
www.allitebooks.com

http://www.allitebooks.org

SAP PRESS is a joint initiative of SAP and Galileo Press. The know-how
offered by SAP specialists combined with the expertise of the Galileo
Press publishing house offers the reader expert books in the field. SAP
PRESS features first-hand information and expert advice, and provides
useful skills for professional decision-making.

SAP PRESS offers a variety of books on technical and business related
topics for the SAP user. For further information, please visit our website:
http://www.sap-press.com.

James Wood
Object-Oriented Programming with ABAP Objects
2009, app. 400 pp.
978-1-59229-235-6

Christian Assig, Aldo Hermann Fobbe, Arno Niemietz
Object Services in ABAP
2010, app. 200 pp.
978-1-59229-339-1

Tobias Trapp
XML Data Exchange Using ABAP
2007, app. 150 pp.
978-1-59229-076-5

Thorsten Franz, Tobias Trapp
ABAP Objects: Application Development from Scratch
2008, app. 500 pp.
978-1-59229-211-0

www.allitebooks.com

http://www.allitebooks.org

James Wood

ABAP™ Cookbook

Programming Recipes for Everyday Solutions

Bonn � Boston

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed
to accept and adhere to the copyrights. You are entitled to use this e-book for
personal purposes. You may print and copy it, too, but also only for personal use.
Sharing an electronic or printed copy with others, however, is not permitted, neither
as a whole nor in parts. Of course, making them available on the Internet or in a
company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the section Legal
Notes.

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy:

www.allitebooks.com

http://www.allitebooks.org

Imprint

This e-book is a publication many contributed to, specifically:

Editor Stefan Proksch
Developmental Editor Kelly Grace Harris
Copyeditor Julie McNamee
Cover Design Graham Geary
Photo Credit iStockphoto.com/The-Tor
Production E-Book Graham Geary
Typesetting E-Book Publishers’ Design and Production Services, Inc.

We hope that you liked this e-book. Please share your feedback with us and read
the Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Wood, James, 1978-

ABAP Cookbook: Programming Recipes for Everyday Solutions / James Wood.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-1-59229-326-1 (alk. paper)

ISBN-10: 1-59229-326-3 (alk. paper)

1. ABAP/4 (Computer program language) I. Title.

QA76.73.A12W66 2010

005.13’3—dc22 2010009054

ISBN 978-1-59229-326-1 (print)
ISBN 978-1-59229-887-7 (e-book)
ISBN 978-1-59229-888-4 (print and e-book)

© 2010 by Galileo Press Inc., Boston (MA)
1st edition 2010

www.allitebooks.com

http://www.allitebooks.org

7

Contents

Introduction ... 17

PART I Appetizers

1 String Processing Techniques ... 27

1.1 ABAP Character Types ... 27
1.2 Designing a Custom String Library ... 29

1.2.1 Developing the API .. 29
1.2.2 Encapsulating Basic String Processing Statements 33

1.3 Improving Productivity with Regular Expressions 36
1.3.1 Understanding Regular Expressions 37
1.3.2 Regular Expression Syntax .. 37
1.3.3 Using Regular Expressions in ABAP 46
1.3.4 Integrating Regular Expression Support into the

String Library .. 53
1.4 Summary .. 56

2 Working with Numbers, Dates, and Bytes 57

2.1 Numeric Operations ... 57
2.1.1 ABAP Math Functions .. 58
2.1.2 Generating Random Numbers .. 60

2.2 Date and Time Processing ... 64
2.2.1 Understanding ABAP Date and Time Types 64
2.2.2 Date and Time Calculations .. 65
2.2.3 Working with Timestamps .. 66
2.2.4 Calendar Operations .. 70

2.3 Bits and Bytes ... 73
2.3.1 Introduction to the Hexadecimal Type in ABAP 73
2.3.2 Reading and Writing Individual Bits 75
2.3.3 Bitwise Logical Operators ... 76

2.4 Summary .. 79

www.allitebooks.com

http://www.allitebooks.org

8

Contents

3 Dynamic and Reflective Programming 81

3.1 Working with Field Symbols .. 81
3.1.1 What Is a Field Symbol? ... 82
3.1.2 Field Symbol Declarations .. 83
3.1.3 Assigning Data Objects to Field Symbols 85
3.1.4 Casting Data Objects During the Assignment Process 89

3.2 Reference Data Objects .. 91
3.2.1 Declaring Data Reference Variables 91
3.2.2 Assigning References to Data Objects 93
3.2.3 Dynamic Data Object Creation 94
3.2.4 Performing Assignments Using Data Reference

Variables .. 96
3.2.5 De-Referencing Data References 96

3.3 Introspection with ABAP Run Time Type Services 98
3.3.1 ABAP RTTS System Classes ... 99
3.3.2 Working with Type Objects ... 100
3.3.3 Defining Custom Data Types Dynamically 102
3.3.4 Case Study: RTTS Usage in the ALV Object Model 104

3.4 Dynamic Program Generation ... 106
3.4.1 Creating a Subroutine Pool ... 106
3.4.2 Creating a Report Program ... 107
3.4.3 Drawbacks to Dynamic Program Generation 108

3.5 Summary .. 108

4 ABAP and Unicode .. 109

4.1 Introduction to Character Codes and Unicode 109
4.1.1 Understanding Character-Encoding Systems 110
4.1.2 Limitations of Early Character-Encoding Systems 111
4.1.3 What Is Unicode? ... 111
4.1.4 Unicode Support in SAP Systems 113

4.2 Developing Unicode-Enabled Programs in ABAP 113
4.2.1 Overview of Unicode-Related Changes to ABAP 114
4.2.2 Thinking in Unicode ... 117
4.2.3 Turning on Unicode Checks .. 120

4.3 Working with Unicode System Classes .. 121

www.allitebooks.com

http://www.allitebooks.org

9

Contents

4.3.1 Converting External Data into ABAP Data Objects 121
4.3.2 Converting ABAP Data Objects into External

Data Formats ... 124
4.3.3 Converting Between External Formats 126
4.3.4 Useful Character Utilities .. 129

4.4 Summary .. 131

PART II Main Courses

5 Working with Files ... 135

5.1 File Processing on the Application Server 135
5.1.1 Understanding the ABAP File Interface 136
5.1.2 Case Study: Processing Files with the ABAP File Interface ... 141

5.2 Working with Unicode .. 148
5.2.1 Changes to the OPEN DATASET Statement to

Support Unicode .. 149
5.2.2 Using Class CL_ABAP_FILE_UTILITIES 149

5.3 Logical Files and Directories .. 150
5.3.1 Defining Logical Directory Paths and Files in

Transaction FILE ... 151
5.3.2 Working with the Logical File API 155

5.4 File Compression with ZIP Archives ... 157
5.4.1 The ABAP ZIP File API .. 158
5.4.2 Creating a ZIP File .. 159
5.4.3 Reading a ZIP File .. 163

5.5 File Processing on the Presentation Server 167
5.5.1 Interacting with the SAP GUI via

CL_GUI_FRONTEND_SERVICES 167
5.5.2 Downloading a File .. 168
5.5.3 Uploading a File ... 171

5.6 Transmitting Files Using FTP ... 173
5.6.1 Introducing the SAPFTP Library 173
5.6.2 Wrapping the SAPFTP Library in an ABAP Objects

Class .. 175
5.6.3 Uploading and Downloading Files Using FTP 176
5.6.4 Implementation Details .. 179

5.7 Summary .. 182

www.allitebooks.com

http://www.allitebooks.org

10

Contents

6 Database Programming .. 183

6.1 Object-Relational Mapping and Persistence 183
6.1.1 Positioning of Object-Relational Mapping Tools 184
6.1.2 Persistence Service Overview .. 184
6.1.3 Mapping Concepts ... 187

6.2 Developing Persistent Classes ... 189
6.2.1 Creating Persistent Classes in the Class Builder 190
6.2.2 Defining Mappings Using the Mapping Assistant Tool 192

6.3 Working with Persistent Objects ... 198
6.3.1 Understanding the Class Agent API 199
6.3.2 Performing Typical CRUD Operations 199
6.3.3 Querying Persistent Objects with the Query Service 204

6.4 Modeling Complex Relationships .. 206
6.4.1 Defining Custom Attributes .. 207
6.4.2 Filling in the Gaps .. 209

6.5 Storing Text with Text Objects ... 214
6.5.1 Defining Text Objects ... 214
6.5.2 Using the Text Object API .. 218
6.5.3 Alternatives to Working with Text Objects 222

6.6 Connecting to External Databases ... 223
6.6.1 Configuring a Database Connection 223
6.6.2 Accessing the External Database 225
6.6.3 Further Reading ... 230

6.7 Summary .. 231

7 Transactional Programming .. 233

7.1 Introduction to the ACID Transaction Model 233
7.2 Transaction Processing with SAP LUWs 235

7.2.1 Introduction to SAP Logical Units of Work 235
7.2.2 Bundling Database Changes in Update Function

Modules ... 239
7.2.3 Bundling Database Changes in Subroutines 242
7.2.4 Performing Local Updates .. 244
7.2.5 Dealing with Exceptions in the Update Task 245

7.3 Working with the Transaction Service .. 248
7.3.1 Transaction Service Overview ... 248
7.3.2 Understanding Transaction Modes 249

www.allitebooks.com

http://www.allitebooks.org

11

Contents

7.3.3 Processing Transactions in Object-Oriented Mode 253
7.3.4 Performing Consistency Checks with Check Agents 259

7.4 Implementing Locking with the Enqueue Service 262
7.4.1 Introduction to the SAP Lock Concept 262
7.4.2 Defining Lock Objects .. 263
7.4.3 Programming with Locks .. 265
7.4.4 Integration with the SAP Update System 267
7.4.5 Lock Administration ... 267

7.5 Tracking Changes with Change Documents 268
7.5.1 What Are Change Documents? 269
7.5.2 Creating Change Document Objects 269
7.5.3 Configuring Change-Relevant Fields 273
7.5.4 Programming with Change Documents 274

7.6 Summary .. 279

PART III Meals to Go

8 XML Processing in ABAP .. 283

8.1 Introduction to XML ... 283
8.1.1 What Is XML? .. 284
8.1.2 XML Syntax .. 285
8.1.3 Defining XML Documents Using XML Schema 289

8.2 Parsing XML with the iXML Library ... 291
8.2.1 Introducing the iXML Library API 291
8.2.2 Working with DOM .. 292
8.2.3 Case Study: Developing XML Mapping Programs

in ABAP ... 297
8.2.4 Next Steps ... 304

8.3 Transforming XML Using XSLT ... 304
8.3.1 What Is XSLT? .. 305
8.3.2 Anatomy of an XSLT Stylesheet 305
8.3.3 Integrating XSLT with ABAP ... 308
8.3.4 Creating XSLT Stylesheets ... 308
8.3.5 Processing XSLT Programs in ABAP 310
8.3.6 Case Study: Transforming Business Partners with XSLT 311
8.3.7 Serialization of ABAP Data Objects Using asXML 314

8.4 Simple Transformation .. 317

12

Contents

8.4.1 What Is Simple Transformation? 318
8.4.2 Anatomy of a Simple Transformation Program 318
8.4.3 Learning Simple Transformation Syntax 319
8.4.4 Creating Simple Transformation Programs 324
8.4.5 Case Study: Transforming Business Partners with ST 325

8.5 Summary .. 327

9 Web Programming with the ICF ... 329

9.1 HTTP Overview ... 329
9.1.1 Working with the Uniform Interface 330
9.1.2 Addressability and URLs ... 332
9.1.3 Understanding the HTTP Message Format 333

9.2 Introduction to the ICF ... 335
9.3 Developing an HTTP Client Program ... 336

9.3.1 Defining the Service Call .. 337
9.3.2 Working with the ICF Client API 338
9.3.3 Putting It All Together .. 340

9.4 Implementing ICF Handler Modules .. 346
9.4.1 Working with the ICF Server-Side API 347
9.4.2 Creating an ICF Service Node ... 348
9.4.3 Developing an ICF Handler Class 354
9.4.4 Testing the ICF Service Node .. 358

9.5 Summary .. 360

10 Web Services .. 361

10.1 Web Service Overview .. 361
10.1.1 Introduction to SOAP ... 362
10.1.2 Describing SOAP-Based Services with WSDL 365
10.1.3 Web Service Discovery with UDDI 365

10.2 Providing Web Services ... 366
10.2.1 Creating Service Definitions .. 367
10.2.2 Configuring Runtime Settings ... 373
10.2.3 Testing Service Providers .. 376

10.3 Consuming Web Services .. 378
10.3.1 Creating a Service Consumer .. 379
10.3.2 Defining a Logical Port ... 383

13

Contents

10.3.3 Using a Service Consumer in an ABAP Program 386
10.4 Next Steps .. 391
10.5 Summary .. 391

11 Email Programming .. 393

11.1 Introduction to BCS .. 393
11.2 Sending Email Messages ... 394

11.2.1 Understanding the Simple Mail Transfer Protocol 395
11.2.2 Sending a Plain Text Message ... 396
11.2.3 Working with Attachments ... 403
11.2.4 Formatting Email Messages with HTML 408

11.3 Receiving Email Messages ... 411
11.3.1 Configuring Inbound Processing Rules 412
11.3.2 Processing Inbound Requests ... 413
11.3.3 Potential Use Cases of Inbound Processing Rules 414

11.4 Summary .. 416

PART IV Side Dishes

12 Security Programming ... 419

12.1 Developing a Security Model .. 419
12.1.1 Authenticating Users .. 420
12.1.2 Checking User Authorizations ... 420
12.1.3 Securing the Lines of Communication 421
12.1.4 Programming for Security ... 422

12.2 The SAP NetWeaver AS ABAP Authorization Concept 422
12.2.1 Overview ... 423
12.2.2 Developing Authorization Objects 424
12.2.3 Configuring Authorizations ... 430
12.2.4 Performing Authorization Checks in ABAP 433
12.2.5 Authorization Concept Review 434

12.3 Encrypting Data with ABAP .. 435
12.4 Performing Virus Scans .. 437
12.5 Protecting Web Content with CAPTCHA 438

12.5.1 What Is CAPTCHA? .. 439
12.5.2 Developing a CAPTCHA Component with Adobe Flex 439

14

Contents

12.5.3 Integrating the CAPTCHA Component with BSPs 440
12.5.4 Integrating the CAPTCHA Component with

Web Dynpro .. 443
12.6 Summary .. 444

13 Logging and Tracing .. 445

13.1 Introducing the Business Application Log 446
13.1.1 Configuring Log Objects ... 446
13.1.2 Displaying Logs .. 448
13.1.3 Organization of the BAL API ... 450

13.2 Developing a Custom Logging Framework 450
13.2.1 Organization of the Class-Based API 451
13.2.2 Configuring Log Severities .. 452

13.3 Case Study: Tracing an Application Program 453
13.3.1 Integrating the Logging Framework into an

ABAP Program ... 453
13.3.2 Viewing Log Instances in Transaction SLG1 456

13.4 Summary .. 458

14 Interacting with the Operating System 459

14.1 Programming with External Commands 459
14.1.1 Maintaining External Commands 460
14.1.2 Restricting Access to External Commands 462
14.1.3 Testing External Commands .. 463
14.1.4 Executing External Commands in an ABAP Program 465

14.2 Case Study: Executing a Custom Perl Script 467
14.2.1 Defining the Command to Run the Perl Interpreter 468
14.2.2 Executing Perl Scripts ... 469

14.3 Summary .. 474

15 Interprocess Communication .. 475

15.1 SAP NetWeaver AS ABAP Memory Organization 476
15.2 Data Clusters .. 477

15.2.1 Working with Data Clusters .. 478
15.2.2 Storage Media Types .. 478

15

Contents

15.2.3 Sharing Data Objects Using ABAP Memory 479
15.2.4 Sharing Data Objects Using the Shared Memory Buffer ... 482

15.3 Working with Shared Memory Objects .. 486
15.3.1 Architectural Overview ... 486
15.3.2 Defining Shared Memory Areas 489
15.3.3 Accessing Shared Objects ... 495
15.3.4 Locking Concepts ... 506
15.3.5 Area Instance Versioning .. 507
15.3.6 Monitoring Techniques ... 509

15.4 Summary .. 510

16 Parallel and Distributed Processing with RFCs 511

16.1 RFC Overview ... 512
16.1.1 Understanding the Different Variants of RFC 512
16.1.2 Developing RFC-Enabled Function Modules 513

16.2 Parallel Processing with aRFC .. 515
16.2.1 Syntax Overview .. 515
16.2.2 Configuring an RFC Server Group 518
16.2.3 Defining Parallel Algorithms ... 520
16.2.4 Case Study: Processing Messages in Parallel 522

16.3 Summary .. 529

The Author .. 531
Index .. 533

Service Pages ... I
Legal Notes ... III

17

Introduction

Unlike a lot of hard-core techies my age, I didn’t grow up in front of a computer.
Instead, I spent much of my formative years in the kitchen experimenting with all
kinds of recipes. When I discovered programming later in life, I found that there
were quite a few similarities between the two tasks. Consequently, I have made a
habit of developing and collecting programming recipes over the years. This book
is a collection of many of these recipes.

As a connoisseur of programming books, I must confess that I have mixed feel-
ings about programming cookbooks. Frequently, I have purchased a cookbook to
help me solve a particular problem and then filed it away on my bookshelf never
to be used again. My goal with this book is to give you something more. Rather
than simply showing you a solution in source code, I start from the ground up by
describing problem context, solution alternatives, and the thought process that
goes into the development of a solution. As you read through these chapters, I
hope you’ll pick up on useful tips and best practices that will help you become a
better programmer.

Target Group and Prerequisites

This book is intended for ABAP application developers that have some basic expe-
rience writing ABAP programs using the ABAP Development Workbench. Basic
ABAP language concepts are not covered in this book, so if you haven’t worked
with ABAP before, then I recommend that you start off by reading ABAP Objects –
ABAP Programming in SAP NetWeaver (SAP PRESS, 2007). In addition, as many of
the newer features covered are based on the object-oriented extensions to ABAP,
allow me to offer a shameless plug for my other book: Object-Oriented Programming
with ABAP Objects (SAP PRESS, 2009).

Though many of the topics covered in this book extend beyond the context of
ABAP (e.g., Web services, etc.), no preexisting background knowledge on these
subjects is required. Here, introductions are provided to help you understand these
concepts before applying them to ABAP-based solutions.

18

Introduction

Some of the recipes considered are based on newer features to the SAP NetWeaver
Application Server (SAP NetWeaver AS ABAP). Where appropriate, I point out
these dependencies so you can determine whether the solution is relevant for
your system.

To help you follow along with the examples demonstrated in the book, I’ve pro-
vided two source code bundles that you can install on your local SAP NetWeaver
AS ABAP system:

EE The first bundle includes a transport file that contains reusable library code that
can be used in real-life development projects. Each of the development objects
included in this bundle are prefixed using the /BOWDK/ namespace.

EE The second bundle contains the example programs described throughout the
course of the book. These programs are stored as plain text files, and so on.

Each of the source code bundles can be downloaded from the book’s companion
website at www.sap-press.com and www.bowdarkconsulting.com/books/abapcookbook.

Finally, if you don’t have access to an SAP NetWeaver AS ABAP system, you can
download a trial version from the SAP Developer Network at www.sdn.sap.com.
From the SDN Community main page, select Downloads • Software • SAP
NetWeaver Main Releases to find the version of the SAP NetWeaver AS ABAP
that matches your preferred operating system. Each download package comes with
a set of instructions to help you get started. The SAP Developer Network forums
can also provide useful tips if you run into problems.

Structure of the Book

One of my goals in writing this book was to make it readable. Frequently, cook-
books are positioned as reference manuals that you occasionally flip through to
find a solution to a particular problem. While this book can be used in that capac-
ity, we also hope that you will find each chapter to be an interesting read in and
of itself.

For the most part, you’ll find that each of the following chapters is self-contained.
However, where appropriate, I refer to previous chapters so that you can see
how certain technologies can be used together to implement more sophisticated
solutions.

19

Introduction

EE Chapter 1: String Processing Techniques
To begin, I look at some of the basic and advanced string processing capabilities
available in ABAP. In particular, I focus your attention around the regular expres-
sion support added with release 7.0 of the SAP NetWeaver AS ABAP.

EE Chapter 2: Working with Numbers, Dates, and Bytes
In this chapter, I look at some of the lesser-known features of elementary data
types provided in ABAP. Here, you’ll see examples demonstrating the use of
random number generators, advanced date/time calculations, and byte string
manipulation.

EE Chapter 3: Dynamic and Reflective Programming
This chapter is all about the dynamic programming capabilities available in
ABAP. Topics discussed here include field symbols, data references, and the
ABAP Runtime Type Services (RTTS). Throughout the course of the discussion, I
provide lots of practical examples that demonstrate how to use these features to
develop generic solutions to common problems.

EE Chapter 4: ABAP and Unicode
If you’ve heard about Unicode but are unsure what it’s all about, then this chap-
ter is for you. The chapter begins by describing what Unicode is and how it
relates to other character-encoding standards, such as ASCII. From there, I look
at the impacts of Unicode support in SAP NetWeaver AS ABAP from an ABAP
perspective. Finally, I conclude the discussion by showing you how to work
with built-in system classes that can assist you in data conversion processes,
and so on.

EE Chapter 5: Working with Files
This chapter shows you how to work with files in ABAP. Topics discussed
include the ABAP file interface used to process files on the SAP NetWeaver AS
ABAP host, frontend services used to process files on client workstations, ZIP
file processing, and much more.

EE Chapter 6: Database Programming
Database programming is a fundamental task for any ABAP developer. This
chapter goes beyond basic SQL programming to show you how to work with
the Persistence Service framework provided with ABAP Object Services. Addi-
tional topics include text objects and external database access.

EE Chapter 7: Transactional Programming
In this chapter, I show you how to work with transactions in ABAP. In particu-
lar, I show you how to use the following features of SAP NetWeaver AS ABAP
to implement reliable transactions:

20

Introduction

EE SAP Logical Units of Work

EE The Transaction Service provided with ABAP Object Services

EE The SAP Lock Concept

EE Change documents

EE Chapter 8: XML Processing in ABAP
This chapter explores the XML processing capabilities of the ABAP program-
ming language. I begin the discussion by showing you how to work with the
iXML library integrated into the ABAP runtime environment. Then, I explain
the concept of XML transformations using the XSLT and Simple Transformation
languages.

EE Chapter 9: Web Programming with the ICF
In this chapter, I show you how to use the Internet Connection Framework (ICF)
to develop programs that use the features of the Web. Here, I frame the discus-
sion around the concept of RESTful Web services by demonstrating how to con-
sume and provide these services using the ICF library. Along the way, I intro-
duce you to basic Web technologies such as HTTP, URLs, and so on.

EE Chapter 10: Web Services
This chapter expands on Chapter 9 by showing you how to work with SOAP-
based Web services using the ABAP Web Service Framework. I begin the discus-
sion by introducing core Web service technologies such as SOAP, WSDL, and
UDDI. Then, I show you how to use the Web Service Framework tools to Web
service-enable existing development objects. Finally, I conclude the discussion
by showing you how to develop proxy objects that simplify the way you con-
sume Web services.

EE Chapter 11: Email Programming
In this chapter, I show you how to send and receive emails using the Business
Communication Services (BCS) framework. After a brief introduction to email
protocols, this chapter demonstrates some basic and advanced email processing
scenarios using attachments, rich text email, and inbound processing rules.

EE Chapter 12: Security Programming
This chapter describes the creation of a holistic security model using ABAP-
based technologies. The first part of this chapter discusses the ABAP Authoriza-
tion Concept, showing you how your custom developments can be integrated
with standard SAP security tools. From there, I branch out and look at ways of
encrypting data, performing virus scans on incoming files, and protecting Web
content using CAPTCHA.

www.allitebooks.com

http://www.allitebooks.org

21

Introduction

EE Chapter 13: Logging and Tracing
In this chapter, I show you how to use the Business Application Log (BAL) to real-
ize logging and tracing requirements in your custom ABAP programs. After
introducing the core features of the BAL, this chapter considers the develop-
ment of a custom BAL class-based library that expands upon the basic features
of the BAL to implement configurable logging.

EE Chapter 14: Interacting with the Operating System
This chapter demonstrates the use of external commands that access features of
the underlying SAP NetWeaver AS ABAP host operating system. After describ-
ing the basic architecture of the surrounding API, this chapter shows you how
to create custom commands to execute scripts written in scripting languages
such as Perl or Python.

EE Chapter 15: Interprocess Communication
This chapter introduces you to two basic methods of implementing interpro-
cess communication in ABAP: data clusters and shared memory objects.
Throughout the course of this chapter, I describe both of these features in the
context of examples that demonstrate practical use cases.

EE Chapter 16: Parallel and Distributed Processing with RFCs
In this final chapter, I show you how to implement parallelized solutions using
the RFC interface. Here, I explore the implementation of such solutions from
the ground up. I also consider situations in which parallelized solutions are not
practical and should be avoided.

Conventions

This book contains many examples demonstrating syntax, functionality, and so
on. To distinguish these sections, I use a font similar to the one used in many inte-
grated development environments to improve code readability (see Listing I.1).
As new syntax concepts are introduced, I highlight them using a bold listing font
(i.e., the PUBLIC SECTION statement in Listing I.1).

CLASS lcl_test DEFINITION.
 PUBLIC SECTION.
 ...
ENDCLASS.

Listing I.1 Code Syntax Format Example

22

Introduction

Also, throughout the book, you’ll find that we draw your attention to certain items
using special icons in the margin area. These icons can be interpreted as follows:

Tip: This icon is used to point out important tips that you can use when work-
ing in a particular development area.

Caution: This icon is used as a caution flag to draw your attention to potential
pitfalls and/or errors.

Instructions: This icon identifies a set of instructions that you can use when
working on your own developments.

Programming Style

While this book is positioned as a cookbook, it also endeavors to demonstrate best
programming practices. Of course, having said that, there are certain situations
where it makes sense to bend the rules a bit to emphasize a particular point or for
the sake of brevity. Nevertheless, the following general programming conventions
are used to develop the example programs demonstrated in the book:

EE Wherever possible, object-oriented programming is used.

EE Core functionality in example reports is encapsulated in local classes. This
design approach allows us to focus on the structure of the code without having
to dig through includes and/or Class Builder screens.

EE Only the relevant portions of the code is displayed in the book. You can find the
complete implementations in the provided source code bundles.

If you’re interested in learning more about best practices for ABAP programming,
I highly recommend Official ABAP Programming Guidelines (SAP PRESS, 2009).

Acknowledgments

In many ways, this book is the culmination of years of reading, tinkering, and
experimenting. During this journey, I have been fortunate to be surrounded by
some great people who have helped me along my way.

First of all, I would like to thank my editor, Stefan Proksch, who was instrumental
in getting this project off the ground. Without his help and guidance, this book
would have remained a disorderly collection of recipes scribbled down in a note-

23

Introduction

book. Also, a special thanks to Kelly Harris who was instrumental in helping me
through the copyediting process.

To Thorsten Franz, Tobias Trapp, John Pitlak, and Brian Orr, thank you for your
useful feedback on some of the more troublesome topics in this book. Your com-
ments helped shape the content of this book more than you know.

To the late Irene Berger, thank you for your love and support during this project.
I always enjoyed watching the question marks formulate over your head as I tried
to describe ABAP programming to you, and I am grateful for the time we had
together.

To my son, Andersen, and my daughter, Paige, thank you for providing me with
so much inspiration. A father couldn’t ask for two better kids. I am very proud of
you both.

And finally, to my wife Andrea, thank you for putting up with many late nights
listening to me pound away at the keyboard. You are the best thing to ever hap-
pen to me, and I appreciate all the love and support you give me. There’s no other
person I would rather spend this journey through life with than you.

PART I
Appetizers

27

Many chefs have fundamental ingredients that they use in many dishes. In
the same way, string processing is a fundamental ingredient that can be
found in almost every ABAP program. In this chapter, you’ll learn about
some basic and advanced string processing techniques that can be used to
greatly simplify working with character data in programs.

1 String Processing Techniques

Computers are designed from the ground up to work with numbers. In the early
days of computing, this fundamental behavior aligned very closely with applica-
tions that were primarily concerned with crunching numbers. However, over the
years, much of the emphasis in computing has shifted toward information process-
ing. The emergence of the World Wide Web has ushered the world into the so-
called Information Age. As you might guess, much of this information is captured
as various forms of text.

In this chapter, you’ll learn about some of the basic and advanced string processing
capabilities available in ABAP. In particular, we show you how to use regular expres-
sions to implement sophisticated text processing procedures using only a few lines
of code. Along the way, we study the design of a custom string library (provided
with the source code bundle for this book) that consolidates these features into an
easy-to-use ABAP Objects class-based API.

1.1 ABAP Character Types

Before delving too far into specific string processing operations, it’s important to
first understand the built-in character data types that are integrated into the SAP
NetWeaver AS ABAP kernel. Table 1.1 lists the predefined ABAP character types
that you can use to define local data objects, interface parameters, and so on.

28

String Processing Techniques1

Data
Type

Length Standard
Length

Description

C 1 to 65,535
characters

1 character A fixed-length text field that contains a
string of alphanumeric characters.

N 1 to 65,535
characters

1 character A fixed-length numeric text field that
contains a string of numeric characters in
the range 0-9.

STRING Variable Variable A variable-length string of alphanumeric
characters. The size of the data object
at runtime is equal to the number of
characters in the string object multiplied
by the size of the internal representation
of a single character.

D 8 characters N/A A date field in the form YYYYMMDD.

T 6 characters N/A A time field in the form HHMMSS.

Table 1.1 Predefined ABAP Character Types

Generally speaking, the choice of which predefined character type to use in a
given situation is fairly straightforward. Typically, the choice comes down to speed
versus flexibility. The STRING data type offers the most flexibility because it’s a
variable-length data type. Unfortunately, this flexibility comes with a price (albeit a
small one) because an administrative header object is tasked with keeping track of
the characters in memory behind the scenes. Therefore, if you already know that a
particular data field will never exceed a certain length (perhaps because that’s the
way it’s defined in the database), you should lean toward using the fixed-length
character types (e.g., the C data type, etc.). However, if you know that you’re going
to be manipulating a string via concatenation, and so on, then you’ll want to use
the STRING type. As we develop our string library in Section 1.2, Designing a Cus-
tom String Library, we use the dynamic STRING data type to store the value of the
character string in context.

As you’ll see, by default, each of the built-in string processing statements supports
the character types described in Table 1.1. It’s also important to note that ABAP
allows you to generically define character-based parameters and field symbols
using the CLIKE and CSEQUENCE data types. The CLIKE type is compatible with each
of the character types listed in Table 1.1. The CSEQUENCE type is compatible with
types C and STRING. We use these generic types quite a bit as we develop our cus-
tom string library.

29

Designing a Custom String Library 1.2

1.2 Designing a Custom String Library

In this section, we begin to introduce you to a custom string library that can be
used to simplify various string processing tasks. If you’ve been programming in
ABAP for a while, you might wonder why you would want to bother creating
something like this when ABAP provides so much out-of-the-box functionality
with built-in statements such as CONCATENATE, SPLIT, and so on. As we progress
through this design, keep in mind that the goal here isn’t to reinvent the wheel.
Rather, we are looking at ways to encapsulate this core functionality into a set of
services that are easy to use when solving common string processing problems.

1.2.1 Developing the API

When you think about it, a lot of string processing requirements tend to look the
same. Ordinary string processing tasks include searching for patterns (and possibly
replacing matches with some other character sequence), checking for equality or
sort order, moving characters around, appending character sequences to the end
of a string, and so on. ABAP provides support for these common tasks with the
statements/functions listed in Table 1.2.

Statement/
Function

Description

FIND Statement used to search for patterns within strings.

REPLACE Statement used to find a pattern within a string and replace it with
a given substring.

SHIFT Statement used to shift characters around within a string.

CONCATENATE Statement used to concatenate one or more strings together into a
single string.

SPLIT Statement used to split (or tokenize) a string into a series of
substrings using a delimiter sequence. For instance, when applied to
the string X#Y#Z with a delimiter of #, SPLIT would return a table
containing the substrings X, Y, and Z.

TRANSLATE Statement used to translate a string to uppercase or lowercase.

CONDENSE Statement used to remove redundant spaces from a string.

STRLEN Function used to return the number of characters in the string.

Table 1.2 Basic String Processing Statements in ABAP

30

String Processing Techniques1

Frequently, these fundamental operations need to be combined in different ways
to perform a particular task. For instance, imagine that you need to compare two
strings in a case-insensitive manner. In this situation, several steps are required to
carry out this comparison:

1. First, you need to copy the comparison strings into a couple of local data
objects. The additional overhead here is necessary because both comparison
strings must be modified to enable a case-insensitive comparison.

2. Next, after we’ve copied the comparison strings into local data objects, we
need to translate both of these comparison strings to a common case using
the TRANSLATE statement. This step ensures that an equality check using the EQ
operator works in situations where we are performing a comparison between
the strings “Abap” and “ABAP,” or other similar situations.

3. Finally, we can test the equality of the two translated comparison strings using
the EQ operator, per usual.

The simple report program ZEQUALTEST shown in Listing 1.1 shows how a subrou-
tine called ARE_STRINGS_EQUAL can be created to compare two strings in a case-
insensitive manner.

REPORT ZEQUALTEST.
TYPE-POOLS: abap.
PARAMETERS: p_str1 TYPE string,
 p_str2 TYPE string.
DATA: lv_equal_flag TYPE abap_bool.

START-OF-SELECTION.
 PERFORM are_strings_equal USING p_str1
 p_str2
 CHANGING lv_equal_flag.

 IF lv_equal_flag EQ abap_true.
 WRITE: / 'Strings are equal.'.
 ELSE.
 WRITE: / 'Strings are not equal.'.
 ENDIF.

FORM are_strings_equal USING im_string1
 im_string2
 CHANGING ch_flag.
* Local Data Declarations:
 DATA: lv_string1 TYPE string,

www.allitebooks.com

http://www.allitebooks.org

31

Designing a Custom String Library 1.2

 lv_string2 TYPE string.

* Copy strings over to locals so that we can translate them:
 lv_string1 = im_string1.
 lv_string2 = im_string2.

***** The following will not work *****
* IF lv_string1 EQ lv_string2.
* ch_flag = abap_true.
* ELSE.
* ch_flag = abap_false.
* ENDIF.

* Instead, we have to translate the two strings to a common
* case before comparing for equality:
 TRANSLATE lv_string1 TO UPPER CASE.
 TRANSLATE lv_string2 TO UPPER CASE.

 IF lv_string1 EQ lv_string2.
 ch_flag = abap_true.
 ELSE.
 ch_flag = abap_false.
 ENDIF.
ENDFORM.

Listing 1.1 Example of Case-Insensitive String Comparisons in ABAP

The subroutine ARE_STRINGS_EQUAL shown in Listing 1.1 does a fairly good job
of encapsulating the case-insensitive comparison requirements. However, if you
take that same logic and encapsulate it inside of a functional method in an ABAP
Objects class, you can carry out the same comparison in a single line of code, as
shown in Listing 1.2. This syntax demonstrates the power of functional methods
in ABAP. The results of functional methods can be used as operands in conditional
statements (e.g., IF or CASE), the LOOP statement, and so on. In this case, when a
functional method operand is evaluated in an expression, the ABAP runtime envi-
ronment invokes the function and evaluates its result in one fell swoop.

IF lr_str1->equals_ignore_case(lr_str2) EQ abap_true.
 WRITE: / 'Strings are equal.'.
ELSE.
 WRITE: / 'Strings are not equal.'.
ENDIF.

Listing 1.2 Example of String Comparison Using Functional Methods

32

String Processing Techniques1

The EQUALS_IGNORE_CASE() method demonstrated in Listing 1.2 is a perfect exam-
ple of the type of utility methods that we want to provide with our custom string
library. Figure 1.1 contains a UML (Unified Modeling Language) class diagram that
depicts the basic methods that we’ve implemented in our custom string library
class called /BOWDK/CL_STRING. The UML is a modeling language that is used to
model object-oriented software designs. Class diagrams show how classes within
an object-oriented design are constructed.

+ LENGTH()
+ GET_CHAR_AT()
+ GET_VALUE()
+ EQUALS()
+ EQUALS_IGNORE_CASE()
+ COMPARE_TO()
+ COMPARE_TO_IGNORE_CASE()
+ APPEND()
+ CONCATENATE()
+ SPLIT_AT()
+ SUBSTRING()
+ CONVERT_TO_LOWER_CASE()
+ AS_LOWER_CASE()
+ CONVERT_TO_UPPER_CASE()
+ AS_UPPER_CASE()
+ TRIM()
+ CONTAINS_ANY()
+ CONTAINS_ONLY()
+ CONTAINS_NOT_ANY()
+ CONTAINS_NOT_ONLY()
+ CREATE_FROM_INT()
+ CREATE_FROM_FLOAT()
+ CREATE_FROM_PACKED()

/BOWDK/CL_STRING

- VALUE: STRING

Figure 1.1 UML Class Diagram for String Library

If you’ve worked with string libraries in other languages, you’ll find that there are
many commonalities between those implementations and the one portrayed in Fig-
ure 1.1. Internally, the /BOWDK/CL_STRING class uses a private attribute called VALUE
to keep track of the actual string contents. To maximize flexibility, we assigned the
variable-length STRING data type to the VALUE attribute. All of the methods shown
in the bottom section of the class diagram operate on this internal data object to
provide their various services. One set of methods that is conspicuously missing
from the class diagram shown in Figure 1.1 provides various forms of find/replace
functionality; we’ve purposefully delayed the definition of these methods until
Section 1.3, Improving Productivity with Regular Expressions.

Right off the bat, you can probably guess how many of these methods might be
implemented using basic string processing statements. Of course, some of these

33

Designing a Custom String Library 1.2

methods must also implement certain checks to make sure that important pre-
conditions are met, and so on. In the next section, we begin fleshing out the
implementation details of our custom string library class. If you’ve never written
object-oriented code using ABAP Objects, you might want to read Object-Oriented
Programming with ABAP Objects (SAP PRESS, 2009). However, one of the beauties
of object-oriented programming is that you don’t have to be an OO guru to use a
class in your programs. Here, you need only create an object, and you’ll then be
able to access its services via method calls. Of course, this process is much easier
if the class has an intuitive service interface.

1.2.2 Encapsulating Basic String Processing Statements

Classes in ABAP Objects are created and maintained in the Class Builder, which
can be accessed via Transaction SE24. Figure 1.2 shows class /BOWDK/CL_STRING in
the Class Editor perspective of the Class Builder.

Figure 1.2 Editing the String Library in the Class Builder

On the Attributes tab shown in Figure 1.2, you can see where we’ve defined a
private instance attribute called VALUE that is of type STRING. This attribute is used
to keep track of the string represented by class /BOWDK/CL_STRING. The use of the
private visibility section ensures that the internal string can’t be modified outside
of the class. Instead, all modifications must occur via instance methods that define
the behavior of the class.

Now that you have a feel for how the string library is organized, let’s take a look
at the implementation of the EQUALS_IGNORE_CASE() method originally described
in Listing 1.2. Figure 1.3 shows the signature of this method. The first parameter,
IM_STRING, represents the comparison string in this equality test and has the object
reference type /BOWDK/CL_STRING. The result of the equality test is provided via
a returning parameter of type ABAP_BOOL called RE_RESULT. In case you haven’t

34

String Processing Techniques1

worked with it before, the ABAP_BOOL data type is a Boolea' t'p' t'at has two pos-
sible values: true ('X') or false (SPACE).

Figure 1.3 Signature of Method EQUALS_IGNORE_CASE

As you can see in Listing 1.3, the implementation of the EQUALS_IGNORE_CASE()
method is very similar to that of the subroutine ARE_STRINGS_EQUAL shown in List-
ing 1.1. However, as demonstrated in Listing 1.2, the functional method solution
is much easier to use in logical expressions.

METHOD equals_ignore_case.
* Method-Local Data Declarations:
 DATA: lv_value1 TYPE string,
 lv_value2 TYPE string.

* Copy the values of both strings being compared:
 lv_value1 = me->value.
 lv_value2 = im_string->value.

* Translate both values to uppercase so that we can perform
* a case-insensitive comparison:
 TRANSLATE lv_value1 TO UPPER CASE.
 TRANSLATE lv_value2 TO UPPER CASE.

* Check to see if the two strings are equal
* lexicographically:
 IF lv_value1 EQ lv_value2.
 re_result = abap_true.
 ELSE.
 re_result = abap_false.
 ENDIF.
ENDMETHOD.

Listing 1.3 Implementing Method EQUALS_IGNORE_CASE()

35

Designing a Custom String Library 1.2

In addition to functional methods such as EQUALS_IGNORE_CASE(), class /BOWDK/
CL_STRING also defines various methods that can be used to manipulate the value
of the string itself. For example, Listing 1.4 shows the implementation of method
TRIM(). This method is used to remove leading and training whitespace from a
string object. We can achieve this using the SHIFT statement, as shown in Listing
1.4.

METHOD trim.
* Remove leading/trailing whitespace from the string:
 SHIFT me->value LEFT DELETING LEADING SPACE.
 SHIFT me->value RIGHT DELETING TRAILING SPACE.

* Return a reference to this updated string instance:
 re_string = me.
ENDMETHOD.

Listing 1.4 Implementing Method TRIM()

If you look carefully at the implementation of method TRIM() in Listing 1.4, you’ll
notice that a copy of the reference to the current object (i.e., the me self-reference)
is assigned to the re_string returning parameter. At first, this kind of assignment
might seem redundant because we clearly have a reference to the string object
already; otherwise, we wouldn’t have been able to invoke the method in the first
place! However, there is a method to our madness because this assignment makes
it possible to implement chained method calls in the future.

One of the long-term advantages of implementing a custom string library using
ABAP Objects classes is the fact that SAP has made it known that there are plans in
the works to support chained method calls in future releases of the SAP NetWeaver
AS ABAP. If you’re not familiar with this concept, the Java code excerpt in List-
ing 1.5 provides an example. Here, the code defines a reference variable called
someString of type String. The String class defines methods called trim() and
length(), among others. The trim() method returns a copy of the string with lead-
ing and trailing whitespace removed. Because this resultant copy is also a String
object, it can be used as the target of the length() method that is chained onto
the end of the method call expression. Thus, the length of the trimmed string (12)
can be calculated in one fell swoop, as shown in Listing 1.5.

String someString = " ABAP Objects ";
int length = someString.trim().length();

Listing 1.5 Example of Chained Method Calls in Java

36

String Processing Techniques1

The chained method call syntax shown in Listing 1.5 is very common in modern
programming languages such as Java or .NET. One of the keys to being able to
carry out something like this is to return a reference to an object in lieu of an ele-
mentary data object. This resultant object reference can then be used as the target
of subsequent method calls.

1.3 Improving Productivity with Regular Expressions

As we saw in Section 1.2, Designing a Custom String Library, ABAP has always
provided basic support for string processing via a series of built-in statements.
These built-in statements make it easy to perform common operations such as case
translation, string tokenization, concatenation, and so on. However, while these
statements simplify certain tasks, they lack the expressiveness to implement more
complex requirements. Without additional support, ABAP developers must resort
to the creation of custom string processing algorithms in ABAP to satisfy these dif-
ficult requirements.

In other modern programming languages, such as .NET or Java, complex string
processing tasks are often handled using regular expressions. A regular expression
represents a text pattern that is described using a specialized pattern-based nota-
tion. Regular expressions (or regexes, with a hard g sound like “regular”) are pro-
cessed inside of a regular expression engine that can be implemented in many
different ways. Beginning with release 7.0 of the SAP NetWeaver AS ABAP, ABAP
now supports the use of POSIX-style regular expressions.1 Underneath the hood,
ABAP regular expression support is implemented using the Boost Regex library
written in C++ by John Maddock. You can find out more information about the
Boost Regex library online at www.boost.org/doc/libs/1_39_0/libs/regex/doc/html/
index.html.

1.3.1 Understanding Regular Expressions

Even if you’ve never heard of regular expressions before, you’re probably already
familiar with the concept. For example, if you need to find a document somewhere

1 The term POSIX stands for “Portable Operating System Interface for Unix,” a name given to a
set of standards defined by the IEEE for defining the how operating systems are implemented.
This includes the specification of regular expression support in common tools like grep, sed,
awk, and emacs. This level of support is also provided in the Boost Regex Library.

37

Improving Productivity with Regular Expressions 1.3

on your computer, you might use your operating system’s search engine to search
within a particular directory for a document using the pattern *.doc. This pattern
tells the search engine to look for any file whose name ends with .doc. The pre-
ceding asterisk is a wildcard (or metacharacter) that tells the search engine to match
anything prior to the literal characters .doc. Similarly, the ? metacharacter can be
used to match a single character in a character sequence.

Collectively, the character sequence *.doc represents a pattern whose syntax is
consistent with the syntax supported by the operating system’s search engine. In
this particular use case, the limited set of metacharacters available is sufficient to
perform the required tasks. However, if we wanted to search for other types of
text patterns, additional metacharacters would be required. Rather than reinvent-
ing the wheel each time, developers began recognizing the need for a generalized
pattern language that would be expressive enough to support all kinds of text-pro-
cessing requirements. The various dialects of this language are collectively referred
to as regular expressions.

1.3.2 Regular Expression Syntax

Much like the file search example described earlier, regular expressions have a
grammar that combines special metacharacters with literal characters to describe
a text pattern. Table 1.3 describes some of the basic metacharacters supported in
most regular expression engines.

Group Metacharacter
Sequence

Description

Match
a Single
Character

. Within a regex, this “dot” metacharacter is used to
match any possible character.

[...] This metacharacter sequence is called a character
class. Character classes are used to match any one
character in the set of characters listed between the
brackets.

[^...] This metacharacter sequence is referred to as a
negated character class. Unlike normal character
classes, negated character classes match any one
character that is not listed in the set of characters
between the brackets. Note that negated character
classes must match something in order to work.

Table 1.3 Basic Regular Expression Metacharacters

38

String Processing Techniques1

Group Metacharacter
Sequence

Description

\char This metacharacter sequence represents an escape
sequence. To understand how escape sequences
work, imagine that you want to match an IP
address that is of the form 255.255.255.0. As you
build your regex, you use the period character to
match the boundaries between the octets in the
address. However, without an escape sequence,
the regex engine assumes that you’re using the dot
metacharacter and that you want to match any
character rather than just a period. In this situation,
you need to use the escape sequence \. to indicate
that you want to match the literal period.

Quantifiers ? The ? metacharacter is a quantifier that can be used
to indicate that the preceding token in the regular
expression is optional. For example, the regex
colou?r matches both colour and color.

* The * metacharacter is a quantifier that can be used
to indicate that the preceding token in the regular
expression can occur zero or more times.

+ The + metacharacter is a quantifier that can be used
to indicate that the preceding token in the regular
expression can occur one or more times.

{Min, Max} The {Min, Max} metacharacter sequence works
similarly to the other quantifiers. The primary
difference is that the Min and Max values constrain
the minimum and maximum number of times the
preceding token can occur.

Match a
Position

^ The ^ (or caret) metacharacter is used to match the
position at the start of the line.

$ The $ metacharacter is used to match the position at
the end of the line.

\< The \< metacharacter sequence matches the position
at the start of a word.

\> The \> metacharacter sequence matches the position
at the end of a word.

Table 1.3 Basic Regular Expression Metacharacters (Cont.)

39

Improving Productivity with Regular Expressions 1.3

Group Metacharacter
Sequence

Description

\b The \b metacharacter sequence matches a word
boundary (the start or end of a word).

\B The \B metacharacter sequence is a negated word
boundary sequence.

(?=...) The (?=...) metacharacter sequence defines a
positive lookahead sequence. Positive lookahead
matches a position preceding the expression
embedded between the (?= and) metacharacters.

(?!...) The (?!...) metacharacter sequence defines a
negative lookahead sequence. Negative lookahead
matches a position if the expression embedded
between the (?! and) metacharacters doesn’t
match.

Common
Shorthands

\t The \t metacharacter sequence is shorthand for the
tab character.

\n The \n metacharacter sequence is shorthand for the
new line character.

\r The \r metacharacter sequence is shorthand for the
carriage return character.

\s The \s metacharacter sequence is shorthand for any
kind of whitespace character.

\S The \S metacharacter sequence is shorthand for any
non-whitespace character.

\w The \w metacharacter sequence is shorthand for a
word character (typically [a-zA-Z0-9_]).

\W The \W metacharacter sequence is shorthand for a
non-word character (i.e., anything not \w).

\d The \d metacharacter sequence is shorthand for a
digit character (i.e., [0-9]).

\D The \D metacharacter sequence is shorthand for a
non-digit character (i.e., anything not \d).

Table 1.3 Basic Regular Expression Metacharacters (Cont.)

40

String Processing Techniques1

Group Metacharacter
Sequence

Description

Misc. | The | metacharacter is used to represent alternation.
For example, to match different spellings of the
name “Anderson,” you could use alternation such
as this: (Anderson|Andersen). This would match
“Anderson” or “Andersen.”

(...) Parentheses are used to limit the scope of
alternation, provide grouping for quantifiers, and
provide “captures” for backreferences.

\1, \2, etc. When backreferences are used, the metacharacter
sequences \1, \2, and so on refer to captured text
matched earlier in the regex evaluation process.

(?:...) The ?: metacharacter sequence, when embedded
inside parentheses, can be used to limit the scope
of alternation or provide grouping for quantifies.
The matched texts in the ellipses aren’t captured in
backreferences.

Table 1.3 Basic Regular Expression Metacharacters (Cont.)

After you understand how metacharacters work, you can begin to construct regular
expressions to describe various text patterns. The following subsections provide
several examples that show how to build regexes to match common text patterns
frequently encountered in routine programming tasks. As we progress through
the examples, we describe the use of some of the more common metacharacters
available. Of course, the detailed treatment of each of the metacharacter sequences
listed in Table 1.3 is outside the scope of this book. However, if you’re interested
in learning more about advanced concepts, we highly recommend Jeffrey Friedl’s
Mastering Regular Expressions, 3rd ed. (O’Reilly, 2006).

Matching ABAP Variable Names

An ABAP variable name can contain standard ASCII letters (e.g., letters in the Eng-
lish alphabet: a-z or A-Z), numbers, and underscores. However, the first character
in the variable name must be a letter. Given these requirements, let’s look at how
we would match an ABAP variable name using regular expressions. The regular
expression shown in Listing 1.6 demonstrates one possible approach using char-
acter classes.

www.allitebooks.com

http://www.allitebooks.org

41

Improving Productivity with Regular Expressions 1.3

\b[a-zA-Z][_a-zA-Z0-9]*\b

Listing 1.6 Regex to Match an ABAP Variable Name

Before we begin to dissect this regular expression, let’s take a look back at the
definition of a character class in Table 1.3. A character class can be used to match
a single character by comparing it against all of the characters contained within a
set of brackets (e.g., [...]). To simplify the creation of character classes, regular
expression engines allow you to specify a range of characters using a dash (-).
Thus, the range a-z describes every lowercase letter in the English alphabet, and
so on.

Now that we understand character classes a little better, let’s examine the regex
shown in Listing 1.6 piece by piece. The first and last metacharacters \b are used
to match a word boundary. This anchors our search to ensure that we don’t match
valid substrings inside of an invalid variable name, and so on. Next, we have a
character class that is used to match a letter regardless of case. The second charac-
ter class is a little more extensive; supporting an underscore character (_), a letter,
or a number. The use of the asterisk (*) quantifier after the character class implies
that we want to match zero or more characters against the character class.

We could have also used the \w word character shorthand to match the characters
in the variable name after the first one (see Listing 1.7). However, this would not
have worked for the first character because \w matches letters, numbers, and the
underscore. Also, notice how we’ve used the {Min,Max} quantifier after the \w
sequence in the regex shown in Listing 1.7 to ensure that variable names don’t
exceed the 30-character limit defined within the ABAP programming language
specification.

\b[a-zA-Z]\w{0,29}\b

Listing 1.7 Using the Word Character Shorthand

Searching for HTML Markup

The ubiquitous HTML is used in many different types of applications these days.
The text-based nature of HTML makes regular expressions a natural fit for sifting
through the mountains of information embedded within HTML markup. To dem-
onstrate this, let’s consider an example.

Imagine that you want to scan through an HTML document and formulate a table
of contents. In HTML, you can define up to six levels of section headings using

42

String Processing Techniques1

the <h1> to <h6> tags. Therefore, there are two things that you need to capture in
your regular expression. First, you need to grab hold of the heading tag because
this defines the level of indention within the table of contents (with <h1> being the
leftmost, etc.). Next, you need to seize the actual heading text embedded within
the heading tag. For instance, if you were scanning the markup <h2>ABAP Char-
acter Types</h2>, then the heading text would be “ABAP Character Types” (i.e.,
everything between the <h2> and </h2> tags).

Given what you know so far about regular expressions, you might be wonder-
ing how we could match more than one pattern in a piece of text. Fortunately,
regular expressions make it very easy to capture subexpressions within a match
by using backreferences. Backreferences can be created inside a regular expression
by grouping subexpressions within parentheses. Regular expression engines that
support backreferences see this grouping and know that they need to hold on to
the matched text within the parentheses. The matched text can then be used later
within the regular expression matching process or even after the expression has
been evaluated completely. We’ll explain how the latter works in Section 1.3.3,
Using Regular Expressions in ABAP.

Getting back to the matter at hand, let’s think about how we can use backref-
erences to satisfy our requirements. Listing 1.8 shows an example of a regular
expression that matches any kind of HTML heading tag.

<([hH][1-6]).*>(.*)</\1>

Listing 1.8 Extracting HTML Headings Using Backreferences

To understand how a regex engine evaluates the regex shown in Listing 1.8, let’s
consider each token in turn:

EE The expression in Listing 1.8 begins with the literal < character, followed by the
character classes [hH] and [1-6] that are used to match the heading tag itself.
As you can see, these character classes are embedded within parentheses to
designate the subexpression as a backreference. Because the parentheses are
metacharacters, they aren’t included in the match. In other words, if we wanted
to match the literal expression (<h1>), we would have to escape the parenthe-
ses using a pattern such as \(<[hH][1-6]>\). However, because we only want
to match the heading tag, we simply wrap it inside parentheses so that the regu-
lar expression engine hangs onto it.

EE After the closing parenthesis, we combine the dot (.) metacharacter with the
asterisk (*) quantifier to indicate that zero or more of any kind of character can

43

Improving Productivity with Regular Expressions 1.3

follow the heading tag. This ensures that we match heading tags that may have
various optional attributes associated with them (e.g., <h1 id="MainHeader">).
The use of the literal > character anchors the match to ensure that the heading
tag is closed properly.

EE Next, we combine the dot and asterisk metacharacters once again within paren-
theses to match the actual heading text. In other words, we want to match any
kind of text embedded within the heading tag markup.

EE Finally, we match the closing tag using </\1>. The only thing out of the ordi-
nary here is the use of the \1 sequence within the closing tag. As you may recall
from earlier, we mentioned that backreferences can be used later within the
matching process. In this case, the \1 represents the subexpression captured
within the first set of parentheses shown in Listing 1.8 (e.g., the h1, h2, etc.).
This is preferable to using the generic [hH][1-6] again because we want to
make sure that the closing heading tag matches the opening tag. Otherwise, we
could match something like <h1>ABAP and Regular Expressions</h5>.

As you can see, backreferences can be very powerful. However, it’s important not
to abuse this power because it can slow the matching process down considerably.
Most POSIX-style regular expression engines only support up to nine backrefer-
ences, but the ABAP-based implementation lifts this restriction. You can refer to
these backreferences later in a regular expression using the sequences \1, \2, and
so on.

Parsing Delimited File Records

A frequent requirement on many SAP projects is to write an ABAP conversion
program to upload data from some external data source into the system. Some-
times these files have a fixed-length record format; other times the records are
delimited in some way (e.g., a comma-separated values, or CSV, file). In a perfect
world, you could parse these records using the ABAP SPLIT sta'em'n','as shown
in Listing 1.9.

SPLIT lv_record AT ',' INTO lt_tokens.

Listing 1.9 Parsing a CSV Record Using the ABAP SPLIT Statement

However, let’s imagine that the elements in the delimited file record may con-
tain the delimited character in question. Here, each field must be further escaped
by something else. Listing 1.10 shows an example of a delimited file record that
represents a material master entry. As you can see, each field in the record is sur-

44

String Processing Techniques1

rounded by double quotes. Within the double quotes, each element can contain
the delimiter character in addition to other normal characters. The elements can
also include double quotes, as long as they are escaped using the \ character.

"1622151-957","2\"x2\" Bolt, Aluminum","IN","OZ"

Listing 1.10 Example CSV Record Using Double-Quoted Strings

Listing 1.11 shows a regular expression that can be used to match delimited file
records like the one shown in Listing 1.10. This expression may seem a little
more complex than some of the ones we’ve seen before, but if you think about
it, it makes sense. First, we want to match the literal opening quote. Next, we use
parentheses to capture the actual token within the parentheses. Within the paren-
theses, we are using the alternation operator (|),which is used to implement a sort
of logical OR operation. In this case, we have two alternatives. The first alternative
is a negated character class that instructs the engine not to match the literal \ or
“ character within the field. The next alternative says that it’s okay to match any
character that is preceded by the \ character (e.g., \"). Collectively, this expression
tells the engine to match any character that isn’t a closing “ character, unless it’s
escaped using the sequence \". This gives us exactly what we want.

"([^\\"]|\\.)*"

Listing 1.11 Parsing a Delimited File Record Using Regexes

Alternation can be very useful in building expressions where subexpressions have
certain constraints. As the regular expression engine evaluates a delimited file
record against the regex from Listing 1.11, it’s free to continue the match process
so long as any of the subexpressions combined via the | operator provide a match.
You’ll see alternation used extensively in regular expressions.

Formatting URLs

A general requirement in many web/portal applications is to make sure that URLs
are well formed. A common HTML validation problem with URLs occurs when-
ever an ampersand character (&) is used incorrectly.

For example, consider the URL shown in Listing 1.12. Here, the intent is to search
the SAP PRESS website for books about ABAP written in English. However, the
query string parameter (&lang) conflicts with the HTML entity reference for the
left pointing angle bracket (or more commonly, the < character), yielding an invalid
query string parameter of <=en. Although some browsers are smart enough to

45

Improving Productivity with Regular Expressions 1.3

recover from these kinds of errors, it’s a good practice to properly escape HTML
entities in URLs, just to be safe.

http://www.sap-press.com/search.cfm?query=ABAP&lang=en

Listing 1.12 URL Example with an Invalid HTML Entity Reference

To properly escape the URL shown in Listing 1.12, we need to replace any ref-
erence to & with the HTML entity reference &. However because the entity
reference & also contains &, we must be careful not to mistakenly replace any
properly escaped ampersands — because this would generate &amp;. One way
to achieve this with regular expressions is to use lookahead.

Lookahead is used to match a position within an expression. There are two types
of lookahead: positive lookahead and negative lookahead.

EE Positive lookahead peeks ahead in the text to see if its subexpression can match
at a certain position.

EE Similarly, negative lookahead checks to see if its subexpression does not match
at a certain position.

If you’re confused, don’t worry, this concept is best explained with an example.

Looking at our URL validation example, we want to replace any occurrences of &
with & if & isn’t immediately followed by an amp;. To satisfy the second require-
ment, we can use negative lookahead to make sure that we don’t match & if it’s
followed by amp;. Listing 1.13 shows an example of a regular expression that uses
negative lookahead for this purpose.

&(?!amp;?)

Listing 1.13 Regular Expression Example Using Lookahead

The regular expression in Listing 1.13 begins by matching the literal & character.
Next, it uses the negative lookahead sequence (?!...) to set the boundaries where
we want to match &. The expression inside the negative lookahead sequence is
used to match the character sequence amp followed by an optional ; (hence the
use of the ? quantifier on the end). We’ll see how this expression can be used in a
find/replace operation in Section 1.3.3, Using Regular Expressions in ABAP.

The important thing to keep in mind with lookahead is that it’s all about match-
ing positions. In other words, you would use positive lookahead if you want to
match the position that precedes a particular character sequence. Conversely, nega-
tive lookahead matches positions that aren’t followed by a particular character

46

String Processing Techniques1

sequence. If you find yourself confounded by the semantics of lookahead, go back
and review the syntax described in Table 1.3.

1.3.3 Using Regular Expressions in ABAP

There are two ways to use regular expressions in an ABAP program.

EE Beginning with release 7.0 of SAP NetWeaver AS ABAP, native regular expres-
sion support has been added to the FIND and REPLACE statements.

EE Support for regular expressions is also provided via ABAP regular expression
classes.

Whether you use the native FIND and REPLACE statements or the ABAP regular
expression classes is mostly a matter of preference. However, as you’ll learn, there
are certain advantages to using the class-based approach. The following subsec-
tions show you how to work with regular expressions using both techniques.

Using Regular Expressions in the FIND and REPLACE Statements

If you’ve used the FIND or REPLACE statements in the past, you might recall that their
basic syntax reads something like FIND/REPLACE [pattern] IN [data object]...
where [pattern] refers to some text pattern within the given data object. Listing
1.14 shows how the syntax of the FIND statement has been expanded in release
7.0 of SAP NetWeaver AS ABAP to support the use of regular expressions. Here,
the regular expression is provided after the REGEX addition, either as a literal string
pattern or an instance of class CL_ABAP_REGEX.

FIND [{FIRST OCCURRENCE}|{ALL OCCURRENCES} OF]
 REGEX [{Regex Pattern}|{Instance of CL_ABAP_REGEX}]
 IN dobj [{Match Options}].

Listing 1.14 Syntax Diagram for Regex Use in FIND Statement

To demonstrate the use of this syntax, let’s consider how we would search for
HTML headings using the regular expression example from Listing 1.8 with the
FIND statement. Listing 1.15 shows a code snippet that conducts this search on the
HTML markup contained in the lv_html string variable. The results of the search
are stored in an internal table that has the table type MATCH_RESULT_TAB. This
table contains useful information about match results, including the logical line
in which a match was found, the offset index of the match within the data object
being searched, and the length of the match, as well as any submatches (e.g., back-
references) within a given match instance. Figure 1.4 shows the definition of the

47

Improving Productivity with Regular Expressions 1.3

MATCH_RESULT line type used in the definition of the MATCH_RESULT_TAB table type
in the ABAP Dictionary.

DATA: lv_html TYPE string,
 lt_results TYPE match_result_tab.
FIELD-SYMBOLS:
 <lfs_result> LIKE LINE OF lt_results,
 <lfs_submatch> TYPE submatch_result.

lv_html =
 '<body><h1>Using Regular Expressions in ABAP</h1></body>'.

FIND ALL OCCURRENCES OF REGEX
 '<([hH][1-6]).*>(.*)</\1>'
 IN lv_html RESULTS lt_results.

LOOP AT lt_results ASSIGNING <lfs_result>.
 WRITE: / 'Found match at', <lfs_result>-offset,
 'length', <lfs_result>-length.
 LOOP AT <lfs_result>-submatches ASSIGNING <lfs_submatch>.
 WRITE: / 'Found submatch at', <lfs_submatch>-offset,
 'length', <lfs_submatch>-length.
 ENDLOOP.
ENDLOOP.

Listing 1.15 Example Using Regexes in the FIND Statement

Figure 1.4 ABAP Dictionary Structure MATCH_RESULT

The regex-related syntax changes for the REPLACE statement are very similar to the
ones made to the FIND statement. Listing 1.16 shows the enhanced syntax diagram
of the REPLACE statement.

48

String Processing Techniques1

REPLACE [{FIRST OCCURRENCE}|{ALL OCCURRENCES} OF]
 REGEX [{Regex Pattern}|{Instance of CL_ABAP_REGEX}]
 IN dobj WITH new [{Replacement Options}].

Listing 1.16 Syntax Diagram for Regex Use in REPLACE Statement

The code snippet in Listing 1.17 shows how the sample regular expression from
Listing 1.13 can be used in the REPLACE statement to replace all non-escaped occur-
rences of & within a URL with the HTML entity reference &.

DATA: lv_url TYPE string,
 lv_html TYPE string.

CONCATENATE
 'http://www.sap-press.com/search.cfm'
 '?query=ABAP&x=0&y=0'
 INTO lv_url.
CONCATENATE 'Books About ABAP'
 INTO lv_html.

WRITE: / lv_html.
REPLACE ALL OCCURRENCES OF REGEX
 '&(?!amp;?)' IN lv_html WITH '&'.
WRITE: / lv_html.

Listing 1.17 Example Using Regexes in the REPLACE Statement

Using ABAP Regular Expression Classes

SAP provides two standard classes for working with regular expressions: CL_ABAP_
REGEX and CL_ABAP_MATCHER. The class CL_ABAP_REGEX represents a precompiled
regular expression. After an instance of CL_ABAP_REGEX is constructed, you can call
method CREATE_MATCHER() to create a “matcher” object, which provides an inter-
face to the regular expression engine. The relationship between these two classes
is depicted in the UML class diagram shown in Figure 1.5.

As you can see in the UML class diagram in Figure 1.5, class CL_ABAP_MATCHER
defines many methods that can be used to interact with the matching process. To
get a feel for how these methods work, let’s use the regular expression introduced
in Listing 1.8 to build a program that extracts a table of contents from an HTML
document. Listing 1.18 defines a simple report called ZREGEXDEMO that we use to
accomplish this task.

49

Improving Productivity with Regular Expressions 1.3

CL_ABAP_REGEX

+ CONSTRUCTOR()
+ CREATE_MATCHER()

+ CONSTRUCTOR()
+ CONTAINS()
+ CREATE()
+ GET_OBJECT()
+ MATCHES()
+ FIND_ALL()
+ FIND_NEXT()
+ GET_LENGTH()
+ GET_LINE()
+ GET_MATCH()
+ GET_OFFSET()
+ GET_SUBMATCH()
+ MATCH()
+ REPLACE_ALL()
+ REPLACE_FOUND()
+ REPLACE_NEXT()

CL_ABAP_MATCHER

<<create>>

Figure 1.5 UML Class Diagram for ABAP Regex Classes

REPORT zregexdemo.
TYPE-POOLS: abap.
DATA: lt_html TYPE TABLE OF string,
 lo_pattern TYPE REF TO cl_abap_regex,
 lo_matcher TYPE REF TO cl_abap_matcher,
 ls_match TYPE match_result,
 lv_header TYPE string,
 lv_header_txt TYPE string.
FIELD-SYMBOLS:
 <lfs_html> TYPE string,
 <lfs_sub> TYPE submatch_result.

START-OF-SELECTION.
* Build the HTML document sample:
 APPEND '<html><head></head><body>' TO lt_html.
 APPEND '<H1>String Processing Techniques</H1>' TO lt_html.
 APPEND '<h2>ABAP Character Types</h2>' TO lt_html.
 APPEND '<H2>Developing a String Library</h2>' TO lt_html.
 APPEND '<h3>Designing the API</h3>' TO lt_html.
 APPEND '<h3>...</h3>' TO lt_html.
 APPEND '</body></html>' TO lt_html.

* Extract a table of contents from the HTML document:
 TRY.
* Parse the regex pattern:
 CREATE OBJECT lo_pattern
 EXPORTING
 pattern = '<([h][1-6]).*>(.*)</\1>'
 ignore_case = abap_true.

50

String Processing Techniques1

* Create a matcher to search the example HTML document:
 lo_matcher =
 lo_pattern->create_matcher(table = lt_html).

* Add each match to the table of contents:
 WHILE lo_matcher->find_next() EQ abap_true.
* Retrieve the next match found in the HTML document:
 ls_match = lo_matcher->get_match().
 READ TABLE lt_html INDEX ls_match-line
 ASSIGNING <lfs_html>.

* Since we are using backreferences, the captured text
* is actually stored in the submatch results:
 LOOP AT ls_match-submatches ASSIGNING <lfs_sub>.
 IF sy-tabix EQ 1.
 lv_header =
 <lfs_html>+<lfs_sub>-offset(<lfs_sub>-length).
 ELSEIF sy-tabix EQ 2.
 lv_header_txt =
 <lfs_html>+<lfs_sub>-offset(<lfs_sub>-length).
 ENDIF.
 ENDLOOP.

* Output the table of contents record:
 CASE lv_header.
 WHEN 'H1' OR 'h1'.
 WRITE: / lv_header_txt.
 WHEN 'H2' OR 'h2'.
 WRITE: / '##', lv_header_txt.
 WHEN 'H3' OR 'h3'.
 WRITE: / '####', lv_header_txt.
 ENDCASE.
 ENDWHILE.
 CATCH cx_sy_regex.
 "Invalid regular expression pattern...
 CATCH cx_sy_matcher.
 "Problem generating matcher instance...
 ENDTRY.

Listing 1.18 Working with ABAP Regex Classes

www.allitebooks.com

http://www.allitebooks.org

51

Improving Productivity with Regular Expressions 1.3

As you can see in Listing 1.18, the logic in the ZREGEXEX program is fairly straight-
forward. The regex processing begins with a TRY statement that is used to capture
any exceptions that might be triggered during the matching process by the ABAP
regex engine. In particular, the operations performed within the TRY block could
trigger exceptions of type CX_SY_REGEX or CX_SY_MATCHER. Keep in mind that the
FIND and REPLACE statements can also throw exceptions if the provided regex pat-
tern is invalid, too complex, and so on. You can read more information about these
errors in the ABAP Keyword Documentation for these statements.

Within the TRY block, we precompile our HTML header regex and assign the
results to an object reference variable called lo_pattern. In a contrived example
like this, precompiling the regex pattern doesn’t add a whole lot of value. How-
ever, if you’re evaluating the same expression over and over again (perhaps within
a loop), there are some tremendous performance gains to be made by precompil-
ing the regular expression ahead of time.

One additional thing you might have noticed in the CREATE OBJECT statement
used to instantiate the regex is that we are passing a true value to the importing
parameter IGNORE_CASE. This parameter instructs the regex engine to perform a
case-insensitive matching process. This allowed us to avoid having to use a char-
acter class such as [hH] to match the HTML heading tag.

After the regex is precompiled, we call method CREATE_MATCHER() to create a
matcher instance that evaluates the regex against the example HTML document
stored in table lt_html. Next, we iterate through the matches inside of a WHILE
loop that calls method FIND_NEXT() to determine if the matcher has additional
matches in context. Within the loop, the current match is extracted via a call to
method GET_MATCH(). Because we are using backreferences in our regular expres-
sion, the text we’re interested in is stored in submatches within the match. There-
fore, for each match, we loop through the SUBMATCHES table to extract the heading
and heading text. This information is used to output the table of contents report
within a CASE statement.

In addition to the GET_MATCH() method introduced in Listing 1.18, there are also
various other “getter” methods that you can use to query information about the
current match. The other public instance methods provided in class CL_ABAP_
MATCHER make it easy to perform replacements, retrieve a table of all matches (as
we saw with the FIND statement in Listing 1.15), and perform a Boolean check to
see if there are any matches within a text sequence. For more information about
how these classes work, look at the context-based class/method documentation
inside the Class Builder.

52

String Processing Techniques1

Experimenting with DEMO_REGEX_TOY

As you get a feel for how regular expressions are constructed, you may want to
try out expressions of your own to see how they work. Fortunately, SAP provides
a very useful tool out of the box called the Regex Toy. To use this tool, follow these
steps:

1. Start this tool by navigating to Transaction SE38 and executing the DEMO_REGEX_
TOY report program. Figure 1.6 shows an example of this program running in a
SAP GUI window. As you can see, the Input and Options boxes provide options
to test a regex using the FIND and REPLACE statements.

2. Enter the sample text to test against in the Text text area. To perform the test,
select the appropriate options, and enter the regex in the Regex input field.

3. After you type in the regex, press the (Enter) key to execute the test. The results
show up in the Matches and Submatches sections at the bottom of the screen.

Figure 1.6 Testing Regular Expressions Using the Regex Toy

53

Improving Productivity with Regular Expressions 1.3

We highly recommend that you use the Regex Toy tool to thoroughly test your
regular expressions before you add them to your programs. That way, you can
concentrate on building the logic in your program without having to worry about
whether or not the regex works properly.

1.3.4 Integrating Regular Expression Support into the String Library

Now that you understand how to use regular expressions in your programs, let’s
go back and enhance our string library to provide search and replace functional-
ity. The UML class diagram shown in Figure 1.7 shows some additional methods
added to class /BOWDK/CL_STRING to implement this functionality.

…
+ STARTS_WITH()
+ ENDS_WITH()
+ GET_FIRST_INDEX_OF()
+ GET_LAST_INDEX_OF()
+ MATCHES()
+ FIND_PATTERN()
+ REPLACE_FIRST()
+ REPLACE_SECTION()
+ REPLACE_ALL()

/BOWDK/CL_STRING

- VALUE: STRING

Figure 1.7 Enhancing the String Library with Regular Expressions

Each of the methods shown in Figure 1.7 are described in further detail in Table
1.4. You can also find detailed documentation about these methods within the /
BOWDK/CL_STRING class definition in the Class Builder tool.

Method Name Description

STARTS_WITH() Used to determine if the string object begins with the
provided text pattern

ENDS_WITH() Used to determine if the string object ends with the
provided text pattern

GET_FIRST_INDEX_OF() Returns the index of the first occurrence of a pattern, or
-1 if the pattern isn’t found

GET_LAST_INDEX_OF() Returns the index of the last occurrence of a pattern, or
-1 if the pattern isn’t found

Table 1.4 Regex Methods Provided in Class /BOWDK/CL_STRING

54

String Processing Techniques1

Method Name Description

MATCHES() Returns a Boolean indicating whether or not the
provided pattern has a match somewhere inside the
string object

FIND_PATTERN() Returns a match list that describes the location of every
match of a given pattern within the string object

REPLACE_FIRST() Replaces the first occurrence of a pattern within a string
object and replaces it with another substring

REPLACE_SECTION() Replaces a pattern within a section of the string object
with another substring

REPLACE_ALL() Replaces all occurrences of a particular pattern within
the string object with another substring

Table 1.4 Regex Methods Provided in Class /BOWDK/CL_STRING (Cont.)

To give you a feel for how all this fits together in the code, let’s look at how we
might implement the STARTS_WITH() method. Figure 1.8 shows the signature of
this method. The regex pattern is provided in importing parameter IM_PATTERN,
which has the generic type CLIKE. There is also an optional Boolean parameter
called IM_IGNORE_CASE that can be used to instruct the regex engine to conduct a
case-insensitive search. The Boolean result of the operation is provided via return-
ing parameter RE_RESULT. Once again, the use of the returning parameter here
makes the STARTS_WITH() method a functional method, enabling it to be used
inline in many different kinds of ABAP expressions.

Figure 1.8 Signature of the STARTS_WITH() Method

The actual implementation of the STARTS_WITH() method is shown in Listing 1.19.
The logic here isn’t terribly complicated. After some brief precondition checks, we

55

Improving Productivity with Regular Expressions 1.3

construct the regular expression based on the provided pattern. Here, we are using
the ^ and $ metacharacters to anchor the search to the entire contents of the string
object on which STARTS_WITH() is operating. After the provided expression, we
use the .* sequence to match everything in the string after the provided pattern.

METHOD starts_with.
* Method-Local Data Declarations:
 DATA: lv_pattern TYPE string,
 lo_regex TYPE REF TO cl_abap_regex,
 lo_matcher TYPE REF TO cl_abap_matcher.

* Make sure the string is not empty:
 IF strlen(me->value) EQ 0.
 re_result = abap_false.
 RETURN.
 ENDIF.

* Check to see if the string ends with the provided
* sequence:
 TRY.
* Construct the regular expression needed to determine
* if this string object begins with the provided string
* value:
 CONCATENATE '^' im_pattern '.*$' INTO lv_pattern.
 CREATE OBJECT lo_regex
 EXPORTING
 pattern = lv_pattern
 ignore_case = im_ignore_case.

* Construct a matcher object to conduct the
* match operation:
 lo_matcher =
 lo_regex->create_matcher(text = me->value).

* Test the results:
 re_result = lo_matcher->match().
 CATCH cx_sy_regex.
 re_result = abap_false.
 CATCH cx_sy_matcher.
 re_result = abap_false.
 ENDTRY.
ENDMETHOD.

Listing 1.19 Implementation of the STARTS_WITH() Method

56

String Processing Techniques1

The other methods listed in Table 1.4 have similar implementations to the one
shown in Listing 1.19. If you’re interested in learning more about how the rest of
these methods were implemented, take a look at the source code bundle for this
book available online.

1.4 Summary

Hopefully by now you’ve come to appreciate the power of regular expressions.
When combined with the rich set of string processing functions provided in ABAP,
regular expressions allow you to deal with character strings at a much higher level
of abstraction. The next chapter takes a look at some other basic ingredients avail-
able in ABAP.

57

Although amateur cooks may hesitate to experiment with spices, accom-
plished chefs know how to use them to create the perfect dish. As an ABAP
developer, the same can be said of certain data types. In this chapter, we
show you how you can use some of these types to improve the quality of
your programs.

2 Working with Numbers, Dates, and Bytes

One of the nice things about working with an advanced programming language
like ABAP is that you don’t often have to worry about how that data is represented
behind the scenes at the bits and bytes level; the language does such a good job
of abstracting data that it becomes irrelevant. However, if you do come across a
requirement that compels you to dig a little deeper, you’ll find that ABAP also has
excellent support for performing more advanced operations with elementary data
types. In this chapter, we investigate some of these operations and show you tech-
niques for using these features in your programs.

2.1 Numeric Operations

Whether it’s keeping up with a loop index or calculating entries in a balance sheet,
almost every ABAP program works with numbers on some level. Typically, when-
ever we perform operations on these numbers, we use basic arithmetic operators
such as the + (addition), - (subtraction), * (multiplication), or / (division) opera-
tors. Occasionally, we might use the MOD operator to calculate the remainder of an
integer division operation, or the ** operator to calculate the value of a number
raised to the power of another. However, sometimes we need to perform more
advanced calculations. If you’re a mathematics guru, then perhaps you could come
up with an algorithm to perform these advanced calculations using the basic arith-
metic operators available in ABAP. For the rest of us mere mortals, ABAP provides
an extensive set of mathematics tools that can be used to simplify these require-
ments. In the next two sections, we’ll examine these tools and see how to use
them in your programs.

58

Working with Numbers, Dates, and Bytes2

2.1.1 ABAP Math Functions

ABAP provides many built-in math functions that you can use to develop advanced
mathematical formulas as listed in Table 2.1. In many cases, these functions can
be called using any of the built-in numeric data types in ABAP (e.g., the I, F, and P
data types). However, some of these functions require the precision of the floating
point data type (see Table 2.1 for more details). Because ABAP supports implicit
type conversion between numeric types, you can easily cast non-floating point
types into floating point types for use within these functions.

Function Supported
Numeric
Types

Description

abs (All) Calculates the absolute value of the provided
argument.

sign (All) Determines the sign of the provided
argument. If the sign is positive, the function
returns 1; if it’s negative, it returns -1;
otherwise, it returns 0.

ceil (All) Calculates the smallest integer value that isn’t
smaller than the argument.

floor (All) Calculates the largest integer value that isn’t
larger than the argument.

trunc (All) Returns the integer part of the argument.

frac (All) Returns the fractional part of the argument.

cos, sin, tan F Implements the basic trigonometric functions.

acos, asin, atan F Implements the inverse trigonometric
functions.

cosh, sinh, tanh F Implements the hyperbolic trigonometric
functions.

exp F Implements the exponential function with a
base e ≈ 2.7182818285.

log F Implements the natural logarithm function.

log10 F Calculates a logarithm using base 10.

sqrt F Calculates the square root of a number.

Table 2.1 ABAP Math Functions

59

Numeric Operations 2.1

The report program ZMATHDEMO shown in Listing 2.1 contains examples of how to
call the math functions listed in Table 2.1 in an ABAP program. The output of this
program is displayed in Figure 2.1.

REPORT zmathdemo.

START-OF-SELECTION.
CONSTANTS: CO_PI TYPE f VALUE '3.14159265'.
DATA: lv_result TYPE p DECIMALS 2.

lv_result = abs(-3).
WRITE: / 'Absolute Value: ', lv_result.

lv_result = sign(-12).
WRITE: / 'Sign: ', lv_result.

lv_result = ceil('4.7').
WRITE: / 'Ceiling: ', lv_result.

lv_result = floor('4.7').
WRITE: / 'Floor: ', lv_result.

lv_result = trunc('4.7').
WRITE: / 'Integer Part: ', lv_result.

lv_result = frac('4.7').
WRITE: / 'Fractional Part: ', lv_result.

lv_result = sin(CO_PI).
WRITE: / 'Sine of PI: ', lv_result.

lv_result = cos(CO_PI).
WRITE: / 'Cosine of PI: ', lv_result.

lv_result = tan(CO_PI).
WRITE: / 'Tangent of PI: ', lv_result.

lv_result = exp('2.3026').
WRITE: / 'Exponential Function:', lv_result.

lv_result = log(lv_result).
WRITE: / 'Natural Logarithm: ', lv_result.

60

Working with Numbers, Dates, and Bytes2

lv_result = log10('1000.0').
WRITE: / 'Log Base 10 of 1000: ', lv_result.

lv_result = log(8) / log(2).
WRITE: / 'Log Base 2 of 8: ', lv_result.

lv_result = sqrt('16.0').
WRITE: / 'Square Root: ', lv_result.

Listing 2.1 Working with ABAP Math Functions

Figure 2.1 Output Generated by Report ZMATHDEMO

The values of the function calls can be used as operands in more complex expres-
sions. For example, in Listing 2.1, notice how we’re calculating the value of
log(8). Here, we use the change of base formula log(x) / log(b) (where
b refers to the target base, and x refers to the value applied to the logarithm func-
tion) to derive the base 2 value. Collectively, these functions can be combined with
typical math operators to devise some very complex mathematical formulas.

2.1.2 Generating Random Numbers

Computers live in a logical world where everything is supposed to make sense.
Whereas this characteristic makes computers very good at automating many kinds

www.allitebooks.com

http://www.allitebooks.org

61

Numeric Operations 2.1

of tasks, it can also make it somewhat difficult to model certain real-world phe-
nomena. Often, we need to simulate imperfection in some form or another. One
common method for achieving this is to produce randomized data using random
number generators. Random numbers are commonly used in statistics, cryptog-
raphy, and many kinds of scientific applications. They are also used in algorithm
design to implement fairness and to simulate useful metaphors applied to the
study of artificial intelligence (e.g., genetic algorithms with randomized muta-
tions, etc.).

SAP provides random number generators for all of the built-in numeric data types
via a series of ABAP Objects classes. These classes begin with the prefix CL_ABAP_
RANDOM (e.g., CL_ABAP_RANDOM_FLOAT, CL_ABAP_RANDOM_INT, etc.). Though none of
these classes inherit from the CL_ABAP_RANDOM base class, they do use its features
behind the scenes using a common OO technique called composition. Composition
basically implies that one class delegates certain functionality to an instance of
another class. The UML class diagram shown in Figure 2.2 shows the basic struc-
ture of the provided random number generator classes.

CL_ABAP_RANDOM_*

+ CREATE ()
+ GET_NEXT()

Figure 2.2 Basic UML Class Diagram for Random Number Generators

Unlike most classes where you create an object using the CREATE OBJECT statement,
instances of random number generators must be created via a call to a factory class
method called CREATE(). The signature of the CREATE() method is shown in Figure
2.3. Here, you can see that the method defines an importing parameter called SEED
that seeds the pseudo-random number generator algorithm that is used behind the
scenes to generate the random numbers. In a pseudo-random number generator,
random numbers are generated in sequence based on some calculation performed
using the seed. Thus, a given seed value causes the random number generator to
generate the same sequence of random numbers each time.

The CREATE() method for class CL_ABAP_RANDOM_INT also provides MIN and MAX
parameters that can place limits around the random numbers that are generated
(e.g., a range of 1-100, etc.). The returning PRNG parameter represents the gener-
ated random number generator instance. Once created, you can begin retrieving
random numbers via a call to the GET_NEXT() instance method.

62

Working with Numbers, Dates, and Bytes2

Figure 2.3 Signature of Class Method CREATE()

To demonstrate how these random number generator classes work, let’s con-
sider an example program. Listing 2.2 contains a simple report program named
ZSCRAMBLER that defines a local class called LCL_SCRAMBLER. The LCL_SCRAMBLER
class includes an instance method SCRAMBLE() that can be used to randomly scram-
ble around the characters in a string. This primitive implementation creates a
random number generator to produce random numbers in the range of [0...
{String Length}]. Perhaps the most complex part of the implementation is related
to the fact that random number generators produce some duplicates along the
way. Therefore, we have to make sure that we haven’t used the randomly gener-
ated number previously to make sure that each character in the original string is
copied into the new one.

REPORT zscrambler.

CLASS lcl_scrambler DEFINITION.
 PUBLIC SECTION.
 METHODS: scramble IMPORTING im_value TYPE clike
 RETURNING VALUE(re_svalue) TYPE string
 EXCEPTIONS cx_abap_random.

 PRIVATE SECTION.
 CONSTANTS: CO_SEED TYPE i VALUE 100.

 TYPES: BEGIN OF ty_index,
 index TYPE i,
 END OF ty_index.
ENDCLASS.

CLASS lcl_scrambler IMPLEMENTATION.
 METHOD scramble.

63

Numeric Operations 2.1

* Method-Local Data Declarations:
 DATA: lv_length TYPE i,
 lv_min TYPE i VALUE 0,
 lv_max TYPE i,
 lo_prng TYPE REF TO cl_abap_random_int,
 lv_index TYPE i,
 lt_indexes TYPE STANDARD TABLE OF ty_index.
 FIELD-SYMBOLS:
 <lfs_index> LIKE LINE OF lt_indexes.

* Determine the length of the string as this sets the
* bounds on the scramble routine:
 lv_length = strlen(im_value).
 lv_max = lv_length - 1.

* Create a random number generator to return random
* numbers in the range of 1..{String Length}:
 CALL METHOD cl_abap_random_int=>create
 EXPORTING
 seed = CO_SEED
 min = lv_min
 max = lv_max
 RECEIVING
 prng = lo_prng.

* Add the characters from the string in random order to
* the result string:
 WHILE strlen(re_svalue) LT lv_length.
 lv_index = lo_prng->get_next().
 READ TABLE lt_indexes TRANSPORTING NO FIELDS
 WITH KEY index = lv_index.
 IF sy-subrc EQ 0.
 CONTINUE.
 ENDIF.

 CONCATENATE re_svalue im_value+lv_index(1)
 INTO re_svalue.
 APPEND INITIAL LINE TO lt_indexes
 ASSIGNING <lfs_index>.
 <lfs_index>-index = lv_index.
 ENDWHILE.
 ENDMETHOD.
ENDCLASS.

64

Working with Numbers, Dates, and Bytes2

START-OF-SELECTION.
* Local Data Declarations:
 DATA: lo_scrambler TYPE REF TO lcl_scrambler,
 lv_scrambled TYPE string.

* Use the scrambler to scramble around a word:
 CREATE OBJECT lo_scrambler.
 lv_scrambled = lo_scrambler->scramble('Andersen').
 WRITE: / lv_scrambled.

Listing 2.2 Using Random Number Generators in ABAP

Obviously, a simple scrambler routine like the one shown in Listing 2.2 isn’t pro-
duction quality. Nevertheless, it does give you a glimpse of how you can use ran-
dom number generators to implement some interesting algorithms. As a reader
exercise, you might think about how you could use random number generators to
implement an UNSCRAMBLE() method to unscramble strings generated from calls
to method SCRAMBLE().

2.2 Date and Time Processing

Online transaction processing (OLTP) systems such as the ones that make up the
SAP Business Suite maintain quite a bit of time-sensitive data, so it’s important
that you understand how to work with the built-in date and time types provided
in ABAP. In the following subsections, we discuss these types and explain how to
use them to perform calculations and conversions.

2.2.1 Understanding ABAP Date and Time Types

ABAP provides two built-in types to work with dates and times: the D (date) data
type and the T (time) data type. Both of these types are fixed-length character types
that have the form YYYYMMDD and HHMMSS, respectively. In addition to these built-in
types, the ABAP Dictionary types TIMESTAMP and TIMESTAMPL are being used more
and more in many standard application tables, and so on, to store a timestamp in the
UTC format.1 Table 2.2 shows the basic date and time types available in ABAP.

1 The term “UTC” is an abbreviation for “Consolidated Universal Time,” which is a time standard
based on the International Atomic Time standard. UTC is roughly equivalent to the Greenwich
Mean Time standard (or GMT) which refers to the mean solar time at the Royal Observatory in
Greenwich, London. Collectively, these standards define a global time standard that can be used
to convert a given time to local time, and vice versa.

65

Date and Time Processing 2.2

Data Type Description

D A built-in fixed-length date type of the form YYYYMMDD. For
example, the value 20100913 represents the date September
13, 2010.

T A built-in fixed-length time type of the form HHMMSS. For
example, the value 102305 represents the time 10:23:05 AM.

TIMESTAMP

(Type P –

 Length 8

 No decimals)

An ABAP Dictionary type used to represent short timestamps
in the form YYYYMMDDhhmmss. For example, the value
20100913102305 represents the date September 13, 2010 at
10:23:05 AM.

TIMESTAMPL

(Type P -

 Length 11

 Decimals 7)

An ABAP Dictionary type used to represent long timestamps
in the form YYYYMMDDhhmmssmmmuuun. The additional digits
mmmuuun represent fractions of a second.

Table 2.2 ABAP Date and Time Data Types

2.2.2 Date and Time Calculations

When you’re working with dates, you often need to perform various calculations
to compute the difference between two dates, make comparisons, or determine
a valid date range. As we mentioned in Section 2.2.1, Understanding ABAP Date
and Time Types, the built-in date and time types in ABAP are character types, not
numeric types. Nevertheless, the ABAP runtime environment allows you to per-
form basic numeric operations on these types by implicitly converting them to
numeric types behind the scenes.

The code excerpt shown in Listing 2.3 demonstrates how these calculations work.
Initially, the variable lv_date is assigned the value of the current system date (e.g.,
the system field SY-DATUM). Next, we increment that date value by 30. In terms of
a date calculation in ABAP, this implies that we’re increasing the day component
of the date object by 30 days. Here, note that the ABAP runtime environment is
smart enough to roll over the date value whenever it reaches the end of a month,
and so on. In other words, you can rely on the system to ensure that you don’t
calculate an invalid date value (e.g., 01/43/2011).

DATA: lv_date TYPE d.
lv_date = sy-datum.
WRITE: / 'Current Date:', lv_date MM/DD/YYYY.

66

Working with Numbers, Dates, and Bytes2

lv_date = lv_date + 30.
WRITE: / 'Future Date:', lv_date MM/DD/YYYY.

Listing 2.3 Performing Date Calculations in ABAP

Time calculations in ABAP work very similarly to the date calculations shown in
Listing 2.3. With time calculations, the computation is based upon the seconds
component of the time object. The code in Listing 2.4 shows how we can incre-
ment the current system time by 90 seconds using basic time arithmetic.

DATA: lv_time TYPE t.
lv_time = sy-uzeit.
WRITE /(60) lv_time USING EDIT MASK
 'The current time is __:__:__'.
lv_time = lv_time + 90.
WRITE /(60) lv_time USING EDIT MASK
 'A minute and a half from now it will be __:__:__'.

Listing 2.4 Performing Time Calculations in ABAP

In addition to typical numeric calculations, you also have the option of working
with date/time fields using normal character-based semantics. For instance, you
can use the offset/length functionality to initialize date or time components. The
code excerpt in Listing 2.5 demonstrates how you can adjust the date 02/13/2003
to 01/13/2003 using offset/length semantics.

DATA: lv_date TYPE d VALUE '20030213'.
WRITE: / lv_date MM/DD/YYYY.
lv_date+4(2) = '01'.
WRITE: / lv_date MM/DD/YYYY.

Listing 2.5 Manipulating a Date Using Offset/Length Functionality

2.2.3 Working with Timestamps

If you’ve been working with some of the newer releases of the products in the
SAP Business Suite, you may have encountered certain applications that use the
TIMESTAMP or TIMESTAMPL data types to store time-sensitive data. As you can see in
Table 2.2, these ABAP Dictionary types store timestamps with varying degrees of
accuracy. Interestingly, though these types aren’t built-in types like D or T, ABAP
does provide some native support for them in the form of a couple of built-in state-
ments. In addition, SAP also provides a system class called CL_ABAP_TSTMP, which
can be used to simplify the process of working with timestamps. We investigate
these features in the following subsections.

67

Date and Time Processing 2.2

Retrieving the Current Timestamp

You can retrieve the current system time and store it in a timestamp variable using
the GET TIME STAMP statement whose syntax is demonstrated in Listing 2.6. The
GET TIME STAMP statement stores the timestamp in a shorthand or longhand format
depending upon the type of the timestamp data object used after the FIELD addi-
tion. The timestamp value is encoded using the UTC standard.

DATA: lv_tstamp_s TYPE timestamp,
 lv_tstamp_l TYPE timestampl.
GET TIME STAMP FIELD lv_tstamp_s.
WRITE: / 'Short Time Stamp:', lv_tstamp_s
 TIME ZONE sy-zonlo.
GET TIME STAMP FIELD lv_tstamp_l.
WRITE: / 'Long Time Stamp: ', lv_tstamp_l
 TIME ZONE sy-zonlo.

Listing 2.6 Using the GET TIME STAMP Statement

Looking at the code excerpt in Listing 2.6, you can see that we’re displaying the
timestamp using the TIME ZONE addition of the WRITE statement. This addition for-
mats the output of the timestamp according to the rules for the time zone speci-
fied. In Listing 2.6, we used the system field SY-ZONLO to display the local time zone
configured in the user’s preferences. However, we could have just as easily used a
data object of type TIMEZONE, or even a hard-coded literal such as 'CST'.

Time Zones

For a complete list of time zones configured in the system, have a look at the contents
of ABAP Dictionary Table TTZZ.

Converting Timestamps

You can convert a timestamp to a date/time data object and vice versa using the
CONVERT statement in ABAP. Listing 2.7 shows the syntax used to convert a time-
stamp into data objects of type D and T. The TIME ZONE addition adjusts the UTC
date/time value within the timestamp in accordance with a particular time zone.
Additionally, the optional DAYLIGHT SAVING TIME addition can be used to deter-
mine whether or not the timestamp value happens to coincide with daylight sav-
ings time. If it does, the lv_dst variable has the value 'X'; otherwise, it’s blank.

68

Working with Numbers, Dates, and Bytes2

This feature can be helpful in differentiating between timestamp values that lie
within the transitional period between summer time and winter time.2

CONVERT TIME STAMP lv_tstamp TIME ZONE lv_tzone
 INTO [DATE lv_date] [TIME lv_time]
 [DAYLIGHT SAVING TIME lv_dst].

Listing 2.7 Syntax of CONVERT TIME STAMP Statement

Listing 2.8 shows how the CONVERT TIME STAMP statement is used to convert the
current system timestamp to date/time data objects using the local time zone.

TYPE-POOLS: abap.
DATA: lv_tstamp TYPE timestamp,
 lv_date TYPE d,
 lv_time TYPE t,
 lv_dst TYPE abap_bool.

GET TIME STAMP FIELD lv_tstamp.
CONVERT TIME STAMP lv_tstamp TIME ZONE sy-zonlo
 INTO DATE lv_date TIME lv_time
 DAYLIGHT SAVING TIME lv_dst.

WRITE: / 'Today's date is: ', lv_date MM/DD/YYYY.
WRITE: /(60) lv_time USING EDIT MASK
 'The current time is: __:__:__'.

IF lv_dst EQ abap_true.
 WRITE: / 'In daylight savings time...'.
ELSE.
 WRITE: / 'Not in daylight savings time...'.
ENDIF.

Listing 2.8 Converting Timestamps to Date/Time Objects

To create a timestamp using a date/time object, you can use the syntax variant of
the CONVERT statement shown in Listing 2.9. The date/time values are qualified
using the TIME ZONE addition so that the appropriate offsets can be applied as the
UTC timestamp is generated.

2 For a complete list of daylight savings time rules, have a look at the contents of the ABAP Dic-
tionary table TTZDV.

69

Date and Time Processing 2.2

CONVERT DATE lv_date
 [TIME lv_time [DAYLIGHT SAVING TIME lv_dst]]
 INTO TIME STAMP lv_tstamp TIME ZONE lv_tzone.

Listing 2.9 Syntax of CONVERT DATE Statement

The code excerpt in Listing 2.10 shows how the CONVERT DATE statement can be
used to generate a timestamp object from a date/time object.

TYPE-POOLS: abap.
DATA: lv_tstamp TYPE timestamp,
 lv_date TYPE d,
 lv_time TYPE t,
 lv_dst TYPE abap_bool.

lv_date = sy-datum.
lv_time = sy-uzeit.

CONVERT DATE lv_date TIME lv_time
 INTO TIME STAMP lv_tstamp TIME ZONE sy-zonlo.

WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.

Listing 2.10 Creating a Timestamp from a Date/Time Object

CL_ABAP_TSTMP

+ ADD()
+ SUBTRACT()
+ SUBTRACTSECS()
+ TD_ADD()
+ TD_SUBTRACT()
+ ISDOUBLEINTERVAL()
+ SYSTEMTSTMP_SYST2LOC()
+ SYSTEMTSTMP_LOC2SYST()
+ SYSTEMTSTMP_UTC2SYST()
+SYSTEMTSTMP_SYST2UTC()
+ TD_NORMALIZE()
+ NORMALIZE()

Figure 2.4 UML Class Diagram for Class CL_ABAP_TSTMP

Timestamp Operations Using System Class CL_ABAP_TSTMP

Unlike the native D and T types, the ABAP runtime environment doesn’t have
built-in functionality to perform calculations on timestamps (e.g., add or subtract,
etc.). Instead, SAP provides a system class called CL_ABAP_TSTMP for this purpose.
Figure 2.4 contains a UML class diagram that shows the publicly available methods
provided in this class. As you would expect, there are various forms of ADD() and

70

Working with Numbers, Dates, and Bytes2

SUBTRACT() methods to perform timestamp calculations. In addition, a series of
conversion methods (e.g., SYSTEMTSTMP_SYST2LOC(), etc.) can be used to convert
a timestamp to various time zones, a Boolean method called ISDOUBLEINTERVAL()
can be used to determine if a timestamp is in daylight savings time, and a couple
of methods can be used to normalize a timestamp. Here, normalization implies that
an invalid time value such as 10:30:60 would be adjusted to the value 10:31:00.

In UML class diagram notation, methods that are underlined are defined as class
methods. Class methods can be invoked without first creating an instance of the
class in which they are defined, as evidenced in the code excerpt shown in Listing
2.11. Here, we’re using the class method ADD() to add 75 seconds to the current
system time.

DATA: lv_tstamp TYPE timestamp,
 lv_date TYPE d,
 lv_time TYPE t.

GET TIME STAMP FIELD lv_tstamp.
WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.

TRY.
 CALL METHOD cl_abap_tstmp=>add
 EXPORTING
 tstmp = lv_tstamp
 secs = 75
 RECEIVING
 r_tstmp = lv_tstamp.
CATCH CX_PARAMETER_INVALID_RANGE.
CATCH CX_PARAMETER_INVALID_TYPE.
ENDTRY.

WRITE: / 'Time Stamp Value:', lv_tstamp TIME ZONE sy-zonlo.

Listing 2.11 Working with Timestamps Using CL_ABAP_TSTMP

The call signatures of most of the other methods in class CL_ABAP_TSTMP are similar
to the ADD() method demonstrated in Listing 2.11. For more details concerning the
functionality of particular methods in this class, see the class/method documenta-
tion for this class in the Class Builder (Transaction SE24).

2.2.4 Calendar Operations

So far, our discussion on dates has focused on raw calculations and conversions.

www.allitebooks.com

http://www.allitebooks.org

71

Date and Time Processing 2.2

However, many typical use cases in the business world require that we look at
dates from a semantic point of view. For example, you might ask whether or
not the date 1/13/2010 is a working day, or whether 4/4/2010 is a holiday. The
answers to these kinds of questions require the use of a calendar. Fortunately, SAP
provides a very robust set of calendaring features straight out of the box with SAP
NetWeaver AS ABAP.

The SAP Calendar is maintained in a client-specific manner inside the SAP Custom-
izing implementation guide (Transaction SPRO). Depending on how your system
is set up, you might have a project-specific implementation guide. However, for
the purposes of this discussion, we assume that you’re using the default SAP Ref-
erence Implementation Guide (IMG). You can access this guide by clicking on the
button labeled SAP Reference IMG on the initial screen of Transaction SPRO (see
Figure 2.5).

Figure 2.5 Initial Screen of Transaction SPRO

Inside the SAP Reference IMG, you can find the SAP Calendar under the navigation
path SAP NetWeaver • General Settings • Maintain Calendar (see Figure 2.6).

Figure 2.6 Navigating to the SAP Calendar in the IMG

72

Working with Numbers, Dates, and Bytes2

Figure 2.7 shows the main menu of the SAP Calendar transaction. From here, you
can configure subobjects such as public holidays, holiday calendars, and factory
calendars. By default, an SAP NetWeaver system comes preconfigured with some
typical settings in these subareas. However, you’re also free to create customized
holidays and calendars as needed.

Figure 2.7 Maintaining the SAP Calendar in the IMG

After the SAP Calendar is configured properly, you can use this data to perform
various types of calculations. Table 2.3 shows some useful function modules that
leverage this data to determine whether or not a given date is a working day, holi-
day, and so on. You can find out more information about these function modules
in the documentation provided for each module in the Function Builder (Transac-
tion SE37).

Function Name Description

DATE_COMPUTE_DAY Computes the day of the week for a given
date. Day values are calculated as 1 (Monday),
2 (Tuesday), and so on.

DATE_COMPUTE_DAY_ENHANCED Computes the day of the week just like DATE_
COMPUTE_DAY; also returns the day value as
text (e.g., TUESDAY, etc.).

Table 2.3 Useful Date Functions in Function Group SCAL

73

Bits and Bytes 2.3

Function Name Description

DATE_CONVERT_TO_FACTORYDATE Calculates the factory date value for a given
date. Also provides an indicator that confirms
whether or not the given date is considered a
working day according to the selected factory
calendar.

DATE_GET_WEEK Determines the week of the year for the given
date. For example, the date 9/13/2010 would
be the 37th week of the year 2010.

FACTORYDATE_CONVERT_TO_DATE Converts a factory date value back into a date
object.

HOLIDAY_CHECK_AND_GET_INFO Tests to determine whether or not a given date
is a holiday based on the configured holiday
calendar.

WEEK_GET_FIRST_DAY Calculates the first day of a given week.

Table 2.3 Useful Date Functions in Function Group SCAL (Cont.)

2.3 Bits and Bytes

Modern programming languages do such a tremendous job of abstracting the com-
plexities of computer architectures that, these days, we seldom have any need to
work at the bits and bytes level. However, with the advent of Unicode, it’s becom-
ing more important to understand how to work at this level because many exter-
nal data sources encode their data using multi-byte encodings — as opposed to
the single-byte code pages normally used in ABAP (e.g., ASCII, etc.). In addition,
knowledge of this area can be quite handy in other applications, as you’ll see in
a moment.

2.3.1 Introduction to the Hexadecimal Type in ABAP

Normally, whenever we talk about the built-in native data types provided in the
ABAP programming language, we focus our attention around the numeric and
character data types. However, ABAP also provides a hexadecimal data type (X)
that is used to represent individual bytes in memory. The values stored in the indi-
vidual bytes are represented as two-digit hexadecimal numbers.

74

Working with Numbers, Dates, and Bytes2

Binary and Hexadecimal Numbers

If you have never worked with binary or hexadecimal numbers before, then a brief in-
troduction is in order. A byte is a unit of measure for memory inside of a computer. Each
byte is comprised of 8 bits. The term bit is an abbreviation for binary digit. A bit can
have one of two logical values: 1 (or true) or 0 (or false). In terms of computer circuitry,
bits that have the value 1 are turned on, while those that have the value 0 are turned
off.

The binary (or base-2) number system represents numeric values using binary digits.
Figure 2.8 shows an example of an 8-bit binary number whose decimal value is 170. As
you can see, reading from right to left, the value of each bit is calculated by multiplying
one or zero (i.e., the bit value) by two raised to the power of the current index (where
indexes start at zero).

1 0101010

2021222324252627

= (27 * 1) + (25 * 1) + (23 * 1) + (21 * 1)
= 170

Figure 2.8 Example of an 8-Bit Binary Number

Binary numbers can be very difficult to work with if you’re not a computer. Therefore,
the values of bytes are often represented using the hexadecimal (or base-16) numbering
system. Each hexadecimal digit is in the range [0123456789ABCDEF], where A = 10, B =
11, C = 12, and so on. Conveniently, each hexadecimal digit can hold any possible value
of 4 bits (commonly called a nibble). Therefore, two hexadecimal digits can be used to
represent a single byte of information in memory.

In addition to the fixed length X data type, ABAP also provides the XSTRING vari-
able-length hexadecimal type, which is commonly used in various input/output
(I/O) operations. Here, as is the case with the C and STRING data types described in
Chapter 1, String Processing Techniques, there is a trade-off between performance
and flexibility.

Now that you know a little bit about the hexadecimal type, let’s take a look at the
types of operations you can perform on data objects of this type. The following
sections describe the built-in bitwise operators available in ABAP.

75

Bits and Bytes 2.3

2.3.2 Reading and Writing Individual Bits

You can use the GET BIT and SET BIT statements to read and write individual bits
of a hexadecimal data object. The general syntax of these statements is shown in
Listing 2.12 and Listing 2.13, respectively.

GET BIT lv_index OF lv_hex INTO lv_bit.

Listing 2.12 Syntax of GET BIT Statement

SET BIT lv_index OF lv_hex TO lv_bit.

Listing 2.13 Syntax of SET BIT Statement

To demonstrate how these statements work, let’s consider an example. Listing 2.14
contains a contrived piece of sample code that swaps the first byte of a two-byte
hexadecimal data object with the last byte by manipulating individual bits inter-
nally. For good measure, we also shift the bits around one more time at the end of
the code snippet, using the SHIFT statement in byte mode.

DATA: lv_hex(2) TYPE x VALUE 'F00F',
 lv_front_idx TYPE i,
 lv_back_idx TYPE i,
 lv_front_bit TYPE i,
 lv_back_bit TYPE i.
WRITE: / lv_hex.
DO 8 TIMES.
 lv_front_idx = sy-index.
 lv_back_idx = lv_front_idx + 8.

 GET BIT lv_front_idx OF lv_hex INTO lv_front_bit.
 GET BIT lv_back_idx OF lv_hex INTO lv_back_bit.

 SET BIT lv_front_idx OF lv_hex TO lv_back_bit.
 SET BIT lv_back_idx OF lv_hex TO lv_front_bit.
ENDDO.
WRITE: / lv_hex.
SHIFT lv_hex BY 1 PLACES CIRCULAR IN BYTE MODE.
WRITE: / lv_hex.

Listing 2.14 Reading and Writing Bits in ABAP

In and of itself, low-level bit manipulation isn’t all that exciting. However, there
are situations where it can be quite useful.

76

Working with Numbers, Dates, and Bytes2

For example, let’s imagine you’re working on a problem where you need to work
with arbitrarily large numbers that exceed the limits of the built-in ABAP numeric
types. One way other modern programming languages, such as Java or .NET, get
around this limitation is by developing a so-called numeric wrapper class. For
instance, the java.math.BigInteger class provided with the Java 2 SDK is used to
represent arbitrarily large integer values. Internally, bitwise operators are used to
mimic the behavior of a normal primitive type represented in two’s complement
notation.3 Because this implementation is open source, it wouldn’t be too difficult
to reverse-engineer an ABAP version of this class to suit your purposes.

2.3.3 Bitwise Logical Operators

In addition to the GET BIT and SET BIT statements, ABAP also provides a series of
bitwise logical operators that can be used to build Boolean algebraic expressions.
If you aren’t familiar with Boolean algebra, there are many excellent resources
available online — simply search for the term “Boolean Algebra,” and you’ll find
a wealth of information. Of course, even if you have worked with Boolean opera-
tors before, you might need a bit of a refresher. Table 2.4 depicts a truth table that
shows the values generated when applying the Boolean AND, OR, or XOR operators
against the two bit values contained in Field A and Field B.

Field A Field B AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Table 2.4 Truth Table for Boolean Operators

Table 2.5 shows the bitwise operators provided with the ABAP language. Just like
normal arithmetic operators, the bitwise operators can be combined in complex
expressions using parentheses, and so on.

3 The two’s complement notation is a common system used to represent signed integers in com-
puters.

77

Bits and Bytes 2.3

Bitwise
Operator

Description

BIT-NOT Unary operator that flips all of the bits in the hexadecimal number
to the opposite value. For example, applying this operator to a
hexadecimal number having the bit-level value 10101010 (e.g., 'AA')
would yield 01010101.

BIT-AND Binary operator that compares each field bit-by-bit using the Boolean
AND operator.

BIT-XOR Binary operator that compares each field bit-by-bit using the Boolean
XOR (or eXclusive OR) operator.

BIT-OR Binary operator that compares each field bit-by-bit using the Boolean
OR operator.

Table 2.5 Bitwise Logical Operators in ABAP

To see the power of bitwise operators such as the ones listed in Table 2.5, it’s use-
ful to consider an example. Imagine that you are tasked with building a custom
document management system. One of the requirements of this system is to be
able to assign rights permissions to the individual documents maintained in the
system. For the purposes of this simple example, let’s assume that the possible
permissions are Create, Remove, Update, and Display.

One way to store these assignments might be to create a database table that con-
tained a series of flag columns to indicate whether or not a user had a particu-
lar permission for a given document. Unfortunately, there are a couple of prob-
lems with this approach. First of all, it requires that we create separate fields for
each possible permission type. As the system grows, additional permission types
require a modification to the database table. This phenomenon leads into the sec-
ond problem — namely, space. In other words, each additional flag column adds
another byte or two of storage to every row in the table. Of course, another option
is to capture the permissions in separate rows. Still, either way you slice it, this can
get expensive from a storage perspective.

Instead of creating a new flag column each time we want to add a new permission
type to our system, what if we could figure out a way to store a bunch of Boolean
flags in a single field? Naturally, the hexadecimal data type lends itself well to this
kind of storage operation because it can be used as a type of bit mask to represent
a large number of flags at the bit level. For example, a single byte bit mask could
represent up to 28, or 256, possible values, leaving us plenty of room to grow. The

78

Working with Numbers, Dates, and Bytes2

values of the individual Boolean flags can then be set using bitwise operators. Col-
lectively, the process of representing a series of flags at the bit level and manipulat-
ing those flags using bitwise operators is referred to as bit masking.

The code excerpt in Listing 2.15 demonstrates how bit masking works using the
ABAP bitwise logical operators. To keep things simple, we’ve created an interface
that contains constants to represent the possible permission values (e.g., CO_CRE-
ATE, etc.). These permission values are assigned to a display-only user using the
BIT-OR operator, which effectively works like an addition operator in this case. We
can then confirm whether or not the user has a given permission by applying the
BIT-AND operator. Here, the result matches the permission constant bit-for-bit if
the particular permission has been assigned. This can be confirmed by using the
equality operator in an IF statement. In the example, the user has Display permis-
sions but not Create permissions.

INTERFACE lif_permissions.
 CONSTANTS: CO_CREATE TYPE x VALUE '01',
 CO_REMOVE TYPE x VALUE '02',
 CO_UPDATE TYPE x VALUE '04',
 CO_DISPLAY TYPE x VALUE '08'.
ENDINTERFACE.

DATA: lv_display_user TYPE x,
 lv_permission TYPE x.

* Assign read-only access to a display user:
lv_display_user =
 lv_display_user BIT-OR lif_permissions=>CO_DISPLAY.

* Check the user's permissions:
lv_permission =
 lv_display_user BIT-AND lif_permissions=>CO_DISPLAY.
IF lv_permission EQ lif_permissions=>CO_DISPLAY.
 WRITE: / 'User has display only access.'.
ELSE.
 WRITE: / 'User does not have display access.'.
ENDIF.

lv_permission =
 lv_display_user BIT-AND lif_permissions=>CO_CREATE.
IF lv_permission EQ lif_permissions=>CO_CREATE.
 WRITE: / 'User can create documents.'.

79

Summary 2.4

ELSE.
 WRITE: / 'User is not authorized to create documents.'.
ENDIF.

Listing 2.15 Mapping Permissions Using Bit Masking

As you can see, bit masking can be used as an effective compression technique.
Other practical examples of bit masking include the storage of user preferences
and set operations, which are described in an example in the online SAP Help
Portal.

2.4 Summary

In this chapter, you learned about some advanced and perhaps lesser-known fea-
tures of elementary data types in ABAP. During the course of this book, you’ll see
how some of these fundamental concepts provide the foundation for implement-
ing new features in SAP NetWeaverAS ABAP, such as support for Unicode and
XML processing. In the next chapter, we mix things up a bit and take a look at
dynamic programming in ABAP.

81

One of the characteristics of a good chef is the ability to improvise when-
ever the situation calls for it. In this chapter, we show you techniques for
developing dynamic ABAP programs that are flexible enough to adapt to
changes in their surrounding environment.

3 Dynamic and Reflective Programming

One of the few things that you can plan for in the software development process
is change; consequently, one of the measuring sticks of a good piece of software
is its ability to adapt to change. One of the primary ways we deal with change as
developers is to find what varies and encapsulate it.1 Of course, without clairvoy-
ance, it’s very difficult to anticipate every possible way a piece of software will
evolve. Nevertheless, we have a better chance of reacting to unexpected variations
if we can gather information about the input source that triggered the change. In
programming terms, this knowledge gathering process is referred to as introspec-
tion or reflective programming.

Although reflective programming techniques allow you to detect and investigate
environmental changes within a program, they don’t allow you to react to those
changes. Here, you may need to dynamically define new data types, create data
objects on demand, or even implement custom program logic. In this chapter, we
look at the dynamic and reflective programming capabilities available in ABAP.
These features support the creation of very powerful algorithms and are used in
many areas of SAP.

3.1 Working with Field Symbols

Field symbols are often the source of much confusion (and consternation) for
developers new to ABAP. In this section, we attempt to demystify the concept of

1 In his book Design Patterns Explained: A New Perspective on Object-Oriented Design (Addison-
Wesley, 2005), Alan Shalloway uses the term “variability analysis” to describe this process.

82

Dynamic and Reflective Programming3

field symbols by showing you ways to implement generic code and improve the
performance in your programs.

3.1.1 What Is a Field Symbol?

Before we delve into syntax and usage concerns with field symbols, it’s important
to understand, conceptually, exactly what a field symbol is. Essentially, a field
symbol is a symbol (or alias) that refers to a given field (i.e., data object) that is vis-
ible within the current program scope. If you’ve worked with other programming
languages such as C/C++, you might be inclined to think that field symbols are a
type of pointer in ABAP. However, that assumption is incorrect.

While the term “pointer” is often used to describe any type of reference variable,
it more accurately refers to data objects that can be manipulated as a memory
address. As such, pointers indirectly refer to a variable by storing that variable’s
address rather than its contents. To access or manipulate the contents of the vari-
able a pointer points to, you must de-reference the pointer using a special de-refer-
ence operator. Figure 3.1 depicts the relationship among a data object, a pointer,
and a field symbol.

‘B’

... ...A AB P

1041 1042 1043 1044

1042

LV_CHAR LR_PTR

‘B’

<LFS>

Figure 3.1 Representation of Pointers and Field Symbols

Looking at the relationship diagram in Figure 3.1, you can see a set of contigu-
ous bytes represented somewhere in memory (note that the address numbers are
fictitious values used for demonstration purposes only). The three data objects
positioned underneath this memory snapshot represent a character data object, a
pointer, and a field symbol, respectively. As you can see, the character data object
LV_CHAR is stored at address 1042 and has the value 'B'. The LR_PTR data object is a
pointer type that references LV_CHAR. Note that the contents of LR_PTR contain the
address of LV_CHAR (e.g., 1042) rather than its value. To access the value of LV_CHAR

83

Working with Field Symbols 3.1

using LR_PTR, a de-referencing operation must be used to tell the runtime environ-
ment to access the contents of memory address 1042. On the left side of Figure
3.1, you can see the relationship between a field symbol called <LFS> and LV_CHAR.
In this case, <LFS> is strictly an alias for LV_CHAR; changes that are made to LV_CHAR
are reflected in <LFS> and vice versa. No special operations are required to access
the contents of LV_CHAR using <LFS>. Therefore, you can think of a field symbol as
a kind of permanently de-referenced pointer.

3.1.2 Field Symbol Declarations

Field symbols are declared using the FIELD-SYMBOLS statement whose syntax is
shown in Listing 3.1. Note the use of the angle brackets (e.g., < and >) in the
definition of the field symbol name. These angle brackets are required for the
ABAP runtime environment to differentiate between field symbols and regular
data objects.

FIELD-SYMBOLS <fs> [TYPING].

Listing 3.1 Syntax Diagram for Field Symbol Declarations

Field symbols can be declared in the global and local context of a report or mod-
ule pool program. In the object-oriented (OO) context, field symbols can only be
defined locally inside of a method implementation; which is to say that you can’t
define field symbols as attributes of a class or interface.

One advantage field symbols have over normal data objects is their ability to be
typed generically. Generically typed field symbols inherit the attributes of the data
object they point to whenever an assignment is made at runtime. Of course, field
symbols can also be declared statically using a specific built-in or custom type. In
this case, the data object aliased by the field symbol must be compatible with the
declared type of the field symbol.

To demonstrate some of the various options for declaring field symbols, let’s con-
sider an example. The code excerpt in Listing 3.2 declares several field symbols
using different typing methods. For the most part, these definitions are fairly
straightforward:

EE The field symbol <lfs_builtin_type> is defined using the built-in integer (I)
type. Therefore, any attempt to assign a non-integer data object to <lfs_buil-
tin_type> results in a syntax error.

84

Dynamic and Reflective Programming3

EE The <lfs_custom_type> field symbol is declared using the custom type ly_cus-
tom_type. We could have just as easily plugged in an ABAP Dictionary type here
as well.

EE Field symbol <lfs_generic_type> is defined using the generic type ANY. This
implies that <lfs_generic_type> can effectively point to any type of data object
at runtime.

EE The <lfs_number_type> and <lfs_char_type> show how you can use some of
the generic types allowed in the specification of interfaces for procedures,
methods, and so on to declare generic field symbols.

EE The declaration of <lfs_table_type> demonstrates how you can declare a field
symbol that can point to any type of internal table. It’s also possible to declare
a field symbol using a custom table type or a table type defined in the ABAP
Dictionary.

EE In addition to the TYPE addition, you can also declare a field symbol using
another data object as a reference, as evidenced in the declaration of <lfs_
like_type>. Here, <lfs_like_type> is typed just like the structure variable ls_
custom. Similarly, the field symbol <lfs_wa_type> is declared to be like the line
type of internal table lt_custom (i.e., the custom ly_custom_type type).

TYPES: BEGIN OF ly_custom_type,
 column1 TYPE i,
 column2 TYPE string,
 column3 TYPE f,
 END OF ly_custom_type.

DATA: ls_custom TYPE ly_custom_type.
DATA: lt_custom TYPE STANDARD TABLE OF ly_custom_type.

FIELD-SYMBOLS:
 <lfs_builtin_type> TYPE i,
 <lfs_custom_type> TYPE ly_custom_type,
 <lfs_generic_type> TYPE ANY,
 <lfs_number_type> TYPE numeric,
 <lfs_char_type> TYPE clike,
 <lfs_table_type> TYPE ANY TABLE,
 <lfs_like_type> LIKE ls_custom,
 <lfs_wa_type> LIKE LINE OF lt_custom.

Listing 3.2 Declaring Field Symbols Using Different Typing Methods

85

Working with Field Symbols 3.1

In a non-OO context, it’s technically possible to declare a field symbol without
any kind of type specification. However, this is considered poor practice because
it causes confusion (and perhaps misuse). Therefore, you should always strive to
specify a field symbol’s type as fully as you can so that the compiler can help guide
you in making sure that you use the field symbol properly.

3.1.3 Assigning Data Objects to Field Symbols

Initially, a field symbol isn’t assigned to any data object. Therefore, to begin using
a field symbol, you must use the ASSIGN statement to bind it to a data object; oth-
erwise, an error occurs if you try to access the field symbol at runtime. The basic
syntax of the ASSIGN statement is shown in Listing 3.3. This syntax assigns the data
object dobj to the field symbol called <fs>. If the assignment is successful, the sys-
tem field SY-SUBRC has the value 0; otherwise, it has the value 4.

ASSIGN dobj TO <fs>.

Listing 3.3 Basic Syntax of the ASSIGN Statement

You can also determine whether or not a field symbol is assigned using the IS
ASSIGNED logical expression demonstrated in Listing 3.4.

DATA: lv_name(10) TYPE c VALUE 'Paige Wood'.
FIELD-SYMBOLS: <lfs> TYPE string.

ASSIGN lv_name TO <lfs>.
IF <lfs> IS ASSIGNED.
 WRITE: / 'Field symbol value:', <lfs>.
ELSE.
 WRITE: / 'Field symbol is unassigned!'.
ENDIF.

Listing 3.4 Checking Whether a Field Symbol Is Assigned

Static Field Symbol Assignments

The syntax for the ASSIGN statement shown in Listing 3.3 is an example of a static
assignment. Here, the term “static” implies that we know the name of the field that
we want to assign to the field symbol at compile time. Static assignments also sup-
port the use of offset/length specifications when performing assignments using
character types. For example, Listing 3.5 shows how we can assign a substring of
the LV_NAME data object to <lfs>.

86

Dynamic and Reflective Programming3

DATA: lv_name(10) TYPE c VALUE 'Paige Wood'.
FIELD-SYMBOLS: <lfs> TYPE string.

ASSIGN lv_name+0(5) TO <lfs>.
WRITE: / <lfs>.

Listing 3.5 Static Assignments Using Offset/Length Specifications

Dynamic Field Symbol Assignments

Frequently, whenever you’re developing generic algorithms, you may not know
the name of the data objects that you want to alias at compile time. In these situa-
tions, you can use the dynamic variant of the ASSIGN statement as shown in Listing
3.6. Here, the use of parentheses around a character data object (or a string lit-
eral) causes the ABAP runtime environment to interpret the value of the character
string as the name of the data object to be assigned to the field symbol. In Section
3.3, Introspection with ABAP Run Time Type Services, we’ll explain how to use
the ABAP Run Time Type Services (RTTS) to introspect simple and complex data
objects to dynamically determine the names of data objects. These features are
particularly useful whenever a module needs to dynamically process parameters
that are passed around generically.

DATA: lv_field_name TYPE string VALUE 'LV_FIELD',
 lv_field TYPE i VALUE 50.
FIELD-SYMBOLS: <lfs> TYPE string.

ASSIGN (lv_field_name) TO <lfs>.
WRITE: / <lfs>.

Listing 3.6 Assigning Field Symbols Dynamically

One thing to keep in mind is that the static and dynamic variants of the ASSIGN
statement described in this section can also be applied to assignments between
field symbols. For instance, Listing 3.7 demonstrates how field symbol <lfs_1> is
assigned to field symbol <lfs_2>.

DATA: lv_field TYPE i VALUE 50.
FIELD-SYMBOLS: <lfs_1> TYPE i,
 <lfs_2> TYPE i.
ASSIGN lv_field TO <lfs_1>.
WRITE: 'Field Symbol #1:', <lfs_1>.
ASSIGN <lfs_1> TO <lfs_2>.
WRITE: 'Field Symbol #2:', <lfs_2>.

Listing 3.7 Performing Assignments Between Field Symbols

87

Working with Field Symbols 3.1

Working with Structures

So far, all of the field symbol assignment examples that we have seen have been
based on elementary data types. Now, let’s see what happens when we want to
assign a structure to a field symbol. In Listing 3.8, we’ve assigned a structured data
object named ls_flight to a field symbol called <lfs_flight>. As you can see,
after the assignment is made, we’re able to access components of the ls_flight
structure via the <lfs_flight> field symbol using the structure component selec-
tor operator (-), per usual.

DATA: ls_flight TYPE sflight.
FIELD-SYMBOLS: <lfs_flight> LIKE ls_flight.

ls_flight-connid = '1825'.
ls_flight-seatsocc = 60.

ASSIGN ls_flight TO <lfs_flight>.
WRITE: / 'Flight', <lfs_flight>-connid, 'has',
 <lfs_flight>-seatsocc, 'currently filled.'.

Listing 3.8 Assigning a Structure to a Field Symbol

In the example code contained in Listing 3.8, we used the field symbol in exactly
the same way that we would have used the structure that it’s aliasing. However,
sometimes you may know little to nothing about the structure object you’re work-
ing with. In these circumstances, you can use the ASSIGN COMPONENT statement to
dynamically iterate over the components of a given structure. Listing 3.9 shows an
example of this approach for the ls_flight structure defined in Listing 3.8. Here,
we’re using the DESCRIBE FIELD statement to determine the number of compo-
nents within the structure dynamically. After we know how many components
there are, we can iterate through each of them inside of a DO loop. In Listing 3.9,
we’re using the SY-INDEX system variable to define the index of each component.

DATA: ls_flight TYPE sflight,
 lv_type TYPE c,
 lv_components TYPE i.

FIELD-SYMBOLS: <lfs_component> TYPE ANY.

ls_flight-connid = '1845'.
ls_flight-seatsocc = 60.

DESCRIBE FIELD ls_flight

88

Dynamic and Reflective Programming3

 TYPE lv_type COMPONENTS lv_components.

DO lv_components TIMES.
 ASSIGN COMPONENT sy-index OF STRUCTURE ls_flight
 TO <lfs_component>.
 WRITE: / 'Component Value is:', <lfs_component>.
ENDDO.

Listing 3.9 Assigning Components of Structures to a Field Symbol

In addition to the index-based approach shown in Listing 3.9, the ASSIGN COMPO-
NENT statement also makes it possible to select a component using the component’s
name. In this variant, the component name is specified via a character data object,
string literal, or even another field symbol.

Working with Internal Tables

Field symbols can also be used to reference internal table variables. After an inter-
nal table is assigned to a field symbol, you can use that field symbol in LOOP
statements, READ statements, and so on, just like you would reference a normal
internal table variable. Perhaps the most powerful aspect of field symbol usage
with internal tables is in the access of individual table rows using these kinds of
statements.

Prior to the advent of ABAP Objects, many loops through an internal table looked
something like the code excerpt shown in Listing 3.10. In this legacy syntax, lt_
itab is an internal table that includes a header line, which is a sort of work area for
table rows accessed via a LOOP or READ statement, and so on. In Listing 3.10, the
code uses the header line to output the flight number for each flight record in the
lt_itab table. Here, the context in which lt_itab is used determines whether or
not we’re referring to the internal table as a whole or just the header line. Over
time, this approach caused quite a bit of confusion because a single name simul-
taneously referred to two different data objects. Therefore, the use of the HEADER
LINE addition has been deprecated.

DATA: lt_itab TYPE sflight OCCURS 10 WITH HEADER LINE.
LOOP AT lt_itab.
 WRITE: 'Flight #', lt_itab-connid.
ENDLOOP.

Listing 3.10 Legacy Internal Tables with Header Lines

89

Working with Field Symbols 3.1

These days, many developers implement a loop such as the one shown in Listing
3.10 using a defined work area as illustrated in Listing 3.11. However, there is a
problem with this approach. In each iteration of the loop on table lt_flights, the
current table line must be copied into the ls_flight work area. As you can imag-
ine, this copy operation can get pretty expensive for large internal tables.

DATA: ls_flight TYPE sflight,
 lt_flights TYPE STANDARD TABLE OF sflight.
LOOP AT lt_flights INTO ls_flight.
 WRITE: 'Flight #', ls_flight-connid.
ENDLOOP.

Listing 3.11 Accessing Internal Tables Using a Defined Work Area

An effective way to improve the performance of these kinds of loops is to use field
symbols. Listing 3.12 demonstrates the approach. Rather than copying the current
line into a separate work area using the INTO addition of the LOOP statement, we
simply assign the current line to a type-compatible field symbol using the ASSIGN-
ING addition of the LOOP statement. This technique avoids the unnecessary copy
operation by simply assigning a reference to the current line to the <lfs_flight>
field symbol. After the assignment is made, we can use the <lfs_flight> field
symbol just as we would use a header line or explicit work area.

DATA: lt_flights TYPE STANDARD TABLE OF sflight.
FIELD-SYMBOLS: <lfs_flight> LIKE LINE OF lt_flights.
LOOP AT lt_flights ASSIGNING <lfs_flight>.
 WRITE: 'Flight #', <lfs_flight>-connid.
ENDLOOP.

Listing 3.12 Accessing Internal Tables Using Field Symbols

The approach demonstrated in Listing 3.12 is considered a best practice for access-
ing and manipulating individual rows of an internal table. There is also an ASSIGN-
ING addition available with the READ TABLE statement. For more details, consult the
ABAP Keyword Documentation.

3.1.4 Casting Data Objects During the Assignment Process

In each of the field symbol assignments demonstrated in Section 3.1.3, Assign-
ing Data Objects to Field Symbols, the data objects and field symbols shared the
same data type. ABAP also includes support for mixed data type assignments via
the CASTING addition to the ASSIGN statement. The lone stipulation here is that the
length and alignment of the data object being assigned must be compatible with the

90

Dynamic and Reflective Programming3

field symbol type. In other words, you can’t use the CASTING addition to assign an
internal table data object to an integer field symbol, for instance.

To demonstrate the use of the CASTING addition, let’s consider an example. The
code excerpt in Listing 3.13 defines a custom timestamp structure type called ly_
timestamp. What we would like to do is take the current system timestamp and
assign it to a field symbol that has the ly_timestamp type. This would allow us to
access each of the components of the timestamp (e.g., YEAR, MONTH, etc.) individu-
ally in a structured data object. However, we can’t assign a packed number to a
structure of type ly_timestamp because their lengths differ. Therefore, we must
first copy the contents of the raw timestamp into a character data object. This
assignment causes an implicit cast, converting the packed number value into a
character string. The length of the resultant character string matches the length of
the ly_timestamp type, allowing us to perform our field symbol assignment using
the lv_tstamp_txt data object.

TYPES: BEGIN OF ly_timestamp,
 year(4) TYPE c,
 month(2) TYPE c,
 day(2) TYPE c,
 hour(2) TYPE c,
 minutes(2) TYPE c,
 seconds(2) TYPE c,
 END OF ly_timestamp.

DATA: lv_tstamp_raw TYPE timestamp,
 lv_tstamp_txt(14) TYPE c,
 lv_time TYPE string.
FIELD-SYMBOLS: <lfs_timestamp> TYPE ly_timestamp,
 <lfs_generic> TYPE ANY.

GET TIME STAMP FIELD lv_tstamp_raw.
* Note: The following statement is not allowed since
* lv_tstamp_raw (being a packed number) is too
* small for <lfs_timestamp>.
*ASSIGN lv_tstamp_raw TO <lfs_timestamp> CASTING.
lv_tstamp_txt = lv_tstamp_raw.
ASSIGN lv_tstamp_txt TO <lfs_timestamp> CASTING.

CONCATENATE <lfs_timestamp>-month '/'
 <lfs_timestamp>-day '/'
 <lfs_timestamp>-year '-'

91

Reference Data Objects 3.2

 <lfs_timestamp>-hour ':'
 <lfs_timestamp>-minutes ':'
 <lfs_timestamp>-seconds
 INTO lv_time.
WRITE: lv_time.

ASSIGN lv_tstamp_txt TO <lfs_generic>
 CASTING TYPE ly_timestamp.

Listing 3.13 Performing a Cast in a Field Symbol Assignment

Looking at the code in Listing 3.13, you’ll notice that we actually perform two
field symbol assignments: one to the fully typed <lfs_timestamp> and the other
to the generically typed <lfs_generic>. In the assignment to <lfs_timestamp>,
notice that the CASTING addition used in the assignment doesn’t qualify the cast
in any way. Here, type specification isn’t needed because <lfs_timestamp> is fully
typed. Conversely, type qualification is needed in the assignment to the generic
field symbol <lfs_generic> if we want to be able to access the components of the
timestamp encoded inside the contents of the lv_tstamp_txt data object. We can
specify an explicit type in the casting operation using the syntax variants shown
in Listing 3.14. We’ll explain more about the TYPE HANDLE addition in Section 3.3,
Introspection with ABAP Run Time Type Services.

ASSIGN dobj TO <fs>
 CASTING [{TYPE type | (name)} |
 {LIKE dobj} |
 {TYPE HANDLE handle}].

Listing 3.14 Syntax Diagram of Casting Specifications

3.2 Reference Data Objects

As you learned in Section 3.1, Working with Field Symbols, a field symbol is tech-
nically not a pointer. Pointers in ABAP are realized in the form of data references.
In the following subsections, we explore the concept of data references and look
at how they can be used as containers for various kinds of data objects.

3.2.1 Declaring Data Reference Variables

Data references are stored in a special type of variable called a data reference vari-
able. You can declare data reference variables in your programs using the syntax

92

Dynamic and Reflective Programming3

shown in Listing 3.15. Here, we have declared a data reference variable called
lr_dref.

DATA: lr_dref TYPE REF TO DATA.

Listing 3.15 General Syntax for Declaring Data Reference Variables

Now that you know how to declare a data reference variable, let’s take a step back
and think about what we’ve defined. Data reference variables can be used to store
a reference to any kind of data object. To illustrate this process, consider the visual
example provided in Figure 3.2. This graphic depicts the relationship between a
data reference variable called lr_dref and an integer data object named lv_value.
Initially, when we declare lr_dref, its value is initial; meaning that it doesn’t point
to anything. However, after we assign a reference to the lv_value data object into
lr_dref, lr_dref points to the lv_value data object.

[Initial] 25

lr_dref lv_value

25

lr_dref lv_value

Figure 3.2 Before and After View of a Data Reference Assignment

Unlike field symbols, lr_dref isn’t an alias for lv_value. For instance, we can’t
simply use the lr_dref identifier to access the contents of lv_value. Instead, a
data reference variable must be de-referenced to access the data object it points
to. At first, this indirection may seem like a nuisance as compared to the relative
ease of use of field symbols. Nevertheless, this indirection makes it possible to
dynamically create data objects and reference them in a program at runtime. We’ll
see how to de-reference data references in Section 3.2.5, De-Referencing Data
References.

In addition to the general data reference declaration syntax shown in Listing 3.15,
it’s also possible to declare data reference variables that are fully typed. For exam-
ple, Listing 3.16 shows how to create a data reference variable named lr_int_ref
that can only point to integer data objects.

93

Reference Data Objects 3.2

DATA: lr_int_ref TYPE REF TO i.

Listing 3.16 Declaring Fully Typed Data Reference Variables

3.2.2 Assigning References to Data Objects

To obtain a reference to a data object, you use the GET REFERENCE OF statement
whose syntax is shown in Listing 3.17. This statement can be used to obtain ref-
erences to data objects that are statically declared, data objects that are created
dynamically, or even field symbols.

GET REFERENCE OF dobj INTO dref.

Listing 3.17 Syntax Diagram of GET REFERENCE Statement

To see how reference assignments work, let’s take a look at how the GET REFERENCE
OF statement is used to obtain a reference to a data object at runtime. The example
code in Listing 3.18 demonstrates how to obtain a reference to an integer data
object called lv_dobj and store it in a data reference variable called lr_dref.

DATA: lv_dobj TYPE i VALUE 27,
 lr_dref TYPE REF TO DATA.
GET REFERENCE OF lv_dobj INTO lr_dref.

Listing 3.18 Using the GET REFERENCE Statement

One important thing to be mindful of when acquiring data references is that a
data reference can’t point to data objects that pass out of scope, for example, the
assignment of a local data object to a global data reference variable. Listing 3.19
contains a sample report called ZREFSCOPE that shows how this works. Here, we’ve
defined a global data reference variable called gr_dref. Inside the procedure SOME_
PROCEDURE, a reference to the local variable lv_counter is stored in gr_dref using
the GET REFERENCE OF statement. The problem is that the data object lv_counter
becomes invalid as soon as the SOME_PROCEDURE procedure completes. Therefore,
code that is depending on the gr_dref data reference being bound after the call to
SOME_PROCEDURE fails because the data reference has the initial value.

REPORT zrefscope.
DATA: gr_dref TYPE REF TO DATA.
FIELD-SYMBOLS:
 <lfs_counter> TYPE ANY.

START-OF-SELECTION.
 IF gr_dref IS INITIAL.

94

Dynamic and Reflective Programming3

 WRITE: / 'Not bound initially.'.
 ENDIF.

 PERFORM some_procedure.

 IF gr_dref IS INITIAL.
 WRITE: / 'Data reference is not bound.'.
 ELSE.
 WRITE: / 'Still bound!'.
 ENDIF.

 ASSIGN gr_dref->* TO <lfs_counter>.
 IF sy-subrc EQ 0.
 WRITE: / 'Counter is:', <lfs_counter>.
 ELSE.
 WRITE: / 'Where's my counter???''.
 ENDIF.

FORM some_procedure.
* Local Data Declarations:
 DATA: lv_counter TYPE i VALUE 5.

* Place a reference to lv_counter in gr_dref:
 GET REFERENCE OF lv_counter INTO gr_dref.

* The reference to lv_counter passes out of scope here...
ENDFORM.

Listing 3.19 Avoiding Scoping Issues with Data References

3.2.3 Dynamic Data Object Creation

One of the most powerful features of data reference objects is their ability to point
to any type of data object. This functionality extends beyond statically defined
data objects to include support for data objects that are created dynamically by
the ABAP runtime environment. To create a data object dynamically, you must
use the CREATE DATA statement whose syntax is shown in Listing 3.20. As you can
see, the typing syntax used to create data objects dynamically is almost identical
to that used to declare normal variables in ABAP. The primary difference is the
TYPE HANDLE addition, which is covered in Section 3.3, Introspection with ABAP
Run Time Type Services.

95

Reference Data Objects 3.2

CREATE DATA dref TYPE (TABLE OF) type | (typename).
CREATE DATA dref TYPE REF TO type | (typename).
CREATE DATA dref LIKE field.
CREATE DATA dref TYPE HANDLE type_object.

Listing 3.20 Syntax Diagram of CREATE DATA Statement

The code excerpt in Listing 3.21 demonstrates how you can use the CREATE DATA
statement to dynamically create a data object of type STRING. At runtime, this
dynamically created data object can only be accessed via the lr_dref data refer-
ence variable. We’ll see how to achieve this in Section 3.2.5, De-Referencing Data
References.

DATA: lr_dref TYPE REF TO DATA.
CREATE DATA lr_dref TYPE string.

Listing 3.21 Creating Data Objects Dynamically at Runtime

Now that you understand the basic syntax of the CREATE DATA statement, let’s take
a moment to consider what it is used for and what happens behind the scenes
when you issue this statement. Most of the time, you know the type and number
of data objects that your program needs ahead of time. However, occasionally you
may encounter a requirement in which you don’t know how many data objects are
needed until runtime. Modern runtime environments such as the ABAP runtime
environment help solve this problem by maintaining a special area of memory
called a heap. A heap is essentially a large pool of memory that is typically allocated
on a first-come, first-serve basis. The CREATE DATA statement submits a request to
the ABAP runtime environment to carve out a chunk of memory that can be used
to store a data object of a particular type (namely, the type declared using the TYPE
addition of the CREATE DATA statement). If enough memory is available, the ABAP
runtime environment allocates the necessary space, returns a reference to that
space, and stores it in the specified target data reference variable. After the opera-
tion is completed, the dynamically allocated memory area can only be referenced
programmatically via the data reference variable. If this reference is deleted, the
dynamic data object is orphaned and is eventually cleaned up by the ABAP run-
time environment.

It’s worth mentioning that unlike other pointer implementations (e.g., C or C++),
you can’t access the contents of a data reference variable in your programs. In
other words, you can’t manipulate the memory address of the reference, and so
on. This is a safety precaution that saves developers from themselves (and others)
by avoiding unprotected access to memory addresses. Such measures are particu-

96

Dynamic and Reflective Programming3

larly important whenever data objects are allocated off of a shared memory heap.
Pointers are powerful, but they can also be dangerous, so it’s important to have as
much built-in protection as possible.

3.2.4 Performing Assignments Using Data Reference Variables

Just like other variables in ABAP, you can perform assignments between data ref-
erence variables. Listing 3.22 shows how you can use the assignment operator (=)
or the MOVE statement to copy a data reference to another data reference variable.
Here, it’s important to keep in mind that you’re copying a pointer to a data object,
and not the data object itself (a concept often described using the term reference
semantics). For example, the assignment shown in Listing 3.22 causes both lr_
dref1 and lr_dref2 to point at the same data object — namely, the one pointed
to by lr_dref1 when the assignment is made.

DATA: lv_dobj TYPE string VALUE 'Paige',
 lr_dref1 TYPE REF TO DATA,
 lr_dref2 TYPE REF TO DATA.

* Obtain a reference to the lv_dobj data object:
GET REFERENCE OF lv_dobj INTO lr_dref1.

* Perform the data reference variable assignment:
lr_dref2 = lr_dref1. "Or...
MOVE lr_dref1 TO lr_dref2.

Listing 3.22 Data Reference Variable Assignments

3.2.5 De-Referencing Data References

The process of accessing the data object pointed to by a data reference variable
is referred to as a de-referencing operation. Whenever we de-reference a data ref-
erence variable, we’re telling the ABAP runtime environment that we want to
access the data object to which the data reference variable points, rather than the
data reference itself. You can de-reference data references using the de-referencing
operator (->*) as demonstrated in the sample code shown in Listing 3.23.

DATA: lr_dref TYPE REF TO i,
 lv_counter TYPE i.

CREATE DATA lr_dref.
lr_dref->* = 25.
WRITE: / lr_dref->*.

97

Reference Data Objects 3.2

lv_counter = lr_dref->*.
WRITE: / lv_counter.

Listing 3.23 De-Referencing a Data Reference Variable

In Listing 3.23, notice that the de-referenced lr_dref reference can be used both
as an “lvalue” and an “rvalue.”2 This is made possible by the fact that the lr_dref
data reference is fully specified. Had we declared lr_dref generically (e.g., using
the TYPE REF TO DATA specification), then the code in Listing 3.23 would have
produced a syntax error. This is because generically typed data references must be
de-referenced into a field symbol before they can be accessed in a program. This
process is demonstrated in the example code shown in Listing 3.24.

DATA: lr_dref TYPE REF TO DATA.
FIELD-SYMBOLS: <lfs_value> TYPE ANY.

CREATE DATA lr_dref TYPE i.

ASSIGN lr_dref->* TO <lfs_value>.
<lfs_value> = 25.
WRITE: / <lfs_value>.

Listing 3.24 De-Referencing Generically Typed Data References

Notice that we declared the <lfs_value> field symbol generically in Listing 3.24.
In this case, the field symbol adopts the type of the data object it’s assigned (e.g.,
the integer data object created in the CREATE DATA statement). We could have just
as easily defined the <lfs_value> field symbol as an integer. The point is that
assignment statements involving data references behave just like normal assign-
ment statements involving regular data objects. This implies that we can use the
CASTING addition during an assignment, and so on.

The process of working with de-referenced structured data objects is a little bit
different from what we have seen for other data types. These subtle differences
are best explained with an example. The code excerpt in Listing 3.25 copies a
reference to a structured data object of type SFLIGHT into the lr_flight data ref-
erence. To de-reference individual components of that structure, we must use a

2 If you’re not familiar with these terms, an “lvalue” is a value that has an address and can be as-
signed in an assignment statement. An “rvalue” could be an “lvalue,” but it could also be a literal
value (e.g. ‘ABAP’) that can’t be used as the target of an assignment statement.

98

Dynamic and Reflective Programming3

special variant of the de-referencing operator (->comp). Of course, to de-reference
the structure as a whole, we would still use the normal de-referencing operator
(->*), per usual.

DATA: ls_flight TYPE sflight,
 lr_flight TYPE REF TO sflight.

ls_flight-connid = '2157'.
GET REFERENCE OF ls_flight INTO lr_flight.
WRITE: 'Flight Number:', lr_flight->connid.

Listing 3.25 De-Referencing Structure Components (Part 1)

If the data reference pointing to the structure is generically typed, you have to
assign both the structure and the individual components to a field symbol, as
shown in Listing 3.26. Here, once again, we’re using a DO loop to iterate over each
of the components in the structure generically.

DATA: ls_flight TYPE sflight,
 lr_flight TYPE REF TO DATA,
 lv_type TYPE c,
 lv_fields TYPE i.
FIELD-SYMBOLS: <lfs_flight> TYPE sflight,
 <lfs_comp> TYPE ANY.

ls_flight-carrid = 'AA'.
ls_flight-connid = '2157'.
GET REFERENCE OF ls_flight INTO lr_flight.

ASSIGN lr_flight->* TO <lfs_flight>.
DESCRIBE FIELD <lfs_flight>
 TYPE lv_type COMPONENTS lv_fields.
DO lv_fields TIMES.
 ASSIGN COMPONENT sy-index OF STRUCTURE <lfs_flight>
 TO <lfs_comp>.
 WRITE: / <lfs_comp>.
ENDDO.

Listing 3.26 De-Referencing Structure Components (Part 2)

99

Introspection with ABAP Run Time Type Services 3.3

3.3 Introspection with ABAP Run Time Type Services

In the previous two sections, you learned how to use field symbols and data refer-
ences to implement some fairly generic program logic. However, up to this point,
all of the samples that we have considered have assumed that we’re working with
a particular data type. But what if we don’t know the data type that we’re going to
be working with ahead of time? After all, to be truly generic, we need to have the
ability to look up and introspect information about data types and data objects at
runtime. Fortunately, ABAP provides this kind of functionality via the ABAP Run
Time Type Services (RTTS) API.

3.3.1 ABAP RTTS System Classes

The core functionality of the RTTS API is implemented in the form of a series
of ABAP Objects classes. Figure 3.3 depicts a UML class diagram that illustrates
the RTTS class hierarchy. As you can see, the root of the RTTS class hierarchy is
the abstract class CL_ABAP_TYPEDESCR. Each of the concrete subclasses underneath
CL_ABAP_TYPEDESCR in the class hierarchy corresponds with types defined in the
ABAP type hierarchy (e.g., elementary data types, structure data types, class types,
etc.).

<<abstract>>
CL_ABAP_TYPEDESCR

<<abstract>>
CL_ABAP_DATADESCR

<<abstract>>
CL_ABAP_OBJECTDESCR

CL_ABAP_ELEMDESCR

CL_ABAP_INTFDESCR

CL_ABAP_REFDESCR

CL_ABAP_CLASSDESCR

CL_ABAP_STRUCTDESCR CL_ABAP_TABLEDESCR

<<abstract>>
CL_ABAP_COMPLEXDESCR

Figure 3.3 UML Class Diagram of RTTS Class Hierarchy

To appreciate the power of the RTTS, it’s helpful to consider the services that they
provide. The UML class diagram in Figure 3.4 shows the public methods available
in the abstract root class CL_ABAP_TYPEDESCR (and inherited in the RTTS subclasses

100

Dynamic and Reflective Programming3

shown in Figure 3.3). Because class CL_ABAP_TYPEDESCR is defined as an abstract
class, you can’t create instances of this class directly. Nevertheless, you can think
of CL_ABAP_TYPEDESCR as a sort of abstract factory class that provides quite a bit
of useful functionality that is applied in the various concrete subclasses. Among
the features made available in class CL_ABAP_TYPEDESCR is a series of factory class
methods that can be used to create instances of concrete type objects using either
a preexisting data object, the name of an ABAP data type, an object reference, or a
data reference. The names of these class methods begin with the prefix DESCRIBE_
BY_. In a moment, we’ll explain how to use these methods to create instances of
concrete type objects. After an instance of a type object is created, you can use the
provided instance methods to find out more information about the type in ques-
tion. For example, the method IS_DDIC_TYPE() can tell you whether or not a data
type is an ABAP Dictionary type.

<<abstract>>
CL_ABAP_TYPEDESCR

+ DESCRIBE_BY_DATA()
+ DESCRIBE_BY_NAME()
+ DESCRIBE_BY_OBJECT_REF()
+ DESCRIBE_BY_DATA_REF()
+ GET_PROPERTY()
+ GET_RELATIVE_NAME()
+ IS_DDIC_TYPE()
+ GET_DDIC_HEADER()
+ GET_DDIC_OBJECT()
+ HAS_PROPERTY()

Figure 3.4 UML Class Diagram for Class CL_ABAP_TYPEDESCR

Each subclass in the RTTS class hierarchy defines its own set of instance meth-
ods that provide additional type-specific information. For instance, class CL_ABAP_
TABLEDESCR provides a method called GET_TABLE_LINE_TYPE() that returns infor-
mation about the line type of the internal table that is being introspected.

3.3.2 Working with Type Objects

In addition to the useful type information that they provide, instances of RTTS
classes can also be used to represent a particular data type when creating a data
object dynamically or casting a data object that is being assigned to a field symbol.
You can tap into this functionality using the TYPE HANDLE addition described in
Section 3.1.4, Casting Data Objects During the Assignment Process, and Section
3.2.3, Dynamic Data Object Creation, respectively. The code excerpt in Listing

101

Introspection with ABAP Run Time Type Services 3.3

3.27 shows how an RTTS type object can be used to create a data object and de-ref-
erence it into a field symbol.

DATA: lr_fname_ref TYPE REF TO DATA,
 lo_fname_type TYPE REF TO cl_abap_elemdescr.
FIELD-SYMBOLS:
 <lfs_fname> TYPE ANY.

lo_fname_type ?=
 cl_abap_typedescr=>describe_by_name('AD_NAMEFIR').

CREATE DATA lr_fname_ref TYPE HANDLE lo_fname_type.

ASSIGN lr_fname_ref->* TO <lfs_fname>
 CASTING TYPE HANDLE lo_fname_type.

<lfs_fname> = 'Andersen'.
WRITE: 'First Name is:', <lfs_fname>.

Listing 3.27 Creating Data Objects Using Type Handles

Let’s examine the example code from Listing 3.27 step by step:

1. First, we begin by creating an elementary type object using the static method
DESCRIBE_BY_NAME() of class CL_ABAP_TYPEDESCR. Here, we’re using the AD_
NAMEFIR data element from the ABAP Dictionary as a reference to define a “first
name” type object. When assigning the type object to the lo_fname_type object
reference variable, notice that we’re using the casting operator (?=) to perform
a widening cast. If you look carefully, you’ll notice that lo_fname_type is defined
as an object reference variable of type CL_ABAP_ELEMDESCR. This widening cast
is necessary because of the following:

EE Because class CL_ABAP_TYPEDESCR is abstract, we can’t create an instance of it
directly.

EE The TYPE HANDLE addition only supports the specification of type objects that
have the static type CL_ABAP_DATADESCR or one of its subclasses. Because the
AD_NAMEFIR data element is defined as an elementary type, we chose to define
our type object using the CL_ABAP_ELEMDESCR type. Had we wanted to define
a complete “person” data object, we might have used the ABAP Dictionary
type ADRP and the RTTS subclass CL_ABAP_STRUCTDESCR.

2. After we have our type object, we can use the TYPE HANDLE addition of the CRE-
ATE DATA statement to create a data object of this type. Here, the ABAP runtime

102

Dynamic and Reflective Programming3

environment uses the information in the type handle object as a guide for con-
structing the requested data object dynamically.

3. To do something useful with our generated data reference, we must de-refer-
ence it. Here, we’re de-referencing it into a generically defined field symbol
called <lfs_fname> using the CASTING addition of the ASSIGN statement. The use
of the CASTING addition ensures that the <lfs_fname> field symbol takes on the
dynamic type specified in our lo_fname_type type object.

4. After the assignment is made, we can use the field symbol just like a regular
data object of type AD_NAMEFIR, as evidenced in the WRITE statement.

3.3.3 Defining Custom Data Types Dynamically

The DESCRIBE_BY... factory methods described in Section 3.3.1, ABAP RTTS Sys-
tem Classes, are useful if you have some kind of reference type or data object to
work off of. But what if you need to create a custom type from scratch on the fly?
In these cases, you can use the creational methods defined in the concrete RTTS
type classes to dynamically create a new type. For example, instead of using the
ABAP Dictionary type AD_NAMEFIR as a reference to define our “first name” type
object in Listing 3.27, we could have used the class method GET_C() of class CL_
ABAP_ELEMDESCR, as shown in Listing 3.28.

DATA: lr_fname_ref TYPE REF TO DATA,
 lo_fname_type TYPE REF TO cl_abap_elemdescr.
FIELD-SYMBOLS:
 <lfs_fname> TYPE ANY.

lo_fname_type = cl_abap_elemdescr=>get_c(40).
CREATE DATA lr_fname_ref TYPE HANDLE lo_fname_type.

Listing 3.28 Creating a Custom Elementary Type

Listing 3.29 shows how to create a custom structure type using the CREATE() fac-
tory method of class CL_ABAP_STRUCTDESCR. Here, the components of the structure
type are specified as entries in an internal table parameter called P_COMPONENTS.
Typically, you need only specify the name and type of the component. However,
there are also parameters that help you to specify an include structure — see the
online help documentation in the Class Builder for more details. After the struc-
ture type object is created, we can use it to create data objects, per usual, as evi-
denced in the example code from Listing 3.29.

103

Introspection with ABAP Run Time Type Services 3.3

DATA: lt_components TYPE
 cl_abap_structdescr=>component_table,
 lo_name_type TYPE REF TO cl_abap_structdescr,
 lr_name_ref TYPE REF TO DATA,
 lv_type TYPE c,
 lv_components TYPE i.

FIELD-SYMBOLS:
 <lfs_component> LIKE LINE OF lt_components,
 <lfs_name> TYPE ANY,
 <lfs_field> TYPE ANY.

* Define the components of our custom name type:
APPEND INITIAL LINE TO lt_components
 ASSIGNING <lfs_component>.
<lfs_component>-name = 'FIRST_NAME'.
<lfs_component>-type = cl_abap_elemdescr=>get_c(40).

APPEND INITIAL LINE TO lt_components
 ASSIGNING <lfs_component>.
<lfs_component>-name = 'MIDDLE_INITIAL'.
<lfs_component>-type = cl_abap_elemdescr=>get_c(1).

APPEND INITIAL LINE TO lt_components
 ASSIGNING <lfs_component>.
<lfs_component>-name = 'LAST_NAME'.
<lfs_component>-type = cl_abap_elemdescr=>get_c(40).

* Create the new structure type:
lo_name_type = cl_abap_structdescr=>create(lt_components).

* Create a new name structure:
CREATE DATA lr_name_ref TYPE HANDLE lo_name_type.

* De-reference the name structure reference:
ASSIGN lr_name_ref->* TO <lfs_name>
 CASTING TYPE HANDLE lo_name_type.

* Assign values to the name structure components:
DESCRIBE FIELD <lfs_name>
 TYPE lv_type COMPONENTS lv_components.

DO lv_components TIMES.

104

Dynamic and Reflective Programming3

 ASSIGN COMPONENT sy-index
 OF STRUCTURE <lfs_name> TO <lfs_field>.

 CASE sy-index.
 WHEN 1.
 <lfs_field> = 'Paige'.
 WHEN 2.
 <lfs_field> = 'A'.
 WHEN 3.
 <lfs_field> = 'Wood'.
 ENDCASE.
ENDDO.

Listing 3.29 Creating a Custom Structure Type

3.3.4 Case Study: RTTS Usage in the ALV Object Model

Sometimes, when learning a new technology, it’s helpful to see how that technol-
ogy is used in everyday life. Even if you’re just getting your first exposure to the
RTTS API, you’ve likely encountered it at various points in your programming
tasks. One common place where you see the RTTS used is in the SAP List Viewer
(or ALV). In the past, one of the prerequisites for working with ALV was the gener-
ation of a field catalog that was used to define the columns of the two-dimensional
grid (e.g., column names, data types, etc.). Figure 3.5 shows an example of an ALV
grid display in the Data Browser (Transaction SE16).

Figure 3.5 Example of ALV Grid Display in the Data Browser

105

Introspection with ABAP Run Time Type Services 3.3

Beginning with the SAP NetWeaver 2004 release of the AS ABAP, the ALV API has
been consolidated into a class-based model called the ALV Object Model. One of the
primary benefits of working with this model is that you no longer have to specify a
field catalog to display a table in an ALV grid. Instead, you simply pass an internal
table as a parameter to a factory method defined in one of the main ALV classes,
and the framework takes care of the rest. Given what you’ve seen already with the
RTTS API, you can probably guess how the framework is able to perform this task.
Nevertheless, let’s take a look under the hood and see what’s going on.

For the purposes of our discussion, let’s assume that we’re using the core CL_SALV_
TABLE class to build a simple two-dimensional grid. The following task flow pro-
vides a high-level overview of the steps taken by this class to dynamically generate
a field catalog at runtime:

1. To create an instance of class CL_SALV_TABLE, you must invoke the factory meth-
od appropriately named FACTORY(). In addition to some various display param-
eters, this class method has a changing parameter called T_TABLE that is used
to specify the internal table that you want to display in the grid. Internally, the
FACTORY() method creates an instance of the ALV grid and then binds the data
table via a call to instance method SET_DATA().

2. Inside method SET_DATA(), a reference to the T_TABLE parameter is stored in
a data reference attribute called R_TABLE. This data reference variable is then
passed along with an object reference variable of type CL_SALV_COLUMNS to a
generic class method called DESCRIBE_TABLE() in class CL_SALV_DATA_DESCR.
This method performs the magic of deriving the columns that are displayed in
the grid.

3. To derive the metadata of a row in the internal table, method DESCRIBE_TABLE()
first de-references the imported table reference (i.e., R_TABLE) into a field sym-
bol and then creates a data object that has the line type of that table. This
dynamically generated data object can then be used as a reference type in a
call to method DESCRIBE_BY_DATA_REF() of class CL_ABAP_STRUCTDESCR. This
sequence of steps is illustrated in the code excerpt shown in Listing 3.30.

ASSIGN r_table->* TO <table>.
CREATE DATA r_data LIKE LINE OF <table>.

r_tabdescr ?=
 cl_abap_structdescr=>describe_by_data_ref(r_data).

Listing 3.30 Building a Field Catalog Using RTTS

106

Dynamic and Reflective Programming3

4. After the type object r_tabdescr is derived, the properties of the internal table
line type can be introspected via a series of calls to the instance methods pro-
vided by class CL_ABAP_STRUCTDESCR, as evidenced in the implementation of
helper method READ_STRUCTDESCR() of class CL_SALV_DATA_DESCR. These prop-
erties can be used to formulate the field catalog realized in the R_COLUMNS object
reference parameter.

We hope by now you can see the power of the RTTS API in building generic and
flexible programs. The integration of the RTTS API in the ALV Object Model has
made it possible to implement ALV reports using a fraction of the code that was
required in the past. Other applications of the RTTS API include the BSP HTMLB
and Web Dynpro frameworks as well as the ABAP proxy runtime integrated with
the SAP NetWeaver Process Integration (SAP NetWeaver PI) solution.

3.4 Dynamic Program Generation

In rare circumstances, you might encounter a situation where you need to dynami-
cally create some program logic on the fly. In these cases, ABAP allows you to cre-
ate subroutine pools and report programs dynamically. These generated objects
can then be invoked using the same call syntax used to execute statically defined
ABAP Repository objects.

3.4.1 Creating a Subroutine Pool

The process of creating a subroutine pool dynamically is fairly straightforward.
First, you build up the source code in an internal table, and then you use that
source code to create the subroutine pool via the GENERATE SUBROUTINE POOL state-
ment. The report program ZSUBPOOLDEMO in Listing 3.31 shows how this works.

REPORT zsubpooldemo.
START-OF-SELECTION.

DATA: lt_source_code TYPE TABLE OF string,
 lv_program TYPE string.

* Build the source code for the subroutine pool:
APPEND 'PROGRAM zmysubpool.' TO lt_source_code.
APPEND 'FORM dynamicsub.' TO lt_source_code.
APPEND 'WRITE: / 'Dynamic code goes here...'.'
 TO lt_source_code.
APPEND 'ENDFORM.' TO lt_source_code.

107

Dynamic Program Generation 3.4

* Generate the subroutine pool:
GENERATE SUBROUTINE POOL lt_source_code
 NAME lv_program.
WRITE: / 'Generated program name:', lv_program.

* Call the dynamically generated subroutine:
WRITE: / 'Some static code...'.
PERFORM dynamicsub IN PROGRAM (lv_program).
WRITE: / 'More static code...'.

Listing 3.31 Dynamically Generating a Subroutine Pool

The report program ZSUBPOOLDEMO in Listing 3.31 creates a subroutine called
DYNAMICSUB in the subroutine pool ZMYSUBPOOL. The subroutine pool is then gen-
erated using the GENERATE SUBROUTINE POOL statement. If you execute the code,
you’ll see that the generated program name stored in variable lv_program is an
internally generated name created by the ABAP runtime environment. The gener-
ated program name allows us to access the program via the PERFORM subroutine
IN PROGRAM statement.

One important thing to note with dynamically generated subroutine pools is that
they are transient. In other words, you won’t find a subroutine pool with that name
in the ABAP Repository. The subroutine pool is only accessible within the internal
session of the program that created it.

3.4.2 Creating a Report Program

The process of creating a report program dynamically is very similar to the one
used to create a subroutine pool. The primary difference is the use of the INSERT
REPORT statement in lieu of the GENERATE SUBROUTINE POOL statement. The report
program ZREPORTDEMO in Listing 3.32 demonstrates how this works.

REPORT zreportdemo.
START-OF-SELECTION.

CONSTANTS: CO_REPORT_NAME TYPE program VALUE 'ZDYNREPT'.
DATA: lt_source_code TYPE TABLE OF string.

* Build the source code for the subroutine pool:
APPEND 'PROGRAM zdynrept.' TO lt_source_code.
APPEND 'WRITE: / 'Dynamic report code here...'.'
 TO lt_source_code.

108

Dynamic and Reflective Programming3

* Generate and invoke the report program:
INSERT REPORT CO_REPORT_NAME FROM lt_source_code.
IF sy-subrc EQ 0.
 SUBMIT (CO_REPORT_NAME) AND RETURN.
ELSE.
 WRITE: / 'The report could not be created.'.
ENDIF.

Listing 3.32 Dynamically Creating a Report Program

A very important thing to keep in mind when dynamically creating report pro-
grams is that these report programs are created as ABAP Repository objects. Among
other things, this implies that you could accidentally overwrite an existing report
program if you’re not careful to check the name beforehand.

3.4.3 Drawbacks to Dynamic Program Generation

The dynamic program creation techniques shown in this section are powerful
and can be dangerous if not used properly. Some of the drawbacks to using these
approaches include the following:

EE Slow performance due to the need for compilation of dynamically generated
code

EE Potential for overwriting existing report programs via the INSERT REPORT
statement

EE Possibility for uncatchable runtime errors due to syntax errors in the dynami-
cally generated code

EE Cumbersome and often error-prone generation of the program code

As such, these techniques should be saved as a last-ditch method for implementing
a particular requirement.

3.5 Summary

As you’ve seen, dynamic programming can be used to develop highly flexible
solutions. In particular, the use of reference types and dynamic type introspection
makes it easy to convert a piece of throwaway code into a self-contained module
that is easy to reuse. In the next chapter, we investigate the native support for
Unicode introduced in release 6.10 of SAP NetWeaver AS ABAP.

109

There’s nothing more frustrating than reading through a recipe and having
to perform conversions between different measurement standards. In the
field of computer science, it’s equally wearisome to process character data
that is encoded using different encoding schemes. In this chapter, we show
you how Unicode is leveling the playing field so that computers can work
with one universal standard when processing character data.

4 ABAP and Unicode

Human beings are wonderfully adept at thinking in terms of abstract concepts such
as languages, grammar, and alphabets. Unfortunately, computers lack the capa-
bility for this kind of creative expression. Therefore, for computers to be able to
work with text, specific rules must be established to define mundane details such
as what makes up a character. These rules are typically collectively referred to as
a character-encoding system.

In this chapter, we introduce you to the Unicode character-encoding system and
describe the impacts of Unicode support in many areas of ABAP development.
Once you’re familiar with these basic concepts, we teach you how to think in Uni-
code. Finally, we conclude our discussion by showing you how a series of utility
classes provided by SAP can be used to work with individual Unicode characters,
perform conversions between data encoded using different encoding systems, and
more.

4.1 Introduction to Character Codes and Unicode

Internally, computers represent all kinds of data in the binary format. As such,
there is no way for a computer to physically store character data directly. To get
around this basic limitation, early software researchers devised character-encoding
systems that assigned a discrete numeric value to a given character. On the surface,
such a solution seems relatively straightforward. However, almost 50 years later,
the concept of character-encoding remains a hotly contested subject among soft-

110

ABAP and Unicode4

ware engineers. In this section, we show you how Unicode is standardizing the
way that characters are represented in computers.

4.1.1 Understanding Character-Encoding Systems

As we mentioned earlier, a character-encoding system assigns a discrete numeric
value (called a code point) to each character within a given set of characters. This set
of characters is referred to as the encoding system’s character set. Frequently, you’ll
hear the term code page used when describing the table that maps the characters in
an encoding system’s character set to their assigned code point values.

Table 4.1 contains an excerpt from the ASCII1 code page, showing the code point
values for the English letters A-D. Of course, code pages map more than just let-
ters; they also map punctuation marks, numeric characters, symbols, control char-
acters, and so on. If you’re interested in seeing a comprehensive list of characters
defined in the ASCII character set, perform a keyword search online using the
phrase “ASCII table.”

Character Hex Value Decimal Value Binary Value

... … … …

A 41 65 0100 0001

B 42 66 0100 0010

C 43 67 0100 0011

D 44 68 0100 0100

... … … …

Table 4.1 Sample Excerpt from the ASCII Code Page

Now that you have a feel for how code pages are organized, let’s think about the
implications of all this from a storage perspective. Each character in an encoding
scheme’s character set is represented in memory using its assigned code point
value encoded in binary. Therefore, the letter A is represented with the value “0100
0001,” as shown in Table 4.1. In this case, only a single byte of memory is required
to store the letter A (e.g., 8 bits = 1 byte). Indeed, a single byte of memory can rep-
resent 28, or 256, different code points. Of course, as the character set grows, so

1 ASCII stands for American Standard Code for Information Interchange. The ASCII standard was
formally published as ISO/IEC 646 in 1972.

111

Introduction to Character Codes and Unicode 4.1

also does the amount of memory needed to represent the individual characters — a
concept we revisit in Section 4.1.3, What Is Unicode?

4.1.2 Limitations of Early Character-encoding Systems

One of the earliest character-encoding systems to gain widespread use was the
ASCII standard. Being developed in the United States, ASCII was based on the
ordering of the English alphabet. Initially, ASCII was intended to be part of an
international standard that shared common characters while reserving specific
ranges of code points for language-specific characters. However, while accep-
tance of this international standard took longer than expected, the ASCII standard
emerged as a worldwide standard almost by default.

The original ASCII standard defined 128 characters that could be represented using
7 bits. Over time, additional standards emerged that expanded on ASCII to define
character-encodings for other languages besides English — the most successful
of which was the ISO/IEC 8859 standard. The ISO/IEC 8859 standard defined an
8-bit encoding scheme that was split up into various parts: ISO 8859-1 for Western
European languages, ISO 8859-2 for Central European languages, and so on.

As more and more encoding systems were introduced, developers began to
encounter complex interoperability problems. For example, what if a file gener-
ated on an IBM mainframe system (which uses the EBCDIC2 standard) needs to be
processed on a PC system using the ASCII standard? Like the story of the Tower of
Babel, character-encoding systems confounded developers to the point that data
exchange was nearly impossible. Clearly, a better solution was needed, and that
solution was Unicode.

4.1.3 What Is Unicode?

Like ASCII and EBCDIC before it, Unicode is a character-encoding system. What
sets Unicode apart is that it was built from the ground up to support almost all of
the known writing systems in the world. As such, Unicode has a massive charac-
ter set (more than 100,000 characters at the time this book is being written) that
assigns discrete values to pretty much every character imaginable.

2 EBCDIC stands for Extended Binary Coded Decimal Interchange Code, an 8-bit character-encod-
ing system developed by IBM in the 1960s.

112

ABAP and Unicode4

One of the primary challenges with implementing a universal character set such as
Unicode is figuring out how to store every possible code point efficiently. Indeed,
some Unicode characters have assigned code point values that are so large that it
requires up to 4 bytes of memory to represent them. The common solution to this
problem has been to employ a variable-length character-encoding scheme. The term
“variable” here implies that a reduced number of bytes are required to represent
certain frequently used code points. For example, to simplify the conversion pro-
cess, the first 256 code points in the Unicode standard were taken directly from
the 8-bit ISO 8859-1 standard. Variable-length character-encodings can take advan-
tage of this fact by storing ASCII characters in a single byte, for example. Table 4.2
describes the common character-encodings used in Unicode.

Character-
encoding

Description

UTF-8 Variable-length encoding that encodes each character in the Unicode
standard using 1-4 bytes. Only 1 byte is required to represent ASCII
characters.

UTF-16 Variable-length encoding that encodes each character in the Unicode
standard using either 2 or 4 bytes. Most of the Unicode characters
identified thus far fall into the Basic Multilingual Plane (BMP). Each of
the characters in the BMP can be represented using 2 bytes. Therefore,
most of the time, UTF-16 only requires 2 bytes to represent a character.
However, characters outside of the BMP are represented using
surrogate pairs that split a code point value over 4 bytes.

UTF-32 Fixed-length encoding that encodes each character of the Unicode
standard using exactly 4 bytes. Though technically easier to work with,
UTF-32 is rarely used because of its massive storage requirements.

Table 4.2 Character-Encodings for Unicode

One aspect of the Unicode standard that is often ignored is the fact that it extends
its focus beyond simple encoding concerns to tackle more complex issues such
as classification, character relationships, and so on. These features make it easier
to identify the uppercase equivalent for a character, determine whether or not a
given character is a punctuation mark, and so on. In the past, developers often
resorted to the error-prone approach of hard-coding this information into their
programs. Today, modern languages such as .NET and Java are integrating these
aspects of character-encoding systems into string and character types so that devel-
opers have a standard way of performing these tasks.

113

Developing Unicode-Enabled Programs in ABAP 4.2

4.1.4 Unicode Support in SAP Systems

In the not-so-distant past, language support in an SAP system was a very tricky
proposition. During that time, characters from the set of languages supported by
SAP were encoded using single-byte encoding schemes (e.g., ASCII or EBCDIC)
or double-byte encoding schemes (e.g., SJIS for Japanese or BIG5 for traditional
Chinese). As described in Section 4.1.2, Limitations of Early Character-encoding
Systems, there were all kinds of compatibility issues associated with the exchange
of data between these disparate character sets. Recognizing these limitations, SAP
elected to tackle the daunting task of integrating native Unicode support into the
ABAP runtime environment. The fruits of this development effort were first real-
ized with release 6.10 of SAP NetWeaver AS ABAP.

To a large degree, this major addition to the architecture of SAP NetWeaver AS
ABAP flew in under the radar for many developers who didn’t really see any
noticeable difference in the majority of their everyday programming tasks. This
seamless transition was a result of a carefully laid out development plan that speci-
fied the following goals:

1. Maintain backward compatibility with non-Unicode systems.

2. Keep ABAP language changes to a minimum to reduce the effort involved in
converting non-Unicode systems/programs.

3. Make it easy to exchange data between Unicode and non-Unicode systems.

In recent years, Unicode support has gone from an optional installation task to a
mandatory one; in fact, as of the year 2007, all new SAP products must be installed
using Unicode. If you want to learn more about Unicode installations, technical
underpinnings, and so on, we highly recommend Unicode in SAP Systems (SAP
PRESS, 2007).

4.2 Developing Unicode-Enabled Programs in ABAP

One of SAP’s primary design goals during the Unicode integration process was to
minimize the impacts to the ABAP programming language as much as possible.
However, despite SAP’s best efforts to shield developers from character-encoding
issues, there are certain situations where you need to understand what is going on
from a Unicode perspective. In this section, we teach you how to recognize these
circumstances so that you can leverage special language extensions designed to
deal with these occurrences.

114

ABAP and Unicode4

4.2.1 Overview of Unicode-Related Changes to ABAP

Generally speaking, the impacts of the switch to Unicode from an ABAP perspec-
tive are limited to statements that make assumptions about the internal length of
a character. In the past, such statements always assumed that the length of a single
character was 1 byte. However, in a Unicode system, these suppositions don’t
hold true. These days, for instance, Unicode-enabled SAP systems are installed by
default using the UTF-16 encoding scheme. This implies that the byte size of an
individual character in a Unicode system can be either 2 bytes or 4 bytes.

Definition of Character Types in Unicode Systems

The complexity of variable-length encoding schemes such as UTF-8 and UTF-16
forced SAP to make some hard decisions regarding language constructs that had
loose requirements around what a character data type actually looks like. In the
end, it was decided that such vagaries should be deprecated and that only the fol-
lowing types should be treated as character data types:

EE C

EE N

EE D

EE T

EE STRING

For the most part, these character data types can be used in string processing
statements without restrictions. However, to reduce ambiguity in certain situa-
tions, many of these statements now allow you to specify a processing mode that
determines whether or not character-based processing or byte-based processing
should be used. For example, Listing 4.1 shows how the IN BYTE MODE addition
can be used to calculate the length of a character data object in bytes. In this case,
the ABAP Dictionary type AD_NAMEFIR is specified as CHAR(40), which means that
the size of the LV_NAME data object in bytes is 40 * 2 = 80.

DATA: lv_name TYPE ad_namefir VALUE 'Paige',
 lv_byte_len TYPE i.
DESCRIBE FIELD lv_name LENGTH lv_byte_len
 IN BYTE MODE.

Listing 4.1 Specifying Byte Processing Mode

115

Developing Unicode-Enabled Programs in ABAP 4.2

Listing 4.2 shows how the same DESCRIBE FIELD statement can be processed in
character mode using the IN CHARACTER MODE addition. In this case, the calculated
length of the LV_NAME data object is 40 characters, as you would expect.

DATA: lv_name TYPE ad_namefir VALUE 'Paige',
 lv_char_len TYPE i.
DESCRIBE FIELD lv_name LENGTH lv_char_len
 IN CHARACTER MODE.

Listing 4.2 Specifying Character Processing Mode

In addition to the elementary character types described previously, flat structures
that only contain components of type C, N, D, or T can also be used where elemen-
tary character types are expected in certain situations (e.g., in a WRITE statement,
etc.). Such structures can in turn contain substructures as long as the components
of the substructure are also of type C, N, D, or T.

Impacts to Structure Operations

Another subtle impact of Unicode support in the ABAP runtime environment is
that the alignment of complex data objects such as structures is different in a Uni-
code-enabled system as opposed to a non-Unicode system. These layout changes
are best described using an example. Consider the custom LS_STRUCT1 structure
defined in Listing 4.3. The LS_STRUCT1 structure type defines a couple of compo-
nents as well as a substructure called LS_STRUCT2. Because each of the components
defined in LS_STRUCT1 has been defined statically (i.e., without variable-length
types such as the STRING type), you might expect that the byte layout of this struc-
ture in memory would be contiguous. However, if you look carefully at Figure 4.1,
you’ll see that this assumption is incorrect. In a Unicode system, each character
data object must be positioned at a memory address that is divisible by 2 or 4. Fur-
thermore, data types such as the I data type, object reference types, and so on. also
require special alignments in memory. Therefore, structures containing these types
of components are padded internally using special alignment bytes. For instance, in
Figure 4.1, alignment bytes are used to align structure LS_STRUCT1, character data
object C, and integer data object D.

BEGIN OF ls_struct1,
 a(1) TYPE x,
 BEGIN OF ls_struct2,
 b(1) TYPE x,
 c(10) TYPE c,
 END OF ls_struct2,

116

ABAP and Unicode4

 d TYPE i,
END OF ls_struct1.

Listing 4.3 Understanding the Layout of Structured Types

LS_STRUCT 2

LS_STRUCT 1

a A b A dAc

Alignment Bytes

Figure 4.1 Alignment of Structures in a Unicode System

These alignment changes make assignments and comparisons between incompat-
ible structures impossible in Unicode systems. For instance, in a non-Unicode
system, the code excerpt shown in Listing 4.4 would work because a character
could fit inside a single byte. However, in a Unicode system, such an assignment
causes the ABAP syntax check to complain that the two structure objects aren’t
compatible.

DATA:
 BEGIN OF ls_struct1,
 a(1) TYPE c,
 b(1) TYPE x,
 END OF ls_struct1,

 BEGIN OF ls_struct2,
 a(1) TYPE c,
 b(1) TYPE c,
 END OF ls_struct2.

ls_struct1 = ls_struct2.

Listing 4.4 Incompatible Assignments Between Structure Types

117

Developing Unicode-Enabled Programs in ABAP 4.2

Other Changes

The Unicode-related changes described in this section represent some of the basic
adjustments that must be made to work with character data objects in a Unicode
system. As you get more comfortable with Unicode, we highly recommend that
you read through the ABAP Keyword Documentation to learn about other minor
syntax changes that have been incorporated into various ABAP statements. Fur-
ther information can also be found online in the SAP Help Portal at http://help.
sap.com.

4.2.2 Thinking in Unicode

As we mentioned at the beginning of this section, SAP strove to make the adoption
of Unicode in SAP NetWeaver AS ABAP as transparent as possible from a develop-
ment perspective. Therefore, in many ways, you have to work pretty hard to intro-
duce Unicode-related problems into your ABAP programs. However because the
Unicode conversion process allowed SAP to go back and clean up certain syntax
elements with ambiguous usage rules, there are particular programming practices
that should be avoided in the Unicode context. For the most part, the changes here
are quite intuitive as long as you maintain some perspective.

Avoiding the Use of Structured Fields as Character Types

In non-Unicode systems, there is an implicit rule that makes it possible for any
flat structure type to be used where character types are expected. With Unicode
systems, this rule has been constrained to only support the use of flat structures
whose components only consist of character types. Still, generally speaking, it’s
better to avoid using structured types for these purposes altogether. For example,
consider the code excerpt shown in Listing 4.5. Here, we’ve defined a flat struc-
tured field called LS_STRUCTURE that only contains character types as its compo-
nents. Technically, we can access this structure field using offset/length specifica-
tions, as we have done in the WRITE statement that outputs the current month
value embedded within the structure. However, if we decide to go back and add
in an integer component directly before FIELD2, the offset-based access causes a
syntax error because the length of the character type start of the structure has been
reduced to 10 characters (e.g., the length of the FIELD1 component).

DATA: BEGIN OF ls_structure,
 field1(10) TYPE c,
 field2 TYPE d,
 field3 TYPE t,
 END OF ls_structure.

118

ABAP and Unicode4

ls_structure-field1 = 'Andersen'.
ls_structure-field2 = sy-datum.
ls_structure-field3 = sy-uzeit.

WRITE: / 'Month is: ', ls_structure+14(2).

Listing 4.5 Offset/Length-Based Access to Flat Structures

The bottom line is that offset/length-based access to structured fields is a poor
programming practice that should be avoided regardless of whether the system is
a Unicode system. Not only will the avoidance of such practices make your code
more clear, but it will also guarantee that you won’t run into Unicode-related
access issues down the road.

Preventing Elusive Errors in Structure Operations

In Section 4.2.1, Overview of Unicode-Related Changes to ABAP, we learned about
the changes to the alignment of structures in Unicode systems. These alignment
modifications make the process of performing assignments and comparisons
between structures much more dicey than they were in the past. Generally speak-
ing, structure types are compatible as long as they have the same type and length.
However, the possibility for implicit and explicit type conversions makes the com-
patibility lines much more blurry. For example, consider the assignment shown
in Listing 4.6. Here, we’re assigning a structured type to an elementary character
type. This is allowed because the collective size of the structure fields FIELD1 and
FIELD2 matches the size of the LV_TARGET data object. However, if the LS_STRUC-
TURE type changes in incompatible ways, then the assignment is no longer allowed
between these two types.

DATA: lv_target(10) TYPE c,
 BEGIN OF ls_structure,
 field1(8) TYPE c,
 field2(2) TYPE n,
 field3 TYPE i,
 field4 TYPE f,
 END OF ls_structure.

lv_target = ls_structure.

Listing 4.6 Mixed Type Assignments in the Unicode Context

119

Developing Unicode-Enabled Programs in ABAP 4.2

As a rule, assignments between incompatible structure types should be avoided
in the Unicode context. Instead, it’s preferable to process these structure types
component-wise to guarantee compatibility. For more complex scenarios, such
logic should be encapsulated inside an ABAP Objects class that defines methods
that control the assignment/comparison process.

One step that you can take to maintain compatibility for structure types defined
in the ABAP Dictionary is to specify an enhancement category. This setting is main-
tained in the ABAP Dictionary (Transaction SE11) by selecting Extras • Enhance-
ment Category in the menu bar. Figure 4.2 shows the dialog screen enhancement
category maintenance screen for the BAPIRET2 type. From a Unicode perspective,
the selection of the Can Be Enhanced (Character-Type) or Cannot Be Enhanced
options makes sure that if the structure type is enhanced, it’s only enhanced to
include additional character types.

Figure 4.2 Enhancement Category for ABAP Dictionary Structures

120

ABAP and Unicode4

Thinking Outside of the Box

Besides ABAP-specific Unicode concerns, it’s also important that you maintain
a global perspective when interfacing with components/services outside of SAP
NetWeaver AS ABAP. For example, if you’re writing some kind of conversion pro-
gram that processes a text file, you need to take the encoding scheme of that file
into account whenever you read it. Similarly, if you’re generating a file in your
ABAP program, you need to think about how you want to encode it so that other
systems can process it. We explain more about these Unicode-related impacts in
Chapter 5, Working with Files.

Other examples of areas of the system impacted by Unicode include the RFC inter-
face (described in Chapter 16, Parallel and Distributed Processing with RFCs), the
Internet Communication Framework (described in Chapter 9, Web Programming
with the ICF), web-based programming in general, the output of text data in ABAP
lists, and so on. A good rule of thumb here is to always put on your Unicode hat
whenever text data is transferred between components. That way, you can be on
the lookout for configuration options/language extensions which ensure that data
is transferred reliably in and out of the SAP system.

4.2.3 Turning on Unicode Checks

To execute ABAP programs in a Unicode system, you must first set the Unicode
Checks Active flag shown in Figure 4.3. This setting is turned on by default for all
new development objects created in SAP NetWeaver AS ABAP systems, starting
with release 6.10. When this flag is active, the syntax check of the ABAP compiler
carefully inspects each ABAP statement to see if there are places where deprecated
syntax elements have been used.

If all else fails, the Unicode check represents a powerful safety net that can help
you avoid potential pitfalls with character processing operations. It can also come
in handy when you’re struggling to understand a particular processing rule. Here,
the definitive answer to a puzzling question may come from testing a piece of code
and determining whether or not it passes muster with the syntax check.

121

Working with Unicode System Classes 4.3

Figure 4.3 Turning on the Unicode Check in the ABAP Workbench

4.3 Working with Unicode System Classes

Besides the Unicode-specific changes added to the ABAP language specification,
SAP has also provided a series of system classes that can be used to make it easier
to work with Unicode data. In this section, we look at the services these classes
have to offer and show you how to use them to perform common tasks.

4.3.1 Converting External Data into ABAP Data Objects

Given the various types of encoding schemes employed by enterprise systems
these days, it’s important to have a toolset that can be used to reliably convert
external data into ABAP data objects. Fortunately, SAP provides the system class
CL_ABAP_CONV_IN_CE for this purpose. The UML class diagram depicted in Figure
4.4 shows the basic components of this class.

Before we dive into API-specific details of class CL_ABAP_CONV_IN_CE, it’s help-
ful to see how it can be used to perform a simple conversion. The ZCONVDEMO_IN
report program shown in Listing 4.7 converts a small chunk of binary data (e.g.,
the constant CO_EXTERNAL_DATA) into a STRING data object. The conversion process
consists of two steps:

122

ABAP and Unicode4

CL_ABAP_CONV_IN_CE

+ CREATE()
+ UCCP()
+ UCCPI()
+ CONVERT()
+ CONVERT_STRUC()
+ GET_BUFFER()
+ READ()
+ RESET()
+ SET_REPLACEMENT()
+ SKIP_C()
+ SKIP_X()

Figure 4.4 UML Class Diagram for CL_ABAP_CONV_IN_CE

1. First, we obtain a converter reference via a call to the factory method CREATE()
of class CL_ABAP_CONV_IN_CE. Here, notice how the ENCODING parameter can be
used to specify the encoding scheme of the external data (e.g., UTF-8, etc.).

2. After we have our converter reference, we can use the CONVERT() instance
method to convert the data into an ABAP data object. Because the exporting
parameter DATA is defined using the generic SIMPLE type, we can assign the con-
version result to any elementary type, including type STRING, as you can see
in Listing 4.7.

REPORT zconvdemo_in.
CLASS lcl_converter DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 convert_to_internal.

 PRIVATE SECTION.
 CONSTANTS:
 CO_EXTERNAL_DATA(16) TYPE x
 VALUE '4142415020616E6420556E69636F6465'.
ENDCLASS.

CLASS lcl_converter IMPLEMENTATION.
 METHOD convert_to_internal.
* Method-Local Data Declarations:
 DATA: lo_conv TYPE REF TO cl_abap_conv_in_ce,
 lv_result TYPE string.

* Convert from external format to internal format:
 TRY.
 WRITE: / 'Original Message:', CO_EXTERNAL_DATA.

123

Working with Unicode System Classes 4.3

* Create an instance of class CL_ABAP_CONV_IN_CE:
 lo_conv =
 cl_abap_conv_in_ce=>create(encoding = 'UTF-8').

* Call method CONVERT() to perform the conversion:
 CALL METHOD lo_conv->convert
 EXPORTING
 input = CO_EXTERNAL_DATA
 IMPORTING
 data = lv_result.

* Where LV_RESULT = "ABAP and Unicode"...
 WRITE: / 'Translated message:', lv_result.
 CATCH cx_parameter_invalid_range.
 CATCH cx_sy_codepage_converter_init.
 CATCH cx_sy_conversion_codepage.
 CATCH cx_parameter_invalid_type.
 ENDTRY.
 ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
 CALL METHOD lcl_converter=>convert_to_internal().

Listing 4.7 Converting External Data into ABAP Data Objects

When you execute the code in Listing 4.7, you’ll find that the converted message
stored in LV_RESULT is the string “ABAP and Unicode.” If you look carefully at the
raw data in CO_EXTERNAL_DATA, you can see each Unicode character encoded using
their assigned hexadecimal value. For example, the first two digits in CO_EXTERNAL_
DATA are 41; the exact same value assigned to the letter “A” in Table 4.1. Similarly,
the next two digits match the assigned value of letter “B,” and so on.

Given the fact that we were able to perform a data conversion using only the CRE-
ATE() and CONVERT() methods of class CL_ABAP_CONV_IN_CE, you might be wonder-
ing what the other instance methods are for. For the most part, these additional
methods support a stream-based processing model. In the stream-based model, a
set of bytes are placed inside the converter instance’s buffer via the INPUT param-
eter of method CREATE(). From here, the contents of the buffer are converted in
pieces via calls to method READ(). At any time, the contents of the buffer can be
read using the GET_BUFFER() method or refreshed using the RESET() method. You

124

ABAP and Unicode4

can also use the SKIP_C() and SKIP_X() methods to move the read position for-
ward a given number of characters or bytes.

In either processing model, you can specify a default replacement character that
the converter can use as a substitute for characters that can’t be represented in an
ABAP character object. This replacement character can be defined whenever the
converter is first created (using the REPLACEMENT parameter of method CREATE())
or via a call to method SET_REPLACEMENT().

So far, we’ve only described how to perform conversions using elementary ABAP
data types. However, it’s also possible to convert external data into flat structures
using the CONVERT_STRUC() method. The primary difference here is that the con-
verter must also be provided with metadata about the layout and organization
of the structure type being converted. This metadata is represented in the form
of an instance of class CL_ABAP_VIEW_OFFLEN. You can see examples of this type
of conversion in the class documentation available in the Class Builder for class
CL_ABAP_CONV_IN_CE.

4.3.2 Converting ABAP Data Objects into External Data Formats

To convert ABAP data objects into various external data formats, you use the ana-
log of the CL_ABAP_CONV_IN_CE class: class CL_ABAP_CONV_OUT_CE. As you can see
in the UML class diagram shown in Figure 4.5, the APIs of these two classes are
quite similar.

CL_ABAP_CONV_OUT_CE

+ CREATE()
+ UCCP()
+ UCCPI()
+ CONVERT()
+ CONVERT_STRUC()
+ GET_BUFFER()
+ RESET()
+ SET_REPLACEMENT()
+ WRITE()

Figure 4.5 UML Class Diagram for CL_ABAP_CONV_OUT_CE

The report program ZCONVDEMO_OUT shows how class CL_ABAP_CONV_OUT_CE can
be used to convert the string “ABAP and Unicode” into a UTF-8 encoded byte
sequence (see Listing 4.8).

REPORT zconvdemo_out.
CLASS lcl_converter DEFINITION.

125

Working with Unicode System Classes 4.3

 PUBLIC SECTION.
 CLASS-METHODS:
 convert_to_external.

 PRIVATE SECTION.
 CONSTANTS:
 CO_INTERNAL_DATA TYPE string
 VALUE 'ABAP and Unicode'.
ENDCLASS.

CLASS lcl_converter IMPLEMENTATION.
 METHOD convert_to_external.
* Local Data Declarations:
 DATA: lo_conv TYPE REF TO cl_abap_conv_out_ce,
 lv_buffer TYPE xstring.

 TRY.
 WRITE: / 'Original message:', CO_INTERNAL_DATA.

* Create an instance of class CL_ABAP_CONV_OUT_CE:
 lo_conv =
 cl_abap_conv_out_ce=>create(encoding = 'UTF-8').

* Perform the conversion:
 CALL METHOD lo_conv->convert
 EXPORTING
 data = CO_INTERNAL_DATA
 IMPORTING
 buffer = lv_buffer.

* Output the converted data:
 WRITE: / 'Converted data:', lv_buffer.
 CATCH cx_parameter_invalid_range.
 CATCH cx_sy_codepage_converter_init.
 CATCH cx_sy_conversion_codepage.
 CATCH cx_parameter_invalid_type.
 ENDTRY.
 ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
 CALL METHOD lcl_converter=>convert_to_external().

Listing 4.8 Converting ABAP Data Objects into External Formats

126

ABAP and Unicode4

Much like class CL_ABAP_CONV_IN_CE, class CL_ABAP_CONV_OUT_CE also supports
a stream-based processing model. Here, you can append ABAP data objects to
the internal buffer using the WRITE() method. You can then get the concatenated
results via a call to method GET_BUFFER(). The converter can be reset at any time
with the RESET() method.

4.3.3 Converting Between External Formats

Occasionally, you may find yourself caught in the middle between two differ-
ent encoding schemes. For example, imagine that you’re writing a program that
maps an input file encoded in UTF-8 to an output file encoded using ISO 8859-
1. In these situations, you can use class CL_ABAP_CONV_X2X_CE to perform the
necessary data conversions. Figure 4.6 shows the UML class diagram for class
CL_ABAP_CONV_X2X_CE.

CL_ABAP_CONV_X2X_CE

+ CREATE()
+ CONVERT_C()
+ COVNERT_D()
+ CONVERT_F()
+ CONVERT_I()
+ CONVERT_INT2()
+ CONVERT_N()
+ CONVERT_P()
+ CONVERT_T()
+ CONVERT_X()
+ GET_IN_BUFFER()
+ GET_OUT_BUFFER()
+ RESET()
+ SET_REPLACEMENT()
+ SKIP_C()
+ SKIP_X()
+ WRITE()

Figure 4.6 UML Class Diagram for CL_ABAP_CONV_X2X_CE

The ZCONVDEMO_INOUT report program shown in Listing 4.9 demonstrates how class
CL_ABAP_CONV_X2X_CE can be used to translate a piece of text encoded using UTF-8
into the ISO 8859-1 encoding scheme. The transformation process is carried out
as follows:

1. First, we take the sample text and encode it as a UTF-8 byte sequence using
class CL_ABAP_CONV_OUT_CE.

2. Next, we use the CREATE() factory method of class CL_ABAP_CONV_X2X_CE to
create an instance of the converter. As you can see, we’ve specified the input
encoding as UTF-8 and the output encoding as 1100. In this case, 1100 refers to

127

Working with Unicode System Classes 4.3

the SAP code page for the ISO 8859-1 encoding system. You can see a compre-
hensive list of installed code pages in the system using Transaction SCP.

3. Before we can actually perform the conversion, we need to calculate the num-
ber of characters represented by the UTF-8 byte stream. Here, we can use the
STRLEN() function to calculate the number of logical characters in the input
string. However, because the input stream could very well contain characters
in the surrogate area (e.g., the German o-umlaut, etc.), it’s important that we
pad this value to avoid truncation. In the example code, we’re multiplying
the number of logical characters by the size of the internal representation of
a character in the system. You’ll learn more about this in Section 4.3.4, Useful
Character Utilities.

4. After we determine the number of characters that need to be convert-
ed, we can perform the conversion using method CONVERT_C() of class
CL_ABAP_CONV_X2X_CE.

5. Lastly, we convert the results back into an ABAP STRING data object so that we
can verify that the characters were translated correctly.

REPORT zconvdemo_inout.
CLASS lcl_converter DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 convert_utf8_to_iso88591.
ENDCLASS.

CLASS lcl_converter IMPLEMENTATION.
 METHOD convert_utf8_to_iso88591.
* Method-Local Data Declarations:
 DATA:
 lv_utf8_string TYPE string,
 lv_strlen TYPE i,
 lo_conv_out TYPE REF TO cl_abap_conv_out_ce,
 lv_utf8_buffer TYPE xstring,
 lo_conv_x2x TYPE REF TO cl_abap_conv_x2x_ce,
 lv_8859_buffer TYPE xstring,
 lo_conv_in TYPE REF TO cl_abap_conv_in_ce,
 lv_8859_string TYPE string.

* Create some sample UTF-8 encoded data:
 CONCATENATE 'Lösungen für die täglichen Aufgaben'
 'der ABAP-Programmierung'

128

ABAP and Unicode4

 INTO lv_utf8_string SEPARATED BY SPACE.
 WRITE: / 'String as UTF-8:', 23 lv_utf8_string.

* Convert the UTF-8 data to ISO-88591:
 TRY.
* Create an instance of class CL_ABAP_CONV_OUT_CE:
 lo_conv_out =
 cl_abap_conv_out_ce=>create(encoding = 'UTF-8').

* Convert the input data into a UTF-8 byte sequence:
 CALL METHOD lo_conv_out->convert
 EXPORTING
 data = lv_utf8_string
 IMPORTING
 buffer = lv_utf8_buffer.

* Create an instance of class CL_ABAP_CONV_X2X_CE:
 lo_conv_x2x =
 cl_abap_conv_x2x_ce=>create(
 in_encoding = 'UTF-8'
 out_encoding = '1100' "SAP Code Page ISO 8859-1
 input = lv_utf8_buffer).

* Perform the conversion to the output format;
* First, we need to calculate the length of the UTF-8
* string in characters; Since function STRLEN() only
* returns a logical character count, we need to multiply
* this value by the internal size of a character in the
* system in order to avoid truncation.
 lv_strlen = strlen(lv_utf8_string).
 lv_strlen =
 lv_strlen * cl_abap_char_utilities=>charsize.

 lo_conv_x2x->convert_c(lv_strlen).
 lv_8859_buffer = lo_conv_x2x->get_out_buffer().

* Now, convert the data in the external format back into
* a STRING data object:
 lo_conv_in =
 cl_abap_conv_in_ce=>create(encoding = '1100').

 CALL METHOD lo_conv_in->convert
 EXPORTING

129

Working with Unicode System Classes 4.3

 input = lv_8859_buffer
 IMPORTING
 data = lv_8859_string.

* Output the converted data:
 WRITE: / 'String as ISO 8859-1:', lv_8859_string.
 CATCH cx_parameter_invalid_range.
 CATCH cx_sy_codepage_converter_init.
 CATCH cx_sy_conversion_codepage.
 CATCH cx_parameter_invalid_type.
 ENDTRY.
 ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
 CALL METHOD lcl_converter=>convert_utf8_to_iso88591().

Listing 4.9 Converting Between Different Encoding Schemes

We should point out that class CL_ABAP_CONV_X2X_CE can also be used to convert
numeric data between different number formats. For more details about this con-
version process, consult the class documentation for this class in the Class Builder
transaction.

4.3.4 Useful Character Utilities

Whenever you work with Unicode data, there are times when you need to deal
with individual characters. For example, imagine that you’re writing a Business
Server Page (BSP) application that has a form containing free-form text stored in an
HTML <textarea> input field. When this form is submitted, you want to extract
that text and store it in a format that is consistent with the one the user used when
he filled out the form (e.g., with the proper line breaks, etc.). However, because
the contents of the text area are concatenated together inside of a STRING data
object, you must split the text into pieces at each line break. To do so, you need a
way to represent the “Carriage Return” and “Line Feed” characters in Unicode.

Fortunately, SAP has provided a utility class called CL_ABAP_CHAR_UTILITIES that
defines a constant field named CR_LF that contains this value. Figure 4.7 contains
a UML class diagram that illustrates some of the other useful constants defined by
this class. As you can see, CL_ABAP_CHAR_UTILITIES also defines a method called
GET_SIMPLE_SPACES_FOR_CUR_CP() that provides a concatenated list of all of the
simple space characters for the current system code page.

130

ABAP and Unicode4

CL_ABAP_CHAR_UTILITIES

+ ENDIAN_TO_NUMBER_FORMAT()
+ NUMBER_FORMAT_TO_ENDIAN()
+ GET_SIMPLE_SPACES_FOR_CUR_CP()

+ BYTE_ORDER_MARK_LITTLE: X {readOnly}
+ BYTE_ORDER_MARK_BIG: X {readOnly}
+ BYTE_ORDER_MARK_UTF8: X {readOnly}
+ CHARSIZE: I {readOnly}
+ ENDIAN: C {readOnly}
+ MINCHAR: C {readOnly}
+ MAXCHAR: C {readOnly}
+ NEWLINE: C {readOnly}
+ CR_LF: C {readOnly}
...

Figure 4.7 UML Class Diagram for CL_ABAP_CHAR_UTILITIES

Though class CL_ABAP_CHAR_UTILITIES provides quite a few useful constants
that represent common Unicode characters, you may sometimes stumble across
a requirement where you need to deal with characters that are more obscure.
In these situations, you can use the UCCP() and UCCPI() methods of classes CL_
ABAP_CONV_OUT_CE and CL_ABAP_CONV_IN_CE to convert an ABAP character into a
Unicode code point value, and vice versa. The code excerpt in Listing 4.10 shows
how we’re using the UCCP() method of class CL_ABAP_CONV_OUT_CE to derive the
Unicode code point value assigned to the English letter “A” (U+0041). We can
then convert this code point value back into an ABAP character using the UCCP()
method of class CL_ABAP_CONV_IN_CE.

DATA: lv_char TYPE c,
 lv_code_point TYPE syhex02.
lv_code_point = cl_abap_conv_out_ce=>uccp('A').
lv_char = cl_abap_conv_in_ce=>uccp(lv_code_point).
IF lv_char EQ 'A'.
 WRITE: / 'Code point conversion worked.'.
ENDIF.

Listing 4.10 Converting Unicode Characters and Code Points

The UCCPI() methods of classes CL_ABAP_CONV_OUT_CE and CL_ABAP_CONV_IN_CE
work just like their UCCP() counterparts. The only difference is that the Unicode
code point value is represented as a decimal integer value as opposed to a hexa-
decimal one.

131

Summary 4.4

4.4 Summary

Support for Unicode is a welcome addition to SAP NetWeaver AS ABAP. As the
enterprise landscape evolves into a service-oriented architecture, the need for open-
ness and standardization is perhaps more important than ever before. We’ll see
evidence of this as we discuss interface technologies, and so on. — an investigation
that begins in the next chapter, in which we consider file-processing techniques
in ABAP.

PART II
Main Courses

135

No matter how complicated the recipe, food connoisseurs only care about
one thing: the finished product. Similarly, as software engineers, the qual-
ity of our work is measured by the usefulness of the output it generates.
Because one of the most common types of output generated by computers
comes in the form of files, this chapter shows you how to work with files in
ABAP.

5 Working with Files

In the database-centric world that is SAP, it isn’t uncommon to hear someone on
a project utter the phrase “just stick it in a Z-table” whenever the subject of data
storage comes up. However, there are times when database storage is simply not
practical. For instance, what if we need to transport some data outside of the SAP
landscape? One option here might be to store the data in a file and then transport
that file to its target destination using the File Transfer Protocol (FTP). Indeed,
there are many use cases where a file-based approach makes a lot of sense.

In this chapter, we explore the various file-processing capabilities available in
ABAP. Along the way, we investigate the impacts of Unicode support in ABAP as
it relates to file processing. Finally, we conclude our discussion by showing you
how to use the SAPFTP library provided by SAP to transmit files over the network
using FTP.

5.1 File Processing on the Application Server

The ABAP programming language offers extensive support for file processing,
which enables ABAP programs to access the file systems of the application server
host as well as the frontend workstation. In this section, we focus our attention on
file processing on the application server, showing you how to use the built-in file-
processing statements provided in ABAP. We consider file-processing techniques
on the frontend workstation in Section 5.5, File Processing on the Presentation
Server.

136

Working with Files5

5.1.1 Understanding the ABAP File Interface

You can create and manipulate files on an SAP NetWeaver AS ABAP application
server host using the ABAP file interface. The ABAP file interface is implemented in
the form of a series of built-in statements that perform basic file I/O operations. As
you’ll soon see, each of these statements works with an abstraction called a dataset.
You can think of a dataset as a kind of file handle that binds I/O operations to a
particular file. This distinction is important because it’s possible to have multiple
files open simultaneously within an ABAP program.

In the upcoming subsections, we investigate the ABAP file interface from a nuts-
and-bolts perspective. This introduction provides you with the foundation neces-
sary to work with files in your ABAP programs.

The OPEN DATASET Statement

To open a file in ABAP, you use the OPEN DATASET statement whose basic syntax is
shown in Listing 5.1. Here, the name of the file is specified in the dataset variable,
which is a character-type data object (i.e., type STRING, etc.). The file name stored
in dataset is platform-specific based on the underlying operating system running
the SAP NetWeaver AS ABAP. Therefore, it’s important to always use fully qualified
file names in dataset (i.e., a file name that is specified with a complete directory
path such as /home/sapfiles/somefile.txt) because the default directory varies from
system to system.1

OPEN DATASET dataset
 FOR [INPUT | OUTPUT | APPENDING | UPDATE]
 IN [TEXT MODE {options} | BINARY MODE] {options}].

Listing 5.1 Basic Syntax of the OPEN DATASET Statement

The FOR addition to the OPEN DATASET statement determines whether or not you
want to read, write, or update a file. Obviously, the behavior of the OPEN DATASET
statement varies depending upon the access mode that gets selected here. For
example, if the FOR OUTPUT addition is chosen, one of two things happens:

EE If the file specified in dataset doesn’t exist already, then the OPEN DATASET
statement creates it.

EE Otherwise, any previous content in the file is overwritten.

1 The default directory is configured in the profile parameter DIR_HOME. You can determine the
value of this parameter in your system by looking at Transaction RZ11.

137

File Processing on the Application Server 5.1

This same behavior is also produced with the FOR APPENDING addition. However, if
an attempt is made to open a non-existing file using the FOR INPUT or FOR UPDATE
additions, the OPEN DATASET statement produces an error. You’ll see how to deal
with these errors in a moment.

As you open a file using the OPEN DATASET statement, you also need to specify a
storage mode that determines how the ABAP file interface interprets the contents
of the file. Generally speaking, you have one of two options to choose from here:
TEXT MODE or BINARY MODE. If you’re unsure as to which option you should use,
see the following boxed section entitled “Text Files Versus Binary Files: What’s the
Difference?” We’ll also investigate certain Unicode-related aspects to working with
text files in Section 5.2, Working with Unicode.

Text Files versus Binary Files: What’s the Difference?

When it comes to file processing, many developers are often confused about the differ-
ence between plain text files and binary files. Amid all this confusion, it can be difficult
to choose the right tool to process a given type of file.

Strictly speaking, all files are technically binary files at heart (i.e., a collection of 1s
and 0s). To make sense of all this binary data, programmers develop file formats that
describe how the binary data is structured within the file. For example, the Rich Text
Format (RTF) is a file format that can be used to develop rich text documents (i.e., docu-
ments containing text that is formatted using particular types of fonts, etc.). As such,
RTF files contain plain text data as well as markup that describes how that text is format-
ted when it’s output to the screen, the printer, and so on.

So, what exactly is the difference between text files and binary files? Well, based on the
preceding definition — nothing. Technically, the contents of a text file are stored as a
series of 1s and 0s just like any other binary file. The question is, how do we represent
plain text content as a series of bytes? The solution to this problem is to use a character-
encoding system.

As you learned in Chapter 4, ABAP and Unicode, a character-encoding system assigns
numeric values to a set of characters that make up the encoding system’s character
set. For example, in the ASCII encoding scheme, the English letter “A” is assigned the
decimal value 65 (or the binary equivalent “0100 0001”). These numeric values make it
possible to represent character data in a binary format. In addition to the plain character
data, character-encoding systems also define a series of control characters that demar-
cate positions in a text object (e.g., carriage returns, line feeds, etc.). Collectively, these
control characters are interspersed with printable characters to represent the contents
of a text file. When a text file is saved, each character within it is substituted with its
assigned binary value as it is written to disk.

138

Working with Files5

The just mentioned ASCII standard is among the oldest and most popular encoding
schemes used to create text files. As such, developers sometimes mistakenly use the
terms “plain text files” and “ASCII files” synonymously. However, to be precise, an ASCII
file is just one of many different types of plain text files. Indeed, these days, many plain
text files are being encoded using the UTF-8 standard — a variable-length encoding for
Unicode.

Given the various types of encodings available, the ABAP file interface needs to know
the encoding scheme of a text file to be able to process it as text — otherwise, it’s just a
senseless blob of binary data. If the encoding scheme is known, the text data can easily
be converted to/from ABAP character data objects and processed accordingly.

The results of the OPEN DATASET statement can be determined by examining the
value of the SY-SUBRC system status variable. If the file was opened successfully,
SY-SUBRC has the value 0; otherwise, it has the value 8. You can extract additional
information about an error by using the MESSAGE addition of the OPEN DATASET
statement, as shown in the code excerpt in Listing 5.2. Here, an error occurs
because an invalid (empty) dataset was specified. Of course, the contents of the
actual error message produced vary from operating system to operating system.

DATA lv_message TYPE string.

OPEN DATASET '' FOR INPUT IN TEXT MODE MESSAGE lv_message.
IF sy-subrc EQ 8.
 MESSAGE lv_message TYPE 'E'.
ENDIF.

Listing 5.2 Capturing Error Information When Opening a File

One thing to be mindful of when using the OPEN DATASET statement is the fact
that it can trigger certain class-based exceptions at runtime. For example, if there
is insufficient access to the dataset in question, an exception of type CX_SY_FILE_
AUTHORITY is thrown. Therefore, it’s always a good idea to enclose the OPEN DATASET
statement inside of a TRY statement. For a comprehensive list of possible excep-
tions that can be raised, perform a keyword search on the OPEN DATASET statement
in the ABAP Keyword Documentation.

The TRANSFER Statement

To write data to a file, you use the TRANSFER statement. The syntax of the TRANS-
FER statement is shown in Listing 5.3. The semantics of this statement are fairly
intuitive. Here, we’re transferring the contents of the data object dobj to the open

139

File Processing on the Application Server 5.1

dataset object. The data object can be an elementary or flat structure type.2 After
the transfer operation, the file pointer is moved forward to point at the position
immediately following the data that was just added to the file.

TRANSFER dobj TO dataset
 [LENGTH length]
 [NO END OF LINE].

Listing 5.3 Syntax Diagram of the TRANSFER Statement

The LENGTH addition allows you to only copy a portion of the source data object
over to the dataset. For instance, if we were writing to a text file and dobj was
a STRING object, the LENGTH addition could be used to only transfer the first 20
characters of the string to the dataset. Similarly, the LENGTH addition can be used
to limit the number of bytes written to a binary file.

The NO END OF LINE addition is used when processing a file in text mode. This
addition can be used to omit the default end-of-line separator when writing a line
to a text file.

As is the case with any I/O operation, exceptions can occur when data is writ-
ten to a file. Consequently, the TRANSFER statement does trigger a series of catch-
able class-based exceptions. For more information about these exception types,
perform a keyword search on the TRANSFER statement in the ABAP Keyword
Documentation.

The READ DATASET Statement

You can read the contents of a file using the READ DATASET statement. This state-
ment expects the target data object to be either an elementary data type or a
flat structure type. Listing 5.4 shows the syntax diagram of the READ DATASET
statement.

READ DATASET dataset INTO dobj
 [MAXIMUM LENGTH mlen]
 [ACTUAL LENGTH alen].

Listing 5.4 Syntax Diagram for the READ DATASET Statement

2 The term flat structure type refers to structure types that only contain components that are
defined using fixed-length elementary types (which means that the variable-length STRING and
XSTRING types are excluded).

140

Working with Files5

The MAXIMUM LENGTH addition allows you to specify the maximum number of
characters or bytes that you want to read from the dataset at a time. The ACTUAL
LENGTH addition can be used to determine the number of characters or bytes that
are actually read from the dataset during a READ DATASET operation.

Much like the TRANSFER statement used to write data to files, the READ DATASET
statement can also produce catchable class-based I/O exceptions. For more infor-
mation about these exception types, perform a keyword search on the READ DATA-
SET statement in the ABAP Keyword Documentation.

The CLOSE DATASET Statement

To close a file, you use the analog of the OPEN DATASET statement: the CLOSE DATA-
SET statement. The syntax of the CLOSE DATASET statement is shown in Listing
5.5.

CLOSE DATASET dataset.

Listing 5.5 Syntax Diagram for the CLOSE DATASET Statement

Much like the OPEN DATASET statement, the results of the CLOSE DATASET statement
can be evaluated using the SY-SUBRC system status variable. The CLOSE DATASET
statement can also trigger a catchable class-based exception of type CX_SY_FILE_
CLOSE. This exception occurs if the system encounters an I/O error when it tries to
flush any remaining buffered data that is waiting to be written to the file before
it’s closed.

The DELETE DATASET Statement

If you need to delete a file, you can do so using the DELETE DATASET statement as
shown in Listing 5.6. If the delete operation is successful, the SY-SUBRC system
status variable will have the value 0; otherwise, it will have the value 4.

DELETE DATASET dataset.

Listing 5.6 Syntax Diagram for the DELETE DATASET Statement

In the event that there aren’t sufficient authorizations for deleting the dataset in
question, the DELETE DATASET statement triggers an exception of type CX_SY_FILE_
AUTHORITY. Similarly, if the dataset can’t be opened for deletion, an exception of
type CX_SY_FILE_OPEN is raised.

141

File Processing on the Application Server 5.1

5.1.2 Case Study: Processing Files with the ABAP File Interface

Now that you have a better understanding of the ABAP file interface and the state-
ments that make up its API, let’s consider some common file-processing use cases
and see how to implement them in ABAP. The following subsections demonstrate
how to create, read, and update files in ABAP.

Creating Files with the ABAP File Interface

Regardless of the programming language, the steps involved in creating a file are
pretty much the same.

1. First, you determine the name of the file you want to create and the directory
in which the file is stored.

2. Next, you open up that file in output mode.

3. Once the file is opened, you can begin writing data to it.

4. Finally, after all of the data has been written to the file, you close it.

To demonstrate how these basic steps correspond with the ABAP file interface,
let’s consider the sample report program called ZCREATEFILEDEMO in Listing 5.7.
This program generates a plain text file using the file name specified in the P_FILE
selection screen parameter.

REPORT zcreatefiledemo.
CLASS lcl_file_manager DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 create_file IMPORTING im_file TYPE string.

 PRIVATE SECTION.
 TYPES: BEGIN OF ty_record,
 id_number TYPE numc4,
 first_name TYPE ad_namefir,
 last_name TYPE ad_namelas,
 END OF ty_record.
ENDCLASS.

CLASS lcl_file_manager IMPLEMENTATION.
 METHOD create_file.
* Method-Local Data Declarations:
 DATA: lv_message TYPE string,
 ls_record TYPE ty_record.

142

Working with Files5

* Create a new text file and return a dataset that can be
* used as a handle for writing to the file:
 OPEN DATASET im_file FOR OUTPUT
 IN TEXT MODE ENCODING UTF-8
 WITH BYTE-ORDER MARK
 WITH SMART LINEFEED
 MESSAGE lv_message.

* Check the results:
 IF sy-subrc NE 0.
 MESSAGE lv_message TYPE 'I'.
 RETURN.
 ENDIF.

* Output a couple of records to the file:
 ls_record-id_number = '0001'.
 ls_record-first_name = 'Andersen'.
 ls_record-last_name = 'Wood'.
 TRANSFER ls_record TO im_file.

 ls_record-id_number = '0003'.
 ls_record-first_name = 'Paige'.
 ls_record-last_name = 'Wood'.
 TRANSFER ls_record TO im_file.

* Always be sure to close the file:
 CLOSE DATASET im_file.
 WRITE: / 'File', im_file, 'created successfully'.
 ENDMETHOD.
ENDCLASS.

PARAMETERS:
 p_file TYPE string LOWER CASE OBLIGATORY.

START-OF-SELECTION.
 CALL METHOD lcl_file_manager=>create_file(p_file).

Listing 5.7 Creating a Plain Text File in ABAP

As you can see in Listing 5.7, the heavy lifting in the ZCREATEFILEDEMO report pro-
gram is carried out by the CREATE_FILE method of class LCL_FILE_MANAGER. This
method performs the following steps:

143

File Processing on the Application Server 5.1

1. First, it creates a new file using the OPEN DATASET statement with the FOR OUT-
PUT addition. The name of the file is specified using the P_FILE selection screen
parameter. Here, the directory path specified in the P_FILE parameter exists
somewhere on the SAP NetWeaver AS ABAP host where this report program
will run. In Section 5.3, Logical Files and Directories, we show you how to
work with logical files and directories that abstract away the tedious details of
working with OS-specific directory structures.

2. Assuming the file is opened successfully, the CREATE_FILE method then writes
some data records to it using the TRANSFER statement. Because the dataset was
opened in text mode, we must use character data objects to output data to the
file. Here, we’re using a custom flat structure type called TY_RECORD to write
records to the file.

3. Finally, after all of the records are written to the file, the file is closed using the
CLOSE DATASET statement.

If you look carefully at the OPEN DATASET statement in Listing 5.7, you’ll notice that
we used a couple of optional additions to specify the way that we want to format
the contents of the text file that we’re creating. The ENCODING UTF-8 addition indi-
cates that we’re using the UTF-8 encoding scheme. You’ll learn more about this
option in Section 5.2, Working with Unicode. The WITH SMART LINEFEED addition
causes the end-of-line marker to be output according to the underlying operating
system of the SAP NetWeaver AS ABAP host (e.g., “CRLF” for MS Windows, “CR”
for UNIX, etc.). For more information about these options, as well as some legacy
syntax variants, perform a keyword search on the OPEN DATASET statement in the
ABAP Keyword Documentation.

Reading Files with the ABAP File Interface

As you learned in Section 5.1.1, Understanding the ABAP File Interface, you can
read data from files using the READ DATASET statement. This process is demon-
strated in the report program ZREADFILEDEMO contained in Listing 5.8.

REPORT zreadfiledemo.
CLASS lcl_file_manager DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 read_file IMPORTING im_file TYPE string.

 PRIVATE SECTION.
 TYPES: BEGIN OF ty_record,

144

Working with Files5

 id_number TYPE numc4,
 first_name TYPE ad_namefir,
 last_name TYPE ad_namelas,
 END OF ty_record.
ENDCLASS.

CLASS lcl_file_manager IMPLEMENTATION.
 METHOD read_file.
* Method-Local Data Declarations:
 DATA: lv_message TYPE string,
 ls_record TYPE ty_record,
 lv_chars TYPE i.

* Open up a text file and return a dataset that can be
* used as a handle for writing to the file:
 OPEN DATASET im_file FOR INPUT
 IN TEXT MODE ENCODING UTF-8
 MESSAGE lv_message.

* Check the results:
 IF sy-subrc NE 0.
 MESSAGE lv_message TYPE 'I'.
 RETURN.
 ENDIF.

* Read the contents of the file and display the results
* in the standard list:
 DO.
 READ DATASET im_file INTO ls_record
 ACTUAL LENGTH lv_chars.
 IF sy-subrc EQ 0.
 WRITE: / ls_record.
 WRITE: / 'Number of characters read:', lv_chars.
 SKIP.
 ELSE.
 EXIT.
 ENDIF.
 ENDDO.

* Always be sure to close the file:
 CLOSE DATASET im_file.
 ENDMETHOD. " METHOD read_file
ENDCLASS.

145

File Processing on the Application Server 5.1

PARAMETERS:
 p_file TYPE string LOWER CASE OBLIGATORY.

START-OF-SELECTION.
 CALL METHOD lcl_file_manager=>read_file(p_file).

Listing 5.8 Reading Files in ABAP

Looking carefully at the code in Listing 5.8, let’s consider how the input file is
being read step by step:

1. Inside the READ_FILE method, the target dataset is opened using the OPEN DATA-
SET statement. Here, we’re using the access mode FOR INPUT to specify that
we want to read from the file. For the purposes of this demonstration, let’s
assume that we’re using the same plain text file generated in the ZCREATEFILE-
DEMO report from Listing 5.7.

2. After the file is opened, the data records are read sequentially in a DO loop using
the READ DATASET statement. If the read operation is successful, we output the
record to the report list. In addition, we’re also outputting the number of char-
acters read in the READ DATASET operation. This value is calculated using the
ACTUAL LENGTH addition, as shown in Listing 5.8.

3. When the end of the file is reached, the subsequent READ DATASET statement
fails. We can detect this occurrence by evaluating the value of the SY-SUBRC sys-
tem status variable. If SY-SUBRC has a value other than 0, then our work is done,
and we can exit the DO loop using the EXIT statement.

4. Finally, it’s always important to remember to close the file using the CLOSE
DATASET statement.

Updating Files with the ABAP File Interface

For the most part, the process for updating a file is almost identical to that of cre-
ating a file. The primary difference is the use of the FOR APPENDING or FOR UPDATE
access modes in lieu of the FOR OUTPUT access mode used to create a file initially.
Here, it’s important to understand the behavior of each of these access modes:

EE The use of the FOR APPENDING addition causes the file pointer to be positioned
at the end of the file whenever it’s opened. Therefore, any data written to the
file using the TRANSFER statement is written after any existing data records.

146

Working with Files5

EE The use of the FOR UPDATE addition causes the file pointer to be positioned at
the beginning of the file. Therefore, unless the file pointer is repositioned
beforehand, any data written to the file using the TRANSFER statement over-
writes the existing content within the file.

In certain situations, you may not want to begin updating a file at the beginning
or ending positions. For example, if you wanted to append a record to an ordered
list, you would want to position the file cursor at the proper index before writing
out the record. In these circumstances, you can advance the file pointer in one of
two ways:

EE The file pointer can be set explicitly using the SET DATASET statement.

EE The READ DATASET statement can be used to advance the file pointer forward
line by line until you reach the position in the file that you want to edit.

Comparatively speaking, the SET DATASET statement gives you much more flex-
ibility when positioning the file pointer, allowing you to advance it to a particular
byte position within the file. Listing 5.9 shows the basic syntax of the SET DATASET
statement.

SET DATASET dataset
 [POSITION {position}|{END OF FILE}].

Listing 5.9 Syntax Diagram of the SET DATASET Statement

In addition to the SET DATASET statement, the ABAP file interface also provides
the analog GET DATASET statement that can be used to determine the current posi-
tion of the file pointer. The basic syntax of the GET DATASET statement is shown
in Listing 5.10.

GET DATASET dataset POSITION position.

Listing 5.10 Syntax Diagram of the GET DATASET Statement

The report program ZUPDATEFILEDEMO in Listing 5.11 shows how the update access
mode can be used to update the plain text file created via the report program ZCRE-
ATEFILEDEMO from Listing 5.7. Here, we’re updating the second record in the file
and then appending a new record onto the end of the file. As you can see, we’re
advancing the file pointer to the beginning of the second record using the READ
DATASET statement. For demonstration purposes, we’re also using the GET DATASET
statement to determine the actual byte position of the file pointer after the READ
DATASET statement is completed. After the file pointer is positioned in the right
spot, we can update the file using the TRANSFER statement, per usual.

147

File Processing on the Application Server 5.1

REPORT zupdatefiledemo.
CLASS lcl_file_manager DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 update_file IMPORTING im_file TYPE string.

 PRIVATE SECTION.
 TYPES: BEGIN OF ty_record,
 id_number TYPE numc4,
 first_name TYPE ad_namefir,
 last_name TYPE ad_namelas,
 END OF ty_record.
ENDCLASS.

CLASS lcl_file_manager IMPLEMENTATION.
 METHOD update_file.
* Method-Local Data Declarations:
 DATA: lv_message TYPE string,
 ls_record TYPE ty_record,
 lv_pointer TYPE i.

* Open up a text file and return a dataset that can be
* used as a handle for updating the file:
 OPEN DATASET im_file FOR UPDATE
 IN TEXT MODE ENCODING UTF-8
 WITH SMART LINEFEED
 MESSAGE lv_message.

* Check the results:
 IF sy-subrc NE 0.
 MESSAGE lv_message TYPE 'I'.
 RETURN.
 ENDIF.

* Read the first record in the file to advance the file
* pointer to the second record:
 READ DATASET im_file INTO ls_record.
 GET DATASET im_file POSITION lv_pointer.
 WRITE: / 'Current position after read:', lv_pointer.

* Overwrite the existing data record with a new one:
 ls_record-id_number = '0002'.
 ls_record-first_name = 'Andrea'.

148

Working with Files5

 ls_record-last_name = 'Wood'.
 TRANSFER ls_record TO im_file.

* Add another record to the end of the file:
 ls_record-id_number = '0003'.
 ls_record-first_name = 'Paige'.
 ls_record-last_name = 'Wood'.
 TRANSFER ls_record TO im_file.

* Always be sure to close the file:
 CLOSE DATASET im_file.
 ENDMETHOD. " METHOD update_file
ENDCLASS.

PARAMETERS:
 p_file TYPE string LOWER CASE OBLIGATORY.

START-OF-SELECTION.
* Update a file using the ABAP file interface:
 CALL METHOD lcl_file_manager=>update_file(p_file).

Listing 5.11 Updating Files in ABAP

5.2 Working with Unicode

SAP applications frequently need to exchange data with external systems that may
or may not use the same character-encoding scheme. As you learned in Chapter 4,
ABAP and Unicode, SAP has made it much easier to bridge these potential commu-
nication gaps by providing Unicode support in the ABAP programming language.
While SAP endeavored to make its Unicode support as transparent as possible to
the ABAP developer, there are still circumstances where you need to take on a
more active role in defining how the system will work with character data. This
is particularly true when it comes to processing text files that could be encoded
using many different encoding schemes. In this section, we examine areas of the
ABAP file interface where you need to put your Unicode hat on to make sure that
you’re processing text files correctly. We also look at a system class that you can
use to gather information about the encoding of a text file before you attempt to
process it.

149

Working with Unicode 5.2

5.2.1 Changes to the OPEN DATASET Statement to Support Unicode

Beginning with the arrival of Unicode support in SAP NetWeaver AS ABAP 6.10,
the OPEN DATASET statement was modified to require the specification of an encod-
ing scheme if a file is opened in text mode. Listing 5.12 shows the syntax addi-
tions that you can choose from to identify the encoding scheme used to process
a text file.

OPEN DATASET dataset
 FOR [INPUT | OUTPUT | APPENDING | UPDATE]
 IN TEXT MODE
 ENCODING {DEFAULT |
 UTF-8 [{SKIPPING|WITH} BYTE ORDER MARK] |
 NON-UNICODE}.

Listing 5.12 Specifying the Encoding Scheme for Text Files

Let’s consider each of these encoding options from Listing 5.12 in turn:

EE The DEFAULT addition causes the file to be handled using the UTF-8 encoding
scheme in Unicode systems and the default code page in non-Unicode
systems.

EE The UTF-8 addition selects the UTF-8 encoding scheme. Here, you have the
option of specifying how you want to handle the byte-order mark (BOM) at the
beginning of the file. A BOM is a special Unicode code point that defines the
endianness (or byte order) of the content that follows in the file.

EE The NON-UNICODE addition is used to select a non-Unicode code page in Unicode
systems or the default code page in non-Unicode systems.

These days, most programming environments use the UTF-8 encoding scheme by
default. Therefore, unless there’s a compelling reason to specify another encoding
scheme, it’s a good idea to specifically select the UTF-8 scheme using the ENCOD-
ING UTF-8 addition.

5.2.2 Using Class CL_ABAP_FILE_UTILITIES

In addition to the built-in Unicode support integrated into the statements that
make up the ABAP file interface, SAP also provides a very useful utility class called
CL_ABAP_FILE_UTILITIES that you can use to determine the encoding scheme of
a given file. Figure 5.1 contains a UML class diagram that shows the public class
methods provided by this class.

150

Working with Files5

CL_ABAP_FILE_UTILITIES

+ CHECK_FOR_BOM()
+ CHECK_UTF8()
+ CREATE_UTF8_FILE_WITH_BOM()
+ CHECK_STRING_7BIT_ASCII()

Figure 5.1 UML Class Diagram for Class CL_ABAP_FILE_UTILITIES

Table 5.1 describes the functionality of each of the methods listed in Figure 5.1
in more detail. You can also learn more about this class by reading the class docu-
mentation available in the Class Builder.

Method Name Description

CHECK_FOR_BOM() This method checks whether a file begins with
a BOM.

CHECK_UTF8() This method determines whether a file is
encoded using UTF-8. The MAX_KB parameter
can be used to limit the total number of
kilobytes scanned during the evaluation process.

CREATE_UTF8_FILE_WITH_BOM() This method creates an empty UTF-8 file
beginning with a BOM.

CHECK_STRING_7BIT_ASCII() This method determines whether a string
contains only ASCII characters.

Table 5.1 Description of Methods in Class CL_ABAP_FILE_UTILITIES

5.3 Logical Files and Directories

In the code examples demonstrated in Section 5.1, File Processing on the Appli-
cation Server, we defined our datasets using selection screen parameters that
required us to specify a fully qualified file path. While this sort of approach worked
for the purposes of a simple demonstration, it can be cumbersome to work with
in a productive environment. Ideally, we want to decouple our programs from
the underlying directory structure of the host operating system so that the two
can vary independently. For example, if a QA system needs to be migrated from
a Windows environment to a UNIX environment, then that change should be
transparent to the programs running on that system. Fortunately, SAP provides
an API that makes it very easy to abstract physical directory paths and file names
into logical ones.

151

Logical Files and Directories 5.3

5.3.1 Defining Logical Directory Paths and Files in Transaction FILE

The basis of the logical file API is a view cluster called FILENAME that consolidates
a series of maintenance tables together to define mappings between logical and
physical directory paths and file names. You can edit these relationships in Trans-
action FILE. When you initially execute Transaction FILE, you’re prompted with
the dialog box shown in Figure 5.2. This prompt is there to advise you that objects
maintained in Transaction FILE are cross-client configuration objects. Therefore, if
you change a logical file path in client 200, that change is also reflected in client
400, and so on.

Figure 5.2 Prompt Showing Logical File Paths Are Cross-Client

Figure 5.3 shows the initial screen of Transaction FILE. Within this transaction,
you can create logical file paths and logical file names and assign them to physical
directory paths and file names.

Figure 5.3 Initial View of Transaction FILE

152

Working with Files5

To understand the purpose/positioning of logical file paths and file names, it’s
useful to see how they are configured. This process begins with the definition of a
logical file path. The steps required to create a logical file path in Transaction FILE
are as follows:

1. When you first open Transaction FILE, the node Logical File Path Definition will
be selected within the Dialog Structure on the left side of the screen (see Figure
5.3). To create a new logical file path, click the New Entries button in the tool-
bar. This brings up the Create a Logical File Path editor view shown in Figure
5.4. The logical file path should be named using a customer namespace. When
you save your changes, you’re prompted for a transport request.

Figure 5.4 Creating a Logical File Path in Transaction FILE

2. After the logical file path is created, you can assign a physical path to it by
selecting your logical path and then double-clicking the Assignment of Physical
Paths to Logical Paths node in the Dialog Structure tree on the left side of the
screen. This brings up the screen shown in Figure 5.5.

Figure 5.5 Assigning a Physical Path to a Logical Path — Part 1

153

Logical Files and Directories 5.3

3. To create a new entry, click on the New Entries button in the toolbar to switch
the editor to edit mode. Figure 5.6 shows what this view looks like when we
create a physical path assignment for the logical path ZMYPATH.

Figure 5.6 Assigning a Physical Path to a Logical Path — Part 2

4. Here, you need to specify a physical directory path on the underlying SAP
NetWeaver AS ABAP host. Looking carefully at Figure 5.6, you can see that
we’ve appended a placeholder token called <FILENAME> to the end of the physi-
cal path location. This placeholder will be used to concatenate a file name to the
directory path at runtime.

5. In addition to the configuration of the physical path, you must also select a
syntax group that describes the syntax of the directory path. As you can see in
Figure 5.6, you can choose from various operating system flavors when assign-
ing a syntax group to the entry.

6. Finally, be sure to save your changes by clicking on the Save button.

After you finish creating a logical file path, you can begin defining logical file
names that are associated with that path by double-clicking on the Logical File
Name Definition, Cross-Client node in the Dialog Structure on the left side of the

154

Working with Files5

screen. This opens the logical file editor. To create a new entry, click on the New
Entries button in the toolbar. This brings up the input mask shown in Figure 5.7.

Figure 5.7 Defining a Logical File Name in Transaction FILE

To define a logical file name, you must specify the following:

EE In the Logical File field, you must enter a unique logical file name. Here, as with
logical file paths, you must prefix the name using a valid customer namespace.

EE The Name field can be used to provide an optional description of the logical file
name.

EE In the Physical file field, you specify the physical file name that you want to
generate for the logical file at runtime. Here, you have the option of entering
special placeholder variables that are replaced with parameter values at runtime
when the file name is generated. For example, in Figure 5.7, the physical file
name is using the <DATE> and <TIME> variables to add a timestamp onto the end
of the file name. For a comprehensive list of options to choose from, place your
cursor in the Physical File field, and press the [F1] key to bring up the context-
sensitive help documentation.

EE In the Data Format field, you can specify the type of the file you’re working
with. You can use the [F4] value help to guide your selection process.

EE The Application Area field is used to assign the logical file to a particular appli-
cation area within the system (see Transaction SE81 for more details).

EE Finally, in the Logical Path field, you must assign the logical file name to a logi-
cal path. In Figure 5.7, for example, we’ve assigned the ZMYFILE logical file
name to the ZMYPATH logical directory path created earlier.

155

Logical Files and Directories 5.3

5.3.2 Working with the Logical File API

After you’ve created a logical directory path and file name, you can work with
those abstractions in your programs using the API functions provided in function
group SFIL. These functions are described in Table 5.2. Additional documentation
can be found in the Function Module Documentation available in the Function
Builder (Transaction SE37).

Function Name Description

FILE_GET_NAME This function derives a fully qualified file
name using a logical file name configured in
Transaction FILE.

FILE_GET_NAME_AND_LOGICAL_PATH This function works just like FILE_GET_NAME
but also returns the name of logical paths
associated with the logical file.

FILE_GET_NAME_USING_PATH This function derives a fully qualified file
name dynamically using a logical directory
path and a file name.

Table 5.2 API Functions of Function Group SFIL

The API functions listed in Table 5.2 are very straightforward to use. To demon-
strate this, let’s revise the ZCREATEFILEDEMO report to use a logical file name in lieu
of a hard-coded one. The ZCREATEFILEDEMO2 report shown in Listing 5.13 is almost
identical to the one we reviewed in Listing 5.7. However, if you look carefully at
the bolded section, you can see where we derive the dataset name at runtime via
a call to function FILE_GET_NAME.

REPORT zcreatefiledemo2.
CLASS lcl_file_manager DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 create_file IMPORTING im_logical_file
 TYPE filename-fileintern.

 PRIVATE SECTION.
 TYPES: BEGIN OF ty_record,
 id_number TYPE numc4,
 first_name TYPE ad_namefir,
 last_name TYPE ad_namelas,
 END OF ty_record.
ENDCLASS.

156

Working with Files5

CLASS lcl_file_manager IMPLEMENTATION.
 METHOD create_file.
* Method-Local Data Declarations:
 DATA: lv_dataset TYPE string,
 lv_message TYPE string,
 ls_record TYPE ty_record.

* Derive the physical file name for the provided
* logical file:
 CALL FUNCTION ‘FILE_GET_NAME’
 EXPORTING
 logical_filename = im_logical_file
 IMPORTING
 file_name = lv_dataset
 EXCEPTIONS
 file_not_found = 1
 others = 2.

 IF sy-subrc NE 0.
 MESSAGE ‘Invalid logical file name!’ TYPE ‘I’.
 RETURN.
 ENDIF.

* Create a new text file and return a dataset that can be
* used as a handle for writing to the file:
 OPEN DATASET lv_dataset FOR OUTPUT
 IN TEXT MODE ENCODING UTF-8
 WITH BYTE-ORDER MARK
 WITH SMART LINEFEED
 MESSAGE lv_message.

* Check the results:
 IF sy-subrc NE 0.
 MESSAGE lv_message TYPE 'I'.
 RETURN.
 ENDIF.

* Output a couple of records to the file:
 ls_record-id_number = '0001'.
 ls_record-first_name = 'Andersen'.
 ls_record-last_name = 'Wood'.
 TRANSFER ls_record TO lv_dataset.

157

File Compression with ZIP Archives 5.4

 ls_record-id_number = '0003'.
 ls_record-first_name = 'Paige'.
 ls_record-last_name = 'Wood'.
 TRANSFER ls_record TO lv_dataset.

* Always be sure to close the file:
 CLOSE DATASET lv_dataset.
 WRITE: / 'File', lv_dataset, 'created successfully'.
 ENDMETHOD.
ENDCLASS.

PARAMETERS:
 p_file TYPE filename-fileintern DEFAULT 'ZMYFILE'
 OBLIGATORY.

START-OF-SELECTION.
 CALL METHOD lcl_file_manager=>create_file(p_file).

Listing 5.13 Using Logical File Names to Derive a Dataset

In the example code shown in Listing 5.13, we’re using the logical file name ZMY-
FILE to derive our dataset name. As you may recall from Section 5.3.1, Defining
Logical Directory Paths and Files in Transaction FILE, we defined this logical file
name using the pattern sample_<DATE><TIME>.txt. At runtime, function FILE_GET_
NAME replaces the <DATE> and <TIME> placeholder variables with the system date
and time, yielding a file name such as sample_20090619095443.txt. This derived
file name is then concatenated with the physical directory associated with the
logical directory path that is mapped to the logical file name to generate a fully
qualified file name.

The usage scenarios for the other function modules in function group SFIL are
very similar to that of FILE_GET_NAME. Collectively, this API greatly simplifies the
process of defining and working with logical directory paths and file names so that
programs can remain as system-independent as possible.

5.4 File Compression with ZIP Archives

One of the troubling aspects of working with files is that, if you’re not careful, you
can accumulate a lot of them. And, if some of those files happen to be fairly large,

158

Working with Files5

you may find that you’re starting to run out of available disk space sooner rather
than later. One common technique for dealing with these kinds of problems is to
compress the files together in an archive file.

The ZIP file format defines the structure of an archive file that contains one or more
files that may or may not be compressed to reduce the overall file size. Internally,
the compression algorithms can be pretty complex. Fortunately, ABAP provides a
series of system classes that makes it very easy to create and work with ZIP files.

5.4.1 The ABAP ZIP File API

The primary interface into the ABAP ZIP file-processing framework is the CL_ABAP_
ZIP class. Figure 5.8 shows the URL class diagram for class CL_ABAP_ZIP.

CL_ABAP_ZIP

+ LOAD()
+ SAVE()
+ GET()
+ ADD()
+ DELETE()
+ CRC32()
+ SPLICE()

+ FILES: T_FILES

Figure 5.8 UML Class Diagram for CL_ABAP_ZIP

If you aren’t very familiar with the ZIP file format or haven’t worked with ZIP
files programmatically before, then some explanation is probably in order. Table
5.3 provides a more in-depth description of each of the methods defined in class
CL_ABAP_ZIP. In the following sections, we’ll see how to use these methods to
perform some common ZIP file-processing tasks.

Method Name Description

LOAD() This instance method loads a ZIP archive into context.

SAVE() This instance method extracts the raw binary content of the ZIP
archive (as an XSTRING data object) so that the archive file can be
stored externally.

GET() This instance method reads a file from the ZIP archive, returning
the contents of the file as an XSTRING binary payload.

ADD() This instance method adds a file to the ZIP archive.

Table 5.3 Description of Methods in Class CL_ABAP_ZIP

159

File Compression with ZIP Archives 5.4

Method Name Description

DELETE() This instance method removes a file from the ZIP archive.

CRC32() This class method calculates a CRC-32 checksum that is used to
make sure that file data isn’t corrupted when it’s decompressed,
and so on.

SPLICE() This class method splices a ZIP file apart to extract metadata about
the individual file entries. This metadata can then be used as a key
to read the individual files.

Table 5.3 Description of Methods in Class CL_ABAP_ZIP (Cont.)

5.4.2 Creating a ZIP File

To demonstrate the process of creating a ZIP file using the CL_ABAP_ZIP class, let’s
consider an example. Imagine that we want to zip up some files stored in the logi-
cal directory ZMYPATH created in Section 5.3.1, Defining Logical Directory Paths and
Files in Transaction FILE. The steps required to carry out this task are as follows:

1. First, we need to come up with a list of the files in the specified logical directory
path that we want to add to the ZIP archive.

2. Next, we need to read the contents of those files into an internal table keyed by
the file name. Here, even if the file happens to be a plain text file, the file must
be read in binary mode because ZIP files store their constituent files in binary
format.

3. Then, we create an instance of class CL_ABAP_ZIP using the CREATE OBJECT
statement.

4. After the CL_ABAP_ZIP instance is created, we can add entries to the ZIP archive
using the ADD() method. The ADD() method defines two importing parameters
called NAME and CONTENT that are used to specify the file’s name and binary pay-
load, respectively.

5. After all of the files have been added to the ZIP file, we can extract its binary
payload via a call to the SAVE() method. This payload is captured in the form of
an XSTRING data object. Because some of the files could be large, it’s always best
to convert this payload into a series of smaller chunks so that we can transfer the
content to the target ZIP file using smaller I/O operations. This can be achieved
via a call to standard function module SCMS_XSTRING_TO_BINARY.

160

Working with Files5

6. Finally, we can create the target ZIP file by opening the file for output in
binary mode and copying the ZIP file chunks to the file using the TRANSFER
statement.

A complete implementation of this logic can be found in the sample report pro-
gram ZCREATEZIPFILE, in the source code bundle for this book available online.
However, if you’re eager to see how these steps are implemented in the code, List-
ing 5.14 contains the relevant excerpts from report ZCREATEZIPFILE so that you
can see what’s going on.

REPORT zcreatezipfile.
CLASS lcl_compressor DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 archive_directory
 IMPORTING im_path TYPE filename-pathintern
 im_zip_file TYPE string.

 PRIVATE SECTION.
 CLASS-DATA:
 physical_path TYPE char40,
 files TYPE STANDARD TABLE OF rsfillst.

 CLASS-METHODS:
 get_directory_files IMPORTING im_path
 TYPE filename-pathintern
 RAISING cx_sy_file_io,
 compress_files IMPORTING im_zip_file TYPE string
 RAISING cx_sy_file_io,
 read_directory_file IMPORTING im_file TYPE rsfillst
 EXPORTING ex_contents TYPE xstring
 RAISING cx_sy_file_io.
ENDCLASS.

CLASS lcl_compressor IMPLEMENTATION.
 METHOD archive_directory.
* Method-Local Data Declarations:
 DATA: lo_exception TYPE REF TO cx_sy_file_io,
 lv_message TYPE string.

 TRY.
* First, we need to determine the files that we want
* to archive:

161

File Compression with ZIP Archives 5.4

 get_directory_files(im_path).

* Then, we can go ahead and compress the files into
* a ZIP archive:
 compress_files(im_zip_file).
 CATCH cx_sy_file_io INTO lo_exception.
 lv_message = lo_exception->get_text().
 MESSAGE lv_message TYPE 'I'.
 ENDTRY.
 ENDMETHOD. " METHOD archive_directory

 METHOD get_directory_files.
 ...
 ENDMETHOD. " METHOD get_directory_files

 METHOD compress_files.
* Method-Local Data Declarations:
 DATA: lo_zip TYPE REF TO cl_abap_zip,
 lv_name TYPE string,
 lv_content TYPE xstring,
 lv_zip_content TYPE xstring,
 lv_dataset TYPE string,
 lt_zip_payload TYPE STANDARD TABLE OF x255.
 FIELD-SYMBOLS:
 <lfs_file> LIKE LINE OF files,
 <lfs_zip_chunk> LIKE LINE OF lt_zip_payload.

* Create an instance of the ZIP library utility:
 CREATE OBJECT lo_zip.

* Add each of the selected files to the ZIP archive:
 LOOP AT files ASSIGNING <lfs_file>.
* Read the raw contents of the selected file:
 CALL METHOD read_directory_file
 EXPORTING
 im_file = <lfs_file>
 IMPORTING
 ex_contents = lv_content.

* Add the file to the ZIP archive:
 lv_name = <lfs_file>-name.

 CALL METHOD lo_zip->add

162

Working with Files5

 EXPORTING
 name = lv_name
 content = lv_content.
 ENDLOOP.

* Extract the raw ZIP content into a binary payload:
 lv_zip_content = lo_zip->save().

* Convert the ZIP byte string into binary chunks:
 CALL FUNCTION 'SCMS_XSTRING_TO_BINARY'
 EXPORTING
 buffer = lv_zip_content
 TABLES
 binary_tab = lt_zip_payload.

* Now create the physical ZIP file:
 CONCATENATE physical_path im_zip_file INTO lv_dataset.
 OPEN DATASET lv_dataset FOR OUTPUT IN BINARY MODE.
 IF sy-subrc NE 0.
 RAISE EXCEPTION TYPE cx_sy_file_io
 EXPORTING
 errorcode = sy-subrc
 errortext = 'Could not create ZIP file!'.
 ENDIF.

 LOOP AT lt_zip_payload ASSIGNING <lfs_zip_chunk>.
 TRANSFER <lfs_zip_chunk> TO lv_dataset.
 ENDLOOP.

 CLOSE DATASET lv_dataset.
 ENDMETHOD. " METHOD compress_files

 METHOD read_directory_file.
 ...
 ENDMETHOD. " METHOD read_directory_file
ENDCLASS.

PARAMETERS:
 p_path TYPE pathintern DEFAULT 'ZMYPATH' OBLIGATORY,
 p_zip TYPE string LOWER CASE DEFAULT 'archive.zip'
 OBLIGATORY.

START-OF-SELECTION.

163

File Compression with ZIP Archives 5.4

 "Zip up all the files in the selected directory:
 CALL METHOD lcl_compressor=>archive_directory
 EXPORTING
 im_path = p_path
 im_zip_file = p_zip.

Listing 5.14 Creating a ZIP File Using Class CL_ABAP_ZIP

5.4.3 Reading a ZIP File

Now that you have a feel for how ZIP files are put together, let’s look at how we
would unpack an archive using the CL_ABAP_ZIP class:

1. First, the raw binary contents of the ZIP file must be read into context. This can
be accomplished using the ABAP file interface, per usual.

2. Next, we must load the raw binary contents of the ZIP file into a new instance
of class CL_ABAP_ZIP. The load process is performed by the LOAD() instance
method.

3. After the contents are loaded into the ZIP file instance, we can iterate through
each of the embedded files using the metadata stored in the public, read-only
FILES attribute of class CL_ABAP_ZIP. This metadata provides, among other
things, the names of the embedded files. These file names can be used as a key
in a call to instance method GET() to retrieve the raw contents of an embedded
file. The raw contents are returned in the form of an XSTRING data object.

4. Once again, we need to split up the raw payload into manageable chunks using
the function module SCMS_XSTRING_TO_BINARY.

5. Finally, we can output the binary payload of the file using the ABAP file
interface.

In the source code bundle available online, we’ve provided a complete implemen-
tation of this logic in a report program called ZREADZIPFILE. The code excerpt in
Listing 5.15 hits on some of the high points of this program so that you can get a
feel for how the API calls work.

REPORT zreadzipfile.
CLASS lcl_zip_utils DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 unzip_file
 IMPORTING im_path TYPE filename-pathintern

164

Working with Files5

 im_zip TYPE string.

 PRIVATE SECTION.
 CLASS-DATA:
 physical_path TYPE string.

 CLASS-METHODS:
 get_physical_path
 IMPORTING im_path TYPE filename-pathintern
 RAISING cx_sy_file_io,
 read_zip_file
 IMPORTING im_zip TYPE string
 EXPORTING ex_payload TYPE xstring
 RAISING cx_sy_file_io,
 write_file
 IMPORTING im_file TYPE string
 im_payload TYPE xstring
 RAISING cx_sy_file_io.
ENDCLASS.

CLASS lcl_zip_utils IMPLEMENTATION.
 METHOD unzip_file.
* Method-Local Data Declarations:
 DATA: lv_payload TYPE xstring,
 lo_zip TYPE REF TO cl_abap_zip,
 lv_message TYPE string,
 lo_exception TYPE REF TO cx_sy_file_io.
 FIELD-SYMBOLS:
 <lfs_file> TYPE cl_abap_zip=>t_file.

* Unpack the selected ZIP file in its own directory:
 TRY.
* Determine the physical directory path for the file:
 get_physical_path(im_path).

* Read the contents of the ZIP file into context:
 CALL METHOD read_zip_file
 EXPORTING
 im_zip = im_zip
 IMPORTING
 ex_payload = lv_payload.

* Load the contents of the ZIP file into an instance

165

File Compression with ZIP Archives 5.4

* of class CL_ABAP_ZIP:
 CREATE OBJECT lo_zip.

 CALL METHOD lo_zip->load
 EXPORTING
 zip = lv_payload
 EXCEPTIONS
 zip_parse_error = 1
 others = 2.

 IF sy-subrc NE 0.
 RAISE EXCEPTION TYPE cx_sy_file_io
 EXPORTING
 errorcode = sy-subrc
 errortext = 'The ZIP file could not be loaded.'.
 ENDIF.

* Extract each embedded file in the ZIP archive:
 LOOP AT lo_zip->files ASSIGNING <lfs_file>.
* Get the next file in the ZIP archive:
 CLEAR lv_payload.

 CALL METHOD lo_zip->get
 EXPORTING
 name = <lfs_file>-name
 IMPORTING
 content = lv_payload
 EXCEPTIONS
 zip_index_error = 1
 zip_decompression_error = 2
 others = 3.

 IF sy-subrc NE 0.
 CONCATENATE 'Could not read file' <lfs_file>-name
 INTO lv_message SEPARATED BY space.
 RAISE EXCEPTION TYPE cx_sy_file_io
 EXPORTING
 errorcode = sy-subrc
 errortext = lv_message.
 ENDIF.

* Output the decompressed file in the current
* directory:

166

Working with Files5

 CALL METHOD write_file
 EXPORTING
 im_file = <lfs_file>-name
 im_payload = lv_payload.
 ENDLOOP.
 CATCH cx_sy_file_io INTO lo_exception.
 lv_message = lo_exception->get_text().
 MESSAGE lv_message TYPE 'I'.
 RETURN.
 ENDTRY.
 ENDMETHOD. " METHOD unzip_file

 METHOD get_physical_path.
 ...
 ENDMETHOD. " METHOD get_physical_path

 METHOD read_zip_file.
 ...
 ENDMETHOD. " METHOD read_zip_file

 METHOD write_file.
 ...
 ENDMETHOD. " METHOD write_file
ENDCLASS.

PARAMETERS:
 p_path TYPE filename-pathintern DEFAULT 'ZMYPATH'
 OBLIGATORY,
 p_zip TYPE string DEFAULT 'archive.zip' LOWER CASE
 OBLIGATORY.

START-OF-SELECTION.
* Unpack the selected ZIP archive file:
 CALL METHOD lcl_zip_utils=>unzip_file
 EXPORTING
 im_path = p_path
 im_zip = p_zip.

Listing 5.15 Unpacking a ZIP File Using Class CL_ABAP_ZIP

167

File Processing on the Presentation Server 5.5

5.5 File Processing on the Presentation Server

Normally, whenever we work with files in ABAP, we’re dealing with files that
reside on some directory that is accessible on SAP NetWeaver AS ABAP host.
However, sometimes we run into situations where we need to either upload or
download a file from/to the SAP GUI presentation tier client. This remote transport
is made possible using the RFC protocol.

In the past, file transfer between the application and presentation tiers was
achieved using various function modules defined in the GRAP function group.
However, as of SAP NetWeaver AS ABAP 6.10, these function modules have been
deprecated in favor of an ABAP Objects class called CL_GUI_FRONTEND_SERVICES.
In the following subsections, we introduce you to some of the services provided
by this class and show you how to use them to upload and download files from/
to the presentation tier.

5.5.1 Interacting with the SAP GUI via CL_GUI_FRONTEND_
SERVICES

Class CL_GUI_FRONTEND_SERVICES provides many useful methods for interfacing
with the SAP GUI frontend. Figure 5.9 contains a UML class diagram that shows
some of the methods that can be used to work with files and directories on the
frontend client. You can find out more information about these methods in the
class documentation available for this class in the Class Builder.

CL_GUI_FRONTEND_SERVICES

...
+ DIRECTORY_BROWSE()
+ DIRECTORY_CREATE()
+ DIRECTORY_DELETE()
+ DIRECTORY_EXIST()
+ DIRECTORY_LIST_FILES()
+ FILE_COPY()
+ FILE_DELETE()
+ FILE_EXIST()
+ FILE_GET_ATTRIBUTES()
+ FILE_GET_SIZE()
+ FILE_OPEN_DIALOG()
+ FILE_SAVE_DIALOG()
+ GET_DESKTOP_DIRECTORY()
+ GET_FILE_SEPARATOR()
+ GUI_DOWNLOAD()
+ GUI_UPLOAD()
...

Figure 5.9 UML Class Diagram of CL_GUI_FRONTEND_SERVICES

168

Working with Files5

5.5.2 Downloading a File

To download a file to the SAP GUI frontend, you can use the class method GUI_
DOWNLOAD() of class CL_GUI_FRONTEND_SERVICES. To invoke this method, you must
specify a target file name as well as an internal table that contains the contents of
the file that is being downloaded. In addition, this method also defines various
other parameters that you can use to specify how the file is output, and so on.

Because an ABAP program running on a remote application server doesn’t know
much about the SAP GUI client it’s servicing, the file name used in the call to
method GUI_DOWNLOAD() is normally specified by the user. You can simplify this
selection process for the user using the method FILE_SAVE_DIALOG() of class CL_
GUI_FRONTEND_SERVICES. This class method displays a Save As dialog box, as shown
in Figure 5.10. Users can then navigate within this dialog box to locate the target
directory where they want to store the file.

Figure 5.10 Displaying a Save As Dialog Box in the SAP GUI

The report program ZDOWNLOADFILE presented in Listing 5.16 shows how the ser-
vice methods of class CL_GUI_FRONTEND_SERVICES can be used to download a file

169

File Processing on the Presentation Server 5.5

to a user’s local machine. In this simple example, we’re generating a comma-
separated values (CSV) file containing the records in the SCARR database table.
Users can select the name of the file they want to create by using the [F4] Value
Help attached to the selection screen parameter p_file. Here, we’re using the AT
SELECTION-SCREEN ON VALUE-REQUEST event module as a trigger for calling a static
method that leverages the previously mentioned FILE_SAVE_DIALOG() method of
class CL_GUI_FRONTEND_SERVICES to display a Save As dialog box. After the local
file name is selected, we can extract the data and download it via a call to method
GUI_DOWNLOAD().

REPORT zdownloadfile.
CLASS lcl_file_manager DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 get_local_filename CHANGING ch_file TYPE string,
 download_file IMPORTING im_file TYPE string.

 PRIVATE SECTION.
 CLASS-DATA:
 carriers_csv TYPE string_table.

 CLASS-METHODS:
 get_carriers.
ENDCLASS.

CLASS lcl_file_manager IMPLEMENTATION.
 METHOD get_local_filename.
* Method-Local Data Declarations:
 DATA: lv_filename TYPE string,
 lv_path TYPE string,
 lv_fullpath TYPE string,
 lv_user_action TYPE i.

* Present the user with a dialog box that he can use
* to select the name of the file he wants to create:
 CALL METHOD cl_gui_frontend_services=>file_save_dialog
 EXPORTING
 default_extension = 'csv'
 file_filter = '.csv'
 CHANGING
 filename = lv_filename
 path = lv_path

170

Working with Files5

 fullpath = lv_fullpath
 user_action = lv_user_action
 EXCEPTIONS
 cntl_error = 1
 error_no_gui = 2
 not_supported_by_gui = 3
 others = 4.

 IF sy-subrc EQ 0.
 IF lv_user_action NE
 cl_gui_frontend_services=>action_cancel.
 ch_file = lv_fullpath.
 ENDIF.
 ELSE.
 MESSAGE 'Could not determine target filename!'
 TYPE 'I'.
 RETURN.
 ENDIF.
 ENDMETHOD. " METHOD get_local_filename

 METHOD download_file.
* Build the sample CSV file:
 get_carriers().

* Download the file to the frontend:
 CALL METHOD cl_gui_frontend_services=>gui_download
 EXPORTING
 filename = im_file
 CHANGING
 data_tab = carriers_csv
 EXCEPTIONS
 file_write_error = 1
 ...
 others = 24.

 IF sy-subrc NE 0.
 MESSAGE 'Could not download file!' TYPE 'I'.
 RETURN.
 ENDIF.
 ENDMETHOD. " METHOD download_file

 METHOD get_carriers.
 ...

171

File Processing on the Presentation Server 5.5

 ENDMETHOD. " METHOD get_carriers
ENDCLASS.

PARAMETERS:
 p_file TYPE string OBLIGATORY.

AT SELECTION-SCREEN ON VALUE-REQUEST FOR p_file.
* Show a dialog box to allow the user to select a file:
 CALL METHOD lcl_file_manager=>get_local_filename
 CHANGING
 ch_file = p_file.

START-OF-SELECTION.
 CALL METHOD lcl_file_manager=>download_file(p_file).

Listing 5.16 Downloading a File to the Frontend

5.5.3 Uploading a File

The process of uploading a file from the SAP GUI client is very similar to the one
used to download a file. Here, however, we must use the FILE_OPEN_DIALOG() to
select the source input file and the GUI_UPLOAD() method to upload the file. List-
ing 5.17 shows how these methods are used in a simple report program called
ZUPLOADFILE. This report program can be used to upload the CSV file created via
program ZDOWNLOADFILE and display its contents in an ABAP list.

REPORT zuploadfile.
CLASS lcl_file_manager DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 get_local_filename CHANGING ch_file TYPE string,
 upload_file IMPORTING im_file TYPE string.
ENDCLASS.

CLASS lcl_file_manager IMPLEMENTATION.
 METHOD get_local_filename.
* Method-Local Data Declarations:
 DATA: lt_files TYPE filetable,
 lv_retcode TYPE i,
 lv_user_action TYPE i.
 FIELD-SYMBOLS:
 <lfs_file> LIKE LINE OF lt_files.

172

Working with Files5

* Present the user with a dialog box to select the name
* of the file he wants to upload:
 CALL METHOD cl_gui_frontend_services=>file_open_dialog
 EXPORTING
 default_extension = 'csv'
 file_filter = '.csv'
 CHANGING
 file_table = lt_files
 rc = lv_retcode
 user_action = lv_user_action
 EXCEPTIONS
 file_open_dialog_failed = 1
 cntl_error = 2
 error_no_gui = 3
 not_supported_by_gui = 4
 others = 5.

 IF sy-subrc EQ 0.
 IF lv_user_action NE
 cl_gui_frontend_services=>action_cancel.
 READ TABLE lt_files INDEX 1 ASSIGNING <lfs_file>.
 IF sy-subrc EQ 0.
 ch_file = <lfs_file>-filename.
 ENDIF.
 ENDIF.
 ELSE.
 MESSAGE 'Could not determine target filename!'
 TYPE 'I'.
 RETURN.
 ENDIF.
 ENDMETHOD. " METHOD get_local_filename

 METHOD upload_file.
* Method-Local Data Declarations:
 DATA: lt_file_payload TYPE string_table.
 FIELD-SYMBOLS:
 <lfs_file_record> LIKE LINE OF lt_file_payload.

* Upload the file from the frontend:
 CALL METHOD cl_gui_frontend_services=>gui_upload
 EXPORTING
 filename = im_file
 CHANGING

173

Transmitting Files Using FTP 5.6

 data_tab = lt_file_payload
 EXCEPTIONS
 file_open_error = 1
 ...
 others = 19.

* Display the file records in an ABAP list:
 LOOP AT lt_file_payload ASSIGNING <lfs_file_record>.
 WRITE: / <lfs_file_record>.
 ENDLOOP.
 ENDMETHOD. " METHOD upload_file
ENDCLASS.

PARAMETERS:
 p_file TYPE string OBLIGATORY.

AT SELECTION-SCREEN ON VALUE-REQUEST FOR p_file.
* Show a dialog box to allow the user to select a file:
 CALL METHOD lcl_file_manager=>get_local_filename
 CHANGING
 ch_file = p_file.

START-OF-SELECTION.
* Upload the file from the frontend:
 CALL METHOD lcl_file_manager=>upload_file(p_file).

Listing 5.17 Uploading a File from the Frontend

5.6 Transmitting Files Using FTP

The File Transfer Protocol (FTP) is a network protocol built on top of TCP/IP that
makes it possible for two host machines to transfer files back and forth over the
network. FTP is frequently used to implement application-to-application (A2A) or
business-to-business (B2B) integration scenarios. In this section, we look at a cus-
tom ABAP Objects class that can be used to execute FTP commands in your ABAP
programs.

5.6.1 Introducing the SAPFTP Library

SAP provides an FTP client library out of the box called SAPFTP. This client library
is implemented in two parts:

174

Working with Files5

EE The raw connectivity is realized in the form of an executable file called SAPFTP.
This program is installed on the SAP NetWeaver AS ABAP host. In addition, it’s
also installed as part of a SAP GUI client installation.

EE The ABAP program interface is implemented in the form of a series of remote-
enabled function modules in the function group SFTP. These function modules
access the SAPFTP executable via RFC to connect to an FTP host and execute
various commands. Some of the more prominent function modules in the SFTP
function group are described in Table 5.4.

Function Module Description

FTP_CONNECT Used to connect to an FTP host; returns a handle that is
used to bind subsequent commands to the session.

FTP_COMMAND Used to execute an FTP command on the FTP host. For a
complete list of supported FTP commands on an FTP host,
you can execute the help command.

FTP_R3_TO_CLIENT Used to transfer a file down to the frontend.

FTP_CLIENT_TO_R3 Used to upload a file from the frontend.

FTP_R3_TO_SERVER Used to upload a file to the FTP host.

FTP_SERVER_TO_R3 Used to download a file from the FTP host.

FTP_DISCONNECT Used to disconnect from an FTP host.

Table 5.4 SAPFTP Modules Available in Function Group SFTP

To set up the SAPFTP client library on your system, you need to create a couple of
RFC destinations. Fortunately, SAP provides a program called RSFTP005 that can be
used to automate this task. This program creates two RFC destinations: SAPFTP for
invoking the RFC library on the SAP GUI frontend, and SAPFTPA for invoking the
RFC library on the SAP NetWeaver AS ABAP host. Figure 5.11 shows the automati-
cally generated SAPFTP destination. The only difference in the SAPFTPA destination
is that the Activation Type is set to Start on Application Server in lieu of the Start
on Front-End Work Station option shown in Figure 5.11. After the RFC destina-
tions are set up, you can test the FTP library using the report program RSFTP002
in package SFTP.

175

Transmitting Files Using FTP 5.6

Figure 5.11 Automatically Generated RFC Destination SAPFTP

The SAPFTP library implements FTP according to the RFC 959 specification. By
default, it doesn’t support secure communication (e.g., sFTP, etc.). However, it’s
possible to achieve secure FTP communication using the Secure Socket Shell (SSH)
protocol. For more information on this technique, refer to SAP Note 795131.

5.6.2 Wrapping the SAPFTP Library in an ABAP Objects Class

To simplify the process of working with the SAPFTP library, we’ve created a cus-
tom ABAP Objects class called /BOWDK/CL_FTP_CLIENT in the source code bundle
available for this book. This class abstracts away certain complexities of the SFTP
function group and also takes care of some of the more mundane connection
housekeeping tasks behind the scenes. To maximize portability, we’re using the
SAPFTPA RFC destination internally to provide the FTP connectivity.

Figure 5.12 shows the UML class diagram for class /BOWDK/CL_FTP_CLIENT. For the
most part, the public instance methods mirror the core function modules described
in Table 5.4. In addition, we’ve also included some utility methods that make it
easy to upload/download files to/from the FTP host. We’ll see how to use this class
in Section 5.6.3, Uploading and Downloading Files Using FTP.

176

Working with Files5

/BOWDK/CL_FTP_CLIENT

+ CONNECT()
+ EXECUTE_COMMAND()
+ DISCONNECT()
+ UPLOAD_TEXT_FILE()
+ UPLOAD_BINARY_FILE()
+ DOWNLOAD_TEXT_FILE()
+ DOWNLOAD_BINARY_FILE()

Figure 5.12 UML Class Diagram for Class /BOWDK/CL_FTP_CLIENT

5.6.3 Uploading and Downloading Files Using FTP

After the SAPFTP library is set up, the process of connecting to an FTP host and
issuing commands is relatively straightforward. To demonstrate how this works,
let’s consider the ZFTPDEMO report program shown in Listing 5.18. This report pro-
gram leverages the /BOWDK/CL_FTP_CLIENT class described in Section 5.6.2, Wrap-
ping the SAPFTP Library in an ABAP Objects Class to upload and download a plain
text file from an FTP host. To test this class, we’ve created a local driver class called
LCL_FTP_SERVICE that defines methods to connect to the FTP host, upload and
download a plain text file, and then close the connection. As you can see, most of
these methods can raise exceptions of type /BOWDK/CX_FTP_EXCEPTION. This custom
exception class encapsulates the various types of exceptions that could occur dur-
ing an FTP session (e.g., communication failure, etc.).

REPORT zftpdemo.
CLASS lcl_ftp_service DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 process_file IMPORTING im_ftp_host TYPE csequence
 im_user TYPE csequence
 im_password TYPE csequence.

 METHODS:
 constructor IMPORTING im_ftp_host TYPE csequence
 im_user TYPE csequence
 im_password TYPE csequence
 RAISING /bowdk/cx_ftp_exception,
 upload_file RAISING /bowdk/cx_ftp_exception,
 download_file RAISING /bowdk/cx_ftp_exception,
 disconnect.

 PRIVATE SECTION.
 DATA: ftp_client TYPE REF TO /bowdk/cl_ftp_client.

177

Transmitting Files Using FTP 5.6

ENDCLASS.

CLASS lcl_ftp_service IMPLEMENTATION.
 METHOD process_file.
 "Method-Local Data Declarations:
 DATA: lo_ftp_service TYPE REF TO lcl_ftp_service,
 lo_ftp_ex TYPE REF
 TO /bowdk/cx_ftp_exception.

 TRY.
 "Create an instance of the local FTP client proxy
 "class:
 CREATE OBJECT lo_ftp_service
 EXPORTING
 im_ftp_host = im_ftp_host
 im_user = im_user
 im_password = im_password.

 "Upload a plain text file to the FTP host:
 lo_ftp_service->upload_file().

 "Download the same file off the FTP host:
 lo_ftp_service->download_file().

 "Disconnect from the FTP host:
 lo_ftp_service->disconnect().
 CATCH /bowdk/cx_ftp_exception INTO lo_ftp_ex.
 MESSAGE lo_ftp_ex TYPE 'I'.
 ENDTRY.
 ENDMETHOD. " METHOD process_file

 METHOD constructor.
* Method-Local Data Declarations:
 DATA: lv_password TYPE char40.

* Create an instance of the FTP client:
 CREATE OBJECT ftp_client.

* Connect to the FTP client:
 lv_password = im_password.

 CALL METHOD ftp_client->connect
 EXPORTING

178

Working with Files5

 im_ftp_host = im_ftp_host
 im_user = im_user
 CHANGING
 ch_password = lv_password.
 ENDMETHOD. " METHOD constructor

 METHOD upload_file.
* Local Data Declarations:
 DATA: lt_text_file TYPE /bowdk/tt_textfile.
 FIELD-SYMBOLS:
 <lfs_file_line> LIKE LINE OF lt_text_file.

* Create a plain text file:
 APPEND INITIAL LINE TO lt_text_file
 ASSIGNING <lfs_file_line>.
 <lfs_file_line>-line = 'ABAP FTP Demo'.

* Upload the text file to the default directory on
* the FTP host:
 CALL METHOD ftp_client->upload_text_file
 EXPORTING
 im_filename = 'ftptest.txt'
 im_file_payload = lt_text_file.
 ENDMETHOD. " METHOD upload_file

 METHOD download_file.
* Local Data Declarations:
 DATA: lt_text_file TYPE /bowdk/tt_textfile.
 FIELD-SYMBOLS:
 <lfs_file_line> LIKE LINE OF lt_text_file.

* Download the plain text file off the FTP host:
 CALL METHOD ftp_client->download_text_file
 EXPORTING
 im_filename = 'ftptest.txt'
 RECEIVING
 re_file = lt_text_file.

* Display the file contents in a list:
 LOOP AT lt_text_file ASSIGNING <lfs_file_line>.
 WRITE: / <lfs_file_line>-line.
 ENDLOOP.
 ENDMETHOD. " METHOD download_file

179

Transmitting Files Using FTP 5.6

 METHOD disconnect.
* Disconnect from the FTP client:
 ftp_client->disconnect().
 ENDMETHOD. " METHOD disconnect
ENDCLASS.

PARAMETERS:
 p_ftp(60) TYPE c LOWER CASE,
 p_usr(30) TYPE c LOWER CASE,
 p_pwd(30) TYPE c LOWER CASE.

START-OF-SELECTION.
 "Process a file using the FTP client library:
 lcl_ftp_service=>process_file(
 im_ftp_host = p_ftp
 im_user = p_usr
 im_password = p_pwd).

Listing 5.18 Executing FTP Commands in an ABAP Program

5.6.4 Implementation Details

Now that you have a feel for how to use the /BOWDK/CL_FTP_CLIENT class, let’s
look at how some of its methods are implemented behind the scenes. Listing 5.19
shows the implementation of instance method CONNECT(). This method leverages
the FTP_CONNECT function to establish a connection to the target FTP host.

METHOD connect.
* Method-Local Data Declarations:
 DATA: lv_ftp_host TYPE string.

* Scramble the password before sending it over the wire:
 CALL METHOD me->scramble_password
 CHANGING
 ch_password = ch_password.

* Try to connect to the target FTP host:
 CALL FUNCTION 'FTP_CONNECT'
 EXPORTING
 user = im_user
 password = ch_password
 host = im_ftp_host

180

Working with Files5

 rfc_destination = co_rfc_destination
 IMPORTING
 handle = me->session_handle
 EXCEPTIONS
 not_connected = 1
 others = 2.

* Check the results:
 IF sy-subrc NE 0.
 lv_ftp_host = im_ftp_host.

 RAISE EXCEPTION TYPE /bowdk/cx_ftp_exception
 EXPORTING
 textid =
 /bowdk/cx_ftp_exception=>co_connection_error
 ftp_host = lv_ftp_host.
 ENDIF.
ENDMETHOD.

Listing 5.19 Implementing Method CONNECT()

As soon as a connection is established, we can issue FTP commands using method
EXECUTE_COMMAND() or the utility upload/download methods described in Section
5.6.2, Wrapping the SAPFTP Library in an ABAP Objects Class. Listing 5.20 shows
how the UPLOAD_TEXT_FILE() method is implemented. Here, you’ll notice that
we’re encapsulating several FTP commands (e.g., set passive on and ascii)
together to simplify the process of uploading a text file to the FTP host. The heavy
lifting is performed by the RFC module FTP_R3_TO_SERVER. As you might expect,
the other upload/download utility methods are implemented in much the same
way as method UPLOAD_TEXT_FILE().

METHOD upload_text_file.
* Method-Local Data Declarations:
 DATA: lv_ftp_command TYPE string.

* Set the passive mode - as necessary:
 IF im_passive_mode EQ abap_true.
 me->execute_command('set passive on').
 ENDIF.

* Turn on the ASCII transfer mode:
 me->execute_command('ascii').

181

Transmitting Files Using FTP 5.6

* Try to upload the file:
 CALL FUNCTION 'FTP_R3_TO_SERVER'
 EXPORTING
 handle = me->session_handle
 fname = im_filename
 character_mode = 'X'
 TABLES
 text = im_file_payload
 EXCEPTIONS
 tcpip_error = 1
 command_error = 2
 data_error = 3
 others = 4.

* Check the results:
 CASE sy-subrc.
 WHEN 0.
 RETURN.
 WHEN 1.
 RAISE EXCEPTION TYPE /bowdk/cx_ftp_exception
 EXPORTING
 textid =
 /bowdk/cx_ftp_exception=>co_communication_error.
 WHEN 2.
 lv_ftp_command = 'put'.

 RAISE EXCEPTION TYPE /bowdk/cx_ftp_exception
 EXPORTING
 textid =
 /bowdk/cx_ftp_exception=>co_invalid_command
 ftp_command = lv_ftp_command.
 WHEN OTHERS.
 RAISE EXCEPTION TYPE /bowdk/cx_ftp_exception
 EXPORTING
 textid = /bowdk/cx_ftp_exception=>co_data_error.
 ENDCASE.
ENDMETHOD.

Listing 5.20 Implementing Method UPLOAD_TEXT_FILE()

After we’re finished executing commands with the FTP host, we need to close
down the connection using RFC function FTP_DISCONNECT. Listing 5.21 shows how

182

Working with Files5

we’ve encapsulated this function call with some other housecleaning steps to make
sure that the connection is closed down gracefully.

METHOD disconnect.
* Disconnect from the FTP host:
 CALL FUNCTION 'FTP_DISCONNECT'
 EXPORTING
 HANDLE = me->session_handle.

* Close the associated RFC connection:
 CALL FUNCTION 'RFC_CONNECTION_CLOSE'
 EXPORTING
 destination = co_rfc_destination
 EXCEPTIONS
 others = 1.

* Reset the internally managed session handle:
 CLEAR me->session_handle.
ENDMETHOD.

Listing 5.21 Implementing Method DISCONNECT()

For more information about the implementation of other methods defined in
class /BOWDK/CL_FTP_CLIENT, consult the class documentation available in the Class
Builder.

5.7 Summary

While perhaps not as glamorous as newer interface technologies such as Web
services, the fact remains that certain development scenarios are most efficiently
handled using a file-based approach. Therefore, it’s important that you understand
all of the file-processing capabilities of SAP NetWeaver AS ABAP so that you can
select the right tool for the job. In the next chapter, we look at another option for
persistence in SAP NetWeaver AS ABAP when we consider database programming
techniques.

183

If you’ve spent much time around a cook, then you know how particular
they can be about where things go in the kitchen. Everything has a place,
and space is maximized as much as possible. In this chapter, we look at
ways to use the ABAP database interface to store business objects in the
database efficiently and effectively.

6 Database Programming

One of the many benefits of working with a 4GL programming language such as
ABAP is that the runtime environment relieves you of having to worry about low-
level database connection details, database-specific SQL syntax, and so on. These
features provide ABAP developers with the freedom to concentrate on application-
level concerns, armed with the confidence that comes from knowing that they can
access any table in the system database with only a few lines of Open SQL code.
In fact, this abstraction was one of the cornerstones of the highly successful SAP
R/3 system.

However, as SAP software has evolved over the years, developers have begun to
look for ways to provide additional layers of abstraction around business data to
maintain flexibility. One such abstraction is the object-relational mapping services
provided by the ABAP Object Services framework. In this chapter, we show you
how to use this framework to model database entities using ABAP Objects classes
that don’t contain a single line of hand-written SQL. We also investigate methods
for storing text data and integrating data from external databases.

6.1 Object-Relational Mapping and Persistence

Prior to the advent of ABAP Objects, when procedural ABAP reigned supreme, the
abstraction provided by Open SQL was sufficient for persisting data because the
procedural programming paradigm has very little to say about how data is mod-
eled internally. However, the natural impedance1 that exists between the object-

1 The use of the term impedance for describing this phenomenon was coined by Scott Ambler in
his book Agile Database Technologies (Wiley, 2003).

184

Database Programming6

oriented and relational paradigms is much more palpable. A common workaround
for bridging the gaps between these two disparate models is to use an object-rela-
tional mapping (ORM) tool. In this section, we introduce the concept of ORM tools
and look at how the Persistence Service of the ABAP Object Services framework
can be used to develop persistent objects.

6.1.1 Positioning of Object-Relational Mapping Tools

Before we delve into the details of the ABAP Object Services framework and the
Persistence Service, it’s important to understand the concepts from which it was
derived. The ABAP Object Services framework was introduced in SAP NetWeaver
AS ABAP 6.10 as an ABAP-based implementation of an ORM framework. ORM
frameworks are used to encapsulate persistence details inside persistent classes by
mapping a persistence data model onto an object-oriented data model. Concep-
tually, there’s nothing magical about persistent classes; behind the scenes, SQL
statements still have to be issued to interact with a database, and so on. However,
the difference here is that the ORM framework takes care of these details so you
don’t have to.

There are several benefits to be gained by using ORM tools:

EE First and foremost, they reduce the amount of program code you have to write
to implement persistent classes.

EE Secondly, you work with persistent objects in the exact same way that you use
transient objects. This transparency frees you from having to worry about per-
sistence issues, allowing you to focus your design around a pure object model.

EE Finally, the encapsulation of persistence details inside of a framework provides
the opportunity to improve performance through caching, lazy initialization
techniques, and so on.

6.1.2 Persistence Service Overview

The lifecycle of an instance of an ABAP Objects class begins when it’s created with
the CREATE OBJECT statement and ends when there are no longer any references
to it in a program (at which time it’s marked for deletion and eventually removed
by the garbage collector). In the meantime, data may be stored inside an object’s
attributes, but this data is only preserved if an explicit effort is made to persist it. As
such, instances of ABAP Objects classes are considered to be transient in nature.

185

Object-Relational Mapping and Persistence 6.1

Most of the time, we persist the state of business objects using a relational data-
base. After the data is stored, we can re-create the object later by issuing SQL que-
ries to extract the relevant data and re-populate its attributes. As we mentioned
previously, ORM frameworks such as the Persistence Service can be used to auto-
mate these tasks so that a class doesn’t become obscured by SQL-related concerns,
and so on. Figure 6.1 shows the layer of abstraction that the Persistence Service
provides between an ABAP Objects class and the database.

Database

 Persistence Service

 ABAP Program

Attributes

Methods
 Object

Create and Initialize
the Object

Persist Changes
to the Object

Figure 6.1 The Lifecycle of a Persistent Object

There is nothing fundamentally different between a persistent class and a normal
ABAP Objects class. In other words, instances of persistent classes are still transient
in nature. However, when managed by the Persistence Service, these transient
objects behave like persistent objects within an ABAP program. For example, as
you can see in Figure 6.1, the Persistence Service extracts data from the underly-
ing SAP NetWeaver AS ABAP database and initializes a persistent object on behalf
of an ABAP program. Similarly, the Persistence Service brokers the persistence of
changes made to those objects from within the program. You’ll learn more about
the relationship between a persistent object and the Persistence Service in the
upcoming sections.

To work with the Persistence Service, you must define persistent classes in the
Class Builder tool. In addition to the creation of the persistent class itself, the
Class Builder also generates a couple of agent classes that encapsulate most of the
ORM-related details outside of the persistent class. The UML class diagram shown

186

Database Programming6

in Figure 6.2 depicts the relationships among a persistent class, its agent classes,
and core interfaces that make up the Persistence Service framework.

<<abstract>>
CL_OS_CA_COMMON

CL_PERSISTENT

attribute

- CONSTRUCTOR()
+ GET_attribute()
+ SET_attribute()

<<interface>>
IF_OS_STATE

INIT()
GET()
SET()
INVALIDATE()
HANDLE_EXCEPTION()

<<abstract>>
CB_PERSISTENT

+ CREATE_PERSISTENT()
+ GET_PERSISTENT()
+ DELETE_PERSISTENT()
...

1

*

<<friend of>>
Generated

Agent Classes

<<interface>>
IF_OS_CA_INSTANCE

GET_STATUS()
...

<<interface>>
IF_OS_CA_PERSISTENCY

GET_PERSISTENT_BY_OID()
GET_PERSISTENT_BY_KEY()
...

<<interface>>
IF_OS_FACTORY

CREATE_PERSISTENT()
REFRESH_PERSISTENT()
DELETE_PERSISTENT()
RELEASE()
...

CA_PERSISTENT

+ CLASS_CONSTRUCTOR()
- CONSTRUCTOR()
...

+ agent

Figure 6.2 UML Class Diagram of a Persistent Class

At first, the relationship between a persistent class and its agent classes may seem
a little bit convoluted. If you look carefully at the UML class diagram in Figure
6.2, you can see that the CB_PERSISTENT agent class is defined as an abstract class.
If you’re not familiar with the concept of abstract classes, you can think of them
as a kind of template for deriving subclasses. In the context of the Persistence Ser-
vice, the abstract agent class defines all of the low-level interaction details between
persistent objects and the Persistence Service. The CA_PERSISTENT subclass inherits
this functionality to define a concrete agent class that manages instances of the CL_
PERSISTENT class. For this reason, instances of persistent classes are often referred
to as managed objects.

187

Object-Relational Mapping and Persistence 6.1

When you learn how to create persistent classes in Section 6.2, Developing Per-
sistent Classes, you’ll see that the Class Builder automatically adjusts the instantia-
tion context of a persistent class to the protected context. This implies that you can’t
directly create an instance of a persistent class using the CREATE OBJECT statement.
Instead, you must instantiate persistent objects using factory methods defined
in its concrete agent class (i.e., class CA_PERSISTENT). These methods are able to
exploit the friendship relationship defined between the base agent class and the
persistent class to create an instance of the persistent class (refer to Figure 6.2). Of
course, they also take care of various housekeeping details such as registering the
persistent object with the Persistence Service framework, loading data from the
database into context, and so on.

After you get past all of the indirection, you’ll find that persistent objects are quite
easy to work with. Looking back at the UML class diagram from Figure 6.2, you
can see that attributes represented by the persistent class are exposed via setter
and getter methods. This makes it very easy to manipulate persistent objects pro-
grammatically. We give examples of this in Section 6.3, Working with Persistent
Objects.

6.1.3 Mapping Concepts

For the Persistence Service to translate between an object model and the underly-
ing persistence layer, a mapping must be defined within the persistent class. Table
6.1 shows the three different types of mapping strategies that you can employ
with your persistent classes. These mapping types provide you with the flexibility
to tap into preexisting relational data models or generate new data models from
scratch. However, keep in mind that you must be able to represent these models
using ABAP Dictionary objects. These ABAP Dictionary objects must exist before
you try to create a mapping in the Class Builder; the ORM tools provided by SAP
do not generate these objects automatically.

Mapping Type Description

By Business Key Can be used to map an existing table in the ABAP
Dictionary that has a semantic primary key. For example,
the business key for standard table BUT000 is the PARTNER
field.

By Instance-GUID Used to map tables that have a primary key that consists of
a single field of type OS_GUID. Here, the term GUID refers
to a system-generated Globally Unique Identifier.

Table 6.1 Persistence Mapping Types

188

Database Programming6

Mapping Type Description

By Instance-GUID and

Business Key

This mapping type combines both techniques. In this
case, the target table has a semantic primary key as well
as a non-key field of type OS_GUID that is defined as part
of a unique secondary index. The combination of these
keys makes it possible to access a persistent object by a
business key or an instance-GUID.

Table 6.1 Persistence Mapping Types (Cont.)

Normally, your persistence map will be based on one or more relational database
tables. However, keep in mind that the Persistence Service also supports other stor-
age media such as files, and so on. Irrespective of the underlying storage medium,
you must use an ABAP Dictionary object (i.e., a table, view, or structure) as the
basis for your mapping. The following list describes how various ABAP Dictionary
objects can be used to help you create your persistence maps:

EE Single-table mapping
Most of the time, you’ll map the attributes of your persistent class to a single
ABAP Dictionary table. Here, you must map all of the fields from the table to
attributes in the persistent class. Of course, sometimes you may not want to
map all of the fields of a given table to your persistent class. In these situations,
you can create a view that contains a subset of fields that you want to map and
then use the view to build your persistence mapping.

EE Multiple-table mapping
You can also map multiple tables onto a single persistent class. The only require-
ment here is that each table shares the exact same primary key. At runtime, the
Persistence Service is smart enough to connect the relevant attributes used in
the mapping with their associated tables so that the object data is correctly dis-
tributed across each of the tables.

EE Structure mappings
For more complex mappings, you can also use structure types. Structure types
are typically used to implement persistence mapping to files, and so on. How-
ever, they can also be used to map persistent classes that have a one-to-many
relationship to another persistent class type (e.g., a sales order and its line
items). Of course, because structure types do not refer to an actual database
table, the ORM tool won’t generate the code to persist the data. Instead, you
must implement your own logic for storing the persistent data in persistent
classes mapped from a structure.

189

Developing Persistent Classes 6.2

6.2 Developing Persistent Classes

Now that you’re familiar with the technical underpinnings of the Persistence Ser-
vice, let’s turn our attention to the creation of persistent classes in the ABAP
Workbench. As a framework to guide our discussion, let’s imagine that we’ve been
tasked with developing a data model for an online bookstore application. To keep
things simple, we limit the scope of our development to the entities depicted in
the E-R (entity-relationship) diagram shown in Figure 6.3. Here, we’ve defined
three basic entities:

EE A table called ZTCA_BOOKS that stores some basic information about a book (e.g.,
its ISBN number, title, publisher, etc.)

EE A table called ZTCA_PUBLISHERS that maintains information about book
publishers

EE A table called ZTCA_AUTHORS that keeps track of authors in the system

In addition, we’ve defined a link table called ZTCA_BOOKAUTHORS that describes the
many-to-many relationship between tables ZTCA_BOOKS and ZTCA_AUTHORS. This
relationship is necessary because an author can write many books, and a book
might be written by multiple authors. (We explain how to implement this complex
relationship in Section 6.4, Modeling Complex Relationships.)

ZTCA_AUTHORS

PK MANDT
PK AUTHOR_ID

FIRST_NAME
LAST_NAME

ZTCA _PUBLISHERS

PK MANDT
PK PUBLISHER_ID

PUBLISHER_NAME
REGION
COUNTRY

ZTCA_BOOKS

PK MANDT
PK ISBN

TITLE
PUBLISHER_CLASS
PUBLISHER_REF
PUBLICATION_DATE

Publishes

ZTCA_BOOKAUTHORS

PK MANDT
PK GUID

ISBN
AUTHOR_CLASS
AUTHOR_REF

Figure 6.3 Entity-Relationship Diagram for the Bookstore Data Model

190

Database Programming6

Using the data model depicted in Figure 6.3, we’ve defined our persistent class
model according to the UML class diagram shown in Figure 6.4. As you can see,
there isn’t necessarily a one-to-one correspondence between the attributes of the
database tables and the persistent classes. We’ll see why this is as we progress
through the example.

ZCL_PUBLISHER

+ GET_PUBLISHER_ID()
+ GET_PUBLISHER_NAME()
+ SET_PUBLISHER_NAME()
+ GET_REGION()
+ SET_REGION()
+ GET_COUNTRY()
+ SET_COUNTRY()

ZCL_BOOK

+ GET_ISBN()
+ GET_TITLE()
+ SET_TITLE()
+ GET_PUBLISHER()
+ SET_PUBLISHER()
+ GET_PUBLICATION_DATE()
+ SET_PUBLICATION_DATE()
+ GET_AUTHORS()
+ ADD_AUTHOR()
+ REMOVE_AUTHOR()

ZCL_AUTHOR

+ GET_AUTHOR_ID()
+ GET_FIRST_NAME()
+ SET_FIRST_NAME()
+ GET_LAST_NAME()
+ SET_LAST_NAME()

ZCL_BOOK_AUTHOR

+ GET_GUID()
+ GET_ISBN()
+ SET_ISBN()
+ GET_AUTHOR()
+ SET_AUTHOR()

* *

*

1

Association class

Figure 6.4 UML Class Diagram of Bookstore Persistent Class Model

6.2.1 Creating Persistent Classes in the Class Builder

At this point, we’re ready to start developing our persistent classes. To begin, we
create the ZCL_BOOK persistent class depicted in Figure 6.4.

1. To create a persistent class, open the Class Builder (Transaction SE24), and click
on the Create button. Alternatively, you can create a new class in the Object
Navigator (Transaction SE80) by right-clicking on a package in the Repository
Browser perspective and selecting the menu option Create • Class Library •
Class.

2. In the Create Class dialog box that appears, fill out the class name, description,
and so on, just as you would for a normal class. However, the thing that sets a

191

Developing Persistent Classes 6.2

persistent class apart from regular classes is the selection of the Persistent Class
radio button in the Class Type box (see Figure 6.5). After you confirm your
entries, click on the Save button to save your changes.

Figure 6.5 Creating a Persistent Class — Part 1

3. After you confirm your changes, you’re taken to the Class Editor perspective
shown in Figure 6.6. As you can see, the Class Builder automatically defined an
implementation relationship to interface IF_OS_STATE.

Figure 6.6 Creating a Persistent Class — Part 2

4. If you look carefully, you’ll also notice that the Class Builder also created the
agent classes ZCB_BOOK and ZCA_BOOK (see Figure 6.7).

192

Database Programming6

Figure 6.7 Creating a Persistent Class — Part 3

The other classes depicted in the UML diagram from Figure 6.4 can be created
in exactly the same way as class ZCL_BOOK was created. Of course, none of these
classes are going to be very exciting until we define a persistence mapping. We
explain how to define these mappings next.

6.2.2 Defining Mappings Using the Mapping Assistant Tool

Now that you know how to create persistent classes, let’s see how to implement
persistence maps for these classes. Persistence maps are defined using the Map-
ping Assistant tool integrated into the Class Builder transaction. To demonstrate
how this works, let’s see how we can build the persistence map for the ZCL_PUB-
LISHER class.

193

Developing Persistent Classes 6.2

1. Open the ZCL_PUBLISHER class in the Class Builder, and click on the Persistence
button in the Class Editor (refer to Figure 6.6). This takes you to the Mapping
Assistant screen shown in Figure 6.8. The first time you enter this tool for a per-
sistent class, you’re prompted to select a table/structure/view from the ABAP
Dictionary that will be used as the basis of the mapping. For example, with the
ZCL_PUBLISHER class, we’ve chosen the ZTCA_PUBLISHERS table (see Figure 6.8).

Figure 6.8 Initial Screen of the Mapping Assistant Tool

2. As soon as you select your source ABAP Dictionary object, the bottom half of
the Mapping Assistant is populated with a list of attributes that can be mapped
to the persistent class (see Figure 6.9). To map an attribute, simply double-click
it, and it’s loaded into the editing area in the middle of the screen. Here, you
can assign a name, description, visibility, accessibility, and assignment type for
a given attribute.

194

Database Programming6

Figure 6.9 Mapping Attributes in the Mapping Assistant Tool

3. In most cases, the default properties defined by the Mapping Assistant for a
given attribute are correct. Of course, you may decide to restrict access to a par-
ticular field by customizing its visibility and accessibility properties. Also, you
may need to modify the assignment type for certain fields. Table 6.2 provides a
description of the assignment types that you can configure for a given attribute.
We’ll explore some of the more advanced assignment types as we define rela-
tionships between our persistent classes.

Assignment Type Meaning

Business Key Derived by the Mapping Assistant for primary key fields of an
ABAP Dictionary table that has a semantic primary key. You
can’t change this particular assignment type.

GUID Derived by the Mapping Assistant for the primary key field of
an ABAP Dictionary table that has a GUID-based primary key.
You can’t change this particular assignment type.

Value Attribute Used to define non-key attributes of a given ABAP Dictionary
object.

Class Identifier Used in conjunction with another table/structure field to
uniquely identify an object reference. The table/structure field
must be of type OS_GUID.

Object Reference Used in conjunction with another table/structure field to
uniquely identify an object reference. The table/structure field
must be of type OS_GUID.

Table 6.2 Persistent Attribute Assignment Types

195

Developing Persistent Classes 6.2

4. After you’ve mapped all of the relevant attributes onto the persistent class, you
can save your changes by clicking on the Save button in the Mapping Assistant
toolbar. You can then click on the Back button to return to the Class Editor. As
you can see in Figure 6.10, getter and setter methods are generated for each of
the selected attributes according to the configuration settings specified in the
Mapping Assistant tool.

Figure 6.10 Getter and Setter Methods for ZCL_PUBLISHER

5. When you activate your changes, you’re asked whether or not you also want
to activate the class actor (see Figure 6.11). This prompt is basically a warning
advising that the mapping changes are going to be reflected in the class actor(s).
In almost all cases, you should choose the option to go ahead and activate the
class actor.

Figure 6.11 Activating the Class Actor for a Persistent Class

196

Database Programming6

The persistence mapping demonstrated for class ZCL_PUBLISHER showed you how
to map simple value attributes. Here, we show you how to create a foreign key
relationship to another persistent class by defining an object reference attribute. As
a basis for our discussion, we model the relationship between the ZCL_BOOK and
ZCL_PUBLISHER persistent classes. This relationship allows us to determine infor-
mation about the publisher who produced a particular book.

To define an object reference attribute, you must specify two things: a class identi-
fier and an object reference key. In Figure 6.12, you can see that we’ve defined two
fields in table ZTCA_BOOKS for this purpose: PUBLISHER_CLASS and PUBLISHER_REF.
Both of these fields have been assigned the OS_GUID type. At runtime, whenever
an assignment is made between a book and a publisher, the publisher key value
is stored in the PUBLISHER_REF field. In addition, the GUID of class ZCL_PUBLISHER
is stored in the PUBLISHER_CLASS field. This GUID is generated implicitly for every
global class created in the Class Builder. The Persistence Service uses the GUID as
a key to determine the type of object reference it needs to rebuild whenever an
instance of class ZCL_PUBLISHER is generated.

Figure 6.12 ABAP Dictionary Table ZTCA_BOOKS

Even though an object reference must be mapped to two fields at the database
layer, there is only one attribute defined in the persistent class. In Figure 6.13,
you can see how we’re mapping the PUBLISHER_CLASS field from table ZTCA_BOOKS.
For this field, we’ve selected the Class Identifier assignment type. Also, notice that
we’ve changed the name of the attribute to PUBLISHER.

197

Developing Persistent Classes 6.2

Figure 6.13 Defining a Foreign Key Relationship — Part 1

As soon as the PUBLISHER attribute is created, we can bind the PUBLISHER_REF field
to it to complete the object reference attribute definition. Figure 6.14 shows how
we’re mapping the PUBLISHER_REF field. In this case, we’ve selected the Object
Reference assignment type and specified the class type ZCL_PUBLISHER.

Figure 6.14 Defining a Foreign Key Relationship — Part 2

After the mapping is complete, getter and setter methods for the PUBLISHER attri-
bute are automatically generated in the ZCL_BOOK class (see Figure 6.15). As you
can see in Figure 6.16, the signature of these methods is defined using object ref-
erences of type ZCL_PUBLISHER. This implies that we can bind an instance of class
ZCL_PUBLISHER to class ZCL_BOOK by simply passing that instance as a parameter to
method SET_PUBLISHER().

198

Database Programming6

Figure 6.15 Getter and Setter Methods for Publisher Object Reference

Figure 6.16 Signature of Method SET_PUBLISHER()

6.3 Working with Persistent Objects

In Section 6.2, Developing Persistent Classes, you learned how to create persistent
classes to represent various types of data models. In this section, we show you how
to work with instances of those persistent classes in your ABAP programs. First,
we familiarize you with the architecture of class agent API, used to interact with
your persistent objects. From there, we demonstrate how to perform basic CRUD
(Create, Remove, Update, and Display) operations with persistent objects. Finally, we
conclude our discussion by showing you how to use the Query Service to perform
advanced searches for persistent objects in the database.

199

Working with Persistent Objects 6.3

6.3.1 Understanding the Class Agent API

Looking back at the UML class diagram in Figure 6.2, you can see the inheritance
tree for the class agent of a persistent class. The parent classes/interfaces for this
agent class make up the API that you’ll use to access and manipulate persistent
objects. For the most part, the names of these methods are pretty self-explanatory
(i.e., you use the CREATE_PERSISTENT() method to create a persistent object, etc.).
Of course, the generation of some of the methods defined in the base agent class
varies depending on the mapping type you chose to implement in your persis-
tent class. For example, the base agent class doesn’t define the GET_PERSISTENT()
and DELETE_PERSISTENT() methods if the persistent classes aren’t managed using
business keys. Conversely, if a persistent class is managed by business keys, these
methods are defined with a signature that statically matches the mapped key types.
For instance, notice how the signature of the GET_PERSISTENT() method of agent
class ZCA_BOOK matches the primary key of table ZTCA_BOOKS (i.e., the ISBN field)
in Figure 6.17.

Figure 6.17 Signature of Method GET_PERSISTENT()

You can find out more information about the class agent API methods in the SAP
NetWeaver Library documentation available online at http://help.sap.com. Here,
each method is described at length in the section entitled Components of the Persis-
tence Service. You’ll also see usage examples for some of the more common meth-
ods in the upcoming sections.

6.3.2 Performing Typical CRUD Operations

In this section, we show you how to perform some typical CRUD operations with
persistent objects. These operations mirror the familiar OPEN SQL statements
INSERT, SELECT, UPDATE, and DELETE in terms of functionality. However, from a
usability perspective, you’ll find that the API is purely object-oriented.

200

Database Programming6

As you learned in Section 6.3.1, Understanding the Class Agent API, the class agent
defines various methods that can be used to process persistent objects. Therefore,
the first step for processing persistent objects is to obtain a reference to the class
agent. This can be achieved by accessing the static AGENT attribute that is publicly
available in every agent class. The AGENT attribute is initialized in the CLASS_CON-
STRUCTOR() method of the agent class, so it’s always available before any client
tries to access it. Also, because the instantiation context of the agent class is set as
private, only one instance of the agent class is ever created at runtime. As such,
the agent is patterned as a singleton.2

Creating Persistent Objects

To create a persistent object, use the CREATE_PERSISTENT() method of the agent
class. This method is generated in accordance with the persistence map, defining
parameters that directly align with the underlying ABAP Dictionary object. For
example, Figure 6.18 shows the signature of the CREATE_PERSISTENT() method for
agent class ZCA_AUTHOR. In this case, there isn’t a primary key parameter because
the mapping type of the ZCL_AUTHOR class is defined as By Instance GUID. At run-
time, we’ll see that the Persistence Service takes care of generating the instance
GUID behind the scenes.

Figure 6.18 Signature of Method CREATE_PERSISTENT()

The code excerpt from Listing 6.1 shows how we can create an author persistent
object using the CREATE_PERSISTENT() method of agent class ZCA_AUTHOR. Notice
how we’ve wrapped this call inside of a TRY statement because the CREATE_PER-
SISTENT() method can potentially raise exceptions of type CX_OS_OBJECT_EXIST-
ING. After the CREATE_PERSISTENT() method executes, we issue the COMMIT WORK
statement to commit the changes. Had we omitted this here, the persistent object

2 The term singleton refers to a design pattern in which instantiation is controlled to limit the
number of objects created at a time (typically for performance reasons).

201

Working with Persistent Objects 6.3

would not have been persisted in the database. In Chapter 7, Transactional Pro-
gramming, we show you how you can use the Transaction Service to manage your
transactions in an object-oriented context.

DATA: author TYPE REF TO zcl_author,
 os_ex TYPE REF TO cx_os_object_existing.

TRY.
 CALL METHOD zca_author=>agent->create_persistent
 EXPORTING
 i_first_name = 'Thorsten'
 i_last_name = 'Franz'
 RECEIVING
 result = author.

 COMMIT WORK.
CATCH cx_os_object_existing INTO os_ex.
 "Exception handling goes here...
ENDTRY.

Listing 6.1 Creating a Persistent Object

Figure 6.19 shows the author object persisted in the database. As you can see, the
AUTHOR_ID field has been assigned a GUID value by the Persistence Service. This
GUID was generated via the standard function module GUID_CREATE. You can also
use this function to generate GUIDs for your own purposes whenever you need
to generate a unique identifier.

Figure 6.19 Persistent Object Stored in the Database

Reading Persistent Objects

If a persistent class is defined with a mapping type that uses a business key, we
can use the generated GET_PERSISTENT() method to read persistent objects of that

202

Database Programming6

class from the database. Listing 6.2 shows how we can look up a particular book
using its ISBN number. After we have an instance of the persistent object in con-
text, we can use its getter methods to obtain information about it (e.g., its title,
publication date, etc.).

DATA: book TYPE REF TO zcl_book,
 title TYPE zde_title,
 os_ex TYPE REF TO cx_os_object_not_found.

TRY.
 book =
 zca_book=>agent->get_persistent('9781592292356').

 title = book->get_title().
 WRITE: / 'Title is:', title.
CATCH cx_os_object_not_found INTO os_ex.
 "Exception handling goes here...
ENDTRY.

Listing 6.2 Reading a Persistent Object from the Database

Updating Persistent Objects

After you have a persistent object in context, you can update its attributes using
the various setter methods generated for the relevant persistent class. This not
only applies to elementary attributes but also to object references. For example,
in Listing 6.3, we’re assigning a publisher persistent object to an instance of class
ZCL_BOOK using its SET_PUBLISHER() method. After the relevant attributes have
been changed, we can persist our changes using the COMMIT WORK statement.

DATA: publisher TYPE REF TO zcl_publisher,
 book TYPE REF TO zcl_book,
 os_exist_ex TYPE REF TO cx_os_object_existing,
 os_notfound_ex TYPE REF TO cx_os_object_not_found.

TRY.
* Create a publisher object:
 CALL METHOD zca_publisher=>agent->create_persistent
 EXPORTING
 i_publisher_name = 'Galileo Press, Inc.'
 i_region = 'MA'
 i_country = 'US'
 RECEIVING
 result = publisher.

203

Working with Persistent Objects 6.3

* Look up a book using its ISBN number:
 book =
 zca_book=>agent->get_persistent('9781592292356').

* Assign a publisher to the book:
 book->set_publisher(publisher).

* Commit the changes:
 COMMIT WORK.
CATCH cx_os_object_existing INTO os_exist_ex.
 "Exception handling goes here...
CATCH cx_os_object_not_found INTO os_notfound_ex.
 "Exception handling goes here...
ENDTRY.

Listing 6.3 Updating a Persistent Object

Deleting Persistent Objects

You can delete a persistent object using the DELETE_PERSISTENT() method defined
in interface IF_OS_FACTORY. Looking back at the UML class diagram from Figure
6.2, you can see that class actors implement this interface implicitly. Listing 6.4
provides an example that demonstrates how to delete a book object using the
DELETE_PERSISTENT() method.

DATA: book TYPE REF TO zcl_book,
 os_notexist_ex TYPE REF TO cx_os_object_not_existing,
 os_notfound_ex TYPE REF TO cx_os_object_not_found.

TRY.
* Look up a book using its ISBN number:
 book =
 zca_book=>agent->get_persistent('9781592292356').

* Delete the book:
 zca_book=>agent->if_os_factory~delete_persistent(book).

* Commit the changes:
 COMMIT WORK.
CATCH cx_os_object_not_found INTO os_notfound_ex.
 "Exception handling goes here...
CATCH cx_os_object_not_existing INTO os_notexist_ex.
 "Exception handling goes here...
ENDTRY.

Listing 6.4 Deleting a Persistent Object

204

Database Programming6

6.3.3 Querying Persistent Objects with the Query Service

In Section 6.3.2, Performing Typical CRUD Operations, you learned how to use
the GET_PERSISTENT() method of a class agent to read a persistent object from the
database. While this method can be useful in certain situations, it definitely has
its limitations:

EE The method is only generated for persistent classes that are mapped using a
business key.

EE The method can only be used to return a single instance of a persistent object.

For all but the simplest applications, you need to have the capability to perform
more advanced queries. Fortunately, SAP provides another service within the
ABAP Object Services framework that offers this functionality, the Query Service.

To understand how to work with the Query Service, let’s consider an example. The
sample report program ZQUERY_DEMO contained in Listing 6.5 demonstrates how to
implement a query that can be used to search for book objects whose publication
date falls within a certain date range.

REPORT zquery_demo.
CLASS lcl_query_demo DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 search_books IMPORTING im_from_date TYPE datum
 im_to_date TYPE datum.
ENDCLASS.

CLASS lcl_query_demo IMPLEMENTATION.
 METHOD search_books.
 "Local Data Declarations:
 DATA: lo_query_mgr TYPE REF TO if_os_query_manager,
 lo_query TYPE REF TO if_os_query,
 lv_filter TYPE string,
 lo_agent TYPE REF TO if_os_ca_persistency,
 lt_books TYPE osreftab,
 lo_book TYPE REF TO zcl_book,
 lv_title TYPE string.
 FIELD-SYMBOLS:
 <lfs_book> LIKE LINE OF lt_books.

 "Obtain a reference to the OS query manager:
 lo_query_mgr = cl_os_system=>get_query_manager().

205

Working with Persistent Objects 6.3

 "Build a query object:
 IF im_to_date IS INITIAL.
 lv_filter = 'PUBLICATION_DATE >= PAR1'.
 ELSE.
 CONCATENATE 'PUBLICATION_DATE >= PAR1' 'AND'
 'PUBLICATION_DATE <= PAR2'
 INTO lv_filter
 SEPARATED BY SPACE.
 ENDIF.

 lo_query =
 lo_query_mgr->create_query(
 i_filter = lv_filter).

 "Execute the query:
 lo_agent = zca_book=>agent.
 lt_books =
 lo_agent->get_persistent_by_query(
 i_query = lo_query
 i_par1 = im_from_date
 i_par2 = im_to_date).

 "Output the results:
 LOOP AT lt_books ASSIGNING <lfs_book>.
 lo_book ?= <lfs_book>.
 lv_title = lo_book->get_title().
 WRITE: / lv_title.
 ENDLOOP.
 ENDMETHOD. " METHOD search_books
ENDCLASS.

PARAMETERS:
 p_frdate TYPE datum,
 p_todate TYPE datum.

START-OF-SELECTION.
 "Execute a book query:
 lcl_query_demo=>search_books(
 im_from_date = p_frdate
 im_to_date = p_todate).

Listing 6.5 Searching for Persistent Objects with the Query Service

206

Database Programming6

Now that you’ve had a chance to browse through the example code in Listing 6.5,
let’s take a closer look at what’s going on at each step in the query process:

1. Before you can interact with the Query Service, you must obtain a reference to
a query manager object. This object implements the IF_OS_QUERY_MANAGER inter-
face and can be obtained via a call to the static GET_QUERY_MANAGER() method
of class CL_OS_SYSTEM.

2. The query manager is used to create instances of queries. You can create an
instance of a query using the CREATE_QUERY() method defined in interface IF_
OS_QUERY_MANAGER(). Looking at Listing 6.5, you can see that we’re passing
a filter to this method. This filter is analogous to the WHERE clause in a SELECT
statement. You can find a comprehensive guide describing the syntax variants
supported for these filters in the SAP Library documentation available online
at http://help.sap.com.

3. After the query object is generated, you’re ready to proceed with the lookup
operation. As you can see in Listing 6.5, this is still driven by the target object’s
agent class using the IF_OS_CA_PERSISTENCY~GET_PERSISTENT_BY_QUERY()
method. Here, you must pass in the query object and any optional parameters
so that the framework can build a SQL query to execute behind the scenes.

4. The results of the query are returned in an internal table of type OSREFTAB (like
the LT_BOOKS table in Listing 6.5). Because the line type of the OSREFTAB table
is the generic base class OBJECT, we must perform a widening cast to access the
actual persistent objects returned by the Query Service.

5. Finally, after the widening cast operation is performed, the persistent objects
can be accessed as they are usually.

This example should help you understand how to use the Query Service to look up
instances of persistent objects. You’ll see another practical example of its usage in
Section 6.4, Modeling Complex Relationships. You can also find a wealth of infor-
mation in the SAP library documentation available online at http://help.sap.com.

6.4 Modeling Complex Relationships

At this point, the persistent class model introduced in Section 6.2, Developing
Persistent Classes is almost complete. However, one thing that we still have not

207

Modeling Complex Relationships 6.4

addressed is the many-to-many relationship between a particular book and its col-
laborating authors. In this case, we can’t map the two entities directly. Instead,
we must use the association class ZCL_BOOK_AUTHOR (and its corresponding table
ZTCA_BOOKAUTHORS) to correlate a book with one or more authors.

6.4.1 Defining Custom Attributes

To unite the ZCL_BOOK and ZCL_AUTHOR entities, we must perform the following
steps:

1. First, we need to develop the persistency map for the association class ZCL_
BOOK_AUTHOR. This class is mapped using the by instance-GUID mapping type
(i.e., a GUID is generated as the primary key for each instance persisted in the
database). In addition, looking back at the UML class diagram from Figure 6.4,
you can see that this class also defines two foreign key attributes called ISBN
and AUTHOR:

EE The ISBN attribute is a value attribute that maps the ISBN of the book repre-
sented in the linkage relationship.

EE The AUTHOR attribute is an object reference attribute that refers to an instance
of class ZCL_AUTHOR. As such, it’s mapped in the exact same way that the PUB-
LISHER attribute was mapped for class ZCL_BOOK in Section 6.2.2, Defining
Mappings Using the Mapping Assistant Tool.

2. After the persistency map is completed for class ZCL_BOOK_AUTHOR, we can use
this persistent class to bind instances of collaborating authors with a specific
book. However, this functionality isn’t implemented automatically by the Per-
sistence Service. Instead, we must define a custom AUTHORS attribute in class
ZCL_BOOK and provide implementations for the corresponding getter and setter
methods. We must also take ownership of the initialization process for this cus-
tom AUTHORS attribute in class ZCL_BOOK.

Now that you have a feel for how the book-author relationship is organized, let’s
look at how the AUTHORS attribute is defined in class ZCL_BOOK. This process begins
with the definition of a new table type in the ABAP Dictionary, like the one shown
in Figure 6.20. We can then define the AUTHORS attribute in class ZCL_BOOK using
the custom table type, as shown in Figure 6.21.

208

Database Programming6

Figure 6.20 Defining a Table Type for Author Objects

Figure 6.21 Defining the AUTHORS Table Attribute

Even though the AUTHORS attribute doesn’t have the Persistent flag checked (i.e.,
it wasn’t generated via the Mapping Assistant tool), you’ll notice that the Class
Builder generates getter and setter methods for it anyway. In this case, because
we defined the attribute as read-only, the Class Builder only generates a getter
method for the AUTHORS attribute (see Figure 6.22).

209

Modeling Complex Relationships 6.4

Figure 6.22 Getter and Setter Methods for Custom Attributes

6.4.2 Filling in the Gaps

As you saw in Section 6.4.1, Defining Custom Attributes, the Class Builder auto-
matically generates getter and setter methods for custom attributes, such as the
AUTHORS attribute in class ZCL_BOOK. This allows clients of the ZCL_BOOK class to
obtain a list of the authors that are assigned to a book by calling the GET_AUTHORS()
method. Of course, because there is no persistency mapping for this custom attri-
bute, the resultant list of authors is empty unless we fill it beforehand. We can
perform this task using the INIT() callback method defined in the IF_OS_STATE
interface implemented by persistent classes.

The IF_OS_STATE~INIT() method is called by the Persistence Service after the per-
sistent attributes of a persistent class have been filled but before the object is turned
over to the client. Consequently, the IF_OS_STATE~INIT() method is a very conve-
nient place for implementing additional initialization logic for a persistent class.

Listing 6.6 provides an example implementation of the IF_OS_STATE~INIT()
method. This method is using the Query Service to look up instances of ZCL_BOOK_
AUTHOR whose ISBN attribute matches the ISBN of the book object in question. If
one or more matches are found, the resultant ZCL_AUTHOR objects are stored in
context in the AUTHORS table attribute. Also, note that we’re also caching the book-

210

Database Programming6

author association class instances in the BOOK_AUTHORS table attribute. As you’ll see
in just a moment, this cached information comes in handy for maintaining this
relationship internally.

METHOD if_os_state~init.
 "Method-Local Data Declarations:
 DATA: lo_query_mgr TYPE REF TO if_os_query_manager,
 lo_query TYPE REF TO if_os_query,
 lo_agent TYPE REF TO if_os_ca_persistency,
 lt_book_authors TYPE osreftab,
 lo_book_author TYPE REF TO zcl_book_author,
 lo_author TYPE REF TO zcl_author.
 FIELD-SYMBOLS:
 <lfs_book_author> LIKE LINE OF lt_book_authors.

 "Obtain a reference to the OS query manager:
 lo_query_mgr = cl_os_system=>get_query_manager().

 "Build a query object to look up the authors:
 lo_query =
 lo_query_mgr->create_query(i_filter = 'ISBN = PAR1').

 "Execute the query:
 lo_agent = zca_book_author=>agent.
 lt_book_authors =
 lo_agent->get_persistent_by_query(
 i_query = lo_query
 i_par1 = me->isbn).

 "Copy the query results into context:
 LOOP AT lt_book_authors ASSIGNING <lfs_book_author>.
 "Cache the association record to simplify
 "maintenance:
 lo_book_author ?= <lfs_book_author>.
 APPEND lo_book_author TO me->book_authors.

 "Store the author record in the AUTHORS persistent
 "attribute:
 lo_author = lo_book_author->get_author().
 APPEND lo_author TO me->authors.
 ENDLOOP.
ENDMETHOD.

Listing 6.6 Initializing the Relationship in the INIT() Method

211

Modeling Complex Relationships 6.4

If you recall from Section 6.4.1, Defining Custom Attributes, we elected to define
the AUTHORS attribute as a read-only attribute. Had we defined this as a regular
attribute, the Class Builder would have generated a SET_AUTHORS() method in
much the same way that setter methods are defined for regular object reference
attributes. However, while this would allow clients to store a set of author objects
in context, it would not automatically address that these author objects must be
properly linked with a book for the relationship(s) to be persistent.

Rather than force users to maintain this relationship outside of the ZCL_BOOK class,
we elected to implement a couple of helper methods to maintain the relationship:
ADD_AUTHOR() and REMOVE_AUTHOR(). These methods enable clients to add/remove
authors from a book directly without having to keep track of authors externally.

Listing 6.7 shows the implementation of method ADD_AUTHOR(). This method
receives an instance of ZCL_AUTHOR in an importing parameter called IM_AUTHOR.
Within this method, we’re creating an instance of class ZCL_BOOK_AUTHOR to imple-
ment the linkage in the database. After the linkage is created, we also append the
IM_AUTHOR parameter to the AUTHORS table attribute so that the persistent object
remains in sync with the database. We’re also caching the generated ZCL_BOOK_
AUTHOR instance in the BOOK_AUTHORS table attribute so that we can keep track of
the relationship internally.

METHOD add_author.
 "Method-Local Data Declarations:
 DATA: lo_author_agent TYPE REF TO if_os_ca_service,
 lv_author_guid TYPE os_guid,
 lo_temp_author TYPE REF to zcl_author,
 lv_temp_guid TYPE os_guid,
 lo_book_author TYPE REF TO zcl_book_author.
 FIELD-SYMBOLS:
 <lfs_book_author> LIKE LINE OF me->book_authors.

 "Determine the GUID of the author object being proposed:
 lo_author_agent = zca_author=>agent.
 lv_author_guid =
 lo_author_agent->get_oid_by_ref(im_author).

 "Check to see if the author is already assigned
 "to the book:
 LOOP AT me->book_authors ASSIGNING <lfs_book_author>.
 lo_temp_author = <lfs_book_author>->get_author().
 lv_temp_guid =

212

Database Programming6

 lo_author_agent->get_oid_by_ref(lo_temp_author).

 IF lv_author_guid EQ lv_temp_guid.
 RAISE EXCEPTION TYPE cx_os_object_existing
 EXPORTING
 object = <lfs_book_author>.
 ENDIF.
 ENDLOOP.

 "If it is not, then we can go ahead and create
 "the relationship:
 lo_book_author =
 zca_book_author=>agent->create_persistent(
 i_isbn = me->isbn
 i_author = im_author).

 "And then cache the results:
 APPEND im_author TO me->authors.
 APPEND lo_book_author TO me->book_authors.
ENDMETHOD.

Listing 6.7 Implementation of Method ADD_AUTHOR()

Because we’re caching the book-author relationship data in the BOOK_AUTHORS
table attribute, the implementation of method REMOVE_AUTHOR() is relatively
straightforward:

1. First, we need to determine the GUID value of the IM_AUTHOR importing param-
eter because this is the key used to locate the corresponding book-author record.
For this task, we can use the GET_OID_BY_REF() method of the IF_OS_CA_SER-
VICE interface that gets implemented by the ZCA_AUTHOR agent class.

2. After we have the author key in hand, we can loop through each of the book-
author records to see if there’s an entry that matches the author’s GUID value.

3. If a match is found, we need to delete the selected book-author record using
the DELETE_PERSISTENT() method demonstrated in Section 6.3.2, Performing
Typical CRUD Operations.

4. Then, we need to remove the cache entries for the author record so that those
tables remain up to date.

Listing 6.8 shows a sample implementation of the REMOVE_AUTHOR() method.

213

Modeling Complex Relationships 6.4

METHOD remove_author.
 "Method-Local Data Declarations:
 DATA: lo_author_agent TYPE REF TO if_os_ca_service,
 lv_author_guid TYPE os_guid,
 lo_temp_author TYPE REF to zcl_author,
 lv_temp_guid TYPE os_guid,
 lo_assoc_agent TYPE REF TO if_os_factory.
 FIELD-SYMBOLS:
 <lfs_book_author> LIKE LINE OF me->book_authors,
 <lfs_author> LIKE LINE OF me->authors.

 "Determine the GUID of the author object being proposed:
 lo_author_agent = zca_author=>agent.
 lv_author_guid =
 lo_author_agent->get_oid_by_ref(im_author).

 "Check to see if the author is assigned to the book:
 LOOP AT me->book_authors ASSIGNING <lfs_book_author>.
 lo_temp_author = <lfs_book_author>->get_author().
 lv_temp_guid =
 lo_author_agent->get_oid_by_ref(lo_temp_author).

 "If it is, remove it:
 IF lv_author_guid EQ lv_temp_guid.
 "First from the database layer:
 lo_assoc_agent = zca_book_author=>agent.
 lo_assoc_agent->delete_persistent(
 <lfs_book_author>).

 "And then from the cache:
 DELETE me->book_authors.

 LOOP AT me->authors ASSIGNING <lfs_author>.
 lv_temp_guid =
 lo_author_agent->get_oid_by_ref(<lfs_author>).
 IF lv_temp_guid EQ lv_author_guid.
 DELETE me->authors.
 ENDIF.
 ENDLOOP.
 ENDIF.
 ENDLOOP.
ENDMETHOD.

Listing 6.8 Implementation of Method REMOVE AUTHOR()

214

Database Programming6

For the purposes of this demonstration, we elected to cache the book-author rela-
tionship data inside of the ZCL_BOOK instances. In this case, the use of the cache
was justified because we’re only dealing with a handful of ZCL_AUTHOR instances
that are relatively small in size. However, if we were implementing such a relation-
ship with sales order line items, we wouldn’t want to implement the relationship
this way. Instead, we would prefer to load this information on demand using the
Query Service.

In general, it’s important that you consider the nature of the data you’re modeling
so that you don’t introduce unnecessary overhead at runtime. When in doubt, it’s
probably better to avoid caching data that might not be required.

6.5 Storing Text with Text Objects

Frequently, whenever we create a data model, we need to come up with a way
to store long text data. For example, a purchase order data model needs to incor-
porate various types of long text to capture notes, instructions, and so on. Many
business objects in the SAP Business Suite use SAPscript text objects to encapsu-
late long text information. Therefore, it’s useful to understand how to work with
these objects. In this section, we introduce you to SAPscript text objects and show
you how to use their corresponding API functions. We conclude our discussion by
showing you how new features of SAP NetWeaver AS ABAP can be used to store
long text objects directly in the database.

6.5.1 Defining Text Objects

Before you can begin interacting with the SAPscript text object API, you must first
define a text object. A text object defines a category for SAPscript texts, separat-
ing business partner text data from material text data, and so on. For a given text
object, you can also define text IDs that further categorize a given piece of text.
We’ll see how to create both of these constructs in this section.

SAPscript text objects are created in Transaction SE75. To create a new text object,
perform the following steps:

1. Select the Text Objects and IDs radio button in the SAPscript Control Tables
group box, and click on the Change button (see Figure 6.23).

215

Storing Text with Text Objects 6.5

Figure 6.23 Initial Screen of the SAPscript Settings Editor

2. A prompt appears advising you that the settings you change are reflected across
all of the clients in the system (see Figure 6.24).

Figure 6.24 Cross-Client Prompt for SAPscript Objects

3. After you’ve confirmed the cross-client prompt shown in Figure 6.24, you’re
taken to the Change Text Objects editor screen shown in Figure 6.25. Click the
Create button to create a new text object.

4. In the Create Object dialog box that pops up, define a name for the text object
as well as a description. In the example shown in Figure 6.26, we’ve defined a
text object called ZBOOK that can be used to store long text data for the bookstore
data model considered throughout the course of this chapter. Here, notice that
the text object name begins with the familiar Z prefix to denote that the text
object is to be created in the customer namespace. In addition to the name, you
also can specify a save mode for the text object in the Save Mode group box.
Normally, you’ll want to select the Update save mode option to improve per-
formance. You’ll learn more about what this means in Chapter 7, Transactional
Programming. Most of the settings in the Editor group box directly pertain to

216

Database Programming6

SAPscript and aren’t required unless the text data is to be displayed in a SAP-
script form. However, it’s important to specify a line width because this setting
determines how text is broken up into chunks when it’s saved to the database.
You’ll see evidence of this in Section 6.5.2, Using the Text Object API.

Figure 6.25 Change Text Objects Editor Screen

Figure 6.26 Creating a Text Object

5. After you’re satisfied with your settings, press the (Enter) key to confirm your
entry, and click the Save button to save your changes.

217

Storing Text with Text Objects 6.5

As we mentioned earlier, a text object can be subdivided by specific text IDs. For
instance, in our ZBOOK text object example, we might want to create text IDs that
differentiate among long text descriptions for a given book, comments made about
a book by various readers, and so on. To define text IDs for a given text object,
perform the following steps:

1. Place your cursor on the text object in the Change Text Objects editor screen,
and click the Text IDs button. This brings up the Change Text IDs screen shown
in Figure 6.27.

Figure 6.27 Change Text IDs Screen

2. Click the Create button. This brings up the Create ID dialog box shown in Fig-
ure 6.28. Here, we have defined a text ID called ZLTX to capture a long text
description for a given book in the book data model.

Figure 6.28 Creating a Text ID

3. After you’ve confirmed your selection, press the (Enter) key to confirm your
changes, and then click the Save button to save the text object.

218

Database Programming6

6.5.2 Using the Text Object API

Now that you understand how text objects are created, let’s see how you can use
them in practical applications. In this section, we introduce you to the SAPscript
text object API, showing you the functions you need to perform CRUD operations
with text objects. As the basis for our discussion, we look at how to store a long
text description for a book using the ZBOOK text object described in Section 6.5.1,
Defining Text Objects.

Saving Text with the SAVE_TEXT Function

Before we can create a text object, we must first define certain header-level infor-
mation that uniquely identifies a specific instance of a text object in the system.
As you might expect, part of this key is the text object itself as well as any text
IDs associated with the text object. However, to distinguish particular instances
of a text object/text ID, you must also specify a text name. This name is a generic
70-character field that can contain pretty much any kind of key. For example, to
identify instances of purchase order item texts, SAP concatenates the purchase
order number and item number together in the name field. Other business objects
use GUIDs, and so on. The final component in the text object key is the language
of the text. This component allows you to define multiple translations for the same
text object instance.

After you define the text object key, you can save instances of the text object using
the SAVE_TEXT function. Listing 6.9 demonstrates how this function is used to save
a long text description of a book that has the ISBN 978-1-59229-235-6. The header
information for the text object is populated in a structure of type THEAD (i.e., the
SAPscript Text Header table).

The long text itself must be split apart and stored in an internal table whose line
type is TLINE (see Figure 6.29). As you can see, besides the TDLINE field that stores
the raw text data, the TLINE structure also defines a field called TDFORMAT that can
be used to define paragraph formatting for the embedded text. You can learn more
about these options by reading the documentation for data element TDFORMAT.

219

Storing Text with Text Objects 6.5

Figure 6.29 ABAP Dictionary Structure TLINE

DATA: ls_header TYPE thead,
 lv_text TYPE string,
 lt_lines TYPE tline_tab.

* Populate the text header details for the ZBOOK
* text object:
 ls_header-tdobject = 'ZBOOK'.
 ls_header-tdid = 'ZLTX'.
 ls_header-tdname = '9781592292356'.
 ls_header-tdspras = sy-langu.

* Create a long-text description for a book using a sample
* excerpt of text:
 CONCATENATE
 'Object-Oriented Programming with ABAP Objects'
 'If you're an ABAP application developer with basic'
 'ABAP programming skills, this book will teach you how'
 'to think about writing ABAP software from an object-'
 'oriented (OO) point of view, and prepare you to work'
 'with many of the exciting ABAP-based technologies in'
 'ABAP Objects (Release 7.0).'
 INTO lv_text
 SEPARATED BY cl_abap_char_utilities=>cr_lf.

* Convert the string to SAPscript lines using the
* /BOWDK/CL_SAPSCRIPT_UTILS class available with the
* source code bundle for this book:
 lt_lines =

220

Database Programming6

 /bowdk/cl_sapscript_utils=>convert_string_to_sapscript(
 lv_text).

* Save the text object:
 CALL FUNCTION 'SAVE_TEXT'
 EXPORTING
 header = ls_header
 insert = 'X'
 TABLES
 lines = lt_lines
 EXCEPTIONS
 id = 1
 language = 2
 name = 3
 object = 4
 others = 5.

 IF sy-subrc EQ 0.
 COMMIT WORK.
 ELSE.
 "Error handling goes here...
 ENDIF.

Listing 6.9 Saving a Text Object with Function SAVE_TEXT

To simplify the process of converting normal ABAP character data objects into the
SAPscript line format, we’re using a custom utility class called /BOWDK/CL_SAP-
SCRIPT_UTILS. This class defines a static method called CONVERT_STRING_TO_SAP-
SCRIPT() that applies a “chunking” algorithm to split the text apart and also takes
line breaks into account, and so on. The source code for this class is included in
the source code bundle for this book available online.

If the call to SAVE_TEXT is successful, we can then commit our changes to the data-
base using the COMMIT WORK statement. If you look closely at Figure 6.26, you can
see where we have specified the Save Mode of the ZBOOK text object as Update.
This implies that the text object is saved in an update task that is triggered by the
COMMIT WORK statement. We explain more about how this works in Chapter 7,
Transaction Processing.

Looking at the call to SAVE_TEXT in Listing 6.9, you can see that we have configured
the INSERT parameter to indicate that the text object instance is new. Had we omit-
ted this parameter, the system would have checked to see if the text object instance

221

Storing Text with Text Objects 6.5

already existed, and, if necessary, updated it. As such, the SAVE_TEXT function can
also be used to update text object instances as needed.

Reading Text with the READ_TEXT Function

To read a text object into context, you use the READ_TEXT function. Listing 6.10
shows how READ_TEXT can be used to read the text object created by the example
code in Listing 6.9. As you can see, this function uses the same key information
that SAVE_TEXT uses to identify the text in the database.

DATA: ls_header TYPE thead,
 lt_lines TYPE tline_tab.

* Define the text object metadata:
 ls_header-tdobject = 'ZBOOK'.
 ls_header-tdid = 'ZLTX'.
 ls_header-tdname = '9781592292356'.
 ls_header-tdspras = sy-langu.

* Read the contents of the text object in the database:
 CALL FUNCTION 'READ_TEXT'
 EXPORTING
 id = ls_header-tdid
 language = ls_header-tdspras
 name = ls_header-tdname
 object = ls_header-tdobject
 TABLES
 lines = lt_lines
 EXCEPTIONS
 id = 1
 language = 2
 name = 3
 not_found = 4
 object = 5
 reference_check = 6
 wrong_access_to_archive = 7
 others = 8.

 IF sy-subrc NE 0.
 "Error handling goes here...
 ENDIF.

Listing 6.10 Reading Texts with Function READ_TEXT

222

Database Programming6

Deleting Text with the DELETE_TEXT Function

You can delete text object instances using the DELETE_TEXT function. Listing 6.11
shows how we’re deleting the text object instance created in the previous sections
using DELETE_TEXT. Here, just like the SAVE_TEXT function, we must apply a COMMIT
WORK statement to commit our changes to the database.

DATA: ls_header TYPE thead,
 lt_lines TYPE tline_tab.

* Define the text object metadata:
 ls_header-tdobject = 'ZBOOK'.
 ls_header-tdid = 'ZLTX'.
 ls_header-tdname = '9781592292356'.
 ls_header-tdspras = sy-langu.

* Delete the text object from the database:
 CALL FUNCTION 'DELETE_TEXT'
 EXPORTING
 id = ls_header-tdid
 language = ls_header-tdspras
 name = ls_header-tdname
 object = ls_header-tdobject
 EXCEPTIONS
 not_found = 1
 others = 2.

 IF sy-subrc EQ 0.
 COMMIT WORK.
 ELSE.
 "Error handling goes here...
 ENDIF.

Listing 6.11 Deleting Text with Function DELETE_TEXT

6.5.3 Alternatives to Working with Text Objects

Beginning with SAP NetWeaver AS ABAP 6.10, SAP has provided support for char-
acter large database objects (CLOBS) and binary large database objects (BLOBS) in
ABAP Dictionary tables. This functionality makes it easy to store long texts and/
or MIME objects in the database without having to first break them apart into
unwieldy chunks. For example, in Figure 6.30, we have defined a table called
ZTCA_BOOKTEXT to store a long text description for the bookstore example consid-
ered throughout the course of this chapter. We can store a long text description

223

Connecting to External Databases 6.6

for a given book in the DESCRIPTION field regardless of the size of the descriptive
text.

Figure 6.30 Using the STRING Data Type in an ABAP Dictionary Table

Over time, large database objects eventually replace text objects as the standard
way for storing long text data. In fact, the forthcoming release of the Locators and
Streams API in SAP NetWeaver AS ABAP 7.02 will make the process of working
with these objects even more powerful. You can learn more about the Locators and
Streams API online at www.sdn.sap.com. Here, you can search for Thomas Jung’s
e-book entitled Locators and Streams in ABAP 7.02.

6.6 Connecting to External Databases

Occasionally, you may stumble across a requirement where you need to access data
from an external database in an ABAP program. For example, imagine that a mid-
sized company is replacing a home-grown database-driven solution with SAP ERP.
Rather than forcing legacy developers to generate extracts of the data to import
into SAP, it can be more cost-effective to simply configure a connection to that
database and pull the data in directly. In this section, we show you how to create
these external connections and execute Native SQL commands against them.

6.6.1 Configuring a Database Connection

To access an external database, you must configure a database connection in Trans-
action DBCO.3 Figure 6.31 shows the initial screen of this transaction. As you can

3 Note: The configuration of external database connections is normally a Basis team activity, so
make sure you get approval before trying this out on your own.

224

Database Programming6

see, this transaction initially contains only connection details about the default
SAP NetWeaver AS ABAP database connection.

Figure 6.31 Overview of External Database Connections in DBCO

To create a new connection in Transaction DBCO, you must perform the follow-
ing steps:

1. Click the Change R Display button to get into edit mode, and then select the
New Entries button.

Figure 6.32 Creating a Database Connection

2. In the New Entries: Details of Added Entries input mask (see Figure 6.32), you
must specify the following information:

225

Connecting to External Databases 6.6

EE DB Connection: The database connection name

EE DBMS: The database system type (which must be supported by SAP)

EE User Name: The database user account used to connect

EE DB Password: The password of the database user account

EE Conn. Info: Database-specific connection information4

3. When you’re satisfied with your changes, click the Save button to save your
changes.

6.6.2 Accessing the External Database

In keeping with our bookstore example, let’s see how we would extract book
information out of an external database table. For the purposes of this demon-
stration, we use the database connection defined in Section 6.6.1, Configuring a
Database Connection, to connect to a custom SAP MaxDB instance called BOWDARK.
Within this instance, there is a custom schema named BOOKSTORE that has a table
called BOOKS. Figure 6.33 exhibits the fields defined in the BOOKS table, and Figure
6.34 shows some sample data loaded into the table.

Figure 6.33 Database Schema for Table BOOKSTORE.BOOKS

4 To find reference information about how to connect to your particular database, see SAP Note
323151.

226

Database Programming6

Figure 6.34 Target Entries in the BOOKSTORE.BOOKS Table

By default, an ABAP program only maintains an implicit connection to the under-
lying SAP NetWeaver AS ABAP database. Therefore, to access an external database,
you must first open a connection using the CONNECT statement whose syntax is
shown in Listing 6.12. As you can see, this statement must be surrounded by an
EXEC SQL code block. In a moment, you’ll see that all Native SQL commands must
be embedded inside an EXEC SQL block. This is necessary because the ABAP syntax
check can’t be expected to validate all of the various forms of Native SQL syntax
supported by various relational database systems.

EXEC SQL.
 CONNECT TO dbs [AS con]
ENDEXEC.

Listing 6.12 Syntax Diagram for the CONNECT Statement

After a connection is established, you can begin executing Native SQL commands
to perform various CRUD operations, execute stored procedures, and so on. To
illustrate how this works, consider the example report program ZDBCONDEMO listed
in Listing 6.13. This program opens a connection to the BOWDARK database schema
and performs a SELECT statement on the BOOKS table. Let’s walk through this pro-
gram to see what is happening at each step:

1. First, we open a connection to BOWDARK using the CONNECT statement. If there is
an error, we need to handle it accordingly.

227

Connecting to External Databases 6.6

2. Next, we open a database cursor using the OPEN dbcur statement. In this case,
the database cursor enables the exchange of result set data from the external
database into the ABAP program context.

3. After the cursor is established, we can extract the entries from the result set into
an internal table row by row using a DO loop. At each iteration of the loop, we
obtain the current row data using the FETCH NEXT statement.

4. After all of the entries have been read, we close the database cursor using the
CLOSE statement.

5. Then we close the external database connection using the DISCONNECT
statement.

6. Finally, we loop through the extracted entries and output them to an ABAP list.
Figure 6.35 shows the results.

REPORT zdbcondemo.
CLASS lcl_db_manager DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 main.

 METHODS:
 constructor IMPORTING im_conn_name
 TYPE dbcon_name,
 connect RAISING cx_sy_native_sql_error,
 get_books RAISING cx_sy_sql_error,
 disconnect.

 PRIVATE SECTION.
 TYPES: BEGIN OF ty_book,
 isbn_number TYPE zde_isbn,
 title TYPE zde_title,
 publication_date TYPE zde_publish_date,
 END OF ty_book.

 DATA: connection_name TYPE dbcon_name.
ENDCLASS.

CLASS lcl_db_manager IMPLEMENTATION.
 METHOD main.
 "Method-Local Data Declarations:

228

Database Programming6

 DATA: lo_db_manager TYPE REF TO lcl_db_manager.

 TRY.
 "Create an instance of the database manager:
 CREATE OBJECT lo_db_manager
 EXPORTING
 im_conn_name = 'BOWDARK'.

 "Try to connect to the database:
 lo_db_manager->connect().

 "Read the set of books in the external database:
 lo_db_manager->get_books().

 "Disconnect from the database:
 lo_db_manager->disconnect().
 CATCH cx_root.
 "Exception handling goes here...
 ENDTRY.
 ENDMETHOD.

 METHOD constructor.
 "Store the connection name in context:
 me->connection_name = im_conn_name.
 ENDMETHOD. " METHOD construtor

 METHOD connect.
 "Try to connect to the database:
 EXEC SQL.
 CONNECT TO :me->connection_name
 ENDEXEC.

 IF sy-subrc NE 0.
 "Error handling goes here...
 ENDIF.
 ENDMETHOD. " METHOD connect

 METHOD get_books.
 "Method-Local Data Declarations:
 DATA: ls_book TYPE ty_book,
 lt_books TYPE STANDARD TABLE OF ty_book.
 FIELD-SYMBOLS:

229

Connecting to External Databases 6.6

 <lfs_book> LIKE LINE OF lt_books.

 "Create a cursor to iterate over the books in the
 "BOOKSTORE schema's BOOKS table:
 EXEC SQL.
 OPEN dbcur
 FOR SELECT ISBN_NUMBER,
 TITLE,
 PUBLICATION_DATE
 FROM BOOKSTORE.BOOKS
 ENDEXEC.

 "Iterate over each of the book records:
 DO.
 EXEC SQL.
 FETCH NEXT dbcur
 INTO :ls_book-isbn_number,
 :ls_book-title,
 :ls_book-publication_date
 ENDEXEC.

 IF sy-subrc EQ 0.
 APPEND ls_book TO lt_books.
 ELSE.
 EXIT.
 ENDIF.
 ENDDO.

 "Close the cursor:
 EXEC SQL.
 CLOSE dbcur
 ENDEXEC.

 "Display the results:
 LOOP AT lt_books ASSIGNING <lfs_book>.
 WRITE: / <lfs_book>-isbn_number.
 WRITE: / <lfs_book>-title.
 WRITE: / <lfs_book>-publication_date.
 SKIP.
 ENDLOOP.
 ENDMETHOD. " METHOD get_books

230

Database Programming6

 METHOD disconnect.
 EXEC SQL.
 DISCONNECT :me->connection_name
 ENDEXEC.
 ENDMETHOD. " METHOD disconnect
ENDCLASS.

START-OF-SELECTION.
 lcl_db_manager=>main().

Listing 6.13 Accessing an External Database Table in ABAP

Figure 6.35 Results of Program ZDBCONDEMO

6.6.3 Further Reading

You now should have an understanding of how to work with external databases.
Of course, a short tutorial like this one can’t address all of the possible scenarios
that might come into play for a real project. Fortunately, the ABAP Keyword Docu-
mentation provides quite a bit of useful information to show you how to perform
various other tasks using the Native SQL interface. To access this information,
simply search using the phrase “Native SQL.”

231

Summary 6.7

6.7 Summary

In many ways, this chapter barely scratches the surface of all of the available data-
base programming options available in an advanced 4GL language such as ABAP.
Entire books could be written about the Open SQL interface and its surrounding
capabilities, but we had to draw the line somewhere. If you’re interested in learn-
ing more about ABAP Object Services, we recommend that you check out Object
Services in ABAP (SAP PRESS, 2010). In fact, we continue on that very topic in
the next chapter, when we talk about transactional programming techniques in
ABAP.

233

Computer programs, like recipes, must be executed in an organized fash-
ion to produce reliable results. Of course, there are times when everything
doesn’t run so smoothly. In these situations, programs must react to anom-
alous conditions and restore the system to a consistent state. In this chap-
ter, we explore options for implementing dependable transactions in ABAP.

7 Transactional Programming

Companies depend on online transaction processing (OLTP) systems such as SAP
to guarantee that their day-to-day business operations run smoothly. Therefore, it’s
important that each transaction executed in the system be carried out completely
and consistently each time without interruption. After all, given the investment
involved, there’s a lot at stake in even the simplest of ABAP programs.

Following best software engineering practices can go a long way toward making
sure that ABAP programs perform as expected. However, there are certain envi-
ronmental issues that are outside the control of every programmer. For example,
what if there is a problem with the underlying SAP NetWeaver AS ABAP database?
Or, what happens if two or more users try to access the same data record simulta-
neously? Fortunately, SAP provides many resources that can assist you in dealing
with these problems. In this chapter, we explore these resources and see how they
can be used to build robust transactions.

7.1 Introduction to the ACID Transaction Model

Before we begin looking at specific transactional services provided by SAP
NetWeaver AS ABAP, it’s important to establish some guidelines for what consti-
tutes a successful transaction. One common method of describing these properties
is the ACID model. The term “ACID” is an acronym that refers to four properties
that every transaction must maintain to be successful. Table 7.1 describes each of
these properties in detail.

234

Transactional Programming7

Transaction
Property

Description

Atomic Each transaction must execute completely or not at all. In other
words, a transaction represents a set of steps that are indivisible.

Consistent A transaction must leave the underlying data store (i.e., the SAP
NetWeaver AS ABAP database, etc.) in a consistent state.

Isolated Transactions must be allowed to execute without any interference.

Durable Changes made by a transaction must not be lost if the system
crashes.

Table 7.1 Properties of the ACID Transaction Model

A classic example used to illustrate the ACID model is a transfer of funds from
one bank account to another. For instance, let’s imagine that a customer wants to
transfer $500 from his savings account to his checking account. In addition to the
normal business rules (i.e., determining that there is enough money in the savings
account, etc.), we also need to ensure the following:

1. The debit/credit operations must execute completely, or not at all. For instance,
if the debit operation works, but the credit operation fails, then the customer
loses $500. This isn’t good for customer service.

2. At the end of the transaction, the balances on the customer’s checking and sav-
ings account should be in a consistent state.

3. If there are multiple users on the account (i.e., a spouse, etc.), the transfer oper-
ation must be executed in isolation. Otherwise, the transaction might allow two
or more users to transfer more money than is actually available in the savings
account, and so on.

4. The changes made to the accounts must be persisted even in the event of a sys-
tem crash. In addition to the actual account records, this also implies that a log
of the transaction must be recorded.

Implementing these kinds of requirements in a distributed system such as SAP
isn’t a trivial task. In the upcoming sections, we explain how the different transac-
tional services provided out of the box with SAP NetWeaver AS ABAP can be used
to implement the ACID model for transaction processing.

235

Transaction Processing with SAP LUWs 7.2

7.2 Transaction Processing with SAP LUWs

As we mentioned earlier, there are various external factors that can jeopardize
the integrity of a transaction. Despite that these circumstances are outside of your
control as a programmer, they can’t simply be ignored. Instead, you must detect
these occurrences and react accordingly. For example, in the bank account transfer
scenario, if the debit operation is successful, and the credit operation fails, you
need to roll back the entire transaction to leave the system in a consistent state. In
transaction processing terms, you need an atomic commit protocol.

In an atomic commit protocol, various changes to transactional resources are
grouped together as a single operation that can either be committed or rolled
back as a single unit. These operations are collectively referred to as a logical unit of
work (LUW). In this section, we introduce you to the SAP LUW concept and show
you how you can bundle database changes together so that business objects are
updated completely and correctly.

7.2.1 Introduction to SAP Logical Units of Work

When you hear the term “LUW,” it’s frequently being talked about in the con-
text of database programming. In this case, the LUW refers to a group of related
SQL statements that make up a transaction in the database. Figure 7.1 shows the
lifecycle of a database LUW starting at the point in which the transaction begins
and ending with either a transaction commit or rollback. At the beginning of the
transaction, the database is in a consistent state. Within the scope of the transac-
tion, various SQL statements alter the state of the database tables grouped in the
database LUW. However, in the transactional concept, these changes aren’t applied
immediately. Instead, they are committed together when all of the requisite trans-
action steps are completed. Of course, at any point along the way, an error may
occur that causes the entire transaction to be rolled back (see Figure 7.1).

Interim Status

Rollback or Error

CommitBeginning
of Transaction

Figure 7.1 Lifecyle of a Database Transaction

236

Transactional Programming7

Though database LUWs are a very important part of any transaction-processing
concept, they aren’t sufficient to implement all of the transaction-processing
requirements of a sophisticated three-tier system such as SAP. To see why, let’s
consider a simple Dynpro program that is used to update a series of normalized
database tables. However, before we do so, we first need to take a step back and
understand how dialog work processes are allocated for Dynpro programs.

Managing Dialog Resources

SAP NetWeaver AS ABAP was designed from the ground up to be a preemptive mul-
titasking system. This complex term basically implies that the application server pre-
empts idle programs in favor of other user requests to maximize resources (namely,
dialog processes). At the point of preemption, a context switch is performed, and
the program state is rolled out to the user’s user session in the shared memory of
the application server. When the next dialog step is scheduled to run by the ABAP
dispatcher, it’s quite possible that a separate dialog process gets selected to process
the request; at which time the program state is rolled in from the user’s user ses-
sion. Figure 7.2 illustrates the basic architecture of SAP NetWeaver AS ABAP.

AS ABAP

Work
Process 1

ABAP Dispatcher

GatewayICM

SAP GUI Client RFC Client/
Server

R

HTTP Client/
Server

R

Work
Process 2

Work
Process N

Work
Process 3

R R
R R

AS ABAP Database

Dispatcher
Queue

R

R

R

Figure 7.2 Basic Architecture of SAP NetWeaver AS ABAP

237

Transaction Processing with SAP LUWs 7.2

In addition to dealing with program state, and so on, a dialog process also main-
tains a connection to the underlying SAP NetWeaver AS ABAP database. This con-
nection operates in a kind of “pseudo-autocommit” mode in which database LUWs
are implicitly committed at the end of each dialog step. These implicit commits
are necessary because the dialog process may get reassigned to a different program
when it’s selected to process another user request by the ABAP dispatcher process.
Of course, explicit LUWs can also be demarcated using the COMMIT WORK statement
or DB_COMMIT function module.

Dealing with Implicit Database Commits

Now that you understand how dialog processes are allocated to support incom-
ing user requests, let’s think about how our example Dynpro program might be
affected by this architecture. As a frame of reference for our discussion, consider
the progression of dialog steps depicted in Figure 7.3.

PBO PAIPBOPAIPBOPAI
Screen

100
Screen

200
Screen

300

User Input Save

Database LUWs

SAP LUW

Figure 7.3 Relationship Between Dialog Steps and Database LUWs

In ABAP dialog programming, a screen has two distinct event types that are pro-
cessed by the application server:

EE Process before output (PBO) event
The PBO event is fired before a screen is rendered on the user’s SAP GUI fron-
tend, allowing input fields to be initialized, and so on. After the screen is initial-
ized, a context switch occurs, and the dialog process that executed the PBO
event is reclaimed to support other user requests.

EE Process after input (PAI) event
When a user has finished inputting his data on the screen, he can trigger the PAI
event (by clicking a button, etc.) to have the application server process the
input. This request is captured by the ABAP dispatcher process (refer to Figure

238

Transactional Programming7

7.2) and then eventually handed off to a dialog process. This dialog process
executes the PAI event of the current screen and the PBO event of the next
screen. After the next screen is initialized, another context switch occurs, and
the cycle starts all over again for another user request.

The execution of the PAI and PBO events between two screens is collectively
referred to as a dialog step. As you saw in Figure 7.3, each dialog step has a data-
base LUW associated with it. This database LUW is implicitly committed whenever
the context switch occurs at the end of the dialog step. In terms of a long-running
transaction with many dialog steps, this can be problematic; any Open SQL com-
mand that is executed within a dialog step is implicitly committed during a context
switch.

Looking back at the screen-processing sequence of our example program in Fig-
ure 7.3, let’s suppose that the user enters some data on Screens 100 and 200 that
gets added to the database in the intermediate dialog steps. Now, imagine that the
user clicks on the Save button on Screen 300 to complete the transaction. What
happens if the final insert operation fails? Because each database LUW within the
previous dialog steps was committed implicitly, those records have already been
written to the database. Suffice it to say that it’s not realistic to implement cus-
tom logic to delete these changes after the fact. Also, because implicit commits of
database LUWs are also triggered by RFCs, WAIT statements, and so on, we can’t
simply chalk this up to a special dialog programming use case. Clearly, a better
solution is needed.

Expanding the Scope of LUWs

To address the kinds of problems associated with implicit database LUWs, SAP
devised a broader LUW concept referred to as an SAP LUW. In the SAP LUW con-
cept, each of the Open SQL statements executed in the dialog steps illustrated in
Figure 7.3 are bundled together and written to a log table called VBLOG, which
keeps track of the LUW. When the transaction is complete, it can be committed
using the COMMIT WORK statement. This statement causes the entries buffered in the
log table to be copied over to their target tables by a special work process in SAP
NetWeaver AS ABAP called the update work process (sometimes referred to as the
update task). We’ll explain more about the update task in the upcoming sections.

The use of the intermediate log table also makes it possible to roll back a transac-
tion using the ROLLBACK WORK statement. In this case, the entries in the log table
are simply discarded, and the database remains in a consistent state.

239

Transaction Processing with SAP LUWs 7.2

By now you should understand how SAP LUWs work at a high level. However,
you’re probably wondering how Open SQL statements get bundled in an SAP
LUW in the first place. Next, we show you how to develop custom function mod-
ules/subroutines to achieve this type of bundling. Also, in Section 7.3, Work-
ing with the Transaction Service, we demonstrate how persistent objects can be
enrolled in SAP LUWs.

7.2.2 Bundling Database Changes in Update Function Modules

One way to bundle database changes together inside an SAP LUW is to create an
update function module. Update function modules are maintained in the Function
Builder (Transaction SE37), just like any normal function module. The only differ-
ence is that update modules have a different processing type than normal function
modules. Figure 7.4 shows how we have selected the Update Module processing
type for a function in the Function Builder. After we select this option, the Func-
tion Builder takes care of the rest.

Figure 7.4 Selecting the Update Module Processing Type

When you select the Update Module processing type, you have several different
processing options to choose from. Though Table 7.2 describes these processing
options in detail, you should normally choose the Start Immed. option.

240

Transactional Programming7

Processing Type Description

Start Immediately Causes the update module to be processed immediately by
the update task whenever the transaction is committed via
a COMMIT WORK statement. Because the module is processed
by the update task, the dialog process that triggered the
update doesn’t wait for the module to finish.

Immediate Start, No
Restart

Behaves just like the Start Immediately processing option,
except that the module can’t be reprocessed in Transaction
SM13 (more on this in Section 7.2.5, Dealing with
Exceptions in the Update Task).

Start Delayed Causes the update module to be processed in the update
task as a low-priority item. This might be used to write
statistical data, and so on.

Collective Run Internal option that should only be used by SAP.

Table 7.2 Update Module Processing Types

Listing 7.1 contains a sample update function called Z_BOOK_INSERT that adds a
book record to the ZTCA_BOOKS table described in Chapter 6, Database Program-
ming. As you can see, there’s nothing terribly remarkable about this function; it
simply tries to insert the book record into the ZTCA_BOOKS table using the Open
SQL INSERT statement and raises an exception in the event that the record already
exists. As a rule, you should avoid implementing a lot of program logic inside
of update modules. For example, any validations on the book record passed to
Z_BOOK_INSERT should occur before the update module is called. Sticking with this
approach will help you avoid complex error-handling scenarios (more on this in
Section 7.2.5, Dealing with Exceptions in the Update Task).

Another thing to keep in mind when developing update function modules is that
you can’t execute statements that may generate a database commit either implic-
itly or explicitly. Examples of these kinds of statements include COMMIT WORK, CALL
TRANSACTION, and so on.

FUNCTION Z_BOOK_INSERT.
*"--
""Update Function Module:
*"
""Local Interface:
*" IMPORTING
*" VALUE(IM_BOOK) TYPE ZTCA_BOOKS
*" EXCEPTIONS

241

Transaction Processing with SAP LUWs 7.2

*" DUPLICATE_BOOK
*"--
* Try to insert the record into the table:
 INSERT ztca_books FROM im_book.
 IF sy-subrc NE 0.
* ISBN & already exists in the book database!
 MESSAGE E001(ZCA_BOOKSTORE)
 WITH im_book-isbn
 RAISING duplicate_book.
 ENDIF.
ENDFUNCTION. " Function Z_BOOK_INSERT

Listing 7.1 Example Update Module to Add a Book to the Database

To invoke the Z_BOOK_INSERT module using the update task, you must use the IN
UPDATE TASK addition of the CALL FUNCTION statement. The code excerpt shown in
Listing 7.2 demonstrates how to do this. Here, notice how we’re using the COMMIT
WORK statement to commit the transaction. Prior to this statement, we can call as
many update functions as we like; their changes simply remain queued up in the
VBLOG table.

DATA: ls_book TYPE ztca_books.
ls_book-isbn = '9781592292356'.
ls_book-title =
 'Object-Oriented Programming with ABAP Objects'.
ls_book-publication_date = '20090201'.

CALL FUNCTION 'Z_BOOK_INSERT'
 IN UPDATE TASK
 EXPORTING
 im_book = ls_book
 EXCEPTIONS
 others = 1.

COMMIT WORK.

Listing 7.2 Calling an Update Function Module Asynchronously

When the COMMIT WORK statement in Listing 7.2 executes, the Z_BOOK_INSERT func-
tion is executed asynchronously in the update task. This implies that the calling
process can move on to process other requests, and so on. In some scenarios, you
may want to wait for the database changes to be committed before proceeding.
In these situations, you can use the AND WAIT addition of the COMMIT WORK state-

242

Transactional Programming7

ment to cause the current work process to wait until the high-priority update
modules are finished processing. Listing 7.3 demonstrates the syntax of the AND
WAIT addition.

DATA: ls_book TYPE ztca_books.
ls_book-isbn = '9781592292356'.
ls_book-title =
 'Object-Oriented Programming with ABAP Objects'.
ls_book-publication_date = '20090201'.

CALL FUNCTION 'Z_BOOK_INSERT'
 IN UPDATE TASK
 EXPORTING
 im_book = ls_book
 EXCEPTIONS
 others = 1.

COMMIT WORK AND WAIT.

Listing 7.3 Calling an Update Function Module Synchronously

If you look carefully at the code in Listing 7.2 and Listing 7.3, you’ll see that we
haven’t included any kind of exception-handling code after the call to Z_BOOK_
INSERT. As you might have guessed already, this is because the update module is
processed separately in the update task. In Section 7.2.5, Dealing with Exceptions
in the Update Task, we’ll show you how to handle exceptions that occur within
the update task.

7.2.3 Bundling Database Changes in Subroutines

An alternative to creating update modules is to bundle database changes together
in subroutines. These subroutines are registered using the ON COMMIT addition to
the PERFORM statement as shown in Listing 7.4. Here, the syntax is fairly straight-
forward: The requested subroutine is registered to be executed whenever a trans-
action is committed using the COMMIT WORK statement.

PERFORM subroutine
 ON { {COMMIT [LEVEL idx]} | ROLLBACK }.

Listing 7.4 Syntax Diagram for PERFORM ON COMMIT Statement

Looking closely at the syntax diagram in Listing 7.4, you can see that there is no
mechanism for passing parameters to update subroutines. Instead, these modules

243

Transaction Processing with SAP LUWs 7.2

must obtain their data through external data sources (e.g., ABAP memory, etc.).
Given this limitation, subroutines executed within a COMMIT WORK are typically best
suited to performing administrative or cleanup tasks rather than database updates.
In fact, update subroutines are often called within update modules for this very
purpose. In this case, the update subroutines are executed in the update task after
all of the update modules have finished running.

The sample report program ZUPDATE_DEMO listed in Listing 7.5 demonstrates how to
register an update subroutine using the PERFORM ON COMMIT statement. In terms of
the overall call sequence, update subroutines are executed in their respective work
process before update function modules are kicked off in the update task. Because
they run in their respective work process, update subroutines have a major per-
formance advantage over update modules: They don’t have to incur the overhead
of logging changes to table VBLOG.

REPORT zupdate_demo.
START-OF-SELECTION.
 PERFORM insert_book ON COMMIT.
 COMMIT WORK.

FORM insert_book.
* Local Data Declarations:
 DATA: ls_book TYPE ztca_books.

 ls_book-isbn = '9781592292356'.
 ls_book-title =
 'Object-Oriented Programming with ABAP Objects'.
 ls_book-publication_date = '20090201'.

* Try to insert the record into the table:
 INSERT ztca_books FROM ls_book.
 IF sy-subrc NE 0.
* ISBN & already exists in the book database!
 MESSAGE E001(ZCA_BOOKSTORE)
 WITH ls_book-isbn
 RAISING duplicate_book.
 ENDIF.
ENDFORM.

Listing 7.5 Bundling Database Updates Using a Subroutine

As you can see in the syntax diagram shown earlier in Listing 7.4, there are a cou-
ple of other syntax additions that can be applied to the PERFORM statement:

244

Transactional Programming7

EE The LEVEL addition is used to control the execution sequence of the update sub-
routines at runtime. Normally, update subroutines are executed in the order
they are registered. However, when the PERFORM ON COMMIT statement is exe-
cuted with the LEVEL addition, the provided integer value can be used to influ-
ence this sequencing.

EE The ON ROLLBACK addition causes the update subroutine to be executed when-
ever the ROLLBACK WORK statement is executed. Such subroutines are normally
used to clean up after a transaction.

Just like update modules, update subroutines can’t execute statements that can
perform database commits. For more information about update subroutines,
perform a keyword search on the term “PERFORM ON” in the ABAP Keyword
Documentation.

7.2.4 Performing Local Updates

In some situations, the overhead associated with queuing up an SAP LUW in the
VBLOG table isn’t really necessary. For instance, if you run a program in the back-
ground, you don’t have to worry about implicit database commits via context
switches. However, you still want to have the ability to enroll a series of Open
SQL statements inside an SAP LUW. This can be achieved using the SET UPDATE
TASK LOCAL statement.

The SET UPDATE TASK LOCAL statement switches on a local update mode in the
current work process. When this mode is turned on, calls to update function mod-
ules are queued up in the ABAP memory as opposed to the VBLOG table. Whenever
the COMMIT WORK statement is executed, the update functions are synchronously
performed in the current work process. The code excerpt in Listing 7.6 demon-
strates the call sequence necessary to execute update functions in the local update
mode.

SET UPDATE TASK LOCAL.
...
CALL FUNCTION ... IN UPDATE TASK.
CALL FUNCTION ... IN UPDATE TASK.
CALL FUNCTION ... IN UPDATE TASK.
...
COMMIT WORK.

Listing 7.6 Turning on the Local Update Mode in a Work Process

245

Transaction Processing with SAP LUWs 7.2

One thing to keep in mind with the local update mode is that it’s always deacti-
vated at the beginning of an SAP LUW. Thus, if you wanted to process another
transaction in local update mode after the COMMIT WORK statement from Listing 7.6,
you would have to execute the SET UPDATE TASK LOCAL statement again.

7.2.5 Dealing with Exceptions in the Update Task

Update functions running in the update task are cut off from their calling pro-
grams. In fact, it’s possible that the update task may not get around to executing
an asynchronous update until after the calling program is already completed. Con-
sequently, the error-handling options available to you inside of an update function
module are pretty limited. For instance, in Listing 7.1 earlier in this chapter, we’re
simply outputting an error message if the insert operation fails. At this point, you
might be wondering where that message went — rest assured that it’s not simply
lost in the ether; rather, it’s stored inside the update request log.

You can access the update request log by executing Transaction SM13. Figure 7.5
shows the initial screen of Transaction SM13. Here, you can enter various selec-
tion criteria (the user that would have initiated the request, the date/time range
in which the request was created, its status, etc.) and search for update requests
in the log.

Figure 7.5 Initial Screen of Transaction SM13

246

Transactional Programming7

If there are entries in the log for the given selection criteria, they are displayed
in the results screen shown in Figure 7.6. You can double-click a particular entry
to see details about the update module associated with the update request (see
Figure 7.7).

Figure 7.6 Viewing Update Requests in the Log — Part 1

Figure 7.7 Viewing Update Requests in the Log — Part 2

In Figure 7.7, you can see that the update module Z_BOOK_INSERT has an error sta-
tus. This is because we executed the sample code from Listing 7.2 multiple times.
If we double-click the update module record in Figure 7.7, we can read detailed
information about the root cause of the error (see Figure 7.8).

Occasionally, an update module might fail because of an actual problem in the
database (e.g., disk space issues, etc.). In this case, you have the option of clicking
on the Repeat Update button to reprocess the update module. Alternatively, if you
know that the update is definitely in error, then you can simply delete it by click-
ing on the Delete Record button.

247

Transaction Processing with SAP LUWs 7.2

Figure 7.8 Viewing Update Requests in the Log — Part 3

Whenever an update error occurs, an express message is also created and displayed
for the user in the SAP GUI frontend (see Figure 7.9) and stored in the user’s Busi-
ness Workplace inbox (see Figure 7.10).

Figure 7.9 SAPoffice Express Message for an Update Error

248

Transactional Programming7

Figure 7.10 Update Error Messages in the Business Workplace

Despite the fact that the update log keeps track of any update errors that may
occur, it should not be used as a safety net. As we mentioned earlier, it’s a good
practice to validate data extensively before handing it off to an update module. As
a rule, update errors should only occur in rare situations where there are technical
issues with the system.

7.3 Working with the Transaction Service

In Chapter 6, Database Programming, we briefly described how changes to per-
sistent objects are committed to the database using the COMMIT WORK statement. In
this section, we expand on these concepts by showing you how to use the Transac-
tion Service to manage changes to persistent objects inside of an SAP LUW.

7.3.1 Transaction Service Overview

The Transaction Service is offered as part of the ABAP Object Services framework;
it allows you to manage changes to persistent objects using an object-oriented
transaction concept. This object-oriented transaction concept is purely an abstrac-
tion of the Transaction Service; behind the scenes, the Transaction Service works
in conjunction with the Persistence Service to enroll changes to persistent objects
in an SAP LUW, per usual. However, much like the Persistence Service abstracts
away the details of executing SQL commands, the Transaction Service hides the
low-level aspects of working with SAP LUWs. In particular, it takes care of bun-
dling changes inside of an update function module so that you don’t have to break

249

Working with the Transaction Service 7.3

out of the object-oriented mindset when you need to manage persistent objects
in a transactional context.

Figure 7.11 contains a UML class diagram that depicts the core components of
the Transaction Service. Much like we saw with the architecture of the Persistence
Service in Chapter 6, Database Programming, the Transaction Service also makes
heavy use of interfaces to maintain flexibility. The core interface that represents a
transaction is the IF_OS_TRANSACTION interface. Looking at the UML class diagram
in Figure 7.11, you can see that this interface defines methods to start a transac-
tion, end a transaction, undo a transaction, and so on. You’ll learn more about
these methods as you see some code examples in the upcoming sections.

<<interface>>
IF_OS_TRANSACTION_MANAGER

+ CREATE_TRANSACTION()
+ GET_TOP_TRANSACTION()
+ GET_CURRENT_TRANSACTION()

<<interface>>
IF_OS_TRANSACTION

+ SET_MODE_UPDATE()
+ START()
+ END()
+ END_AND_CHAIN()
+ UNDO()
+ UNDO_AND_CHAIN()
+ SET_MODE_UNDO_RELEVANT()
+ GET_STATUS()
+ GET_MODES()
+ REGISTER_CHECK_AGENT()

+ SAVE_REQUESTED
+ SAVE_PREPARED
+ FINISHED

Framework
Events

CL_OS_SYSTEM

...
+ INIT_AND_SET_MODES()
+ GET_TRANSACTION_MANAGER()
...

Figure 7.11 UML Class Diagram of Transaction Service Components

Object-oriented transactions are managed by a transaction manager that is repre-
sented by the IF_OS_TRANSACTION_MANAGER interface. You can obtain a reference
to an object that implements this interface by calling the static factory method
GET_TRANSACTION_MANAGER() of class CL_OS_SYSTEM.

7.3.2 Understanding Transaction Modes

When you work with the Transaction Service, you need to specify a transaction
mode. This mode defines the behavior of transactions in the context of the under-
lying SAP LUW. Table 7.3 shows the transaction modes that you can choose from
when configuring the transaction manager.

250

Transactional Programming7

Transaction Mode Description

Compatibility mode

(Default)

In compatibility mode, you must execute the COMMIT WORK
statement explicitly. You select this mode when you want to
mix in persistent objects within the context of a preexisting
transaction that is using update function modules, and so on.

Object-oriented
mode

In object-oriented mode, you commit transactions by calling
the END() or END_AND_CHAIN() methods of the IF_OS_
TRANSACTION object. These methods trigger the COMMIT WORK
behind the scenes. You aren’t allowed to execute a COMMIT
WORK statement within the scope of a transaction that is in
object-oriented mode.

Table 7.3 Transaction Modes of the Transaction Service

In addition to a transaction mode, you must also select an update mode that defines
how the Transaction Service performs the update whenever a transaction is com-
mitted. As you can see in Table 7.4, these options are directly related to the
SAP LUW statements described in Section 7.2, Transaction Processing with SAP
LUWs.

Update Mode Description

Direct

{OSCON_DMODE_DIRECT}

This mode is analogous to executing the SET
UPDATE TASK LOCAL statement prior to the creation
of the transaction.

Asynchronous update task

(Default)

{OSCON_DMODE_UPDATE_TASK}

In this mode, the Transaction Service bundles the
changes in an update function module that gets
processed asynchronously in the update task.

Local

{OSCON_DMODE_LOCAL}

This mode is analogous to executing the SET
UPDATE TASK LOCAL statement prior to the creation
of the transaction.

Synchronous update task

{OSCON_DMODE_UPDATE_TASK_
SYNC}

This mode behaves like the asynchronous update
task update mode except that the Transaction
Service uses the AND WAIT addition of the
COMMIT WORK statement to execute the update
synchronously.

Table 7.4 Update Modes of the Transaction Service

You can configure the transaction mode and update mode for the Transaction
Service using the static method INIT_AND_SET_MODES() of class CL_OS_SYSTEM. Fig-

251

Working with the Transaction Service 7.3

ure 7.12 shows the signature of this method and its two importing parameters:
I_EXTERNAL_COMMIT and I_UPDATE_MODE. These parameters are used as follows:

EE The I_EXTERNAL_COMMIT parameter is used to configure the transaction mode.
As you can see, the default value of this parameter is set to OSCON_TRUE. This
implies that the default transaction mode is compatibility mode. If you want to
work in the object-oriented transaction mode, you must pass in a value of
OSCON_FALSE here.

EE The I_UPDATE_MODE parameter allows you to specify the type of update mode
that you want to work with. Table 7.4 shows you the constant names that you
can specify to configure each of the available update mode options.

Figure 7.12 Signature of Method INIT_AND_SET_MODES()

You must execute the INIT_AND_SET_MODES() method before you access the Persis-
tence Service; otherwise, it raises an unchecked exception of type CX_OS_SYSTEM.
Therefore, if you’re going to explicitly initialize the Transaction Service using the
INIT_AND_SET_MODES() method, we recommend that you do so in the LOAD-OF-
PROGRAM event, a class constructor, and so on. That way, you can be sure that the
Transaction Service is properly initialized before any attempts are made to access
it.

If you don’t explicitly configure a transaction mode and update mode, the Transac-
tion Service implicitly initializes itself to operate in compatibility mode using the
asynchronous update task. We saw evidence of this in Chapter 6, Database Pro-
gramming, when we demonstrated how to commit changes to persistent objects.

Another option for configuring the transaction mode of the Transaction Service is
to create an object-oriented transaction in Transaction SE93. In this case, you specify
the desired transaction and update modes within the transaction itself. At runtime,

252

Transactional Programming7

whenever a user executes the object-oriented transaction, the runtime environ-
ment implicitly calls the CL_OS_SYSTEM=>INIT_AND_SET_MODES() method behind
the scenes, based upon the selected values. To configure the transaction mode for
an object-oriented transaction, perform the following steps:

1. Open Transaction SE93 and enter a transaction code in the Transaction Code
field. Then click on the Create button (see Figure 7.13).

Figure 7.13 Creating an Object-Oriented Transaction — Part 1

2. In the Create Transaction dialog box that pops up, enter a short text description
for the transaction, and select the Method of a Class (OO Transaction) radio
button in the Start Object group box (see Figure 7.14). Press [Enter] to confirm
your selections.

Figure 7.14 Creating an Object-Oriented Transaction — Part 2

3. If you look carefully at the Create Object Transaction screen shown in Fig-
ure 7.15, you can see that there’s a checkbox entitled OO Transaction Model
that you can select to specify the object-oriented transaction mode. When this
checkbox is selected, you also can configure an update mode in the Update
Mode group box (see Figure 7.15).

253

Working with the Transaction Service 7.3

Figure 7.15 Creating an Object-Oriented Transaction — Part 3

7.3.3 Processing Transactions in Object-Oriented Mode

Now that you understand the components that make up the Transaction Service,
let’s see how we can use this service to execute an object-oriented transaction. As
a basis for our discussion, consider the ZTRANS_DEMO example program shown in
Listing 7.7. This program is leveraging the persistent objects that we created in
Chapter 6, Database Programming, to create a new book. As you can see, the heavy
lifting is being performed by a local class called LCL_TRANSACTION_DEMO.

Before we start digging into the transaction code, notice how we’re calling the
static method INIT_AND_SET_MODES() of class CL_OS_SYSTEM in the class construc-
tor of LCL_TRANSACTION_DEMO to explicitly turn on the object-oriented transaction
mode in the Transaction Service. By calling this method in the class constructor,
we’re assured that there won’t be any potential initialization errors later on.

REPORT ztrans_demo.
CLASS lcl_transaction_demo DEFINITION.
 PUBLIC SECTION.

254

Transactional Programming7

 CLASS-METHODS:
 class_constructor,
 create_book.

 METHODS:
 handle_save_requested FOR EVENT save_requested
 OF if_os_transaction,
 handle_save_prepared FOR EVENT save_prepared
 OF if_os_transaction,
 handle_finished FOR EVENT finished
 OF if_os_transaction
 IMPORTING status.
ENDCLASS.

CLASS lcl_transaction_demo IMPLEMENTATION.
 METHOD class_constructor.
* Initialize the Transaction Service to use the
* object-oriented transaction mode:
 CALL METHOD cl_os_system=>init_and_set_modes
 EXPORTING
 i_external_commit = oscon_false
 i_update_mode = oscon_dmode_update_task.
 ENDMETHOD.

 METHOD create_book.
 "Method-Local Data Declarations:
 DATA: lo_trans_svc TYPE REF
 TO lcl_transaction_demo,
 lo_trans_mgr TYPE REF
 TO if_os_transaction_manager,
 lo_trans TYPE REF
 TO if_os_transaction,
 lo_author1 TYPE REF
 TO zcl_author,
 lo_author2 TYPE REF
 TO zcl_author,
 lo_publisher TYPE REF
 TO zcl_publisher,
 lo_book TYPE REF
 TO zcl_book.

 "Instantiate the test driver class:
 CREATE OBJECT lo_trans_svc.

255

Working with the Transaction Service 7.3

* Obtain a reference to the transaction manager:
 lo_trans_mgr =
 cl_os_system=>get_transaction_manager().

* Create a top-level transaction:
 lo_trans = lo_trans_mgr->create_transaction().

* Register event handlers for the transaction:
 SET HANDLER lo_trans_svc->handle_save_requested
 FOR lo_trans.
 SET HANDLER lo_trans_svc->handle_save_prepared
 FOR lo_trans.
 SET HANDLER lo_trans_svc->handle_finished
 FOR lo_trans.

 TRY.
 "Start the transaction:
 lo_trans->start().

 "Create a publisher for the book:
 CALL METHOD zca_publisher=>agent->create_persistent
 EXPORTING
 i_country = 'US'
 i_publisher_name = 'Galileo Press, Inc.'
 i_region = 'MA'
 RECEIVING
 result = lo_publisher.

 "Create the book authors:
 CALL METHOD zca_author=>agent->create_persistent
 EXPORTING
 i_first_name = 'Horst'
 i_last_name = 'Keller'
 RECEIVING
 result = lo_author1.

 CALL METHOD zca_author=>agent->create_persistent
 EXPORTING
 i_first_name = 'Sascha'
 i_last_name = 'Krüger'
 RECEIVING
 result = lo_author2.

256

Transactional Programming7

 "Now, create the book:
 CALL METHOD zca_book=>agent->create_persistent
 EXPORTING
 i_isbn = '9781592290796'
 i_publication_date = '20070315'
 i_publisher = lo_publisher
 i_title =
 'ABAP Objects: ABAP Programming in NetWeaver'
 RECEIVING
 result = lo_book.

 "Assign the authors to the book:
 lo_book->add_author(lo_author1).
 lo_book->add_author(lo_author2).

* Commit the transaction:
 lo_trans->end().
 CATCH cx_root.
 ENDTRY.
 ENDMETHOD.

 METHOD handle_save_requested.
 WRITE: /
 'Save requested, perform any last-minute updates...'.
 ENDMETHOD.

 METHOD handle_save_prepared.
 WRITE: /
 'Save prepared, COMMIT WORK happens next...'.
 ENDMETHOD.

 METHOD handle_finished.
 IF status EQ OSCON_TSTATUS_FIN_SUCCESS.
 WRITE: / 'Transaction processed successfully.'.
 ENDIF.
 ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
* Hand the main processing off to the local demo class:
 lcl_transaction_demo=>create_book().

Listing 7.7 Working with Object-Oriented Transactions

257

Working with the Transaction Service 7.3

In method CREATE_BOOK(), you can see the transaction processing code high-
lighted in boldface font. Generally speaking, the order of operations for process-
ing an object-oriented transaction is as follows:

1. First, you need to call the static method GET_TRANSACTION_MANAGER() of class
CL_OS_SYSTEM to obtain a reference to the transaction manager.

2. After you have a reference to the transaction manager, you can call method
CREATE_TRANSACTION() to create a top-level transaction object.

3. To start the transaction, invoke the START() method on the transaction object.

4. After the transaction is started, begin making changes to persistent objects, per
usual. For instance, in Listing 7.7, we’re creating book, author, and publisher
persistent objects using the CREATE_PERSISTENT() method of their respective
class agents.

5. If an error occurs along the way, the transaction can be rolled back by executing
the UNDO() method on the transaction object.

6. Otherwise, after all of the transaction steps have been completed, you can call
the END() method on the transaction to commit the changes to the persistent
objects. After the transaction is committed, the persistent objects will be invali-
dated. Alternatively, you can call the END_AND_CHAIN() method to commit the
transaction and then start a new transaction in the same context. In this case,
the persistent objects aren’t invalidated.

Working with Subtransactions

In the example code shown in Listing 7.7, we’re only working with a single top-
level transaction. We emphasize the term “top-level” here to indicate that it’s pos-
sible to divide a transaction into subtransactions. Here, you might want to bundle
together a series of steps as a subtransaction within the scope of a larger transac-
tion, and so on.

The process of creating a subtransaction is identical to the one used to create a
top-level transaction: You simply call the transaction manager method CREATE_
TRANSACTION(). The only difference is that the subtransaction executes inside the
scope of the top-level transaction. The code excerpt in Listing 7.8 shows how this
works.

DATA: lo_trans_mgr TYPE REF TO if_os_transaction_manager,
 lo_top_trans TYPE REF TO if_os_transaction,
 lo_sub_trans TYPE REF TO if_os_transaction.

258

Transactional Programming7

* Obtain a reference to the transaction manager:
 lo_trans_mgr =
 cl_os_system=>get_transaction_manager().

* Create the top-level transaction:
 lo_top_trans = lo_trans_mgr->create_transaction().

* Start the top-level transaction:
 lo_top_trans->start().

* Create the subtransaction:
 lo_sub_trans = lr_trans_mgr->create_transaction().

* Start the subtransaction:
 lo_sub_trans->begin().

* Subtransaction LUW goes here...

* Commit the subtransaction (no COMMIT WORK yet):
 lo_sub_trans->end().

* Commit the top-level transaction:
 lo_top_trans->end().

Listing 7.8 Working with Subtransactions

From a programming perspective, you treat a subtransaction just like any other
normal transaction. You can commit the subtransaction using the END() method,
roll it back using the UNDO() method, and so on. Of course, the scope of these
changes is limited to the subtransaction. This implies that calling the END() method
on a subtransaction doesn’t cause the Transaction Service to commit the changes.
Instead, these changes remain queued up to be committed whenever the top-level
transaction is committed.

Listening for Transaction Events

Another thing you might have noticed while looking at the code in Listing 7.7 is
that we’ve registered a series of event handler methods on the top-level transaction.
These event handlers allow you to be notified of important milestones during the
commit process. Table 7.5 describes these events in greater detail.

259

Working with the Transaction Service 7.3

Event Name Description

SAVE_REQUESTED This event is raised whenever the END() method is executed on
the transaction right before the class agents start transferring
changes to the persistent objects to update records or transfer
tables.

This event can be useful if you need to adjust the persistent
attributes of your persistent class before it’s saved (e.g., copying
transient attribute values over, etc.).

SAVE_PREPARED This event is raised after the class agents have transferred
changes to persistent objects to update records or transfer
tables and the framework is ready to execute the COMMIT WORK
statement.

If you’re using a persistence layer other than the SAP
NetWeaver AS ABAP database, then you might use this event
to coordinate the writing of the persistent object data to the
underlying persistence layer.

FINISHED This event is triggered when the transaction is completed.
The STATUS parameter can be used to determine whether the
operation was successful.

Table 7.5 Events of Interface IF_OS_TRANSACTION

7.3.4 Performing Consistency Checks with Check Agents

By the time we decide to commit a transaction, each of the relevant transactional
resources should be in a consistent state. However, it never hurts to have an addi-
tional checkpoint to make sure that nothing slips through the cracks. That’s why
the Transaction Service allows you to register a check agent with a transaction to
perform a consistency check before the transaction is committed.

To register a check agent with a transaction, you simply call method REGISTER_
CHECK_AGENT() on the transaction object. This method expects an instance of a
class that implements the IF_OS_CHECK interface. Interface IF_OS_CHECK defines
a single method called IS_CONSISTENT(). Figure 7.16 shows the signature of the
IS_CONSISTENT() method. As you can see, this method simply returns a Boolean
result parameter that tells the framework whether the transactional resources are
in a consistent state.

260

Transactional Programming7

Figure 7.16 Signature of Method IS_CONSISTENT()

To demonstrate how check agents work, let’s enhance the transaction code from
Listing 7.7 to perform a consistency check on a book before committing a transac-
tion. In this case, the ZCL_BOOK class is a logical candidate for implementing the
IF_OS_CHECK interface because it should know whether or not a particular book
is valid. Figure 7.17 shows how we’ve implemented the IF_OS_CHECK interface in
class ZCL_BOOK.

Figure 7.17 Implementing Interface IF_OS_CHECK

Listing 7.9 shows a sample implementation of the IF_OS_CHECK~IS_CONSISTENT()
method. Here, we’re simply checking to make sure that a book has at least one
author associated with it.

METHOD if_os_check~is_consistent.
* Make sure the book has at least one author:
 IF lines(me->authors) GT 0.
 result = oscon_true.
 ELSE.
 result = oscon_false.
 ENDIF.
ENDMETHOD.

Listing 7.9 Implementing Method IS_CONSISTENT()

Now that we have our check agent class, let’s see how we can use it to validate
the transaction used to create a book. Listing 7.10 contains a modified version of
the CREATE_BOOK() method from class LCL_TRANSACTION_DEMO in Listing 7.7. Here,
we have commented out the calls to method ADD_AUTHOR() so that our newly

261

Working with the Transaction Service 7.3

created book doesn’t have an author assigned to it when we go to commit the
transaction.

Looking at the code in Listing 7.10, you can see that we’re passing a ZCL_BOOK
instance to the REGISTER_CHECK_AGENT() method right before we call method
END() on the transaction object. At runtime, this causes the Transaction Service
to execute the IF_OS_CHECK~IS_CONSISTENT() method on the ZCL_BOOK instance
before committing the transaction. As you would expect, this method returns false
in this case because we have purposefully commented out the section of the code
that assigns authors to the book. Consequently, the Transaction Service raises an
exception of type CX_OS_CHECK_AGENT_FAILED to alert the client that the transac-
tional resources are in an inconsistent state.

METHOD create_book.
 TRY.
 ...
 CALL METHOD zca_book=>agent->create_persistent
 EXPORTING
 i_isbn = '9781592290796'
 i_publication_date = '20070315'
 i_publisher = lo_publisher
 i_title =
 'ABAP Objects: ABAP Programming in NetWeaver'
 RECEIVING
 result = lo_book.

* Assign the authors to the book:
 "lo_book->add_author(lo_author1).
 "lo_book->add_author(lo_author2).

* Register a check agent with the transaction:
 lo_trans->register_check_agent(lo_book).

* Commit the transaction:
 lo_trans->end().
 CATCH cx_os_check_agent_failed.
 "Deal with check agent errors here...
 CATCH cx_root.
 ENDTRY.
ENDMETHOD.

Listing 7.10 Working with Check Agents

262

Transactional Programming7

For complex transactions, it’s a good idea to use check agents as a final validation
gate before committing a transaction. In the simple book creation example con-
sidered in this section, it made sense to implement the IF_OS_CHECK interface in
class ZCL_BOOK. However, normally you’ll want to create a separate check agent
that implements all of the relevant validations independently of any particular
transactional resource.

7.4 Implementing Locking with the Enqueue Service

As you learned in Section 7.1, Introduction to the ACID Transaction Model, trans-
actions must be executed in isolation to avoid potentially catastrophic data corrup-
tion issues, and so on. One way to guarantee isolation in transactions is to ensure
that critical resources remain locked throughout the course of the transaction. In
this way, a transaction can be executed in a vacuum without having to worry about
external tampering. In this section, we introduce you to the SAP Lock Concept and
show you how to use lock objects to implement logical locking of transactional
resources.

7.4.1 Introduction to the SAP Lock Concept

Normally, whenever we talk about transactional resources in ABAP, we’re talking
about records in ABAP Dictionary tables. Given this, you might be wondering why
a custom locking concept is needed because modern relational database manage-
ment systems (RDBMS) have sophisticated locking mechanisms available out of
the box. The short answer to this question centers on the scope and duration of
the lock.

As you may recall from Section 7.1, Introduction to the ACID Transaction Model,
an SAP LUW may span multiple dialog steps (and consequently, multiple data-
base LUWs). Because RDBMS locking concepts are tightly integrated into the data-
base LUW concept, they are insufficient for implementing locking for transactions
encapsulated inside of an SAP LUW. Consequently, SAP introduced its own custom
locking scheme known as the SAP Lock Concept.

The SAP Lock Concept is based on a core service provided as part of the central
instance in an ABAP system: the enqueue server. The enqueue server (or lock
server) keeps track of lock requests in a centralized lock table. Work processes on
SAP NetWeaver AS ABAP instances can access the enqueue server via a standard
API. In Section 7.4.3, Programming with Locks, we’ll explain how to interact with

263

Implementing Locking with the Enqueue Service 7.4

this API to lock and unlock objects. However, before we do so, we must first learn
about lock objects.

7.4.2 Defining Lock Objects

A lock object is an ABAP Dictionary object that represents a kind of logical lock for
one or more tables. To understand how lock objects work, it’s useful to see how
they are defined. To demonstrate this, let’s look at how we would create a lock
object for the ZTCA_BOOKS table described in Chapter 6, Database Programming.

1. Lock objects are created in the ABAP Dictionary. To create a lock object, navi-
gate to Transaction SE11, and select the Lock Object radio button. Then, enter
a name for the lock object, and click on the Create button. Figure 7.18 shows
how we’re creating a new lock object called EZLCK_BOOKS.1

Figure 7.18 Creating a Lock Object — Part 1

2. In the Maintain Lock Object perspective, you need to provide a description for
the lock object in the Short Description field.

3. Then, on the Tables tab, you must select a primary table for the lock object. In
this case, we want to choose the ZTCA_BOOKS table (see Figure 7.19).

1 Lock object names are prefixed with an “E”. If you try to create something like “ZLCK_BOOKS,”
the ABAP Dictionary editor will issue a warning and prompt you for an access key even though
you’re using the normal “Z” prefix for the customer namespace.

264

Transactional Programming7

Figure 7.19 Creating a Lock Object — Part 2

4. After you specify a primary table name, you must select a lock mode in the Lock
Mode dropdown list shown in Figure 7.19. Table 7.6 describes the available
lock modes in more detail.

Type of Lock Lock Mode Meaning

Exclusive E This kind of lock protects the locked object against
any other kind of lock request. The lock owner can
reset the lock as needed. In other words, this lock
type supports lock accumulation for a lock owner.

Shared S This kind of lock enables a kind of read-only access
for an object. Multiple users can have a shared lock
on the same object simultaneously; however, requests
for exclusive locks are denied when shared locks exist
for an object.

Exclusive

(but not
cumulative)

X This kind of lock is similar to the exclusive lock,
except that the owner can’t accumulate additional
locks after the lock is created.

Table 7.6 Lock Modes for Lock Objects

5. On the Lock Parameter tab, you view the lock parameters chosen for the lock
object. These parameters are selected based upon the primary key of the select-
ed primary table (see Figure 7.20).

6. Finally, you can save and activate your lock object by clicking on the Activate
button (see Figure 7.20).

Lock objects like EZLCK_BOOKS behave similarly to database lock objects in the sense
that they only lock records in a particular database table (in this case, ZTCA_BOOKS).

265

Implementing Locking with the Enqueue Service 7.4

However, lock objects are capable of managing records in multiple tables as long as
those tables maintain foreign key relationships that adhere to certain rules. You can
learn more about these rules in the SAP Library documentation available online at
http://help.sap.com. Search for “Lock Objects.”

Figure 7.20 Creating a Lock Object — Part 3

7.4.3 Programming with Locks

Now that you know how to create lock objects, you might be wondering how
you use them to program locks in your ABAP programs. When you activate a lock
object, the system generates two function modules behind the scenes: an enqueue
module and a dequeue module. You can determine the names of these modules for
your lock object by selecting Goto • Lock Modules in the menu bar of the ABAP
Dictionary. Figure 7.21 shows the generated lock modules for the EZLCK_BOOKS
lock object.

Figure 7.21 Viewing Generated Lock Modules in Transaction SE11

266

Transactional Programming7

To create a lock for a particular object, you call the ENQUEUE_{Lock Object} func-
tion; to delete a lock, you call the analog DEQUEUE_{Lock Object} function. The
sample report program ZLOCKDEMO shown in Listing 7.11 demonstrates how to
call these modules for the EZLCK_BOOKS lock object. In both cases, the key for
the lock/unlock operation is the ISBN of the book in question. This is important
because we don’t want to lock the entire table; just the record we want to edit in
a transaction.

Looking at the code in Listing 7.11, you’ll notice that we’ve implemented some
logic to test the results of a lock request after the call to the ENQUEUE_EZLCK_BOOKS
function module. If this function passes back a return code value of 1, then we
know that a foreign lock exception has occurred. This implies that another user cur-
rently has possession of the lock. The name of this user can be obtained via the
system message variable SY-MSGV1.

REPORT zlockdemo.
PARAMETERS:
 p_isbn TYPE ztca_books-isbn.

START-OF-SELECTION.
* Try to lock the selected book:
 CALL FUNCTION 'ENQUEUE_EZLCK_BOOKS'
 EXPORTING
 isbn = p_isbn
 EXCEPTIONS
 foreign_lock = 1
 system_failure = 2
 others = 3.

* Test the results:
 CASE sy-subrc.
 WHEN 0.
 WRITE: / 'Lock obtained successfully.'.
 WHEN 1.
 WRITE: / 'The book with ISBN #', p_isbn,
 'is locked by user', sy-msgv1.
 WHEN OTHERS.
 WRITE: / 'Could not obtain lock for ISBN #', p_isbn.
 ENDCASE.

* Execute the transaction to update the book here...

267

Implementing Locking with the Enqueue Service 7.4

* Unlock the book as soon as we are done with it:
 CALL FUNCTION 'DEQUEUE_EZLCK_BOOKS'
 EXPORTING
 isbn = p_isbn.

Listing 7.11 Programming with Enqueue/Dequeue Functions

7.4.4 Integration with the SAP Update System

As you might expect, the SAP Lock Concept is tightly integrated with the SAP
update system. Collectively, these two features of SAP NetWeaver AS ABAP pro-
vide for highly sophisticated transaction processing capabilities. For the most part,
these two services interoperate harmoniously. However, one thing you have to be
mindful of when working with these two services is that the ownership of the lock
can be become blurry if you’re not careful.

Each ENQUEUE_{Lock Object} function module defines a parameter called _SCOPE
that determines the owner of the lock. Table 7.7 describes the types of values that
you can specify for the _SCOPE parameter. By default, the _SCOPE parameter is con-
figured with a value of 2.

Scope Value Description

1 This value implies that the lock belongs to the dialog owner that
created the lock. The lock can be removed explicitly via a call to
the corresponding dequeue function, or implicitly at the end of the
transaction.

2 This value implies that the lock belongs to the update task. In this
case, the lock is implicitly removed by the update task after all of
the update function modules are completed. The lock can also be
removed by the ROLLBACK WORK statement.

3 This value implies that the lock is mutually owned by the dialog
owner and the update owner. In this case, the lock is removed when
the last of the two owners releases the lock (typically the update
task).

Table 7.7 Scope Values for a Lock Object

7.4.5 Lock Administration

Occasionally, you may run into a situation where a lock isn’t removed correctly
due to a program error, and so on. In these cases, you can manage locks directly
via Transaction SM12. Figure 7.22 shows the initial screen of this transaction.

268

Transactional Programming7

Here, you can enter the relevant lock parameters and click the List button to see
the current entries.

Figure 7.22 Initial Screen of Transaction SM12

Figure 7.23 shows the Lock Entry List screen from which you can manage indi-
vidual lock entries. In the rare case that you need to remove a lock directly, you
can do so by selecting the lock entry and clicking on the Delete button.

Figure 7.23 Managing Lock Entries in Transaction SM12

Due to the potentially dangerous side effects associated with direct maintenance
of lock entries, access to Transaction SM12 should be granted with caution. Few
users ever have access to this transaction in a productive environment.

7.5 Tracking Changes with Change Documents

In a perfect world, every transaction would execute without a hitch. However,
because we don’t live in a perfect world, we must brace ourselves for the eventu-
ality that some kind of error is going to occur. And when it does, we need to be
able to react accordingly. In these situations, it’s vitally important that we have
an audit trail of changes so that we can retrace the steps carried out by the trans-
action and figure out what went wrong. SAP lets you track this kind of informa-
tion using change documents. In this section, we introduce you to the concept of

269

Tracking Changes with Change Documents 7.5

change document objects and show you how they can be used to track changes
in transactions.

7.5.1 What Are Change Documents?

A change document is a special kind of log entry that records changes to business
objects in the system. These log entries include a header record that provides audit
trail information such as who made the change, when the change was made, and
so on. They also contain individual line items that track record deletions, changes
to fields, and more. In Section 7.5.4, Programming with Change Documents, we’ll
see that this information can be accessed via a common API.

Change documents are registered independently from the actual database changes
using a change document object. A change document object provides a logical group-
ing of the tables that make up a business object. For example, the standard change
document object ORDER encapsulates changes made to tables related to networks
and production orders in an SAP ERP system (i.e., AUFK, AFKO, AFPO, etc.). This
grouping gives rise to an API that makes it easy to track changes at the business
object level rather than in individual tables.

7.5.2 Creating Change Document Objects

As you learned in the previous section, change documents are created using change
document objects. In this section, we show you how to create change document
objects. As a basis for our discussion, we demonstrate how to create a change
document object for the ZTCA_PUBLISHERS table introduced in Chapter 6, Database
Programming.

1. Change document objects are maintained in Transaction SCDO. Figure 7.24
shows the overview screen of the change document object editor. As you can
see, there are many change document objects provided as part of the standard
installation.

2. To create a new change document object, click on the Create button on the
overview screen (see Figure 7.24). This opens up a dialog box where you must
enter a name for the change document object. Here, you also have the option of
specifying a custom namespace as needed (see Figure 7.25). Click the Continue
button to proceed.

270

Transactional Programming7

Figure 7.24 Overview Screen of Transaction SCDO

Figure 7.25 Creating a Change Document Object — Part 1

3. Figure 7.26 shows the subsequent input mask that pops up during the change
document object creation process. On this screen, provide the following
information:

EE In the Name of Table column, select the ABAP Dictionary table(s) that you
want to track as part of your change document object. For instance, in Figure
7.26, we have selected the ZTCA_PUBLISHERS table.

EE In the Copy as Internal Tab. column, select whether or not you want to pass
in changes to a particular table in the form of an internal table. This option
is used to track line item information for a business object, and so on.

EE The Doc. for Individual Fields at Delete column is used to identify whether
or not you want to track record deletions on a field-by-field basis. Otherwise,
only a single change document item is created to track the deletion
occurrence.

EE The Name of Ref. tab. column refers to the name of the reference table used
to define currency/unit fields in the table.

EE In the Name of Old Field String column, you can enter an alternative struc-
ture for passing in change records to the change document object.

271

Tracking Changes with Change Documents 7.5

Figure 7.26 Creating a Change Document Object — Part 2

4. After you’ve entered all of the tables that you want to track with the change
document object, you can click on the Insert Entries button to confirm your
changes (see Figure 7.26).

5. This brings you back to the overview screen shown in Figure 7.27. Here, you
can click the Back button to complete the creation of the change document
object. At this point, you’re prompted to save your changes.

Figure 7.27 Creating a Change Document Object — Part 3

6. After the change document is initially saved, you can generate the change docu-
ment object update program module by clicking on the Generate Update Pgm.
button shown in Figure 7.28.

272

Transactional Programming7

Figure 7.28 Generating the Update Program Module — Part 1

7. In the ensuing Generate Update Pgm. dialog box shown in Figure 7.29, you
must provide the following information:

EE In the Function Group field, you must enter the name of a function group in
which the update module is to be stored. If this function group doesn’t
already exist, it is created.

EE The Fun. Mod. Structure Prefix field is used to define a prefix for generated
transfer structures used to build the function module interface. This prefix is
only used for internal table parameters.

EE The Error Message ID and Error Number fields refer to the message class/
number that you want the update module to use when issuing error mes-
sages. The default selections here are usually appropriate.

EE In the Processing Type group box, you have the option of determining how
the change document object is saved. Normally, you want to keep the default
Delayed Update setting here.

Figure 7.29 Generating the Update Program Module — Part 2

273

Tracking Changes with Change Documents 7.5

EE The Special Text Handling checkbox can be used to log long text changes, as
needed.

EE The Generating DATA for ABAP OO checkbox causes the declaration of the
data to be transferred to use the DATA statement in lieu of the legacy TABLES
statement. For more information about this option, see SAP Note 402805.

8. When you’re satisfied with your entries, you can click on the Generate button
to generate the update module (see Figure 7.29). Figure 7.30 shows the results
of this generation process.

Figure 7.30 Results of the Update Module Generation Process

Looking at the update module generation results in Figure 7.30, you can see that
an update function module called Z_PUBLISHERS_WRITE_DOCUMENT was created. In
Section 7.5.4, Programming with Change Documents, we explain how to use this
function module to create change documents. However, before we do so, we need
to briefly segue into another important topic when it comes to change document
objects: How do you determine change-relevant fields?

7.5.3 Configuring Change-Relevant Fields

When you track changes to database records with change documents, there are
certain fields that you probably don’t want to keep track of. Therefore, by default,

274

Transactional Programming7

no field in a database table is marked as change relevant. Instead, you must explic-
itly declare your intentions to track changes to a field by marking the Change
Document flag on that field’s corresponding data element. Figure 7.31 shows how
we’ve set this flag for the ZDE_PUBLISHER_NAME data element in the ABAP Diction-
ary (Transaction SE11).

Figure 7.31 Marking the Change Document Flag for a Data Element

Before you turn on the Change Document flag on a particular data element, it’s a
good idea to perform a “where-used” check on that data element to see where it’s
used elsewhere in other ABAP Dictionary tables. In some cases, you might want
to track changes to a field in one table but not another. Considering that changes
to a field are tracked as a separate record in the change document item table,
turning this flag on for a widely used data element can have huge performance
implications.

7.5.4 Programming with Change Documents

To demonstrate how to work with change document update modules, let’s con-
sider an example. The sample report ZCHGDOC_DEMO in Listing 7.12 contains a local
class that is updating the region/country of the ZCL_PUBLISHER persistent object.
Within the scope of this update process, we have included a call to the update
module Z_PUBLISHERS_WRITE_DOCUMENT to track the changes. In this contrived
example, we can assume that we’re updating the publisher instance for “Galileo
Press,” and that a change document was generated when the publisher instance
was first created.

For the most part, the code in class LCL_CHGDOC_DEMO should look familiar; we’re
using the Query Service to look up a ZCL_PUBLISHER persistent object and then
updating it in compatibility mode. However, during this update process, we’re

275

Tracking Changes with Change Documents 7.5

also tracking the changes to the REGION and COUNTRY fields in data objects that have
the structure type ZTCA_PUBLISHERS. Prior to committing the transaction, we pass
this information to the Z_PUBLISHERS_WRITE_DOCUMENT module, which logs the
changes. These changes are committed in the V2 update task whenever the COMMIT
WORK statement is executed.

REPORT zchgdoc_demo.
CLASS lcl_chgdoc_demo DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS: main.
 METHODS:
 constructor IMPORTING im_publisher_name
 TYPE zde_publisher_name
 RAISING cx_os_object_not_found,
 change_publisher IMPORTING im_region TYPE regio
 im_country TYPE land1.

 PRIVATE SECTION.
 DATA: agent TYPE REF TO zca_publisher,
 publisher TYPE REF TO zcl_publisher.
ENDCLASS.

CLASS lcl_chgdoc_demo IMPLEMENTATION.
 METHOD main.
* Method-Local Data Declarations:
 DATA: lo_chgdoc_demo TYPE REF TO lcl_chgdoc_demo.

* Process the change document demonstration:
 TRY.
* Create an instance of the test driver class:
 CREATE OBJECT lo_chgdoc_demo
 EXPORTING
 im_publisher_name = 'Galileo Press%'.

* Change the selected publisher record:
 lo_chgdoc_demo->change_publisher(
 im_region = '05'
 im_country = 'DE').
 CATCH cx_root.
 "Exception handling goes here...
 ENDTRY.
 ENDMETHOD.

276

Transactional Programming7

 METHOD constructor.
* Method-Local Data Declarations:
 DATA: lo_query_mgr TYPE REF TO if_os_query_manager,
 lo_query TYPE REF TO if_os_query,
 lt_publishers TYPE osreftab.
 FIELD-SYMBOLS:
 <lfs_publisher> LIKE LINE OF lt_publishers.

* Build a query to look up the selected publisher:
 lo_query_mgr = cl_os_system=>get_query_manager().
 lo_query =
 lo_query_mgr->create_query(
 i_filter = 'PUBLISHER_NAME LIKE PAR1').

* Obtain a reference to the selected publisher:
 agent = zca_publisher=>agent.
 lt_publishers =
 agent->if_os_ca_persistency~get_persistent_by_query(
 i_query = lo_query
 i_par1 = im_publisher_name).
 READ TABLE lt_publishers INDEX 1
 ASSIGNING <lfs_publisher>.
 IF sy-subrc EQ 0.
 me->publisher ?= <lfs_publisher>.
 ELSE.
 RAISE EXCEPTION TYPE cx_os_object_not_found.
 ENDIF.
 ENDMETHOD.

 METHOD change_publisher.
* Method-Local Data Declarations:
 DATA: lv_object_id TYPE cdhdr-objectid,
 ls_new_publisher TYPE ztca_publishers,
 ls_old_publisher TYPE ztca_publishers.

* Here, we want to change the location information on
* selected publisher:
 TRY.
* Copy the current values over to the change document
* update record:
 ls_old_publisher-publisher_id =
 agent->if_os_ca_service~get_oid_by_ref(publisher).
 ls_old_publisher-publisher_name =

277

Tracking Changes with Change Documents 7.5

 publisher->get_publisher_name().
 ls_old_publisher-region = publisher->get_region().
 ls_old_publisher-country = publisher->get_country().

 ls_new_publisher = ls_old_publisher.

* Update the publisher persistent attributes:
 me->publisher->set_region(im_region).
 me->publisher->set_country(im_country).

 ls_new_publisher-region = publisher->get_region().
 ls_new_publisher-country = publisher->get_country().

* Invoke the change document update module:
 lv_object_id = ls_old_publisher-publisher_id.

 CALL FUNCTION 'Z_PUBLISHERS_WRITE_DOCUMENT'
 EXPORTING
 objectid = lv_object_id
 tcode = sy-tcode
 utime = sy-uzeit
 udate = sy-datum
 username = sy-uname
 n_ztca_publishers = ls_new_publisher
 o_ztca_publishers = ls_old_publisher
 upd_ztca_publishers = 'U'.

* Commit the changes:
 COMMIT WORK.
 CATCH cx_root.
 ENDTRY.
 ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
* Delegate the core functionality to the test driver class:
 lcl_chgdoc_demo=>main().

Listing 7.12 Working with Change Document Update Modules

To verify that the change documents were actually written to the database, we can
look at the ABAP Dictionary tables CDHDR and CDPOS, respectively. For example,

278

Transactional Programming7

Figure 7.32 and Figure 7.33 contain examples of change document records created
by the ZCHGDOC_DEMO program contained in Listing 7.12.

Figure 7.32 Viewing Change Documents in Table CDHDR

Figure 7.33 Viewing Change Documents in Table CDPOS

We can also re-read the change document(s) using the standard function module
CHANGEDOCUMENT_READ. For more information about how to use this API module,
read the Function Module Documentation for this function in the Function Builder
transaction.

279

Summary 7.6

7.6 Summary

This chapter covered a lot of ground quickly, demonstrating quite a few different
techniques that you can use to create reliable transactions. When used properly,
these methods can go a long way toward ensuring that programs gracefully react
to unforeseen pitfalls. In the next chapter, we take a look at XML processing func-
tionality available in ABAP.

PART III
Meals to Go

283

To share recipes with one another, chefs must agree on a standard for
quantifying measurements, and so on. Similarly, computer programmers
must reach agreement on the structure of messages that are exchanged.
As a meta-markup language used to define structured documents, XML
has quickly become the “lingua franca” for information exchange in the IT
industry. In this chapter, we explain how to work with XML using ABAP-
based technologies.

8 XML Processing in ABAP

In Chapter 5, Working with Files, you learned that software engineers organize
the contents of files by defining file types. Here, a developer is free to arrange the
layout of the file in any way he sees fit. However, when it comes to data exchange,
this freedom comes with a price. To be able to work with a particular file type, you
must have intimate knowledge of how that file is structured. With literally mil-
lions of file types to choose from, it’s simply not feasible to reliably transfer data
between systems without some form of standardization.

Since the late 1990s, the Extensible Markup Language (XML) has emerged as the
de facto standard for defining the exchange of structured data over the Internet.
In addition, its use has also proliferated into various other application domains,
including content management, system configuration, and web development.
Given the widespread adoption rate of XML-based technology, it’s vital that you
understand how to work with XML. Therefore, in this chapter, we show you how
to use some of the various tools that make it easy to process XML using ABAP.

8.1 Introduction to XML

Before you can begin to appreciate the power of XML, it’s important to first under-
stand exactly what it is and what it isn’t. When you get right down to it, XML is
simply a standard that can be used to structure and organize various types of data.
At first, this may seem underwhelming because XML doesn’t really do anything in
and of itself. However, its power lies in the types of applications it makes possible.

284

XML Processing in ABAP8

Like any good standard, XML has helped guide software vendors toward develop-
ing many useful tools that have made it much easier to solve some very complex
problems. The following sections provide an introduction to XML and its syntax.

8.1.1 What Is XML?

XML is a standard endorsed by the W3C1 that can be used to define the format
of text-based documents. As such, XML is classified as a meta-markup language.
If you aren’t familiar with the concept of markup languages, then this definition
requires some explanation. A markup language is used to mark up a document with
instructions that define how its content is organized, formatted, and so on. For
example, the Hypertext Markup Language (HTML) uses special annotations called
tags to specify the layout of content in a web browser. Figure 8.1 shows an exam-
ple of some HTML markup. Here, you can see that HTML tags are defined using
angle brackets (i.e., the < and > characters). These tags give semantic meaning to
the content within the document. For instance, the <head> tag defines the heading
of the HTML document, and the <body> tag outlines its body.

<html >

 < head>

 < title >ABAP and XML</ title >

 < / head>

 < body bgcolor ="#CCCCCC" >

 ...

 < / body >

</ html >

Element

End Tag

Content

Attribute

Start Tag

Figure 8.1 Example of HTML Markup

Markup languages such as HTML have a predefined set of tags that can be used to
structure a document in a certain way. Conversely, a meta-markup language such as
XML doesn’t define any particular markup. Rather, it describes a syntax that can be
used to specify the creation of other markup languages such as XHTML, MathML,
and so on. This is why XML is considered to be a meta-markup language.

1 W3C stands for World Wide Web Consortium. You can find out more about the W3C online at
www.w3.org.

285

Introduction to XML 8.1

To facilitate the creation of various types of markup languages, the XML standard
was designed to be extremely flexible. This flexibility allows you to customize
the format of a document so that form follows function. In other words, because
the XML standard has very little to say about the elements and content of a docu-
ment, you don’t have to try and bend an application data model to fit within the
confines of some ill-fitting standard. Instead, you can define the document format
using domain-specific terms that help to make the document self-describing. This
characteristic of XML makes XML documents much easier to read and interpret for
both humans and computers alike.

Much of the beauty of XML lies in its simplicity. Rather than defining a complex
or proprietary binary file format, the designers of the XML standard defined an
open, text-based format that provides support for multiple languages using Uni-
code. The openness of the XML standard simplifies the process of exchanging
information between heterogeneous systems. This is perhaps best evidenced by
the recent explosion of Web service technologies that use XML to define protocols
for message exchange, and so on. You’ll get a chance to get hands on with these
technologies in Chapter 10, Web Services.

8.1.2 XML Syntax

Like HTML, XML is a derivative of the Standard Generalized Markup Language
(SGML). Therefore, the syntax of XML markup is very similar to the HTML syntax
shown earlier in Figure 8.1. However, unlike HTML, you aren’t constrained to a
finite number of tags such as <table>, <div>, and so on. Instead, you’re free to
define the tags (or elements) you need to best describe the data you’re trying to
characterize. For example, in Listing 8.1, we’ve defined an XML document that
represents a set of business partners in a SAP ERP system. As you can see, the ele-
ments in this document have names that intuitively describe various attributes of
a business partner (e.g., <PartnerId>, <Name>, etc.).

<?xml version="1.0" encoding="UTF-8"?>
<BusinessPartners>
 <BusinessPartner type="2">
 <PartnerId>1234567890</PartnerId>
 <Name>Bowdark Consulting, Inc.</Name>
 <CreationDate>2006-02-01</CreationDate>
 </BusinessPartner>
</BusinessPartners>

Listing 8.1 Representing Business Partners Using XML

286

XML Processing in ABAP8

Surprisingly, there are relatively few syntax rules that you have to follow when
creating XML documents. In the following subsections, we consider these rules by
looking at the various components that make up an XML document. Everything
else is just whitespace; something XML processors ignore.

Elements

The content of an XML document is organized into a series of elements. An XML
document must define a root element (or document element) that is the parent to
all other elements. For example, in the XML document shown in Listing 8.1, the
<BusinessPartners> element is the root element; all of the other elements defined
within the document are child elements of the <BusinessPartners> element.

Listing 8.2 shows the basic syntax of an XML element. Here, just like HTML tags,
an element is escaped using the angle bracket characters (i.e., the < and > char-
acters). Everything between the element tags represents the body (or content) of
the element. Here, you can embed additional elements such as the <PartnerId>,
<Name>, and <CreationDate> elements nested underneath the <BusinessPartner>
element in Listing 8.1, simple text, or both.

<element_name [attribute_name="attribute_value"...]>
 <!-- Element Content -->
</element_name>

Listing 8.2 Basic Syntax for Defining an XML Element

Every element in XML must have an opening tag and a corresponding closing tag
to be valid. The lone exception to this rule is the empty element whose syntax is
shown in Listing 8.3.

<element_name [attribute_name="attribute_value"...] />

Listing 8.3 Basic Syntax for Defining Empty Elements in XML

Within the angle brackets, an element must be named according to the following
set of rules:

EE An element name can consist of letters, numbers, and other characters.

EE An element name can’t contain any spaces.

EE An element name can’t begin with a number or punctuation character.

EE An element name can’t begin with the letters “xml” (i.e. “XML,” “Xml,” etc.).

287

Introduction to XML 8.1

Keep in mind that XML is case-sensitive, so the element names <BUSINESSPARTNER>
and <businesspartner> aren’t the same. Typical convention is to define element
names using CamelCase notation. Here, the first letter in each word within a com-
pound word is capitalized, such as <BusinessPartner>.

Attributes

When processing XML documents, it’s often helpful to access certain characteris-
tics of an element in a format that is easy to read and work with. For example, in
the business partner example from Listing 8.1, notice that the <BusinessPartner>
element also contains a name-value pair that identifies the business partner type.
This name-value pair is referred to as an attribute in XML. Listing 8.4 shows the
syntax that you use to define an attribute for a given element. Here, each attribute
must be given a name that is unique within the given element, as well as a value.
Attribute values are surrounded by single quotes (') or double quotes ("). Techni-
cally, there are no limits with regards to the number of attributes you can define
for a given element; however, a general rule of thumb is to keep the amount of
attributes down to a manageable number (usually no more than four or five).

<element_name attribute_name=”attribute_value”...>

Listing 8.4 Basic Syntax for Defining an Attribute in XML

Generally speaking, there is no hard and fast rule that you can use to determine
when to use an attribute instead of a child element. For instance, in the business
partner example from Listing 8.1, we could have just as easily defined a child
element called <Type> to capture the information stored in the type attribute. In
many respects, this is merely a matter of preference. However, attributes do offer
some advantages in certain situations. For example, if the business partner docu-
ment shown in Listing 8.1 contained many business partners, we could use the
type attribute in a query to find all business partners of a particular type. You’ll see
an example of this in Section 8.3, Transforming XML Using XSLT.

Processing Instructions

Normally, most XML documents begin with an optional XML declaration that
specifies the version of XML used to create the document as well as the charac-
ter-encoding scheme of the document. An XML declaration is an example of an
XML processing instruction. Processing instructions are used to provide information
about the XML document to the applications that are processing them. As such,
they are not part of the actual document content. Processing instructions begin

288

XML Processing in ABAP8

and end with the character sequences (<?) and (?>), respectively. Listing 8.5 dem-
onstrates this syntax with an XML declaration instruction.

<?xml version="1.0" encoding="UTF-8"?>

Listing 8.5 An Example of a Processing Instruction in XML

Comments

Unlike various types of binary message types, XML documents purely consist of
text. This means that people can easily read XML documents. Of course, while
XML documents are intended to be self-describing, it never hurts to pass along
some additional information to the reader. This information can be captured in
the form of a comment. Listing 8.6 shows the syntax used to define a comment in
XML. The comment text within the (<!--) and (-->) characters can span multiple
lines as needed. At runtime, the XML processor ignores the comments.

<!-- Comment Text -->

Listing 8.6 Defining Comments in XML

Entity References

As you’ve seen, certain characters have a special meaning in XML. For instance,
the angle bracket characters (< and >) are used to mark the boundaries of an ele-
ment. In some cases, however, we may need to embed these special characters
somewhere inside the text content of the XML document. For example, consider
the XML markup used to describe a material shown in Listing 8.7. In the <Long-
Description> element, notice that the < character is used to specify certain toler-
ances for the material. As you might expect, the system complains whenever you
try to process this document because it can’t match a closing tag with each open-
ing element tag.

<Material id="12345">
 <Description>Bolt</Description>
 <LongDescription>
 If hole positional tolerance < 0.03...
 </LongDescription>
</Material>

Listing 8.7 Example Showing Special Character Issues with XML

To avoid the kinds of errors shown in Listing 8.7, you must escape special charac-
ters in XML using entity references. Table 8.1 shows the predefined entity references
in XML. To correct the processing error from Listing 8.7, you must replace the <

289

Introduction to XML 8.1

character with the < entity reference. As you process XML, it’s good to get into
the habit of applying a conversion routine to plain text content that is being added
to an XML document to escape special characters with entity references.

Special Character Entity Reference Description

< < Less Than

> > Greater Than

& & Ampersand

' ' Apostrophe

" " Quotation Mark

Table 8.1 Predefined Entity References in XML

8.1.3 Defining XML Documents Using XML Schema

Much of the HTML markup published on the Web doesn’t conform to HTML syntax
rules. Consequently, manufacturers of modern web browsers have been forced to
integrate clever logic into their applications to interpret broken HTML. Such intel-
ligence is made possible due to the fixed nature of HTML markup. Here, a browser
can make educated guesses about what is missing based on opening tags, sequence,
and so on. Unfortunately, the same sort of processing logic can’t be applied to XML
documents because their markup is unknown to the XML processor. Therefore, XML
processors strictly enforce XML syntax rules. XML documents that follow the syntax
rules described in Section 8.1.2, XML Syntax, are considered to be well formed.

Defining well-formed XML is a first step in enabling the exchange of XML data
between systems. However, for another system to interpret a message, that sys-
tem must also know how the document is organized. This descriptive information
is captured in the form of an XML schema document. Here, the term “schema”
refers to the format or outline of the content within an XML document. Schema
languages are used to place constraints on documents to make sure that they are
valid according to an agreed-on standard. For example, many industry sectors are
using XML schema languages to define standard formats for various common EDI
document types (e.g., invoices, sales orders, etc.).

Two of the more popular languages used to define XML schemas are the Document
Type Definition (DTD) and XML Schema languages. Due to its more advanced capa-
bilities, the XML Schema language has surpassed the DTD language as the standard
for defining XML schemas. Though the description of the syntax of XML Schema

290

XML Processing in ABAP8

documents is outside the scope of this book, a sample schema for the business
partner document from Listing 8.1 is shown in Listing 8.8.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.sap-press.com"
 targetNamespace="http://www.sap-press.com">
 <!-- Definition of "BusinessPartners" root element" -->
 <xsd:complexType name="BusinessPartners">
 <xsd:sequence>
 <!-- Definition of "BusinessPartner" element;
 Can occur many times -->
 <xsd:element name="BusinessPartner"
 maxOccurs="unbounded">
 <xsd:complexType>
 <!-- Definition of child elements of
 "BusinessPartner" -->
 <xsd:sequence>
 <xsd:element name="PartnerId"
 type="xsd:string" />
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="CreationDate"
 type="xsd:date" />
 </xsd:sequence>

 <!-- Definition of "Type" attribute -->
 <xsd:attribute name="Type" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:int">
 <!-- Person -->
 <xsd:enumeration value="1" />
 <!-- Organization -->
 <xsd:enumeration value="2" />
 <!-- Group -->
 <xsd:enumeration value="3" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Listing 8.8 An XML Schema for Defining Business Partners in XML

291

Parsing XML with the iXML Library 8.2

Though XML Schema documents are produced in human-readable XML, they are
normally input into specialized XML processing tools that can be used to validate
documents or bind XML content to native programming language data objects.
For more information about XML Schema and its uses, check out www.w3.org/
XML/Schema.

8.2 Parsing XML with the iXML Library

Before you can begin processing an XML document in an ABAP program, you must
first parse it. In this context, parse implies much more than just reading the raw
content of an XML document into a character data object. XML documents have
a distinct grammar, which means that their content can and should be organized
according to that grammatical structure. Fortunately, this complex task can be per-
formed quite easily using an XML parser.

SAP integrated an XML 1.0-compliant parser into the ABAP runtime environment
beginning with release 4.6C of the Basis kernel (which was the predecessor of SAP
NetWeaver AS ABAP). This parser, along with the ABAP Objects-based API that can
be used to interface with it, makes up the iXML library. The iXML library allows
you to process XML documents using the Simple API for XML (SAX) or Document
Object Model (DOM) processing models. In addition, the iXML library also provides
tools that make it easy to render output to various output types, and so on.

In the following sections, you’ll learn how the iXML library is structured and
see how it can be used to process XML documents. As a practical example, we
apply these techniques toward the creation of an XML mapping program that can
be used to develop an interface using SAP NetWeaver Process Integration (SAP
NetWeaver PI).

8.2.1 Introducing the iXML Library API

The core of the iXML library is implemented using the C++ programming lan-
guage, which has better support for raw stream-based I/O than ABAP. This implies
that the ABAP portion of the iXML library is implemented using kernel meth-
ods2 inside of an ABAP Objects class called CL_IXML. To minimize dependencies
between this low-level functionality and the iXML library API, SAP developed a
series of interfaces that provide an abstraction on top of an XML parser. This indi-

2 SAP uses kernel methods internally to call kernel functions implemented in C or C++.

292

XML Processing in ABAP8

rection makes it possible for SAP to swap out parser implementations down the
road without impacting preexisting programs that use the iXML API. Figure 8.2
contains a UML class diagram that depicts the relationships between the various
interfaces defined in the iXML library.

CL_IXML

CREATE()

<<interface>>
IF_IXML

CREATE_STREAM_FACTORY()
CREATE_DOCUMENT()
CREATE_PARSER()
CREATE_RENDERER()

<<interface>>
IF_IXML_ISTREAM

...

<<interface>>
IF_IXML_OSTREAM

...

<<interface>>
IF_IXML_STREAM_FACTORY

CREATE_ISTREAM_ITABLE()
CREATE_OSTREAM_ITABLE()

<<interface>>
IF_IXML_DOCUMENT

CREATE_ELEMENT()
CREATE_SIMPLE_ELEMENT()
GET_ROOT_ELEMENT()

<<interface>>
IF_IXML_ELEMENT

FIND_FROM_NAME()
APPEND_CHILD()
SET_ATTRIBUTE()
GET_ATTRIBUTE()

<<interface>>
IF_IXML_PARSER

PARSE()

<<interface>>
IF_IXML_RENDERER

RENDER()

Factory
Class

<<create>> <<create>>

<<create>>

<<create>>
<<create>> <<create>>

<<create>>

Figure 8.2 UML Class Diagram for Core iXML Classes and Interfaces

As we mentioned earlier, the entry point into the iXML library is the CL_IXML class.
This class contains a public factory class method called CREATE() that can be used
to return an instance of a class that implements the IF_IXML interface. The IF_IXML
interface defines a series of instance methods that return references to objects that
you can use to parse an XML document, create a new XML document from scratch,
or serialize a document to various output types. In Section 8.2.2, Working with
DOM, you’ll see how to use these objects to process XML according to the Docu-
ment Object Model (DOM).

8.2.2 Working with DOM

In computer science, one of the most effective ways of representing hierarchical
data is to store it in a tree-like data structure. Recognizing this, the W3C patterned
its Document Object Model (DOM) after the tree data structure. As such, not only

293

Parsing XML with the iXML Library 8.2

does the DOM describe how an XML document should be stored in memory,
but it also defines common tree operations such as node traversal, searching, and
manipulation of items within the tree (i.e., grafting and pruning).

Beginning with the root element, each element within an XML document is repre-
sented as a node within the tree model. Each node defines operations for accessing
and manipulating child elements, attributes, and text content. It’s also possible
to perform context-based searches through child elements from a particular node
within the tree.

To introduce you to the DOM implementation provided in the iXML library, let’s
consider an example. Listing 8.9 contains a report program called ZDOMDEMO that
creates an XML document containing business partners like the one shown in List-
ing 8.1. The core functionality of this program is implemented in the local class
LCL_DOM_PROCESSOR.

Before we delve into the implementation details of the methods defined in class
LCL_DOM_PROCESSOR, let’s glance ahead and look at the attributes it defines:

EE The class attribute ixml_factory is an interface reference variable of type IF_
IXML. We’ve named this attribute ixml_factory because it acts as a factory for
creating references to various components within the iXML library. Because
this object is defined as a singleton3 inside the factory class CL_IXML, we’ve
defined this attribute as a static attribute so that each instance of class LCL_DOM_
PROCESSOR can share a single copy of it.

EE The partners_doc instance attribute provides a reference to the DOM-based
XML document that we’re going to create as part of this demonstration. DOM-
based documents are represented in the iXML library using the IF_IXML_DOCU-
MENT interface.

EE The partners_node instance attribute stores a reference to the root element of
the XML document (i.e., <BusinessPartners>). DOM elements in the iXML
library are represented using the IF_IXML_ELEMENT interface.

REPORT zdomdemo.
CLASS lcl_dom_processor DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 class_constructor,

3 The term singleton refers to objects that are created using the Singleton design pattern. This
design pattern guarantees that only one instance of an object can exist at a time.

294

XML Processing in ABAP8

 main.

 METHODS:
 constructor,
 add_partner IMPORTING im_id TYPE string
 im_type TYPE i
 im_name TYPE string
 im_date TYPE d,
 show_document.

 PRIVATE SECTION.
 CLASS-DATA: ixml_factory TYPE REF TO if_ixml.

 DATA:
 partners_doc TYPE REF TO if_ixml_document,
 partners_node TYPE REF TO if_ixml_element.
ENDCLASS.

CLASS lcl_dom_processor IMPLEMENTATION.
 METHOD class_constructor.
* Retrieve a reference to the iXML factory:
 ixml_factory = cl_ixml=>create().
 ENDMETHOD.

 METHOD constructor.
* Create a new DOM-based XML document:
 partners_doc = ixml_factory->create_document().

* Create the root "BusinessPartners" element:
 partners_node =
 partners_doc->create_simple_element(
 name = 'BusinessPartners'
 parent = partners_doc).
 ENDMETHOD.

 METHOD main.
* Method-Local Data Declarations:
 DATA: lo_dom_processor TYPE REF TO lcl_dom_processor.

* Create an instance of the test driver class:
 CREATE OBJECT lo_dom_processor.

* Add a couple of partners to the list:

295

Parsing XML with the iXML Library 8.2

 lo_dom_processor->add_partner(
 im_id = '12345'
 im_type = 2
 im_name = 'Bowdark Consulting, Inc.'
 im_date = '20060201').

 lo_dom_processor->add_partner(
 im_id = '23456'
 im_type = 2
 im_name = 'Simple Joys Photography'
 im_date = '20090615').

* Display the resultant XML document on the screen:
 lo_dom_processor->show_document().
 ENDMETHOD.

 METHOD add_partner.
* Method-Local Data Declarations:
 DATA: lo_partner_node TYPE REF TO if_ixml_element,
 lv_type TYPE string,
 lv_creation_date TYPE string.

* Copy the parameters into string format:
 lv_type = im_type.
 CONCATENATE im_date+0(4) im_date+4(2) im_date+6(2)
 INTO lv_creation_date SEPARATED BY '-'.

* Create a BusinessPartner node:
 lo_partner_node =
 partners_doc->create_simple_element(
 name = 'BusinessPartner'
 parent = partners_node).

* Set the "type" attribute on the BusinessPartner:
 lo_partner_node->set_attribute(
 name = 'Type'
 value = lv_type).

* Fill in the remaining information for the partner:
 partners_doc->create_simple_element(
 name = 'PartnerId'
 value = im_id
 parent = lo_partner_node).

296

XML Processing in ABAP8

 partners_doc->create_simple_element(
 name = 'Name'
 value = im_name
 parent = lo_partner_node).

 partners_doc->create_simple_element(
 name = 'CreationDate'
 value = lv_creation_date
 parent = lo_partner_node).
 ENDMETHOD.

 METHOD show_document.
* Display the XML document on the screen:
 CALL FUNCTION 'SDIXML_DOM_TO_SCREEN'
 EXPORTING
 document = partners_doc
 EXCEPTIONS
 no_document = 1
 others = 2.
 ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
 lcl_dom_processor=>main().

Listing 8.9 Creating an XML Document Using DOM

Now that you’ve had a chance to digest the code in Listing 8.9, let’s go back and
examine each of the iXML library API calls in greater detail.

1. The first step is performed inside the CLASS_CONSTRUCTOR() method of class
LCL_DOM_PROCESSOR. Here, we use the CREATE() factory method of the CL_IXML
class to obtain a reference to the iXML library. Therefore, any instance of class
LCL_DOM_PROCESSOR has all of the tools it needs to create XML documents before
a programmer ever gets his hands on it.

2. Next, inside the CONSTRUCTOR() method of class LCL_DOM_PROCESSOR, we invoke
the CREATE_DOCUMENT() method of the ixml_factory factory object to create
a brand new DOM-based XML document and store its reference in the part-
ners_doc instance attribute.

3. After the partners_doc attribute is initialized, we need to create the root <Busi-
nessPartners> element. As you can see in Listing 8.9, we’re using the CREATE_

297

Parsing XML with the iXML Library 8.2

SIMPLE_ELEMENT_NS() instance method of interface IF_IXML_DOCUMENT for this
purpose. This method will generate the root element and return a reference
to it in the form of an object reference that implements the IF_IXML_ELEMENT
interface.

4. After the root element is defined, the process of creating the various elements
inside the document is pretty much the same. Here, we simply use the CRE-
ATE_SIMPLE_ELEMENT_NS() method to create new elements and place them at
the appropriate level in the hierarchy.

5. As you can see in the implementation of method ADD_PARTNER() in Listing 8.9,
we’re also defining the Type attribute using the SET_ATTRIBUTE_NS() method
defined in interface IF_IXML_ELEMENT.

6. Finally, after the document is fully constructed, the ZDOMDEMO report program
calls the helper method SHOW_DOCUMENT() to display the resultant XML doc-
ument in a browser window. This helper method used the SDIXML_DOM_TO_
SCREEN function module behind the scenes to render the XML output.

At this point, you should have a pretty good feel for how to create DOM-based
XML documents using the iXML library. Therefore, let’s move on and expand our
horizons by learning how to parse and render these documents for more practical
purposes. In the next section, you’ll apply the concepts you’ve learned toward the
creation of an ABAP-based XML mapping program that can be used to implement
an interface scenario on the middleware platform of SAP NetWeaver PI.

8.2.3 Case Study: Developing XML Mapping Programs in ABAP

SAP NetWeaver Process Integration (SAP NetWeaver PI) is an enterprise application
integration (EAI) tool that can be used to build cross-system business processes.
With a wide array of adapters available out of the box, SAP NetWeaver PI can
facilitate communication with many kinds of systems. As such, SAP NetWeaver PI
can assume the role of “hub” in a hub-and-spoke architecture, brokering commu-
nication between disparate systems by defining sender/receiver endpoints known
as message interfaces.

A message interface has an associated message type that defines the schema of the
message being exchanged. Because SAP NetWeaver PI messages are based on XML,
these schemas are naturally described using the XML Schema language introduced
in Section 8.1.3, Defining XML Documents Using XML Schema. Most of the time,
the message type of a sender interface is different from that of the receiver inter-

298

XML Processing in ABAP8

face. Therefore, one of the most basic SAP NetWeaver PI development tasks is to
create XML mapping programs. Here, you can choose from several kinds of devel-
opment environments to create your mapping program:

EE For developers who prefer not to get their hands dirty with XML, SAP NetWeaver
PI provides a graphical mapping tool that can be used to implement basic map-
ping operations.

EE Java developers can develop custom mapping programs using the Java pro-
gramming language.

EE Developers comfortable developing XML transformations using the XSLT lan-
guage can develop an XSLT stylesheet and deploy it on either the SAP NetWeaver
AS ABAP or SAP NetWeaver AS Java stacks.

EE ABAP developers can develop custom mapping programs using the iXML
library.

ABAP-based SAP NetWeaver PI mapping programs are implemented in the form of
an ABAP Objects class. Internally, this class can use the iXML library to implement
the XML mapping logic. To demonstrate how all this fits together, let’s consider
a mapping program that transforms the business partners XML document shown
earlier in Listing 8.1 into the vendors document shown in Listing 8.10.

<?xml version="1.0" encoding="UTF-8"?>
<Vendors>
 <Vendor>
 <VendorNumber>1234567890</VendorNumber>
 <VendorName>Bowdark Consulting, Inc.</VendorName>
 <DateCreated>2006-02-01</DateCreated>
 </Vendor>
</Vendors>

Listing 8.10 Target XML Document for SAP NetWeaver PI Mapping Program

To begin, we create a normal ABAP Objects class called ZCL_PI_MAPPING_DEMO. For
this class to work inside the SAP NetWeaver PI mapping framework, it must imple-
ment the IF_MAPPING interface of package SAI_MAPPING as shown in Figure 8.3.

299

Parsing XML with the iXML Library 8.2

Figure 8.3 Implementing the IF_MAPPING Interface

After you implement the IF_MAPPING interface, you can see that a new instance
method called EXECUTE() has been added to the class’ public interface. Figure 8.4
shows the signature of the IF_MAPPING~EXECUTE() method. For the purposes of
this demonstration, we’re primarily interested in the SOURCE and RESULT parame-
ters, both of which are defined using the XSTRING data type. The use of the XSTRING
data type implies that the source XML document will be received in the form of a
stream of bytes. Similarly, after we’ve built the target vendors document, we have
to serialize the result into an XSTRING data object.

Figure 8.4 Signature of Method IF_MAPPING~EXECUTE()

Listing 8.11 shows the implementation of the IF_MAPPING~EXECUTE() method. As
you scan through the code, you’ll notice that we’re mapping the target XML docu-
ment using the same API calls we used in Listing 8.9. However, before we can
map the target vendor document, we must first parse the source business partner
document so that we can extract the relevant data points using the DOM API. We
investigate the parsing process in detail in a moment.

METHOD if_mapping~execute.
* Method-Local Data Declarations:
 DATA: lo_ixml_factory
 TYPE REF TO if_ixml,
 lo_stream_factory
 TYPE REF TO if_ixml_stream_factory,
 lo_istream
 TYPE REF TO if_ixml_istream,

300

XML Processing in ABAP8

 lo_parser
 TYPE REF TO if_ixml_parser,
 lo_source_doc
 TYPE REF TO if_ixml_document.

 DATA: lo_partners_elem
 TYPE REF TO if_ixml_element,
 lo_id_elem
 TYPE REF TO if_ixml_element,
 lo_name_elem
 TYPE REF TO if_ixml_element,
 lo_date_elem
 TYPE REF TO if_ixml_element.

 DATA: lv_vendor_no TYPE string,
 lv_vendor_name TYPE string,
 lv_date_created TYPE string.

 DATA: lo_target_doc
 TYPE REF TO if_ixml_document,
 lo_vendors_elem
 TYPE REF TO if_ixml_element,
 lo_vendor_elem
 TYPE REF TO if_ixml_element.

 DATA: lo_ostream
 TYPE REF TO if_ixml_ostream,
 lo_renderer
 TYPE REF TO if_ixml_renderer.

* Obtain a reference to the iXML factory object:
 lo_ixml_factory = cl_ixml=>create().

* Use the iXML factory to obtain a reference to the
* XML stream factory:
 lo_stream_factory =
 lo_ixml_factory->create_stream_factory().

* Pipe the source XML document onto an input stream:
 lo_istream =
 lo_stream_factory->create_istream_xstring(source).

* Parse the source XML document:

301

Parsing XML with the iXML Library 8.2

 lo_source_doc =
 lo_ixml_factory->create_document().

 lo_parser =
 lo_ixml_factory->create_parser(
 stream_factory = lo_stream_factory
 istream = lo_istream
 document = lo_source_doc).

 lo_parser->parse().

* Copy the relevant information from the source document:
 lo_partners_elem = l_source_doc->get_root_element().

 lo_id_elem =
 lo_partners_elem->find_from_name_ns(
 name = 'PartnerId').
 lv_vendor_no = lo_id_elem->get_value().

 lo_name_elem =
 lo_partners_elem->find_from_name_ns (
 name = 'Name').
 lv_vendor_name = lo_name_elem->get_value().

 lo_date_elem =
 lo_partners_elem->find_from_name_ns (
 name = 'CreationDate').
 lv_date_created = lo_date_elem->get_value().

* Now create the target document:
 lr_target_doc = lo_ixml_factory->create_document().

 lo_vendors_elem =
 lo_target_doc->create_simple_element_ns (
 name = 'Vendors'
 parent = lo_target_doc).

 lo_vendor_elem =
 lo_target_doc->create_simple_element_ns (
 name = 'Vendor'
 parent = lo_vendors_elem).

 lo_target_doc->create_simple_element_ns (

302

XML Processing in ABAP8

 name = 'VendorNumber'
 value = lv_vendor_no
 parent = lo_vendor_elem).

 lo_target_doc->create_simple_element_ns (
 name = 'VendorName'
 value = lv_vendor_name
 parent = lo_vendor_elem).

 lo_target_doc->create_simple_element_ns (
 name = 'DateCreated'
 value = lv_date_created
 parent = lo_vendor_elem).

* Create an output stream to serialize the document:
 lo_ostream =
 lo_stream_factory->create_ostream_xstring(result).

* Now, render the document to the output stream:
 lo_renderer =
 lo_ixml_factory->create_renderer(
 ostream = lo_ostream
 document = lo_target_doc).

 lo_renderer->render().
ENDMETHOD. " METHOD execute

Listing 8.11 Implementing an ABAP Mapping Program Using iXML

Now that you’ve had a chance to digest the mapping code a little bit, let’s take it
apart and see what’s going on underneath the hood:

1. Before we can even think about mapping XML, we first need to convert the
incoming SOURCE parameter into a format that we can work with. Looking back
at the signature of method IF_MAPPING~EXECUTE() in Figure 8.4, you can see
that this parameter is defined as a byte string (i.e., type XSTRING). However, the
PARSE() method of interface IF_IXML_PARSER is designed to work with an input
stream (i.e., an object that implements the IF_IXML_ISTREAM interface). There-
fore, our first step in the mapping process is to convert the raw contents of the
SOURCE parameter into an input stream using an XML stream factory (based on
interface IF_IXML_STREAM_FACTORY). We can use the CREATE_ISTREAM_XSTRING()
method for this purpose.

303

Parsing XML with the iXML Library 8.2

2. Ultimately, the objective of the parsing process is to convert the raw XML
stream into a DOM-based document. Therefore, before we actually parse the
input document, we must create an instance of a DOM-based XML document
and store a reference to it in the LO_SOURCE_DOC object reference variable.

3. The actual parsing process is controlled by an object that implements the IF_
IXML_PARSER interface. A reference to the iXML parser can be obtained via the
iXML factory method CREATE_PARSER(). Here, we pass the iXML library a refer-
ence to the input stream that we want to parse, as well as the target DOM-based
document that will store the results. To parse the source document, we simply
call the PARSE() method on the parser instance. Were this a production-wor-
thy mapping program, we would implement some detailed exception-handling
code after the PARSE() method to describe any errors that might have occurred
during the parsing process. You can find detailed examples of such exception-
handling code in the SAP Library documentation available online at http://help.
sap.com. Here, perform a keyword search on the phrase “iXML ABAP Objects
Jumpstart.”

4. After the source document is parsed, we can extract the relevant information
from it by invoking the GET_ROOT_ELEMENT() method on the LO_SOURCE_DOC
object reference and then traversing the DOM-based tree using the FIND_FROM_
NAME_NS() method defined in the IF_IXML_ELEMENT interface. When we locate
the desired source elements, we can extract their values into string data objects
using the GET_VALUE() method defined in the IF_IXML_ELEMENT interface.

5. After the relevant information has been extracted from the source document,
we can build the target document using the same API methods described in
Section 8.2.2, Working with DOM.

6. Finally, after the target document has been completely built out, we need to
serialize it out to a byte string. To do so, we must use a renderer object that is an
instance of an object that implements the IF_IXML_RENDERER interface. To cre-
ate a renderer object, we must pass a reference to the DOM-based document to
be serialized, as well as an output stream to serialize the document to. Here, the
output stream is an object that implements the IF_IXML_OSTREAM interface. As
you can see in Listing 8.11, we’re generating an output stream for the RESULT
byte string using the CREATE_OSTREAM_XSTRING() method defined in interface
IF_IXML_STREAM_FACTORY. The actual rendering operation is performed by the
RENDER() method of interface IF_IXML_RENDERER.

304

XML Processing in ABAP8

If you have an SAP NetWeaver PI instance that you can play with, you can test
out this example code by developing a basic interface scenario. Alternatively, you
might try to build a test driver program using the iXML library to simulate the
execution of the mapping program via the SAP NetWeaver PI mapping engine.

8.2.4 Next Steps

By now you should have a feel for how to use the iXML library API to process
XML documents. For a more thorough treatment of the iXML library as a whole,
you can perform a keyword search using the term “iXML” in the SAP Help Portal
available online at http://help.sap.com. Here, you can also find documentation that
shows you how to parse an XML document event-based (i.e., using a SAX-like API),
work with advanced node traversal operations, and so on.

In addition to the online help documentation, SAP also provides quite a bit of
sample code in the SIXML_TEST package. Finally, we highly recommend Tobias
Trapp’s XML Data Exchange Using ABAP (SAP PRESS, 2006) as a general reference
for all ABAP-based XML technologies.

8.3 Transforming XML Using XSLT

XML processing models such as DOM make it very easy to scan through and
manipulate an XML document. However, if you need to copy the content of one
XML document into another one that has a different schema, the process is some-
what tedious — as evidenced in Section 8.2.3, Case Study: Developing XML Map-
ping Programs in ABAP. The primary challenge here is that you have to account
for the creation of all XML content when, in reality, only a fraction of the content
is dynamic in nature. Ideally, it would be much more efficient if we could use a
template to define the bulk of the static content and then weave in the dynamic
content at runtime. Recognizing the need for a more economical development
model, the W3C defined the Extensible Stylesheet Language Transformations (XSLT)
language for this purpose.

In this section, we introduce you to the XSLT language and show you how to cre-
ate and execute XSLT mapping programs in ABAP. Given the breadth of the XSLT
language specification, it’s not realistic for us to present a thorough treatment of
XSLT here. Instead, we provide a basic introduction that you can use as a founda-
tion for more advanced study. Two excellent resources are XSLT Quickly (Manning
Publications, 2001) and XML Data Exchange Using ABAP (SAP PRESS, 2006).

305

Transforming XML Using XSLT 8.3

8.3.1 What Is XSLT?

Initially, XSLT was positioned as a language that could be used to simplify the cre-
ation of HTML markup. Over time, it has evolved into a general-purpose language
that can be used to perform all kinds of transformations. Regardless of the source
and target content types, the process is essentially the same: an XSLT processor
uses an XML document called a stylesheet as a template for transforming a source
data object into a target data object. Here, even though the process is described
as a transformation, the source data object isn’t changed. Rather, its contents are
used as a data source for building the target data object. Figure 8.5 illustrates this
process as it relates to the transformation of XML documents.

XSLT
Processor

Source
XML

Stylesheet

Target
XML

Figure 8.5 Processing Model for an XSLT Processor

Unlike many conventional programming languages, XSLT uses a declarative
approach that defines how the XSLT processor should handle particular nodes
within the source data object. In XSLT parlance, these processing instructions are
called template rules. A template rule blends static content with various types of
functional expressions to build portions of the target data object. Collectively, an
XSLT stylesheet combines these template rules together to define the transforma-
tion logic that the XSLT processor should apply toward the creation of the target
data object. Next we explain how all of this fits together as we examine the struc-
ture of an XSLT stylesheet.

8.3.2 Anatomy of an XSLT Stylesheet

An XSLT stylesheet is an XML document whose vocabulary is defined by the
W3C.4 The root element of a stylesheet document can be either <xsl:transform>
or <xsl:stylesheet>; use of one element versus the other is mostly a matter of

4 You can read the official XSLT specification online at www.w3.org/TR/xslt.

306

XML Processing in ABAP8

preference. Notice that both of these elements are prefixed using xsl. This pre-
fix refers to a distinct XML namespace defined by the XSLT specification: www.
w3.org/1999/XSL/Transform. XML namespaces are used to define unique names
for elements or attributes in an XML document (much like namespaces in ABAP).
The XSLT specification requires that all XSLT instructions be defined using the xsl
namespace so that XSLT processors can recognize these elements at runtime. List-
ing 8.12 shows how the xsl namespace is defined in an XSLT stylesheet.

<xsl:transform version="1.0"
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:sap="http://www.sap.com/sapxsl">

Listing 8.12 Defining XML Namespaces

XSLT stylesheets are comprised of a series of template rules. Each template rule
is designed to match a pattern in the source XML document. Match patterns are
defined using a specialized XML query language called XPath. XPath expressions
define a location path that is separated by slashes (/) into a series of location steps.
According to the XPath specification,5 a location step can be broken up into three
parts:

EE Axes
Axes are used to orient the search toward a particular node direction within the
XML tree structure. XPath defines many axes such as child, parent, ancestor,
descendant, and so on. In XSLT, if no axis is selected explicitly, an XSLT processor
assumes that the default child axis should be used.

EE Node Tests
Node tests identify the node (or nodes) to search for within the selected axis.

EE Predicates
Predicates are optional components that can be used to filter search results
based upon the results of a logical expression. Predicates are used in much the
same way that WHERE clauses are used in SQL.

Figure 8.6 shows an example of a location step used to find any descendant <Busi-
nessPartner> elements whose type attribute has the value ‘2.’

5 You can read the official XPath specification online at www.w3.org/TR/xpath.

307

Transforming XML Using XSLT 8.3

descendant : : Business Partner [@type=’2’]

Axis Node Test Predicate

Figure 8.6 Defining XPath Location Steps

When the XSLT processor finds a match for the specified query expression, the
contents of a template rule are evaluated and added to the result tree. The con-
tents of an XSLT template can include literal result elements as well as specialized
XSLT instructions that can be used to copy data from the source document, define
conditional processing logic, and so on. Like everything else in an XSLT stylesheet,
these instructions are also specified using XML. Figure 8.7 shows how all of these
pieces fit together inside of an XSLT stylesheet.

<xsl : transform version=”1.0”
 xmlns: xsl =”http//www.w3.org/1999/XSL/Transform”>

 <xsl : template match=”Business Partner”>

xsl : t empl at e mat ch=” Busi nessPar t ner ”>

 <Vendor>
 <Vendor Number>

 <xsl : value-of select=”chi ld: : Partner Id” />

x s l : value-of select=”chi ld: : Partner Id” />

 </ Vendor Number>
 <Vendor>

 </ xsl : template>

</ xsl : transform>

XPath Query

Template
Rule

Literal Result Elements

XSLT Instruction

Figure 8.7 Anatomy of an XSLT Stylesheet

As we mentioned earlier, XSLT is a declarative language. Therefore, you don’t see
any top-down logical flow in an XSLT stylesheet like you would in a procedural
program. The starting execution point of an XSLT stylesheet is determined by the
first template match found by the XSLT processor as it evaluates a given source
document. From there, additional content is recursively added to the result tree as
other matches are found for the remaining template rules in the stylesheet.

308

XML Processing in ABAP8

8.3.3 Integrating XSLT with ABAP

XSLT support was integrated into the ABAP runtime environment beginning with
SAP NetWeaver AS ABAP 6.10. For the most part, SAP’s implementation conforms
to the XSLT 1.0 specification; however, because there are subtle differences in the
SAP implementation, it’s highly recommended that you read over the SAP XSLT
Processor Reference available in the SAP Library documentation online at http://help.
sap.com. This reference guide also provides detailed documentation about certain
useful proprietary extensions integrated into the SAP XSLT processor.

8.3.4 Creating XSLT Stylesheets

XSLT programs are created as repository objects using the Object Navigator tool
(Transaction SE80). To create an XSLT program, perform the following steps:

1. Open the Object Navigator, and select the Package option on the left side in
the object list selection list box. Right-click and then choose the context menu
option Create • Other (1) • Transformation (see Figure 8.8).

Figure 8.8 Creating an XSLT Program — Part 1

309

Transforming XML Using XSLT 8.3

2. In the Create Transformation dialog box shown in Figure 8.9, specify the name
of the XSLT program, a description of its purpose, and the transformation type
(which, in this case, is always XSLT Program). Press [Enter] to confirm your
selections.

Figure 8.9 Creating an XSLT Program — Part 2

After an XSLT program is created, you can edit it in the Transformation Editor tool
integrated into the ABAP Workbench (see Figure 8.10). The Transformation Editor
provides several useful tools to assist you in the development of XSLT programs,
including a debugger, test tool, and a tag library that can be used to drag-and-drop
XSLT instructions into the XSLT stylesheet.

Figure 8.10 Editing XSLT Programs in the Object Navigator

310

XML Processing in ABAP8

8.3.5 Processing XSLT Programs in ABAP

You can execute XSLT programs from ABAP using the CALL TRANSFORMA-

TION statement. This statement can be used to perform the following types of
transformations:

EE XML to XML

EE XML to ABAP

EE ABAP to XML

EE ABAP to ABAP

Given the breadth of functionality supported by the CALL TRANSFORMATION state-
ment, the complete syntax diagram for this statement is very complex. However,
for the purposes of our discussion, we focus our attention on the syntax involved
in performing XML-to-XML transformations, as shown in Listing 8.13. We con-
sider some of the other transformation types in Sections 8.3.7, Serialization of
ABAP Data Objects Using asXML, and 8.4, Simple Transformation, respectively.

CALL TRANSFORMATION {trans|(name)}
 [PARAMETERS {p1 = e1 p2 = e2 ...}|(ptab)]
 SOURCE XML sxml
 RESULT XML rxml.

Listing 8.13 Syntax of the CALL TRANSFORMATION Statement

In many respects, the process of calling an XSLT program using the CALL TRANS-
FORMATION statement is very similar in nature to a call to a function module or
method. Here, as you would expect, the primary input is the source XML docu-
ment, and the generated output is the resultant XML document created by the
XSLT processor.

As you can see in Listing 8.13, you can specify the source XML document using
the SOURCE XML addition. The source XML document can have one of the follow-
ing forms:

EE A data object of type STRING or XSTRING (or a standard table with a flat character
line type)

EE An interface reference variable of type IF_IXML_ISTREAM (as described in Sec-
tion 8.2.1, Introducing the iXML Library API)

EE An interface reference variable of type IF_IXML_NODE, which points to an iXML
node set (see the iXML library reference in the SAP Library online at http://help.
sap.com)

311

Transforming XML Using XSLT 8.3

Similarly, the TARGET XML addition is used to specify the target XML document that
can be returned in one of the following forms:

EE A data object of type STRING or XSTRING (or a standard table with a flat character
line type)

EE An interface reference variable of type IF_IXML_OSTREAM (as described in Sec-
tion 8.2.1, Introducing the iXML Library API)

EE An interface reference variable of type IF_IXML_DOCUMENT (as described in Sec-
tion 8.2.1, Introducing the iXML Library API)

It’s also possible to pass in parameters (i.e., ABAP data objects) to the stylesheet
using the PARAMETERS addition. Parameters can be used in various ways inside the
stylesheet. One way that parameters are used is to pass in an instance of an ABAP
Objects class that can then be used to invoke methods in the ABAP context. The
XSLT processor also supports calls to ABAP function modules. These calls are made
possible using special proprietary extensions integrated into the SAP XSLT pro-
cessor and the custom XSLT instructions sap:call-external and sap:external-
function, respectively.

The CALL TRANSFORMATION statement can trigger various types of catchable excep-
tions at runtime. For instance, if an error is detected in the XSLT processor, an
exception of type CX_SY_XSLT_RUNTIME_ERROR is raised. Each of these exception
types inherit from the CX_TRANSFORMATION_ERROR exception class, so you can use
this type as a catch-all for any kind of exception that is raised. For more informa-
tion about the types of exceptions that can be raised by the CALL TRANSFORMATION
statement, consult the ABAP Keyword Documentation.

8.3.6 Case Study: Transforming Business Partners with XSLT

Now that you have a feel for how XSLT is integrated into the ABAP runtime envi-
ronment, let’s see how we can re-implement the business partner-to-vendor map-
ping program introduced in Section 8.2.3, Case Study: Developing XML Mapping
Programs in ABAP, using XSLT. The first step here is to create an XSLT program in
the Object Navigator (Transaction SE80), as described in Section 8.3.3, Integrating
XSLT with ABAP.

Listing 8.14 shows the XSLT stylesheet code used to perform the transformation.
This stylesheet contains a single template rule that matches the <BusinessPart-
ners> root element of the source business partner document. When the XSLT

312

XML Processing in ABAP8

processor finds this match, it will then apply the embedded template content to
the output tree.

The embedded template content begins with the literal result element <Vendors>,
which is the root element of the vendor document. Underneath the document
element, we need to copy each business partner into a <Vendor> child element. As
you can see, we’re accomplishing this using the <xsl:for-each> instruction. The
select attribute of the <xsl:for-each> instruction let’s you specify an XPath query
to select the elements that you want to iterate through in a loop. In this case, we’re
selecting child <BusinessPartner> elements whose type attribute is equal to ‘2’.

The relevant data for each vendor is copied over from the business partner in
context using the <xsl:value-of> command. Here, once again, an XPath query
selects the relevant element that we want to copy from. Because the selected ele-
ments are simple elements, the text content of these elements is copied over to
the target document.

<xsl:transform version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sap="http://www.sap.com/sapxsl">
 <!-- Main template used to match root "BusinessPartners"
 element. -->
 <xsl:template match="BusinessPartners">
 <!-- Notice the use of literal result elements like
 "Vendors", etc. -->
 <Vendors>
 <!-- The XSLT "for-each" instruction implements a loop
 through each occurrence of the "BusinessPartner"
 child element of the root "BusinessPartners"
 element. -->
 <xsl:for-each select="BusinessPartner[@type='2']">
 <Vendor>
 <!-- The values of the source data objects are
 copied to the target using the XSLT
 "value-of" instruction. -->
 <VendorNumber>
 <xsl:value-of select="PartnerId" />
 </VendorNumber>
 <VendorName>
 <xsl:value-of select="Name" />
 </VendorName>
 <DateCreated>
 <xsl:value-of select="CreationDate" />

313

Transforming XML Using XSLT 8.3

 </DateCreated>
 </Vendor>
 </xsl:for-each>
 </Vendors>
 </xsl:template>
</xsl:transform>

Listing 8.14 Transforming Business Partners Using XSLT

We can use the XSLT Tester tool integrated into the ABAP Workbench to test
the XSLT program contained in Listing 8.14. To open up this tool, press the (F8)
key while in the Transformation Editor (or select Transformation • Test in the
menu bar) as shown earlier in Figure 8.10. Inside the testing tool, you can test the
stylesheet against a sample XML source file. The output of the transformation can
be displayed online or saved as a file on your local machine (see Figure 8.11).

Figure 8.11 Testing Stylesheets Using the XSLT Tester Tool

Figure 8.12 shows the resultant XML document derived using the sample XML from
Listing 8.1. When you’re satisfied with the results, you can integrate the stylesheet
into your ABAP applications using the CALL TRANSFORMATION statement.

314

XML Processing in ABAP8

Figure 8.12 Sample Output from XSLT Tester Tool

8.3.7 Serialization of ABAP Data Objects Using asXML

XSLT processors define default behavior that determines how the processor should
handle empty stylesheets, certain types of data, and so on. In the case of SAP’s
implementation, this functionality has been extended to support the serialization
of ABAP data objects into a canonical XML representation referred to as ABAP
Serialization XML (asXML). You can tap into this functionality using the standard
ID XSLT program provided by SAP.

Listing 8.15 shows how the ID XSLT program can be used to transform a structured
data object (i.e., LS_PARTNER) into an XML document. As you can see, we’re still
invoking the XSLT program using the CALL TRANSFORMATION statement. However,
if you look closely, you’ll notice that we’re using the SOURCE addition to specify the
LS_PARTNER structure in lieu of the normal SOURCE XML addition. Figure 8.13 shows
the resultant XML document containing the serialized data object.

DATA: BEGIN OF ls_partner,
 partner_id TYPE bu_partner,
 type TYPE bu_type,
 address TYPE adrc,
 END OF ls_partner.
DATA: lo_xml_factory TYPE REF TO if_ixml,
 lo_partners_doc TYPE REF TO if_ixml_document.

ls_partner-partner_id = '1234567890'.
ls_partner-type = '2'.
ls_partner-address-name1 = 'Bowdark Consulting, Inc.'.

lo_xml_factory = cl_ixml=>create().
lo_partners_doc = lo_xml_factory->create_document().

CALL TRANSFORMATION id

315

Transforming XML Using XSLT 8.3

 SOURCE BusinessPartner = ls_partner
 RESULT XML lr_partners_doc.

 CALL FUNCTION 'SDIXML_DOM_TO_SCREEN'
 EXPORTING
 document = lo_partners_doc
 EXCEPTIONS
 no_document = 1
 others = 2.

Listing 8.15 Transforming ABAP Data Objects to XML

Figure 8.13 Sample Excerpt of Generated asXML

The ID transformation demonstrated in Listing 8.15 can be used to serialize ele-
mentary data objects, structures, internal tables, and data references. In addition,
it can be used to serialize ABAP Objects classes that implement the IF_SERIALIZ-
ABLE_OBJECT interface. The IF_SERIALIZABLE_OBJECT interface is considered to be
a tag interface in the sense that it doesn’t define any components that augment
the public interface of implementing classes. Nevertheless, its presence signifies
to the ABAP runtime environment that instances of implementing classes can be
serialized.

To demonstrate how serialization works for ABAP Objects classes, let’s consider an
example. Figure 8.14 depicts a custom class called ZCL_SERIALIZABLE_PARTNER that
implements the IF_SERIALIZABLE_OBJECT interface. The ZCL_SERIALIZABLE_PART-
NER class defines instance attributes that represent various aspects of a business
partner (see Figure 8.15).

316

XML Processing in ABAP8

Figure 8.14 Defining a Serializable Class in ABAP — Part 1

Figure 8.15 Defining a Serializable Class in ABAP — Part 2

To keep things simple, we assume that the attributes illustrated in Figure 8.15 are
initialized inside the CONSTRUCTOR() method. Beyond that, there’s nothing else that
we need to do to the ZCL_SERIALIZABLE_PARTNER class to serialize it. As you can
see in the code excerpt shown in Listing 8.16, the actual serialization process for
an ABAP Objects class is the same as the one we used to serialize a normal struc-
tured data object in Listing 8.15. Figure 8.16 shows the asXML generated by the
identity transformation.

DATA: lo_partner TYPE REF TO zcl_serializable_partner,
 lo_ixml TYPE REF TO if_ixml,
 lo_result TYPE REF TO if_ixml_document.

CREATE OBJECT lo_partner.

lo_ixml = cl_ixml=>create().
lo_result = lo_ixml->create_document().

CALL TRANSFORMATION id

317

Simple Transformation 8.4

 SOURCE BusinessPartner = lo_partner
 RESULT XML lo_result.

CALL FUNCTION 'SDIXML_DOM_TO_SCREEN'
 EXPORTING
 document = lo_result
 EXCEPTIONS
 no_document = 1
 others = 2.

Listing 8.16 Serializing Instances of ABAP Objects Classes

Figure 8.16 Sample Excerpt of asXML for an ABAP Objects Class

8.4 Simple Transformation

The ABAP-XML serialization techniques demonstrated in Section 8.3.7, Serializa-
tion of ABAP Data Objects Using asXML, can be used to generate XML in situations
where there is no predefined schema. As such, while canonical XML representa-
tions such as asXML can be useful in serialization scenarios, they aren’t meant to
be used in the general setting. After all, most of the time, the XML you create will
need to conform to a specific schema type.

318

XML Processing in ABAP8

Technically, it’s possible to perform these types of transformations using XSLT
programs. However, such programs can be tedious to write because it’s difficult
to address ABAP data using XSLT. Recognizing this, SAP elected to create a new
language that could be used to simplify the transformation of ABAP data to XML
and vice versa. This new language is called Simple Transformation.

8.4.1 What Is Simple Transformation?

Simple Transformation (ST) is a proprietary language created by SAP to simplify
transformations between ABAP data objects and XML. Like XSLT, ST uses a declara-
tive approach, encoding program logic inside template rules using XML. However,
the similarities pretty much stop there. Whereas XSLT is a general-purpose lan-
guage that can be used to perform many kinds of transformations, ST only allows
you to transform ABAP data objects into XML (serialization) and XML into ABAP
data objects (deserialization). Due to this limited scope, the ST language is smaller
and much easier to learn than XSLT.

8.4.2 Anatomy of a Simple Transformation Program

Given what you already know about XSLT, you’ll find the syntax of an ST program
to be quite intuitive. Figure 8.17 contains a diagram that depicts the layout of an
ST program. The root element of an ST program is the <tt:transform> element,
which has the assigned namespace URI http://www.sap.com/transformation-
templates. By convention, this namespace is prefixed using tt.

The core processing logic of an ST program is defined within templates. Much like
template rules in XSLT, templates contain literal XML result elements as well as ST
commands that define how ABAP data is serialized/deserialized at runtime. When
defining the <tt:transform> element, you have the option of specifying a main
template using the template attribute. This is the first template executed when the
ST program is run. If a main template isn’t explicitly declared, there must be a
default unnamed template defined somewhere within the ST program.

Besides the definition of a main template, ST programs can also specify other core
elements, including the following:

EE Data roots that represent the ABAP data objects bound to this ST program

EE Parameters that can be passed into the ST program via the PARAMETERS addition
of the CALL TRANSFORMATION statement

EE Variables that are used as counters, placeholders, and so on

319

Simple Transformation 8.4

<?s a p.transform simple?>

<t t : transform template= “Main Template”
 xmlns: t t= “http://www.sap.com/transformation-templates”>

 <t t : type name=”.. .”>

 <t t : root name=”.. .” />

 <t t : parameter name=”.. .” />

 <t t : variable name=”.. .” />

 <t t : template name=”Main Template”>
 <! - - Template logic goes here - ->
 </t t : template>

 <t t : template name=”Sub Template”>
 <! - - Template logic goes here - ->
 </t t : template>

</t t : transform>

Main
Template

Data Roots

Parameters

Variables

Custom Types

Sub
Template

Root
Element

Figure 8.17 Anatomy of an ST Program

EE Custom data type declarations that are used to define data roots, parameters,
and variables

EE Subtemplates that can be used to implement modularization within the ST
program

We’ll learn more about some of these elements in the upcoming sections.

8.4.3 Learning Simple Transformation Syntax

In this section, we learn about some basic syntax that can be used to build simple
ST programs. For a more comprehensive coverage of the ST language, we recom-
mend that you read through the language documentation available in the SAP
Library online (search for “Simple Transformation”).

ABAP Data Binding

As we mentioned earlier, one of the major advantages ST programs have over
XSLT programs lies in their ability to easily address ABAP data. The basis for this
simplified addressing scheme is the definition of a special binding between the ST

320

XML Processing in ABAP8

program and the calling ABAP context. These bindings are referred to as data roots
and are defined using the <tt:root> element.

Listing 8.17 shows the syntax used to define a data root. Besides the obligatory
name, you can also specify an optional data type for a given data root. Here,
you can select from built-in elementary types, custom types defined using the
<tt:type> element, ABAP Dictionary types, and so on. If a data root refers to an
internal table, then you can specify the line type using the line-type addition
shown in Listing 8.17.

<tt:root name="..." [[line-]type="..."
 [length="..."]
 [decimals="..."]] />

Listing 8.17 Syntax Diagram for Defining Data Roots

The sample ST program shown in Listing 8.18 demonstrates how data roots can be
defined within an ST program. In this program, we’ve defined two data roots called
X and Y using the native STRING data type. Within the Main template, we’re ref-
erencing these data roots using the <tt:value> command. This command causes
the value of the data roots to be written to the resultant XML document during
serialization, and the contents of the <X> and <Y> elements to be copied to these
data roots during deserialization.

<?sap.transform simple?>
<tt:transform template="Main"
 xmlns:tt="http://www.sap.com/transformation-templates">
 <tt:root name="X" type="STRING" />
 <tt:root name="Y" type="STRING" />

 <tt:template name="Main">
 <RootTest>
 <X><tt:value ref="X" /></X>
 <Y><tt:value ref="Y" /></Y>
 </RootTest>
 </tt:template>
</tt:transform>

Listing 8.18 Working with Data Roots in an ST Program

The code excerpt shown in Listing 8.19 demonstrates how you can use the sam-
ple ST program from Listing 8.18 to serialize and deserialize ABAP data objects.
Here, notice how the data root names are used in the SOURCE and RESULT additions

321

Simple Transformation 8.4

of the CALL TRANSFORMATION statement to bind the ABAP data objects to the ST
programs.

DATA: lv_x1 TYPE string VALUE 'ABAP',
 lv_x2 TYPE string,
 lv_y1 TYPE string VALUE 'XML',
 lv_y2 TYPE string,
 lv_xml TYPE string.

CALL TRANSFORMATION zst_root_test
 SOURCE x = lv_x1
 y = lv_y1
 RESULT XML lv_xml.

WRITE: / lv_xml.
SKIP.

CALL TRANSFORMATION zst_root_test
 SOURCE XML lv_xml
 RESULT x = lv_x2
 y = lv_y2.

WRITE: / 'X =', lv_x2.
WRITE: / 'Y =', lv_y2.

Listing 8.19 Binding Data Roots in ST Programs at Runtime

The term “data root” connotes the idea that ABAP data objects bound to an ST
program are organized into tree-like data structures that branch outward from the
data root definition. This arrangement makes it possible to traverse through a data
root that is defined using a structure or table type and address each of its subnodes.
Listing 8.20 shows the syntax used to address subnodes within a data root.

root_name.node1.node2.noden

Listing 8.20 Syntax for Addressing Subnodes in a Data Root

During the node traversal process, the address scope narrows from a global con-
text to a local one. For example, consider the sample code shown earlier in Listing
8.18. Here, we’re referencing the X and Y data roots directly without qualification.
However, imagine that we’ve added a third data root called Z that is defined using
a structure type that contains child components called X and Y. Now, the names X
and Y can be ambiguous depending upon the context. You can bypass such vagaries
using the syntax shown in Listing 8.21. In this case, the preceding dot (.) opera-

322

XML Processing in ABAP8

tor tells the ST runtime environment that the expression refers to a fully qualified
node path.

.root_name.node1.node2.noden

Listing 8.21 Syntax for Explicitly Referencing a Data Root

Flow Control

As we mentioned earlier, execution of an ST program begins with the process-
ing of the designated main template. Within this template, literal XML content is
interspersed with ST commands that address ABAP data objects, perform calcula-
tions, and so on. Of course, to implement real-world requirements, you need to
organize these commands using flow control logic such as conditionals (i.e., an IF
statement), loops, and so on. Table 8.2 shows the basic flow control commands
provided in the ST language.

ST Flow Control
Command

Functionality

<tt:skip> Allows you to skip over optional XML elements during the
deserialization process.

<tt:cond> Designates parts of the ST program that should only be executed
if certain prerequisites are met (e.g., an IF statement in ABAP).
Normally, the <tt:cond> command is embedded within
<tt:switch> and <tt:group> commands.

<tt:cond-var> Similar to the <tt:cond> command, allows you to evaluate
variables (e.g., variables defined using the <tt:variable> or
<tt:parameter> elements) to determine how data contents
are read/written. Note that the <tt:cond-var> command can’t
affect data flow like the <tt:cond> command.

<tt:switch> Like a CASE statement in ABAP, allows you to select from a series
of conditional cases. The cases are defined using the <tt:cond>
element.

<tt:switch-
var>

Similar to the <tt:switch> command, allows you to evaluate
variables (e.g., variables defined using the <tt:variable> or
<tt:parameter> elements) to determine how data contents are
read/written. Note that the <tt:switch-var> command can’t
affect data flow like the <tt:switch> command.

Table 8.2 ST Flow Control Commands

323

Simple Transformation 8.4

ST Flow Control
Command

Functionality

<tt:group> Groups related elements together regardless of sequence. For
example, the <tt:group> command could be used to process the
following XML documents:

<X><X1/><X2/></X>

<X><X2/><X1/></X>

<tt:loop> Iterates over a set of elements like the LOOP statement in ABAP.
The data root type used in the statement must have an internal
table type.

Table 8.2 ST Flow Control Commands (Cont.)

Among the many benefits of using ST is that you can build ST programs that are
symmetrical. In other words, the same ST program can be used to serialize and
deserialize ABAP data objects encoded in a particular XML schema. Of course,
to make this work, you may sometimes need to compartmentalize serialization-
specific or deserialization-specific logic into different sections. This can be accom-
plished using the <tt:serialize> and <tt:deserialize> commands. Listing 8.22
shows how these commands can be used to separate serialization-specific logic
from deserialization-specific logic.

<tt:transform
 xmlns:tt="http://www.sap.com/transformation-templates">
 <tt:template>
 <tt:serialize>
 <!-- Serialization-specific content goes here -->
 </tt:serialize>

 <tt:deserialize>
 <!-- Deserialization-specific content goes here-->
 </tt:deserialize>
 </tt:template>
</tt:transform>

Listing 8.22 Defining the Transformation Direction in ST Programs

It’s also possible to specify the transformation direction within ST flow control
statements. For example, you could have a <tt:cond> command that is only evalu-
ated during serialization, and so on. For more information about these direction-
specific additions, consult the ST language reference available online in the SAP
Library documentation.

324

XML Processing in ABAP8

8.4.4 Creating Simple Transformation Programs

You create ST programs in the Object Navigator (Transaction SE80). To create a new
ST program, perform the following steps:

1. Open the Object Navigator, and select the Package option on the left side in
the object list selection list box. Then right-click and choose the context menu
option Create • Other (1) • Transformation (see Figure 8.18).

Figure 8.18 Creating an ST Program — Part 1

2. In the Create Transformation dialog box shown in Figure 8.19, specify the name
of the ST program, a description of its purpose, and the transformation type
(which, in this case, is always Simple Transformation). Finally, press the (Enter)
key to confirm your selections.

325

Simple Transformation 8.4

Figure 8.19 Creating an ST Program — Part 2

After the ST program is created, you can edit it in the Transformation Editor tool
integrated into the ABAP Workbench (see Figure 8.20). The Transformation Editor
provides several useful tools to assist you in the development of ST programs.

Figure 8.20 Maintaining ST Programs in the ABAP Workbench

8.4.5 Case Study: Transforming Business Partners with ST

Now that you have a feel for the elements that make up an ST program, let’s see
how these pieces fit together using the business partner example document con-
sidered throughout the course of this chapter (refer to Listing 8.1). Listing 8.23
contains an example ST program that is designed to work with business partner
data. This ST program can be used to serialize an internal table of business partner
data into XML and vice versa.

<?sap.transform simple?>
<tt:transform template="Main"
 xmlns:tt="http://www.sap.com/transformation-templates">

326

XML Processing in ABAP8

 <!-- Data Root for Business Partners -->
 <tt:root name="PARTNERS" />

 <!-- Main Template -->
 <tt:template name="Main">
 <!-- Literal Result Element -->
 <BusinessPartners>

 <!-- Loop to Copy Business Partners -->
 <tt:loop ref="PARTNERS" name="partner">
 <BusinessPartner>
 <!-- Define the "type" attribute using the
 <tt:attribute> command. -->
 <tt:attribute name="type"
 value-ref="$partner.type" />
 <!-- Copy the elementary values using the
 <tt:value> command. -->
 <PartnerId>
 <tt:value ref="$partner.partner_id" />
 </PartnerId>
 <Name>
 <tt:value ref="$partner.name" />
 </Name>
 <CreationDate>
 <tt:value ref="$partner.creation_date" />
 </CreationDate>
 </BusinessPartner>
 </tt:loop>

 </BusinessPartners>
 </tt:template>
</tt:transform>

Listing 8.23 Transforming Business Partners Using an ST Program

The business partner data processed by the ST program in Listing 8.23 is repre-
sented in the data root called PARTNERS. In the data root declaration, notice that
we haven’t specified a particular type. Generally speaking, a type declaration is
optional because the ST runtime environment doesn’t need it to bind ABAP data
object(s). Listing 8.24 shows how an internal table containing partner information
could be defined to work with the ST program from Listing 8.23.

327

Summary 8.5

TYPES:
 BEGIN OF ty_partner,
 partner_id TYPE bu_partner,
 type TYPE bu_type,
 name TYPE bu_nameor1,
 creation_date TYPE d,
 END OF ty_partner,
 ty_partners_tab TYPE STANDARD TABLE OF ty_partner.
DATA:
 partners_tab TYPE ty_partners_tab.

Listing 8.24 Defining the Internal Table Used as the Data Root

Within the Main template, we’ve combined literal XML elements with ST com-
mands to describe the transformation process. The bulk of this logic is embed-
ded within a <tt:loop> command that iterates over each of the business partner
records in the PARTNERS data root. For simplification purposes, we’re using the
name attribute of the <tt:loop> command to assign a name to the PARTNERS sub-
node within the context of the loop. We can refer to this subnode inside the loop
using the reference name $partner.

Inside the loop, we’re building out each <BusinessPartner> element by specifying
child element data with the <tt:value> command. This command allows you to
output the value of the node assigned to the ref attribute.

For each <BusinessPartner> element, we also need to specify the type attribute.
This can be accomplished using the <tt:attribute> command. As you can see, this
command allows you to specify the name of an attribute using the name attribute
and the value with the value-ref attribute. In the value-ref attribute assignment,
we can plug in the address of a data root/node, variable, parameter, and so on.

8.5 Summary

In this chapter, you learned some of the basics of XML processing in ABAP. In the
upcoming chapters, we apply these fundamental concepts toward the development
of several different types of applications. In fact, we get a jump-start on this in the
next chapter, when we discuss web programming and RESTful Web services.

329

“The Web as I envisaged it, we have not seen it yet. The future is still so
much bigger than the past.” (Tim Berners-Lee, Inventor of the World Wide
Web)

9 Web Programming with the ICF

For many developers who didn’t grow up with the World Wide Web, the concepts
of web programming can seem complex and intimidating. Ironically, much of this
confusion stems from various abstractions and frameworks that are built on top
of the Web in an effort to make web development easier. Nevertheless, at its core,
the Web is a simple and ubiquitous platform that can be used to develop all kinds
of distributed applications.

Normally, whenever you hear people converse about web programming, they are
talking about developing applications for the human web; a web in which human
users access interactive applications via some kind of browser device. Examples
of such applications include websites built on Business Server Pages (BSP) or Web
Dynpro for ABAP (WDA) technologies, and so on. Although these types of applica-
tions make up the majority of the applications deployed on the Web, they aren’t its
only inhabitants. Recently, a new breed of service-based applications has emerged,
unlocking some of the Web’s untapped potential as a platform for developing
distributed applications. These services make up the programmable web; a web in
which software clients access and manipulate resources programmatically.

In this chapter, we show you how to use the Internet Communication Framework
(ICF) to interact with the programmable web. Along the way, we introduce you
to fundamental technologies of the Web such as HTTP. Understanding these core
concepts will help you untangle the mysteries of the Web and harness its power
in your own developments.

9.1 HTTP Overview

To program for the Web, you must first understand how to work with its primary
application-level protocol: the Hypertext Transfer Protocol (HTTP). HTTP defines the

330

Web Programming with the ICF9

rules that determine how clients and servers interact with one another over the
Internet. From a functional perspective, HTTP is a document-based protocol in which
HTTP clients and servers communicate by sending documents back and forth in a
request/reply fashion. Figure 9.1 illustrates this request/reply message chain for a
series of web clients submitting various requests to a web server.

Web Server

Web Client

Web Client

HTTP
Request

HTTP
Response

Web Client

HTTP
Request

HTTP
Request

HTTP
Response

HTTP
Response

Figure 9.1 HTTP Request/Response Cycle

For the most part, HTTP is a simple protocol to work with. HTTP clients submit
requests, and HTTP server programs process those requests. Everything that goes
on beyond the scope of the document exchange is left up to the application devel-
opers. In this section, we introduce you to some of the key components of HTTP.
When you understand these basic concepts, you’ll be ready to start developing
your own HTTP-based applications.

9.1.1 Working with the Uniform Interface

HTTP is designed to work with resources. Here, the term resource could be used to
describe a physical document such as a PDF file, a dynamically generated list of
stock quotes, or even some kind of service offering. Given the fact that HTTP sup-
ports such a broad range of resource types, you might expect there to be many
complex rules that define how to work with particular kinds of resources. How-
ever, in an effort to keep things simple, the designers of HTTP elected to define

331

HTTP Overview 9.1

interactions with resources at an abstract level, deferring complex resource-specific
details to server-side implementations. In HTTP parlance, resource interactions are
described using a predefined set of action verbs referred to as HTTP methods. Table
9.1 describes some of the more common methods defined in the HTTP specifica-
tion. You can find a comprehensive list of supported methods in the HTTP specifi-
cation available online at www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

HTTP Method Description

GET The GET method is used to retrieve a representation of the
resource identified by a given URL. Whenever you open your web
browser and navigate to a given URL, your browser is normally
executing a GET method behind the scenes to load the requested
page.

HEAD The HEAD method is almost identical to the GET method in that it
retrieves information about a resource identified by a given URL.
However, unlike the GET method, the HEAD method doesn’t return
an entity body. The HEAD method can be useful in situations where
you want to find out some basic information about a resource
without having to download it in its entirety.

PUT As the name implies, the PUT method puts (or stores) a resource
on the server and associates it with a particular URL.

POST The POST method can be used in two different ways:

In an ideal world, the POST method is used to create subordinate
resources underneath a given URL. For example, consider a blog
site. An author might create a blog entry at a particular URL using
the PUT method. As readers come along and comment on the blog
entry, they are creating subordinate resources underneath that
blog entry. At the time of submission, the user may or may not
know what the target URL should be. Therefore, the comment is
posted underneath the top-level blog resource.

The other, more nebulous use of POST involves the general passing
of data to some kind of data-handling process. In this latter case,
the developer often isn’t really addressing a particular type of
resource. Rather, he is simply using POST as a way of pushing some
data over the Web and letting some server program figure out
what to do with it.

DELETE The DELETE method is used to remove a resource located at a
given URL.

Table 9.1 Common HTTP Request Methods

332

Web Programming with the ICF9

9.1.2 Addressability and URLs

As we mentioned in Section 9.1.1, Working with the Uniform Interface, HTTP
server programs provide access to resources. However, to be able to access a resource,
we must be able to uniquely identify it. In the context of HTTP, resources are iden-
tified by URLs. Even if you’re not all that familiar with web programming, you’ve
probably encountered many URLs during the course of your routine web brows-
ing. For example, if you wanted to find out more about this book, you might open
up your web browser and type in the URL http://www.sap-press.com. From here,
you might click on hyperlinks to navigate around the website in search of particu-
lar bits of information. Each of these hyperlinks points to a particular resource. For
instance, the URL http://www.sap-press.com/product.cfm?product=H3000 refers to the
book Object-Oriented Programming with ABAP Objects (SAP PRESS, 2009).

http://evergreen.home:8000/sap/public/ping?sap-client=200
Host NameProtocol Resource PathPort Query String

Figure 9.2 Elements of URL Syntax

Figure 9.2 illustrates the basic elements of a URL. As you can see, a URL is made
up of the following components:

EE The first element in a URL is the protocol specifier. This element defines the pro-
tocol used to access the resource. In the case of HTTP, you’ll see either “http” or
“https” here, depending upon whether or not SSL encryption technology is
being used on top of HTTP.

EE Next, we need to identify the host name of the computer that is hosting the ser-
vice. This could be a local intranet host such as the evergreen.home host name
shown in Figure 9.2, or an Internet host such as www.bowdarkconsulting.com.
Technically speaking, you could also interpose an IP address here, but for the
purposes of our discussion, we’ll assume the use of host names.

EE In some cases, we may also need to specify the port for the HTTP service. Ports
are used to associate requests with a particular program that is executing on the
target host. Such designation might be necessary because a given host might be
running multiple networked applications simultaneously. However, most of
the time, there is only one instance of a web server running on a host, and it
binds to the default port 80. Therefore, most web browsers assume that this is
the port you want to access unless you instruct them otherwise by specifying a

333

HTTP Overview 9.1

port in the URL. For example, in Figure 9.2, we’ve specified port 8000 (the
default HTTP port for the ICM in the SAP NetWeaver AS ABAP).

EE Following the port specification is the path to the resource being accessed. The
form of this resource path is similar to the path you would use to navigate to a
file on your personal computer.

EE The last element depicted is the optional query string. A URL query string can be
made up of multiple parameters that provide additional scoping information
about a particular resource. For instance, in Figure 9.2, the URL query string
defines a parameter called “sap-client” that defines the client number of the
target SAP instance in which we want to access the resource.

When you break a URL down like this, you can see the various elements of HTTP
at work. Underneath the hood, HTTP uses TCP/IP as its transport protocol. Thus,
the host name and port information provide the underlying TCP/IP layer with the
information it needs to connect to the remote server host. After a connection is
established, an HTTP request message can be submitted. Here, the path and query
string information in the URL tell the web server how to route the incoming
request internally so that it can be processed by a particular handler module.

9.1.3 Understanding the HTTP Message Format

Throughout the course of this chapter, we’ve described the mechanics of HTTP
messaging using abstract terms such as “document” or “resource.” While such
terms are adequate for describing messaging semantics at a high level, it’s never-
theless helpful to see how HTTP messages are formatted from a technical perspec-
tive. For this reason, let’s look at the format of HTTP request and response mes-
sages at the nuts-and-bolts level.

Listing 9.1 contains the GET request generated by a specific web browser whenever
the URL http://www.sap-press.com is opened. The first line of this request informs the
web server that the client wants to access the root resource (i.e., the resource at path
“/”). This first line also specifies the version of HTTP being used (i.e., version 1.1).
Each of the entries underneath this initial line represent HTTP header fields. As you
can see, HTTP header fields provide additional information about the request such
as the types of documents the client accepts, the preferred language/encoding, and
so on. In addition to these standard HTTP header fields, you can also pass along
your own custom fields. Of course, whether or not they are actually used is up to
the target web server implementation.

334

Web Programming with the ICF9

GET / HTTP/1.1
Host: www.sap-press.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1...
Accept: text/html,application/xhtml+xml,application/xml...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Listing 9.1 An HTTP GET Request

If we had submitted a PUT or POST request, then our request message would have
also contained a request entity body. Request entity bodies are the documents that go
inside of an HTTP request envelope. Here, you can stick just about any kind of docu-
ment in the envelope. For example, if we were uploading a PDF document to a web
server, the contents of that PDF document would go in the request entity body.

The response to an HTTP GET request like the one demonstrated in Listing 9.1 is
shown in Listing 9.2. Here, the first line in the response contains an HTTP response
code that indicates whether or not the request was successful. Then, much like the
request message, the response message contains various response header fields
that tell you when the response was generated, the content type of the response
message, and so on. Underneath the response headers is the response entity body.
In this example, the response document is encoded in HTML. However, it could
have been an image file, a PDF file, and so on.

HTTP/1.1 200 OK
Connection: close
Date: Fri, 06 Nov 2009 02:49:07 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Content-Type: text/html; charset=UTF-8

<html>
<head>
 <title>SAP PRESS</title>
...

Listing 9.2 A Response to an HTTP GET Request

As you can see, after you peel back all of the layers, there’s nothing terribly com-
plex about web programming with HTTP from a technical perspective. Of course,
while dealing with HTTP messages at this level can be informative, it’s also quite

335

Introduction to the ICF 9.2

tedious. To be productive in your web development, you need a good library that
simplifies the way that you work with HTTP. Fortunately, ABAP developers have
access to such a library, and it’s called the ICF.

9.2 Introduction to the ICF

Prior to release 6.10, SAP NetWeaver AS ABAP was a fairly closed system in terms
of its accessibility to the outside world. In the self-contained environment that
was R/3, such limitations could be easily overcome with RFC-enabled connectors/
middleware. However, when the World Wide Web exploded onto the scene in the
late 1990s, SAP redesigned its application server to include native web support to
keep pace with the rest of the IT world. Thus, the Basis kernel was enhanced to
include a new component called the Internet Communication Manager (ICM) and
the SAP Web Application Server (SAP Web AS) ABAP was born (later replaced with
SAP NetWeaver AS ABAP).

AS ABAP

Dispatcher

ABAP Work
Processes

G
a

te
w

a
y

Dispatcher
Queue

ICM

R

Memory
Pipes

AS ABAP
Database

SAP GUI
Client

R

RFC
Client/Server

Web Client/Server

Figure 9.3 Architecture of the SAP NetWeaver AS ABAP from Release 6.10 Onward

Figure 9.3 shows the positioning of the ICM within an SAP NetWeaver AS ABAP
instance. As the name suggests, the ICM enables connectivity between SAP
NetWeaver AS ABAP and the outside world using Internet-based technologies such
as HTTP. This connectivity extends in both directions; in other words, the ICM can
be used to host a website or develop an HTTP client for the programmable web.

336

Web Programming with the ICF9

Though a detailed discussion about the architecture of the ICM is outside the scope
of this book, suffice it to say that it’s a very sophisticated piece of software that
provides robust support for web programming in ABAP.

As an ABAP developer, you don’t interact directly with the ICM. Instead, SAP has
provided an abstraction called the Internet Communication Framework (ICF) that
simplifies the way that you handle and submit HTTP requests. In the upcoming
sections, we dig deeper into the ICF and look at all of the services it provides.

9.3 Developing an HTTP Client Program

Now that you’re familiar with the mechanics of HTTP and have a basic understand-
ing of the positioning of the ICF, let’s try getting our hands dirty by developing an
HTTP client program that accesses a Web service. These days, there are many pub-
licly available Web services online to choose from, so rather than going through
some kind of contrived example, let’s take a look at a real Web service provided
by Yahoo! Inc. called the Geocoding Web Service. The Geocoding Web Service can be
used to find the specific latitude and longitude for a given address.1

RESTful Web Services

Throughout the course of this chapter, we’ve routinely referred to various types of HTTP
server programs as Web services. Based upon what you may have heard about Web ser-
vices, you might find our use of this term odd. This is no doubt due to the fact that there
is so much misinformation out there proclaiming that a Web service isn’t a Web service
unless it’s implemented using the SOAP protocol. However, technically speaking, a Web
service is defined by the W3C as “...a software system designed to support interoperable
machine-to-machine interaction over a network....” As you can see, this generic defini-
tion has very little to say about how the service itself is implemented.

Recently, many developers frustrated by the complexities of SOAP-based Web services
have begun to hearken back to basic principles outlined by the designers of the Web.
Generally speaking, these principles can be summed up in one phrase: Representational
State Transfer (or REST). The term REST was coined by Roy Fielding in a Ph.D. disserta-
tion entitled Architectural Styles and the Design of Network-Based Software Architec-
tures. Coincidentally, Roy Fielding also happened to be one of the major contributors to
the design of HTTP. Therefore, not surprisingly, many of the basic principles of REST align
very closely with the semantics of HTTP.

1 For more information about the Geocoding API, check out http://developer.yahoo.com/maps/
rest/V1/geocode.html. Here, you’ll need to register for a developer ID that is used to access the
service.

337

Developing an HTTP Client Program 9.3

From a conceptual perspective, “RESTful” Web services are resource-oriented. In other
words, RESTful Web services manipulate and provide access to resources. The semantics
for these operations are defined via the standard HTTP interface. For example, if you
want to obtain a representation of a resource, you submit an HTTP GET request to the
service. Similarly, if you want to create a new resource, you would submit an HTTP PUT
request to a specific URL with the representation of the resource in the HTTP request
entity body.

RESTful Web services are designed to be easy to use and can be a welcomed alternative
to SOAP-based Web services in certain situations. This is particularly the case in legacy
development environments that don’t provide a SOAP toolkit but do offer an HTTP
library. If you’re interested in learning more about RESTful Web services, I highly recom-
mend the book RESTful Web Services (O’Reilly, 2007).

9.3.1 Defining the Service Call

The Geocoding Web Service is a RESTful Web service. Therefore, to access the Geoc-
oding API, we need to construct an HTTP GET request to the URL http://local.
yahooapis.com/MapsService/V1/geocode. Additional scoping information about the
target address is provided in the form of URL query string parameters. Table 9.2
outlines the parameters that we’ll be using to conduct our search.

Query String
Parameter

Description

appid To access the Maps service, you must register as a developer with
Yahoo!. During this registration process, you’re provided with an
application ID that allows you to access their services.

street The street address you want to locate.

city The name of the city in which the address is located.

state The name of the state in which the address is located.

zip The postal code for the target address.

Table 9.2 URL Query String Parameters for the Geocoding Web Service

Before we set out to write any code, we need to formulate a plan. Our require-
ments for accessing the Geocoding API are as follows:

1. First, we need to construct a URL that includes all of the appropriate query
string parameters. These parameters need to be URL encoded so that there are

338

Web Programming with the ICF9

no illegal characters in the URL. We discuss URL encoding in more detail a little
bit later.

2. After the service URL is constructed, we use the ICF client API to connect to the
service and issue an HTTP GET request.

3. The results from the Geocoding Web Service are returned in the form of an
XML document. This document must be parsed to extract the latitude and lon-
gitude values.

Though most of these concepts should seem familiar by now, you still need to how
to implement these requirements in ABAP. So, without further adieu, let’s take a
look at the ICF client API.

9.3.2 Working with the ICF Client API

The ICF API, like many of the standard APIs we’ve considered thus far in this book,
is an object-oriented API based heavily on interfaces. The UML class diagram in
Figure 9.4 highlights the core classes and interfaces that you need to develop an
HTTP client program. As you might expect, the entry point into this API is the
IF_HTTP_CLIENT interface that represents an HTTP client instance. You can create
client instances using the static CREATE methods defined in the concrete CL_HTTP_
CLIENT class.

After a client instance is created, you can use it to build and submit an HTTP
request as follows:

1. First, to build the HTTP request message, you must use the REQUEST instance
attribute available in the HTTP client instance. The REQUEST attribute is defined
using the interface type IF_HTTP_REQUEST. The IF_HTTP_REQUEST interface pro-
vides methods that allow you to define the request method (i.e., GET or POST),
set HTTP header fields, and so on.

2. After the HTTP request message is constructed, you can submit it using the
SEND() method of the HTTP client instance.

3. If you look carefully at the signature of the SEND() method in interface IF_
HTTP_CLIENT, you’ll notice that it doesn’t provide any returning parameters.
Therefore, to retrieve the HTTP response message, you must call the RECEIVE()
method on the HTTP client instance.

339

Developing an HTTP Client Program 9.3

+ CREATE()
+ CREATE_BY_URL()
+ CREATE_BY_DESTINATION()

CL_HTTP_CLIENT

<<interface>>
IF_HTTP_ENTITY

+ GET_DATA()
+ GET_CDATA()
...

<<interface>>
IF_HTTP_REQUEST

+ SET_METHOD()
+ GET_AUTHORIZATION()
+ GET_FORM_DATA()
+ GET_RAW_MESSAGE()
+ GET_URI_PARAMETER()
+ GET_USER_AGENT()
+ SET_AUTHORIZATION()
+ COPY()
+ SET_VERSION()
+ GET_METHOD()

+ GET_STATUS()
+ GET_RAW_MESSAGE()
+ COPY()

<<interface>>
IF_HTTP_RESPONSE

<<interface>>
IF_HTTP_CLIENT

+ AUTHENTICATE()
+ APPEND_FIELD_URL()
+ SEND()
+ RECEIVE()
+ CLOSE()
+ GET_LAST_ERROR()

REQUEST
RESPONSE

Figure 9.4 UML Class Diagram for ICF Client API

4. After the RECEIVE() call completes, you can access the HTTP response message
via the RESPONSE attribute of the HTTP client instance, which is of interface type
IF_HTTP_RESPONSE.

5. Finally, when you’re finished with the HTTP client connection, you can close it
using the CLOSE() method of the HTTP client instance.

340

Web Programming with the ICF9

9.3.3 Putting It All Together

At this point, we’re ready to begin developing our HTTP client. The report program
ZICF_CLIENT_DEMO depicted in Listing 9.3 contains the bulk of the code required to
access the Yahoo! Geocoding Web Service. Here, we’ve implemented a local class
called LCL_MAP_SERVICE that defines a method called GET_POSITION() to perform
the search.

REPORT zicf_client_demo.
CLASS lcx_icf_exception DEFINITION
 INHERITING FROM cx_dynamic_check.
ENDCLASS.

CLASS lcl_map_service DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 main IMPORTING im_appid TYPE string
 im_street TYPE string
 im_city TYPE string
 im_state TYPE string
 im_zip TYPE string.

 METHODS:
 constructor IMPORTING im_appid TYPE string,
 get_position
 IMPORTING im_street TYPE string
 im_city TYPE string
 im_state TYPE string
 im_zip TYPE string
 EXPORTING ex_latitude TYPE string
 ex_longitude TYPE string
 RAISING lcx_icf_exception.

 PRIVATE SECTION.
 CONSTANTS:
 CO_SERVICE_HOST TYPE string
 VALUE 'local.yahooapis.com',
 CO_SERVICE_PATH TYPE string
 VALUE '/MapsService/V1/geocode'.

 DATA: application_id TYPE string.

 METHODS:
 build_uri

341

Developing an HTTP Client Program 9.3

 IMPORTING im_street TYPE string
 im_city TYPE string
 im_state TYPE string
 im_zip TYPE string
 RETURNING VALUE(re_uri) TYPE string,

 parse_results
 IMPORTING im_results TYPE string
 CHANGING ch_latitude TYPE string
 ch_longitude TYPE string
 RAISING cx_transformation_error.
ENDCLASS.

CLASS lcl_map_service IMPLEMENTATION.
 METHOD main.
* Method-Local Data Declarations:
 DATA: lo_map_service TYPE REF TO lcl_map_service,
 lo_icf_ex TYPE REF TO lcx_icf_exception,
 lv_latitude TYPE string,
 lv_longitude TYPE string.

* Process the ICF request:
 TRY.
* Create an instance of the map service:
 CREATE OBJECT lo_map_service
 EXPORTING
 im_appid = im_appid.

* Retrieve the position of the requested address:
 CALL METHOD lo_map_service->get_position
 EXPORTING
 im_street = im_street
 im_city = im_city
 im_state = im_state
 im_zip = im_zip
 IMPORTING
 ex_latitude = lv_latitude
 ex_longitude = lv_longitude.

* Display the results:
 WRITE: / 'Latitude is:', lv_latitude.
 WRITE: / 'Longitude is:', lv_longitude.
 CATCH lcx_icf_exception INTO lo_icf_ex.

342

Web Programming with the ICF9

 "Exception handling goes here...
 ENDTRY.
 ENDMETHOD. " METHOD main

 METHOD constructor.
 me->application_id = im_appid.
 ENDMETHOD. " METHOD constructor

 METHOD get_position.
* Method-Local Data Declarations:
 DATA: lo_http_client TYPE REF TO if_http_client,
 lv_uri TYPE string,
 lv_results TYPE string.

* Create an instance of the HTTP client:
 CALL METHOD cl_http_client=>create
 EXPORTING
 host = CO_SERVICE_HOST
 IMPORTING
 client = lo_http_client
 EXCEPTIONS
 argument_not_found = 1
 plugin_not_active = 2
 internal_error = 3
 others = 4.

 IF sy-subrc NE 0.
 RAISE EXCEPTION TYPE lcx_icf_exception.
 ENDIF.

* Select the HTTP GET method:
 lo_http_client->request->set_method(
 if_http_request=>co_request_method_get).

* Build and configure the request URI:
 lv_uri =
 build_uri(im_street = im_street
 im_city = im_city
 im_state = im_state
 im_zip = im_zip).

 cl_http_utility=>set_request_uri(
 request = lo_http_client->request

343

Developing an HTTP Client Program 9.3

 uri = lv_uri).

* Submit the request:
 CALL METHOD lo_http_client->send
 EXCEPTIONS
 http_communication_failure = 1
 http_invalid_state = 2
 http_processing_failed = 3
 http_invalid_timeout = 4
 others = 5.

 IF sy-subrc NE 0.
 RAISE EXCEPTION TYPE lcx_icf_exception.
 ENDIF.

* Receive the results:
 CALL METHOD lo_http_client->receive
 EXCEPTIONS
 http_communication_failure = 1
 http_invalid_state = 2
 http_processing_failed = 3
 others = 4.

 IF sy-subrc EQ 0.
 lv_results =
 lo_http_client->response->get_cdata().
 ELSE.
 RAISE EXCEPTION TYPE lcx_icf_exception.
 ENDIF.

* Parse the results:
 CALL METHOD parse_results
 EXPORTING
 im_results = lv_results
 CHANGING
 ch_latitude = ex_latitude
 ch_longitude = ex_longitude.

* Always remember to close the connection:
 lo_http_client->close().
 ENDMETHOD. " METHOD get_position

 METHOD build_uri.

344

Web Programming with the ICF9

 ...
 ENDMETHOD. " METHOD build_uri

 METHOD parse_results.
 ...
 ENDMETHOD. " METHOD parse_results
ENDCLASS.

PARAMETERS:
 p_appid TYPE string LOWER CASE,
 p_street TYPE string LOWER CASE,
 p_city TYPE string LOWER CASE,
 p_state TYPE string LOWER CASE,
 p_zip TYPE string LOWER CASE.

START-OF-SELECTION.
 CALL METHOD lcl_map_service=>main
 EXPORTING
 im_appid = p_appid
 im_street = p_street
 im_city = p_city
 im_state = p_state
 im_zip = p_zip.

Listing 9.3 An ICF Client Accessing the Yahoo! Geocoding Service

As you can see in Listing 9.3, the logic within the GET_POSITION() method is
closely aligned with the requirements set forth at the beginning of this section:

1. First, we create an instance of an ICF HTTP client using the static CREATE()
method of class CL_HTTP_CLIENT.

2. Next, we configure the HTTP request by specifying the HTTP method (GET in
this case) and the request URI. We’ll take a closer look at the URI generation
process in a moment.

3. After the request is built, we submit the request using the SEND() method of
the ICF client instance.

4. Assuming everything works okay, we extract the results using the RECEIVE()
method of the ICF client instance. Then, we forward the XML response to a
private helper method called PARSE_RESULTS(). This method uses the iXML
library described in Chapter 8, XML Processing in ABAP. For brevity’s sake,
we’ve omitted this implementation in the book. However, you can find a full
implementation of this method in the source code bundle available online.

345

Developing an HTTP Client Program 9.3

5. Finally, we close the HTTP connection using the CLOSE() method of the ICF cli-
ent instance.

For the most part, the code outlined in Listing 9.3 is pretty straightforward. How-
ever, one item that we’ve glossed over up until now is the generation of the
request URI. Listing 9.4 shows the implementation of the BUILD_URI() method.
Here, we’re essentially concatenating URL query string parameters together based
on the user’s input. However, one thing to note here is that certain query string
parameters have to be escaped. For example, URLs can’t contain spaces, so we can’t
pass along a query string parameter like this: “city=Fort Worth”. Instead, we must
pass the query string parameter as “city=Fort+Worth”. Rather than building this
logic from scratch, you can use the IF_HTTP_UTILITY~ESCAPE_URL() method of
class CL_HTTP_UTILITY to encode query string parameters.

METHOD build_uri.
* Method-Local Data Declarations:
 DATA: lv_street TYPE string,
 lv_city TYPE string.

 CONCATENATE CO_SERVICE_PATH
 '?appid='
 me->application_id
 INTO re_uri.

 IF NOT im_street IS INITIAL.
 lv_street =
 cl_http_utility=>if_http_utility~escape_url(
 unescaped = im_street).

 CONCATENATE re_uri '&street=' lv_street
 INTO re_uri.
 ENDIF.

 IF NOT im_city IS INITIAL.
 lv_city =
 cl_http_utility=>if_http_utility~escape_url(
 unescaped = im_city).

 CONCATENATE re_uri '&city=' lv_city
 INTO re_uri.
 ENDIF.

 IF NOT im_state IS INITIAL.

346

Web Programming with the ICF9

 CONCATENATE re_uri '&state=' im_state
 INTO re_uri.
 ENDIF.

 IF NOT im_zip IS INITIAL.
 CONCATENATE re_uri '&zip=' im_zip
 INTO re_uri.
 ENDIF.
ENDMETHOD.

Listing 9.4 Building the URL for the Yahoo! Geocoding Service

Figure 9.5 shows the selection screen for the ZICF_CLIENT_DEMO report. Here,
we’ve filled in the street address for the SAP office located in Irving, TX. Accord-
ing to Yahoo!, this office is located at the point (32.892617, -96.942624), as shown
in Figure 9.6.

Figure 9.5 Selection Screen for the ZICF_CLIENT_DEMO Report

Figure 9.6 Results of the ZICF_CLIENT_DEMO Report Program

9.4 Implementing ICF Handler Modules

In this section, we switch gears and show you how to use the ICF to implement
server-side scenarios. As a basis for our discussion, we explore the creation of a

347

Implementing ICF Handler Modules 9.4

RESTful Web service that can be used to look up flight information in the familiar
flight data model that comes out of the box with an SAP NetWeaver installation.

<<interface>>
IF_HTTP_ENTITY

+ GET_DATA()
+ GET_CDATA()
...

<<interface>>
IF_HTTP_EXTENSION

+ HANDLE_REQUEST (SERVER: IF_HTTP_SERVER)

FLOW_RC : I

<<interface>>
IF_HTTP_REQUEST

+ GET_FORM_FIELD()
+ GET_USER_AGENT()
...

<<interface>>
IF_HTTP_SERVER

REQUEST
RESPONSE

+ GET_LAST_ERROR()
+ SET_COMPRESSION()
...

<<Handler Class>>
ZCL_MY_HANDLER

+ SET_STATUS()
...

<<interface>>
IF_HTTP_RESPONSE

Figure 9.7 UML Class Diagram for ICF Server-Side API

9.4.1 Working with the ICF Server-Side API

Before we get started working on our ICF service implementation, it’s helpful to
take a look at the classes and interfaces that play a key role in the processing of an
HTTP request. The UML class diagram shown in Figure 9.7 depicts these classes
and interfaces, as well as their relationships to other components within the frame-
work. From a programming perspective, the entry point into this framework is the

348

Web Programming with the ICF9

IF_HTTP_EXTENSION interface. This interface defines the structure of handler classes
that plug into the ICF service framework. You can think of these handler classes
as user exits that you can configure within the ICF to handle requests to particu-
lar URLs. We’ll see how to configure these URLs in Section 9.4.2, Creating an ICF
Service Node.

As you can see in Figure 9.7, the IF_HTTP_EXTENSION interface defines a method
called HANDLE_REQUEST(). Handler classes that implement the IF_HTTP_EXTENSION
interface provide implementations of this method containing the logic necessary
to process an HTTP request. To fulfill this task, the ICF provides a parameter called
SERVER that contains an object reference that implements the IF_HTTP_SERVER
interface. The SERVER parameter provides access to the HTTP request and response
via its instance attributes REQUEST and RESPONSE, respectively. We’ll show you how
to use these attributes to process an HTTP request in Section 9.4.3, Developing an
ICF Handler Class.

9.4.2 Creating an ICF Service Node

As we mentioned in Section 9.4.1, Working with the ICF Server-Side API, ICF
handler classes handle HTTP requests issued to particular URLs. Of course, the ICF
isn’t clairvoyant; if you want a particular handler to process a given HTTP request,
you must define an ICF service node. ICF service nodes are maintained in Transac-
tion SICF.

Figure 9.8 shows the initial screen of Transaction SICF. As you can see, this initial
screen provides a selection screen that can be used to narrow a search to specific
ICF service nodes. For now, let’s take a look at the entire list so that you can see
how things are organized. To access the entire list of service nodes, click on the
Execute button.

Figure 9.9 shows the maintenance screen for ICF services in Transaction SICF.
Here, you can see that the service hierarchy is broken up into virtual hosts and
services:

EE Virtual hosts
A virtual host is a specialized node that gets bound to a particular HTTP port
defined within the ICM. Most of the time, you’ll work with the “default_host”
virtual host that gets set up out of the box during the installation process. This

349

Implementing ICF Handler Modules 9.4

virtual host is normally bound to the default HTTP port for the SAP NetWeaver
AS ABAP.2

Figure 9.8 Initial Screen of Transaction SICF

Figure 9.9 Maintaining ICF Service Nodes

2 The default HTTP port for the SAP NetWeaver AS ABAP is an 8000 series port where the last
two digits represent the system number of the SAP NetWeaver AS ABAP system.

350

Web Programming with the ICF9

EE Services
Underneath a virtual host is a series of services that can be nested arbitrarily
deep. However, keep in mind that each service level represents a path variable
in a URL, so you’ll want to be careful not to generate a URL that is too long and
unwieldy. As you can see in Figure 9.9, SAP provides a default service node
called “sap” that comes with many prebuilt services. Because SAP frequently
adds new services to this offering, it’s recommended that you don’t build your
custom services underneath this default namespace. Rather, if you have a cus-
tomer namespace, it’s preferable to build your services underneath your own
namespace to avoid collisions down the road.

Getting back to our RESTful service example, let’s take a look at the steps required
to configure a custom service node to process service requests:

1. First of all, we need to create a top-level service node underneath the default
virtual host. To do so, right-click on the “default_host” virtual host, and select
the New Sub-Element option in the popup context menu (see Figure 9.10).

Figure 9.10 Creating an ICF Service Node — Part 1

2. Before you’re allowed to create the service node, you’re prompted with a mes-
sage like the one shown in Figure 9.11. This message basically reiterates SAP’s
preference that top-level nodes be created underneath a customer namespace.

351

Implementing ICF Handler Modules 9.4

Figure 9.11 Namespace Warning Issued in Transaction SICF

3. After you confirm the namespace warning in Figure 9.11, you’re routed to the
Create a Service Element dialog box shown in Figure 9.12. Here, define the
service element using a customer namespace. You can press the (Enter) key to
confirm your selection.

Figure 9.12 Creating an ICF Service Node — Part 2

4. After the service element is created, you can edit it in the Create/Change a Ser-
vice screen shown in Figure 9.13. Here, you can enter a short text description
of the service and configure some basic service options.

5. Because external HTTP clients will be able to access the system through your
ICF service node, you must determine how these clients will authenticate them-
selves with your service. In most scenarios, clients will authenticate using basic
authentication. Basic authentication uses user name/password semantics to log a
client on to the system. For the purposes of our RESTful Web service example,
we want any user to be able to access the service. Therefore, on the Logon Data
tab shown in Figure 9.14, we’ve plugged in an anonymous service account
called ANONYMOUS. All incoming HTTP requests will be processed using this
account; allowing clients to access the service without having to authenticate
themselves beforehand.

352

Web Programming with the ICF9

Figure 9.13 Creating an ICF Service Node — Part 3

Figure 9.14 Creating an ICF Service Node — Part 4

353

Implementing ICF Handler Modules 9.4

6. At this point, we’re ready to save our service. To do so, click on the Save button
in the application toolbar. When you save your changes, you’re presented with
a warning like the one shown in Figure 9.15. This warning message indicates
that the service can’t yet be accessed because there is no handler class config-
ured for the service. At this level of the hierarchy, this is actually what we want.
We’ll define specific functionality farther down in the hierarchy.

Figure 9.15 Creating an ICF Service Node — Part 5

Figure 9.16 Creating an ICF Service Node — Part 6

7. As soon as the root service node is created, you can begin building custom servic-
es underneath your namespace. With the flight search service, we want to define
a hierarchy of “/search/flights.” The process of creating these lower-level nodes
is the same as the one used to create the root-level node. However, after we get
down to the “flights” node, we need to plug in a handler class. As you can see in
Figure 9.16, we’ve created a class called /BOWDK/CL_FLIGHTSEARCH_HANDLER for

354

Web Programming with the ICF9

this purpose. This class implements the IF_HTTP_EXTENSION interface described
in Section 9.4.1, Working with the ICF Server-Side API. We’ll see how this class
is implemented in Section 9.4.3, Developing an ICF Handler Class.

8. Finally, after the “flights” service node has been saved, we’re ready to activate
our changes. To do so, right-click on the “flights” node, and select the Acti-
vate Service menu option in the popup context menu (see Figure 9.17). This
step is important because ICF service nodes can only be accessed if they are
activated.

Figure 9.17 Creating an ICF Service Node — Part 7

9.4.3 Developing an ICF Handler Class

At this point, we’re finally ready to implement our ICF handler class. Listing 9.5
shows the implementation of the IF_HTTP_EXTENSION~HANDLE_REQUEST() method

355

Implementing ICF Handler Modules 9.4

for class /BOWDK/CL_FLIGHTSEARCH_HANDLER. The basic logic involved in imple-
menting this handler method is quite simple:

1. First, we extract the relevant flight request parameters from the URL query string.
Here, we can use the GET_FORM_FIELD() method of the IF_HTTP_REQUEST inter-
face (accessible via the SERVER->REQUEST attribute) to access these variables.

2. Next, we look up the requested flight details using the standard BAPI_FLIGHT_
GETDETAIL BAPI function.

3. Before we pass back the results to the HTTP client, we need to encode them in
a format that is web friendly. These days, that format is usually XML. So, we
need to include a step in there to transform the BAPI results into XML. For this,
we use the Simple Transformation language, as introduced in Chapter 8, XML
Processing in ABAP. You can see how the /BOWDK/ST_FLIGHT_DETAILS transfor-
mation program is implemented by looking at the source code bundle available
online.

4. Finally, we need to fill out the HTTP response code and entity body with the
results of the query. For the purposes of this simple example, we haven’t imple-
mented much in the way of error handling. However, if this were a real ser-
vice, we would want to be sure and pass back detailed error information in
our response message. For a list of standard HTTP response codes, check out
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

METHOD if_http_extension~handle_request.
* Method-Local Data Declarations:
 DATA: lv_airline_id TYPE s_carr_id,
 lv_flight_no TYPE s_conn_id,
 lv_flight_date TYPE s_date,
 ls_flight_info TYPE bapisfldat,
 lv_flight_xml TYPE string,
 lo_xml_ex
 TYPE REF TO cx_transformation_error,
 lv_fault_msg TYPE string.

* Extract the search parameters out of the
* HTTP request:
 lv_airline_id =
 server->request->get_form_field(
 name = 'AIRLINE').

356

Web Programming with the ICF9

 lv_flight_no =
 server->request->get_form_field(
 name = 'NUMBER').

 lv_flight_date =
 server->request->get_form_field(
 name = 'DATE').

* Use a standard BAPI to lookup the flight details:
 CALL FUNCTION 'BAPI_FLIGHT_GETDETAIL'
 EXPORTING
 airlineid = lv_airline_id
 connectionid = lv_flight_no
 flightdate = lv_flight_date
 IMPORTING
 flight_data = ls_flight_info.

* Transmit the results back to the client:
 TRY.
* Transform the results into XML using
* Simple Transformation:
 CALL TRANSFORMATION /bowdk/st_flight_details
 SOURCE flight_details = ls_flight_info
 RESULT XML lv_flight_xml.

* Set the HTTP status code:
 if_http_extension~flow_rc =
 if_http_extension=>co_flow_ok.
 CALL METHOD server->response->set_status
 EXPORTING
 code = 200
 reason = 'OK'.

* Output the results in the HTTP response
* entity body:
 CALL METHOD server->response->if_http_entity~set_cdata
 EXPORTING
 data = lv_flight_xml.
 CATCH cx_transformation_error INTO lo_xml_ex.
 lv_fault_msg = lo_xml_ex->get_text().

357

Implementing ICF Handler Modules 9.4

* Set the HTTP status code:
 if_http_extension~flow_rc =
 if_http_extension=>co_flow_error.
 CALL METHOD server->response->set_status
 EXPORTING
 code = 500
 reason = lv_fault_msg.
 ENDTRY.
ENDMETHOD.

Listing 9.5 Implementing an ICF Handler Class

Looking at the code in Listing 9.5, you can see that the basic logic required to
process an HTTP request isn’t all that complicated. For the most part, you simply
look at the HTTP request, determine a course of action, and then generate an HTTP
response. Such simplicity gives rise to more advanced frameworks such as BSPs or
Web Dynpro for ABAP. Indeed, if you look at the service node at “/sap/bc/bsp,”
you can see that the BSP runtime environment is driven by a handler class called
CL_HTTP_EXT_BSP (see Figure 9.18). Similarly, the Web Dynpro runtime environ-
ment is defined by a handler class called CL_WDR_MAIN_TASK.

Figure 9.18 Handler List for BSP Runtime Environment

358

Web Programming with the ICF9

If you look carefully at the Handler List tab in Figure 9.18, you can see that it’s
possible to plug in multiple handler classes for a particular service node. This func-
tionality makes it possible to process HTTP requests using the Chain of Command
design pattern. However, for this to work, individual handler classes need a way
of responding to the ICF so that it can know whether or not it should proceed with
processing a given request. This information is captured in the form of a return
code attribute called FLOW_RC that is defined in the IF_HTTP_EXTENSION interface.
Though it’s not strictly required, it’s a good practice to always fill in this value so
that the framework knows whether or not your handler method was successful.

9.4.4 Testing the ICF Service Node

After you’ve finished developing your ICF handler class, you have several options
for testing it. Perhaps the easiest way to test your code is to set an external break-
point in the IF_HTTP_EXTENSION~HANDLE_REQUEST() method so that you can trace
through the program flow in the ABAP Debugger. You can set external breakpoints
in your method code by clicking on the Set/Delete External Breakpoint button in
the Class Builder (see Figure 9.19). After the breakpoint is set, the ABAP Debug-
ger fires up whenever you access the service via its configured URL. For my local
server, the URL to access this service looks like this: http://evergreen.home:8000/
bowdk/search/flights?airline=AA&number=0017&date=20081022. Of course, this URL
varies based on the underlying host name/port of your SAP NetWeaver AS ABAP
instance.

Unfortunately, anonymous services like the flight search service we’ve created in
this section are difficult to debug. This is because the service executes using the
“ANONYMOUS” user account rather than your own personal user account. For
these types of services, you have a couple of options when it comes to testing:

EE Because the flight search is based on a simple HTTP GET request, you can actu-
ally test the service directly in your local web browser by browsing to the target
URL. Figure 9.20 shows the XML generated by the service in the Mozilla Fire-
fox browser. Here, you can view the generated XML source by selecting the
View • Page Source menu option.

359

Implementing ICF Handler Modules 9.4

Figure 9.19 Debugging ICF Handler Classes

Figure 9.20 Viewing the XML Source in Mozilla Firefox

EE The other alternative is to create a simple REST client program that accesses the
service directly. This client could be written in ABAP (like the one demon-
strated in Section 9.3, Developing an HTTP Client Program), or in some other
language. Figure 9.21 shows an example of a client written using the Adobe
Flex framework and deployed using the Adobe AIR runtime environment. The

360

Web Programming with the ICF9

source code for this client along with an executable version are available in the
source code bundle for this book available online.

Figure 9.21 An Adobe AIR REST Client

9.5 Summary

This chapter demonstrated some of the core capabilities made available with the
introduction of the ICF. As you learned, these features make it possible to directly
tap into the power of the Web. However, most of the time, you’ll prefer to harness
this functionality at a higher level of abstraction. In the next chapter, we show you
how the Web Service Framework allows you to develop SOAP-based Web services
without having to worry about lower-level HTTP transport issues.

361

When the cupboard is bare, a chef must get creative and come up with new
recipes using the ingredients on hand. In today’s tough economic climate,
companies are looking at ways of applying these same principles to cut
costs. In this chapter, we show you how Web services can be used to get the
most out of existing solutions and easily tap into new ones.

10 Web Services

In Chapter 9, Web Programming with the ICF, we showed you how to build dis-
tributed applications using web-based technologies. These distributed applications
were implemented in two parts: a client program and a server program. As you
may recall, we frequently referred to the server-side portion of these applications
as services. We even introduced you to a particular type of service architecture
when we developed some examples based on the RESTful Web service model.

Our emphasis on a service-based design hasn’t been by accident. These days, it’s
becoming increasingly important for companies to leverage their existing IT infra-
structures toward the development of component-based composite applications.
This architectural approach is referred to as a service-oriented architecture (SOA).
Web services represent the building blocks of SOA, enabling all kinds of disparate
applications both inside and outside of the enterprise to participate in collabora-
tive processes.

In this chapter, we show you how to work with the Web Service Framework pro-
vided with SAP NetWeaver AS ABAP. As you’ll soon see, this framework makes it
possible to both consume and expose Web services from an ABAP context. After
you learn how to work with this framework, you can use it to transform your exist-
ing SAP infrastructure into an SOA.

10.1 Web Service Overview

Generally speaking, the meaning of the term Web service is pretty open ended. For
instance, the W3C defines a Web service as “...a software system designed to sup-
port interoperable machine-to-machine interaction over a network....” However,

362

Web Services10

most of the time, whenever people talk about Web services, they are talking about
Web services based on SOAP.

In this section, we introduce you to SOAP and some of the surrounding technolo-
gies that are used to interact with SOAP-based Web services. However, before
we do so, it may be useful to look at another definition of Web services given by
Michael Papazoglou in his book Web Services: Principles and Technology (Pearson
Education Limited, 2008): “A Web service is a self-describing, self-contained soft-
ware module available via a network, such as the Internet, which completes tasks,
solves problems, or conducts transactions on behalf of a user or application.” As
we progress through our discussion on Web services, this definition should help
you understand the positioning of specific tools within the Web services technol-
ogy stack.

10.1.1 Introduction to SOAP

When you get past all of the hype, Web services are about facilitating inter-process
communication (IPC). As such, despite the fact that they have enabled interoper-
ability on an unprecedented scale, they aren’t all that different conceptually from
other IPC technologies such as a remote procedure call (RPC), remote function
call (RFC), or remote method invocation (RMI). In fact, much of the modern Web
service infrastructure has its roots in these legacy technologies. This is particularly
the case when it comes to SOAP.

When the SOAP recommendation was originally submitted to the W3C, the term
“SOAP” was an acronym for simple object access protocol. While this acronym has
been removed in subsequent releases of the specification, it still gives us a feel for
the positioning of SOAP as a type of distributed object communication protocol. In
other words, it’s a messaging protocol that enables Web service clients and Web
service providers to communicate with one another in a structured manner over
a network such as the Internet.

One of the things that sets SOAP apart from previous messaging protocols is that
it uses XML as its message format. The use of an open technology such as XML
facilitates language/platform independence, enabling all kinds of disparate appli-
cations to communicate with one another. Perhaps more importantly, the ubiq-
uitous nature of XML means that SOAP clients and service providers don’t have
a symmetrical requirement like legacy applications did using technologies such as
the Common Object Request Broker Architecture (or CORBA). Here, both ends of the
communication would require the use of a common library that defines a mapping

363

Web Service Overview 10.1

between a generic interface description language (IDL) and native data types. There
is no such requirement with SOAP.

Figure 10.1 shows the structure of a SOAP message. As you can see, the root ele-
ment of a SOAP message is the <Envelope> element. Within a SOAP envelope, you
have an optional <Header> element and a mandatory <Body> element; everything
else is left up to the application. For example, in Figure 10.1, the SOAP body con-
tains a representation of a call to a method named CreatePurchaseOrder. How-
ever, instead of arranging the data in the form of a method call, we could have just
as easily passed the purchase order data in document-style format similar to the
one used in Intermediate Documents (IDocs).

<soap: Envelope
 xmlns: soap=” http://www.w3.org/2003/05/soap-envelope”>
 <! - -
 The SOAP header contains optional application-specif ic
 information such as authentication tokens, etc.

- ->
 <soap: Header>

 </ soap: Header>

 <! - -
 The SOAP body contains the actual message in RPC or
 document style format

- ->
 <soap: Body>
 <Create Purchase Order>
 <POHeader>
 <PONumber>1234567890</ PONumber>
 <CreationDate>2010-01-13</ CreationDate>
 </ POHeader>
 <POItems>
 <POItem>
 <POItem>00010</ POItem>
 <Product>345623421</ Product>
 </ POItem>
 </ POItems>
 </ CreatePurchaseOrder>
 </ soap: Body>
</ soap: Envelope>

Figure 10.1 Structure of a SOAP Message

Normally, SOAP uses HTTP as its transport layer protocol. However, it’s technically
possible to use other types of transport protocols, such as SMTP or FTP instead of
HTTP. When HTTP is used as the transport layer protocol, the SOAP envelope is

364

Web Services10

embedded as the request entity body of an HTTP POST request and submitted to
a service provider. The target service provider then receives and decodes the mes-
sage so that it can be processed by some kind of backend application module. For
synchronous Web services, the results of the operation are returned in the entity
body of the HTTP response message. This message flow is depicted in Figure 10.2.
We’ll see examples of this flow in Sections 10.2, Providing Web Services, and 10.3,
Consuming Web Services.

Web Service
Client

Send SOAP
Request

Web Service
Listener

Receive
SOAP

Request

Transmitted as
an HTTP POST

request

SOAP Runtime
Environment

Parse &
Dispatch
Request

Application
Layer

Process
Request

Encode
Response
Message

Send HTTP
Response
Message

Receive
SOAP

Response

Figure 10.2 Transmitting a SOAP Request over HTTP

365

Web Service Overview 10.1

10.1.2 Describing SOAP-Based Services with WSDL

As you learned in Section 10.1.1, Introduction to SOAP, SOAP doesn’t have much
to say about the functional characteristics of a Web service. Although this freedom
gives service providers tremendous flexibility when it comes to designing Web ser-
vices, it also presents a gap in the sense that clients need some form of documen-
tation to consume a particular Web service. For example, how does a client know
what the format of a SOAP request/response should look like for a given service?
While such information could be captured in written form in an interface design
document, it’s advantageous to describe the interface in a standard, machine-read-
able format that can be used by Web service clients to generate proxy objects. We’ll
have a chance to look at proxy objects in more detail in Section 10.3, Consuming
Web Services. For now, suffice it to say that proxies make it much easier for clients
to consume Web services.

SOAP Web services are described using an XML-based service description language
called the Web Services Description Language (WSDL). A WSDL document consists of
various elements that define the operations supported by a Web service, the mes-
sages that are exchanged, and so on. As you might expect, the type declarations for
the messages are defined using the XML Schema language introduced in Chapter
8, XML Processing in ABAP.

The information captured in a WSDL document makes a Web service self-describ-
ing. In other words, Web service clients can use the contents of a WSDL document
to figure out how to build SOAP request messages, determine where messages
should be sent, and so on.

Although you’ll be interacting with WSDL quite a bit throughout the course of
your Web service development, you’ll rarely (if ever) have to develop the WSDL
documents yourself. Instead, Web services toolkits like the ABAP Web Service
Framework will take care of generating the WSDL for you. We’ll see an example
of a generated WSDL document in Section 10.2, Providing Web Services.

10.1.3 Web Service Discovery with UDDI

Developing Web services is a necessary first step toward implementing an SOA.
However, your development efforts are wasted if no one within the organization
uses these Web services in their own developments. Of course, you could try to
advertise the existence of these services, but the effectiveness of your campaign
is subject to the attention spans of developers that are often narrowly focused on
other tasks.

366

Web Services10

A more effective way to get the word out about Web services is to publish them
in a publicly available service registry. That way, developers can come and browse
for services on demand. The Universal Description, Discovery, and Integration (UDDI)
specification defines a standard for implementing these service registries.

Figure 10.3 shows how a UDDI service registry unites a Web service consumer
with a Web service provider. As you can see, the description and discovery process
takes place in three steps:

1. First, a Web service provider creates a Web service and publishes the WSDL to
the UDDI service registry.

2. Next, a Web service consumer comes along looking for a particular kind of Web
service and browses through the UDDI registry looking for a match. After a
match is found, the consumer can then download the provider’s WSDL file and
generate a Web service proxy.

3. Finally, at runtime, the Web service proxy is used to broker SOAP-based com-
munications between the Web service client and the target Web service.

UDDI
Service Registry

Web Service
Consumer

Web Service
ProviderSOAP

WSDLWSDL

Figure 10.3 Web Service Description and Discovery Cycle

Beginning with NetWeaver 7.1, SAP has delivered a UDDI-compliant registry called
Enterprise Services Repository (ES Repository) and Services Registry. Because we’re more
interested in developing Web services from an ABAP perspective, we won’t con-
sider the ES Repository further here. However, if you’re interested in learning
more about the ES Repository, check out www.sdn.sap.com/irj/sdn/nw-esr.

10.2 Providing Web Services

The ABAP Web Service Framework makes it possible to design Web service provid-
ers using two different approaches:

367

Providing Web Services 10.2

EE Inside-out
In this scenario, preexisting ABAP objects (namely RFC-enabled function mod-
ules) are used as the basis for generating the service provider.

EE Outside-in
In this scenario, a service interface defined in the ES Repository is used to gen-
erate the skeleton of the service provider. The actual implementation code must
be developed after the fact.

For the purposes of this book, we concentrate our focus on the inside-out approach.
This approach makes it possible to Web service-enable preexisting RFC functions,
BAPIs, and so on. It also makes it easy to develop new Web services from scratch
based on custom RFC-enabled function modules. However, if you have an instance
of SAP NetWeaver Process Integration (SAP NetWeaver PI) in your landscape, then
you may want to take a look at all of the value-added features it can provide in an
outside-in-based scenario.

10.2.1 Creating Service Definitions

To develop a Web service provider in the ABAP Web Service Framework, you must
create a service definition. Service definitions can be created in the ABAP Work-
bench with the help of the Service Wizard. To demonstrate how to create service
definitions using the Service Wizard, let’s look at how you would Web service-
enable a simple BAPI such as BAPI_FLIGHT_GETDETAIL:

1. You can start the Service Wizard inside the Object Navigator (Transaction SE80)
by right-clicking a package and selecting the Create • Enterprise Service con-
text menu option (see Figure 10.4).

2. The first step in the Service Wizard gives you an opportunity to determine the
type of object you want to create. To create service providers, you select the
Service Provider radio button (see Figure 10.5).

3. Next, you need to determine the approach that you want to take to develop the
service provider. Because we’re defining a Web service around the BAPI mod-
ule BAPI_FLIGHT_GETDETAIL, we’ve selected the Existing ABAP Objects (Inside
Out) radio button here (see Figure 10.6).

368

Web Services10

Figure 10.4 Invoking the Service Wizard in Transaction SE80

Figure 10.5 Creating a Service Definition — Part 1

369

Providing Web Services 10.2

Figure 10.6 Creating a Service Definition — Part 2

4. After you determine the approach you want to take to generate your service
provider, provide a name and short text description for your service definition
(see Figure 10.7). You also need to select the appropriate Endpoint Type (i.e.,
Function Module, etc.).

Figure 10.7 Creating a Service Definition — Part 3

370

Web Services10

5. The next screen allows you to select the name of the function module you want
to use to implement your endpoint. If you look closely at Figure 10.8, you can
see that we’ve also selected the Mapping der Namen checkbox. While this text
field apparently didn’t make it into the English translation, its meaning is fairly
straightforward. Essentially, its selection determines how you want to map the
names of function module parameters into the WSDL interface. In most cases,
you’ll want to at least start with name mapping. Then, if you’re unhappy with
the derived ABAP-centric names, you can always change them later.

Figure 10.8 Creating a Service Definition — Part 4

6. The screen shown in Figure 10.9 allows you to configure some basic runtime
settings for the service, such as the SOAP application type and security profile.
These default settings are only meant to serve as a baseline and can be cus-
tomized and overridden at runtime as necessary. However, to do so, you must
deploy the service to the runtime environment by clicking on the Deploy Ser-
vice checkbox shown in Figure 10.9.

7. Before you can complete the service definition, you must assign it to a package
and transport request (see Figure 10.10).

371

Providing Web Services 10.2

Figure 10.9 Creating a Service Definition — Part 5

Figure 10.10 Creating a Service Definition — Part 6

8. Finally, you can complete the service definition by clicking on the Complete
button shown in Figure 10.11. At this point, the Service Wizard generates the
service provider object.

372

Web Services10

Figure 10.11 Creating a Service Definition — Part 7

Figure 10.12 shows the completed service definition in the Service Definition edi-
tor integrated into the Object Navigator. In this editor perspective, you have the
option of changing the names of parameters, defining default values for parame-
ters, and so on. You can find out more information about these features in the SAP
Library help for ABAP Workbench Tools available online at http://help.sap.com.

Figure 10.12 Editing Service Definitions in Transaction SE80

373

Providing Web Services 10.2

10.2.2 Configuring Runtime Settings

As you learned in Section 10.2.1, Creating Service Definitions, service definitions
are initially configured with some basic default runtime values by the Service Wiz-
ard whenever they are initially created. In most cases, you want to override these
default settings in non-test environments. For this task, you must use Transac-
tion SOAMANAGER. Unlike most ABAP Workbench transactions, this transaction
opens up a browser window with a Web Dynpro for ABAP based editor. To main-
tain runtime settings for a service definition, open Transaction SOAMANAGER,
and perform the following steps:

1. On the initial SOA Management screen, select the Business Administration tab,
and click on the link entitled Web Service Administration (see Figure 10.13).

Figure 10.13 Managing Web Services in Transaction SOAMANAGER

2. This brings you to a screen in which you can search for your service definition
(see Figure 10.14). After you’ve found your service definition, you can click on
the Apply Selection button to open the Service Configuration editor.

3. When you open a service definition in the Service Configuration editor, you’re
initially routed to an overview screen that provides some basic information
about the service. Here, you can open the WSDL document for the service
by clicking on the Open WSDL Document for Selected Binding link (see Fig-
ure 10.15). Figure 10.16 shows the generated WSDL document in an Internet
Explorer browser window. For a text-based representation of the WSDL, you
can select the View • Source menu option in Internet Explorer and save the
XML file to a directory on your local machine.

374

Web Services10

Figure 10.14 Selecting the Appropriate Service Definition

Figure 10.15 Viewing the Details of a Service Definition

Figure 10.16 Viewing the WSDL Document for the Service Definition

375

Providing Web Services 10.2

4. In addition to viewing basic settings, you can also edit an endpoint on the Con-
figurations tab. To do so, simply select the service and click on the Edit button
(see Figure 10.17).

Figure 10.17 Editing an Endpoint — Part 1

5. This brings you to an editor screen in which you can configure settings related
to transport guarantee, authentication, and so on (see Figure 10.18). When
you’re finished with your configuration tasks, you can confirm your changes by
clicking on the Save button.

Figure 10.18 Editing an Endpoint — Part 2

As you can see in Figure 10.18, there are quite a few settings that you can config-
ure for your service endpoints. For simple service scenarios, you probably won’t
have to worry about most of these settings. However, it’s always nice to know
they’re there if you need them. And when you do, you can consult the SAP Library
help documentation available online at http://help.sap.com to find out more infor-
mation about how specific settings work.

376

Web Services10

10.2.3 Testing Service Providers

Before you publish your Web service for others to use, it’s always a good idea
to test it out and make sure that the underlying service provider is working as it
should be. While you could write a simple ABAP test program to test the service,
it’s much easier to test the Web service using a Web service test tool. If you have
access to a SAP NetWeaver AS Java stack somewhere in your landscape, then you
can use the Web Service Navigator tool for this task. For information about how to
configure and use the Web Service Navigator tool, consult the SAP Library docu-
mentation at http://help.sap.com.

In addition to the Web Service Navigator tool, there are many other Web service
test tools available in the market today; many of which are free. One popular free-
ware test tool is called soapUI, and it’s available for download at www.soapui.org.

Figure 10.19 Creating a Project in soapUI

Let’s take a look at how to test our flight detail Web service using soapUI. After
you have soapUI installed on your local machine, you can test this service by per-
forming the following steps:

1. First, open up the soapUI tool, and create a new project using the File • New
soapUI Project menu option.

2. In the resultant dialog box, you can browse to the WSDL file that you want to
test with in the Initial WSDL/WADL input field. For example, in Figure 10.19,
we’ve selected the WSDL file that was generated for the ZSD_FLIGHT_GET_DETAIL
service definition in Transaction SOAMANAGER. Click on the OK button to
load the WSDL file.

377

Providing Web Services 10.2

3. To test the Web service, you must build a SOAP request. You can do this by
clicking on the SOAP request in the Projects navigator (see Figure 10.20). Here,
as you can see, you can edit the SOAP request XML with the parameters you
want to test with.

Figure 10.20 Building a SOAP Request in soapUI

4. Because the SOAP runtime component of the ABAP Web Service Framework
is implemented in the form of an ICF service, some form of authentication is
required to test the Web service. Normally, most services use basic authentica-
tion, which can be configured on the Aut tab in the request editor (see Figure
10.21).

Figure 10.21 Configuring Basic Authentication in soapUI

378

Web Services10

5. To invoke the Web service, you simply click on the green triangle button in the
toolbar above the SOAP request editor (see Figure 10.22).

Figure 10.22 Executing a Test in soapUI

6. Assuming everything is working correctly, you should be able to see a SOAP
response message in the response message pane shown in Figure 10.23.

Figure 10.23 Viewing the Test Results in soapUI

10.3 Consuming Web Services

Now that you know how to provide Web services in ABAP, let’s take a look at how
you consume a Web service using the ABAP Web Service Framework. This process

379

Consuming Web Services 10.3

begins with the development of a service consumer in the ABAP Workbench. After
this service consumer is created, you can invoke its defined Web service methods
just as you would call a normal method in an ABAP Objects class.

In this section, we’ll demonstrate how to use ABAP service consumers to access
Web services. As a basis for our discussion, we’ll consider how to create a service
consumer that can be used to invoke the flight search service developed in Section
10.2, Providing Web Services. Then, after the service consumer is created, we’ll
show you how to use it to access the flight search service in an ABAP program.

10.3.1 Creating a Service Consumer

To create a service consumer, we must once again call upon the Service Wizard
built into the Object Navigator. Here, you must perform the following steps:

1. First, open up the Object Navigator, and select the appropriate package in
which you want to create the Web service consumer object. Then, right-click
the package name, and select the Create • Enterprise Service context menu
option (see Figure 10.24).

Figure 10.24 Accessing the Service Wizard in the Object Navigator

380

Web Services10

2. In the Object Type screen shown in Figure 10.25, select the Service Consumer
radio button.

Figure 10.25 Creating a Web Service Consumer — Part 1

Figure 10.26 Creating a Web Service Consumer — Part 2

381

Consuming Web Services 10.3

3. The next screen, shown in Figure 10.26, allows you to choose the source of the
WSDL file that is being used to generate the service consumer. Here, you can
select a WSDL file in the ES Repository, browse to a WSDL file via some exter-
nal URL, or upload a WSDL file on your local machine.

4. Depending on the type of WSDL source that you select, you’re next prompted
with an input mask that allows you to specify the source of the WSDL file (see
Figure 10.27).

Figure 10.27 Creating a Web Service Consumer — Part 3

5. Before you can complete the definition of the service consumer, you must
assign it to a package and a transport request. You must also define a prefix that
is used by the Service Wizard to generate all of the relevant ABAP Dictionary
objects, and so on needed to model the service. As you can see in Figure 10.28,
we’ve simply selected the normal customer namespace prefix Z for the pur-
poses of this example.

382

Web Services10

Figure 10.28 Creating a Web Service Consumer — Part 4

6. After you’re satisfied with all of your selections, you can click on the Complete
button to generate the service consumer (see Figure 10.29).

Figure 10.29 Creating a Web Service Consumer — Part 5

383

Consuming Web Services 10.3

What If the Service Wizard Looks Different on My System?

Web service standards, like a lot of standards for cutting-edge technologies, are a mov-
ing target. So, while SAP has been bolstering its support for Web services over the past
few years, new developments have come along that have impacted how service con-
sumers are configured. Consequently, depending on the support pack level of the SAP
NetWeaver system you’re working on, you may find that your Service Wizard screens
differ from those depicted throughout the course of this section. In this case, we recom-
mend that you refer to the SAP Library help for your particular SAP NetWeaver release
online at http://help.sap.com.

Assuming all goes well with the proxy generation process, you should see the
resultant service consumer in the service consumer perspective of the Object Navi-
gator (see Figure 10.30). Here, you can see the name of the generated ABAP proxy
class, its defined operations, and so on.

Figure 10.30 Editing Service Consumers in the Object Navigator

10.3.2 Defining a Logical Port

The service consumer that we created in Section 10.3.1, Creating a Service Con-
sumer, is a design-time repository object. In other words, while it implements the
interface of a particular Web service, it doesn’t maintain information internally
about concrete service details, such as the target endpoint URL, authentication
parameters, and so on. This is by design because such details are configuration-time

384

Web Services10

parameters that usually need to be adjusted in different environments. Otherwise,
you could run into situations where code in production calls a Web service hosted
in a development environment, or vice versa.

Within the context of the ABAP Web Service Framework, the configuration-time
details of a service consumer object are defined externally in the form of a logical
port. In the past, logical ports were maintained in Transaction LPCONFIG. How-
ever, beginning with support pack 12 of SAP NetWeaver 7.0, logical ports can now
be maintained in Transaction SOAMANAGER.

The steps required to create a logical port in Transaction SOAMANAGER are as
follows:

1. First, you must open the transaction and select the Web Service Administration
link on the Business Administration tab (see Figure 10.13). Here, search for
your service consumer using the Consumer Proxy list option shown in Figure
10.31. After you locate your service consumer, select the entry, and click on the
Apply Selection button.

Figure 10.31 Locating a Service Consumer in SOAMANAGER

2. After the service consumer is selected, the details of the proxy definition are
displayed in the lower portion of the screen. To create a new logical port, select
the Configurations tab for your proxy definition, and then click on the Create
Logical Port button (see Figure 10.32).

385

Consuming Web Services 10.3

Figure 10.32 Creating a Logical Port in SOAMANAGER — Part 1

3. In the SOA Management popup screen shown in Figure 10.33, you must define
a new service name and logical port name. You also have the option of deter-
mining whether or not the logical port is the default logical port within the
SOAP runtime environment. While most environments only have a single logi-
cal port definition for a given service, there are certain scenarios where you
might have more than one port for a given service consumer.

Figure 10.33 Creating a Logical Port in SOAMANAGER — Part 2

4. In addition to the general configuration settings shown in Figure 10.33, you also
need to select the configuration type for the logical port. Most of the time, you
should select WSDL Based Communication here because the WSDL document
should contain most of the proper settings already. However, if you prefer, you
can choose Manual Configuration to define the logical port settings manually.
In Figure 10.33, we’ve selected the WSDL Based Configuration option. When

386

Web Services10

this option is selected, you must also specify a location for the WSDL file so that
the SOA manager can load the relevant details into context.

5. When you’re satisfied with your selections, you can click on the Apply Settings
button to create the logical port.

6. After a logical port has been created, you can edit it in the SOA manager con-
figuration screen shown in Figure 10.34. When all of the relevant settings have
been configured, be sure to save the logical port by clicking on the Save button
(see Figure 10.34).

Figure 10.34 Editing a Logical Port in SOAMANAGER

10.3.3 Using a Service Consumer in an ABAP Program

After a service consumer is created, it’s very easy to use it to invoke Web services
in an ABAP program. For the most part, a Web service call using a service con-
sumer looks like any normal call to a method in an ABAP Objects class. Of course,
there is a lot of framework code behind the scenes required to actually transmit the
call, but fortunately all of this is abstracted from a client’s perspective.

387

Consuming Web Services 10.3

Let’s take a look at the code required to invoke the flight search service using the
ZCO_ZSD_FLIGHT_GET_DETAIL service consumer created in Section 10.3.1, Creating
a Service Consumer. To demonstrate this, we’ve created a simple report program
called ZWSCLIENT_DEMO. Before we look at this code in detail, let’s examine how the
ABAP Web Service Framework tools can be used to simplify the service call.

In Figure 10.35, you can see that we have a subroutine called GET_FLIGHT_DETAILS
that we want to use to invoke the Web service. Rather than coding the service call
from hand, you can simply place your cursor on the line in which you want to call
the service and drag-and-drop the service consumer object from the Repository
Browser on the left side of the screen onto the ABAP editor. Figure 10.36 shows
the generated template code provided by the ABAP Web Service Framework. You
can then tweak this template code to adhere to project naming conventions, and
so on.

Figure 10.35 Creating a Service Call in the ABAP Workbench — Part 1

388

Web Services10

Figure 10.36 Creating a Service Call in the ABAP Workbench — Part 2

Looking at the generated template code in Figure 10.36, you can see that it refers
to an ABAP Objects class called ZCO_ZSD_FLIGHT_GET_DETAIL. This class is an ABAP
proxy class that is generated behind the scenes whenever a service consumer is
created. You can see the name of the generated class in the Proxy group box on the
Properties tab of the Service Consumer editor perspective in the ABAP Workbench
(see Figure 10.37).

Figure 10.37 Accessing the ABAP Proxy Class of a Service Consumer

389

Consuming Web Services 10.3

If you double-click on the proxy class name, the ABAP Workbench opens the class
in the Class Editor (see Figure 10.38). Here, you can see that the Service Wizard has
defined methods based on the WSDL operation details, as well as some framework
methods that support more advanced Web service scenarios involving reliable
messaging, transaction processing, and so on.

Figure 10.38 Viewing an ABAP Proxy Class in the Class Editor

Listing 10.1 contains the completed code for the ZWSCLIENT_DEMO report program.
This simple report provides a basic selection screen in which users can search for
a particular flight connection. As you can see in the GET_FLIGHT_DETAILS subrou-
tine, if you didn’t know that class ZCO_ZSD_FLIGHT_GET_DETAIL was an ABAP proxy
class, you probably couldn’t tell that a Web service was being called when method
FLIGHT_GETDETAIL() was invoked. This is of course by design, demonstrating the
power of the ABAP Web Service Framework.

REPORT zwsclient_demo.
CLASS lcl_flight_service DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 get_flight_details
 IMPORTING im_airline_id TYPE s_carr_id
 im_connection_id TYPE s_conn_id
 im_flight_date TYPE s_date.
ENDCLASS.

CLASS lcl_flight_service IMPLEMENTATION.
 METHOD get_flight_details.
* Method-Local Data Declarations:
 DATA: lo_ws_proxy TYPE REF TO
 zco_zsd_flight_get_detail,
 ls_input TYPE

390

Web Services10

 zflight_getdetail,
 ls_output TYPE
 zflight_getdetail_response.

* Lookup the requested flight details:
 TRY.
* Create an instance of the Web service proxy:
 CREATE OBJECT lo_ws_proxy.

* Fill in the required parameters:
 ls_input-airlineid = im_airline_id.
 ls_input-connectionid = im_connection_id.
 ls_input-flightdate = im_flight_date.

* Execute the Web service method:
 CALL METHOD lo_ws_proxy->flight_getdetail
 EXPORTING
 input = ls_input
 IMPORTING
 output = ls_output.

* Display the results:
 WRITE: / 'Flight', ls_output-flight_data-connectid,
 'from', ls_output-flight_data-airportfr,
 'to', ls_output-flight_data-airportto,
 'departing on',
 ls_output-flight_data-flightdate
 MM/DD/YYYY.
 CATCH cx_root.
 "Exception handling goes here...
 ENDTRY.
 ENDMETHOD. " METHOD get_flight_details
ENDCLASS.

PARAMETERS:
 p_carr TYPE s_carr_id, "Carrier
 p_conn TYPE s_conn_id, "Flight Number
 p_date TYPE s_date. "Flight Date

START-OF-SELECTION.
 CALL METHOD lcl_flight_service=>get_flight_details
 EXPORTING
 im_airline_id = p_carr

391

Summary 10.5

 im_connection_id = p_conn
 im_flight_date = p_date.

Listing 10.1 Report Program ZWSCLIENT_DEMO

10.4 Next Steps

While we hope that this whirlwind introduction to Web services helped answer a
few questions, we recognize that it probably raised quite a few more. Realistically,
the topic of Web services is so broad that we could write several books and still
not cover everything. If you’re looking for a more comprehensive description of
Web service technology, we highly recommend Web Services: Principles and Technol-
ogy (Pearson Education Limited, 2008).

There is also a wealth of Web service information available on the SAP Developer
Network at www.sdn.sap.com. In particular, Thomas Jung has provided an excellent
video blog that demonstrates some of the more advanced features of the ABAP
Web Service Framework, such as reliable messaging and new features available
in SAP NetWeaver 7.1. You can access this video blog at www.sdn.sap.com/irj/scn/
weblogs?blog=/pub/wlg/8086.

10.5 Summary

This chapter provided a whirlwind introduction to SOA and SOAP-based Web
services. For a more detailed treatment of these topics, we highly recommend
Developing Enterprise Services for SAP (SAP PRESS, 2009). In addition to comprehen-
sive coverage of the Web Service Framework, this book also provides invaluable
knowledge related to SOA modeling and design. In the next chapter, we look at
another popular application hosted on the Internet: email.

393

When working in a kitchen, instant communication among chefs is key
to the success of a meal. For people working out of the same kitchen, this
communication is simply verbal; but for other industries, more technologi-
cal solutions are required. In this chapter, we show you how to send and
receive email using ABAP.

11 Email Programming

Normally, whenever we talk about interface programming in ABAP, we’re talking
about application-to-application (A2A) or business-to-business (B2B) integration
scenarios in which two systems exchange structured messages (i.e., IDocs, SOAP
messages, etc.) that are machine-readable. However, we often need to communi-
cate with end users both inside and outside of the system. For instance, if an error
occurs within a critical process, someone needs to be notified immediately. Or, if
sales orders are received over the Internet, customers need to be notified of mile-
stones in the order fulfillment process. Most users prefer to receive these kinds of
messages via email.

In this chapter, we show you how to send and receive email messages using ABAP.
Along the way, we introduce you to the Business Communication Services (BCS) API
that provides a common interface for transmitting messages via SMTP, fax, SMS,
and so on. We conclude our discussion by showing you how email technology can
be used to implement some other types of interesting messaging scenarios.

11.1 Introduction to BCS

Beginning with release 6.10 of SAP NetWeaver AS ABAP, SAP unified the way that
you send and receive email messages within a new object-oriented framework
called Business Communication Services (BCS). Figure 11.1 shows a UML diagram that
highlights the core classes and interfaces that make up the BCS framework.

394

Email Programming11

<<persistent>>
CL_BCS

+ CREATE_PERSISTENT()
+ SET_DOCUMENT()
+ SET_SENDER()
+ ADD_RECIPIENT()
+ SET_STATUS_ATTRIBUTES()
+ SET_SEND_IMMEDIATELY()
+ SEND()

<<interface>>
IF_SENDER_BCS

+ ADDRESS_TYPE()
+ ADDRESS_STRING()
+ ADDRESS_NAME()

<<interface>>
IF_RECIPIENT_BCS

+ RESOLVE()

<<interface>>
IF_DOCUMENT_BCS

+ GET_SUBJECT()
+ GET_BODY_PART_COUNT()
+ GET_BODY_PART_CONTENT()
+ AS_MIME_DOCUMENT()
+ GET_SENSITIVITY()
+ GET_IMPORTANCE()
+ GET_BODY_PART_ATTRIBUTES()

<<persistent>>
CL_DOCUMENT_BCS

+ CREATE_DOCUMENT()
+ CREATE_FROM_MIME()
+ CREATE_FROM_TEXT()
+ ADD_ATTACHMENT()

<<interface>>
IF_INBOUND_EXIT_BCS

+ CREATE_INSTANCE()
+ PROCESS_INBOUND()

Used for
Outbound
Processing

Used for
Inbound

Processing

Figure 11.1 UML Class Diagram for the BCS Framework

One of the beauties of the BCS framework is that it makes heavy use of interfaces.
For instance, the SET_SENDER() method of class CL_BCS expects a sender object that
implements the IF_SENDER_BCS interface. Out of the box, SAP provides many con-
crete classes that implement the IF_SENDER_BCS interface to make it easy to create
a sender using an SAP user name, business partner, or even an address in Business
Address Services (BAS). SAP provides default implementations for the other inter-
faces depicted in Figure 11.1 as well. Of course, you can also extend the frame-
work further by developing your own concrete subclasses.

In the upcoming sections, we show you how to use the BCS framework to send
and receive email messages. If you’re interested in trying out the example code
as you go along, you’ll need to make sure that the relevant configuration settings
have been made to the SMTP plug-in in your local SAP NetWeaver AS ABAP sys-
tem. You can find a step-by-step guide for configuring these settings in SAP Note
455140.

11.2 Sending Email Messages

To understand how to use BCS to send an email message, it’s useful to think about
its positioning in relation to your preferred email client (i.e., Microsoft Outlook,

395

Sending Email Messages 11.2

etc.). Whenever you compose a new email message in your client, you’re pre-
sented with an editor that allows you to fill in the following information:

EE The subject of the message

EE A list of recipients who should receive the message

EE The body of the message (in various formats)

EE An optional set of attachment files

After you fill in all of the pertinent information, you simply click a button to trans-
mit the message. This process works so well that we rarely stop to think about
what happens after we click the button. However, from a programmer’s perspec-
tive, we’re very interested in what happens behind the scenes.

11.2.1 Understanding the Simple Mail Transfer Protocol

The FMC block diagram shown in Figure 11.2 illustrates the messaging compo-
nents associated with the transmission of an email message. Whenever you trans-
mit a message using an email client, the client program forwards the message to
the mail server configured for your email account using SMTP. SMTP stands for
Simple Mail Transfer Protocol, which is a simple text-based protocol used to negoti-
ate the exchange of email messages over an IP network such as the Internet. As you
can see in Figure 11.2, SMTP isn’t only used to transmit the email message from
the sender client to its mail server but also to forward messages on to the recipi-
ent’s mail server. After the message is received by the recipient’s mail server, the
recipient’s mail client can retrieve the message using the POP (Post Office Protocol)
or IMAP (Internet Message Access Protocol).

Sender Mail Server
Sender Client

Mail Client

R

User Inboxes

SMTP Service

R

SMTP

POP Service

Receiver Mail Server

User Inboxes

SMTP Service

Message
Queue

Message
Queue

POP Service

R

SMTP

Receiver Client

Mail Client

R

R

POP

Figure 11.2 FMC Block Diagram of Email Messaging Components

396

Email Programming11

The asynchronous nature of email messaging implies that each of the messaging
components depicted in Figure 11.2 must implement a persistence layer to ensure
that messages are delivered reliably. For instance, if the sender mail server (i.e.,
your corporate Microsoft Exchange server, etc.) is unavailable, then your mail cli-
ent should store outgoing messages in an outbox so that they can be redelivered
when the sender mail server comes back online. Similarly, if the recipient’s mail
server is unavailable, the sender mail server must hang onto the message and try
to redeliver it later.

From a programming perspective, the BCS framework takes care of integrating
with the SMTP provider (via the SMTP plug-in and SAPconnect) and also provides
the persistence layer that all mail clients must implement. If you look carefully
at the UML class diagram shown previously in Figure 11.1, you can see that the
CL_BCS class used to encapsulate a send request is actually a persistent class.

By taking care of the low-level messaging details, BCS lets you focus your efforts
on composing messages. In the next few sections, we show you how to use the
API to transmit various types of messages.

11.2.2 Sending a Plain Text Message

The process flow for creating an email message using the BCS API consists of the
following steps:

1. First, you create an instance of the CL_BCS persistent class to encapsulate the
message being sent using the CREATE_PERSISTENT() factory method.

Figure 11.3 Implementing Classes of Interface IF_SENDER_BCS

397

Sending Email Messages 11.2

2. Next, you can (optionally) specify the user that will be sending the message
using the SET_SENDER() method of class CL_BCS. Figure 11.3 shows the SAP
standard classes that implement the IF_SENDER_BCS interface. These classes
allow you to build a sender instance using an SAP user, business partner, and
so on.

3. To add recipients to the message, you call the ADD_RECIPIENT() method of class
CL_BCS. This method expects to receive an instance of a class that implements
the IF_RECIPIENT_BCS interface. Figure 11.4 shows the SAP standard classes
that implement the IF_RECIPIENT_BCS interface. These classes can generate
recipients using SAP user accounts, organizational model constructs, and so on.
Also, the CL_DISTRIBUTIONLIST_BCS class can be used to add an entire distribu-
tion list to the recipient list. You can maintain distribution lists in the Business
Workplace (Transaction SBWP) by clicking on the Distribution Lists button (see
Figure 11.5).

Figure 11.4 Implementing Classes of the Interface IF_RECIPIENT_BCS

Figure 11.5 Maintaining Distribution Lists in the Business Workplace

398

Email Programming11

4. After the sender/receivers are set, you need to build the message body. The
message body is represented by an instance of a class that implements the IF_
DOCUMENT_BCS interface. Figure 11.6 shows the SAP standard classes that imple-
ment the IF_DOCUMENT_BCS interface. Most of the time, you’ll work with the
CL_DOCUMENT_BCS class to construct the message body. After the document has
been created, it can be attached to the message by calling the SET_DOCUMENT()
method of class CL_BCS.

Figure 11.6 Implementing Classes of Interface IF_DOCUMENT_BCS

5. Finally, after the message is built, it can be submitted using the SEND() method
of class CL_BCS. Here, you must follow up the call to SEND() with a COMMIT WORK
statement so that the Persistence Service will enqueue the message in the queue
of messages waiting to be submitted via SAPconnect. Alternatively, you can
manage the transaction using the Transaction Service described in Chapter 7,
Transactional Programming.

To demonstrate how all this works, let’s consider an example program. The ZMAIL_
DEMO1 report program shown in Listing 11.1 defines a local class called LCL_MAIL_
CLIENT that encapsulates some of the intricacies of the BCS framework. We’ll look
at the API methods of this class in a moment.

REPORT zmail_demo1.
CLASS lcl_mail_client DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 send_test_message.

 METHODS:
 create_message RAISING cx_bcs,
 add_recipient IMPORTING im_email_address
 TYPE ad_smtpadr

399

Sending Email Messages 11.2

 RAISING cx_bcs,
 build_payload RAISING cx_bcs,
 send_message RAISING cx_bcs.

 PRIVATE SECTION.
 DATA: message TYPE REF TO cl_bcs.
ENDCLASS.

CLASS lcl_mail_client IMPLEMENTATION.
 METHOD send_test_message.
 "Method-Local Data Declarations:
 DATA: lo_mail_client TYPE REF TO lcl_mail_client.

 "Send an email message:
 TRY.
 "Create a new message:
 CREATE OBJECT lo_mail_client.
 lo_mail_client->create_message().

 "Add a recipient to the message:
 lo_mail_client->add_recipient(
 'james.wood@bowdarkconsulting.com').

 "Build the message payload:
 lo_mail_client->build_payload().

 "Send the message:
 lo_mail_client->send_message().
 CATCH cx_bcs.
 "Exception handling goes here...
 ENDTRY.
 ENDMETHOD. " METHOD send_test_message

 METHOD create_message.
 "Method-Local Data Declarations:
 DATA: lo_sender TYPE REF TO if_sender_bcs.

 "Create a new send request:
 message = cl_bcs=>create_persistent().

 "Create the sender using the current user:
 lo_sender =
 cl_sapuser_bcs=>create(sy-uname).

400

Email Programming11

 message->set_sender(lo_sender).
 ENDMETHOD. " METHOD create_message

 METHOD add_recipient.
 "Method-Local Data Declarations:
 DATA: lo_recipient TYPE REF TO if_recipient_bcs.

 "Create a recipient using the provided email address:
 CALL METHOD cl_cam_address_bcs=>create_internet_address
 EXPORTING
 i_address_string = im_email_address
 RECEIVING
 result = lo_recipient.

 "Add the recipient to the message:
 CALL METHOD message->add_recipient
 EXPORTING
 i_recipient = lo_recipient.
 ENDMETHOD. " METHOD add_recipient

 METHOD build_payload.
 "Method-Local Data Declarations:
 DATA: lo_document TYPE REF TO if_document_bcs,
 lt_payload TYPE bcsy_text.
 FIELD-SYMBOLS:
 <lfs_line> LIKE LINE OF lt_payload.

 "Create a simple text document payload:
 APPEND INITIAL LINE TO lt_payload ASSIGNING <lfs_line>.
 <lfs_line>-line = 'Test Message from BCS'.

 lo_document =
 cl_document_bcs=>create_from_text(
 i_text = lt_payload
 i_subject = 'BCS Test Message').

 "Append the document to the message body:
 message->set_document(lo_document).
 ENDMETHOD. " METHOD build_payload

401

Sending Email Messages 11.2

 METHOD send_message.
 "Method-Local Data Declarations:
 DATA: lv_req_status TYPE bcs_rqst VALUE 'N',
 lv_status_mail TYPE bcs_stml VALUE 'N'.

 "Turn off status messages for the request:
 CALL METHOD message->set_status_attributes
 EXPORTING
 i_requested_status = lv_req_status
 i_status_mail = lv_status_mail.

 "Toggle the flag to send the message immediately:
 message->set_send_immediately('X').

 "Send the message:
 CALL METHOD message->send().

 "Have to commit the changes to enqueue the message:
 COMMIT WORK.
 ENDMETHOD. " METHOD send_message
ENDCLASS.

START-OF-SELECTION.
 "Send a simple test message:
 lcl_mail_client=>send_test_message().

Listing 11.1 Sending a Plain Text Email Message Using BCS

Now that you’ve had a chance to peruse the code, let’s consider the functionality
of each API method in turn:

1. In the CREATE_MESSAGE() method, we create an instance of the CL_BCS class
and then assign a sender to it via the SET_SENDER() method. Here, notice that
we’re using the CL_SAPUSER_BCS class to create a sender object using the user
account that executed the program. Behind the scenes, this class looks at the
user master record of the provided user to determine that user’s email address.
A user’s email address is maintained on the Address tab in Transaction SU01
(see Figure 11.7).

402

Email Programming11

Figure 11.7 Deriving the Sender Email Address

2. The ADD_RECIPIENT() method enables you to add a recipient to the message
using an Internet email address. Here, we’re deriving the IF_RECIPIENT_BCS
instance using the CREATE_INTERNET_ADDRESS() factory method of class CL_CAM_
ADDRESS_BCS. The derived recipient is added to the CL_BCS instance via its ADD_
RECIPIENT() method.

3. Because we’re only interested in building a plain-text email message, we’re
using the CREATE_FROM_TEXT() factory method of class CL_DOCUMENT_BCS to cre-
ate the message body in the BUILD_PAYLOAD() method. We can then append the
body to the message by calling the SET_DOCUMENT() method of class CL_BCS.

4. As you would expect, the SEND_MESSAGE() method invokes the SEND() method
of class CL_BCS to transmit the message. However, before doing so, it configures
a couple of settings on the message. First, it calls the SET_STATUS_ATTRIBUTES()
method to notify the BCS framework that we aren’t interested in receiving status
messages. Secondly, it calls the SET_SEND_IMMEDIATELY() method to inform the
BCS framework that the message should be sent immediately. Otherwise, the
message is dispatched via a batch send job configured for SAPconnect. Finally,
after the SEND() method is called, we must execute the COMMIT WORK statement
to cause the message to be persisted to the outbound message queue.

403

Sending Email Messages 11.2

11.2.3 Working with Attachments

Simple email messages like the one generated in Section 11.2.2, Sending a Plain
Text Message, are often sufficient for sending out status notifications, and so on.
However, there are times when you may want to send more than just plain text
email. For example, you might want to attach an interactive PDF form, a Micro-
soft Excel spreadsheet, and so on. Let’s now explore how to create attachments
to messages.

On the surface, the process of attaching a document to a message is remarkably
straightforward: You simply call the ADD_ATTACHMENT() method of class CL_DOCU-
MENT_BCS. Of course, there’s slightly more work involved in preparing the attach-
ment itself. To demonstrate how all of these pieces fit together, let’s consider the
ZMAIL_DEMO2 report program contained in Listing 11.2.

REPORT zmail_demo2.
CLASS lcl_mail_client DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 send_test_message
 IMPORTING im_attach_file TYPE string,
 get_frontend_file CHANGING ch_file TYPE string.

 METHODS:
 create_message RAISING cx_bcs,
 add_recipient IMPORTING im_email_address
 TYPE ad_smtpadr
 RAISING cx_bcs,
 build_payload IMPORTING im_attach_file TYPE string
 RAISING cx_bcs,
 send_message RAISING cx_bcs.

 PRIVATE SECTION.
 DATA: message TYPE REF TO cl_bcs,
 document TYPE REF TO cl_document_bcs.

 METHODS: add_attachment IMPORTING im_attach_file
 TYPE string
 RAISING cx_bcs.
ENDCLASS.

CLASS lcl_mail_client IMPLEMENTATION.
 METHOD send_test_message.

404

Email Programming11

 "Method-Local Data Declarations:
 DATA: lo_mail_client TYPE REF TO lcl_mail_client.

 "Send an email message:
 TRY.
 "Create a new message:
 CREATE OBJECT lo_mail_client.
 lo_mail_client->create_message().

 "Add a recipient to the message:
 lo_mail_client->add_recipient(
 'james.wood@bowdarkconsulting.com').

 "Build the message payload:
 lo_mail_client->build_payload(im_attach_file).

 "Send the message:
 lo_mail_client->send_message().
 CATCH cx_bcs.
 "Exception handling goes here...
 ENDTRY.
 ENDMETHOD. " METHOD send_test_message

 METHOD get_frontend_file.
 ...
 ENDMETHOD. " METHOD get_frontend_file

 METHOD create_message.
 ...
 ENDMETHOD. " METHOD create_message

 METHOD add_recipient.
 ...
 ENDMETHOD. " METHOD add_recipient

 METHOD build_payload.
 "Method-Local Data Declarations:
 DATA: lt_payload TYPE bcsy_text.
 FIELD-SYMBOLS:
 <lfs_line> LIKE LINE OF lt_payload.

 "Create a simple text document payload:
 APPEND INITIAL LINE TO lt_payload ASSIGNING <lfs_line>.

405

Sending Email Messages 11.2

 <lfs_line>-line =
 'Test Message from BCS with Attachment'.

 document =
 cl_document_bcs=>create_from_text(
 i_text = lt_payload
 i_subject = 'BCS Test Message with Attachment').

 "Add an attachment to the document:
 add_attachment(im_attach_file).

 "Append the document to the message body:
 message->set_document(document).
 ENDMETHOD. " METHOD build_payload

 METHOD add_attachment.
 "Method-Local Data Declarations:
 DATA: lt_attach_raw TYPE TABLE OF x255,
 lv_attach_raw TYPE xstring,
 lv_attach_len TYPE i,
 lt_attachment TYPE solix_tab,
 lo_attach_path TYPE REF TO /bowdk/cl_string,
 lv_file_index TYPE i,
 lo_attach_file TYPE REF TO /bowdk/cl_string,
 lt_file_tokens TYPE string_table,
 lv_attach_size TYPE so_obj_len,
 lv_attach_type TYPE so_obj_tp,
 lv_attach_subject TYPE so_obj_des.

 "Upload the attachment from the frontend:
 CALL METHOD cl_gui_frontend_services=>gui_upload
 EXPORTING
 filetype = 'BIN'
 filename = im_attach_file
 IMPORTING
 filelength = lv_attach_len
 CHANGING
 data_tab = lt_attach_raw
 EXCEPTIONS
 file_open_error = 1
 file_read_error = 2
 no_batch = 3
 gui_refuse_filetransfer = 4

406

Email Programming11

 invalid_type = 5
 no_authority = 6
 unknown_error = 7
 bad_data_format = 8
 header_not_allowed = 9
 separator_not_allowed = 10
 header_too_long = 11
 unknown_dp_error = 12
 access_denied = 13
 dp_out_of_memory = 14
 disk_full = 15
 dp_timeout = 16
 not_supported_by_gui = 17
 error_no_gui = 18
 others = 19.

 "Check the results:
 IF sy-subrc EQ 0.
 "Convert the raw attachment payload into a
 "binary string:
 CALL FUNCTION 'SCMS_BINARY_TO_XSTRING'
 EXPORTING
 input_length = lv_attach_len
 IMPORTING
 buffer = lv_attach_raw
 TABLES
 binary_tab = lt_attach_raw
 EXCEPTIONS
 failed = 1
 others = 2.

 "Then, convert the binary string into SOLIX form:
 lt_attachment =
 cl_document_bcs=>xstring_to_solix(lv_attach_raw).
 ELSE.
 RAISE EXCEPTION TYPE cx_document_bcs.
 ENDIF.

 "Extract metadata about the attachment file:
 CREATE OBJECT lo_attach_path
 EXPORTING
 im_value = im_attach_file.

407

Sending Email Messages 11.2

 lv_file_index =
 lo_attach_path->get_last_index_of('\') + 1.

 lo_attach_file =
 lo_attach_path->substring(
 im_start_index = lv_file_index).

 lt_file_tokens = lo_attach_file->split_at('.').
 READ TABLE lt_file_tokens INTO lv_attach_subject
 INDEX 1.
 READ TABLE lt_file_tokens INTO lv_attach_type
 INDEX 2.

 lv_attach_size = xstrlen(lv_attach_raw).

 "Add the attachment to the document:
 CALL METHOD document->add_attachment
 EXPORTING
 i_attachment_type = lv_attach_type
 i_attachment_subject = lv_attach_subject
 i_attachment_size = lv_attach_size
 i_attachment_language = sy-langu
 i_att_content_hex = lt_attachment.
 ENDMETHOD. " METHOD add_attachment

 METHOD send_message.
 ...
 ENDMETHOD. " METHOD send_message
ENDCLASS.

PARAMETERS:
 p_attach TYPE string LOWER CASE OBLIGATORY.

AT SELECTION-SCREEN ON VALUE-REQUEST FOR p_attach.
 "Show a dialog box to allow the user to select a file:
 CALL METHOD lcl_mail_client=>get_frontend_file
 CHANGING
 ch_file = p_attach.

START-OF-SELECTION.
 "Create a test message with an attachment:
 lcl_mail_client=>send_test_message(p_attach).

Listing 11.2 Sending an Email with an Attachment

408

Email Programming11

The ZMAIL_DEMO2 program shown in Listing 11.2 extends the ZMAIL_DEMO1 program
from Listing 11.1 to support the creation of an attachment. To keep things simple,
we’re simply uploading an attachment file from the SAP GUI frontend using class
CL_GUI_FRONTEND_SERVICES as demonstrated in Chapter 5, Working with Files. For
brevity’s sake, we’ve also omitted the implementations of the CREATE_MESSAGE(),
ADD_RECIPIENT(), and SEND_MESSAGE() methods because they are identical to the
ones shown in Listing 11.1.

To see how to build an attachment, let’s look closely at the implementation of the
ADD_ATTACHMENT() method:

1. This method begins by uploading the attachment file selected in the selection
screen parameter P_ATTACH in binary mode. To work with attachments using
BCS, we must convert this binary payload into a format compatible with the
SAPoffice document API. Because class CL_DOCUMENT_BCS provides a convenient
static method called XSTRING_TO_SOLIX() for this purpose, we’re converting
the raw binary payload into an XSTRING using the standard function SCMS_BINA-
RY_TO_XSTRING. Then, we call XSTRING_TO_SOLIX() to generate the attachment
payload.

2. In addition to the payload itself, we’re also deriving various other metadata
about the attachment, including its type, size, and name. For this task, we’re
using the /BOWDK/CL_STRING class introduced in Chapter 1, String Processing
Techniques.

3. Finally, after all of the attachment metadata has been compiled, we can add
the attachment to the CL_DOCUMENT_BCS instance using its ADD_ATTACHMENT()
instance method. From this point forward, we can proceed with sending the
email message as we usually do.

Technically speaking, there aren’t any hard-and-fast rules that specify how many
attachments you can add to a message. However, you’ll want to be careful about
how large your attachment payload becomes — especially if you’re sending the
message out over the Internet. Therefore, it’s always a good idea to monitor the
size of attachments when generating email messages.

11.2.4 Formatting Email Messages with HTML

Plain text email messages like the one generated in Section 11.2.2, Sending a Plain
Text Message, are usually sufficient for implementing email messaging require-
ments within a corporate setting. However, if you have a requirement for sending

409

Sending Email Messages 11.2

a message to an external customer or vendor, then you may need to compose a
message with a little more style. In these situations, you can use HTML to create
rich text email messages.

Technically speaking, an HTML email is nothing more than a plain text email,
except that it contains markup in addition to the plain text content. Given this,
you could build the HTML content on the fly in an internal table. However, this
process is tedious and error prone. Fortunately, there’s a better option.

Most modern email clients support the XHTML standard. XHTML(Extensible
Hypertext Markup Language) is an XML-based markup language that extends
HTML to provide more structure around Web-based content. As you learned in
Chapter 8, XML Processing in ABAP, the Simple Transformation language is highly
adept at interspersing the values of ABAP data objects with static XML content to
generate an XML document. Consequently, Simple Transformation is a natural fit
for composing HTML-based email messages.

To simplify the process of generating HTML-based email messages, we’ve created
a factory class named /BOWDK/CL_HTML_DOCUMENT_BCS that defines a method called
CREATE_HTML_DOCUMENT(). Figure 11.8 shows the signature of this method. As you
can see, this method accepts three importing parameters:

EE The IM_TRANSFORMATION parameter refers to the name of the Simple Transfor-
mation program that we want to use to generate the HTML payload.

EE The IM_PARAMETERS parameter can contain a data object of any type that sup-
plies the transformation program with the parameters it needs to dynamically
build an XHTML document. Here, you might pass in a structure containing
information that you want to merge into a static XHTML form, for example.

EE The IM_SUBJECT parameter passes the subject of the document being created.
This value shows up in the subject line of the email message in the recipient’s
mail client.

Figure 11.8 Signature of Method CREATE_HTML_DOCUMENT()

410

Email Programming11

Listing 11.3 shows the implementation of the CREATE_HTML_DOCUMENT() method.
As you can see, the CALL TRANSFORMATION statement does most of the heavy lift-
ing. After the payload is constructed, we’re using the CREATE_DOCUMENT() method
of class CL_DOCUMENT_BCS, per usual.

METHOD create_html_document.
 "Method-Local Data Declarations:
 DATA: lv_content_length TYPE so_obj_len,
 lv_language TYPE so_obj_la,
 lt_html_payload TYPE soli_tab.

 "Invoke the selected Simple Transformation program to
 "generate the HTML payload:
 CALL TRANSFORMATION (im_transformation)
 SOURCE param = im_parameters
 RESULT XML lt_html_payload.

 "Create the BCS document instance:
 lv_language = sy-langu.

 CALL METHOD cl_document_bcs=>create_document
 EXPORTING
 i_type = co_document_type
 i_subject = im_subject
 i_length = lv_content_length
 i_language = lv_language
 i_text = lt_html_payload
 RECEIVING
 result = re_document.
ENDMETHOD.

Listing 11.3 Implementation of CREATE_HTML_DOCUMENT()

Listing 11.4 contains a sample Simple Transformation program that is used to
generate a dynamic XHTML message body. Notice how we’ve highlighted the
data root PARAM in boldface font; in this case, the name of the data root is impor-
tant because the framework assumes that it’s passing in a data root with the name
PARAM (see Listing 11.3). Figure 11.9 shows the email message generated by this
template.

<?sap.transform simple?>
<tt:transform template="Main"
 xmlns:tt="http://www.sap.com/transformation-templates">
<tt:root name=”PARAM”/>

411

Receiving Email Messages 11.3

<tt:template name="Main">
<html>
 <head>
 <title>BCS HTML Email Demonstration</title>
 </head>

 <body>
 <h1>
 Hello <tt:value ref="PARAM.FIRST_NAME" />!
 </h1>
 <p>Welcome to Business Communication Services.</p>
 </body>
 </html>
</tt:template>
</tt:transform>

Listing 11.4 Simple Transformation for an HTML Message

Figure 11.9 Sample HTML Email Generated by the Framework

11.3 Receiving Email Messages

While the SMTP plug-in on SAP NetWeaver AS ABAP is normally used to send
messages, it can also be set up to receive messages. Now, you may be wondering
why you would want to process inbound email messages using ABAP. After all,
SAP NetWeaver AS ABAP isn’t going to take the place of a mail client. However,
as it turns out, there are some interesting applications that you can develop using

412

Email Programming11

this functionality. In this section, we show you how to process inbound message
requests using ABAP.

11.3.1 Configuring Inbound Processing Rules

The previously mentioned SAP Note 455140 describes the various technical set-
tings required to set up the SMTP plug-in to receive emails. For the purposes of
our discussion, we assume that these settings have already been configured. After
the inbound processing infrastructure is in place, you can configure inbound pro-
cessing rules in Transaction SCOT. Here, you select the Settings • Inbound Pro-
cessing menu option to open up the exit rules editor (see Figure 11.10).

Figure 11.10 Configuring Inbound Processing Rules

Figure 11.11 shows the exit rule editor perspective of Transaction SCOT. As you
might expect given the connotation of the phrase “exit rule,” these rules define user
exits for a particular recipient address or document class. For instance, in Figure
11.11, we’re defining a user exit for inbound messages directed at the recipient
address webservices@bowdarkconsulting.com. In the Exit Name column, we’ve pro-
posed a class called ZCL_SOAP_MAIL_HANDLER. The only requirement for this class is
that it must implement the IF_INBOUND_EXIT_BCS interface (see Figure 11.1). After
you’ve completed your changes, click the Save button to activate the inbound
processing rule.

413

Receiving Email Messages 11.3

Figure 11.11 Defining Exit Rules for Inbound Processing

11.3.2 Processing Inbound Requests

Now that you understand how exit rules for inbound processing are configured,
let’s take a deeper look at the inner workings of the IF_INBOUND_EXIT_BCS inter-
face. Looking back at Figure 11.1, you can see that this interface defines two
methods: CREATE_INSTANCE() and PROCESS_INBOUND(). Classes that implement the
IF_INBOUND_EXIT_BCS interface are intended to be patterned as singletons. As such,
the framework uses the CREATE_INSTANCE() method to obtain an instance of the
inbound mail handler class. The inbound request is then processed by the PRO-
CESS_INBOUND() method.

Figure 11.12 shows the signature of the PROCESS_INBOUND() method. As you can
see, this method defines three importing parameters:

EE The IO_SREQ parameter contains an instance of the CL_SEND_REQUEST_BCS class
that encapsulates the send request. This class can be used to get information
about the request such as the sender, the message body, and so on.

EE The IT_RECIPIENTS parameter contains a list of the recipients that received this
message.

EE The IT_DOCTYPES parameter contains a list of the document classes (i.e., docu-
ment types) contained in the request.

Figure 11.12 Signature of Method PROCESS_INBOUND()

414

Email Programming11

Within the PROCESS_INBOUND() method, you’re free to process the message in any
way that you like. To see an example of this, consider the standard class CL_ALERT_
CONFIRM_BY_MAIL that is delivered as part of the Alert Management service (ALM).
The ALM service defines a common framework in SAP NetWeaver AS ABAP for
triggering and dealing with alerts. Here, for instance, an alert might be triggered
to notify particular users of a critical problem in the system.

The ALM framework allows you to categorize alerts into particular categories.
End users can then subscribe to receive alerts from these categories based on their
business role, and so on. Frequently, the alerts are propagated to users via email.
Because the same alert could be received by multiple users, it’s important that users
have a way to confirm alerts so that other users know that someone is working the
issue. The CL_ALERT_CONFIRM_BY_MAIL class makes it possible for users to confirm
an alert by simply replying to the original alert message. When the confirmation
email is received, the BCS framework invokes the PROCESS_INBOUND() method of
CL_ALERT_CONFIRM_BY_EMAIL. This method confirms the alert and notifies the other
subscribers about the status of the alert via an email response message.

11.3.3 Potential Use Cases of Inbound Processing Rules

Earlier, you saw how inbound processing modules can be used to enable ALM
alert confirmations via email. This kind of solution can be applied to many types
of workflow scenarios in which external users need to interact with some kind
of process flow. However, the capabilities of inbound processing modules aren’t
limited to workflow processing. Next we consider some other potential use cases
for inbound processing modules.

Using Emails to Trigger System Events

With all of the sophisticated workflow, messaging, and job scheduling functional-
ity built into SAP NetWeaver AS ABAP, you might not ever think about using email
to trigger events in the system. Nevertheless, in some cases, it might make sense.
For example, imagine that you’re participating in a project that is preparing to go
live on SAP. Frequently, these projects use some kind of external project manage-
ment software to coordinate go-live activities between various teams. When it’s
time to execute a particular task, these tools send an email to the responsible par-
ties advising them that it’s time to run a job. If the project scope is small, then it’s
probably not that big of a deal for someone to monitor his inbox and perform the
task when requested. However, for large projects, a certain amount of automation
might be desirable.

415

Receiving Email Messages 11.3

This automation can be realized in the form of an inbound processing module.
In this case, the message handler can interpret the message and execute a task
automatically. The results of the task can then be sent back via an email response
message.

Processing SAP Interactive Forms

The SAP Interactive Forms software by Adobe has made it possible to bring sophis-
ticated input forms directly to users, making it easy and convenient for users to
interact in processes without ever logging onto SAP. Normally, these forms are
passed around using email. In this case, the process flow proceeds as follows:

1. The form is sent to a user’s inbox.

2. The user opens up the form, saves a local copy, and begins filling in the data.

3. When finished, the user replies back to the original email and attaches the
updated form.

As you might have guessed, the data from the updated form can be extracted and
posted to the system using an inbound processing module. If you’re interested in
learning more about how this works, Jeff Gebo of the SAP RIG has posted an excel-
lent step-by-step tutorial entitled “Send, Receive, and Process Interactive Forms via
Email in AS ABAP” online at www.sdn.sap.com.

Processing SOAP Messages

Most of the time, whenever we talk about Web services, we’re talking about self-
contained software modules that can be accessed using HTTP. However, while
this architecture is certainly the norm, it isn’t the only way to implement a Web
service. Recently, developers have been looking at ways of implementing SOAP
messaging over different protocols, such as SMTP. The primary advantage here is
that there is a significant email infrastructure from which to leverage — especially
when it comes to reliable messaging.

So, you may be wondering, how exactly does this work? Well, the answer is fairly
straightforward. Rather than embedding the SOAP envelope in an HTTP request
entity, we simply attach it to the message body of the email. Of course, to do this
on a large scale, we need a common inbound processing rule that implements the
functionality of a SOAP toolkit. This simplifies the deployment process, allowing
you to create Web service endpoints quickly and painlessly.

416

Email Programming11

Even though SOAP over SMTP is in its infancy, you can find many resource imple-
mentations available online for Java and .NET. These implementations can be used
as a guide for developing an ABAP-based solution.

Implementing an Asynchronous Query Tool

Due to the asynchronous nature of SMTP, it isn’t possible to develop synchro-
nous services using the SMTP plug-in. This implies that the SOAP-based services
described in the previous section can only process messages asynchronously. Of
course, this doesn’t mean that the message handler can’t generate a reply message
in response to a given request. Rather, it just means that the process that submit-
ted the request isn’t blocked waiting for a response.

Despite this fundamental limitation, it’s still possible to implement request-reply
services using email. For example, let’s imagine that you want to check on the sta-
tus of a workflow process using your PDA. Because most SAP systems sit behind
a corporate firewall, it would be expensive to try and deploy a traditional Web-
based tool to access the status over HTTP. However, because it’s likely that the
corporate email server already has a robust security infrastructure built up around
it, it would not be that difficult to set up a routing rule to transfer status requests
to the backend SAP system. Here, an inbound handler module can intercept the
request, determine the status of the workflow process, and send a response back
to the sender’s email address.

11.4 Summary

In this chapter, you learned how to send and receive emails from an ABAP context
using the Business Communication Services API. While such capabilities might
have been considered a “nice-to-have” in the past, they are increasingly becoming
part of a core set of tools that every ABAP developer needs to have in their tool-
box. After all, users accustomed to having the world at their fingertips will expect
nothing less from their SAP experience. In the next chapter, we shift gears and
consider the various aspects of security-based development in ABAP.

PART IV
Side Dishes

419

Cooking involves high temperatures and can be dangerous if basic safety
guidelines aren’t followed. Safety is also important in ABAP program-
ming but in a very different way. These days, companies count information
stored in enterprise information systems such as SAP among their most
valuable assets. Consequently, as ABAP developers, we must do everything
that we can to make sure that this information remains safe and secure.

12 Security Programming

In a perfect world, ABAP developers would be able to focus on implementing busi-
ness logic without concern for security issues. Unfortunately, in the real world, this
is seldom the case. It seems that almost every day, there is a report of information
being compromised or systems being brought to their knees by malicious users.
Given these real and dangerous threats, it’s important that software be designed
from the ground up with security in mind.

In this chapter, we explore ways of programming for security in ABAP. We begin
our discussion by introducing you to the SAP NetWeaver AS ABAP authorization
concept, a core component of the overall SAP security model. Next, we look at
ways of encrypting data and performing virus scans in ABAP. Finally, we conclude
by showing you how to protect your Web content using CAPTCHA.

12.1 Developing a Security Model

If nothing else, hackers are certainly creative when it comes to discovering new
ways to break into a system. As such, the process of trying to secure a system can
seem daunting from a development perspective. Unfortunately, the sad reality
is that it’s next to impossible to guard against every kind of attack that could be
launched against the system. Nevertheless, there are several measures that you can
take to protect valuable system resources.

Experience teaches that the first step in addressing security concerns is to turn the
problem upside down. Rather than trying to guard against each and every type of
attack that you can think of, implement your design from the ground up with the

420

Security Programming12

mindset that no one has access to anything unless they are explicitly granted it.
After all, it’s much easier to grant access than to take it away.

In this section, we consider some of the key elements that make up a holistic secu-
rity model. As we progress through this discussion, think about how you would
apply these concepts to your own programs. This will help put you in the right
frame of mind for security programming. Here are the important questions you
should begin asking yourself:

EE Which users should have access to a particular resource?

EE What actions should a user be allowed to perform on a resource?

EE Are the lines of communication secured?

EE What is the minimum amount of access required to complete a given opera-
tion?

12.1.1 Authenticating Users

A useful metaphor for thinking about security models is to imagine that the sys-
tem is like a house. A house contains doors that can be secured with locks. To gain
access to a locked house, you must either have a key or be granted access by some-
one on the inside. In the latter case, you might ring the doorbell or knock on the
door to express the fact that you wish to enter. Normally, someone on the inside
will come to the door and ask “who is it?” If they recognize your voice when you
answer (and you’re not the big bad wolf), they will likely open the door and let
you in. In technical terms, this process is referred to as authentication.

Authentication is all about confirming whether or not user principals are in fact
who they say they are. Normally, users are forced to authenticate before they can
obtain access to the system. Here, if users provide valid user names and passwords,
the system assumes that they are legitimate and grants them access. In some cases,
this challenge/response system is taken up a notch, requiring users to provide mul-
tiple forms of identification. Such measures eliminate the chances that a rogue user
might be impersonating a real user after having stolen his password, and so on.

12.1.2 Checking User Authorizations

Authentication allows users to get through the front door of the system, but it
doesn’t say anything about what they are allowed to do after they get there. Unlike
homeowners, computer systems don’t necessarily have to be hospitable to their

421

Developing a Security Model 12.1

users. Systems should not allow users to make themselves at home. Rather, they
should follow them around and force them to ask whether or not they can perform
a particular action. Whether or not the system allows the activity depends upon
the authorizations granted to that user.

You can think of an authorization as a type of rule that can be defined in the sys-
tem to grant a user access to a particular resource. To simplify user administration,
related authorizations are normally consolidated into roles that are closely aligned
with the various use cases supported by the system. For example, in a purchasing
system, a role might be defined to grant a purchaser the ability to create a pur-
chase order.

12.1.3 Securing the Lines of Communication

In the not-so-distant past, SAP software lived on an island in which there wasn’t a
lot of direct communication with the outside world. However, these days, exter-
nal communication is commonplace. Therefore, it’s vitally important that the lines
of communication remain secure from external tampering. This can be achieved
using encryption technologies.

The term “encryption” implies that we’re converting human-readable text into
an incomprehensible code that can only be decrypted using a key (or cipher).
Sometimes this key is shared between communicating parties; sometimes it’s not.
Regardless of the approach, encryption ensures that even if someone were to inter-
cept an encrypted message as it’s transmitted over the network, he would not be
able to read it.

Over the years, hackers have occasionally discovered ways to crack encryption
algorithms. Consequently, the sophistication of encryption technology has had to
improve to stay ahead of would-be hackers. Most modern systems (including SAP)
provide useful abstractions that simplify the way that developers interact with
complex encryption technologies. For instance, in Chapter 10, Web Services, we
saw how ABAP-based Web services could be configured with a transport guarantee
based on the Secured Sockets Layer (or SSL) protocol. SSL is used to encrypt data
transmitted over the Internet. Similarly, it’s also possible to configure encryption
for RFC destinations using the Secure Network Communications framework (SNC).

422

Security Programming12

12.1.4 Programming for Security

The three security measures discussed so far in this section represent the front
lines of security for a system. Though these methods can be powerful deterrents
for malicious users, they aren’t fail safe. Therefore, as a developer, you can’t allow
yourself to neglect good defensive programming practices by assuming that prob-
lems will be handled upstream.

For any software module that you write, it’s a good idea to apply a defensive design
from the outset. Here, you need to ask yourself questions such as the following:

EE What preconditions must exist before a module can be called?

EE What happens if a module is called incorrectly? For example, what if certain
parameters are supplied with invalid values?

EE What kind of exceptions could occur as a result of a particular process?

EE How should the system recover from a particular type of exception?

Though defensive programming techniques usually require a little more work
upfront, you’ll find that the effort is well worth it. This is because defensively
programmed modules can be used with the confidence that comes from knowing
that they will perform their tasks consistently and reliably. And, at the end of the
day, such modules represent one less thing you have to worry about when pro-
gramming for security.

Perhaps the most important thing to keep in mind when programming for security
is to keep things simple. The more complex a piece of code is, the more likely it
is that there might be holes in it somewhere. One way to fill in these gaps is to
apply the principle of least privilege. Here, you only want to give users access to
the resources that are absolutely necessary to perform a task. Sticking to this prin-
ciple reduces scope, making it much easier to track down vulnerabilities within
the system.

12.2 The SAP NetWeaver AS ABAP Authorization Concept

Before you can ever log onto an SAP NetWeaver AS ABAP system, you must be
assigned a user master record. In addition to storing basic information about the
user (i.e., the user’s contact information, password, etc.), user master records also
contain role assignments. These role assignments define the actions that a user can
perform within the system.

423

The SAP NetWeaver AS ABAP Authorization Concept 12.2

To understand how role-based security works in an SAP NetWeaver AS ABAP sys-
tem, you need to understand the AS SAP NetWeaver ABAP authorization concept.
As we proceed through our discussion, we peel back some of the layers of the
authorization concept to see how everything fits together. This insight will help
you understand how to integrate your own custom authorization checks into the
overall authorization concept.

12.2.1 Overview

Before we begin investigating the mechanics of the SAP NetWeaver AS ABAP
authorization concept, it’s helpful to first see how it is organized. Figure 12.1
shows the relationships between the various elements that make up the concept.
Starting from the bottom up, these elements include the following:

EE Authorization object
An authorization object represents a particular set of actions that can be per-
formed within the system. Authorization objects can consist of up to 10 autho-
rization fields that are used to define specific authorizations (or permissions).
We’ll learn more about authorization objects in Section 12.2.2, Developing
Authorization Objects.

EE Authorization
An authorization is an instance of a particular authorization object. Here, we’re
not talking about an instance in the object-oriented sense; rather, we’re talking
about a particular configuration of authorization field values for an authoriza-
tion object.

EE Authorization profile
When a role is generated, the system also generates an authorization profile. An
authorization profile aggregates related authorizations together.

EE Roles
As you learned earlier, a role defines the actions that a user can perform within
the system. Underneath the hood, these authorizations are realized in the form
of a generated authorization profile. After a role is created, it can be assigned to
users in Transaction SU01.

424

Security Programming12

Role

Authorization
Object

1

1

1

*

Generated by
Transaction
PFCG

1

1

instance of
Organized by
Authorization
Object Classes

Authorization
Field

10

1

Authorization

Authorization
Profile

Figure 12.1 Overview of Elements in SAP NetWeaver AS ABAP Authorization Concept

In Section 12.2.3, Configuring Authorizations, we explain how all of the elements
of the SAP NetWeaver AS ABAP authorization concept fit together within the sys-
tem from a configuration perspective. However, before we do so, we need to see
how authorization objects are defined.

12.2.2 Developing Authorization Objects

As you learned in Section 12.2.1, Overview, authorization objects represent the
basis of the SAP NetWeaver AS ABAP authorization concept. From a conceptual
point of view, an authorization object is analogous to a class in the object-ori-
ented programming paradigm. In other words, authorization objects are a type of
abstraction that can define up to 10 distinguishing attributes (i.e., authorization
fields). Within the scope of the authorization concept, you don’t work with autho-
rization objects directly; rather, you work with instances of authorization objects
(i.e., authorizations). An authorization is an instance of an authorization object that
defines specific values for the authorization object’s authorization fields.

425

The SAP NetWeaver AS ABAP Authorization Concept 12.2

Case Study: An ABAP Workbench Authorization Object

Sometimes, abstract concepts such as authorization objects are easier to under-
stand after you’ve seen an example. Therefore, let’s look at an actual authorization
object in the system: the S_TCODE authorization object. This authorization object is
checked by the system whenever a user tries to execute a transaction.

Authorization objects are ABAP Workbench objects that are maintained in Transac-
tion SU21. Figure 12.2 shows the initial screen of this transaction. As you can see,
authorization objects are organized into authorization object classes. For instance,
as you can see in Figure 12.2, the S_DEVELOP authorization object is assigned to the
BC_C authorization object class.

Figure 12.2 Maintaining Authorization Objects in Transaction SU21

Because we don’t know the name of the authorization object class that the S_TCODE
authorization object is assigned to, we must search for it. Fortunately, Transac-
tion SU21 makes this easy by providing a search tool. To access this feature, click
on the Find button, and enter the name of the authorization object you want to
search for. When a match is found, the transaction scrolls down to the matching
object and highlights it (see Figure 12.2). From here, you can view the details of
the authorization object by double-clicking on it (see Figure 12.3).

426

Security Programming12

Figure 12.3 The S_TCODE Authorization Object

As you can see in Figure 12.3, the S_TCODE authorization object only contains a
single authorization field called TCD that represents the transaction code a user is
trying to access. Therefore, an authorization based upon the S_TCODE authoriza-
tion object contains a specific transaction code assignment in the TCD authorization
field. In this case, the TCD field is sufficient for defining a user’s authorization to a
particular transaction code. Other authorization scenarios might require additional
authorization fields to define a specific authorization.

Authorization fields are maintained in Transaction SU20. Figure 12.4 displays the
definition of the TCD authorization field in this transaction. Here, you need only
specify a name for the authorization field, as well as a data element that defines the
field’s characteristics. In the case of the TCD authorization field, the corresponding
data element TCODE happens to be defined with a domain (also called TCODE) that
has a check table assigned to it. Despite what you might think, the values supplied
for an authorization field at runtime aren’t checked against this table; rather they
are used as a value help when defining authorizations.

427

The SAP NetWeaver AS ABAP Authorization Concept 12.2

Figure 12.4 Maintaining Authorization Fields in Transaction SU20

Case Study: Creating a Custom Authorization Object

Now that you’ve seen a concrete example of an authorization object, let’s think
about how we would create a custom one. As a basis for our example, let’s imag-
ine that you’re developing an administrative console for the online bookstore
application introduced in Chapter 6, Database Programming. Among other things,
administrative users should be able to use this console to maintain the store’s book
catalog. However, rather than opening this function up to everyone, you want to
control access so that certain users can modify the catalog while others can only
view it.

If this console were developed as a Dynpro-based application, the simplest way
to control this kind of access would be to configure a series of transaction codes
that could be checked against the S_TCODE authorization object. This convention
is commonly used by SAP. For example, customer master records can be created
in Transaction XD01, changed in Transaction XD02, and displayed in Transaction
XD03. Each of these transactions refers to the same program behind the scenes, yet
the selected transaction code defines the mode of the application. For the purposes
of our example though, let’s assume that we’re building the console as a Web
application (perhaps using Web Dynpro for ABAP). Because there is no transaction
code here, we need to develop our own custom authorization object to control
access to the catalog.

To create our custom authorization object, we must perform the following steps:

1. First, we need to create an authorization object class to organize our custom
authorization objects. Authorization object classes are maintained in Transac-
tion SU21. To create an authorization object class, select the Object Class menu
option on the drop-down menu tied to the Create button (see Figure 12.5). This
brings up the dialog window shown in Figure 12.6. Here, you must provide a

428

Security Programming12

name for the object class as well as a short text description. Click the Save but-
ton to save your changes.

Figure 12.5 Creating an Authorization Object Class — Part 1

Figure 12.6 Creating an Authorization Object Class — Part 2

2. After the authorization object class is created, you can right-click it to create
new authorization objects (see Figure 12.7).

Figure 12.7 Creating an Authorization Object — Part 1

3. In the Create Authorization Object dialog box shown in Figure 12.8, you must
specify the name of the authorization object (in this case, Z_BOOK) as well as a
short text description of the object. You must also identify the authorization
fields that are used to define instances of this authorization object (i.e., authori-
zations). For the Z_BOOK authorization object, we’re using the ACTVT authoriza-
tion field predelivered by SAP. Click the Save button to save your changes.

429

The SAP NetWeaver AS ABAP Authorization Concept 12.2

Figure 12.8 Creating an Authorization Object — Part 2

4. When you click on the Save button, you’re prompted to create an object direc-
tory entry as usual. Also, because we selected the ACTVT authorization field,
we’re prompted to maintain the permitted activities for the authorization object
(see Figure 12.9). Press the (Enter) key to proceed.

Figure 12.9 Creating an Authorization Object — Part 3

5. To maintain the permitted activities for the authorization object, click on the
Permitted Activities button on the Create Authorization Object dialog screen
(refer to Figure 12.8). On the Define Values dialog box shown in Figure 12.10,
you can select the types of activities that you want to define authorizations
for. Here, we’ve selected the Create, Change, Display, and Delete checkboxes.
When you’re satisfied with your selections, click on the Save button to confirm
your changes.

430

Security Programming12

Figure 12.10 Creating an Authorization Object — Part 4

We explain how to put this authorization object to work in Section 12.2.4, Per-
forming Authorization Checks in ABAP. However, before we do, we need to take
a step back and see how authorization objects are used to assign authorizations
to users.

12.2.3 Configuring Authorizations

As you learned in Section 12.2.2, Developing Authorization Objects, an authoriza-
tion object is a type of template that can be used to define authorizations. From a
maintenance perspective, authorizations are aggregated into roles that are assigned
to user master records. While role maintenance is a task that is normally per-
formed by security administrators, it’s useful to see how roles are constructed so
that you can understand how all of the pieces fit together behind the scenes. With
that in mind, let’s take a look at a standard role delivered in every SAP NetWeaver
AS ABAP system: the SAP_BC_DWB_ABAPDEVELOPER role. This role encompasses the
standard ABAP Development Workbench transactions used by ABAP developers.

Role maintenance is performed in Transaction PFCG. Figure 12.11 shows the ini-
tial screen of this transaction with the SAP_BC_DWB_ABAPDEVELOPER role selected. To
view this role, click on the Display button.

431

The SAP NetWeaver AS ABAP Authorization Concept 12.2

Figure 12.11 Maintaining Roles in Transaction PFCG

Figure 12.12 shows the maintenance screen that security administrators use to edit
roles. As you can see, administrators can assign access to transactions and various
other functions on the Menu tab. These functions can be organized into a role
menu that is compartmentalized by folders.

Figure 12.12 Maintaining Roles in Transaction PFCG

Behind the scenes, the role maintenance transaction keeps a running tab of the
authorizations required to access the selected transactions/functions. You can see
this information on the Authorizations tab. For instance, in Figure 12.13, you can
see that the SAP_BC_DWB_ABAPDEVELOPER role is assigned the authorization profile
T_BA800053. This authorization profile can be viewed by clicking on the Display
Authorization Data button.

432

Security Programming12

Figure 12.13 Viewing Authorization Profiles in Transaction PFCG — Part 1

Figure 12.14 shows the authorization data for the T_BA800053 authorization pro-
file. Here, we’ve selected the menu option Utilities • Technical Names On so that
we could see the technical details. This color-coded hierarchical display allows you
to drill into authorizations and see how they are put together. You can obtain an
overview of the color scheme by clicking on the Legend button.

Figure 12.14 Viewing Authorization Profiles in Transaction PFCG — Part 2

433

The SAP NetWeaver AS ABAP Authorization Concept 12.2

Looking closely at the authorization data in Figure 12.14, you can see that the
SAP_BC_DWB_ABAPDEVELOPER role contains an authorization named T_BA80005302
that defines access to Transactions BAPI, CMOD, and so on. This authorization is
based on the authorization object S_TCODE described earlier. Administrators can
adjust these auto-generated authorizations or even create new ones within this
perspective.

After all of the relevant authorizations are defined, the role can be saved and
then assigned to user accounts in Transaction SU01. Figure 12.15 shows how the
SAP_BC_DWB_ABAPDEVELOPER role is assigned to the user master record for user
JWOOD029. This assignment ensures that user JWOOD029 can access Transaction BAPI,
and so on. We explain how these authorization checks work in Section 12.2.4,
Performing Authorization Checks in ABAP.

Figure 12.15 Assigning Roles to Users in Transaction SU01

12.2.4 Performing Authorization Checks in ABAP

After security authorizations have been assigned to a user account, the actual pro-
cess of checking those authorizations in an ABAP program is very straightforward.
Authorization checks are performed using the AUTHORITY-CHECK statement. List-
ing 12.1 shows the syntax diagram for the AUTHORITY-CHECK statement. Here, the
authorization object is selected via the OBJECT addition, and specific authorization
fields can be checked using the ID additions.

AUTHORITY-CHECK OBJECT auth_obj [FOR USER user]
 ID id1 {FIELD val1}|DUMMY
 [ID id2 {FIELD val2}|DUMMY]
 ...
 [ID id10 {FIELD val10}|DUMMY].

Listing 12.1 Syntax Diagram for the AUTHORITY-CHECK Statement

434

Security Programming12

Getting back to our bookstore catalog example from Section 12.2.2, Develop-
ing Authorization Objects, let’s see how we can perform an authorization check
to determine whether or not a user can add an entry to the catalog. The code
excerpt in Listing 12.2 shows how we could use the AUTHORITY-CHECK statement
to perform this check. Whenever this code is executed, the system checks to see
if the current user has an authorization in his user master record that refers to an
instance of the Z_BOOK authorization object. Specifically, it checks for an authori-
zation where the ACTVT authorization field has the value '01'. If the check is suc-
cessful, SY-SUBRC has the value 0; for a list of possible error code values, consult
the ABAP Keyword Documentation.

AUTHORITY-CHECK OBJECT 'Z_BOOK'
 ID 'ACTVT' FIELD '01'.
IF sy-subrc NE 0.
 "Error handling goes here...
ENDIF.

Listing 12.2 Performing an Authorization Check in ABAP

By default, an authorization check is performed against the account of the user
who is executing the program. In certain situations, you may want to perform an
authorization check for a different user account. In this case, you can use the FOR
USER addition of the AUTHORITY-CHECK statement, as shown in Listing 12.3.

AUTHORITY-CHECK OBJECT 'Z_BOOK' FOR USER 'pwood'
 ID 'ACTVT' FIELD '01'.
IF sy-subrc NE 0.
 "Error handling goes here...
ENDIF.

Listing 12.3 Performing Authorization Checks for Specific Users

12.2.5 Authorization Concept Review

Like many flexible frameworks, the SAP NetWeaver AS ABAP authorization
concept has a lot of moving parts. Throughout the course of this section, we’ve
described the constituent elements of the authorization concept along with their
relationships. However, now that you’ve had a chance to digest all of this, a bit of
review is in order.

EE From a conceptual perspective, authorizations are aggregated together inside of
a role that is maintained in Transaction PFCG. The individual authorizations
defined within a specific role are instances of authorization objects. Here, the

435

Encrypting Data with ABAP 12.3

term “instance” refers to a specific configuration of values for the authorization
fields in the authorization object.

EE After a role is created, it can be assigned to a user master record in Transaction
SU01. At this point, the underlying authorizations become part of that user’s
profile.

EE At runtime, whenever a user attempts to perform specific actions within the
system, those actions are checked using the AUTHORITY-CHECK statement.

EE Custom authorizations can be implemented by creating new authorization
objects. Such authorizations are integrated into the framework in the exact
same way that standard authorizations are delivered by SAP.

12.3 Encrypting Data with ABAP

The term cryptography, taken from the Greek, literally means “secret writing.” In
the context of computer programming, cryptography is used to make sure that sen-
sitive information doesn’t make its way into the wrong hands. Normally, when-
ever we talk about encryption in computer programming, we’re talking about
encrypting data that is transmitted over the network. As we stated earlier, SAP
provides excellent built-in support for encrypting network traffic. However, there
are certain situations where you may want to encrypt sensitive data internally. In
this section, we show you how to encrypt data using ABAP library functions.

One of the most common use cases for encrypting data internally is the storage of
sensitive data such as passwords. You don’t want to store this sensitive data in a
format that could be read by other users who have access to the database. A com-
mon workaround for this is to generate a message digest (or hash code) that repre-
sents a fingerprint of the password.

Figure 12.16 demonstrates how message digest algorithms work. In this case,
we’ve passed the literal text “password” into the algorithm, and it has generated
a 32-character hash code encoded in hexadecimal notation. Message digest algo-
rithms are deterministic, which means that the same input sequence generates the
same output sequence each time. Consequently, another use of message digest
algorithms is to generate a kind of checksum for files that are downloaded off the
Internet. Because a given checksum can only be generated by a particular input
sequence, you can verify that a file hasn’t been tampered with by ensuring that its
checksum matches the one originally published by the host.

436

Security Programming12

Message
Digest

Algorithm
password 5F4DCC3B5AA765D61D8327DEB882CF99

Figure 12.16 Generating a Message Digest

Perhaps the most popular of message digest algorithms is the MD5 algorithm
developed by Ron Rivest of RSA Security, Inc.. SAP provides an implementation
of this algorithm with the MD5_CALCULATE_HASH_FOR_CHAR function module. This
function, like all message digest functions, is a one-way function. In other words,
there is no way to decrypt the generated hash code. Given this, you might be won-
dering how message digest functions could be used to store passwords. After all,
if you can’t decrypt the hash code, what good is it?

As it turns out, the one-way nature of message digest functions is very advanta-
geous when it comes to working with passwords. Initially, when a password is
created, it’s hashed and stored in the database. Because it can’t be decrypted, the
password hash code can be seen by other users in the system without compromis-
ing security. When a user logs on to the system, he is presented with a form to
enter his password. To enable a comparison, the proposed plain text password is
hashed using the same message digest algorithm. A match only occurs if the pro-
posed password matches the originally created password verbatim. In this way, the
system never has to know the actual password to implement authentication.

Listing 12.4 demonstrates how to call the MD5_CALCULATE_HASH_FOR_CHAR. As you
can see, the call signature is very straightforward, matching the flow depicted in
Figure 12.16.

DATA: hash TYPE md5_fields-hash,
 password TYPE string VALUE 'itsasecret'.

CALL FUNCTION 'MD5_CALCULATE_HASH_FOR_CHAR'
 EXPORTING
 data = password
 IMPORTING
 hash = hash
 EXCEPTIONS
 no_data = 1
 internal_error = 2
 others = 3.

Listing 12.4 Calculating an MD5 Hash Code

437

Performing Virus Scans 12.4

There are many examples of useful applications of message digest algorithms.
In addition to the basic authentication example described in this section, mes-
sage digests can also be used to perform other worthwhile tasks including the
following:

EE Single Sign-On (SSO)

EE Intelligent message routing based on hash codes of document numbers

EE Check-summing to determine if cached objects are still valid

You can find out more about the MD5_CALCULATE_HASH_FOR_CHAR function and other
hash functions by looking at the documentation for the functions in the standard
function group SECH. Here, among other things, you’ll find another function called
MD5_CALCULATE_HASH_FOR_RAW that can be used to calculate a hash code for binary
data streams.

12.4 Performing Virus Scans

Sometimes we get so caught up with firewalls and network security that we fail
to pay attention to the real threats associated with external messages coming into
the system. For example, consider a web-based application that allows users to
upload files to a document management system. Here, it’s very possible that these
files contain viruses. Ideally, we want to perform a virus scan before trusting these
files within the system. Luckily, SAP makes it possible to perform these scans using
the Virus Scan Interface.

The Virus Scan Interface (VSI) allows you to integrate popular enterprise virus scan
solutions into a common infrastructure.1 Once configured, you can use the VSI to
perform virus scans in your ABAP programs using the CL_VSI class library. The
code excerpt in Listing 12.5 shows how this works.

DATA: lo_vsi TYPE REF TO cl_vsi,
 lv_profile TYPE vscan_profile VALUE 'my_profile',
 lv_payload TYPE xstring,
 lv_retcode TYPE vscan_scanrc.

1 You can learn more about the configuration of the VSI in the SAP Library available online at
http://help.sap.com. Under the SAP NetWeaver section, perform a search using the phrase “Con-
figuration of the Virus Scan Interface.”

438

Security Programming12

 "Obtain a reference to the virus scan interface:
 CALL METHOD cl_vsi=>get_instance
 EXPORTING
 if_profile = lv_profile
 IMPORTING
 eo_instance = lo_vsi
 EXCEPTIONS
 configuration_error = 1
 profile_not_active = 2
 internal_error = 3
 others = 4.

 "Scan a binary payload:
 CALL METHOD lo_vsi->scan_bytes
 EXPORTING
 if_data = lv_payload
 IMPORTING
 ef_scanrc = lv_retcode
 EXCEPTIONS
 not_available = 1
 configuration_error = 2
 internal_error = 3
 others = 4.

Listing 12.5 Performing a Virus Scan Using the VSI in ABAP

12.5 Protecting Web Content with CAPTCHA

Throughout the course of this chapter, we’ve approached the concept of authenti-
cation from the perspective of users. Here, we’ve been trying to determine whether
or not users are who they say they are. One way malicious users try to get around
this type of authentication is to launch a brute force attack using an Internet robot
(or bot). A brute force attack is a type of attack in which every possible password
permutation is tried repeatedly until a match is found.

One way to guard against bots is to apply another authentication layer that can be
used to ascertain whether or not an authentication request came from a human
user. In this section, we show you how to perform these tests in your Web-based
programs using a custom CAPTCHA component developed using the Adobe Flex
framework.

439

Protecting Web Content with CAPTCHA 12.5

12.5.1 What Is CAPTCHA?

CAPTCHA stands for Completely Automated Public Turing Test to Tell Computers and
Humans Apart. CAPTCHA programs were invented by Luis von Ahn, Manuel Blum,
Nicholas Hopper, and John Langford of Carnegie Mellon University in 2000. Nor-
mally, the Turning test is administered by displaying an image that contains a ran-
domized text phrase that the user must verify in a form input field. Figure 12.17
shows an example of a registration form that requires a user to key in the security
code depicted in an image.

Figure 12.17 Example of a CAPTCHA Test

As you can see in Figure 12.17, the CAPTCHA image is distorted so that sophisti-
cated bots have a difficult time recognizing the characters. The more obscure the
image, the less likely that a non-human could pass the test. In addition to brute
force attacks, CAPTCHA is also used to prevent various other types of vandalism
such as spam, automated posting to forums, and so on.

12.5.2 Developing a CAPTCHA Component with Adobe Flex

Although ABAP can do just about anything, from building a financial statement
to managing production operations, one thing it can’t do is provide you with a
mechanism for generating dynamic images. Therefore, we must look outside the
world of ABAP to find a platform that we can use to build our custom CAPTCHA
program. For the purposes of this example, we develop our CAPTCHA component
using the Adobe Flex framework.

The Adobe Flex framework uses a combination of declarative XML called MXML,
and a proprietary language called ActionScript to develop rich Internet applica-
tions (RIAs). When deployed to the Web, Flex content is compiled into an inter-

440

Security Programming12

mediate byte code that can be executed using the Adobe Flash Player. The primary
advantage here is the fact that the Flash Player is a cross-platform runtime environ-
ment that is reportedly installed on up to 99% of the machines connected to the
Internet around the world.

Figure 12.18 shows the custom CAPTCHA component that we’ve created. Here,
the randomized text string is stretched across a Bezier curve to make it more dif-
ficult to scan. In addition, randomized dots and polygons have been added to
further obscure the image. Although the details of Flex-based development are
outside the scope of this book, you can find all of the source code/project files
used to build our custom CAPTCHA component with the source code bundle for
this book available online.

Figure 12.18 Generated CAPTCHA Component in Adobe Flash Player

12.5.3 Integrating the CAPTCHA Component with BSPs

To simplify integration of the CAPTCHA component with Business Server Pages
(BSPs), you can use the custom captchaInclude and captcha elements of the /
BOWDK/BOWDARK BSP extension provided as part of this book’s source code bundle.
These extension elements link in all of the necessary MIME objects for embed-
ding the CAPTCHA component inside of a BSP. Listing 12.6 contains a skeleton of
a BSP that integrates the CAPTCHA component. You can see an example of a fully
functional page in the /BOWDK/CAPTCHA_TEST BSP application available as part of
this book’s source code bundle.

<%@page language="abap"%>
<%@extension name="htmlb" prefix="htmlb"%>
<%@extension name="phtmlb" prefix="phtmlb"%>
<%@extension name="/bowdk/bowdark" prefix="bowdk"%>

<htmlb:content design="design2003">
 <htmlb:document>
 <htmlb:documentHead title="CAPTCHA Example">
 <htmlb:headInclude />
 <bowdk:captchaInclude />
 </htmlb:documentHead>

441

Protecting Web Content with CAPTCHA 12.5

 <htmlb:documentBody>
 <htmlb:form id="registrationForm" method="post">
 <!-- Form layout & content go here... -->
 <bowdk:captcha />
 <!-- Form layout & content go here... -->
 </htmlb:form>
 </htmlb:documentBody>
 </htmlb:document>
</htmlb:content>

Listing 12.6 Including the CAPTCHA Component in a BSP

The code excerpt shown in Listing 12.6 embeds the CAPTCHA component on a
BSP, but to communicate with it, you need to write some JavaScript code. Most of
the time, there are two JavaScript functions that you’ll want to integrate into your
BSP: one to validate a user’s security code entry against the security code embed-
ded inside the CAPTCHA component, and the other to allow users to reload the
image in the event that it’s not legible.

The JavaScript code shown in Listing 12.7 demonstrates how you can trigger the
reloading of the CAPTCHA image via JavaScript. This communication is made
possible via the ExternalInterface ActionScript class that allows you to register
JavaScript callback functions inside of a Flex component. In this case, we’re invok-
ing the reloadImage() function of the custom CAPTCHA component.

<script type="text/javascript">
 function reloadImage()
 {
 // Derive the browser container reference:
 var container;
 var captchaSwf = "flexCaptcha";

 if (navigator.appName.indexOf("Microsoft") >= 0)
 container = document;
 else
 container = window;

 container[captchaSwf].reloadImage();
 } // -- function reloadImage() -- //
</script>

Listing 12.7 Reloading the CAPTCHA Image with JavaScript

442

Security Programming12

The JavaScript code required to perform the CAPTCHA test is similar in nature
to the code demonstrated in Listing 12.7. As you can see in Listing 12.8, you can
check the security code entry using the checkSecurityCode() callback function
provided with the CAPTCHA component. In this case, we’re using the HTMLB
eventing mechanism to control whether or not a form gets submitted. For more
information about HTMLB, we highly recommend Advanced BSP Programming (SAP
PRESS, 2006).

<script type="text/javascript">
 function checkForm(htmlbevent)
 {
 // Make sure the user entered a valid security code;
 // Derive the browser container reference:
 var container;
 var swf = "flexCaptcha";

 if (navigator.appName.indexOf("Microsoft") >= 0)
 container = document;
 else
 container = window;

 var securityCode =
 document.getElementById("inpSecurityCode").value;
 if (! container[swf].checkSecurityCode(securityCode))
 {
 alert("You entered an invalid security code!");
 htmlbevent.cancelSubmit = true;
 }
 } // -- End of function checkForm() -- //
</script>

Listing 12.8 Performing the CAPTCHA Test with JavaScript

For the most part, you should be able to deploy the CAPTCHA component with
your BSPs using the instructions outlined in this section. Of course, because
HTML/JavaScript standards are moving targets from browser implementation to
browser implementation, you may find that certain tweaks are required to get the
component to work. This is particularly the case for obscure browsers that aren’t
supported by the SAP Product Availability Matrix (PAM). To see if your browser is
supported in the PAM, navigate to https://service.sap.com/pam.

443

Protecting Web Content with CAPTCHA 12.5

12.5.4 Integrating the CAPTCHA Component with Web Dynpro

Beginning with the release of SAP NetWeaver 7.0, EHP 1, it’s now possible to
embed Adobe Flex components into Web Dynpro for ABAP (WDA) applications.
This functionality is driven by a new RIA integration framework called the Web
Dynpro Islands Framework. The Web Dynpro Islands Framework makes it possible
for Web Dynpro components to communicate with Flex components and vice
versa.

Realistically speaking, a detailed treatment of Web Dynpro for ABAP and the Web
Dynpro Islands Framework is beyond the scope of this book. Nevertheless, we’ve
provided a fully functional WDA application called ZWDCAPTCHATEST in the source
code bundle available online that you can use as a reference for integrating the
CAPTCHA component in your own WDA applications. Figure 12.19 shows an
example of the custom ZWDCAPTCHATEST application.

Figure 12.19 Integrating the CAPTCHA Component in Web Dynpro

If you’re new to Web Dynpro and are looking for a good reference book, we
highly recommend Web Dynpro for ABAP (SAP PRESS, 2006). For more informa-
tion about the Web Dynpro Islands Framework, check out the SAP Rich Islands
wiki page available online at http://wiki.sdn.sap.com/wiki/display/EmTech/SAP+Rich+
Islands+for+Adobe+Flash. Among other things, this wiki contains detailed examples
that show you how to incorporate various kinds of Flex components into WDA
applications.

444

Security Programming12

12.6 Summary

In this chapter, you learned how to apply the SAP NetWeaver AS ABAP autho-
rization concept toward the development of secure applications in ABAP. This
concept, when integrated from the outset, simplifies the development process by
reducing potential security holes. In the next chapter, we look at another impor-
tant aspect of secure programming: logging and tracing.

445

Bugs in food are no better than bugs in programs. However, despite our
best efforts to eliminate program defects, it seems that there are often
elusive bugs that lurk out there on the periphery, waiting to manifest them-
selves at the most inopportune times. When these errors occur, it’s impor-
tant to have as much information about the error as possible to perform a
root-cause analysis. One of the most common ways of storing this informa-
tion is to put it in an application log.

13 Logging and Tracing

During the early stages of program development, many developers test their pro-
grams using the ABAP Debugger tool. Among other things, this tool allows devel-
opers to interactively step through their program logic while evaluating the con-
tents of variables that change along the way. Most of the time, the ABAP Debugger
tool will help you identify any glaring holes in a program. Then, unit, string, and
integration test cycles should squash any remaining bugs in the program logic.
Of course, if this method were 100% fail safe, there would never be any errors in
productive systems.

Generally speaking, the types of errors that manifest themselves in a production
environment are the ones that are erratic and hard to troubleshoot. Given this
unpredictability, it can be difficult to set up a debugging session to pinpoint the
problem. Rather than trying to guess when an error is going to take place, it’s more
convenient to turn on a program trace and output relevant messages to a persis-
tent log. Then, whenever an error occurs, the log can be recalled to examine the
source of the error.

In this chapter, we introduce you to the Business Application Log (BAL) framework
provided out of the box with SAP NetWeaver AS ABAP. This framework can be
used to implement logging and tracing requirements for ABAP programs. Along
the way, we show you how to use a custom class-based API that simplifies the way
that you work with the logging framework.

446

Logging and Tracing13

13.1 Introducing the Business Application Log

The BAL framework is a comprehensive logging framework that can be used to
generate persistent logs. Unlike other logging frameworks that use a file-based per-
sistence mechanism, the BAL framework stores log messages in the SAP NetWeaver
AS ABAP system database. This approach makes it possible to update, search, filter,
and display logs quickly and easily.

In this section, we introduce you to the BAL and show you how to configure and
interact with it using the standard API. We’ll then use this information as a spring-
board for designing a custom logging framework in Section 13.2, Developing a
Custom Logging Framework.

13.1.1 Configuring Log Objects

BALs are organized by application log objects and sub-objects. These objects, along
with a uniquely generated log number and various other metadata, make up a log
header record in table BALHDR. Log header records give the BAL structure, allow-
ing you to perform searches for logs within a given application area, date range,
and so on.

Application log objects are created in Transaction SLG0. When you initially open
this transaction, you’re prompted with a warning indicating that application log
objects are cross-client objects. Figure 13.1 shows the initial screen of Transaction
SLG0. As you can see, an application log object consists of an object name and an
optional short text description.

To demonstrate how the BAL framework works, let’s create a custom application
log object and sub-object for the online bookstore application introduced in Chap-
ter 6, Database Programming. To create a new application log object, perform the
following steps:

1. In Transaction SLG0, click the New Entries button to open the New Entries:
Overview of Added Entries perspective shown in Figure 13.2.

2. In the Object and Object Text columns, enter a name and short text description
for the application log object. When you name your log objects, you’ll want to
keep the name pretty generic. For instance, one of the standard entries provid-
ed by SAP is called ALE. This log object encompasses all logging related to the
Application Link and Enabling framework. For the purposes of our bookstore

447

Introducing the Business Application Log 13.1

example, we’ve chosen to create a log object called ZBOOK. Here, notice the use
of the customer namespace prefix Z. Though Transaction SLG0 only offers a
warning if you attempt to use a disallowed namespace, it’s always a good idea
to create application log objects in a customer namespace to avoid potential col-
lisions down the road. After you’ve selected your name, press the (Enter) key
to confirm your entry.

Figure 13.1 Editing Application Log Objects in Transaction SLG0

Figure 13.2 Creating an Application Log Object — Part 1

3. After you’ve confirmed the log object name, select the record in the table and
double-click the Sub-Objects node in the Dialog Structure on the left side of the
screen. This brings up the Change View “Sub-Objects”: Overview screen shown
in Figure 13.3.

4. To create a sub-object, click on the New Entries button.

448

Logging and Tracing13

Figure 13.3 Creating an Application Log Object — Part 2

5. In the New Entries: Overview of Added Entries screen shown in Figure 13.4,
you must select a name for the sub-object. You can also provide an optional
short text description for the sub-object. At this level, you can get much more
specific about the type of logs you want to create. For instance, in Figure 13.4,
we’ve created a sub-object called ZCATALOG. This sub-object is used to log any
activity related to catalog maintenance for the bookstore.

Figure 13.4 Creating an Application Log Object — Part 3

6. After you’ve configured your log objects, click the Save button to save your
changes. At this point, you’re prompted to select a transport request to track
the configuration changes.

13.1.2 Displaying Logs

Sometimes the easiest way to understand how a software framework such as the
BAL works is to look at the results it produces. You can analyze application logs
in Transaction SLG1. Figure 13.5 shows the initial screen of this transaction. As
you can see, there are many options available to search for a particular application
log instance. For example, in Figure 13.5, we’re using the ZBOOK and ZCATALOG log
objects to search for logs created on 9/29/2009.

449

Introducing the Business Application Log 13.1

Figure 13.5 Selection Screen of Transaction SLG1

Figure 13.6 shows the log entry that matches the selection criteria proposed in
Figure 13.5. As you can see, this log contains various messages with different lev-
els of severity. Here, you can sort the messages, filter by severity, or even output
the messages to a local file. In the upcoming sections, we explain how to produce
these messages using the BAL API.

Figure 13.6 Viewing an Application Log in Transaction SLG1

450

Logging and Tracing13

13.1.3 Organization of the BAL API

One of the primary goals of any logging framework is to maintain a small footprint
and stay out of the way of more important tasks. Therefore, to implement an effi-
cient database-driven logging framework, SAP had to be smart. Rather than incur a
database hit each time a message is logged, the API functions of the BAL give you
the option of collecting these messages in memory so that they can be written to
the database together using the update task.

Table 13.1 highlights some of the API functions provided with the BAL framework;
you can find a comprehensive list of functions in package SZAL. The entry point
into the log framework is the function module BAL_LOG_CREATE. This function cre-
ates a new log instance in memory and associates it with a unique log handle. This
log handle is the key that binds subsequent function calls with your particular log
instance.

Function Name Description

BAL_LOG_CREATE This function is used to create a new log instance in
memory.

BAL_LOG_MSG_ADD This function is used to add a T100-style message to
the log.

BAL_LOG_MSG_ADD_FREE_TEXT This function is used to add a free-form text message
to the log.

BAL_LOG_EXCEPTION_ADD This function is used to log a class-based exception
message.

BAL_DB_SAVE This function is used to save the log to the database.
Here, you have the option of saving the log directly
or in the update task.

Table 13.1 API Functions of the BAL Framework

13.2 Developing a Custom Logging Framework

Given the comprehensive nature of the BAL framework, you might be wondering
why we would want to build a custom logging framework on top of it. The answer
to this question is two-fold:

1. First and foremost, the custom logging framework employs an object-oriented
design that encapsulates various complexities of the BAL framework to sim-

451

Developing a Custom Logging Framework 13.2

plify your interaction with it. Here, a class-based approach keeps track of the
log handle, reduces the amount of code required to invoke BAL API functions,
and so on.

2. Secondly, the custom framework makes it possible to implement additional
configurability for log objects.

In this section, we demonstrate how this class-based logging framework is imple-
mented. We also show you how to configure log severities that affect the runtime
behavior of the framework.

13.2.1 Organization of the Class-Based API

Figure 13.7 contains a UML class diagram depicting the core log framework class
/BOWDK/CL_LOGGER. This class defines various methods for logging and tracing
within a program. As you can see, the names of most of these methods are pretty
intuitive. For instance, the DEBUG() method is used to output a free-form debug-
ging message to the log. Each of the free-form log methods such as DEBUG() also
have a counterpart method that can be used to log a T100-style message to the log
(e.g., DEBUG_MESSAGE(), etc.).

/BOWDK/CL_LOGGER

+ GET_LOGGER() : /BOWDK/CL_LOGGER
+ ENTERING()
+ EXITING()
+ CATCHING()
+ DEBUG()
+ DEBUG_MESSAGE()
+ ERROR()
+ ERROR_MESSAGE()
+ INFO()
+ INFO_MESSAGE()
+ THROWING()
+ WARNING()
+ WARNING_MESSAGE()
+ SAVE()

- LOG_HANDLE : BALLOGHNDL
- BAL_OBJECT : BALOBJ_D
- BAL_SUBOBJECT : BALSUBOBJ

Figure 13.7 UML Class Diagram of Class /BOWDK/CL_LOGGER

In addition to the typical logging methods, class /BOWDK/CL_LOGGER also defines
trace methods such as CATCHING() and THROWING() to trace class-based exceptions
and ENTERING() and EXITING() to track call sequences. As you would expect, the
SAVE() method is used to save the log to the database.

452

Logging and Tracing13

Another method that you might have noticed is the static GET_LOGGER() method.
Rather than allowing you to create a log instance directly via the CREATE OBJECT
statement, class /BOWDK/CL_LOGGER routes instance requests through the GET_LOG-
GER() method so it can keep track of instances in context. This makes it possible to
share a log instance between modules that are executing within the same program
context (i.e., the same internal session).

You can find additional documentation for the methods of class /BOWDK/CL_LOG-
GER in the class documentation available in the Class Builder. This documentation
describes the purpose of method parameters, exceptions that can be raised by the
framework at runtime, and so on.

13.2.2 Configuring Log Severities

In addition to encapsulating log administration tasks, the /BOWDK/CL_LOGGER class
also assigns a severity level to a log instance behind the scenes. This severity level
determines whether or not the logger should output messages of a given type.
For example, if you were to configure the log framework with a severity level of
“Error,” the framework would discard all requests to output debugging messages,
information messages, and so on. In this way, you can turn the logging level up or
down depending upon your needs. For instance, normally logging is turned way
down in productive systems.

You can configure the log severity level for a log object by executing Transaction
/BOWDK/LOG_CONF. Figure 13.8 shows the maintenance screen for this con-
figuration table. As you can see, the table is keyed by the BAL application object
and sub-object described in Section 13.1.1, Configuring Log Objects. For a given
log object, you can then select from the Log Severity drop-down list to choose a
severity level. After this severity level is set, all subsequent log instances use this
severity level to filter out log messages as needed.

Figure 13.8 Configuring Log Severities

453

Case Study: Tracing an Application Program 13.3

13.3 Case Study: Tracing an Application Program

Like many programming tasks, log development requires you to think about
the kinds of information that you need to capture for various stakeholders. For
example, as a developer, you’re probably interested in capturing a program trace.
Administrative types, on the other hand, are probably only interested in looking
at technical errors. In some cases, you may want to split a log into multiple sub-
objects so that particular sub-objects are intended for different audiences.

Irrespective of the target audience, you’ll find that the way that you interact with
the logging framework from a technical perspective is always the same. To dem-
onstrate this, let’s look at how the log framework can be used to trace through an
ABAP program.

13.3.1 Integrating the Logging Framework into an ABAP Program

The report program ZBOOKLOG shown in Listing 13.1 uses the logging framework
to log various milestone events that occur during its execution. This contrived
example program uses the ZBOOK/ZCATALOG log objects defined in Section 13.1.1,
Configuring Log Objects, to output various tracing information as it updates the
bookstore catalog. The heavy lifting for this report is carried out by the local LCL_
CATALOG_BUILDER class.

As you can see in Listing 13.1, class LCL_CATALOG_BUILDER obtains an instance
to the logger in its CONSTRUCTOR() method. This logger instance is then used to
output logging and tracing messages inside method ADD_BOOK(). Here, we’re
tracing the entry and exit points of the method using the ENTERING() and EXIT-
ING() methods, outputting debugging and informational messages using the
DEBUG_MESSAGE() and INFO_MESSAGE() methods, and logging exceptions of type
CX_OS_OBJECT_EXISTING.

REPORT zbooklog.
CLASS lcl_catalog_builder DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 main.

 METHODS:
 constructor RAISING /bowdk/cx_log_exception,
 add_book
 IMPORTING im_isbn TYPE zde_isbn

454

Logging and Tracing13

 im_title TYPE zde_title
 im_publication_date TYPE zde_publish_date,
 log_results.

 PRIVATE SECTION.
 CONSTANTS:
 co_object TYPE balobj_d VALUE 'ZBOOK',
 co_subobj TYPE balsubobj VALUE 'ZCATALOG',
 co_msgid TYPE symsgid VALUE 'ZCA_BOOKSTORE'.

 DATA: logger TYPE REF TO /bowdk/cl_logger.
ENDCLASS.

CLASS lcl_catalog_builder IMPLEMENTATION.
 METHOD main.
 "Method-Local Data Declarations:
 DATA: lo_catalog TYPE REF TO lcl_catalog_builder,
 lo_log_ex TYPE REF TO /bowdk/cx_log_exception.

 "Execute the program:
 TRY.
 "Create an instance of the catalog application:
 CREATE OBJECT lo_catalog.

 "Add some books to the catalog:
 CALL METHOD lo_catalog->add_book
 EXPORTING
 im_isbn = '9781592290499'
 im_publication_date = '20060301'
 im_title = 'Advanced BSP Programming'.

 "Notice the duplicate entries...
 CALL METHOD lo_catalog->add_book
 EXPORTING
 im_isbn = '9781592290789'
 im_publication_date = '20060815'
 im_title = 'Web Dynpro for ABAP'.

 CALL METHOD lo_catalog->add_book
 EXPORTING
 im_isbn = '9781592290789'
 im_publication_date = '20060815'
 im_title = 'Web Dynpro for ABAP'.

455

Case Study: Tracing an Application Program 13.3

 "Persist the log session:
 lo_catalog->log_results().
 CATCH /bowdk/cx_log_exception INTO lo_log_ex.
 MESSAGE lo_log_ex TYPE 'I'.
 RETURN.
 CLEANUP.
 "Persist the log session:
 lo_catalog->log_results().
 ENDTRY.
 ENDMETHOD. " METHOD main

 METHOD constructor.
 "Create an instance of the logger for this application:
 CALL METHOD /bowdk/cl_logger=>get_logger
 EXPORTING
 im_object = co_object
 im_subobject = co_subobj
 RECEIVING
 re_logger = logger.
 ENDMETHOD. " METHOD constructor

 METHOD add_book.
 "Method-Local Data Declarations:
 DATA: lo_os_ex TYPE REF TO cx_os_object_existing.

 logger->entering('add_book()').

 "Create a book persistent object:
 TRY.
 logger->debug_message(im_msg_id = co_msgid
 im_msg_no = '002'
 im_msg_v1 = im_isbn).

 CALL METHOD zca_book=>agent->create_persistent
 EXPORTING
 i_isbn = im_isbn
 i_publication_date = im_publication_date
 i_title = im_title.

 logger->info_message(im_msg_id = co_msgid
 im_msg_no = '003'
 im_msg_v1 = im_isbn).

456

Logging and Tracing13

 CATCH cx_os_object_existing INTO lo_os_ex.
 logger->catching(lo_os_ex).
 ENDTRY.

 logger->exiting('add_book()').
 ENDMETHOD. " METHOD add_book

 METHOD log_results.
 TRY.
 logger->save().
 COMMIT WORK.
 CATCH /bowdk/cx_log_exception.
 ENDTRY.
 ENDMETHOD. " METHOD log_results
ENDCLASS.

START-OF-SELECTION.
 "Execute the catalog load program:
 lcl_catalog_builder=>main().

Listing 13.1 Tracing Through an ABAP Program

To save the log to the database, you must call method SAVE() of class /BOWDK/CL_
LOGGER. This call, along with the subsequent COMMIT WORK statement, is wrapped
up inside the LOG_RESULTS() method of class LCL_CATALOG_BUILDER.

As a rule, you want trap runtime exceptions inside of a TRY statement so that you
can ensure that the log is saved in a CLEANUP block. However, be careful when
committing the changes because you only want to commit the log entries — not a
transaction that might have failed. If in doubt, you may want to refer to Chapter
7, Transactional Programming, to see how you can organize your transactions so
that these two concerns can vary independently.

13.3.2 Viewing Log Instances in Transaction SLG1

Figure 13.9 shows the log generated for the ZBOOKLOG program in Transaction SLG1
when the log severity is configured to “All.” At this level of severity, you can trace
the steps of the program up to the point that an error occurred. To view the details
of this error, select the message and click on the Technical Info button. This brings
up the dialog window shown in Figure 13.10. Here, you can see that an exception
of type CX_OS_OBJECT_EXISTING was raised (purposefully, in this demonstration).

457

Case Study: Tracing an Application Program 13.3

Figure 13.9 Viewing the Log Results in SLG1

Figure 13.10 Viewing the Details of a Log Message in SLG1

458

Logging and Tracing13

13.4 Summary

In this chapter, you learned how to incorporate the BAL logging infrastructure into
your own custom developments. As you’ve seen, this framework can be used to
seamlessly integrate logging and tracing requirements into ABAP applications. The
retained information can prove vital in debugging elusive bugs, tracking security
breaches, or even identifying performance issues. In the next chapter, we look at
how you can interact with the operating system from an ABAP context.

459

A chef can’t do all of his work alone, so he often relies on a sous-chef for
help. Similarly, the ABAP programming language is equipped to do many
things, but performing low-level system tasks isn’t one of its strong points.
Fortunately, ABAP provides a convenient interface for executing operating
system commands and scripts to handle these requirements.

14 Interacting with the Operating System

SAP NetWeaver AS ABAP does such a good job of abstracting its surrounding envi-
ronment that we rarely take the features of its host operating system into account.
Perhaps one of the reasons that we cast these details aside is that we want our solu-
tions to be portable. While this is certainly a worthy goal, it can sometimes cloud
our judgment when it comes to good program design. The reality is that ABAP
isn’t particularly good at solving certain problems. Rather than trying to reinvent
the wheel with convoluted solutions, it’s best to solve these problems with the
right tool. And sometimes, that tool is sitting on the operating system just waiting
to be leveraged.

In this chapter, we show you how to interact with the host operating system of
SAP NetWeaver AS ABAP. In particular, we introduce you to a framework that SAP
provides as part of the standard distribution to define external commands in a
highly portable manner. After we explain the basics of this framework, we develop
a case study that demonstrates how to define your own external command and
execute it in an ABAP program.

14.1 Programming with External Commands

In this section, we show you the basics of programming with external commands
in ABAP. Unlike other programming interfaces provided in ABAP, there is no built-
in language statement that you can use to execute external commands. Instead, you
must define these commands within the system so that they can be executed via
standard API functions. In the upcoming subsections, we show you how to config-
ure external commands in the system and leverage those commands in ABAP.

460

Interacting with the Operating System14

14.1.1 Maintaining External Commands

External commands are maintained in Transaction SM69. Figure 14.1 shows the
initial screen of this transaction. As you can see, quite a few commands are prede-
livered by SAP in every NetWeaver system; consequently, it’s always a good idea
to see if SAP has already configured the command you’re looking to execute rather
than creating a new command definition from scratch.

Figure 14.1 Maintaining External Commands in Transaction SM69

To see how OS commands are configured, let’s look at a common command avail-
able on any SAP NetWeaver AS ABAP host: the PING command. If you aren’t famil-
iar with the PING command, it’s a tool that network administrators use to deter-
mine whether or not the system can access a particular host over an IP network.
Figure 14.2 shows how the PING command is configured inside Transaction SM69.
You can get to this perspective by selecting a command in the table view shown
in Figure 14.1, and then clicking on the Display button in the toolbar. As you can
see in Figure 14.2, the definition of an external command is broken up into two
distinct parts. In the Command group box, you must configure the following:

461

Programming with External Commands 14.1

EE In the Command name field, you must assign a unique name to the command.
This name must be defined in the proper namespace (i.e., prefixed with a Y or
Z for the customer namespace, etc.).

EE The Operating System field defines the operating system or systems that sup-
port this command. In the case of the PING command, the generic ANYOS value
was assigned to indicate that the PING command can be run on any host operat-
ing system. However, because some external commands are OS-specific, the
qualification is necessary.

EE The Type field refers to whether or not the command was defined by SAP or a
customer.

Figure 14.2 Definition of the PING Command

The actual definition of the command occurs within the Definition group box.
Here, you can configure the following:

EE In the Operating System Command field, define the command to be executed.
This can be a built-in OS command, a path to an executable on the host system,
and so on. Essentially, most anything that you can execute from the command
line of the OS is fair game here.

462

Interacting with the Operating System14

EE In the Parameters for Operating System Command field, you can define param-
eters to be passed to the OS command at runtime. Here, keep in mind that
these parameters are static parameters that will always be passed to the
command.

EE If you want to allow dynamic parameters to be passed into the command, you
need to select the Additional Parameters Allowed checkbox. These parameters
are passed to the command at runtime using the API functions.

EE The Trace checkbox determines whether or not you want the framework to
turn on a trace when the command is being executed.

EE In the Check Module input field, you can plug in a function module that is
called by the framework to validate the external command before executing it.
This function module must match the signature of the SXPG_DUMMY_COMMAND_
CHECK function module provided with the system. Inside this module, you have
an opportunity to check dynamic parameters, and so on to determine whether
or not the command should be executed. If an exception is raised by the check
module, the external command isn’t executed.

14.1.2 Restricting Access to External Commands

External commands can be very powerful and, if not used correctly, dangerous.
Therefore, it’s important to protect access to these resources so that they aren’t
abused. This can be achieved using the S_LOG_COM authorization object provided
out of the box by SAP. If you aren’t familiar with authorization objects, you can
learn more about them in Chapter 12, Security Programming. Figure 14.3 shows
the definition of this authorization object in Transaction SU21. As you can see, this
authorization object defines three authorization fields:

EE The COMMAND field refers to the name of the command defined in Transaction
SM69.

EE The OPSYSTEM field refers to the operating system assigned to the command in
Transaction SM69.

EE The HOST field refers to the names of the application server hosts that can be
used to execute the external command. Normally, this field will be configured
with * to allow access to all of the application server hosts within the cluster.

463

Programming with External Commands 14.1

Figure 14.3 Definition of Authorization Object S_LOG_COM

The S_LOG_COM authorization object is checked by the API functions whenever you
try to execute an external command. Therefore, without the proper authorizations,
you won’t be able to execute any external commands.

14.1.3 Testing External Commands

After an external command is configured, you can test it out in Transaction SM69.
To test an external command, select the command and click on the Execute but-
ton in the toolbar (refer to Figure 14.1). Figure 14.4 shows the test screen for the
PING command. Here, you have the option of plugging in test parameters in the
Additional Parameters field. You can also select an execution target to test the com-
mand on other application server hosts.

When you click on the Execute button, the external command is executed, and
you’re navigated to the results screen shown in Figure 14.5. Here, you can see the
return code of the command, as well as the generated output.

464

Interacting with the Operating System14

Figure 14.4 Testing the PING Command in Transaction SM69

Figure 14.5 Results Screen for Test of the PING Command

465

Programming with External Commands 14.1

It’s always a good idea to test out your external commands in Transaction SM69
before implementing the calls in an ABAP program. This is especially true when
you’re executing the external commands within a batch process running in the
background.

14.1.4 Executing External Commands in an ABAP Program

To execute external commands within an ABAP program, you can use the stan-
dard function module SXPG_COMMAND_EXECUTE. To demonstrate how this works,
consider the ZEXTCOMMAND_DEMO report program shown in Listing 14.1. This pro-
gram accepts a host name as a parameter and uses it as an argument to the PING
command. The PING command is executed via a call to the standard API function
SXPG_COMMAND_EXECUTE.

REPORT zextcommand_demo.
CLASS lcl_command_interface DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 execute_command IMPORTING im_command_name
 TYPE sxpgcolist-name
 im_param_string
 TYPE btcxpgpar.
ENDCLASS.

CLASS lcl_command_interface IMPLEMENTATION.
 METHOD execute_command.
 "Method-Local Data Declarations:
 DATA: lv_status TYPE extcmdexex-status,
 lv_retcode TYPE extcmdexex-exitcode,
 lt_output TYPE STANDARD TABLE OF btcxpm.
 FIELD-SYMBOLS:
 <lfs_output> LIKE LINE OF lt_output.

 "Execute the selected command:
 CALL FUNCTION 'SXPG_COMMAND_EXECUTE'
 EXPORTING
 commandname = im_command_name
 additional_parameters = im_param_string
 operatingsystem = 'ANYOS'
 IMPORTING
 status = lv_status
 exitcode = lv_retcode

466

Interacting with the Operating System14

 TABLES
 exec_protocol = lt_output
 EXCEPTIONS
 no_permission = 1
 command_not_found = 2
 parameters_too_long = 3
 security_risk = 4
 wrong_check_call_interface = 5
 program_start_error = 6
 program_termination_error = 7
 x_error = 8
 parameter_expected = 9
 too_many_parameters = 10
 illegal_command = 11
 wrong_asynchronous_parameters = 12
 cant_enq_tbtco_entry = 13
 jobcount_generation_error = 14
 others = 15.

 "Display the results of the command:
 LOOP AT lt_output ASSIGNING <lfs_output>.
 WRITE: / <lfs_output>-message.
 ENDLOOP.
 ENDMETHOD. " METHOD execute_command
ENDCLASS.

PARAMETERS:
 p_host TYPE btcxpgpar LOWER CASE OBLIGATORY.

START-OF-SELECTION.
 "Execute the 'PING' command:
 lcl_command_interface=>execute_command(
 im_command_name = 'PING'
 im_param_string = p_host).

Listing 14.1 Executing External Commands in ABAP

Figure 14.6 shows the selection screen of the ZEXTCOMMAND_DEMO program. When
this program is executed, the selected host name is pinged from the OS level of
the SAP NetWeaver AS ABAP host, and the results are displayed in the standard
list (see Figure 14.7).

467

Case Study: Executing a Custom Perl Script 14.2

Figure 14.6 Calling an External Command from ABAP — Part 1

Figure 14.7 Calling an External Command from ABAP — Part 2

14.2 Case Study: Executing a Custom Perl Script

Now that you have a feel for how external commands are configured and executed
from an ABAP context, let’s see how to create a custom command and put it to
work in your landscape. So far, our focus has been on executing standard OS com-
mands such as the PING command. However, technically speaking, we can execute
just about anything that we can normally execute from the command line. Among
other things, this allows us to tap into rich scripting environments that can make
it possible to automate some very complex maintenance tasks.

One of the most popular languages used for automating system tasks is Perl. In
this section, we show you how to harness the power of Perl in your own develop-
ments. Because the details of Perl programming are outside the scope of this book,
we keep the script simple. As we progress through this example, keep in mind that
the concepts described aren’t limited to Perl; you can easily substitute Python or
any other scripting language if you prefer.

468

Interacting with the Operating System14

14.2.1 Defining the Command to Run the Perl Interpreter

Before you can begin executing Perl scripts via ABAP, you must first define an
external command to execute the Perl interpreter.1 In many ways, the Perl inter-
preter is analogous to the ABAP runtime environment. However, unlike ABAP,
there is no intermediate compilation step in Perl. Rather, you simply define your
Perl script and pass it to the interpreter in source form. The interpreter then trans-
forms the Perl code into an executable format and executes the code on the fly.

To create the external command for the Perl interpreter, perform the following steps:

1. First, open Transaction SM69, and click on the Create button (refer to Figure
14.1).

2. Figure 14.8 shows the Create an External Command perspective of Transaction
SM69. Here, you must assign the command a name (Z_PERL in this example)
and also define the path to the Perl interpreter in the Operating System Com-
mand field.

Figure 14.8 Creating an External Command for the Perl Interpreter

1 Note: This step assumes that the Perl interpreter is already installed in your environment. If your
application server host is based on some flavor of UNIX, then you probably already have a copy
of Perl lying around. If not, you can find out where to obtain a distribution at www.perl.org.

469

Case Study: Executing a Custom Perl Script 14.2

3. Because we’re passing in the target Perl script to execute dynamically, make
sure the Additional Parameters Allowed checkbox is selected.

4. Finally, you can save the Perl command by clicking on the Save button.

14.2.2 Executing Perl Scripts

After the external command is defined for the Perl interpreter, you can execute
Perl scripts in much the same way that we executed the PING command in Listing
14.1. For the purposes of this example, let’s consider a Perl script that can be used
to calculate the total size of a given directory on the application server host. You
might use a script like this to determine whether or not an archive job needs to
be executed, for example.

Listing 14.2 contains an example of a Perl script that calculates the size of a given
directory that is passed in via the command-line arguments. The actual calculation
is performed by a recursive subroutine called get_directory_size. After the direc-
tory size is calculated, the results are written to the standard output — you’ll see
the importance of this in a moment.

#!/usr/bin/perl
Used to patch up file names in a system-agnostic way:
use File::Spec;

Obtain the target directory to scan from the command line
parameters:
my $target_directory = shift @ARGV;

Calculate the directory size:
my $size = &get_directory_size($target_directory);

Output the calculated value to standard output:
print "$size\n";

sub get_directory_size
{
 # Local Data Declarations:
 my($dir) = @_;
 my($size) = 0;
 my($fd);

 # Try to open the provided directory:

470

Interacting with the Operating System14

 opendir($fd, $dir)
 or die "Cannot read from $dir: $!";

 # Iterate (recursively) over each of the files in the
 # directory:
 foreach my $file (readdir($fd))
 {
 # Skip over the "dot" files:
 next if ($file =~ /^\.\.?$/);

 # Patch up the path:
 my($path) = File::Spec->catfile($dir, $file);

 # Accumulate the directory size:
 $size += ((-d $path) ?
 get_directory_size($path) :
 (-f $path ? (stat($path))[7] : 0));
 }

 # Close the directory handle:
 closedir($fd);

 # Return the size of the directory:
 return($size);
}

Listing 14.2 A Perl Script to Calculate the Size of a Directory

As we mentioned earlier, Perl scripts don’t have to be compiled. Therefore, the
only prerequisite for executing the Perl script shown in Listing 14.2 is to place the
source code in a directory that is accessible on the application server host. After
this is in place, you can execute the script using the additional parameters shown
in Figure 14.9. Here, the first parameter refers to the path of the Perl script; the
second refers to the directory whose size we want to calculate. Figure 14.10 shows
the execution results of the script in Transaction SM69. The number in the results
section is the size of the E:\sapdb directory in bytes.

471

Case Study: Executing a Custom Perl Script 14.2

Figure 14.9 Executing the Directory Size Script — Part 1

Figure 14.10 Executing the Directory Size Script — Part 2

To execute the Perl script via ABAP, you must use the SXPG_COMMAND_EXECUTE func-
tion demonstrated in Section 14.1.4, Executing External Commands in an ABAP

472

Interacting with the Operating System14

Program. Listing 14.3 shows an example of this with the report program ZPERL_
DEMO. For the most part, this code is pretty much the same as that demonstrated
earlier in Listing 14.1. However, notice how we’re extracting the directory size.
Because the Perl script in Listing 14.2 outputs the directory size to the standard
output, we can read this data in the EXEC_PROTOCOL table parameter returned by
SXPG_COMMAND_EXECUTE. Given the free-form nature of this table, you can pass back
many kinds of information from the Perl context into the ABAP context (e.g., XML,
etc.).

REPORT zperl_demo.
REPORT zperl_demo.

CLASS lcl_perl_utils DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 get_directory_size IMPORTING im_directory
 TYPE string
 RETURNING VALUE(re_size) TYPE i.

 PRIVATE SECTION.
 CONSTANTS:
 CO_COMMAND_NAME TYPE sxpgcolist-name VALUE 'Z_PERL',
 CO_SCRIPT_NAME TYPE string
 VALUE 'D:\scripts\DirectorySize.pl'.
ENDCLASS.

CLASS lcl_perl_utils IMPLEMENTATION.
 METHOD get_directory_size.
 "Method-Local Data Declarations:
 DATA: lv_param_string TYPE sxpgcolist-parameters,
 lv_status TYPE extcmdexex-status,
 lv_retcode TYPE extcmdexex-exitcode,
 lt_output TYPE STANDARD TABLE OF btcxpm.
 FIELD-SYMBOLS:
 <lfs_output> LIKE LINE OF lt_output.

 "Derive the Perl script parameter string:
 CONCATENATE CO_SCRIPT_NAME im_directory
 INTO lv_param_string SEPARATED BY SPACE.

 "Execute the Perl script:
 CALL FUNCTION 'SXPG_COMMAND_EXECUTE'

473

Case Study: Executing a Custom Perl Script 14.2

 EXPORTING
 commandname = CO_COMMAND_NAME
 additional_parameters = lv_param_string
 IMPORTING
 status = lv_status
 exitcode = lv_retcode
 TABLES
 exec_protocol = lt_output
 EXCEPTIONS
 no_permission = 1
 command_not_found = 2
 parameters_too_long = 3
 security_risk = 4
 wrong_check_call_interface = 5
 program_start_error = 6
 program_termination_error = 7
 x_error = 8
 parameter_expected = 9
 too_many_parameters = 10
 illegal_command = 11
 wrong_asynchronous_parameters = 12
 cant_enq_tbtco_entry = 13
 jobcount_generation_error = 14
 others = 15.

 "Display the results of the command:
 READ TABLE lt_output INDEX 1 ASSIGNING <lfs_output>.
 IF sy-subrc EQ 0.
 re_size = <lfs_output>-message.
 ELSE.
 re_size = 0.
 ENDIF.
 ENDMETHOD. " METHOD get_directory_size
ENDCLASS.

CLASS lcl_perl_test DEFINITION "#AU Risk_Level Harmless
 FOR TESTING. "#AU Duration Short
 PRIVATE SECTION.
 METHODS:
 test_get_dir_size FOR TESTING.
ENDCLASS.

CLASS lcl_perl_test IMPLEMENTATION.

474

Interacting with the Operating System14

 METHOD test_get_dir_size.
 "Method-Local Data Declarations:
 DATA: lv_dir TYPE string,
 lv_dir_size TYPE i.

 "Define a test directory to scan:
 lv_dir = 'E:\sapdb'.

 "Test the directory size calculation routine:
 lv_dir_size =
 lcl_perl_utils=>get_directory_size(lv_dir).

 CALL METHOD cl_aunit_assert=>assert_not_initial
 EXPORTING
 act = lv_dir_size
 msg = 'Directory size calculated incorrectly.'.
 ENDMETHOD.
ENDCLASS.

Listing 14.3 Executing a Perl Script in an ABAP Program

14.3 Summary

This chapter demonstrated how you can interact with the underlying operating
system of the SAP NetWeaver AS ABAP host. This functionality can prove quite
useful in circumstances where you need to automate certain external tasks. In the
next chapter, we look at ways of implementing interprocess communication in
ABAP.

475

There is always a lot happening at once in a kitchen, so chefs must have the
ability to work together and communicate to perform well. In software pro-
gramming, ever-increasing performance demands are addressed by parallel
programming. One of the fundamental prerequisites for implementing par-
allel solutions is the ability for parallel processes to communicate with one
another. In this chapter, we’ll look at ways of implementing interprocess
communication (IPC) in ABAP.

15 Interprocess Communication

The rapid growth of the IT industry in recent years has sent software researchers
scrambling in search of better ways to tackle complex problems. Though there is
no general consensus about how to go about solving these problems, one thing
most researchers can agree on is that centralized solutions can’t possibly scale to
meet the demands of an ever-growing landscape. In their book Swarm Intelligence:
From Natural to Artificial Systems (Oxford University Press, 1999), Eric Bonabeau,
et al. describe how artificial intelligence offers an “…alternative way of designing
‘intelligent’ systems, in which autonomy, emergence, and distributed functioning
replace control, preprogramming, and centralization.” The basic point here is that
it’s unrealistic to build “God-like” programs that are overburdened with too many
responsibilities. It’s better to spread the load across individual agents that are
adept at solving smaller problems. Sometimes these agents can execute their tasks
in parallel, maximizing system resources and improving overall execution time.

In Chapter 16, Parallel and Distributed Processing with RFCs, we look at ways of
distributing the load in ABAP. However, before we do so, we first need to con-
sider how those separate processes communicate with one another. After all, these
tasks often need to be synchronized. Therefore, in this chapter, we show you
how to access and work with the shared memory segment of SAP NetWeaver SAP
NetWeaver AS ABAP.

476

Interprocess Communication15

15.1 SAP NetWeaver AS ABAP Memory Organization

Before we begin exploring techniques for working with shared memory in ABAP,
it’s useful to take a step back and see how memory is organized within SAP
NetWeaver AS ABAP. This knowledge will help you make informed decisions
when it comes to applying one data sharing technique versus another.

Figure 15.1 depicts the basic memory organization of an SAP NetWeaver AS ABAP
instance. As you can see, SAP NetWeaver AS ABAP carves out two slices of data
within the virtual memory of the host operating system: local memory and shared
memory. As an ABAP developer, you may be somewhat familiar with the local
memory segment because this is where much of the data associated with your
running programs resides. Looking carefully at Figure 15.1, you can see that each
work process has a section of local memory associated with it. These memory
areas can be expanded to a certain degree via the heap space available in the local
memory and the extended memory buffer in shared memory.

AS ABAP Instance

Virtual Memory of the OS

Local Memory

Local
Memory

Local
Memory

Local
Memory

Heap
Memory

Shared Memory

Roll
Buffer

Paging
Buffer

SAP
Buffers

Extended
Memory

Work
Process

1

Work
Process

2

Work
Process

N

Figure 15.1 Memory Organization of an SAP NetWeaver AS ABAP Instance

In addition to the local memory associated with individual work processes, an SAP
NetWeaver AS ABAP instance also allocates various buffers within a segment of

477

Data Clusters 15.2

memory collectively referred to as shared memory. Table 15.1 describes the buffer
types allocated within shared memory.

Buffer Type Description

Roll buffer The roll buffer keeps track of user contexts. A user context
contains basic information about a logged-on user such as
personal settings, authorizations, and the programs the user is
currently running.

SAP buffer The SAP buffer area contains system-specific objects such as
generated ABAP code and buffered table data.

Paging buffer The SAP paging buffer contains ABAP objects such as extract
datasets as well as data clusters and shared memory objects.

Extended
memory buffer

The extended memory buffer contains data/objects associated
with users and their currently running programs. In particular,
extended memory is used to store dynamic data objects such as
internal tables, instances of ABAP Objects classes, and so on.

Table 15.1 Description of Buffers Maintained in Shared Memory

For the most part, ABAP developers interact with two of the buffer types listed
in Table 15.1: the extended memory buffer and the paging buffer. As described
in Table 15.1, the extended memory buffer contains dynamic data objects such
as internal tables or instances of ABAP Objects classes. You can think of extended
memory as a large heap of memory that is allocated on a first-come, first-serve
basis. However, despite the fact that dynamic data objects are stored in an area
of shared memory, they can’t be shared between programs running in different
contexts. If you want to share data objects with other programs, you must store
them in the paging buffer. In the next two sections, we show you how to access
the paging buffer from an ABAP context.

15.2 Data Clusters

Prior to release 6.40 of SAP NetWeaver AS ABAP, the only way you could store data
objects in the paging buffer in shared memory was to store them in a data cluster.
A data cluster is a special type of object that aggregates data objects together so
that they can be stored in certain types of storage media. In this section, we show
you how to work with data clusters from an ABAP context.

478

Interprocess Communication15

15.2.1 Working with Data Clusters

Data clusters can only be processed from an ABAP context using a special syntax.
To create a data cluster in ABAP, you use the EXPORT statement whose syntax is
shown in Listing 15.1. Here, you have several syntax variants to choose from,
depending upon the type of data that you want to store in the cluster, as well as
the type of storage media that you want to work with.

EXPORT parameterlist TO medium [COMPRESSION { ON | OFF }].

Listing 15.1 Syntax Diagram of the EXPORT Statement

After a data cluster is created, you can access it using the IMPORT statement. Listing
15.2 shows the basic syntax of the IMPORT statement.

IMPORT parameterlist FROM medium [conversion_options].

Listing 15.2 Syntax Diagram of the IMPORT Statement

To delete a data cluster from a storage medium, you use the DELETE statement, as
shown in Listing 15.3.

DELETE FROM
 { MEMORY ID id } |
 { DATABASE dbtab(ar) [CLIENT cl] ID id } |
 { SHARED MEMORY dbtab(ar) [CLIENT cl] ID id } |
 { SHARED BUFFER dbtab(ar) [CLIENT cl] ID id }.

Listing 15.3 Syntax Diagram for the DELETE Statement

In the upcoming sections, we show you how to use these statements to share data
between ABAP programs. Because this chapter is about interprocess communica-
tion (IPC), we concentrate our focus on the syntax variants that relate to the ABAP
and cross-program memory areas. For a complete description of available syntax
options, perform a keyword search on the EXPORT, IMPORT, and DELETE statements
in the ABAP Keyword Documentation.

15.2.2 Storage Media Types

Table 15.2 describes the storage media types that you can choose from when work-
ing with data clusters. For the purposes of this chapter, we focus our attention on
the ABAP memory and shared memory buffer storage media types.

479

Data Clusters 15.2

Storage Media Description

Byte string When this storage medium is used, the data cluster is written
out to an internal program variable of type XSTRING.

Internal table This storage media type refers to a standard internal table that
contains two columns:

The first column must be of type S (short integer) and contains
the length of the second column in bytes.

The second column must be of type X and contains the actual
contents of the data cluster.

Depending on the size of the second column, the data cluster
may be distributed over multiple rows of the internal table.

ABAP memory This storage media type refers to a special memory area within
the internal session of the currently executing ABAP program
and any programs called from it using the CALL TRANSACTION
or SUBMIT statements. In other words, this memory can be used
(with some restrictions) across a program call stack.

Database table This media type allows you to write a data cluster out to a
database table that adheres to a particular structure. You can
see an example of this structure with the standard INDX table in
the ABAP Dictionary.

Shared memory
buffer

This media type refers to the shared memory segment described
in Section 15.1, SAP NetWeaver AS ABAP Memory Organization.
Unlike ABAP memory, this media type can be shared across
all programs running on the same SAP NetWeaver AS ABAP
instance.

Table 15.2 Storage Media Types for Data Clusters

15.2.3 Sharing Data Objects Using ABAP Memory

Frequently, you may encounter a situation where you need to share data objects
between two or more programs within the same call stack. For instance, let’s imag-
ine that you’ve written a program that calls a BAPI to create some kind of master
data. Now, let’s further suppose that this master data object has been customized
to include certain customer-specific data fields. While some BAPIs provide exten-
sion table parameters to allow you to pass in these fields and process them using
a Business Add-In (BAdI), let’s assume that this BAPI doesn’t afford us this luxury.
Given these constraints, how can we pass in the custom data fields to the BAPI?

480

Interprocess Communication15

One option is to store the data object(s) in the ABAP memory prior to calling
the BAPI module. This special memory area can be read by modules within the
same call stack (or program hierarchy), which means you can pass data from the
following:

EE An executing program to another program that has been called using the SUB-
MIT statement.

EE One dialog module to another.

EE An executing program to a function module.

The syntax diagram contained in Listing 15.4 demonstrates the expanded syntax
of the EXPORT statement when it’s used to store data objects in the ABAP memory.
As you can see, you have some options for how you want to represent the data
objects. The first two syntax variants accomplish the same thing; they allow you
to bind data objects to parameter names of your choosing. The only caveat here is
that the parameter names can’t exceed 255 characters in length. The (ptab) option
allows you to define these data object bindings inside of an index table that uses
name/value semantics. You can learn more about this option in the ABAP Keyword
Documentation for the EXPORT statement.

EXPORT {p1 = dobj1 p2 = dobj2 ...} |
 {p1 FROM dobj1 p2 FROM dobj2 ...} |
 (ptab)
 TO MEMORY ID id.

Listing 15.4 Syntax for the EXPORT Statement Using ABAP Memory

The second part of the syntax described in Listing 15.4 is the designation of the
ABAP memory storage medium. Here, you use the TO MEMORY ID addition of the
EXPORT statement to indicate that you want to export the cluster to ABAP mem-
ory. The id field refers to a flat character object that can’t exceed 60 characters in
length. When defining an ID, give it a meaningful name, but keep in mind that
the namespace of this memory ID is limited in scope to the current program’s call
stack rather than the system as a whole.

To demonstrate how ABAP memory works, let’s take a look at the ZABAPMEM_PRO-
DUCER program shown in Listing 15.5. In this contrived example, we’re calling
the GUID_CREATE function module to simulate the creation of a business docu-
ment. The generated GUID value is then wrapped up in a data cluster and writ-
ten to the ABAP memory under the memory ID MYDOCNO. After the GUID is
stored in memory, ZABAPMEM_PRODUCER then calls another report program called

481

Data Clusters 15.2

ZABAPMEM_CONSUMER using the SUBMIT statement. We look at what happens after
this call in a moment.

REPORT zabapmem_producer.
DATA: guid TYPE guid_16.

START-OF-SELECTION.
* Simulate the creation of a business document by
* generating a GUID value:
 CALL FUNCTION 'GUID_CREATE'
 IMPORTING
 ev_guid_16 = guid.

* Output the generated document number:
 WRITE: / 'Generated GUID is:', guid.

* Create a data cluster to store the GUID in ABAP Memory:
 EXPORT docnum = guid TO MEMORY ID 'MYDOCNO'.

* Call a consumer program to further process the document:
 SUBMIT zabapmem_consumer AND RETURN.

* Try to read from the data cluster stored at the
* memory ID called "MYDOCNO"; Should fail since the
* consumer program deletes the data cluster:
 CLEAR guid.
 IMPORT docnum = guid FROM MEMORY ID 'MYDOCNO'.
 WRITE: / 'Retrieved GUID is:', guid.

Listing 15.5 Sharing Data Objects Using ABAP Memory — Part 1

Listing 15.6 shows how the ZABAPMEM_CONSUMER report program is constructed.
First, it imports the GUID from the MYDOCNO memory ID using the IMPORT state-
ment and writes it to the standard list output. Then, after the GUID is imported,
it deletes the data cluster stored in the MYDOCNO memory ID using the DELETE
statement.

REPORT zabapmem_consumer.
DATA: guid TYPE guid_16.

START-OF-SELECTION.
* Read from the data cluster stored at the
* memory ID called "MYDOCNO":
 IMPORT docnum = guid FROM MEMORY ID 'MYDOCNO'.

482

Interprocess Communication15

 WRITE: / 'Imported document number is:', guid.

* Delete the data cluster from the ABAP memory:
 DELETE FROM MEMORY ID 'MYDOCNO'.

Listing 15.6 Sharing Data Objects Using ABAP Memory — Part 2

Because the ZABAPMEM_PRODUCER program called the ZABAPMEM_CONSUMER program
using the AND RETURN addition of the SUBMIT statement, execution in ZABAPMEM_
PRODUCER continues after ZABAPMEM_CONSUMER is finished running. Looking back at
Listing 15.5, you can see that ZABAPMEM_PRODUCER attempts to re-read the GUID
from the MYDOCNO memory ID. However, because ZABAPMEM_CONSUMER deleted the
data cluster at this memory ID, the IMPORT statement doesn’t find anything there.
You can see evidence of this if you execute the ZABAPMEM_PRODUCER program. Fig-
ure 15.2 shows the list output from the ZABAPMEM_CONSUMER program. Here, you
can see that it did indeed find the generated GUID in the ABAP memory. If you
press the [F3] key, you’ll see the list output of the ZABAPMEM_PRODUCER program.
In this case, notice that no GUID was retrieved via the IMPORT statement (refer to
Figure 15.3).

Figure 15.2 Executing the ZABAPMEM_PRODUCER Program — Part 1

Figure 15.3 Executing the ZABAPMEM_PRODUCER Program — Part 2

15.2.4 Sharing Data Objects Using the Shared Memory Buffer

The data sharing technique described in Section 15.2.3, Sharing Data Objects Using
ABAP Memory, is effective when you want to share data between programs within

483

Data Clusters 15.2

the same call stack. However, sometimes you may need to share data between pro-
grams that aren’t in the same program hierarchy. In this case, instead of storing
the data objects in the ABAP memory, you can store them in the cross-transaction
application buffers of the shared memory.

The syntax diagram contained in Listing 15.7 demonstrates the syntax of the
EXPORT statement when shared memory is used as the storage medium. At first, the
syntax may look a little bit strange because there are seemingly two options that
refer to the same thing: SHARED MEMORY and SHARED BUFFER. Technically speaking,
both of these options refer to the same shared memory buffer described in Section
15.1, SAP NetWeaver AS ABAP Memory Organization. However, internally, they
refer to separate areas of the shared memory buffer that are managed differently.
These subtle differences are evident when you start to run out of buffer space. In
the case of the buffer referred to by the SHARED MEMORY option, the ABAP runtime
environment restricts you from writing to a full buffer until you explicitly clean
up some space using the DELETE FROM SHARED MEMORY statement. Conversely, if the
buffer referred to by the SHARED BUFFER option becomes full, the system automati-
cally cleans up data objects that are infrequently used. As you can imagine, this
kind of behavior can lead to some unexpected occurrences if you’re not careful.
You can configure the size of these buffer areas using the profile parameters rsdb/
esm/buffersize_kb and rsdb/obj/buffersize, respectively.

EXPORT {p1 = dobj1 p2 = dobj2 ...} |
 {p1 FROM dobj1 p2 FROM dobj2 ...} |
 (ptab)
 TO { SHARED MEMORY dbtab(ar) [FROM wa]
 [CLIENT cl] ID id } |
 { SHARED BUFFER dbtab(ar) [FROM wa]
 [CLIENT cl] ID id }.

Listing 15.7 Syntax for EXPORT Statement Using Shared Memory

Now that you understand the differences between the shared memory buffer
types, let’s take a look at the rest of the syntax shown in Listing 15.7:

EE The dbtab specification refers to an ABAP Dictionary table that defines the struc-
ture of the memory table to be created in the shared memory buffer. Here, the
ABAP Dictionary table is used for reference purposes only; no data is actually
stored in the table at runtime when this variant of the EXPORT statement is used.
The table in question must follow the rules outlined in the ABAP Keyword
Documentation for the EXPORT statement. Rather than define a custom table,
many developers simply work with the default INDX table provided by SAP.

484

Interprocess Communication15

EE After the dbtab specification, you must select a two-character line area identi-
fier (i.e., the (ar) specification in Listing 15.7) that effectively partitions the
memory table much like the MANDT field organizes client-specific tables in the
ABAP Dictionary.

EE After you define the structure and organization of the memory table, you have
the option of including a work area whose structure mirrors that of the data-
base table specified with the dbtab option. Here, you can define various types
of metadata (i.e., date/timestamps, user name, program, etc.) that other pro-
grams can read during the import process.

EE You also have the option of specifying a client using the CLIENT addition. If you
bypass this option, the system implicitly selects the current client for you
behind the scenes.

EE Lastly, the ID option allows you to specify an identifier for the data cluster in
shared memory. One thing to keep in mind here is that, unlike the identifiers
used to tag data clusters in ABAP memory, these identifiers have a global scope
within the application server instance. Therefore, you must make sure that you
choose your identifiers carefully.

If you’re still confused about the syntax outlined in Listing 15.7, perhaps an exam-
ple will help clear things up. The report program ZSHMEM_PRODUCER shown in List-
ing 15.8 generates a GUID using the GUID_CREATE function module, and outputs
the GUID to shared memory using the EXPORT statement. In the process, it also fills
out various metadata in a work area of type INDX. Here, we’re specifying the name
of the user that created the data cluster, the executing program, and the date the
data cluster was created.

REPORT zshmem_producer.
DATA: guid TYPE guid_16,
 wa TYPE indx.

START-OF-SELECTION.
* Simulate the creation of a business document by
* generating a GUID value:
 CALL FUNCTION 'GUID_CREATE'
 IMPORTING
 ev_guid_16 = guid.

* Output the generated document number:
 WRITE: / 'Generated GUID is:', guid.

* Create a data cluster to store the GUID in ABAP Memory:

485

Data Clusters 15.2

 wa-aedat = sy-datum.
 wa-usera = sy-uname.
 wa-pgmid = sy-repid.

 EXPORT docnum = guid
 TO SHARED MEMORY indx(st)
 FROM wa
 ID 'MYDOCNO'.

Listing 15.8 Exporting a Data Cluster to Shared Memory

The ZSHMEM_CONSUMER report program shown in Listing 15.9 demonstrates how
another program in a different work process can come along and read from that
shared memory area using the IMPORT statement. Figure 15.4 shows the output of
the ZSHMEM_CONSUMER report. Here, notice how the metadata created by the ZSH-
MEM_PRODUCER report is read into the wa work area by the IMPORT statement.

REPORT zshmem_consumer.
DATA: guid TYPE guid_16,
 wa TYPE indx.

START-OF-SELECTION.
* Read from the data cluster stored at the
* memory ID called "MYDOCNO":
 IMPORT docnum = guid
 FROM SHARED MEMORY indx(st)
 TO wa
 ID 'MYDOCNO'.

 WRITE: / 'Created by:', wa-usera.
 WRITE: / 'Created on:', wa-aedat MM/DD/YYYY.
 WRITE: / 'Source Program:', wa-pgmid.
 WRITE: / 'Imported document number is:', guid.

Listing 15.9 Importing a Data Cluster from Shared Memory

Figure 15.4 List Output of the ZSHMEM_CONSUMER Report

486

Interprocess Communication15

15.3 Working with Shared Memory Objects

In Section 15.2, Data Clusters, we showed you how to share data objects between
ABAP programs using data clusters. Though data clusters are powerful, they aren’t
without certain limitations:

EE Data clusters don’t support the use of reference types (i.e., instances of ABAP
Objects classes and data references).

EE There are no locking mechanisms for data clusters. This implies that if multiple
programs try to access the same data cluster, the results are unpredictable.

EE There is no support for encapsulating the data objects stored in the data cluster
to control external access. Ideally, we want to surround these data objects with
business logic that performs authorization checks, validations, and so on before
updating or reading the data objects stored in a data cluster.

SAP addressed all of these issues and more when it introduced shared memory
objects in release 6.40 of SAP NetWeaver AS ABAP. In this section, we show
you how to harness the power of shared memory objects in your own custom
developments.

15.3.1 Architectural Overview

Shared memory objects are instances of ABAP Objects classes that can be stored in
a special section of the shared memory buffer whose size is configured using the
abap/shared_objects_size_MB profile parameter. In some respects, the architec-
ture of shared memory objects is similar to that of data clusters in the sense that
the object instances are stored in a special container called a shared memory area.
However, as you’ll soon see, shared memory areas are quite a bit more sophisti-
cated than data clusters.

Shared memory objects are created and manipulated in much the same way that
you interact with normal ABAP Objects classes. Figure 15.5 contains a UML class
diagram that highlights the base components of the shared memory objects API.
From a developer’s perspective, there are two types of classes that you interact
with when working with shared objects: an area class and an area root class.

The area class is a generated class that gets created when you define a shared mem-
ory area in Transaction SHMA. You’ll see how to influence the creation of this class
in Section 15.3.2, Defining Shared Memory Areas. The ZCL_AREA class shown in
Figure 15.5 illustrates the API of a generated area class. In the upcoming sections,
you’ll see how many of these methods work in common usage scenarios. How-

487

Working with Shared Memory Objects 15.3

ever, before we move on from area classes, it’s important to understand exactly
what they represent.

CL_ABAP_MEMORY_AREA

+ GET_HANDLE_BY_OREF()
+ GET_HANDLE_BY_DREF()
+ GET_HANDLE_BY_DATA()
+ IS_SHARED()
+ IS_VALID()
+ IS_ACTIVE_VERSION()
+ HAS_ACTIVE_PROPERTIES()
+ GET_DETACH_INFO()

CL_SHM_AREA

+ DETACH_ALL_AREAS()
+ MULTI_ATTACH()
+ DETACH()
+ DETACH_COMMIT()
+ DETACH_ROLLBACK()
+ GET_LOCK_KIND()
+ GET_ROOT()

<<Shared Memory Area>>
ZCL_AREA

+ GET_GENERATOR_VERSION()
+ ATTACH_FOR_READ()
+ ATTACH_FOR_WRITE()
+ ATTACH_FOR_UPDATE()
+ DETACH_AREA()
+ INVALIDATE_INSTANCE()
+ INVALIDATE_AREA()
+ PROPAGATE_INSTANCE()
+ PROPAGATE_AREA()
+ FREE_INSTANCE()
+ FREE_AREA()
+ GET_INSTANCE_INFOS()
+ BUILD()
+ SET_ROOT()

<<interface>>
IF_SERIALIZABLE_OBJECT

Used to handle
displacement

+ BUILD()

<<interface>>
IF_SHM_BUILD_INSTANCE

Defines interface for
automatic area building;
Can be implemented by

any class, but normally it
will be implemented by

the root class

<<contains>>

<<
us

e>
>

<<Shared Memory Root>>
ZCL_ROOT

- attributes...

+ GET...
+ SET...

Figure 15.5 UML Class Diagram for Shared Memory Objects

As we mentioned earlier, shared memory objects are stored inside of a special
container in the shared memory buffer called a shared memory area. Instances of a
shared memory area are assigned a name and can optionally maintain several ver-
sions internally. The term instance here should not be confused with an instance in
the object-oriented context. Instead, you should simply think of an area instance
as a self-contained section of the shared memory buffer where shared memory
objects can be stored. To access an area instance version from an ABAP context,
you must obtain an area handle. This handle binds the current program (or more
accurately, its internal session) with an area instance version. From a programming
perspective, the area class defines the structure of this area handle. Figure 15.6

488

Interprocess Communication15

illustrates the relationship between an area handle and an area instance version.
You can obtain an instance of an area handle by calling the static ATTACH_FOR_...
methods of the area class.

Shared Memory Buffer

Area Instance Version

Internal Session

Area
Handle

Reference

Area
Handle

Root

Figure 15.6 Relationship Between an Area Handle and an Area Instance

After you’ve obtained an area handle instance, you can use this handle to store
instances of shared memory objects in shared memory. Each shared memory area is
associated with an area root class. The term “root” here connotes that you can build
complex data structures within an area instance version — starting from the root
class and branching outward from its internally defined instance attributes. The only
prerequisite for defining an area root class is that it must have the Shared Memory-
Enabled checkbox selected on the Properties tab of the Class Builder (see Figure
15.7). Otherwise, a root class is basically just like any other ABAP Objects class.

Figure 15.7 Defining Shared Memory-Enabled Classes

489

Working with Shared Memory Objects 15.3

The ZCL_ROOT class depicted earlier in Figure 15.5 illustrates the positioning of
an area root class within the shared memory objects framework. As you can see,
there’s a close relationship between an area class and its assigned area root class.
The signature of the SET_ROOT() method of the area class is customized to receive
instances of the area root class.

The UML class diagram in Figure 15.5 also depicts two optional relationships that
you can define for area root classes: namely the implementation of the IF_SHM_
BUILD_INSTANCE and IF_SERIALIZABLE_OBJECT interfaces. We’ll look at when and
why you might want to implement these interfaces in the next section.

15.3.2 Defining Shared Memory Areas

Before we can begin storing objects in the shared memory buffer, we must first
configure a shared memory area in Transaction SHMA. Shared memory areas are
repository objects that define a template for what a shared memory area instance
will look like inside the shared memory buffer. As you’ll soon see, you have many
options to choose from when configuring shared memory areas. Therefore, to
better understand the implications of each of these settings, we’ll consider the
configuration of a shared memory area in the context of an example. Here, let’s
imagine that we’re creating a conference registration application, and we want to
cache frequently accessed static information, such as conference rooms.

Figure 15.8 shows the initial screen of Transaction SHMA. To define a new shared
memory area, enter an area name in the Area Name input field, and click on the
Create button. As you can see in Figure 15.8, we’ve named the shared memory
area for our “room” entity object ZCL_ROOM_AREA. Here, we’re using the familiar
“CL_” ABAP Objects class name prefix for the area because the system will be
generating an area class with the same name behind the scenes when we save our
changes.

Figure 15.8 Initial Screen of Transaction SHMA

490

Interprocess Communication15

Figure 15.9 shows the configuration screen of Transaction SHMA for the ZCL_ROOM_
AREA area. Table 15.1 describes each of the various properties shown in Figure 15.9
in more detail. As you’ll see, some of these properties are statically defined while
others can be overridden dynamically at runtime.

Figure 15.9 Configuring a Shared Memory Area

Basic Properties

The properties defined in the Basic Properties group box shown in Figure 15.9
directly influence the way that the underlying area class is generated behind the
scenes. As such, these properties are configured statically by developers at build
time. Table 15.3 describes each of these settings in detail.

491

Working with Shared Memory Objects 15.3

Property Description

Root Class Associates the shared memory area with an area root class.
Here, the only prerequisite is that the area root class has
the Shared Memory-Enabled checkbox selected in the Class
Builder (refer to Figure 15.7). In the ZCL_ROOM_AREA shown
in Figure 15.9, we’ve proposed a root class called ZCL_ROOM_
ROOT.

Client-Specific Area Because shared memory is allocated at the application
server level, shared memory areas are client-independent
by default. However, if the Client-Specific Area checkbox is
selected, the API methods of the area class are enhanced to
include a CLIENT importing parameter that can be used to
logically partition the memory area into client-specific silos.

Automatic
AreaStructuring

Normally, an area instance is only created when an ABAP
program explicitly creates one. However, if the Automatic
Area Structuring checkbox is turned on, the system
automatically builds an area instance before it is accessed
via a read operation, and so on. For this to work, you must
specify a class that implements the IF_SHM_BUILD_INSTANCE
interface in the Constructor Class input field in the Dynamic
Properties group box (see Figure 15.9).

Transactional Area If you’re using a shared memory area as a buffer for some
records stored in a database table, it’s important that these
two data stores stay in sync. One way to achieve this kind of
synchronization is to select the Transactional Area checkbox.
In this case, whenever a change is made to an area instance,
the change doesn’t go into effect until a database commit
occurs.

Table 15.3 Basic Properties of a Shared Memory Area

After you’ve defined the basic properties of a shared memory area, you can save
your changes by clicking on the Save button (refer to Figure 15.9). Behind the
scenes, an area class with the same name is generated. Figure 15.10 shows the gen-
erated area class for the ZCL_ROOM_AREA that we’ve been exploring in this section.

492

Interprocess Communication15

Figure 15.10 Viewing the Generated Area Class in the Class Builder

After an area class is generated, keep in mind that any changes you make to the
basic properties of an area cause a change to the underlying area class; you receive
a prompt like the one shown in Figure 15.11 if you attempt to change the basic
properties of a shared memory area in Transaction SHMA after the area class has
been generated. This warning is particularly important because any existing area
instance versions are invalidated whenever the changes to the area are activated.
Suffice it to say that such changes should be well coordinated to avoid any unpleas-
ant side effects. We’ll look at ways to assess the potential impacts of such changes
in Section 15.3.6, Monitoring Techniques.

Figure 15.11 Warning Message for Changes to Basic Properties

493

Working with Shared Memory Objects 15.3

Fixed Properties

The lone property to configure in the Fixed Properties group box is the With
Versioning checkbox shown earlier in Figure 15.9. Normally, area instances only
maintain one version internally: the active version. However, when versioning is
turned on, the default behavior changes, and you can have multiple versions main-
tained within a given area instance. You’ll learn more about the effects of selecting
this option in Section 15.3.5, Area Instance Versioning.

Fixed properties, much like basic properties, are defined statically by developers.
However, when changes are made to fixed properties, the underlying area class
doesn’t have to be regenerated. Such changes should be made with care, however,
because preexisting area instances are invalidated whenever the changes are saved
in Transaction SHMA.

Dynamic Properties

The properties in the Dynamic Properties group box shown earlier in Figure 15.9
influence the lifecycle of the area instance. As we mentioned before, the Construc-
tor Class input field works in conjunction with the Automatic Area Structuring
property to enable the runtime environment to automatically create a default area
instance on demand. This feature comes in handy whenever an ABAP program
tries to access an area instance that doesn’t yet exist.

You can plug in any ABAP Objects class in the Constructor Class input field as long
as it implements the IF_SHM_BUILD_INSTANCE interface. However, most develop-
ers prefer to implement this interface in the root class because it makes logical
sense that this class would know how to initialize itself (and thus, the surrounding
area). Looking back at the UML class diagram in Figure 15.5, you can see that the
IF_SHM_BUILD_INSTANCE interface defines a single method called BUILD() that can
be used to initialize an area instance. You can think of this method like a factory or
default constructor method. If you prefer to invoke this functionality directly, you
can do so by calling the static BUILD() method in the generated area class.

The Displacement Type property determines whether or not area instances can
be displaced in situations where there isn’t enough space in the shared memory
buffer. If the Displacement Possible option is selected, then the runtime environ-
ment has the option to evict area instances that aren’t being used to recuperate
additional space. A less severe alternative here is to select the Displacement Pos-
sible with Backup and Recovery option. In this case, the shared objects inside the
area instance can be restored as long as the root class implements the IF_SERIAL-
IZABLE_OBJECT interface. Consequently, it’s a good idea to always implement the
IF_SERIALIZABLE_OBJECT tag interface when defining root classes.

494

Interprocess Communication15

Runtime Settings

Until now, all of the properties we’ve considered refer to settings that must be
configured at build time. However, when we deploy these shared memory areas
on a physical SAP NetWeaver AS ABAP instance, there are certain runtime settings
that we must consider at deployment time. Table 15.4 describes the runtime settings
that can be configured for a shared memory area.

Property Description

Area Structure This property works in conjunction with the Automatic Area
Structuring property defined in the Basic Properties group box.
Depending on the value of this setting, you can choose from the
following three configuration options to define the proper behavior
at runtime:

No Autostart: When this setting is selected, the Automatic Area
Structuring property must not be selected. In this case, area
instances aren’t created dynamically under any circumstances.

Autostart for Read Request: When automatic area structuring is
turned on, this setting instructs the runtime environment to create
an area instance whenever a read request is made against an area
instance that doesn’t exist.

Autostart for Read Request and Every Invalidation: This setting
instructs the runtime environment to create an area instance
whenever a read request is made against an area that doesn’t exist.
Area instances are also automatically regenerated whenever they are
invalidated by the system. You’ll learn more about invalidation in
Section 15.3.5, Area Instance Versioning.

Area Size This property defines the maximum size of an area in the shared
memory in kilobytes. Whenever a maximum size is defined, the
sum total size of all area instances of this type can’t exceed the
configured value.

Version Size This property defines the maximum size of an area instance version
in kilobytes.

No. of
Versions

This property defines the total number of allowed versions for a
given area instance of this type.

Lifetime This setting can be used to control the lifetime of an area instance.
For more information about this setting, consult the SAP Library
documentation.

Table 15.4 Runtime Settings for Shared Memory Areas

495

Working with Shared Memory Objects 15.3

By default, the initially configured runtime settings are transported with the shared
memory area whenever it’s promoted to other environments. However because
runtime settings are dynamic, they can be overridden in a given environment by
opening Transaction SHMA and selecting the Runtime • Change Runtime Attri-
butes menu option (see Figure 15.12). Figure 15.13 shows the Change Runtime
Settings screen of Transaction SHMA. This screen varies depending on whether
or not the shared memory area is defined as a client-specific area. In this case, the
settings can be configured on a client-by-client basis.

Figure 15.12 Changing Runtime Attributes — Part 1

Figure 15.13 Changing Runtime Attributes — Part 2

15.3.3 Accessing Shared Objects

Now that you understand how shared memory areas are configured, let’s learn
how to interact with them using the generated API methods of the area class. As a
basis for our discussion, we work with the ZCL_ROOM_AREA area class and the ZCL_
ROOM_ROOT area root class introduced in Section 15.3.2, Defining Shared Memory
Areas.

496

Interprocess Communication15

As we mentioned previously, a typical use case for shared memory objects is to
implement some kind of shared buffer or cache within the system. In the case of
our conference registration application, we want to cache information about con-
ference rooms that can be booked for individual sessions. By caching this infor-
mation in shared memory, we can improve performance by avoiding unnecessary
database hits. Of course, this approach doesn’t work in all cases. For example, it
wouldn’t make sense to buffer information about individual sessions in the con-
ference because the times/locations of those sessions would likely change quite a
bit during the registration process.

Structuring the Shared Memory Object

To implement our conference room buffer in shared memory, we’ve defined a
private instance attribute called ROOMS in the ZCL_ROOM_ROOT class, as shown in Fig-
ure 15.14. This attribute is defined using a custom table type called ZTTCA_ROOMS.
Figure 15.15 shows the definition of the ZTTCA_ROOMS table type in the ABAP
Dictionary.

Figure 15.14 Caching Information in the Area Root Class

Figure 15.15 Definition of Table Type ZTTCA_ROOMS

497

Working with Shared Memory Objects 15.3

Normally, the buffered data would come from some kind of persistence store
such as a database table. However, for the purposes of this contrived example,
we simply define some arbitrary room data inside the constructor method of class
ZCL_ROOM_ROOT. Here, we use the structure type ZSCA_ROOM, as shown in Figure
15.16.

Figure 15.16 Definition of Structure Type ZSCA_ROOM

Building the Shared Memory Cache

Now that you know how the conference room buffer is structured in memory, let’s
see how to build the room cache in an ABAP program. The ZSHMO_PRODUCER report
program shown in Listing 15.10 demonstrates how the API methods of the area
class can be used to build this cache. The cache is built in four steps:

1. First, we obtain an area handle by calling the static ATTACH_FOR_WRITE() meth-
od defined in the ZCL_ROOM_AREA area class. Here, we’re passing in an explic-
it instance name (i.e., 'CONF_ROOMS') to identify the target area instance. The
ATTACH_FOR_WRITE() method generates an area handle pointing to this area
instance, and also creates a write lock that allows our program exclusive write
access to the shared memory area. We investigate locks further in Section
15.3.4, Locking Concepts.

2. Next, we create an instance of the ZCL_ROOM_ROOT area root class using the
familiar CREATE OBJECT statement. However, notice how we’re using the AREA
HANDLE addition to associate the area root class with a particular area instance
(i.e., the one created in the previous step).

3. After the area root instance is created, we can bind it to the area instance using
the SET_ROOT() instance method of the area handle.

498

Interprocess Communication15

4. Finally, we can store the shared memory object in shared memory using the
DETACH_COMMIT() method of the area handle. If we had decided that we didn’t
want to go through with the changes, we could have called the DETACH_ROLL-
BACK() method to discard the changes and remove the write lock.

REPORT zshmo_producer.
CLASS lcl_registration_service DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 cache_rooms.
ENDCLASS.

CLASS lcl_registration_service IMPLEMENTATION.
 METHOD cache_rooms.
 "Method-Local Data Declarations:
 DATA: lo_handle TYPE REF TO zcl_room_area,
 lo_root TYPE REF TO zcl_room_root,
 lo_ex TYPE REF TO cx_root.

 "Build a default area instance:
 TRY.
 "Obtain an area handle in write mode:
 lo_handle =
 zcl_room_area=>attach_for_write('CONF_ROOMS').

 "Create the default root object & bind it to the
 "area handle:
 CREATE OBJECT lo_root AREA HANDLE lo_handle.
 lo_handle->set_root(lo_root).

 "Commit the changes:
 lo_handle->detach_commit().
 CATCH cx_shm_error INTO lo_ex.
 "Exception handling goes here...
 ENDTRY.
 ENDMETHOD. " METHOD cache_rooms
ENDCLASS.

START-OF-SELECTION.
 "Cache room information in shared memory:
 lcl_registration_service=>cache_rooms().

Listing 15.10 Storing Room Information in Shared Memory

499

Working with Shared Memory Objects 15.3

After you run the ZSHMO_PRODUCER program, an area instance called CONF_ROOMS
exists in shared memory, containing a shared object that implements our confer-
ence room buffer. In this contrived example, we’re simply creating some arbitrary
room data in the constructor method of the ZCL_ROOMS_ROOT area root class (see
Listing 15.11). In a real-world environment, this data would likely be loaded from
some database table.

METHOD constructor.
* Method-Local Data Declarations:
 FIELD-SYMBOLS:
 <lfs_room> LIKE LINE OF rooms.

* Create a few room records and store them in context:
 APPEND INITIAL LINE TO me->rooms
 ASSIGNING <lfs_room>.
 <lfs_room>-room_no = 100.
 <lfs_room>-description = 'Main Conference Room'.
 <lfs_room>-max_occupants = 100.

 APPEND INITIAL LINE TO me->rooms
 ASSIGNING <lfs_room>.
 <lfs_room>-room_no = 200.
 <lfs_room>-description = 'Testing Room'.
 <lfs_room>-max_occupants = 10.

 APPEND INITIAL LINE TO me->rooms
 ASSIGNING <lfs_room>.
 <lfs_room>-room_no = 300.
 <lfs_room>-description = 'Programming Lab'.
 <lfs_room>-max_occupants = 25.
ENDMETHOD.

Listing 15.11 Initializing the Conference Room Buffer

Reading from the Shared Memory Cache

After the conference room buffer is built, other programs can come along and
access that shared buffer using API methods defined in the area class. This approach
is evidenced by the ZSHMO_CONSUMER report program shown in Listing 15.12. This
program provides a selection screen parameter called P_SEATS that allows users to
search for conference rooms that can accommodate a given number of attendees.

REPORT zshmo_consumer.
CLASS lcl_registration_service DEFINITION.

500

Interprocess Communication15

 PUBLIC SECTION.
 CLASS-METHODS:
 find_room IMPORTING im_seats TYPE i.
ENDCLASS.

CLASS lcl_registration_service IMPLEMENTATION.
 METHOD find_room.
* Method-Local Data Declarations:
 DATA: lo_handle TYPE REF TO zcl_room_area,
 lt_rooms TYPE zttca_rooms,
 lo_ex TYPE REF TO cx_root,
 lv_message TYPE string.
 FIELD-SYMBOLS:
 <lfs_room> LIKE LINE OF lt_rooms.

 "Try to locate a conference room:
 TRY.
 "Obtain an area handle in read mode:
 lo_handle =
 zcl_room_area=>attach_for_read('CONF_ROOMS').

 "Search for rooms that meet the given criteria:
 lt_rooms =
 lo_handle->root->get_rooms_by_size(im_seats).

 "Release the area handle:
 lo_handle->detach().

 "Output the results:
 LOOP AT lt_rooms ASSIGNING <lfs_room>.
 WRITE: / 'Room', <lfs_room>-room_no,
 'seats', <lfs_room>-max_occupants,
 'people.'.
 ENDLOOP.
 CATCH cx_shm_error INTO lo_ex.
 lv_message = lo_ex->get_text().
 MESSAGE lv_message TYPE 'I'.
 ENDTRY.
 ENDMETHOD. " METHOD find_room
ENDCLASS.

PARAMETERS:
 p_seats TYPE i OBLIGATORY.

501

Working with Shared Memory Objects 15.3

START-OF-SELECTION.
 "Look in shared memory to find a conference room:
 lcl_registration_service=>find_room(p_seats).

Listing 15.12 Reading Room Information from Shared Memory

As you can see in Listing 15.12, we’re accessing the CONF_ROOMS area instance via
an area handle. Because we’re only reading from the buffer, we’re obtaining this
handle via a call to the static ATTACH_FOR_READ() method. We’re implementing
our room search via a call to the GET_ROOMS_BY_SIZE() instance method defined
in the ZCL_ROOMS_ROOT area root class. Here, notice that we can use the public ROOT
instance attribute on the area handle to access the shared memory object. The
implementation of the GET_ROOMS_BY_SIZE() method is shown in Listing 15.13.

METHOD get_rooms_by_size.
* Method-Local Data Declarations:
 FIELD-SYMBOLS:
 <lfs_room> LIKE LINE OF rooms.

* Retrieve the set of rooms that are big enough
* to accommodate the requested size:
 LOOP AT me->rooms ASSIGNING <lfs_room>.
 IF <lfs_room>-max_occupants GE im_room_size.
 APPEND <lfs_room> TO re_rooms.
 ENDIF.
 ENDLOOP.
ENDMETHOD.

Listing 15.13 Implementing Method GET_ROOMS_BY_SIZE()

Figure 15.17 shows the selection screen of the ZSHMO_CONSUMER program. Here, you
can see that we’re searching for a room that can accommodate 12 attendees. In the
results screen shown in Figure 15.18, you can see that the GET_ROOMS_BY_SIZE()
method found two rooms that could hold that many people.

Figure 15.17 Searching the Room Buffer for Conference Rooms — Part 1

502

Interprocess Communication15

Figure 15.18 Searching the Room Buffer for Conference Rooms — Part 2

Implementing Automatic Area Structuring

Now that you’ve seen a fully functional example demonstrating the use of shared
objects, let’s take a step back and look at how we could improve on our design.
One of the limitations of the current approach is that the producer must cre-
ate the buffer before the consumer tries to access it; otherwise, a runtime error
occurs. Ideally, we want to initialize our buffer on demand using lazy initializa-
tion techniques. Fortunately, SAP provides exactly what we’re looking for with the
Automatic Area Structuring property described in Section 15.3.2, Defining Shared
Memory Areas.

Figure 15.19 shows the changes we must make to our ZCL_ROOM_AREA to enable
automatic area structuring. We’ve turned on automatic area structuring for read
requests and every area instance invalidation. Rather than define the constructor
class elsewhere, we’ve simply implemented the IF_SHM_BUILD_INSTANCE interface
in the ZCL_ROOM_ROOT root class.

Listing 15.14 shows the implementation of the IF_SHM_BUILD_INSTANCE~BUILD()
method in class ZCL_ROOM_ROOT. As you can see, the code is almost identical to that
of the ZSHMO_PRODUCER example from Listing 15.10. The only differences lie in the
way that we deal with exceptions and handle transactional areas.

METHOD if_shm_build_instance~build.
* Method-Local Data Declarations:
 DATA: lo_handle TYPE REF TO zcl_room_area,
 lo_root TYPE REF TO zcl_room_root,
 lo_ex TYPE REF TO cx_root.

* Build a default area instance:
 TRY.
* Obtain an area handle in write mode:
 lo_handle =
 zcl_room_area=>attach_for_write(inst_name).

503

Working with Shared Memory Objects 15.3

* Create the default root object & bind it to the
* area handle:
 CREATE OBJECT lo_root AREA HANDLE lo_handle.
 lo_handle->set_root(lo_root).

* Commit the changes:
 lo_handle->detach_commit().

* Also trigger a database commit for transactional areas:
 IF invocation_mode EQ
 cl_shm_area=>invocation_mode_auto_build.
 CALL FUNCTION 'DB_COMMIT'.
 ENDIF.
 CATCH cx_shm_error INTO lo_ex.
 RAISE EXCEPTION TYPE cx_shm_build_failed
 EXPORTING previous = lo_ex.
 ENDTRY.
ENDMETHOD.

Listing 15.14 Implementing Automatic Area Structuring

Figure 15.19 Configuring Automatic Area Structuring

504

Interprocess Communication15

After all of the necessary changes are in place, we can begin to access our confer-
ence room buffer on demand. However, there is one wrinkle to all of this that we
have to account for. Whenever the system discovers that an area instance needs to
be created, it creates that area instance in a separate task. Consequently, the very
first call to ATTACH_FOR_READ() will fail because this method doesn’t wait for the
area instance to be built before returning. The workaround here is to place the
handle request logic inside of a loop statement that gives the system a little bit of
time to go off and initialize the area instance. You can see an example of this kind
of approach in the ZSHMO_AUTO_CONSUMER report program listed in Listing 15.15.

REPORT zshmo_auto_consumer.
CLASS lcl_registration_service DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 find_room IMPORTING im_seats TYPE i.
ENDCLASS.

CLASS lcl_registration_service IMPLEMENTATION.
 METHOD find_room.
 "Method-Local Data Declarations:
 DATA: lo_handle TYPE REF TO zcl_room_area,
 lt_rooms TYPE zttca_rooms,
 lo_ex TYPE REF TO cx_root,
 lv_message TYPE string.
 FIELD-SYMBOLS:
 <lfs_room> LIKE LINE OF lt_rooms.

 "Try to locate a conference room:
 TRY.
 "Obtain an area handle in read mode:
 WHILE lo_handle IS NOT BOUND.
 “Raise an exception if a handle is not bound
 “after three tries:
 IF sy-index GT 3.
 RAISE EXCEPTION TYPE cx_shm_no_active_version
 EXPORTING
 area_name = ‘ZCL_ROOM_AREA’
 inst_name = ‘CONF_ROOMS’.
 ENDIF.

 “Create a “read” handle for the shared memory area:
 TRY.

505

Working with Shared Memory Objects 15.3

 lo_handle =
 zcl_room_area=>attach_for_read(‘CONF_ROOMS’).
 CATCH cx_shm_error.
 WAIT UP TO 1 SECONDS.
 ENDTRY.
 ENDWHILE.

 "Search for rooms that meet the given criteria:
 lt_rooms =
 lo_handle->root->get_rooms_by_size(im_seats).

 "Release the area handle:
 lo_handle->detach().

 "Output the results:
 LOOP AT lt_rooms ASSIGNING <lfs_room>.
 WRITE: / 'Room', <lfs_room>-room_no,
 'seats', <lfs_room>-max_occupants,
 'people.'.
 ENDLOOP.
 CATCH cx_shm_error INTO lo_ex.
 lv_message = lo_ex->get_text().
 MESSAGE lv_message TYPE 'I'.
 ENDTRY.
 ENDMETHOD. " METHOD find_room
ENDCLASS.

PARAMETERS:
 p_seats TYPE i OBLIGATORY.

START-OF-SELECTION.
 "Look in shared memory to find a conference room:
 lcl_registration_service=>find_room(p_seats).

Listing 15.15 Accessing Area Instances On Demand

Abstracting the Shared Memory API Calls

The example programs described throughout the course of this section are for
demonstrative purposes only. As a rule, you’ll want to encapsulate access to shared
memory objects inside of a more generic business object. This shields the com-
plexities of the shared memory objects API from end users.

506

Interprocess Communication15

In fact, we highly recommend that you abstract all of your entity objects inside
of a business object wrapper class. General use of this approach gives you lots of
flexibility to tweak low-level details and in some cases swap out persistence layers.
For instance, imagine that you have a business object that is providing read-only
access to a database table. Depending on the nature of the data, you might be able
to improve performance by substituting shared memory objects for the database-
level access.

15.3.4 Locking Concepts

So far, we’ve side-stepped locking issues when it comes to shared memory areas.
However, now that you understand how to access shared memory areas, it’s time
to take a look at the underlying locking mechanisms that govern concurrent access
to shared memory areas. There are three types of locks that can be set on a shared
memory area:

EE Read lock
A read lock is set when an area handle is bound to an area instance via a call to
the ATTACH_FOR_READ() method of the area class. Many read locks can be cre-
ated against an area instance. However, only one read lock can be set within a
particular internal session. After a read lock is set, you can read from the bound
area instance until the lock is either explicitly removed via a call to the DETACH()
method of the area class or implicitly removed when the program ends. When
one or more read locks are in place, no other program can come along and
change the contents of the area instance because all change lock requests will
be denied. Thus, you can rest assured that any data you’re reading is up to date
and valid.

EE Write lock
A write lock is set whenever an area handle is bound to an area instance via a
call to the ATTACH_FOR_WRITE() method of the area class. A write lock is an
exclusive lock; there can’t be any other read or change locks against an area
instance whenever a write lock is in place. After a write lock is set, you can
read/write to the bound area instance until the lock is removed. Write locks can
be removed by calling the DETACH_COMMIT() or DETACH_ROLLBACK() methods of
the area class. These methods either commit or roll back the changes to the area
instance, respectively. If a program ends without an explicit write lock removal,
the system implicitly calls the DETACH_ROLLBACK() method of the area class.

EE Update lock
An update lock is set whenever an area handle is bound to an area instance via

507

Working with Shared Memory Objects 15.3

a call to the ATTACH_FOR_UPDATE() method. Like write locks, update locks are
exclusive locks; there can’t be any other read or change locks against an area
instance when an update lock is in place. After an update lock is set, you can
read from or update the bound area instance until the lock is removed. Update
locks are removed via the DETACH_COMMIT() or DETACH_ROLLBACK() methods of
the area class. These methods either commit or roll back the changes to the area
instance, respectively. If a program ends without an explicit update lock
removal, the system implicitly calls the DETACH_ROLLBACK() method of the area
class.

As we mentioned earlier, locks make the process of working with shared memory
objects much more predictable. In particular, locks help you avoid phantom reads,
non-repeatable reads, and dirty reads against an area instance. As you program
access to area instances, you should be mindful that locks might be in place when
you attempt to access an area instance. You can deal with these exceptions by
surrounding your attachment method calls within a TRY statement. You can see
the types of exceptions that can be triggered by looking at the signature of the
“ATTACH_FOR_” methods of the area class.

15.3.5 Area Instance Versioning

In Section 15.3.4, Locking Concepts, we introduced you to locking concepts for
shared memory areas. Though we generically described how locks were set against
an area instance, we were not being 100% accurate. To be precise, locks are tech-
nically set against an area instance version. We’ve avoided this intricacy until now
because the area instances we’ve described have only maintained a single version
internally. However, as you learned in Section 15.3.2, Defining Shared Memory
Areas, it’s technically possible for an area instance to maintain multiple versions
internally using area instance versioning.

When area instance versioning is turned on, the rules for locks change. For
instance, you might recall from Section 15.3.4, Locking Concepts, that it’s not
possible to set a change lock on an area instance that currently has one or more
read locks against it. With versioning, the change lock is allowed but with a twist.
Read locks always access the active version of the area instance. When a request
comes along to create a change lock, a copy of the active version is created, and
the change lock is applied to the new version. While that version is being updated,
other read requests work off of the active version. As soon as the changes to the
new version are committed via a call to the DETACH_COMMIT() method of the area

508

Interprocess Communication15

handle, that version replaces the current active version, and any new read locks
are bound against the new version.

To put versioning into perspective, let’s take a look at the lifecycle of an area
instance version, starting with the very first version created. The UML state
machine diagram shown in Figure 15.20 depicts this lifecycle. As you can see,
while an area instance version is being created, it’s initialized with the Building
status. After the changes are committed using the DETACH_COMMIT() method, the
status of the area instance version changes to Active. At this point, all incoming
read locks are associated with this active version. During this time, let’s imagine
that a program comes along and wants to make an update to the area instance.
With versioning turned on, this change lock request is granted, and a new version
is created and initialized with the Building status. When these changes are com-
mitted, the first area instance version is marked with the Obsolete status. In this
case, any preexisting read locks remain associated with the first area instance ver-
sion, while any new read lock requests are associated with the second (or active)
area instance version. After the last read lock is removed on the first area instance
version, its status changes to Expired. At this point, the runtime environment can
delete the area instance version and reclaim its used resources.

Active

Building

Obsolete

Expired

DETACH_COMMIT() Called

New Active Version Created

Last Read Lock Removed

Figure 15.20 UML State Machine Diagram of an Area Instance Version

509

Working with Shared Memory Objects 15.3

Area instance versioning makes it possible to implement more generalized shared
memory programming techniques in which a given area instance is changed fre-
quently. In spite of this, you should be careful because non-coordinated access
could lead to unpredictable results. Generally speaking, SAP recommends that
you use shared memory objects as a type of shared buffer whose contents are
relatively static in nature. Nevertheless, it’s nice to know the capabilities are there
if you need them.

15.3.6 Monitoring Techniques

Normally, whenever we talk about the organization of memory segments, we
speak in very abstract terms. In other words, we can draw pictures like the one
shown earlier in Figure 15.1, but we can’t really see what’s going on at runtime.
However, when it comes to shared memory areas, we can.

You can see how resources are allocated for shared memory areas in Transaction
SHMM. Figure 15.21 shows the initial screen of this transaction. Here, you can
see our ZCL_ROOM_AREA shared memory area selected on the Areas tab. In this over-
view display, you can see the number of instances/versions in memory, as well as
information such as total allocated size, version statuses, and the current number
of read/change locks. You can also narrow your focus in the View drop-down list
to look at lock allocation, user assignments, and so on.

Figure 15.21 Viewing Shared Memory Areas in Transaction SHMM

To look at allocations on an instance-by-instance basis, double-click on the shared
memory area in the areas table depicted in Figure 15.21. This brings up the detailed
screen shown in Figure 15.22. From here, you can drill in further to see detailed
information about a particular instance. For example, Figure 15.23 shows detailed
lock information about the CONF_ROOMS area instance created by the ZSHMO_PRO-
DUCER program demonstrated earlier in Listing 15.10.

510

Interprocess Communication15

Figure 15.22 Viewing Shared Memory Areas by Instances

Figure 15.23 Viewing Detailed Information for an Area Instance

For the most part, the interface of Transaction SHMM is fairly intuitive if you’re
familiar with shared memory objects. If you want to learn more about specific
features of this transaction, you can find detailed information in the SAP Library
available online at http://help.sap.com.

15.4 Summary

In this chapter, you learned how to use the shared memory segment of SAP
NetWeaver AS ABAP to enable interprocess communication between ABAP pro-
grams. While these techniques are often used to pass data to and from user exit
contexts, and so on, they also make it possible to implement sophisticated par-
allelized solutions. In the next chapter, we explore options for parallelization in
ABAP.

511

Usually, whenever chefs try to multitask in the kitchen, the results are
disastrous. However, computers excel at multitasking, making it possible
to achieve exponential performance improvements with just a few tweaks
to the recipe. In this chapter, we show you how to implement parallel and
distributed processing in ABAP.

16 Parallel and Distributed
Processing with RFCs

In 1965, Intel Corporation co-founder Gordon E. Moore published an article enti-
tled “Cramming More Components onto Integrated Circuits” in which he postu-
lated that the number of components that could be placed on a computer chip
would double every two years. Over time, history has shown this theory to be
remarkably accurate when it comes to projecting improvements in hardware capac-
ity. In fact, hardware capabilities have advanced to the point that most software is
unable to take advantage of all of the additional processing power.

Unfortunately, there is no magic button that you can press to optimize your ABAP
code to exploit the untapped potential of the system. Instead, you have to design
your programs from the ground up to use these resources in a sensible man-
ner. Beyond basic performance-tuning techniques, this process often involves the
implementation of parallelized algorithms.

Parallelization and distributed processing are very advanced topics in computer
science; topics that many developers prefer to shy away from. However, when
used properly, parallelization and distributed processing can greatly improve the
performance of certain types of tasks. In this chapter, we show you how the RFC
interface can be used to implement parallelization and distributed processing in
ABAP.

512

Parallel and Distributed Processing with RFCs16

16.1 RFC Overview

If you’ve been around ABAP for a while, you’ve likely interacted with the remote
function call (RFC) interface at some point along the way. For many years, the only
way to interface directly with an SAP system was through the RFC interface. In this
section, we introduce you to the RFC interface and its use within SAP NetWeaver
AS ABAP. However, because this chapter is concerned with parallelization and
distributed processing, we don’t spend much time describing how the RFC inter-
face can be used to enable communication between SAP systems and the outside
world. For more information about these topics, check out SAP Interface Program-
ming (SAP PRESS, 2009).

16.1.1 Understanding the Different Variants of RFC

Before we delve too far into the details of RFC programming in ABAP, it’s useful to
first take a look at the various flavors of RFC that are supported by SAP. Table 16.1
describes the RFC variants provided with release 7.0 of SAP NetWeaver AS ABAP.
Understanding how these variants work will help you figure out how to select the
right tool for the job.

RFC Variant Description

Synchronous RFC
(sRFC)

As the name suggests, sRFC is used to invoke a remote-
enabled function module synchronously. This implies that the
host system must be available at the time of invocation for
the call to work.

An example of sRFC usage is a client program calling a BAPI
function on another system.

Asynchronous RFC
(aRFC)

The use of the term asynchronous here is somewhat
misleading. An aRFC still requires that the receiver system be
available to process the request. However, the difference is
that the client doesn’t block while the function is executing.
Instead, it can proceed with other tasks while the function
module executes in a separate task (session).

The aRFC protocol can be used to implement parallelization
in ABAP programs. We explain how to exploit this
functionality in Section 16.2, Parallel Processing with aRFC.

Table 16.1 Description of RFC Variants

513

RFC Overview 16.1

RFC Variant Description

Transactional RFC
(tRFC)

As opposed to aRFC, tRFC implements true asynchronous
processing. In fact, tRFC semantics guarantee that a function
is executed exactly once in the receiver system, even if the
receiver system is unavailable at the time of invocation. In
this case, the system buffers the LUW in the system database
so that it can be reprocessed later.

The tRFC protocol is most commonly used to transmit and
receive Intermediate Document (IDoc) messages.

Queued RFC (qRFC) While the tRFC protocol guarantees that a given LUW is
executed exactly once in a receiver system, it doesn’t provide
any guarantees about the order in which the LUWs are
processed. To achieve a quality of service of exactly once in
order, you must use the qRFC protocol.

The qRFC protocol implements a queuing mechanism on
top of the tRFC protocol to ensure that LUWs are processed
serially.

qRFC is used extensively by the SAP NetWeaver PI and BI
usage types to throttle messaging. It’s also used to implement
point-to-point middleware among the SAP ERP, SAP CRM,
and SAP SCM Business Suite solutions.

Background RFC
(bgRFC)

The bgRFC protocol was introduced with release 7.0 of SAP
NetWeaver AS ABAP as an eventual replacement to the
tRFC and qRFC protocols. Among other things, bgRFC offers
improved scalability and performance.

Local Data Queue
(LDQ)

Each of the RFC variants described thus far are implemented
in terms of the push principle. With the LDQ variant, data
is stored and extracted on demand by clients using the pull
principle.

The LDQ variant is optimized for mobile clients that
periodically need to synchronize with the server, and so on.

Table 16.1 Description of RFC Variants (Cont.)

16.1.2 Developing RFC-Enabled Function Modules

Each of the RFC variants described in Table 16.1 is based on the invocation of
an RFC-enabled function module. For the most part, there’s not much difference
between a remote-enabled function module and a regular function module. The
most pronounced difference is the configuration of the function’s processing type.

514

Parallel and Distributed Processing with RFCs16

Figure 16.1 shows the configuration of standard BAPI module BAPI_FLIGHT_GETDE-
TAIL in the Function Builder (Transaction SE37). As you can see on the Attributes
tab, this module is configured with the Remote-Enabled Module processing type.

Figure 16.1 Defining Remote-Enabled Functions

In addition to the configuration of the remote-enabled processing type, there are
some additional rules that must be adhered to in order to define an RFC function.
At a high level, these rules are related to the fact that the function may or may not
be called from an ABAP context. Therefore, it doesn’t make sense to pass param-
eters using reference semantics. Instead, parameters for RFC modules are always
passed by value. If this seems confusing, don’t worry; the syntax check lets you
know if you go astray.

Each SAP system comes predelivered with many useful RFC-enabled function mod-
ules out of the box, including BAPIs. To search for RFC-enabled function modules
in your system, you can choose the RFC Modules radio button in the Additional
Selections group box of the function module search help in the Repository Info
System (see Figure 16.2).

515

Parallel Processing with aRFC 16.2

Figure 16.2 Searching for RFC-Enabled Function Modules

16.2 Parallel Processing with aRFC

Now that you’ve had a chance to familiarize yourself with the RFC interface, it’s
time to learn how to put it to work to solve the problem at hand: implementing
parallel processing. In this section, we show you how to implement parallelized
algorithms in ABAP.

16.2.1 Syntax Overview

Before we begin looking at how to implement parallel solutions in ABAP, we need
to take a look at the syntax of a few statements that are used to handle asynchro-
nous processing.

Calling an RFC Function Asynchronously

To call an RFC function asynchronously, you must use the STARTING NEW TASK addi-
tion to the CALL FUNCTION statement. This addition causes the function module

516

Parallel and Distributed Processing with RFCs16

to execute in a separate task whose name is defined by the task identifier. The IN
GROUP addition shown in Listing 16.1 allows you to specify an RFC server group in
which to execute the function module. You’ll learn more about RFC server groups
in Section 16.2.2, Configuring an RFC Server Group.

CALL FUNCTION func STARTING NEW TASK task
 IN GROUP {group|DEFAULT}
 parameter_list
 [{PERFORMING subr}|{CALLING meth} ON END OF TASK]
 EXCEPTIONS
 communication_failure = 1 {MESSAGE msg}
 system_failure = 2 {MESSAGE msg}
 resource_failure = 3
 others = 4.

Listing 16.1 Syntax Diagram for an aRFC Function Call

After you specify the task and RFC server group that you want to process the
function with, you can provide a parameter list in much the same way that you
normally pass parameters to function modules. However, because the function
call is asynchronous, you aren’t allowed to use IMPORTING parameters with aRFCs.
Instead, these values must be retrieved after the function is complete using the
RECEIVE statement, which we cover in a moment. CHANGING and TABLES parameters
are allowed, but they only support the passing of data into the function module
in this context.

To collect the results of the aRFC, you must specify a callback subroutine/method
using the PERFORMING/CALLING...ON END OF TASK addition shown in Listing 16.1.
Within these modules, you can use the RECEIVE statement to obtain the results of
the function call.

Like any function call, aRFCs can trigger various types of exceptions. In addition
to the standard COMMUNICATION_FAILURE and SYSTEM_FAILURE exceptions triggered
by the system when there is a system-level error, aRFCs can also raise an exception
called RESOURCE_FAILURE. A RESOURCE_FAILURE exception occurs when there aren’t
enough resources available to process the request. In Section 16.2.4, Case Study:
Processing Messages in Parallel, we look at ways of dealing with these exceptions
in a logical manner.

517

Parallel Processing with aRFC 16.2

Implementing Synchronization with the WAIT UNTIL Statement

In an ideal world, there would be enough work processes available to process
every LUW independently. Unfortunately, that is rarely the case. Therefore, when
implementing parallel solutions in ABAP, it’s important to try and throttle the
aRFC traffic in accordance with the resources available in the system. From a code
perspective, this implies that we may have to wait for the system to catch up from
time to time. We can implement this wait step using the WAIT UNTIL statement
whose syntax is shown in Listing 16.2.

WAIT UNTIL log_exp [UP TO sec SECONDS].

Listing 16.2 Syntax Diagram of the WAIT UNTIL Statement

As you can see in Listing 16.2, the syntax of the WAIT UNTIL statement is fairly
straightforward. Essentially, it allows the calling program to wait until a given logi-
cal expression becomes true. You also have the option of defining a timeout for the
wait operation using the UP TO sec SECONDS addition.

In Section 16.2.4, Case Study: Processing Messages in Parallel, we see how the
WAIT UNTIL statement can be used to throttle aRFCs and also determine when the
parallel processes are complete.

Retrieving Results from an aRFC Function Call

As you saw earlier in the syntax diagram of an aRFC function call shown in Listing
16.1, the results from an aRFC are retrieved asynchronously after the function is
finished processing. In this case, the system invokes the callback handler routine
specified in the original aRFC function call. Within this routine, you can obtain
the results of the function call using the RECEIVE statement whose syntax is shown
in Listing 16.3.

RECEIVE RESULTS FROM FUNCTION func
 IMPORTING
 ...
 CHANGING
 ...
 TABLES
 ...
 EXCEPTIONS
 communication_failure = 1
 system_failure = 2
 others = 3.
 [KEEPING TASK].

Listing 16.3 Syntax Diagram of RECEIVE Statement

518

Parallel and Distributed Processing with RFCs16

The code excerpt contained in Listing 16.4 demonstrates how the RECEIVE state-
ment is positioned within a callback routine that is registered with the CALL FUNC-
TION statement. Here, notice that the RECEIVE statement doesn’t need to specify
anything else besides the name of the function module it’s retrieving the results
from; the system takes care of the binding of the parameter list to the actual result
values. After you retrieve the results, you can associate them with the original
function call using the taskname identifier provided in the interface of the callback
module.

FORM on_function_complete USING taskname.
* Retrieve the results of the aRFC call:
 RECEIVE RESULTS FROM FUNCTION 'SOME_FUNCTION'
 IMPORTING
 ...
 CHANGING
 ...
 TABLES
 ...
 EXCEPTIONS
 communication_failure = 1
 system_failure = 2
 others = 3.

* Associate the results with the given task name:
 IF sy-subrc EQ 0.
 ...
 ENDIF.
ENDFORM.

Listing 16.4 Using the RECEIVE Statement in a Callback Routine

In addition to the typical parameter list specification, the RECEIVE statement also
allows you to hang on to the context of the called function module after the call-
back routine is finished. In this way, you can leverage the global data in the called
function’s function group in subsequent calls that use the same task name.

16.2.2 Configuring an RFC Server Group

By definition, parallelized algorithms are designed to be resource-intensive. In
other words, instead of executing the tasks of a program step by step in a sin-
gle work process, we want to distribute the load across multiple work processes.
However, we need to be careful here because we don’t want to take hold of every

519

Parallel Processing with aRFC 16.2

available resource in the system and bring the system to its knees. Realistically, we
need to strike a balance between the amount of resources we want to have and the
resources available within the system at the time our program is going to run.

To set some boundaries for parallel processing, you must configure an RFC server
group. RFC server groups define resource-allocation rules, allowing you to appor-
tion work processes from one or more SAP NetWeaver AS ABAP application server
instances. Of course, there are no guarantees that these work processes will be
available at runtime. Rather, the RFC server group sets an upper bound on the
number of processes that can be used by parallelized programs.

RFC server groups are maintained in Transaction RZ12. Figure 16.3 shows the
overview screen of Transaction RZ12. Here, you can create server groups, assign
server instances, delete assignments, and so on.

Figure 16.3 Maintaining RFC Server Groups in Transaction RZ12

Figure 16.4 Defining an RFC Server Group in Transaction RZ12

By default, each SAP NetWeaver AS ABAP instance comes pre-installed with an
RFC server group called parallel_generators. Figure 16.4 shows an example con-
figuration of this server group. Normally, RFC server groups are maintained by
Basis administration staff. However, if you’re curious to know more about how

520

Parallel and Distributed Processing with RFCs16

they are configured, perform a keyword search on the phrase “RFC Server Group”
in the SAP Library documentation available online at http://help.sap.com.

16.2.3 Defining Parallel Algorithms

Given the distributed nature of parallelized solutions, it’s important to have a
plan in place before you start programming. In particular, it’s crucial that roles
and responsibilities are assigned correctly, and that you understand how the aRFC
interface operates conceptually. In this section, we show you how to organize your
code to support parallelization.

In many respects, the flow of a parallelized program in ABAP isn’t all that differ-
ent from a typical report program. To put all this into perspective, let’s consider
an example. Imagine that you want to develop an extract program to transmit a
series of sales order messages to some external system. Because the number of
sales order messages could be quite high, you want to implement a parallelized
solution to improve throughput. The UML sequence diagram in Figure 16.5 illus-
trates the basic flow of this extract program.

loop

SPBT_INITIALIZE

Parallelized Program

get_workload

[For Each LUW]

RFC Function
<< in new task >>

RFC results

process_results

Use the WAIT
UNTIL statement

to synchronize
resources

Server Group

Figure 16.5 UML Sequence Diagram of a Parallelized ABAP Program

521

Parallel Processing with aRFC 16.2

Looking at the UML sequence diagram in Figure 16.5, let’s consider the steps
required to implement the extract program:

1. First, the program calculates its workload using a routine called GET_WORKLOAD.
Here, the program would likely have selection screen parameters that are used
to define a query to select the relevant sales order numbers to be extracted.

2. After the extract data set is defined, we’re ready to process and distribute the
sales orders in parallel. However, before we do so, we need to initialize the
parallel background task (PBT) environment using the standard function mod-
ule SPBT_INITIALIZE. This function binds the program with a particular RFC
server group, provides you with information about the number of free work
processes, and so on.

3. After the PBT environment is initialized, we can begin dispatching the sales
orders. This task is performed in an RFC-enabled function module whose job is
to extract the relevant sales order information, construct an IDoc, and dispatch
the IDoc using standard function MASTER_IDOC_DISTRIBUTE.

4. Because each RFC is executed asynchronously, the controlling program doesn’t
block and wait for the results of the distribution process. Instead, it defines a
callback subroutine in the RFC that the system uses to transmit the results from
the asynchronous call back to the calling program. Here, the calling program
can use the RECEIVE statement to obtain the EXPORTING, CHANGING, and TABLES
parameters from the RFC.

5. Within the looping process, it’s likely that there will be times when there aren’t
enough resources available to process a request. Therefore, we must implement
logic to throttle the requests. This can be implemented using the WAIT UNTIL
statement.

6. Finally, after all of the aRFCs have been implemented and we break out of our
loop, we must once again wait for all of the remaining RFC functions to finish
processing before we output the results of the job. For this task, we must use
the WAIT UNTIL statement.

For the most part, implementing parallelized algorithms in ABAP is as simple as
the flow depicted previously in Figure 16.5. However, before you start developing
your own programs, there are a few design points that you should be mindful of:

EE By definition, parallel processing implies that each LUW must be able to exe-
cute independently. While the IPC features described in Chapter 15, Interpro-
cess Communication, can be used to synchronize tasks to a certain degree, they

522

Parallel and Distributed Processing with RFCs16

add a level of complexity to the solution that might not be manageable. As a
rule, it’s better to avoid parallel processing if there are dependencies between
the LUWs.

EE There are no guarantees that the LUWs are processed in the order that they
were called. This is particularly the case with RFC server groups that are distrib-
uted across multiple application servers. Here, one server might be running
more slowly than the others, and so on.

EE Due to limitations of the aRFC interface, the called RFC module must not
include a function call using the destination BACK.

EE Similarly, the calling program must not change to a new internal session (e.g.,
using the SUBMIT or CALL TRANSACTION statements) after making an aRFC.

16.2.4 Case Study: Processing Messages in Parallel

In Section 16.2.3, Defining Parallel Algorithms, you learned the basics of defining
parallel algorithms in ABAP. Next we show you how to actually implement these
solutions in an ABAP report program called ZPARALLEL_DEMO, which is based on
the sales order extract example described in that section. For brevity’s sake, we
don’t include the source code of this program in its entirety. However, a complete
version is available in the source code bundle available for this book online.

Defining the Remote-Enabled Function Module

Before we begin developing the ZPARALLEL_DEMO program, we need to define an
RFC-enabled function module to process sales orders. To keep things simple, we
simply create a remote-enabled function module called Z_RFC_CREATE_MESSAGE to
simulate this functionality. As you can see in Listing 16.5, this function module is
simply generating a document number using the standard GUID_CREATE function.

FUNCTION Z_RFC_CREATE_MESSAGE.
*"--
""Local Interface:
*" EXPORTING
*" VALUE(EX_MESSAGE_NUMBER) TYPE GUID_16
*" VALUE(EX_PROCESSED_TIME) TYPE SY-UZEIT
*"--
* Simulate the creation of a sales order:
 CALL FUNCTION 'GUID_CREATE'
 IMPORTING
 ev_guid_16 = ex_message_number.

523

Parallel Processing with aRFC 16.2

 ex_processed_time = sy-uzeit.
ENDFUNCTION.

Listing 16.5 Implementation of Z_RFC_CREATE_MESSAGE

Initializing the PBT Environment

After the RFC function has been created, we’re ready to begin developing the par-
allelized solution. This process begins with the call to standard function SPBT_INI-
TIALIZE. However, in an effort to simplify interaction with the PBT framework,
we’ve provided a utilities class called /BOWDK/CL_PBT_UTILITIES that will perform
this task (and others) on our behalf. Listing 16.6 shows how to create an instance
of the PBT utilities service. Here, as you can see, this utility receives two import-
ing parameters: the RFC server group and a task prefix. This task prefix is used to
simplify the creation of task names for individual aRFCs. We’ll see how this works
in a moment.

METHOD execute.
 TRY.
 "Initialize the PBT utilities service:
 CREATE OBJECT pbt_service
 EXPORTING
 im_server_group = im_group
 im_task_prefix = im_prefix.

 "Dispatch the selected number of messages:
 dispatch_messages(im_msgs).
 CATCH /bowdk/cx_pbt_init_error.
 "Exception handling goes here...
 ENDTRY.
ENDMETHOD. " METHOD execute

Listing 16.6 Initializing the PBT Environment

As you can see in Listing 16.6, the CONSTRUCTOR() method of class /BOWDK/CL_
PBT_UTILITIES may raise an exception of type /BOWDK/CX_PBT_INIT_ERROR. This
exception class consolidates various exceptions that might be triggered by function
SPBT_INITIALIZE. If this exception is triggered, then the PBT environment isn’t
ready to process messages, and the program can’t proceed.

524

Parallel and Distributed Processing with RFCs16

Dispatching the Messages

After the PBT environment has been initialized, we can begin the dispatch process
that parcels out the work to the RFC server group resources. Listing 16.7 shows
how we’re dispatching messages using the aRFC interface. Because we aren’t work-
ing with live data, the program uses a parameter called P_MSGS to define how many
messages we want to run the simulation with. This parameter is used to control a
WHILE loop that dispatches the requested number of messages. Inside of the WHILE
loop, we perform the following steps:

1. First, we’re using the WAIT UNTIL statement to make sure that we don’t over-
whelm the RFC server group by dispatching too many requests at once. This
logic is driven by a counter variable called BUSY_PROCESSES that gets increment-
ed when an aRFC is made and decremented when it completes. The logical
expression in the WAIT UNTIL statement says that we should wait to proceed
until the number of active processes is less than the number of free work pro-
cesses available in the RFC server group. Unfortunately, this number of free
work processes isn’t 100% accurate because it’s calculated when the PBT envi-
ronment is initialized in the call to SPBT_INITIALIZE. Nevertheless, it does give
us a pretty good metric in which to attempt to throttle the aRFC requests.

2. Next, we use the instance method GET_NEXT_TASK_NAME() of class /BOWDK/CL_
PBT_UTILITIES to derive a unique task name to associate with our aRFC.

3. After we determine the task name, we can invoke the Z_RFC_CREATE_MESSAGE
function asynchronously using the CALL FUNCTION statement variant outlined
earlier in Listing 16.1. Here, we define the callback method ON_MESSAGE_CRE-
ATED to collect the results of each function call.

4. After we call the RFC function, we need to check the results:

EE If the call was successful, then we want to log some information about the
task in an internal table attribute called TASK_LIST. We also want to incre-
ment a couple of counters: one to keep track of the number of executing
processes, and the other to keep tabs on the number of messages
submitted.

EE If an exception of type COMMUNICATION_FAILURE or RESOURCE_FAILURE is
raised, we need to deal with the possibility that one of the application server
nodes in the RFC server group is unresponsive. In this case, we can use the
GET_DESTINATION_FOR_TASK() and BLOCK_SERVER() instance methods defined
in class /BOWDK/CL_PBT_UTILITIES to remove the server from the resource

525

Parallel Processing with aRFC 16.2

pool. In situations where you’re dealing with live data, you need to make
sure that the failed message gets reprocessed.

EE If an exception of type RESOURCE_FAILURE is triggered, there simply aren’t
enough resources to process the request at the moment. In this case, we want
to wait for some of the aRFC functions to catch up using the WAIT UNTIL
statement.

5. Finally, after all of the messages have been submitted, we break out of the
WHILE statement. However, just because all of the requests have been submitted
doesn’t mean that the RFC functions are finished processing. Therefore, at this
point, we need to execute another WAIT UNTIL statement to wait until all of the
messages have been submitted.

METHOD dispatch_messages.
 "Local Data Declarations:
 DATA: lv_task TYPE char8,
 lv_dest TYPE rfcdest,
 lv_message TYPE char80.
 FIELD-SYMBOLS:
 <lfs_task> LIKE LINE OF task_list.

 "Send the requested number of messages:
 WHILE requested_msg LT im_msgs.
 "Try to keep the throughput in check:
 WAIT UNTIL busy_processes
 LT pbt_service->get_free_work_processes().

 "Derive the next task name:
 lv_task =
 pbt_service->get_next_task_name().

 "Call the RFC module asynchronously to simulate
 "the creation of a message:
 CALL FUNCTION 'Z_RFC_CREATE_MESSAGE'
 STARTING NEW TASK lv_task
 DESTINATION IN GROUP pbt_service->server_group
 CALLING lcl_parallelizer=>on_message_created
 ON END OF TASK
 EXCEPTIONS
 communication_failure = 1 MESSAGE lv_message
 system_failure = 2 MESSAGE lv_message
 resource_failure = 3.

526

Parallel and Distributed Processing with RFCs16

 "Check the results:
 CASE sy-subrc.
 WHEN 0.
 "If the call is successful, go ahead log the
 "message:
 APPEND INITIAL LINE TO task_list
 ASSIGNING <lfs_task>.
 <lfs_task>-task_name = lv_task.
 <lfs_task>-destination =
 pbt_service->get_destination_for_task().
 <lfs_task>-requested_time = sy-uzeit.

 "Keep track of the running work processes:
 ADD 1 TO busy_processes.

 "Also increment the message counter:
 ADD 1 TO requested_msg.
 WHEN 1 OR 2.
 "If we get to here, then there has been some
 "kind of system-level error.
 WRITE: / lv_message.

 "Remove the given destination from the pool
 "of PBT resources:
 lv_dest =
 pbt_service->get_destination_for_task().

 pbt_service->block_server(lv_dest).

 "Check to see if there are resources still
 "available:
 IF pbt_service->has_resources() NE abap_true.
 MESSAGE
 'There are no more PBT resources available!'
 TYPE 'I'.
 RETURN.
 ENDIF.
 WHEN 3.
 "If we get to this point, then all the processes
 "are busy. Thus, we wait until something becomes
 "available:
 WRITE: / 'No resources available...sleeping.'.

527

Parallel Processing with aRFC 16.2

 WAIT UNTIL processed_msg GE requested_msg
 UP TO '1' SECONDS.
 CONTINUE.
 ENDCASE.
 ENDWHILE.

 "Wait until the job(s) are completed before returning:
 WAIT UNTIL processed_msg
 GE requested_msg.
ENDMETHOD. " METHOD dispatch_messages

Listing 16.7 Dispatching Messages in Parallel

Collecting the Results of the Function Calls

In the CALL FUNCTION statement contained in Listing 16.7, we defined a callback
method called ON_MESSAGE_CREATED that gets executed whenever an RFC function
completes. The implementation of this method is contained in Listing 16.8. Here,
we perform three steps:

1. First, we decrement our BUSY_PROCESSES counter attribute because one of the
RFC functions has finished running.

2. Next, we use the provided P_TASK parameter as a key to look up the corre-
sponding task list record. We can then update this record with the results of the
Z_RFC_CREATE_MESSAGE function using the RECEIVE statement.

3. Lastly, we increment the PROCESSED_MSG counter attribute to keep track of the
total number of processed messages.

METHOD on_message_created.
 "Method-Local Data Declarations:
 FIELD-SYMBOLS:
 <lfs_task> LIKE LINE OF task_list.

 "Decrement the running process counter:
 SUBTRACT 1 FROM busy_processes.

 "Update the task list with the results of the message
 "creation process:
 LOOP AT task_list ASSIGNING <lfs_task>
 WHERE task_name EQ p_task.

 RECEIVE RESULTS FROM FUNCTION 'Z_RFC_CREATE_MESSAGE'

528

Parallel and Distributed Processing with RFCs16

 IMPORTING
 ex_message_number = <lfs_task>-document_number
 ex_processed_time = <lfs_task>-processed_time
 EXCEPTIONS
 communication_failure = 1
 system_failure = 2.
 ENDLOOP.

 "Increment the message counter:
 ADD 1 TO processed_msg.
ENDMETHOD. " METHOD on_message_created

Listing 16.8 Collecting the Results of the aRFC Functions

Executing the Simulation Program

Now that you understand how all of the pieces fit together, let’s try to run the
ZPARALLEL_DEMO program and see what happens. Figure 16.6 shows the selection
screen of this program. Here, we’ve selected the default RFC server group par-
allel_generators to run the job. We’ve also created a task name prefix called
IDOC. At runtime, each of the aRFCs are executed with a task name of IDOC0001,
IDOC0002, and so on. Finally, we’ve proposed a message count of 25. Of course,
you can adjust this up and down to see how the system responds.

Figure 16.6 Executing the Simulation Program — Part 1

Figure 16.7 shows the results of the simulation for 25 messages. As you can see,
there were a couple of times where there were not enough resources available to
dispatch the aRFC request. If you run the simulation again for 50 or 100 messages,
you may see more occurrences of this in the output.

529

Summary 16.3

Figure 16.7 Executing the Simulation Program — Part 2

16.3 Summary

This chapter demonstrated ways of implementing parallelized solutions in ABAP.

We hope that you’ve enjoyed the sampling of recipes provided in this cookbook,
and trust that you’ll be able to use, enhance, and combine them in your own
development tasks.

531

The Author

James Wood is the founder and principal consultant of Bow-
dark Consulting, Inc., an SAP NetWeaver consulting and train-
ing organization. With almost 10 years of experience as a soft-
ware engineer, James specializes in custom development in the
areas of ABAP Objects, Java/J2EE, SAP Process Integration, and
the SAP Enterprise Portal.

Before starting Bowdark Consulting, Inc. in 2006, James was
an SAP NetWeaver consultant for SAP America, Inc. and IBM

Corporation, where he was involved in multiple SAP implementations. He holds
a master’s degree in software engineering from Texas Tech University. He is also
the author of Object-Oriented Programming with ABAP Objects (SAP PRESS, 2009).
To learn more about James and the book, please check out his website at www.
bowdarkconsulting.com.

533

A

ABAP
Basic arithmetic operators, 57
Built-in math functions, 58
Date and time processing, 64
Date type, 64
Exponentiation operator, 57
Hexadecimal type, 73
Modulus operator, 57
Numeric operations, 57
Timestamp type, 64
Time type, 64
Unicode changes, 117
Unicode system classes, 121
XSTRING type, 74

ABAP and Unicode, 109
ABAP character types, 27

Built-in types, 27
CLIKE data type, 28
CSEQUENCE type, 28
Static length vs. variable length types,
28

ABAP date and time data types, 64, 65
ABAP Debugger, 445
ABAP dialog programming, 237

Dialog step, 238
Process before output event, 237

ABAP Dictionary
BLOB support, 222
CLOB support, 222
Enhancement categories, 119

ABAP Dictionary structure MATCH_
RESULT, 47
ABAP file interface, 136

Creating files, 141
Dataset, 136
Defined, 136
Logical file and directory API, 155

Logical files and directories, 150
Reading files, 143
Updating files, 145
Working with Unicode, 148

ABAP hexadecimal type
BIT-AND operator, 77
BIT-NOT operator, 77
BIT-OR operator, 77
Bitwise logical operators, 76
BIT-XOR operator, 77
GET BIT statement, 75
Reading and writing bits, 75
SET BIT statement, 75

ABAP math functions
Absolute value function, 58
Base-10 logarithm function, 58
Ceiling function, 58
Complex expressions, 60
Exponential function, 58
Floor function, 58
Fraction function, 58
Hyperbolic trigonometric functions, 58
Inverse trigonometric functions, 58
Natural logarithm function, 58
Sign function, 58
Square root function, 58
Trigonometric function, 58
Truncation function, 58
Usage example, 59

ABAP memory, 479
Accessibility, 480
Usage example, 480

ABAP Objects
Chained method calls, 35
Functional methods, 31
Transient nature, 184

ABAP Object Services, 183
As an ORM tool, 184
Persistence Service, 184

Index

534

Index

Query Service, 198
Transaction Service, 248

ABAP regex classes
Example, 48
Exception types, 51
UML class diagram, 48
Working with submatches, 51

ABAP regular expression engine, 36
Initial release version, 36

ABAP Run Time Type Services, 98
ABAP Serialization XML, 314

asXML, 314
ABAP SHIFT statement

Byte mode, 75
ABAP string processing statements

IN BYTE MODE addition, 114
IN CHARACTER MODE addition, 115
Processing mode, 114

ABAP structures
Alignment bytes, 115

ABAP Web Service Framework
Advanced features, 391
Creating a service consumer, 379
Creating service definitions, 367
Generating a service consumer call,
387
Providing Web services, 366
Service consumer, 378
Transparency, 389

Abstract class, 186
Accessing an external database table, 226
ACID transaction model, 233

Definition, 233
Described, 234
Properties, 233

Adobe Flex, 439
Adobe Flex Framework

Adobe AIR runtime environment, 359
Application Log Object

Creating, 446
Area instance version, 507

Lifecycle, 508
Area instance versioning

Active version, 507

Area root class, 488
Defining, 488

ASCII, 73
ASSIGN COMPONENT statement, 87
ASSIGN statement, 85

Basic syntax, 85
CASTING addition, 89
CASTING addition syntax variants, 91

Asynchronous RFC
aRFC, 512
Retrieving results, 517
Synchronization with the WAIT UNTIL
statement, 516

Atomic commit protocol, 235
Authentication

CAPTCHA, 438
Defined, 420

AUTHORITY-CHECK statement, 433
FOR USER extension, 434
Syntax, 433

Authorization, 420, 423
Defined, 421

Authorization checks, 433
The AUTHORITY-CHECK statement,
433

Authorization fields, 426
Maintaining in Transaction SU20, 426

Authorization objects, 423
Authorization fields, 424
Creating a custom authorization
object, 427
Example, 425
Maintaining in Transaction SU21, 425
Overview, 424

Authorization profile, 423
Automatic area structuring

Interface IF_SHM_BUILD_INSTANCE,
502

B

Background RFC
bgRFC, 513

535

Index

BAL
Application log object, 446
Application log sub-object, 446

Basic Multilingual Plane
BMP, 112

Binary and hexadecimal numbers, 74
Binary number system, 74
Bit, 74

Binary digit, 74
Value range, 74

Bit masking
Example, 78
Other practical examples, 79

Bits and bytes, 73
Bitwise logical operators in ABAP, 77
BLOBS, 222
Boolean methods, 33
Boolean operators

Truth table, 76
Boost Regex library, 36

John Maddock, 36
BSPs, 357

Class CL_HTTP_EXT_BSP, 357
Business Address Services, 394
Business Application Log, 445

API organization, 450
Configuring log severities, 452
Displaying logs, 448
Log handle, 450
Table BALHDR, 446
Transaction SLG0, 446

Business Communication Services, 393
BCS, 393
Configuration, 394
Inbound processing rules, 412
Initial release, 393
Receiving email messages, 411
Usage example, 398
Working with attachments, 403

Business Server Pages
BSPs, 329

Business Workplace
Transaction SBWP, 397

Byte, 74

C

CALL FUNCTION statement
IN UPDATE TASK addition, 241

CALL TRANSFORMATION statement,
310

PARAMETERS addition, 318
Syntax, 310

CAPTCHA, 419, 438
Adobe Flex component, 439
Defined, 439
Integration with BSPs, 440
Integration with Web Dynpro, 443

Change document object
Creating, 269
Defined, 269
Update module, 271

Change documents, 268
Configuring change-relevant fields, 273
Defined, 269
Programming with, 269, 273, 274
Table CDHDR, 277
Table CDPOS, 277

Character codes, 109
Character-encoding system, 109

ASCII, 110
Character set, 110
Code page, 110
Defined, 109
Described, 110
EBCDIC, 111
ISO/IEC 8859, 111
Limitations of early systems, 111, 113

Check modules
Function SXPG_DUMMY_COMMAND_
CHECK, 462

Class /BOWDK/CL_FTP_CLIENT, 175
UML class diagram, 175

Class /BOWDK/CL_HTML_DOCUMENT_
BCS, 409
Class /BOWDK/CL_LOGGER, 451

UML class diagram, 451
Class /BOWDK/CL_SAPSCRIPT_UTILS,
220

536

Index

Class /BOWDK/CL_STRING
Regular expression support, 53
UML class diagram, 32, 53

Class Builder, 33
Transaction SE24, 33

Class CL_ABAP_CHAR_UTILITIES, 129
UML class diagram, 129

Class CL_ABAP_CONV_IN_CE, 121
Stream-based processing model, 123
Structure conversions, 124
UML Class Diagram, 121
Usage example, 121

Class CL_ABAP_CONV_OUT_CE, 124
UML class diagram, 124
Usage example, 124

Class CL_ABAP_CONV_X2X_CE, 126
UML class diagram, 126
Usage example, 126

Class CL_ABAP_FILE_UTILITIES, 149
Class diagram, 149
Description, 150

Class CL_ABAP_MATCHER, 48
Defined, 48

Class CL_ABAP_REGEX, 46
Defined, 48

Class CL_ABAP_TSTMP
UML class diagram, 69

Class CL_ABAP_TYPEDESCR
UML class diagram, 99

Class CL_ABAP_VIEW_OFFLEN, 124
Class CL_ABAP_ZIP, 158

Description, 158
UML class diagram, 158

Class CL_BCS, 394, 396
And COMMIT WORK, 398
Persistent class, 396
Sending immediately, 402

Class CL_CAM_ADDRESS_BCS, 402
Class CL_DISTRIBUTIONLIST_BCS, 397
Class CL_DOCUMENT_BCS, 398

Creating a text message, 402

Class CL_GUI_FRONTEND_SERVICES,
167, 408

Method FILE_OPEN_DIALOG(), 171
Method FILE_SAVE_DIALOG(), 168
Method GUI_DOWNLOAD(), 168
Method GUI_UPLOAD(), 171
UML class diagram, 167

Class CL_HTTP_CLIENT, 338
Class CL_IXML, 291, 292

Method CREATE(), 292
Class CL_OS_SYSTEM, 249

Method INIT_AND_SET_MODES, 250
Class CL_SAPUSER_BCS, 401
Class CX_SY_MATCHER, 51
Class CX_SY_REGEX, 51
CLOBS, 222
CLOSE DATASET statement, 140

Syntax, 140
COMMIT WORK statement, 200, 220,
237

AND WAIT addition, 241
Common Object Request Broker
Architecture

CORBA, 362
Composition technique, 61
Connecting to external databases, 223

Transaction DBCO, 223
CORBA, 362
CREATE DATA statement, 94

TYPE HANDLE addition, 94
CREATE DATA Statement

TYPE HANDLE Addition, 100

D

Database programming, 183
CRUD operations, 198

Data clusters, 477
Built-in statements, 478
Defined, 477

537

Index

Limitations, 486
Storage media types, 478

Data encryption, 435
Data references, 91

Compared to pointers, 92
Declarations, 91
Declaring fully typed data references,
92
De-referencing, 92, 96
De-referencing generically typed data
references, 97
Safety precautions, 95

Data reference variables
Assignments, 96

Date and time calculations, 65
Date and time operations

Offset/length functionality, 66
Date calculations

Example, 66
DELETE DATASET statement, 140

Permissions, 140
Syntax, 140

DELETE statement, 478
Syntax, 478

De-referencing operator (->*), 96
DESCRIBE FIELD statement, 87
Document Object Model, 291

DOM, 291
Usage example, 292

Document Type Definition, 289
DTD, 289

Double-byte encoding schemes
BIG5, 113
SJIS, 113

Dynamic data objects, 477
Dynamic program generation, 106

Creating a report program, 107
Creating a subroutine pool, 106
Pitfalls, 108

Dynamic programming, 81

E

Email, 394
Formatting with HTML, 409

Encryption
Defined, 421

Enqueue Service, 262
Enterprise Services Repository and
Services Registry, 366
ES Repository

Online Documentation, 366
Exception class /BOWDK/CX_FTP_
EXCEPTION, 176
Exception class CX_OS_CHECK_AGENT_
FAILED, 261
Exception class CX_OS_OBJECT_
EXISTING, 200
Exception class CX_OS_SYSTEM, 251
EXEC SQL statement, 226

CONNECT Statement, 226
Syntax diagram, 226

EXPORT statement, 478
Expanded syntax, 480, 483
SHARED BUFFER addition, 483
SHARED MEMORY addition, 483
Syntax, 478

Extensible Markup Language
XML, 283

External commands, 459, 460
Check modules, 462
Configuring the Perl interpreter, 468
Dynamic parameters, 462
Executing in ABAP, 465
Executing Perl scripts, 469
Function SXPG_COMMAND_
EXECUTE, 465
Perl, 467
Python, 467
Reading output, 472
Restricting access, 462
S_LOG_COM authorization object, 462
Static parameters, 462

538

Index

Testing, 463
Transaction SM69, 460

F

Field symbols, 81
Assignments, 85, 86
Casting data objects, 89
Declaration examples, 83
Declarations, 83
Declaration scope, 83
Defined, 82
Dynamic assignments, 86
Illustration, 82
Relationship to pointers, 82
Static assignments, 85
Static assignments with offset/length
specifications, 85
Typing, 83
Verifying assignments, 85
Working with internal tables, 88
Working with structures, 87

File processing on the application server,
135
File processing on the presentation
server, 167

Downloading a file, 168
Uploading a file, 171

File Transfer Protocol, 135, 173
FTP, 173
Secure FTP, 175

FIND statement
Example, 46
Syntax, 46

Function BAL_DB_SAVE, 450
Function BAL_LOG_CREATE, 450
Function BAL_LOG_EXCEPTION_ADD,
450
Function BAL_LOG_MSG_ADD, 450
Function BAL_LOG_MSG_ADD_FREE_
TEXT, 450

Function CHANGEDOCUMENT_READ,
278
Function DB_COMMIT, 237
Function DELETE_TEXT, 222
Function FILE_GET_NAME, 155

Usage Example, 155
Function FILE_GET_NAME_AND_
LOGICAL_PATH, 155
Function FILE_GET_NAME_USING_
PATH, 155
Function FTP_CLIENT_TO_R3, 174
Function FTP_COMMAND, 174
Function FTP_CONNECT, 174

Usage Example, 179
Function FTP_DISCONNECT, 174

Usage example, 181
Function FTP_R3_TO_CLIENT, 174
Function FTP_R3_TO_SERVER, 174

Usage example, 180
Function FTP_SERVER_TO_R3, 174
Function group GRAP, 167
Function group SFIL, 155
Function group SFTP, 174
Function GUID_CREATE, 201
Function MASTER_IDOC_DISTRIBUTE,
521
Function READ_TEXT, 221
Function SAVE_TEXT, 218
Function SCMS_BINARY_TO_XSTRING,
408
Function SCMS_XSTRING_TO_BINARY,
159, 163
Function SPBT_INITIALIZE, 521
Function SXPG_COMMAND_EXECUTE,
465

G

GENERATE SUBROUTINE POOL
statement, 106
GET DATASET statement, 146

Syntax, 146

539

Index

GET REFERENCE OF statement, 93
Example, 93

GUID, 187
Globally Unique Identifier, 187

H

Hexadecimal number system, 74
HTML, 284

Example, 284
HTML entity references, 44
HTTP, 329

Addressability and URLs, 332
Common request methods, 331
DELETE method, 331
Example client program, 336
GET method, 331
Header fields, 333
HEAD method, 331
Hypertext Transfer Protocol, 329
Message format, 333
Overview, 329
POST method, 331
PUT method, 331
Relationship to the TCP/IP , 333
Request entity body, 334
Response entity body, 334
Transport protocol, 333
Uniform interface, 330

I

ICF, 329
Accessing URL query string
parameters, 355
Activating services, 354
Client API, 338
Configuring basic authentication, 351
Debugging with the ABAP Debugger,
358

Definining service nodes in Transaction
SICF, 348
Developing an ICF handler class, 354
Handler modules, 346
Interface IF_HTTP_CLIENT, 338
Interface IF_HTTP_EXTENSION, 348
Interface IF_HTTP_SERVER, 348
Internet Communication Framework,
329
Introduction, 335
Positioning, 336
Service nodes, 348
Testing ICF service nodes, 358
Virtual hosts, 348

ICF handler module
Flow return code, 358

ICM
Functionality, 335
Internet Communication Manager, 335
Positioning, 335

IDocs, 363
Implicit database commits, 237
IMPORT statement, 478

Syntax, 478
Information Age, 27
INSERT REPORT statement, 107
Integration testing, 445
Interface description language

IDL, 363
Interface IF_DOCUMENT_BCS, 398
Interface IF_HTTP_CLIENT, 338
Interface IF_HTTP_EXTENSION

Method HANDLE_REQUEST(), 348
Interface IF_HTTP_REQUEST, 338
Interface IF_HTTP_RESPONSE, 339
Interface IF_INBOUND_EXIT_BCS, 412

Implementation example, 414
Interface IF_IXML, 292
Interface IF_IXML_DOCUMENT, 311

Method CREATE_SIMPLE_ELEMENT(),
297

Interface IF_IXML_ISTREAM, 302, 310
Interface IF_IXML_NODE, 310

540

Index

Interface IF_IXML_OSTREAM, 311
Interface IF_IXML_PARSER, 302
Interface IF_IXML_STREAM_FACTORY,
302
Interface IF_MAPPING, 298

EXECUTE() method, 299
Interface IF_OS_CHECK, 259
Interface IF_OS_FACTORY, 203
Interface IF_OS_TRANSACTION, 249

Methods, 249
Interface IF_OS_TRANSACTION_
MANAGER, 249
Interface IF_RECIPIENT_BCS, 397
Interface IF_SENDER_BCS, 394, 397
Interface IF_SERIALIZABLE_OBJECT,
315, 489

Usage example, 315
Interface IF_SHM_BUILD_INSTANCE,
489, 502
Intermediate Documents, 363

IDocs, 363
Internal tables

Header lines, 88
Using assigned work areas, 89

Internet Message Access Protocol
IMAP, 395

Interprocess communication, 475
Introspection, 81
iXML library, 291

Implementation, 291
Release, 291

iXML library API, 291
UML class diagram, 292

J

Java, 298

K

Kernel methods, 291

L

LOAD-OF-PROGRAM event, 251
Local Data Queue

LDQ, 513
Locators and Streams API, 223
Lock object

As a logical lock, 263
Dequeue function, 265
Enqueue function, 265
Lock Mode, 264
Lock modules, 265
Ownership, 267

Lock objects, 263
Defining, 263
Foreign lock exceptions, 266

Logging, 445
Logical port, 383

Configuration type, 385
Defining in Transaction LPCONFIG,
384
Defining in Transaction
SOAMANAGER, 384
Editing in Transaction SOAMANAGER,
386
Setting the default port, 385

Logical unit of work
Lifecycle, 235
LUW, 235

LOOP AT statement
ASSIGNING addition, 89

Lvalue, 97

M

Mapping Assistant
Business key assignment type, 194
Class identifier assignment type, 194
Creating a persistence map, 192
GUID assignment type, 194
Object reference assignment type, 194
Value attribute assignment type, 194

541

Index

Markup language, 284
Defined, 284
HTML, 284

MathML, 284
Message digest

ABAP implementation, 436
Defined, 435

Message digests
Encrypting passwords, 436
Function MD5_CALCULATE_HASH_
FOR_CHAR, 436
Function MD5_CALCULATE_HASH_
FOR_RAW, 437

N

Native SQL, 223
ABAP Keyword Documentation, 230

Numeric wrapper class, 76

O

Object-oriented programming
Factory pattern, 61

Object-oriented transactions
Creating, 251

Object-relational mapping, 183
Benefits, 184
Mapping, 184
ORM, 184

OLTP systems, 64
OPEN DATASET statement, 136

Access mode, 136
ENCODING DEFAULT addition, 143,
149
Error handling, 138
File permissions, 138
NON-UNICODE addition, 149
Storage mode, 137
Syntax, 136

Unicode changes, 149
UTF-8 addition, 149
WITH SMART LINEFEED addition,
143

Open SQL, 183
DELETE statement, 199
INSERT statement, 199
SELECT statement, 199
UPDATE statement, 199

Operating system, 459

P

Package SIXML_TEST, 304
Paging buffer, 477
Parallel processing, 511

Case study, 522
Class /BOWDK/CL_PBT_UTILITIES,
523
Designing algorithms, 520
Initializing the PBT environment, 523
With RFCs, 515
With the aRFC interface, 520

PERFORM statement
ON COMMIT addition, 242
ON ROLLBACK addition, 244

Perl, 467
Persistence, 183
Persistence classes

Agent classes, 185
Persistence map

Assignment types, 194
Persistence mapping

By business key, 187
By instance-GUID, 187
By instance-GUID and business key,
188
Multiple-table mapping, 188
Single-table mapping, 188
Strategies, 187
Structure mappings, 188

542

Index

Persistence Service, 184
Class agent API, 199
Layer of abstraction, 185
Managing persistent objects, 185
Mapping concepts, 187
Mapping strategies, 187
Multiple-table mapping, 188
Overview, 184
Persistent class, 185
Persistent objects, 184
Single-table mapping, 188
Structure mappings, 188
Support for other storage media, 188

Persistent classes, 185
Creating, 187, 189, 198, 206
Creating in the Class Builder, 190
Instantiation context, 187
Mapping Assistant tool, 192
Mapping by business key, 187
Mapping to a persistence model, 184
Mapping by instance-GUID, 187
Mapping types, 187
UML class diagram, 185

Persistent objects
Creating, 200
Deleting, 203
Managed objects, 186
Reading, 201
Updating, 202
Working with, 187, 198

Pointers
Defined, 82
De-referencing pointers, 82
Relationship to a data object, 92

Post Office Protocol
POP, 395

Process before output
PBO, 237

Programming with external commands,
459

Q

Query Service, 198, 204
Queued RFC

qRFC, 513

R

Random number generators, 61
Class CL_ABAP_RANDOM, 61
Class CL_ABAP_RANDOM_INT, 61
Seed, 61
Usage example, 62

Random numbers, 60
Generating, 60

READ DATASET statement, 139
ACTUAL LENGTH addition, 140
MAXIMUM LENGTH addition, 140
Syntax, 139

READ TABLE statement
ASSIGNING addition, 89

RECEIVE statement, 517
Reference data objects, 91
Reflective programming, 81
Regular expressions, 27, 36

ABAP regular expression classes, 46
Backreferences, 42
Basic metacharacters, 37
Boost Regex library, 36
Character class, 41
FIND statement, 46
Formatting URLs, 44
Ignoring case, 51
Lookahead, 45
Matching ABAP variable names, 40
Matching a word boundary, 41
Metacharacter, 37
Negative lookahead, 45
Parsing delimited file records, 43
Positioning, 37
Positive lookahead, 45

543

Index

POSIX-style regular expressions, 36
Regexes, 40
REPLACE statement, 46
Searching for HTML markup, 41
Syntax, 37
Testing with DEMO_REGEX_TOY, 52
Using ABAP regex classes, 48
Using quantifiers, 41
Using regexes in the FIND and
REPLACE statements, 46
Using regular expressions in ABAP, 46

Remote function call
RFC, 362

Remote method invocation
RMI, 362

Remote procedure call
RPC, 362

REPLACE statement
Example, 48
Syntax, 47

REST
Representational State Transfer, 336

RESTful Web Services, 336, 361
RFC interface, 511
RFCs, 511

Asynchronous call, 515
Example, 513
Finding, 514
Overview, 512
Variants, 512

RFC server group, 518
Example, 519
Maintaining in Transaction RZ12, 519

Roles, 423
ROLLBACK WORK statement, 238
RTTS, 99

Class CL_ABAP_TABLEDESCR, 100
Class CL_ABAP_TYPEDESCR, 99
Class hierarchy, 99
Common uses, 106
Creating a custom elementary type,
102
Creating a Custom Structure Type, 102

Creating data objects dynamically, 100
System classes, 99
Usage in the ALV object model, 104

Rvalue, 97

S

SAP Business Suite, 64
SAP Calendar, 70

API functions, 72
Configuration, 72
Maintenance, 71

SAP Customizing implementation guide,
71

Transaction SPRO, 71
SAPFTP library, 173

Report program RSFTP002, 174
Report program RSFTP005, 174

SAP Interactive Forms, 415
SAP List Viewer, 104

ALV, 104
ALV Object Model, 104
Dynamic creation of field catalog, 104
Field catalog, 104

SAP Lock Concept, 262
Integration with the SAP update
system, 267
Introduction, 262
Lock administration, 267

SAP LUW, 235, 250
Bundling changes in subroutines, 242
Defined, 238
Introduction, 235
Local updates, 244
Update function modules, 239

SAP MaxDB, 225
SAP NetWeaver AS ABAP, 236

As a preemptive multitasking system,
236
Basic architecture, 236
Context switching, 238
Update work process, 238

544

Index

SAP NetWeaver AS ABAP authorization
concept, 419, 422

Authorization, 423
Authorization object, 423
Authorization profile, 423
Authorizations, 430
Overview, 423
Roles, 423
Summary, 434

SAP NetWeaver AS ABAP memory
organization, 476

Illustration, 476
Local memory, 476
Shared memory, 476

SAP NetWeaver Process Integration, 297
Description, 297
SAP PI, 297

SAPscript text object
Text header, 218

SAPscript text object instances
Creating, 218
Deleting, 222
Reading, 221
Updating, 221

SAPscript text objects, 214
Alternatives, 222
API, 218
Defining, 214, 218
Text IDs, 214

Secure Network Communications
SNC, 421

Security model, 419
Key elements, 420

Security programming, 419
Authentication, 420
Authorization, 420
Design points, 422
Developing a security model, 419
Encryption, 421
Least privilege principle, 422
Performing authorization checks, 433
Virus scans, 437

Security roles, 430

Maintaining in Transaction PFCG, 430
Service consumer

ABAP proxy class, 383, 388
Binding to a WSDL file, 381
Design-time repository object, 383
Editing in the Object Navigator, 383
Example, 389
Logical port, 383
Selecting a prefix, 381
Usage scenario in ABAP, 386
Viewing an ABAP proxy class, 389

Service definition, 367
Assigning to a transport request, 370
Configuring runtime settings, 373
Creating with the Service Wizard, 367
Deploying, 370
Editing an endpoint, 375
Editing in the Object Navigator, 372
Name mapping, 370

Service-oriented architecture, 361
SOA, 361

Service provider
Authentication, 375
Downloading a WSDL file, 373
Testing, 376
Transport guarantee, 375

Service Wizard
Accessing in the Object Navigator, 367

SET DATASET statement
Syntax, 146

SET UPDATE TASK LOCAL statement,
244
Shared memory, 475

Extended memory buffer, 477
Paging buffer, 477
Roll buffer, 477
SAP buffer, 477

Shared memory area, 486
Area handle, 487
Area instance versioning, 507
Automatic area structuring, 502
Basic properties, 490
Defined, 487

545

Index

Defining in Transaction SHMA, 486
Dynamic properties, 493
Fixed properties, 493
Monitoring in Transaction SHMM, 509
Naming conventions, 489
Runtime settings, 494

Shared memory area instance
Versioning, 487

Shared memory areas
Defining, 489

Shared memory objects, 486
Abstracting the API, 505
API usage, 495
Architecture, 486
Area class, 486
Area root class, 486
Locking concepts, 506
Read lock, 506
Shared memory area, 486
UML class diagram of base
components, 486
Update lock, 506
Write lock, 506

Simple API for XML, 291
SAX, 291

Simple Mail Transfer Protocol, 395
Defined, 395
SMTP, 395

Simple object access protocol, 362
SOAP, 362

Simple Transformation, 317, 409
ABAP data binding, 319
Addressing data roots, 321
Basic syntax, 325
Creating ST programs, 324
Data roots, 320
Defined, 318
Deserialization, 318
Flow control commands, 322
Main template, 318
Serialization, 318
ST, 318
Symmetry, 323

<tt
attribute> command, 327
cond> command, 322
cond-var> command, 322
deserialize> command, 323
group> command, 323
loop> command, 323, 327
serialize> command, 323
skip> command, 322
switch> command, 322
switch-var> command, 322
value> command, 320

Usage example, 325
SOA, 361, 365

Web Services, 361
SOAP, 362

Comparison to legacy protocols, 362
Defined, 362
HTTP, 363
Introduction, 362
Language independence, 362
Message flow, 364
Message structure, 363
Platform independence, 362
Service Description Language, 365
Transport layer protocol, 363
Using SMTP, 415
XML message format, 362

soapUI, 376
Building a SOAP request, 377
Configuring basic authentication, 377
Running a test, 378

SPLIT statement, 43
SQL, 183
String processing techniques, 27

Built-in statements, 29
String testing, 445
Structure component de-referencing
operator, 97
Structure component selector operator,
87
Structure THEAD, 218
Structure TLINE, 218

546

Index

Synchronous RFC
sRFC, 512

T

Table VBLOG, 238
Tag interface, 315
Text files vs. binary files, 137
Time calculations

Example, 66
Timestamps, 66

Class CL_ABAP_TSTMP, 66
Conversion, 67
CONVERT statement, 67
Daylight savings time, 67
GET TIME STAMP statement, 67
Operations using CL_ABAP_TSTMP, 69
Retrieving system time, 67
TIMESTAMPL type, 66
TIMESTAMP type, 66
UTC format, 64

Tracing, 445
Transactional programming, 233
Transactional RFC

tRFC, 513
Transaction /BOWDK/LOG_CONF, 452
Transaction DBCO, 223

Creating a database connection, 224
Transaction FILE, 151

Creating a logical file path, 152
Physical path assignment, 152

Transaction SCOT, 412
Transaction SE75, 214
Transaction SE93, 251
Transaction Service, 248

Check agents, 259
Compatibility mode, 250
Listening for transaction events, 258
Object-oriented mode, 250
Subtransactions, 257
Transaction manager, 249
Transaction mode, 249

Typical usage scenario, 257
UML class diagram, 249
Update mode, 250

Transaction SHMA, 486
Transaction SICF, 348
Transaction SLG0, 446
Transaction SLG1, 448
Transaction SM12, 267
Transaction SM13, 245
Transaction SM69, 460
Transaction SOAMANAGER, 373

Access the WSDL document for a
service, 373
Service Configuration Editor, 373

TRANSFER statement, 138
Class-based exceptions, 139
LENGTH addition, 139
NO END OF LINE addition, 139
Syntax, 138

Two‘s complement notation, 76

U

UDDI, 365, 366
Description and discovery process, 366
Service registry, 366

UML, 32
Class diagram, 32

Unicode, 73, 109, 148
ABAP development, 113
Basic Multilingual Plane, 112
Code point, 110
Code point conversions, 130
Defined, 111
Impacts to structure operations in
ABAP, 115
Support in SAP systems, 113
Thinking in Unicode, 117
Turning on Unicode checks, 120
Unicode-related changes to ABAP, 114
Using structured fields as character
types, 117

547

Index

Unit testing, 445
Universal Description, Discovery, and
Integration, 366

UDDI, 366
Update function module

Creating, 239
Processing options, 239

Update function modules
Restrictions, 240

Update request log, 245
Deleting entries, 246
Transaction SM13, 245

Update Request Log
Repeating an update, 246

Update task, 238
Dealing with exceptions, 240, 242,
245

URLs
Basic syntax, 332
Encoding with class CL_HTTP_UTILITY,
345
Host name, 332
Path, 333
Port, 332
Protocol specifier, 332
Query string, 333
URL encoding, 345

URLs, 332
UTF-8, 112
UTF-16, 112

Default usage in SAP systems, 114
Surrogate pairs, 112

UTF-32, 112

V

Variability analysis, 81
Variable-length encoding scheme

UTF-8, 112
UTF-16, 112
UTF-32, 112

Variable-length encoding schemes, 112

Virus Scan Interface, 437
Class CL_VSI, 437
Usage example, 437

W

W3C, 305
WAIT UNTIL statement, 517
WDA, 357

Class CL_WDR_MAIN_TASK, 357
Web Dynpro for ABAP

WDA, 329
Web programming, 329

Human web, 329
Programmable web, 329

Web Service Navigator, 376
Web services, 361

ABAP Web Service Framework, 361
Consuming in ABAP, 378
Defined, 361
Discovery with UDDI, 365
Next steps, 391
Overview, 361
Providing in ABAP, 366
Proxy objects, 365
Recommended reading, 391
Self-describing, 365
Service registry, 366
SOAP, 362

Web Services Description Language, 365
WSDL, 365

World Wide Web, 27, 329
WSDL, 365

Client usage, 365
Generation, 365
Type declarations, 365

X

XHTML, 284
Extensible Hypertext Markup
Language, 409

548

Index

XML, 283
Comments, 288
Data modeling, 285
Defined, 283, 284
Defining attributes, 287
Defining elements, 286
Element naming rules, 286
Empty element, 286
Entity references, 288
Extensible Markup Language, 283
Format, 285
Introduction, 283
Meta-markup language, 284
Namespace, 306
Openness, 285
Parsing, 291
Processing instructions, 287
Processing models, 291
Root element, 286
Schema definition, 289
Self-describing documents, 285
Syntax, 285
Syntax example, 285
Unicode encoding, 285
Usage in Web services, 285

XML documents
Validity, 289

XML processing in ABAP, 283
XML Schema, 289, 365

Constraints, 289
Example, 290
Use in standards, 289

XPath, 306
Location path, 306
Location steps, 306
Specification, 306

XSLT, 304
Anatomy of a stylesheet, 307
Calling ABAP modules in a stylesheet,
311
Creating XSLT programs, 308
Declarative approach, 305
Exceptions, 311
Extensible Stylesheet Language
Transformations, 304
Literal result elements, 307
Matching template rules, 307
Processor, 305
Resources, 304
SAP XSLT Processor Reference, 308
Specification, 306
Stylesheet, 305
Support release, 308
Template rules, 305
Testing XSLT programs, 313
Transformation, 305
Transformation Editor, 309, 313
Transformation process, 305

Y

Yahoo! Geocoding Web Service, 336

Z

ZIP archive files, 158
Creation example, 159
Reading example, 163

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do
recommend it, for example, by writing a review on http://www.sap-press.com. If
you think there is room for improvement, please get in touch with the editor of the
book: kelly.harris@galileo-press.com. We welcome every suggestion for improve-
ment but, of course, also any praise!

You can also navigate to our web catalog page for this book to submit feedback or
share your reading experience via Facebook, Google+, Twitter, email, or by writing
a book review. Simply follow this link: http://www.sap-press.com/H3143.

Supplements

Supplements (sample code, exercise materials, lists, and so on) are provided in your
online library and on the web catalog page for this book. You can directly navigate
to this page using the following link: http://www.sap-press.com/H3143. Should we
learn about typos that alter the meaning or content errors, we will provide a list
with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at SAP PRESS,
please feel free to contact our reader service: customer@sap-press.com.

i

http://www.sap-press.com
mailto:kelly.harris%40galileo-press.com?subject=
http://www.sap-press.com/H3143
http://www.sap-press.com/H3143
mailto:customer%40sap-press.com?subject=

ii

About Us and Our Program

The website http://www.sap-press.com provides detailed and first-hand information
on our current publishing program. Here, you can also easily order all of our books
and e-books. For information on Galileo Press Inc. and for additional contact options
please refer to our company website: http://www.galileo-press.com.

%20http://www.sap-press.com
http://www.sap-press.com
http://www.galileo-press.com

iii

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation
rights are reserved by the author and Galileo Press; in particular the right of repro-
duction and the right of distribution, be it in printed or electronic form.

© 2010 by Galileo Press Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you
may print the e-book for personal use or copy it as long as you store this copy on
a device that is solely and personally used by yourself. You are not entitled to any
other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third
parties. Furthermore, it is not permitted to distribute the e-book on the Internet,
in intranets, or in any other way or make it available to third parties. Any public
exhibition, other publication, or any reproduction of the e-book beyond personal
use are expressly prohibited. The aforementioned does not only apply to the e-book
in its entirety but also to parts thereof (e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark
may not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy. If you, dear reader, are not this person, you are violating
the copyright. So please refrain from using this e-book and inform us about this
violation. A brief email to customer@sap-press.com is sufficient. Thank you!

customer%40sap-press.com
mailto:customer%40sap-press.com?subject=

iv

Trademarks

The common names, trade names, descriptions of goods, and so on used in this
publication may be trademarks without special identification and subject to legal
regulations as such.

All of the screenshots and graphics reproduced in this book are subject to copyright
© SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. SAP, the SAP logo,
mySAP, mySAP.com, SAP Business Suite, SAP NetWeaver, SAP R/3, SAP R/2, SAP
B2B, SAPtronic, SAPscript, SAP BW, SAP CRM, SAP EarlyWatch, SAP ArchiveLink,
SAP HANA, SAP GUI, SAP Business Workflow, SAP Business Engineer, SAP Business
Navigator, SAP Business Framework, SAP Business Information Warehouse, SAP
interenterprise solutions, SAP APO, AcceleratedSAP, InterSAP, SAPoffice, SAPfind,
SAPfile, SAPtime, SAPmail, SAP-access, SAP-EDI, R/3 Retail, Accelerated HR, Acceler-
ated HiTech, Accelerated Consumer Products, ABAP, ABAP/4, ALE/WEB, Alloy, BAPI,
Business Framework, BW Explorer, Duet, Enjoy-SAP, mySAP.com e-business platform,
mySAP Enterprise Portals, RIVA, SAPPHIRE, TeamSAP, Webflow, and SAP PRESS are
registered or unregistered trademarks of SAP AG, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs,
neither the publisher nor the author, editor, or translator assume any legal respon-
sibility or any liability for possible errors and their consequences.

	Introduction
	PART I Appetizers
	1 String Processing Techniques
	1.1 ABAP Character Types
	1.2 Designing a Custom String Library
	1.2.1 Developing the API
	1.2.2 Encapsulating Basic String Processing Statements

	1.3 Improving Productivity with Regular Expressions
	1.3.1 Understanding Regular Expressions
	1.3.2 Regular Expression Syntax
	1.3.3 Using Regular Expressions in ABAP
	1.3.4 Integrating Regular Expression Support into the String Library

	1.4 Summary

	2 Working with Numbers, Dates, and Bytes
	2.1 Numeric Operations
	2.1.1 ABAP Math Functions
	2.1.2 Generating Random Numbers

	2.2 Date and Time Processing
	2.2.1 Understanding ABAP Date and Time Types
	2.2.2 Date and Time Calculations
	2.2.3 Working with Timestamps
	2.2.4 Calendar Operations

	2.3 Bits and Bytes
	2.3.1 Introduction to the Hexadecimal Type in ABAP
	2.3.2 Reading and Writing Individual Bits
	2.3.3 Bitwise Logical Operators

	2.4 Summary

	3 Dynamic and Reflective Programming
	3.1 Working with Field Symbols
	3.1.1 What Is a Field Symbol
	3.1.2 Field Symbol Declarations
	3.1.3 Assigning Data Objects to Field Symbols
	3.1.4 Casting Data Objects During the Assignment Process

	3.2 Reference Data Objects
	3.2.1 Declaring Data Reference Variables
	3.2.2 Assigning References to Data Objects
	3.2.3 Dynamic Data Object Creation
	3.2.4 Performing Assignments Using Data Reference Variables
	3.2.5 De-Referencing Data References

	3.3 Introspection with ABAP Run Time Type Services
	3.3.1 ABAP RTTS System Classes
	3.3.2 Working with Type Objects
	3.3.3 Defining Custom Data Types Dynamically
	3.3.4 Case Study: RTTS Usage in the ALV Object Model

	3.4 Dynamic Program Generation
	3.4.1 Creating a Subroutine Pool
	3.4.2 Creating a Report Program
	3.4.3 Drawbacks to Dynamic Program Generation

	3.5 Summary

	4 ABAP and Unicode
	4.1 Introduction to Character Codes and Unicode
	4.1.1 Understanding Character-Encoding Systems
	4.1.2 Limitations of Early Character-Encoding Systems
	4.1.3 What Is Unicode
	4.1.4 Unicode Support in SAP Systems

	4.2 Developing Unicode-Enabled Programs in ABAP
	4.2.1 Overview of Unicode-Related Changes to ABAP
	4.2.2 Thinking in Unicode
	4.2.3 Turning on Unicode Checks

	4.3 Working with Unicode System Classes
	4.3.1 Converting External Data into ABAP Data Objects
	4.3.2 Converting ABAP Data Objects into External Data Formats
	4.3.3 Converting Between External Formats
	4.3.4 Useful Character Utilities

	4.4 Summary

	PART II Main Courses
	5 Working with Files
	5.1 File Processing on the Application Server
	5.1.1 Understanding the ABAP File Interface
	5.1.2 Case Study: Processing Files with the ABAP File Interface

	5.2 Working with Unicode
	5.2.1 Changes to the OPEN DATASET Statement to Support Unicode
	5.2.2 Using Class CL_ABAP_FILE_UTILITIES

	5.3 Logical Files and Directories
	5.3.1 Defining Logical Directory Paths and Files in Transaction FILE
	5.3.2 Working with the Logical File API

	5.4 File Compression with ZIP Archives
	5.4.1 The ABAP ZIP File API
	5.4.2 Creating a ZIP File
	5.4.3 Reading a ZIP File

	5.5 File Processing on the Presentation Server
	5.5.1 Interacting with the SAP GUI via CL_GUI_FRONTEND_SERVICES
	5.5.2 Downloading a File
	5.5.3 Uploading a File

	5.6 Transmitting Files Using FTP
	5.6.1 Introducing the SAPFTP Library
	5.6.2 Wrapping the SAPFTP Library in an ABAP Objects Class
	5.6.3 Uploading and Downloading Files Using FTP
	5.6.4 Implementation Details

	5.7 Summary

	6 Database Programming
	6.1 Object-Relational Mapping and Persistence
	6.1.1 Positioning of Object-Relational Mapping Tools
	6.1.2 Persistence Service Overview
	6.1.3 Mapping Concepts

	6.2 Developing Persistent Classes
	6.2.1 Creating Persistent Classes in the Class Builder
	6.2.2 Defining Mappings Using the Mapping Assistant Tool

	6.3 Working with Persistent Objects
	6.3.1 Understanding the Class Agent API
	6.3.2 Performing Typical CRUD Operations
	6.3.3 Querying Persistent Objects with the Query Service

	6.4 Modeling Complex Relationships
	6.4.1 Defining Custom Attributes
	6.4.2 Filling in the Gaps

	6.5 Storing Text with Text Objects
	6.5.1 Defining Text Objects
	6.5.2 Using the Text Object API
	6.5.3 Alternatives to Working with Text Objects

	6.6 Connecting to External Databases
	6.6.1 Configuring a Database Connection
	6.6.2 Accessing the External Database
	6.6.3 Further Reading

	6.7 Summary

	7 Transactional Programming
	7.1 Introduction to the ACID Transaction Model
	7.2 Transaction Processing with SAP LUWs
	7.2.1 Introduction to SAP Logical Units of Work
	7.2.2 Bundling Database Changes in Update Function Modules
	7.2.3 Bundling Database Changes in Subroutines
	7.2.4 Performing Local Updates
	7.2.5 Dealing with Exceptions in the Update Task

	7.3 Working with the Transaction Service
	7.3.1 Transaction Service Overview
	7.3.2 Understanding Transaction Modes
	7.3.3 Processing Transactions in Object-Oriented Mode
	7.3.4 Performing Consistency Checks with Check Agents

	7.4 Implementing Locking with the Enqueue Service
	7.4.1 Introduction to the SAP Lock Concept
	7.4.2 Defining Lock Objects
	7.4.3 Programming with Locks
	7.4.4 Integration with the SAP Update System
	7.4.5 Lock Administration

	7.5 Tracking Changes with Change Documents
	7.5.1 What Are Change Documents?
	7.5.2 Creating Change Document Objects
	7.5.3 Configuring Change-Relevant Fields
	7.5.4 Programming with Change Documents

	7.6 Summary

	PART III Meals to Go
	8 XML Processing in ABAP
	8.1 Introduction to XML
	8.1.1 What Is XML?
	8.1.2 XML Syntax
	8.1.3 Defining XML Documents Using XML Schema

	8.2 Parsing XML with the iXML Library
	8.2.1 Introducing the iXML Library API
	8.2.2 Working with DOM
	8.2.3 Case Study: Developing XML Mapping Programs in ABAP
	8.2.4 Next Steps

	8.3 Transforming XML Using XSLT
	8.3.1 What Is XSLT?
	8.3.2 Anatomy of an XSLT Stylesheet
	8.3.3 Integrating XSLT with ABAP
	8.3.4 Creating XSLT Stylesheets
	8.3.5 Processing XSLT Programs in ABAP
	8.3.6 Case Study: Transforming Business Partners with XSLT
	8.3.7 Serialization of ABAP Data Objects Using asXML

	8.4 Simple Transformation
	8.4.1 What Is Simple Transformation?
	8.4.2 Anatomy of a Simple Transformation Program
	8.4.3 Learning Simple Transformation Syntax
	8.4.4 Creating Simple Transformation Programs
	8.4.5 Case Study: Transforming Business Partners with ST

	8.5 Summary

	9 Web Programming with the ICF
	9.1 HTTP Overview
	9.1.1 Working with the Uniform Interface
	9.1.2 Addressability and URLs
	9.1.3 Understanding the HTTP Message Format

	9.2 Introduction to the ICF
	9.3 Developing an HTTP Client Program
	9.3.1 Defining the Service Call
	9.3.2 Working with the ICF Client API
	9.3.3 Putting It All Together

	9.4 Implementing ICF Handler Modules
	9.4.1 Working with the ICF Server-Side API
	9.4.2 Creating an ICF Service Node
	9.4.3 Developing an ICF Handler Class
	9.4.4 Testing the ICF Service Node

	9.5 Summary

	10 Web Services
	10.1 Web Service Overview
	10.1.1 Introduction to SOAP
	10.1.2 Describing SOAP-Based Services with WSDL
	10.1.3 Web Service Discovery with UDDI

	10.2 Providing Web Services
	10.2.1 Creating Service Definitions
	10.2.2 Configuring Runtime Settings
	10.2.3 Testing Service Providers

	10.3 Consuming Web Services
	10.3.1 Creating a Service Consumer
	10.3.2 Defining a Logical Port
	10.3.3 Using a Service Consumer in an ABAP Program

	10.4 Next Steps
	10.5 Summary

	11 Email Programming
	11.1 Introduction to BCS
	11.2 Sending Email Messages
	11.2.1 Understanding the Simple Mail Transfer Protocol
	11.2.2 Sending a Plain Text Message
	11.2.3 Working with Attachments
	11.2.4 Formatting Email Messages with HTML

	11.3 Receiving Email Messages
	11.3.1 Configuring Inbound Processing Rules
	11.3.2 Processing Inbound Requests
	11.3.3 Potential Use Cases of Inbound Processing Rules

	11.4 Summary

	PART IV Side Dishes
	12 Security Programming
	12.1 Developing a Security Model
	12.1.1 Authenticating Users
	12.1.2 Checking User Authorizations
	12.1.3 Securing the Lines of Communication
	12.1.4 Programming for Security

	12.2 The SAP NetWeaver AS ABAP Authorization Concept
	12.2.1 Overview
	12.2.2 Developing Authorization Objects
	12.2.3 Configuring Authorizations
	12.2.4 Performing Authorization Checks in ABAP
	12.2.5 Authorization Concept Review

	12.3 Encrypting Data with ABAP
	12.4 Performing Virus Scans
	12.5 Protecting Web Content with CAPTCHA
	12.5.1 What Is CAPTCHA
	12.5.2 Developing a CAPTCHA Component with Adobe Flex
	12.5.3 Integrating the CAPTCHA Component with BSPs
	12.5.4 Integrating the CAPTCHA Component with Web Dynpro

	12.6 Summary

	13 Logging and Tracing
	13.1 Introducing the Business Application Log
	13.1.1 Configuring Log Objects
	13.1.2 Displaying Logs
	13.1.3 Organization of the BAL API

	13.2 Developing a Custom Logging Framework
	13.2.1 Organization of the Class-Based API
	13.2.2 Configuring Log Severities

	13.3 Case Study: Tracing an Application Program
	13.3.1 Integrating the Logging Framework into an ABAP Program
	13.3.2 Viewing Log Instances in Transaction SLG1

	13.4 Summary

	14 Interacting with the Operating System
	14.1 Programming with External Commands
	14.1.1 Maintaining External Commands
	14.1.2 Restricting Access to External Commands
	14.1.3 Testing External Commands
	14.1.4 Executing External Commands in an ABAP Program

	14.2 Case Study: Executing a Custom Perl Script
	14.2.1 Defining the Command to Run the Perl Interpreter
	14.2.2 Executing Perl Scripts

	14.3 Summary

	15 Interprocess Communication
	15.1 SAP NetWeaver AS ABAP Memory Organization
	15.2 Data Clusters
	15.2.1 Working with Data Clusters
	15.2.2 Storage Media Types
	15.2.3 Sharing Data Objects Using ABAP Memory
	15.2.4 Sharing Data Objects Using the Shared Memory Buffer

	15.3 Working with Shared Memory Objects
	15.3.1 Architectural Overview
	15.3.2 Defining Shared Memory Areas
	15.3.3 Accessing Shared Objects
	15.3.4 Locking Concepts
	15.3.5 Area Instance Versioning
	15.3.6 Monitoring Techniques

	15.4 Summary

	16 Parallel and Distributed Processing with RFCs
	16.1 RFC Overview
	16.1.1 Understanding the Different Variants of RFC
	16.1.2 Developing RFC-Enabled Function Modules

	16.2 Parallel Processing with aRFC
	16.2.1 Syntax Overview
	16.2.2 Configuring an RFC Server Group
	16.2.3 Defining Parallel Algorithms
	16.2.4 Case Study: Processing Messages in Parallel

	16.3 Summary

	The Author
	Index

