343
protection target, 342
secure interrupts handling, 345
secure monitor call (SMC), 344
system security, 343

■INDEX

357

auditing commands (see Auditing
commands)

CMKs, 3
dictionary attack, 2
direct anonymous attestation, 2
Intel TXT (see Intel TXT)
PCRs, 2
privacy certiicate authority, 2
provisioning (see Provisioning

operation)
PSP

ARM TrustZone architecture, 346
components, 346

security, 1–2
security coprocessor, 3
smart-card chips, 2
startup, 301
startup events

CLEAR and STATE options, 302
initialization, 303
PCRs initialization, 303
Reset, 302
Restart, 302
Resume, 302
TPM2_Shutdown with CLEAR

option, 302–303

TPM2_Shutdown with STATE
option, 302–303

TPM 2.0 development
asymmetric key, 4
authoritative emulator, 5
enhanced authorization, 5
SHA-1, 3
symmetric key, 4

TrustZone, 341
Tss2_Sys_ExecuteAsync method, 89
Tss2_Sys_ExecuteFinish function, 90
Tss2_Sys_Execute method, 90
Tss2_Sys_GetDecryptParam function, 89
Tss2_Sys_SetCmdAuths function, 89
Tss2_Sys_SetDecryptParam function, 89

U, V���������
Uniied extensible irmware interface

(UEFI), 107, 332
userWithAuth, 256

W, X, Y, Z���������
Windows Management Instrumentation

(WMI), 42

A Practical Guide to
TPM 2.0

Using the Trusted Platform Module

in the New Age of Security

Will Arthur

David Challener

With Kenneth Goldman

A Practical Guide to TPM 2.0: Using the New Trusted Platform Module in the New Age of Security

Will Arthur & David Challener

Copyright © 2015 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically without modiication,
for non-commercial purposes only. However, you have the additional right to use or alter any source code in this Work for any
commercial or non-commercial purpose which must be accompanied by the licenses in (2) and (3) below to distribute the
source code for instances of greater than 5 lines of code. Following this Apress rights section, you will ind copyright notices
for material used in this book by permission. If you wish to reuse this material, you must include the corresponding copyright
language provided. For material used with permission from the Trusted Computing Group, you may have rights in addition to
the rights granted by this ApressOpen license. Licenses (1), (2) and (3) below and the intervening text must be provided in any
use of the text of the Work and it, along with additional copyright notices, fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: his Work is copyrighted by Apress Media, LLC, all rights reserved. Use of this
Work other than as provided for in this license is prohibited. By exercising any of the rights herein, you are accepting the
terms of this license. You have the non-exclusive right to copy, use and distribute this English language Work in its entirety,
electronically without modiication except for those modiications necessary for formatting on speciic devices, for all
non-commercial purposes, in all media and formats known now or hereafter. While the advice and information in this Work
are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can
accept any legal responsibility for any errors or omissions that may be made. he publisher makes no warranty, express or
implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses (2) and (3) must
accompany the source code. If your use is an adaptation of the source code provided by Apress in this Work, then you must
use only license (3).

(2) License for Direct Reproduction of Apress Source Code: his source code, excepting the source code copyrighted by
Intel as noted below, from A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security,
ISBN 978-1-4302-6583-2 is copyrighted by Apress Media, LLC, all rights reserved. Any direct reproduction of this Apress
source code is permitted but must contain this license. he following license must be provided for any use of the source
code from this product of greater than 5 lines wherein the code is adapted or altered from its original Apress form.
his Apress code is presented AS IS and Apress makes no claims to, representations or warrantees as to the function,
usability, accuracy or usefulness of this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code, excepting the source code
copyrighted by Intel as noted below, provided are used or adapted from A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security, ISBN 978-1-4302-6583-2 copyright Apress Media LLC. Any use or reuse of this
Apress source code must contain this License. his Apress code is made available at Apress.com/9781430265832 as is and
Apress makes no claims to, representations or warrantees as to the function, usability, accuracy or usefulness of this code.

(4) Diagram from the section AMD Secure Technology in Chapter 22 Copyright © by Advanced Micro Devices, Inc., 2015.

(5) Tables, commands, and diagrams reproduced with permission of Trusted Computing Group, © TCG 2014: Tables 5-1, 5-2,
5-3, 5-4, 5-5, 5-6, 5-7; code following Table 5-7; and igures 7-1, 13-3, 13-4, 13-5, 13-6, 13-7, 13-8, 13-9, 13-10, 13-11, 13-14, 13-15.
See http://www.trustedcomputinggroup.org/legal_notices for current TCG license terms, conditions, and disclaimers.
his document may provide you with additional rights to these items not granted in the ApressOpen rights above.

(6) Publisher gratefully acknowledges the permission granted by Intel to use the following materials in this work. All rights
and interest in that material belong to Intel:

Code in Chapter 7, SAPI section

Code in Chapter 17

Figures 13-1, 13-2, 13-12, and 13-13

Listings 13-1 and 13-2

Publisher grants that Intel can re-print and reuse these diagrams and source code and that these materials are being used in
this book with Intel’s permission.

Intel is a trademark of Intel Corporation in the U.S. and/or other countries.

ISBN-13 (pbk): 978-1-4302-6583-2

ISBN-13 (electronic): 978-1-4302-6584-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the beneit of the
trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they aren’t identiied as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
he publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Associate Publisher: Jefrey Pepper
Lead Editors: Steve Weiss (Apress); Patrick Hauke (Intel)
Coordinating Editor: Melissa Maldonado
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

http://www.trustedcomputinggroup.org/legal_notices
http://orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•

he user-friendly ApressOpen free eBook license is presented on •
the copyright page of this book.

I dedicate my portions of this work to my wife Ruth, and sons Tim and
Stephen — D. Challener

To pastor Jon MacKinney and Intel managers Linda Zavaleta and Jody
Pfotenhauer, who encouraged me to pursue an engineering degree at an age when

many men start thinking about retirement. To John Pennington and Monty
Wiseman: for support and mentoring. To my wife, Tammy, and daughters, Casey,

Megan, and Rachel: for your patience and support as I’ve ridden this high-tech
roller coaster for the past 30 years. Most of all to Jesus Christ, my ultimate source of

security. — Will Arthur

vii

Contents

About the Authors ... xxi

About the Technical Reviewers .. xxiii

Acknowledgments ..xxv

Introduction ..xxvii

Chapter 1: History of the TPM ■ .. 1

Why a TPM? ... 1

History of Development of the TPM Specification from 1.1b to 1.2......... 2

How TPM 2.0 Developed from TPM 1.2 ... 3

History of TPM 2.0 Specification Development 4

Summary ... 5

Chapter 2: Basic Security Concepts ■ ... 7

Cryptographic Attacks ... 8

Brute Force ... 8

Attacks on the Algorithm Itself ... 10

Security Definitions ... 10

Cryptographic Families ... 12

Secure Hash (or Digest) .. 12

Hash Extend .. 13

HMAC: Message Authentication Code ... 14

KDF: Key Derivation Function ... 14

Authentication or Authorization Ticket .. 15

■ CONTENTS

viii

Symmetric-Encryption Key ... 15

Nonce ... 17

Asymmetric Keys .. 18

Public Key Certification ... 20

Summary ... 22

Chapter 3: Quick Tutorial on TPM 2.0 ■ ... 23

Scenarios for Using TPM 1.2 ... 24

Identification ... 24

Encryption .. 26

Key Storage .. 26

Random Number Generator .. 27

NVRAM Storage .. 27

Platform Configuration Registers ... 28

Privacy Enablement .. 28

Scenarios for Using Additional TPM 2.0 Capabilities 29

Algorithm Agility (New in 2.0) ... 29

Enhanced Authorization (New in 2.0) .. 31

Quick Key Loading (new in 2.0) .. 34

Non-Brittle PCRs (New in 2.0) .. 34

Flexible Management (New in 2.0) .. 35

Identifying Resources by Name (New in 2.0) .. 36

Summary ... 37

Chapter 4: Existing Applications That Use TPMs ■ 39

Application Interfaces Used to Talk to TPMs ... 39

TPM Administration and WMI .. 42

The Platform Crypto Provider ... 42

Virtual Smart Card .. 42

■CONTENTS

ix

Applications That Use TPMs .. 42

Applications That Should Use the TPM but Don’t 45

Building Applications for TPM 1.2.. 46

TSS.Net and TSS.C++ .. 46

Wave Systems Embassy Suite .. 47

Rocks to Avoid When Developing TPM Applications 48

Microsoft BitLocker .. 48

IBM File and Folder Encryption ... 49

New Manageability Solutions in TPM 2.0 .. 49

Summary ... 50

Chapter 5: Navigating the Specification ■ 51

TPM 2.0 Library Specification: The Parts .. 52

Some Definitions ... 53

General Definitions ... 53

Definitions of the Major Fields of the Command Byte Stream 54

Definitions of the Major Fields of the Response Byte Stream 55

Getting Started in Part 3: the Commands .. 55

Data Details ... 60

Common Structure Constructs ... 61

Structure with Union ... 61

Canonicalization ... 62

Endianness ... 63

Part 2: Notation Syntax .. 63

Part 3: Table Decorations ... 64

Commonly Used Sections of the Specification 65

How to Find Information in the Specification .. 66

■ CONTENTS

x

Strategies for Ramping Up on TPM 2.0 ... 66

Will .. 66

Ken ... 68

Dave .. 68

Other TPM 2.0 Specifications .. 69

Summary ... 69

Chapter 6: Execution Environment ■ ... 71

Setting Up the TPM .. 71

Microsoft Simulator .. 71

Building the Simulator from Source Code .. 72

Setting Up a Binary Version of the Simulator.. 72

Running the Simulator .. 72

Testing the Simulator .. 73

Setting Up the Software Stack .. 75

TSS 2.0 ... 75

TSS.net ... 75

Summary ... 76

Chapter 7: TPM Software Stack ■ .. 77

The Stack: a High-Level View .. 77

Feature API .. 79

System API .. 85

Command Context Allocation Functions ... 86

Command Preparation Functions ... 88

Command Execution Functions .. 89

Command Completion Functions .. 90

Simple Code Example ... 91

System API Test Code ... 93

■CONTENTS

xi

TCTI ... 94

TPM Access Broker (TAB) .. 95

Resource Manager .. 95

Device Driver ... 96

Summary ... 96

Chapter 8: TPM Entities ■ .. 97

Permanent Entities .. 97

Persistent Hierarchies .. 97

Ephemeral Hierarchy .. 98

Dictionary Attack Lockout Reset ... 98

Platform Configuration Registers (PCRs) .. 98

Reserved Handles ... 99

Password Authorization Session .. 99

Platform NV Enable ... 99

Nonvolatile Indexes ... 99

Objects .. 100

Nonpersistent Entities ... 100

Persistent Entities ... 101

Entity Names ... 102

Summary ... 104

Chapter 9: Hierarchies ■ .. 105

Three Persistent Hierarchies ... 105

Platform Hierarchy .. 106

Storage Hierarchy ... 107

Endorsement Hierarchy .. 108

■ CONTENTS

xii

Privacy ... 108

Activating a Credential.. 109

Other Privacy Considerations .. 111

NULL Hierarchy .. 113

Cryptographic Primitives ... 113

Random Number Generator .. 114

Digest Primitives... 114

HMAC Primitives ... 116

RSA Primitives .. 117

Symmetric Key Primitives... 117

Summary ... 118

Chapter 10: Keys ■ .. 119

Key Commands ... 119

Key Generator .. 120

Primary Keys and Seeds ... 120

Persistence of Keys ... 123

Key Cache.. 123

Key Authorization .. 124

Key Destruction ... 125

Key Hierarchy .. 125

Key Types and Attributes ... 125

Symmetric and Asymmetric Keys Attributes .. 126

Duplication Attributes ... 126

Restricted Signing Key ... 128

Restricted Decryption Key .. 129

Context Management vs. Loading ... 129

NULL Hierarchy .. 130

■CONTENTS

xiii

Certification ... 130

Keys Unraveled .. 132

Summary ... 135

Chapter 11: NV Indexes ■ .. 137

NV Ordinary Index .. 138

NV Counter Index .. 141

NV Bit Field Index ... 141

NV Extend Index .. 142

Hybrid Index .. 143

NV Access Controls ... 144

NV Written ... 145

NV Index Handle Values .. 146

NV Names ... 147

NV Password... 149

Separate Commands ... 149

Summary ... 150

Chapter 12: Platform Configuration Registers ■ 151

PCR Value .. 151

Number of PCRs ... 153

PCR Commands .. 153

PCRs for Authorization .. 154

PCRs for Attestation .. 156

PCR Quote in Detail ... 158

PCR Attributes ... 159

PCR Authorization and Policy .. 160

PCR Algorithms ... 160

Summary ... 161

■ CONTENTS

xiv

Chapter 13: Authorizations and Sessions ■ 163

Session-Related Definitions .. 164

Password, HMAC, and Policy Sessions: What Are They? 165

Session and Authorization: Compared and Contrasted 167

Authorization Roles ... 170

Command and Response Authorization Area Details 172

Command Authorization Area ... 172

Command Authorization Structures .. 174

Response Authorization Structures .. 175

Password Authorization: The Simplest Authorization 176

Password Authorization Lifecycle ... 176

Creating a Password Authorized Entity ... 177

Changing a Password Authorization for an Already Created Entity 177

Using a Password Authorization ... 178

Code Example: Password Session .. 178

Starting HMAC and Policy Sessions .. 182

TPM2_StartAuthSession Command .. 183

Session Key and HMAC Key Details .. 185

Guidelines for TPM2_StartAuthSession Handles and Parameters 187

Session Variations .. 187

HMAC and Policy Sessions: Differences .. 189

HMAC Authorization ... 190

HMAC Authorization Lifecycle ... 190

HMAC and Policy Session Code Example ... 193

Using an HMAC Session to Send Multiple Commands (Rolling Nonces) 203

HMAC Session Security .. 205

HMAC Session Data Structure .. 206

■CONTENTS

xv

Policy Authorization ... 207

How Does EA Work? ... 207

Policy Authorization Time Intervals ... 209

Policy Authorization Lifecycle .. 210

Combined Authorization Lifecycle ... 215

Summary ... 216

Chapter 14: Extended Authorization (EA) Policies ■ 217

Policies and Passwords ... 218

Why Extended Authorization? .. 218

Multiple Varieties of Authentication .. 219

Multifactor Authentication .. 219

How Extended Authorization Works ... 220

Creating Policies ... 222

Simple Assertion Policies ... 222

Command-Based Assertions ... 233

Multifactor Authentication ... 234

Example 1: Smart card and Password .. 234

Compound Policies: Using Logical OR in a Policy 237

Making a Compound Policy .. 240

Example: A Policy for Work or Home Computers .. 240

Considerations in Creating Policies ... 241

End User Role ... 241

Administrator Role .. 242

Understudy Role ... 242

Office Role .. 242

Home Role .. 242

■ CONTENTS

xvi

Using a Policy to Authorize a Command .. 242

Starting the Policy .. 243

Satisfying a Policy .. 243

If the Policy Is Compound ... 244

If the Policy Is Flexible (Uses a Wild Card) .. 246

Certified Policies ... 247

Summary ... 248

Chapter 15: Key Management ■ .. 249

Key Generation .. 249

Templates ... 252

Key Trees: Keeping Keys in a Tree with the Same Algorithm Set 252

Duplication .. 253

Key Distribution ... 255

Key Activation .. 256

Key Destruction ... 257

Putting It All Together .. 258

Example 1: Simple Key Management ... 258

Example 2: An Enterprise IT Organization with Windows TPM 2.0

Enabled Systems .. 259

Summary ... 261

Chapter 16: Auditing TPM Commands ■ .. 263

Why Audit .. 263

Audit Commands ... 265

Audit Types .. 265

Command Audit .. 265

Session Audit .. 266

Audit Log ... 267

■CONTENTS

xvii

Audit Data .. 268

Exclusive Audit .. 268

Summary ... 269

Chapter 17: Decrypt/Encrypt Sessions ■ 271

What Do Encrypt/Decrypt Sessions Do?.. 271

Practical Use Cases ... 271

Decrypt/Encrypt Limitations .. 272

Decrypt/Encrypt Setup .. 273

Pseudocode Flow ... 273

Sample Code .. 275

Summary ... 287

Chapter 18: Context Management ■ .. 289

TAB and the Resource Manager: A High-Level Description 289

TAB ... 290

Resource Manager ... 291

Resource Manager Operations ... 291

Management of Objects, Sessions, and Sequences 294

TPM Context-Management Features .. 294

Special Rules Related to Power and Shutdown Events .. 296

State Diagrams ... 297

Summary ... 299

Chapter 19: Startup, Shutdown, and Provisioning ■ 301

Startup and Shutdown .. 301

Startup Initialization ... 303

Provisioning ... 304

TPM Manufacturer Provisioning ... 305

Platform OEM Provisioning ... 306

■ CONTENTS

xviii

End User Provisioning ... 307

Deprovisioning .. 308

Summary ... 309

Chapter 20: Debugging ■ ... 311

Low-Level Application Debugging ... 311

The Problem ... 312

Analyze the Error Code ... 312

Debug Trace Analysis .. 313

More Complex Errors .. 315

Last Resort ... 315

Common Bugs ... 317

Debugging High-level Applications ... 317

Debug Process .. 318

Typical Bugs ... 318

Summary ... 321

Chapter 21: Solving Bigger Problems with the TPM 2.0 ■ 323

Remote Provisioning of PCs with IDevIDs Using the EK 323

Technique 1 .. 324

Technique 2 .. 325

Technique 3 .. 327

Data Backups .. 327

Separation of Privilege .. 328

Securing a Server’s Logon .. 329

Locking Firmware in an Embedded System, but Allowing

for Upgrades .. 330

Summary ... 330

■CONTENTS

xix

 Chapter 22: Platform Security Technologies That Use ■
TPM 2.0 .. 331

The Three Technologies ... 331

Some Terms .. 332

Intel® Trusted Execution Technology (Intel® TXT) 333

High-Level Description ... 333

How TPM 2.0 Devices Are Used .. 339

ARM® TrustZone® .. 341

High-Level Description ... 341

Implementation of TrustZone .. 343

AMD Secure Technology™ .. 346

Hardware Validated Boot .. 347

TPM on an AMD Platform .. 348

SKINIT ... 348

Summary ... 348

Index .. 349

xxi

About the Authors

Will Arthur is a senior staf irmware engineer in the
Datacenter Engineering Group for Intel Corporation.
He leads the development of authenticated code
modules (ACMs) for the server version of Intel
Trusted Execution Technology (TXT). As an active
participant in the Trusted Computing Group’s TPM
and TSS working groups, he wrote the TCG TPM 2.0
System API and TPM 2.0 TAB and Resource Manager
speciications, developed the TCG versions of the code
that implements those speciications, and reviewed
and edited the TPM 2.0 speciication for readability and
accuracy. Will has over 30 years of experience in
low-level embedded irmware and software, the last
19 of those years with Intel. Will earned a BSCS in
computer science from Arizona State University.

David Challener has been working on Trusted
Computing since it started over a dozen years ago.
He is currently co-chair of the TPM Working Group,
and in the past has been chair of the TSS workgroup
and on the TCG technical committee and Board of
Directors. He has contributed to a number of other
TCG speciications as well. He has a PhD in applied
mathematics from the University of Illinois and
currently works at he Johns Hopkins University
Applied Physics Laboratory.

xxiii

About the Technical
Reviewers

Justin D. “Ozzie” Osborn is the chief scientist of the
Commercial Device Operations Group at he Johns
Hopkins University Applied Physics Laboratory. He
has almost a decade of experience in software reverse
engineering and embedded software development.
He has worked on several projects that involved
developing TPM software and performing vulnerability
analyses of TPM solutions.

Monty Wiseman is a security architect in Intel’s Data
Center Group (DCG). His current projects include
architecture for TCG, Intel’s TXT technologies,
Boot Guard, and other security initiatives. Monty
has participated in and chaired the TCG PC Client
working group and Security Evaluation working
group for TPM 1.2. He participates in the TPM and
other TCG workgroups and is Intel’s representative
on the TCG Technical Committee. Monty has 20 years
of experience in desktop, network, and mainframe
environments and has held security-related and
other engineering positions at Novell, Fujitsu, and
Control Data. He has been developing hardware and
software for computers ranging from mainframes to
microcomputers since 1975.

xxv

Acknowledgments

he authors gratefully acknowledge the contributions, edits, and suggestions from our
external and internal reviewers:

Ken Goldman wrote many of the chapters and ruthlessly reviewed •
the text for technical errors.

Emily Ratlif and Jon Geater contributed their expertise and •
knowledge to the ARM and AMD sections of Chapter 22.
Bill Futrall also contributed text to Chapter 22.

Paul England, David Wooten, and Ari Singer helped us •
understand the speciication.

Paul England helped us understand Microsoft interfaces to •
the TPM.

Monty Wiseman, Justin Osborn, Alex Eydelberg, Bill Futral, •
Jim Greene, and Lisa Raykowski did technical reviews.

Patrick Hauke of Intel provided moral support and guidance •
throughout this process.

We would also like to recognize the many direct and indirect •
contributions of the TSS and TPM WG members.

	A Practical Guide to TPM 2.0
	Contents at a Glance
	About ApressOpen
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction

