
www.allitebooks.com

http://www.allitebooks.org

SAP PRESS is a joint initiative of SAP and Galileo Press. The know-how offered by
SAP specialists combined with the expertise of the Galileo Press publishing house
offers the reader expert books in the field. SAP PRESS features first-hand informa-
tion and expert advice, and provides useful skills for professional decision-making.

SAP PRESS offers a variety of books on technical and business-related topics for
the SAP user. For further information, please visit our website:
www.sap-press.com.

Dr. Berg and Penny Silvia
SAP HANA: An Introduction (2nd Edition)
2013, 527 pp., hardcover
ISBN 978-1-59229-865-5

Jonathan Haun, Chris Hickman, Don Loden, and Roy Wells
Implementing SAP HANA
2013, 837 pp., hardcover
ISBN 978-1-59229-856-3

Tanmaya Gupta
Function Modules in ABAP: A Quick Reference Guide
2014, 977 pp., hardcover
ISBN 978-1-59229-850-1

Rich Heilman and Thomas Jung
Next Generation ABAP Development (2nd Edition)
2011, 735 pp., hardcover
ISBN 978-1-59229-352-0

www.allitebooks.com

http://www.allitebooks.org

Thorsten Schneider, Eric Westenberger, and Hermann Gahm

ABAP® Development for SAP HANA®

Bonn � Boston

www.allitebooks.com

http://www.allitebooks.org

Dear Reader,

Rarely has an SAP technology generated so much discussion in recent times as SAP
HANA. The in-memory database promises enormous improvements in terms of
application performance and opens up completely new dimensions in data process-
ing, thus paving the way for new types of business processes that would have been
inconceivable previously. However, what do these developments mean for you as a
programmer? Which changes do you and your established procedures need to adapt
to? Are there any areas that require you to think differently in order to optimize or
reprogram your applications for use with SAP HANA?

To answer all of these questions, Thorsten Schneider, Eric Westenberger, and Her-
mann Gahm have put everything you need to know into this book. Not only have
they provided clear examples to demonstrate what ABAP development on SAP HANA
entails in comparison to development on traditional databases, but they have also
outlined its many new possibilities. Ultimately, they will make you a confident user
of the SAP HANA development environment and show you how to access SAP HANA
objects within ABAP programs.

Your comments and suggestions are the most useful tools to help us improve our
books. We encourage you to visit our website at www.sap-press.com and share your
feedback about ABAP Development for SAP HANA.

Thank you for purchasing a book from SAP PRESS!

Laura Korslund
Editor, SAP PRESS

Galileo Press
Boston, MA

laura.korslund@galileo-press.com

http://www.sap-press.com

www.allitebooks.com

http://www.sap-press.com
mailto:laura.korslund%40galileo-press.com?subject=
http://www.sap-press.com
http://www.allitebooks.org

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed
to accept and adhere to the copyrights. You are entitled to use this e-book for
personal purposes. You may print and copy it, too, but also only for personal use.
Sharing an electronic or printed copy with others, however, is not permitted, neither
as a whole nor in parts. Of course, making them available on the Internet or in a
company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the section Legal
Notes.

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy:

www.allitebooks.com

http://www.allitebooks.org

Imprint

This e-book is a publication many contributed to, specifically:

Editor Laura Korslund
Acquisitions Editor Katy Spencer
German Edition Editor Janina Schweitzer
Translation Lemoine International, Inc., Salt Lake City, UT
Copyeditor Laura Schreier
Cover Design Sabine Reibeholz, Graham Geary
Photo Credit Fotolia/33788629/© lassedesignen
Production E-Book Graham Geary
Typesetting E-Book Publishers’ Design and Production Services, Inc.

We hope that you liked this e-book. Please share your feedback with us and read
the Service Pages to find out how to contact us.

Library of Congress Cataloging-in-Publication Control Number: 2013043363

ISBN 978-1-59229-859-4 (print)
ISBN 978-1-59229-860-0 (e-book)
ISBN 978-1-59229-861-7 (print and e-book)

© 2014 by Galileo Press Inc., Boston (MA)
1st edition 2014
1st German edition published 2013 by Galileo Press, Bonn, Germany

www.allitebooks.com

http://www.allitebooks.org

7

Contents

Foreword ... 15
Preface ... 17
Introduction ... 19

PART I Basic Principles

1 Overview of SAP HANA ... 29

1.1 Software Components of SAP HANA 29
1.1.1 SAP HANA Database .. 31
1.1.2 SAP HANA Studio .. 31
1.1.3 SAP HANA Client ... 33
1.1.4 SAP HANA Function Libraries 34
1.1.5 Software for Data Replication 34
1.1.6 Software for Direct Data Access 35
1.1.7 Lifecycle Management Components 36

1.2 Basic Principles of In-Memory Technology 37
1.2.1 Hardware Innovations 37
1.2.2 Software Innovations .. 41

1.3 Architecture of the In-Memory Database 51
1.4 Application Cases for SAP HANA 53
1.5 How SAP HANA Affects Application Development 56

1.5.1 New Technical Options 56
1.5.2 Code Pushdown ... 57
1.5.3 Database as Whitebox 59
1.5.4 Required Qualifications for Developers 61

2 Introducing the Development Environment 63

2.1 Overview of Eclipse .. 63
2.2 SAP’s Eclipse Strategy ... 66

2.2.1 Unbundling of Eclipse and SAP Software 67
2.2.2 Central Update Site .. 67

2.3 Installing the Development Environment 69
2.3.1 Installing SAP HANA Studio 69

www.allitebooks.com

http://www.allitebooks.org

8

Contents

2.3.2 Installing the ABAP Development Tools for
SAP NetWeaver .. 70

2.4 Getting Started in the Development System 72
2.4.1 Basic Principles of Eclipse 72
2.4.2 ABAP Development Tools for SAP NetWeaver ... 75
2.4.3 SAP HANA Studio .. 85

3 Database Programming Using SAP NetWeaver
 AS ABAP ... 103

3.1 SAP NetWeaver AS ABAP Architecture 105
3.1.1 Database Interface ... 107
3.1.2 Role of the Database for the ABAP

Application Server .. 109
3.1.3 Data Types ... 110

3.2 ABAP Database Access ... 116
3.2.1 ABAP Data Dictionary 117
3.2.2 Open SQL .. 122
3.2.3 Database Views in the ABAP Data Dictionary ... 132
3.2.4 Database Access via Native SQL 133
3.2.5 Secondary Database Connections 139

3.3 Analyzing Database Accesses Using the SQL Trace 143
3.3.1 Statement Transformations 143
3.3.2 Secondary Connections 150
3.3.3 Native SQL ... 151
3.3.4 Buffer ... 152

PART II Introduction to ABAP Programming with
SAP HANA

4 View Modeling in SAP HANA Studio 157

4.1 Attribute Views ... 160
4.1.1 Basic Principles ... 161
4.1.2 Creating Attribute Views 164
4.1.3 Calculated Fields .. 172
4.1.4 Hierarchies ... 174
4.1.5 Attribute Views for Time Values 176

www.allitebooks.com

http://www.allitebooks.org

9

Contents

4.1.6 Runtime Artifacts and SQL Access for
Attribute Views .. 179

4.2 Analytic Views .. 180
4.2.1 Basic Principles ... 181
4.2.2 Creating Analytic Views 183
4.2.3 Calculated Key Figures 186
4.2.4 Currency Conversion and Unit Conversion 187
4.2.5 Runtime Artifacts and SQL Access for

Analytic Views .. 191
4.3 Calculation Views ... 192

4.3.1 Basic Principles ... 193
4.3.2 Graphical Modeling of Calculation Views 195
4.3.3 Implementing Calculation Views via

SQLScript ... 197
4.3.4 Runtime Artifacts and SQL Access for

Calculation Views ... 202
4.4 Accessing Column Views via Microsoft Excel 203
4.5 Using SAP HANA Views in ABAP 205

4.5.1 Access via Native SQL 205
4.5.2 External Views in the ABAP Data Dictionary 207
4.5.3 Options for Accessing External Views 210
4.5.4 Recommendations ... 211

5 Programming Options in SAP HANA 215

5.1 Overview of SQLScript .. 215
5.1.1 Qualities of SQLScript 216
5.1.2 Processing SQLScript .. 222

5.2 Implementing Database Procedures 223
5.2.1 Basic Principles of Database Procedures 223
5.2.2 Creating Database Procedures 225
5.2.3 Using Variables ... 237
5.2.4 Calculation Engine Plan Operator 239
5.2.5 Imperative Enhancements 250
5.2.6 Accessing System Fields 252
5.2.7 Error Handling .. 254

5.3 Using Procedures in ABAP .. 255
5.3.1 Access Using Native SQL 256

www.allitebooks.com

http://www.allitebooks.org

10

Contents

5.3.2 Defining Database Procedure Proxies 263
5.3.3 Calling Database Procedure Proxies 265
5.3.4 Adjusting Database Procedure Proxies 267

6 Application Transport .. 269

6.1 Basic Principles of the Transport System 271
6.1.1 Transport in SAP NetWeaver AS ABAP 271
6.1.2 Transport in SAP HANA 276

6.2 Combined ABAP/SAP HANA Transport 285
6.2.1 HANA Transport Container 286
6.2.2 Enhanced Transport System 292

7 Runtime and Error Analysis with SAP HANA 293

7.1 Overview of the Tools Available 294
7.2 Error Analysis .. 296

7.2.1 Unit Tests ... 296
7.2.2 Dump Analysis ... 299
7.2.3 Tracing in SQLScript ... 301
7.2.4 Debugging SQLScript 302

7.3 ABAP Code Analysis .. 305
7.3.1 Checks and Check Variants 305
7.3.2 Checks in the Development Infrastructure 309
7.3.3 Global Check Runs in the System 311

7.4 Runtime Statistics and Traces .. 313
7.4.1 Runtime Statistics ... 314
7.4.2 ABAP Trace and ABAP Profiler 318
7.4.3 SQL Trace .. 326
7.4.4 Single Transaction Analysis 330
7.4.5 Explain Plan ... 331
7.4.6 SAP HANA Plan Visualizer 333

7.5 System-Wide SQL Analyses ... 337
7.5.1 DBA Cockpit ... 338
7.5.2 SQL Monitor ... 342

7.6 SQL Performance Optimization 346

www.allitebooks.com

http://www.allitebooks.org

11

Contents

8 Sample Scenario: Optimizing an Existing
 Application ... 351

8.1 Optimization Procedure .. 351
8.1.1 Migrating to SAP HANA 352
8.1.2 System Optimization .. 353
8.1.3 Application Optimization 355

8.2 Scenario and Requirements ... 357
8.2.1 Initial Situation ... 358
8.2.2 Technical Implementation 359
8.2.3 Current Problems ... 362

8.3 Meeting the Requirements ... 362
8.3.1 Narrowing Down the Problem Using the

Runtime Statistics ... 363
8.3.2 Detailed Analysis of the ABAP Program

Using Transaction SAT 364
8.3.3 Detailed Analysis of Database Accesses 366
8.3.4 Analysis Result ... 368
8.3.5 Optimization Using Open SQL 369
8.3.6 Analysis of the First Optimization 371
8.3.7 Analysis Result ... 372
8.3.8 Optimization Using an Analytic View 373
8.3.9 Analysis of the Second Optimization 374
8.3.10 Analysis Result ... 378

PART III Advanced Techniques for ABAP Programming for
SAP HANA

9 Text Search and Analysis of Unstructured Data 383

9.1 Basic Principles of the Text Search in SAP HANA 385
9.1.1 Technical Architecture 386
9.1.2 Error-Tolerant Search .. 387
9.1.3 SAP Components and Products for Search 389

9.2 Types of Text Data and Full Text Indexes in
SAP HANA .. 390

9.3 Using the Text Search via SQL 395
9.3.1 Fuzzy Search .. 397

12

Contents

9.3.2 Synonyms and Noise Words 401
9.3.3 Searching Across Date Fields and Address

Data ... 404
9.4 Using the Text Search in ABAP 407

9.4.1 Calling the Text Search from ABAP via SQL 408
9.4.2 Freely Defined Input Helps 409

9.5 Text Analysis ... 416
9.6 Resource Consumption and Runtime Aspects of the

Text Search ... 418

10 Integrating Analytical Functionality 423

10.1 Introduction ... 423
10.1.1 What is Analytical Functionality? 424
10.1.2 Digression: SAP NetWeaver Business

Warehouse ... 427
10.2 Overview of Possible Architectures 429

10.2.1 Direct Access to Analytical Functionality
in SAP HANA ... 430

10.2.2 Access via the SAP NetWeaver AS ABAP 434
10.3 Selected Technologies and Tools 439

10.3.1 InfoProviders when Using SAP HANA 440
10.3.2 SAP Business Objects Portfolio 447
10.3.3 Easy Query Interface .. 451

10.4 User Interface Building Blocks 453

11 Decision Tables in SAP HANA 455

11.1 Basic Principles of Decision Tables 456
11.2 Creating Decision Tables in SAP HANA Studio 459
11.3 Decision Tables Based on SAP HANA Views 465
11.4 Runtime Artifacts and SQL Access for Decision Tables ... 468
11.5 Access to Decision Tables from ABAP 468

12 Function Libraries in SAP HANA 473

12.1 Basics of the Application Function Library 476
12.1.1 Technical Basics .. 476
12.1.2 Business Function Library 477

13

Contents

12.1.3 Predictive Analysis Library 478
12.2 Use of Application Function Library Functions in

SQLScript .. 483
12.3 Integration of Function Libraries in ABAP 487

13 Sample Scenario: Development of a New
 Application ... 491

13.1 Scenario and Requirements ... 491
13.2 Application Design ... 492

13.2.1 Management of Discounts by the Travel
Company Owner .. 493

13.2.2 Additional Evaluations via a Side Panel
Application .. 494

13.2.3 Mobile Application for the Air Passenger 496
13.3 Implementation of the Application 497

13.3.1 SAP HANA Views and Procedures 498
13.3.2 Core of the ABAP Application 499
13.3.3 User Interfaces ... 501

13.4 Using the Applications .. 506

14 Practical Tips .. 509

14.1 General Recommendations ... 510
14.1.1 Recommendations for Column and Row

Store ... 510
14.1.2 SAP HANA-Specific Implementations 511
14.1.3 Checklist for Database-Specific

Implementations .. 513
14.1.4 Recommendations for Migration 515
14.1.5 Development in Landscapes 517
14.1.6 Modifying Data in SQLScript or Native SQL 518

14.2 Conventions ... 520
14.2.1 Naming Conventions 521
14.2.2 Encapsulating Packages 522

14.3 Quality Aspects ... 523
14.3.1 Testing Views and Procedures 523
14.3.2 Robust Programming .. 524
14.3.3 Security Aspects ... 525

14

Contents

14.4 Performance Recommendations for Open SQL 526
14.4.1 Rule 1: Keeping Result Sets Small 527
14.4.2 Rule 2: Keeping Transferred Datasets Small 530
14.4.3 Rule 3: Reducing Number of Queries 537
14.4.4 Rule 4: Minimizing Search Effort 543
14.4.5 Rule 5: Reducing Load on Database 546
14.4.6 Summary of Rules .. 551

14.5 Performance Recommendations for Native
Implementations in SAP HANA 551
14.5.1 Recommendations for Native SQL 552
14.5.2 Recommendations for SAP HANA Views 553
14.5.3 Recommendations for SQLScript 556

14.6 Summary of Recommendations 558

Appendices .. 561

A Flight Data Model .. 563
A.1 Basic Principles of the Flight Data Model 563
A.2 Database Tables for the Flight Data Model 564
A.3 Data Generation ... 569

B What’s New in ABAP in SAP NetWeaver 7.4 573
B.1 Inline Declarations .. 573
B.2 Constructor Expressions .. 575
B.3 Internal Tables .. 577

C Read and Write Access in the Column Store 579
C.1 Basic Principles ... 579
C.2 Read Access without an Index 580
C.3 Write Access without an Index 582
C.4 Read Accesses with an Index .. 585

D SAP Business Application Accelerator Powered by
SAP HANA ... 589

E Installing the Sample Programs ... 593
F The Authors ... 595

Index ... 597

Service Pages ... I
Legal Notes .. III

15

Foreword

Today, less than four years after we officially commenced development
of SAP HANA, and over ten years after we envisaged the first precursors
to the technology, column-based main memory databases is now a very hot
topic, and one that is rapidly gaining a market presence.

We could not have foreseen this development back in 2002 when we
integrated the first version of a pure main memory-based (non-trans-
actional) column store into the TREX search engine. For the document
world, column-based storage of metadata (author, creation date, and so
on) delivered added value because it was possible to add metadata in a
flexible and easy manner, and to query this data very efficiently.

Things became very interesting when we started to use the technology
to aggregate large volumes of data. Initial performance results were phe-
nomenal and produced an air of disbelief within SAP, quickly followed by
immense euphoria. Production continued until 2005 when we delivered
SAP NetWeaver Business Warehouse Accelerator (BWA) as an accelerator
for our BW systems. The benefits were obvious: No additional database
aggregates, as well as extremely good and above all, consistent access
times because the risk of accessing undefined aggregates, had disappeared.

The major breakthrough in relation to main memory-based column stores
occurred in 2009 when Hasso Plattner had the vision to postulate joint
column storage for OLAP (reporting) queries and the OLTP load. This
proposal was revolutionary for two reasons: Firstly, because of Hasso’s
suggestion to place OLAP and OLTP in one system, and secondly, to
supplement this system with database storage in the form of a main
memory-based column store. At first the research community was very
skeptical, but soon after, the sheer number of high-quality publications
on this topic made it clear that it had well and truly arrived.

In order to productize this vision, HANA was established as an organiza-
tion in 2009 when three groups (P*Time, MaxDB, and TREX) were merged

16

Foreword

and later joined by the Sybase team. The goal was—and remains—to build
a database management platform that offers much more than traditional
databases, and to make this platform available to a wide range of applica-
tions, including SAP application platforms. At the end of 2010, the first
“data-mart variant” of HANA was delivered, followed by HANA for B1
and HANA for SAP NetWeaver BW. A major event and final confirmation
of Hasso’s vision was the announcement of SAP Business Suite on HANA
in January of this year and its delivery to our customers.

Our customers, partners, and internal development groups can now
implement a large range of options that incorporate HANA’s speed and
functionality into their applications, and thus reap the rewards of deploy-
ing SAP HANA. ABAP is, without doubt, one of the key development
environments for SAP HANA. However, developers must think a little
differently in order to realize the full potential of HANA. This book will
certainly help them in this regard.

SAP HANA will continue to be SAP’s innovation platform. We can there-
fore all look forward to exciting times ahead—with lots of new features,
innovations, and the opportunity to build new types of as-yet inconceiv-
able applications.

	
Franz	Färber	
Executive Vice President, SAP PI HANA Platform, SAP AG

17

Preface

SAP HANA will soon celebrate its second birthday. Hard to believe, but
this technology has been on the market for almost two years now. During
this time, its use potential increased significantly: From an in-memory
database for data marts, which supplements SAP NetWeaver Business
Warehouse and the SAP Business Suite, to all types of data warehouse
applications and a platform for analytical and transactional systems. Today,
SAP HANA is a complete, high-end database for all SAP applications and,
at the same time, an innovation platform for completely new types of
real-time applications (in the area of healthcare, for example).

I had the opportunity to actively accompany this rapid development, from
its origins in the SAP NetWeaver Business Warehouse environment right
up until the present day, and to do so from the perspective of an internal
user. Never before had I witnessed the energy within the walls of SAP
that greeted the arrival of SAP HANA. And the best thing about it is that
this is just the beginning. Anyone who has experienced this enthusiasm
from customers, partners, and employees—or seen the wealth of ideas
for developing completely new applications for the software—will know
exactly what I mean.

SAP NetWeaver Business Warehouse (since the end of 2011) and the SAP
Business Suite (since the start of 2013) can now run productively on SAP
HANA. Porting and optimizing these systems for the in-memory database
technology was one of SAP’s key strategic projects in recent years. In
parallel, and as an additional support for this project, we developed a
new SAP NetWeaver release, namely SAP NetWeaver 7.4, in mid-2012.
As part of this development, we systematically optimized ABAP technol-
ogy for use with SAP HANA and ported the Java-based SAP NetWeaver
Hubs (for example, SAP NetWeaver Portal and SAP NetWeaver Business
Process Management) to SAP HANA in particular, thus giving each and
every customer the opportunity to run SAP NetWeaver productively on
SAP HANA—a key milestone for not only SAP but our customers, as well.

18

Preface

The new features in SAP NetWeaver AS ABAP 7.4 support the application
developers at SAP in optimizing existing ABAP programs for SAP HANA
and implementing completely new applications based on SAP HANA. Of
course, our customers and partners can also benefit from these opportuni-
ties. A non-disruptive way of migrating existing business processes to SAP
HANA, while at the same time developing completely new applications,
now exists for the entire ABAP ecosystem.

In this book, Thorsten Schneider, Eric Westenberger, and Hermann
Gahm describe the importance of SAP HANA for ABAP development, as
well as the new opportunities presented by ABAP 7.4 in the context of
in-memory database technology. Thorsten, Eric, and Hermann not only
discuss program acceleration as a result of moving the calculation logic
to the database, but also the innovative features that SAP HANA makes
available to you—thus making this book a must-read for every single
ABAP developer.

I hope that you enjoy reading this book.

	
Andreas	Wesselmann	
Vice President, SAP PI HANA Platform Extensions, SAP AG

19

Introduction

Today’s business world is extremely dynamic and subject to constant
change, with companies continuously under great pressure to innovate.
SAP HANA’s vision is to provide a platform that can be used to influence
all business processes within a company’s value chain in real time. How-
ever, what does this key term real time mean for business applications?

In technological terms, it describes, in particular, the availability of essen-
tial functions without unwanted delays. The environment in which a
technology is used and the time when this occurs strongly influences
the functions needed and what is deemed to be an acceptable delay.
Before we discuss the software currently used for enterprise manage-
ment, we wish to illustrate this using an example from daily life, namely
telecommunications.

Early forms of communication (for example, telegraphs) were very limited
in terms of their usage (range, availability, and manual effort). At that time,
however, it was an immense improvement in terms of the speed at which
messages were previously exchanged. Then, with advent of the telephone,
it became possible to establish flexible connections over long distances.
Once again, however, users of this technology had to allow for various
delays. Initially, it was necessary to establish a manual connection via a
switchboard. Later, and for a very long time after, there were consider-
able latencies with overseas connections, which affected and complicated
long-distance telephone conversations. Today, however, telephone con-
nections can be established almost anywhere in the world and done so
without any notable delay. Essentially, every leap in evolution has been
associated with considerable improvement in terms of real-time quality.

In addition to a (synchronous) conversation between two people, asyn-
chronous forms of communication have always played a role historically
(for example, postal communication). In this context, the term real time
has a different meaning because neither the sender nor the receiver
needs to actively wait. Asynchronous communication has also undergone

Example: real
time in telecom-
munications

20

Introduction

immense changes in recent years (thanks to many new variants such as
email, SMS, and so on), which, unlike postal mail, facilitates a new dimen-
sion of real-time communication between several people. Furthermore,
there is an increasing number of non-human communication users such
as devices with an Internet connection, which are known as smart devices
(for example, intelligent electricity meters).

Most people will testify to the fact that, nowadays, electronic communica-
tion is available in real time. Nevertheless, in our daily lives, some things
still cannot occur in real time despite the many advances in technology (for
example, booking a connecting flight during a trip). It is safe to say that
in the future, many as yet inconceivable scenarios will be so widespread
that currently accepted limitations will become completely unacceptable.

The above example of telecommunications technology contains some
basic principles that can also be applied to business software. On the
one hand, there are corporate and economic developments such as glo-
balization and the increasing mobility of customers, and employees who
are the driving forces for new types of technology. Companies operate
globally and interact in complex networks. Furthermore, customers and
employees expect to be able to access products and services at all times,
from anywhere in the world.

On the other hand, there are technological innovations that pioneer
new paths. The Internet is currently a catalyst for most developments.
Enormous volumes of data are simultaneously accessible to a large part of
the world’s population (that is, in real time). The Internet also provides a
platform for selling all types of products and services, which has led to a
phenomenal increase in the number of business transactions conducted
each day. Companies can gain a massive competitive advantage each
time a business process (for example, procurement, production, billing,
and so on) is optimized. In most industries, there is great potential here,
which can be realized by establishing a closer link between operational
planning and control in real time.

Today’s customers also expect greater customization of products and
services to their individual wishes (for example, to their personal circum-
stances). In particular, companies that are active in industries subject to
major changes (for example, the energy industry, financial providers or
specific forms of retail) are under a great deal of pressure to act.

Real time in
business

www.allitebooks.com

http://www.allitebooks.org

21

Introduction

The term real time shapes the evolution of 40 years of SAP software. Even
the letter “R” in SAP’s classic product line, R/3, stood for real time. SAP’s
initial concepts in the 1970s, which paved the way for the development
of R/1, facilitated the on-screen entry of business data, which, compared
to older punch card systems, provided a new quality of real time. Con-
sequently, processes such as payroll accounting and financial accounting
were the first to be mapped electronically and automated. With SAP R/2,
which was based on a mainframe architecture, SAP added further ERP mod-
ules (Enterprise Resource Planning), for example, Materials Management,
to these applications areas. As part of this release, SAP introduced the
reporting language ABAP. (Originally, ABAP stood for Allgemeiner Bericht-
saufbereitungsprozessor, which means “General Report Creation Processor,”
but this was later changed to Advanced Business Application Programming).
ABAP reports were used to create, for example, a list of purchase orders,
which was filtered according to customer and had drilldown options for line
items. Initially, this was available in the background only (batch mode).
However, it later became available in dialog mode.

Thanks to the client/server architecture, in particular, and the related scaling
options in SAP R/3, it was possible for a large number of users within
a company to access SAP applications. Consequently, SAP software, in
combination with consistent use of a database system and an ever-growing
number of standard implementations for business processes, penetrated
the IT infrastructure of many large companies, thus making it possible to
use an integrated system to support transactional processes in real time
(for example, a just-in-time production process).

Parallel to these developments is the fact that, over the past 20 years,
it has become increasingly more important to analyze current business
processes, the purpose of which is to continuously obtain information
in order to make better operational and strategic decisions. Within this
business intelligence trend, however, it soon became clear that in many situ-
ations, it is technically impractical to perform and integrate the required
analyses into a system that already supports business processes. Parallel
processing of analyses and transactions involving extremely large amounts
of data overloaded most systems, with the database, in particular, emerg-
ing as a limiting factor. This was one of the reasons why SAP created a
specialized system for analytical scenarios, which you currently know as

Real time at SAP

Importance
of business
intelligence

22

Introduction

SAP NetWeaver Business Warehouse (BW). In addition to new options for
consolidating data from multiple systems and integrating external data
sources, the use of the data warehouse system for operational scenarios
is, unfortunately, fraught with losses when data is processed in real time.
First of all, data needs to be extracted and replicated, which, in practice,
can cause a time delay, ranging from several hours up to one week, until
the current data is available at the correct location. This was SAP’s start-
ing point for SAP HANA; in other words, no more delays in receiving
key information for a business decision.

SAP likes to describe SAP HANA as a platform for real-time data man-
agement. To begin with, SAP HANA is a high-end database for business
transactions (Online Transaction Processing, OLTP) and reporting (Online
Analytical Processing, OLAP), which can use a combination of in-memory
technology and column-oriented storage to optimize both scenarios. In
the first step, SAP HANA was used as a side-by-side scenario (that is, in
addition to an existing traditional database) to accelerate selective pro-
cesses and analyses. Soon after, it was supported as a new database for
SAP NetWeaver BW 7.3. In this way, SAP demonstrated that SAP HANA
not only accelerates analytical scenarios, but that it can also be used as
a primary database for an SAP NetWeaver system. With the announce-
ment of SAP Business Suite powered by SAP HANA, it is now also possible for
customers to fully benefit from SAP HANA technology within standard
SAP applications. The new SAP NetWeaver release 7.4 underlying this
constellation (in particular, SAP NetWeaver Application Server (AS) ABAP
7.4) will therefore play a key role in this book. Furthermore, the sample
programs in this book require ABAP 7.4. However, we will always indicate
which functions you can also use with earlier releases of SAP NetWeaver.
A cloud-based trial version of ABAP 7.4 on SAP HANA is available. For
more information, see Appendix E.

Furthermore, SAP HANA provides many more functions that go beyond
the usual range of functions associated with a database. In particular,
these include extensive data management functions (replication, extrac-
tion – transformation – load (ETL), and so on) and data analysis functions
(for example, data mining by means of a text search and predictive analysis).
Many of these technologies and functions are not exclusively available
to SAP HANA. In fact, many software systems now manage data in the

SAP HANA as
a database

SAP HANA as
a platform

23

Introduction

main memory or use column-oriented displays. SAP itself developed and
used in-memory technology long before SAP HANA came into being (for
example, in SAP NetWeaver BW Accelerator). Similarly, a number of soft-
ware manufacturers (including SAP itself) are involved in data analysis,
especially in the context of business intelligence and information manage-
ment solutions. One key benefit of SAP HANA is the fact that it offers this
function in the same system in which business transactions are running.
If, for example, you want to run SAP Business Suite on SAP HANA, these
enhanced functions are available to you immediately, without the need
to extract data. Furthermore, since SAP HANA incorporates the key data
structures of the SAP Business Suite, installed functions already exist for
some standard operations (for example, currency conversion).

Therefore, what does SAP HANA mean for standard SAP applications that
run on the ABAP application server? What changes are occurring in ABAP
programming? What new options does SAP HANA open up in terms of
ABAP-based solutions? These three questions will be at the heart of this
book. Furthermore, we will always use examples to explain the relevant
technical backgrounds and concepts, rather than simply introducing you
to the technology behind the new tools and frameworks. In particular,
we will focus on the basic functions of ABAP development and database
access via ABAP. We will introduce existing or planned supports for SAP
HANA in ABAP-based frameworks as an overview or outlook because a
detailed description would generally require an introduction to how
these components work. (Examples here include Embedded Search and
BRFplus.) In the examples contained in this book, we will use simple
ABAP reports as the user interfaces, for the most part. In two detailed
examples, however, we will also create web-based interfaces with Web
Dynpro ABAP and HTML5.

We made the decision to divide this book into three parts. In Part I, “Basic
Principles,” we will introduce you to the basic principles of in-memory
technology. Here, you will get to know the development tools as well as
refresh your knowledge of ABAP database programming. In Chapter	1,
“Overview of SAP HANA,” we will start with an overview of the compo-
nents of SAP HANA and potential usage scenarios in conjunction with
ABAP. In Chapter	2, “Introducing the Development Environment,” we
will introduce you to the development environment, which comprises

ABAP development
on SAP HANA

Structure of the
book: Part I

24

Introduction

SAP HANA Studio and the ABAP development tools for SAP NetWeaver
(also known as ABAP in Eclipse). Chapter	3, “Database Programming using
SAP NetWeaver AS ABAP,” will discuss the use of Open SQL and Native
SQL to access the HANA database from ABAP programs.

In the second part of the book, “Introduction to ABAP Programming with
SAP HANA,” you’ll learn how to store data from an ABAP application
(for example, certain calculations) in SAP HANA, thus achieving con-
siderably better performance. Here, the focus will be on programming
and modeling SAP HANA, as well as accessing SAP HANA from ABAP
programs. In Chapter	4, “View Modeling in SAP HANA Studio,” we will
discuss the various ways in which you can create data views, which can
then be used to conduct calculations and analyses in relation to ABAP
table content. Then, in Chapter	5, “Programming Options in SAP HANA,”
you will learn about SQLScript, which is the programming language for
database procedures in SAP HANA. You’ll also learn how to use ABAP to
access these procedures. In Chapter	6, “Application Transport,” we will
explain how you can transport ABAP development objects alongside the
objects contained in the SAP HANA Repository. Together with the tools
in Chapter	7, “Runtime and Error Analysis on SAP HANA,” you now have
the basic tools that we, as ABAP developers, believe you need to know
within the context of SAP HANA. Part II of this book will conclude with
Chapter	8, “Sample Scenario: Optimizing an Existing Application,” where
we will use the technologies and tools introduced earlier in this book to
optimize an existing ABAP implementation for SAP HANA, step by step.

In Part III of this book, “Advanced Techniques for ABAP Programming for
SAP HANA,” we will introduce you to some advanced SAP HANA func-
tions, which are not available in classic ABAP development. Even though
the chapters contained in Part III of this book are based on the content of
the preceding part, Part III can be read in isolation. In Chapter	9, “Text
Search and Analysis of Unstructured Data,” we will start by describing
the fuzzy search in SAP HANA and we will show you how you can use it
to improve, for example, input helps within an ABAP application. Then
in Chapter	10, “Integrating Analytical Functionality,” we will introduce
you to the capabilities of the embedded SAP NetWeaver BW technology
in conjunction with ABAP developments on SAP HANA and existing SAP
Business Intelligence products. You can then use decision tables, whose

Part II

Part III

25

Introduction

usage we will discuss in Chapter	11, “Decision Tables in SAP HANA,” to
use rules that enable you to design parts of an application in a very flexible
manner. As a final element, we will show you in Chapter	12, “Function
Libraries in SAP HANA,” how you can, for example, incorporate statisti-
cal functions for predictive analysis into an ABAP application. In Chapter	
13, “Sample Scenario: Development of a New Application,” we will cre-
ate a small sample application that connects innovations achieved with
SAP HANA to ABAP transactions. The book concludes with Chapter	14,
“Practical Tips,” which contains our recommendations for optimizing
ABAP applications on SAP HANA as well as some new developments in
relation to ABAP applications on SAP HANA.

As you will see while reading this book, the HANA platform provides a
whole host of options. You do not necessarily have to use all of the ele-
ments introduced here in ABAP custom developments on SAP HANA.
For some new types of functions, the use of low-level technologies, which
you may only have used occasionally in the past, is currently necessary
in the ABAP application server (for example, Native SQL). However, we
are convinced that the use of new options holds great innovation poten-
tial in terms of new developments. For this reason, we strive to adopt a
certain pioneering approach, which is evident in some of the examples
provided in this book.

As an example, we will use the flight data model in SAP NetWeaver (also
known as the SFLIGHT model), which was and remains the basis for
many training courses, documentation, and specialist books relating to
SAP ERP. Thanks to its popularity, the new features and paradigm shifts
involved with SAP HANA can be explained very well using this example.
The underlying business scenario (airlines and travel agencies) is also very
well suited to explaining aspects of real time because, in recent years, the
travel industry has been subject to great changes as a result of globaliza-
tion and the Internet. Furthermore, the volume of data in the context of
flight schedules, postings, and passengers has continued to grow.

Throughout this book, you will find several elements that will make it
easier for you to work with this book.

Highlighted information boxes contain helpful content that is worth
knowing, but lies somewhat outside the actual explanation. In order to

Deploying new
technologies

Sample data model

How to use
this book

26

Introduction

help you immediately identify the type of information contained in the
boxes, we have assigned symbols to each box:

Tips marked with this symbol will give you special recommendations
that may make your work easier.

Boxes marked with this symbol contain information about additional
topics or important content that you should note.

This symbol refers to specifics that you should consider. It also warns
about frequent errors or problems that can occur.

Examples marked with this symbol make reference to practical scenarios
and illustrate the functions shown.

In addition, you will find the code samples used throughout as a download
on this book’s web page at www.sap-press.com.

We hope that, with this book, we can give you a comprehensive tool
that will support you in using the HANA technology in ABAP programs.
Finally, we hope that you enjoy reading this book.

Acknowledgments

We wish to thank the following people who supported us by partaking
in discussions and providing advice and feedback during the writing of
this book:

Arne Arnold, Dr. Alexander Böhm, Ingo Bräuninger, Ralf-Dietmar Dit-
tmann, Franz Färber, Markus Fath, Dr. Hans-Dieter Frey, Boris Gebhardt,
Dr. Heiko Gerwens, Dr. Jasmin Gruschke, Martin Hartig, Vishnu Prasad
Hegde, Rich Heilman, Thea Hillenbrand, Dr. Harshavardhan Jegadeesan,
Thomas Jung, Bernd Krannich, Dr. Willi Petri, Eric Schemer, Joachim
Schmid, Sascha Schwedes, Christiaan Edward Swanepoel, Welf Walter,
Jens Weiler, Stefan Weitland, Tobias Wenner, and Andreas Wesselmann.

Thank you so much—this book would not have been possible without
your help.

	
Thorsten	Schneider, Eric	Westenberger, and Hermann	Gahm

PART I
Basic Principles

The first part of the book provides an overview of the SAP HANA database.
We’ll present all software components of the database and explain the
basic principles and architecture of the in-memory technology. Moreover,
you’ll see typical application cases for SAP HANA. Following this section,
you’ll find an introduction to the new development environment. This
section provides an overview of Eclipse, and you’ll learn how to install
the development environment. In this context, we’ll explain how to get
started using the ABAP Development Tools for SAP NetWeaver and SAP
HANA Studio. The third chapter provides an overview of the architecture,
the database interface, and the database usage by the application server.
This information forms the basis for the subsequent detailed explanation
of database access from ABAP.

29

SAP HANA is more than just a database. In fact, SAP HANA
provides an application development platform and includes tools
for data replication. Using SAP HANA, you can thus optimize
existing applications as well as develop new applications from
scratch.

1 Overview of SAP HANA

SAP HANA stands for High Performance Analytical Appliance. This flexible
appliance (combination of hardware and software) runs independently
of the data source and can be used to analyze large data volumes in real
time within the main memory (in-memory technology). The SAP HANA
appliance is provided by leading SAP hardware partners and comprises
several SAP software components, in particular a full relational database.

Organizations can use SAP HANA for more than just data analysis. In
addition to analytical applications, transactional applications can also
benefit from SAP HANA. This means that both SAP NetWeaver Business
Warehouse (BW) and the SAP Business Suite can use the SAP HANA
database and benefit from the advantages it provides.

In the first part of this chapter, we introduce the software components
of SAP HANA. We’ll then describe the basic principles of the in-memory
technology and the architecture of the SAP HANA database. To conclude
this chapter, we’ll present application cases for SAP HANA and explain
the impact SAP HANA has on application development.

1.1 Software Components of SAP HANA

SAP HANA is comprised of the following software components, which will
be explained in greater detail in the following sections (see Figure 1.1):

30

1 Overview of SAP HANA

EE Core	components
SAP HANA database, SAP HANA Studio, SAP HANA Client, SAP HANA
Application Function Libraries (AFL—an optional component)

EE Software	for	data	replication	
SAP LT Replication Add-on and Server, SAP HANA Direct Extractor
Connection (DXC), SAP Business Objects Data Services

EE Software	for	direct	data	preparation
SAP HANA Client Package for Microsoft Excel, SAP HANA User Inter-
face for Information Access (INA), SAP HANA Information Composer

EE Lifecycle	management	components
SAP Host Agent, Software Update Manager for SAP HANA, SAP Solu-
tion Manager Diagnostics Agent

Clients

SA
P

In
fr

as
tr

uc
tu

re

SAP HANA System

SAP HANA Host

Software Update
Manager (SUM)

SA
P

Se
rv

ic
e

M
ar

ke
tp

la
ce

SA
P

Su
pp

or
t

SA
P

R
ou

te
r

trxrss

SAP HANA Host
(Scale-Out Scenario)

SAP HANA Host
(Scale-Out Scenario)

SAP Solution
Manager

SAP HANA Client Interface

R

SAP HANA Database

R client

Solution Manager
Diagnostics Agent

SAP Host Agent

SAP
Business-
Objects
Products

Other
Clients

(Browser,
Mobile)AS ABAP

SAP
HANA
Studio

SAP Business
Suite

SAP
NetWeaver

BW

Data Replication

SAP Landscape
Transformation (SAP LT)

SAP Business Suite

SAP BusinessObjects
Data Services

Figure 1.1 Overview of SAP HANA Software Components

www.allitebooks.com

http://www.allitebooks.org

31

Software Components of SAP HANA 1.1

The following sections explain the structure of these components and
their usage. In this context, we’ll focus on aspects that are relevant for
application development.

1.1.1 SAP HANA Database

As a full relational database, SAP HANA provides functions similar to other
relational (“traditional“) databases that are supported by SAP. Like these
traditional databases, SAP HANA provides functions for data backup and
recovery, supports the SQL standard (SQL 92 Entry-Level and some SQL
99 extensions), and guarantees data consistency by following the ACID
principle (atomicity, consistency, isolation, durability) when executing
transactions.

In contrast to other relational databases, SAP HANA can place all relevant
business data in the main memory. It combines row-, column-, and object-
based database technologies and was optimized for the usage of parallel
processing functionality provided by modern hardware technologies.
With this, you can use multi-core and multi-CPU architectures to their
fullest potential. You can thus optimize existing applications for the new
technology and develop applications that you could only dream of with
traditional database technologies.

The SAP HANA database provides its own programming language
(SQLScript) that can be used to express data-intensive application logic.
In addition to SQLScript, SAP HANA provides highly optimized libraries
for specific business functions or predictive analyses. The functions of these
libraries can be called using SQLScript (see Section 1.1.4). Moreover, for
statistical calculations there is a connection to the R software system (see
http://www.r-project.org/).

The internal architecture of the SAP HANA database is explained in more
detail in Section 1.3.

1.1.2 SAP HANA Studio

SAP HANA Studio is comprised of the administration and development
environment. This solution is based on the Eclipse platform, which is SAP‘s
strategic choice for new development tools. An Eclipse-based development

Relational
database

Functionality

Eclipse
development
environment

32

1 Overview of SAP HANA

environment is now also available for ABAP (ABAP Development Tools for
SAP NetWeaver). We’ll particularly use this environment for the tasks
described in this book.

Note: Eclipse and its Significance for SAP

Eclipse is a platform for development tools and environments (e.g., for Java,
C/C++, or PHP). It is maintained and further developed by the Eclipse Founda-
tion (see http://eclipse.org). As an active member of the Eclipse Foundation,
SAP supports the organization in several projects.

In addition to SAP HANA Studio and the ABAP Development Tools for SAP
NetWeaver, the following SAP development environments are based on
Eclipse:

EE SAP NetWeaver Developer Studio (Java)

EE SAP Eclipse Tools for SAP HANA Cloud Platform

EE SAP UI Development Tools for HTML5

EE SAP NetWeaver Gateway Plug-in for Eclipse

One of the main advantages of the Eclipse platform is the ability to integrate
different tools into one installation so that the user benefits from a homo-
geneous development environment. Particularly useful is the possibility to
install the ABAP Development Tools in SAP HANA Studio, which is described
in Section 2.4.

As an example, administrators can use SAP HANA Studio for the follow-
ing tasks:

EE Starting and stopping database services

EE Monitoring the system

EE Specifying system settings

EE Maintaining users and authorizations

EE Configuring the audit log

Administering SAP HANA will not be the focus of this book. Please refer
to the documentation at http://help.sap.com/hana_appliance. As a devel-
oper, however, you can create so-called content (in the form of views or
database processes, for example) using SAP HANA Studio. These devel-
opment artifacts are stored in the repository of the SAP HANA database.
The development environment of SAP HANA Studio is explained in detail
in Chapter 2, Chapter 4, and Chapter 5.

SAP HANA Studio:
usage areas

33

Software Components of SAP HANA 1.1

1.1.3 SAP HANA Client

Using the SAP HANA Client, you can connect to the SAP HANA data-
base via a network protocol. The following standards are supported (see
Figure 1.2):

EE ODBC (Open Database Connectivity) and JDBC (Java Database Con-
nectivity) for SQL-based access

EE ODBO (OLE DB for OLAP) for MDX-based access (multi-dimensional
expressions)

Internally, in particular the proprietary SQLDBC library (SQL Database
Connectivity) from SAP is used.

Clients

Browser/Mobile

SAP HANA Host

SAP HANA Database

SAP HANA Client Interface

SAP HANA Studio

HTTP/
RESTMDXSQL

AS ABAP BI Clients

ODBO ClientJDBC Client DBSL/SQLDBC HTTP Client

Figure 1.2 Options for Accessing SAP HANA via Clients

As the Eclipse platform is Java-based, SAP HANA Studio uses the JDBC
client to establish the connection. This variant is also used in Java-based
application servers.

The SAP NetWeaver Application Server (AS) ABAP uses the so-called Data-
base Specific Library (DBSL) (which is embedded in the SQLDBC client) to

Connection
protocols

Connecting
AS ABAP

34

1 Overview of SAP HANA

connect to the SAP HANA database. The database interface architecture
of the AS ABAP is explained in detail in Chapter 3.

Special BI clients (business intelligence), such as add-ins for Microsoft
Excel, typically use MDX-based access for multi-dimensional queries that
are executed via the ODBO client. In addition, SAP HANA offers direct
HTTP access using the XS Engine, which is explained in Section 1.3.

1.1.4 SAP HANA Function Libraries

The functional scope of SAP HANA can be extended using special func-
tion libraries (Application Function Libraries, AFL) written in C++. With the
current release level SAP HANA SPS5, these libraries must be installed
manually using the SAP HANA on-site configuration tool after installing
the database (see Section 1.1.6).

SAP HANA currently provides two application function libraries: the
Business Function Library (BFL) with its own standard business functions,
and the Predictive Analysis Library (PAL) for data mining and predictions
based on existing historical data.

The usage of these function libraries is described in greater detail in
Chapter 12.

1.1.5 Software for Data Replication

For many application scenarios (for instance, the side-by-side scenarios
described in Section 1.4), you must use data from existing systems in SAP
HANA. The process of first replicating data structures and then an existing
data set (initial load) is called data replication. If the data is subsequently
changed in the original system (for example, after creating a new business
partner), the mirrored data is updated as well (delta load). The existing
systems can be systems of the SAP Business Suite, SAP NetWeaver BW,
or any other data source.

Depending on the data source and usage scenario, different mechanisms
and tools can be used for replication. Within the scope of this book,
setting up or executing data-replication functions will not be explained
in further detail. Table 1.1 provides a short overview of the replication
options that are currently supported by SAP HANA.

BI clients

Application
Function Libraries

Initial and
delta load

Options for data
replication

35

Software Components of SAP HANA 1.1

Replication via Technical Details Usage Scenarios

SAP Landscape
Transformation
Replication Server
(SAP LT)

EE Table replication
based on database
triggers

EE Minimal time offset
(near real-time)

Table-based
replication from SAP
Business Suite to SAP
HANA

SAP Data Services EE ETL-based replica-
tion (extraction,
transformation,
load) using a design
tool for data-flow
modeling

EE Time offset, depend-
ing on the job server
configuration

Flexible use of SAP
and non-SAP data
with additional
data-management
capabilities

Direct Extractor
Connection (DXC)

EE Direct ETL-based
replication (no
middleware)

EE Time offset,
depending on the
job scheduling

Connecting existing
data extractors, e.g.,
from the SAP Business
Suite

Table 1.1 Overview of Replication Options

For extensive, up-to-date technical information on these variants and their
usage scenarios, please see the SAP HANA Master Guide.

1.1.6 Software for Direct Data Access

For easy, direct access to data models in SAP HANA, SAP offers several
tools that are introduced in this section.

To directly access analytical models in SAP HANA from Microsoft Excel
for simple reporting scenarios, you can use the SAP HANA Client Package
for Microsoft Excel. This package uses the ODBO client internally for MDX-
based access to SAP HANA (see Section 1.1.3). In the following chapters,
this variant is primarily used for testing our analytical models.

Using the SAP HANA UI for Information Access, you can easily create browser-
based user interfaces for searches that can be executed directly on tables
or data models in SAP HANA.

Client Package for
Microsoft Excel

UI for Information
Access

36

1 Overview of SAP HANA

And finally, the SAP HANA Information Composer provides an alternative
method for creating simple, analytical views based on imported, external
data; this method is primarily intended for end-users, while the model-
ing options in SAP HANA Studio are instead designed for developers. To
use this tool, a separate Java application server is required. We will not
examine this tool in any detail within the scope of this book.

1.1.7 Lifecycle Management Components

For the sake of completeness, this section briefly describes the SAP HANA
components used for landscape integration and Application Lifecycle Man-
agements (ALM).

SAP HANA is usually installed by a certified SAP hardware partner. To
change the configuration of the SAP HANA appliance after installation,
system administrators use the on-site configuration tool. Using this tool,
you can set up additional SAP HANA systems on the same appliance,
rename systems, set up a connection to SAP Solution Manager, or install
an additional function library (as mentioned in Section 1.1.4), to name
a few examples.

Each SAP HANA host runs the SAP Host Agent, which makes it possible
to monitor the individual hosts and their corresponding instances; this
information is then made available for central monitoring via web services
(e.g., via the SAP Management Console).

Using the Software Update Manager for SAP HANA (SUM), you can down-
load and automatically install new support packages (SPs) of the installed
components from the SAP Service Marketplace.

In case of an error, you can run an analysis by setting up a connection
between your SAP HANA installation and the SAP Support that provides
restricted access via the SAP standard support infrastructure (especially
SAProuter). Using the Diagnostics Agent on the SAP HANA appliance, SAP
Solution Manager moreover provides comprehensive options for technical
monitoring of your SAP HANA system in the context of standard ALM
processes (e.g., root cause analysis or SAP EarlyWatch Alert).

Information
Composer

On-site
configuration tool

SAP Host Agent
and SUM

Support

37

Basic Principles of In-Memory Technology 1.2

1.2 Basic Principles of In-Memory Technology

This section describes some of the basic principles of the in-memory
technology and special innovations in SAP HANA with regard to both
hardware and software. Although not all of these aspects have a direct
impact on the development of ABAP applications for SAP HANA, we
consider it important to explain the basic concepts of SAP HANA and
their implementation, since this will help you understand some of the
design recommendations within this book.

In recent years, two major hardware trends dominated not only the SAP
world, but the market as a whole:

EE Instead of further increasing the clock speed per CPU core (central
processing unit), the number of CPU cores per CPU was increased.

EE Sinking prices for the main memory (random access memory, RAM)
have led to increasing memory sizes.

Section 1.2.1 further explains the hardware innovations of SAP HANA.

For software manufacturers, stagnating clock speeds are somewhat prob-
lematic at first. In the past, it could be assumed that clock speeds would
increase in the future, so software code would be executed faster on future
hardware. With the current trends, however, you can’t safely make that
assumption. Since you can’t increase the speed of sequential executions
simply by using future hardware, you instead have to run software code in
parallel to reach the desired performance gains. Section 1.2.2 introduces
such software optimizations in SAP HANA.

1.2.1 Hardware Innovations

To benefit from these hardware trends, SAP has been working in close
cooperation with hardware manufacturers during the development of
SAP HANA. Consequently, the SAP HANA database currently only runs
on hardware certified by SAP.

Certified Hardware for SAP HANA

The currently certified hardware for SAP HANA is listed in the Product Avail-
ability Matrix (PAM) of the SAP Service Marketplace under http://service.sap.
com/pam. To view this list, search this site for SAP HANA.

Hardware trends

Software
optimizations

Hardware partners

38

1 Overview of SAP HANA

This hardware list currently includes the Intel Westmere-EX architecture
(Intel XEON Processor E7 family) which contains up to 8 CPUs per server
node with 10 CPU cores each. Older systems still use the Nehalem-EX
architecture (Intel Xeon Processor X75xx family) with up to eight CPUs
and 8 cores each. A server node provides up to four TB RAM.

The number of both CPUs and CPU cores, as well as the RAM size, might
be increased in the future (often referred to as scale-up). For early 2014,
for instance, usage of the announced Intel Xeon Processor E7 V2 family
(Ivy Bridge EX) will provide a significantly higher number of cores and
bigger main memory size.

For SAP NetWeaver BW (see Section 1.4), a so-called scale-out is possible,
where up to 16 server nodes (some manufacturers even allow for up to
56 server nodes) can be combined with one TB RAM. This way, systems
with up to 128 CPUs, 1,280 CPU cores, and 16 TB RAM can be set up.
For internal tests, systems with up to 100 TB RAM and 4,000 CPU cores
are currently already combined.

Due to the large RAM size, the I/O system (persistent storage) is basi-
cally no longer accessed for reading accesses to SAP HANA (at least, not
if all data is loaded into the main memory). In contrast to traditional
databases, data transport from the I/O system to the main memory is
no longer a bottleneck. Instead, with SAP HANA the speed of the data
transport between the main memory and the CPUs via the different CPU
caches (there are usually three cache levels) is of central importance. In
the following sections, these access times are discussed in more detail.

Current hard disks provide 15,000 rpm. Assuming that the disk needs
0.5 rotations on average per access, two milliseconds are already needed
for these 0.5 rotations. In addition to this, the times for positioning the
read/write head and the transfer time must be added, which results in a
total of about six to eight milliseconds. This corresponds to the typical
hard-disk access times if the actual hard disk (i.e., not a cache in the I/O
subsystem or on the hard disk) is accessed.

When using Flash memory, no mechanical parts need be moved. This
results in access times of about 200 microseconds. In SAP HANA, per-
formance-critical data is placed in this type of memory and then loaded
into the main memory.

Scale-out

Access times

Hard disks

Flash memory

39

Basic Principles of In-Memory Technology 1.2

Access to the main memory, (or DRAM, dynamic random access memory)
is even faster. Typical access times are 60 to 100 nanoseconds. The exact
access time depends on the access location within memory. With the
NUMA architecture (non-uniform memory access) used in SAP HANA,
a processor can access its own local memory faster than memory that
is within the same system but is being managed by other processors.
With the currently certified systems, this memory area has a size of up
to four TB.

Access times to caches in the CPU are usually indicated as clock ticks. In
case of a CPU with a clock speed of 2.4 GHz, a cycle takes about 0.42
nanoseconds. The hardware certified for SAP HANA uses three caches,
referred to as L1 to L3 cache. L1 cache can be accessed in three to four clock
ticks, L2 cache in about ten clock ticks, and L3 cache in about 40 clock
ticks. L1 cache has a size of 64 KB, L2 cache of 256 KB, and L3 cache of
30 MB. Each server comprises only one L3 cache which is used by all
CPUs, while each CPU has its own L2 and L1 cache. This is illustrated in
Figure 1.3. Table 1.2 lists the typical access times.

6 – 8
millisec.

200
microsec.

SSD

Hard Drive

DRAMDRAM

CPUCPU

L3 Cache

L2 Cache

L1 Cache

CoreCore

60
nanosec.

100
nanosec.

16 nanosec.

4 nanosec.

1.5
nanosec.

Serverboard

L2

L1

Figure 1.3 Access Time

Main memory

CPU cache

40

1 Overview of SAP HANA

Memory Access Time in
Nanoseconds

Access Time

Hard disk 6,000,000–8,000,000 6–8 milliseconds

Flash memory 200,000 200 microseconds

Main memory (DRAM) 60–100 60–100 nanoseconds

L3 cache (CPU) 16 (about 40 cycles) 16 nanoseconds

L2 cache (CPU) 4 (about 10 cycles) 4 nanoseconds

L1 cache (CPU) 1.5 (about 3–4 cycles) 1.5 nanoseconds

CPU register < 1 (1 cycle) < 1 nanosecond

Table 1.2 Typical Access Times

The times listed depend not only on the clock speed, but also on the
configuration settings, the number of memory modules, the memory
type, and many other factors. They are provided only as a reference for
the typical access times of each memory type.

When sizing an SAP HANA system, enough capacity should be assigned to
place all data in the main memory so that all reading accesses can usually
be executed on this memory. When accessing the data for the first time
(e.g., after starting the system), the data is loaded into the main memory.
You can also manually or automatically unload the data from the main
memory. This can be necessary if, for example, the system tries to use
more than the available memory size.

In the past, access to the hard disk was usually the performance bottleneck;
with SAP HANA, however, main memory access is now the bottleneck.
Even though these accesses are up to 100,000 times faster than hard-disk
accesses, they are still four to 60 times slower than accesses to CPU caches,
which is why the main memory is the new bottleneck for SAP HANA.

The algorithms in SAP HANA are implemented in such a way that they
can work directly with the L1 cache in the CPU wherever possible. Data
transport from the main memory to the CPU caches must therefore be

Main memory as
the new bottleneck

Memory
algorithms

www.allitebooks.com

http://www.allitebooks.org

41

Basic Principles of In-Memory Technology 1.2

kept to a minimum—which has major effects on the software innovations
described in the next section.

1.2.2 Software Innovations

The software innovations in SAP HANA make optimal use of the previ-
ously described hardware. This is done through two ways: By keeping the
data transport between the main memory and CPU caches to a minimum
(e.g., by means of compression), and by fully leveraging the CPUs using
parallel threads for data processing.

SAP HANA provides software optimizations in the following areas:

EE Data layout in the main memory

EE Compression

EE Partitioning

These three areas are discussed in more detail in the following subsections.

Data Layout in the Main Memory

In every relational database, the entries of a database table must be stored
in a certain data layout—independent of whether this representation is
done in the main memory (as in case of SAP HANA) or by following the
traditional approach using a physical medium. Basically, two completely
different options are available for this: row-based and column-based data
storage. SAP HANA supports both approaches. The concepts and their
differences are explained next.

We‘ll first take a look at row-based data storage in the row store of SAP
HANA. In this store, all data pertaining to a row (e.g., the data in Table
1.3) is placed next to each other (see Figure 1.4) which facilitates access
to entire rows. Accessing all values of a column is a little more complex,
however, since these values cannot be transferred from the main memory
to the CPU as efficiently as in the case of column-based data storage. Data
compression, which will be explained in the next section, is also less
efficient with this storage approach.

Row store

42

1 Overview of SAP HANA

Name Location Gender

… … …

Brown Chicago M

Doe San Francisco F

Smith Dallas M

… … …

Table 1.3 Sample Data to Explain the Row and Column Store

Main Memory

… Brown Chicago M Doe San
Francisco

F Smith Dallas M …

1st Row

Row Access

Column Access

2nd Row 3rd Row

Figure 1.4 Illustration of Row-Based Data Storage in the Row Store

Let‘s now take a look at column-based data storage in the column store.
Column-based data storage is nothing really new; rather, this type of
storage was already used in Data Warehouse applications and analysis
scenarios in the past. In transactional scenarios, however, only row-based
storage had been used thus far (such as in the row store described already).

Figure 1.5 shows a schematic representation of the sample data from Table
1.3 in a column-based storage. The contents of a column are placed next to
each other in the main memory. This means that all operations accessing
a column will find the required information nearby, which has favorable
effects on the data transport between the main memory and the CPU.
If a lot of data or all data from a row is needed, however, this approach
is disadvantageous because this data is not nearby. Column-based data

Column store

43

Basic Principles of In-Memory Technology 1.2

storage facilitates efficient compression and aggregation of data based
on a column.

Main Memory

… Brown Doe Smith … Chicago San
Francisco

Dallas … M F M …

Last Name Location Gender

Row Access

Column Access

Figure 1.5 Illustration of Column-Based Data Storage in the Column Store

As you can see, both approaches have advantages and disadvantages. With
SAP HANA, you can specify the storage approach to be used for each table.
Business data are almost always placed in column-based storage, since
the advantages of this approach outweigh its disadvantages. However,
some tables (or their main access type) require row-based data storage.
These are primarily either very small or very volatile tables where the
time required for write accesses is more important than the time required
for read accesses, or in technical tables where single-record accesses (e.g.,
via ABAP command SELECT SINGLE) are the main access pattern.

Compression

The SAP HANA database provides a series of compression techniques that
can be used for the data in the column store, both in the main memory
and in the persistence. High data compression has a positive impact on
runtime, since it reduces amount of data that needs to be transferred from
the main memory to the CPU. SAP HANA’s compression techniques are
very efficient with regard to runtime, and can provide an average compres-
sion factor of five to ten compared to data that has not been compressed.

The compression techniques listed next are based on dictionary encod-
ing, where the column contents are stored as encoded integers in the

Flexible data
storage

Dictionary
encoding

44

1 Overview of SAP HANA

attribute vector. In this context, encoding means “translating” the content
of a field into an integer value.

To store the contents of a column, the SAP HANA database creates a
minimum of two data structures:

EE a dictionary vector

EE an attribute vector

The dictionary vector stores each value of a column only once. This means
that the Gender column for our sample data from Table 1.3 only contains
the values “M” and “F” in the corresponding dictionary vector. For the
Location column, there are three values: Chicago, San Francisco, and
Dallas. The contents of the dictionary vector are stored as sorted data.
The position in the dictionary vector maps each value to an integer. In
our example, this is 1 for gender “M” and 2 for gender “F”. In the dic-
tionary vector for the location, integer 5 stands for Chicago, integer 6
for San Francisco, and integer 7 for Dallas. As this value can implicitly be
derived from its position (first value, second value, etc.), no additional
storage is required.

The dictionary vectors for the sample data from Table 1.4 are displayed
in the upper half of Figure 1.6. Only the data shaded in gray is explicitly
stored in memory.

Record Last name Location Gender

… … … …

3 Brown Chicago M

4 Brown San Francisco F

5 Doe Dallas M

6 Doe San Francisco F

7 Smith Dallas M

… … … …

Table 1.4 Sample Data for Dictionary Encoding and Compression

Dictionary vector

45

Basic Principles of In-Memory Technology 1.2

Main Memory

Attribute Vector
Last Name

Attribute Vector
Location

Attribute Vector
Gender

Last Name Position

… …

Brown 7

Doe 8

Smith 9

… …

Dictionary Vector
Last Name

Location Position

… …

Chicago 5

Dallas 6

San Francisco 7

… …

Dictionary Vector
Location

Gender Position

F 1

M 2

Dictionary Vector
Gender

… 7 7 8 8 9 … 5 7 6 7 6 … 2 1 2 1 2 …

… 3 4 5 6 7 … 3 4 5 6 7 … 3 4 5 6 7 …

Figure 1.6 Dictionary Encoding

The attribute vector now only stores the integer values (the position in the
dictionary). As in case of traditional databases, the order of the records
is generally not defined.

The last name ”Smith“ was placed in the dictionary vector for last names.
From its position in this vector, a value can implicitly be derived (the
value 9 in our example). This value, again, is now always stored at the
position for the last name “Smith“ in the attribute vector for the last name;
in our example, this is the seventh record of the sample data from Table
1.4. Another example is the location “San Francisco“, which is stored at
position 7 in the dictionary vector for the location and appears for rows 4
and 6 in the attribute vector for the location (Table 1.4). The attribute
vectors are shown in the lower part of Figure 1.6. In this figure, all three
attribute vectors are shown consecutively to show that all data (also the
dictionary vectors) is stored in a “data stream” in the main memory and
addressed via memory references and offsets. Here, only the sections
shaded in gray in Figure 1.6 are actually stored in the main memory. The
row numbers displayed below those sections do not need any storage
space and are again implicitly derived from their position in the attribute

Attribute vector

46

1 Overview of SAP HANA

vector. They correspond to the position in our sample Table 1.4 (first
record, second record, etc.).

The fact that the data is only stored as integer values in the attribute vec-
tors provides the following advantages:

EE Lower storage requirements for values that occur several times

EE Accelerated data transfer from the main memory to CPU caches since
less data needs to be transported

EE Faster processing of integer values (instead of strings) in the CPU

Moreover, additional compression techniques can be used for both dic-
tionary vectors and attribute vectors. These are introduced in more detail
later on.

For the dictionary vector, delta compression is used for strings. With this
compression technique, every character from a string in a block with
16 entries (for example) is stored only once in a delta string. Repeated
characters are stored as references. Other data types are maintained as
sorted arrays.

Delta Compression

The following entries are present: Brian, Bus, Britain, Brush. After delta com-
pression, this results in: 5Brian12us34tain23ush. The first digit indicates the
length of the first entry (Brian = 5). The digit pairs between the other entries
contain the information for reconstruction. The first digit indicates the length
of the prefix from the first entry, the second digit indicates the number of
characters that are appended by the subsequent part. Consequently, “12us”
means that one character from “Brian” is used and that two more characters
are added (“us”); “34tain” means that the first three characters from Brian
(“Bri”) are used and that four more characters are added (“tain”). And “23ush”
finally means that the first two characters from “Brian” are used and three
more characters (“ush”) are added.

For the attribute vector, one of the following compression techniques
can be used:

EE Prefix	encoding	
Identical values at the beginning of the attribute vector (prefixes) are
left out; instead, a value and the number of its occurrences is stored
only once.

Advantages of
storing integer

values

Delta compression

Compression in the
attribute vector

47

Basic Principles of In-Memory Technology 1.2

EE Sparse	encoding	
The individual records from the value with the most occurrences are
removed; instead, the positions of these entries are stored in a bit vec-
tor.

EE Cluster	encoding	
Cluster encoding uses data blocks of perhaps 1,024 values each. Only
blocks with a different value are compressed by storing only the value.
Information on the compressed blocks is then stored in a bit vector.

EE Indirect	encoding	
Indirect encoding also uses data blocks of 1,024 values each. For every
block, a mini-dictionary is created that is similar to the dictionary vec-
tor in the dictionary encoding described above. In some cases, a mini-
dictionary may be shared for adjacent blocks. This compression
technique provides another level of abstraction.

EE Run-length	encoding	
With run-length encoding, identical successive values are combined
into one single data value. This value is then stored only once together
with the number of its occurrences.

SAP HANA analyzes the data in a column and then automatically chooses
one of the compression techniques described. Table 1.5 presents a typical
application case for each compression technique.

Compression Technique Application Case

Prefix encoding A very frequent value at the beginning of
the attribute vector

Sparse encoding A very frequent value occurring at several
positions

Cluster encoding Many blocks with only one value

Indirect encoding Many blocks with few different values

Run-length encoding A few different values, consecutive identical
values

Dictionary encoding Many different values

Table 1.5 Overview of Compression Techniques

Automatic
selection of the
compression
technique

48

1 Overview of SAP HANA

The memory structures presented so far (consisting of sorted dictionary
vectors and attribute vectors with integer values), which might still be
compressed in some cases, are optimized for read access. These structures
are also referred to as the main store. They are not optimally suited for write
accesses, though. For this reason, SAP HANA provides an additional area
that is optimized for write access: the delta store. This store is explained
in detail in Appendix C. In this appendix, another memory structure is
also described: indexes. Moreover, Appendix C explains why SAP HANA
is called an insert-only database.

Partitioning

Let’s now take a look at the third area of software innovation: partition-
ing. Partitioning is used whenever very large quantities of data must be
maintained and managed.

This technique greatly facilitates data management for database admin-
istrators. A typical task is the deletion of data (such as after an archiving
operation was completed successfully). There is no need to search large
amounts of information for the data to be deleted; instead, database
administrators can simply remove an entire partition. Moreover, parti-
tioning can increase application performance.

There are basically two technical variants of partitioning:

EE With vertical partitioning, tables are divided into smaller sections on a
column basis. For a table with seven columns, column 1 to 5 could
perhaps be stored in one partition, while column 6 and 7 are stored
in a different partition.

EE With horizontal partitioning, tables are divided into smaller sections on
a row basis. Rows 1 to 1,000,000 are then perhaps stored in one par-
tition, while rows 1,000,001 to 2,000,000 are placed in another parti-
tion.

SAP HANA supports only horizontal partitioning. The data in a table is
distributed across different partitions on a row basis, while the records
within the partitions are stored on a column basis.

Read-optimized
main store

Advantages of
partitioning

Partitioning
variants

49

Basic Principles of In-Memory Technology 1.2

The example in Figure 1.7 shows how horizontal partitioning is used for a
table with the two columns Name and Gender in case of column-based data
storage. On the left side, the table is shown with a dictionary vector (DV)
and an attribute vector (AV) for both the column Name and the column
Gender. On the right side, the data was partitioned using the round-robin
technique, which will be explained in more detail next. The consecutive
rows were distributed across two partitions by turns (the first row was
stored in the first partition, the second row in the second partition, the
third row again in the first partition, and so on).

AV

1

2

3

4

5

6

7

8

9

10

11

12

DV

Alex

Anna

Christopher

Dan

David

Eric

Erica

Henry

Martina

Thomas

Tina

Yvonne

AV

1

2

1

1

1

1

2

1

2

1

2

2

DV

f

m

Column: Name Column: Gender

Non-Partitioned Table

AV

1

2

3

4

5

6

DV

Alex

Christopher

David

Erica

Martina

Tina

AV

1

1

1

2

2

2

DV

f

m

P1 Column: Name P1 Column: Gender

Partitioned Table

AV

1

2

3

4

5

6

DV

Anna

Dan

Eric

Henry

Thomas

Yvonne

AV

2

1

1

1

1

2

DV

f

m

P2 Column: Name P2 Column: Gender

Figure 1.7 Partitioned Table

Partitioning should be used in the following application scenarios:

EE Load	distribution
If SAP HANA runs on multiple servers, the data from very large tables
can be distributed across several servers by storing the individual par-
titions of the tables on different servers. Table queries are then dis-
tributed across the servers where a partition of the table is stored. This

Horizontal
partitioning

Application cases

50

1 Overview of SAP HANA

way, the resources of several computers can be used for a query and
several computers can process the query in parallel.

EE Parallelization
Parallelization is not only possible across multiple servers, but also on
a single server. When a query is run, a separate process is started for
each partition and these processes are processed in parallel in the par-
titions. Please note that parallelization across partitions is only one
variant of parallelization in SAP HANA. There are other types of paral-
lelization that can be used independent of partitioned tables.

EE Partition	pruning
With partition pruning, the database (or the database optimizer) recog-
nizes that certain partitions do not need to be read. Example: If a table
containing sales data is partitioned based on the column Sales organiza-
tion so that every sales organization is stored in a separate partition,
only a certain partition is read when a query is run that needs data
just from the sales organization in that partition; the other partitions
are not read. This process reduces the data transport between the main
memory and CPU.

EE Explicit	partition	handling
In some cases, partitions are specifically used by applications. Example:
If a table is partitioned based on the column Month, an application can
create a new partition for a new month and delete old data from a
previous month by deleting the entire partition. Deleting this data is
very efficient, since administrators do not need to search for the infor-
mation to be deleted, but can simply delete the entire partition using
a DDL statement (data definition language).

Partitioning to Circumvent the Row Limit

The SAP HANA database currently has a limit of two billion rows per table.
If a table should comprise more rows, it must be partitioned. Each partition
must again not contain more than two billion rows. The same limit currently
applies to temporary tables that are, for example, used to store interim results.
SAP is working on increasing these limits.

www.allitebooks.com

http://www.allitebooks.org

51

Architecture of the In-Memory Database 1.3

Now that you are familiar with the concept of partitioning and suitable
application scenarios, we‘d like to introduce the types of partitioning
available in SAP HANA:

EE Hash	partitioning
Hash partitioning is primarily used for load distribution, or in situa-
tions where tables with more than two billion records must be main-
tained. With this type of partitioning, data is distributed evenly across
the specified number of partitions based on a calculated key (hash).
Hash partitioning supports partition pruning.

EE Round-robin	partitioning
With round-robin partitioning, data is also distributed evenly across
a specified number of partitions so that this type is also suitable for
load distribution or for very large tables. Round-robin partitioning
does not require a key; instead, the data is simply distributed in
sequence. If a table is divided into two partitions, for example, the
first record is stored in the first partition, the second record is stored
in the second partition, the third record is again stored in the first
partition, and so on (see Figure 1.7). Round-robin partitioning does
not support partition pruning.

EE Range	partitioning
With range partitioning, the data is distributed based on values in a
column. You can, for example, create a partition for every year of a
column Year or create a partition for three months of a column Month.
In addition, you can create a partition for remainders if records are
inserted that do not belong in any of the ranges of the partitions you
created. Range partitioning supports partition pruning.

These partitioning types can be combined in a two-step approach. For
instance, you could use hash partitioning in the first step and then, in a
second step, use range partitioning within this hash partitioning.

1.3 Architecture of the In-Memory Database

This section introduces important aspects of the SAP HANA database
architecture. Figure 1.8 shows the main components of the architecture.

Partitioning types
in SAP HANA

52

1 Overview of SAP HANA

SAP HANA Host

SAP HANA Database

Index Server

XS Engine

Preprocessor Server Statistics Server Name Server

Planning Engine, MDX Engine, Calc
Engine, Stored Procedure Processor

Column Store Row Store

SQL Processor

Figure 1.8 Architecture of the SAP HANA Database

The following section provides a detailed description of all of these archi-
tecture components, which can be subdivided into two component types:

EE Server
Server components are processes and services that are run on the oper-
ating system.

EE Engines
Engines are functional components within a server that are used to
handle certain queries.

The SAP HANA database comprises several servers; the most important
one is the index server, which is used to process SQL commands. The index
server itself contains several components: The SQL processor receives and
accepts the SQL commands and either runs them directly or forwards the
commands to a subordinate component. These subordinate components
can be either a central data storage (i.e., the column store or the row
store) or one of the engines. All data that is currently being used is either
stored in the column store or in the row store. This data is read directly
from these stores or, in case of complex queries, processed via one of the
engines. There are multiple engines that can be used for activities such
as planning functions, for multidimensional expressions (MDX), or for
database procedures (stored procedures). These engines all were optimized
for special data processing tasks that can be called if required.

Server and engine
components

Index server

53

Application Cases for SAP HANA 1.4

The preprocessor server is used for the text-search function integrated in
SAP HANA and primarily analyzes text data. If needed, this server is
called by the index server.

The statistics server is used for monitoring the SAP HANA database. It col-
lects information on status, performance, and resource consumption of
the individual components, and it creates historical views based on this
data. SAP HANA Studio accesses this information via the statistics server.

The name server maintains the information on the topology of the SAP
HANA database, or information regarding the distribution of the software
components and data.

To provide a complete list of the SAP HANA database servers, we‘ll now
describe the XS Engine (SAP HANA Extended Application Services). This engine
is a simple application server that can be accessed directly via HTTP/a
web browser. Using the XS Engine and server-side JavaScript, you can
currently develop web applications that access things such as data models
or text searches in SAP HANA and expose them as RESTful Services (rep-
resentational state transfer). In this context, the OData and HTML5 are
used. Section 10.2.1 provides a brief overview over OData and HTML5.

1.4 Application Cases for SAP HANA

This section explains the different application cases for SAP HANA. These
application cases can be subdivided into two groups:

EE Side-by-side	scenarios	
In a side-by-side scenario, SAP HANA is implemented in addition to
an existing traditional database (primary database). Certain applications
read the data needed from SAP HANA instead of the primary database.
In this case, SAP HANA is used as a secondary database and comprises
data that was replicated from the primary database. Using this approach,
access times can be significantly improved.

EE Integrated	scenarios	
In an integrated scenario, existing applications are migrated to SAP
HANA and the traditional database is replaced with SAP HANA. SAP
HANA becomes the primary database.

Preprocessor,
statistics, and
name server

SAP HANA
Extended
Application
Services

54

1 Overview of SAP HANA

Figure 1.9 shows two typical side-by-side scenarios: accelerators and SAP
HANA applications.

In an accelerator scenario, the data from the traditional database is repli-
cated to an SAP HANA database. Certain reading database accesses within
existing applications are redirected to SAP HANA. This can be done using
different procedures. In most cases, this redirection is done via separate
database connections and small changes to the ABAP source code.

Existing DB SAP HANA

SAP
Business

Suite

Accelerator Scenario HANA Application Scenario

SAP
Business

Suite

HANA
Application

(for SAP
Business

Suite)

Existing DB SAP HANA

Figure 1.9 Side-by-Side Scenarios

SAP CO-PA Accelerator

The SAP CO-PA Accelerator (cost profitability analysis) is used to implement
an accelerator scenario and is probably one of the best-known examples of a
side-by-side scenario. However, there are further examples from finance and
controlling, or customer relationship management (CRM). An overview can
be found in SAP Note 1761546.

You can also redirect customer-developed ABAP programs using an accel-
erator scenario, and thus implement them in a side-by-side scenario. For
the SAP Business Application Accelerator powered by SAP HANA (see Appen-
dix D), redirection is done via a special SAP kernel and adjustments in
Customizing; please note that it is not necessary to change ABAP source
code for this accelerator.

Accelerator
scenarios

55

Application Cases for SAP HANA 1.4

Other side-by-side scenarios are new applications in the context of the
SAP Business Suite that were developed for SAP HANA. These are appli-
cations that use SAP HANA functions and other modern technologies
like HTML5. They are based mainly on data that was replicated from the
SAP Business Suite and can write back result data via remote-enabled
interfaces. Examples are the segmentation of CRM customer data on
SAP HANA and the creation of campaigns in CRM. In addition to those
applications, there are new applications that are not based on existing
data from the SAP Business Suite, but are run on SAP HANA as stand-
alone applications with their own data basis instead. Amongst others,
these include applications for utilities working with smart meter data, for
example from smart electricity meters.

In an integrated scenario, application packages are run entirely on SAP
HANA. These can for example be SAP Business One, the SAP Business
Suite, or SAP NetWeaver BW. One of the innovations in the SAP Business
Suite on SAP HANA is the virtual data model (VDM). VDMs are analytical
models that make data from the SAP Business Suite available for reporting
purposes in a consistent manner and via open interfaces. This scenario
does not require data replication and SAP HANA is implemented as the
primary database.

Figure 1.10 illustrates this scenario: all applications or application pack-
ages are run directly on SAP HANA.

SAP Business Suite

ER
P

C
R

M

SC
M

SR
M

 *

PL
M

V
D

M

New
Application

SAP HANASAP HANA

SAP
NetWeaver

BW

SAP HANA

* Currently not yet available for SAP HANA

Figure 1.10 Integrated Scenario

SAP HANA
applications

Integrated
scenarios

56

1 Overview of SAP HANA

You should now have an overview of the application options of SAP
HANA. The following section explains what moving to SAP HANA means
for developers.

1.5 How SAP HANA Affects Application
Development

Having explained the basic principles of the in-memory technology and
the architecture of the SAP HANA database, you may now be asking
yourself how the described hardware and software innovations affect
application development with ABAP. This question will be answered in
the following sections.

Note the following: Not everything changes when implementing SAP
HANA. Like in the past, you can develop powerful applications using
ABAP even if these applications use SAP HANA as a database. Many of
the rules for ABAP programming that you are familiar with (e.g., the
rules for efficient database access—also known as the five golden rules, see
Section 14.4) will essentially still be valid.

So what changes for application development in ABAP? In the following
section, we’ll describe the technical options that benefit ABAP develop-
ers when using SAP HANA and we’ll explain the code pushdown concept.
You’ll learn why the database can no longer be considered a black box in
the future, and which skills you should acquire.

1.5.1 New Technical Options

Using SAP HANA, you can support several application scenarios—as
described in Section 1.4. From an ABAP developer‘s point of view, using
SAP HANA provides the following new technical options:

EE Accelerate
Using SAP HANA, you can accelerate existing ABAP programs. On the
one hand, this allows you to significantly reduce the time needed to
run background jobs. On the other hand, you can improve the

Many rules are
still valid

Optimization
potential

57

How SAP HANA Affects Application Development 1.5

immediate response time for queries triggered by end-users within
dialog transactions.

EE Extend
You can use SAP HANA to customize and extend existing applications
in a way that goes beyond solely accelerating these applications. Some
ABAP programs that could only be run as background jobs in the past
due to their response behavior can now be converted into interactive
dialog transactions with SAP HANA. Moreover, you can enhance
usability and functionality of ABAP dialog transactions by implement-
ing SAP HANA. Such improvements include embedded analyses and
fault-tolerant full-text searches.

EE Innovate
Finally, you can develop new, innovative applications and application
types using ABAP and SAP HANA. In this context, convergence of
online transactional processing (OLTP) and online analytical processing
(OLAP) and so-called hybrid applications are often mentioned. Hybrid
applications combine transactional and analytical functions within a
single system so that end-users can take direct steps based on insights
they gained in real time from data analyses (for example, supported
by statistical algorithms for predictions based on historic data).

1.5.2 Code Pushdown

For applications that take advantage of the hardware and software innova-
tions in SAP HANA described in Section 1.2, at least part of the applica-
tion logic must be executed in the database. This is especially important
if complex calculations with large data amounts have to be performed.
The process of moving application code from the application layer to the
database layer is often referred to as code pushdown.

Traditionally, ABAP-based applications use the so-called data-to-code para-
digm. Applications optimized or developed specifically for SAP HANA,
however, use the code-to-data paradigm. The following section describes
the differences between the two paradigms (see Figure 1.11).

Different
paradigms

58

1 Overview of SAP HANA

Presentation Layer

Application Layer

Database Layer

Data-to-Code

Presentation

Calculation Logic

Orchestration Logic

Data

Code-to-Data

Presentation

Orchestration Logic

Data

Calculation Logic

Figure 1.11 The Code Pushdown Principle

As you can see in Figure 1.11, the application data is placed in the database
layer when using the data-to-code paradigm. Basically, the application
logic–comprised of orchestration logic and calculation logic—is executed
entirely in the application layer. The presentation logic is executed in the
presentation layer.

Elements of the Application Logic

In the following, the application logic is subdivided into two sections:

EE The orchestration logic controls business processes and the data flow and
determines how calculation results are combined and further processed.

Example: Once a flight booking is saved, the system automatically sends
an email to the traveler.

EE The calculation logic identifies algorithms used to perform calculations
based on the application data.

Example: To suggest the “best” flight to a traveler, the system analyzes
historical flight and booking data prior to a booking and then calculates a
score per flight.

For ABAP programs, this means: A data-to-code application reads the
records from the database. The records are then often buffered in internal

Data-to-code

59

How SAP HANA Affects Application Development 1.5

tables of the application server. The application logic is implemented
based on this principle. For presentation, the records or the data calcu-
lated based on these records are transferred to the front-end—SAP GUI,
SAP NetWeaver Portal, or SAP NetWeaver Business Client. With this
procedure, it’s possible to send millions of records from the database to
the application server, even though only a few hundred calculated key
figures will be displayed for the end user.

When using the code-to-data paradigm, the application data is also placed
in the database layer. However, some of the application logic is executed
in the application layer, while some of it is implemented in the database
layer. In an extreme case, the entire application logic can be executed in
the database layer. Nothing fundamentally changes in the execution of
the presentation logic.

When applying this paradigm to an ABAP program, this means: The data
of a code-to-data application is stored in the database. The orchestration
logic is implemented on the application server. The calculation logic is
usually executed in the database. The more complex a calculation is and the
more records needed for the calculation, the more valuable is the execu-
tion in the database. With this approach, the amount of data transferred
from the database to the application server can be kept to a minimum.
Even if millions of records are needed for a calculation, the system only
transfers the few hundred calculated key figures that the user should see.

1.5.3 Database as Whitebox

Thanks to the architecture of the SAP NetWeaver AS ABAP and the
database independence of Open SQL, you can develop ABAP applica-
tions without knowing database-specific details. Section 3.2 describes all
important elements of database access from ABAP applications in detail.

Using Open SQL, you can perform operations on the database of the appli-
cation server. Open SQL provides a unified syntax and unified semantics
for all database systems supported by SAP. The result of the operations
and potential error messages are independent of the database system. This
means that programs that only use Open SQL can be run on all database
systems supported by SAP.

Code-to-data

Open SQL

60

1 Overview of SAP HANA

In addition to Open SQL, Native SQL can also be used. With Native SQL,
you can use database-specific operations that are not supported by Open
SQL. However, the disadvantage of Native SQL is that programs using
database-specific operations cannot be run on all database systems sup-
ported by SAP. This is probably the reason why you only used Native
SQL and database-specific operations in exceptional cases in the past.
The database was usually a black box, or a closed system with an internal
structure that did not need to be considered.

However, if the application logic, or at least part of it, is now to be
executed (and possibly also implemented) in the database, knowledge of
database-specific (or better, SAP HANA-specific) details is imperative. To
really benefit from SAP HANA and achieve optimum performance, the
database must become a white box. In particular, you must understand
the following aspects:

EE How can application code be moved from the application layer to the
database layer?

EE To what extent is moving the application code possible when using
Open SQL?

EE What options are provided by the SQL standard and SAP HANA-spe-
cific extensions in this regard (e.g., modeled or implemented SAP
HANA Views and SQLScript)?

EE How can you use these options in ABAP?

When optimizing programs for SAP HANA, you should always ask yourself
if these programs should also be used on different database systems (which
often is the case). If a program is to be used not only on SAP HANA but
also on other systems, you carefully need to weigh the pros and cons of
optimizing it with SAP HANA Views or SQLScript (as you had to when
using Native SQL in the past). You could, for example, have a significantly
better performance. A disadvantage, however, is the database-dependent
application code that results from this optimization.

In general, you should only use Native SQL, SAP HANA Views, and
SQLScript if optimization using Open SQL does not result in the desired
outcome (e.g., with regard to the response behavior); see Chapter 14.

Native SQL

From a blackbox
to a whitebox

The risk of
complexity

www.allitebooks.com

http://www.allitebooks.org

61

How SAP HANA Affects Application Development 1.5

Within a program—or generally speaking, within modularization units—
you can distinguish between application code for SAP HANA and applica-
tion code for other database systems using case distinctions, i.e. by using
IF... ENDIF. In some cases, if the application code would otherwise
become too complex, it may also be necessary to create several alterna-
tive implementations of a modularization unit. In the extreme case, you
have to develop a separate program for every database system.

Alternative Implementations

Alternative implementations for a modularization unit could look as follows:

EE One implementation for SAP HANA that uses SAP HANA-specific options
and one Open SQL-based implementation for all other database systems
supported by SAP.

EE One implementation for SAP HANA, one implementation for Oracle, one
implementation for IBM DB2, etc. With this approach, each implementa-
tion is optimized for the respective database system.

Code pushdown might lead to greater complexity of programs that are
to support both SAP HANA and other database systems. This is discussed
in detail in Section 14.1.2.

1.5.4 Required Qualifications for Developers

How should ABAP developers deal with the impact of SAP HANA on
application development? It’s certainly not enough to simply understand
the impacts described. To be able to optimize existing applications and
develop new applications or application types based on ABAP and SAP
HANA, developers need to gain expertise. And you should make sure to
acquire this knowledge at an early stage.

From our point of view, you should gain detailed knowledge of Open
SQL (if you are not already highly skilled in this language), but should
also familiarize yourself with technologies of the SQL standard and the
SAP HANA database that go beyond Open SQL. You should know how
to model SAP HANA Views and how to use SQLScript for more complex
requirements both in SAP HANA Views and within database procedures.

Modularization
units

SQL and SAP
HANA

62

1 Overview of SAP HANA

To optimize existing applications for SAP HANA—especially with regard to
their performance—you need to know which programs and code patterns
within these programs are particularly suitable candidates. You should
familiarize yourself with the development tools used to identify suitable
programs for code pushdown. And you should be able to perform a run-
time analysis to thoroughly examine the identified programs.

Altogether, we assume that sound knowledge in the areas of performance
analysis and performance optimization with regard to the in-memory
technology will become (even) more important than in the past and than
in case of traditional databases.

To develop new applications that process large data amounts using SAP
HANA, the application architecture must be designed accordingly from
the start. The performance of SAP HANA must be noticeable for the
end-user. It might not be sufficient to simply perform calculations with
a high performance. The results of these calculations must also be dis-
played to the user very quickly and in simple and intuitive views. You
should therefore also familiarize yourself with technologies for develop-
ing modern user interfaces.

And finally, you should understand the impact SAP HANA has on the
known rules of ABAP programming. As already mentioned at the begin-
ning of Section 1.5, many rules are essentially still valid. However, some
rules now have a different priority, for instance, compared to using tradi-
tional databases they are now more or less important when implementing
SAP HANA. Example: Avoiding many individual SQL statements (such as
in a loop) is now more important than in the past.

At the same time, new guidelines will help you to create several alter-
native implementations of a modularization unit so that a program can
be run optimally, for example, both on the SAP HANA database and on
traditional databases. ABAP developers should be familiar with those
new guidelines as well. Details on all of these guidelines can be found
in Chapter 14.

Performance
analysis and
optimization

New UI
technologies

Old and new rules

63

ABAP development for SAP HANA is closely linked to SAP’s
latest development tools, which are based on the Eclipse platform.
ABAP developers require a basic understanding of this platform
and, in particular, should become familiar with both the ABAP
Development Tools for SAP NetWeaver and SAP HANA Studio.

2 Introducing the Development
Environment

In the past, ABAP developers would have used the SAP GUI-based ABAP
Workbench to develop, adjust, and test programs. However, SAP’s new
development tools are based on the Eclipse platform. Furthermore, SAP is
migrating some of its existing development tools to Eclipse.

At the start of this chapter, we will explain Eclipse and the significance of
this platform for SAP. We will then introduce you to the ABAP Development
Tools for SAP NetWeaver—which is the new Eclipse-based development
environment for ABAP—as well as SAP HANA Studio, which is the admin-
istration and development environment for the HANA database. We will
also discuss how to install these development environments.

2.1 Overview of Eclipse

Eclipse is an open source framework that, in principle, can be used to
develop all types of software. Eclipse was originally developed by IBM
but has been maintained and further developed by the Eclipse Foundation
(http://eclipse.org) since 2004. In particular, Eclipse is known as a platform
for development tools and environments.

A key strength of Eclipse is its ability to integrate different development
tools (for example, Java Development Tools (JDT), C/C++ Development Tools

Open source
framework

64

2 Introducing the Development Environment

(CDT), or ABAP Development Tools for SAP NetWeaver) into one instal-
lation, and therefore provide users with a homogenous development
environment.

In technical terms, Eclipse defines extension points that plug-ins can use
to integrate themselves into Eclipse. A plug-in enhances the functional
scope of Eclipse.

Each plug-in is described by an XML file (known as a manifest) and imple-
mented in Java. Furthermore, each plug-in can provide extension points
for other plug-ins that are based on it.

Eclipse provides the Eclipse Software Development Toolkit (Eclipse SDK) for
the development of plug-ins (and Java applications in general).

Figure 2.1 provides a schematic representation of the structure of the
Eclipse SDK and shows how extension points are used to facilitate the
multilevel integration of different tools into Eclipse. In this figure, you
see that the Eclipse SDK comprises the following three components:

EE The Eclipse platform

EE The Plug-In Development Environment (PDE)

EE The Java Development Tools (JDT)

Eclipse SDK

Plug-in

Extension Point

Eclipse Platform

JDT

PDENew Tool

New Tool

New Tool

New Tool

Figure 2.1 Architecture of the Eclipse SDK

Extension points
and plug-ins

Eclipse SDK

65

Overview of Eclipse 2.1

The Eclipse platform provides a framework for development tools and
contains reusable user interface modules. This is helpful, for example,
when implementing help systems and connecting version control systems.

You use the Plug-In Development Environment to create the manifest for
a plug-in, while you use the Java Development Tools to implement the
plug-in in Java (and also for Java development in general). Technically,
the Plug-In Development Environment and the Java Development Tools
are also implemented as plug-ins for Eclipse.

The Eclipse Foundation coordinates the maintenance and further devel-
opment of Eclipse. In particular, it handles the following:

EE IT infrastructure

EE Copyright

EE Development process

EE Ecosystem

The Eclipse Foundation organizes the development process on the basis
of projects. These projects, known as Eclipse projects, handle the further
development of the Eclipse platform, PDE, and JDT, among other things.
There are also a number of other projects (for example, the Eclipse Model-
ing Project, the Mylyn Project, and the Eclipse Web Tools Platform Project).
We will not examine these projects here. However, further information
is available at http://www.eclipse.org/projects/.

Each year, in an effort to synchronize the various projects, the Eclipse
Foundation releases all projects at the end of July in one composite release
(known as the Eclipse Release Train). The current composite release is called
Juno. Figure 2.2 provides an overview of the past six composite releases
and their scope in terms of the number of projects involved and the num-
ber of program lines (lines of code, LOC). This information was obtained
from the 2012 Annual Community Report by the Eclipse Foundation.

The composite releases are important for ensuring that all development
tools based on Eclipse can work together without any problems (at least
while they follow the Eclipse Foundation’s development process).

Eclipse platform

Eclipse Foundation

Eclipse Release
Train

66

2 Introducing the Development Environment

21
23

33

39

62

72

17
18

24

33

46

55

0

10

20

30

40

50

60

70

80

Europa 2007 Ganymede 2008 Galileo 2009 Helios 2010 Indigo 2011 Juno 2012

Number of Projects

LOC (Millions)

Figure 2.2 Composite Releases by Eclipse

2.2 SAP’s Eclipse Strategy

Ten years ago, IBM’s ever-increasing range of products created a challenge:
The company was faced with different development tools that did not
interact with one another. Its response was to develop Eclipse. Today,
SAP faces the same challenge because to some extent, developers have
to work with different tools to develop SAP applications. Occasionally,
these tools don’t follow the same operating concept, are based on dif-
ferent lifecycle management concepts, and do not work well together.

To pave the way for highly standardized operating and lifecycle manage-
ment concepts for all development tools used in a particular SAP context—
and to integrate these in the best possible manner—SAP has decided to
use the Eclipse platform as a strategic basis for new development tools.
SAP is also migrating some of its existing development tools to Eclipse.

Heterogeneous
tools

Eclipse as a
strategic platform

67

SAP’s Eclipse Strategy 2.2

Unfortunately, the issue of heterogeneous tools is not solved solely by
deciding to use Eclipse as the basis for new tool developments. It is great
when different development tools are based on Eclipse and possibly even
follow the same operating concept. If, however, the tools use different
versions of Eclipse, users are forced to have multiple Eclipse installa-
tions. For this reason, SAP plans to provide a composite release in the
future—the SAP Release Train for Eclipse—which will be similar to what’s
released each year by the Eclipse Foundation.

The purpose of the SAP Release Train for Eclipse is to ensure that different
development tools can coexist in a single Eclipse installation, to guarantee
the unbundling of Eclipse and SAP software, and to make a central update
site available for installing and updating development tools.

2.2.1 Unbundling of Eclipse and SAP Software

So far, SAP frequently delivers Eclipse-based development tools in the
form of installation programs, which generally do not make it possible
to integrate different development tools into one Eclipse installation.
Instead, each installation program generates its own Eclipse installation
and, as a result, the user has to switch between multiple development
environments to use different tools (even if the tools are based on the
same version of Eclipse).

However, the use of other installation mechanisms, specifically a repository
or update site, will enable Eclipse and SAP software to be unbundled.
Consequently, all of the tools following the SAP Release Train for Eclipse
will be available, in the medium to long term, in one development
environment.

2.2.2 Central Update Site

Equinox P2 is a platform for adding or updating software components in
an existing Eclipse installation (see also http://projects.eclipse.org/projects/
rt.equinox.p2). The basic concept here is that a software component is
stored in a self-descriptive repository that is typically made available as
an update site on an HTTP server. However, it can also be stored in a file

SAP Release
Train for Eclipse

Problem with
installation
programs

Equinox P2
Update Sites

68

2 Introducing the Development Environment

system as a compressed archive file. If the Eclipse installation recognizes
the repository, it can install or (automatically) update the software from
there. If Eclipse identifies dependencies on software components stored
in another known repository during the process of adding or updating
software, it can automatically download these from the repository. Figure
2.3 provides a graphical representation of the update site concept.

Eclipse Installation

Eclipse PlatformTool 2

Tool 1

Tool 3

Update Site 1 Update Site 2 Update Site 3

Figure 2.3 Update Site Concept

SAP provides the following central update site for tools associated with
the SAP Release Train for Eclipse: https://tools.hana.ondemand.com/. To
some extent, however, you can also download the repositories for the
development tools from SAP Service Marketplace (and then run your
own update site, for example).

At present, the following development tools are affiliated with the SAP
Release Train for Eclipse:

EE ABAP Development Tools for SAP NetWeaver

EE SAP HANA Cloud Tools

EE UI Development Toolkit for HTML5

EE SAP NetWeaver Gateway Productivity Accelerator

Development tools

69

Installing the Development Environment 2.3

2.3 Installing the Development Environment

Now that we have given you some background information about Eclipse
and its significance for SAP, we’ll explain how you can set up a develop-
ment environment for ABAP development for SAP HANA, and what you
should keep in mind when doing so. We will consider the installation
of a development environment only conceptually. In other words, our
explanations will in no way replace the installation guides valid at the
time of installation.

First, we will explain the installation of SAP HANA Studio. Then, we will
explain the installation of ABAP Development Tools for SAP NetWeaver.
Since SAP HANA Studio is installed using an installation program and the
ABAP Development Tools are installed using a repository or update site,
you must install the tools in this sequence in order to obtain a homoge-
neous development environment (as of June 2013).

As already mentioned in the introduction, our consideration is based on
the following: SAP NetWeaver Application Server (AS) ABAP 7.4 (Sup-
port Package 2), ABAP Development Tools for SAP NetWeaver 2.7, and
SAP HANA 1.0 (Support Package Stack 5). We will assume that the ABAP
application server and the SAP HANA database have already been installed.

2.3.1 Installing SAP HANA Studio

At present, you can install SAP HANA Studio in the following system
environments:

EE Windows XP, Vista, and 7 (32-bit or 64-bit)

EE SUSE Linux Enterprise Server 11 x86 (64-bit)

SAP HANA Studio is currently based on Eclipse 3.8 and requires the Java
Runtime Environment 1.6 or 1.7 (as of June 2013).

The following two installation mechanisms are available:

EE Installation in the form of a graphical installation program (hdbsetup,
which is the installation mechanism currently recommended by SAP).

EE Installation via the command line (program hdbinst).

Installation
sequence

Technical
requirements

Availability of SAP
HANA Studio

Installation
and update

70

2 Introducing the Development Environment

You can also use the same programs to update an existing SAP HANA
Studio installation. This is always necessary if you or an administrator
update the HANA database because, from our experience, SAP HANA
Studio should always have the same Support Package (or, in HANA ter-
minology, the same revision) as the HANA database.

Alternatively, you can also use a repository or update site to update SAP
HANA Studio (see Section 2.2). This enables companies to automatically
update a large number of SAP HANA Studio installations and easily syn-
chronize the versions of SAP HANA Studio and HANA database.

If you want to establish a connection to different revisions of different HANA
databases from either your PC or laptop, we currently recommend that
you install multiple versions of SAP HANA Studio on your PC or laptop,
and establish a connection to the compatible version in each case. In this
case, each installation should use a separate workspace. For information
about these workspaces, see Section 2.4.1.

When you install SAP HANA Studio, we recommend that you also install
the SAP HANA client software, which includes not only support for the
interfaces SQLDBC, ODBO, ODBC, and JDBC, but also the SAP HANA
Repository Client. You require this, among other things, in order to work
with the SAP HANA Development perspective (For more information,
see Section 5.2.). Use the program hdbsetup or hdbinst to install the SAP
HANA client software.

More detailed information and a step-by-step guide to installing SAP
HANA Studio and the SAP HANA client software is available at http://
help.sap.com/hana_appliance.

2.3.2 Installing the ABAP Development Tools for
SAP NetWeaver

ABAP Development Tools for SAP NetWeaver are currently available for
the following system environments:

EE Windows XP, Vista, and 7 (32-bit or 64-bit)

EE Mac OS X 10.6 (64 bit)

EE Linux (see also http://scn.sap.com/docs/DOC-8760)

Working with
multiple revisions

SAP HANA
client software

Availability
of ABAP

Development Tools

www.allitebooks.com

http://www.allitebooks.org

71

Installing the Development Environment 2.3

They support Eclipse 3.7–4.2 and require Java Runtime Environment 1.6
or higher, as well as Microsoft Runtime DLLs VS2010 (in the case of an
installation on Windows).

Unlike SAP HANA Studio, there is no installation program for the ABAP
Development Tools. A repository or update site is used to install these
tools. Furthermore, you must have a compatible Eclipse installation on
your PC or laptop.

For ABAP development on SAP HANA, we recommend that you use the
SAP HANA Studio installation (in other words, that you install the ABAP
Development Tools on SAP HANA Studio). Later on, you can complete
all necessary ABAP and SAP HANA development tasks within a single
development environment.

The ABAP Development Tools for SAP NetWeaver comprise the follow-
ing components:

EE ABAP Core Development Tools (mandatory)
This toolkit contains editors for editing ABAP source code, debuggers,
transport connections, and so on.

EE Web Dynpro ABAP Tools (optional)
Tools for developing user interfaces with Web Dynpro ABAP.

EE ABAP Development Tools for SAP HANA (optional)	 	
Tools for ABAP development on SAP HANA.

EE ABAP Connectivity and Integration Development Tools (optional)
Tools for integrating systems.

To install the ABAP Development Tools, you must perform the follow-
ing two steps:

1. First, make sure that all of the Eclipse functions required by the ABAP
Development Tools have been installed. If necessary, you can install
these retroactively from the Eclipse update site.

2. Then, maintain the repository or update site for the ABAP Develop-
ment Tools in Eclipse and, from there, install the necessary software
components for ABAP development.

If companies want to have a large number of ABAP Development Tools
installations, an administrator can perform both steps once and then set

Installation
and update

Components

Installation steps

72

2 Introducing the Development Environment

up a company-specific update site that contains both the necessary Eclipse
functions and the software components of the ABAP Development Tools.
When required, the installations can be updated from this update site.

If you want to establish a connection between your PC or laptop and
different versions of SAP NetWeaver AS ABAP, this is easily done. The
ABAP Development Tools are downward compatible to older releases.
This means that, in the Eclipse-based development environment, you can
connect both to the current release (or Support Package) as well as all
older releases of the ABAP application server. The ABAP Development
Tools recognize if certain functions are not available in an older release
and then do not provide them. The minimum requirement for using the
ABAP Development Tools is SAP NetWeaver AS ABAP 7.03/7.31, Sup-
port Package 4.

More detailed information and a step-by-step guide to installing the ABAP
Development Tools for SAP NetWeaver is available at http://service.sap.com.

2.4 Getting Started in the Development System

Now that you have set up a development environment for ABAP devel-
opment on SAP HANA, you can get started in the system. We will there-
fore provide you with sample developments that you can install on
SAP NetWeaver AS ABAP 7.4 (by using the description provided in
Appendix E).

If this is your first time working with Eclipse, we recommend that you take
a look at other sources of information in addition to this book. We will
refer you to these additional sources at the relevant stages in this section.

2.4.1 Basic Principles of Eclipse

Start the newly set up development environment as described in Section
2.3. Execute the program hdbstudio, which is located in the installation
directory of SAP HANA Studio, independent of the ABAP Development
Tools.

If the Welcome tab page is displayed when you start the program, use
the button at the top right of the screen to navigate to the Workbench.

Working with
multiple releases

Workbench

73

Getting Started in the Development System 2.4

Choose the menu path Window • Open Perspective to open the ABAP
perspective. You should now see a screen similar to that shown in Fig-
ure 2.4. We’ll use this figure to explain the key elements of the Eclipse
development environment.

Figure 2.4 Eclipse Workbench (with the ABAP Perspective Opened)

In Eclipse, you can work with one or more windows in parallel. If you
want to open an additional window, choose the menu option Window •
New Window.

Within a window, Eclipse only ever shows exactly one perspective at any
given point in time. The name of the perspective currently displayed by
the system is shown in the window’s title bar 1. A perspective describes
the layout of screen elements for a particular purpose. For example, the
ABAP perspective is available for ABAP development, while the Java
perspective is available for Java development.

Windows and
perspectives

74

2 Introducing the Development Environment

In the following text, we’ll discuss in detail the most important screen
elements within a perspective, namely:

EE Views 2 and 3

EE Editors 4

EE Menu bars 5

EE Toolbars 6

Eclipse automatically saves any changes that you make to the screen
elements of a perspective (for example, layout and size). If you exit a
perspective and then open it again (via the menu path Window • Open
Perspective), the perspective will look exactly as it did when you exited it.

If you want to reset a perspective to its original state, choose the menu
option Window • Reset Perspective…. You can also create your own
perspectives, if necessary. To do this, use the menu option Window •
Save Perspective As…

A view (2 and 3) makes certain information available to you. For example,
the Problems view displays warnings and errors that occurred when
you activated a program. You can view the properties of a program (for
example, title, package, and original system) in the Properties view, and
change them to some extent. To open a view, choose the menu option
Window • Show View.

An editor 4 is used to edit a development object. Editors are frequently
source code-based. However, form-based editors also exist.

Differences between Views and Editors

When developers work with Eclipse for the very first time, they often ask the
following question: What is the difference between a view and an editor?

The main differences between views and editors are as follows:

EE Within a window, a view can only be opened once, while an editor can be
opened several times (for example, to edit different programs in parallel).

EE Unlike a view, an editor cannot be positioned anywhere.

EE When an editor is open, it can be viewed in every perspective.

EE Changes within a view are saved immediately. Changes within an editor
must be saved explicitly.

Further information is available at http://wiki.eclipse.org.

Views and editors

Editors

75

Getting Started in the Development System 2.4

Menu bars and toolbars contain commands that you can execute in the
current context (for example, saving a program or activating a program).
The main menu bar 5 is located at the very top of the Eclipse development
environment. Views and editors can have additional menus, especially
context menus (which you call using the right mouse button). However,
you can also add additional commands to the main menu bar.

The main toolbar is located below the main menu bar 6. Frequently
used commands are located there. Views and editors can have additional
toolbars. You can also add additional commands to the main toolbar.

We now wish to briefly discuss the workspaces already mentioned in
Section 2.3.1. Put simply, a workspace is a directory on your computer’s
hard drive in which Eclipse stores your personal settings (for example,
layout and size of the screen elements in a perspective) and your project
data (for example, system connections to the ABAP application server).

Eclipse only ever works with exactly one workspace at any given point in
time. In the case of workspaces, you can configure the following settings:

EE You can use the file eclipse.ini (or hdbstudio.ini in the case of SAP HANA
Studio) to control which workspace Eclipse will automatically open at
startup.

EE You can configure Eclipse in such a way that, at startup, you are asked
which workspace you want to use. This is Eclipse’s default behavior.
If, however, you do not do anything, this is overridden by SAP HANA
Studio. In Windows, SAP HANA Studio uses the directory hdbstudio
within your user profile by default (for example, c:\Users\<user name>\
hdbstudio).

EE You can change the workspace within Eclipse at any time. To do this,
choose the menu option File • Switch Workspace.

Further information about Eclipse is available at http://www.eclipse.org/
documentation/.

2.4.2 ABAP Development Tools for SAP NetWeaver

We will now discuss the ABAP Development Tools for SAP NetWeaver
in more detail. When working with the ABAP Development Tools, use
the following perspectives:

Menu bars
and toolbars

Workspaces

Available
perspectives

76

2 Introducing the Development Environment

EE ABAP
You use this perspective to edit development objects (for example,
programs, classes, and interfaces). You can also perform code checks
and module tests here.

EE ABAP Connectivity & Integration
You use this perspective to develop integration between systems.

EE ABAP Profiling
You use this perspective to conduct performance analyses.

EE Debug
You can use this perspective to analyze program errors. (The Debug
perspective is not delivered with the ABAP Development Tools. Rather,
it is a standard component of Eclipse and is also used, for example, to
debug Java programs or SQLScript.)

In the ABAP backend, you require the relevant authorizations for work-
ing with the ABAP Development Tools. The following authorization roles
are available by default:

EE SAP_BC_DWB_ABAPDEVELOPER
Put simply, this role enables you to create, change, activate, and delete
development objects.

EE SAP_BC_DWB_WBDISPLAY
This role enables you to display development objects.

Both roles contain the authorization object S_ADT_RES, which is needed
for working with the Eclipse-based development environment. If you
want to use your own roles to assign authorizations to ABAP developers,
make sure that these roles consider the authorization object S_ADT_RES.

We will now explain the steps involved in creating a program with the
ABAP Development Tools. We will provide some background informa-
tion for each step.

Creating a Project

In order to be able to work with the ABAP Development Tools, you require
an ABAP project that connects the Eclipse-based development environment
with the ABAP backend. To create an ABAP project, choose the menu path
File • New • ABAP Project. Then, provide the following information:

Authorizations

Connection to the
ABAP backend

77

Getting Started in the Development System 2.4

EE A connection from the SAP Logon Pad

EE Logon client and language

EE User name and password. (You only enter the password if single sign-
on is not set up for the connection from the SAP Logon Pad. Since the
password is not saved, you must enter it again any time you restart
Eclipse.)

EE A list of your favorite packages (optional). (You should always include
the package TEST_A4H_BOOK here, which you will use in conjunction
with this book. To install the package, refer to the information con-
tained in Appendix E.)

The project data is saved to your current workspace (see also Section
2.4.1). You can create any number of projects within a workspace and
therefore work with multiple ABAP backends simultaneously.

After you have saved the project data, the ABAP project is displayed in
the Project Explorer view (2 in Figure 2.4). A tree structure is displayed
below your project, and the uppermost level of this tree structure contains
the following two nodes:

EE Your Favorite Packages and their development objects.

EE The System Library, which you use to access all packages and their
development objects on the connected application server.

If you double-click a development object in Project Explorer, the rel-
evant editor opens. In addition, the Outline view 3 displays the structure
(for example, the global variables and methods for a program), while
the Properties view displays the properties of the development object.

Not all development objects have an editor that is implemented natively
in Eclipse. If a development object does not have an editor, the SAP
GUI opens. In the case of a data element, Transaction SE11 (ABAP Data
Dictionary) opens, for example. The Outline and Properties views are
not available in this case.

You can use SAP GUI integration to execute any development objects in
the SAP GUI, even if they are not displayed in the Project Explorer view
at present. To do this, choose the menu option Run • Run ABAP Applica-
tion. Then, select the relevant development object. This is particularly

Project Explorer

Editors and SAP
GUI integration

78

2 Introducing the Development Environment

useful if you want to execute a standard program or transaction (for
example, SM50).

ABAP resource URLs are an interesting function for all development objects,
irrespective of whether the ABAP Development Tools provide native
editor development objects. They enable you to generate hyperlinks for
development objects and to integrate them into websites or emails, for
example. You can click the hyperlink to open the relevant development
object directly in the ABAP Development Tools.

To generate an ABAP resource URL, choose the menu option Edit • Copy
ABAP Resource URL. Note that you will not be able to open a devel-
opment object via a hyperlink unless you have registered your Eclipse
installation. Keep reading for more information.

Unlike other Eclipse-based development tools, the ABAP Development
Tools do not use a check-in/check-out mechanism. As a result, you cannot
work with the ABAP Development Tools offline (that is, without a con-
nection to the ABAP backend). As soon as you edit a development object,
this is automatically locked against editing by another user. Therefore,
unlike in the SAP GUI, you do not explicitly toggle between Display and
Change. The following tasks always occur in the ABAP backend: save,
perform syntax check, and activate.

User-Specific Settings

You should be familiar with using the menu option Utilities • Settings
to configure user-specific settings in the ABAP Workbench, and therefore
adjust the (SAP GUI-based) development environment to your personal
requirements.

In Eclipse, user-specific settings are available in the menu under Window •
Preferences. Many of the options provided here are general settings for
Eclipse. They are not specifically used for ABAP development, but influ-
ence it nonetheless.

The specific settings for the ABAP Development Tools are available under
the ABAP Development node (see Figure 2.5). You should be familiar
with the following setting options:

ABAP resource
URLs

No check-in/
check-out

General settings

ABAP
Development Tools

79

Getting Started in the Development System 2.4

EE Directly on the ABAP Development node, you can set the Open ABAP
Resource URLs from external documents in this installation of SAP
HANA Studio checkbox. You cannot use ABAP resource URLs (see the
previous section) unless this checkbox is set.

EE You can use the Debug node to configure settings for debugging ABAP
programs.

EE The Profile node enables you to parameterize performance analyses.

EE You can use the Source Code Editor node to manage code templates,
among other things.

Figure 2.5 User-Specific Settings for ABAP Development Tools

80

2 Introducing the Development Environment

Creating a Program

The next step is to create a new development object under the menu
path File • New. If you want to create a program that outputs the flight
schedule for a given airline, for example, choose File • New • ABAP
Program. Then enter the program name, title, and package. Select a
transport request, if necessary.

The editor for the program now opens. As an example, insert the source
code from Listing 2.1:

REPORT zr_a4h_chapter2_first_report.
DATA: lt_spfli TYPE STANDARD TABLE OF spfli, “#EC NEEDED
 lv_spfli TYPE string. “#EC NEEDED
FIELD-SYMBOLS: <ls_spfli> TYPE spfli. “#EC NEEDED
PARAMETERS: p_carr LIKE <ls_spfli>-carrid OBLIGATORY.
SELECT * FROM spfli UP TO 50 ROWS INTO TABLE lt_spfli
 WHERE carrid = p_carr. “this line contains
 “a syntax error
LOOP AT lt_spfli ASSIGNING <ls_spfli>.
 lv_spfli = |{ <ls_spfli>-carrid } | &&
 |{ <ls_spfli>-connid } { <ls_spfli>-airpfrom } | &&
 |{ <ls_spfli>-airpto }|.
 WRITE: / lv_spfli.
ENDLOOP.

Listing 2.1 Simple ABAP Program

Note on Listing 2.1

To restrict the program runtime, use the UP TO n ROWS addition. Consequently,
the program does not output the entire flight schedule. Instead, it outputs a
maximum of 50 connections.

When editing the source code, you are supported by numerous functions
in ABAP Development Tools (just like in the SAP GUI). We now wish to
discuss the following three functions in more detail:

EE Code	completion
You can use code completion in the ABAP Development Tools. You can
use the key combination (Ctrl) + (Space) to ensure that the system
proposes valid keywords and identifiers at a particular location within
the source text.

Editing the
source code

Editing functions

81

Getting Started in the Development System 2.4

EE Code	templates
You can also use the key combination (Ctrl) + (Space) to insert code
templates in the source code. Alternatively, this also works by using
drag-and-drop to drag templates from the Templates view to the edi-
tor. You can also define your own code templates in the Templates
view. These are then saved to your current workspace.

EE Pretty	Printer
The Pretty Printer helps you to standardize source text formatting
(especially with regard to upper/lower case and indentations). As is
the case in the SAP GUI, you use the key combination (Shift) + (F1)
to call the Pretty Printer in the ABAP Development Tools.

When editing the source text, you can perform a syntax check at any time.
The easiest way to do this is using the key combination (Ctrl) + (F2).

As shown in Figure 2.6, warnings and errors are displayed in both the
Problems view and in the editor (specifically in the left and right column
spaces). For Listing 2.1, the syntax check should issue a reminder about
an error in program line 11. Correct this error.

Figure 2.6 Result of the Syntax Check

Check

82

2 Introducing the Development Environment

If you want the source text to undergo more extensive checks, you can
use the ABAP Test Cockpit for this purpose. To do this, call the context
menu in your program: Run As • ABAP Test Cockpit.

Following a successful syntax check, choose the menu path File • Save
to save your program (in principle, you can also save erroneous develop-
ment objects). When you save your program, an inactive version of the
program is generated in the ABAP backend.

If you then choose the menu path Edit • Activate ABAP Development
Object to activate the program, an active version of the program is gener-
ated in the ABAP backend (assuming that the program does not contain
any syntax errors).

As a result of your work with the ABAP Workbench, you have no doubt
become familiar with—and have come to appreciate—the extensive navi-
gation options available there. Forward navigation and the where-used list
are also available to you in the Eclipse-based development environment.

For forward navigation, select an identifier in the source text. Then, choose
the menu path Navigate • Navigate To (or press the (F3) key). For our
sample program, you can execute the following actions:

EE Forward navigation to the variable LV_SPFLI in program line 15: The
system navigates to the definition of the variable in program line 4.

EE Use the mouse pointer to select the database table SPFLI and then
press the (F3) key: The system opens the definition of the database
table in the SAP GUI.

The where-used list works in the same way. First, select an identifier
in the source text. Then, choose Get Where-Used List… in the context
menu. The result of the where-used list is displayed in the Search view
(see Figure 2.7).

Figure 2.7 Result of the Where-Used List

Saving and
activating
programs

Forward navigation

Where-used list

83

Getting Started in the Development System 2.4

You can double-click a line in the result to navigate to where the object
is used. You can also use the context menu to generate an ABAP resource
URL.

Executing the Program

Now that you have learned how to create a program and are familiar
with the editing options available in the ABAP Development Tools for
SAP NetWeaver, you will most likely want to execute the program for
testing purposes. To do this, choose the menu option Run • Run ABAP
Application… and execute the sample program in Listing 2.1. The selec-
tion screen for the program is then displayed in the SAP GUI. Here, enter
the code of an airline. If you then press (F8), the corresponding flight
schedule is displayed.

If you want to debug a program in order to analyze program errors, you
can set one or more breakpoints in the ABAP Development Tools. Here,
you can choose between static and dynamic breakpoints:

EE Static breakpoints refer to a specific program line. You set a static break-
point by double-clicking the left column space in the editor.

EE Dynamic breakpoints refer to a specific ABAP statement or exception
class. To set a dynamic breakpoint, choose Run • ABAP Breakpoints.

Figure 2.8 shows how static breakpoints are displayed in the left column
space in the editor and in the Breakpoints view. Dynamic breakpoints
are displayed in the Breakpoints view only.

From a technical perspective, the ABAP Development Tools work with
external breakpoints. These apply to all programs in your current user
session, which are executed under your user on one of the application
servers on the ABAP backend (defined by the system and client in the
ABAP project).

Executing the
program in the
SAP GUI

Debugging

External
breakpoints

84

2 Introducing the Development Environment

Figure 2.8 Displaying Breakpoints that Have Been Set

If the system encounters a breakpoint when executing a development
object, it automatically opens the Debug perspective. Here, you can
(similar to the SAP GUI-based debugger) analyze the call hierarchy and
the contents of the variables, as well as debug the source code step by
step. Figure 2.9 shows the Debug perspective for our sample program.

We now wish to give you some additional sources of information in
relation to the ABAP Development Tools:

EE If this is your first time working with the ABAP Development Tools,
we recommend that you complete the tutorials in the SAP Community
Network: http://scn.sap.com/docs/DOC-31815.

EE You can call the online documentation at any time. To do this, choose
the menu path Help • Help Content.

EE SAP has provided some cheat sheets to help you get started with the
ABAP Development Tools. They are located under Help • Cheat
Sheets…

Additional
information

85

Getting Started in the Development System 2.4

Figure 2.9 “Debug” Perspective

You are now ready to use the ABAP Development Tools for SAP NetWeaver.
In the next section, we will introduce you to SAP HANA Studio.

2.4.3 SAP HANA Studio

Just like the ABAP Development Tools for SAP NetWeaver, SAP HANA
Studio also comprises different perspectives, namely:

EE Administration Console
In this perspective, you or an administrator can monitor the system,
configure system settings, and manage users and authorizations, among
other things.

EE Modeler
In the modeler, you can access the database catalog and create views
and database procedures in the SAP HANA Repository.

Available
perspectives

86

2 Introducing the Development Environment

EE SAP HANA Development
The SAP HANA Development perspective is used for development in
SAP HANA. In particular, it is intended for SAP HANA Extended Appli-
cation Services. It communicates with the SAP HANA Repository.

Similar to working with SAP NetWeaver AS ABAP, you require the rel-
evant authorizations for working with SAP HANA Studio, specifically in
the HANA database.

Authorizations in SAP HANA

The authorizations in SAP HANA are divided into the following areas:

EE Analytical authorizations control access to attribute views, analytic views,
and calculation views.

EE SQL authorizations define specific authorizations that users have for particular
database objects.

EE System authorizations define the system operations that users are permitted
to perform.

EE Package authorizations control access to the packages in the SAP HANA
Repository.

Authorizations can be grouped into roles or assigned directly to users.

We won’t discuss the authorization concept for the HANA database in
detail here. Instead, we wish to focus on the authorizations that you, as
an ABAP developer, require in order to work with SAP HANA Studio.

If you are already working with ABAP release 7.4 and using the HANA
database as primary persistence, you can use the following standard
roles to assign authorizations to ABAP developers who will work with
SAP HANA Studio:

EE ABAP_DEV
Put simply, this role enables you to edit development objects in the
SAP HANA Repository.

EE ABAP_READ
This role enables you to display development objects.

Otherwise, you must create your own roles. When doing so, you can base
them on the two aforementioned roles. Figure 2.10 provides a schematic
representation of the structure of the role ABAP_DEV.

Authorizations for
SAP HANA Studio

ABAP_DEV and
ABAP_READ

87

Getting Started in the Development System 2.4

CONTENT_ADMIN Role (contains, among other things, the required
SQL authorizations for the database schemas, _SYS_BI and _SYS_BIC,
analytical and package authorizations)

SQL authorization: SELECT for all database objects in the ABAP schema

System authorization CATALOG READ (provides full read access to all
system and monitoring views)

ABAP_DEV Role

Figure 2.10 Role ABAP_DEV

In this section, we will focus on the Modeler perspective, which is rel-
evant for you as an ABAP developer. You will obtain further information
in Chapter 4 and Chapter 5. In Chapter 5, you will also learn about the
SAP HANA Development perspective.

Creating a System Connection

To work with SAP HANA Studio, you require a system connection between
SAP HANA Studio and the HANA database. You can create a system con-
nection in the Modeler perspective, for example. In the Navigator view,
use the Add System… option in the context menu for this purpose. Then,
provide the following information for the system connection:

EE Server name and instance number.

EE Description.

EE User name and password (unlike the ABAP Development Tools, SAP
HANA Studio stores both the user and password).

The system data is saved to your current workspace (see also Section 2.4.1).
You can create any number of system connections within a workspace.
This enables you to work with multiple databases simultaneously.

After you have saved the system data, the system connection is displayed
in the Navigator view (see Figure 2.11).

Connecting to
the database

Navigator

88

2 Introducing the Development Environment

Figure 2.11 Modeler Perspective in SAP HANA Studio

A tree structure is displayed below your system connection, and the
uppermost level of this tree structure contains the following four nodes:

EE The Catalog node 1 contains database objects, such as database tables,
views, and database procedures.

EE The Backup node is used for data security purposes.

EE You manage roles and users under the Security node.

EE The Content node represents the packages 3 in the SAP HANA Repos-
itory, which is used for development organization.

User-Specific Settings

Similar to the ABAP Workbench or ABAP Development Tools, you can
also configure some user-specific settings in SAP HANA Studio.

Settings in
the Modeler
perspective

89

Getting Started in the Development System 2.4

The relevant settings for the Modeler perspective are located under
Window • Preferences • Modeler. Of particular interest here are the
data preview settings (under the Data Preview node) and the rules for
validating development objects (under the Validation Rules node).

Working with the Database Catalog

The database catalog in the HANA database has a similar structure to the
catalogs in other databases. It manages the database objects in database
schemas (2 in Figure 2.11). A schema groups logically related database
objects together (comparable with a namespace). In principle, each database
user has his own database schema.

The ABAP application server generally uses exactly one technical database
user to communicate with the database. This user also has a corresponding
database schema, known as the system schema or ABAP schema (for more
information, see Section 3.1.2). In Figure 2.11, this is schema SAPH74.

Some database schemas are used internally by the HANA database. In
particular, these include the database schema SYS and all database schemas
that start with _SYS.

Technical Database Schemas in SAP HANA

Immediately after the installation, SAP HANA contains a set of database sche-
mas that play a major role in different scenarios. We therefore wish to give
you some background information about some of the schemas used internally
by the HANA database:

EE SYS
This schema contains technical tables and views for managing and moni-
toring the system. It does not play any role in application development.

EE _SYS_AFL
Database objects for function libraries are stored here. The schema is first
created when function libraries are installed (see Chapter 12).

EE _SYS_BI
This schema contains special tables and views for analysis scenarios (for
example, fiscal year data).

EE _SYS_BIC
When you activate development objects, the associated runtime objects are
generated in this schema (we will discuss this in more detail next).

Database schemas

Technical schemas

90

2 Introducing the Development Environment

EE _SYS_REPO
The development objects for the SAP HANA Repository are stored here (we
will also discuss this in more detail below).

EE _SYS_XS
This schema is used by the XS Engine.

Database schemas contain database objects. The HANA database recog-
nizes the database objects listed in Table 2.1.

Object Description

Column view Column views are special views in SAP HANA. They
are based on tables in the column store and are
usually created in the SAP HANA Repository.

Function A user-defined function performs calculations and can
be integrated into SELECT statements.

Index An index facilitates searches and sorting. Please note
the information about indexes in Chapter 9 and
Chapter 14.

Procedure You can use database procedures to encapsulate and
reuse algorithms that are to be executed in the HANA
database. Further information is available in Chapter 5.

Sequence You can use a sequence to generate unique,
consecutive numbers in accordance with certain rules.
This concept is very similar to number ranges in ABAP.

Synonym Synonyms can be defined as aliases for database tables,
data views, procedures, and sequences. We will
discuss these later in this chapter.

Table Data is saved to database tables. As part of your ABAP
development work in SAP HANA, you frequently use
the ABAP Data Dictionary to create database tables.

Trigger Database triggers are functions that are called for
certain changes made in the database.

View Put simply, views are saved queries (across one or
more tables), which can be called via SQL in the same
way as a database table.

Table 2.1 Objects in the Database Catalog

Database objects

91

Getting Started in the Development System 2.4

As part of your ABAP development work in SAP HANA, you will generally
not create any database objects directly in the catalog. You’ll typically
create objects only indirectly, for example, via the ABAP Data Dictionary,
SAP HANA Repository, or SAP Landscape Transformation Replication
Server. In certain circumstances, however, you may want to view database
objects directly in the catalog. We will now use the example of the table
SPFLI, which you already used in Listing 2.1, to explain how this works.

Open the ABAP schema under the Catalog node. Here, you see nodes for
the different database objects. If you want to search for a specific database
table, choose the Find Table option in the context menu for the Tables
node. Then, enter “SPFLI” in the search dialog box. Make sure that the
Show Definition checkbox is set and choose OK.

The system now opens the table definition (see Figure 2.12). Here, you
see that the table SPFLI uses column-oriented data storage (known as the
column store). You can also check columns, indexes, and runtime informa-
tion for the database table, among other things.

Figure 2.12 Table Definition Using the Example of Table SPFLI

Similar to the table definition, you can also use the Find Table option in
the context menu to display the table contents. Alternatively, you can use
the context menu for the Tables node to set a filter for the table name.
The Navigator view then displays only those tables that satisfy the filter
condition. You can now right-click to select the Open Content option in
the context menu. Note that the system displays only the first 1,000 data
records (and not the entire contents of the database table).

Table definition

Table contents
and data preview

92

2 Introducing the Development Environment

You can use the data preview to analyze more than 1,000 data records. To
access the data preview, choose the Open Data Preview option in the
context menu. Figure 2.13 displays the data preview using the example
of the table SPFLI.

Figure 2.13 Data Preview Using the Example of Table SPFLI

The data preview comprises the following tab pages:

EE The Raw Data tab page displays the table’s raw data. Here, you can
filter, sort, and export the data, among other things.

EE On the Distinct values tab page, you can analyze which different
values exist for a field in the database table and the frequency with
which these values occur, thus enabling you to draw conclusions in
relation to data distribution.

EE The Analysis tab page has a similar structure to a pivot table. You can
create simple analyses here. Both a tabular and graphical display are
available here.

We’ll now introduce you to one more tool that can be very useful when
working with the database catalog—namely, the SQL console. This enables
you to quickly and easily execute read and write SQL statements on the
HANA database. If, for example, you want to add the name of an airline
to the flight schedule from Section 2.4.2, you can use a join (see Chapter
3). You can test the JOIN statement (see Listing 2.2) in the SQL console. To

Data preview

SQL console

93

Getting Started in the Development System 2.4

open the SQL console in the Navigator view, choose the SQL Console
option in the context menu for the ABAP schema. You can then enter the
relevant SQL statement. Similar to the ABAP Development Tools, you
can also use (Ctrl) + (Space) to revert to code completion and templates.

select spfli.carrid, scarr.carrname, spfli.connid,
 spfli.airpfrom, spfli.airpto
 from spfli
 join scarr on scarr.carrid = spfli.carrid;

Listing 2.2 Simple Join

Then, choose Execute to execute the SQL statement. The result is shown
in Figure 2.14. In addition to the result list, the system provides some
information about the runtime and number of data records read.

Figure 2.14 SQL Console

If you enter several SQL statements in the SQL console, each separated
by a semicolon, you can execute them by choosing Execute once. If you
want to execute only one or some of the SQL statements, select them
before you choose Execute.

94

2 Introducing the Development Environment

Working with the SAP HANA Repository

This brings us to the SAP HANA Repository, which helps to organize
development objects (known as content) in a flexible and expansible man-
ner. The development objects contained in the SAP HANA Repository
are organized along a package hierarchy. In terms of their notation and
significance, these packages are very similar to Java packages. Since a
package defines a namespace, the identifier for development objects must
only be unique within the package (unlike the global uniqueness of the
identifiers for ABAP objects).

SAP delivers content below the sap root package. Parallel to this pack-
age, you can establish your own package hierarchy for your development
objects. You can group multiple packages together to form a delivery unit,
which you can then transport. We will examine the package concept and
application transport in detail in Chapter 6.

In the Modeler perspective, you can create the development objects
described in Table 2.2. These are also known as content types.

Object Description

Package A package groups development objects together. We
will discuss this in detail in Chapter 6.

Attribute View You can use attribute views to connect multiple
database tables or to select a subset of the columns
in a database table. For more information, see
Chapter 4.

Analytic View In particular, you use analytic views to quickly
aggregate data. For more information, see Chapter
4.

Calculation View Calculation views are available for requirements that
cannot be mapped using attribute views and analytic
views. They can be modeled or implemented using
SQLScript. For more information, see Chapter 4 and
Chapter 5.

Analytic Privilege You can use analytic privileges to restrict—line by
line—access to views.

They are not directly relevant for access from ABAP
because this is done using a technical database user.

Table 2.2 Development Objects in the SAP HANA Repository

Development
objects

Content types

95

Getting Started in the Development System 2.4

Object Description

Procedure You can use database procedures to encapsulate
and reuse algorithms that are to be executed in the
HANA database. For more information, see Chapter
5.

Decision Table You can use decision tables to store business rules in
SAP HANA. We will discuss this in Chapter 11.

Table 2.2 Development Objects in the SAP HANA Repository (Cont.)

You can create additional development objects in the SAP HANA Devel-
opment perspective. This is particularly relevant for any development
work based on SAP HANA Extended Application Services. For the moment,
we will not discuss these development objects further.

We will now use a specific example to explain some key concepts associ-
ated with the SAP HANA Repository: Figure 2.15 shows the editor for
the attribute view AT_FLIGHT_SCHEDULE in the package test.ah4.book.
chapter02.

Figure 2.15 Attribute View AT_FLIGHT_SCHEDULE

Example: flight
schedule

96

2 Introducing the Development Environment

Without discussing the specific features of attribute views, we wish to
explain the following concepts:

EE Creating development objects

EE Validating development objects

EE Activating development objects

EE Testing development objects

EE History and version management

Each development object in the SAP HANA Repository is described by
different properties (1 in Figure 2.15), some of which you can specify
when creating the object and some you can also change later. Examples
include the unique identifier within the package (Name), description
(Label), and default client (Default Client). Other properties are auto-
matically set by the system, for example, the last user who changed the
object (Changed by).

The system creates an XML file for each development object and ulti-
mately stores it as Character Large Object (CLOB) data type in the database
schema _SYS_REPO. You can choose Display XML to display the XML
file for an object 2.

Figure 2.16 shows the XML representation of the attribute view AT_
FLIGHT_SCHEDULE. In this figure, we have highlighted some parts of the
XML document, namely the identifier for the view, the description of the
view, the columns in the view, and the database table underlying the view.

Similar to ABAP development objects, the development objects in the
SAP HANA Repository also have a status (either inactive or active). If you
create a new object or change an existing object, the system generates
an inactive version first.

You can validate an object before you activate it. In addition to syntax
checks (for example, correct syntax of SQLScripts within a database
procedure), the validation can also consider some aspects of quality (for
example, performance). This is similar to the (enhanced) syntax check in
ABAP. We will discuss some of these aspects in greater detail in Chapter 14.

Storage

97

Getting Started in the Development System 2.4

Figure 2.16 XML Representation of an Attribute ViewValidate

To start validation, choose Save and Validate . The validation result
is displayed in the Job Log (3 in Figure 2.15). If warnings or errors occur
when validating an object, you can display them by double-clicking the
corresponding row in the job log.

Figure 2.17 shows an example of what would happen if you were to
validate the attribute view AT_FLIGHT_SCHEDULE without defining at least
one key attribute first. This is a mandatory requirement for attribute
views (see Section 4.1).

Job log

98

2 Introducing the Development Environment

Figure 2.17 Job Details with Validation Errors

When you activate an object, you generate an active (that is, executable)
version of a development object. An object is automatically validated
when it is activated. To start activation, choose Save and Activate .
The result is displayed in the job log.

Following successful activation, the system usually generates one or
more database objects in the schema _SYS_BIC. The development objects
in the SAP HANA Repository represent the design time objects, while the
database objects in the database catalog represent the runtime objects (see
Figure 2.18).

Activate

Design time and
runtime objects

99

Getting Started in the Development System 2.4

SAP HANA Database

Database Catalog
(Runtime)

ActivationSAP HANA
Repository

(Design Time)

Figure 2.18 Design Time and Runtime

Authorizations for the User _SYS_REPO

The internal user _SYS_REPO (the owner of the SAP HANA Repository) gener-
ates the runtime objects in the database schema _SYS_BIC. This user must have
read access to the schemas used in the development objects. In other words,
the user requires the SQL SELECT with GRANT authorization on the schema.

In the case of the attribute view AT_FLIGHT_SCHEDULE, the system gener-
ates (among other things) a column view and a public synonym for this
column view in the database catalog. A column view is a special data view
in SAP HANA. In our example, the name of the column view comprises
the package and identifier for the attribute view (see Figure 2.19).

Figure 2.19 Runtime Object for an Attribute View

A synonym is an alias. A public synonym is an alias that is unique across all
database schemas and can be used by all users. If, for example, you use
the relevant public synonym to access the column view, you avoid having
to explicitly name the schema _SYS_BIC. In our example, the name of the

Column view

Synonym

100

2 Introducing the Development Environment

public synonym comprises the package and name of the attribute view
(see Figure 2.20).

Figure 2.20 Public Synonym for a Column View

When you want to test objects in the SAP HANA Repository, it is best to
use the data preview and the SQL console. You are already familiar with
both of these tools, which we explained when we discussed the database
catalog above.

To start the data preview for a development object, choose Data Preview
. This preview is available for attribute views, analytic views, calcula-

tion views, and decision tables.

Since we have already used the example of the database table SPFLI to
explain the data preview, we will not discuss it in further detail here.
However, we wish to draw your attention to the Show Log button in
the data preview. You can use this button to call a selection log, which
helps you to very quickly find the corresponding runtime object for a
design time object (see Figure 2.21).

Alternatively, you can conduct tests directly in the SQL console. In our
example, you can use the following objects here: the name of the column
view generated (that is, test.a4h.book.chapter02/AT_FLIGHT_SCHEDULE
in the schema _SYS_BIC) and the public synonym (test.a4h.book.chap-
ter02:: AT_FLIGHT_SCHEDULE).

Selection log

SQL console

101

Getting Started in the Development System 2.4

Figure 2.21 Selection Log with a Database Object

Similar to ABAP, development objects are put under version control.
Each time an object is activated, the system creates a new version of
the object. You can display existing versions in the version history. To
access the version history, choose History . However, you see only
the time when a version was created (that is, the time when an object
was activated). You cannot see the actual changes made to each version.

If there is an inactive version, you can choose Switch Version to
execute the following actions:

EE Switch between displaying active and inactive versions.

EE Drop the version that is currently inactive and revert to the last active
version.

You now know relevant tools for ABAP development on HANA and have
taken your first steps towards getting started in the system. In the next
chapter, we will discuss ABAP database programming. For more informa-
tion on working with SAP HANA Studio, see Chapter 4 and Chapter 5.

History and version
management

103

To develop ABAP applications for SAP HANA, it’s essential to have
basic knowledge of the SAP NetWeaver AS ABAP architecture—and
especially Open SQL—as well as the corresponding development
tools. Moreover, native database access takes on greater importance
when working with an SAP HANA database.

3 Database Programming Using
SAP NetWeaver AS ABAP

When using ABAP in combination with SAP HANA, database accesses
from ABAP programs play a decisive role: After all, they are the interface
between application and data. The main difference between SAP HANA
and traditional databases is the available set of queries and operations
that can be executed on the existing data.

This chapter introduces database programming in ABAP, and in particular
explains the specific aspects that are relevant for development on SAP
HANA. While the basic ABAP database architecture for SAP HANA does
not differ from other SAP-supported database systems, we will describe
the options (and limitations) of classic ABAP database programming in
this chapter. When reading the subsequent chapters, this will help you
better understand how classic ABAP development and the new native
implementations in SAP HANA can complement each other.

Simple ABAP Database Access

Let’s start by contemplating the example of a simple ABAP program in List-
ing 3.1:

DATA: wa TYPE scarr.
SELECT-OPTIONS: carrier FOR wa-carrid.

SELECT * FROM scarr INTO wa WHERE carrid IN carrier.
 WRITE: / wa-carrid , wa-carrname.
ENDSELECT.

Listing 3.1 Simple Database Access from ABAP via Open SQL

104

3 Database Programming Using SAP NetWeaver AS ABAP

Based on a selection of codes for airlines (for example, “LH”), the full names
of these airlines (for example, “LH Lufthansa”) are displayed.

This simple example shows some fundamental qualities of database access
from ABAP that are not available in this form in most other development
environments:

EE Database access is integrated into the programming language.

EE It is not necessary to manually open or close a database connection.

EE Knowledge of the underlying database system is not required.

EE You can iterate directly over a result set.

EE A complex selection on the database can be derived directly from an
input mask (e. g., via the SELECT-OPTIONS command and the IN clause).

In this chapter, we will first describe the technical aspects of a connection
between the SAP NetWeaver AS ABAP and the database. We will then
explain how ABAP developers can efficiently access the database based
on a few examples. And finally, we will describe tools that can be used
when developing database accesses.

Two aspects play an important role when accessing the database from
ABAP:

EE ABAP tables and views are created and maintained in the database via
the ABAP Data Dictionary. The ABAP Data Dictionary is described in
Section 3.2.1.

EE SQL support in ABAP makes it possible to read and modify data. There
are two options for SQL access: Open SQL (see Section 3.2.2) and Native
SQL (see Section 3.2.4). When reading this book, it is important to
fully understand the capabilities of these two variants.

Since database access is of paramount importance in the context of SAP
HANA and is enhanced by some new aspects, it is important to fully under-
stand the interaction of ABAP and the SAP HANA database. Experienced
ABAP developers may already be familiar with some of the information
provided in this chapter.

For the examples throughout this book, we used a model that is avail-
able in every ABAP system—the well-known SAP NetWeaver flight data

Qualities of ABAP
database access

Important aspects
for database access

105

SAP NetWeaver AS ABAP Architecture 3.1

model (SFLIGHT data model). Appendix A introduces the technical details
and business aspects of this application and describes the database tables
and their relationships. This chapter only uses the tables SCARR (airlines),
SFLIGHT (flights), SCUSTOM (flight customers), and SBOOK (flight bookings).

3.1 SAP NetWeaver AS ABAP Architecture

The database plays an integral role for the ABAP application server. This
server cannot be operated without a running database. Ultimately, all
technical and business data (except for a few configuration and log files
of the server components) are database contents in SAP NetWeaver AS
ABAP; even the ABAP source code and other development objects are
maintained in database tables.

In this section, you will find a short description of the basic structure of
an ABAP system. An ABAP system can comprise one or several application
servers. Several application servers are deployed for a scale-out scenario
to provide high availability and avoid overload situations. To coordinate
several application servers, central services like the start service, the mes-
sage server (load distribution), or the enqueue server (lock management)
are available.

Requests received on a server are forwarded to a work process by the dis-
patcher, where the request in question is processed by an ABAP program.
There are different types of work processes: Examples are dialog (running
ABAP programs in the dialog), update (executing update modules in case of
a COMMIT WORK), background (running batch jobs), or enqueue (executing lock
operations to synchronize database operations). The number of available
work processes can be configured and depends on the hardware resources
and scenario requirements (for example, the number of concurrent users).

ABAP programs are executed by the runtime environment in the ABAP
kernel. Within the kernel, several components are in use when executing
ABAP statements; not all of those components will be explained in detail
within this book. However, we would like to mention the following
sample scenarios:

EE When calling a function module using CALL FUNCTION <...> DESTI-
NATION, the RFC library is used.

SAP system

Work processes

ABAP runtime
environment

106

3 Database Programming Using SAP NetWeaver AS ABAP

EE In case of a serialization of an ABAP data structure to XML (or JSON) via
CALL TRANSFORMATION, the kernel support for XML stylesheets is used.

EE When accessing the database via the ABAP SELECT statement, the ker-
nel’s database interface is used.

Database access using the SELECT statement will be explained in detail
in the next section. Figure 3.1 shows the basic server architecture of
an ABAP system. Further details on installation and operation of the
components can be found in the book SAP NetWeaver AS ABAP—System
Administration by Frank Föse, Sigrid Hagemann, and Liane Will (4th edi-
tion, SAP PRESS 2012).

ABAP System

AS ABAP
Internet

Communication
Manager (ICM)

Database

ABAP Database Schema

Central Services

Enqueue
Server

Message
Server

Dispatcher

ABAP WorkprocessABAP WorkprocessABAP Work Processes

Clients

ABAP Kernel

Start
Service

Gateway

SAP GUI, Eclipse,
etc.

Web Browser,
etc.

Figure 3.1 SAP NetWeaver AS ABAP Architecture

107

SAP NetWeaver AS ABAP Architecture 3.1

3.1.1 Database Interface

This section describes in detail how the ABAP application server accesses
the database. In this context, there are three important components,
which are described here:

EE Database interface (DBI)

EE Database-specific library (DBSL—Database Shared Library)

EE Database client (driver)

Every ABAP work process is connected to the database via an active con-
nection. If the database is accessed from an ABAP program, the DBI in
the ABAP kernel is responsible for the first processing steps. The DBI is
independent of the concrete database system. One of its main responsi-
bilities is translating Open SQL (see Section 3.2.2) into Native SQL, which
is then passed to the database via the DBSL (and the database driver).

In addition to processing SQL queries, the DBI provides the following
functions:

EE Automatic	client	handling	
If Open SQL is used to access client-dependent tables, the client is
included automatically (for example, in the WHERE clause). This will be
explained again in Section 3.2.2.

EE ABAP	table	buffer	
In the ABAP Data Dictionary, you can specify if table contents should
be buffered on the application server to avoid unnecessary database
accesses. These buffers are maintained and synchronized by the data-
base interface.

Database Systems Supported by SAP NetWeaver

The SAP NetWeaver AS ABAP currently supports the following vendors’
database systems:

EE SAP (SAP HANA, Sybase ASE, SAP MaxDB)

EE IBM DB2

EE Oracle database

EE Microsoft SQL Server

Current details can be found in the Product Availability Matrix at http://
service.sap.com/pam.

Database
interface (DBI)

108

3 Database Programming Using SAP NetWeaver AS ABAP

There is a specific library for every database system supported by SAP:
the DBSL (Database Shared Library). This library is dynamically linked to
the ABAP kernel and integrates the respective database driver for the
technical connection to the database.

You can install several of those libraries on an application server. This
makes it possible to establish connections to other databases besides the
database of the ABAP system. This is important in the context of SAP
HANA when implementing the side-by-side scenarios described in Sec-
tion 1.4. The technical aspects of such secondary connections are described
in more detail in Section 3.2.5. The prerequisites and steps for installing
the SAP HANA DBSL on an existing system are described in SAP Note
1597627. Figure 3.2 shows how DBI, DBSL, and database driver interact.

ABAP Application Server

Primary Database

Database Interface (DBI)

Secondary Database

Database-Specific Library (DBSL)

ABAP Application

ABAP Runtime Environment

Open SQL
Native SQL

Database Client

Figure 3.2 DBI, DBSL, and Database Client

Database Shared
Library (DBSL)

Secondary
database

connections

109

SAP NetWeaver AS ABAP Architecture 3.1

3.1.2 Role of the Database for the ABAP Application Server

The SAP NetWeaver AS ABAP stores all data in exactly one specific schema
within the database catalog. This schema is also referred to as system schema
or ABAP schema. You can think of a schema as a kind of namespace within
the database. In traditional ABAP development, the database schema is
irrelevant. In the context of SAP HANA, however, the schema is relevant
to some extent, for two reasons: First, when replicating tables to SAP
HANA, the replicated data is often stored in different database schemas to
separate them from the system data. Second, there are a series of technical
schemas in SAP HANA that play an important role in native development
in SAP HANA (see Section 2.4.3 and Chapter 4).

As mentioned already, every ABAP work process is connected to the data-
base. For the standard database connection, a technical database user is used.

ABAP Schema and Technical Database User

The name of the ABAP schema is usually composed of the system ID (SID)
and the prefix “SAP”. The default schema name of the ABAP system “NSP”
would be SAPNSP, for example. ABAP tables like the SFLIGHT table can thus
be addressed in the database catalog using SAPNSP.SFLIGHT.

This schema also comprises a database user SAPNSP, which is used by the
SAP NetWeaver AS ABAP to establish the standard database connection.

Every database uses a transaction concept to consider the consequences of
interactions as a logic unit (Logical Unit of Work) and guarantee ACID quali-
ties (Atomicity, Consistency, Isolation, Durability) for this unit. Database
transactions are usually relatively short-lived operations and are always
focused on the technical consistency of table contents (during parallel
access, in error situations, etc.). Business transactions (for example, creat-
ing a new customer in the system), on the other hand, are often associ-
ated with a longer lifetime and additional requirements with regard to
data consistency, since the data must also be consistent from a business
perspective. The transaction concept of the database is hardly suitable to
meet these additional requirements.

To assure consistent changes to data models in business applications,
ABAP provides the LUW concept (Logical Unit of Work). With this concept,
changes to data records are collected first and are then, at a defined point

ABAP schema

Transaction
concept of the
database

SAP LUW concept

110

3 Database Programming Using SAP NetWeaver AS ABAP

in time, either written to the database by a COMMIT WORK statement or
discarded by means of a ROLLBACK WORK. By collecting changes, changes
in transactions that comprise several dialog steps or even several applica-
tion servers can be bundled (see Section 3.2.2). Since there is currently
no equivalent concept in SAP HANA, only the transaction concept of the
database can be used for native implementations in SAP HANA (e.g., via
SQLScript). For recommendations on this topic, please read Chapter 14.

Physical locks are used automatically by every relational database system
to synchronize parallel changes to table contents. In addition, the SAP
NetWeaver AS ABAP uses a logical lock concept that is focused on business
aspects. With this concept, lock objects can be used to indicate that a data
record is unavailable for certain accesses (e.g., for changes) for a certain
time period. Locks can be created or queried at runtime using special
function modules that manage lock entries via the enqueue work process.

For example, when booking a flight, it isn’t possible to perform another
booking for the same flight to make sure it’s not overbooked. Since these
logical locks do not lead to physical locks on the database (so tables can
technically still be changed), the effectiveness of the locks is based on
conventions and guidelines for application development. These aspects
must also be considered when modifying ABAP tables outside the context
of an ABAP program (e.g., with SQLScript in the case of SAP HANA).

3.1.3 Data Types

As an ABAP developer, you may not have given data types a lot of
thought in the past, but simply used the types that were available. In
many situations, however, complex conversions and interpretations are
performed in the background, and that can lead to unexpected results if
they are not used properly.

Before you learn about the different types of systems and their proper-
ties, we will shortly introduce the topic using a few examples. We start
in Listing 3.2 with a simple database access using Open SQL.

DATA: lv_carrier TYPE string.
SELECT SINGLE carrname FROM scarr INTO lv_carrier
WHERE carrid = 'LH'.

Listing 3.2 Implicit Data Type Conversions

Lock concept

Implicit type
conversions

111

SAP NetWeaver AS ABAP Architecture 3.1

This simple ABAP program already uses different data types and con-
versions. The column CARRNAME of the table SCARR is based on the data
element S_CARRNAME in the ABAP Data Dictionary, which is defined as
type CHAR (i. e., string) with a length of 20. In the database, the data type
of this column is NVARCHAR(20) (NVARCHAR is a string of variable length).
A selection is made into an ABAP variable of type String; in addition, a
constant (literal) LH is used in the WHERE clause, which is checked against
the column CARRID of type CHAR(3). The result of this selection is the
name of the airline “Lufthansa.” If we now replace the filter condition
in Listing 3.2 with the expression WHERE carrid = 'LH abcd', the result
may not be obvious at first glance. Since the field CARRID contains only
three characters, the record is found in this case as well.

In the case of character-type data types with a special semantics (for
example, a date or a number as a string), there are some rather complex
aspects happening in the background. Listing 3.3 for instance determines
the names of all passengers who booked a flight within the last 30 days
(column FLDATE of type DATS) and received a discount of more than
20 percent (column DISCOUNT of type NUMC).

DATA: lv_date TYPE d,
 lv_name TYPE string.

lv_date = sy-datlo - 30.
SELECT DISTINCT name FROM sbook AS b
 INNER JOIN scustom AS c ON b~customid = c~id
 INTO lv_name
 WHERE fldate > lv_date AND fldate <= sy-datlo
 AND c~discount >= '20'.

 WRITE: / lv_name.
ENDSELECT.

Listing 3.3 Relevance of Semantic Properties of Data Types

When calculating a time difference in days or handling the string “20“ as a
number for the discount, this depends on the semantics of the data types.
If you execute the corresponding expression in Native SQL via the SQL
console in SAP HANA Studio, for example, you will get different results.

Data types with
semantics

112

3 Database Programming Using SAP NetWeaver AS ABAP

For the code pushdown paradigm presented in Section 1.5.2, where certain
calculations are moved to the database, it is important that the data is
semantically treated and understood identically—otherwise, the calcu-
lations may lead to wrong results. This is relevant for instance for the
rounding behavior and internationalization aspects. You must especially
make sure that there are no unexpected effects after changing an existing
program to improve performance.

SAP HANA Supports Only Unicode

Another aspect of handling text data types is the technical encoding of charac-
ters using so-called code pages. We would like to point out that SAP HANA only
supports Unicode installations. Non-Unicode installations must be converted
to Unicode before migrating them to SAP HANA. Unicode and non-Unicode
systems will not be explained in more detail within the scope of this book.

We will now describe the different type systems. As an ABAP developer,
you are probably already familiar with the type system of the ABAP
language and the ABAP Data Dictionary, but have paid little attention
to the mapping of those types to the database’s type system in the past.
We have to differentiate between the ABAP type system, the ABAP Data
Dictionary type system, and the type system of the database.

The type system of the ABAP language defines the data types that can be
used in ABAP programming. It is designed in such a way that it can be
mapped consistently to the supported operating systems for the applica-
tion server. The following built-in types form the basic structure of the
ABAP type system:

EE Numeric	types:
Integers (I), floating point numbers (F), packed numbers (P), and
decimal floating point numbers (decfloat16, decfloat34)

EE Character-type	data	types:		 	
Text field (C), numeric text field (N), date (D), and time (T)

EE Hexadecimal	types:		 	
X

EE Types	with	a	variable	length:		 	
STRING for strings and XSTRING for byte sequences

ABAP type system

113

SAP NetWeaver AS ABAP Architecture 3.1

Usage of Numeric ABAP Data Types

For integers, you use the I data type. If the value range of this type is not
sufficient, you can use packed numbers or decimal floating point numbers
without decimal places instead.

For fractional numbers with a fixed number of decimal places, packed numbers
are used. This is the standard type for many business figures like monetary
amounts, distances, weights, etc. This data type assures an optimal rounding
behavior.

Decimal floating point numbers (decfloat) were introduced with SAP
NetWeaver AS ABAP 7.02 to support scenarios where the value range of packed
numbers is not sufficient or where the number of decimal places is variable.

Floating point numbers (F) should only be used for runtime-critical mathemati-
cal calculations where an exact rounding behavior is not required.

The type system of the ABAP Data Dictionary defines which data types
can be used in structures, tables, etc., in the ABAP Data Dictionary. It is
defined in such a way that it can be uniquely mapped to all supported
database systems via SQL. This is the primary type system for database
accesses from ABAP. The mapping of the ABAP Data Dictionary types to
the basic types of the ABAP language is described in Table 3.1.

The internal type system of the database defines the possible column
types for tables and the corresponding operations. It is the primary type
system for queries or implementations in the database (for example, by
means of database procedures). Each database system uses slightly dif-
ferent data types or treats data types slightly differently.

Table 3.1 shows the mapping of ABAP Data Dictionary types to ABAP
types. The (fixed or variable) length of the corresponding ABAP type is
indicated in parentheses.

Dictionary Type Description ABAP Type Example

ACCP Accounting period N(6) ‘201310’

CHAR String C(n) ‘ABAP’

CLNT Client C(3) ‘000’

CUKY Currency key C(5) ‘EUR’

Table 3.1 Mapping of ABAP Data Dictionary Types and ABAP Types

Type system of
the ABAP Data
Dictionary

Type system of
the database

Type mapping

114

3 Database Programming Using SAP NetWeaver AS ABAP

Dictionary Type Description ABAP Type Example

CURR Currency field P(n) ‘01012000’

DATS Date D ‘01012000’

DEC Calculation/amount field P(n) 100.20

DF16_RAW Decimal floating point
number (normalized; 16
digits)

decfloat16 100.20

DF16_SCL Decimal floating point
number (scaled; 16 digits)

decfloat16 100.20

DF34_RAW Decimal floating point
number (normalized; 34
digits)

decfloat34 100.20

DF34_SCL Decimal floating point
number (scaled; 34 digits)

decfloat34 100.20

FLTP Floating point number F(8) ABAP Data Dictionary Type

INT1 1-byte integer internal ACCP

INT2 2-byte integer internal CHAR

INT4 4-byte integer I CLNT

LANG Language C(1) CUKY

LCHR Long character string C(m) CURR

LRAW Long byte string X(m) DATS

NUMC Numeric text N(m) DEC

QUAN Quantity field P(n) 100

RAW Byte sequence X(m) F48FBFBF

RAWSTRING Byte sequence XSTRING 272927450108018F8F8F8F

SSTRING String STRING ‘ABAP’

STRING String STRING ‘ABAP is …’

TIMS Time T ‘123000’

UNIT Unit key C(m) ‘KG’

Table 3.1 Mapping of ABAP Data Dictionary Types and ABAP Types (Cont.)

115

SAP NetWeaver AS ABAP Architecture 3.1

The example in Figure 3.3 shows the mapping of the ABAP Data Dictio-
nary types to SAP HANA data types (based on a custom technical table
that uses most of the native ABAP Data Dictionary types). As described
in Section 2.4.3, you can display the structure of a database table in SAP
HANA Studio by double-clicking a table in the database catalog.

Figure 3.3 Mapping of ABAP Data Dictionary Types to SAP HANA Types

In addition to the SQL data type, this table also shows the specific data
type used in the column store in SAP HANA. However, this type plays
only a minor role for ABAP development on SAP HANA.

It is important to note that there is no representation of the NULL value
from SQL in the ABAP type system. However, there is an initial value for
every ABAP and ABAP Data Dictionary data type—for example, an empty
string for string types or 0 for numeric types. This is particularly relevant
for certain join variants (outer joins), as you will see in Section 3.2.2.

Mapping of ABAP
Data Dictionary
types to SAP
HANA types

NULL value

116

3 Database Programming Using SAP NetWeaver AS ABAP

Certain data types with a binary representation can usually not be used
directly in implementations in SAP HANA. These are, for example, float-
ing point numbers of type DF16_RAW and DF16_SCL (as well as the corre-
sponding types with a length of 34). Another example are data clusters
in ABAP, a special table type allowing you to read and write any kind
of data record via the ABAP commands EXPORT TO DATABASE and IMPORT
FROM DATABASE. The associated data is stored in the database in a column
of type LRAW in a proprietary format that can only be unpacked via the
ABAP kernel. These aspects must be taken into account if you consider
moving parts of the logic to the database.

3.2 ABAP Database Access

Having introduced the basic database architecture of the SAP NetWeaver
AS ABAP, we will now describe the actual database access from ABAP.
This includes both the definition of data models (tables, views, etc.) and
write and read operations for data records.

The database is usually accessed via the Structured Query Language (SQL).
The SQL database language covers three orthogonal categories, which
are described in Table 3.2.

Type Purpose Examples

Data Definition
Language (DDL)

Definition of data
structures and
operations

CREATE TABLE, DROP
TABLE, CREATE VIEW

Data Manipulation
Language (DML)

Read and write
operations for data
records

SELECT, INSERT,
UPDATE, DELETE

Data Control Language
(DCL)

Definition of access
restrictions for
database objects

GRANT, REVOKE

Table 3.2 Overview of SQL

In traditional ABAP application development, DML operations are imple-
mented via Open SQL (see Section 3.2.2), while DDL is used indirectly
via the ABAP Data Dictionary (see Section 3.2.1). DCL, on the other hand,

Data types
with a binary

representation

SQL

117

ABAP Database Access 3.2

is not relevant for traditional application development since the ABAP
application server—as described in Section 3.1.2—uses a technical user to
log in to the database. Also, the authorizations for the actual application
user are checked using the ABAP authorization system (e.g., using the
command AUTHORITY-CHECK). When using SAP HANA for implementing
part of the application logic inside the database, the authorization con-
cepts of the database must also be considered. This will be explained in
more detail in Chapter 14.

3.2.1 ABAP Data Dictionary

Using the ABAP Data Dictionary (DDIC), you can create data models in
the database. These data models can be enriched with semantic aspects
such as texts, fixed values, and relationships. This metadata, which is
particularly important for business scenarios, plays an important role
for developments in SAP HANA since it can be used for modeling and
implementation tasks in SAP HANA.

Before we describe the individual types of development objects (tables,
views, etc.), we would like to introduce two very important qualities of
the ABAP Data Dictionary:

EE Since the ABAP Data Dictionary is fully integrated with the ABAP
Lifecycle Management, you can transport the defined database artifacts
and their properties into an SAP landscape.

EE Objects in the ABAP Data Dictionary can be extended; i.e., SAP cus-
tomers and partners can adjust these objects to their needs for instance
by adding columns to a table.

This extensibility of ABAP Data Dictionary objects should also be par-
ticularly considered when performing modeling and programming tasks
in SAP HANA.

From a development perspective, Transaction SE11 is the main tool for
using the ABAP Data Dictionary. This transaction can be used to define
and maintain the following object types:

EE Table
Tables define the structure for physically storing data in the database.
A table consists of a number of fields (columns) and their

Qualities of
the ABAP Data
Dictionary

Object types in
the ABAP Data
Dictionary

118

3 Database Programming Using SAP NetWeaver AS ABAP

corresponding data types. In addition to individual fields, you can also
include predefined structures.

The ABAP Data Dictionary supports different types of tables, for exam-
ple, tables for application data, Customizing data, or master data, which
differ in certain lifecycle management aspects. Moreover, a series of
technical properties can be maintained for a table.

In addition to defining the mere field list, you can include additional
metadata:

EE Foreign key relationships
By specifying check tables for fields, you can define specific foreign
key relationships. This information is used when modeling views
in SAP HANA Studio (see Chapter 4).

EE Currency and unit of measure
To store monetary amounts or unit of measures, the currencies or
units must be defined in addition to the numeric value. This is usu-
ally done via another column, and the ABAP Data Dictionary allows
you to define a relationship between the two columns.

EE Search help
By specifying a search help for a column, a generic input help can
be provided in transactions without any programming effort.

EE View
Views allow you to define specific views on several Dictionary tables.
The ABAP Data Dictionary supports several view types for different
usage scenarios:

EE Database views are used to define SQL views on the database.

EE Projection views are used to hide fields of a table. These views do not
exist physically in the database.

EE Help views are used as a selection method in search helps.

EE Maintenance views facilitate a consistent entry of data records for
interlinked database tables.

As views plays an important role in the context of SAP HANA, the pos-
sibility to define database views via the ABAP Data Dictionary will be
explained in more detail in Section 3.2.3.

119

ABAP Database Access 3.2

EE Data	type
Based on the basic types, user-specific types can be defined in the ABAP
Data Dictionary. These globally defined objects can be used when
defining table columns and within ABAP programs.

The ABAP Data Dictionary supports three kinds of data types:

EE Elementary data elements

EE Composite structures

EE Table types

These data types cannot be used directly for modeling and program-
ming tasks in SAP HANA.

EE Domain
Domains can be used to define value ranges. For an elementary data
type, a length is specified (in the case of numeric types, the number
of decimal places may also be defined). In addition, the value range
can be further limited by fixed values, intervals, or check tables.

Domains cannot be used directly for modeling and programming tasks
in SAP HANA.

EE Search	help
Search helps (also referred to as input helps or (F4) helps) provide
input options for fields in an SAP user interface. Using the ABAP Data
Dictionary, you can define such search helps based on tables, views,
or a freely programmed Exit.

Implementing specific search helps on SAP HANA is described in more
detail in Chapter 9.

EE Lock	object
Lock objects can be used to define logical locks in the database. This
was described in Section 3.1.2.

In addition to pure data structures, further properties can be maintained
in the technical settings for a database table. These especially include the
following two options:

EE ABAP	table	buffer
Many tables used in application scenarios are suitable candidates for
buffering on the application server, since they contain a relatively

Technical settings

120

3 Database Programming Using SAP NetWeaver AS ABAP

small amount of data. Also, read operations are executed much more
often for those tables than write operations. The ABAP table buffer
provides an efficient option for this purpose. You can activate buffer-
ing via the technical properties in the ABAP Data Dictionary, and you
can also configure if single records, ranges, or the full table should be
buffered. When using SAP HANA, where table contents are usually
stored in the main memory of the database, the ABAP table buffer also
plays an important role (see Chapter 14).

EE Data	class	and	size	category
By specifying the data class and the expected table entries, the database
system can efficiently reserve the required storage space. Moreover,
the size category of a table can be used to analyze ABAP program per-
formance issues that were detected in static code analyses.

As of SAP NetWeaver 7.4, the ABAP Data Dictionary allows you to specify
if tables should be stored in the column store or in the row store in SAP
HANA (see Figure 3.4). When selecting the default value Undefined, the
column store is used—which is recommended for basically all application
cases. There are a few exceptions, which are described in Chapter 14 as
well.

Figure 3.4 Database-Specific Settings for Tables

Usage of row or
column store

121

ABAP Database Access 3.2

You can also define database indices in the ABAP Data Dictionary. When
doing so, you can create indices only for certain databases (inclusion list)
or exclude them by specifying an exclusion list. During a database migra-
tion to SAP HANA, the system first creates entries for existing secondary
indices in the exclusion list, so that the corresponding index on SAP
HANA is not created automatically. Instead, those indices should only
be activated on a case-by-case basis. Technical background information
and recommendations for index usage on SAP HANA can also be found
in Chapter 14.

Figure 3.5 shows the index exclusion on SAP HANA for the table SBOOK.
In this case, the indexes ACY and CUS are not created on SAP HANA, since
HDB is on the exclusion list.

Figure 3.5 Index Exclusion for SAP HANA

In the past, some database versions came with severe restrictions of the
maximum number of tables in the system and provided poor compression
capabilities. To avoid these problems, you can create special table types in
the ABAP Data Dictionary—so-called pool and cluster tables—where several
logical tables are combined into one physical database table. These logical
tables can basically be accessed from ABAP like normal database tables;
however, there are also a number of restrictions to consider. Since pool
and cluster tables are not needed on SAP HANA, existing tables are con-
verted into normal transparent tables when migrating to SAP HANA. The
main advantage of this conversion is that the tables can also be used for
modeling and programming tasks in SAP HANA, as described in Chapter 4
and Chapter 5. During migration, pool and cluster tables are compatible
with existing applications. There is no need to adapt existing ABAP code.
However, certain aspects must be considered with regard to the sorting
behavior, which will be explained in more detail in Chapter 14.

Indices

Pool and
cluster tables

122

3 Database Programming Using SAP NetWeaver AS ABAP

3.2.2 Open SQL

Open SQL provides an option for database access that is integrated into
the ABAP programming language. Both the supported syntax and the
detailed semantics of Open SQL are database-independent. This makes
it possible to write applications in ABAP without knowing the details of
the underlying database system.

Read Access with Open SQL

SAP HANA mainly offers options to accelerate read accesses. Using Open
SQL is the primary and simplest option to move data-intensive opera-
tions to SAP HANA.

In this section, we will use examples to detail some of the advanced
options of Open SQL that you may not have used in the past. The syntax
of the ABAP command SELECT will not be explained in detail; a com-
prehensive documentation of the Open SQL syntax can be found in the
ABAP online help.

The examples deal with the three aspects listed below, which basically
cover the advanced options for expressing calculation logic in Open SQL:

EE Reading fields from several tables with foreign key relationships (use
of joins and the FOR ALL ENTRIES clause).

EE Calculating key figures based on the values of a column by using the
aggregate functions (for example, determining quantities, totals, aver-
age values, etc.).

EE Selecting special entries of a table based on complex criteria using
subqueries (sub-selects) and existence checks.

In the first example, we will use a join to read values from the tables
SCARR and SCURX (currencies). Depending on the table entries which should
be included in the result, there are several options for creating joins in
SQL. Open SQL supports inner joins and left outer joins. When describing
the process for modeling views in SAP HANA Studio in Chapter 4, the
different join variants will be explained in detail. Listing 3.4 uses the
two variants that are supported in Open SQL and shows the differences
between them.

Expressing
calculation logic

in Open SQL

Joins

123

ABAP Database Access 3.2

REPORT zr_a4h_chapter3_open1.

TYPES: BEGIN OF result_type,
 currkey TYPE s_curr,
 currdec TYPE currdec,
 carrname TYPE s_carrname,
 END OF result_type.

DATA: wa TYPE result_type.

" Selection of all currencies and corresponding
" airlines. The inner join is used to only select
" currencies with a corresponding airline which
"uses this currency.
SELECT c~currkey c~currdec r~carrname FROM scurx AS c
 INNER JOIN scarr AS r
 ON c~currkey = r~currcode INTO wa.

 WRITE: / wa-currkey , wa-currdec , wa-carrname.
ENDSELECT.

" Selection of all currencies and corresponding
" airlines. The outer join is used to also select
" currencies without a
" corresponding airline.
" In this case, the value is initial.
SELECT c~currkey c~currdec r~carrname FROM scurx AS c
 LEFT OUTER JOIN scarr AS r
 ON c~currkey = r~currcode INTO wa.

 WRITE: / wa-currkey , wa-currdec , wa-carrname.
ENDSELECT.

Listing 3.4 Inner and Left Outer Joins in Open SQL

As already mentioned in Section 3.1.3, there is no representation of the
NULL value in ABAP. As shown in Listing 3.4, where no corresponding
data record is found in the “right-hand” table, a left outer join generates
the value NULL for the corresponding columns of the result set in the
database. In ABAP, this value is converted into the initial value of the
column. Consequently, it cannot be determined if no value was found or
if the corresponding value happens to be the initial value. When executing

NULL as the result
of left outer joins

124

3 Database Programming Using SAP NetWeaver AS ABAP

the equivalent SQL statement via the SQL console in SAP HANA Studio,
NULL values are displayed as question marks (?) as shown in Figure 3.6.

Figure 3.6 Representation of NULL Values in the SQL Console

In addition to the described inner and left outer joins, the expression FOR
ALL ENTRIES provides another option in Open SQL to leverage foreign key
relationships and use internal tables to create joins. This SAP-proprietary
expression is not part of the SQL standard and is a natural enhancement of
the so-called ranges that are used in selection options. A typical example of
using this expression is shown in Listing 3.5. In this example, all airlines
are first read and the airlines that can be displayed by the user are then
stored in an internal table. Subsequently, the FOR ALL ENTRIES clause is
used for a type of inner join with the SFLIGHT table.

REPORT zr_a4h_chapter3_open2.

TYPES: BEGIN OF ty_carrid,
 carrid TYPE s_carrid,
 END OF ty_carrid.

DATA: ls_carrier TYPE ty_carrid,
 ls_flight TYPE sflight,
 lt_carrier TYPE TABLE OF ty_carrid.

SELECT carrid FROM scarr INTO ls_carrier.
 " Check authorization and, if
 " successful, add to internal table
 AUTHORITY-CHECK OBJECT 'S_CARRID'
 ID 'CARRID' FIELD ls_carrier-carrid
 ID 'ACTVT' FIELD '03'.

 IF sy-subrc = 0.
 APPEND ls_carrier TO lt_carrier.
 ENDIF.

FOR ALL ENTRIES

125

ABAP Database Access 3.2

ENDSELECT.

" Output of all flights of the airlines for which the user is
authorized.
IF (lt_carrier IS NOT INITIAL).
 SELECT * FROM sflight INTO ls_flight
 FOR ALL ENTRIES IN lt_carrier
 WHERE carrid = lt_carrier-carrid.

 WRITE: / ls_flight-carrid,
 ls_flight-connid, ls_flight-fldate.
 ENDSELECT.
ENDIF.

Listing 3.5 Join of a Database Table with an Internal Table

Special Properties of FOR ALL ENTRIES

For performance reasons, changing a nested SELECT statement into a FOR ALL
ENTRIES expression can be useful. However, when doing so, you should pay
attention to three important properties of the expression FOR ALL ENTRIES:

EE If the driver table (i.e., the internal table following the FOR ALL ENTRIES
expression) is empty, all values are returned as the result. If you perhaps
forget the IF check before the selection at the end in Listing 3.5, you
would, under certain circumstances, select data that the user might not
be allowed to access.

EE The driver table should not contain any duplicates. This helps limiting the
number of accesses to a minimum and avoids the selection of identical
data from the database.

EE Selections with FOR ALL ENTRIES are always performed with an implicit
DISTINCT so that no duplicates are returned. If you only select the columns
CARRID and CONNID (instead of *) for the second SELECT statement in
Listing 3.5, for example, far fewer results are returned (independent of the
flight date, every connection is returned only once).

EE More information on SAP HANA can be found in Chapter 14, which also
includes recommendations for optimizing ABAP programs.

In the third example, we will use the aggregate functions (COUNT, SUM,
MIN, MAX, AVG). Using an SQL query, we will determine inconsistencies
within the data model. To do so, we will execute a query to find out if
there are more bookings for the Economy class of a flight (based on the

Aggregate
functions

126

3 Database Programming Using SAP NetWeaver AS ABAP

entries in the SBOOK table) than occupied seats (attribute SEATSOCC in the
table SFLIGHT). In Listing 3.6, a join is combined directly with the calcu-
lation of a quantity (COUNT) and the limitation of the result set based on
the result of the aggregation (HAVING).

REPORT zr_a4h_chapter3_open3.

TYPES: BEGIN OF ty_result,
 carrid TYPE sbook-carrid,
 connid TYPE sbook-connid,
 fldate TYPE sbook-fldate,
 count_sbook TYPE i,
 count_sflight TYPE i,
 END OF ty_result.
DATA ls_result TYPE ty_result.

" Determination of all flights with more
" Economy class bookings (table SBOOK) than
" occupied seats (table SFLIGHT)
SELECT b~carrid b~connid b~fldate
 f~seatsocc AS count_sflight
 COUNT(*) AS count_sbook
 FROM sbook AS b
 INNER JOIN sflight AS f ON b~carrid = f~carrid
 AND b~connid = f~connid
 AND b~fldate = f~fldate
 INTO ls_result
 WHERE b~cancelled <> 'X' AND b~class = 'Y'
 GROUP BY b~carrid b~connid b~fldate f~seatsocc
 HAVING COUNT(*) > f~seatsocc
 ORDER BY b~fldate b~carrid b~connid.

 WRITE: / ls_result-carrid, ls_result-connid,
 ls_result-fldate, ls_result-count_sbook ,
 ls_result-count_sflight.
ENDSELECT.

Listing 3.6 Aggregate Functions in Open SQL

When using aggregations, it must always be noted that the GROUP BY
expression lists all non-aggregated attributes; this also includes attributes
that are used only in a HAVING clause.

127

ABAP Database Access 3.2

As you can see, rather complex queries can be expressed via Open SQL.
In the fourth example, we will add another element: subqueries—and, as
a special case, existence checks. A subquery is a SELECT statement in paren-
theses which can be used as part of the WHERE clause (both in reading
and writing accesses). Typical use cases are existence checks with the
following structure:

SELECT ... FROM ... INTO ...
 WHERE EXISTS (SELECT ...).

If only one column is selected in a subquery, this is referred to as a scalar
subquery. In addition to simple comparissons (=, >, <) for a column, these
queries support other operations as well (ALL, ANY, SOME, IN). The example
in Listing 3.7 shows how subqueries can be used to implement a nested
filter condition.

REPORT zr_a4h_chapter3_open4.

DATA: ls_flight TYPE sflight.

" Output of all flights from 2013 with more
" occupied seats than the average value for the
" same route in 2012
SELECT * FROM sflight AS f INTO ls_flight
 WHERE fldate LIKE '2013%' AND seatsocc >
 (SELECT AVG(seatsocc) FROM sflight
 WHERE carrid = f~carrid
 AND connid = f~connid
 AND fldate LIKE '2012%').

 WRITE: / ls_flight-carrid,
 ls_flight-connid, ls_flight-fldate.
ENDSELECT.

Listing 3.7 Usage of Subqueries

The approaches described above provide a great variety of options for
accessing database tables. Using joins, you can define relationships
between several tables (and via FOR ALL ENTRIES, even between internal
tables); the aggregate functions can be used for simple calculations; and
subqueries allow nested selections. In addition to the SQL vocabulary,

Subqueries

128

3 Database Programming Using SAP NetWeaver AS ABAP

Open SQL provides further techniques to flexibly and efficiently design
database access, which will be described below.

Using Open SQL, you can also specify parts of an SQL statement dynami-
cally so that, for instance, the table name or the selected columns can be
controlled via a variable that has to be specified in parentheses (as shown
in the example in Listing 3.8).

DATA: lv_table TYPE string,
 lt_fields TYPE string_table,
 ls_carrier TYPE scarr.

" Table name as a string
lv_table = 'SCARR'.

" Dynamic output of the columns
APPEND 'CARRID' TO lt_fields.
APPEND 'CARRNAME' TO lt_fields.

SELECT (lt_fields) FROM (lv_table)
 INTO CORRESPONDING FIELDS OF ls_carrier.
 WRITE: / ls_carrier-carrid , ls_carrier-carrname.
ENDSELECT.

Listing 3.8 Dynamic Open SQL

When working with dynamic Open SQL, it must be noted that the sepa-
rating keywords (for example, SELECT, FROM, WHERE, etc.) still have to be
used statically in the code. This particularly helps preventing potential
security vulnerabilities, since certain attacks by means of SQL injection
(introduction of unwanted database operations by an attacker) are not
possible. However, especially when using dynamic SQL, you should always
make sure that the values of the variables are checked in order to avoid
runtime errors or security issues. To do so, you can use a list of allowed
values (whitelists) or regular expression patterns.

Using cursors, you can separate the definition of the selection from the data
retrieval. For this purpose, you first have to open a cursor by specifying
the selection, and can then retrieve the data from the database using this
cursor at a later point in time or elsewhere (e.g., in a FORM routine), as
shown in Listing 3.9. As the number of cursors that can be used in parallel
is limited, you should always make sure to close a cursor after using it.

Dynamic SQL

Using cursors

129

ABAP Database Access 3.2

DATA: lv_cursor TYPE cursor,
 ls_flight TYPE sflight.

" Defining the cursor
OPEN CURSOR lv_cursor FOR
 SELECT * FROM sflight
 WHERE carrid = 'LH'.

" Retrieving a data record via the cursor
FETCH NEXT CURSOR lv_cursor INTO ls_flight.

" Closing the cursor
CLOSE CURSOR lv_cursor.

Listing 3.9 Simple Example of Using a Cursor

The data flow between the database and the application server can be
controlled in Open SQL, by defining package sizes via the addition PACKAGE
SIZE. When doing so, the specified number of rows is always retrieved
from the database when selecting into an internal table within a loop.

DATA: lt_book TYPE TABLE OF sbook.

" Selection into packages of 1,000 rows each
SELECT * FROM sbook
 INTO TABLE lt_book
 PACKAGE SIZE 1000.

 " ...
ENDSELECT.

Listing 3.10 Selecting Data while Specifying a Package Size

Before dealing with writing accesses, we would like to briefly summarize
the options for read access provided by Open SQL. Using the SELECT state-
ment, you can efficiently read data records from a relational data model
(tables with foreign key relationships). The aggregate function allows
you to express simple calculations on a column. Data transfer from the
database can be controlled using advanced techniques. However, it is not
possible to use complex filter expressions, case distinctions, or business
calculations directly within the database. Furthermore, interim results
cannot be temporarily stored in the database, since the result of a query
is always transferred to the application server.

Package sizes

Read operations
in Open SQL

130

3 Database Programming Using SAP NetWeaver AS ABAP

Write Accesses and Transaction Behavior

The basic principles of the ABAP transaction concept, and in particular the
differences between the database LUW and the SAP LUW, were already
discussed in Section 3.1.2. To change database contents, Open SQL pro-
vides the statements INSERT (creating data records), UPDATE (changing
existing data records), MODIFY (changing or creating data records), and
DELETE (deleting data records). In addition to changing individual entries,
you can also edit several rows at the same time. For example, you can use
an Open SQL statement to create or update several data records based
on the contents of an internal table in one go. This usually significantly
improves the performance of a program, since a lot fewer database accesses
are necessary. The example in Listing 3.11 shows how these so-called
array operations are used. Similarly, you can update all or only selected
columns when changing a data record. This can also lead to an increased
performance. These two techniques are particularly recommended on
SAP HANA (see Chapter 14).

REPORT zr_a4h_chapter3_modify_array.

DATA: lt_country TYPE TABLE OF za4h_country_cls.

" Select countries and number of customers
SELECT country COUNT(*) AS class FROM scustom
 INTO CORRESPONDING FIELDS OF TABLE lt_country
 GROUP BY country.

" Change table entries in one go
MODIFY za4h_country_cls FROM TABLE lt_country.

COMMIT WORK.

Listing 3.11 Modifying Table Contents via Array Operations

In Open SQL, the statements COMMIT WORK or ROLLBACK WORK are used for
explicit transaction control. There are also situations where an implicit
Commit (for example, after completing a dialog step) or a rollback (for
example, in case of a runtime error) are performed automatically. To pro-
cess database changes from several dialog steps in a single database LUW,
the SAP LUW concept offers several bundling techniques. This primarily

131

ABAP Database Access 3.2

includes calling update modules (CALL FUNCTION ... IN UPDATE TASK)
and bundling via subroutines (PERFORM ... ON COMMIT).

If you perform direct writing operations on the database (for example,
with SQLScript) the programming model differs significantly from the
traditional ABAP programming model (please also refer to Section 3.1.2
and Chapter 14).

Even though Open SQL is database independent, it is possible to pass hints
to the respective database system (or, more specifically, to the database
optimizer) to specify how a statement should be executed. In practice,
this variant offers tuning options for database experts and is used rather
infrequently in normal ABAP development. Using hints, you can specify
how the database should access the data (for example, using a specific
index). Since hints must be maintained manually (e.g., when performing
a release upgrade or a database migration), this option should only be
used if there are no other tuning methods.

Despite the comprehensive scope of functions, Open SQL covers only a
rather small part of the SQL standard. In particular, the following SQL
constructs cannot be used in Open SQL at the moment:

EE Specification of an offset for paging (for example, for a selection of
50 rows starting with row index 100)

EE UNION, INTERSECT (creating unions or intersections for several selec-
tions)

EE CASE (case distinctions)

EE Expressions in the selection or WHERE clause (string operations, usage
of literals and built-in functions, etc.)

These commands are not available in Open SQL partly because they were
implemented differently or not at all by the different database vendors.
Using the SAP HANA-specific SQL dialect beyond Open SQL will be
explained in Section 3.2.4 and in Chapter 5.

Planned Extensions of Open SQL

SAP is currently working on significantly extending the functionality of Open
SQL. In future versions, the features will include the creation of unions, case
distinctions, and expressions in the selection of WHERE clause, among others.

Database hints

Limitations of
Open SQL

132

3 Database Programming Using SAP NetWeaver AS ABAP

3.2.3 Database Views in the ABAP Data Dictionary

Database views are a standard option for looking at data based on one or
several tables in the database, and thus predefining parts of a SQL query.
In most database systems, views are created using SQL:

CREATE VIEW view_name AS SELECT ...

The SAP HANA-specific options for view creation, which go far beyond
wrapping a simple SQL query, will be described in more detail in Chapter
4. In this section, we will focus only on what is supported by default by
the ABAP Data Dictionary for all database systems.

While you can define data views using the ABAP Data Dictionary, not
all options of Open SQL are available when following this approach.
Basically, you can link several tables via an inner join and add fields to
the projection list. It is not possible, however, to use other join types,
aggregates, or subqueries.

Figure 3.7 shows the standard view SFLIGHTS which defines a join to
add fields from the tables SCARR, SPFLI, and SFLIGHT. The corresponding
CREATE VIEW statement can be displayed via the menu bar.

Figure 3.7 Dictionary View SFLIGHTS

Limitations

Example:
SFLIGHTS

133

ABAP Database Access 3.2

These database views can be accessed like tables from ABAP coding using
Open SQL and Native SQL. In this context, it must be noted that modify-
ing operations can only be executed for views that access only one table.
Similar to table access, buffering can be configured in the technical settings.

Extending the Capabilities for View Creation in ABAP

SAP currently works on a unified view creation process in SAP HANA and the
ABAP Data Dictionary (referred to as Core Data Services, or CDS). The goal of
this approach is to significantly enhance the scope of functions for defining
views in the ABAP Data Dictionary.

3.2.4 Database Access via Native SQL

In addition to Open SQL, which enables database-independent access
that is integrated into the ABAP programming language, there is another
method for accessing the database from ABAP. With this variant, you more
or less directly specify the native database commands. For this reason,
this is also referred to Native SQL.

Before we deal with the technical aspects of supporting Native SQL in
SAP NetWeaver AS ABAP, we will explain why this variant plays a more
important role in the context of SAP HANA than in the past. To fully
benefit from the potential of SAP HANA, you must particularly use those
functions that are not standard relational database capabilities. This par-
ticularly includes using capabilities in SAP HANA-specific SQL beyond the
SQL standard, and accessing development objects in SAP HANA beyond
normal tables and SQL views. This will be explained in detail in Chapter 4
and Chapter 5. At this point, we would already like to mention that using
Native SQL will play an important role in this context.

There are two options for using Native SQL in ABAP: either via the state-
ment EXEC SQL, or via ABAP Database Connectivity (ADBC)—an object-
oriented interface which is available as of SAP NetWeaver 2004 (release
6.40). In this context, SAP recommends using ADBC, since this approach
provides greater flexibility and better options for troubleshooting. Within
the scope of this book, we will therefore only describe and use the ADBC
variant. With regard to some of its concepts, ADBC is similar to Java Data-
base Connectivity (JDBC), a standard database interface of the Java platform.

Accessing
database views

Native SQL and
SAP HANA

Variants for using
Native SQL

134

3 Database Programming Using SAP NetWeaver AS ABAP

To use ADBC, essentially three ABAP classes are needed: CL_SQL_CON-
NECTION, CL_SQL_STATEMENT, and CL_SQL_RESULT_SET. In the first step,
you must use the constructor (or the static method GET_CONNECTION)
of the CL_SQL_CONNECTION class to retrieve a database connection. If
you do not specify any parameters, it will return the standard database
connection, which is also used per default in Open SQL. However, you
can also specify the name of a secondary connection (see Section 3.2.5).
Using this connection, you create an object of type CL_SQL_STATEMENT
via the CREATE_STATEMENT method, which can for example be used for
reading database accesses via the method EXECUTE_QUERY by passing the
SQL statement as a string. The result of this query is an instance of type
CL_SQL_RESULT_SET. Similarly, writing accesses can be executed via EXE-
CUTE_UPDATE, or DDL statements via EXECUTE_DDL.

To transfer the result of a query to an internal ABAP table, you will first
have to pass a reference to this table via the method SET_PARAM_TABLE.
Then you will be able to start the data transfer via NEXT_PACKAGE. When
doing so, you can specify the package size, i.e., the number of rows.

The selected columns and corresponding data types must be compatible
with the target structure for a call to be successful.

If an error occurs when executing the SQL statement, an exception of
type CX_SQL_EXCEPTION is thrown, and this can be used to obtain details
like the error code and error text. Possible runtime errors are described
in detail in Section 7.2.

The following example shows how the named classes are used for a simple
read access. In this example, the SQL statement uses expressions from
the SAP HANA-specific SQL dialect, which cannot be used in the same
manner in Open SQL.

REPORT ZR_A4H_CHAPTER3_ADBC.

" Variables for ADBC call
DATA: lv_statement TYPE string,
 lo_conn TYPE REF TO cl_sql_connection,
 lo_statement TYPE REF TO cl_sql_statement,
 lo_result_set TYPE REF TO cl_sql_result_set.

" Definition of results structure

ABAP database
connectivity

Storing the query
result in an

internal table

Error handling

Example

135

ABAP Database Access 3.2

TYPES: BEGIN OF ty_result,
 carrid TYPE s_carr_id,
 connid TYPE s_conn_id,
 fldate TYPE s_date,
 days type i,
 END OF ty_result.

DATA: lt_result TYPE TABLE OF ty_result,
 lr_result TYPE REF TO data.

FIELD-SYMBOLS: <l> TYPE ty_result.

" Data reference
GET REFERENCE OF lt_result INTO lr_result.

" Native SQL statement: sequence and data types
" of selected columns must match
" results structure
lv_statement =
 | SELECT carrid, connid, fldate, |
 && | days_between(fldate, current_utcdate) as days |
 && | FROM sflight WHERE mandt = '{ sy-mandt }' and |
 && | days_between(fldate, current_utcdate) < 10 |.

TRY.
 " Prepare SQL connection and statement
 lo_conn = cl_sql_connection=>get_connection().
 lo_statement = lo_conn->create_statement().
 lo_result_set = lo_statement->execute_query(lv_statement
).
 lo_result_set->set_param_table(lr_result).

 " Get result
 lo_result_set->next_package().
 lo_result_set->close().
 CATCH cx_sql_exception.
 " Error handling
ENDTRY.

LOOP AT lt_result ASSIGNING <l>.
 WRITE: / <l>-carrid , <l>-connid , <l>-fldate, <l>-days.
ENDLOOP.

Listing 3.12 Native SQL Access via ADBC

136

3 Database Programming Using SAP NetWeaver AS ABAP

The function days_between in SAP HANA-specific SQL determines the
number of days between the parameters, i.e., the number of days between
the current date (which is obtained from the variable current_utcdate pro-
vided within SAP HANA-specific SQL) and the flight date in the example.
The output of Listing 3.12 thus comprises all future flights and all flights
within the last 10 days. For every flight, the system also displays the dif-
ference (in days) between the flight date and the current date. Since this
query cannot be expressed via Open SQL, the only traditional option
would be to load all data into the application server and calculate the
dates via ABAP. Since we “pushed” a complex filter expression down to
the database, this means that we implemented a so-called code pushdown
via Native SQL.

If you want to consecutively use the same SQL statement with differ-
ent parameterization, so-called prepared statements should be used for
performance reasons. These prepared SQL statements reduce the effort
for subsequent executions. To do this, you create an instance of the class
CL_SQL_PREPARED_STATEMENT (a subclass of CL_SQL_STATEMENT), while pass-
ing an SQL statement with placeholders that can be bound to a variable.
Listing 3.13 shows the usage of prepared statements and placeholders
using some of the ABAP language elements from ABAP 7.4 (see Appendix
B). Please note that placeholders can also be used independently of pre-
pared statements. Recommendations on the use of prepared statements
can be found in Chapter 14.

REPORT zr_a4h_chapter3_adbc2.

" Variables for the ADBC call
DATA: lv_sql TYPE string,
 lo_result TYPE REF TO cl_sql_result_set.

DATA: lt_result TYPE TABLE OF scarr,
 lv_param TYPE s_carrid.

" SQL statement with placeholder
lv_sql =
 | SELECT * |
 && | FROM SCARR WHERE mandt = '{ sy-mandt }' |
 && | AND carrid = ? limit 5|.

Prepared
statements and

placeholders

137

ABAP Database Access 3.2

TRY.
 " Create prepared statement and set parameter
 DATA(lo_sql) =
 NEW cl_sql_prepared_statement(lv_sql).
 lo_sql->set_param(REF #(lv_param)).

 " Execution with value for placeholder
 lv_param = 'LH'.
 lo_result = lo_sql->execute_query().
 lo_result->set_param_table(REF #(lt_result)).

 " Get and display result
 lo_result->next_package().
 lo_result->close().
 LOOP AT lt_result ASSIGNING FIELD-SYMBOL(<l1>).
 WRITE: / <l1>-carrid , <l1>-carrname.
 ENDLOOP.

 " Second execution with different value
 CLEAR lt_result.
 lv_param = 'UA'.
 lo_result = lo_sql->execute_query().
 lo_result->set_param_table(REF #(lt_result)).

 " Get and display result
 lo_result->next_package().
 lo_result->close().
 LOOP AT lt_result ASSIGNING FIELD-SYMBOL(<l2>).
 WRITE: / <l2>-carrid , <l2>-carrname.
 ENDLOOP.

 " Close prepared SQL statement
 lo_sql->close().
 CATCH cx_sql_exception INTO DATA(lo_ex).
 " Error handling
 WRITE: | Exception: { lo_ex->get_text() } |.
ENDTRY.

Listing 3.13 Prepared SELECT Statement with ADBC

In addition, when working with ABAP 7.4, you can execute mass opera-
tions via the ADBC interface—just as you can when using Open SQL.
For this purpose, the method SET_PARAM_TABLE is available in the class

Mass operations

138

3 Database Programming Using SAP NetWeaver AS ABAP

CL_SQL_STATEMENT, which can be used to pass an internal table as an input
parameter. This makes it possible to, for instance, use the ADBC interface
to fill a database table with the values of an internal table.

Using the SQL Console in SAP HANA Studio

Usage of Native SQL is rather error-prone; this is especially true because
syntax errors in SQL statements are only noticed at runtime. Before using a
Native SQL statement in ABAP via ADBC, you should therefore first test the
statement via the SQL console in SAP HANA Studio, which is introduced in
Section 2.4.3.

When implementing commands that were executed successfully in the SQL
console in ABAP, the following differences should be noted:

EE To some degree, the execution of SQL statements is connected with the
session context, i.e., the state of the database connection. This particularly
includes the default schema, the client, the language, and the application
user. Depending on the query, this can potentially lead to different results.

EE A Native SQL statement in ABAP can only contain a single SQL command. It is
not possible to execute several commands that are separated by semicolons.

In comparison to Open SQL, some capabilities are not directly integrated
into Native SQL. These include the ABAP table buffer (Native SQL does not
read from the buffer), automatic client handling (when using Native SQL,
the client must be inserted manually in WHERE or JOIN conditions, as shown
in the example from Listing 3.12), and some other useful enhancements
in Open SQL (IN, FOR ALL ENTRIES, INTO CORRESPONDING FIELDS, etc.).

Pitfalls when Using Native SQL

If you are experienced in Open SQL, there are some pitfalls with regard to the
syntax when using Native SQL for the first time. To avoid unnecessary errors,
the following pitfalls should be known:

Selected fields are separated by a comma:

EE Open SQL: SELECT carrid connid FROM SFLIGHT

EE Native SQL: SELECT carrid, connid FROM SFLIGHT

For table aliases, a period is used instead of the tilde character:

EE Open SQL: SELECT f~carrid FROM SFLIGHT as f

EE Native SQL: SELECT f.carrid FROM SFLIGHT as f

Open SQL vs.
Native SQL

139

ABAP Database Access 3.2

Moreover, the log and trace entries in different analysis tools (see Sec-
tion 3.3) contain less context information for Native SQL. This means that
the names of the tables or views are not visible, since the ABAP Compiler
cannot obtain this information from the Native SQL statement. On the
other hand, when using ADBC, this context can be set using the method
SET_TABLE_NAME_FOR_TRACE of the class CL_SQL_STATEMENT.

To conclude this section, we will briefly explain some transaction-related
aspects of Native SQL. If you use the standard database connection for
Native SQL access, you must take into account that you share the database
transaction within the ABAP session. To avoid inconsistencies, you should
not run any commands for transaction control (for example, COMMIT or
ROLLBACK) via Native SQL.

Comprehensive Database Knowledge Is Required to Use Native SQL

As incorrect usage of Native SQL can impact system stability, comprehensive
database knowledge is required to use this language.

Using the following Native SQL statement to set a schema context for the
standard database connection of the SAP NetWeaver AS ABAP leads to major
problems:

SET SCHEMA <name>

The reason for this is that other database accesses within the same session
no longer use the default schema of the SAP NetWeaver AS ABAP, but also
use the set schema instead.

This can easily lead to inconsistencies within the system and should be avoided
at all costs. In general, Native SQL should be used with great caution and
security concerns should always be taken into account (e.g., the avoidance
of SQL injection).

3.2.5 Secondary Database Connections

In addition to the primary database, i.e., the database containing all tables
maintained by the application server (including the actual ABAP code),
the SAP NetWeaver AS ABAP can access other databases as well. These
are referred to as secondary databases or secondary database connections.
This section describes the technical steps to set up and use a secondary
database connection.

Log and trace
entries

Transaction-
related aspects

140

3 Database Programming Using SAP NetWeaver AS ABAP

Secondary connections are important in the context of SAP HANA, espe-
cially when implementing the side-by-side scenarios described in Sec-
tion 1.4. In those cases, complex database queries with very long runtimes
are moved to SAP HANA. Secondary connections also form the basis for
Redirected Database Access (RDA, see Appendix D), which is offered by
the SAP kernel 7.21. With this kernel release, the secondary connection
cannot only be maintained in the ABAP code, but also in Customizing
for specific programs and tables.

As a prerequisite for setting up a secondary database connection, the
matching Database Shared Library (DBSL) with the database driver must
be installed; in the case of SAP HANA, this means that the DBSL must be
installed with the SAP HANA Client. You can then create new connections
in the Database Administration Cockpit (DBA Cockpit) via Transaction
DBACOCKPIT (alternatively, you can also use Transaction ST04). The DBA
Cockpit is the central starting point in the SAP NetWeaver AS ABAP for
almost all database configuration and monitoring tasks. Within this book,
we will only discuss some of these aspects in the context of Chapter 7.

To set up a new connection, select DB Connections and click Add.

For a new connection, you must then specify a unique name and the
connection data (database system, host name, port, user, password, etc.)
(as shown in Figure 3.8). The schema associated with the specified user
will always be used as the default schema for this connection.

Figure 3.8 Setting Up a Secondary Connection in the DBA Cockpit

Moreover, you can configure a set of parameters to define how the system
should establish the created connections (see Figure 3.9):

Side-by-side
scenarios

Database Shared
Library (DBSL)

Creating a
connection

Configuring the
connection

141

ABAP Database Access 3.2

EE Connection	Maximum	
The parameter Connection Maximum defines the maximum number
of concurrent connections. If this limit is reached, the system raises
an error message when another connection is requested. If you do not
set this parameter (initial value), the maximum number of supported
connections (currently 255) is used.

EE Connection	Optimum	
The parameter Connection Optimum defines an optimal number of
open connections. If this number is exceeded, the system automati-
cally closes existing connections once the transaction is completed.

EE Permanent	Connection	
The option Permanent Connection defines how to proceed if a con-
nection is terminated. For permanent connections, the system tries to
re-establish the connection for a running transaction—so that, at best,
the transaction can continue to run. This setting should be used for
critical and frequently used connections. The standard database con-
nection of the SAP NetWeaver AS ABAP is flagged as permanent.

Figure 3.9 Configuring a Secondary Database Connection

After creating the connection, you can test it via the DBA Cockpit.

Secondary connections can be leveraged using both Open SQL and Native
SQL. For Open SQL, the addition CONNECTION is used for this purpose
(see Listing 3.14).

Secondary
connections in
ABAP programs

142

3 Database Programming Using SAP NetWeaver AS ABAP

DATA: ls_carrier TYPE scarr.
SELECT SINGLE * FROM scarr CONNECTION ('SECONDARY') INTO
ls_carrier WHERE carrid = 'LH'.

Listing 3.14 Using Secondary Connections in Open SQL

To use Open SQL via a secondary connection, the tables and corresponding
columns to be accessed must be known in the local ABAP Data Diction-
ary. This especially concerns any existing extensions.

In ADBC, the secondary connection can be specified when creating the
connection (as seen in the example from Listing 3.15).

DATA: lo_statement TYPE REF TO cl_sql_statement,
 lo_result_set TYPE REF TO cl_sql_result_set.

TRY.
 " Prepare SQL connection and statement
 lo_statement = cl_sql_connection=>get_connection
('SECONDARY')->create_statement().
 lo_result_set = lo_statement->execute_
query(|SELECT SINGLE * FROM SCARR WHERE carrid = 'LH'
AND mandt = { sy-mandt }|).

 " ...
 CATCH cx_sql_exception.
 " Error handling
ENDTRY.

Listing 3.15 Using Secondary Connections in ADBC

Both Open SQL and ADBC use the associated schema of the secondary
connection—which is defined by the database user when configuring
the connection—as the default schema. If the table SCARR does not exist
in this schema in the examples from Listing 3.14 and Listing 3.15, the
program terminates. When using Native SQL, you can manually specify
the schema; however, this should be avoided in productive scenarios.

Although secondary connections are generally used to accelerate queries
by means of SAP HANA, for the sake of completeness, we will briefly
discuss the transaction behavior. Secondary connections form their
own transaction context so that data can be committed via a secondary

Default schema

Transaction
behavior

143

Analyzing Database Accesses Using the SQL Trace 3.3

connection (using COMMIT CONNECTION) without affecting the actual trans-
action. Secondary connections are terminated, at the very latest, once the
actual transaction is closed or if a change in the work process is possible
in the application program.

3.3 Analyzing Database Accesses Using the SQL
Trace

In this section, we will introduce some database programming tools. We
will focus on tools that can be used for the database programming tasks
described in this chapter. Tools for performance and error analysis are
introduced in Chapter 7.

In the previous sections, we explained how the ABAP language, the data-
base interface in the kernel (DBI, DBSL), and the database interact. We
also described how SQL access from ABAP is used via primary or second-
ary connections. Using the SQL trace tool, you can track and check this
procedure. In the following text, we will use examples to demonstrate
how you can analyze the following aspects directly within the system:

EE Statement transformations (transformation of Open SQL into Native
SQL via the database interface)

EE Native SQL

EE Usage of secondary connections and Native SQL (ADBC)

EE Usage of the ABAP table buffer

3.3.1 Statement Transformations

Statement transformations of the DBI are described based on the example
from Listing 3.16.

" Variables for the result
DATA: ls_sflight TYPE sflight,
 lt_sflight TYPE TABLE OF sflight,
 ls_scarr TYPE scarr,
 ls_sbook TYPE sbook,
 lv_count TYPE i.

SQL trace

Sample program
for DBI functions

144

3 Database Programming Using SAP NetWeaver AS ABAP

"Parameter for airlines
SELECT-OPTIONS: so_carr FOR ls_sflight-carrid,
 so_conn for ls_sflight-connid.

"Client handling and Open SQL -> Native SQL
SELECT *
 FROM sflight UP TO 200 ROWS
 INTO ls_sflight
 WHERE carrid IN so_carr
 and connid in so_conn.

 APPEND ls_sflight TO lt_sflight.

 WRITE: / ls_sflight-mandt, ls_sflight-carrid,
 ls_sflight-connid, ls_sflight-fldate.

ENDSELECT.

"Open SQL -> Native SQL
MODIFY sflight FROM TABLE lt_sflight.
COMMIT WORK.

DELETE ADJACENT DUPLICATES FROM lt_sflight
COMPARING carrid connid.

"FOR ALL ENTRIES on SBOOK
IF lines(lt_sflight) > 0.
SELECT *
 FROM sbook
 INTO ls_sbook
 FOR ALL ENTRIES IN lt_sflight
 WHERE carrid = lt_sflight-carrid
 AND connid = lt_sflight-connid
 AND fldate = lt_sflight-fldate.

ENDSELECT.
ENDIF.

lv_count = sy-dbcnt.
WRITE: / lv_count, 'SBOOK'.

145

Analyzing Database Accesses Using the SQL Trace 3.3

DELETE ADJACENT DUPLICATES FROM lt_sflight
COMPARING carrid.

"FOR ALL ENTRIES on SFLIGHT
IF lines(lt_sflight) > 0.
SELECT *
 FROM scarr
 INTO ls_scarr
 FOR ALL ENTRIES IN lt_sflight
 WHERE carrid = lt_sflight-carrid.

ENDSELECT.
ENDIF.

lv_count = sy-dbcnt.
WRITE: / lv_count, 'SCARR'.

Listing 3.16 Sample Program 1 for DBI Functions

Using the SQL trace in Transaction ST05, you can record the SQL state-
ments that are sent to the database:

1. Start Transaction ST05 (see Figure 3.10).

Figure 3.10 Transaction ST05: Recording an SQL Trace

Recording
SQL traces

146

3 Database Programming Using SAP NetWeaver AS ABAP

2. Click Activate Trace. Start the program and select a range of airlines.
We want to display all airlines with an abbreviation from ‘AA’ to ‘LH’,
but not ‘DL’. Only the selection option for airlines (CARRID) is filled;
the selection option for the connection numbers (CONNID) remains
empty.

3. Click Deactivate Trace.

4. Click Display Trace.

A list with the recorded SQL statements is displayed. We will now briefly
explain the most important columns; for more detailed information on
SQL traces, please refer to Chapter 7.

In the result list of the recorded SQL statements (see Figure 3.11), the col-
umns listed in Table 3.3 are important for the explanations in this section.

Figure 3.11 SQL Trace List

Column Description

hh:mm:ss:ms Time stamp of the execution in milliseconds

Duration Duration of the statement in microseconds

Records Number of records processed by the statement

Program Name Name of the program where the statement is
executed

Object Name Name of the object to which the statement refers

Statement The actual SQL statement

DB Conn. Database connection used to execute the statement

User SAP user who executed the statement

Table 3.3 Fields of the SQL Trace Analysis

Recording result

147

Analyzing Database Accesses Using the SQL Trace 3.3

Further columns, which are not shown in Figure 3.11, are the Client
and Work Process Type where the SQL statement was executed. We will
now take a closer look at the first SQL statement for the SFLIGHT table.
When this statement was executed, the system read the first 200 rows (all
columns) from the SFLIGHT table that are matching the selected airlines.

Double-click the first statement for the SFLIGHT table in the trace list to
open the detail view shown in Figure 3.12. This view shows the SQL
statement as it was sent from the DBI to the database.

Figure 3.12 Detail View of the SQL Trace Record

When comparing the Native SQL statement in the SQL trace to the Open
SQL statement in the ABAP program, you‘ll notice the following:

EE The client was inserted automatically in the WHERE condition of the
Native SQL statement.

EE The Open SQL addition UP TO <n> ROWS was translated into TOP 200
for the SAP HANA-specific Native SQL.

EE The selection option IN so_carr was translated into a WHERE condition.

EE The selection option IN so_conn was not sent to the database since it
does not include any data.

Let‘s now take a look at the second SQL statement for the table SFLIGHT in
the list from Figure 3.11. The Open SQL command MODIFY was translated
into an UPSERT statement by the DBI. The command UPSERT (a combina-
tion of the terms UPdate and inSERT) first tries to update the transferred

Detail view

Client handling
and selection
options

Implementation
of the MODIFY
statement

148

3 Database Programming Using SAP NetWeaver AS ABAP

records. If this is not possible because the records do not yet exist, they
are inserted via an INSERT statement.

Implementation of the MODIFY Statement in the Database

On other database platforms and older SAP releases, the MODIFY statement is
split by the DBI, which can also be traced and analyzed in Transaction ST05.
In the SQL trace, you will see two statements in this case: An UPDATE state-
ment, and—if this first statement was not successful—an INSERT statement.
However, an increasing number of database vendors provide native statements
for this logic. The names of those statements are MERGE or UPSERT. As soon
as such statements are available for a database, they will be used by SAP in
the DBI. This means that the well-known UPDATE/INSERT sequence for the
MODIFY statement will gradually disappear and be replaced by a Native SQL
statement with the same function. This reduces the number of SQL state-
ments sent to the database (round trips) and thus increases the performance.

Let‘s now take a look at the two FOR ALL ENTRIES statements for the tables
SBOOK and SCARR (Listing 3.16). When analyzing the list of SQL statements
in Figure 3.11, you’ll notice that even though only one FOR ALL ENTRIES
statement was written in the program for the two tables, the table SBOOK
is listed four times, while there is only one entry for the table SCARR. This
is because the driver table of the FOR ALL ENTRIES statement is divided
into packages so that several statements are created if the driver table
does not fit in one package.

When comparing the statement FOR ALL ENTRIES for the SBOOK table in
the ABAP program’s Open SQL versus the statement in the SQL Trace’s
Native SQL, you’ll notice that there are several references to the internal
table (driver table) in Open SQL. The fields CARRID, CONNID, and FLDATE
are compared to a column from the internal table. As a consequence, for
every row of the internal table, an OR expression is created. Figure 3.13
shows such a chain of OR comparisons. This way, the comparisons are
appended to the statement using OR operators. When the maximum pack-
age size (a certain number of OR operators) is reached (blocking factor), the
first statement is sent to the database. Further packages are then created
until all entries of the internal table are processed.

FOR ALL ENTRIES
statement

OR combination

149

Analyzing Database Accesses Using the SQL Trace 3.3

Figure 3.13 FOR ALL ENTRIES with OR Operators

For the second FOR ALL ENTRIES statement for the table SCARR, there is
only one reference to the internal table (for the field CARRID). This results
in the statement being translated with an IN list. For every row of the
internal table (driver table), an element is generated in the IN list (see
Figure 3.14).

Figure 3.14 FOR ALL ENTRIES with IN List

IN list

150

3 Database Programming Using SAP NetWeaver AS ABAP

The FOR ALL ENTRIES clause is described in more detail with regard to
performance and memory consumption in Chapter 14. In this section, we
mainly wanted to show you how the DBI translates Open SQL into Native
SQL, and how you can trace and analyze both variants in Transaction ST05.

You learned how Open SQL statements are modified for the SAP HANA
database and translated into Native SQL statements. We mentioned auto-
matic client handling, the selection options, and the FOR ALL ENTRIES
clause. In addition to those aspects, there are further transformations (for
example, loading the table buffer or accessing number range buffers) that
were not presented in this chapter.

3.3.2 Secondary Connections

We will now use the example from Listing 3.17 to demonstrate how
accesses to a secondary connection can be analyzed. In the second sample
program, all unique connections of the table SFLIGHT are read once via a
secondary connection (with the addition CONNECTION) and the standard
connection.

DATA: ls_sflight TYPE sflight.

SELECT distinct connid
 FROM sflight CONNECTION ('QH3')
 INTO ls_sflight-connid
 WHERE carrid = 'LH'.
 WRITE: / ls_sflight-connid.
ENDSELECT.

ULINE.

SELECT distinct connid
 FROM sflight
 INTO ls_sflight-connid
 WHERE carrid = 'LH'.
 WRITE: / ls_sflight-connid.
ENDSELECT.

Listing 3.17 Sample Program 2 for Database Connections

Example of
database

connections

151

Analyzing Database Accesses Using the SQL Trace 3.3

In the SQL trace list in Transaction ST05, the name of the logical database
connection is displayed in the DB Conn. column (Figure 3.15). In this
list, “R/3” always stands for the standard connection. Other connections
are displayed using the name that was defined upon their creation.

Figure 3.15 SQL Trace—Standard and Secondary Connection

Figure 3.15 shows that the statement was executed once for every con-
nection and that the table SFLIGHT contains different flight connections in
the QH3 system. Transaction STAD, which will be described in Chapter 7,
provides further information (for example, the number of records read
and the duration per database connection).

3.3.3 Native SQL

Moreover, Transaction ST05 can be used to check if ADBC was used.
To do so, take another look at the source code from Listing 3.12. The
corresponding SQL trace analysis is shown in Figure 3.16. What‘s inter-
esting in this analysis is the Program Name, which refers to the class
CL_SQL_STATEMENT. This indicates that ADBC was used for access. While
the SQL statement is created as a string somewhere else within the pro-
gram, it is first executed in the class CL_SQL_STATEMENT in this case (after
the string was passed with the statement).

Figure 3.16 Analyzing Native SQL (ADBC) in Transaction ST05

The Object Name is the name of the table, which was set using the
SET_TABLE_NAME_FOR_TRACE method. If no name was specified, the system
tries to translate and display the object name from the FROM clause. In

Standard and
secondary
connection

Tracking the
use of ADBC

152

3 Database Programming Using SAP NetWeaver AS ABAP

general, however, a table name should always be defined, since this is
very important for other tools as well.

3.3.4 Buffer

Table accesses to buffered tables can also be analyzed using Transac-
tion ST05. For this purpose, the table buffer trace (see Figure 3.10) must
be activated. Otherwise, the SQL trace does not display table accesses
processed via the table buffer. As an example, we will analyze the program
from Figure 3.17 using the SQL and the table buffer trace.

" Variables for the result
DATA: ls_sflight TYPE sflight,
 ls_spfli TYPE spfli,
 lv_count TYPE i.

"Parameter for airlines
SELECT-OPTIONS: so_carr FOR ls_sflight-carrid.

" Read all flights
SELECT *
 FROM sflight
 INTO ls_sflight
 WHERE carrid IN so_carr.

" Details (buffered table)
 SELECT SINGLE *
 FROM spfli
 INTO ls_spfli
 WHERE carrid = ls_sflight-carrid
 AND connid = ls_sflight-connid.

 IF sy-subrc = 0.
 WRITE: / ls_sflight-mandt, ls_sflight-carrid,
 ls_sflight-connid,
 ls_sflight-fldate, ls_spfli-countryfr,
 ls_spfli-cityfrom, '->',
 ls_spfli-countryto, ls_spfli-cityto.
 ENDIF.

ENDSELECT.

Listing 3.18 Sample Program 3: Accesses to the Table Buffer

Table buffer trace

153

Analyzing Database Accesses Using the SQL Trace 3.3

Figure 3.17 shows the common result list of the traces (for Listing 3.18).
Database accesses appear in yellow (first row), while accesses to the table
buffer appear in blue (second through fifth rows). In the Statement
column, accesses to the database can be identified by the SQL syntax,
while accesses to the buffer are only displayed using the technical keys.
As you can see, no SELECT statement is displayed for the buffer accesses
from our example.

Figure 3.17 Transaction ST05—SQL and Buffer Trace

Trace result list

PART II
Introduction to ABAP

Programming with SAP HANA

In the second part of this book, we will detail the most important new
development options in SAP HANA and explain how to use them within
an ABAP-based application. We will particularly focus on the innovations
in ABAP 7.4, but also present possible alternatives in earlier ABAP releases.
One of the main goals of this part of the book is to help you migrate or
optimize existing applications on SAP HANA.

We will therefore first describe how data views are modeled, and how
they provide a simple way for delegating calculations from ABAP pro-
grams to SAP HANA. Subsequently, we will introduce the programming
language—SQLScript—for database procedures in SAP HANA, and show
you how to call these procedures using ABAP. Using SQLScript, you
can flexibly access data in SAP HANA and particularly access all of the
advanced techniques described in Part III of this book. Understanding the
principle of database procedures and access via SQLScript is therefore a
prerequisite to understand the third part of the book.

The chapters in this part explain how native SAP HANA development
objects are used in an SAP landscape and which tools are available for
developers or performance experts to optimize applications for SAP
HANA.

We will use the presented techniques and tools in a fictitious optimization
project to analyze and incrementally optimize an existing application.

157

Using SAP HANA, you can perform business calculations directly
on the original data in the main memory without the need to
transform data. Many of these calculations can be modeled
graphically as special data views in the SAP HANA Studio without
having to write program code. When using ABAP 7.4, these views
can then be imported to the ABAP Data Dictionary.

4 View Modeling in SAP HANA Studio

In this chapter, we’ll kick off Part II of this book by looking in detail into
database views. You may be asking yourself why exactly this topic plays
such a big role in the context of SAP HANA. To answer this question, we
would like to go back a little and briefly explain the underlying reasoning.

The business data of a domain are stored (usually in a normalized form)
in a set of database tables that are connected via foreign key relationships
(a so-called entity-relationship model). Using this data model, single records
can be efficiently created, selected, and modified. However, if data access
becomes more dynamic and complex, or if certain analyses or checks are
necessary, the data must be transformed.

So far, the pattern that was most commonly used for these transforma-
tions is that the data is read from the database and used by a program for
calculations before storing the result back in the database. This is referred
to as materialization of the transformed data.

A simple example is the materialization of a totals calculation in a special
column or totals table. In principle, the same pattern is used for data struc-
tures of a business intelligence system, where the original data is transformed
into a form that can be used more efficiently for analyses (star schema).
This materialization was primarily done for performance reasons in the
past, since it was not possible to perform the transformations on the fly
at runtime when users submitted a query. However, since the differ-
ent data structures had to be synchronized (which is usually done with

158

4 View Modeling in SAP HANA Studio

some time offset), this performance gain also led to higher complexity
and prevented a real-time experience for users. Using SAP HANA, this
redundancy can now be eliminated in many scenarios. From a technical
perspective, this means that the transformations are performed in real
time, using the original data. As a consequence, database views are an
important element, used in this context to express transformations for
read accesses.

Every relational database system provides an option for defining views.
These standard views (also referred to as SQL views) are defined in the
database catalog using the CREATE VIEW statement essentially as an alias
for a SQL query:

CREATE VIEW <name> AS SELECT <SQL query>

Being a relation database, SAP HANA also supports SQL views; these
views differ from the views of other databases only in their SAP HANA-
specific SQL dialect.

In addition to these views, SAP HANA also supports so-called column
views, which usually provide a better performance and a significantly
wider scope of functions. Moreover, these views use the engines described
in Section 1.3 when queries are executed. The currency conversion of
monetary amounts is a good example for functionality that is not available
directly via SQL. A prerequisite for using column views is that all involved
tables are stored in the column store in SAP HANA, which should be the
standard for pretty much all business data (see also Chapter 14). In SAP
HANA Studio, both the existing SQL views and the column views are
visible in the database catalog (Figure 4.1).

Figure 4.1 SQL Views and Column Views in the Database Catalog

SQL views

Column views

159

View Modeling in SAP HANA Studio 4

In Section 3.2.2, we explained how simple operations (e.g., for summa-
tion or existence checks) can be expressed using Open SQL. However,
the key figures in real business applications are usually much more com-
plex. Units of measure and currencies, for example, play an important
role and may have to be considered in mathematical operations by using
conversions. Time stamps (day, time) for business processes are also very
important—including the fiscally correct handling of (business) year,
month, or quarter.

When dealing with these operations, standard SQL-based table access
reaches its limits. And this is where one of the greatest advantages of SAP
HANA comes into play: The integrated engines (see Section 1.3) provide
reusable functions tailored for business processes which can be integrated
in column views and then accessed using standard SQL. Column views
thus enhance the scope of functions for defining database views.

In the scope of this chapter, we will create relatively simple analyses of
flight bookings and the seat utilization of flights based on the SFLIGHT
data model. In addition to some master data of a flight connection (air-
line, departure, and destination location), statistical information on seat
utilization, revenues, and baggage should also be displayed per quarter.
To create these analyses, we will use the different modeling options
provided by SAP HANA and explain their properties and areas of use.

The following types of views will be discussed:

EE Attribute views to define master data views (see Section 4.1). We will
introduce the different options available to create table joins and
explain how calculated attributes can be added to a view.

EE Analytic views can be used for calculations and analyses based on trans-
action data using a star schema (see Section 4.2). We will explain how
you can define simple and calculated key figures and add dimensions.
As a special case of calculated key figures, we will describe currency
conversion and unit conversions.

EE Using calculation views, you can flexibly combine views and basic data
operations (see Section 1.3). We will describe both the modeling and
the implementation of calculation views using SQLScript. Since
SQLScript will be described in detail in Chapter 5, the sample imple-
mentation used in this chapter will be kept rather simple.

Reference example
for this chapter

View types

160

4 View Modeling in SAP HANA Studio

After demonstrating how to define and test these views in SAP HANA
Studio, we will describe external access. You will first learn how to access
the views from Microsoft Excel, which provides a simple option for first
tests and analyses.

In the remaining sections of this chapter, we will describe how these
views are accessed from ABAP. We will explain both native access via
ABAP Database Connectivity (ADBC)—the only option for ABAP releases
before ABAP 7.4—and the new options available as of ABAP 7.4.

4.1 Attribute Views

Attribute views comprise a number of fields (columns) from database tables,
which are linked through foreign key relationships. Moreover, attribute
views provide a way to define calculated columns and hierarchical rela-
tionships between individual fields (e.g., parent-child relationships). They
are especially relevant in the following scenarios:

EE As components of other view types, especially as dimensions of analytic
views (see Section 4.2) or for a more general purpose as nodes in cal-
culation views (see Section 4.3).

EE As a data provider for text searches across several tables (see Chap-
ter 9).

In this section, we will create a number of such views to demonstrate
different functional aspects. The reason for creating several views is that
it is not possible or not useful to use all functions for all tables. To give
you an overview of the views used in the examples of this section, they
are listed in Table 4.1 together with a description and the corresponding
functionality.

Column Description Functionality

AT_FLIGHT_BASIC Simple view for table
SFLIGHT

First basic example

AT_FLIGHT Flight data plus information
from the flight plan and
information on the airlines

Different join types
and calculated fields

Table 4.1 Sample Attribute Views Used in this Section

Overview and
usage scenarios

Reference
examples for
this section

161

Attribute Views 4.1

Column Description Functionality

AT_MEAL List of meals served on
flights with (language-
dependent) description

Text joins and filter
values

AT_PASSENGER View of passenger data and
address information

Hierarchy

AT_FLIGHT_FISCAL Flight data with assignment
to accounting periods

Fiscal calendar

AT_FLIGHT_GREG Flight data with assignment
to year, quarter, calendar
week

Gregorian calendar

AT_TIME_GREG Pure time hierarchy (year,
quarter, calendar week)

Attribute view of
type Time

Table 4.1 Sample Attribute Views Used in this Section (Cont.)

The views AT_FLIGHT, AT_PASSENGER, and AT_TIME_GREG will also be used
in Section 4.2.

4.1.1 Basic Principles

Before describing how attribute views are modeled, let’s take a quick
look at the most important concepts. Since attribute views can be used
to create data views based on several tables that are linked via different
types of joins, they can also be referred to as join views. The different
join types will be introduced in this section. Because joins play a major
role when dealing with attribute views, accesses to attribute views are
handled by the join engine in SAP HANA.

When modeling attribute views, we differentiate between the following
concepts:

EE Attributes refer to the columns of the attribute view. You can add col-
umns from one or several physical tables or define additional calculated
columns.

EE Key attributes are those attributes of the view that uniquely specify an
entry. These play an important role when the view is used as a dimen-
sions of an analytic view (see Section 4.2.2).

Join views

Modeling concepts

162

4 View Modeling in SAP HANA Studio

EE Filters define restrictions applied to the values of a column (similar to
a WHERE condition in a SELECT statement).

EE Hierarchies are relations defined for the attributes such as a parent-child
relationship (see Section 4.1.4).

The main advantage of attribute views is the possibility to define a view
based on fields from several tables. In contrast to the ABAP Data Dic-
tionary views presented in Section 3.2.3, which can comprise only inner
joins, attribute views in SAP HANA allow you to use a greater variety
of join types.

Before describing the details of join modeling, we would like to first
introduce the different join types of the SQL standard. To do so, we
will use the known tables SFLIGHT (flights) and SCARR (airlines) with a
foreign key relationship via the CARRID field (for the sake of simplicity,
the client is disregarded in the excerpt in Table 4.2). The tables have an
n:1 relationship and the SCARR table may contain airlines for which no
flight is entered in the SFLIGHT table (e.g., the airline “UA” in Table 4.2).

Table SFLIGHT Table SCARR

CARRID CONNID FLDATE CARRID CARRNAME

AA 0017 20130101 AA American Airlines

… … … … …

LH 400 20130101 LH Lufthansa

LH 400 20130102 … …

… … … UA United Airways

Table 4.2 Sample Data from the Tables SFLIGHT and SCARR to Explain Join Types

When defining joins, we differentiate between inner and outer joins.
In case of an inner join, all combinations are included in the result if
there is a matching entry in both tables. With an outer join, results that
are present only in the left table (left outer join), only in the right table
(right outer join), or in any of the tables (full outer join) are also included.
To differentiate between left and right, the join order is used. Full outer
joins are not supported for attribute views.

Sample data

Inner/outer joins

163

Attribute Views 4.1

The differences between the join types will be explained based on the
following SQL examples for selecting flights and the corresponding airline
names. The first example comprises an inner join. Since the airline “UA“
is not present in the sample data for the sample data for the SFLIGHT
table, there is no matching entry in the result set:

select s.carrid, s.connid, c.carrname from sflight as s inner
join scarr as c on s.carrid = c.carrid

In case of a right outer join, where SCARR is the right-hand table, an entry
for the airline “UA” is displayed in the result set, even though there is
no corresponding entry in the SFLIGHT table. The columns carrid and
connid thus display the value NULL:

select s.carrid, s.connid, c.carrname from sflight as s right
outer join scarr as c on s.carrid = c.carrid

Similarly, “UA” is also included in the result set in case of a left outer join
with SCARR as the left-hand table. If the data model assumes that a corre-
sponding airline exists for every entry of a flight (but not necessarily the
other way around), the two outer join variants are functionally equivalent.

select s.carrid, s.connid, c.carrname from scarr as c left
outer join sflight as s on s.carrid = c.carrid

In addition to the presented standard joins, two other special join types
are used when modeling attribute views in SAP HANA:

EE Text joins can be used to read language-dependent texts from a differ-
ent table. For this purpose, the column with the language key must
be included in the text table; at runtime, a filter for the correct language
is then applied based on the context. The next section shows an exam-
ple for using text joins.

EE Referential joins provide a special way of defining an inner join; with
this join type, referential integrity is assumed implicitly (which has
advantages with regard to performance). So, when using a referential
join and no field from the right-hand table is queried, it is not checked
if there is a matching entry. It is assumed that the data is consistent.
Referential joins are often a useful standard when defining joins in
attribute views.

SQL examples

Text joins and
referential joins

164

4 View Modeling in SAP HANA Studio

Attribute Views Only Support Equi-Joins

When formulating join conditions, you can use further expressions (e. g., <, >)
in SQL that go beyond checking the equality of columns (equi-join), as shown
in the following example:

SELECT ... FROM ... [INNER|OUTER] JOIN ... ON col1 < col2 ...

However, attribute views support only equi-joins.

4.1.2 Creating Attribute Views

Attribute views can be defined via the Modeler perspective in SAP
HANA Studio, which was introduced in Section 2.4.3. To create a view,
select New • Attribute View from the context menu of a package in the
Content node. You first have to specify a name and a description in the
dialog shown in Figure 4.2.

Figure 4.2 Creating an Attribute View

In this dialog, you can also copy an existing view as basis for a new attribute
view. When selecting Subtype, you can create special types of attribute
views (e.g., for time hierarchies, which will be explained in more detail

165

Attribute Views 4.1

in Section 4.1.5). When clicking the Finish button, the attribute view is
created and the corresponding modeling editor opens.

The editor used to define an attribute view comprises two sections: Data
Foundation and Semantics. These are displayed as boxes in the Scenario
pane on the left-hand side (see Figure 4.3). By selecting each node, you
can switch between defining the data basis (Data Foundation) and the
semantic configuration (Semantics).

The Data Foundation is used to add tables, define joins, and add attri-
butes. Figure 4.3 shows a simple example based on the SFLIGHT table.

Figure 4.3 Definition of the Data Foundation

By selecting the node Semantics, you can maintain further metadata for
the attribute view. You can, for example, specify the following:

EE You can specify if an attribute is a key field of the view. Note that every
attribute view must contain at least one key field. In addition, you can
define texts (labels) for attributes or hide attributes, which can be use-
ful in the context of calculated fields (see Section 4.1.3).

Modeling editor

Defining metadata

166

4 View Modeling in SAP HANA Studio

EE You can specify how the client field is handled (static value or dynam-
ically). Client handling will be discussed in detail at the end of this
section.

EE You can define hierarchies (see Section 4.1.4).

The layout of the Semantics section is shown in Figure 4.4.

Figure 4.4 Further Semantic Configuration of the Attribute View

The selected columns from the SFLIGHT table are marked as key fields.
As described in Section 2.4.3, you now have to save and activate the
Attribute view to be able to use it.

If the view was not modeled properly, an error will be displayed during
activation. Typical errors are caused by missing key fields, invalid joins,
or calculated fields that were not defined correctly. Figure 4.5 shows an
example of an activation error. The cause of an error may not always be
as obvious. Section 4.5.4 provides some troubleshooting tips.

Activation errors

167

Attribute Views 4.1

Figure 4.5 Example of an Activation Error

If the tables used are client-dependent, you can specify if the client should
be automatically included in the filter condition based on the current
context (dynamic default client). Alternatively, it can be defined as
cross-client to access the data for all clients. It is also possible to specify
a static value for the client. Usage tips can be found in Section 4.5.4.

Background Information: Determining the Client

There is a so-called session context for every database connection, which stores
certain properties of the current connection. In particular, this information
comprises the current client, which is set by the DBSL in case of a connection
via the SAP NetWeaver AS ABAP. When using the Data Preview or a connec-
tion via the SQL console in SAP HANA Studio, the client is determined from
the user settings. When configuring these settings, you can specify a default
client for a user. If no client is specified, there is no client context; this means
that all data is displayed (cross-client) when using the Data Preview. The ses-
sion context is explained in more detail in Chapter 5.

Client handling

168

4 View Modeling in SAP HANA Studio

Following this brief summary of the available join types, we will now
define attribute views. As our first example, we want to define the
SFLIGHTS view from the ABAP Data Dictionary, which you have already
seen in Section 3.2.3 as an attribute view. Based on our example from
Figure 4.3, we can add further tables to the Data Foundation. You can
either manually select those tables or have the system propose tables
based on the metadata maintained in the ABAP Data Dictionary. For the
latter option, select the table and then choose Propose Tables from the
context menu. The selection dialog opens the screen shown in Figure 4.6.

Figure 4.6 Proposed Values for Defining Joins

To reproduce the SFLIGHTS view, we will add the tables SCARR and SPFLI
and define the joins as shown in Figure 4.7. If you want to define a new
join, simply drag a connecting line between the corresponding attributes
of two tables while holding the mouse button down. To define the prop-
erties of a join, you first have to select the join and then configure it in

View SFLIGHTS
as attribute view

Selecting tables
and defining joins

169

Attribute Views 4.1

the Properties section (Join Type, Cardinality). For our example, a
referential join and a cardinality of n:1 is used.

In the next step, you add the desired attributes from the tables via the
context menu of the output structure of the view. The selected attributes
will then be highlighted and displayed in the Output section in the right-
hand pane of the editor.

Figure 4.7 Attribute View Analogous to the DDIC View SFLIGHTS

Since we already defined the key fields, and they were not changed by
adding tables, we can now activate and test the view. The result shows
the name of the airline and information on the departure and destination
location for every flight (see Figure 4.8).

Adding attributes

Activate/test

170

4 View Modeling in SAP HANA Studio

Figure 4.8 Result of the Attribute View

To illustrate the usage of the aforementioned text join, we will create
another attribute view and read the corresponding texts (table SMEALT)
for the in-flight meals (table SMEAL). The required modeling is shown in
Figure 4.9. Since filtering is done based on the language, the cardinality
for this join is always 1:1.

Figure 4.9 Using a Text Join

As in case of normal SQL views, you can also specify filter values for
columns when working with attribute views. To define the filter, you
open the filter dialog for an attribute via the context menu item Apply

Using text joins

Defining filter
values

171

Attribute Views 4.1

Filter. Attributes with an existing filter are marked with a filter symbol
 (as shown in Figure 4.10).

Figure 4.10 Filter for an Attribute

For the example using the meals served on the flight, we define a filter
for the attribute MEAL_TYPE with an equals operator and the value “VE”
(vegetarian), as shown in Figure 4.11. Alternatively, you can also try other
comparison operators. The Data Preview displays all vegetarian meals
with the corresponding texts in the correct language.

Figure 4.11 Example of a Text Join with an Additional Filter

172

4 View Modeling in SAP HANA Studio

4.1.3 Calculated Fields

Having explained how an attribute view can be used to read data from
different tables using different join types, we will now go one step further
and dynamically calculate some of the view columns. Compared to classic
ABAP Data Dictionary views, these virtual attributes (i.e., attributes that
do not belong directly to a column of one of the physical tables) are a
powerful new opportunity for expressing data processing logic.

As a first example, we will now add a calculated attribute to the attribute
view AT_FLIGHTS from Figure 4.7, which will contain the full flight con-
nection (departure location and airport plus destination location and
airport) as its value, e.g. NEW YORK (JFK)—SAN FRANCISCO (SFO).

To do so, we define a calculated attribute in the Data Foundation via
the node Calculated Columns of the Output section and specify a
name, a description, and a data type (see Figure 4.12).

Figure 4.12 Definition of a Calculated Field

Virtual attributes

Defining calculated
attributes

173

Attribute Views 4.1

Using the Expression Editor, you can specify an expression that will be
used to determine the value. This provides a variety of functions (conver-
sions, mathematical operations, string operations, date calculations, and
even simple case distinctions). In our example, we will only use a simple
concatenation of strings for now (see Listing 4.1):

"CITYFROM" + ' (' + "AIRPFROM" + ') - ' + "CITYTO" + ' (' +
"AIRPTO" + ')'

Listing 4.1 Example of an Expression for a Calculated Field

Attribute References and Constants in Expressions

When defining expressions for calculated attributes, you must make sure to
use the correct type of quotation marks. For references to attributes of the
view (e.g., "CITYFROM" in Listing 4.1), double quotes must be used. It is
recommended to use the drag-and-drop function via the formula editor. For
text constants, by contrast, simple quotes must be used (as shown in the
parentheses in Listing 4.1).

Using the wrong quotation marks usually leads to an activation error.

After activating the attribute view, the calculated column is displayed in
the output (see Figure 4.13). Calculated columns can be queried via SQL
just like normal columns, which will be demonstrated in Section 4.1.6.

Figure 4.13 Output of the Calculated Field

Defining
expressions for
calculations

Output of the
calculated field

174

4 View Modeling in SAP HANA Studio

Calculated fields are also supported for the other view types (see Section
4.2), where these fields are used especially for the calculations and con-
versions of currencies and units that we already mentioned.

4.1.4 Hierarchies

A lot of data has hierarchical relationships. The place of residence or
principal office of customers is structured geographically by country,
region, and city; the hierarchical structure of a creation date comprises
the year, quarter, and month; a product catalog can consist of several
categories, etc.

Hierarchies play an important role in data analyses. You can start with
an aggregated view of the data and then navigate within the hierarchi-
cal structures. This is referred to as a drilldown (or drillup when data is
aggregated). Every OLAP infrastructure (like SAP NetWeaver BW) provides
built-in support for hierarchies.

For attribute views, hierarchies are defined in the Semantics section. SAP
HANA currently supports two types of hierarchies:

EE Parent-child	relationships
For this type, two attributes with a parent-child relationship must be
defined. An example would be storing a directory structure in a table.
In this context, it must be noted that this is a full and consistent self-
referential relation. Each parent node must exist and (except for a
special root node) must be the child node of another node. This rather
limits the use of this hierarchy type, especially for ABAP tables. An
example would be the ABAP hierarchy of packages, where the corre-
sponding database table (TDEVC) comprises columns for the package
name and the name of the superpackage. These columns form a parent-
child relationship.

EE Level	hierarchy
With this hierarchy type, you define hierarchy levels based on normal
or calculated attributes. If a table for example comprises columns for
the country and the city, these attributes define a hierarchy of several
levels (the countries at the upper level and the corresponding cities at
the lower levels). However, these attributes do not have a parent-child

Data analysis

Hierarchies in
SAP HANA

175

Attribute Views 4.1

relationship, since this would require the city values to also appear as
countries (this is not a self-referential relation as described previously).

Existing hierarchies are displayed in the Semantics section, where you can
also create new hierarchies. Figure 4.14 shows a level hierarchy based on
the attributes of the departure location (country, city, airport) from table
SPFLI. Hierarchies can also be defined for calculation views (see Section 4.3).

Figure 4.14 Hierarchy of an Attribute View

There are various options for using the modeled hierarchies. This infor-
mation is evaluated in particular by the supported business intelligence
clients. One particular variant (access via Microsoft Excel) will be shown
in Section 4.4.

SAP HANA thus provides basic support for simple hierarchies, but com-
pared to the comprehensive hierarchy modeling that’s available in SAP
NetWeaver BW (as an example), the options are rather limited. In many
real-life scenarios, hierarchies are much more complex, and there are spe-
cial cases like external or incomplete hierarchies. This topic is described
in detail in the book Data Modeling in SAP NetWeaver BW by Frank K. Wolf
and Stefan Yamada (SAP PRESS 2011).

Creating
hierarchies

Limitations of
hierarchy support

176

4 View Modeling in SAP HANA Studio

4.1.5 Attribute Views for Time Values

Most business data have a time reference (e.g., a creation date or a validity
period). These references are usually implemented as date fields or time
stamps in the data model. The flight data model, for example, comprises
the flight date in the SFLIGHT table and the booking time in the SBOOK table.
For many analyses, this point in time must be mapped to a certain time
interval. In the simplest case, this can be the corresponding year, month,
quarter, or calendar week. However, there are also more complicated or
configurable time intervals like the fiscal year, which is the calendar to be
used for certain scenarios.

Customizing of the Fiscal Year

Fiscal years and periods are configured via the ABAP Customizing. Using the
ABAP Customizing, you can configure comprehensive settings or variants and
also define special cases (e. g., a short fiscal year when a company is founded).
These settings are configured via the entry Maintain Fiscal Year Variant
of Transaction SPRO.

The SAP standard provides several function modules to convert a normal date
(e.g., of type DATS) into the corresponding fiscal year or period.

From a technical perspective, the corresponding Customizing is stored par-
ticularly in the tables T009 and T009B. These tables were previously pool/
cluster tables and therefore not available directly in the database. Such tables
are converted into normal database tables when performing a migration to
SAP HANA (see Section 3.2.1) so that such data can also be accessed natively
in the database.

In the past, when determining the corresponding fiscal year for a date
in ABAP, the data first needed to be transferred to the application server
in order to perform the conversion. There was therefore no way to sim-
ply create an aggregated set of records by fiscal year via Open SQL. The
determination of the fiscal year had always to be done in ABAP. Using
attribute views in SAP HANA, you can define these mappings to intervals
of both the normal calendar (Gregorian calendar) and the fiscal calendar.

To do so, we first generate time data in special technical tables in SAP HANA.
You can select the entry Generate Time Data on the initial screen of the
Modeler perspective for this purpose. Subsequently, you specify the details
for calendar type and time period. In our example, we specify the configura-
tion shown in Figure 4.15 to create the fiscal calendar from 2000 to 2020.

Mapping of the
fiscal year

Generating
calendar data

177

Attribute Views 4.1

Figure 4.15 Generating the Data for the Fiscal Calendar

You can now use the underlying table M_FISCAL_CALENDAR (schema _SYS_
BI) in attribute views. In the example shown in Figure 4.16, we use the
attribute view to determine the fiscal year and period for every flight in
the SFLIGHT table. Since we want to use only a fixed variant from the
ABAP Customizing, we define a static filter for the field CALENDER_VARIANT.

Figure 4.16 Determining the Fiscal Periods for Flight Data

178

4 View Modeling in SAP HANA Studio

Another sample scenario would be to determine the quarter or the calen-
dar week for a given date using an attribute view. For this scenario, the
data from the Gregorian calendar is needed; this is stored in SAP HANA
in the technical table M_TIME_DIMENSION, which is part of the _SYS_BI
schema as well. This means that you will have to generate data first—as
in case of the fiscal calendar. The use of table M_TIME_DIMENSION can be
seen in Figure 4.17.

Figure 4.17 Determining the Quarter and Calendar Week

You can also define an attribute view containing only time data. To do so,
you select the type Time and specify the desired details for the calendar
when creating an attribute view. Figure 4.18 shows how the attribute
view AT_TIME_GREG is created for a day-based Gregorian calendar.

Since the view contains the date as a key field, joins can be created for
a date column in the business data. This means that you can use these
views as time dimensions in an analytic view if the date is part of the fact
table. This will be described in detail in Section 4.2.

Determining
the quarter or
calendar week

Attribute view
of type “Time”

179

Attribute Views 4.1

Figure 4.18 Attribute View for a Gregorian Calendar

4.1.6 Runtime Artifacts and SQL Access for Attribute Views

As described in Section 2.4.3, column views are created in the schema
_SYS_BIC when activating views from the SAP HANA Repository that can
be accessed via normal SQL. These column views also form the basis for
ABAP access, as shown in Section 4.5. The exact runtime artifacts depend
on the view type and the concrete modeling. Usually, there is a leading
object that serves as the primary interface for data access, and further
additional technical artifacts for specific aspects.

This section describes the specifics of attribute views. Every attribute view
has a corresponding column view. In addition to this view, another column
view is created for every hierarchy. For our attribute view AT_FLIGHT,
the column views listed in Figure 4.19 exist in the database catalog in
the _SYS_BIC schema.

Addressing via SQL

Column views

180

4 View Modeling in SAP HANA Studio

Figure 4.19 Column Views Generated for the Attribute View AT_FLIGHT

Please note that the names of the runtime artifacts always contain the
package names. This is necessary because you can create objects with the
same name in different packages.

In addition, there is a public synonym that can also be used to access the
views:

"test.a4h.book.chapter04::AT_FLIGHT"

Attribute views can be accessed using regular SQL. However, please
note that attribute views are not optimized for calculations like column
aggregations, but rather for efficient join calculations. In other words, not
every SQL statement should be used for every view type in SAP HANA.
Recommendations can be found in Section 4.5.4.

4.2 Analytic Views

Analytic views are special views in SAP HANA that are used to calculate
and analyze key figures. If you are already familiar with data warehouse
or business intelligence applications, you can think of an analytic view
as a star schema. Section 4.2.1 provides a brief introduction of the most
important concepts. In the subsequent sections, we will explain how
analytic views are created in SAP HANA Studio and how to define cal-
culated key figures.

In this section, two scenarios will be implemented as analytic views. In
the first example (analytic view AN_BOOKING), we will model an analysis of
the flight bookings based on attributes of the customer and the flight. In
this analysis, the booking prices and the baggage weight will be examined

Public synonym

Reference
examples for
this section

181

Analytic Views 4.2

as key figures. For both figures, conversions must be considered due to
different currencies and weight units. We will also define another calcu-
lated figure based on the baggage weight, which specifies whether we are
dealing with excess baggage (more than 20 kg). In the second example,
we will define an analytic view AN_SEAT_UTILIZATION to analyze the seat
utilization of flights.

Both analytic views use the attribute views from the previous section.
In Section 4.3, the two attribute views will be combined for an analysis.

4.2.1 Basic Principles

When using analytic views, you should be familiar with the most impor-
tant concepts from the OLAP environment (Online Analytical Processing),
i.e., from the field of data analysis. We will therefore give you a short
introduction based on an example in this section. This example will then
be used again when describing the actual modeling steps. A more com-
prehensive description of the topic can be found in Chapter 10, where
the integration of business intelligence functionality is explained.

Analyses usually focus on transaction data (purchase orders, documents,
invoices, etc.). The corresponding table is referred to as the fact table. This
data includes one or several key figures or measures—for example, the
invoice amount—which are relevant for data analysis. Fact tables usually
contain a large number of entries. Moreover, fact tables can contain data
from several database tables. The key figures must be from one table, and
the attributes of the other table are for instance needed as foreign keys. A
typical example would be fact tables containing header data and line items.

The transaction data includes associations with master data (e.g., via the
customer number of a purchase order) and other data like time stamps
(e.g., the purchase order creation date). Since this associated data can also
be used to break down the fact table into data slices, it is also referred
to as dimensions and an analysis along these dimensions as slice and dice
operations. An example for this would be the determination of the total
revenue in 2013 for customers from the US. Within the dimensions, the
data is usually structured hierarchically (e.g., by geographical regions or
time intervals). This makes it possible to further analyze these hierarchy

Fact table

Dimensions

182

4 View Modeling in SAP HANA Studio

levels (drilldown, drillup); for 2013 revenue in the US, you could for instance
analyze the data by state or quarter.

Let‘s now look at a concrete example based on our flight model. We will
use the table SBOOK as the fact table and the column LOCCURAM (flight price
in the airline’s currency) as the key figure. The customer number, the
flight date, and the flight connection comprise associations which allow
us to perform the analysis based on several dimensions.

When looking at a graphical representation of the data model, it resembles
a typical star schema (see Figure 4.20).

SBOOK

SPFLI

<> 'X'

CARRID

CONNID

COUNTRYFR

CITYFR

AIRPFR

…

MONTH

DAY

…

DATE

YEAR

<Virtual>

CARRID

CONNID

FLDATE

BOOKID

CUSTOMID

LOCCURAM

FORCURKEY

CANCELLED

ID

COUNTRY

CITY

NAME

…

SCUSTOM

Figure 4.20 Example of a Star Schema with SBOOK as the Fact Table

The data is usually structured hierarchically within the dimensions. The
geographical data of the departure location and the customers‘ places
of residence (country, city, etc.) and the flight date (year, month, day)
represent the hierarchies in this example; the hierarchical relationship
is defined by the columns, as shown in Figure 4.20. Since the flight data
model does not contain a database table with time data, the time hierar-
chy is marked as virtual.

Example of a
star schema

Hierarchies within
the dimensions

183

Analytic Views 4.2

A star schema provides different filter variants. On the one hand, there
can be restrictions for the transaction data. When analyzing the flight
bookings, for example, we only want to consider the bookings that were
not cancelled. On the other hand, you can also define special key figures
to directly apply restrictions within the dimensions (e.g., to consider only
customers in the US). These key figures are also referred to as restricted
measures.

4.2.2 Creating Analytic Views

Similar to attribute views, analytic views are created in SAP HANA Studio
via the context menu of a package in the Modeler perspective. After
specifying a name and a description, the corresponding editor opens
(see Figure 4.21).

Figure 4.21 Editor for Analytic Views

The editor for analytic views consists of three sections:

EE Data Foundation to define the fact table.

EE Logical Join to add the dimensions defined by attribute views and
to define calculated attributes and restricted measures.

Filter variants

Editor for
analytic views

184

4 View Modeling in SAP HANA Studio

EE Semantics to semantically enrich the selected attributes and define
optional input parameters for the view.

In our first example, we will implement the star schema from Figure 4.20
as an analytic view. To do so, we add the table SBOOK as the fact table,
select the required fields as we did for the attribute view, and define the
filter for the column CANCELLED.

We then switch to the section Logical Join and add the attribute views
AT_FLIGHT, AT_PASSENGER, and AT_TIME_GREG from Section 4.1 as dimen-
sions. When doing so, we draw a connecting line from the fact table to
the attribute views. Figure 4.22 shows the resulting diagram.

Figure 4.22 Analytic View Based on Booking Data

As the final step, we select the measures in the Semantics section. In our
example, the flight price in the local currency of the airline (LOCCURAM)
and the baggage weight (LUGGWEIGHT) are used for these measures. Once
the view is activated, you can use the Data Preview for a first simple
analysis of the result set. Figure 4.23 shows a sample breakdown of the
revenue by year, quarter, and airline, with a filter set for the year 2013.

Modeling the
fact table

Adding dimensions

Assigning
measures

185

Analytic Views 4.2

Figure 4.23 Data Preview with Breakdown by Year, Quarter, and Airline

Following the same procedure, we will now create a second analytic
view, AN_SEAT_UTILIZATION, which uses the table SFLIGHT as the fact
table instead of the flight bookings, but also uses AT_TIME_GREG as the
time dimension so that the seat utilization can be analyzed by quarter.
Figure 4.24 shows the resulting star schema.

Figure 4.24 Second Analytic View Based on Flight Data

Creating another
analytic view

186

4 View Modeling in SAP HANA Studio

Now that you know how to create and test analytic views, we will discuss
calculated key figures in the next section.

4.2.3 Calculated Key Figures

As in case of attribute views, you can also define virtual columns for ana-
lytic views. The values of those columns are determined by a calculation.
In case of analytic views, you usually define calculated key figures, i.e.,
numerical values such as amounts or units of measurement. A special case
of such calculated values are conversions between different currencies
and units, which will be explained in Section 4.2.4. We will calculate a
key figure for each of the two analytic views from the previous section.
For the view AN_BOOKING, we will use an expression to identify the book-
ings with excess baggage; for AN_SEAT_UTILIZATION, the relative seat
utilization will be determined as percentage value based on the number
of available and occupied seats.

Calculated key figures are basically defined following the same procedure
that is used for attribute views. However, you must also flag the new col-
umn as Measure (via the Column Type) and specify whether it is to be
determined before or after an aggregation. In many cases, the calculation
must be done using the raw data (i.e., before aggregation). Figure 4.25
shows the determination of all flight bookings with a baggage weight
value of more than 20. We will ignore the fact that the weight might be
specified using different weight units for now. If a summation is done on
this column, the number of bookings with excess baggage is determined,
since the value of the calculated column is null for all other bookings.

We will now follow the same steps to define a calculated key figure UTI-
LIZATION (data type DECIMAL) in the view AN_SEAT_UTILIZATION and use
the following expression as the calculation formula:

if(“SEATSMAX”>0, decfloat(“SEATSOCC” + “SEATSOCC_B” +
“SEATSOCC_F”) / decfloat(“SEATSMAX” + “SEATSMAX_B” +
“SEATSMAX_F”),0)

As you can see, we divide the sum of the occupied seats by the sum of
the available seats in the three booking categories. For the result to be
handled as a decimal number, the type is converted using the function
decfloat.

Virtual columns

Defining calculated
key figures

Calculating the
seat utilization

187

Analytic Views 4.2

Figure 4.25 Calculated Key Figure for the Number of Flight Bookings with Excess
Baggage

4.2.4 Currency Conversion and Unit Conversion

As a special case of a calculated key figure, the analytic view supports the
conversion of monetary amounts and units of measure. We will show you
how this is done for the sample view AN_BOOKING to indicate the flight
price in Euros and the baggage weight in kilograms.

188

4 View Modeling in SAP HANA Studio

Currency Conversion and Unit Conversion in SAP NetWeaver AS ABAP

Currency conversion and unit conversion are standard functions in SAP
NetWeaver AS ABAP. The customizing of the currency conversion in SAP
Basis is done via the TCUR* tables in the package SFIB. To perform a conver-
sion in ABAP, you can for instance use the function modules in the function
group SCUN (for example, CONVERT_TO_LOCAL_CURRENCY). In addition to the
amount, and the source and target currency, the key date and the exchange
rate type are also important parameters for the conversion.

When dealing with currency conversions, it must be noted that SAP provides
different variants of conversions. In addition to the variant described in this
section, which is the standard conversion used in SAP ERP (e.g., in Financial
Services), an alternative approach with its own Customizing is also available.
When modeling analytic views in SAP HANA, only the standard currency
conversion from SAP ERP is supported.

Unit conversion for ISO codes can be found in the T006* tables of the pack-
age SZME. To perform a conversion in ABAP, you can use the function module
UNIT_CONVERSION_SIMPLE.

There are two approaches for modeling currency or unit conversions: You
either specify that the given conversion should be performed for every
access on an existing column, or you define an additional virtual column
for the conversion result. When using the second variant, you can access
both the original value and the converted value.

To use a calculated column for the conversion, you first define a calculated
field of the type Measure and link it to the original column using the
same data type. You can then configure the details on the Advanced tab.

You must specify whether the field contains a monetary amount or a quan-
tity unit. Moreover, you must indicate the field where the corresponding
currency or unit of measure can be found. Unfortunately, it is currently
not possible to evaluate the corresponding information from the ABAP
Data Dictionary, where this relationship is also defined (tab Currency/
quantity fields in Transaction SE11).

The example in Figure 4.26 shows a currency conversion for the column
LOCURRAM of the SBOOK table into the target currency Euro with the key
date January 1, 2013. Here, the standard exchange type M is being used.

Modeling
conversions

Defining
calculated fields

189

Analytic Views 4.2

Figure 4.26 Defining the Parameters for a Currency Conversion

In many cases, it is desirable that the target currency and the key date
can be parameterized for the conversion. Unfortunately, this cannot be
done using the WHERE condition when accessing the view via SQL, since
it is not possible to access the query parameters during modeling. For
this reason, you can define input parameters for an analytic view, which
can then be used as parameters for the conversion. Input parameters are
also supported for calculation views, where they are used in the same
way as when working with analytic views. This will be discussed in more
detail in Section 4.3.

Parameterization
for currency
conversion

190

4 View Modeling in SAP HANA Studio

Input parameters can be defined via the Output section using the edi-
tor for logical joins. Figure 4.27 shows an input parameter for currency
conversion. This parameter can then be used as target currency when
configuring the conversion in Figure 4.26. The same procedure can be
used to parameterize the key date. When subsequently calling the Data
Preview, you are prompted for the input parameters‘ values. Accessing
views via SQL using input parameters will be covered in Section 4.2.5.

Figure 4.27 Input Parameters for Currency Conversion

The same principle is used for unit conversion. In our sample view AN_
BOOKING, the baggage weight should always be considered in kilograms
(KG) in order to identify bookings with excess weight. To reach this goal,
unit conversion is configured as shown in Figure 4.28.

We’ll contemplate another scenario in our example from Chapter 8,
where the flight miles are determined based on distances specified in
different units of length.

Currency conversion and unit conversion can also be called in SQLScript
via the built-in function CE_CONVERSION of the calculation engine. For
flexible parameterization and embedding into a larger calculation, this
can have advantages over the modeled variant. This will be shown in
Chapter 5.

Defining input
parameters

Unit conversion

Conversions
using SQLScript

191

Analytic Views 4.2

Figure 4.28 Converting the Baggage Weight into Kilograms

4.2.5 Runtime Artifacts and SQL Access for Analytic Views

As in case of the attribute views, there is a primary runtime artifact cor-
responding to the analytic view. In addition, several additional column
views are created depending on the occurrence of hierarchies, key figures,
and calculated fields. However, for application developers, these objects
play only a minor role. The primary runtime artifact of the analytic
view AN_BOOKING in the package test.a4h.book.chapter04 can again be
addressed via a public synonym:

test.a4h.book.chapter04::AN_BOOKING

192

4 View Modeling in SAP HANA Studio

When accessing a view via SQL, remember that analytic views are not
designed for single accesses, but rather for aggregated accesses. For
example, reading all rows using the below statement is not supported:

SELECT * FROM <view name>

Instead, you must always use an aggregation (COUNT, SUM, etc.) and the
corresponding grouping. Moreover, since grouping can only be done
via columns of the analytic view, analytic views cannot be linked to
other tables or views directly via SQL. This will be explained based on
an example in Section 4.3.3.

If you defined input parameters for the view, you can pass them in an
SQL query, as shown in the following example:

SELECT <columns> FROM <view> ('PLACEHOLDER' = ('$$TARGET_
CURRENCY$$', 'EUR')) WHERE ... GROUP BY ...

Accessing SAP HANA views from ABAP is introduced in Section 4.5.
At this point, we would like to emphasize that the addition for setting
input parameters is not supported via Open SQL, but requires the use
of Native SQL.

4.3 Calculation Views

In this section, we will now introduce the last view type, the calcula-
tion view. This view is used whenever the capabilities of attribute and
analytic views cannot meet your requirements. This is especially the
case in scenarios where it is necessary to flexibly combine several views.
Recommendations on the usage of the different view types can be found
in Section 4.5.4.

There are two variants of calculation views. You can either model calcu-
lation views or implement them using SQLScript. This section describes
the usage of both variants. However, we will not explain the full set of
capabilities provided by SQLScript in the scope of this chapter (a com-
prehensive description can be found in the next chapter).

Limitations
when accessing

views via SQL

Input parameters

Variants

193

Calculation Views 4.3

In this section, we will define two calculation views. We will combine
the two analytic views from the previous section in the modeled view
CA_FLIGHT_STATISTIC and create a combined data view on the seat uti-
lization and number of bookings with excess baggage for a flight. In the
implemented view CA_SEAT_UTILIZATION_DELTA, we will determine the
average seat utilization and compare this result with the corresponding
value from the previous year.

4.3.1 Basic Principles

The main difference between calculation views and the other view types
introduced so far is that calculation views can combine any other types of
view. In case of attribute views, you can only link database tables via joins.
Analytic views are always based on a star schema consisting of a fact table
and dimensions. Calculation views have no such structural limitations.

A calculation view is based on a calculation model that consists of nodes
and operations. These nodes can be tables or any type of view. For this
reason, you can integrate views as nodes within the model.

Calculation views are modeled graphically in a tree structure, with the
leaves representing tables or views. The other nodes define operations
on the data. The following operations are currently supported: join (creat-
ing a join), projection (defining a field list or hiding columns), aggregation
(performing a calculation for a column), and union (creating a union).
The root node represents the output structure of the view and thus its
external interface.

As you will learn in Section 5.2.4, SQLScript provides a built-in func-
tion for each of these operations. In other words: A graphical model, as
shown in Figure 4.30, has a corresponding canonical execution plan in
the calculation engine in SAP HANA. This execution plan can be displayed
using the PlanViz tool, which will be introduced in Chapter 7.

Like attribute views or analytic views, calculation views support the defini-
tion of hierarchies and input parameters. Moreover, counters of different
characteristics are offered exclusively for this view type.

Reference
examples for
this section

Graphical modeling

194

4 View Modeling in SAP HANA Studio

As with almost every graphical modeling approach, there are also cer-
tain limitations to modeling calculation views. These limitations will be
described briefly in this section:

EE Restrictions	with	regard	to	possible	SQL	types
It is, for example, not possible to use the entire scope of functions in
SAP HANA-specific SQL. Examples would be calling the text search
(see Chapter 9) or function libraries (see Chapter 12).

EE No	free	parameterization
It is not possible to flexibly parameterize modeled views. Some sce-
narios can be parameterized using input parameters, but there are still
some limitations that must be considered when using the graphical
modeling approach.

EE No	options	for	performing	calculations	based	on	aggregates
There are also further scenarios that appear simple at first glance, but
cannot be implemented by modeling a view in SAP HANA. Let’s take
a look at the example from Section 4.2. In this case, we used the view
AN_SEAT_UTILIZATION to determine the seat utilization as a percentage
per quarter for a flight connection. Let’s assume we now also want to
determine the variance from the previous year, i.e., the difference in
use as a percentage. None of the presented modeling options can be
used to directly perform this calculation.

To implement such scenarios, you can choose between different options.
On the one hand, the powerful query modeling in SAP NetWeaver BW
provides suitable capabilities. When using these options, however, it will
no longer be possible to easily integrate the queries in a normal ABAP
application. Chapter 10 describes in detail how to use the build-in BW
functionality in the SAP NetWeaver AS ABAP for application development
and also explains the associated advantages and disadvantages.

For specific scenarios, however, you can also use SQLScript to perform
such calculations programmatically. The comprehensive options provided
by SQLScript are described in Chapter 5. Since SQLScript is an exten-
sion of SQL, the seat utilization scenario described above can already be
implemented using standard SQL as will be shown in this section.

Limitations of
graphical modeling

Implementation
options

195

Calculation Views 4.3

4.3.2 Graphical Modeling of Calculation Views

Calculation views are created using the same procedure as attribute views
and analytic views. To create a graphical calculation view, choose Graphi-
cal as the View Type (Figure 4.29).

Figure 4.29 Creating a Graphical Calculation View

In the editor for calculation views, you can add tables and views as data
sources and connect them using operations from the Tools Palette. These
operations are Projection, Join, Aggregation, and Union. The editor
displays both the data sources and the operations as nodes. The special
node Output represents the output structure of the calculation view.

For our example, we will combine the data from the two analytic views.
The output should include the number of bookings with excess baggage
(calculated key figure OVERWEIGHT from AN_BOOKING_CALC) and the seat use
(calculated key figure UTILIZATION from AN_SEAT_UTILIZATION). Since
the data from AN_BOOKING_CALC is based on bookings, we have to first
aggregate the key figure OVERWEIGHT and then create the union. Figure
4.30 shows the resulting graphical calculation view.

Creating
calculation views

Integrating
analytic views

196

4 View Modeling in SAP HANA Studio

Figure 4.30 Graphical Calculation View CA_FLIGHT_STATISTIC

To create this view, you first add the two analytic views. In the next step,
you use the Tools Palette and choose Aggregation and Union and
connect the nodes as shown in Figure 4.30. You must select the attributes
needed for each of the nodes. When creating the union, you define the
mapping of the attributes in the target structure using the drag-and-drop
method (see Figure 4.31).

Figure 4.31 Mapping of the Attributes in the Union

Connecting
nodes and adding

attributes

197

Calculation Views 4.3

Unfortunately, the hierarchies cannot be inherited from the dimensions
of the analytic views, but must be defined manually (as described in
Section 4.1.4).

After successful activation, the resulting calculation view CA_FLIGHT_
STATISTIC is displayed (shown in Figure 4.32).

Figure 4.32 Data Preview for the Calculation View CA_FLIGHT_STATISTIC

4.3.3 Implementing Calculation Views via SQLScript

As previously mentioned, calculation views can also be implemented
using SQLScript. SQLScript will be described in detail in Chapter 5. In
this section, however, we will simply explain how to create implemented
calculation views. We will only use very basic SQLScript for this purpose,
which essentially contains a regular SQL statement with variables. Once
you have learned about the further options of SQLScript in Chapter 5,
you will be able to implement more complex calculation views as well.

Implemented calculation views are created following a similar procedure
as used for the modeled variant; however, you choose SQLScript as the
View Type (see Figure 4.33) in this case.

Result

Creating
calculation views

198

4 View Modeling in SAP HANA Studio

Figure 4.33 Creating an Implemented Calculation View

The settings contain three selection lists that play an important role for
all SQLScript implementations:

EE Default Schema defines the default schema so that you don’t have to
specify a schema name when accessing tables or views using SQL. You
should usually choose the standard schema of the ABAP system for
this setting.

EE Via the Run With setting, you can configure the user for running the
SQLScript code. The Invoker’s rights setting indicates that the invoker
(e.g., the ABAP database user) must have the required SQL authoriza-
tions.

EE Parameter Case Sensitive controls whether parameters are case sen-
sitive.

Settings

199

Calculation Views 4.3

When discussing database procedures in the following chapter, we will
deal with these settings and recommendations for their usage again.

After clicking the Finish button, the system opens the editor for calcula-
tion views implemented with SQLScript (Figure 4.34).

Figure 4.34 Editor for Implemented Calculation Views

The editor comprises three sections:

EE The Scenario pane displays the model of the calculation view. In the
case of a calculation view implemented with SQLScript, you use this
section to switch between the column definition of the view and the
SQLScript coding (i.e., the underlying database procedure).

EE The Details of pane allows you to edit the column definition or the
SQLScript coding.

EE To define attributes, key figures, input parameters, etc., you use the
Output of section.

For our example, you first define the columns of the output parameter
var_out. The result is displayed in Figure 4.35.

SQLScript editor

Editor sections

Defining output
parameters

200

4 View Modeling in SAP HANA Studio

Figure 4.35 Structure of the Output Parameter “var_out”

In the next step, you can insert the SQLScript coding from Listing 4.2 as
the implementation. When doing so, a complex SQL statement is used
to perform a join of the view AN_SEAT_UTILIZATION with the same view
(a so-called self join). This defines the two time slices (data of the current
and the previous year) needed for determining the variance in the average
utilization. In the following chapter, you will learn how to modularize
such complex SQL statements using SQLScript.

/********* Begin Procedure Script ************/
 BEGIN

/* Self join to compare the result with the data from the
previous year
 The selection with the aggregation must be
 implemented using subqueries
*/
var_out =
 select c.mandt, c.carrid, c.connid,
 c.year, p.year as prev_year,
 c.utilization as utilization,
 p.utilization as utilization_prev,

SQLScript coding

201

Calculation Views 4.3

 c.utilization - p.utilization as delta
 from (
 select mandt, carrid, connid, year,
 avg(utilization) as utilization
 from "test.a4h.book.chapter04::AN_SEAT_UTILIZATION"
 group by mandt, carrid, connid, year
) as c
 left outer join (
 select mandt, carrid, connid, year,
 avg(utilization) as utilization
 from "test.a4h.book.chapter04::AN_SEAT_UTILIZATION"
 group by mandt, carrid, connid, year
) as p
 on c.mandt = c.mandt and p.carrid = p.carrid and
 c.connid = p.connid and c.year = p.year + 1
 order by c.year desc;

END /********* End Procedure Script ************/

Listing 4.2 SQLScript Implementation of the Calculation View

The two time slices are called c (current) and p (previous) in the SQL state-
ment, and the essential connection is implemented via the join condition
c.year = p.year + 1.

In the next step, you define the output structure of the view via the
Scenario section of the editor. You select the columns of the output
parameter var_out of the database procedure, which will be exposed by
the calculation view. In addition, you specify whether the columns are
exposed as attributes or as key figures. As in case of modeled calculation
views, you can also create hierarchies and variables.

After successful activation, you can display the result in the Data Preview.
Figure 4.36 shows the percentage increase or decrease of the seat utili-
zation for a time period of several years for connections of the airline
“LH.“ In this context, it must again be noted that the Data Preview only
shows an excerpt of data.

Defining view
columns

Display results

202

4 View Modeling in SAP HANA Studio

Figure 4.36 Data Preview for the Calculation View CA_SEAT_UTILIZATION_DELTA

4.3.4 Runtime Artifacts and SQL Access for Calculation Views

As in the case of attribute views and analytic views, there is a primary
runtime artifact with a canonical name for calculation views as well; for
our view CA_FLIGHT_STATISTIC, this is a public synonym with the name:

test.a4h.book.chapter04::CA_FLIGHT_STATISTIC.

Moreover, when dealing with calculation views, there are also special
column views for the hierarchies and key figures that are irrelevant for
application developers in most cases.

In the case of implemented calculation views, the system also creates a
database procedure and a table type for the output parameter var_out
of the database procedure. We’ll explain how database procedures and
implemented calculation views interact in more detail in the following
chapter.

Similar to other view types, calculation views are accessed via SQL using
the runtime artifacts. With regard to the usage of input parameters, the
same rules apply as in the case of analytic views (see Section 4.2.5).

Database
procedure

203

Accessing Column Views via Microsoft Excel 4.4

4.4 Accessing Column Views via Microsoft Excel

So far, you have only seen how the result of a view can be displayed using
the Data Preview in SAP HANA Studio. While this is sufficient for first
tests, the results are not complete (there is a maximum number of rows)
and the Data Preview provides limited options for analysis.

SAP provides a large number of tools for accessing SAP HANA views. In
particular, you can use the SAP Business Objects Business Intelligence platform
for analyses, dashboards, etc., based on SAP HANA views. There is also a
data modeling integration of the SAP HANA views in SAP NetWeaver BW.
These advanced options will be explained in more detail in Chapter 10.

In this section, we will introduce a fairly simple method for accessing views
from Microsoft Excel. To use this method, you only need the SAP HANA
Client Package for Microsoft Excel, which is part of the SAP HANA Appliance.
Installation details can be found in the corresponding documentation.
After installing this package, the SAP HANA MDX Provider should be
available as an OLE DB Provider (Object Linking and Embedding database
interface) in the data import wizard of Microsoft Excel (see Figure 4.37).

Figure 4.37 Data Import via the OLE DB Provider in Microsoft Excel

SAP HANA Client
Package for
Microsoft Excel

204

4 View Modeling in SAP HANA Studio

Using this provider, you can import the data from an analytic view or
a calculation view into a pivot table in Microsoft Excel. A prerequisite
for this import, however, is that the configuration Multi Dimensional
Reporting is activated in the properties of the view in SAP HANA Studio.
Once the OLE DB driver establishes a connection, a selection dialog with
the available SAP HANA views is displayed (see Figure 4.38).

Figure 4.38 Importing SAP HANA Views into Microsoft Excel

You can then use the pivot table functions in Microsoft Excel on the data
from the SAP HANA view. Figure 4.39 shows a representation of the
data from the analytic view AN_BOOKING, which we created in Section 4.2.

Figure 4.39 Pivot Table in Microsoft Excel Based on the Analytic View AN_BOOKING

Importing data
into a pivot table

205

Using SAP HANA Views in ABAP 4.5

Multidimensional Expressions (MDX)

As the name of the OLE DB Provider SAP HANA MDX Provider already indicates,
this driver uses an internal access mechanism based on the MDX standard
(Multidimensional Expressions).

MDX is a powerful database query language for OLAP scenarios which was
promoted by Microsoft and has become an industry standard. In contrast to
SQL, MDX is focused on multidimensional access, with the terms measures
and dimension playing a decisive role for selections on a cube that is based
on a star schema.

Within the scope of this book, the MDX standard and its support in SAP
HANA will not be explained in further detail. If you are familiar with MDX,
however, it might be interesting to know that you can use MDX via the SQL
console in SAP HANA Studio. For further information on this topic, please
read the documentation at http://help.sap.com/hana_appliance/.

4.5 Using SAP HANA Views in ABAP

In the previous sections, you learned how to model the different view
types in SAP HANA Studio and how to access the results of a view using
the Data Preview or Microsoft Excel. In Section 4.3.3, we also explained
how to address the generated column views via SQL.

This section describes how to access the views from ABAP. In this con-
text, we have to differentiate between ABAP release 7.4 and earlier ver-
sions. When working with earlier releases, only Native SQL can be used
for access; this will be described briefly in Section 4.5.1. As of ABAP
7.4, you can import the views from the SAP HANA Repository into the
ABAP Data Dictionary and then access them using Open SQL. This will
be explained in detail in Section 4.5.2 and in Section 4.5.3. In the last
section, you’ll find some recommendations and tips and tricks for SAP
HANA view modeling.

4.5.1 Access via Native SQL

When activating any of the presented view types in SAP HANA, a column
view is created in the database catalog in the schema _SYS_BIC. This view is
composed of the name of the package and the name of the view. Example:

"_SYS_BIC"."test.a4h.book.chapter04/AT_FLIGHT"

Access with
ABAP 7.4 and
earlier releases

206

4 View Modeling in SAP HANA Studio

In addition, a public synonym is created with the following name:

"test.a4h.book.chapter04::AT_FLIGHT"

Using these names, the views can also be accessed from ABAP using
Native SQL.

Listing 4.3 shows how the attribute view AT_FLIGHT created in Section 4.1
is accessed via ADBC. As described in Section 3.3.3, the target structure
must be defined manually since the view’s structure is not known in
the ABAP Data Dictionary. The example in Listing 4.3 uses some ABAP
language elements from release 7.4 (inline declarations and constructor
expressions), which are introduced in Appendix B. These are not a pre-
requisite for access, but are used to shorten the ABAP code.

" Definition of the result structure
TYPES: BEGIN OF ty_data,
 carrid TYPE s_carr_id,
 connid TYPE s_conn_id,
 fldate TYPE s_date,
 route TYPE string,
 END OF ty_data.

CONSTANTS: gc_view TYPE string VALUE
 'test.a4h.book.chapter04::AT_FLIGHT'.
DATA: lt_data TYPE TABLE OF ty_data.

" Access to the attribute view
DATA(lv_statement) =
 | SELECT carrid, connid, fldate, route |
&& | FROM "{ gc_view }"|
&& | WHERE mandt = '{ sy-mandt }' ORDER BY fldate|.

TRY.
 " Preparing the SQL connection and statement
 DATA(lo_result_set) =
 cl_sql_connection=>get_connection(
)->create_statement(
 tab_name_for_trace = conv #(gc_view)
)->execute_query(lv_statement).

207

Using SAP HANA Views in ABAP 4.5

 " Get result
 lo_result_set->set_param_table(REF #(lt_data)).
 lo_result_set->next_package().
 lo_result_set->close().
 CATCH cx_sql_exception INTO DATA(lo_ex).
 " Error handling
 WRITE: | { lo_ex->get_text() } |.
ENDTRY.

LOOP AT lt_data ASSIGNING FIELD-SYMBOL(<l>).
 WRITE: / <l>-carrid , <l>-connid, <l>-fldate,
 <l>-route .
ENDLOOP.

Listing 4.3 Accessing an Attribute View via ADBC

As you can see, this is a regular access using Native SQL. If an error occurs
during execution, the text of the SQL exception points to the cause. In
addition to SQL coding errors, which are also visible when accessing
views via the SQL console, there may also be errors related to mapping
the result to the ABAP data type. Recommendations regarding this topic
are given in Section 4.5.4.

4.5.2 External Views in the ABAP Data Dictionary

In ABAP 7.4, external views are a new view type in the ABAP Data Dic-
tionary. Using such views, you can import column views defined in the
SAP HANA Repository into the ABAP Data Dictionary. These views are
called external views since they are not fully defined in the ABAP Data
Dictionary, but used as a kind of proxy allowing the corresponding column
view in the schema _SYS_BIC to be accessed from ABAP.

External views can only be defined using the ABAP Development Tools in
Eclipse. To do so, you create a new development object of the Diction-
ary View type. Figure 4.40 shows the creation dialog for the attribute
view AT_FLIGHT.

Creating external
views in Eclipse

208

4 View Modeling in SAP HANA Studio

Figure 4.40 Creating an External View in the ABAP Data Dictionary

When the view is created, the system checks whether it can be imported
into the ABAP Data Dictionary. It must be noted that not all SAP HANA
data types are supported in ABAP. When defining calculated attributes
or accessing tables from views that were not created using the ABAP
Data Dictionary, such potentially unsupported data types may appear. In
this case, an error occurs when creating the external view and the view
cannot be imported. The supported data types are listed in Table 3.1 in
Section 3.1.3.

After successfully importing the SAP HANA view into the ABAP Data
Dictionary, the editor displays the structure of the view together with
the data type mapping (Figure 4.41). In addition, there is a button Syn-
chronize, which can be used to synchronize the view after changing
the structure of the corresponding view in SAP HANA Studio. So if you
add attributes to the output structure, delete attributes, or change data
types, you need to synchronize the external view in order to avoid run-
time errors. Recommendations on synchronizing developments within
a development team can be found in Chapter 14.

Checking whether
a view can be

imported

View structure and
synchronization

209

Using SAP HANA Views in ABAP 4.5

Figure 4.41 External ABAP Data Dictionary View Based on an Attribute View

As you learned in Section 3.1.3, SQL data types and ABAP Data Diction-
ary types cannot always be mapped uniquely. However, the data type is
decisive for the correct handling of operations (for example, the calcula-
tion of differences for a date). For this reason, the correct ABAP data type
must be mapped manually by the developer.

Table 4.3 shows the possible data type mappings for some columns of
the sample view AT_FLIGHT.

Column SQL Data
Type

Possible Dictionary Types

CARRID NVARCHAR(3) CHAR(3), NUMC(3), SSTR, CLNT,
UNIT, CUKY

FLDATE NVARCHAR(8) CHAR(8), NUMC(8), SSTR, DATS

CARRNAME NVARCHAR(20) CHAR(20), NUMC(20), SSTR

Table 4.3 Example of Possible Type Mappings

Mapping
data types

210

4 View Modeling in SAP HANA Studio

For the external view in Figure 4.41, we manually mapped the column
FLDATE to the ABAP data type DATS. This may appear strange at first glance,
since this information is already present in the underlying Dictionary
table; however, the attributes of column views in SAP HANA do not
have a reference to columns of existing tables that is recognizable by the
ABAP Data Dictionary. For instance, the FLDATE column could also be a
calculated attribute.

The procedure for defining external views based on an analytic or a
calculation view is identical to the procedure used for an attribute view.
Note that external views in the ABAP Data Dictionary currently do not
have a reference to the particular view type. By this we mean that they
are just pointing to an arbitrary column view in SAP HANA. The only
prerequisite is that the view is defined via the SAP HANA Repository.
Column views, which solely exist in the database catalog (e.g., generated
programmatically) cannot be imported into the ABAP Data Dictionary.

The transport of external views (and other SAP HANA-specific develop-
ments) is described in Chapter 6.

4.5.3 Options for Accessing External Views

The main advantage of external views is that Open SQL can be used to
access SAP HANA views. This allows you to particularly benefit from the
following advantages:

EE Syntax checking by the ABAP Compiler and content assist during
development (code completion)

EE Automatic client handling

EE Iterating through a result set within a SELECT loop

EE Using the expression INTO CORRESPONDING FIELDS for a matching selec-
tion in a target structure independent of the sequence in the projection
list

EE Using IN for the WHERE condition to transfer selection options

Listing 4.4 shows how the access to the external view from Figure 4.39
is implemented. From a functional perspective, this corresponds to the
ADBC access variant from Listing 4.3. As you can see, the ABAP code

Prerequisites

Advantages

Access via ADBC

211

Using SAP HANA Views in ABAP 4.5

required for access is significantly shorter and corresponds to the access
for a standard Dictionary view.

REPORT ZR_A4H_CHAPTER4_VIEW_OPEN.

DATA: wa TYPE zev_a4h_flights.

" Read data from external view
SELECT carrid connid fldate route
 FROM zev_a4h_flights
 INTO CORRESPONDING FIELDS OF wa.
 WRITE: / wa-carrid , wa-connid, wa-fldate, wa-route.
ENDSELECT.

Listing 4.4 Accessing an External View via Open SQL

Possible Runtime Errors when Accessing External Views

When using Open SQL to access an external view, an SQL query is executed
for the corresponding column view in SAP HANA. The same rules apply as
when accessing the view using Native SQL.

As explained in Section 4.2.5, certain limitations must be considered when
accessing analytic views via SQL. An unsupported query via Open SQL leads
to a runtime error. Since these errors rarely occur when accessing ABAP tables
using Open SQL, ABAP developers should use caution when following this
approach. The troubleshooting tools and possible runtime errors during SQL
access are explained in more detail in Section 7.1.

In addition to Open SQL, external views can also be addressed using
Native SQL. This variant, which seems somewhat awkward at first glance,
is useful if you want to use an SQL query to access an SAP HANA view
in a way that isn’t supported using Open SQL. An example would be a
fuzzy search in an attribute view (see Section 9.4.1). Compared to accessing
the generated column view in the schema _SYS_BIC via Native SQL, the
external view has an advantage in that a suitable target structure for a
selection via ADBC already exists in the ABAP Data Dictionary.

4.5.4 Recommendations

To conclude this chapter, this section provides a couple of recommen-
dations for using SAP HANA views. These are limited to functional

Native access
via ADBC

212

4 View Modeling in SAP HANA Studio

recommendations. Tools and recommendations for performance analysis
can be found in Chapter 7 and Chapter 14, where we will also deal with
design aspects like naming conventions.

If the scope of functions provided by standard ABAP Data Dictionary
views is sufficient for your purposes and if you used these views in the
past, there is no need to change your application using native SAP HANA
view. However, if you want to define more complex views containing
calculated fields, the described modeled views in SAP HANA provide an
easy approach. The following questions can help to determine the best
view type in SAP HANA for your scenario:

EE Are you dealing with master data views that might be extended by
calculated attributes? In this case, you should start with an attribute
view.

EE Are you performing an analysis of transaction data based on a star
schema? In this case, you should choose an analytic view and imple-
ment the dimensions as attribute views.

EE Do you have to combine or adapt the results from different tables and
SAP HANA views? In this case, you should use the modeled calculation
view. If the modeled variant is not sufficient for some part of your
scenario, you can use a SQLScript-based implementation for that part.

When modeling views, you should make sure that the client field is
handled correctly. In particular, it is advisable to add the client field as
the first field of the view and to make sure that the client is included
in the join definition. In most cases, the configuration value Dynamic
default client is the correct setting for views that are based on ABAP
tables from the same system. If tables were replicated from a different
system, it may be useful to use a fixed value for the client. Cross-client
access is useful only in rare cases.

You should always choose the correct default schema for analytic views
and calculation views. This schema is taken into account in particular for
the relevant Customizing for conversions—that is, if no special setting
was configured for the attribute. The specification of the correct default
schema is even more important when dealing with the implemented
variant of calculation views, which will be explained in more detail when
introducing SQLScript in Chapter 5.

Using the different
view types

Client handling

213

Using SAP HANA Views in ABAP 4.5

External views should only be defined for SAP HANA views that will
be used for access via ABAP, since these views have to be synchronized
manually after changing the corresponding structures. Moreover, you
should define a maximum of one external view for each SAP HANA view.

If error messages are displayed when activating an SAP HANA view, the
error text usually includes information on the root cause. In some cases,
however, you may need some experience to correctly interpret the error
message. For this reason, we recommend following a heuristic approach
to error analysis. As a first step, you should make sure that you marked at
least one field of an attribute view as a key field, and that you defined at
least one key figure for an analytic view. If your view contains calculated
attributes, you should check if you correctly defined the corresponding
expression.

Tips for Error Analysis

If you come to a dead end during error analysis, you can try to remove the
corresponding attribute (e.g., in a copy of the view). If an error message or
unexpected data is displayed when calling the Data Preview, this is often an
indication of a problem in the join modeling. In case of currency conversions,
a missing client context may result in an error.

When accessing an SAP HANA view from ABAP using Native SQL, you should
pass the name of the view (via the parameter tab_name_for_trace as shown
in Listing 4.3 or via the method SET_TABLE_NAME_FOR_TRACE). This facilitates
the error analysis in a support scenario.

Defining
external views

Troubleshooting

215

SAP HANA provides a range of programming options in addition
to data modeling. In particular, ABAP developers should be
familiar with the SQLScript options available in relation to
mapping requirements that cannot be implemented using data
modeling alone.

5 Programming Options in SAP HANA

In the last chapter, we explained how to model data views in HANA. Now,
we’ll provide an overview of the programming options available to you.
You’ll learn how to use SQLScript to implement database procedures and
calculation views. You will also learn how to call database procedures
from SAP NetWeaver AS ABAP. SQLScript error analysis will be covered
in Chapter 7.

SAP HANA provides other programming options in addition to SQLScript,
especially in conjunction with the XS Engine. However, use of the XS
Engine in application development is beyond the scope of this book.

5.1 Overview of SQLScript

The HANA database supports the standard SQL92 as well as parts of the
standard SQL99. It also adds some non-standardized functions to SQL.
These include, for example, the option of using the ROW or COLUMN additions
with the CREATE TABLE statement to specify whether a database table is
stored in a row store or column store (see Section 5.2.2) as well as support
for text search performed using the key word CONTAINS (see Chapter 9).

SQLScript is an enhancement to the SQL standard. It is used to move data-
intensive calculations to the database as easily and as completely as pos-
sible. In the following subsections, we’ll discuss the qualities of SQLScript
and then explain how the SAP HANA database processes SQLScript.

SQL92 and SQL99

SQLScript

216

5 Programming Options in SAP HANA

5.1.1 Qualities of SQLScript

SQLScript has several advantages over Open SQL and the SQL standard.
We wish to use a specific example to illustrate the intrinsic qualities of
SQLScript. We will intentionally omit some details at first (so that we can
discuss them in later sections).

As was the case in the previous chapters, the example we will use here
is based on the SFLIGHT data model. We now wish to calculate two key
performance indicators for an airline’s top connections:

EE Total	booking	revenue
This key performance indicator is calculated by totaling the field LOC-
CURAM for all individual bookings that have not been canceled from
the database table SBOOK (in other words, the CANCELLED field is blank).

EE Average	number	of	days	between	the	flight	date	and	booking	date
This key performance indicator is calculated from the difference
between the fields FLDATE and ORDER_DATE for all individual bookings
that have not been canceled from the database table SBOOK.

We also wish to identify those travel agencies that achieve the highest
sales revenue based on an airline’s top connections. The sales revenue
for each travel agency is determined in the same way as the total book-
ing revenue.

Modularizing of Tasks

You can use SQLScript to implement database procedures and calculation
views. Internally, calculation views implemented using SQLScript are
represented as database procedures (see Section 4.3.4).

A database procedure comprises input/output parameters and the pro-
cessing logic. You can use database procedures to modularize complex
tasks. Figure 5.1 demonstrates how different database procedures can
interact with one another to determine the key performance indicators
and travel agencies associated with an airline’s top connections.

Example:
requirements

Parameters and the
processing logic

217

Overview of SQLScript 5.1

Database Procedure
GET_DATA_FOR_TOP_CONNECTIONS

Database Procedure
DETERMINE_TOP_CONNECTIONS

Database Procedure
GET_KPIS_FOR_CONNECTIONS

Database Procedure
GET_AGENCIES_FOR_CONNECTIONS

Calls

Figure 5.1 Using Multiple Database Procedures to Modularize Complex Tasks

Internally, the database procedure GET_DATA_FOR_TOP_CONNECTIONS uses:

EE The database procedure DETERMINE_TOP_CONNECTIONS to identify an
airline’s top connections.

EE The database procedure GET_KPIS_FOR_CONNECTIONS to calculate the
key performance indicators for an airline’s top flight connections.

EE The database procedure GET_AGENCIES_FOR_CONNECTIONS to identify
those travel agencies with the highest sales revenue for an airline’s
top flight connections.

Thanks to modularization, you can simply reuse parts of the implementa-
tion for other tasks. For example, you can call the method GET_KPIS_FOR_
CONNECTIONS for an airline’s top connections as well as for any connections
for multiple airlines.

Splitting Up Complex Database Queries

In addition to using multiple database procedures to modularize complex
tasks, SQLScript also enables you to split up complex database queries
within a procedure. There you can assign the result of a SELECT state-
ment to a table variable and then use this table variable for subsequent
SELECT statements. We’ll now demonstrate this using the example of the
procedure GET_AGENCIES_FOR_CONNECTIONS.

The purpose of this procedure is to aggregate all bookings that were not
canceled for a given set of flight connections, and to identify the five travel
agencies with the highest sales revenue. It will then read the addresses
of the five travel agencies identified. The corresponding database query
can look as shown in Listing 5.1.

Modularization

Reuse

Procedure GET_
AGENCIES_FOR_
CONNECTIONS

218

5 Programming Options in SAP HANA

ET_AGENCIES = SELECT A.AGENCYNUM, T.NAME, T.POSTCODE,
 T.CITY, T.COUNTRY, A.PAYMENTSUM, A.CURRENCY
 FROM (SELECT TOP 5 B.AGENCYNUM, SUM(B.LOCCURAM) AS
 PAYMENTSUM, B.LOCCURKEY AS CURRENCY
 FROM :IT_CONNECTIONS AS C INNER JOIN SBOOK AS B ON
 B.CARRID = C.CARRID AND B.CONNID = C.CONNID
 WHERE B.MANDT = :IV_MANDT AND B.CANCELLED <> 'X'
 GROUP BY B.AGENCYNUM, B.LOCCURKEY
 ORDER BY SUM(B.LOCCURAM) DESC) AS A
 INNER JOIN STRAVELAG AS T ON
 T.AGENCYNUM = A.AGENCYNUM WHERE T.MANDT = :IV_MANDT;

Listing 5.1 Example of a Complex Database Query

Alternatively, with SQLScript, you can use one table variable to combine
two database queries (see Listing 5.2):

LT_AGENCIES = SELECT TOP 5 B.AGENCYNUM,
 SUM(B.LOCCURAM) AS PAYMENTSUM, B.LOCCURKEY AS
 CURRENCY FROM :IT_CONNECTIONS AS C
 INNER JOIN SBOOK AS B ON B.CARRID = C.CARRID AND
 B.CONNID = C.CONNID
 WHERE B.MANDT = :IV_MANDT AND B.CANCELLED <> 'X'
 GROUP BY B.AGENCYNUM, B.LOCCURKEY
 ORDER BY SUM(B.LOCCURAM) DESC;

ET_AGENCIES = SELECT A.AGENCYNUM, T.NAME, T.POSTCODE,
 T.CITY, T.COUNTRY, A.PAYMENTSUM, A.CURRENCY
 FROM :LT_AGENCIES AS A INNER JOIN STRAVELAG AS T
 ON T.AGENCYNUM = A.AGENCYNUM
 WHERE T.MANDT = :IV_MANDT;

Listing 5.2 Splitting Up a Complex Database Query

The following advantages are associated with using SQLScript to split up
complex database queries:

EE Several relatively simple SELECT statements are frequently easier to
read and therefore easier to maintain than one relatively complex
database query.

Splitting up
complex database

queries

Advantages
of splitting up

complex database
queries

219

Overview of SQLScript 5.1

EE Interim results in the form of a table variable can easily be reused (for
example, to calculate key performance indicators and to identify travel
agencies).

EE Splitting up complex database queries may make it easier for the HANA
database optimizer to detect redundant subqueries and to prevent
their repeated calculation.

The database optimizer decides how to execute multiple database queries
(both within and across database procedures). Internally, it can combine
multiple SELECT statements into one database query. Under certain con-
ditions, it is able to process multiple SELECT statements in parallel (see
also the next section).

Parallel Processing

Another advantage of SQLScript is that SAP HANA can process indepen-
dent database queries in parallel. We will also demonstrate this using
the same example. The following four steps must be undertaken to solve
the task at hand:

EE Identify an airline’s top connections.

EE Calculate the two key performance indicators.

EE Identify those travel agencies with the highest sales revenue.

EE Read the addresses of the travel agencies identified.

Calculating the key performance indicators and identifying the travel
agencies with the highest sales revenue (including reading their addresses)
are dependent on identifying an airline’s top connections but are fully
independent of each other. Consequently, the HANA database can process
these database queries in parallel, as shown in Figure 5.2.

Parallel processing of database queries in SQLScript is a fundamental
difference from Open SQL. If you use Open SQL to send multiple SELECT
statements to the HANA database (and use, for example, the FOR ALL
ENTRIES clause to connect them), they are processed in succession.

Parallelization

Difference to
Open SQL

220

5 Programming Options in SAP HANA

Identify top connections
of an airline

Calculate key figures

Identify travel agencies
with highest sales revenue

Read addresses

End

Start

Figure 5.2 Parallel Processing

As a result of processing database queries in parallel, tasks can be accel-
erated considerably. However, this is only one form of parallelization in
SAP HANA. The system can also use multiple threads to process individual
database queries (for example, calculating key performance indicators) in
parallel (see also Section 5.2.2). Open SQL also benefits from this form
of parallelization.

Orchestrating the Processing Logic

SQL is a declarative programming language. Declarative programming
focuses on the problem description (in other words, the “what”). SQLScript
adds elements of imperative programming to the SQL standard. Impera-
tive programming focuses on the problem solution (in other words, the
“how”).

The imperative language elements in SQLScript enable you to work,
for example, with case distinctions (IF ... THEN ... ELSEIF ... ELSE
... END IF) and loops (WHILE ... ENDWHILE) in database procedures
and calculation views, thus enabling you to orchestrate the (declarative)

Imperative
programming

221

Overview of SQLScript 5.1

processing logic. Here, you also have options that extend far beyond the
SQL standard.

Let’s imagine that an airline’s top connections are to be identified on the
basis of the sales revenue or percentage utilization. In this case, you can
assign an input parameter to the DETERMINE_TOP_CONNECTIONS database
procedure and, depending on its value, you can execute different database
queries (see Listing 5.3):

IF IV_ALGORITHM = 'P' THEN
 ET_CONNECTIONS = SELECT TOP 5 CARRID, CONNID
 FROM SFLIGHT
 WHERE MANDT = :IV_MANDT AND CARRID = :IV_CARRID
 GROUP BY CARRID, CONNID
 ORDER BY SUM(PAYMENTSUM) DESC;
ELSE
 ET_CONNECTIONS = SELECT TOP 5 CARRID, CONNID
 FROM SFLIGHT
 WHERE MANDT = :IV_MANDT AND CARRID = :IV_CARRID
 GROUP BY CARRID, CONNID
 ORDER BY AVG(TO_DECIMAL(SEATSOCC + SEATSOCC_B +
 SEATSOCC_F) / TO_DECIMAL(SEATSMAX + SEATSMAX_B +
 SEATSMAX_F)) DESC;
END IF;

Listing 5.3 Imperative Language Elements

Note that the use of imperative programming may prevent paralleliza-
tion of database queries. In particular, we recommend that you avoid
loop processing combined with the use of cursors as much as possible
(see Section 3.2.2).

Accessing Business Logic

It’s often a challenge to access business logic in the event of a code
pushdown from the application layer to the database layer. In ABAP
application development, a large part of the business logic previously lay
in the application layer and therefore was only available for data records
transferred from the database to the application server. Currency conver-
sion is a good example here.

SQLScript makes crucial business logic functions available in the database
layer. In addition to currency conversion, SQLScript also supports the

Orchestration

Disadvantages
of imperative
language elements

222

5 Programming Options in SAP HANA

conversion of units of measure in accordance with Customizing for SAP
NetWeaver AS ABAP. You can also access the HANA function libraries in
database procedures and calculation views (see Chapter 12), which gives
you considerably more options in terms of moving data-intensive calcula-
tions to the database than those available with Open SQL or Native SQL.

5.1.2 Processing SQLScript

Now that we have discussed the advantages of SQLScript, we’ll explain
how the HANA database processes SQLScript. Here, we distinguish
between processing when activating SQLScript and processing when
invoking SQLScript.

Activating SQLScript

When activating SQLScript, the HANA database first checks the syntax
of the database procedure.

The system then checks the semantic correctness. It derives, among
other things, the table variable types because these are implicitly typed
in SQLScript. The system checks whether the variables are being used
consistently and whether all of the output parameters associated with
the database procedure have been filled.

The system then optimizes the database procedures and creates a (pos-
sibly multilevel) calculation model that resembles a graphical calculation
view. In this model, imperative language elements are generated as L
nodes. L is a programming language that makes some language elements
of C++ available and supports HANA’s system of data types. Internally,
the HANA database uses L as an intermediate language when compiling
a database procedure to C++.

Finally, the system stores the database procedure in the database catalog
and, if necessary, in the SAP HANA Repository.

Invoking SQLScript

Two phases are associated with invoking a database procedure—namely,
compilation and execution.

Semantic check

Optimizing
the database

procedure

223

Implementing Database Procedures 5.2

When compiling a database procedure, the HANA database rewrites the
database procedure call so that it can be executed by the calculation engine.
Then, when executing the database procedure, the system binds the actual
parameters associated with the call to the calculation model created when
the procedure was activated. This process is known as instantiating the
calculation model. During instantiation, the system possibly optimizes
the calculation model further. Lastly, the system uses the engines available
(see Section 5.3) to execute the calculation model.

5.2 Implementing Database Procedures

In this section, we will explain how to implement database procedures.

5.2.1 Basic Principles of Database Procedures

As already described in the previous section, a database procedure com-
prises input parameters, output parameters, and the processing logic.

The main difference between database procedures and views is the fact
that database procedures can return more than one result set. In other
words, they can have multiple output parameters. Furthermore, database
procedures and views are called differently from ABAP. We will describe
this in detail.

From a technical perspective, SQL is used to generate, call, change, and
delete database procedures. The HANA database provides the following
statements for this purpose:

EE You can use the CREATE PROCEDURE statement to create a new database
procedure.

EE You can use the CREATE TYPE command to create a table type for use
in the database procedure interface.

EE You can use the ALTER PROCEDURE statement to recompile the calcula-
tion model for a database procedure.

EE You can use the CALL statement to call a database procedure.

EE You can use the DROP PROCEDURE statement to delete a database pro-
cedure.

Compilation
and execution

Multiple output
parameters

SQL statements

224

5 Programming Options in SAP HANA

Even though you can execute these commands directly via the SQL
console, we do not recommend this (with the exception of simple tests)
because procedures created via the SQL console are not stored in the SAP
HANA Repository. You therefore lose version management and transport
management, among other things.

Instead, we recommend that you use the editors in the Modeler and
SAP HANA Development perspectives in the SAP HANA Studio to cre-
ate database procedures in the SAP HANA Repository. We will discuss
both options in this section. We anticipate that, in future, it will only be
possible to create database procedures for the SAP HANA Repository in
the SAP HANA Development perspective.

SAP HANA distinguishes between two types of database procedures:

EE Database procedures that only read data (known as read-only procedures).

EE Database procedures that can read and write data (known as read/write
procedures).

The use of INSERT, UPDATE, DELETE, and DDL statements (Data Definition
Language statements) are prohibited in read-only procedures. Whereas
read/write procedures can call any database procedure, read-only proce-
dures can only call read-only procedures (see Figure 5.3).

Client

Read/Write Procedure
(Read and Write Data)

Read Only Procedure
(Read Data)

Figure 5.3 Read-Only and Read/Write Procedures

SQL console

Editors

Types of database
procedures

225

Implementing Database Procedures 5.2

In general, SQLScript is used to implement database procedures. The
HANA database also supports two additional programming languages,
namely L and R:

EE The programming language L is based on C++. The use of L to imple-
ment database procedures is currently reserved for SAP itself.

EE R is a free programming language for resolving statistical problems
(http://www.r-project.org/). Implementing a database procedure in R
enables you to use the R functionality in SAP HANA and, if necessary,
embed it into a more extensive calculation model. The programming
language R is beyond the scope of this book.

User-Defined Functions

We do not wish to overlook the fact that user-defined functions (UDF) are
also available in addition to database procedures. User-defined functions are
also implemented in SQLScript and are created or deleted using the CRE-
ATE FUNCTION and DROP FUNCTION statements. The user-defined function
DETERMINE_TOP_CONNECTIONS is created in the following example:

CREATE FUNCTION DETERMINE_TOP_CONNECTIONS(IV_MANDT

 NVARCHAR(3), IV_CARRID NVARCHAR(3), IV_ALGORITHM

 NVARCHAR(1)) RETURNS TABLE(CARRID NVARCHAR(3), CONNID

 NVARCHAR(4)) LANGUAGE SQLSCRIPT SQL SECURITY INVOKER AS

BEGIN

...

END;

In contrast to database procedures, you can use user-defined functions directly
in SQL statements. This can look as follows:

SELECT C.CARRID, C.CONNID, S.CARRNAME

 FROM DETERMINE_TOP_CONNECTIONS('000', 'LH', 'P') AS C

 INNER JOIN SCARR AS S ON S.CARRID = C.CARRID

 WHERE S.MANDT = '000';

At present, you can only create user-defined functions in the SQL console.

5.2.2 Creating Database Procedures

We now wish to provide a detailed description of how to create a data-
base procedure. We will use the Modeler and SAP HANA Development

SQLScript, L, and R

226

5 Programming Options in SAP HANA

perspectives in SAP HANA Studio for this purpose. Before we describe the
steps for creating a database procedure, we wish to discuss the relevant
SQL statements in more detail.

Statement for Creating a Database Procedure

You use the CREATE PROCEDURE statement to create a database procedure.
The complete syntax is shown in Listing 5.4.

CREATE PROCEDURE <proc_name> [(<parameter_clause>)]
[LANGUAGE <lang>] [SQL SECURITY <mode>]
[READS SQL DATA [WITH RESULT VIEW <view_name>]] AS
[<local_scalar_variables>]
BEGIN
 <procedure_code>
END

Listing 5.4 Syntax for the CREATE PROCEDURE Statement

The CREATE PROCEDURE statement is followed by the name <proc_name>
of the database procedure, a series of optional additions, and finally,
enclosed between BEGIN and END, the actual implementation in the form
of source code <procedure_code> (in other words, the processing logic).
The optional additions have the following meaning:

EE After the name of the database procedure, you can define input and
output parameters in the parameter list <parameter_clause>. Here,
you can use scalar parameters based on simple data types (such as INTE-
GER, DECIMAL, or NVARCHAR) and table parameters based on database
tables or table types. You will learn more about the system of data types
deployed by the HANA database in Section 3.1.3. In the next section,
we will discuss table types in greater detail.

EE After the parameter list, you can specify the programming language
LANGUAGE used to implement the database procedure. SQLSCRIPT and
RLANG are permitted for <lang>.

EE You can use the SQL SECURITY addition to specify the user against
which the system checks authorizations at runtime. DEFINER (creator
of the procedure) and INVOKER (caller of the procedure) are permitted
for <mode>.

CREATE
PROCEDURE

Additions
to CREATE

PROCEDURE

227

Implementing Database Procedures 5.2

EE You use READS SQL DATA to indicate that a database procedure only
reads data. If the read-only procedure returns exactly one table param-
eter, you can use WITH RESULT VIEW <view_name> to create a view.
In this case, you can later use a SELECT statement to query the result
of the database procedure.

EE Within database procedures, you can work with local variables. You
define scalar variables under <local_scalar_variables>. We will
discuss table variables in Section 5.2.3.

Statement for Creating a Table Type

If you want to use table parameters in a database procedure interface,
you can define them with reference to database tables or table types.
Table types are an enhancement to the SQL standard and are part of the
data type system supported by the HANA database. Conceptually, table
types are similar to the structures within the ABAP Data Dictionary. The
relevant command here is CREATE TYPE. The complete syntax is shown
in Listing 5.5.

CREATE TYPE <type_name> AS TABLE (<column_definition>
[{,<column_definition>}...])

Listing 5.5 Syntax for the CREATE TYPE Statement

The CREATE TYPE command is followed by the name of the table type
<type_name> and individual columns. Each table type has at least one
column, and each column definition <column_definition> comprises the
name of the column and its (simple) data type.

Creating a Database Procedure in the “Modeler” Perspective

We will now explain how to create a database procedure in the Modeler
perspective. To do this, we will implement a DETERMINE_CONNECTION_UTI-
LIZATION read-only procedure that determines the percentage utilization
for each flight connection:

1. Open the Modeler perspective, navigate to the package in which you
want to create the database procedure, and open the context menu.
In the context menu, choose New • Procedure…

2. In the next window (see Figure 5.4), enter the technical name and a
description of the database procedure. In this example, the package

CREATE TYPE

Creating a read-
only procedure

228

5 Programming Options in SAP HANA

cannot be changed because you used the context menu of a package
to create the procedure.

3. If you want to use an existing database procedure as a copy template,
select the Copy From radio button.

4. Once you have activated the database procedure, the schema _SYS_BIC
contains the relevant runtime objects. We will explain this in greater
detail at the end of this section.

Figure 5.4 Creating a Procedure in the Modeler Perspective

It is important to specify the Default Schema, as this determines which
database schema the system will search to find database tables or data
views if, within the database procedure, the database is accessed without
a schema being specified.

The remaining selection lists correspond to the additions previously
explained for the CREATE PROCEDURE statement (see the section entitled
“Statement for Creating a Database Procedure”):

Default schema

Additions when
creating a database

procedure

229

Implementing Database Procedures 5.2

EE Use Run With to control the authorization check at runtime. We gen-
erally recommend that you perform authorization checks on the basis
of the caller of the procedure.

EE Use Access Mode to specify that the database procedure only reads
data.

EE In the Language selection list, specify the programming language
used.

After you choose Finish, the system opens the editor (in the Modeler
perspective) for database procedures (see Figure 5.5). This is partly source
code-based, partly form-based.

Figure 5.5 Editing a Procedure in the Modeler Perspective

The editor comprises the following three areas:

EE In the Input Pane area, you define input parameters for the database
procedure. You use the context menu of the Input Parameters node
for this purpose.

EE In the Output Pane area (and also in the context menu), you define
output parameters for the database procedure. At present, only table

Areas within
the editor

230

5 Programming Options in SAP HANA

parameters are permitted here, even though in principle the CREATE
PROCEDURE statement also permits scalar output parameters.

EE You use the Script View area to implement the processing logic. In
other words, you create the actual SQLScript source code here.

If you want to display and—if necessary—change the entries made in
Figure 5.4, open the Properties view.

When you define the input and output parameters, you must specify which
SQL data types are to be used. The DETERMINE_CONNECTION_UTILIZATION
procedure has three parameters:

EE The input parameter IV_MANDT (client) of the SQL data type NVARCHAR(3)

EE The input parameter IV_CARRID (airline) of the SQL data type NVAR-
CHAR(3)

EE The output parameter ET_UTILIZATION

The output parameter ET_UTILIZATION is a table parameter that comprises
the following columns (see Figure 5.6):

Figure 5.6 Table-Based Output Parameter ET_UTILIZATION

Input and output
parameters

231

Implementing Database Procedures 5.2

EE CARRID (airline) of the SQL data type NVARCHAR(3)

EE CONNID (flight connection) of the SQL data type NVARCHAR(4)

EE UTILIZATION (utilization) of the SQL data type DECIMAL(5, 2)

Where to Find the SQL Data Types for Parameters

As an ABAP developer, you are familiar with the data elements, dictionary
types, and/or ABAP types associated with an application domain, but not the
underlying SQL data types (see also Section 3.1.3).

If, when defining input and output parameters, you are unsure about which
SQL data types you must use, you can generally determine this by displaying
the table definition in the database catalog (see Section 2.4.3).

Once you have defined the input and output parameters, you can imple-
ment the processing logic. Our sample procedure contains (between BEGIN
and END) the source code from Listing 5.6:

ET_UTILIZATION = SELECT CARRID, CONNID,
AVG(TO_DECIMAL(SEATSOCC + SEATSOCC_B + SEATSOCC_F) /
TO_DECIMAL(SEATSMAX + SEATSMAX_B + SEATSMAX_F) * 100)
AS UTILIZATION FROM SFLIGHT
WHERE MANDT = :IV_MANDT
 AND CARRID = :IV_CARRID
GROUP BY CARRID, CONNID;

Listing 5.6 Source Code for Sample Procedure

The database procedure accesses the database table SFLIGHT. It determines
the percentage utilization for each flight and uses the aggregate function
AVG to determine the average value for each flight connection (described
by CARRID and CONNID). It assigns the result to the output parameter
ET_UTILIZATION.

In the case of the database table SFLIGHT, we intentionally chose not to
specify the database schema. Instead, we defined a default schema when
we created the procedure (see above). We recommend that you always
work with a default schema and never hard code a database schema in
SQLScript. Otherwise, it is highly likely that your source code will no lon-
ger run after a transport. Imagine that you want to transport the database
procedure DETERMINE_CONNECTION_UTILIZATION from the development
system ABD (with the schema SAPABD) to the test system ABQ (with the

Processing logic

Accessing database
schemas

232

5 Programming Options in SAP HANA

schema SAPABQ). If you work with a default schema, you can use schema
mapping (see Section 6.1.2) to ensure that the database procedure in the
test system accesses the table SAPABQ.SFLIGHT instead of the table SAPABD.
SFLIGHT. This will not work if you have hard coded the database schema
SAPABD in the source code.

Accessing Runtime Objects and Database Tables from Different
Database Schemas in a Procedure

If, within a database procedure, you want to access the runtime objects asso-
ciated with attribute views, analytic views, and/or calculation views, you can
use the public synonym of the objects for this purpose (see Section 2.4.3).

If, within a database procedure, you want to access database tables from dif-
ferent database schemas (which may very well be the case if you are working
with data replicated from multiple systems), use views to wrap these accesses.
Therefore, for example, create an attribute view for each database table and
then work with the public synonyms of the attribute views.

We have transferred the client as the input parameter IV_MANDT. We are
using the input parameter in the WHERE clause to ensure that the database
procedure returns client data only. This is necessary because SQLScript
does not have automatic client handling. Section 5.2.6 discusses appro-
priate alternatives to using an input parameter.

We wish to say a few words about case sensitivity. If, for example, you
use identifiers for tables or table columns without double quotation
marks, the system automatically converts your entry into upper case. If
you work with double quotation marks, you must bear case sensitivity
in mind. Since the ABAP Data Dictionary only recognizes upper case,
we recommend that you do not use upper and lower case in SQLScript
in the context of ABAP development. Refer to the information provided
in Section 5.3.

When you want to check the database procedure, choose Save and Vali-
date . When you want to activate the procedure, choose Save and
Activate (; see Figure 5.5). In both cases, you can check the Job Log
for any problems that have occurred.

When you activate a database procedure, the system creates the following
runtime objects in the database catalog:

Client handling

Case sensitivity

Validation and
activation

Runtime objects

233

Implementing Database Procedures 5.2

EE The database procedure itself.

EE One table type for each tabular input/output parameter. Consequently,
each procedure created in the Modeler perspective has its local table
types.

EE A public synonym for accessing the procedure.

Figure 5.7 shows the procedure created in the database catalog in the
schema _SYS_BIC, as well as the table type for our example.

Figure 5.7 Runtime Objects for a Database Procedure

When you want to test the database procedure, you can call it in the SQL
console. You use the CALL statement to call a database procedure. The
complete syntax is as follows:

CALL <proc_name> (<param_list>) [WITH OVERVIEW] [IN DEBUG MODE]

The CALL statement is followed by the name <proc_name> of the database
procedure. You then transfer the current parameters as a parameter list
<param_list>.

You can use the WITH OVERVIEW addition to write the result of the database
procedure to one or more physical database tables. The IN DEBUG MODE
addition is used for error analysis. Figure 5.8 shows an example of a call
for the database procedure DETERMINE_CONNECTION_UTILIZATION in the
SQL console.

Creating a Database Procedure in the “SAP HANA Development”
Perspective

Now that you have created your first database procedure in the Mod-
eler perspective, we wish to explain the alternative option of using the

Testing a database
procedure

234

5 Programming Options in SAP HANA

SAP HANA Development perspective (see Figure 5.9) to create database
procedures.

Figure 5.8 Testing a Database Procedure in the SQL Console

Figure 5.9 “SAP HANA Development” Perspective

You may be asking yourself the following question: Why are there two
options for creating procedures? Historically, the SAP HANA Development

Why are there
two options?

235

Implementing Database Procedures 5.2

perspective exists as of SAP HANA 1.0, Support Package Stack 5. In other
words, up to and including Support Package Stack 4, database procedures
could only be created in the Modeler perspective.

As of Support Package Stack 5, you can build applications on the basis
of SAP HANA Extended Application Services without the need for an
additional application server. In order to provide the best possible sup-
port to developers in this regard and when programming in SAP HANA,
SAP made the new SAP HANA Development perspective available for
Eclipse as of Support Package Stack 5.

If you create a database procedure in the SAP HANA Development
perspective, the system stores it as content in the SAP HANA Repository
(which is also the case when you use the Modeler perspective) and, when
you activate the database procedure, it generates the relevant runtime
objects for the procedure in the database catalog.

When compared with the Modeler perspective, the following two major
advantages are associated with using the SAP HANA Development per-
spective to create a database procedure:

EE In the SAP HANA Development perspective, you can define input and
output parameters with reference to local table types or with reference
to database tables and global table types. When you use the Modeler
perspective, separate table types are (as you have already seen) gener-
ated for each database procedure.

EE When you use the SAP HANA Development perspective, you can
debug database procedures. This function is not available to you when
you work with the Modeler perspective. We will discuss this in more
detail in Chapter 7.

However, some preparatory tasks need to be undertaken before you
can use the SAP HANA Development perspective. We will provide an
overview of these tasks next (further detailed information is available in
the SAP HANA Developer Guide):

EE SAP	HANA	Repository	Client	 	
The SAP HANA Development perspective works with a check-in/check-
out mechanism. This uses the SAP HANA Repository Client (see Section
2.4.1) to communicate with the SAP HANA Repository. In technical

Advantages

Preparatory tasks

236

5 Programming Options in SAP HANA

terms, the SAP HANA Repository Client is the program regi. If you
want to work with the SAP HANA Development perspective, you
must define the path for this program in SAP HANA Studio under the
following menu option: Window • Preferences • SAP HANA Devel-
opment • Repository Access.

EE System	connection	 	
You require a system connection to the HANA database. We described
the procedure for setting up a system connection in Section 2.4.3.

EE SAP	HANA	Repository	Workspace	 	
You require an SAP HANA Repository Workspace. This directory is located
on your PC’s or laptop’s hard drive. Generally, it lies within the Eclipse
workspace (see Section 2.4.1).

To create an SAP HANA Repository Workspace, choose New Reposi-
tory Workspace in the context menu for the SAP HANA Repositories
view.

EE Project	 	
You have to create a project and link this to the SAP HANA Repository
Workspace. To create a project, choose New • Project in the context
menu for the Project Explorer view.

To link the project with the SAP HANA Repository Workspace, choose
Team • Share Project… in the context menu for your project.

Now that you have completed your preparatory work, you can create
a database procedure in the SAP HANA Development perspective. To
do this, choose File • New • File. For the file name, use the name of the
database procedure followed by the file extension .procedure. You can
then use the CREATE PROCEDURE statement to define the database procedure
in a purely source code-based editor.

If you want to use tabular input and output parameters, you can refer
to database tables and global table types, or you can use CREATE TYPE to
define suitable local table types. The context menu for the project respec-
tively for the file created for the database procedure contains functions
for saving (Commit), checking (Check), and activating (Activate) the
database procedure in SAP HANA Repository.

Creating a
database

procedure

Additional
functions

237

Implementing Database Procedures 5.2

As already mentioned in Section 5.2.1, we are assuming that, in the future,
it will only be possible to create database procedures in the SAP HANA
Development perspective.

5.2.3 Using Variables

Now that you know how to create a database procedure, we wish to
explain how to use variables. SQLScript distinguishes between table
variables and scalar variables.

Table Variables

Table variables can be input/output parameters or local variables. They
are based, either explicitly or implicitly, on a table type and can be linked
to the result of an SQL statement or CE Plan Operator (see Section 5.2.4)
by means of the equals sign “=”. The contents of the table variables are
accessed using the relevant variable name supplemented by the prefix
“:”. This occurs in the same way in which database tables are accessed.
We will explain this further below by means of an example.

If you want to define a tabular input or output parameter, you must type
this explicitly. When you create a database procedure in the Modeler
perspective, the system automatically creates the necessary table types for
each procedure. If, on the other hand, you create a database procedure in
the SAP HANA Development perspective, you can also reference existing
database tables or table types during the typing process.

When you assign the result of an SQL statement or CE Plan Opera-
tor to a tabular output parameter, the system checks whether both are
type-compatible.

You must not (or rather cannot) explicitly type a local table variable. Instead,
the system automatically derives the required table type from the SQL
statement or CE Plan Operator that has been assigned.

We now wish to use the example in Listing 5.7 to explain how to use table
variables. We have intentionally omitted some details from the source
code (for example, restricting the selection to one client):

CREATE PROCEDURE EXAMPLE_TABLE_VARIABLES (OUT
ET_FLIGHTS TT_FLIGHTS) LANGUAGE SQLSCRIPT SQL SECURITY

Explicit typing

Implicit typing

Example of
table variables

238

5 Programming Options in SAP HANA

INVOKER READ SQL DATA AS
BEGIN
 LT_FLIGHTS = SELECT CARRID, CONNID, FLDATE
 FROM SFLIGHT;
 ET_FLIGHTS = SELECT * FROM :LT_FLIGHTS;
END;

Listing 5.7 Using Table Variables

In this example, a SELECT statement is used to assign the columns CAR-
RID, CONNID, and FLDATE in the database table SFLIGHT to the local table
variable LT_FLIGHTS, which is implicitly typed by the system.

Then, a second SELECT statement is used to assign the contents of the
table variable LT_FLIGHTS to the table variable ET_FLIGHTS, which is an
output parameter and is explicitly typed. It uses the table type TT_FLIGHTS.

Scalar Variables

Similar to table variables, scalar variables can be input/output parameters
or local variables (note the restriction associated with output parameters
in the Modeler perspective). They are based on a simple data type.
Values are assigned using the assignment operator “:=”. Similar to table
variables, the value of scalar variables is accessed using the variable name
supplemented by the prefix “:”.

You must always explicitly type a scalar variable. During the typing
process, you can refer to the SQL data types supported by SAP HANA.

We now wish to use a simple example to explain how to use scalar vari-
ables. Once again, we have intentionally omitted some details from the
source code in Listing 5.8.

CREATE PROCEDURE EXAMPLE_SCALAR_VARIABLES (IN
IV_CUSTOMID NVARCHAR(8) , IN IV_ADDITIONAL_DISCOUNT
INTEGER) LANGUAGE SQLSCRIPT SQL SECURITY INVOKER
READS SQL DATA AS
 LV_DISCOUNT INTEGER;
 LV_NEW_DISCOUNT INTEGER;
BEGIN
 SELECT TO_INT(DISCOUNT) INTO LV_DISCOUNT
 FROM SCUSTOM WHERE ID = :IV_CUSTOMID;

Typing

Example of
scalar variables

239

Implementing Database Procedures 5.2

 LV_NEW_DISCOUNT := :LV_DISCOUNT +
 :IV_ADDITIONAL_DISCOUNT;
END;

Listing 5.8 Using Scalar Variables

The database procedure used in this example increases the customer
discount by a specific percentage. It uses multiple scalar variables for this
purpose. The variables IV_CUSTOMID and IV_ADDITIONAL_DISCOUNT are
input parameters, while the variables LV_DISCOUNT and LV_NEW_DISCOUNT
are local variables.

5.2.4 Calculation Engine Plan Operator

In this section, we will discuss CE Plan Operators, which you can use in
database procedures as an alternative to SQL statements.

Introductory Example

To help you understand the concept of CE Plan Operators, we will consider
a very simple database procedure for determining the sales revenue of
all flight connections associated with an airline. When an SQL statement
is implemented, this database procedure looks as shown in Listing 5.9:

ET_PAYMENTSUM = SELECT CARRID, CONNID, CURRENCY,
 SUM(PAYMENTSUM) AS PAYMENTSUM
 FROM SFLIGHT
 WHERE MANDT = :IV_MANDT AND CARRID = :IV_CARRID
 GROUP BY CARRID, CONNID, CURRENCY;

Listing 5.9 Implementation Using an SQL Statement

The SQL statement selects data from the table SFLIGHT. This statement
uses a WHERE clause to restrict the selection to the specified airline. It also
uses the aggregate function SUM combined with a GROUP BY expression to
add the sales revenue for each airline, connection, and currency.

When CE Plan Operators are used, the same database procedure looks
like the one shown in Listing 5.10:

LT_SFLIGHT = CE_COLUMN_TABLE("SFLIGHT");
LT_SFLIGHT_PROJECTION = CE_PROJECTION(:LT_SFLIGHT,
 ["MANDT", "CARRID", "CONNID", "CURRENCY",

Implementation
using an SQL
statement

Implementation
using CE Plan
Operators

240

5 Programming Options in SAP HANA

 "PAYMENTSUM"], '"MANDT" = '':IV_MANDT'' AND
 "CARRID" = '':IV_CARRID'' ');
LT_SFLIGHT_AGGREGATION = CE_AGGREGATION(
 :LT_SFLIGHT_PROJECTION, [SUM("PAYMENTSUM") AS
 "PAYMENTSUM"], ["CARRID", "CONNID", "CURRENCY"]);
ET_PAYMENTSUM = CE_PROJECTION(:LT_SFLIGHT_AGGREGATION,
 ["CARRID", "CONNID", "CURRENCY", "PAYMENTSUM"]);

Listing 5.10 Implementation Using CE Plan Operators

The database procedure uses different CE Plan Operators, which are
linked to one another by means of table variables:

1. First, the database procedure uses the CE Plan Operator CE_COLUMN_
TABLE to bind the table variable LT_SFLIGHT to the database table
SFLIGHT.

2. It then uses the CE Plan Operator CE_PROJECTION to restrict the selec-
tion to the columns MANDT, CARRID, CONNID, and CURRENCY, as well as
to restrict the selection to the connections associated with the specified
airline. The table variable LT_SFLIGHT, which was bound in the first
step, is used as the input, while the table variable LT_SFLIGHT_PROJEC-
TION is used as the output.

3. The CE Plan Operator CE_AGGREGATION adds the sales revenue for each
airline, connection, and currency. Here, the table variable LT_SFLIGHT_
PROJECTION is used as the input and the table variable LT_SFLIGHT_
AGGREGATION is used as the output.

4. In a final step, the database procedure uses the CE Plan Operator
CE_PROJECTION to perform a projection again. This projection is neces-
sary because (due to the way the CE Plan Operator CE_AGGREGATION
works) the sequence of the columns in the table variable LT_SFLIGHT_
AGGREGATION does not correspond to the sequence of the columns in
the output parameter ET_PAYMENTSUM.

At first glance, the use of CE Plan Operators to implement the database
procedure looks much more complicated than using SQL statements (or,
in our example, exactly one SQL statement). However, CE Plan Operators
provide functions that are not available with SQL statements. In some
cases, executing database procedures that use CE Plan Operators is more

SQL versus CE
Plan Operators

241

Implementing Database Procedures 5.2

efficient than executing equivalent database procedures that use SQL
statements. We will return to this at the end of this section.

CE Plan Operators are implemented directly in the calculation engine.
They are divided into data source access operators, relational operators,
and special operators. We now wish to use specific examples to describe
the CE Plan Operators currently available. To this end, we will com-
pare equivalent implementations that use SQL statements and CE Plan
Operators. We will omit some details initially (in particular, we will not
restrict the selection in many of our examples to just one client, because
this generally requires an additional call involving the CE Plan Operator
CE_PROJECTION).

For a detailed description of CE Plan Operators (including their complete
syntax), see the SAP HANA SQLScript Reference.

Data Source Access Operators

You can use data source access operators to bind table variables to a data-
base table or view. You are already familiar with the CE Plan Operator
CE_COLUMN_TABLE, which you use to link a table variable to a database
table (see Listing 5.11). You also have the option to perform a projection.
The database table must be located in the column store.

/* Implementation using SQL */
ET_AIRLINES = SELECT CARRID, CARRNAME, CURRCODE
 FROM SCARR;

/* Implementation using CE Plan Operators */
ET_AIRLINES = CE_COLUMN_TABLE("SCARR", ["CARRID",
 "CARRNAME", "CURRCODE"]);

Listing 5.11 Using the CE Plan Operator CE_COLUMN_TABLE

You can use the CE Plan Operator CE_JOIN_VIEW to link a table variable to
an attribute view (see Listing 5.12). You also have the option to perform
a projection.

/* Implementation using SQL */
ET_AIRLINES = SELECT CARRID, CARRNAME, CURRCODE FROM
 "test.a4h.book.chapter05::AT_AIRLINES";

Available CE
Plan Operators

CE_COLUMN_
TABLE

CE_JOIN_VIEW

242

5 Programming Options in SAP HANA

/* Implementation using CE Plan Operators */
ET_AIRLINES = CE_JOIN_VIEW
 ("_SYS_BIC"."test.a4h.book.chapter05/AT_AIRLINES",
 ["CARRID", "CARRNAME", "CURRCODE"]);

Listing 5.12 Using the CE Plan Operator CE_JOIN_VIEW

You can use the CE Plan Operator CE_OLAP_VIEW to link a table variable to
an analytic view (see Listing 5.13). Note that you have to use at least one
aggregate function here. (At present, the following aggregate functions
are supported: COUNT, SUM, MIN, and MAX. The aggregate function AVG is
not supported at present.)

/* Implementation using SQL */
ET_PAYMENTSUM = SELECT CARRID, CONNID, CURRENCY,
 SUM(PAYMENTSUM) AS PAYMENTSUM FROM
 "test.a4h.book.chapter05::AN_PAYMENTSUM"
 GROUP BY CARRID, CONNID, CURRENCY;

/* Implementation using CE Plan Operators */
ET_PAYMENTSUM = CE_OLAP_VIEW
 ("_SYS_BIC"."test.a4h.book.chapter05/AN_PAYMENTSUM",
 ["CARRID", "CONNID", "CURRENCY",
 SUM("PAYMENTSUM")]);

Listing 5.13 Using the CE Plan Operator CE_OLAP_VIEW

You can use the CE Plan Operator CE_CALC_VIEW to access calculation
views. Since this is similar to the CE Plan Operator CE_JOIN_VIEW, we
will not provide an example here.

Relational operators

Relational operators make the operations typically associated with rela-
tional algebra available to you. They work on the table variables that you
previously bound using the data source access operators, for example.

You use the CE Plan Operator CE_JOIN to join two table variables (see
Listing 5.14). This result is an inner join. Note that the columns used in
the join condition (MANDT and CARRID in the example) must have the
same name in both table variables. You also have the option to perform

CE_OLAP_VIEW

CE_CALC_VIEW

CE_JOIN

243

Implementing Database Procedures 5.2

a projection. If you do this, the projection list must contain the columns
used for the join.

/* Implementation using SQL */
ET_CONNECTIONS = SELECT C.MANDT, C.CARRID, A.CARRNAME,
 C.AIRPFROM, C.AIRPTO
 FROM SPFLI AS C INNER JOIN SCARR AS A
 ON A.MANDT = C.MANDT AND A.CARRID = C.CARRID;

/* Implementation using CE Plan Operators */
LT_SPFLI = CE_COLUMN_TABLE("SPFLI");
LT_SCARR = CE_COLUMN_TABLE("SCARR");
ET_CONNECTIONS = CE_JOIN(:LT_SPFLI, :LT_SCARR,
 ["MANDT", "CARRID"], ["MANDT", "CARRID", "CARRNAME",
 "AIRPFROM", "AIRPTO"]);

Listing 5.14 Using the CE Plan Operator CE_JOIN

If you want to execute a left outer join or a right outer join instead of an
inner join, the CE Plan Operators CE_LEFT_OUTER_JOIN and CE_RIGHT_
OUTER_JOIN are available for this purpose. The syntax corresponds to the
CE Plan Operator CE_JOIN. At present, a full outer join is not available as
a CE Plan Operator.

You can use the CE Plan Operator CE_PROJECTION to perform a projec-
tion on a table variable and, optionally, to filter the records (see Listing
5.15). If necessary, you can rename the columns and use the CE Plan
Operator CE_CALC to insert expressions (both of which we will describe
in more detail).

/* Implementation using SQL */
ET_CONNECTIONS = SELECT MANDT, CARRID, CONNID,
 AIRPFROM, AIRPTO FROM SPFLI
 WHERE MANDT = :IV_MANDT AND CARRID = :IV_CARRID;

/* Implementation using CE Plan Operators */
LT_SPFLI = CE_COLUMN_TABLE("SPFLI");
ET_CONNECTIONS = CE_PROJECTION(:LT_SPFLI, ["MANDT",
 "CARRID", "CONNID", "AIRPFROM", "AIRPTO"],
 '"MANDT" = '':IV_MANDT'' AND "CARRID" =
 '':IV_CARRID''');

Listing 5.15 Using the CE Plan Operator CE_PROJECTION

CE_PROJECTION

244

5 Programming Options in SAP HANA

You can use the CE Plan Operator CE_AGGREGATION to calculate aggregates
on a table variable (see Listing 5.16). The aggregate functions available
to you when you use the CE Plan Operator CE_OLAP_VIEW are also avail-
able to you here. You also have the option to specify columns to group
the result correspondingly. If necessary, you can rename the columns.

Note that the CE Plan Operator CE_AGGREGATION implicitly performs a
projection. Columns that are not used for aggregation or grouping pur-
poses do not form part of the result.

/* Implementation using SQL */
ET_PAYMENTSUM = SELECT SUM(PAYMENTSUM) AS PAYMENTSUM,
 CARRID, CONNID, CURRENCY
 FROM SFLIGHT GROUP BY CARRID, CONNID, CURRENCY;

/* Implementation using CE Plan Operators */
LT_SFLIGHT = CE_COLUMN_TABLE("SFLIGHT");
ET_PAYMENTSUM = CE_AGGREGATION(:LT_SFLIGHT,
 [SUM("PAYMENTSUM") AS "PAYMENTSUM"],
 ["CARRID", "CONNID", "CURRENCY"]);

Listing 5.16 Using the CE Plan Operator CE_AGGREGATION

The CE Plan Operator CE_UNION_ALL is equivalent to the UNION ALL SQL
statement and enables you to unite two table variables (see Listing 5.17).

/* Implementation using SQL */
ET_AIRLINES = SELECT * FROM SCARR
 UNION ALL
 SELECT * FROM SCARR;

/* Implementation using CE Plan Operators */
LT_SCARR1 = CE_COLUMN_TABLE("SCARR");
LT_SCARR2 = CE_COLUMN_TABLE("SCARR");
ET_AIRLINES = CE_UNION_ALL(:LT_SCARR1, :LT_SCARR2);

Listing 5.17 Using the CE Plan Operator CE_UNION_ALL

You can use the CE Plan Operator CE_CALC within other relational opera-
tors in order to analyze expressions (see Listing 5.18). Functions associ-
ated with date processing, mathematics, and character string processing,
among others, are available here. (A complete list of supported functions

CE_AGGREGATION

CE_UNION_ALL

CE_CALC

245

Implementing Database Procedures 5.2

is available in the SAP HANA SQLScript Reference.) Typically, the result of
CE_CALC is an additional column in the result set.

/* Implementation using SQL */
ET_CONNECTIONS = SELECT CARRID, CONNID, FLTYPE,
 (CASE FLTYPE WHEN 'X' THEN 'Charter' ELSE
 'Scheduled' END) AS TEXT_FLTYPE FROM SPFLI;

/* Implementation using CE Plan Operators */
LT_SPFLI = CE_COLUMN_TABLE("SPFLI");
ET_CONNECTIONS = CE_PROJECTION(:LT_SPFLI, ["CARRID",
 "CONNID", "FLTYPE", CE_CALC('if("FLTYPE"=''X'',
 ''Charter'', ''Scheduled'')', NVARCHAR(10)) AS
 "TEXT_FLTYPE"]);

Listing 5.18 Using the CE Plan Operator CE_CALC

Other Functions

In addition to data source access operators and relational operators, the
calculation engine currently makes the following three additional func-
tions available: CE_VERTICAL_UNION, CE_CONVERSION, and TRACE. We will
now discuss the first two CE Plan Operators in greater detail. We will
discuss the third function, the CE Plan Operator TRACE, in Chapter 7.

You can use the CE Plan Operator CE_VERTICAL_UNION to connect columns
in multiple table variables to each other (for example, if this cannot be done
using a join, see Listing 5.19). If necessary, you can rename the columns.

It is important to note the sort order of the table variables used. Other-
wise, you may receive some unexpected results.

LT_SCUSTOM = CE_COLUMN_TABLE("SCUSTOM");
LT_NAME = CE_PROJECTION(:LT_SCUSTOM, ["NAME"]);
LT_ADDRESS = CE_PROJECTION(:LT_SCUSTOM, ["POSTCODE",
 "CITY", "COUNTRY"]);
ET_CUSTOMERS = CE_VERTICAL_UNION(:LT_NAME, ["NAME"],
 :LT_ADDRESS, ["POSTCODE", "CITY", "COUNTRY"]);

Listing 5.19 Using the CE Plan Operator CE_VERTICAL_UNION

CE_VERTICAL_
UNION

246

5 Programming Options in SAP HANA

Tip

You could also implement the example in Listing 5.19 without using
CE_VERTICAL_UNION.

The CE Plan Operator CE_CONVERSION enables you to perform quantity
and currency conversions. The example shown in Listing 5.20 uses the CE
Plan Operator CE_CONVERSION to convert the sales revenue associated with
flight connections into any currency (passed to the database procedure).

LT_SFLIGHT = CE_COLUMN_TABLE("SFLIGHT");
LT_SFLIGHT_PROJECTION = CE_PROJECTION(:LT_SFLIGHT,
 ["MANDT", "CARRID", "CONNID", "CURRENCY",
 "PAYMENTSUM"], '"MANDT" = '':IV_MANDT'' AND
 "CARRID" = '':IV_CARRID''');
LT_PAYMENTSUM = CE_AGGREGATION(:LT_SFLIGHT_PROJECTION,
 [SUM("PAYMENTSUM") AS "PAYMENTSUM"],
 ["CARRID", "CONNID", "CURRENCY"]);
LT_PAYMENTSUM_CONVERTED =
 CE_CONVERSION(:LT_PAYMENTSUM,
 [FAMILY = 'currency',
 METHOD = 'ERP',
 OUTPUT = 'passed_through, source_unit, unconverted,
 output_unit, converted',
 TARGET_UNIT = :IV_TARGET_UNIT,
 REFERENCE_DATE = :IV_REFERENCE_DATE,
 SOURCE_UNIT_COLUMN = "CURRENCY",
 OUTPUT_UNIT_COLUMN = "CURRENCY_CONVERTED",
 CLIENT = :IV_MANDT,
 CONVERSION_TYPE = :IV_CONVERSION_TYPE],
 ["PAYMENTSUM" AS "PAYMENTSUM_CONVERTED"]);
ET_PAYMENTSUM =
 CE_PROJECTION(:LT_PAYMENTSUM_CONVERTED, ["CARRID",
 "CONNID", "CURRENCY", "PAYMENTSUM",
 "CURRENCY_CONVERTED", "PAYMENTSUM_CONVERTED"]);

Listing 5.20 Using the CE Plan Operator CE_CONVERSION

SQL Versus CE Plan Operators

Now that you have learned which CE Plan Operators are available and
how their use differs from using SQL statements, you may be asking
yourself which is better, SQL or CE Plan Operators?

CE_CONVERSION

247

Implementing Database Procedures 5.2

The answer to this question (as is often the case) is, “It depends.” We
now wish to give you some background information that will help you
to choose whether SQL statements or CE Plan Operators are, at any given
time, best suited to your requirements.

Since SQL statements and CE Plan Operators differ in terms of their
functional scope, you may not always have a choice. Some functions are
only available with SQL statements. Examples include the union involving
duplicate elimination (UNION), the join across more than two tables (which
can, however, be reproduced by multiple calls of the CE Plan Operator
CE_JOIN, which are linked with table variables) or the full outer join. Con-
versely, other functions are only available with CE Plan Operators. The
CE Plan Operators CE_VERTICAL_UNION, CE_CONVERSION, and TRACE do not
have an equivalent in SQL. Consequently, you must use SQL statements to
meet some of your requirements, and CE Plan Operators to meet others.

As already described at the start of this section, CE Plan Operators are, to
some extent, more efficient than equivalent SQL statements because the
system performs other optimizations for CE Plan Operators. However,
particular care is required here because the semantics may change in
comparison to SQL (and CE Plan Operators and SQL statements are then
no longer semantically equivalent). We also wish to illustrate this using
a simple example.

The example compares two implemented calculation views that aggregate
booking revenue. Internally, calculation views use database procedures
(see Section 4.3.4). First, we will take a look at the source code for both
calculation views.

The calculation view EXAMPLE_WITH_SQL in Listing 5.21 simply uses a
SELECT statement:

var_out = SELECT CARRID, CONNID, SUM(PAYMENTSUM) AS
 PAYMENTSUM FROM SFLIGHT GROUP BY CARRID, CONNID;

Listing 5.21 Implementation Using SQL

On the other hand, the calculation view EXAMPLE_WITH_CE_FUNCTIONS
in Listing 5.22 is implemented using CE Plan Operators. It uses the

Functional scope

Optimizations

Implementation
using SQL

Implementation
using CE Plan
Operators

248

5 Programming Options in SAP HANA

following three CE Plan Operators: CE_COLUMN_TABLE, CE_PROJECTION,
and CE_AGGREGATION.

LT_SFLIGHT = CE_COLUMN_TABLE("SFLIGHT");
LT_SFLIGHT_PROJECTION = CE_PROJECTION(:LT_SFLIGHT,
 ["MANDT", "CARRID", "CONNID", "PAYMENTSUM"]);
LT_SFLIGHT_AGGREGATED =
 CE_AGGREGATION(:LT_SFLIGHT_PROJECTION,
 [SUM("PAYMENTSUM") AS "PAYMENTSUM"], ["CARRID",
 "CONNID"]);
var_out = CE_PROJECTION(:LT_SFLIGHT_AGGREGATED,
 ["CARRID", "CONNID", "PAYMENTSUM"]);

Listing 5.22 Implementation Using CE Plan Operators

At first glance, it seems that both calculation views have the same func-
tion. Is that the case?

We will call both calculation views twice. The first time, we will select the
fields CARRID, CONNID, and PAYMENTSUM. The second time, we will select
only the fields CARRID and PAYMENTSUM:

EE First SQL statement
SELECT CARRID, CONNID, PAYMENTSUM FROM <view_name>

EE Second SQL statement
SELECT, CARRID, PAYMENTSUM from <view_name>

Figure 5.10 compares the various calls. Clearly, the two calculation views
behave differently in the second call. While the system performs only a
projection (on the fields CARRID and PAYMENTSUM) for the calculation view
implemented using a SELECT statement, it also removes the grouping
according to flight connection for the calculation view implemented using
CE Plan Operators. Therefore, when a call is made using SELECT, CAR-
RID, PAYMENTSUM from <view_name>, the second calculation view groups
according to the airline instead of according to the airline and connection.
This is more efficient. However, it also changes the semantics. You should
keep the effects of optimization in mind if you are choosing between using
SQL or CE Plan Operators to implement a given requirement.

Comparing both
implementations

249

Implementing Database Procedures 5.2

Figure 5.10 SQL Versus CE Plan Operators

SQL and CE Plan Operators are optimized independently, so you should
avoid using a mixture of SQL statements and CE Plan Operators as far
as possible for performance reasons. This recommendation applies both
within a database procedure and across database procedures that call one
another (because, in this case, the system generates a multilevel calcula-
tion model across the database procedures).

To determine whether implementing a database procedure is more suitable
than another implementation for performance reasons, we recommend
using the tools described in Chapter 7.

Performance and
using a mixture
of SQL and CE
Plan Operators

250

5 Programming Options in SAP HANA

5.2.5 Imperative Enhancements

If necessary, you can also work with imperative language elements in
SQLScript, which we will briefly discuss here for the sake of completeness.
In general, however, you should observe the following rule for imperative
enhancements: “As much as necessary, but as little as possible.”

In particular, SQLScript is used to move data-intensive calculations to
the database. SAP HANA should process data-intensive calculations in
parallel as much as possible. If you work with imperative enhancements,
this may prevent parallelization.

Control Structures

You can use control structures to control (orchestrate) a database pro-
cedure’s process flow. SQLScript supports loops and case distinctions.

The statements WHILE... DO... END WHILE and FOR... IN... DO... END
FOR are available for loop processing. If you want to end the current
loop pass during loop processing, you can use the CONTINUE statement
for this purpose. If you want to fully exit a loop, you can use the BREAK
statement for this purpose.

You can use the statement IF... THEN... ELSEIF... ELSE... END IF
to implement case distinctions.

We now wish to use the sample database procedure in Listing 5.23 to
illustrate the use of control structures.

LT_SPFLI = SELECT MANDT, CARRID, CONNID FROM SPFLI
 WHERE MANDT = :IV_MANDT
 AND AIRPFROM = :IV_AIRPFROM
 AND AIRPTO = :IV_AIRPTO;
LV_DAYS := 0;
WHILE LV_DAYS <= IV_MAX_DAYS DO
 ET_FLIGHTS = SELECT P.CARRID, P.CONNID, F.FLDATE
 FROM :LT_SPFLI AS P
 INNER JOIN SFLIGHT AS F ON F.MANDT = P.MANDT AND
 F.CARRID = P.CARRID AND F.CONNID = P.CONNID
 WHERE TO_DATE(F.FLDATE) >=
 ADD_DAYS (TO_DATE(:IV_FLDATE), -1 * :LV_DAYS)
 AND TO_DATE(F.FLDATE) <=
 ADD_DAYS (TO_DATE(:IV_FLDATE), :LV_DAYS);

Loops

Case distinctions

Example of control
structures

251

Implementing Database Procedures 5.2

 SELECT COUNT(*) INTO LV_CONNECTION_FOUND
 FROM :ET_FLIGHTS;
 IF :LV_CONNECTION_FOUND > 0 THEN
 BREAK;
 ELSE
 LV_DAYS := :LV_DAYS + 1;
 END IF;
END WHILE;

Listing 5.23 Control Structures in SQLScript

The database procedure determines the flights available between two given
airports (IV_AIRPFROM and IV_AIRPTO) for a given flight date (IV_FLDATE).
If (and only if) no flight is available for the given flight date, the database
procedure tries to find flights one day before and one day after. If (and only
if) no flights are available for this date, the database procedure tries to find
flights two days before and two days after. The input parameter IV_MAX_DAYS
controls the maximum number of days searched before or after a given
flight date. The database procedure uses a WHILE... DO... END WHILE loop
combined with an IF... THEN... ELSE... END IF case distinction. It uses
the BREAK statements to exit the loop prematurely, if necessary.

Cursor Processing

Similarly, as described in Section 3.2.2, you can also work with cursors
in SQLScript.

The example in Listing 5.24 shows how to define a cursor in SQLScript
and then use it to read data.

CURSOR LT_CONNECTIONS (LV_MANDT NVARCHAR(3),
 LV_CARRID NVARCHAR(3)) FOR
 SELECT CARRID, CONNID FROM SPFLI
 WHERE MANDT = :LV_MANDT AND CARRID = :LV_CARRID;
BEGIN
 FOR LS_CONNECTIONS AS LT_CONNECTIONS(:IV_MANDT,
 :IV_CARRID) DO
 /* DO SOMETHING */
 ...
 END FOR;
END;

Listing 5.24 Cursor Processing with SQLScript

Example of cursor
processing

252

5 Programming Options in SAP HANA

Only use cursors if there is no other way to implement the required
processing logic. The HANA database cannot easily optimize database
procedures that contain cursors.

Dynamic SQL

You can use dynamic SQL to construct SQL statements at runtime. The
EXEC and EXECUTE IMMEDIATE statements are available for this purpose.

The example in Listing 5.25 shows how you can construct a SELECT state-
ment at runtime in order to determine an airline’s flight connections. In
this example, it would not be absolutely necessary to use dynamic SQL.

EXECUTE IMMEDIATE 'SELECT * FROM SPFLI
 WHERE MANDT = ''' || :IV_MANDT || ''' AND CARRID =
 ''' || :IV_CARRID || '''';

Listing 5.25 Dynamic SQL

We advise you to refrain, as much as possible, from using dynamic SQL
because it has limited optimization options. A database procedure that
contains dynamic SQL may need to be recompiled for each call. With
dynamic SQL, there is also a risk of SQL injections.

5.2.6 Accessing System Fields

In Section 5.2.2, we used an input parameter to transfer the client to the
database procedure for data selection purposes. In this section, we wish
to explain which system fields are available to you in database procedures
and how you can use them, for example, to implement client handling.

As an ABAP programmer, you are no doubt familiar with the structure
SYST and the option of using the variable SY to query different system
fields while a program is running. Table 5.1 provides an overview of some
important system fields or functions for accessing the relevant informa-
tion. In the HANA database, you do not use system fields to access the
relevant information (which is the case in SAP NetWeaver AS ABAP).
Instead, you use special functions.

Example of
dynamic SQL

Overview of
system fields

253

Implementing Database Procedures 5.2

Description The System Field or Function to Be Accessed

Application user SELECT SESSION_CONTEXT
('APPLICATIONUSER') FROM DUMMY

In ABAP: SY-UNAME

User of the current
statement

SELECT CURRENT_USER FROM DUMMY

In ABAP: SY-UNAME

Comment: Has the value _SYS_REPO if the
authorization check is performed on the basis of the
creator of the procedure.

User of the current
connection

SELECT CURRENT_USER FROM DUMMY

In ABAP: The user <SAP>SID is used to establish the
connection to the database.

Client SELECT SESSION_CONTEXT('CLIENT') FROM
DUMMY

In ABAP: SY-MANDT

Language SELECT SESSION_CONTEXT('LOCALE') FROM
DUMMY

In ABAP: No direct equivalent

Language (SAP
format)

SELECT SESSION_CONTEXT('LOCALE_SAP')
FROM DUMMY

In ABAP: SY-LANGU

System date SELECT CURRENT_DATE FROM DUMMY

In ABAP: SY-DATUM (based on the current
application server)

System time SELECT CURRENT_TIME FROM DUMMY

In ABAP: SY-UZEIT (based on the current
application server)

Connection ID SELECT SESSION_CONTEXT('CONN_ID') FROM
DUMMY

In ABAP: No direct equivalent

Table 5.1 Accessing System Fields or Functions

In conjunction with Table 5.1, and in particular when using CURRENT_USER
and SESSION_USER, note that SAP NetWeaver AS ABAP uses a technical
database user to communicate with the database (see Section 3.1.2). If

APPLICATION
USER

254

5 Programming Options in SAP HANA

you need to access the user logged on to the application server, you must
use APPLICATIONUSER for this purpose.

5.2.7 Error Handling

We now wish to discuss error handling in the context of database proce-
dures. We will explain both how to catch standard exceptions and how
to trigger custom exceptions.

Catching Standard Exceptions

The DECLARE... HANDLER FOR... statement enables you to define an
exception handler for a particular situation, which you can describe
generically as SQLEXCEPTION or using an SQL error code (see also http://
help.sap.com/hana/html/_jsql_error_codes.html) or a user-defined condition.
Listing 5.26 shows an example of this:

 DECLARE SOME_ERROR CONDITION
 FOR SQL_ERROR_CODE 1299;
 DECLARE EXIT HANDLER FOR SOME_ERROR RESIGNAL
 SET MESSAGE_TEXT = 'Carrier not found';
 SELECT CARRID INTO LV_CARRID FROM "SCARR"
 WHERE MANDT = :IV_MANDT
 AND CARRID = :IV_CARRID;

Listing 5.26 Exception Handler in SQLScript

First, this example declares a user-defined condition SOME_ERROR, which
references SQL error code 1299 (No data found). If the SELECT state-
ment does not find a data record in the table SCARR, the system starts
the subsequently declared exception handler, which uses the RESIGNAL
command supplemented by the message text 'Carrier not found' to
pass the exception to the caller of the database procedure.

Triggering Custom Exceptions

SQLScript also gives you the option to trigger custom exceptions with
user-specific SQL error codes. User-specific error codes lie within the
following range: 10000 to 19999. An example is shown in Listing 5.27.

 DECLARE CARRIER_1_NOT_FOUND CONDITION
 FOR SQL_ERROR_CODE 10001;

Exception handler

User-specific
error codes

255

Using Procedures in ABAP 5.3

 DECLARE CARRIER_2_NOT_FOUND CONDITION
 FOR SQL_ERROR_CODE 10002;
 SELECT COUNT(CARRID) INTO LV_COUNTER1 FROM "SCARR"
 WHERE MANDT = :IV_MANDT
 AND CARRID = :IV_CARRID1;
 IF :LV_COUNTER1 = 0 THEN
 SIGNAL CARRIER_1_NOT_FOUND;
 END IF;
 SELECT COUNT(CARRID) INTO LV_COUNTER2 FROM "SCARR"
 WHERE MANDT = :IV_MANDT
 AND CARRID = :IV_CARRID2;
 IF :LV_COUNTER2 = 0 THEN
 SIGNAL CARRIER_2_NOT_FOUND;
 END IF;

Listing 5.27 User-Specific Error Codes in SQLScript

In this example, the system triggers error code 10001 if the airline IV_CAR-
RID1 does not exist and error code 10002 if the airline IV_CARRID2 does
not exist.

In error handling, keep in mind that database queries are not necessar-
ily executed in the sequence in which they occur in the source code.
Parallelization is also possible. Therefore, in this example, it is entirely
conceivable that the second SELECT statement is executed even though
IV_CARRID1 does not exist.

5.3 Using Procedures in ABAP

Now that you know what SQLScript is and how you can use it to imple-
ment database procedures and calculation views, we wish to explain how
to call database procedures from ABAP. Here, we distinguish between
the following two options:

EE Access using Native SQL and ABAP Database Connectivity (ADBC, see also
Chapter 3)

EE Use of database procedure proxies

As of ABAP release 7.0 and SAP Kernel 7.20, it is possible to use ADBC
to call database procedures in SAP HANA. Database procedure proxies

Parallelization

Call options

Prerequisites

256

5 Programming Options in SAP HANA

are available as of release 7.4. The following two prerequisites exist here:
You must use SAP HANA as the primary database, and you must have
created the called database procedures in the SAP HANA Repository (the
latter should be a rule.).

5.3.1 Access Using Native SQL

As already described in Section 5.2.2, the system generates different
runtime objects in the schema _SYS_BIC when activating a database
procedure. It also generates a public synonym. Here, you can use Native
SQL to access the database procedure from ABAP.

However, the use of Native SQL to call a database procedure is relatively
time-consuming and prone to errors. Later on in this section, you will
see how you can only use temporary tables to exchange tabular input
and output parameters with the database procedure. Furthermore, SAP
NetWeaver AS ABAP does not detect syntax errors in Native SQL state-
ments until runtime. For more information, refer to the explanations
provided in Chapter 3.

We will now use several examples to provide a detailed description of how
to use Native SQL to access database procedures. First, we will consider
a database procedure that determines the name of an airline on the basis
of the ID. For the remaining examples, we will revert to the database
procedures from Section 5.1.1.

Example 1: Calling a Database Procedure

If you use ADBC to call a database procedure, the class CL_SQL_STATEMENT
makes the method EXECUTE_PROCEDURE available. You can use this as long
as a database procedure does not have a tabular input/output parameter.

The program ZR_A4H_CHAPTER5_CARRNAME_ADBC shows an example of the
EXECUTE_PROCEDURE method (see Listing 5.28). It calls the database pro-
cedure DETERMINE_CARRNAME, which has the following input and output
parameters:

EE IV_MANDT (client)

EE IV_CARRID (ID of an airline)

EE EV_CARRNAME (name of an airline)

Disadvantages
of Native SQL

Examples

Sample call

257

Using Procedures in ABAP 5.3

PARAMETERS: p_carrid TYPE s_carr_id.

DATA: lo_sql_statement TYPE REF TO cl_sql_statement,
 lv_carrname TYPE s_carrname.

TRY.
 " Generate SQL statement object
 lo_sql_statement =
 cl_sql_connection=>get_connection(
)->create_statement().

 " Set parameter
 lo_sql_statement->set_param(data_ref =
 REF #(sy-mandt)
 inout = cl_sql_statement=>c_param_in).
 lo_sql_statement->set_param(data_ref =
 REF #(p_carrid)
 inout = cl_sql_statement=>c_param_in).
 lo_sql_statement->set_param(data_ref =
 REF #(lv_carrname)
 inout = cl_sql_statement=>c_param_out).

 " Execute database procedure
 lo_sql_statement->execute_procedure(
 '"test.a4h.book.chapter05::DETERMINE_CARRNAME"').

 CATCH cx_sql_exception INTO DATA(lo_ex).
 " Error handling
 WRITE: | { lo_ex->get_text() } |.
ENDTRY.

WRITE: / lv_carrname.

Listing 5.28 Using Native SQL to Call a Database Procedure

First, the program generates an instance of the class CL_SQL_STATEMENT.
Then, it calls the method SET_PARAM to bind the input and output param-
eters of the database procedures to the actual parameters. It then calls
the method EXECUTE_PROCEDURE.

Explanation of
the program

258

5 Programming Options in SAP HANA

Example 2: Tabular Output Parameters

Alternatively, you can use the method EXECUTE_QUERY (together with the
WITH OVERVIEW addition) to execute a database procedure. This also works
for database procedures that have tabular input and output parameters.

The program ZR_A4H_CHAPTER5_TOP_ADBC in Listing 5.29 shows an example
of the method EXECUTE_QUERY, in which the database procedure DETER-
MINE_TOP_CONNECTIONS is called. This database procedure determines
an airline’s top connections and has the following input and output
parameters:

EE IV_MANDT (client)

EE IV_CARRID (ID of an airline)

EE IV_ALGORITHM (controls how the top connections are to be determined)

EE ET_CONNECTIONS (a table parameter that contains the airline’s ID CAR-
RID and connection code CONNID)

PARAMETERS: p_carrid TYPE s_carr_id.

" Definition of the result structure
TYPES: BEGIN OF ty_connections,
 carrid TYPE s_carr_id,
 connid TYPE s_conn_id,
 END OF ty_connections.

DATA: lt_connections TYPE TABLE OF ty_connections,
 lv_statement TYPE string,
 lo_result_set TYPE REF TO cl_sql_result_set,
 lo_connections TYPE REF TO data.

TRY.
 " Delete local temporary table
 lv_statement = | DROP TABLE #ET_CONNECTIONS |.
 cl_sql_connection=>get_connection(
)->create_statement()->execute_ddl(lv_statement).
 CATCH cx_sql_exception.
 " The local temporary table may not exist,
 " we ignore this error
ENDTRY.

TRY.

Example of output
parameters

259

Using Procedures in ABAP 5.3

 " Create local temporary table
 lv_statement = | CREATE LOCAL TEMPORARY ROW|
 && | TABLE #ET_CONNECTIONS LIKE "_SYS_BIC".|
 && |"test.a4h.book.chapter05/DETERMINE_TOP_|
 && |CONNECTIONS/tabletype/ET_CONNECTIONS" |.
 cl_sql_connection=>get_connection(
)->create_statement()->execute_ddl(lv_statement).

 " Call database procedure
 lv_statement = | CALL "test.a4h.bo|
 && |ok.chapter05::DETERMINE_TOP_CONNECTIONS|
 && |"('{ sy-mandt }' , '{ p_carrid }', 'P'|
 && |, #ET_CONNECTIONS) WITH OVERVIEW |.
 lo_result_set = cl_sql_connection=>get_connection(
)->create_statement()->execute_query(
 lv_statement).
 lo_result_set->close().

 " Read local temporary table
 lv_statement = | SELECT * FROM #ET_CONNECTIONS |.
 lo_result_set = cl_sql_connection=>get_connection(
)->create_statement()->execute_query(
 lv_statement).

 " Read result
 GET REFERENCE OF lt_connections INTO
 lo_connections.
 lo_result_set->set_param_table(lo_connections).
 lo_result_set->next_package().
 lo_result_set->close().
 CATCH cx_sql_exception INTO DATA(lo_ex).
 " Error handling
 WRITE: | { lo_ex->get_text() } |.
ENDTRY.

LOOP AT lt_connections ASSIGNING
 FIELD-SYMBOL(<ls_connections>).
 WRITE: / <ls_connections>-carrid ,
 <ls_connections>-connid.
ENDLOOP.

Listing 5.29 Handling Table-Based Output Parameters

260

5 Programming Options in SAP HANA

We now wish to use the program to explain, in particular, how tabular
input and output parameters are exchanged with a database procedure.
The program ZR_A4H_CHAPTER5_TOP_ADBC uses the temporary table #ET_CON-
NECTIONS to transfer the table parameter ET_CONNECTIONS.

Temporary Tables

Many databases, including the HANA database, enable you to temporarily save
the interim and final results of calculations in temporary tables. For this use case,
temporary tables have many different advantages over conventional tables:

EE The table definition and table contents are automatically deleted from the
database if they are no longer required.

EE The database automatically isolates data in parallel sessions from one another.
It is neither necessary nor possible to place locks on temporary tables.

EE The database does not write a transaction log for temporary tables.

EE Generally, it is more efficient to use temporary tables than conventional
tables.

SAP HANA supports global and local temporary tables:

EE The table definition of global temporary tables can be used in different ses-
sions. The table contents can only be displayed for the current session. At
the end of the session, the table contents are automatically deleted from
the database.

EE In the case of local temporary tables, both the table definition and the table
contents are only valid for the current session. In other words, both are
automatically deleted from the database at the end of the session.

When using temporary tables to transfer data between SAP NetWeaver
AS ABAP and a database procedure, you should note the following:

EE If you work with global temporary tables, you can create these once
(because they can be used in different sessions). Organizationally,
however, you must ensure that the table name is not used for differ-
ent use cases (that require a different table structure).

EE You can create global temporary tables at design time. Then you must
ensure that the tables are also available in the test and production
systems after a transport.

EE If you decide to create global temporary tables at runtime, you must
ensure that, before you call a database procedure, the table structure

Temporary tables

Using temporary
tables in AS ABAP

261

Using Procedures in ABAP 5.3

is suitable for the interface of the database procedure called (because
this may have changed in the meantime).

EE You must create local temporary tables at least once for each session
(also note the explanations below in relation to the ABAP work process
and database connection). Consequently, you can only create local
temporary tables when an ABAP program is running.

EE Since each ABAP work process has only one connection with the data-
base, multiple ABAP programs processed by the same work process
subsequently, are one session for the database. Therefore, after an
ABAP program ends, neither the definition nor the contents of local
(and global) temporary tables are deleted automatically.

EE In the case of global and local temporary tables, you should delete the
contents (of the current session) before you call the database proce-
dure.

The program ZR_A4H_CHAPTER5_TOP_ADBC in Listing 5.29 works with a
local temporary table. First, it uses DROP TABLE #ET_CONNECTIONS to delete
the local temporary table #ET_CONNECTIONS if it exists. It then uses the
CREATE LOCAL TEMPORARY ROW TABLE statement to create a (new) local
temporary table with the name #ET_CONNECTIONS. Here, the program
makes reference to the table type that the system automatically created
for the output parameter ET_CONNECTIONS when the database procedure
was activated. This approach enables the program to ensure that, before
the database procedure is called, the temporary table is empty and suit-
able for the current structure of the output parameter ET_CONNECTIONS.

The program now uses the method EXECUTE_QUERY to call the database
procedure. It transfers SY-MANDT, P_CARRID, and 'P' to the input param-
eters, and it transfers the temporary table #ET_CONNECTIONS to the output
parameter for the database procedure.

After the database procedure has been called, the program reads the
contents of the temporary table #ET_CONNECTIONS, which correspond to
the transferred airline’s top connections.

Explanation of
the program

262

5 Programming Options in SAP HANA

Example 3: Tabular Input Parameters

If a database procedure has tabular input parameters, you can proceed
in the same way as you do for tabular output parameters. The program
ZR_A4H_CHAPTER5_KPIS_ADBC in Listing 5.30 shows how to call the data-
base procedure GET_KPIS_FOR_CONNECTIONS for a set of flight connections.
The database procedure determines some key performance indicators for
each connection transferred.

It has the following input and output parameters:

EE IV_MANDT (client)

EE IT_CONNECTIONS (a table parameter that contains the airline’s ID CAR-
RID and connection code CONNID)

EE ET_KPIS (a table parameter that contains key performance indicators
for connections)

...
LOOP AT lt_connections INTO ls_connections.
 lv_statement = | INSERT INTO #IT_CONNECTIONS VALUES
 ('{ ls_connections-carrid }', '{ ls_connections-
 connid }')|.
 cl_sql_connection=>get_connection(
)->create_statement(
)->execute_update(lv_statement).
ENDLOOP.

" Call database procedure
lv_statement = | CALL "test.a4h.bo|
&& |ok.chapter05::GET_KPIS_FOR_CONNECTIONS|
&& |"('{ sy-mandt }' , #IT_CONNECTIONS, #ET_KPIS)
 WITH OVERVIEW |.
lo_result_set = cl_sql_connection=>get_connection(
)->create_statement()->execute_query(lv_statement).
lo_result_set->close().
...

Listing 5.30 Handling Table-Based Input Parameters

Before the database procedure is called, the program fills the local tem-
porary table #IT_CONNECTIONS with the relevant flight connections. EXE-
CUTE_QUERY is used to call the database procedure.

Example of an
input parameter

Explanation of
the program

263

Using Procedures in ABAP 5.3

5.3.2 Defining Database Procedure Proxies

As of ABAP release 7.4, you can define a database procedure proxy in order
to access database procedures from ABAP. Such procedures were defined
in the SAP HANA Repository within the primary database. A database
procedure proxy is (as the name suggests) a proxy object. It represents a
database procedure in the ABAP Data Dictionary.

Multiple Proxy Objects for One Database Procedure

Technically, it is possible to create multiple database procedure proxies for
one database procedure. However, we do not recommend this. In the ABAP
Data Dictionary, you should never create more than one proxy object for a
database procedure.

The system also automatically creates an interface for each database pro-
cedure proxy. You can use this interface to influence the parameter names
and data types used when calling the database procedure with ABAP:

EE You can change the names of the input and output parameters as soon
as they exceed 30 characters. In this case, the system initially abbrevi-
ates the parameter names. You can then overwrite these abbreviated
names, if necessary.

EE You can always overwrite the component names of table parameters.

EE You can assign the relevant data type to each parameter. This is impor-
tant because SQL data types are not uniquely mapped to ABAP data
types and dictionary data types. Consequently, when creating a proxy
object, the system cannot (always) derive the correct ABAP data type
and/or dictionary data type.

We will now explain how to create a proxy object for the database proce-
dure DETERMINE_TOP_CONNECTIONS. To do this, open the ABAP perspective
in the ABAP Development Tools in Eclipse, and choose the menu option
File • New • Other.... Then, choose Database Procedure Proxy and
Next. Figure 5.11 shows the window that opens.

Interface of the
proxy object

Creating a
database
procedure proxy

264

5 Programming Options in SAP HANA

Figure 5.11 Creating a Database Procedure Proxy

In this window, enter the following data for the database procedure proxy:

EE Name: You can use the name of the database procedure proxy to (later)
call the database procedure in ABAP.

EE Description: The description is a piece of explanatory text.

EE HANA Procedure: Name of the (existing) database procedure in the
SAP HANA Repository.

EE Parameter Types Interface: Name of the interface that is automati-
cally created when you create the proxy object (see Listing 5.31).

After you choose Next and Finish, the system creates the database pro-
cedure proxy and the corresponding interface.

The Project Explorer contains the database procedure proxy in the
corresponding package below the Dictionary • DB Procedure Proxies
node. Just like the other interfaces, the parameter types interface is
located in the corresponding package below the Source Library node.

Creation
parameters

265

Using Procedures in ABAP 5.3

Figure 5.12 shows the database procedure proxy for the database proce-
dure DETERMINE_TOP_CONNECTIONS. If you wish to adjust parameter names
or data types, you can do this in the ABAP Name, ABAP Type, and DDIC
Type Override columns. For example, you can map the column CONNID
in the table-based output parameter ET_CONNECTIONS to the data element
S_CONN_ID (and therefore to the ABAP data type N length 4).

Figure 5.12 Database Procedure Proxy and Interface

Listing 5.31 shows the interface that the system automatically creates
after the data types have been adjusted.

interface ZIF_DETERMINE_TOP_CONNECTIONS public.
types: iv_mandt type mandt.
types: iv_carrid type s_carr_id.
types: iv_algorithm type c length 1.
types: begin of et_connections,
 carrid type s_carr_id,
 connid type s_conn_id,
 end of et_connections.
endinterface.

Listing 5.31 Interface of the Proxy Object

5.3.3 Calling Database Procedure Proxies

Now that you have activated the database procedure proxy, you can
use the proxy object to call the database procedure. The program

Adjusting the
interface

266

5 Programming Options in SAP HANA

ZR_A4H_CHAPTER5_TOP_PROXY in Listing 5.32 shows an example of this
usage.

PARAMETERS: p_carrid TYPE s_carr_id.

DATA: lt_connections TYPE TABLE OF
 zif_determine_top_connections=>et_connections.

TRY.
 CALL DATABASE PROCEDURE
 zdp_determine_top_connections
 EXPORTING
 iv_mandt = sy-mandt
 iv_carrid = p_carrid
 iv_algorithm = 'P'
 IMPORTING
 et_connections = lt_connections.

 CATCH cx_sy_db_procedure_sql_error
 cx_sy_db_procedure_call INTO DATA(lo_ex).
 " Error handling
 WRITE: | { lo_ex->get_text() } |.
ENDTRY.

LOOP AT lt_connections ASSIGNING
 FIELD-SYMBOL(<ls_connections>).
 WRITE: / <ls_connections>-carrid ,
 <ls_connections>-connid.
ENDLOOP.

Listing 5.32 Calling a Database Procedure Proxy

The program uses the CALL DATABASE PROCEDURE statement to call the
database procedure DETERMINE_TOP_CONNECTIONS via the proxy ZDP_DETER-
MINE_TOP_CONNECTIONS. When defining the internal table LT_CONNECTIONS,
the program refers to the interface ZIF_DETERMINE_TOP_CONNECTIONS.

The program catches any problems that may occur when calling the data-
base procedure (exceptions of the type CX_SY_DB_PROCEDURE_SQL_ERROR
and CX_SY_DB_PROCEDURE_CALL).

Example of calling
the proxy object

Explanation of
the program

267

Using Procedures in ABAP 5.3

5.3.4 Adjusting Database Procedure Proxies

If you change a database procedure (or more accurately, the interface of
a database procedure) in SAP HANA Studio, you must synchronize the
proxy object with the SAP HANA Repository. The Synchronize button
(see Figure 5.12) is available for this purpose.

During the synchronization process, you can decide whether you want to
retain or overwrite the adjustments made to the proxy object (component
names or data types).

Finally, we again wish to explicitly point out that the use of SQLScript in
calculation views does not differ in principle from the use of SQLScript
in database procedures. For more information about calculation views,
see Section 4.3, and for more information about error analysis in relation
to SQLScript, see Chapter 7.

ABAP-Managed Database Procedures

SAP is currently working on facilitating the creation of database procedures
from ABAP for future releases (so-called ABAP-managed database procedures).
The idea is to flag a method of an ABAP class as database procedure and then
use SQLScript code directly in the method body.

Synchronization

Additional
information

269

ABAP developers are accustomed to an efficient transport system.
In the context of developing ABAP on SAP HANA, consistent
transport is made more difficult if some development objects are
created directly in SAP HANA. Nevertheless, consistent transport
is possible using the Change and Transport System.

6 Application Transport

In this chapter, we’ll explain how you can consistently transport ABAP
applications in your system landscape for developing objects directly in
SAP HANA Studio, even if you use the options described in Chapter 4
and Chapter 5.

As long as you create and manage all of an applications’ required devel-
opment objects with the SAP NetWeaver Application Server (AS) ABAP,
you can very easily ensure that the application is consistently transported
by the automatic change recording. Otherwise, you cannot rely solely on
the automatic change recording.

Figure 6.1 illustrates the problem by means of a database table that was
created using the ABAP Data Dictionary and a column view. This view,
after its creation via SAP HANA Studio, was exposed in ABAP as an external
view (see Section 4.5.2).

There are no problems with the transport of the database table because
the system, if configured accordingly, automatically records the creation
of the table and any changes to it in a change request. We will explain
how this works in Section 6.1.1.

The external view is a proxy object that refers to a column view. The
column view is not subject to the automatic change recording of SAP
NetWeaver AS ABAP. Thus, it is missing from the transport target system
if you rely solely on the change recording in AS ABAP. This can lead to
a runtime error when you access the external view.

270

6 Application Transport

A
S

A
B

A
P

SA
P

H
A

N
A

D
at

ab
as

e

Source System Target System

Table <missing>

Table
External

View
Table

External
View

Table
Column

View

Figure 6.1 Transport Problems with Non-ABAP Objects

In this chapter, we will explain which transport mechanisms are provided
by the ABAP application server and by SAP HANA. In doing so, we will
also discuss some aspects of development organization. The three-level
system landscape outlined in Figure 6.2 serves as an example of our
descriptions.

System: HDD,
Schema <SAPABD>

System: ABD,
Client 100

System: HDQ,
Schema <SAPABQ>

System: ABQ,
Client 200

System: HDP,
Schema <SAPABP>

System: ABP,
Client 300

A
S

A
B

A
P

D
at

ab
as

e

Development
Quality

Assurance
Production

Figure 6.2 Exemplary System Landscape

For some of the following explanations, it is irrelevant whether an SAP
HANA database is involved. In other cases, we assume that the application
server uses the HANA database as the primary database and will indicate
this prerequisite.

We will then show you how to transport applications, which consist in
part of ABAP objects and in part of SAP HANA Repository objects, via
the HANA transport container and the enhanced Change and Transport System
(CTS+).

System landscape
example

271

Basic Principles of the Transport System 6.1

6.1 Basic Principles of the Transport System

In this section, we will explain the basic principles of the transport system
of SAP NetWeaver AS ABAP, as well as the HANA database.

6.1.1 Transport in SAP NetWeaver AS ABAP

We assume that you have already worked with the transport system of
SAP NetWeaver AS ABAP in the past. Nevertheless, we’ll discuss some key
aspects of development organization and the transport system, because
this will help you understand the following sections.

Development Organization

The development objects of SAP NetWeaver AS ABAP are organized
hierarchically in packages.

SP1

SP3 …

… MP4

MP5 DP6

SP2

…

DP7 DP8
SP = Structure Package
MP = Main Package
DP = Development Package

Figure 6.3 Package Types in SAP NetWeaver AS ABAP

When you create a package in SAP NetWeaver AS ABAP, you can use
three different package types (see Figure 6.3):

Package hierarchy

Package types
in AS ABAP

272

6 Application Transport

EE Structure	packages
Structure packages form the top level of a package hierarchy and define
the basic architecture of applications. They very often correspond to
software components (which we will discuss more fully). Structure pack-
ages can contain additional structure packages and main packages.
However, structure packages do not directly contain development
objects.

EE Main	packages
Main packages form the middle level of a package hierarchy and, in
simple terms, group functions. Main packages can contain additional
main packages as well as development packages. However, they also
do not directly contain development objects.

EE Development	packages
Development packages form the lower level of a package hierarchy
and contain development objects. They can also contain additional
development packages. The names of the development objects must
be unique across development packages. This means, for example, if
you have created a program ZR_REPORT1 in package EP6, you cannot
create another report with the same name in EP7.

Each package in SAP NetWeaver AS ABAP is assigned to a software
component. A software component includes packages that should be
delivered together. SAP NetWeaver AS ABAP 7.4 contains, for example,
the software components listed in Table 6.1.

Software Component Description

HOME Customer developments

LOCAL Local objects

PI_BASIS Basis plug-in

SAP_ABA Application basis

SAP_BASIS Basis

SAP_BW SAP NetWeaver Business Warehouse

SAP_GWFND Gateway Foundation

SAP_UI User interface technology

Table 6.1 Software Components of SAP NetWeaver AS ABAP 7.4

Software
components

273

Basic Principles of the Transport System 6.1

The software components HOME and LOCAL are of special significance. The
software component HOME is intended for customer developments. You
use the software component LOCAL for testing or, in general, for develop-
ment objects that should not be transported.

As an ABAP developer, you usually do not create any of your own soft-
ware components for customer developments, but assign these to the
software component HOME. An exception to this is formed by add-ons that
you package using the Add-on Assembly Kit. SAP Partners in particular (as
well as SAP itself) avail themselves of this option. We do not deal with
the Add-on Assembly Kit within this book.

A package in SAP NetWeaver AS ABAP allows you to control the use of
the development objects that it contains and to define their transport
properties.

To control the use of the development objects in a package, you can mark
a package as encapsulated. From other packages, you can thus access only
the objects of the package that were exposed via a package interface (in
addition you must also define a use access).

The transport properties of a package determine whether changes to a
development object are automatically recorded, and whether the record-
ing takes place on a local or a transportable change request. The transport
properties result from three attributes of a package:

EE The assignment of the package to a software component.

EE The transport layer of the package; we will discuss this in more detail
in the next section.

EE The value of the checkbox Record object changes in transport
requests, which can be maintained only for test packages.

Table 6.2 shows which combinations of the three attributes are possible,
and how the attributes affect the change recording.

Add-on
Assembly Kit

Package
encapsulation

Transport
properties of
a package

274

6 Application Transport

Package Name
Starts With

Software
Component

Transport
Layer

Record
Changes

Recording

T (test package) LOCAL No No No recording

T (test package) LOCAL No Yes Local change
request

$ (local package) LOCAL No No No recording

Z*, Y*, and prefix
namespace

HOME No Yes Local change
request

Z*, Y*, and prefix
namespace

HOME Yes Yes Transportable
change
request

Table 6.2 Change Recording in SAP NetWeaver AS ABAP

Automatic change recording guarantees that development objects cannot
undergo uncontrolled changes by multiple developers. It also ensures
version management, and allows transport to subsequent systems (for
example, quality assurance system or production system) in the case
of a transportable change request. We will explain this by means of an
example in the following section.

Transport System

In this section, we will take a look at the development of a report ZR_
A4H_CHAPTER6_LIST_CUSTOMER as an example. This uses a projection view
ZPV_A4H_CUSTOMER, which was defined in the ABAP Data Dictionary, to
read customer data from the database table SCUSTOM. The report is assigned
via its package to the software component HOME and a transport layer.

The transport layer controls which of subsequent systems receive a devel-
opment object. In the example, the transport takes place from the develop-
ment system to the quality assurance system and then to the production
system (as shown in Figure 6.2).

When you create the report, you must enter a change request (due to
the transport properties of the package). The system adds the report to
the object list of the change request. At the same time, it also sets a lock
indicator. As long as the change request has not been released, the lock

Automatic change
recording

Entering the
transport request

275

Basic Principles of the Transport System 6.1

indicator ensures that only you and other designated developers who are
also assigned to the change request can edit the report.

When you have completed the development, you can release the change
request for transport. The transport consists, in simple terms, of export-
ing from the source system and importing into the target system (or
target systems).

The transport is controlled by the Transport Domain Controller of the Change
and Transport System (CTS). This is the system in which all configuration
settings relevant for transport are centrally maintained and distributed
to all other systems. In the example, the production system (ABP) could
assume the role of the Transport Domain Controller. Figure 6.4 illustrates
the transport process schematically.

System: ABD
(Development)

Common
Transport
Directory

System: ABQ
(Quality

Assurance)

System: ABP
(Production)

Data File

Control File

Version History Export Import Import

Transport Domain
Controller

Figure 6.4 Transport in SAP NetWeaver AS ABAP via CTS

When releasing a transport request, the system first checks whether all
development objects contained in the object list are active (and thus
without syntax errors). You can also perform an enhanced check of the
development objects with the infrastructure of the ABAP Test Cockpit.
After a successful check, the system generates a version of all objects
contained in the transport request to historically record all changes.
Finally, the system exports the objects and writes two files in the com-
mon transport directory:

EE The data file contains the exported objects in a platform-independent
format. It describes a delta, as it does not contain a complete pack-

Transport

Change and
Transport System

Releasing and
exporting

276

6 Application Transport

age—it only contains the changed development objects that are docu-
mented in the object list.

EE The control file contains metadata for the transport and describes the
necessary steps for the import.

When importing into the target system (ABQ in our example), the system
creates a copy of the objects in the transport request in several steps,
using the metadata in the control file and the objects in the data file.
Postprocessing is performed after the actual import by after-import meth-
ods. After importing successfully, for example, you can use the program
ZR_A4H_CHAPTER6_LIST_CUSTOMER immediately.

For problems with exporting or importing, see the transport log.

Relocations and Transports of Copies

For the sake of completeness, we would like to mention that you can also
transport development objects—for which there is no automatic change
recording or a recording by means of local change requests—with a transport
of copies or relocation. Only objects of local packages form an exception here.

You cannot simply make changes to the imported objects in the target
system. Each development object has an original system, and that’s the
only place where you can make unrestricted changes. In all other systems,
you must make the changes via the Modification Assistant. When you do
so, the changed objects are given a repair flag. This is to prevent changes
from being accidentally overwritten during the next import.

6.1.2 Transport in SAP HANA

Next, we will explain the transport system—and also, in some aspects,
the development organization—of the HANA database. It is especially
important that you understand its main differences from SAP NetWeaver
AS ABAP. In Section 6.2, we will then discuss the combined transport in
SAP NetWeaver AS ABAP and SAP HANA.

Development Organization

The development organization in SAP HANA is similar in many ways
to SAP NetWeaver AS ABAP. However, it also differs in some essential

Importing

Original system

277

Basic Principles of the Transport System 6.1

aspects. As described in Chapter 2, the SAP HANA Repository is the central
storage of the HANA database development objects.

Like SAP NetWeaver AS ABAP, the SAP HANA Repository structures
development objects in a package hierarchy. However, it only knows
two package types (see Figure 6.5):

EE Structural	packages	 	
Structural packages group functions. They can contain additional struc-
tural packages and non-structural packages. However, structural pack-
ages do not contain any development objects.

EE Non-structural	packages	 	
Non-structural packages directly contain development objects. They
can also contain additional non-structural packages. The names of the
development objects must be unique per package. In other words, the
same name can be used in two packages; the corresponding develop-
ment artifacts are uniquely identified in combination with the package
name.

SP1

SP3 …

… DP4

DP5 DP6

SP2

…

SP = Structure Package
DP = Development Package

Figure 6.5 Package Types in SAP HANA

SAP provides content under the root package sap. Thus, no customer
developments may be created under this package, because they could be
accidentally overwritten. Build a parallel package hierarchy for customer

Package types
in SAP HANA

Namespace for
customers

278

6 Application Transport

developments instead. As a root package, for example, use your domain
name.

The package system-local represents a special case. It is similar to the
concept of local packages of SAP NetWeaver AS ABAP. Use it for devel-
opment objects that are not to be transported.

Each package in SAP HANA is—for transport, at the latest—assigned to
a delivery unit. A delivery unit combines packages that are to be trans-
ported or delivered together. Conceptually, it broadly corresponds to a
software component in the sense of AS ABAP. While you usually work
in AS ABAP with the software component HOME, you must always create
your own delivery units for customer developments in SAP HANA. To do
so, you or an administrator are required to have maintained, in advance,
the system parameter content_vendor in the file indexserver.ini using the
Administration Console of SAP HANA Studio.

Unlike in AS ABAP, a package in SAP HANA currently does not allow you
to restrict the use of the development objects that it contains.

Apart from the assignment of a delivery unit, a package has no transport
properties that control whether a development object will be transported,
and (if applicable) to which subsequent systems it would go. In addition,
automatic change recording—as AS ABAP knows it—does not take place
in SAP HANA. Versioning is still supported.

Transport System

A transport usually takes place in SAP HANA on the basis of a delivery
unit. In this section, we will explain the process using attribute view
AT_CUSTOMER. Similar to the report used as an example in Section 6.1.1,
this reads customer data from table SCUSTOM.

When you create an attribute view, you assign a package to it. You can
maintain a delivery unit in the package properties. To do so, use the con-
text menu entry Edit of the package. You see all existing delivery units in
the system in the Quick Launch view using the menu entry Delivery Units…
You can also create new delivery units there. Figure 6.6 illustrates the
relationship between the development object, package, and delivery unit
using the example of the attribute view AT_CUSTOMER (the delivery unit
ZA4H_BOOK_CHAPTER06 is not part of the examples provided with this book).

Local
developments

Delivery units

Package
encapsulation

Transport
properties of

a package

Package
assignment

279

Basic Principles of the Transport System 6.1

A change recording in terms of the ABAP system does not take place. Thus,
all other developers can also change the attribute view. When editing an
object, SAP HANA Studio indicates if another developer’s inactive version
of the object exists, and it prevents simultaneous editing of a develop-
ment object by multiple developers with an optimistic lock. Each time an
object is activated, the system creates a version of the object—which is
permanently stored to record changes, as in the ABAP system.

Figure 6.6 Development Object, Package, and Delivery Unit

Multiuser editing

280

6 Application Transport

When you have completed the development, you can transport the attri-
bute view. Similar to ABAP, the transport consists of exporting from the
source system and importing into the target system or systems.

In SAP HANA Studio, you can import and export development artifacts
in two ways:

EE Exporting/importing a delivery unit (optionally coupled with CTS+)

EE Exporting/importing individual objects (the developer mode)

For a consistent transport of HANA content (which is not closely coupled
with an ABAP development) in a production system landscape, we always
recommend exporting/importing based on delivery units and the CTS+.
We will discuss a combined ABAP/SAP HANA transport in Section 6.2
and will also give you recommendations there.

CTS+ enhances the Change and Transport System of the ABAP application
server with the option of also transporting non-ABAP objects.

Availability of the Enhanced Change and Transport System

The enhanced Change and Transport System (CTS+) has been available since
SAP NetWeaver 7.0 Support Package Stack 12. However, SAP recommends
that you use at least Support Package Stack 14 when using CTS+, as this has
simplified the configuration significantly.

For more information on the enhanced Change and Transport System, see
http://scn.sap.com/docs/DOC-8576.

A possible system landscape for the transport of HANA content via CTS+
is shown in Figure 6.7.

The Transport Domain Controller consists of an ABAP stack and a Java
stack in the case of CTS+. For the transport of HANA content, the follow-
ing prerequisites must be fulfilled (also see Note 1665940):

EE The Transport Domain Controller is based at least on SAP NetWeaver
7.31 or 7.4 (alternatively, SAP Solution Manager 7.1 or 7.01).

EE The CTS plug-in 2.0 is installed (on the TCA system in the example from
Figure 6.7).

Enhanced Change
and Transport

System

Prerequisites
for CTS +

281

Basic Principles of the Transport System 6.1

EE The CTS Deploy Web Service is installed (on the TCJ system in the
example from Figure 6.7). It establishes the connection from the ABAP
transport tools to the non-ABAP applications.

EE The HANA system corresponds to the Support Package Stack 4 or
higher.

System: HDD
(Development)

System: HDQ
(Quality

Assurance

System: HDP
(Production)

Export Import Import

Transport Domain Controller

System: TCA
(ABAP)

System: TCJ
(Java) with CTS

Deploy WS

Figure 6.7 Transport in SAP HANA via CTS+

You start exporting HANA content directly in SAP HANA Studio. To do
so, navigate to the Quick Launch view. There, choose Export… and
then SAP HANA Content • Delivery Unit.

Figure 6.8 shows the window in which you then maintain the details
for the export.

To attach the content of the delivery unit to a transport request of CTS+,
you must select Attach to Transport Request. When exporting, the
system then writes the content of the delivery unit as a packed file in the
transport directory. The system always exports the complete delivery unit.
The checkbox Filter by time alternatively allows you to export only the
content of the selected delivery unit that was changed in a specific time
interval. However, use this option cautiously because you may create
dependencies between transports under certain circumstances.

Exporting

282

6 Application Transport

Figure 6.8 Exporting a Delivery Unit

The transport request is released and imported via the user interface of
CTS+. When importing, CTS+ transfers the content of the packed file to
the SAP HANA Repository of the target system and triggers the activation
of the changed development objects (thus the activation of the attribute
view AT_CUSTOMER in the example).

Similar to SAP NetWeaver AS ABAP, the SAP HANA Repository is also
familiar with the concept of the original system. You can make changes
in the non-original system only if you have a special authorization (the
package authorization REPO.EDIT_IMPORTED_OBJECTS).

The HANA system does not set a repair flag here as in the ABAP system.
Changes in the non-original system will thus be overwritten during the
next import of the corresponding delivery unit.

Releasing and
importing

Original system

283

Basic Principles of the Transport System 6.1

Schema Mapping

Schema mapping is a special feature in transporting SAP HANA content.
Schema mapping is necessary when the database schemas differ in the
source system and target system of a transport. This involves mapping
an authoring schema to a physical schema.

You maintain a schema mapping in the Quick Launch view via the menu
option Schema Mapping… (see Figure 6.9). Before we discuss more pre-
cisely when and how the system evaluates it, we would first like to explain
the need for schema mapping using the attribute view AT_CUSTOMER and
the system landscape from Figure 6.2.

Figure 6.9 Maintaining a Schema Mapping

Remember that the attribute view AT_CUSTOMER reads customer data from
the database table SCUSTOM. This table is part of the flight data model of AS
ABAP, and therefore is located in the development system in the database
schema SAPABD (because the system ID of the ABAP system is ABD). As a
result, the attribute view refers to SAPABD.SCUSTOM.

The table SAPABD.SCUSTOM does not exist in the quality assurance system
or production system. Due to the different system IDs, the database table

Schema mapping
example

284

6 Application Transport

resides in the schema SAPABQ in the quality assurance system and in the
schema SAPABP in the production system.

Schema mapping enables you to map the schema SAPABD to SAPABQ in the
quality assurance system and to SAPABP in the production system. This is
illustrated in Figure 6.10.

Development
Schema

Physical
Schema

System: HDD,
Schema <SAPABD>

System: HDQ,
Schema <SAPABQ>

System: HDP,
Schema <SAPABP>

SA
P

H
A

N
A

C
on

te
nt

D

at
ab

as
e

C
at

al
og

Development
Quality

Assurance
Production

SAPABD.SCUSTOM SAPABQ.SCUSTOM SAPABP.SCUSTOM

AT_CUSTOMER �
SAPABD.SCUSTOM

AT_CUSTOMER �
SAPABD.SCUSTOM

AT_CUSTOMER �
SAPABD.SCUSTOM

Sc
he

m
a

M
ap

pi
ng

SAPABD SAPABQ

Physical
Schema

Development
Schema

SAPABD SAPABP

Physical
Schema

Development
Schema

Figure 6.10 Need for Schema Mapping

When maintaining schema mapping, you must consider some aspects:

EE Schema mapping ultimately controls where—that is, in which database
schema—an SAP HANA Repository development object searches for
a database catalog object.

EE If no schema mapping is maintained, the authoring schema and phys-
ical schema are identical.

EE You can map multiple authoring schemas to the same physical schema.

EE You cannot assign multiple physical schemas to an authoring schema.

EE The SAP HANA content stores references to database objects with the
authoring schema. If this cannot be clearly determined (due to a

Schema mapping
maintenance

285

Combined ABAP/SAP HANA Transport 6.2

multiple assignment), the system stores the reference with the physi-
cal schema.

Schema Mapping When Installing SAP NetWeaver AS ABAP 7.4

If you install SAP NetWeaver AS ABAP 7.4 on a HANA database, the instal-
lation program creates the ABAP schema SAP<SID>. Furthermore, the instal-
lation program also creates (at least) one schema mapping—that is, from the
authoring schema ABAP to the physical schema SAP<SID>.

By means of this section, you have refreshed your knowledge with regard
to transport in AS ABAP, and have learned how to perform transports of
SAP HANA content. Next, we will deal with the combined ABAP/HANA
transport.

6.2 Combined ABAP/SAP HANA Transport

How do you transport applications that consist of part ABAP objects
and part SAP HANA Repository objects? This question is relevant, for
example, if you want the report ZR_A4H_CHAPTER6_LIST_CUSTOMER (see
example in Section 6.1.1), to use the external view ZEV_A4H_CUSTOMER of
the ABAP Data Dictionary to access the attribute view AT_CUSTOMER of
the SAP HANA Repository, which you know from the example in Section
6.1.2 (see Listing 6.1).

REPORT zr_a4h_chapter6_list_customer.

DATA: lt_customer TYPE STANDARD TABLE OF
 zpv_a4h_customer,
 ls_customer TYPE zpv_a4h_customer.

IF cl_db_sys=>dbsys_type = 'HDB'.
 SELECT * FROM zev_a4h_customer
 INTO TABLE lt_customer.
ELSE.
 SELECT * FROM zpv_a4h_customer
 INTO TABLE lt_customer.
ENDIF.

LOOP AT lt_customer INTO ls_customer.

Sample report

286

6      Application Transport

 WRITE: / ls_customer-id, ls_customer-name.
ENDLOOP.

Listing 6.1 Sample Report to be Transported

For a combined ABAP/HANA transport, you basically have two options:

EE The HANA transport container (which closely couples the parts of the
development from the ABAP and HANA system).

EE The enhanced Change and Transport System (which provides for only
a loose coupling of objects from the ABAP and HANA system).

We will explain both options in the next sections. We will focus here on
the HANA transport container.

6.2.1 HANA Transport Container

The HANA transport container is available in SAP NetWeaver 7.31 as of
Support Package 5 and as of release 7.4. It can be used if SAP HANA is
the primary database.

The HANA transport container allows you to transport development
objects created via SAP HANA Studio using the mechanisms of the Change
and Transport System of the ABAP application server (and in particular,
without the need for a Java stack, as would be required for CTS+).

Basic Functions

From a technical perspective, the HANA transport container is a logical
transport object that acts as a proxy object for exactly one delivery unit.
Figure 6.11 illustrates how the HANA transport container works.

Options for
combined
transport

287

Combined ABAP/SAP HANA Transport      6.2

A
S

A
B

A
P

SA
P

H
A

N
A

D
at

ab
as

e
Common
Transport
Directory

Data File

Control File

Export Import

Source System

Snapshot

Target System

Import (After
Import Method)

Delivery
Unit

Transport
Container

Byte
String

Transport
Container

Byte
String

Delivery
Unit

Figure 6.11 How the HANA Transport Container Works

You can create a HANA transport container using the ABAP Development
Tools (and there only). In the ABAP perspective, for example, choose the
menu path File • New • Other… • ABAP • HANA Transport Container.
Then enter the name of the delivery unit for which you want to create
the transport container. The system automatically derives the name of
the transport container (see Figure 6.12; the HANA transport container
ZA4H_BOOK_CHAPTER06 is not part of the examples provided with this book).

If you would like to use a prefix namespace in ABAP, you must assign
the desired prefix name to the name of the content_vendor (see Section
6.1.2) before creating the transport container. To do so, you can fill the
database table SNHI_VENDOR_MAPP using the Table View Maintenance.

Creating the
transport container

Using a prefix
namespace

288

6 Application Transport

Figure 6.12 Creating a Transport Container

If the transport properties of the package that is used—in the exam-
ple TEST_A4H_BOOK_CHAPTER06—are maintained accordingly (see Section
6.1.1), the system records the creation of the transport container in a
transportable change request.

Figure 6.13 Recording the Creation of a Transport Container

Change Recording

289

Combined ABAP/SAP HANA Transport 6.2

The change request in Figure 6.13 contains all development objects used
in this chapter:

EE The report ZR_A4H_CHAPTER6_LIST_CUSTOMER

EE The projection view ZPV_A4H_CUSTOMER

EE The external view ZEV_A4H_CUSTOMER

EE The attribute view AT_CUSTOMER via the delivery unit ZA4H_BOOK_CHAP-
TER06

When you create a transport container, the system automatically synchro-
nizes the content of this container (once) with the content of the delivery
unit. This means that all objects of the delivery unit are loaded as a packed
file on the ABAP application server and are stored there as a byte string in
a database table (that is, the table SNHI_DU_PROXY). Strictly speaking, the
content of the delivery unit then appears twice in the HANA database:

EE In the SAP HANA Repository

EE Via the database table SNHI_DU_PROXY

If, after creating it, you would like to synchronize the transport container
with the delivery unit—because you have made changes to the attribute
view AT_CUSTOMER, for example—you must do so manually. Use the link
Take Snapshot and Save in this case. You can view the current content
of the transport container using the Contents tab (both are shown in
Figure 6.14).

Figure 6.14 Synchronization and Content of a Transport Container

Synchronization

290

6 Application Transport

The transport from the development system to the quality assurance and
production systems takes place via the CTS mechanisms:

EE When exporting (more precisely, during export release preprocessing),
the system writes the content of the transport container in the data
file to the common transport directory of the systems involved in the
transport.

EE When importing (more precisely, in an after-import method), the system
reads the transport container’s content from the data file and imports
the delivery unit in the HANA database of the target system. Activa-
tion of content occurs only if you have activated this for the software
component of the transport container in the table SNHI_DUP_PREWORK
(in the target system).

You can reproduce the two steps at any time using the transport log. Figure
6.15 shows the transport log when you import the transport container
ZA4H_BOOK_CHAPTER06.

Figure 6.15 Transport Log Entries of the Transport Container

Mixed System Landscapes

Mixed system landscapes represent a special case of the ABAP devel-
opment on SAP HANA. Imagine that you, as an ABAP developer, want
to optimize a program for SAP HANA and make use thereby of specific
options of the HANA database. At the same time, however, this program
should also be able to run on traditional databases—for example, because
your employer uses SAP HANA as a database only in certain areas of the

Exporting and
importing

Transport log

291

Combined ABAP/SAP HANA Transport 6.2

company. A system landscape could look in this case (simplified) as in
Figure 6.16.

SAP HANA
Database

ABAP System

Development
Quality

Assurance
Production

Traditional
Database

Traditional
Database

SAP HANA
Database

SAP HANA
Database

ABAP System

ABAP System ABAP System

ABAP System

Figure 6.16 Mixed System Landscape

Using a case distinction, you can—to stick with the example of the program
ZR_A4H_CHAPTER6_LIST_CUSTOMER—call the projection view ZPV_A4H_CUS-
TOMER once and the external view ZEV_A4H_CUSTOMER once (see Listing
6.1). As a result, you ensure that no errors occur at runtime.

The implementation of the transport container ensures that no errors
occur during the transport and the SAP HANA content is only imported if
the target system of the import is a HANA-based system.

Recommendations for Using the Transport Container

When using the transport container, you should note some restrictions:

EE When using the transport container, you always transport the complete
delivery unit. You cannot transport only the content of a delivery unit
that was changed in a specific time interval.

Systems without
a HANA database

Restrictions

292

6 Application Transport

EE Unlike development objects that are managed in SAP NetWeaver AS
ABAP, the system does not automatically record changes to the content
of a delivery unit, and the objects of a delivery unit are not locked
exclusively for a transport request. It is thus your responsibility to
manually synchronize the transport container with the delivery unit.

EE When exporting the development objects from the source system, the
transport considers only the active objects.

EE The transport system does not recognize any dependencies between
multiple transport containers that are transported simultaneously.

Within the restrictions, the transport container allows you to consistently
transport applications that consist partly of ABAP objects and partly of
SAP HANA content. We recommend its use if the prerequisites that are
described at the start of Section 6.2.1 are fulfilled.

6.2.2 Enhanced Transport System

If your system landscape does not fulfill the prerequisites described in
Section 6.2.1 for using the SAP HANA transport container, or if you do not
want to use it for any other reason, you can resort to a combined ABAP/
HANA transport in CTS+, which we have already addressed in Section
6.1.2, in connection with the transport of SAP HANA content (which is
not related to ABAP objects).

When using CTS+ for a combined ABAP/HANA transport of an applica-
tion, use two change requests:

EE A change request for the ABAP objects (in the exemplary system land-
scape of Figure 6.2, this would have the number ABDKxxxxxx).

EE And a change request for the SAP HANA content (in the exemplary
system landscape of Figure 6.2, this would be a request with the num-
ber HDDKxxxxxx).

The two change requests are initially independent of each other. When
using SAP Solution Manager, however, you can release the change requests
centrally to ensure that there is always a consistent state of your application
in the quality assurance and production system. For more information,
see SAP Solution Manager documentation.

Independent
transport requests

293

The ABAP application server is home to a collection of powerful
runtime and error analysis tools that can assist you in accelerating
ABAP programs on SAP HANA. When used correctly, they make
it easier to identify potential areas of optimization, implement
changes, and test such changes.

7 Runtime and Error Analysis
with SAP HANA

In the previous chapters, you learned about the various ABAP options
available to you in relation to accessing the HANA database. In addition
to the already-familiar process of using SQL (Open SQL and Native SQL)
to access tables in the database, you learned various new ways to model
and implement views and database procedures, and also know how to
use ABAP to access these objects.

If you intend to develop a new application or to optimize an existing
application for use with SAP HANA, you may be asking yourself: What
is the best approach to adopt, and which tools can support this under-
taking? In this chapter, we wish to provide you with an overview of the
runtime and error analysis tools available. In particular, we will focus
on correct usage of these tools within the context of optimizing database
accesses. As a result, we will not discuss any other usage scenarios (for
example, system administration) or configuration options in detail here.
As an ABAP developer, you are already familiar with some of the tools
that can be used for this purpose: For example, the SQL trace (Transac-
tion ST05), ABAP runtime analysis (Transaction SAT), and the SAP Code
Inspector. Therefore, we will not describe their use in any great detail.
Basic information about these tools is available in the book ABAP Per-
formance Tuning by Hermann Gahm (SAP PRESS 2009). Ultimately, this
chapter will focus on the new SAP HANA-specific analysis options that
are available within these tools.

294

7 Runtime and Error Analysis with SAP HANA

In this chapter, we will use very simple examples to demonstrate the
capabilities of (and differences between) each tool. Then, building upon
this, we will demonstrate correct use of these tools (either individually
or in combination) within the context of a fictitious optimization project
for an overall scenario, which we will discuss in the next chapter.

7.1 Overview of the Tools Available

Before we introduce you to each tool, we’ll provide you with an overview
of all tools available and classify them according to their usage scenario
and primary user role. This overview also contains the release require-
ments for ABAP. We have classified the tools under the categories listed
in Table 7.1.

Category Purpose Roles

Error analysis
(Section 7.2)

To identify and resolve
functional problems

EE Developers

EE Support

ABAP code analysis
(Section 7.3)

To identify those parts of the
ABAP program with potential
for optimization

EE Developers

EE Quality
managers

Runtime statistics
and traces
(Section 7.4)

To perform a detailed analysis
of the runtime associated
with an individual request (for
example, the runtime associated
with a dialog step)

EE Developers

EE Performance
experts

System-wide SQL
analyses
(Section 7.5)

To determine the SQL profile of
an application or system

EE Administrators

EE Performance
experts

SQL performance
optimization
(Section 7.6)

To plan and perform an
optimization

EE Developers

EE Performance
experts

Table 7.1 Categorizing Runtime and Error Analysis Tools

If you optimize implementations on SAP HANA by transferring calcula-
tions to the database, this may lead to new sources of error. Within error
analysis, our primary goal is to introduce you to the options available

Error analysis

295

Overview of the Tools Available 7.1

in relation to analyzing (and avoiding) program terminations associated
with database accesses. In particular, we will discuss testing, analyzing,
and debugging SQL statements and SQLScript procedures from ABAP
programs.

A static code analysis provides clues about which parts of the ABAP program
have potential for optimization. This is known as a static analysis because
no runtime data is incorporated into it (for example, the frequency with
which a program or function is called within a particular period) and no
dynamic calls are analyzed (for example, SQL statements that are first
generated at runtime). For the code analysis, SAP NetWeaver AS ABAP
has a Code Inspector (Transaction SCI), which provides a set of checks that
can be grouped into check variants. You can use the ABAP Test Cockpit
(Transaction ATC) or the Code Inspector to perform these checks in the
development environment. To ensure efficient ABAP programming, some
new or improved checks have been added to ABAP 7.4.

SAP NetWeaver AS ABAP contains a number of runtime analysis tools
for a database request (or a sequence of requests). The statistic records
(Transaction STAD) provide a simple overview of database times and are
a useful starting point. The ABAP trace (Transaction SAT) provides detailed
analysis options for individual statements. The new ABAP profiler in the
ABAP development environment in Eclipse, which provides additional
functions such as graphical representations, is also based on this infra-
structure. In Chapter 3, we introduced you to the SQL trace (Transaction
ST05), which also provides other useful runtime analysis functions. Single
transaction analysis (Transaction ST12) is a special tool that combines
transactions STAD, SAT, and ST05 into one interface.

In SAP HANA, special tools are available for analyzing an individual SQL
statement or a more complex SQLScript implementation. The explain plan
provides information about the execution plan for an SQL statement, while
SAP HANA Plan Visualizer (PlanViz) visualizes the execution plans for
SQL statements and combines them with additional runtime information.

In Section 3.2.5, we introduced you to the database administration cock-
pit (DBA cockpit, Transaction DBACOCKPIT). In addition to managing
and configuring the database, the DBA cockpit also provides some SQL
performance analysis functions through, for example, the SQL cache and
expensive SQL statement trace.

Code analysis

Runtime analysis

System analysis
and optimization

296

7 Runtime and Error Analysis with SAP HANA

In order to determine a detailed SQL profile for applications within an SAP
system, a new tool, the SQL Monitor (Transaction SQLM), is available as of
SAP NetWeaver AS ABAP 7.4. This tool monitors the production system
and provides valuable performance optimization data. You can use the
new SQL performance tuning worklist tool (Transaction SWLT) to combine
the data from the SQL Monitor with the results of a code analysis, and
therefore make plans towards achieving a promising optimization. In
the following sections, we will explain how to use each of these tools.

7.2 Error Analysis

Before we discuss performance optimization tools, we wish to introduce
you to some important error analysis tools. As the saying goes, “You
can’t make an omelet without breaking eggs,” so functional problems
may occur when making changes to a program or a new development,
especially if the previous program code is very old and the author is no
longer available.

Therefore, in this section, we will discuss some aforementioned elements,
namely testing, analyzing program terminations, tracing, and debugging.
Here, we will focus on error analyses within the context of database
accesses and the use of native implementations in SAP HANA.

We will explain some approaches in relation to writing unit tests for SAP
HANA views and procedures in ABAP, discuss the analysis of program
terminations in the context of database accesses in Transaction ST22,
and introduce you to the concept of tracing and debugging SQLScript.

7.2.1 Unit Tests

When making changes to program code (a concept known as refactor-
ing), it is very helpful to have a set of (preferably automatic) tests that
can be performed both before and after making the changes; this helps
to identify errors as soon as possible. In this context, the approach of
testing single objects (units), either individually or in combination, is
known as unit testing. ABAP Unit is integrated into the ABAP language and
development infrastructure, and it can be used to write unit tests. This
tool is also integrated into the ABAP Test Cockpit, which we will discuss

New tools

Testing, analyzing,
tracing, and
debugging

297

Error Analysis 7.2

in Section 7.3. You can also use unit tests as a basis for a performance
analysis involving the ABAP profiler. Such an analysis can determine
the effect of code changes on runtimes (see Section 7.4.2). In addition
to the ABAP Unit tool, SAP NetWeaver AS ABAP also provides support
for further testing approaches, such as integration tests or simulated user
interactions. However, these are beyond the scope of this book.

You should also conduct tests in order to safeguard complex implementa-
tions in SAP HANA (in SQL and SQLScript, in particular). The sophisticated
test infrastructure in the ABAP application server provides a good frame-
work here. We wish to use the database procedure DETERMINE_TOP_CONNEC-
TIONS, which we introduced in Section 5.1, as an example. This procedure
determines the top five connections for an airline. For this purpose, two
variants that use different sorting criteria are implemented here, and
they can be selected by means of an input parameter. We will also use
the database procedure proxy ZDP_DETERMINE_TOP_CONNECTIONS, which
was created in Section 5.3.3, to access the database procedure. A simple
unit test for the database procedure is shown in Listing 7.1.

This test validates that the procedure invocation works properly for a
set of input parameters. In particular, the test class contains an example
of a negative test, which checks the return value when passing an airline
carrier that doesn’t exist as input data.

CLASS ltcl_test_db_procedure DEFINITION FINAL FOR TESTING
 INHERITING FROM cl_aunit_assert
 DURATION MEDIUM
 RISK LEVEL HARMLESS.

 PRIVATE SECTION.
 DATA: lt_conn TYPE TABLE OF
 zif_determine_top_connections=>et_connections.
 METHODS:
 test_determine_top_conn FOR TESTING,
 test_determine_top_conn_neg FOR TESTING.
ENDCLASS.

CLASS ltcl_test_db_procedure IMPLEMENTATION.

METHOD test_determine_top_conn.

Testing complex
SQL/SQLScript
operations

298

7 Runtime and Error Analysis with SAP HANA

 DATA: lv_cnt TYPE i,
 lv_carrid TYPE s_carrid VALUE 'LH'.
 " Determine # connections for 'LH' (max. 5).
 SELECT COUNT(DISTINCT connid) FROM sflight
 INTO lv_cnt WHERE carrid = lv_carrid.
 IF (lv_cnt > 5).
 lv_cnt = 5.
 ENDIF.

 CALL DATABASE PROCEDURE zdp_determine_top_connections
 EXPORTING
 iv_mandt = sy-mandt iv_carrid = lv_carrid
 iv_algorithm = 'P'
 IMPORTING
 et_connections = lt_conn.

 " Procedure should contain correct number of lines
 " and correct airline
 assert_equals(exp = lv_cnt act = lines(lt_conn)).
 LOOP AT lt_conn ASSIGNING FIELD-SYMBOL(<l>).
 assert_equals(exp = lv_carrid act = <l>-carrid).
 ENDLOOP.

ENDMETHOD.

METHOD test_determine_top_conn_neg.
 " Negative test
 CALL DATABASE PROCEDURE zdp_determine_top_connections
 EXPORTING
 iv_mandt = sy-mandt iv_carrid = 'XXX'
 iv_algorithm = ''
 IMPORTING
 et_connections = lt_conn.
 assert_equals(exp = 0 act = lines(lt_conn)).
ENDMETHOD.

ENDCLASS.

Listing 7.1 Unit Test for a Database Procedure

To gauge whether the calculation within the procedure is correct, the
exact output data must be known. In general, it pays to have different
sets of stable, consistent test data, which can be used in different systems

Test data

299

Error Analysis 7.2

for different purposes (e.g., mass data for conducting performance tests).
You can also use the ABAP client concept to generate suitable test data
constellations in special clients.

Design Patterns Make it Easier to Write Tests

The use of suitable design patterns makes it easier to write unit tests. These
include modularization and decoupling as a result of well-defined interfaces,
as well as avoiding dependencies in relation to specific system statuses.

For example, when testing database procedures, it makes sense to avoid
reading directly from a Customizing table or application context within the
procedure, but to transfer the required values as parameters. Such (generic)
implementations are easier to test and also increase the potential for re-use
in other contexts.

Furthermore, it is generally recommended to use a suitable interface to
abstract a calculation in the ABAP application and therefore encapsulate a
HANA-specific implementation.

7.2.2 Dump Analysis

If a program terminates during a transaction (known as a dump), Transac-
tion ST22 provides valuable troubleshooting information. In this section,
we will explain the information you obtain when an error occurs with
a database access.

In the case of SQL statements, different types of runtime errors can occur
and trigger a dump. Many of these errors can be caught within the appli-
cation by means of a class-based exception. Table 7.2 groups together
the most important exceptions. Here, special runtime error types exist
for each category.

Category Exception Example

Error during Open SQL
access

CX_SY_OPEN_SQL_DB Use of an invalid cursor (see also
Section 3.2.2)

Syntactical error in
dynamic Open SQL

CX_SY_DYNAMIC_OSQL_
SYNTAX

Invalid, dynamically generated WHERE
condition (see also Section 3.2.2)

Semantic error in dynamic
Open SQL

CX_SY_DYNAMIC_OSQL_
SEMANTICS

Aggregation by means of a non-
numerical, dynamically specified
column (see also Section 3.2.2)

Table 7.2 Error Categories for SQL Accesses

Runtime errors
and exceptions

300

7 Runtime and Error Analysis with SAP HANA

Category Exception Example

Error during ABDC access
(ABAP Database
Connectivity)

CX_SQL_EXCEPTION Syntactical error in a Native SQL
statement (see also Section 3.2.4)

Error while calling a
database procedure

CX_SY_DB_PROCEDURE Runtime error in SQLScript (see
Chapter 5)

Non-catchable errors None Internal error during a database access

Table 7.2 Error Categories for SQL Accesses (Cont.)

In Transaction ST22, the short text is the initial starting point for an
analysis, in addition to the exception that occurred and the runtime
error type (for example, DBIF_RSQL_SQL_ERROR). The short text contains,
for example, information such as “SQL error <number> occurred while
accessing table <table>”. Figure 7.1 shows an example of an error that
occurred while accessing an SAP HANA view that does not exist. In most
cases, this error text contains enough information to enable you to local-
ize and resolve the problem.

Figure 7.1 Error Text in the Database

SQL error number
and error text in

the database

301

Error Analysis 7.2

Further contextual information in relation to an ABAP program is available
in the following sections in Transaction ST22:

EE Information on which statement caused the dump

EE Source code extract

EE Contents of system fields

EE Chosen variables

EE Active calls/events

Error When Accessing SAP HANA Views and Database Procedures

When you use external views (see Section 4.5) and database procedure proxies
(see Section 5.3), development errors can occur as a result of inconsistencies
(for example, if the view or the procedure was changed without updating
the proxy). In most cases, this situation causes an exception of the type
CX_SY_OPEN_SQL_DB (with the error text “Invalidated view …”, for example).
In this case, you need to synchronize the objects across the development
environment as described in Section 4.5 and Section 5.3.

If you require further information from the database, the analysis must
continue there. The information in Transaction ST22 is no longer suffi-
cient, particularly in the case of more extensive implementations within
the database (for example, a database procedure that calls an additional
procedure). In such cases, however, you can use the information available
to reconstruct the call that triggered the error and then use tracing and
debugging to continue the analysis.

7.2.3 Tracing in SQLScript

If you analyze an error within an implementation in SQLScript, you may
want to view certain interim results. For this purpose, SQLScript con-
tains the CE Plan Operator TRACE, which enables you to log the contents
of a local table variable (which ultimately displays an interim result for
a database procedure) in a local temporary table, thus enabling you to
reproduce individual steps within a database procedure.

Restrictions
associated with
dump analysis

302

7 Runtime and Error Analysis with SAP HANA

For the database procedure GET_AGENCIES_FOR_CONNECTIONS, which we
used as an example in Section 5.1.1, the use of the TRACE Plan Operator
can look as follows:

LT_AGENCIES = SELECT...
LT_AGENCIES = TRACE(:LT_AGENCIES);
ET_AGENCIES = SELECT...

The system automatically creates the local temporary table when it calls
the database procedure. This table has the same structure as the table
variable. To determine its name, you can read the monitoring view
SQLSCRIPT_TRACE after you call the database procedure. Since this is a local
temporary table, it can only be viewed within the same database connec-
tion. Note that the system does not undertake some optimizations when
the CE Plan Operator TRACE is used. Furthermore, logging the contents
of the table has a negative impact on runtime. Therefore, do not use the
TRACE statement in productive code.

Additional Tracing Options

In addition to the TRACE statement, two additional mechanisms can support
you in analyzing an SQLScript procedure. We will mention both options in
compact form here, and refer to the SQLScript documentation available at
http://help.sap.com/hana_appliance/ for further information.

You can use the debug trace to log the execution of a database procedure. To
do this, use the IN DEBUG MODE addition when you call a database procedure.
You can then use the database table SYS.M_CE_DEBUG_NODE_MAPPING to
reproduce the instantiation of the costing model. You can also use the WITH
PLAN addition to compile a database procedure and then use the tables SYS.
PROCEDURE_DATAFLOWS and SYS.PROCEDURE_MAPPING to analyze the data
flow associated with the procedure, among other things.

Just like the CE Plan Operator TRACE, these two variants also have a nega-
tive effect on runtime and therefore should not be used in a productive
environment.

7.2.4 Debugging SQLScript

The SQLScript debugger is the last option we will discuss in relation to
SQLScript error analysis. This is a powerful tool for finding errors in

CE Plan Operator
TRACE

303

Error Analysis 7.2

database procedures. It makes use of the Debug perspective from Eclipse
and its use requires you to work with the SAP HANA Development
perspective in SAP HANA Studio.

At present (that is, for Support Package Stack 5), the SQLScript debugger
still has some restrictions. In particular, it cannot debug any database
procedures that contain input parameters. However, the database proce-
dure that you want to debug can be wrapped in a procedure that does not
contain any input parameters. For the procedure DETERMINE_TOP_CONNEC-
TIONS, which we implemented in Section 5.1, such a wrapper can look
as shown in Listing 7.2:

CREATE PROCEDURE WRAP_PROCEDURE() LANGUAGE SQLSCRIPT
 SQL SECURITY INVOKER READS SQL DATA AS
BEGIN
CALL "_SYS_BIC"."test.a4h.book.chapter05/
 DETERMINE_TOP_CONNECTIONS"('000', 'LH',
 LT_UTILIZATION);
END;

Listing 7.2 Wrapping a Database Procedure

You can then set one or more breakpoints in the database procedure that
you want to debug.

In the next step, switch to the Debug perspective in SAP HANA Studio
and ensure that the wrapper procedure is opened in the editor (that is,
the database procedure WRAP_PROCEDURE in our example) is called. Then,
choose Run • Debug Configurations… and create a configuration for
debugging SQLScript (even though this configuration is completely empty,
it is required for technical reasons.). You can then choose Debug in the
Debug Configurations window to start the debugger.

Figure 7.2 shows the Debug perspective after starting the debugger for
the database procedure WRAP_PROCEDURE. In the call hierarchy 1, you
can see that the procedure WRAP_PROCEDURE called the procedure DETER-
MINE_TOP_CONNECTIONS. The import parameters IV_MANDT, IV_CARRID, and
IV_ALGORITHM are filled. At present, the output parameter ET_CONNECTIONS
is still empty (Variables 2).

Using the
SQLScript
debugger

Debug perspective

304

7 Runtime and Error Analysis with SAP HANA

Figure 7.2 SQLScript Debugger

You can choose Run • Resume to navigate to the next breakpoint. You
can then choose Run • Terminate to exit the debugger. Currently, the
SQLScript debugger does not support other standard debugger functions
(for example, Step Into or Step Over). However, SAP is currently working
on a number of improvements to the SQLScript debugger.

Outlook: SQLScript Debugger in Support Package Stack 6

Support Package Stack 6 for the HANA database contains various improvements
to the SQLScript debugger. For example, it supports debugging of database
procedures that contain input parameters.

305

ABAP Code Analysis 7.3

7.3 ABAP Code Analysis

The Code Inspector can support you in identifying those parts of the pro-
gram that have potential for improvement. With this in mind, the Code
Inspector has a series of checks that you can perform on your development
objects. You then receive a prioritized list of messages, each assigned to
the relevant check. Since “false alarms” can occur with these checks (in
other words, there is no real problem), you can insert special comments
in the code to prevent a message from being issued. In the case of a code
analysis, you must bear in mind that SAP does not allow standard SAP
code to be scanned.

Since the Code Inspector has very extensive functions, they cannot be
considered in detail here. If you are interested in learning more about
the Code Inspector, we recommend the book Managing Custom Code in
SAP by Alisdair Templeton and Tony de Thomasis (SAP PRESS 2013).
Here, we will introduce you, in particular, to those new and revised Code
Inspector checks that are relevant for SAP HANA. You will learn how to
perform checks in the development environment and how to check the
entire system.

7.3.1 Checks and Check Variants

When the Code Inspector performs a code analysis, it executes a checklist
that comprises a defined set of development objects. Here, you can use
check variants to configure the list of checks to be performed and their
settings.

In this section, we will introduce you to those checks that can support
you in migrating to or optimizing SAP HANA. These checks primarily
relate to the following areas: Robust Programming, Security Checks,
and Performance Checks. The Code Inspector also contains a large num-
ber of additional checks that we will not discuss here in detail. Accurate
technical documentation on all checks is available in Transaction SCI,
which is used to configure the check variants that you will learn about
in this section.

Extensive check
options

Checklist

306

7 Runtime and Error Analysis with SAP HANA

Relevant Checks when Migrating to SAP HANA

During migration, the main priority is to ensure that you do not experience
any functional setbacks, including program terminations and unwanted
changes to the behavior of an application. In general, thanks to the com-
patibility and portability of ABAP code, no adjustments are required.

An exception here is any part of a program where you used database-
dependent implementations in the past. These include the use of Native
SQL and database hints. The following two checks can help you to locate
such parts within a program: Use of ADBC Interface and Critical
Statements.

A further example involves pool/cluster tables, which, when migrated to
SAP HANA, are converted into transparent tables (we previously covered
this in Section 3.2.1). This does not require any change to the applica-
tion. However, you must consider the following: When data is selected
in Open SQL without any specified sorting, the documentation states that
the user cannot rely on sorting (for example, according to the primary
key). In the case of pool/cluster tables, however, the database interface
always supplements the ORDER BY PRIMARY KEY addition internally. If you
have relied on this behavior (that is, you chose not to specify a particular
sorting), you may have to add an ORDER BY statement after the migration.
In the Robust Programming category, a check is available to help you
find the relevant parts within the program. SAP recommends that you
adjust these parts of the program irrespective of a migration to SAP HANA,
because this is a programming error. In Chapter 14, we will give further
recommendations for existing ABAP code when migrating to SAP HANA.

Relevant Checks During Optimization for SAP HANA

A range of checks are available to identify optimization potential in
the context of database accesses. These checks essentially reflect the
performance recommendations for Open SQL, which are explained in
detail in Chapter 14. In the next section, we will introduce you to some
important checks. In particular, we will discuss some key enhancements
and improvements in SAP NetWeaver AS ABAP 7.4.

Native SQL/
database hints

Depooling/
declustering

307

ABAP Code Analysis 7.3

Unsecure Use of FOR ALL ENTRIES

The following performance optimization is frequently successful: Con-
verting a nested SELECT statement into a FOR ALL ENTRIES statement or
a join. In the case of a FOR ALL ENTRIES expression, the driver table must
never be empty. Otherwise, all the data records are read from the database,
which is generally not desired. Therefore, a check to determine whether
the driver table is empty must always be performed before a FOR ALL
ENTRIES statement is executed. The check to detect unsecure use of FOR
ALL ENTRIES searches for parts of the program in which the driver table
does not appear to be checked.

Searching FOR ALL ENTRIES Clauses to Be Transformed

In many situations, a join offers additional performance advantages over
a FOR ALL ENTRIES clause. For this reason, the system performs a check
on those FOR ALL ENTRIES clauses to be transformed, and finds clauses
that could be converted to joins. This is only ever the case if a database
access was used to determine the driver table for the FOR ALL ENTRIES
expression.

SELECT Statements that Bypass the Table Buffer

The ABAP table buffer still plays an important role when using SAP HANA
as a database. In order to avoid an increased database load, you should
not bypass this buffer if buffering has been switched on for a table. To
this end, a check is performed on SELECT statements that ignore the buf-
fer. Note that this check cannot support you in finding the right buffer
setting for a table.

Problematic SELECT* Statements

You should avoid reading database columns that you do not require. To
this end, a check is available to find SELECT statements for which too many
fields are selected. Frequently, this concerns pure existence checks—where
all fields are selected, even though the return code for the SELECT state-
ment would be sufficient. However, there are also scenarios in which only
a small part of the fields is actually used. With SAP NetWeaver AS ABAP
7.4, these checks are also able to identify usage in another modularization

Empty driver table

Reading volumes
of data that
are too large

308

7 Runtime and Error Analysis with SAP HANA

unit (for example, in another ABAP class or another function module).
Therefore, the entire call sequence is analyzed whereby you can set the
depth of search when configuring this check.

Searching SELECTs in Loops in Modularization Units

Usually, performance problems are not caused by a single database access,
but rather a large number of accesses in succession. For example, problems
can occur with accesses that are executed in loops. Consequently, there
is a range of checks that can find such loops. In particular, they include a
check that finds SELECT statements that are executed in loops. As of SAP
NetWeaver AS ABAP 7.4, searches can also extend beyond modulariza-
tion units. Consequently, the triggering part of the program for a SELECT
statement can also be determined for complex implementations.

Change Database Accesses in Loops

In the case of change operations, you should also favor array processing
(see also Section 3.2.2) over individual operations at all times, if pos-
sible. To this end, a check is available to find individual INSERT, UPDATE,
or DELETE statements that are executed in loops.

EXIT/CHECK in SELECT... ENDSELECT Loop

If you use EXIT to exit a SELECT… ENDSELECT loop, a large number of data
records may be read unnecessarily because the data is transferred in
blocks. A CHECK statement that immediately follows a SELECT statement
indicates that a filter is not used until the data has been read. Frequently,
these two expressions can be converted into a suitable WHERE condition.

Configuring Check Variants

You can configure check variants in Transaction SCI or in the ABAP Test
Cockpit. SAP provides a range of default variants. Figure 7.3 shows the
check variant PERFORMANCE_DB, which is available in SAP NetWeaver AS
ABAP 7.4. It provides a useful default configuration, and contains the
checks introduced in this section.

Default variants

309

ABAP Code Analysis 7.3

Figure 7.3 Code Inspector—Check Variant “Performance_DB”

However, you can also define custom check variants by selecting and con-
figuring suitable checks from the tree. Furthermore, you can define check
variants specifically for one system user, or globally for all system users.

7.3.2 Checks in the Development Infrastructure

In this section, we will explain how you, as the developer, can check
individual objects. This enables you to perform a static code analysis
before you release a new development or change, so errors are found
before they are transported to a test system.

In the ABAP Workbench (Transaction SE80), you can use the context menu
option Check • ABAP Test Cockpit to perform a check on a development
object or package. The results are displayed in form of a list. From here,
you can navigate to the relevant parts of the program (see Figure 7.4).

Configuring
custom variants

Code check in
Transaction SE80

310

7 Runtime and Error Analysis with SAP HANA

Figure 7.4 Code Check in Transaction SE80

The checks are also natively integrated into the ABAP Development Tools
in Eclipse. This offers some advantages. Here, you use the context menu
option Run As • ABAP Test Cockpit to start the check. Figure 7.5 shows
the result of a check performed using the example from Listing 3.10 in
Section 3.2.2. The relevant parts of the program are clearly highlighted
and it is easy to navigate via the found locations.

Figure 7.5 Code Check in Eclipse

Code check
in Eclipse

311

ABAP Code Analysis 7.3

The system default check variant is used first. However, you can use the
project setting in Eclipse to replace the default variant with a custom
variant, as shown in Figure 7.6.

Figure 7.6 Selecting a Check Variant in Eclipse

7.3.3 Global Check Runs in the System

In the last section, you learned how to check individual development
objects or an entire development package. To ensure systematic use of
such checks within a quality management process, it makes sense to
automatically perform the checks at certain times for all developments
(or selected parts) and to analyze the results.

In this section, we will show you how to perform code checks in the
ABAP Test Cockpit (ATC), which offers considerable advantages over the
Code Inspector. You can manage the results of check runs, replicate them
to other systems, manage exceptions, and automatically send results by
email. Furthermore, the ATC is integrated into the ABAP Workbench (by
means of a special browser) and SAP Solution Manager.

To start the ABAP Test Cockpit, call Transaction ATC. Here, you can con-
figure the cockpit, schedule check runs, and analyze the results. Figure
7.7 shows the initial screen for the transaction.

Using the ABAP
Test Cockpit

312

7 Runtime and Error Analysis with SAP HANA

Figure 7.7 ABAP Test Cockpit: Initial Screen

You can use the Schedule Runs option to configure a check run. To do
this, select a Code Inspector check variant and a set of objects. Figure
7.8 shows a configuration for the variant PERFORMANCE_DB (introduced
in Section 7.1) checking the packages TEST_A4H_BOOK*, which contain
examples from this book.

Figure 7.8 Configuring a Check Run

313

Runtime Statistics and Traces 7.4

You can now schedule such a check run (either once or at specific times),
which is then executed asynchronously in the background. You can then
view the result under Analyze and Activate Results in the ATC or in
the ATC Result Browser in the ABAP Workbench (see Figure 7.9). To
do this, you may first have to activate this browser in the workbench
settings for your user.

Figure 7.9 Result of an ATC Check Run in Transaction SE80

In Section 7.6, we’ll show you how to merge the results of an ATC run
with runtime data from the SQL Monitor for performance optimization.

7.4 Runtime Statistics and Traces

Runtime statistics and traces are used if a long-running program is already
known and you want to analyze its runtime behavior more closely. Run-
time statistics provide you with an initial overview of where the time was
consumed—that is, whether this time was consumed on the database or
in the application server. The traces record the ABAP or SQL execution
in detail and help you identify expensive statements, while the explain
plan and SAP HANA PlanViz show in detail how a certain SQL statement
was executed.

314

7 Runtime and Error Analysis with SAP HANA

7.4.1 Runtime Statistics

In the SAP system, statistical data is collected and persisted for each request.
Examples of a request include the execution of a program, dialog step,
or RFC call. This data is collected from the application server where the
request is executed, and then written to the local file system. By default,
the files are available for 48 hours before they are overwritten. These
statistics include data about the overall runtime, CPU time, database time,
and time associated with SAP locks, as well as other values (for memory
usage, for example).

Once the program to be analyzed has been executed, you can select the
statistical records in Transaction STAD. On the initial screen, you specify
the required time frame. Note, however, that the statistic record is not
written until the request has been fully executed. You can also specify
other filters here. Examples include the user name, program or transaction,
task type (dialog, RFC, background, and so on), and different thresholds
(for example, minimum response time or minimum database time).

The basic list (see Figure 7.10) contains some key performance indicators
(KPIs) such as Response Time, CPU Time, and DB Request time.

Figure 7.10 Basic List in Transaction STAD

Selection

Analysis

315

Runtime Statistics and Traces 7.4

When you double-click a statistical record in the basic list, further infor-
mation appears in the detail display (see Figure 7.11). Here, we wish to
draw your attention to database-relevant topics such as response time
(Time), database time (DB), and database procedures and tables (DB
Procedures and Tables).

Figure 7.11 STAD DB: Details

316

7 Runtime and Error Analysis with SAP HANA

Times

Table 7.3 lists the components of the Response time. For SAP HANA,
the database time and the time for database procedures are of particular
interest.

Time Explanation

Wait for work process Time spent waiting for a work process to
become available (in the dispatcher queue).

Processing time Uses the response time as the basis for
calculating all other times named here.
Generally contains the time associated with
ABAP processing and CPU consumption,
but also wait times (for example, RFC time,
update time, and roll wait time) if the work
process is not rolled out.

Load time Time taken to load programs.

Generating time Time taken to generate programs.

Roll (in+wait) time Times when the work process was rolled
out and the time for the subsequent roll-in
(loading of the user context).

Database request time Time consumed for database accesses (Open
SQL and Native SQL).

Enqueue time Time for lock requests in relation to the SAP
enqueue service.

DB procedure call time Time taken to call database procedures
(CALL DATABASE PROCEDURE, see Section
5.3.3).

Table 7.3 Time Components in Transaction STAD

For the most part, the CPU time is generally consumed during the pro-
cessing time. However, it also occurs in all of the other time components
listed in Table 7.3. RFC+CPIC time is the time associated with remote
function calls (RFC). It is consumed during the processing time or the roll-in
and roll wait time, depending on whether or not the work process was
rolled out. The upper half of the screen shown in Figure 7.11 contains a
detailed analysis of the individual times.

Time overview

317

Runtime Statistics and Traces 7.4

Database Times

In the DB view, the Database Request time is broken down further.
Here, you see how the database time is divided into different access types
SELECT, INSERT, UPDATE, and DELETE). For each access type, you see how
many rows were processed and how much time was needed to process
them. The lower half of Figure 7.11 contains detailed information about
the database.

Database Procedures and Tables

In the DB procedures and Table views, you see those database procedures
and tables that required the most time. The maximum number of proce-
dures and tables displayed here is configured in the profile parameters
stat/dbprocrec and stat/tabrec. The following information is displayed
for each procedure: the name of the procedure, the database connection,
the number of calls, and the time (see Figure 7.12). For tables or views,
you see the name of the table (or view), the number of data records pro-
cessed, and the time required (see Figure 7.13).

Figure 7.12 STAD: Database Procedures

Figure 7.13 STAD: Table Details

Access times

318

7 Runtime and Error Analysis with SAP HANA

Useful Parameters for Transaction STAD

You can use the parameter stat/max_files to extend the default analysis
time frame of 48 hours up to 99 hours. The detailed data introduced here at
table and database procedure level is displayed only if the two parameters
stat/tabrec and stat/dbprocrec are set to values greater than zero. You
can use the following path in Transaction ST03 to dynamically change these
parameters for a specific time frame: Collector & Performance DB • Statistic
Records and File • Online Parameters • Dialog Step Statistics.

7.4.2 ABAP Trace and ABAP Profiler

The ABAP trace (Transaction SAT) is a powerful runtime analysis tool for
ABAP applications and, as of SAP NetWeaver release 7.02, it is the suc-
cessor to Transaction SE30. Based on this infrastructure, its new interface
(the ABAP profiler) forms part of the ABAP development environment in
Eclipse. The interface provides developers with a clear results overview,
including a graphical representation. In this section, we will introduce
you to both variants.

ABAP Trace

In order to record the ABAP trace, a measurement variant is configured
first and then the trace is recorded. In a measurement variant, you define
the following:

EE What type of recording will take place and for how long (Duration
and Type tab page)?

EE What will be recorded (Statements tab page, see Figure 7.14)?

You then use the configured measurement variant to execute the program
that will perform the recording.

To perform an analysis, double-click a trace on the Analyze tab page. Four
or six views are available for analysis, depending on whether the trace
was created with or without aggregation. All of the views are linked to
each other. In other words, you can open the context menu for an event
in one view and display this event in another view.

Configuration
and recording

Analysis

319

Runtime Statistics and Traces 7.4

Figure 7.14 Measurement Variant in the ABAP Trace

The following views are available:

EE Hit List
Displays all trace events with details about the number of calls, gross
time, and net time. The gross time roughly corresponds to the Total
Time, while the net time corresponds to the Own Time associated with
the ABAP profiler (see Figure 7.18).

EE DB Tables
Displays all accesses to database tables and corresponds to the Data-
base Accesses view in the ABAP profiler (see Figure 7.21).

EE Profile
Displays the events according to different profiles. The following views
are available for selection: Events, Packages, Components, and Pro-
grams.

EE Processing Blocks
Displays an interactive, hierarchical representation of events with
details about the gross and net times. The various levels of the call

320

7 Runtime and Error Analysis with SAP HANA

hierarchy can be analyzed arbitrarily. An automatic analysis that dis-
plays critical processing blocks is also available here. For example, all
modularization units that occupy more than 5 percent of the net time
are highlighted.

EE Call Hierarchy
Displays a list of events with details about the call level, gross time,
and net time.

EE Times
Displays a detailed list of events whereby the time is further subdivided
into components such as database time, database interface time, time
for internal tables, and so on.

ABAP Profiler

In this section, we will show you how you can use the ABAP profiler in
Eclipse to create an ABAP runtime analysis.

If you want to use the ABAP profiler to create a trace, choose the Profile
icon (see Figure 7.15), which starts a trace with default settings. In
the dropdown menu for the profile icon, you can use the Profile Con-
figurations… menu option to select some recording options. To do this,
make the necessary settings on the Tracing tab page and choose Profile
to confirm your entries (see Figure 7.16).

Figure 7.15 ABAP Profiler with Default Settings

Recording options

321

Runtime Statistics and Traces 7.4

Figure 7.16 ABAP Profiler with a Trace Configuration

The basic settings are summarized in Table 7.4.

Category Setting Explanation

How? Perform
Aggregated
Measurement
(yes/no)?

Defines the level of detail for the
recording. This setting has a major
impact on the trace scope. The call
hierarchy is not available for an
aggregated measurement (see Figure
7.19).

When? When should
the trace start
(immediately/
ron)?

Defines whether the trace is to be
started immediately or only when an
explicit action is performed.

Table 7.4 Settings for the ABAP Profiler

322

7 Runtime and Error Analysis with SAP HANA

Category Setting Explanation

What? Which ABAP
statement
should be
traced?

Here, you can configure which calls are
to be traced:

EE Modularization units only

EE Modularization units and SQL calls

EE Modularization units, SQL calls, and
table accesses

Additional
parameters

Advanced
Parameters

Here, you can make the following
additional settings:

EE Recording duration

EE Trace RFCs and updates

EE Record memory consumption

EE Enable an SQL trace

Table 7.4 Settings for the ABAP Profiler (Cont.)

If you want to analyze a trace you have created, switch to the ABAP Pro-
filing perspective. In the lower screen area, update the list on the ABAP
Traces tab page. The system then displays a list of trace files. Double-click
to open your trace.

An overview screen is displayed. In the General Information area of
the screen, you can see what was recorded, and when, where, and how
it was recorded. The Analysis Tools area contains different detail views,
each of which we will explain in greater detail next. Finally, the Runtime
Distribution area provides an initial overview of the runtime. A graphi-
cal representation of the amount of time consumed for ABAP statements
is shown (for example, processing of internal tables, the database [Open
SQL, and so on], and the system [for example, loading processes]). Figure
7.17 shows a representation of a trace in the ABAP profiler.

The overview area shows you the overall runtime and how it’s distributed
between the database and application server. We’ll now explain the vari-
ous detail views associated with the ABAP profiler.

Trace analysis

323

Runtime Statistics and Traces 7.4

Figure 7.17 ABAP Profiler: Initial Screen

All recorded trace events are displayed in the Hit List (see Figure 7.18),
which is sorted in descending order according to Own Time; that is, the
time consumed by the relevant event itself. This time excludes calls that
were called within the event and subsequently measured. The Total Time,
on the other hand, includes all calls and specifies the total amount of time
consumed by the event itself and the calls executed by the event. The
hit list also shows you the frequency with which an event was executed,
and the program in which it was called. In the case of calls concerning
modularization units, you see which program was called. If you sort this
list according to the Own Time column, you see the most expensive
executions associated with the statements recorded. If you sort this list
according to the Total Time, you see the most expensive modularization
units in the program.

Hit list

324

7 Runtime and Error Analysis with SAP HANA

Figure 7.18 ABAP Profiler: Hit List

The call hierarchy (also known as the Call Tree; see Figure 7.19) displays
statements in a hierarchy. In other words, you see which statements
were called at which level in the call hierarchy. Statements that occur
directly within a modularization unit are hidden initially. However, you
can choose Show to display them. The row All Statements within Pro-
gram… specifies the duration of those statements that were not recorded
separately. These times are included in Own Time for the modularization
unit selected.

Figure 7.19 ABAP Profiler: Call Hierarchy

Call hierarchy

325

Runtime Statistics and Traces 7.4

The Call Timeline displays the call hierarchy in the form of a timeline
(see Figure 7.20). Each call is displayed as a horizontal bar whose length
corresponds to the call duration. Calls made within a call are displayed
below this bar. The depth of the call hierarchy (known as the call stack)
is shown from top to bottom. These bars are color-coded according to
the call type, thus making it possible for you to identify (for example,
database calls) immediately. You can use the black square in the lower
area of the graphic to maximize or minimize the area shown. If you move
the mouse over a bar, a dialog box displays information about the event,
Total Time, and Own Time. When you right-click a bar, you can execute
the following actions:

EE Navigate to the same event in the hit list.

EE Display the call stack for this event.

EE Display the event in the database accesses.

EE Navigate to the call point in the ABAP program.

You can also adjust the color coding used in the diagram.

Figure 7.20 ABAP Profiler: Timeline

The Database Accesses view shows you which tables were accessed using
which statements (see Figure 7.21). Here, you see the number of execu-
tions (divided into database accesses and table buffer accesses) and the
time required. You also obtain information about the table type, a short
description, and the package to which the table is assigned.

Call timeline

Database accesses

326

7 Runtime and Error Analysis with SAP HANA

Figure 7.21 ABAP Profiler: Database Accesses

7.4.3 SQL Trace

Transaction ST05 contains various functions, one of which—the SQL
trace—we wish to examine in greater detail. In Chapter 3, we used the
SQL trace to explain how Open SQL is translated to Native SQL state-
ments. In this section, we will explain how to use the SQL trace as a
runtime analysis tool.

Recording

On the main screen, select SQL Trace as the Trace Type. On the right-
hand side of the screen, you can also activate a stack trace recording,
which enables you to record not only the SQL statement itself, but also
information about the call stack. To record an SQL trace, choose Activate
Trace or Activate Trace with Filter. With the first option, the trace
is activated for your user. With the second option, you can activate the
trace with different filters. Figure 7.22 shows the trace recording with
filter options. Execute the program upon activating the trace recording.
Choose Deactivate Trace as soon as the program ends.

Analysis

To display the trace, choose Display Trace. In the next dialog box, the
filters are predefined in accordance with the settings for the recording.
In other words, you generally do not have to change anything here if you
want to display the trace immediately after the recording. However, if
you want to display the trace at a later time or you want to display a trace
associated with another user, you must ensure the following:

327

Runtime Statistics and Traces 7.4

EE You are logged on to the server on which the trace was saved.

EE The filters for the user and time frame correspond to those for the
trace recording.

Figure 7.22 Trace Recording in Transaction ST05

You can choose between different views by clicking the relevant icon on
the upper screen border (see Figure 7.23).

The following views are available, which you can select using the icons
located on the upper screen border:

EE Summarized Statements
Here, an SQL statement corresponds to a row in the trace. In other
words, detailed information such as OPEN, FETCH, and CLOSE are aggre-
gated into one row.

From this list, you can navigate to a list of detailed statements, a list
of identical statements, or an aggregated view for each table.

328

7 Runtime and Error Analysis with SAP HANA

EE Detailed Statements
Here, you see all of the calls that were sent to the database. An SQL
statement is displayed, for example, in an OPEN statement, one or more
FETCH statements, or a CLOSE statement.

EE Structure-Identical Summary
All SQL statements with an identical structure are summarized here.
Therefore, if there are similar SQL statements at different call points
within a program, these are displayed in aggregated form.

EE Trace Overview
A summary of the entire SQL trace is shown here.

EE Save
In addition, a function is available for saving the SQL trace in the data-
base.

Figure 7.23 Displaying the SQL Trace

Next, we will show you the structure-identical summary and an analysis
of the call hierarchy (stack trace).

First, display the structure-identical statements (see Figure 7.24). We
recommend that you start your analysis with this list because it provides
you with the best overview of the most expensive SQL statements. You
see which statement had the longest duration overall, the frequency
with which it was executed, and whether there were redundant accesses
(known as identical selects). This information is made available to you both

Structure-identical
statements

329

Runtime Statistics and Traces 7.4

in absolute figures and as a percentage. You also see all execution times (for
each execution and data record), and the number of data records—both
in total and for each execution. Finally, you obtain buffering information
from the ABAP Data Dictionary.

Figure 7.24 Structure-Identical Statements

If you double-click the number of executions, you branch to a list of sum-
marized Statements. Here, one row corresponds to one execution. You
can display the call hierarchy for this execution. The ABAP call stack for
this statement is then displayed in a dialog box (see Figure 7.25). This
function is very helpful in the case of ADBC calls, for example. The SQL
statement is first executed in the ADBC classes, while the actual execu-
tion occurs at a higher level in the call stack. The stack trace enables you
to navigate to any level within the call stack. To do this, double-click the
relevant row.

Figure 7.25 Call Hierarchy for an SQL Statement

If you want to display identical selects from within the list of summarized
statements, select the menu option Trace • Value-Identical Statements.

Stack trace

Identical selects

330

7 Runtime and Error Analysis with SAP HANA

Here, you see those statements that are executed repeatedly in the WHERE
condition with exactly the same values. You also see their duration and
the number of data records that were read.

If you double-click the text for a SQL statement contained in the list
of summarized statements, you see the entire statement as well as the
parameters used to execute the statement.

Overwriting Trace Data

The SQL trace is a part of the database interface and is therefore specific to a
particular application server. The trace itself is written to files on the relevant
application server. These files have a size restriction. Therefore, if all of the files
are full, the first file is overwritten again. If traces are very large, data may be
overwritten in this way. If this situation arises, you are notified (in Transaction
ST05) that some files may have been overwritten. To avoid this, you can also
save the contents of the files to the database before they are overwritten.

7.4.4 Single Transaction Analysis

Transaction ST12 combines Transactions SAT, ST05, and STAD into one
interface and, thanks to this combination, offers some advantages in
terms of recording and analyzing traces during a performance analysis.

Transaction ST12 is an additional development within the context of
service tools for applications (ST-A/PI). SAP Active Global Support makes
this software available as an add-on, and SAP Note 69455 explains how
to obtain and import this software. This software package does not form
part of the standard SAP delivery. It is not formally documented and is
only available in English. SAP Active Global Support originally developed
Transaction ST12 for their own use within the context of the services they
offer. Essentially, however, all SAP customers can use this transaction.

The following advantages are associated with combining the various
transactions into one interface:

EE During an analysis, the ABAP trace and SQL trace can be activated
together and then deactivated. If you do not know which application

Statement details

Requirements

Advantages

331

Runtime Statistics and Traces 7.4

server is associated with a particular request, you can start the record-
ing on all application servers simultaneously.

EE The trace data and the data from Transaction STAD are collected and
stored in the database, thus making subsequent analyses easier because
all the data is stored in one central location and is no longer overwritten.

EE The trace data can be combined with other data. For example, in the
ABAP trace for a SELECT statement, you can display related data from
Transaction ST05. For data from Transaction ST05, you can specify
which percentage of the overall runtime can be attributed to a SELECT
statement. You can also call the Code Inspector for individual results.

EE In the case of ABAP traces, additional functions (which are not pos-
sible in Transaction SAT) are available for analyzing aggregated traces.
For example, it is possible to draw conclusions about call hierarchies.

If you perform a large number of performance analyses, single transaction
analysis can offer some advantages over the standard delivery. Further
information is available in SAP Note 7559777 and in the SCN: http://wiki.
sdn.sap.com/wiki/display/ABAP/Single+Transaction+Analysis.

7.4.5 Explain Plan

The Explain Plan is a database function that can be used to display an
execution plan, which is a textual or graphical description of how an
SQL statement was executed. The database optimizer always creates
this description when the function is executed. The decision made by
the optimizer is based on the system status at the time when the plan
was created.

You can call the Explain Plan from various locations (for example, in the
SQL trace in Transaction ST05 or in the Expensive Statements or SQL
Cache areas in Transaction DBACOCKPIT). This function is also available
in SAP HANA Studio. Here, for example, the Explain Plan is available
in the SQL console.

332

7 Runtime and Error Analysis with SAP HANA

To call the execution plan in SAP HANA Studio, proceed as follows: Enter
an SQL statement in the SQL console and right-click to select the Explain
Plan function in the context menu for the statement.

From an analysis perspective, the following columns are of interest:

EE Operator Name
Name of the operation executed (for example, access to a column table,
row table, or join).

EE Operator Details
Additional information about the operation (for example, filter or join
conditions).

EE Table Name
Name of the database object referenced by the operator.

EE Execution_Engine
The engine that executes the operator.

EE Schema_Name
Name of the database schema.

EE Table_Type
The type of table used (for example, a column table, row table, OLAP
view, calculation view, and so on).

EE Table_Size
Estimated size of the table for this step (the number of rows in the
case of column tables, or the number of pages in the case of row tables).

EE Output_Size
Estimated number of rows for the result set associated with this step.

A sample execution plan output is shown in Figure 7.26. A graphical
variant of the execution plan is also available, which we’ll discuss in
Section 7.4.6. In the execution plan, you can see how an SQL statement
is executed (in particular, which engine is responsible for which parts
of the execution). If you require a more in-depth look at the execution
details, you can use SAP HANA PlanViz (see the next section).

Calling the
execution plan in

SAP HANA Studio

333

Runtime Statistics and Traces 7.4

Figure 7.26 Explain Plan in SAP HANA Studio

7.4.6 SAP HANA Plan Visualizer

SAP HANA Plan Visualizer (PlanViz) provides a graphical representation of
an SQL statement or database procedure execution. You can also execute
the statement and collect runtime data here, provided that you have the
required permissions.

If you want to use PlanViz to analyze an SQL statement or procedure,
open the SQL console and insert the statement (or procedure) that you
want to analyze. Choose Visualize Plan in the context menu for the
SQL console. The anticipated execution plan is then displayed on the
Visualized Plan tab page. Here, you see nodes (known as plan opera-
tors in technical terms), which are connected to each other by means of
arrows and provide information about the estimated number of data
records for the call. The parentheses around these numbers indicate that
they are estimates. In the context menu, choose Execute to execute the
query. If the SQL statement contains parameters, the Prepared SQL tab
page is displayed after you choose Execute. Specify the necessary input
parameters here. The return parameter fields are left blank. Then, choose
the Execute icon on the upper right screen border. Runtime data is
collected internally and presented in a graphic on the Execution tab page
as soon as the query has ended.

The execution view contains various execution nodes, which are con-
nected to each other by means of arrows. These, in turn, represent the
flow of data from one node to another. The volume of data actually
transferred is displayed at the arrow itself, followed by the estimated

Recording

Analysis

334

7 Runtime and Error Analysis with SAP HANA

volume of data transferred in parentheses. Here, you can see the extent
to which the estimated volume of data corresponds to the volume of
data actually transferred. The nodes also contain additional information
about tables, columns, filters, execution times, and CPU times. You can
use the icon displayed on the upper right border of a node to open
the relevant node.

The timeline is a very helpful tool. To display it, proceed as follows: In
the menu Window • Show View • Other…, select Timeline under Plan
Visualizer and choose OK to confirm your entry.

In the timeline, each node is displayed as a bar, and the length of the bar
corresponds to the runtime for that particular node. You therefore easily
see the start time, runtime, and end time associated with executing the
node. You also see which nodes were processed parallel to one other.

If you move the mouse over a node in the main screen, a dialog box
opens to reveal detailed information that has been recorded for the node.
Depending on the node, this box contains different values, such as the
execution time and CPU time, information about tables, columns, and
filters, as well as the degree of parallelization for a node.

Finally, we will show you how to analyze a database procedure. We will
do this using the sample procedure GET_DATA_FOR_TOP_CONNECTIONS,
which you learned about in Section 5.1.1. Three additional procedures,
namely DETERMINE_TOP_CONNECTIONS, GET_KPIS_FOR_CONNECTIONS, and
GET_AGENCIES_FOR_CONNECTIONS, will be called within this procedure.

To analyze the main procedure, enter the following call in the SQL console
(please note that '001' stands for the client; if you use a different client,
please change this entry accordingly):

call "test.a4h.book.chapter05::GET_DATA_FOR_TOP_
CONNECTIONS"('001', 'LH', ?, ?)

Call Visualize Plan in the context menu for the SQL console. On the
Visualized Plan tab page, choose Execute in the context menu (see
Figure 7.27).

Timeline

Analyzing
a database
procedure

335

Runtime Statistics and Traces 7.4

Figure 7.27 PlanViz: Recording

The Prepared SQL tab page is displayed here because the return param-
eter variables for the procedure are specified in the call. However, since
they are return parameters, no data is specified here. Choose Execute or
press (F8) to start the analysis (see Figure 7.28).

Figure 7.28 PlanViz: Prepared SQL

The execution is displayed on the next tab page. Here, expand the first
node by choosing the icon in the upper right corner of the node.

In Figure 7.29, you see that the first node is a ceLjit Pop, which calls a
sub-execution node. In the detail view for this node, you ascertain that
it concerns the procedure DETERMINE_TOP_CONNECTIONS, whose runtime
is 65.587 milliseconds.

Runtime for
individual
procedures

336

7 Runtime and Error Analysis with SAP HANA

Figure 7.29 PlanViz: Analysis

Once you have completed this procedure, the results are transferred to
two additional nodes that run parallel to one other. This becomes appar-
ent if you select both nodes and take a look at their bars in the timeline.
The two blue bars start at the same time and run for approximately the
same length of time (see Figure 7.30).

337

System-Wide SQL Analyses 7.5

Figure 7.30 PlanViz: Parallel Procedure Calls

In the detailed information for each node, you see that it concerns two
procedures, namely GET_KPIS_FOR_CONNECTIONS and GET_AGENCIES_FOR_
CONNECTIONS. You also see the duration of each execution. All of the above
enables you to analyze a procedure execution in more detail.

The node name enables you to draw conclusions in relation to the engine
or process in which the node is executed. For example, ce stands for
calculation engine, bw for the OLAP engine, and je for the join engine.
You also see which type of operation it concerns (for example, aggrega-
tion, sorting, and so on).

7.5 System-Wide SQL Analyses

System-wide SQL analyses help you to identify expensive SQL statements
in the entire system. At first, you do not require any information about
the application. During the optimization process, however, you may find
such information helpful or even necessary. In this section, we will show
you how to conduct such analyses in the DBA cockpit. You will also learn
about two new transactions for system-wide SQL analyses, which are
available as of SAP NetWeaver AS ABAP 7.4.

Processing engines

338

7 Runtime and Error Analysis with SAP HANA

7.5.1 DBA Cockpit

The DBA cockpit contains all the functions needed for database moni-
toring and database administration. Here, you find an overview of the
current database status as well as error messages and warnings. Functions
are also available for the following: performance analysis, configuration,
database jobs, diagnostics, and system information. These are a subset
of the functions available in SAP HANA Studio for analyzing the HANA
database. In some cases, however, the DBA cockpit contains advanced
functions that are not available in SAP HANA Studio (for example, direct
navigation to the ABAP source code).

The Overview screen provides information about the current database
status. Here, you see, for example, the current CPU and memory consump-
tion in the database. Current warnings are displayed on the Alerts screen.

In the Performance area, various views containing different database
statistics are displayed under Statistics Server. Under Threads, you see
those threads that are currently active on the database. The Expensive
Statements view contains a list of SQL statements if this particular trace
is activated, while the SQL Cache area displays aggregated information
about the SQL statements that have been executed. This information is
taken from the SQL cache in the database. All executed SQL statements
are stored in the SQL cache and the runtime data associated with these
statements is entered there. If, however, some data is displaced due to a
lack of space or because new SQL statements are created, the data may
be incomplete. In other words, only some of the execution data created
since the database started is available. We will take a closer look at these
two functions.

The Configuration area contains information about the Landscape and
Services available. It also contains information about trace configurations,
configuration files, and database files.

The Diagnostics area contains a range of expert functions, some of
which we wish to describe here. The SQL Editor can be used to execute
read-only SQL statements. Queries in relation to monitoring views and
application tables can be executed in this way if the relevant authorization

Overview
and alerts

Performance

Configuration

Diagnostics

339

System-Wide SQL Analyses 7.5

exists. The Tables/Views area contains the definition and runtime infor-
mation for database objects. Here, you can use the Procedures function
to also view the database procedures available. The Diagnosis Files and
Merged Diagnosis Files areas enable you to view important trace and
diagnosis files in the database, and to merge them together to arrange
information from different files in chronological order. You can use the
Backup Catalog function to view information about database backups.
Here, you also find various pieces of information about locks and other
different trace CE Plan Operators, which we will not describe in greater
detail here.

In the System Information area, you can query different monitoring
views. Information about connections, transactions, caches, large tables,
memory, and the SQL workload is available here.

Now we will show you how you can use the overview, threads, SQL
cache, and the expensive statement trace in the DBA cockpit to analyze
the load on the HANA database.

In the upper area of the overview (General System Information), you
see whether all of the database services are active and when they were
started. You also see whether it concerns a distributed system. Further-
more, you obtain information about the database version and operating
system. In the upper right area, you see whether there are current alerts.
If there are, you can click the information displayed here to navigate
directly to the alerts.

The middle and lower areas of the overview contain information about the
current load on the main memory and CPU (on the basis of the database
and the host on which the database is running). These areas also contain
information about the hard drive or data, log, and trace areas. All of this
information is based on the time when you called the overview or chose
Update. This information is shown in Figure 7.31.

System
information

ST04—overview

340

7 Runtime and Error Analysis with SAP HANA

Figure 7.31 ST04: Overview

In the Threads area, you see which threads are active in the database.
This area also contains information about the service, type, and method
executed. The recently executed SQL statement, previous runtime, caller,
and the name of the user who executed the statement are displayed. An
example of a thread is shown in Figure 7.32.

Figure 7.32 ST04: Threads

In the upper area of the SQL cache, you can specify filters for the SQL
statements to be displayed (see Figure 7.33).

Threads

SQL cache

341

System-Wide SQL Analyses 7.5

Figure 7.33 SQL Cache

You can execute the following functions for each SQL statement:

EE Statement String: Displays the entire SQL statement.

EE Explain: Displays the execution plan as a piece of text.

EE Explain (graphically): Displays the execution plan graphically.

EE Execution Trace: Generates a file that can be analyzed further using
PlanViz (see Section 7.4.6) in SAP HANA Studio. This works for SELECT
statements only, which the trace executes in the background if the
relevant authorizations exist.

EE Navigation to Editor: Displays the call point of the ABAP program
within the program.

The SQL cache contains an entry for each unique SQL string. Therefore,
different call points within ABAP programs can be aggregated into one
entry if they concern exactly the same SQL statement. A large amount of
information can be retrieved for each entry (for example, the number of
executions, the execution times, the number of data records transferred,
the time when the last execution was performed, and the times relating
to database locks).

The Expensive Statements view contains similar functions to the SQL
cache, but works according to the trace principle. In other words, you
must configure which SQL statements you want to record (for example,
all SQL statements that take longer than three seconds to execute). Such
statements are written to a restricted memory area within the database.
Whenever this area is full, old entries are simply overwritten, so space is
always available. This particular function has the advantage over the SQL
cache in that individual statements that satisfy the configuration criteria are

Functions

Information in
the SQL cache

Expensive
statements

342

7 Runtime and Error Analysis with SAP HANA

recorded without needing to be aggregated. Therefore, information about
the application user (the user in the SAP system) is also available here.

7.5.2 SQL Monitor

The SQL Monitor (Transaction SQLM) is a new development that is avail-
able as of SAP NetWeaver AS ABAP 7.4 and will be made available for
release 7.00 and above (see SAP Note 1885926). The basic idea of the
SQL Monitor is to collect, aggregate, and persist runtime information
about SQL statements in the database interface (DBI).

The SQL cache in the database provides database-specific information
about the SQL statement (for example, the number of pages read or the
I/O and CPU times required), but information about the ABAP program
and the call context in which the statement was executed is available in
the SQL Monitor. Consequently, these two data sources complement each
other and provide specific additional information about SQL statements.
In this section, we will show you how to activate the SQL Monitor and
explain which data is collected.

To launch the SQL Monitor, call Transaction SQLM. Here, you can activate
the SQL Monitor on every application server or on specific application
servers only. You can also define the period in which the recording will
take place (default setting: one week). Figure 7.34 shows the initial screen
of the SQL Monitor after it has been activated.

Once activated, data is collected and aggregated for each SQL statement
executed. The data is collected in the main memory and written asyn-
chronously to a database table. It is then made available for analysis in
Transaction SQLM approximately one hour after the recording. In order
to minimize the effects that these measurements have on the runtime,
the data is made available in a background job.

To analyze the data, choose Display Data. The selection screen shown
in Figure 7.35 is displayed. Here, you can filter data according to the
following information:

EE Package (software package)

EE Object Type (program, function module, and so on)

Recording

Analysis

343

System-Wide SQL Analyses 7.5

Figure 7.34 SQL Monitor: Activation

Figure 7.35 SQL Monitor Analysis

344

7 Runtime and Error Analysis with SAP HANA

EE Object Name (name of the object)

EE Request Type (type of entry point)

EE Request Entry Point (name of the entry point)

EE Table Name (name of the table)

You can display and sort the analysis list in aggregated form, as well as
restrict the number of data records displayed.

The entry point is the first entry in the ABAP call hierarchy that is deemed
to be of semantic importance. Entry points can include transactions, RFC
modules, URLs, or ABAP reports.

Example: A program ZR_A4H_CHAPTER8_TOP_CUST calls a method of the class
ZCL_A4H_CHAPTER8_DATA_PROV in which a SELECT statement is executed.
The object name for this statement is ZCL_A4H_CHAPTER8_DATA_PROV, while
the program ZR_A4H_CHAPTER8_TOP_CUST is the entry point. Without this
entry point, it may not be possible to establish a reference to the ABAP
report, nor to assign the SQL statement to a business process. If a function
module now calls this method via a remote function call (RFC), a new entry
is created and receives the object name ZCL_A4H_CHAPTER8_DATA_PROV.
Furthermore, its entry point bears the name of the RFC function module.
Consequently, SELECT statements can easily be assigned to a business
process—even if they are called in modularization units, which do not
recognize such an assignment.

The result list contains the following information:

EE Number of executions

EE Time consumed (total, average, maximum, minimum, and standard
deviation)

EE Data records (total, average, maximum, minimum, and standard devi-
ation)

EE Table name (in the case of joins, the tables are stored in a list, separated
by commas)

EE Information about the object (type, name, and include)

EE Main program (type and name)

Entry point

Result list

345

System-Wide SQL Analyses 7.5

EE Number of sessions and executions per session

EE Information about the program, package, and modularization unit

The fields Int. Sess. and Exe./Se... enable you to analyze the number
of executions in greater detail. Here, you see whether the total number
equates to one program run (session) in which the same statement is
executed several times (sessions = 1, number of executions per session =
1,000) or to a large number of sessions in which the statement is executed
once in each session (sessions = 1,000, number of executions per session
= 1). Figure 7.36 shows a sample result list in the SQL Monitor.

Figure 7.36 SQLM: Result List

You can use this information to conduct some interesting analyses. The
following examples serve to give you some points of reference:

EE Which statements took the longest to execute (sorted according to
time)?

EE Which statements were executed most often (a large number of ses-
sions or a large number of executions per session)?

EE Which statements were executed directly within a specific function
module (for example, ZFUNC2) (selection according to the object name
ZFUNC2)?

EE Which statements were called directly within and below a specific
function module (for example, ZFUNC2) and by other function modules,
methods or programs called by the function module (selection accord-
ing to the main program = ZFUNC2)?

EE Which statements relating to customer tables were called within and
below a specific transaction (for example, VA01) (selection according
to the main program = VA01 and table name = Z*)?

Points of reference
for analyses

346

7 Runtime and Error Analysis with SAP HANA

EE Which programs accessed a specific table (for example, ZTAB1) (selec-
tion according to the table name ZTAB1)?

Since the data in the SQL Monitor is periodically stored in a database
table, no data is displaced here (which is the case with the SQL cache).
You can link the data in the SQL Monitor to the results of a static code
analysis, thus providing runtime information for the static check results.
Consequently, it quickly becomes apparent where an optimization would
be most beneficial. We will show you how to do this in Section 7.6.

The SQL Monitor is a very powerful tool for determining an SQL profile
for an application or an entire system. For each call point, an entry is
created for each table and main program. Since the data is written asyn-
chronously to the database tables, performance is not negatively affected.
Furthermore, no information is lost and the additional information makes
it possible to draw more accurate conclusions in relation to the ABAP
program and the context in which it was executed.

7.6 SQL Performance Optimization

The SQL performance optimization tool (known as the SQL Performance
Tuning Worklist, Transaction SWLT) is a new development that is available
as of SAP NetWeaver AS ABAP 7.4. It can be used to combine data from
a static code analysis (for example, the data associated with a check run
in the ABAP Test Cockpit) with runtime measurements from the SQL
Monitor. This enables you to quickly identify where an optimization
would be most promising for SAP HANA.

In Section 7.3, you learned how to perform static code analyses and, in
Section 7.5.2, we explained how to use Transaction SQLM to collect data.
These two pools of data are now linked to each other in Transaction SWLT.

To do this, choose Manage Snapshots in Transaction SWLT to gener-
ate a snapshot of the SQL Monitor. The following options are available:

EE Online snapshot of the SQL Monitor from the local system or a system
connected via an RFC.

Advantages of
the SQL Monitor

Linking data from
SQLM and SCI

347

SQL Performance Optimization 7.6

EE Reading a snapshot from a file that was created using the SQL Monitor
and the Download Data function.

You can make additional data settings here. For example, you can choose
whether you want to use results from the Code Inspector or the ABAP
Test Cockpit. To do this, choose Select Inspection (see Figure 7.37).

Figure 7.37 Linking SQLM and SCI in Transaction SWLT

Selecting
source tools

348

7 Runtime and Error Analysis with SAP HANA

Here, you can also access the local system directly, or access a remote
system by means of an RFC. You should select a check variant that con-
tains all the necessary performance checks. Choose Suppress Records
w/o Findings, so it only displays data records that originate in the SQL
Monitor and for which there is also a message in the Code Inspector. If
you wish, you can make additional restrictions in the upper screen area.
These functions correspond to those associated with the SQL Monitor.
Choose Execute to start the analysis. Make sure the snapshot of the SQL
Monitor covers a relevant period in the production system so that it
contains all key processes.

The SQL Performance Tuning Worklist can also be used to link the data
from the SQL Monitor with data from the Coverage Analyzer, which records
ABAP program usage. You can also display the data from the SQL Monitor
without linking it to any other data. During the selection, the data from
both data sources are linked to one another by means of a join that is
based on the call point (object, include, or row).

The result list comprises a screen that is divided into three sections (see
Figure 7.38). The upper area contains the data from the SQL Monitor. As
soon as you double-click a data record in the upper area, the data is filled
in the lower screen areas. If you select an entry in the Include Name
column, you navigate directly to the call point in the ABAP program.

EE In the list on the lower left-hand side of the screen, you see the relevant
caller for the SQL statement (Request Entry Point, first program in
the ABAP call hierarchy) and the most important measurement read-
ings for this from the SQL Monitor. When you select the table name,
you call Transaction SE12 (ABAP Data Dictionary) for this table.

EE In the list on the lower right-hand side of the screen, you see the con-
solidated results from the Code Inspector and the ABAP Test Cockpit.
From here, you can call the documentation for the check, or you can
select the entry in the Additional Information column to navigate
directly to detailed information about the results in the Code Inspec-
tor or the ABAP Test Cockpit.

Analysis

349

SQL Performance Optimization 7.6

Figure 7.38 Analysis in Transaction SWLT

Compared to the SQL Monitor, the main result list contains some addi-
tional columns. From the ABAP Data Dictionary, you obtain the following
information for the database tables:

EE Buffering Type: Buffering type associated with the table

EE Columns: Number of columns in the table

EE Key Columns: Number of key columns

EE Width in Bytes: Row length in bytes

EE Storage Type: Table type (Column Store and Row Store)

EE Size Category: Size category for the table

EE Table Class: Table type (Transparent, Pool, and Cluster)

You also obtain information about the Code Inspector checks:

EE Priority: The priority of the message as configured in the Code Inspec-
tor.

EE Severity: This value depends on the relevant check. (For more infor-
mation, refer to the documentation for the Code Inspector.) It specifies
the severity of the result. In the case of the SELECT * check, this column
specifies how many superfluous columns were read. In general, the
following applies: The higher this value, the greater the negative impact
on performance.

EE Effort: This value depends on the relevant check (see the documenta-
tion for the Code Inspector) and is an estimate of the effort associated
with the correction. In general, the following applies: The higher this
value, the greater the effort.

EE Findings: Number of Code Inspector results for this SQL statement.

Data from the
ABAP Data
Dictionary

Information from
the Code Inspector

350

7 Runtime and Error Analysis with SAP HANA

You can use these columns to compare the results and prioritize where
an optimization would be most beneficial.

The SQL Performance Tuning Worklist is a very powerful tool and can be
used to plan optimization projects for SAP HANA very efficiently. If SQL
statements are assigned to main programs, they can also be assigned to
business processes. Runtime measurements show which SQL statements
require a large amount of time or run very frequently. The static analysis
shows where there is potential for optimization and how time-consuming
such an optimization would be. Combining this data into one transaction
is extremely useful for detecting the source code with the best cost-benefit
ratio for applying optimizations.

351

By optimizing existing ABAP programs, significant performance
gains may be achieved. ABAP developers should be able to identify
programs that are suitable candidates for optimization and then
modify them in such a way that they benefit from the SAP HANA
architecture.

8 Sample Scenario: Optimizing
an Existing Application

In the previous chapters, we described the basic principles of the in-
memory technology and ABAP development on SAP HANA. You now
know how portions of the application logic (especially complex calcula-
tions with large amounts of data) can be moved to the database layer. In
addition, you learned which tools the SAP NetWeaver AS ABAP provides
to identify optimization potentials in programs.

This chapter now deals with combining and using the individual tech-
niques and tools in a first sample scenario. In this example, a given
application is to be optimized for SAP HANA.

This chapter is divided into three parts. We’ll start with a description of
the necessary steps to optimize systems and applications. In the second
part, the sample scenario and optimization requirements are introduced.
To conclude the chapter, you’ll learn how to optimize the sample program.
In this part, we won’t explain every step in detail, but focus on the most
important excerpts that are relevant for optimization. You can download
the application and its source code in the download area for this book at
www.sap-press.com (see Appendix E).

8.1 Optimization Procedure

This section describes the general procedure in optimization projects.
We differentiate between the following scenarios:

352

8 Sample Scenario: Optimizing an Existing Application

EE Migration to SAP HANA

EE System optimization

EE Application optimization

Every scenario has a different focus and different roles of responsibility.
For every scenario, the most important tools are listed and described. Some
tools are used in several scenarios, with a different focus in each case.

8.1.1 Migrating to SAP HANA

When performing a migration to SAP HANA, you want to make sure that
all programs continue to run as before. Moreover, you might want to
identify optimization potential with regard to database access before or
during the migration, and implement the necessary adjustments. These
tasks are mainly the responsibility of ABAP developers and quality man-
agers for ABAP programs. In addition, it may be necessary that process
owners work with these employees to prioritize possible performance
optimizations based on the importance of the respective business process.

When migrating to SAP HANA, the following steps are necessary to
analyze and possibly modify or optimize ABAP code:

EE Collect respective data information

EE Analyze ABAP code (in combination with the collected data)

EE Prioritize the applications identified as relevant for optimization

EE Adjust the programs accordingly

You should examine the coding statically and combine the analysis results
with runtime data to facilitate prioritization, so the first step is to schedule
a data collection. To do this, activate the SQL Monitor in the produc-
tion system for a period of time where all important business processes
are run (see Section 7.5.2). For the month-end closing processes to be
considered, this time period should contain at least one period end. We
recommend a time period of at least six weeks.

While collecting the data, you can simultaneously use the SAP Code
Inspector and the ABAP Test Cockpit to analyze ABAP code. When doing
so, a distinction is made between functional checks and performance

Steps for analyzing
and optimizing

ABAP code

Data collection

Running the
checks

353

Optimization Procedure 8.1

checks (see Section 7.3.1). Run the tests on a development system that has
developments and coding that are comparable to the production system.

We recommend that you prioritize the results of the performance checks
based on their importance in the business process, the impact on the
system, and the required effort for the optimizations. For prioritization,
combine the results of the ABAP code analysis with the runtime data in
the SQL performance optimization tool:

EE The Code Inspector provides information on the SQL statements that
have optimization potential, on the impact on performance, and on
the effort for modifying these statements.

EE The SQL Monitor indicates whether or not an SQL statement was
executed, the number of executions, and the time needed for execu-
tion. Moreover, information on the entry point is provided so that
you can identify the business process affected. This makes it possible
to consider the business-process relevance when prioritizing the results
of the performance tests, and to discuss the weighting with the respec-
tive process owners.

While adjusting programs, suitable measures can be derived from the
results of the functional checks and the performance checks:

EE To make sure that all programs continue to run in the same way after
the migration, we recommend that you consider the results of func-
tional checks in all cases—i.e., independent of runtime measurements—
and implement the necessary corrections. Since these adjustments are
independent of the runtime analysis, you can start implementation at
the same time as data collection.

EE If the performance checks indicate optimization potential, you should
optimize the affected programs, in order, according to their prioritiza-
tion. We describe how to identify the exact modifications that are
necessary for each program in Section 8.1.3.

8.1.2 System Optimization

System optimization considers the system as a whole. Its focus is highly
technical and the required steps are usually performed by SAP system
and database administrators. When dealing with applications that system

Prioritization

Adjusting
programs

354

8 Sample Scenario: Optimizing an Existing Application

and database administrators cannot optimize directly, ABAP developers
will also be involved in the optimization measures. System optimization
has priority if a large number of system processes are too slow and the
runtime problems cannot be narrowed down to one or a few applications.

There are two possible approaches for system optimization: Analysis of
system settings and hardware resources on the one hand, and applica-
tion and SQL analysis on the other. In this context, it must be noted that
the two subject areas are inter-dependent. This means that non-optimal
system settings or resource bottlenecks can lead to slow applications.
Slow applications (e.g., with high resource consumption), in turn, can
lead to resource bottlenecks.

When analyzing the system settings and hardware resources, the sys-
tem settings are checked using different configuration parameters (for
memory size, number of processes, CPU, etc.). Moreover, it is verified
if the available hardware resources are sufficient for the workload or if
the system is overloaded and needs more hardware. Tools used for these
analyses are typically the SAP memory settings in Transaction ST02, the
database performance monitor (Transaction ST04 or DBACOCKPIT), and
the Operating System Monitor (Transaction ST06). In addition to this,
the system load can be analyzed in SAP HANA Studio.

Another approach would be to analyze which applications or SQL state-
ments are resource-intensive enough to have a negative impact on the
entire system. For this task, you can use the Workload Monitor (Trans-
action ST03), the SQL Monitor, the SQL cache of the database, and the
Expensive Statement Trace.

If necessary, resource-intensive applications can be further analyzed using
the tools described in Section 8.1.3. In case of resource-intensive SQL
statements, the following cases in particular are possible:

EE SQL statements used to transfer a large number of records from the
database to the application server.

EE SQL statements that have fast execution times when contemplated
individually, but which still take up a lot of time in total since they are
executed frequently.

Approaches

System settings
and hardware

resources

Application and
SQL analysis

355

Optimization Procedure 8.1

EE SQL statements that are executed rarely and transfer only a few records
from the database to the application server, but which have a long
runtime.

In the first and second case, the applications must often be optimized to
solve the problem. In the third case, the access path to the database must
be analyzed. In some cases, SAP system or database administrators can
optimize the runtime of those statements (e.g., with an index).

With system optimization, you can identify configuration problems,
resource bottlenecks, and expensive ABAP programs or SQL statements.
This type of optimization is described in detail in the book SAP Performance
Optimization Guide: Analyzing and Tuning SAP Systems by Thomas Schneider
(7th edition, SAP PRESS 2013) and included in the learning content of the
SAP course ADM315 on workload analysis.

8.1.3 Application Optimization

The goal of application optimization is to optimize the performance of
an existing application or of individual programs of that application.
Concrete complaints by end-users often motivate an organization’s move
to optimize an application.

Applications are usually optimized by ABAP developers. In some cases,
SAP system or database experts give consulting guidance on technical
aspects. It may also be necessary to work with business-process specialists
to discuss design changes or questions regarding a given business process.

Application optimization is an iterative process. It mainly consists of
three phases:

EE Analysis

EE Adjustment

EE Comparison

Analysis

During the analysis, you try to identify reasons for performance problems
and determine possible performance optimizations.

Phases

356

8 Sample Scenario: Optimizing an Existing Application

We recommend starting the analysis of a program by first evaluating the
runtime statistics, i.e., by using Transaction STAD (see Section 7.4.1). This
will provide early hints on the areas that constitute large portions of the
runtime and on the tools that are best suited for a more comprehensive
analysis. Three distinct types of cases emerge:

EE CPU time constitutes the largest portion of the runtime.

EE Database time constitutes the largest portion of the runtime.

EE Wait times constitute the largest portion of the runtime.

If the largest portion of the runtime is CPU time, we recommend continu-
ing the analysis with an ABAP trace (Transaction SAT or ABAP Profiler).

If the database time is the problem, Transaction STAD already provides
further information on the database accesses (e.g., with regard to the
affected database tables). If this information is not sufficient, you can
run an SQL trace in the next step. This delivers detailed information on
the number of executions of an SQL statement on the database and the
number of records processed. In addition to that, you can use the SQL
Monitor and the SQL Performance Tuning Worklist to create an SQL
profile of the application and combine this profile with the data from a
static code analysis. If necessary, you can then run further analyses using
the execution plan and/or the SAP HANA Plan Visualizer (PlanViz). How-
ever, both tools require very good knowledge of the SAP HANA database.

If the largest portion of the runtime is neither CPU time nor database
time, there are usually long wait times. These can be caused by synchro-
nous RFC calls, the ABAP statement WAIT, or synchronous updates. In this
case, you should analyze the causes of the wait times. When dealing with
RFC or update modules, this can mean that you should first evaluate the
runtime statistics of the function that was called and then examine the
CPU and database time based on those results.

Adjustment

The analysis results are used to adjust the program. You have very distinct
options for program adjustments. You might, for example, be able to
increase the performance by changing the table type of an internal table

Runtime statistics

CPU time

Database time

Wait time

357

Scenario and Requirements 8.2

or by a few simple changes to a data selection. In other cases, fundamental
modifications might be necessary to accelerate the program.

For every modification, you should consider possible side effects. After
adjusting a program, you should therefore make sure to run functional
tests. By executing unit tests, you can make sure that a given adjustment
will not lead to regression.

Comparison

After or during adjustments, you compare the runtime of the optimized
program with the runtime from when you performed the analysis. If the
performance did not increase at all or not to the extent expected, you
can run another analysis with subsequent adjustments before compar-
ing the programs again. Figure 8.1 shows the sequence of application
optimization.

Analysis with STAD

Analysis with
SQLM/SWLT

Analysis with SAT
(ABAP Profiler)

Analysis of Wait Times
or RFC Calls

High CPU Time High DB Time

Analysis with ST05

Analysis with
PlanViz/ExplainPlan

High RFC
or Wait Time

Figure 8.1 Application Analysis

8.2 Scenario and Requirements

Now that you have an overview of the required steps for system and
application optimization, we’ll introduce the sample application that will
be optimized for SAP HANA in this chapter.

Functional testing

358

8 Sample Scenario: Optimizing an Existing Application

8.2.1 Initial Situation

The focus of our sample scenario is a network of airlines that provides a
variety of services for the connected airlines based on a central database.
This includes regularly generating reports on flight occupancy, sales
figures, and the booking behavior of customers. Moreover, the network
provides a bonus system that allows customers of the connected airlines
to earn and spend miles.

Reporting

The following reports are provided via the network:

EE Utilization per flight connection for a fiscal year or a fiscal year period

EE Miles earned per customer within a fiscal year or a fiscal year period

EE List of premium customers (customers with the highest numbers of
earned miles within a period of 24 months)

EE Average use, total turnover, booking behavior for each flight connec-
tion per fiscal year period and in comparison to the previous period

Calculation of Miles

Miles are calculated based on a set of rules that was agreed upon by the
connected airlines. The following formula is used to determine the miles
earned for a flight booking:

Miles = (distance of flight connection × booking class factor
 + distance of flight connection × early booking factor)
 × (100 – customer-specific discount rate) / 100

Using the booking class factor, customers earn more miles when booking
business or first class than when booking an economy class flight. The
following factors are currently used:

EE Business class factor: 1.2

EE First class factor: 1.5

The early booking factor is an incentive for customers to book their flights
early. For flights that are booked at least 100 days before the flight date,
this factor is 0.1. In all other cases, the factor is 0.

Initial situation

Available reports

Calculation
of miles

Booking class
factor

Early booking
factor

359

Scenario and Requirements 8.2

Some customers receive customer-specific discounts when booking a flight.
In this case, the miles earned are reduced by the same percentage as the
airfare. If a customer receives a 30% discount so that he or she only pays
70% of the regular airfare, he or she only earns 70% of the miles that are
earned by a customer who pays the full price.

To illustrate and explain these rules, we‘ll now contemplate a flight book-
ing by customer Tom Peterson (customer number 178, the customer-
specific discount is 20%) from Frankfurt to New York flying business class.
The distance of this connection is 6,162 kilometers. This corresponds
to 3,829 miles. The flight took place on 8/20/2012 and was booked on
7/24/2012. Mr. Peterson earns the following miles for this flight:

Miles = (3,829 × 1.2 + 3,829 × 0) × (100 – 20) / 100 = 3,676

8.2.2 Technical Implementation

The airline network uses an ABAP-based IT system. The tables and data
within this system are based on the SFLIGHT data model.

Database Tables

The airlines connected to the system transfer all relevant data to a cen-
tral system in real time. The relevant database tables of the SFLIGHT data
model are listed in Table 8.1.

Table Description

SCARR Airlines

SPFLI Flight schedule

SCUSTOM Customer data

SFLIGHT Flights

SBOOK Flight bookings

Table 8.1 Relevant Database Tables of the SFLIGHT Data Model

Moreover, there are two extensions of the SFLIGHT data model, as shown
in Table 8.2.

Customer-specific
discount

Example for mile
calculation

SFLIGHT data
model

Other database
tables

360

8 Sample Scenario: Optimizing an Existing Application

Table Description

ZA4H_C8_PARAMS Parameters for mile calculation

ZA4H_C8_STATIST Storage of static data regarding the
flight connections

Table 8.2 Other Database Tables

Reports

All reports needed are executable ABAP programs and transaction codes
exists for each of these programs (see Table 8.3).

ABAP Program Transaction Description

ZR_A4H_CHAPTER8_
UTILIZATION

ZR_A4H_C8_UTIL Use per flight
connection

ZR_A4H_CHAPTER8_
MILES

ZR_A4H_C8_MILES Miles earned per
customer

ZR_A4H_CHAPTER8_
TOP_CUST

ZR_A4H_C8_TOP_
CUST

List of premium
customers

ZR_A4H_CHAPTER8_
FILL_STATISTIC

ZR_A4H_C8_FILL_STAT This report fills
database table
ZA4H_C8_STATIST

ZR_A4H_CHAPTER8_
READ_STATISTIC

ZR_A4H_C8_READ_
STAT

This report analyzes
database table
ZA4H_C8_STATIST

Table 8.3 ABAP Program Needed

For visualization, the ABAP programs use classic ABAP lists. Figure 8.2
shows a sample output of the program ZR_A4H_CHAPTER8_TOP_CUST.

Figure 8.2 Output of Program ZR_A4H_CHAPTER8_TOP_CUST

ABAP program

361

Scenario and Requirements 8.2

Customizing

The parameters for mile calculation are stored in the customizing table
ZA4H_C8_PARAMS. The system stores the following values in this database
table:

EE FACTOR_C: factor for business-class flights

EE FACTOR_F: factor for first-class flights

EE EARLYB_D: minimum time difference between booking date and flight
date to earn additional miles

EE EARLYB_F: factor for early bookings

The customer-specific discount is derived from the field DISCOUNT in the
database table SCUSTOM.

Miscellaneous

In addition to the executable ABAP programs, the application comprises
a Web Dynpro ABAP application and an RFC interface:

EE The Web Dynpro application ZWD_A4H_CHAPTER8_APP can be used to
evaluate the miles earned per customer via the browser (Figure 8.3).

EE The remote-enabled function module ZA4H_CHAPTER8_GET_UTILIZATION
can be used by all airlines connected to the network to query the uti-
lization of flight connections.

Figure 8.3 Web Dynpro Application ZWD_A4H_CHAPTER8_APP

Parameters for
mile calculation

Web Dynpro, RFC

362

8 Sample Scenario: Optimizing an Existing Application

Internally, the ABAP programs, the Web Dynpro application, and the
function module use methods of the ZCL_A4H_CHAPTER8_DATA_PROV class.

8.2.3 Current Problems

The connected airlines have been complaining about the network service
for some time. The necessary reports typically have long delays, and end-
users are not satisfied with the response time.

Due to these complaints, the system was migrated to SAP HANA. Although
the migration was performed without any issues and some of the reports
are now generated faster (for example, the program ZR_A4H_CHAPTER8_
TOP_CUST had a runtime of 1,491 seconds before the migration; with
SAP HANA, it now runs within 567 seconds), not all problems could be
solved by merely migrating the system.

To determine how the response-time behavior of the system can be
improved, you should follow the application and process-optimization
procedure now. Due to time constraints, you will limit this analysis to the
program ZR_A4H_CHAPTER8_TOP_CUST to determine the premium custom-
ers. You should suggest and implement possible modifications as fast as
possible while avoiding any unnecessary risks.

8.3 Meeting the Requirements

As you’ve learned in the previous chapters, an existing ABAP application
can only benefit from SAP HANA if it uses the code-to-data paradigm. To
avoid any risks, however, you should modify as few parts of the existing
system as possible. Moreover, to ensure portability of the system, you
only want to use SAP HANA views and SQLScript if it’s necessary or if
it leads to significant performance gains in comparison with Open SQL.

In the following sections, you will learn how to determine the extent
to which the program ZR_A4H_CHAPTER8_TOP_CUST uses the SAP HANA
database and which modifications can be implemented to accelerate the
program.

Central class

Bad performance

Migrating to
SAP HANA

363

Meeting the Requirements 8.3

8.3.1 Narrowing Down the Problem Using the Runtime
Statistics

When analyzing the program ZR_A4H_CHAPTER8_TOP_CUST, you start by
using Transaction STAD. Within this transaction, you call the runtime
statistics for a program execution to analyze the program’s runtime and
determine the amount of data that was processed by the program.

The runtime statistics in Figure 8.4 show that the program ZR_A4H_CHAP-
TER8_TOP_CUST was executed in 567 seconds (Response time). This runtime
is made up of 499 seconds Processing time and 68 seconds Database
request time. This means that the largest portion of the runtime is attrib-
uted to the ABAP program itself and not the time needed for database
access. However, database access also takes too long for a dialog program.

Figure 8.4 Runtime Statistics from Transaction STAD

Time distribution

364

8 Sample Scenario: Optimizing an Existing Application

The lower part of Figure 8.4 shows detailed information on the database
accesses. As you can see, a little over 5.5 million records were read within
the database request time of 68 seconds.

Since the table access statistics (see Section 7.4.1) was activated during the
selected execution of the program, you also examine the five tables where
the program took the longest time for read accesses (see Figure 8.5). The
access time of 68 seconds was almost exclusively used for accesses to the
table SBOOK (with 5,548,847 records read from this table). Accesses to
the table SCUSTOM only took 0.02 seconds (with a total of 4,637 records
read from this table).

Figure 8.5 Table Access Statistics

The above analysis results have shown that most of the execution time
of the ABAP program was not used within database accesses. Only 12%
(68 seconds) of the runtime was used within the database to read about
5.5 million records. In the next steps, you must therefore analyze the
ABAP processing and further analyze the database accesses.

8.3.2 Detailed Analysis of the ABAP Program Using
Transaction SAT

To learn more about the ABAP processing, you now analyze the pro-
gram ZR_A4H_CHAPTER8_TOP_CUST in more detail using the ABAP runtime
analysis in Transaction SAT. Figure 8.6 shows the result of the program
execution using Transaction SAT. The program was executed in 656 sec-
onds, so it took a little longer than before. This can be attributed partly
to a higher system load when running the detailed analysis and partly to
the load for the actual runtime measurement.

Details on
database

access times

Table access
statistics

365

Meeting the Requirements 8.3

Figure 8.6 ABAP Trace in Transaction SAT

The results of the runtime measurement can be evaluated as follows:

EE Function	modules	for	conversions
About 28% (185 seconds) was needed for internal processing blocks,
particularly for calling function modules and subprograms. You will
immediately notice that the function module UNIT_CONVERSION_SIMPLE,
which is used for unit conversions, was called more than two million
times. This function module thus accounts for 20% (131 seconds) of
the total runtime.

EE Database	interface	and	table	buffer
Transaction SAT differentiates between internal (internal database
accesses) and external database time (external database accesses).
Internal database time refers to the time needed by SQL statements
within the ABAP work process and accesses to the table buffer. In our
example, about 60% (389 seconds) of the total runtime can be attrib-
uted to the internal database time. About 50% of this time is needed
for SQL statements within the ABAP work process (195 seconds), with
the other half being used for accesses to the table buffer (189 seconds).

You will immediately notice the high number of accesses to the data-
base and the table buffer. The analysis results show 25 million execu-
tions of SQL statements and 19 million accesses to the table buffer.
When double-clicking a row within the hit list for a buffer access, the

Evaluation of
the runtime
measurement

366

8 Sample Scenario: Optimizing an Existing Application

source code is displayed (not shown in Figure 8.6). From this source
code, you can see that the accesses to the table buffer were mainly
done for the tables ZA4H_C8_PARAMS, SCUSTOM, and SPFLI.

The external database time refers to the time needed for SQL state-
ments outside the ABAP work process. In our example, the external
database time accounts for about 10% (70 seconds) of the total runtime.

8.3.3 Detailed Analysis of Database Accesses

Before further analyzing the program using the SQL trace, we should
check the SQL profile of our application and compare this with static
code analyses.

Code Analysis Using Transaction SCI, SQLM, and SWLT

You first use the SAP Code Inspector to examine the performance of the
package TEST_A4H_BOOK_CHAPTER08. The results are then linked to the
existing data from the SQL Monitor in Transaction SWLT. In this transac-
tion, runtime data for the entire system is displayed for our access to the
table SBOOK. Figure 8.7 shows that the SELECT statement was executed
33,000 times with an average execution time of 14.8 milliseconds and
1,196 records read. If you scroll to the right of the screen, the columns
Type and Name of Processing Block (not displayed in Figure 8.7) show
that the SELECT statement is run in the method GET_MILES_FOR_CUSTOMER.

The columns Check Title and Check Message also display a Code Inspec-
tor check for this method, which indicates that this is a SELECT statement
within a loop (with the loop not being present within the same modu-
larization unit as the database access).

When clicking the column Additional Information, the system displays
the different levels of the call hierarchy (not shown in this screen). This
allows you to easily navigate to the different levels of the call hierarchy
where you will find the loop in the GET_TOP_CUSTOMERS method. When
clicking the Show Check Documentation button (shown in Figure 8.7),
a document with optimization tips is displayed. This documentation
contains a description of the problem together with possible optimiza-
tion measures.

SQL profile and
Code Inspector

367

Meeting the Requirements 8.3

Figure 8.7 Performance Analyses in Transaction SWLT

You know now that accesses to the table SBOOK are caused by a very fre-
quently executed SQL statement and also know where this statement is
executed and where to find the loop responsible for its execution. Since
you also want to know if the SQL statement is executed with identical
values each time, we’ll record an SQL trace.

SQL Trace with Transaction ST05

You run the program ZR_A4H_CHAPTER8_TOP_CUST again while creating an
SQL trace. This will show you how often each statement was executed,
if there were identical executions, the execution times, the number of
data records read, and the text of the SQL statement that was transferred
to the database.

Figure 8.8 and Figure 8.9 show you the list of structure-identical SQL
statements and the call hierarchy (call stack) for the SQL statement used
to access the table SBOOK. The columns Redundancy and Identical show
that the statements were not executed with identical values and that all
bookings within a certain time period that were not cancelled are read
for a customer. Using the stack trace from the main records, you can

368

8 Sample Scenario: Optimizing an Existing Application

display how the statement for the table SBOOK was used via the ABAP
stack. By double-clicking an entry, you can easily navigate between the
levels of the call hierarchy.

Figure 8.8 SQL Trace: SQL Statements with the Same Structure

Figure 8.9 SQL Trace: Call Hierarchy

8.3.4 Analysis Result

The analysis of the ZR_A4H_CHAPTER8_TOP_CUST program described in the
previous sections has shown that the long runtime can be attributed mainly
to a large number of SQL statement and function module executions
(particularly for unit conversion). The reason for this is the large number
of records that are transferred from the database to the application.

When analyzing the source code, you‘ll notice that by using the method
GET_TOP_CUSTOMERS, the flight bookings are read and processed separately
for each customer. Due to the large number of flight bookings (in our
example, 5 million bookings were read), the database and table buffer
are accessed frequently and there are many function module calls.

Records are often processed individually if function modules and methods
are (re-)used that are not suitable for mass data. In our example, each
customer’s miles are determined using the GET_MILES_FOR_CUSTOMER
method to identify the premium customers.

Separate
processing of

flight bookings

369

Meeting the Requirements 8.3

8.3.5 Optimization Using Open SQL

In the first step, we will try to accelerate the identification of premium
customers without using SAP HANA views and SQLScript. For this pur-
pose, we will create a new program ZR_A4H_CHAPTER8_TOP_CUST_1 and
call the method GET_TOP_CUSTOMERS_1 within this program.

The new implementation differs from the originally used program in
the following:

EE Nested SELECT statements are avoided (since these are disadvantageous
both in general and especially for SAP HANA).

EE Structures are used instead of the SELECT * statement.

EE The number of buffer accesses is minimized (in particular by reading
the customizing table ZA4H_C8_PARAMS only once).

EE The number of function module calls is minimized; the new imple-
mentation converts units only at the end of the algorithm, after the
bookings are already aggregated (wherever possible).

Listing 8.1 shows the original implementation of the code for identifica-
tion of premium customers as pseudo code.

"Selecting customers
SELECT * FROM scustom ...
 ...
 "Determining miles per customer by re-
 "using the method GET_MILES_FOR_CUSTOMER
 CALL METHOD GET_MILES_FOR_CUSTOMER(...)
 ...
 "Selecting the bookings for the customer
 SELECT * FROM sbook...
 ...
 "Selecting the connection master data for the
 "bookings
 SELECT SINGLE * FROM spfli...
 ...
 "Unit conversion per booking
 CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'...
 ...
 "Reading the Customizings per booking
 CALL METHOD GET_PARAMETER_VALUE(...)

Code optimizations

Coding before
optimization

370

8 Sample Scenario: Optimizing an Existing Application

 ...
 "Selecting the master data for the customer
 SELECT SINGLE * FROM scustom...
 ...
 ENDSELECT.
 ...
 ...
ENDSELECT.

Listing 8.1 Original Implementation

Listing 8.2 shows the optimized coding for determining the premium
customers.

"Single reading operation for the Customizing
CALL METHOD GET_PARAMETER_VALUE(...)

"Reading all customers, bookings, and master data of the
"connections using a JOIN and a
"field string
SELECT... FROM scustom
 INNER JOIN sbook...
 INNER JOIN spfli...
 WHERE...
 ...
 "Calculating the miles in accordance with the
 "Customizing read
 IF class = 'C'.
 lv_miles = ...
 ELSEIF class = 'F'.
 lv_miles = ...
 ELSE.
 ...
 ENDIF.
 ...
 COLLECT ls_miles INTO lt_miles.
ENDSELECT.

"One-time unit conversion per customer and
"for the unit used for this customer
LOOP AT lt_miles INTO ls_miles.
 ...
 CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'...

Coding after
optimization

371

Meeting the Requirements 8.3

 ...
ENDLOOP.

Listing 8.2 Coding Optimized with Open SQL

Despite the optimization, premium customers are still identified in ABAP
since the logic described in Section 8.2.1 cannot be expressed using
Open SQL.

8.3.6 Analysis of the First Optimization

You now run the program ZR_A4H_CHAPTER8_TOP_CUST_1. It runs much
faster. A runtime analysis using Transaction STAD confirms the posi-
tive impact of the modifications (see Figure 8.10). The program is now
executed within only 76 seconds. The database portion was reduced to
about 25 seconds. However, a large amount of records (more than 5.5
million records) are still read from the database.

Figure 8.10 Runtime Statistics after the First Optimization

372

8 Sample Scenario: Optimizing an Existing Application

The ABAP trace (Transaction SAT) clearly shows these improvements.
From Figure 8.11, you can see that the function module UNIT_CONVER-
SION_SIMPLE was called only once per customer (4,637 times) and that
the table buffers were not accessed as frequently. However, the same
amount of records was read from the database so that the related load
of the database interface remained unchanged.

Figure 8.11 ABAP Trace after the First Optimization

The SQL trace in Transaction ST05 shows the improvement as well. A
join is now executed only once to transfer all records (over 5.5 million)
to the program in one operation (see Figure 8.12).

Figure 8.12 SQL Trace after the First Optimization

8.3.7 Analysis Result

The analysis using Transaction STAD, SAT, and ST05 shows that despite
the adjustment, over 5.5 million records are still transferred from the

Function
module calls

Join to transfer
data records

373

Meeting the Requirements 8.3

database server to the application server. The reason for this is primarily
that some of the calculations are done for individual bookings. These are:

EE Application of the booking-class factor

EE Application of the early-booking factor

EE Application of the customer-specific discount

In particular, the application of the early-booking factor can only be done
for individual bookings, since it depends on the time difference between
booking date and flight date.

To further optimize the program, we have to avoid transferring every
individual booking from the database to the application server. Basically,
there are two options to reach this goal:

EE Implementing a database procedure with SQLScript (or CE functions).

EE Modeling a view in SAP HANA Studio.

8.3.8 Optimization Using an Analytic View

We will optimize the program using an SAP HANA view, specifically an
analytic view. To do this, you will create a new program ZR_A4H_CHAP-
TER8_TOP_CUST_2. This program calls the GET_TOP_CUSTOMERS_2 method.
This method uses the calculation view CA_MILES in the test.a4h.book.
chapter08 package, which is wrapped via an external view. This view
again uses the analytic view AN_MILES.

The analytic view has four input parameters. These parameters correspond
to the parameters for mile calculation listed in Section 8.2.2. Due to the
input parameters, the call from the ABAP program is done via Native
SQL (see Listing 8.3):

TRY.
 lo_sql_statement = NEW cl_sql_statement(
 tab_name_for_trace = 'ZEV_A4H_MILES').
 lo_sql_result_set = lo_sql_statement->execute_query(
 | select top 10 customer_id, name, sum(miles), miles_unit |
&& | from zev_a4h_miles | &&

Input parameters
and program call

374

8 Sample Scenario: Optimizing an Existing Application

 | where fldate between '{ lv_date_from }' and '{ lv_date_to
}' and mandt = '{ sy-mandt }' | &&
 | group by customer_id, name, miles_unit | &&
 | order by sum(miles) desc | &&
 | WITH PARAMETERS ('PLACEHOLDER' = ('$$IV_FACTOR_C$$', '{
lv_factor_c }'), | &&
 | 'PLACEHOLDER' = ('$$IV_FACTOR_F$$', '{ lv_factor_f }'),
| &&
 | 'PLACEHOLDER' = ('$$IV_EARLYB_D$$', '{ lv_earlyb_d }'),
| &&
 | 'PLACEHOLDER' = ('$$IV_EARLYB_F$$', '{ lv_earlyb_f }'))
|).

 lo_sql_result_set->set_param_table(itab_ref = REF #(et_top_
customer)).
 lo_sql_result_set->next_package().

 CATCH cx_sql_exception INTO DATA(lo_sql_exception).
 " error handling
ENDTRY.

Listing 8.3 Calling the Analytic View

As you can see, the miles are now calculated in the SAP HANA database.
When calling the analytic view, the customer number, the name, and
the miles earned by the premium customers are transferred to the ABAP
report.

8.3.9 Analysis of the Second Optimization

The second optimization is once again analyzed using Transaction STAD.
Figure 8.13 shows that the database time was reduced to a little less than
three seconds and that only 10 records are transferred.

Regarding the table accesses in Figure 8.14, you can see that only ten
records are now read from the view ZEV_A4H_MILES. This is the aggre-
gated final result.

Aggregated
records

375

Meeting the Requirements 8.3

Figure 8.13 Runtime Statistics after the Second Optimization

Figure 8.14 Runtime Statistics: Table Accesses

Due to the smaller result set, the number of calls of the internal database
statements in the ABAP program could be dramatically reduced. As you
can see from the ABAP trace (Figure 8.15), the program is now executed
almost entirely in the database (99%).

Program execution
moved to the
database layer

376

8 Sample Scenario: Optimizing an Existing Application

Figure 8.15 ABAP Trace after the Second Optimization

The SQL trace in Transaction ST05 (see Figure 8.16) also confirms the
good result. This trace also shows that the ZEV_A4H_MILES view is accessed
only once. As mentioned before, only ten records are transferred during
this access.

Figure 8.16 SQL Trace after the Second Optimization

For a detailed analysis of the SQL statement using PlanViz, you can now
double-click the SQL statement in Transaction ST05 to display the entire
SQL statement. You then run the statement in the SQL Console in SAP
HANA Studio (see Listing 8.4).

SELECT
 top 10 customer_id, name, sum(miles), miles_unit
FROM
 <schema>.zev_a4h_miles
WHERE
 fldate between '20110701' and '20130630'
 and mandt = '001'

Single access

Displaying the
SQL statement

377

Meeting the Requirements 8.3

GROUP BY
 customer_id, name, miles_unit
ORDER BY
 sum(miles) desc WITH PARAMETERS
 ('PLACEHOLDER' = ('$$IV_FACTOR_C$$', '1.2'),
 'PLACEHOLDER' = ('$$IV_FACTOR_F$$', '1.5'),
 'PLACEHOLDER' = ('$$IV_EARLYB_D$$', '100'),
 'PLACEHOLDER' = ('$$IV_EARLYB_F$$', '0.10'))

Listing 8.4 Calling the External Database View

Figure 8.17 PlanViz

The analysis result of PlanViz is displayed in Figure 8.17. As you can see,
a so-called analytical search was performed. This means that the OLAP
engine was used. You can see the execution time and the CPU time in
microseconds for each node. The fact that the value for CPU time is higher

Analytical search
and CPU time

378

8 Sample Scenario: Optimizing an Existing Application

than the value for execution time shows that the respective nodes were
run in parallel. This means that several threads were started and run on
several CPUs so that about 20 seconds of CPU time were used within the
runtime of 2.9 seconds.

Sample Execution Times

Please note that our sample program and the optimized versions were run
on a small system in the cloud and did not use very powerful hardware. If
these sample programs were run on a more powerful system with more CPUs,
runtimes of about one second would be possible for this procedure.

8.3.10 Analysis Result

The identification of premium customers was optimized in two steps:

EE By optimizing the program using Open SQL, the runtime could be
reduced from 567 seconds to 76 seconds. This is a factor of about 7.5.

EE In the subsequent optimization steps using an analytical view, the
runtime was reduced to three seconds. In comparison to the original
runtime, this corresponds to a factor of about 190.

By optimizing both the program and the database access, premium cus-
tomers can now be identified at much higher speeds. Figure 8.18 shows
a graphical representation of the runtimes.

Due to this improvement, the code can now be used in dialog programs
and you benefit from a range of new possibilities and options. You can,
for example, use the analytical view for planning and simulation purposes
to analyze the impact of changed parameters for mile calculation.

With this sample scenario, we were able to illustrate the following:

EE How to use the optimization tools presented in Chapter 7.

EE How you can write fast programs using Open SQL and good ABAP
programming techniques.

EE In some cases, performance gains are only possible when using native
functions from SAP HANA.

Runtime
improvement

Summary

379

Meeting the Requirements 8.3

0

100

Database time

Processing time

200

300

400

500

600

68

499

25

51
3

0

ZR
_A

4H_C
HAPTE

R8_T
OP_C

UST

ZR
_A

4H_C
HAPTE

R8_T
OP_C

UST
_1

ZR
_A

4H_C
HAPTE

R8_T
OP_C

UST
_2

Figure 8.18 Overview of Execution Times

You can now also further analyze the other programs from the TEST_A4H_
BOOK_CHAPTER08 package and try to accelerate them using your technical
options.

PART III
Advanced Techniques for ABAP

Programming for SAP HANA

Now that you know how to optimize existing ABAP applications for SAP
HANA, Part III of this book introduces you to additional options provided
by the HANA platform to develop new, innovative applications. In this
context, you’ll learn about some advanced techniques that allow you to
gain new insight from existing datasets that can support companies and
users in complex planning and decision-making processes.

Because the chapters in this part do not build on each other, you can
read them in a different sequence, depending on what subject interests
you most. Some of the topics in this part are based on existing compo-
nents (for example, of data modeling in SAP NetWeaver BW) or concepts
(such as the mathematical concepts of predictive analysis) which cannot
be treated exhaustively in the scope of this book. It was our intention to
provide examples that allow for an easily understandable entry into the
respective topics—but, depending on your previous knowledge, some of
the chapters might contain a lot of new terminology.

After the introduction of the various options available for developing
applications in SAP HANA, you will be guided in a step-by-step process
through the creation of a new application that uses a combination of
these new techniques. You will also be provided with recommendations
for optimizing and developing new applications.

383

SAP HANA offers powerful means for analyzing and searching
in unstructured data. By leveraging these built-in capabilities,
you can improve search scenarios within business applications.
In addition, patterns in existing datasets can be recognized for
gaining further insight.

9 Text Search and Analysis
of Unstructured Data

Hardly any other functionality has experienced as great a boost from the
Internet in recent years as the search within large datasets—irrespective
of whether you search through a product catalog, the telephone book,
or the entire Internet. This chapter introduces options provided by SAP
HANA to search and analyze texts and documents. These options open
up many ways to employ the HANA platform, particularly in business
applications, which have not been extensively equipped with these kinds
of functions until now.

Input helps represent a simple usage scenario for text searches in SAP
HANA. SAP applications contain input helps in many different places.
When using input helps, users sometimes search for an entry in a large
dataset without knowing the details of the entry, or at least without
having these details at hand. For example, you may be searching for a
specific customer in Argentina who is based in Buenos Aires and works
in the telecommunications industry. Because his customer number is
not available to you, you enter information such as the company name,
country, location, and industry into a complex input template, and it often
happens that you have to enter this data several times and use wild cards
such as the asterisk (*). In addition, if you mistype an entry or the data
is stored in a different way in the database (for example, if the name of
the location was entered using the country-specific spelling), you usually
won’t obtain any results.

Input help use
scenario

384

9 Text Search and Analysis of Unstructured Data

The text search function in SAP HANA allows you to develop search helps
that work similarly to modern Internet searches. They provide a certain
error tolerance and are able to process multilingual terms and synonyms.
In the above example, such a search help could consist of an input field
that correctly interprets a user request such as “buenes eires tele”, despite
the incorrect spelling and the search via multiple columns. However,
users cannot always easily determine whether the returned result is the
expected one in this type of error-tolerant search, also referred to as
fuzzy search. Have you ever asked yourself why you sometimes obtain
unexpected results when performing a search on the Internet?

The recognition of patterns in texts and documents represents an entirely
different kind text-analysis function. This feature can be employed in many
different scenarios, some of which will be presented in the following sec-
tions. For example, in order to avoid having duplicate business partners in
your master data, you may want to check in the system whether a similar
client already exists in the dataset prior to creating a new client, and if
so, notify the application user about it. In this context, being “similar”
could mean that the last name and address of an existing and new client
are (almost) identical. As it often happens that names and addresses in
particular are entered with different kinds of spellings, a simple check
for identical entries rarely returns satisfactory results.

The text analysis function in SAP HANA not only allows you to run
searches within texts, but also to extract additional information from the
texts. For example, you can recognize relationships and even intentions
or emotions within texts. Let’s suppose you run a web store that enables
clients to order products online as well as to post comments about the
products and the vendor. The Sentiment Analysis is part of the text engine
functionality in SAP HANA and enables you to recognize patterns in these
types of unstructured data. In the context of the online store, for instance,
it would allow you to analyze whether a specific product evokes more
positive or negative comments.

This chapter begins with an introduction of some of the basic technical
principles and prerequisites for using the text search in SAP HANA. This
is followed by a description of how to call the function using SQL and to
use it in ABAP, with a special focus on embedding the text search function
in input helps. In addition to using the text search function directly, you

Pattern recognition
usage scenario

Chapter overview

385

Basic Principles of the Text Search in SAP HANA 9.1

will learn about several existing SAP components that support the imple-
mentation of complex searches. Moreover, the chapter contains practical
examples of pattern recognition within texts. And finally, you’ll become
acquainted with non-functional aspects such as resource consumption,
performance, and error analysis.

The practical examples will be used to implement search runs across
airline names (table SCARR), flight schedule data (airports and locations
from tables SPFLI and SAIRPORT), and the flight passenger address data
(name, address, town, and country from table SCUSTOM).

9.1 Basic Principles of the Text Search in SAP HANA

The main purpose of the text search function in SAP HANA is to provide
users with an optimized usability of search interfaces. In addition to vari-
ous features common in Internet search engines, this includes functions
with special significance for business applications, such as industry-specific
lists of synonyms.

This involves the following characteristics:

EE Freestyle	search
The user does not need to know the exact database columns in which
the search is supposed to be carried out. For example, you can imple-
ment an address search across a single input field and include all tech-
nical characteristics such as street name, ZIP code, town, country, and
so on.

EE Error-tolerant	search	(fuzzy	search)
The user may vary the spelling slightly in his search requests.

EE Linguistic	search	and	synonym	search
Linguistic variants and synonymous terms are included.

EE Value	suggestions
The system can already efficiently identify probable search results
while the user is typing and present these to the user in real time.

EE Results	ranking
The sequence of the search results is optimized in such a way that

Reference example
for this chapter

Characteristics
of the HANA
text search

386

9 Text Search and Analysis of Unstructured Data

results with the highest probability rate are presented at the top of the
list.

EE Search	facets
The search results can be counted and grouped according to specific
criteria. For example, when searching for airlines, you can view the
distribution of the airlines per country.

EE Text	analysis	(particularly	sentiment	analysis)
You can extract additional information from texts, which allows you
to gain insights on semantical aspects.

9.1.1 Technical Architecture

The following sections describe how you can use the text search and text
analysis functions. In order to provide you with an idea of which compo-
nents are involved in SAP HANA, Figure 9.1 shows the architecture of the
text search functionality. The column store supports the data types and
operations that are required for the search and which are described in
further detail in Section 9.2 and Section 9.3. For complex text analyses and
to extract information, the column store draws on the preprocessor server.
In this context, the system uses the so-called Document Analysis Toolkit.

SAP HANA Host

SAP HANA Database

Index Server Preprocessor
Server

Column Store

SQL Processor

TEXT Data Types, Dictionaries

Search Operations
(Exact, Fuzzy, Linguistic)

Functions (Ranking,
Snippets, etc.)

Document
Analysis
Toolkit

Text Analysis

Multi-Column
Search

Figure 9.1 Architecture of the Text Search Function in SAP HANA

387

Basic Principles of the Text Search in SAP HANA 9.1

Section 9.2 provides further details on other text search components.

In Section 9.1.3, we’ll explain additional usage scenarios for text search.

Heritage of the Fuzzy Search Component in SAP HANA

The fuzzy search function in SAP HANA represents the advanced development
of a data-quality analysis solution initially developed by the German company
Fuzzy Informatik AG. This solution was adopted by SAP indirectly, through
the acquisition of Business Objects. In addition to the genuine fuzzy search,
this solution is particularly useful for recognizing duplicates, especially in sets
of address data.

9.1.2 Error-Tolerant Search

The error-tolerant or fuzzy search involves the search for character strings
(i.e., the search request) in text-based data, where the data does not have
to exactly correspond to the search request; this way, sufficiently similar
entries will also be included into the result set. This section provides
an overview of the techniques used for the fuzzy search in SAP HANA.

The degree to which a data record must correspond to the search request
is generally determined by mathematical algorithms that form the basis
of the fuzzy search. The result of the calculation is often a numerical
value that is used to decide whether a data record is sufficiently similar
to the search request. With regard to texts, the simplest type of such an
algorithm consists of determining the minimum number of operations
(such as replacing and moving characters) that are required to generate
a section of the actual data record from the search request. In practice, it
is very complicated to determine the degree of similarity between texts,
and it involves using variants and heuristics that all have their pros and
cons depending on the scenario in which they are used. The text search
function in SAP HANA determines a value between 0 and 1 that marks
the degree of similarity. As a programmer, you must define a threshold
value (for example, 0.8) from which a value of the dataset that has been
searched is categorized as matching the search request.

In addition, the functionality of the fuzzy search can be adapted for spe-
cific (semantic) data types. For example, the fuzzy search for a date can
include date values that are several days before or after the specific date

Fuzzy search

Algorithms

Semantic fuzzy
search

388

9 Text Search and Analysis of Unstructured Data

being searched. In this case, the similarity criterion is the period rather
than the similarity of the character string (so, according to this criterion,
the date 01/01/1909 is not similar to 01/01/1990, although the position
of only one character has been changed). Another example involves the
search for a town on the basis of a ZIP code. In most countries, ZIP codes
are structured in such a way that a similarity of the code’s first digits tells
more about geographical proximity than a similarity of the last digits.

When running a fuzzy search, you can use a set of simple expressions that
enable an expert to formulate more precise search requests. For example,
this includes the option to enforce an exact search for a specific portion
of the search request or to use logical expressions. Table 9.1 contains
some sample expressions of the HANA text search based on the example
of an airline search.

Search Request Description

lufthansa OR united Results that are similar either to “Lufthansa” or to
“United”.

airline—united Results that are similar to “airline,” but not to
“united”.

“south air” Results that are similar to the entire expression,
“south air”, and not only to its components,
“south” and “air”. In this example, “South African
Airways” would not be returned as a result.

Table 9.1 Using Expressions in the HANA Text Search

To determine the degree of similarity, it is also useful to include grammati-
cal and other linguistic aspects. In this context, terms are reverted to their
word stem so that word variants such as “house,” “houses,” “housing,”
and so on, can be recognized. In addition, the linguistic search provides
opportunities for handling multilingual texts and search requests.

The fuzzy search can also be extended by lists of synonyms. In this con-
text, you can store a list of terms that are equivalent to a specific term;
this list can then be drawn upon in your search request. For example,
“notebook” could be regarded as a synonym of “laptop,” or “monitor”
as a synonym of “screen.” This feature is particularly useful for industry-
specific abbreviations and concepts.

Expressions used
in searches

Linguistic search

Lists of synonyms

389

Basic Principles of the Text Search in SAP HANA 9.1

Another option to implement a more intelligent search is to familiarize the
system with semantic characteristics of specific terms. In this context, it is
important to know that not every term in a search request has the same
selectivity. For example, terms such as “Inc.” or “LLC” are not as selective
as the actual company name when you search for a specific company. It
is therefore usually more important to enter a company name similar to
the one you are searching for than to enter that the search result is an
“Inc.,” for example. Likewise, in longer texts such as product descrip-
tions, similarities in certain parts of speech such as articles or pronouns
are less important than similarities in names within the text (for example,
in brand names). When you run a search request in SAP HANA, you can
enter a list of so-called stop words (also referred to as noise words) that are
considered less important than other words.

Because the text search function is based on a number of rather complex
algorithms, it may be necessary to create specific fuzzy search indexes in
order to accelerate the search runs and thus optimize the system per-
formance, particularly if large amounts of data are involved. However,
these indexes require additional memory. Section 9.6 contains some
recommendations on how to use them.

9.1.3 SAP Components and Products for Search

In Section 9.3, you will learn in detail how to directly access the search
features of SAP HANA through SQL. In addition, SAP provides specific
components and frameworks that support you in the creation of search
runs, but since these are not the focus of this book, they are mentioned
only briefly in the following paragraphs.

Since release 7.0, SAP NetWeaver AS ABAP contains the so-called Embedded
Search. This component allows users to extract data for indexing via the
TREX Search and Classification Engine, which represents an SAP NetWeaver
component that can be installed separately (standalone engine). Embedded
Search provides interfaces that enable a more efficient search within the
extracted data of an application.

However, Embedded Search is limited to searches within an SAP system.
In order to run searches across different systems (in an application portal,
for example), you can use the SAP NetWeaver Enterprise Search solution.

Stop words

Fuzzy search index

Embedded Search

SAP NetWeaver
Enterprise Search

390

9 Text Search and Analysis of Unstructured Data

This is based on the capabilities of the local Embedded Search functional-
ity in integrated systems.

Because SAP HANA supports most of the functions of the TREX engine,
you can use these functions directly in SAP HANA without a separate
TREX installation. This means you can use existing Embedded Search
models in SAP HANA, while, by default, the data continues to be extracted
and replicated within SAP HANA. SAP currently plans to enable direct
searches in tables via Embedded Search in SAP HANA without the data
having to be replicated.

Since SPS 5, SAP HANA additionally provides the UI Toolkit for Information
Access, which allows you to create simple HTML5-based search interfaces.
Based on attribute views, you can use HTML, JavaScript, and reusable UI
templates to build a simple search application according to the modular
design principle. This application employs SAP HANA Extended Appli-
cation Services (XS) described in Section 9.3.

9.2 Types of Text Data and Full Text Indexes in
SAP HANA

The fuzzy search in SAP HANA is based on the data types in the column
store. Here, TEXT and SHORTTEXT represent two specific data types that
are dedicated for text searches (and text analyses). The SHORTTEXT data
type is to be used for character strings of a given length (similar to NVAR-
CHAR), whereas TEXT represents a large object (similar to NCLOB—the SQL
data type for a string in the ABAP Data Dictionary). In this context, texts
are internally fragmented into tokens which form the basis for searches
and analyses. The following sections provide more detailed information
about this subject.

Unfortunately, however, there is currently no native support available in
ABAP for the TEXT and SHORTTEXT data types. It is therefore not possible
to create a table via the ABAP Data Dictionary that uses these data types.
And although the fuzzy search function is basically also supported for
other data types (VARCHAR and NVARCHAR, for example), this support is not
extensive enough—therefore, the fuzzy search is generally not recom-
mended here. Without the ability to split the texts into searchable tokens,

TREX

UI Toolkit for
Information
Access (InA)

Support in ABAP

391

Types of Text Data and Full Text Indexes in SAP HANA 9.2

the system is not able to recognize a permutation of words, which is a
standard in modern search applications.

What you can do, however, is add the functionality offered by the text
data types to a specific column by creating a full text index. In this way,
you can enable the text search and text analysis functions for the majority
of character-type ABAP Data Dictionary types (including CHAR, STRING,
DATS, and so on).

When you create a full text index for a table column, the system creates
an internal, invisible column (shadow column) of the TEXT type, which
contains the same data, but in a presentation optimized for search requests.
In this context, the text is fragmented into tokens and an additional
dictionary is generated. Figure 9.2 shows the internal presentation in a
schema based on the example of airline names. You should note that the
shadow column exists only transiently in the main memory. When you
load the table into the memory (for example, after a database restart) this
data structure is created anew. Section 9.6 contains further details about
the memory consumption of a full text index.

CARRID CARRNAME … Internal Column of
TEXT Data Type

… …

AA American Airlines 3, 2

AB Air Berlin 1, 4

AF Air France 1, 5

LH Lufthansa 6

UA United Airlines 7, 2

… …

Table SCARR

Presentation fragmented into
tokens with dictionary

Words
1 Air

2 Airlines

3 American

4 Berlin

5 France

6 Lufthansa

7 United

… …

Dictionary

Figure 9.2 Schematic Presentation of the Full Text Index

You can create the full text index using SQL statement CREATE FULLTEXT
INDEX. The syntax is as follows:

CREATE FULLTEXT INDEX <index_name>
ON <table_name> (<column_name>)
[<parameter_list>]

Full text index

Using SQL for
the creation

392

9 Text Search and Analysis of Unstructured Data

Here, you can use numerous optional settings, a description of which
would go beyond the scope of this book. But you can obtain a comprehen-
sive documentation from http://help.sap.com/hana_appliance. You should
also note that the name of the full text index must be unique within a
schema, and it therefore makes sense to prefix the index name with the
table name in order to avoid name clashes.

The following statement defines a full text index for the CARRNAME column
of table SCARR:

CREATE FULLTEXT INDEX scarr~name ON scarr(carrname);

Because you cannot create full text indexes via the ABAP Data Dictionary
(Transaction SE11) prior to ABAP release 7.4, these indexes cannot be
transported automatically. As of ABAP release 7.4, it is also possible to
create a full text index via the ABAP Data Dictionary using a standard
configuration. For this purpose, you must define a new index for a table
using Transaction SE11, or rather, an extension index (for a modification-free
extension of an SAP standard table). This contains only the required col-
umn as a field and is created exclusively in the HANA database. Figure
9.3 shows this type of index in the CITY column of table SCUSTOM.

Figure 9.3 Creating a Full Text Index via the ABAP Data Dictionary

Creation in
the ABAP Data

Dictionary

393

Types of Text Data and Full Text Indexes in SAP HANA 9.2

You can then activate the full text index via Goto • Full Text Index (see
Figure 9.4). The system will then use the default settings of a full text
index for text searches.

Figure 9.4 Activating the Full Text Index

In addition to using the ABAP Data Dictionary, you can also use Native
SQL in an ABAP program to create a full text index. This allows you to
use the entire range of options available for a text search; however, this
method requires you to manage the index in a system landscape yourself.
Listing 9.1 shows how you can create and remove full text indexes using
the ADBC interface (ABAP Database Connectivity).

REPORT zr_a4h_chapter9_adbc_ft_index.

" Configuration
PARAMETERS:
 table LIKE dd02l-tabname DEFAULT 'SCUSTOM',
 column LIKE dd03l-fieldname DEFAULT 'NAME',
 fzyidx TYPE abap_bool AS CHECKBOX DEFAULT abap_false,
 ta TYPE abap_bool AS CHECKBOX DEFAULT abap_false,
 taconfig TYPE string DEFAULT 'EXTRACTION_CORE',
 drop TYPE abap_bool AS CHECKBOX DEFAULT abap_true,
 create TYPE abap_bool AS CHECKBOX DEFAULT abap_true.

Creation via ADBC

394

9 Text Search and Analysis of Unstructured Data

" Index name (<Table>~<Column>)
DATA(lv_idx) = table && '~' && column.

" SQL statement for creating a full text index
DATA(lv_sql) = |CREATE FULLTEXT INDEX { lv_idx } |
 && |ON { table }({ column })|.

" Additional fuzzy search index
IF (fzyidx = abap_true).
 lv_sql = lv_sql && ' FUZZY SEARCH INDEX ON'.
ENDIF.

" Text analysis
IF (ta = abap_true).
 lv_sql = lv_sql && ' TEXT ANALYSIS ON'.
 " Special configuration of text analysis
 IF (taconfig IS NOT INITIAL).
 lv_sql = lv_sql && | CONFIGURATION '{ taconfig }'|.
 ENDIF.
ENDIF.

IF (drop = abap_true).
 TRY.
 " Remove index
 cl_sql_connection=>get_connection(
)->create_statement()->execute_ddl(
 |DROP FULLTEXT INDEX { lv_idx }|
).

 WRITE: / |Full text index { lv_idx } removed|.
 CATCH cx_sql_exception INTO DATA(lo_ex).
 " Error handling
 WRITE: / | Error: { lo_ex->get_text() }|.
 ENDTRY.
ENDIF.

IF (create = abap_true).
 TRY.
 " Create text index via ADBC
 cl_sql_connection=>get_connection(
)->create_statement(
)->execute_ddl(lv_sql).

395

Using the Text Search via SQL 9.3

 WRITE: / |Full text index { lv_idx } created|.
 CATCH cx_sql_exception INTO DATA(lo_ex1).
 " Error handling
 WRITE: / | Error: { lo_ex1->get_text() }|.
 ENDTRY.
ENDIF.

Listing 9.1 Creating a Text Index via ADBC

You can view existing full text indexes when you open a table and click
on the Indexes tab in SAP HANA Studio (see Figure 9.5). Here you can
view technical characteristics such as the synchronization behavior.

Figure 9.5 Displaying a Full Text Index in SAP HANA Studio

9.3 Using the Text Search via SQL

As is the case with the majority of functions in SAP HANA, you can invoke
the text search via SQL. To do this, you must use a SELECT statement with
the key word CONTAINS, which enables you to call the manifold variants
of the text search. The standard syntax is as follows:

SELECT <field list>
FROM <table or view>
WHERE CONTAINS (<columns>,<search request>,<parameters>);

Displaying full
text indexes

CONTAINS
key word

396

9 Text Search and Analysis of Unstructured Data

The following example provides an initial idea of how you can use the
CONTAINS clause for a fuzzy search:

SELECT * FROM scarr WHERE CONTAINS(carrname, 'lusthansa',
FUZZY(0.8));

Here, we run a search for airlines whose names are sufficiently similar to
the search request, 'lusthansa'. Although the search request contains
two errors (the search term starts with a lowercase letter and contains one
incorrect letter), the system returns the expected data record, “Lufthansa.”

The following sections discuss the definition of similarity in greater detail.
At this point, you should know that the FUZZY(0.8) parameter defines
the threshold value, where a value between 0.7 and 0.8 is usually a good
standard value to obtain results that are relatively similar to the search
request. In addition to the threshold value, the FUZZY parameter provides
many other setting options.

Apart from its use with the FUZZY parameter, you can use the CONTAINS
statement in two other variants: EXACT and LINGUISTIC. In searches with
the addition EXACT, the system searches for exact matches for the search
request with entire words (based on the tokenization of the text in the
database). EXACT also represents the default value if you do not enter
any parameter. In this case, you can also use wildcards such as '*' in
the search request. In contrast to a LIKE in standard SQL, the CONTAINS
clause allows you to perform searches across multiple columns. The fol-
lowing example shows an exact search for airlines whose names or web
addresses contain “Airlines” or “Airways” or end with “.com.”

SELECT * FROM scarr WHERE CONTAINS ((carrname,url), 'Airlines
OR Airways OR *.com', EXACT)

This example is also useful for demonstrating the effects of a missing
full text index. If no full text index exists for the carrname column, the
names will not be split into words (tokens); consequently, there will be
no exact match between the search request 'Airlines' and an entry like
“United Airlines.”

If you run an additional analysis of the word stems via a text analysis (see
Section 9.5), the LINGUISTIC parameter allows you to obtain additional
results in which only the word stems must match.

FUZZY parameter

Exact search/
linguistic search

397

Using the Text Search via SQL 9.3

This book focuses primarily on the subject of fuzzy searches because it
is difficult to implement an intuitively usable search function with the
exact or linguistic search within an ABAP application. This is because it
can easily happen in both cases that fewer results are found than in a
classic ABAP input help.

Limitations to the Text Search in SAP HANA SQL

As already mentioned, you can use SQL for text searches in SAP HANA.
However, there are currently several limitations with regard to the supported
combinations. These are as follows:

EE You can apply the CONTAINS clause only to text searches in tables of the
column store.

EE You cannot apply the CONTAINS clause to text searches in SQL views. Cur-
rently, this scenario requires you to use an attribute view. SAP plans to
remove this restriction in future versions of SAP HANA.

EE You cannot apply the text search function to calculated attributes of a view.

9.3.1 Fuzzy Search

The following section describes how you can use the fuzzy search function
for a simple search run across one or several columns of a table or view.
Section 9.3.2 and Section 9.3.3 will then provide details about the specific
search variants that utilize additional semantic information about the data.

The examples used in this context involve the airline names (column CAR-
RNAME in table SCARR) and the locations from the flight schedule (columns
CITYFR and CITYTO in table SPFLI). For this purpose, a full text index will
be defined for each attribute, as described in Section 9.2. For the examples
used here, the variant supported by the ABAP Data Dictionary will suffice.

Searching Across Multiple Columns

The CONTAINS statement allows you to specify multiple columns to be
considered during the search run. The following example indicates a
search in the flight schedule to “Tokio.”

Multiple columns
within a table

398

9 Text Search and Analysis of Unstructured Data

SELECT * FROM spfli WHERE CONTAINS ((cityfrom,cityto), 'Tokio',
fuzzy(0.8))

The result will contain all flights departing from and arriving in Tokyo,
even though the spelling of the city’s name deviates slightly (in some lan-
guages this is the common spelling of this city). Instead of the individual
column names, you can also use an asterisk (*) in order to run the search
across all columns that support a text search.

Figure 9.6 Fuzzy Search Across Multiple Columns

If you want to run the search across multiple columns in different tables
that are linked through foreign key dependencies, you can do that in two
different ways. You can either write an SQL join or use a view. Concerning
the latter, SAP HANA currently supports only the use of attribute views,
but the support of normal SQL views is planned for future releases.

In order to include the airline name in addition to the departure and
destination names in the flight schedule search, we’ll create a simple
attribute view, as shown in Figure 9.7.

In an attribute view, the fuzzy search via SQL is carried out in the same
manner as within a table. Thus, the result of the following SELECT state-
ment contains all flights from or to Singapore, as well as all flights operated
by Singapore Airlines.

SELECT * FROM
 “test.a4h.book.chapter09::AT_FIGHTPLAN_FUZZY”
WHERE CONTAINS(*, ‘singapore’, fuzzy(0.8))

Multiple columns
in multiple tables

Fuzzy search in
attribute view

399

Using the Text Search via SQL 9.3

Figure 9.7 Attribute View for Fuzzy Search Across Two Tables

Special Functions

There are special scalar functions available that enable you to retrieve
additional information for individual data records in the result set. SAP
HANA currently provides the score(), highlighted(), and snippets()
functions, which will be described in the following sections.

The score() function provides information about the degree of similar-
ity between the search result and the search request. This value ranges
between 0 and 1, with higher values indicating a higher degree of similar-
ity. Normally, the function is used for sorting the search results in such a
way that results with a higher degree of similarity are displayed further
toward the top of the list than those with a lower value:

SELECT * FROM scarr WHERE CONTAINS(carrname, 'airways',
fuzzy(0.8)) ORDER BY score() desc;

Difference Between score() and Threshold Values for Searches

The return value of the score() function does not directly correspond to
the threshold value in the fuzzy() statement. Consequently, it is absolutely
conceivable to obtain search results in which the value of the score() func-
tion is lower than the transferred threshold value.

Score

400

9 Text Search and Analysis of Unstructured Data

In searches through longer texts, it is particularly useful for users if the
exact found location of a search request is highlighted in the text. For
this purpose, SAP HANA SQL offers the highlighted() and snippets()
functions. If the former is used, the system returns the entire text with
the found location highlighted, whereas if snippets() is used, only an
extract of the text around the found location is returned. Note that there
is no difference between the two with regard to shorter texts such as the
airline names, for example.

When using these functions, you must specify the column as shown in
the following example:

SELECT *, highlighted(carrname) FROM sapa4h.scarr
 WHERE CONTAINS(carrname, 'airways', fuzzy(0.8))
 ORDER BY score() desc;

The result contains the found location enclosed by markups that use the
HTML tag ... (see Figure 9.8). If you plan to implement your
own type of search result display, you may want to replace these tags
accordingly.

Figure 9.8 Highlighting the Found Location using the highlighted() Function

highlighted() and snippets() Only in One Column

The highlighted() and snippets() functions can only highlight hits within
one column. If you run a search across multiple columns, you can query the
value of individual attributes only. Thus, if no found location exists in a col-
umn, you won’t find any highlight in the value of the function. Unfortunately,
there is currently no option available that allows you to directly recognize the
column (or columns) that contain the found location.

Highlighted
and snippets

401

Using the Text Search via SQL 9.3

Other Parameterizations

The parameterization of the fuzzy search has not yet been discussed in
detail, and it would go beyond the scope of this book to describe all
options and variants related to this topic. However, you should be familiar
with some of these aspects, which are essential to a correct usage. These
involve, first and foremost, the parameters similarCalculationMode and
textSearch. You must transfer these types of parameter by means of a
character string in which you use commas to separate individual param-
eters, as shown in the following example:

SELECT * FROM scarr WHERE
 CONTAINS(carrname, 'lusthansa',
 fuzzy(0.8, 'similarCalculationMode=search'));

The similarCalculationMode parameter enables you to check how the
fuzzy score (i.e., the degree of similarity), is calculated. In this context,
you must distinguish between two scenarios. In a text comparison, the
request and the text in the database as a whole should be fairly similar;
however, in a normal search run, it should be sufficient that the search
request is part of the text. For this reason, you should use the compare
parameter value for text comparisons, and search for search runs. The
following section describes how you can manually create a specific full
text index and discusses the differences between the parameter values.

In addition, the textSearch parameter is important for the description
of some of the more complex search options in the following sections;
this parameter switches between separate technical implementations in
SAP HANA. The details of this parameter and its use will be described
in Section 9.3.2.

9.3.2 Synonyms and Noise Words

Lists of synonyms and stop words (also called noise words) represent an
option to implement a more intelligent search. To do this, you must store
the additional data in tables of a predefined structure, and the names of
these configuration tables must be included in the search requests.

Let us first consider the use of noise words. Names of airlines, for example,
frequently contain the word “air,” which, compared to other words, pre-
sumably plays a minor role in search runs. For this reason, we want to

similar-
CalculationMode
parameter

textSearch
parameter

Stop word table

402

9 Text Search and Analysis of Unstructured Data

include this term in the list of stop words. This does not mean that the
word will be completely ignored or even that the search will terminate,
but merely that less importance will be attached to the term.

The structure of the configuration table is as shown in Table 9.2.

Column SQL Data Type Example

stopword_id VARCHAR(32) “1”

list_id VARCHAR(32) “airline”

language_code CHAR(2)

term NVARCHAR(200) “Air”

Table 9.2 Structure of Configuration Table for Stop Words

Here, the stopword_id field represents the unique key. The list_id
column allows for storing multiple individual lists for different usage
scenarios in the table. In addition, you can store words that are relevant
only for specific languages (this value has been left empty in this example
of airline names).

Figure 9.9 shows a table called ZA4H_BOOK_STOPW in the ABAP Data Dic-
tionary with a matching structure.

Figure 9.9 Stop Word Table in ABAP Data Dictionary

Configuration
table columns

Search within
sample table

403

Using the Text Search via SQL 9.3

Now the sample data record from Table 9.2 will be entered into this table.
If you want to include the list of stop words in a fuzzy search, you must
use the stopwordTable and stopwordListId parameters. The example in
Listing 9.2 shows the search for the terms “air” and “united” and uses
the previously generated stop word table.

SELECT score(), * FROM scarr WHERE CONTAINS(carrname,
'air OR united', fuzzy(0.8, 'textsearch=compare,
stopwordTable=ZA4H_BOOK_STOPW, stopwordListId=airline,
similarCalculationMode=search')) ORDER BY score();

Listing 9.2 Fuzzy Search with Stop Word Table

The textsearch=compare parameter is necessary if you want to use these
search variants. The result contains the entry “United Airlines,” but not
“Air Canada,” for example, because due to the stop word table, a lower
degree of importance has been attached to the term “Air.”

This describes how you can use synonyms in your search requests. To
do this, you must map those terms you want to treat as synonyms in a
configuration table (term mapping). As is the case with stop words, you can
store these terms based on individual languages and in multiple lists. In
addition, you can store a weighting between 0 and 1 in order to indicate
the extent to which the finding of a synonym is supposed to reduce the
value of similarity. Table 9.3 shows the structure of the corresponding
configuration table.

Column SQL Data Type Example

mapping_id VARCHAR(32) “1”

list_id VARCHAR(32) “airline”

language_code CHAR(2)

term_1 NVARCHAR(255) “Airways”

term_2 NVARCHAR(255) “Airlines”

weight DECIMAL 0.8

Table 9.3 Structure of Configuration Table for Synonyms

Lists of synonyms

404

9 Text Search and Analysis of Unstructured Data

Lists of Synonyms Cannot be Stored as ABAP Data Dictionary Tables

Unfortunately, you cannot create this type of table in the ABAP Data Diction-
ary because the DECIMAL data type (floating decimal point) is not supported in
ABAP. However, the following section describes a possible technical alterna-
tive that consists of creating a separate table with the appropriate structure
in a different schema and synchronizing the synonym data into that table.

The example in Listing 9.3 describes the search for the term, “United
Airways.”

SELECT score(), * FROM scarr WHERE CONTAINS(carrname,
'united airways', fuzzy(0.8, 'textsearch=compare,
termMappingTable=ZA4H_BOOK_SYNTAB, termMappingListId=airline,
similarCalculationMode=search')) ORDER BY score();

Listing 9.3 Fuzzy Search with List of Synonyms

The specification of the mapping table via the termMappingTable and
termMappingListId parameters causes the fuzzy search to analyze the
list of synonyms so that the result contains the expected entry, “United
Airlines.”

In addition to terms with identical meaning (i.e., synonyms), you can
use the mapping mechanism to include hypernyms and hyponyms; that is,
more general or more concrete terms, which can be particularly useful
with large, unstructured texts. This enables you, for example, to recognize
the occurrence of the hypernym “airline” when searching for the term
“Lufthansa” in a text. To achieve this, you would have to choose a low
value (0.2, for example) as weight (WEIGHT).

Moreover, you can use a combination of stop words and synonyms in a
search request; in that case, the system calculates the synonymous variants
first, followed by the stop words.

9.3.3 Searching Across Date Fields and Address Data

Finally, this section describes some of the more comprehensive options
that were introduced in Section 9.1.2 so that you can get an idea of how
to use them. This section focuses on fuzzy searches in date fields as well as
on the search for ZIP codes. Unfortunately, both options cannot be used

Hypernyms,
hyponyms

405

Using the Text Search via SQL 9.3

directly from within ABAP because they require specific data types and
column definitions. These kinds of native developments in the database
require additional design concepts.

For this reason, an additional table will be created in a separate database,
previously generated schema; we will need this table for our sample
scenario. The table will be used to store customer addresses as well as
the date and time of the last booking from within the ABAP tables where
native HANA types were used. A fuzzy search will then be run across
this data in which the semantic characteristics of dates and ZIP codes
will be utilized.

For the sake of convenience, the scenario will be implemented here
exclusively via the SQL console in SAP HANA Studio. You can, of course,
also execute these native SQL statements from within an ABAP program
through the ADBC interface. This will be described in detail in Chapter
13, where a sample application is developed.

The table is created via SQL, as shown in Listing 9.4.

create column table custom_fuzzy (
 mandt NVARCHAR(3) DEFAULT '000' NOT NULL ,
 id NVARCHAR(8) DEFAULT '00000000' NOT NULL ,
 name NVARCHAR(25) DEFAULT '' NOT NULL ,
 city NVARCHAR(25) DEFAULT '' NOT NULL ,
 postcode NVARCHAR(10) FUZZY SEARCH MODE 'postcode',
 lastbooking DATE
);

Listing 9.4 Creating a Table with Customer Addresses and Booking Dates via SQL

For the date, we use the native data type DATE, and specify a fuzzy search
mode for the ZIP code. Both these settings cannot be used in the same
manner for an ABAP Data Dictionary table.

After that, the table is populated based on the data from tables SCUSTOM
and SBOOK using the SQL statement in Listing 9.5.

INSERT INTO custom_fuzzy
SELECT c.mandt, c.id, c.name, c.city, c.postcode,
 to_date(MIN (b.order_date)) as lastbooking
FROM sapa4h.sbook as b INNER JOIN sapa4h.scustom as c

Sample scenario

Native database
table with SQL

406

9 Text Search and Analysis of Unstructured Data

 ON b.mandt = c.mandt and b.customid = c.id
GROUP BY c.mandt, c.id, c.name, c.city, c.postcode;

Listing 9.5 Populating the Database Table with Data

In a fuzzy search for a date field, the degree of similarity is impacted by
the time difference between the date values, and also by typical typing
errors in date entries. You do not need to create a full text index for this
kind of fuzzy search, because a fragmentation into tokens (words) is not
needed here.

In Listing 9.6, we search for customers whose last booking was carried
out on or around November 13, 2012. The maxDateDistance=3 parameter
specifies the maximum difference in days. In addition, the system will
also return results that contain an incorrect number, for example, or in
which the day and month have been exchanged.

SELECT lastbooking, score() FROM custom_fuzzy
 WHERE CONTAINS(lastbooking, '2012-11-13',
 FUZZY(0.9, 'maxDateDistance=3'))
ORDER BY score() DESC;

Listing 9.6 Fuzzy Search for a Date

As described in Section 9.1.2, in the fuzzy search for a ZIP code, the
degree of similarity is determined through the geographical proximity,
which is indicated by the internal structure of the ZIP codes. Listing 9.7
searches for codes close to “69190.”

SELECT postcode, score() FROM custom_fuzzy
 WHERE CONTAINS(postcode, '69190', fuzzy(0.7))
ORDER BY score() desc;

Listing 9.7 Fuzzy Search for ZIP Codes

Figure 9.10 shows the result of a combined search for customers close
to Walldorf, Germany (ZIP code 69190), whose last booking was carried
out on or around November 13, 2012.

Fuzzy search
for a date

Fuzzy search
for a ZIP code

407

Using the Text Search in ABAP 9.4

Figure 9.10 Fuzzy Search for a Date and ZIP Code

In addition to ZIP codes, you can also run fuzzy searches for house
numbers containing specific characteristics such as number ranges (for
example, “8–10”) or letters (“8a”).

9.4 Using the Text Search in ABAP

As you have seen, the fuzzy search function in SAP HANA provides
many innovative options to run searches on existing data. Some of these
scenarios require you to format or transform the data in order to take
advantage of all the options. In the following sections, you’ll learn how
to use ABAP to call the text search function.

As described in Section 9.1.3, the Embedded Search component enables
you to implement independent search applications. The following sec-
tions discuss in detail how you can implement searches directly within an
application such as an input help for a form field, for example.

Let us first consider some general remarks. In some scenarios, the direct
use of the text search function from within ABAP currently requires a
few technical tricks that are not supported by the standard ABAP devel-
opment model. As a result, you must carefully think about the design
of your development before you can use the function in a production
system. Some of these design aspects are discussed in Chapter 14 as part
of our recommendations on using the advanced SAP HANA functions.

Mind the lifecycle
management

408

9 Text Search and Analysis of Unstructured Data

9.4.1 Calling the Text Search from ABAP via SQL

Because the text search function in SAP HANA is not part of the standard
features of a traditional database, the CONTAINS statement is unfortunately
not yet supported in Open SQL. However, you can still employ the text
search directly from within ABAP if you use Native SQL.

Using the text search via ADBC is pretty simple. To do this, all you need
to do is include the CONTAINS statement in the Native SQL statement, as
shown in the example in Listing 9.8.

REPORT ZR_A4H_CHAPTER9_ADBC_CONTAINS.
" Variables for ADBC call and result
DATA: lv_sql TYPE string,
 lt_result TYPE TABLE OF scarr.

" Search request
PARAMETERS: search TYPE string LOWER CASE.

" Use of CONTAINS in Native SQL
lv_sql =
 | SELECT * FROM SCARR |
 && | WHERE mandt = '{ sy-mandt }' and |
 && | CONTAINS(carrname, '{ search }', fuzzy(0.8))|.

TRY.
 " Prepare SQL connection and statement
 DATA(lo_result) =
 cl_sql_connection=>get_connection(
)->create_statement(
)->execute_query(lv_sql).

 lo_result->set_param_table(REF #(lt_result)).

 " Get result
 lo_result->next_package().
 lo_result->close().
 CATCH cx_sql_exception.
 " Error handling
ENDTRY.

" Result output
LOOP AT lt_result ASSIGNING FIELD-SYMBOL(<line>).

Access via ADBC

409

Using the Text Search in ABAP 9.4

 WRITE: / <line>-carrid , <line>-carrname.
ENDLOOP.

Listing 9.8 Using the Text Search via ADBC

Similarly, you can also run search requests across attribute views. Although
the access via OpenSQL is not possible here, either—due to the lack of
support for the CONTAINS statement—it is advisable that you first define
an external view based on the respective attribute view. This will facilitate
the processing of data types because there is already a representation
available in the ABAP Data Dictionary.

9.4.2 Freely Defined Input Helps

As mentioned at the beginning of this chapter, input helps provide mul-
tiple options for use of the text search in SAP HANA. Figure 9.11 shows
this on the basis of a free text search for a passenger based on the pas-
senger’s name and place of residence. In this section, you’ll learn how
to implement this type of input help.

Figure 9.11 ABAP Search Help with Fuzzy Search Across Multiple Columns

You define an input help in the ABAP Data Dictionary. In general, these
input helps can then be used in both classic Dynpro-based applications

Search request via
attribute views

410

9 Text Search and Analysis of Unstructured Data

and in application interfaces that have been created using Web Dynpro
ABAP or the Floorplan Manager. In this context, you can either create
single (so-called elementary) search helps, or combine multiple input helps
into a collective search help. The individual search helps are then usually
displayed on separate tabs. Collective search helps are particularly useful
if you want to extend an existing search help by an optimized variant in
SAP HANA (this variant will then be hidden in other databases).

A search help can be defined declaratively in such a way that you specify
the name of a table or view and select the fields for the dialog. In addi-
tion, you can also implement the data retrieval process by yourself using
a search help exit. We will use this variant in the following sections to
implement the fuzzy search function.

To define a search help exit, you must first create a function module that
contains the interface shown in Listing 9.9. A simple search help exit is
contained in function module F4IF_SHLP_EXIT_EXAMPLE in the standard
SAP system.

FUNCTION z_a4h_book_chapter9_exit_cust
 CHANGING
 VALUE(shlp) TYPE shlp_descr
 VALUE(callcontrol) LIKE ddshf4ctrl
 TABLES
 shlp_tab TYPE shlp_desct
 record_tab LIKE seahlpres.

 "

ENDFUNCTION.

Listing 9.9 Interface for Search Help Exits

Prior to implementing the function module, you should familiarize your-
self with the processes of creating and testing an input help in the ABAP
Data Dictionary, including the specification of such an exit. For this pur-
pose, all you have to do is open Transaction SE11 and create a new search
help. Then enter the relevant display and search help exit parameters.
Figure 9.12 shows the configuration of the search help from Figure 9.11.

Search help exit

Creating and
testing an
input help

411

Using the Text Search in ABAP 9.4

Figure 9.12 Configuring the Search Help in Transaction SE11

The function module is called at several times by the search help frame-
work, and it is during these phases that you can manipulate the behavior
of the system. The callcontrol-step value allows you to query the cur-
rent phase. Table 9.4 provides an overview of the phases with a focus
on those operations that are available in the context of a fuzzy search.

Phase Explanation

SELONE This phase is relevant only for collective search helps. It
enables you to manipulate the number and sequence of
elementary search helps. In particular, it allows you to
hide HANA-specific search helps in systems running on
other databases.

PRESEL This step enables you to manipulate the selection
conditions so that you can replace certain special
characters (such as a “*”) in the context of a fuzzy search,
for example.

SELECT In this phase, you can implement your own selection of
data and thus run a fuzzy search via ADBC, for example.

Table 9.4 Phases of a Search Help Exit

Call times for
search help exits

412

9 Text Search and Analysis of Unstructured Data

Phase Explanation

DISP This phase once again allows you to manipulate the data
and run an authorization check, for example, or change
the presentation mode. The following examples do not
use this phase.

Table 9.4 Phases of a Search Help Exit (Cont.)

Listing 9.10 shows the complete implementation of the search help exit
from Figure 9.11. The system reads the data during the SELECT phase
(the Dictionary structure ZA4H_CHAPTER9_CUSTOM represents a simple
projection of table SCUSTOM) and writes it into the target structure using
function module F4UT_RESULTS_MAP.

FUNCTION z_a4h_book_chapter9_exit_cust.
*"--
""Local Interface:
*" TABLES
*" SHLP_TAB TYPE SHLP_DESCT
*" RECORD_TAB STRUCTURE SEAHLPRES
*" CHANGING
*" VALUE(SHLP) TYPE SHLP_DESCR
*" VALUE(CALLCONTROL) LIKE DDSHF4CTRL STRUCTURE
DDSHF4CTRL
*"--

 DATA: lt_data TYPE TABLE OF za4h_chapter9_custom.

 IF callcontrol-step <> 'SELECT'.
 EXIT.
 ENDIF.

*"--
* STEP SELECT (Select values)
*"--
 IF callcontrol-step = 'SELECT'.
 " Search request
 DATA: lv_value type string.
 TRY.
 lv_value =

Implementing a
search help exit

413

Using the Text Search in ABAP 9.4

 shlp-selopt[shlpfield = 'SEARCH']-low.
 CATCH cx_sy_itab_line_not_found.
 " Ignore
 ENDTRY.

 DATA(lv_sql) =
 |SELECT id, name, city, country FROM scustom|
 && | WHERE CONTAINS(*, '{ lv_value }', |
 && | fuzzy(0.8,'similarCalculationMode=search')) |
 && | AND mandt = '{ sy-mandt }' |
 && |ORDER BY score() desc, id|.

 TRY.
 DATA(lo_result) =
 cl_sql_connection=>get_connection(
)->create_statement(
)->execute_query(lv_sql).

 lo_result->set_param_table(REF #(lt_data)).
 lo_result->next_package().
 lo_result->close().
 CATCH cx_sql_exception INTO DATA(lo_ex).
 " Error handling ...
 ENDTRY.

 CALL FUNCTION 'F4UT_RESULTS_MAP'
 EXPORTING
 source_structure = 'ZA4H_CHAPTER9_CUSTOM'
 TABLES
 shlp_tab = shlp_tab
 record_tab = record_tab
 source_tab = lt_data
 CHANGING
 shlp = shlp
 callcontrol = callcontrol.

 callcontrol-step = 'DISP'.
 ENDIF.

ENDFUNCTION.

Listing 9.10 Search Help Exit with Fuzzy Search Across Name and Place of Residence

414

9 Text Search and Analysis of Unstructured Data

To conclude this section, the following paragraphs describe how you can
use search helps created in the ABAP Data Dictionary in Web Dynpro
ABAP. This is a standard Web Dynpro functionality, independent of SAP
HANA, and we can only introduce some of the details in the following
sections. Moreover, you should also have some basic development knowl-
edge using Web Dynpro ABAP.

The data model of a Web Dynpro component must be defined using the
so-called context, which in turn can be defined either manually or based
on a Dictionary structure (table or view). When you define the context,
the system transfers the associated search helps by default; however,
you can also use your own Dictionary search help for an attribute in the
Web Dynpro context. Figure 9.13 shows a Web Dynpro context with an
attribute for the customer ID (SCUSTOM-ID). At this point, we are using
the new Eclipse-based development environment for Web Dynpro ABAP.
However, you can make the setting as well via Transaction SE80.

Figure 9.13 Web Dynpro ABAP Context Attribute with Fuzzy Search Help

Usage in Web
Dynpro ABAP

Data model of
a Web Dynpro

component

415

Using the Text Search in ABAP 9.4

Web Dynpro ABAP Development in Eclipse

In addition to tools that are used for pure ABAP developments, the ABAP
Development Tools for SAP NetWeaver also contain other tools that are
integrated natively in Eclipse—one of them being the development environ-
ment for Web Dynpro ABAP. You can use this tool in the same manner as
other ABAP development objects: There are specific editors available for the
Web Dynpro objects (for instance, Web Dynpro components) as well as for
the related sub-objects (such as views or windows). These can be created or
opened through the Project Explorer view in Eclipse, similar to the way you
work with ABAP reports or classes.

If you link this context attribute to an input field in a Web Dynpro view,
you will obtain a Web Dynpro application with similar functionality as the
one shown in Figure 9.11. Figure 9.14 shows this Web Dynpro application.

Figure 9.14 Fuzzy Search Help in Web Dynpro ABAP

In addition, you can also view default values directly via Web Dynpro
ABAP at the same time the user enters data (value suggest). This combi-
nation of functions enables you to create search helps that behave like
modern Internet searches. This feature will be used for the creation of
the sample application in Chapter 13.

Suggesting values

416

9 Text Search and Analysis of Unstructured Data

9.5 Text Analysis

In addition to running pure searches, you can use the text analysis to
extract further insights. Based on the splitting of texts into tokens, these
tokens are then assigned additional semantic characteristics (see Section
9.1). The semantic principles include, for example:

EE Which language does the term come from? What is the word stem or
basic grammatical form? Is it an abbreviation?

EE Is the term a technical term? If so, from which subject area or industry
does it come?

Does the term implicitly contain an emotional statement—that is, does the
term have a positive (e.g., “ideal”) or negative (e.g., “unbearable”) connotation?

For the purpose of the text analysis, it is necessary for the system to know
the characteristics and specifics of the respective language pretty well. SAP
HANA is provided with dictionaries containing terms from more than 20
languages. Then, in a text analysis, the system extracts and categorizes
metadata from the texts.

You can use the text analysis function for all types of data that allow for
the creation of a full text index (such as columns of the following types:
NVARCHAR, VARCHAR, CLOB, NCLOB, and so on). Note that when creating a
full text index, you must specify the TEXT ANALYSIS ON option as well as
an option for the analysis.

SAP currently supports the options listed in Table 9.5. You can find infor-
mation on the language(s) supported by each option in the developer
documentation at http://help.sap.com/hana_appliance/.

Option Description

LINGANALYSIS_BASIC Fragments a text into its components (individual
words with normalization of umlauts, accented
characters, and so forth).

LINGANALYSIS_STEMS Fragments a text into its components and
identifies the word stem of each word.

LINGANALYSIS_FULL Similar to LINGANALYSIS_STEMS, with
additional grammatical categorization of terms.

Table 9.5 Text Analysis Options

Semantic
characteristics

Text analysis
options

417

Text Analysis 9.5

Option Description

EXTRACTION_CORE Extracts terms from the text and categorizes
them semantically (for example, into persons,
organizations, locations, and so on).

EXTRACTION_CORE_
VOICEOFCUSTOMER

Analyzes texts according to patterns that
indicate emotions and desires of the writer
(sentiment analysis).

Table 9.5 Text Analysis Options (Cont.)

Basically, you can employ the text analysis function in two different
ways—a linguistic and a semantic variant. The linguistic analysis is useful
in scenarios where you want to analyze texts according to grammatical
aspects. In particular, this variant is a prerequisite for the linguistic search
described in Section 9.3. The semantic analysis, in turn, can be used
to extract additional information. In many cases, the EXTRACTION_CORE
option is sufficient for this.

The following example defines a full text index with text analysis for the
airline names. For the creation, the example uses the ABAP report from
Listing 9.1 and the settings shown in Figure 9.15.

Figure 9.15 Full Text Index with Text Analysis via ADBC

When you create a full text index with text analysis, the system creates
a technical table with prefix $TA_ in the same schema, whose content
is shown in Figure 9.16. In addition to the extracted information, this
table also contains the primary keys of the original table, so that it can
be easily embedded in joins and used accordingly.

Linguistic and
semantic analysis

Example: Full
text index with
text analysis

Table $TA_*

418

9 Text Search and Analysis of Unstructured Data

Figure 9.16 Result of a Text Analysis for Airline Names Using the EXTRACTION_
CORE Configuration

The system has recognized that the data is related to commercial organi-
zations (column TA_TYPE in Figure 9.16). However, one entry was misin-
terpreted due to ambiguity, which is a clear indication that most of the
time you cannot rely on a completely automatic treatment of the results.
In general, one can say that the text analysis function is a powerful tool
that enables you to detect indicators and trends, but that the results must
always be analyzed and calibrated by a data scientist.

9.6 Resource Consumption and Runtime Aspects of
the Text Search

In this chapter, we have discussed the basic architecture and use of the
text search and text analysis functions in SAP HANA. You have learned
that the column store contains specific data types (TEXT and SHORTTEXT)
that provide powerful functions for searching and analyzing unstructured
data. For ABAP text types, you can use a full text index to create a virtual
column of the TEXT type. And if you employ an additional fuzzy search
index, you can accelerate a fuzzy search run.

Analysis result

419

Resource Consumption and Runtime Aspects of the Text Search 9.6

The following sections provide essential background information on the
functionality of the text data types, as well as recommendations concerning
the use of indexes. You will learn in particular how to use SQL queries
to analyze the memory consumption.

Depending on the configuration, special dictionaries are created for
text data types and full text indexes. These store the fragmentation into
tokens and linguistic information (such as word stems, for example) in an
efficient way. Basically, this process involves the same mechanisms and
memory structures as other functions of the column store. If you want
to learn more about the technical details of building and accessing such
dictionary structures, you can find additional information in Appendix C.

As described in Section 9.2, texts are fragmented into words (tokens),
then normalized and stored in the dictionary vector of the column (word
dictionary). In addition to this, word stems can optionally be stored in
a second dictionary, where inflected verbs (for example) are reverted
to their basic form or umlauts are replaced. All this information is not
persisted on the disk, but generated only when the table is loaded into
the main memory.

Additional (optional) memory structures can be used to further accelerate
text searches; however, this would have an impact on the required memory
size. Currently, there are two options available: an additional fuzzy search
index, or an increase of the phrase-index ratio. Using a fuzzy search index
means that certain data is pre-calculated instead of being determined at
the start of a search request. Additionally, in the phrase index, frequently
occurring word constellations (phrases) are stored in a separate dictionary.
The higher the specified phrase-index ratio value, the more storage space
is reserved in relation to the actual memory consumption of the column
(currently, the default value of this ratio is 0.2, i.e., one to five).

As you can see, there are many setting options available. Using the
search and analysis options described here will increase the memory
requirements for the required columns, and usually ABAP-based text data
requires twice as much memory space. Therefore, it is advisable to use
the default settings first, and to employ additional tuning options—such
as fuzzy search indexes or changing the phrase-index key figure—only
after you encounter performance problems.

Functionality of
text data types

Fuzzy search index/
phrase-index ratio

Recommendations

420

9 Text Search and Analysis of Unstructured Data

In order for you to get a better picture of the aforesaid, the following
paragraphs describe how you can use monitoring views via the SQL con-
sole to obtain detailed information on the indexes and system memory
consumption.

The FULLTEXT_INDEXES view in SAP HANA enables you to view the con-
figuration of all full text indexes in the system. Figure 9.17 shows the full
text indexes for the flight model tables created in the preceding sections,
as well as some other predefined indexes in the SAP HANA Repository.

Figure 9.17 FULLTEXT_INDEXES Monitoring View

Moreover, you can query the memory consumption of the special fuzzy
search indexes separately using the M_FUZZY_SEARCH_INDEXES monitoring
view. The memory consumption depends on various factors, but predomi-
nantly on the number of different values within the column. The following
SQL statement allows you to query the current memory consumption of
all data structures available for the fuzzy search in the system:

SELECT * FROM m_heap_memory WHERE category LIKE '%FuzzySearch%'

To conclude this chapter, we’ll briefly discuss the topic of write operations,
especially in the context of tables—which are both frequently modified,
and can be used for text searches and analyses. Full text indexes can be
updated synchronously and asynchronously. If an index is updated syn-
chronously, write operations take slightly longer because the creation of
dictionary and index structures is part of the write operation. Usually,
the effects should be minimal with small data types (for example, with
character strings of a fixed length). For larger documents that are stored

Monitoring views

Memory
consumption

Write operations

421

Resource Consumption and Runtime Aspects of the Text Search 9.6

as large objects in the database (for example, STRING), an asynchronous
update can be advantageous.

In addition, when write operations are carried out in the column store, the
data is first stored in the so-called delta store and is automatically integrated
into the main store only at specific merge times (see also Appendix C). The
bigger the delta store gets in this process, the more costly the merging of
results in SQL queries. This can significantly impact the system runtime,
particularly in complex operations such as those described in this chapter.
If you want to run text analyses across large datasets that are carried out
asynchronously at fixed points in time; for example, it makes sense to
manually implement delta merge, which is supposed to be executed on
the relevant tables prior to the text analyses. For this purpose, you could
for example use SQL statement MERGE DELTA OF <Table>.

Delta store

423

Using SAP HANA, you can expand transactional applications
through analytical functionality. A great variety of technologies
and tools are available for this purpose, which—in many cases–
allow you to add analytical functions with very little programming
effort.

10 Integrating Analytical Functionality

In Chapter 1, you learned that you can combine transactional and ana-
lytical functionality or add analytical capabilities to existing transactional
applications using SAP HANA. This chapter describes this topic in more
detail. From our point of view, this is important to avoid investments in
the development of analytical functionalities that are already provided
out of the box.

In a short introduction, we will start by explaining important concepts
and terms used in this context. We will then introduce possible architec-
tures that can be used to expand transactional, ABAP-based systems by
analytical functionality, and also list their advantages and disadvantages.
To conclude this chapter, we describe a few technologies and tools that
we consider important.

Due to space constraints, however, the presented technologies and tools
cannot be explained in detail. Therefore, you will not be able to immedi-
ately use all of the methods presented for integrating analytical function-
ality in transactional applications after reading this chapter.

10.1 Introduction

To understand the options described in this chapter, you need to under-
stand what we mean by analytical functionality and how the integration
of analytical capabilities in transactional applications differs from a data
warehouse.

424

10 Integrating Analytical Functionality

Moreover, you should be familiar with some of the basic concepts in con-
nection with SAP NetWeaver Business Warehouse (BW) to understand
the explanations in the following sections.

10.1.1 What is Analytical Functionality?

Analytical functionality is more than just reporting. Reporting helps you
present and format data. Data analysis should then help you understand
correlations and causes so you can determine necessary measures based
on this information (insight to action). Ideally, these measures should have
a positive impact for your organization (e.g., higher revenues, lower cost,
improved customer retention). Figure 10.1 shows how these concepts
are correlated.

Data

Information

Knowledge/
Findings

(Positive)
Effect

Reporting

Data AnalysisActions

New Data

Figure 10.1 Overview of Analytical Functionality

Reporting and data-analysis tasks can be performed at different levels
(Figure 10.2):

EE Strategic	level
The strategic level deals with basic questions that have a long-term
impact on an organization. Using the SFLIGHT data model from the
previous chapters, possible strategic questions for an airline are: Which
flight connections should be expanded? How should the miles program
be enhanced?

Reporting vs.
data analysis

Levels of reporting
and data analysis

425

Introduction 10.1

EE Tactical	level
The tactical level deals with questions that have a medium-term impact
on the organization or individual areas within the company. Possible
tactical questions are: How should ticket prices be adjusted starting
January 1 of the following year if kerosene prices continue to develop
as they have in the last three months? How will the operating result
in the next three years be affected by the new air-traffic tax?

EE Operational	level
The operational level deals with short-term questions regarding day-
to-day operations. Possible operational questions are: Which duty-free
products should be replaced due to lack of demand? Which customers
should be approached to improve the business-class utilization of a
certain flight connection?

Strategic
Level

Tactical Level

Operative Level

Re
po

rt
in

g
an

d
D

at
a

An
al

ys
is

Enterprise Data
Warehousing

Figure 10.2 Levels of Reporting and Data Analysis

While (small) time delays in data provisioning are usually not problematic
for reporting and data analysis at the strategic and tactical level—and it
may not be possible to avoid such delays, as data from different systems
must be consolidated—latency-free data provisioning is often of para-
mount importance at the operational level. Imagine a travel agent who
is on the phone with a customer who wants to book a flight. Ideally,
the travel agent should not only know the current use of the desired
flight, but should also be able to offer alternative flights on other dates

Time delay in data
provisioning

426

10 Integrating Analytical Functionality

and possibly on better terms. Moreover, the travel agent should know
the current status and bonus-mile count of the customer, the discounts
granted, etc. In this example, time delays when provisioning this data
are not acceptable.

In addition to transactional systems for their business processes (e.g., SAP
ERP), organizations often use separate analytical systems referred to as data
warehouses (e.g., SAP NetWeaver BW). Transactional systems are systems
for Online Transactional Processing (OLTP). As a synonym for analytical
systems, the term Online Analytical Processing (OLAP) is often used. The
latter is not entirely correct, since OLAP describes multi-dimensional
analyses based on a star schema, while data in a data warehouse can also
be organized in flat database tables (in the case of SAP NetWeaver BW, for
example, in the form of so-called ODS objects—see Section 10.1.2). More-
over, some background information on OLAP is provided in Section 4.2.

In recent years, SAP NetWeaver BW was not only used for strategic and
tactical analyses in the SAP environment, but often also for operational
reports and data analyses. In our opinion, this was done for the follow-
ing reasons:

EE Load reduction on transactional systems

EE No significant enhancements of Report Painter, drilldown reporting,
Logistics Information System, and other existing reporting tools within
transactional systems

EE Extensive BI content (i.e., preconfigured data transformations and
information models for SAP NetWeaver BW)

This meant that the required data was not always provided in real time
for the end users.

Today, you have the option to implement operational reporting where
it belongs: within the transactional systems. Analyses that could only be
run during the night and after several data transformations in the past
can now be done on the fly based on the original data and, for instance,
using the tools of the SAP Business Objects portfolio.

OLTP and OLAP

Using BW in
operational

scenarios

Analyses on the fly

427

Introduction 10.1

Will SAP HANA Replace SAP NetWeaver BW?

You may be asking yourself now if SAP NetWeaver BW will become superflu-
ous when using SAP HANA. There is a clear answer to that question: no. Even
though SAP HANA is more than just a database, it is not a data warehouse.

However, some scenarios that were implemented using SAP NetWeaver BW
in the past will be possible without this data warehouse in the future. Instead
of setting up ETL processes for these scenarios, you will use the original data
from the transactional systems (if SAP HANA is the primary database) or you
will replicate the required data to a secondary SAP HANA database (i.e., you
use SAP HANA as a data mart).

Other scenarios will still benefit from the capabilities of a data warehouse in
the future. Using SAP NetWeaver BW (based on a traditional database or an
SAP HANA database), you can:

EE Reduce the load of transactional systems

EE Create data models that are better suited than the original data for strategic
and tactical reports and data analyses

EE Harmonize and integrate data from different data sources

EE Keep historical data available without using capacity of transactional systems

From our point of view, SAP HANA should be used instead of SAP NetWeaver
BW in particular for operational reports and data analysis, and in some cases
for system landscapes where only a single transactional system is connected
to the data warehouse today. For enterprise data warehousing at the tactical
and strategic level, you should still use SAP NetWeaver BW (based on SAP
HANA, if possible).

10.1.2 Digression: SAP NetWeaver Business Warehouse

In the further course of this chapter, many terms and concepts from
SAP NetWeaver BW will be used. If you have never worked with SAP
NetWeaver BW, Figure 10.3 provides an overview of the most important
concepts. This section briefly describes these concepts.

InfoProviders are used for data access in SAP NetWeaver BW. The sys-
tem differentiates between InfoProviders where data is actually loaded
physically via ETL processes, and InfoProviders that only provide a logical
view of the data. Examples for InfoProviders are InfoCubes, ODS objects,
InfoObjects, transient and virtual InfoProviders, and MultiProviders.

InfoProviders

428

10 Integrating Analytical Functionality

Put simply, InfoObjects can be subdivided into key figures (e.g., revenue) and
characteristics (e.g., an airline). InfoObjects are used to model InfoProvid-
ers. However, characteristics can also be used as InfoProviders themselves
(and usually provide access to master data in this case).

DataSources transfer data in SAP NetWeaver BW (e.g., from a transactional
system like SAP ERP).

SAP NetWeaver
Business Warehouse

ET
L

ET
L D

ir
ec

t
A

cc
es

s

SAP Business Explorer (BEx) SAP BusinessObjects

InfoProvider

InfoObject

Key Figure Characteristic

uses

Analytic Query (BW Query)

Analytic Engine

Transactional Systems

DataSource

Figure 10.3 SAP NetWeaver Business Warehouse

Analytical queries (also referred to as BW queries) describe data queries
executed on InfoProviders. They define rows and columns, filters, thresh-
old values (to highlight specific records), etc. To define analytical queries,
you use the BEx Query Designer, which is part of the SAP Business Explorer
(BEx). Analytical queries are executed via the Analytic Engine.

InfoObjects

DataSources

BW queries

429

Overview of Possible Architectures 10.2

The SAP Business Explorer provides reporting and analysis tools for SAP
NetWeaver BW. In particular, these are:

EE BEx Query Designer (to define BW queries)

EE BEx Analyzer (for analyses based on BW queries in Microsoft Excel)

EE BEx Web Application Designer (to create browser-based analytical appli-
cations based on BW queries)

As an alternative to the BEx Analyzer and the BEx Web Application
Designer, you can also use the tools provided by SAP Business Objects:

EE Analysis, edition for Microsoft Office is an alternative to the BEx Analyzer
(see Section 10.3.2).

EE An alternative to the BEx Web Application Designer is SAP Design Stu-
dio (also described in Section 10.3.2).

For further information on the SAP Business Explorer, please refer to
http://scn.sap.com/community/business-explorer.

10.2 Overview of Possible Architectures

This section describes possible architectures used to add analytical func-
tionality to transactional, ABAP-based systems. When doing so, we’ll
focus only on the operational level for reporting and data analysis and
differentiate between two approaches:

EE Direct access to analytical functions in SAP HANA and integration of
analytical functionality in a transactional, ABAP-based application via
user-interface integration (e.g., using the SAP NetWeaver Portal or
SAP NetWeaver Business Client).

EE Access to analytical functions via the SAP NetWeaver AS ABAP, in par-
ticular through the Analytic Engine in SAP NetWeaver BW, and inte-
gration of analytical functionality in a transactional, ABAP-based
application at different levels. In this case, the SAP NetWeaver BW
infrastructure is used via the Analytic Engine without having to oper-
ate a separate BW system.

SAP Business
Explorer

SAP Business-
Objects

Direct/indirect
access

430

10 Integrating Analytical Functionality

For the information provided in this chapter, it’s assumed that SAP
HANA is used as the primary database. In some cases, however, the two
approaches can also be used if SAP HANA is implemented as a secondary
database.

10.2.1 Direct Access to Analytical Functionality in SAP HANA

Direct access to analytical functionality in SAP HANA refers to data analysis
via SAP Business Objects tools without using an SAP NetWeaver AS ABAP.
Moreover, this also includes the provisioning of analytical functionality
via SAP HANA Extended Application Services (XS Engine, which is described
in Section 10.3).

The architecture for direct access to analytical functions in SAP HANA is
displayed in Figure 10.4. In this architecture, end-users communicate with
the SAP HANA database either directly or via the SAP Business Objects
portfolio, but without using the ABAP application server.

SAP HANA

Database Tables

SAP BusinessObjects Portfolio

Crystal
Reports

Design Studio

Explorer …

End User/Application (if necessary, via Reverse Proxy, SAP Web Dispatcher)

SAP HANA Views

SAP NetWeaver AS ABAP

XS Engine

Web
Resource

OData
Service

Figure 10.4 Direct Access to SAP HANA

Direct
communication

431

Overview of Possible Architectures 10.2

Background Information: SAP HANA Live

One scenario for direct access to SAP HANA for operational reporting is the
implementation of SAP HANA Live (previously SAP HANA Analytics Foundation).

Put simply, SAP HANA Live provides a virtual, multi-level data model (Virtual
Data Model) consisting of SAP HANA views based on the database tables of
the SAP Business Suite.

SAP HANA Live can be accessed using the SAP Business Objects tools or using
special HTML5-based applications that are based on SAP HANA Extended
Application Services. You can use SAP HANA Live both with a primary and a
secondary SAP HANA database.

In the following section, we’ll first explain how SAP HANA is accessed
using the SAP Business Objects tools and then briefly describe the SAP
HANA Extended Application Services. Next, we’ll describe the advantages
and disadvantages of the architecture.

SAP Business Objects Portfolio

Besides tools for reporting and data analysis, the SAP Business Objects
portfolio also contains functions for Enterprise Information Management
(EIM), Enterprise Performance Management (EPM), and Governance, Risk,
and Compliance (GRC).

The tools for reporting and data analysis usually belong to the SAP Business-
Objects Business Intelligence (BI) platform (also known as SAP Business Objects
Enterprise). However, some of these functions can also be used without
this platform (as shown in Figure 10.5).

The SAP Business Objects BI platform comprises server and client com-
ponents. To install the server components, a Java server supported by
SAP Business Objects BI is required (e.g., SAP NetWeaver AS Java). Figure
10.5 shows how the SAP Business Objects tools (Release 4.x) are used.
This figure shows which tools require server components and how the
tools communicate with the SAP HANA database. Basically, there are
three options:

EE Using a relational universe (an abstraction layer to translate business
data from one or multiple data sources into a language that is well
understood by the end users)

SAP Business-
Objects Business
Intelligence
platform

Communication
options

432

10 Integrating Analytical Functionality

EE Using the BI Consumer Services (BICS), an SAP-proprietary interface for
OLAP

EE Access without server components (Analysis, the edition for Microsoft
Office, can for example contact the SAP HANA database directly via
ODBC)

Crystal Reports
for Enterprise Dashboards* Explorer*

Web
Intelligence* SAP Lumira

SAP HANA

SAP BusinessObjects BI 4.x

Analysis, Edition
for OLAP*

SAP Design
Studio

Analysis, Edition
 for MS Office

Database Tables

SAP HANA Views

Relational Universes BICS

JDBC, ODBC ODBC JDBC JDBC

Relevant Interfaces for Access without Server Components:

* Requires SAP BusinessObjects BI Server

Figure 10.5 SAP Business Objects Tools and SAP HANA

One of the biggest advantages of the SAP Business Objects portfolio is
that many of the requirements with regard to reporting and data analysis
are met by default (a short description of each tool can be found in Sec-
tion 10.3.2). Reports can be created without any programming efforts, and
you can save the generated reports in a central repository to make them
accessible to a large number of end-users. Alternatively, end users can
create their own reports and data analyses (provided they were assigned
the necessary authorizations). The disadvantage of this approach is that
for certain tools a Java server (with its own administration and lifecycle
management) is needed in addition to the SAP NetWeaver AS ABAP.

Advantages and
disadvantages

433

Overview of Possible Architectures 10.2

You can use Single Sign-On to integrate the SAP NetWeaver AS ABAP
and the SAP Business Objects BI platform. The generated reports can be
published and thus be made available in the SAP NetWeaver Portal.

SAP HANA Extended Application Services

Alternatively, you can access and visualize the data in the SAP HANA
database via the SAP HANA Extended Application Services (XS Engine). As
described in Section 10.3, this is an application server that is integrated
into the database and addressed using the HTTP protocol. The XS Engine
provides far more options than just creating reports and data analyses.

Using SAP HANA Extended Application Services, you can easily define
OData services based on SAP HANA views and database tables. You can then
develop a browser-based user interface based on these OData services.
To develop this user interface, you can for example use the UI Develop-
ment Toolkit for HTML5 by SAP (also known as SAPUI5). This toolkit is
integrated in SAP HANA.

OData and HTML5

OData (Open Data Protocol) allows you to access data using an HTTP-based
protocol. Since communication via OData is stateless, this protocol is especially
useful for developing lightweight web applications and mobile applications.
Further information on OData can be found at http://www.odata.org/.

To use OData for communication with an ABAP-based system, you can use
the SAP NetWeaver Gateway. As of release 7.4, the SAP NetWeaver Gateway
functionality is integrated directly into the SAP NetWeaver AS ABAP.

HTML5 is the combination of HTML, Cascading Style Sheets, and JavaScript to
develop user interfaces. To develop HTML5-based user interfaces, SAP offers
a library of UI controls—the UI Development Toolkit for HTML5 (SAPUI5). You
can use SAPUI5 in combination with different platforms, such as the ABAP
application server. Detailed information on SAPUI5 can be found at http://
scn.sap.com/docs/DOC-31625.

To visualize business data, SAPUI5 provides a set of presentation graphics
(e.g., bar charts, pie charts, and line charts).

One of the advantages is that, in contrast to using the SAP Business Objects
tools, no Java server is needed to use the XS Engine (in combination with
SAPUI5). Moreover, this approach gives you great flexibility and you can

Integration

XS Engine

OData and SAPUI5

434

10 Integrating Analytical Functionality

align analytical user interfaces exactly to the end users’ requirements. A
disadvantage is that hardly any functions for reporting and data analysis
are provided out of the box, since SAPUI5 is not a platform for Business
Intelligence (but merely a library of UI controls).

To integrate the SAP NetWeaver AS ABAP and the XS Engine, Single
Sign-On can be used. User interfaces developed with SAPUI5 can be
incorporated into the SAP NetWeaver Portal or the SAP NetWeaver
Business Client.

Advantages and Disadvantages of the Architecture

You may be wondering now what the advantages and disadvantages of
direct access to analytical functionality in SAP HANA are. First of all,
direct access to SAP HANA offers a simple and flexible way to provide
access to analytical functionality for end users. Especially when using SAP
HANA as a secondary database, this approach has already proven itself
in practice, since this architecture was used in many of the first customer
projects with SAP HANA (SAP HANA as a data mart).

A disadvantage of this approach in connection with ABAP-based applica-
tions is that users and authorizations have to be administered in several
systems. After all, every end user needs not only a user account for the
SAP NetWeaver AS ABAP, but also a corresponding user account for
SAP HANA, which is assigned the required authorizations for accessing
the relevant data models, and possibly also a user account for the SAP
Business Objects BI server.

10.2.2 Access via the SAP NetWeaver AS ABAP

Instead of using the SAP Business Objects portfolio or the XS Engine to
directly access SAP HANA, you can provide analytical functions via the
SAP NetWeaver AS ABAP. In addition to the SAP Business Objects tools,
you can use further options to add analytical functions to transactional
applications when choosing this approach. A central infrastructure com-
ponent of this approach is the Analytic Engine we already mentioned.

Integration

User
administration

435

Overview of Possible Architectures 10.2

The architecture for accessing analytical functions via the SAP NetWeaver
AS ABAP is shown in Figure 10.6. With this architecture, the application
server is used for all communications with the SAP HANA database.

End User/Application (if necessary, via Reverse Proxy, SAP Web Dispatcher)

SAP HANA

Database Tables

SAP HANA Views

SAP NetWeaver
AS ABAP

OData Service
 via Gateway

Easy Query

WDA/FPM

SAP NetWeaver BW Analytical Query (BW Query)

SAP NetWeaver BW Analytical Engine

TransientProvider VirtualProvider

SAP BusinessObjects Portfolio

Crystal
Reports

Design Studio

Explorer …UI Components
(FPM)

Operational
Data Provider

Internet Communication Manager

SAPUI5

Figure 10.6 Access via the SAP NetWeaver AS ABAP

In the following sections, we’ll first explain how the SAP Business Objects
portfolio is used via the SAP NetWeaver AS ABAP and then describe
the Analytic Engine and some of the further options you can use. Sub-
sequently, the advantages and disadvantages of the architecture will be
described.

SAP Business Objects Portfolio

If you use the SAP Business Objects tools via the SAP NetWeaver AS ABAP,
you have two options (similar to the approach for direct access to the

436

10 Integrating Analytical Functionality

SAP HANA database). One of the reasons why these two options (shown
in Figure 10.7) are available is that SAP and Business Objects used to be
two independent companies:

EE Using a relational universe which can be defined (e.g., referring to
classic InfoSets, which are described later in this section), function mod-
ules, or future tables of the ABAP Data Dictionary

EE Using the BI Consumer Services (BICS) and thus the Analytic Engine
of SAP NetWeaver BW

SAP NetWeaver AS ABAP

SAP NetWeaver BW Analytical Engine

SAP BusinessObjects BI 4.x

Relational Universe BICS

C
la

ss
ic

In
fo

se
t

SA
P

Q
ue

ry

A
B

A
P

Fu
nc

ti
on

M
od

ul
e

Ta
bl

e
(D

D
IC

)
(p

la
nn

ed
)

* Requires SAP BusinessObjects BI Server

Crystal Reports
for Enterprise

Dashboards* Explorer*
Web

Intelligence*
Analysis, Edition
 for MS Office

Analysis, Edition
for OLAP*

SAP Lumira*
SAP Design

Studio

SAP NetWeaver BW Analytical Query (BW Query)

Figure 10.7 SAP Business Objects Tools and SAP NetWeaver AS ABAP

From our point of view, using the Analytic Engine, which (as you can see
in Figure 10.7) is supported by most of the SAP Business Objects tools,
provides an especially great variety of options. For this reason, we will
describe this approach in more detail.

Using the Analytic Engine

As described in Section 10.1.2, the Analytic Engine is part of the SAP
NetWeaver BW infrastructure. It supports reporting and multi-dimensional
analyses. In addition, the Analytic Engine also provides planning functions.

437

Overview of Possible Architectures 10.2

Since every SAP NetWeaver AS ABAP includes the SAP_BW software com-
ponent as of release 6.40, every up-to-date ABAP system (this also includes
SAP ERP or SAP CRM) comprises the Analytic Engine from SAP NetWeaver
BW. This means that you can use BW functionality directly in the OLTP
system. This way of using the BW is referred to as Embedded Reporting (as
opposed to Enterprise Data Warehousing) and is especially suitable for
operational reports and data analyses.

For Embedded Reporting, you don’t necessarily have to model so-called
InfoProviders in the Data Warehousing Workbench of SAP NetWeaver BW
(as is usual in case of Enterprise Data Warehousing). By using transient
(TransientProvider) and virtual InfoProviders (VirtualProvider), and BW
queries that are based on these providers, you can directly access data
without ETL processes. These types of InfoProviders are discussed in
more detail in Section 10.3.1.

Additional Options

Besides access to BW queries via the SAP Business Objects portfolio, the
SAP NetWeaver AS ABAP infrastructure provides further options for using
the Analytic Engine. To integrate analytical functions in transactional
applications, the following solutions are particularly useful:

EE Easy	Query
Using the Easy Query interface, you can expose the result of BW queries
via function modules, web services, or the OData protocol (the latter
is done in connection with the SAP NetWeaver Gateway). The Easy
Query interface is described in Section 10.3.3.

EE SAP	NetWeaver	Gateway
The SAP NetWeaver Gateway allows you to make business data avail-
able as an OData service. Within OData services, you can address the
Analytic Engine either via MDX (not described in any detail within
this book) or via the Easy Query interface (also described in Sec-
tion 10.3.3). Based on an OData service and using SAPUI5, you can
implement HTML5-based user interfaces.

EE User-interface	building	blocks
And lastly, the SAP Business Suite (or, more precisely, the software
component SAP_BS_FND) comprises some reusable user-interface

TransientProviders,
VirtualProviders

438

10 Integrating Analytical Functionality

building blocks for Floorplan Manager that allow you to directly access
BW queries (when performing your development tasks in an SAP Busi-
ness Suite system). User-interface building blocks are described in
Section 10.4.

These options that go beyond the tools of the SAP Business Objects port-
folio are particularly suitable to extending existing applications easily
and without risk, such as by providing analytical side panels in the SAP
NetWeaver Business Client for your end users.

Advantages and Disadvantages of the Architecture

In our opinion, access to SAP HANA via the SAP NetWeaver AS ABAP
and using the Analytic Engine provides some important advantages over
direct access to SAP HANA in order to integrate analytical functionality
in transactional applications.

Firstly, in contrast to direct access to SAP HANA, users and authorizations
can be maintained and administered in a single system when accessing
analytical functionality via the Analytic Engine. End users need only
one user account for the SAP NetWeaver AS ABAP. As described in Sec-
tion 3.1.2, communication with the SAP HANA database is done via a
technical database user. In addition, you might have to create users in
the SAP Business Objects BI server.

Secondly, when using the Analytic Engine, you benefit from some addi-
tional functions that are not currently provided by SAP HANA. These
include:

EE Hierarchy	processing
As already described in Chapter 4, SAP HANA provides basic support
for simple hierarchies. If your hierarchy-processing requirements are
not met by this basic support, you can probably meet them by model-
ing the hierarchy using the functionality of the SAP NetWeaver Busi-
ness Warehouse. The following functions are currently provided via
BW, but are not available directly in SAP HANA: hierarchy versions,
time-dependent hierarchies, plus/minus sign reversal, and elimination
of internal business volume.

User
administration

Functional
scope of the

Analytic Engine

439

Selected Technologies and Tools 10.3

EE Formulas
The BEx Query Designer provides some functions that are not avail-
able directly in SAP HANA when defining calculated fields and key
figures. In the BEx Query Designer, you can for instance use functions
to calculate the percentage share of a result in an interim result or in
the overall result of the BW query. Or you might want to display both
the absolute sales per flight connection and the relative percentage
share of the sales in the total sales of the respective airline.

EE Report-report	interface
The report-report interface (RRI) allows you to navigate from a BW query
to other BW queries, transactions, and reports of an ABAP system or
any web address. No comparable function is provided directly in SAP
HANA.

Thirdly, the Easy Query interface and the user interface building blocks
based on BW queries especially facilitate a very easy integration of ana-
lytical functions in existing transactional user interfaces.

10.3 Selected Technologies and Tools

Now that you have an overview of possible architectures for integrating
analytical functionality in transactional, ABAP-based applications, we’d
like to examine some of these functions in more detail. When doing
so, the focus will be on the Analytic Engine. However, the information
regarding the SAP Business Objects tools in Sec. 10.3.2 is in principle also
valid for direct access to SAP HANA and when using a relational universe.

As in the previous chapters, our example will once again be based on the
SFLIGHT data model. Like the other examples, this example is again kept
rather simple to make sure we focus only on the important concepts.

Figure 10.8 shows the analytic view AN_FLIGHT (from the test.a4h.book.
chapter10 package) that is used as the basis for our example. This view
uses the two attribute views AT_AIRLINE and AT_CONNECTION. Based on
this foundation, we will create InfoProviders and BW queries, which will
then be used for reports and data analysis.

Simple integration

Example for
this section

440

10 Integrating Analytical Functionality

Figure 10.8 Analytic View for the Example

10.3.1 InfoProviders when Using SAP HANA

This section explains how you can access data views in SAP HANA using
transient and virtual InfoProviders. In addition to that, we will introduce
further transient InfoProviders.

Transient InfoProviders Based on Views

Transient InfoProviders are InfoProviders that are generated based on a
data source at runtime and without modeling in the Data Warehousing
Workbench. This type of InfoProvider does not contain any data. When
accessing transient InfoProviders, the system reads the data from the
underlying data source.

When using SAP HANA as a primary database, you can access SAP HANA
views via transient InfoProviders. To do so, you must first publish the
views. Suitable candidates are analytic views and calculation views (see
Chapter 4).

Use Transaction RSDD_HM_PUBLISH to publish SAP HANA views. This
transaction creates an analytical index for an SAP HANA view and sub-
sequently a transient InfoProvider @3<Name of the analytical index>
based on this index. In case of an analytic view, the characteristics and
key figures of the transient InfoProvider are derived from the fact table
(data foundation) and the dimension tables (e.g., the linked attribute views).

Figure 10.9 shows the analytical index and the transient InfoProvider for
the analytic view AN_FLIGHT.

Publishing

441

Selected Technologies and Tools 10.3

Figure 10.9 Creating an Analytical Index

Optionally, you can assign InfoObjects defined in the Data Warehousing
Workbench to the characteristics and key figures of the transient Info-
Provider. You can thus add further metadata to the InfoProvider that can,
for example, be used for authorization checks. It is currently not possible
to use the navigation attributes of the referenced InfoObjects.

The biggest advantage of a transient InfoProvider is that it is regenerated
at runtime by the system if necessary. This means that the InfoProvider
and the BW queries that are based on this provider are usually changed
automatically if you modify the underlying analytic view or calculation
view.

A disadvantage is that transient InfoProviders cannot be transported.
They must therefore be created manually in every system (development,
quality assurance, production).

Virtual InfoProviders Based on Views

Instead of working with a transient InfoProvider, you can also define a
virtual InfoProvider. In contrast to transient InfoProviders, virtual Info-
Providers are modeled in the Data Warehousing Workbench (Transac-
tion RSA1). Like transient InfoProviders, virtual InfoProviders do not
contain any data. When accessing virtual InfoProviders, the system reads

Assigning
InfoObjects

Advantages and
disadvantages

442

10 Integrating Analytical Functionality

the data from the underlying data source. When using SAP HANA as a
primary database, you can use virtual InfoProviders to access analytic
and calculation views.

The example in Figure 10.10 shows how the virtual InfoProvider AN_
FLIGHT is created after selecting Create virtual provider… in the context
menu of an InfoArea in the Data Warehousing Workbench. To assign the
underlying analytic view AN_FLIGHT to the InfoProvider, click Details
below the selection field Based on a HANA Model.

Figure 10.10 Creating a Virtual InfoProvider

Creating a virtual
InfoProvider

443

Selected Technologies and Tools 10.3

Subsequently, you assign the relevant InfoObjects as characteristics and
key figures to the InfoProvider. There are two options for this step:

EE You can have the system propose the required InfoObjects and the
assignment to the attributes of the SAP HANA view. To do so, you
click Assign HANA Model Attributes (shown in the upper right of
Figure 10.11).

EE You first manually define the desired InfoObjects as characteristics and
key figures of the InfoProvider and then manually assign them to the
attributes of the SAP HANA view.

Figure 10.11 shows the InfoProvider AN_FLIGHT after assigning the char-
acteristics and key figures.

Figure 10.11 InfoProvider After Assigning InfoObjects

If you want to access virtual master data when defining a virtual InfoPro-
vider, you can use virtual InfoObjects. Like virtual InfoProviders, virtual
InfoObjects are modeled in the Data Warehousing Workbench, but do
not contain any data. When accessing virtual InfoObjects, the system
reads the data from the underlying data source.

Characteristics
and key figures

Virtual InfoObjects

444

10 Integrating Analytical Functionality

When defining a virtual InfoObject, you can refer to an attribute view in
the primary SAP HANA database. The example in Figure 10.12 shows how
this is done using the InfoObject CARRID and the attribute view AT_AIRLINE.

Figure 10.12 Creating a Virtual InfoObject

Virtual InfoProviders have several advantages over transient InfoProvid-
ers: They support navigation attributes, can be transported, and can be
used in MultiProviders.

A disadvantage is that virtual InfoProviders must be modeled in the Data
Warehousing Workbench. If you modify the underlying analytic view or
calculation view, you might also have to change the virtual InfoProvider.
The effort is thus a little greater than in the case of a transient InfoProvider.

Advantages and
disadvantages

445

Selected Technologies and Tools 10.3

Other Transient InfoProviders

For the sake of completeness, we would like to mention that there are
further transient InfoProviders. These are also available in traditional
databases.

EE Transient InfoProviders based on classic InfoSets

EE Transient InfoProviders based on Operational Data Provisioning

Long before developing SAP NetWeaver BW, SAP already provided the
reporting tool SAP Query. In contrast to other reporting tools (e.g., Report
Painter and Drilldown Reporting for financials and controlling, or the
Logistics Information System for purchasing and sales), SAP Query can
be used universally.

Reports created with SAP Query (so-called queries, which must not be con-
fused with BW queries) are based on classic InfoSets (not to be confused
with the InfoSets in SAP NetWeaver BW). Classic InfoSets provide a view
of certain data. The data sources used for classic InfoSets are often database
tables or joins defined for several database tables. However, classic InfoSets
can also be based on a logical database or on a data-retrieval program.

If you release a classic InfoSet for use via the Analytic Engine in Transac-
tion SQ02 via the menu path Environment • BI Properties, the system
creates a transient InfoProvider @1<Name of the classic InfoSet> based
on the classic InfoSet.

Operational Data Provisioning is part of the infrastructure that is pro-
vided for Search and Operational Analytics as of release 7.31 of the SAP
NetWeaver AS ABAP.

In the context of Enterprise Data Warehousing, DataSources (see Sec-
tion 10.1.2) are used to load data from transactional systems in SAP
NetWeaver BW.

The basic idea of Operational Data Provisioning is to define a search-
and-analysis model by linking and enhancing DataSources by analytical
properties in the transactional system. You can then create an Operational
Data Provider based on this search-and-analysis model. This Operational
Data Provider is made available via a transient InfoProvider for operational
reports and data analyses without having to perform an extraction to a

Classic InfoSets

Operational Data
Provisioning

446

10 Integrating Analytical Functionality

data warehouse. Optionally, the data can be indexed in a secondary SAP
HANA database or in the SAP NetWeaver Business Warehouse Accelerator
(BWA) based on the infrastructure of the ABAP application server.

Using the InfoProviders in BW Queries

All InfoProviders described above can be used when creating a BW query.
A BW query describes a data query to an InfoProvider. BW queries are
defined using the BEx Query Designer.

The example in Figure 10.13 shows the BW query AN_FLIGHT_QUERY1
(Paymentsum per connection) that is based on the transient InfoPro-
vider AN_FLIGHT. The BW query describes a report that indicates the
sales per flight connection. You can run a first test for your query in
Transaction RSRT.

Figure 10.13 BW Query Based on the InfoProvider AN_FLIGHT

447

Selected Technologies and Tools 10.3

10.3.2 SAP Business Objects Portfolio

We have now presented some options for defining InfoProviders based on
SAP HANA views, and for creating BW queries based on those InfoProvid-
ers. This section will give you an overview of the tools for reporting and
data analysis provided by the SAP Business Objects portfolio.

Overview of the Tools

The SAP Business Objects portfolio provides numerous tools for the dif-
ferent levels of reporting. Each tool is used for different application cases
and has specific advantages and disadvantages. A detailed description of
all tools would go beyond the scope of this chapter. We will therefore
only categorize the tools and give you a general overview. A detailed
description of the SAP Business Objects portfolio can be found in the
book Reporting and Analysis with SAP Business Objects by Ingo Hilgefort (2nd
edition, SAP PRESS 2012).

In Table 10.1, the tools of the SAP Business Objects portfolio are subdi-
vided into three categories: reporting, data analysis, and data exploration.

Reporting Data Analysis Data Exploration

SAP Crystal Reports SAP Business Objects
Analysis, edition for
Microsoft Office

SAP Business Objects
Explorer

SAP Business Objects
Web Intelligence

SAP Business Objects
Analysis, edition for
OLAP

SAP Lumira

SAP Business Objects
Dashboards

SAP Design Studio

Table 10.1 Overview of the SAP Business Objects Portfolio

Reporting

The reporting tools will help you gather and format data. The most com-
monly known tool used for this purpose is probably SAP Crystal Reports.
Using SAP Crystal Reports, you can create formatted reports and (if
necessary) format and print these reports with precise pixel values. This
tool is the de facto standard for formatted reporting.

Categorization

SAP Crystal
Reports

448

10 Integrating Analytical Functionality

Figure 10.14 shows the preview of a report created with SAP Crystal
Reports for Enterprise that breaks down the sales of the airlines by
connection.

Figure 10.14 Report in SAP Crystal Reports

SAP Business Objects Web Intelligence can also be used to generate formatted
reports. However, this tool does not provide the same scope of formatting
and printing options as SAP Crystal Reports. Web Intelligence, however,
is better suited if end-users from the individual departments want to cre-
ate their own reports (Self-Service Business Intelligence).

Dashboards summarize important key figures for decision-makers. SAP
Business Objects Dashboards provides a series of components that can
be used to create appealing dashboards. Using these dashboards, you
can visualize what-if scenarios as well as use them offline, if necessary.

Web Intelligence

Dashboards

449

Selected Technologies and Tools 10.3

Alternatively, you can create dashboards using SAP Business Objects Design
Studio.

Data Analysis

And this brings us to the tools for data analysis. With Analysis, edition for
Microsoft Office, you can analyze multi-dimensional datasets interactively
and based on Microsoft Excel. This makes this tool particularly useful
for employees in individual departments who are often well-practiced
with Microsoft Excel. The basic idea and design of Analysis, edition for
Microsoft Office is similar to the BEx Analyzer (please read the background
information on the SAP Business Explorer in Section 10.2.2). However,
Analysis, edition for Microsoft Office provides more functions and a
better user experience. In addition to Microsoft Excel, data can also be
embedded in Microsoft PowerPoint.

Figure 10.15 shows the formatted view of a BW query using Analysis,
edition for Microsoft Office based on a query that in turn is based on the
virtual InfoProvider AN_FLIGHT.

Figure 10.15 Analysis, Edition for Microsoft Office

Analysis, edition
for MS Office

450

10 Integrating Analytical Functionality

The web-based variant for analyses of multi-dimensional datasets is Analy-
sis, edition for OLAP. Alternatively, you can also analyze multi-dimensional
datasets in SAP Design Studio.

SAP Business Objects Design Studio is a tool used to create analytical
applications and dashboards. Using Design Studio, you can create pixel-
perfect analytical applications and dashboards. This tool provides a vari-
ety of charts and comprehensive theming. In addition, it also supports
mobile scenarios. In the medium-term, Design Studio will replace the
SAP Business Objects Dashboards and form the technological basis for
Analysis, edition for OLAP.

Figure 10.16 shows the design of a simple analytical application in Design
Studio that is based on a BW query, which in turn is based on the tran-
sient InfoProvider AN_FLIGHT.

Figure 10.16 SAP Business Objects Design Studio

Data Exploration

A special case of data analysis is data exploration (i.e., the interactive
analysis of a dataset). For data exploration, end users need tools that
can be used intuitively and provide high-quality visualizations. The

Analysis, edition
for OLAP

SAP Business-
Objects Design

Studio

SAP Business-
Objects Explorer
and SAP Lumira

451

Selected Technologies and Tools 10.3

SAP Business Objects portfolio includes two tools: SAP Business Objects
Explorer and SAP Lumira (the latter was formally known as SAP Visual
Intelligence).

10.3.3 Easy Query Interface

In Section 10.3.1, we already described the special InfoProviders that are
available for operational reports and data analyses based on SAP HANA.
You may be asking yourself how InfoProviders and the BW queries that are
based on those providers can be used outside of the SAP Business Objects
portfolio, and how they can be integrated into existing user interfaces.

The Easy Query interface provides one option to integrate the result
of BW queries into existing user interfaces (e.g., Web Dynpro ABAP or
SAPUI5). Using the Easy Query interface, you can address a BW query
via a (remote) function module, a web service (i.e., via the Simple Object
Access Protocol, SOAP), or via an OData service.

For a BW query to be called via the Easy Query interface, certain require-
ments must be met (details can be found in the SAP NetWeaver BW docu-
mentation). Moreover, access must be granted explicitly in the BEx Query
Designer. The corresponding checkbox By Easy Query can be found on
the Extended tab of the BW query properties (shown in Figure 10.13).

Once you marked a BW query for access via the Easy Query interface,
the system automatically generates an RFC-enabled function module.
This generation process can be controlled using Transaction EQMANAGER.

The example in Figure 10.17 shows that the RFC-enabled function module
/BIC/NF_2 was created for the BW query AN_FLIGHT_QUERY1 that is based
on the InfoProvider AN_FLIGHT.

Figure 10.17 Easy Query Management

BW Query in
User Interfaces

Requirements

EQMANAGER

RFC

452

10 Integrating Analytical Functionality

You can use Transaction EQPREVIEW to test the generated function
module. Figure 10.18 shows the formatted result for the function module
/BIC/NF_2.

Figure 10.18 Easy Query Preview

In addition to the function module, the system automatically generates
a web-service definition: /BIC/NW_AN_FLIGHT_QUERY1 in the example
shown in Figure 10.17. To call the BW query via an OData service, an
additional step is necessary: The function module must be exposed via
SAP NetWeaver Gateway. To do this, you use the SAP NetWeaver Gateway
Service Builder (Transaction SEGW).

Transaction
EQPREVIEW

OData service

453

User Interface Building Blocks 10.4

10.4 User Interface Building Blocks

Finally, we would like to briefly describe user interface building blocks
that are available to consume the result of BW queries in Floorplan Man-
ager for Web Dynpro ABAP.

Floorplan Manager is a framework for creating applications using Web
Dynpro ABAP. Using user interface building blocks, you can create model-
driven user interfaces and make sure that the user interfaces created with
this approach have an identical look and feel.

SAP provides special user-interface building blocks for the SAP Business
Suite that can be used to visualize BW queries. These building blocks are
part of the SAP_BS_FND software component. In this section, we would
like to briefly describe the analytics list component and the chart component.

Using the analytics list component WDC_BS_ANLY_LIST_ALV, you can dis-
play the data from a BW query as a table. For this purpose, either the
ABAP List Viewer or SAP Crystal Reports is used. An example is shown
in Figure 10.19.

Figure 10.19 Analytics List Component

Floorplan Manager

Analytics list
component

454

10 Integrating Analytical Functionality

Using the chart component BS_ANLY_CHART_UIBB, you can display the data
from a BW query in graphic form. This graphic is created via Business
Graphics. For more information on the user interface building blocks for
visualization of BW queries, please refer to the documentation for SAP
ERP 6.0, Enhancement Package 6.

Many of the technologies and tools mentioned in this chapter could only
be described very briefly. We still hope that we could help you with
some ideas for adding analytical functions to transactional, ABAP-based
applications.

Chart component

455

Decoupling decision rules from the actual program logic is an
important trend in modern business applications. By providing
options for modeling decision tables, SAP HANA makes it easy to
flexibly control parts of an application via rules.

11 Decision Tables in SAP HANA

Because parameters of business processes are often changed, business
applications must be modified from time to time throughout their life-
cycle. The complexity—and thus, the cost—of such modifications is often
higher than the original cost of introducing the software into an envi-
ronment. This is especially true if the application was not designed to
support flexible adaptation. In addition to the cost, the speed of imple-
mentations and adjustments are also a decisive factor. If a business unit
must first submit a development request to the internal IT team, which
is then implemented and validated in practice, the turnaround times are
often too long for today’s business environment. That is why business rule
management systems are gaining more and more importance, as they make
it possible to control and easily adjust certain parts of an application via
rules. Decision tables are a typical element of such systems. These tables
are used to define simple “if-then” rules. As of SPS5, SAP HANA supports
the modeling of decision tables, which is introduced in this chapter. In
addition, you will learn how to integrate these decision tables in an ABAP
development based on SAP HANA. SAP plans to continuously expand
this functionality and to offer further rule-management options in the
future. Even though decision tables are an important element in this pro-
cess, they only represent one option for expressing a set of rules. Other
options include decision trees or formula-based decisions. Providing an
extensive introduction to business rules is not possible within the scope
of this book. If you are interested in further information on this subject,
we recommend the book BRFplus—Business Rule Management for ABAP
Applications by Thomas Albrecht and Carsten Ziegler (SAP PRESS 2011).

456

11 Decision Tables in SAP HANA

BRFplus and SAP NetWeaver Decision Service Management

With BRFplus, the SAP NetWeaver AS ABAP provides a powerful tool for
defining and executing business rules. Using the SAP NetWeaver Decision Service
Management tool, you can distribute and use these rules in a heterogeneous
landscape. A large number of operations can then be executed by specialist
departments without help from the IT department.

SAP plans to incrementally facilitate the use of SAP HANA capabilities in BRF-
plus and to particularly offer an integration of the modeling options described
in this chapter with BRFplus.

11.1 Basic Principles of Decision Tables

The concept of decision tables will be explained through an example. If
you, for example, need to verify whether an air passenger’s profile data
is complete, you can specify the conditions for this check via ABAP code.
The example in Listing 11.1 shows how to check if a private customer has
both an email address and a phone number, while business customers
need only either an email address or a phone number.

 METHOD is_profile_complete.
 IF (is_customer-custtype = 'B').

 " Business customers
 IF (is_customer-email IS NOT INITIAL).
 rv_complete = abap_true. " Complete
 ELSEIF (is_customer-telephone IS NOT INITIAL).
 rv_complete = abap_true. " Complete
 ELSE.
 rv_complete = abap_false. " Incomplete
 ENDIF.

 ELSE.

 " Private customer
 IF (is_customer-email IS NOT INITIAL).
 IF (is_customer-telephone IS NOT INITIAL).
 rv_complete = abap_true. " Complete
 ELSE.

457

Basic Principles of Decision Tables 11.1

 rv_complete = abap_false. " Incomplete
 ENDIF.
 ELSE.
 rv_complete = abap_false. " Incomplete
 ENDIF.

 ENDIF.
 ENDMETHOD

Listing 11.1 Decision Rule as ABAP Code

If a company changes its criteria for verifying an air passenger’s profile’s
completeness, the code would need to be modified. As a first step to
avoid such complicated changes, you can decouple the parameters via a
configuration (e.g., via Customizing settings). Even if this would already
provide some advantages, the implementation process for changes would
still be complex and the structure of the rules would still be inflexible in
this Customizing approach.

Decision tables can be used to clearly describe the decisions (actions) to
be taken based on several parameters (conditions). Table 11.1 shows a
decision table using the same criteria as Listing 11.1. The last column
Customer profile represents the action; the other columns define the
conditions. When changing the rules or parameters, only the structures
and values in the decision table must be modified.

Customer Type E-mail Address Phone Number Customer Profile

Business
customer

Present Any Complete

Missing Present Complete

Missing Incomplete

Private
customer

Present Present Complete

Missing Incomplete

Missing Any Incomplete

Table 11.1 Simple Decision Table to Check the Completeness of Customer Profiles

Decision tables are basically a structured case distinction for mapping
input parameters (conditions) and decision values (actions). Conditions

Decision tables

Conditions
and actions

458

11 Decision Tables in SAP HANA

can either be columns of a database table or the result of calculations.
The actions that constitute the decision table’s output are determined by
applying certain regulations (rules). This set of rules is represented by a
table, as shown in Table 11.1. One of the main goals of decision tables
is to clearly and consistently define the dependencies of conditions and
actions. Each rule management system provides different options for
defining rules. The current options available in SAP HANA are described
in detail in Section 11.2.

In SAP HANA, decision tables are development objects that can be
created via the Modeler perspective in SAP HANA Studio, similar to
views and procedures. Tables or views can be used as a data basis. The
conditions and actions are physical or calculated fields of these objects.
When activating a decision table, runtime objects (e.g., views or pro-
cedures) are generated.

There are basically two alternative scenarios:

1. Column values of a database table are to be changed using a decision
table.

2. The value of a view’s calculated column is to be determined using a
decision table.

In the following section, we will focus mostly on the second alternative.
This is because we recommend in general to modify ABAP tables only
from ABAP, and also because it is often not necessary to persist such
results on SAP HANA (just like it is not necessary to always material-
ize aggregates on SAP HANA). Accessing decision tables using ABAP is
described in more detail in Section 11.5.

Decision tables in SAP HANA are somewhat limited, because rules can
be based only on table content (or views). It is currently not possible
to make decisions based on rules prior to saving a data record. Further-
more, no direct integration in process management systems is possible.
For special scenarios, SAP offers the SAP NetWeaver Operational Process
Intelligence tool.

Decision table as a
view or procedure

Limits

459

Creating Decision Tables in SAP HANA Studio 11.2

SAP NetWeaver Operational Process Intelligence

SAP NetWeaver Operational Process Intelligence powered by SAP HANA is
a tool for intelligent process analysis. This analysis covers process visibility
(current state of the processes) and decision support for continuous improve-
ment. The tool is integrated with different data sources like SAP Process
Observer, SAP NetWeaver BPM, and SAP Business Workflow. Decision tables
are an important tool used internally by SAP NetWeaver Operational Process
Intelligence.

In this chapter, we will first create a simple decision table DT_PASSENGER_
PROFILE that can be used to classify the air passengers from table SCUSTOM
in Table 11.1. In the second example, the decision table DT_DISCOUNT, we
will use a view as the data basis to implement a more complex scenario.
We will determine a proposed value for a new discount for air passen-
gers based on the customer type (private customer, business customer),
the frequent flyer miles earned in the last year, and the present discount
value. For the required calculations (especially for calculating the miles),
we will create an analytic view AN_MILES used for unit conversion of flight
routes into miles, as seen in Chapter 8.

11.2 Creating Decision Tables in SAP HANA Studio

Like other development objects, decision tables are created via the Mod-
eler perspective in SAP HANA Studio. To do so, you select New • Deci-
sion Table in the context menu of a package as shown in Figure 11.1.

Figure 11.1 Creating a Decision Table (Part 1)

Reference
examples for
this chapter

460

11 Decision Tables in SAP HANA

In the next step, you specify the name for the decision table and a descrip-
tion (see Figure 11.2).

Figure 11.2 Creating a Decision Table (Part 2)

As with view modeling (see Chapter 4), you now have to select the data
basis for the decision table. You can choose between tables or previously
defined views (e.g., an attribute view).

Figure 11.3 Layout of the Editor for Decision Tables

Selecting a
data basis

461

Creating Decision Tables in SAP HANA Studio 11.2

The editor for decision tables (Figure 11.3) consists of two sections that
are opened via the tabs Data Foundation and Decision Table. The
Data Foundation tab is used to define the conditions and actions used
in the decision table, the Decision Table pane is used to maintain the
actual rule values.

To get started, we want to classify air passengers directly based on col-
umns of the SCUSTOM table, and add them to the Data Foundation tab.
Since we want to access the attributes CUSTTYPE, EMAIL, and TELEPHONE
in addition to the name of the passenger, we add these as attributes of
the decision table. To use the named attributes as conditions, they must
be flagged as such (context menu item Add As Condition).

In our example, we want to determine a classification with the help of
a calculated attribute. To do so, we first define a new parameter via the
context menu of Parameter, for which we specify a data type CHAR(1)
and static fixed values—T for “True” (Complete) and F for “False” (Incom-
plete)—as shown in Figure 11.4.

Figure 11.4 Defining a Parameter for the Output Value

Flagging attributes
as conditions

Defining actions

462

11 Decision Tables in SAP HANA

Because this parameter should be used as the result, we flag it as Action
(context menu item Add As Action). The final structure of the decision
table is shown in Figure 11.5.

Figure 11.5 Structure of the Decision Table

Using the Decision Table tab, you can now specify the classification rules
for the decision table, as seen in Table 11.1. To define the conditions (e.g.,
CUSTTYPE), you select a cell and then choose Add Condition Values from
the context menu. This opens a dialog where you can either enter a condi-
tion or select a fixed value from a list. To specify actions (in our example,
“COMPLETE”), you can select either Set initial value for fixed values or
Set dynamic value for calculated values from the context menu. Figure
11.6 shows a resulting set of rules where the completeness of a profile
is determined based on the customer type and the presence of an email
address or a phone number. With this rule set, the expression Like _*
is used to verify if a non-empty string is present. The static action values
“True” and “False” were set using Set initial value.

Specifying rules

463

Creating Decision Tables in SAP HANA Studio 11.2

Figure 11.6 Rules of the Decision Table

After saving and activating the decision table, you can display the result
using the Data Preview. Decision tables are activated the same way as
views. Figure 11.7 shows that, according to the defined rules, 6% of the
system’s roughly 4,800 customer profiles are incomplete.

Figure 11.7 Output of the Decision Table for Profile Analysis

You can also export or import the values for decision tables to or from
Microsoft Excel. This especially facilitates collaboration between IT experts

Exporting and
importing values

464

11 Decision Tables in SAP HANA

and business departments. To export or import values, use the context
menu in the editor pane Decision Table.

SAP HANA currently supports the expressions listed in Table 11.2 to
define decision rules.

Expression Supported SQL
Data Types

Example

Not equal (!=) Any != Lufthansa

Greater Than (>),

Greater Than Or Equals (>=),
Less Than (<),
Less Than Or Equals (<=)

Strings and
numeric types

Greater Than
20

In, Not In Strings and
numeric types

In AA;LH

Like, Not Like Strings Like
Lufthansa*

Between Numeric types Between 100
and 200

After, Before Date (DATE) Before
2013-01-01

Table 11.2 Available Expressions for Decision Rules

This means that once again, correct handling of data types can be some-
what tricky and ignoring these aspects may cause problems. In particular,
you must first convert data types in some cases. For example, to compare
dates (After, Before) with an ABAP date (DATS, i.e., NVARCHAR(8) in the
database), you first have to convert this date into a field of type DATE.
To do so, you create a calculated field in a suitable view type (e.g., an
attribute view) and use a conversion function like to_date().

Another example is numeric data stored in a character-type field. If you
used the data type NUMC for a numeric value in your ABAP data model, for
instance, this is a NVARCHAR type in the database (see Section 3.1.3). An
example for this is the DISCOUNT column in the SCUSTOM table. As a result,
a rule like >20 is interpreted as a comparison of strings by the decision

Expressions for
decision rules

Data types

465

Decision Tables Based on SAP HANA Views 11.3

table, i.e., as >'20' instead of a numeric comparison. Once again, the
value must first be converted.

Consider Data Types when Designing Decision Tables

To avoid unexpected consequences when evaluating rules, the structure
and semantics of a decision table must be carefully defined. For a success-
ful design, you must have the required development skills and understand
the technological aspects and semantics of the data structures and types. In
combination with a thorough documentation, this makes it possible for the
specialist department to correctly define the set of rules.

11.3 Decision Tables Based on SAP HANA Views

Rules are often based on different parameters from several database tables,
with certain calculations and expressions potentially also playing a role.
Let’s consider the following example: To determine the discount for a
flight customer, the miles earned within the last year should be considered
in addition to the customer type. Based on the current discount, either
a higher or a lower discount should then be proposed.

Customer Type Miles Earned within
the Last Year

Current Discount Proposed Discount
Change for the Next Year

Business customer <10,000 MI <5% reduced discount rate of
0%

between 5% and
15%

–1%

>15% –2%

>=10,000 MI <15% +1%

>=15% unchanged

Private customer <20,000 MI 0% unchanged

>0% –1%

>=20,000 MI <20% +1%

>=20% unchanged

Table 11.3 Decision Table for Passengers Based on Calculated Key Figures

466

11 Decision Tables in SAP HANA

To determine the frequent flyer miles, we will once again use the bookings
and flight plan from Chapter 8 and convert the flight route into miles. To
do this, we will use the techniques described in Section 4.2 to create a
new analytic view: AN_MILES. This view is called from a calculation view,
CA_MILES_LAST_YEAR, where we determine the air miles per passenger
within the last year using SQLScript. Listing 11.2 shows the SQLScript
coding and uses the known columns from the tables SBOOK and SPFLI,
in addition to the distance_mi column (containing the distance in miles)
and the discount_dec column (containing the current customer discount
as decimal value—type DECIMAL).

var_out =
 select mandt, name, country, city,
 custtype, sum(distance_mi) as miles,
 discount_dec as discount
 from "test.a4h.book.chapter11::AN_MILES"
 where year(fldate) = year(current_utcdate) - 1
 group by mandt, name, country, city,
 custtype, discount_dec;

Listing 11.2 Determining Miles Earned Within a Year

We will now create a new decision table DT_DISCOUNT and add the calcula-
tion view CA_MILES_LAST_YEAR to the Data Foundation. Subsequently,
we will define the conditions and actions as described in the previous
section. When doing so, we will define a parameter DISCOUNT_NEW of type
DECIMAL as action.

To determine the proposed value for the new discount, we need to access
the existing discount value. To do so, you specify a dynamic value for the
calculated column (using the context menu item Set dynamic value).
Figure 11.8 shows the resulting decision table with dynamic values for
the DISCOUNT_NEW column (e.g., "DISCOUNT" -1).

Calculating
frequent flyer miles

Dynamic values

467

Decision Tables Based on SAP HANA Views 11.3

Figure 11.8 Decision Table Based on a Calculation View with a Dynamic Action Value

After successfully activating the decision table, the proposed values for a
new discount are displayed as the result (see Figure 11.9).

Figure 11.9 Result of the Decision Table Based on Calculated Key Figures and
Dynamic Action Values

468

11 Decision Tables in SAP HANA

In the following sections, we will show you how this result is embedded
into an ABAP application.

11.4 Runtime Artifacts and SQL Access for Decision
Tables

When activating a decision table, several objects are created in the database
catalog (schema _SYS_BIC). To start, a database procedure to implement
the rules in SQLScript and the corresponding table types are created. If
the actions are virtual parameters so that the database procedure does
not modify any data, a result view is also created (i.e., a column view
that contains the result of the decision table and that can be addressed
via standard SQL in SAP HANA like other views).

The name of this result view is composed of the package name, the
name of the decision table, and the suffix RV. Example: "test.a4h.book.
chapter13/DT_PASSENGER_CLASS/RV"

If the data basis of the decision table itself is a column view, the same
limitations apply for accessing the decision table via SQL as for the view
(see Chapter 4).

11.5 Access to Decision Tables from ABAP

Because the result views generated from a decision table and other views
can be addressed via SQL, they can also be accessed from ABAP using
Native SQL. Unfortunately, it is not currently possible to directly define
an external view in the ABAP Data Dictionary for result views. Instead,
you must first wrap the result view via a calculation view. This can also
be necessary for other reasons, such as to remove an unsupported data
type from the projection list. For simple scenarios, you can graphically
model the calculation view so that you simply add the generated view (via
drag-and-drop from the database catalog) and select the desired column
(see Section 4.3.2). The example in Figure 11.10 shows how our sample
result view is wrapped by another calculation view CA_DISCOUNT_PROPOSAL.

Result view

469

Access to Decision Tables from ABAP 11.5

Figure 11.10 Wrapping a Result View as a Calculation View

As described in Section 4.5.2, you can now define an external view for
this additional calculation view in the ABAP Data Dictionary, which can
be accessed via Open SQL. Alternatively, you can also embed the decision
table’s view in an SQLScript procedure (or in an SQLScript calculation
view), which can then be accessed from ABAP.

For our example, we will define the external view ZEV_A4H_DISCOUNT and
display the results in an ALV list (SAP List Viewer). When doing so, we
will use a new variant of the ALV grid with integrated data access that
moves all operations to the database layer (see information box, “ALV
with Integrated Data Access”). Listing 11.3 shows the coding for the PBO
module (Process Before Output) when initializing the dynpro.

MODULE pbo OUTPUT.

 " Create ALV with external view as data basis
 DATA(lo_alv_display) =
 cl_salv_gui_table_ida=>create(
 iv_table_name = 'ZEV_A4H_DISCOUNT'
 io_gui_container =

Decision table
in ALV list

470

11 Decision Tables in SAP HANA

 NEW cl_gui_custom_container(lv_container)).

 " Initial sorting
 lo_alv_display->default_layout()->set_sort_order(
 VALUE #((field_name = 'DISCOUNT_NEW'
 is_grouped = abap_false
 descending = abap_true))
).

 ENDIF.
ENDMODULE.

Listing 11.3 Using the ALV with Integrated Data Access

As a result, the proposed discounts are displayed in an ALV list (see
Figure 11.11). To further enhance this scenario, we could add an option
to accept or adjust the proposed values. This option will be dealt with
in Chapter 13.

Figure 11.11 Output of the Proposed Discounts in an ALV List

471

Access to Decision Tables from ABAP 11.5

Background Information: ALV with Integrated Data Access

The SAP List Viewer (ALV) is a powerful component for displaying data in the
ABAP application server; just about every SAP user and ABAP developer has
already worked with ALV lists. In addition to the display functionality, the
SAP List Viewer offers many other functions (e.g., for sorting, aggregation,
personalization, and data export). When using this viewer, you can choose
between several display variants for different scenarios and user interfaces
(SAP GUI, Floorplan Manager for Web Dynpro ABAP). However, the same
programming model is used in all cases: The data is first read into an internal
table and then passed on to the SAP List Viewer.

As of ABAP 7.4, a new option is available, allowing you to only describe the
data source for the SAP List Viewer and let the viewer make the selections
independently on the database. We have used this option in Listing 11.3 by
displaying the discount information of all passengers, whereas end users can
only see a portion of the list. When scrolling or sorting the result list, the
system determines the required portion of the result data.

To conclude this chapter, we would like to briefly mention the transport
of decision tables. Like views and procedures, you can transport decision
tables within an ABAP system landscape using the SAP HANA transport
container introduced in Chapter 6. Since the transport container automati-
cally includes all package contents, there are no special aspects to consider.

As mentioned at the beginning of this chapter, decoupling rule mainte-
nance and rule usage within an ABAP application represents an important
aspect of these decision tables. The interface is defined by the structure
of the generated result view. For this reason, structural changes to a deci-
sion table should only be implemented in the development system and
transported consistently.

Transport of
decision tables

473

Function libraries add specific business and mathematical
operations to the functionality of SAP HANA. They are integrated
into special products, but can also be directly used within an
application using SQLScript. This provides new analysis options,
especially in the context of statistical predictions.

12 Function Libraries in SAP HANA

This book has already presented several options for efficiently analyzing
operational business data using SAP HANA. Depending on the usage
scenario, you can use direct native database functions in SAP HANA (see
Chapter 4) or benefit from the advanced SAP NetWeaver BW infrastruc-
ture (see Chapter 10). Regardless of the technology, such analyses allow
decision makers to respond to developments based on available data. It is
a relatively new trend in business intelligence to take this approach one step
further by using statistical models to make predictions on future developments.
Such predictive analysis is used to enable decision-makers to act before an
event occurs, rather than to react after the fact. The mathematical models
are quite complex, and the interpretation and calibration of the results
generally requires a good understanding of the business domain as well
as the statistical algorithms. For this reason, data analysts have taken on
increasingly important roles in recent years.

For many usage scenarios, you currently have to use special third-party
software. Particularly for operational scenarios where time is of the
essence, this approach introduces a number of challenges. Especially
due to the required data extraction and conversion, a significant time
delay and complexity is introduced to the process chain. SAP HANA uses
special function libraries (Application Function Libraries; AFL) to provide
an integrated option for some scenarios, which are based directly on the
business data from the ABAP system. Before we discuss these libraries in
more detail, we’ll present three specific application scenarios.

474

12 Function Libraries in SAP HANA

A classic usage scenario for statistical models is the creation of forecasts,
such as predictions on the development of revenue, sales, or costs. Certain
scenarios can also be created using forecasts for customer movements
or business environments, which can play an important role within the
strategic planning of a company.

The assessment and response to risks in live operations plays a major role
nowadays in many industries. You can imagine, for example, assessing
the likelihood of potential defaults on payments, but also analyzing the
risks in a complex production process. Here, frequent use is made of
key performance indicators (KPIs) and scorecards, which define limits and
assess impacts. The use of statistical predictions enables early detection
of exceptional situations and signals in running business processes. This
results in new options for closer integration of operational planning,
risk analysis, and control options, which opens up great potential for
increased efficiency.

Another trend that is currently increasing in importance is related to the
derivation of business rules from existing business processes (business rule
mining). This approach can particularly support the modernization of a
legacy application by identifying execution patterns and decision points.
This allows the use of a service-oriented approach within the application
that is controllable via business rules. An integrated solution has the advan-
tage of being able to base itself directly on the existing application code.

The required functions are implemented in SAP HANA in function libraries.
These libraries are written in C++ and provide highly optimized access
to functions for advanced calculations and data-analysis scenarios. With
SAP HANA SPS5, the AFL package provides two such libraries, which
have been released for customer developments. You can find details of
the release in SAP Note 1705650.

We will begin this chapter with a brief overview of these two libraries:

EE The Business Function Library (BFL) contains a variety of complex busi-
ness functions (for example, for determining annual depreciation) as
well as reusable basic functions (for example, a weighted average).

Forecast creation

Integration of
risk assessment

and planning

Deriving
business rules

Application
Function Libraries

BFL and PAL

475

Function Libraries in SAP HANA 12

EE The Predictive Analysis Library (PAL) contains statistical functions with
which you can recognize patterns based on historical datasets (for
example, customer groups with similar purchasing behavior) and make
predictions (for example, about the development of revenue).

We cannot present the full range of functions within the scope of this
book. The number of functions is too great and, as mentioned, some of
the algorithms are quite complex or require mathematical knowledge of
the statistical models. We will thus limit ourselves to individual examples
to give you an overview of these functions’ use.

Background Information: SAP Predictive Analysis and SAP Lumira

SAP provides powerful tools via SAP Predictive Analysis and SAP Lumira (for-
merly SAP Visual Intelligence), particularly for the creation and visualization
of forecasts that can be based on the functions of the Predictive Analysis
Library in SAP HANA. These tools allow even non-developers easy access to
these new techniques. Since this involves separate products that are subject
to licensing, we will not discuss these solutions in further detail in this book.

As an application scenario, we will again consider simple examples from
the flight-data model in this chapter. We will determine a special key
figure for seat utilization in a database procedure LINEAR_AVERAGE_UTI-
LIZATION using a BFL function to illustrate the development of utiliza-
tion over time by placing more emphasis on recent results than those
of the past. Furthermore, we will perform a segmentation of passengers
in the CUSTOMER_SEGMENTATION procedure using a PAL function, which
could provide helpful information, for example, in an airline’s customer
rewards program.

We will first give you a brief overview of the functions and installation
of AFL in Section 12.1. Here, we will discuss one function in more detail
from the BFL and PAL, respectively, and explain the corresponding input
and output parameters. Based on this, we will show you in Section 12.2
how to use these functions in your own implementation in SAP HANA.
At the end of the chapter, we will explain how to use them in an ABAP
application in Section 12.3.

Objective of
the chapter

Reference
examples

Structure of
the chapter

476

12 Function Libraries in SAP HANA

12.1 Basics of the Application Function Library

In this section, we will give you a technical overview of the functions of
the AFL and introduce an example of one function from each of the two
libraries: BFL and AFL.

12.1.1 Technical Basics

The AFL library is dynamically linked into the index server of the SAP
HANA database. Although it is part of the delivery and license of the SAP
HANA appliance, the hardware partner does not preinstall it by default.
However, it can be set up on the customer side using the SAP HANA on-
site configuration tool. You will find the necessary documentation in the
HANA installation guide at http://help.sap.com/hana_appliance. After the
installation, you as an administrator have to perform some configuration
steps, which we will discuss briefly in the following text.

You must configure a separate script server, because the AFL functions
for large datasets may take up a lot of resources (see SAP Note 1650957
for more information). The script server is a special index server process
that does not perform any tasks during normal database operation. This
ensures that the execution of AFL functions does not interfere with the
operation of a standard application on SAP HANA.

The installation of the AFL results in the creation of a technical schema
_SYS_AFL, which contains the AFL procedures. In addition, the admin-
istrator must assign a user (the database user of the SAP NetWeaver AS
ABAP, in the case of access via ABAP) the following two roles for the
execution of AFL functions in SAP HANA:

EE AFL__SYS_AFL_AFLBFL_EXECUTE (for the BFL)

EE AFL__SYS_AFL_AFLPAL_EXECUTE (for the PAL)

Some functions of the BFL and virtually all functions of PAL are imple-
mented as generic functions; that is, the structure of the input and output
parameters (number of fields, column names, data types) are not defined
a priori. This allows flexible usage, but has the disadvantage that you,
as a developer, cannot call these functions directly after the installation.
Instead, you first have to generate a special form of the function—known as

Installation of AFL

Activating
script server

authorizations

Generating AFL
functions

477

Basics of the Application Function Library 12.1

a wrapper function—using a special database procedure (AFL_WRAPPER_GEN-
ERATOR). We will show you this based on a PAL function in Section 12.1.3.

12.1.2 Business Function Library

The Business Function Library (BFL) provides a range of specific business
functions mainly from the internal cash flow statement. Table 12.1 contains
some examples of calculations that are implemented in the BFL.

Function Corresponding Database pProcedure

Annual Depreciation AFLBFL_DBDEPRECIATION_PROC

AFLBFL_SLDEPRECIATION_PROC

AFLBFL_SOYDEPRECIATION_PROC

Internal Rate of Return AFLBFL_INTERNALRATE_PROC

Rolling Forecast AFLBFL_FORECAST_PROC

Table 12.1 Some Functions of the Business Function Library

The underlying algorithms and data models are quite extensive, and it
is beyond the scope of this book to introduce them in detail. In addition
to calculations based on a fixed process, the BFL also exposes specific
mathematical functions that are used within complex algorithms, but
which can also be called independently.

An example of such a function is LINEAR_AVERAGE, which can be used to
determine a weighted average and which we want to look at as an example.
The individual variables are weighted differently here compared to the
standard arithmetic average. Thus you can, for example, let values from
the recent past play a greater role in the result than older values, which
can be useful for some forecasts.

The mathematical definition of the weighted average of the numeric values
x1 to xn with the corresponding weights w1 to wn is:

(w1 × x1 + … + wn × xn) / (w1 + … + wn)

Let’s take as an example the seat utilization of flights of a fixed flight
connection with sample data from Table 12.2.

Examples of
functions

Example: weighted
average

478

12 Function Libraries in SAP HANA

Period Month Average Use (Percent)

1 January 87.5%

2 February 95%

3 March 91%

4 April 60%

Table 12.2 Sample Data for Weighted Average

We use the period as a weighting factor and thus get the following
weighted average, while the normal average is approximately 83%.

(1 × 0.875 + 2 × 0.95 + 3 × 0.91 +4 × 0.6) / (1 + 2 + 3 + 4)
= 0.7905 ~ 79%

The lower value is due to the low utilization during the last month, which
has more of an impact on the weighted average. The interface of the
LINEAR_AVERAGE function has the structure shown in Table 12.3.

Parameter Explanation Column Structure (Name,
Type)

Input:
Database table

Original data VALUE DOUBLE

Output:
Result

In row N, the weighted
average of the values up
to the period N

AVERAGED_
RESULT

DOUBLE

Table 12.3 Interface of the LINEAR_AVERAGE Function from the BFL

We will use this function in Section 12.2 to determine the (weighted)
chronological sequence of the seat utilization and use it as the basis for
a forecast.

12.1.3 Predictive Analysis Library

In comparison to the BFL, the Predictive Analysis Library (PAL) provides
a series of generic, statistical algorithms that can be used on any data
models. Table 12.4 contains some examples of algorithms that can be
implemented in PAL.

Examples of
functions

479

Basics of the Application Function Library 12.1

Function Description Sample Scenario

Anomaly
detection

Determination
of outliers

Detecting unusual system behavior:
long response times despite normal
system load

A priori Detection of
correlations for
deriving rules

Analysis of purchasing behavior:

“Customers who have purchased
products A and B often purchase
product C also.”

K-means Classification of
data into groups

Segmentation of a customer base into
target groups for promotions

Table 12.4 Some Functions of the Predictive Analysis Library

Not all PAL functions are provided for direct use. For example,
some of the more complex PAL functions provide as a return value
a description in the Predictive Model Markup Language (PMML) format,
a standardized XML format for statistical models. Such functions are
aimed at usage in the context of a specialized product such as SAP
Predictive Analysis.

In this section, we would like to use a function of the PAL that you can
use to segment general datasets: the K-means function. Here, a dataset is
divided into a specified number (K) of groups (or clusters). We won’t discuss
the underlying mathematical algorithm in detail at this point. However,
the basic idea is based on assigning an initial selection of centers of data
records to the cluster whose center is closest. This enables you to identify
patterns and classify datasets (for example, customers, products, and so
on). Figure 12.1 displays values and the corresponding cluster. As sample
values, you can imagine that each point represents a flight connection,
and the values on the axes represent the average seat utilization (Y-axis)
and the percentage share of bookings with excess baggage (X-axis) in a
period of time. Via the segmentation, you get a classification of flights
into different categories. Flight connections with a high utilization and
low excess baggage may indicate, for example, very frequent usage by
business travellers (left upper cluster).

Predictive Model
Markup Language

Example: clustering
via K-means

480

12 Function Libraries in SAP HANA

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Bookings with Excess Baggage (%)

Se
at

 U
ti

liz
at

io
n

(%
)

Figure 12.1 Schematic Visualization of Dataset Segmentation via the K-Means
Function

Table 12.5 shows the input and output parameters of the interface of
the K-means function, where this segmentation is based on two numeric
values (V000 and V001).

Parameter Explanation Column Structure

Input:
Database table

The dataset to be
classified, consisting of
ID and numeric values

ID INTEGER

V000 DOUBLE

V001 DOUBLE

Input:
Parameter table

Parameterization
of segmentation
by name/value
pairs, for example,
cluster number
(GROUP_NUMBER)

NAME NVARCHAR
(50)

INTARGS INTEGER

DOUBLEARGS DOUBLE

STRINGARGS NVARCHAR
(100)

Table 12.5 Interface of K-Means Function from PAL

Interface

481

Basics of the Application Function Library 12.1

Parameter Explanation Column Structure

Output:
Cluster
assignment

Assignment of data
records to a cluster

ID INTEGER

CENTER_
ASSIGN

INTEGER

DISTANCE DOUBLE

Output:
Cluster data

List of centers of the
groups (Cluster ID and
coordinates of the
center)

CENTER_ID INTEGER

V000 DOUBLE

V001 DOUBLE

Table 12.5 Interface of K-Means Function from PAL (Cont.)

As described in Section 12.1.1, you as an administrator must first generate
this interface. In this case, you execute the SQL statements from Listing
12.1 via the SQL console in SAP HANA Studio with the user SYSTEM. Here,
table types for the input and output parameters from Table 12.5 are first
created in the schema _SYS_AFL, and then the desired interface is created
using the database procedure AFL_WRAPPER_GENERATOR. After the success-
ful execution of these SQL statements, the schema _SYS_AFL contains a
procedure with the name PAL_KMEANS. For more information on generat-
ing database procedures for the BFL and PAL libraries, see the reference
documentation of these libraries at http://help.sap.com/hana_appliance.

SET SCHEMA _SYS_AFL;

-- Create table types for interface
CREATE TYPE PAL_KMEANS_RESASSIGN_T AS TABLE(
"ID" INT,
"CENTER_ASSIGN" INT,
"DISTANCE" DOUBLE);

CREATE TYPE PAL_KMEANS_DATA_T AS TABLE(
"ID" INT,
"V000" DOUBLE,
"V001" DOUBLE,
primary key("ID"));

CREATE TYPE PAL_KMEANS_CENTERS_T AS TABLE(
"CENTER_ID" INT,
"V000" DOUBLE,

Generating
the K-means
function via the
SQL console

482

12 Function Libraries in SAP HANA

"V001" DOUBLE);

CREATE TYPE PAL_CONTROL_T AS TABLE(
"NAME" VARCHAR (50),
"INTARGS" INTEGER,
"DOUBLEARGS" DOUBLE,
"STRINGARGS" VARCHAR (100));

-- Define interface
DROP TABLE PDATA;
CREATE COLUMN TABLE PDATA(
"ID" INT,
"TYPENAME" VARCHAR(100),
"DIRECTION" VARCHAR(100));

INSERT INTO PDATA VALUES (1, '_SYS_AFL.PAL_KMEANS_DATA_T',
'in');
INSERT INTO PDATA VALUES (2, '_SYS_AFL.PAL_CONTROL_T', 'in');
INSERT INTO PDATA VALUES (3, '_SYS_AFL.PAL_KMEANS_RESASSIGN_T',
'out');
INSERT INTO PDATA VALUES (4, '_SYS_AFL.PAL_KMEANS_CENTERS_T',
'out');

-- Generation of the K-means function
call SYSTEM.AFL_WRAPPER_GENERATOR ('PAL_KMEANS', 'AFLPAL',
'KMEANS', PDATA);

Listing 12.1 Generation of an Interface for the K-Means Function

We will use the K-means function in Section 12.2 to perform a segmenta-
tion of the flights.

Additional Information: R-Integration

In addition to PAL, SAP HANA also contains an adapter for integrating the
open-source software system R (http://www.r-project.org/). You have an addi-
tional range of statistical operations available via this adapter. We will not
discuss R-integration in detail within this book. However, it is used in a similar
manner to how the AFL functions are used via database procedures in SAP
HANA. You must note, however, that the R server is not part of SAP HANA
for licensing reasons, and must be installed separately on a dedicated server.
For more information, see the SAP HANA R Integration Guide at http://help.
sap.com/hana_appliance/.

483

Use of Application Function Library Functions in SQLScript 12.2

12.2 Use of Application Function Library Functions in
SQLScript

In this section, we will discuss the calling of AFL functions via SQLScript
and explain this by means of the two sample functions, weighted average
and K-means, which we presented in the previous section.

As a first example, we would like to determine the weighted average
of seat utilization for all flights of one airline. The result should be a
time-based progression over the years, which can provide a better data
basis for a flight-utilization forecast than the normal calculation of the
average because the current data is valued higher than historical results
of the past. To determine the required values, we use the analytic view
AN_SEAT_UTILIZATION as the data source, which we defined in Section 4.2.

Figure 12.2 shows the interface of the database procedure LINEAR_AVER-
AGE_UTILIZATION. As inputs, we transfer the client and the airline. As
output, we expect a table with the normal as well as the weighted average
of the seat utilization for all years for which data is available in the system.

Figure 12.2 Interface of the LINEAR_AVERAGE_UTILIZATION Procedure

In Listing 12.2, you see the SQLScript implementation for calling the BFL
function AFLBFL_LINEARAVERAGE_PROC. We first select the average seat use
using the analytic view AN_SEAT_UTILIZATION grouped by year that was
created in Section 4.2, and thus call the BFL function. Finally, we use
the CE function CE_VERTICAL_UNION (see Section 5.2.4) to transfer the
columns of the two internal tables to the result structure.

Weighted average
of seat utilization

Interface

Implementation

484

12 Function Libraries in SAP HANA

/********* Begin Procedure Script ************/
BEGIN

 lt_data = select
 100 * to_double(avg(utilization)) as "VALUE", year
 from "test.a4h.book.chapter04::AN_SEAT_UTILIZATION"
 where mandt = :iv_mandt and carrid = :iv_carrid
 group by year_int;

 call _SYS_AFL.AFLBFL_LINEARAVERAGE_PROC(
 :lt_data, :lt_avg);
 et_utilization = CE_VERTICAL_UNION(
 :lt_data, ["YEAR", "VALUE" as "AVERAGE"],
 :lt_avg, ["AVERAGED_RESULT" as "LINEAR_AVERAGE"]);
END;
 /********* End Procedure Script ************/

Listing 12.2 Implementation of the LINEAR_AVERAGE_UTILIZATION Procedure

In the second example, we want to perform a segmentation of flight
customers using the K-means function in a CUSTOMER_SEGMENTATION pro-
cedure, while considering the following input variables:

EE Total of booking prices (EUR) in one year

EE Total of baggage weight (KG) in one year

To determine the required values, we also use the analytic view AN_BOOK-
ING as the data source from Section 4.2. As a result of this application,
we expect a division of flight passengers into groups (with gradations and
combinations), of which passengers are more likely to be business (many
flights, little baggage) or private (fewer flights, more baggage). From this
information and its corresponding time-based development, an airline
could design a bonus system that is tailored to the needs of these groups
(for example, higher baggage allowance for frequent travelers).

Figure 12.3 shows the interface of the CUSTOMER_SEGMENTATION procedure.
As inputs, we transfer the clients (IV_MANDT), the year (IV_YEAR), as well
as the number of clusters (IV_GROUPS). The output should contain the
assignment to the clusters as well as the coordinates of the cluster as
described in Table 12.5.

Segmentation of
flight customers

Interface

485

Use of Application Function Library Functions in SQLScript 12.2

Figure 12.3 Interface of the CUSTOMER_SEGMENTATION Procedure

Listing 12.3 shows the implementation with the call of the PAL function
PAL_KMEANS. In this case, we first fill the parameter table (see Table 12.5),
where we apply a trick that we would like to describe briefly.

Building Internal Tables in SQLScript

If you have to fill a table variable with certain values in an SQLScript implemen-
tation, but cannot map this via a SELECT statement in an existing table or a
view, you have the option of selecting fixed values of the dummy virtual object.

select ‘GROUP_NUMBER’ as name from dummy;

Using this approach, you can build any kind of table content using aliases,
type conversions, and unions.

In the parameter table, we set the value for GROUP_NUMBER (number
of groups) based on the input parameter IV_GROUPS (see Figure 12.3),
select the data of the analytic view AN_BOOKING and then call the database
procedure PAL_KMEANS from the schema _SYS_AFL. In the final step of
Listing 12.3, we read the names of the passengers from the SCUSTOM table
and also include the previously calculated values for baggage weight and
booking prices in the result.

lv_count INT := 0;
 /********* Begin Procedure Script ************/

Implementation

486

12 Function Libraries in SAP HANA

BEGIN

/* Fill the parameters of the table */
lt_control = select 'GROUP_NUMBER' as name, :iv_groups as
intargs, to_double(0) as doubleargs, '' as stringargs from
dummy;

/* Select data of analytic view */
lt_data =
 select
 to_int(customid) as id,
 to_double(sum(luggweight_kg)) as v000,
 to_double(sum(loccuram_eur)) as v001
 from "test.a4h.book.chapter04::AN_BOOKING"
 where mandt = iv_mandt and year_int = :iv_year
 group by customid;

select count(*) into lv_count from :lt_data;

IF lv_count > :iv_groups THEN
 /* Call K-means function from PAL */
 CALL _SYS_AFL.PAL_KMEANS(:lt_data, :lt_control,
 :lt_classification, :et_centers);

 /* Build result structure */
 et_classification =
 select l.id,
 c.name,
 to_decimal(d.v000) as luggweight_kg,
 to_decimal(d.v001) as loccuram_eur,
 l.center_assign,
 l.distance
 from :lt_classification as l
 inner join scustom as c on l.id = c.id
 inner join :lt_data as d on l.id = d.id
 order by l.center_assign, l.distance;

END IF;

END;
 /********* End Procedure Script ************/

Listing 12.3 Implementation of the CUSTOMER_SEGMENTATION Procedure

487

Integration of Function Libraries in ABAP 12.3

Separation of Technical Settings and Application Parameters

The parameters of many AFL functions contain a mixture of technical settings
and real usage parameters. For example, you can set the desired number of
clusters (application parameters) for the K-means function in the control
table and also configure the number of threads that SAP HANA may use for
the execution (technical setting). We recommend that you clearly separate
these aspects in separate interfaces and work with default values if possible
for technical settings.

12.3 Integration of Function Libraries in ABAP

Now that you have seen how you can call functions of the AFL from
SQLScript procedures, we’ll discuss their use from an ABAP program in
the last section of this chapter. We will invoke these functions using the
database procedure proxies that were introduced in Section 5.3.

To invoke the database procedure CUSTOMER_SEGMENTATION from the
previous section, you create a proxy (see Figure 12.4) using the ABAP
development tools in Eclipse. We thus map the fields of the output table
ET_CLASSIFICATION to existing or specially created ABAP Data Dictionary
database types. This will obtain the corresponding short texts, in particular
when the table is created.

Figure 12.4 Database Procedure Proxy for Segmentation

Creating database
procedure proxy

488

12 Function Libraries in SAP HANA

Following this preparatory work, we can very easily access the procedure
for segmenting the customer data. The ABAP program in Listing 12.4
allows the year and desired number of groups to be entered and calls
the database procedure with these parameters. The result is displayed in
a simple ALV table (see Figure 12.5).

REPORT zr_a4h_chapter12_cust_seg.

PARAMETER: groups TYPE i,
 year TYPE i.

DATA: lt_class TYPE TABLE OF
 zif_dp_a4h_cust_segment=>et_classification,
 lt_center TYPE TABLE OF
 zif_dp_a4h_cust_segment=>et_centers.

" Call procedure
CALL DATABASE PROCEDURE zdp_a4h_cust_segment
 EXPORTING
 iv_mandt = sy-mandt
 iv_groups = groups
 iv_year = year
 IMPORTING
 et_classification = lt_class
 et_centers = lt_center.

" Display in ALV table
cl_salv_table=>factory(
 IMPORTING r_salv_table = DATA(lo_alv)
 CHANGING t_table = lt_class
).
lo_alv->display().

Listing 12.4 Call of Procedure for Segmentation from ABAP

489

Integration of Function Libraries in ABAP 12.3

Figure 12.5 Output of Customer Flight Data Segmentation in an ALV Table

Graphical representations play an important role in understanding the
results of statistical operations. To this end, SAP provides different
approaches and tools. In Chapter 13, we will use the SAP UI Toolkit for
HTML5 (SAPUI5) as an example to implement a simple visualization of
a segmentation.

Visualization

491

You can break new ground with the development of innovative
ABAP applications on SAP HANA. The combination of
transactional data with the powerful analysis functions of SAP
HANA results in new options for intelligent business processes in
a combined system. A modern application design should be ready
for this.

13 Sample Scenario: Development
of a New Application

Within this book, you have encountered a variety of new techniques and
tools that are available for the ABAP development on SAP HANA. In this
chapter, we would like to use these options in a clear overall scenario.

We will start here with a fictitious initial situation and formulate a set of
requirements from a business perspective on this basis. We will then create
a design for the implementation and explain the essential implementation
steps. You will find the documented application as part of the source-
code examples associated with this book for download (see Appendix E).

13.1 Scenario and Requirements

We will continue to progress with the sample application in the scenario
of a travel agency who makes customers an offer for a desired flight based
on flight schedule and ticket prices, and who can make the booking for
them (see also Section 8.2).

As an initial situation, we assume that the current IT system already
provides an option for the employees of the travel agency to create or
change flight bookings (cancellation, for example). Furthermore, it is also
possible to manage the master data of the passengers, which includes
the current discount given on the normal price as well as address data.

Initial situation

492

13 Sample Scenario: Development of a New Application

Finally, a simple reporting application about the flight bookings is avail-
able, where flights can be evaluated by airline and time period.

To differentiate himself from the competition, the travel company owner
wants to serve his customers in a personalized manner and to develop
customer loyalty. To this end, he wants to create opportunities to offer
personalized pricing offers based on a customer’s earlier bookings, includ-
ing discounts or other benefits (for example, increased baggage allowance).
These conditions are stored in the form of predefined discount variants,
for which a passenger can decide if he meets the prerequisites. For the
passenger himself, an overview is to be available that presents his current
data and options in an attractive mobile application. In order to assess
the effectiveness of this marketing initiative, the owner would like to be
able to compare customer behavior before and after the introduction, as
well as a segmentation of customers in target groups. In addition, he’d
like improved efficiency from employees by shortening the interaction
times with the system.

As discount offers would be based on defined rules, the system should be
able to make most decisions automatically. In exceptional cases, a manual
confirmation by a company employee is necessary.

13.2 Application Design

We create an architecture for the planned application in this section and
explain the fundamental design decisions and components in use. We
will then discuss the specific implementation and the corresponding
development objects in Section 13.3.

We divide our application scenario into three independent ABAP devel-
opments, which use current SAP user-interface technologies:

EE A Web Dynpro ABAP application ZA4H_DISCOUNT_MANAGER through
which a tour-operator employee can search quickly for customers and
approve or adjust special discount changes.

EE An HTML5 application ZA4H_BOOK_PANEL, which displays a side panel
containing more information about the flight bookings of a selected
passenger and his membership in a customer group with similar behav-
ior. The side panel is a special area in an SAP application frame such as

Change requests
(business)

Change requests
(technical)

Application parts

493

Application Design 13.2

SAP NetWeaver Business Client, which a user can expand and in which
he can show widgets; that is, small user-interface components. A user
can add this side-panel view, if necessary, to the Web Dynpro ABAP
application ZA4H_DISCOUNT_MANAGER to obtain analytical data to assist
with decisions about discount changes.

EE The third application part is an HTML5 application ZA4H_PASSENGER_
APP, which is designed specifically for mobile devices. It displays
information for a passenger about his previous flight bookings, and
allows him to choose his personal discount scheme from the options
available.

13.2.1 Management of Discounts by the Travel Company
Owner

To manage discounts, we create a simple web application ZA4H_DISCOUNT_
MANAGER with Web Dynpro ABAP. This consists of a search function for
searching for air passengers 1 and a result list 2 which represents the
miles flown per passenger, as well as the selected and the recommended
discount scheme. The travel agent can perform actions in the toolbar to
select a passenger and adjust the discount scheme. Figure 13.1 shows the
user interface of the application.

Figure 13.1 Web Dynpro Application for Managing Discounts

Structure of
application

494

13 Sample Scenario: Development of a New Application

In the application, the following techniques are used:

EE For the search function, we use the fuzzy search in SAP HANA (see
Chapter 9) to enable a fault-tolerant search for passenger data with
suggesting of values while the user is typing.

EE For an efficient representation of a dataset in the results display, we
use the ALV with integrated data access (see the information box in
Section 11.5).

EE The miles flown are determined via an SAP HANA view (similar to
Chapter 8), and the recommended discount scheme is determined via
a decision table (see Chapter 11).

13.2.2 Additional Evaluations via a Side Panel Application

In addition to managing discounts, our application contains a side panel
ZA4H_BOOK_PANEL, which includes an overview of an air passenger’s
bookings, as well as a graphical representation of the segmentation of
all customer data. An employee can quickly obtain an overview of the
customer—based on both his own flights as well as his relation to the
booking behavior of all other customers in the system.

A user can show this side panel for the previously described application
for discount management in SAP NetWeaver Business Client (on the right
in Figure 13.2). If you select a row—that is, a customer—on the left in
the results list, the side-panel display is updated automatically.

To implement the side-panel application, we use the following techniques,
which we discuss in more detail in Section 13.3:

EE We create the side panel as a CHIP (or “Collaborative Human Interface
Part“), which consists internally of a small HTML5 application. Using
a menu configuration in ABAP role management (Transaction PFCG),
we create the connection to the ZA4H_DISCOUNT_MANAGER application.

EE For the HTML5 application, we use SAP UI Development Toolkit for HTML5
(SAPUI5) and create an OData service for data access using SAP NetWeaver
Gateway. As we do not explain the use of these two relatively new SAP
components in more detail in this book, we have compiled some back-
ground with references to further reading in the information box at
the end of this section.

Elements used

Structure of
application

Elements used

495

Application Design 13.2

Figure 13.2 Additional Information in Displayed Side Panel

EE We read the flight statistics for a passenger via the same SAP HANA
views as the data used in the Web Dynpro application in the previous
section, only with different filter values and aggregations. To segment
the customer data, we create a database procedure and use the Predic-
tive Analysis Library, which we presented in Chapter 12.

Using SAPUI5 and SAP NetWeaver Gateway

SAPUI5 is a rendering library, initially independent of the server technology,
that’s used to create HTML5 applications. In particular, it supports the web
browsers of current mobile devices. When you use it on the Application Server
ABAP, the BSP Framework (Business Server Pages) is used on the backend side.
The SAPUI5 library is included directly in SAP NetWeaver AS ABAP 7.4, while
it is available as an add-on for earlier ABAP releases (as part of User Interface
Add-ons for SAP NetWeaver). Eclipse-based tools are available for the devel-
opment with SAPU15. Extensive information about the use of SAPUI5 can
be found in the SAP Community Network at http://scn.sap.com/community/
developer-center/front-end.

496

13 Sample Scenario: Development of a New Application

SAP NetWeaver Gateway provides a development environment for the cre-
ation of RESTful web services based on the OData standard (http://www.odata.
org). Similar to the SAPUI5 library, SAP NetWeaver Gateway is also part of
SAP NetWeaver AS ABAP 7.4, while the framework is available in the form
of add-ons in earlier releases. The development of services is done with the
help of the Service Builder (Transaction SEGW). Furthermore, Eclipse-based
tools are available, which are actually independent of the ABAP technology.
You can also find more information on development with SAP NetWeaver
Gateway in the SAP Community Network at http://scn.sap.com/community/
netweaver-gateway.

13.2.3 Mobile Application for the Air Passenger

The ZA4H_PASSENGER_APP application is aimed at the air passengers. It is a
browser-based application that is specifically designed for use on mobile
devices (specifically tablets) in terms of resolution and interaction model.
It can also be fully used in a modern desktop browser.

An initial screen shows an overview with the available functions. Further-
more, a passenger can browse the flight plan and look at existing bookings.
He also sees his accumulated personal airline miles 1, information on his
baggage weight 2, and the discount scheme currently chosen 3. Before
changing the discount scheme, a simulation of the impact can be done
in an additional dialog, based on the historical booking data. Figure 13.3
shows a section of the application.

For the implementation, we use the following techniques:

EE For the development of the HTML5 application, we use SAPUI5 com-
bined with SAP NetWeaver Gateway.

EE We read the flight statistics as well as the available and recommended
discount options via the same views or decision tables as in the Web
Dynpro application described in Section 13.2.1. To simulate the impact
of a change in the discount scheme, we create an additional database
procedure in SAP HANA.

Structure of
application

Elements used

497

Implementation of the Application 13.3

Figure 13.3 Mobile Application for the Air Passenger

13.3 Implementation of the Application

The implementation of the sample application consists of the following
three layers:

EE The implementation of data views and operations in SAP HANA forms
the backbone of the applications (in addition to a small enhancement
of the SFLIGHT data model for the discount settings). We describe the
enhanced data model as well as the general implementation of the
development objects in SAP HANA in Section 13.3.1.

EE For accessing the read and write operations from a user context (for
example, if you change the discount settings), we create a simple ABAP
interface using ABAP Objects without using any special business frame-
work. Access to the native HANA objects takes place via external views

Levels

498

13 Sample Scenario: Development of a New Application

and database procedure proxies. We have summarized the rough
interaction of components in Section 13.3.2.

EE For the user interfaces, we use Web Dynpro ABAP (including the
Floorplan Manager for Web Dynpro ABAP) and SAPUI5 (with access to
an OData service generated via SAP NetWeaver Gateway). We access
the data via the aforementioned ABAP interfaces.

We provide all developments in a specific development package. In other
words, this chapter’s application is not a separate unit, but a part of the
downloadable examples for this book (see Appendix E). Our application
consists of the ABAP developments from the subpackage TEST_A4H_BOOK_
CHAPTER13 as well as the objects from the SAP HANA Repository from
subpackage test.a4h.book.chapter13.

13.3.1 SAP HANA Views and Procedures

To implement our scenario, we enhance the SFLIGHT data model mini-
mally by storing additional data about a flight customer (for example,
the selected discount scheme, see Table 13.1) in an additional database
table ZA4H_BOOK_CUST_EXT. The details of the available discount options
(prerequisites and benefits) are stored in another Customizing table
ZA4H_BOOK_DIS_CONF, which we will not discuss in more detail at this
point. You will find both as part of the ABAP development objects cor-
responding to this chapter.

Column Data Type Description

MANDT MANDT Client

ID S_CUSTOMER Customer number (foreign
key for table SCUSTOM)

DISCOUNT_SCHEME ZA4H_DISCOUNT_
SCHEME

Identifier for discount
scheme (foreign key
for Customizing table
ZA4H_BOOK_DIS_CONF)

Table 13.1 Structure of Table ZA4H_BOOK_CUST_EXT

To determine key figures and to perform other analysis operations, we
use the development objects that are explained in Table 13.2.

Packaging

Enhancement of
the data model

Development
objects

499

Implementation of the Application 13.3

Development object Description

AT_FLIGHT_PLAN Attribute view of the flight plan with the
support for fuzzy searches.

AT_CUSTOMER Attribute view of customer data with the
support for fuzzy searches.

CA_FLIGHT_STATISTIC Calculation view to determine the frequent
flyer miles and baggage weights for
passengers.

CUSTOMER_SEGMENTATION Database procedure for segmenting the
customer data by frequent flyer miles
and baggage weight. The customer base
in question can be restricted to a type of
customer (private or business customer), a
country, or a discount scheme.

SIMULATE_DISCOUNT Database procedure for simulating the impact
of a discount scheme on a flight customer,
based on data from the previous year.

DT_DISCOUNT_PROPOSAL Decision table for determining default values
for a discount scheme, based on airline miles,
type of customer, and existing discount
scheme.

Table 13.2 Description of Created Views and Procedures

For the fuzzy search, we create full-text indexes for the text columns of
the tables SPFLI, SCUSTOM, SCARR, and SAIRPORT using the ABAP Data
Dictionary (see Section 9.2).

13.3.2 Core of the ABAP Application

At its core, the ABAP application uses the SAP HANA views and procedures
from the previous section for read accesses. Since these accesses take place
from different applications (using Web Dynpro ABAP or HTML5), we
create a common ABAP interface. The same interface also enables access
to the write operations, for example, changing the discount settings.

Table 13.3 provides an overview of the most important ABAP develop-
ment objects for the data access.

Common ABAP
interface

500

13 Sample Scenario: Development of a New Application

Development Object Description

ZEV_A4H_CA_STATISTIC External view for the calculation
view CA_FLIGHT_STATISTIC

ZDP_A4H_CUS_SEG Proxy for the database procedure
CUSTOMER_SEGMENTATION

ZDP_A4H_SIM_DIS Proxy for the database procedure
SIMULATE_DISCOUNT

ZIF_A4H_BOOK_DATA_PROV ABAP interface for the data access
(read and write)

ZCL_A4H_BOOK_DATA_PROV_HANA Implementation of the interface
ZIF_A4H_BOOK_DATA_PROV
with access to the native HANA
development objects for the read
operations

Table 13.3 Description of ABAP Development Objects

The interface ZIF_A4H_BOOK_DATA_PROV abstracts the required accesses to
the views and procedures from the planned user interfaces and provides
service methods for changing the discount settings within a transaction.
We will not present the individual interface methods at this point, but
will only give you an impression of the interaction of development objects
based on an example.

For both HTML5 applications, we require access to the flight statistics for
a selection of air passengers. In this case, there is a method GET_FLIGHT_
STATISTIC in the interface ZIF_A4H_BOOK_DATA_PROV, which—based on a
selected table of customer numbers (input parameter lt_custom_sel)—
provides the data on airlines and baggage weights based on the bookings
of the corresponding customer (output table et_flight_statistic). The
implementation of the data interface in ZCL_A4H_BOOK_DATA_PROV_HANA
then takes place via the external view ZEV_A4H_CA_STATISTIC as shown
in Listing 13.1.

METHOD zif_a4h_book_data_prov~get_flight_statistic.
 CLEAR et_flight_statistic.

 SELECT * FROM zev_a4h_ca_statistic
 INTO TABLE et_flight_statistic

Data interface

Example: flight
statistics for
passengers

501

Implementation of the Application 13.3

 WHERE custom_id IN lt_custom_sel.

ENDMETHOD.

Listing 13.1 Access to the Flight Statistics of a Passenger via an External View

Using a Factory Class

The use of an interface allows a simple decoupling of data access and the cre-
ation of alternative implementations. In our example, we create the required
implementation of the data interface ZIF_A4H_BOOK_DATA_PROV using a
factory class, which provides either an instance of ZCL_A4H_BOOK_DATA_
PROV_HANA or a class-based exception for ABAP systems that do not run on
SAP HANA. This exception is caught in the application and converted into
an error message specific to the UI technology (for example, as error text in
the message area in the case of Web Dynpro ABAP).

We will explain how to program such a factory class for the encapsulation
of native HANA implementations in Section 14.1.2. In our sample package,
you will also find another implementation of the data interface in the class
ZCL_A4H_BOOK_DATA_PROV_TEST, which is based on static test data and can
be used for simple application tests.

13.3.3 User Interfaces

In this section, we present the implementation of the three user interfaces
using the Floorplan Manager for Web Dynpro ABAP, the HTML5 library
SAP UI5, and SAP NetWeaver Gateway, as well as the side-panel technol-
ogy. The use of these components would require a detailed introduction
in each case, which is beyond the scope and topic of this book. For this
reason, we will only discuss the basic concepts for implementing the
specific user interface. If you are already familiar with the components,
the descriptions should provide sufficient information to navigate in the
implementation. If you were unable to attain any previous experience
with these technologies, you will learn some options, including what type
of applications can be implemented using these development tools. In
addition, you can try out the downloaded sample applications from the
user’s perspective (see Appendix E).

502

13 Sample Scenario: Development of a New Application

Web Dynpro ABAP with the Floorplan Manager

For Web Dynpro ABAP applications, we use the Floorplan Manager (FPM),
which allows the easy creation of a standard component user interface.
Similar to the normal Web Dynpro development, you can also create
Floorplan Manager-based applications (FPM applications) using the ABAP
development environment in Eclipse (see Figure 13.4).

Figure 13.4 Web Dynpro ABAP Development with the Floorplan Manager in Eclipse

The required data operations (data selection, actions, and so on) within
an FPM application take place via feeder classes. These are normal ABAP
classes that implement specific interfaces and are used in the configuration
of an FPM application. The feeder classes that we create for our applica-
tion internally use, in turn, the data interface ZIF_A4H_BOOK_DATA_PROV
from Section 13.3.2.

To roughly illustrate the interaction with this interface, you see a section
of a feeder class for a simple list view in Listing 13.2. There, we create
an instance of the data interface during the initialization via the factory
class, which we then call within the data collection that takes place via
the GET_DATA method.

CLASS zcl_a4h_book_list_feeder DEFINITION
 PUBLIC
 FINAL
 CREATE PUBLIC.

Feeder classes

Example: feeder
class for a list

503

Implementation of the Application 13.3

PUBLIC SECTION.
 " FPM Feeder Interfaces for Lists
 INTERFACES if_fpm_guibb.
 INTERFACES if_fpm_guibb_list.

PROTECTED SECTION.
PRIVATE SECTION.

 DATA mo_data_provider
 TYPE REF TO zif_a4h_book_data_prov.
ENDCLASS.

METHOD if_fpm_guibb_list~get_data.
 " [...]

 " Read data via data interface
 lt_data = mo_data_provider->get_flight_statistic(
 lt_selection_criteria
).

 " [....]
ENDMETHOD.

METHOD if_fpm_guibb~initialize.
 " Create data provider via factory class during the
 " initialization of the feeder class
 mo_data_provider =
 zcl_a4h_book_factory=>get_instance().

 " [...]
ENDMETHOD.

Listing 13.2 Section of the Feeder Class for a List View

Gateway Service Builder

Both the side-panel application ZA4H_BOOK_PANEL and the mobile appli-
cation ZA4H_PASSENGER_APP access the data from the ABAP system from
the browser using an OData service via the HTTP protocol. We use the
Gateway Service Builder (Transaction SEGW) to create this service. The
OData service provides various data for the two applications, such as
the flight plan, an overview of the passenger’s air miles, the result of the

Service generation

504

13 Sample Scenario: Development of a New Application

segmentation function, as well as the discount simulation. The structure
of the service is shown in Figure 13.5.

Figure 13.5 Structure of the OData Service in the Gateway Service Builder

Based on the service modeling, the Service Builder generates an ABAP
class per entity in which you have to implement the data retrieval in turn
(similar to the FPM feeder class from the previous section). Here, we
access the classes from Section 13.3.2 again. An abstraction via an ABAP
interface that is independent from the UI technology pays off especially
well when using an application logic in different user interfaces.

SAPUI5 Interfaces

To create the SAPUI5-based user interfaces (side-panel and mobile-appli-
cation), we use the standard development tools for web development in
Eclipse, which provide support for the development of HTML pages and
JavaScript. You receive these tools together with SAPUI5 development
environment for Eclipse, which you can obtain free of charge via the
website https://tools.hana.ondemand.com. Figure 13.6 shows the structure
of our SAPUI5 application ZA4H_BOOK_PANEL as an Eclipse project. The
application consists of a series of HTML and JavaScript files that contain
the layout and the client-side logic of the application.

505

Implementation of the Application 13.3

Figure 13.6 SAPUI5 Development Tools in Eclipse

As the data model of the application, we use the class sap.ui.model.
odata.ODataModel of the SAPUI5 library in JavaScript, through which
we establish access to the OData service that was created. Here, we only
have to specify the ICF path (Internet Communication Framework) of
the service. The entity structure (attributes, associations, and so on) is
automatically derived from the metadata of the OData service.

We create the side-panel application ZA4H_BOOK_PANEL as a simple HTML
page using the user-interface elements provided by the SAPUI5 library. The
more comprehensive mobile application ZA4H_PASSENGER_APP, designed
for passenger use, is based on the Model View Controller concept (MVC
concept) of SAPUI5. This design pattern allows to declaratively define the
individual areas of the user interface and manage the navigation paths
between the areas. For more information on using the MVC pattern, see
the development documentation for SAPUI5 (see https://sapui5.hana.
ondemand.com/sdk).

Side Panel Configuration

The side panel is configured via the menu maintenance of a user role in
Transaction PFCG. In this case, you create menu entries for the side panel
and specify the references to those applications for which the side panel
is to be available. Figure 13.7 shows the configuration for the side panel
ZA4H_BOOK_PANEL.

Connection to
OData service

MVC pattern

Transaction PFCG

506

13 Sample Scenario: Development of a New Application

Figure 13.7 Side Panel Configuration in Transaction PFCG

You will find a predefined role ZA4H_BOOK_ROLE as part of the download
package for this book. For more information on creating and configuring
side panels, please refer to the SAP documentation at http://help.sap.com/
nw74 and search for Implementing Side Panels.

13.4 Using the Applications

Finally, we would like to briefly explain how to launch the applica-
tions. You primarily require an Internet browser, and in particular a
current version of a standard browser is recommended for the HTML5
applications. To use the side panel, we recommend the current Version
4.0 of SAP NetWeaver Business Client; you can find information about
this in the SAP Community Network at http://scn.sap.com/community/
netweaver-business-client.

If you use SAP NetWeaver Business Client and have installed the sam-
ples from the book (see Appendix E), you only have to assign the above
role ZA4H_BOOK_ROLE to your application user. If you then log on to SAP

Requirements

Use in the
Business Client

507

Using the Applications 13.4

NetWeaver Business Client in the system with this user, you have direct
access to the implemented applications, including the side panel.

For direct invocation in the browser, it is best to use Transaction SICF of
the Internet Communication Framework (filter for the part of the name
A4H). The context menu entry Test Service opens the browser with the
Internet address associated with the service.

Call in the browser

509

Best practices play an important role, especially when using new
technologies. Even if something is technically possible, it may
not be practical or useful in each scenario. Old rules should be
reviewed, and new design patterns should be explored.

14 Practical Tips

We have presented a variety of options within this book for calling func-
tions in SAP HANA from ABAP systems. In addition to normal database
access, you have been introduced to the modeling of views, SQLScript-
based views, and database procedures, as well as some advanced technolo-
gies such as text analysis, function libraries, and decision tables.

In this chapter, we’ll present some practical tips on topics that are par-
ticularly important when developing ABAP applications on SAP HANA.
These are subdivided into the following topic areas:

EE General	recommendations	
We’ll first provide you with some general recommendations for devel-
oping ABAP on SAP HANA. We primarily discuss details that you
should consider for the migration and optimization of ABAP programs.

EE Conventions
We present some conventions which, from our perspective, are useful
but optional. These include naming conventions, conventions for
encapsulating and packaging, guidelines for distributed development,
and similar topics.

EE Quality	aspects	
For implementations in the database, non-functional criteria such as
robustness, testability, and security should play an important role in
addition to performance. We introduce some measures that will help
ensure high quality in development.

EE Performance	guidelines	
The execution speed of programs naturally plays a crucial role in the

510

14 Practical Tips

context of SAP HANA. Many usage scenarios involve real-time access
to large datasets. A solid understanding of the guidelines and tech-
niques for achieving optimal performance is essential here. We provide
an overview of existing and new recommendations, and we particularly
discuss changes in comparison to traditional databases.

We will also enhance programming recommendations via positive and
negative examples.

14.1 General Recommendations

In this first section, we have compiled some general recommendations
that you should follow for migration and development on SAP HANA.
This involves functional aspects in particular. We will return to non-
functional topics such as conventions, quality aspects, and performance
in subsequent sections.

We’ll start with recommendations for the use of column or row stores in
SAP HANA. We will then discuss possible design patterns for the encap-
sulation of HANA-specific implementations and provide a checklist for
relocating calculations to SAP HANA.

14.1.1 Recommendations for Column and Row Store

You can look in the ABAP Data Dictionary’s technical settings to see
whether a table should be created in the row store or column store of SAP
HANA (see Section 3.2.1). The column store is the default setting here.

The analysis of large datasets can be performed more efficiently in the
column store. Thus SAP recommends that you store every table in the
column store, as long as there is no dedicated reason for storing it in the
row store. Tables that contain application data are always stored in the
column store, because it is very likely that this data is also to be used in
analysis scenarios. This applies particularly to tables that contain a large
number of data records, because the column store provides better com-
pression properties. This also applies to tables that are to be used for text
searches (see Section 9.2).

Column store

511

General Recommendations 14.1

Still, you have reason to use the row store if, for example, a table is
accessed predominantly by time-critical DML statements (Data Manipula-
tion Language; that is, UPDATE, INSERT, or DELETE). In addition, this must
not be an application table on which you subsequently want to perform
analyses. Therefore, primarily technical, internal SAP tables are eligible for
row store. Examples include tables for update processing (STSK package)
or for RFC processing (SRFC package). These tables are typically accessed
with a SELECT SINGLE.

Use the Column Store!

In general, you should store all tables in column store for SAP HANA unless
more technical tables are involved, as described above.

14.1.2 SAP HANA-Specific Implementations

With the ABAP development on SAP HANA, we must distinguish between
two scenarios:

EE Database-independent implementations (for example, Open SQL).

EE Implementations using SAP HANA-specific functions (for example,
Native SQL, column views, and procedures).

In the first case, you do not have to consider anything special from a
software logistics perspective. You use SAP HANA like any other data-
base, but benefit directly from the high processing speed of SAP HANA
in many scenarios. Your developments are executable on all database
systems supported by SAP.

When using native HANA functions, the same implications as usual ini-
tially apply if you define parts of an application specifically for a database
system (for example, via Native SQL, hints, or other techniques). When
designing the application, you should consider the following questions:

EE Are there systems with a different database system in my landscape
or in my customers’ landscapes? Is an alternative implementation of
the functions required for other database systems?

Row store

Scenarios

HANA-specific
implementations

512

14 Practical Tips

EE How fundamental are database-specific functions to my application
scenario? Is the central quality of the application involved, or is it just
the “teasing out” of the optimal performance?

EE Is the development in SAP HANA to be called solely via ABAP-based
applications or via other channels as well (for example, SAP Business-
Objects tools)?

It’s difficult to give a general recommendation as to when exactly it makes
sense to use a database-specific implementation. For pure performance
optimization of an existing ABAP application, we recommend that you
initially proceed by using standard tools (for example, via an optimal use
of Open SQL). In Section 14.4, we provide special performance recom-
mendations for the use of Open SQL on SAP HANA.

If you use the techniques in this book to relocate operations to SAP HANA
and ensure that they can be called via ABAP, it is often useful to encap-
sulate access to these functions via an interface in ABAP (thus, an ABAP
interface). This enables the use of the factory pattern—a standard design
pattern in software development—which is used for decoupling. Listing
14.1 shows a sample code in which a data retrieval was abstracted via
an interface lif_data_provider (the exact appearance of this interface
is irrelevant to understanding this example). The factory class provides
a method that transfers an instance of a HANA-specific implementation
(lcl_hana_provider) to a HANA system, while an alternative implementa-
tion is created in systems with a classic database. The test on SAP HANA
is done via the class CL_DB_SYS, which has advantages over a test on the
system field sy-db because you can easily make a “where-used“ list for
a class to find all parts of the program that perform such a distinction.

" Factory class
CLASS lcl_factory DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS: get_instance
 RETURNING VALUE(ro_instance)
 TYPE REF TO lif_data_provider.
ENDCLASS.

" Implementation of the factory class
CLASS lcl_factory IMPLEMENTATION.
 METHOD get_instance.

Pure optimization
initially via
Open SQL

ABAP interface

513

General Recommendations 14.1

 IF (cl_db_sys=>is_in_memory_db = abap_true).
 ro_instance = NEW lcl_hana_provider().
 ELSE.
 ro_instance = NEW lcl_standard_provider().
 ENDIF.
 ENDMETHOD.
ENDCLASS.

Listing 14.1 Example of Factory Design Pattern Use for Decoupling HANA-Specific
Implementations

This approach can also be combined with BAdIs (Business Add-Ins),
because the concept of an (abstract) factory class is also used in this case.
The optimization has thus been implemented in SAP Business Suite pow-
ered by SAP HANA because alternative implementations can be activated
and deactivated using this technique.

Optimization Procedure

Try to implement local performance optimization initially via Open SQL. For
major program changes and relocation of operations to SAP HANA, invest in
decoupling—for example, via the aforementioned factory approach.

14.1.3 Checklist for Database-Specific Implementations

In this section, we’ll provide a checklist of what you should consider
when relocating program code to the database. This helps you avoid
errors related to internationalization or localization.

Dates play an important role in business data and processes (for example,
when a booking was made). You must of course pay attention to using
the respective time zones correctly. If you use the time zone to which
the server is set, you must note that the database server‘s time zone is
used for SQLScript, while the time zone of the ABAP application server
is crucial in ABAP implementations. SAP recommends that you always
make sure these time zones are identical during the installation.

To determine the period between two calendar dates, there are special
calculation rules for some business processes and in some global regions
(for example, using a fiscal year with 360 days or combining the days of
a weekend into one day). Depending on the context, you must ensure

BAdIs

Date/time

Calculating with
date fields

514

14 Practical Tips

that such calculations are interpreted correctly from a business perspec-
tive. The SQL function days_between supported by SAP HANA does not
know these specifics.

When handling currencies, you must ensure that some amounts are
stored in the database with displaced decimal places (for example, for
Japanese yen). When calculating with such values, you must ensure that
this displacement is taken into account before an output for an end user.
This takes place in ABAP, for example, via specific conversion functions
or the WRITE statement. If you work with currencies in analytical models
in SAP HANA and want to consume them externally, you should mark
these key figures as such and specify that the decimal displacement is to
be taken into account (see Section 4.2.4). In SQLScript procedures, you
should clearly define whether you are working with internal or external
formats in the definition of the interface, so each user knows how to
interpret the values.

There may be differences between internal and external presentations for
other data types also. An example of this is the flight time in the flight
plan of our sample data model (column FLTIME in the table SPFLI). The
flight time is stored internally in minutes as an INTEGER in the database,
while it is presented externally via a conversion exit as a character string
consisting of hours and minutes. If you are thus using a data model in
different user interfaces, we recommend that you ensure that it is treated
uniformly.

When calculating with decimals, rounding behavior plays an important
role, especially for monetary amounts. Small rounding differences can
have a major impact on totals, so you should make sure to minimize
rounding errors. When converting a currency, you should, if possible,
only perform the conversion after an aggregation, which is also advanta-
geous from a runtime perspective.

The sorting of texts depends on the current language settings. In the
ABAP command SORT, therefore, the addition AS TEXT will sort the char-
acter strings alphabetically according to the set text environment. If you
sort content in an SQL statement via the addition ORDER BY, however,
it is sorted in a binary manner according to the internal presentation.
Figure 14.1 shows an example using German umlauts. Here, the name

Currencies
and units

Conversion exits

Rounding behavior

Text sorting

515

General Recommendations 14.1

“Möller” appears after “Muller,” although it should appear alphabetically
after “Moller.” For this reason, we recommend that you usually sort
texts, which you present in an ABAP application for an end user, in an
application server.

Figure 14.1 Sorting Texts in the Database

Handling Data Correctly from a Business Perspective

For time stamps, currencies, units, and texts, pay particular attention to the
correct treatment of the business data in the context of native implementa-
tions in the database.

14.1.4 Recommendations for Migration

In this section, we give you some tips to consider when migrating an
existing system to SAP HANA. A basic rule is that ABAP applications are
fully compatible. There are a few fine points to note, which we would
like to discuss here:

EE Database-dependent	ABAP	code
If you use database-dependent ABAP code in existing developments,
you must test it as with any data migration and adjust it for the HANA
database if necessary.

EE Converting	pool	and	cluster	tables
When converting pool and cluster tables to transparent tables, prob-
lems may occur if you have relied on an implicit sort behavior in your
developments or if you directly accessed the internal physical clusters
or pools.

EE Sort	behavior
If no ORDER BY was specified in the SQL statement, the sequence in
which the records are read is unpredictable.

516

14 Practical Tips

Database-Dependent Code

If your existing applications have database-dependent code—for example,
native SQL via the statement EXEC SQL, the interface ABAP Database
Connectivity (ADBC), or database hints—these positions in the code
must be checked. While database hints are no longer executed on the
new platform when you migrate to another database, an exact check is
always required for database-dependent SQL, because errors may occur
here unless you intervene.

Hints to the database (or also the database interface) are given a database
indicator in ABAP. This generally looks as follows:

SELECT ... %_HINTS <DB> 'db_specific_hint'.

The hint is sent only to the database specified instead of the <DB> place-
holder. This means that, when the additional statement to the optimizer of
the old database platform is converted to the new platform, it is no longer
sent to the optimizer of the new database. This concerns not only hints
for the database, but also specific instructions to the database interface.
For a conversion, you must thus check whether the desired behavior on
the old database platform should also be defined again by a hint on the
new database platform. This is generally unnecessary for SAP HANA due
to the modified architecture. Usually, no adjustment is necessary for the
hints to the database interface, either. Here, we recommend that you use
the default values for SAP HANA for the database interface.

Database-dependent code must always be checked for a conversion. The
code should be tested even if standard SQL is involved. For database-
specific SQL, you must first clarify the code is to achieve. An SQL state-
ment must then be written to deliver the same result on SAP HANA. If
possible, you should use Open SQL for it.

Sort Behavior

Access to former pool or cluster tables, which we have already discussed
in Section 7.3, is a point that should be emphasized separately. For pool
and cluster tables, an implicit sorting is always performed by the database
interface. This is lost after the conversion to a transparent table, because

Hints

Native SQL

Pool and
cluster tables

517

General Recommendations 14.1

no automatic ORDER BY is added here to the statement. Access to pool
and cluster tables must therefore be analyzed with regard to their sorting
during a migration. In this case, the Code Inspector provides a separate
check—”Find SELECT for Pool/Cluster Tab without ORDER BY”—so you can
quickly and easily find such critical points in your own developments.

However, changes can also occur in the implicit sort behavior for existing
transparent tables. Classic row-oriented databases are usually accessed via
a primary or secondary index. Here, the data is often read in the desired
sequence, because it is read from the database in the sequence stored
there when you use an index. However, this is not guaranteed, and this
behavior is not a documented feature of Open SQL. The selected access
path and the associated sorting can thus change at any time. You must
use the addition ORDER BY instead if the data is to be selected in a specific
sorting. This rule applies in particular to SAP HANA because there the
data is column-oriented, there is no secondary index, and the data can
be read in parallel. Thus, such places involve a programming error that
you should correct regardless of a migration to SAP HANA.

Problems may occur if a certain sorting is assumed in program sequences.
This is the case, for example, when working with searches in internal
tables with the addition BINARY SEARCH, because a relevant sorting is
essential there. However, there may also be surprises with the output of
data if it is suddenly not appearing in the desired sort order.

Don’t Rely on Implicit Sortings

If you require a specific sorting of data when you access a database, use the
addition ORDER BY explicitly.

14.1.5 Development in Landscapes

In a standard SAP development scenario, multiple systems are generally
used, and even entire landscapes are often included in larger develop-
ments. To ensure that no problems occur during the transition from a
development system to another system (for example, a test or production
system), you should follow some guidelines for implementations in the
database.

Sort explicitly
when sorting
is necessary

Possible effects

518

14 Practical Tips

First, we would like to remind you of the correct handling of schema
names and the client field, which we have already discussed in Section
4.5.4. During modeling or SQLScript implementation, avoid referencing
schema names directly, because these names are no longer valid after a
transport to a different system. Thus, for procedures and calculation views,
use the settings for a standard schema and define appropriate schema
mappings as described in Section 6.1.2. As with SQLScript and Native
SQL, you should always ensure that you handle the client field correctly.
One option is to store different data configurations in various clients in
the development or test system, and test them explicitly. For SAP HANA
views, you should generally select the setting Dynamic Default Client
to use the current client of the ABAP session (see Section 4.5.4).

For the transport of ABAP applications that directly reference HANA
objects such as views or procedures, we recommend the techniques
described in Chapter 6. You should use a common transport to ensure that
inconsistencies do not occur in a target system (for example, a missing
database procedure that is accessed from ABAP). When using external
views, database procedure proxies, and HANA transport containers,
you should also ensure that you have synchronized the content prior to
a transport.

If you have mixed development landscapes in which some systems do
not (yet) run on SAP HANA, you can transport ABAP developments on
SAP HANA through these systems without any problems. We recommend
that you always ensure that SAP HANA-specific implementations—which
cannot run in such systems—do not lead to uncontrolled program termi-
nations if they are called (also see Section 14.3.2).

Development in System Landscapes

Avoid direct accesses to schema names in SQLScript, and ensure correct client
handling. Dependent ABAP and HANA developments should be transported
together consistently.

14.1.6 Modifying Data in SQLScript or Native SQL

We recommend in general that you largely avoid write operations on
ABAP tables via SQLScript or Native SQL (EXEC SQL or ADBC). If you

Schema and
client handling

TransportTransport

Mixed landscapes

519

General Recommendations 14.1

nevertheless modify database contents via these mechanisms, you should
be particularly careful. We will give you some important relevant infor-
mation in this section.

Such accesses are sent virtually unchanged via the database interface
(DBI) to the database, so the SAP services on the application server—for
example, for locking (see Section 3.1) and table buffering (see Section
3.2)—and their synchronization are completely bypassed. Such changes
may lead to inconsistent data, as the following examples show.

If, for example, data that is in the SAP table buffer is changed via SQLScript
or Native SQL, the change is made only in the database. The data in the
local table buffer (on the server on which the change was made) will not
be changed. Neither will synchronization entries be written in the table
DDLOG, where other application servers would be informed of changes in
buffered tables and then be able to synchronize them. The data in the table
buffer is no longer consistent with the data in the database, because the
changes were made directly via Native SQL or SQLScript while bypassing
the table buffer. Thus, tables that are in the SAP table buffer must always
be changed via Open SQL, because otherwise the data cannot be changed
or synchronized in the buffers.

In Figure 14.2, you can see the differences between changes via SQLScript
(or Native SQL) and the standard variant via Open SQL statements. In the
former case, the calls are forwarded directly via the database interface
to the database, while bypassing the table buffer, and the changes are
made in the database.

The system behavior is similar for locks. Data that is protected from
change in parallel in the ABAP system via the enqueue service can
still be changed directly in the database if SAP lock management is
bypassed. This can also lead to inconsistent data if, for example, an
ABAP application has set a lock to perform consistent calculations
while another application is covertly changing this data directly in the
database. Changes that were already made may also be lost if a lock on
data records is ignored.

Bypassing ABAP
services

Changes to
buffered tables

Changes without
enqueue service

520

14 Practical Tips

AS ABAP

Database Interface

SAP HANA

ABAP Tables

Lock
Management

(Enqueue)ABAP Work
Process

SQLScript

Table
Buffer

Native SQL Open SQL

Figure 14.2 Changing Accesses via SQLScript or Native SQL

Avoiding Modification of ABAP Tables via SQLScript and Native SQL

You should avoid changing data via SQLScript or Native SQL if possible.
If you can’t avoid this, ensure that the data isn’t subject to table buffering
or protected via the SAP enqueue service. Otherwise, data inconsistencies
may occur.

14.2 Conventions

Conventions can help, particularly when distributing development proj-
ects among one or more teams. In this section, we will discuss the fol-
lowing topics:

EE Possible naming conventions for HANA objects, including parameters
in interfaces and ABAP proxies.

EE Recommendations for the encapsulation of developments, such as use
of packages in SAP HANA Repository and granularity of the HANA
transport container.

521

Conventions 14.2

14.2.1 Naming Conventions

In contrast to ABAP, the names of development objects in SAP HANA
Repository have to be unique only within a package (see Section 6.1.2).
Some types of artifacts share a namespace: For example, it is not possible
to create an attribute view and an analytic view with the same name in
a package.

For this reason and for easy readability, we recommend that you use
prefixes for HANA development objects. The naming conventions shown
in Table 14.1 have been established.

Artifact Prefix Example

Attribute view AT_ AT_FLIGHT

Analytic view AN_ AN_BOOKING_AMOUNTS

Calculation view CA_ CA_PASSENGER_MILES

Procedure – EXECUTE_SEGMENTATION

Decision table DT_ DT_PASSENGER_CLASS

Table 14.1 Naming Conventions for HANA Development Objects

The package in SAP HANA Repository assumes the role of the namespace.
You will find the SAP standard development in subpackages of the pack-
age sap.

The corresponding ABAP objects (external views, procedures) are subject
to the ABAP naming restrictions. This includes the ABAP namespace
concept in addition to the global uniqueness of names. Due to the length
of name restrictions for ABAP development objects, the names of HANA
objects (including the package) cannot always be adopted. Often, they
must be abbreviated. Table 14.2 includes our recommendations for nam-
ing ABAP objects (Z namespace).

Artifact Prefix Example

External view ZEV_ ZEV_AT_FLIGHT

Database
procedure proxy

ZDP_ ZDP_EXECUTE_SEGMENTATION

Table 14.2 Naming Conventions for ABAP Proxies for HANA Objects

Naming
Conventions
for HANA
Development
Objects

Naming
conventions for
ABAP proxies

522

14 Practical Tips

Artifact Prefix Example

Interface for the
database procedure
proxy

ZIF_ ZIF_EXECUTE_SEGMENTATION

Table 14.2 Naming Conventions for ABAP Proxies for HANA Objects (Cont.)

We recommend that you create only one corresponding external view
or procedure proxy for each HANA object and reuse them in ABAP. This
facilitates the necessary adjustments, particularly in the event of changes.

For naming input and output parameters of a database procedure, we
use the same naming convention as for interface parameters of ABAP
methods and function modules (see Table 14.3).

Type Prefix Example

Scalar input parameter IV_ IV_CLIENT

Tabular input parameter IT_ IT_FLIGHT

Scalar output parameter EV_ EV_CARRNAME

Tabular output parameter ET_ ET_FLIGHT

Local scalar variable LV_ LV_COUNT

Local table variable LT_ LT_FLIGHT

Table 14.3 Naming Conventions for Input and Output Parameters

14.2.2 Encapsulating Packages

In principle, you can create objects anywhere in SAP HANA Repository
(outside the SAP namespace). However, we recommend that you clearly
encapsulate components of applications in packages. Here, you should
pay attention to the following aspects:

EE Local developments and developments to be transported must be in
separate packages because delivery units always contain full packages.

EE A delivery unit should ideally include a package tree—that is, a super-
package and all subpackages.

Simple assignment

Input and output
parameters

Input and output
parameters

Delivery unit

523

Quality Aspects 14.3

EE Cyclical dependencies between delivery units must be avoided because
otherwise an automatic import is not possible. Cyclical dependencies
between packages should also be avoided.

EE Those objects that are accessed externally (for example, via ABAP code)
should be marked, because changes to the interface usually require
adjustments and synchronization of the user. One option is to encap-
sulate these objects in a separate package.

14.3 Quality Aspects

In this section, we have compiled some recommendations you can use
when implementing native views and procedures in SAP HANA; these
guidelines will help increase the quality of your own developments. We
will discuss three aspects here: testing views and procedures, robust
programming, and security aspects.

14.3.1 Testing Views and Procedures

It is particularly important to ensure a stable design and good test coverage
for the definition of data models and implementations near the database.
First, functional errors can have potentially expensive implications (such
as data inconsistencies or incorrect business results). Additionally, changes
to database objects are always more complex than small adjustments to
a user interface. For this reason, you should pay great attention to these
design aspects, especially for SAP HANA views and database procedures.

Tests are an essential tool for verifying whether the interfaces are usable
and cover all special cases. We have already discussed the technical
options for testing views and procedures in Section 7.2.1. At this point,
we would like to remind you once again of the two most important
recommendations:

EE Enable the writing of unit tests for individual parts of your application
by modularization and decoupling. If parts of the application cannot
be automatically tested, testing becomes more difficult and you run
the risk of overlooking important special cases.

Design

Test
recommendations

524

14 Practical Tips

EE Create appropriate test data in realistic dimensions. You can either use
(anonymous) copies from a production system or data generators.

If you optimize an existing implementation and would like to make sure
that the optimized version is the functional equivalent of the old version,
the system provides automatic tests that compare the results of both
implementations. You can also determine runtime improvements here.

Testing

Especially for larger refactorings, investing in high-quality tests and test data
is justified.

14.3.2 Robust Programming

If an implemented function is used in practice, configurations can always
occur for which the function was not intended (for example, a call with
invalid parameters). Such situations can be dealt with via robust program-
ming. This should be an important design goal for implementations near
the database, because problems can have potentially serious consequences
for data consistency or system stability. We will give you some recom-
mendations in the following text for robust programming within the
context of SAP HANA.

More robust programming guarantees well-defined and deterministic
behavior in all situations. Assumptions with regard to the value range
of input parameters should be tested explicitly. If an input table of an
SQLScript procedure shouldn’t be empty, it must be clearly defined
whether this is to lead to a program termination or a specific output
(for example, an empty output table). In other words, the interfaces of
database functions should be fully defined. Using unit tests, you should
review the behavior for invalid input data as well.

In addition to well-defined behavior, dealing with error situations is
essential for a robust implementation. Terminations should not lead to
unwanted side effects on data consistency, system stability, or other users.
Such situations can potentially arise, particularly with write accesses to
ABAP tables outside of the LUW concept (logical unit of work) in ABAP
systems, which we have already discussed in Section 14.1.6. Even when

Comparison after
optimization

Well-defined
behavior

Error handling

525

Quality Aspects 14.3

calling read operations only, you should always provide clear error han-
dling—even if, from an ABAP code perspective, it is only a simple call such
as a SELECT statement on an external view. You should decide whether
there must be a controlled program termination (dump) or whether a
meaningful error message for the user (along with a log entry for subse-
quent analysis) is possible.

In SQLScript, there is the option of using the EXEC command to execute
a programmatically-generated SQL statement in the form of a character
string. This is a powerful tool for generating flexible and generic instruc-
tions at runtime, but has disadvantages with regard to robustness, security
(see Section 14.3.3), and performance (see Section 14.5.3). We recom-
mend that you largely avoid dynamic SQLScript, particularly to ensure
robust behavior.

Robust Programming

Pay particular attention to robustness for implementations in the database.
Every possible data configuration should lead to a well-defined result or error.
Program terminations should be avoided.

14.3.3 Security Aspects

If you follow the classic ABAP development model and the associated
guidelines, this will provide you with protection against most security
risks.

When changing to native implementations for SAP HANA, and using
native database calls from ABAP, you should always incorporate secu-
rity considerations. We would like to discuss two aspects at this point:
authorization checks and SQL injection attacks.

With critical business data, you must always ensure that no user has access
to data for which he has no authorization. To do this, you must know and
protect the possible access channels. For ABAP applications, you should
implement authorization checks via ABAP authorization objects and the
assignment to roles. If you relocate operations via views and procedures
to SAP HANA, you should secure the call paths in ABAP using appropriate
AUTHORITY-CHECK statements. If you would also like to release these data
models in SAP HANA directly for end users (for example, via the Excel

EXEC command

Security for native
implementations

Access channels
and authorization

526

14 Practical Tips

client presented in Section 4.4, or via the SAP Business Objects tools pre-
sented in Chapter 10), you should restrict access by means of analytical
authorizations (see Section 2.4.3). For information about authorization
checks in the context of native developments in SAP HANA using SAP
HANA Extended Application Services (XS), see the development docu-
mentation at http://help.sap.com/hana_appliance.

Especially when using Native SQL or SQLScript, you should always check
or mask external inputs (for example, by a user or via an external inter-
face) to avoid an injection of unwanted SQL code (SQL injection) by an
attacker. We recommend that you keep the level of free input of such
Native SQL statements as small as possible, and check them against white
lists as much as possible. For Native SQL accesses via ADBC, the use of
prepared statements (see Section 3.2.4) can provide certain protection
here. In SQLScript implementations, as for any other interface, you should
take care that the authorizations necessary for execution are clear from a
business perspective. We would advise you against creating excessively
“powerful” procedures that read a combination of business data, which
no end user may see in this form.

Secure Programming

Native implementations increase the responsibility for ensuring security. All
access paths should be protected with authorization checks and all user input
should be checked.

14.4 Performance Recommendations for Open SQL

In this section, we will provide performance recommendations for devel-
oping ABAP applications on SAP HANA. We will discuss the most import-
ant, frequently asked questions related to SAP HANA. If you want to
delve more extensively into the topic of SAP or ABAP performance, we
recommend the books SAP Performance Optimization Guide: Analyzing and
Tuning SAP Systems by Thomas Schneider (7th edition, SAP PRESS 2013)
and ABAP Performance Tuning by Hermann Gahm (SAP PRESS 2009), in
which the topic of performance is discussed in great detail. Here, we will
describe the most important rules and any changes in the context of SAP

Avoiding SQL
injection

527

Performance Recommendations for Open SQL 14.4

HANA. In addition, there are some new performance topics with SAP
HANA that we will consider here.

First, we will discuss the golden rules for database programming and
whether or how these change for SAP HANA. The time-tested golden
rules for database programming are as follows:

1. Keep the result set as small as possible.

2. Keep the transferred dataset as small as possible.

3. Reduce the number of query executions as much as possible.

4. Minimize the search effort as much as possible.

5. Reduce the load on the database as much as possible.

In the next sections, we will describe each rule and illustrate some with
examples. We will then explain the extent to which these rules are rel-
evant for SAP HANA or what has changed.

14.4.1 Rule 1: Keeping Result Sets Small

The first golden rule recommends that you keep the result set (that is, the
number of selected rows) as small as possible when reading data from
the database. You can minimize the result set using various measures.
We would like to discuss three aspects:

EE Using a WHERE clause

EE Working with the HAVING clause

EE Transferring only required rows

WHERE condition

In ABAP, the number of transferred data records is controlled by the
WHERE condition. You should read only those data records that you actually
need. The WHERE condition may be waived only if all records are required
for each access. Waiving the WHERE clause is particularly problematic for
database tables that increase over time, because increasing volumes of
data are then transferred over time.

The following examples show this in comparison. All customers are
selected in Listing 14.2, and then the selection is restricted to the data

Golden rules
for database
programming

Minimizing
result set

528

14 Practical Tips

records actually required. In Listing 14.3, only the data records actually
required are read from the database.

SELECT id name discount custtype
 FROM scustom
 INTO (lv_cust-id, lv_cust-name,
 lv_cust-discount, lv_cust-custtype).
 IF lv_cust-custtype = 'B'.
 WRITE: / lv_cust-id,
 lv_cust-name, lv_cust-discount.
 ENDIF.
ENDSELECT.

Listing 14.2 Missing WHERE Clause

SELECT id name discount
 FROM scustom
 INTO (lv_cust-id, lv_cust-name, lv_cust-discount)
 WHERE custtype = 'B'.
 WRITE: / lv_cust-id,
 lv_cust-name, lv_cust-discount.
ENDSELECT.

Listing 14.3 Query with WHERE Clause

HAVING Clause

Use of the HAVING clause provides another option to reduce the trans-
ferred rows. It’s used if there is a GROUP BY clause and you would like to
transfer only certain groups by making restrictions to the grouped rows;
for example, in the aggregate values.

The following examples illustrate this option. In Listing 14.4, the mini-
mum use of all flight connections is determined and transferred. In List-
ing 14.5, only the flight connections with a minimum use greater than
zero are transferred.

SELECT carrid connid MIN(seatsocc)
 FROM sflight
 INTO (lv_sflight-carrid, lv_sflight-connid, lv_min)
 GROUP BY carrid connid.
 IF lv_min > 0.
 WRITE: / lv_sflight-carrid,
 lv_sflight-connid, lv_min.

GROUP BY
expression with

and without
HAVING

529

Performance Recommendations for Open SQL 14.4

 ENDIF.
ENDSELECT.

Listing 14.4 Missing HAVING Clause

SELECT carrid connid MIN(seatsocc)
 FROM sflight
 INTO (lv_sflight-carrid, lv_sflight-connid, lv_min)
 GROUP BY carrid connid
 HAVING MIN(seatsocc) > 0.
 WRITE: / lv_sflight-carrid,
 lv_sflight-connid, lv_min.
ENDSELECT.

Listing 14.5 GROUP BY Expression with HAVING Clause

Transferring Only Required Rows

You should always transfer only data records that you actually require. You
should never remove data that you do not require in application server in
the ABAP program and thus transfer it unnecessarily from the database.

Two examples were listed previously. Another example that falls under
this rule concerns the selection of data in internal tables, from which
unnecessary data records are then deleted using DELETE (see Listing
14.6). CHECK statements or filtering by means of IF may also indicate the
transfer of too many rows. In the example of Listing 14.7, the selection
is restricted instead to the required data.

SELECT id name discount custtype
FROM scustom
 INTO CORRESPONDING FIELDS OF TABLE lt_scustom
 WHERE country = 'DE'.
DELETE lt_scustom WHERE custtype = 'P'.
LOOP AT lt_scustom INTO ls_cust.
 WRITE: / ls_cust-id, ls_cust-name,
 ls_cust-discount, ls_cust-custtype.
ENDLOOP.

Listing 14.6 Subsequent Deleting

SELECT id name discount custtype
FROM scustom
 INTO CORRESPONDING FIELDS OF TABLE lt_scustom

Selecting specific
data instead
of deleting

530

14 Practical Tips

 WHERE country = 'DE'
 AND custtype <> 'P'.

LOOP AT lt_scustom INTO ls_cust.
 WRITE: / ls_cust-id, ls_cust-name,
 ls_cust-discount, ls_cust-custtype.
ENDLOOP.

Listing 14.7 Selecting Only Required Data

Summary and Significance for SAP HANA

A consistent application of this rule for classic databases leads to reduced
I/O effort, optimized memory consumption in the cache, reduced CPU
consumption and, last but not least, to an optimized network transfer
because less data is transferred.

Significance of Rule #1 for SAP HANA

This rule applies unchanged and with the same priority to SAP HANA. CPU and
main memory resources are also conserved on SAP HANA if fewer data records
have to be read. There is no change in the transfer of data via the network.

The Code Inspector (see Section 7.3) provides support here with the follow-
ing checks:

EE Analysis of the WHERE condition for a SELECT

EE Analysis of the WHERE condition for the statements UPDATE and DELETE

EE Search for SELECT statements with DELETE

EE SELECT statements with subsequent CHECK

These checks are described in more detail in Section 7.3.1.

14.4.2 Rule 2: Keeping Transferred Datasets Small

The second golden rule recommends that you transfer as little data as
possible between the database and the application server. The data is
transferred from the database to the application server in blocks. The
network load can be reduced by transferring fewer blocks.

As a programmer, you can do this by influencing the number of selected
rows and columns via restrictions that go beyond the WHERE condition.
We would like to discuss these aspects in the following subsections:

Number of
selected rows
and columns

531

Performance Recommendations for Open SQL 14.4

EE Using the addition UP TO n ROWS

EE Working with DISTINCT

EE Reducing the number of columns

EE Using aggregate functions

EE Performing existence checks efficiently

EE Changing only required columns

Using UP TO n ROWS

If you require only a certain number of rows, you can use the UP TO
n ROWS addition to further restrict the number of rows. The following
examples illustrate how you can use UP TO n ROWS to further reduce the
number of transferred data records. The business customers with the
highest discounts are selected. In Listing 14.8, the system terminates in a
loop after the tenth data record (example of a bad process). Since SELECT
... ENDSELECT reads the data in blocks from the database, however, more
data records than necessary were already transferred in the first block. In
Transaction ST05 (see Section 7.4.3), you can see how many data records
were transferred in the first block (corresponds to a FETCH).

SELECT id name discount
 FROM scustom
 INTO (ls_cust-id, ls_cust-name, ls_cust-discount)
 WHERE custtype = 'B'
 ORDER BY discount DESCENDING.
 IF sy-dbcnt > 10. EXIT.
 ENDIF.
 WRITE: / ls_cust-id, ls_cust-name, ls_cust-discount.
ENDSELECT.

Listing 14.8 No UP TO n ROWS

Exactly 10 records are transferred in Listing 14.9, because the statement—
the statement saying only 10 records were required—was transferred to
the database (example of a good process).

SELECT id name discount
 FROM scustom UP TO 10 ROWS
 INTO (ls_cust-id, ls_cust-name, ls_cust-discount)
 WHERE custtype = 'B'

532

14 Practical Tips

 ORDER BY discount DESCENDING.
 WRITE: / ls_cust-id, ls_cust-name, ls_cust-discount.
ENDSELECT.

Listing 14.9 With UP TO n ROWS

Using DISTINCT

If the system calculates with a certain WHERE condition that has unnecessary
duplicate entries regarding the selected columns, the DISTINCT statement
should be used to remove the duplicate entries already in the database.

In the following example, a list is created of discounts that were granted.
In Listing 14.10, the duplicate entries are deleted after the selection. In
Listing 14.11, only the required data is read from the database.

SELECT custtype discount
 FROM scustom
 INTO CORRESPONDING FIELDS OF TABLE lt_scustom
 WHERE discount > 0
 ORDER BY custtype discount DESCENDING.

DELETE ADJACENT DUPLICATES FROM lt_scustom.

LOOP AT lt_scustom INTO ls_cust.
 WRITE: / ls_cust-custtype, ls_cust-discount.
ENDLOOP.

Listing 14.10 Query without DISTINCT

SELECT DISTINCT custtype discount
 FROM scustom
 INTO CORRESPONDING FIELDS OF TABLE lt_scustom
 WHERE discount > 0
 ORDER BY custtype discount DESCENDING.

LOOP AT lt_scustom INTO ls_cust.
 WRITE: / ls_cust-custtype, ls_cust-discount.
ENDLOOP.

Listing 14.11 Query with DISTINCT

Example with and
without DISTINCT

533

Performance Recommendations for Open SQL 14.4

Reducing Number of Columns

You should select only columns in a database table that are also required
in the ABAP program. Here, you should list the columns individually in
the field list after SELECT, if possible. The selection of all columns using
SELECT * should only be used if all columns are really required.

Although the addition INTO CORRESPONDING FIELDS OF selects only the
columns that are also in the above objective when * is specified, extra
effort is involved in comparing names in the database interface. Thus
this addition should be only be used sparingly and for larger result sets
because the effort involved in comparing names can be relatively high
for very quick SELECT statements.

In the following example, the system determines the days on which a
certain flight connection exists in 2013. In Listing 14.12, all columns of
the SFLIGHT table are read, although only the flight date is required. In
Listing 14.13, only the required column is read.

SELECT * FROM sflight
 INTO ls_sflight
 WHERE carrid = 'LH'
 AND connid = '0300'
 AND fldate LIKE '2013%'.
 WRITE: / ls_sflight-fldate.
ENDSELECT.

Listing 14.12 Query without Field List

SELECT fldate FROM sflight
 INTO (lv_sflight-fldate)
 WHERE carrid = 'LH'
 AND connid = '0300'
 AND fldate LIKE '2013%'.
 WRITE: / lv_sflight-fldate.
ENDSELECT.

Listing 14.13 Query with Field List

Another option for reducing the dataset is the use of aggregate functions.

Addition INTO
CORRESPONDING
FIELDS OF

SELECT specific
columns

534

14 Practical Tips

Using Aggregate Functions

If data is required only for calculations, it is better to perform these calcu-
lations in the database and transfer the results rather than transferring all
data and performing the calculation in the ABAP program. The available
aggregate functions are: COUNT, MIN, MAX, SUM, and AVG for the number,
the minimum value, the maximum value, the sum of the values, and the
average value, respectively.

In the following example, the system determines the sum of the reserved
seats of an airline in a specific year. In Listing 14.14, all reservations of
flights are selected and added up in the ABAP program. In Listing 14.15,
the sum of the reservations is calculated in the database and only this
sum is transferred to the ABAP program.

lv_sum = 0.
SELECT seatsocc
 FROM sflight INTO lv_seatsocc
 WHERE carrid = 'LH'
 AND fldate LIKE '2013%'.
 lv_sum = lv_sum + lv_seatsocc.
ENDSELECT.
WRITE: / lv_sum.

Listing 14.14 Query without Aggregate Function

SELECT SUM(seatsocc)
 FROM sflight INTO lv_sum
 WHERE carrid = 'LH'
 AND fldate LIKE '2013%'.
WRITE: / lv_sum.

Listing 14.15 Query with Aggregate Function

Performing Existence Checks Efficiently

You should use these aggregate functions only if you need such a calcu-
lation. To determine whether there is a data record for a specific key,
for example, you should not use SELECT COUNT(*) because the number
is irrelevant in this case. For such an existence check, you require only
a single field of the data record you seek. This should be a field of the
index that is in use.

Determining data
with and without

aggregate function

535

Performance Recommendations for Open SQL 14.4

In the example, the system is to check whether there were flights for
a specific flight connection in a specific year. In Listing 14.16, this is
checked using a COUNT(*). Here, all data records in the database that meet
the condition are counted. The addition UP TO 1 ROWS does not change
anything because it is only executed after counting. In Listing 14.17, the
data records are not counted because the number of records is irrelevant.
Only one field is selected—there should be no SELECT * here either—and
the result set is restricted to one row with UP TO n ROWS. This ensures
that only one data record is read. Once the database has determined a
record that meets the conditions, the processing is terminated.

SELECT count(*) UP TO 1 ROWS
 FROM sflight INTO lv_cnt
 WHERE carrid = 'LH'
 AND connid = '0400'
 AND fldate LIKE '2013%'.
IF lv_cnt > 0.
...

Listing 14.16 Existence Check with COUNT(*)

SELECT carrid INTO lv_sflicht-carrid
 UP TO 1 ROWS
 FROM sflight
 WHERE carrid = 'LH'
 AND connid = '0400'
 AND fldate LIKE '2013%'.

ENDSELECT.
IF sy-subrc = 0.
...

Listing 14.17 Existence Check without COUNT(*)

Changing Only Required Columns

For changes with the UPDATE statement, only the desired columns are
to be changed with the SET statement. When changing rows from work
areas, too much data is usually transferred and columns that have not
changed are also overwritten.

The connection number of a specific flight is to be changed in the example.
In Listing 14.18, the rows to be changed are first read, then a column is

Existence check
without counting
the data records

Complete and
specific change

536

14 Practical Tips

changed with a new value in the work area, and finally the entire row
is written back to the database. Here, an unnecessarily large number of
columns is transferred and all columns are overwritten in the database,
even if their values have not changed. In Listing 14.19, an UPDATE ...
SET overwrites only the desired column with a new value. The records
are thus not read at all and far less data is transferred to the database. In
addition, the database has to change only the transferred column.

SELECT * FROM sbook
 INTO ls_sbook
 WHERE carrid = 'LH'
 AND connid = '0400'
 AND fldate >= '20140101'.
 ls_sbook-connid = '0500'.
 UPDATE sbook FROM ls_sbook.
ENDSELECT.

Listing 14.18 Changing the Entire Row

UPDATE sbook
 SET connid = '0500'
 WHERE carrid = 'LH'
 AND connid = '0400'
 AND fldate >= '20140101'.

Listing 14.19 Changing the Desired Columns

Summary and Significance for SAP HANA

The effects of rule #2 are very similar those of rule #1. The consistent
application of these rules leads to reduced resource consumption in the
classic database.

Significance of Rule #2 for SAP HANA

This rule applies unchanged to SAP HANA because the resources are con-
served in a similar manner here. The priority of the rule is slightly higher than
for other databases. This can be attributed to the different storage of data.
If data records are stored in a row-based manner, all columns in a block are
close together. In column-oriented storage, each column is a separate storage
structure. Although these storage structures can be processed in parallel, the
time required for multiple columns is slightly higher. Even if the differences
are not very large, you should pay special attention to these rules and check
time-critical applications for optimization with regard to this rule.

537

Performance Recommendations for Open SQL 14.4

The Code Inspector (see Section 7.3) provides support here with the follow-
ing checks:

EE Problematic SELECT * statement

EE EXIT or no statement in SELECT ... ENDSELECT loop

These checks are described in more detail in Section 7.3.1.

With regard to the aggregate functions, it must be emphasized that these
are very well supported by SAP HANA. However, you should only use them
where you actually require the calculations.

14.4.3 Rule 3: Reducing Number of Queries

The third rule recommends reducing the number of queries to the data-
base. Each SQL statement in an ABAP program that is sent to the database
involves a certain degree of effort in the database. Thus, the statement
itself and its associated parameters are transferred to the database. It must
analyze the statement in terms of the syntax and search by hash function
in the SQL cache, or store it there when it is first executed. In addition,
authorizations and the existence of database objects (tables, views, and
so on) must be checked to ensure they are present. The results of the
query must also be transferred. To reduce the load on the database, you
should thus keep the number of accesses as low as possible.

In ABAP programs, you can influence the number of statements by the
following measures:

EE Using set operations instead of individual operations

EE No longer performing multiple accesses

EE No longer using nested SELECT loops

EE Not executing SELECT statements in the LOOP via internal tables

EE Using buffers

Using Set Operations Instead of Individual Operations

When reading with SELECT, you should choose the addition INTO TABLE
instead of the SELECT ... ENDSELECT loop if all the data to be read must
fit into the main memory. The SELECT ... ENDSELECT also reads the data
in blocks from the database to the database interface. From there, the

Processing effort
for SQL statements

Read

538

14 Practical Tips

data is transferred in single records to the ABAP program. The SELECT
... ENDSELECT loop is thus useful if the available memory is insufficient
for all data or if the read data is accessed once only.

For write accesses, you should rely wherever possible on set operations
with internal tables. The number of database queries is thus greatly
reduced, and the database can perform more optimizations with the data
that was transferred all at once.

In the following two examples, data records are inserted in the SBOOK table.
In Listing 14.20, the data records are inserted record by record in a loop.
In Listing 14.21, all data records are inserted at once in a set operation.

LOOP AT lt_sbook INTO ls_sbook.
 INSERT INTO sbook VALUES ls_sbook.
ENDLOOP.

Listing 14.20 Inserting in a Loop

INSERT sbook FROM TABLE lt_sbook.

Listing 14.21 Inserting in a Set Operation

No Longer Performing Multiple Accesses

You should make sure you do not repeatedly access the same data. For
example, avoid a SELECT before a DELETE for the same data record (see
Listing 14.22). You have already seen an example with UPDATE in List-
ing 14.18. Listing 14.23 shows a delete operation without a preceding
SELECT statement.

SELECT SINGLE * FROM sflight INTO lv_sflight
 WHERE carrid = 'SQ' AND connid ='0002'.

IF sy-subrc = 0.
 DELETE FROM sflight
 WHERE carrid = 'SQ' AND connid = '0002'.
 IF sy-subrc = 0.
 COMMIT WORK.
 ENDIF.
 ENDIF.

Listing 14.22 Deleting after SELECT

Set operations
with internal

tables

Loop or set
operation

Deleting without
SELECT statement

539

Performance Recommendations for Open SQL 14.4

DELETE FROM sflight
 WHERE carrid = ‘SQ’ AND connid = ‘0002’.

IF sy-subrc = 0.
 COMMIT WORK.
ENDIF.

Listing 14.23 Deleting without SELECT

No Longer Using Nested SELECT Loops

For nested SELECT loops, the inner SELECT statement is executed once
for each data record that the outer SELECT loop returns. The number of
records in the outer data records‘ result set thus determines the execu-
tions of the inner SELECT statement. Therefore, such a construct should
only be used if the result set of the outer loop contains very few rows.

For merging data sets, we recommend that you use the following options:

EE Views (see Chapter 3, Section 3.2.3 and Chapter 4)

EE Joins

EE FOR ALL ENTRIES

EE Subqueries

EE Cursors

The runtime of views and joins depends greatly on the execution plan
selected by the database optimizer. Accesses to views and joins are still
usually faster than nested loops. If this is not the case, the execution
plan must be analyzed more precisely, which requires good knowledge
of the respective database. The optimizer may not be able to optimally
determine the sequence of the tables. Joins and views have a disadvan-
tage in that the data of the outer table is redundant in the result set with
a 1:n relationship between the outer and inner table. Thus more data
than necessary may be transferred. You must make sure to select only
the fields that are actually required. In extreme cases, a FOR ALL ENTRIES
(see next section) can be better.

The following is an example where the data from the tables SFLIGHT
and SBOOK is merged. All bookings from the table SBOOK for a specific
aircraft type are to be read from table SFLIGHT. In Listing 14.24, this

Views and joins

SELECT loop
and inner join

540

14 Practical Tips

is implemented via nested SELECT loops. Here, the SELECT statement is
executed once in the table SBOOK for each data record that was read from
the table SFLIGHT. In Listing 14.25, the data is read using a join, and only
one statement is sent to the database.

SELECT carrid connid fldate FROM sflight
 INTO (lv_carrid, lv_connid, lv_fldate)
 WHERE planetype = '727-200'.
 SELECT bookid FROM sbook INTO lv_bookid
 WHERE carrid = lv_carrid
 AND connid = lv_connid
 AND fldate = lv_fldate.
 WRITE: / lv_carrid, lv_connid, lv_bookid.
 ENDSELECT.
ENDSELECT.

Listing 14.24 Nested SELECT Loops

SELECT f~carrid f~connid b~bookid
 INTO (lv_carrid, lv_connid, lv_bookid)
 FROM sflight AS f INNER JOIN sbook AS b
 ON f~carrid = b~carrid AND
 f~connid = b~connid AND
 f~fldate = b~fldate
 WHERE planetype = '727-200'.
 WRITE: / lv_carrid, lv_connid, lv_bookid.
ENDSELECT.

Listing 14.25 Inner Join

Nested loops can also be avoided via the FOR ALL ENTRIES construct.
Here, the data of the outer table is stored in an internal table, and then
the inner SELECT statement is executed once with the addition FOR ALL
ENTRIES. The internal table is thereby divided into blocks and a statement
is executed for each block. That means the transfer of redundant data from
the outer table can be avoided, which can lead to better performance in
certain cases. Generally, a JOIN should be selected wherever possible,
because the number of statements sent to the database is smaller than
with FOR ALL ENTRIES. You will find an example of a FOR ALL ENTRIES
statement in the following section.

FOR ALL ENTRIES

541

Performance Recommendations for Open SQL 14.4

With subqueries, you can also access multiple tables in a single statement.
The data of the subquery is not transferred at all, but is used only within
the query in the database itself.

The following example shows the flight data of the busiest flights, based
on the maximum number of occupied seats. In Listing 14.26, the inner
SELECT statement is sent for each data record of the outer to the database.
For Listing 14.27, only a single statement is sent to the database.

SELECT carrid connid MAX(seatsocc)
 FROM sflight
 INTO (lv_carrid, lv_connid, lv_max)
 GROUP BY carrid connid.
 SELECT fldate FROM sflight
 INTO lv_fldate
 WHERE carrid = lv_carrid AND
 connid = lv_connid AND
 seatsocc = lv_max.
 WRITE: / lv_carrid, lv_connid, lv_fldate.
 ENDSELECT.
ENDSELECT.

Listing 14.26 Nested SELECT Statements

SELECT carrid connid fldate
 FROM sflight AS f
 INTO (lv_carrid, lv_connid, lv_max)
 WHERE seatsocc IN
 (SELECT MAX(seatsocc) FROM sflight
 WHERE carrid = f~carrid
 AND connid = f~connid).
 WRITE: / lv_carrid, lv_connid, lv_fldate.
ENDSELECT.

Listing 14.27 Subquery

Not Executing SELECT Statements in the LOOP via Internal Tables

Similar to nested loops, you should not execute SELECT statements in the
LOOP via internal tables. Here, the addition FOR ALL ENTRIES is useful for
reducing the number of executions. In this case, you should ensure that
the internal table is never empty and does not contain duplicates with
FOR ALL ENTRIES.

Subqueries

Nested and
subquery

542

14 Practical Tips

In the example, the corresponding booking data is determined for all
flights that are in the internal tables LT_SFLIGHT. In Listing 14.28, a
SELECT is executed for each data record in the LOOP via the internal table
LT_SFLIGHT. In Listing 14.29, the number of executed SELECT statements
is reduced by FOR ALL ENTRIES.

LOOP AT lt_sflight INTO lv_sflight.
 SELECT SINGLE bookid customid FROM sbook
 INTO lv_sbook
 WHERE carrid = lv_sflight-carrid
 AND connid = lv_sflight-connid
 AND fldate = lv_sflight-fldate.

 WRITE: / lv_sflight-carrid,
 lv_sflight-connid, lv_sflight-fldate,
 lv_sbook-bookid, lv_sbook-customid.
ENDLOOP.

Listing 14.28 SELECT in the LOOP

IF lines(lt_sflight) > 0.
 SELECT carrid connid fldate bookid customid
 FROM sbook
 INTO CORRESPONDING FIELDS OF TABLE lt_sbook
 FOR ALL ENTRIES IN lt_sflight
 WHERE carrid = lt_sflight-carrid
 AND connid = lt_sflight-connid
 AND fldate = lt_sflight-fldate.
 ENDIF.

Listing 14.29 Restriction with FOR ALL ENTRIES

Using Buffers

The use of the SAP table buffer and other buffers (see Section 14.4.5)
also contributes to minimizing the number of SQL statements that are
sent to the database.

Summary and Significance for SAP HANA

The consistent application of this rule leads to reduced CPU consumption
for classic databases. Network resources are also used better because the
number of sent blocks can be optimized.

543

Performance Recommendations for Open SQL 14.4

Significance of Rule #3 for SAP HANA

This rule has a higher priority for SAP HANA than for other databases. The
effort involved in the execution of a statement is currently slightly higher in
SAP HANA than in classic databases. However, this will be optimized in the
future. Applications that send a very large number of quick queries to the
database are thus to be examined in terms of optimization potential, based
on the approaches presented in the examples in this section.

The Code Inspector provides support here with the following checks:

EE Searching for SELECT ... FOR ALL ENTRIES clauses to be transformed

EE Searching for database operations in LOOPS within modularization units

EE Changing database accesses in loops

These checks are described in more detail in Section 7.3.1.

14.4.4 Rule 4: Minimizing Search Effort

This section is about the effort involved in selecting the dataset that was
restricted via the WHERE and HAVING clauses. You can minimize the effort
of the data search with an index. As in the previous sections, we will first
discuss the recommendations for classic databases before we turn to the
recommendations for SAP HANA.

Database Index in Classic Databases

An index consists of selected fields of the database table, which are cop-
ied in a sorted sequence into a separate structure. A distinction is made
between the primary index and the secondary index. The primary index
contains the primary key fields. Thus this index is unique, and there can
be only one data record for any combination of the fields of this index. It
is always created automatically in SAP systems when you create a table.

Then there are the secondary indexes, which can be unique or non-unique.
Secondary indexes are created in the ABAP Data Dictionary. They are usu-
ally used to optimize performance, but can also have semantic motives
in the case of unique indexes if, for example, only unique values may be
in a column that is not part of the primary key.

Primary vs.
secondary

544

14 Practical Tips

The correct formulation of WHERE or HAVING clauses and a suitable second-
ary index definition can minimize the search effort significantly because
only part of the data has to be read.

Our recommendations for creating indexes are as follows:

EE Secondary indexes are to be created only for database tables where
the read accesses are more time-critical than the write accesses, since
each created index has to be maintained for write accesses.

EE The number of created indexes and fields in the index should be kept
as small as possible. Otherwise, it takes more effort to change database
accesses, and the optimizer is likelier to make wrong decisions.

EE The fields on which indexes are created should only be in one index
if possible. Overlaps should be avoided.

EE The fields in a secondary index should be fields through which you
often select. These fields should also be selective, that is, the percent-
age of data records selected by the index should be small.

EE The fields that are most likely to be queried with the = operator should
be at the beginning of the index.

To formulate the WHERE clauses, these are our main recommendations:

EE The = operator or EQ operator and AND links are always supported effi-
ciently in the index. That is, the optimizer can thus reduce the I/O
effort whenever it is technically possible. An IN list also falls into this
category because it represents, in principle, a multiple = for the col-
umn. Thus you should use = and IN conditions wherever possible.

EE Avoid negative conditions (<>, NE, NOT) because they cannot be sup-
ported efficiently in the index. If possible, rewrite such conditions as
positive conditions. If this is not possible, you should still specify the
conditions in the WHERE condition and not omit them completely. This
is the only way in which the required data records will be selected.
Otherwise, you would read unnecessary records that you would then
have to remove in the ABAP program, which would contradict the first
golden rule.

EE If you do not specify all fields in the index, make sure that you enclose
the initial section of the index in the WHERE condition. Otherwise, the
use of an index is not possible in many cases.

Recommendations
for classic
databases

WHERE condition

545

Performance Recommendations for Open SQL 14.4

Database Index in SAP HANA

There has been much development in this area for SAP HANA. This sec-
tion involves the question of how and when indexes should be created in
SAP HANA. In Appendix C, we explain the background of read accesses
and write accesses for column-based data storage. There, we also explain
why it is no longer necessary in many cases to create an index here, even
though an index had to be created in other databases. With SAP HANA,
we distinguish between inverted and composite indexes (see Appendix C).

Composite indexes have a higher memory requirement due to the memory
structures for an additional internal column. Thus, we recommend that
you work as much as possible with inverted indexes. That is, an index
should be created in each case for the column that has the most selec-
tive condition. Composite indexes should be created only in exceptional
cases—for example, when data from different columns correlates to such
an extent that only certain combinations are selective. The maintenance
of indexes results in increased costs for write accesses in SAP HANA
also. However, these costs are significantly less for inverted indexes than
for composite indexes, for which multiple memory structures must be
maintained.

If you are migrating an existing system to SAP HANA, all existing second-
ary indexes for column store tables are no longer created. Technically,
they are included in the exclusion list for SAP HANA in the ABAP Data
Dictionary (see Section 3.2.1).

In principle, additional indexes should only be created if the access times
are insufficient without an index. In this case, an index should be created
for the selective conditions, provided these are not already covered by
the primary index.

SAP Note for Analyzing and Creating Column Store Indexes

SAP Note 1794297 describes a method recommended by SAP for analyzing
and creating indexes in column store tables. The note also provides the nec-
essary programs for analyzing and creating the indexes. We recommend you
use this method when creating additional secondary indexes.

Inverted versus
composite index

Index creation
in SAP HANA

546

14 Practical Tips

Summary and Significance for SAP HANA

A consistent application of this fourth rule for classic databases leads to
reduced I/O effort, optimizes memory consumption in the cache, reduces
CPU consumption and, last but not least, optimizes the network transfer
because less data is transferred.

Significance of Rule #4 for SAP HANA

The fourth rule changes in SAP HANA, and its observance has a lower priority.
This is because no index at all is required in SAP HANA in many cases. If an
index is required for very large tables, the rules for the index definition change.
In these cases, the CPU consumption is reduced by the index.

In SAP HANA, indexes are usually created for individual columns. Indexes that
span multiple columns are the exception. The Code Inspector supports you
here with the “Analysis of the WHERE condition” check.

14.4.5 Rule 5: Reducing Load on Database

The fifth rule summarizes the aforementioned rules and also recommends
to reduce the load on the database wherever possible. The database is a
central resource in the SAP system. For this reason, you should keep the
load for repeated operations on the database as small as possible. We
will describe some measures below that contribute to reducing the load
on the database:

EE Using buffers

EE Sorting

EE Avoiding identical accesses

Using Buffers

Since the data for SAP HANA is stored in the main memory, you may have
wondered whether the buffers on the application server or in programs
are still required. The following cross-user buffers are available on the
application server:

EE Shared objects

EE Shared buffer

EE Shared memory

Cross-user buffer

547

Performance Recommendations for Open SQL 14.4

EE Table buffer

The following user-specific buffers are also available within a user session:

EE SAP Memory

EE ABAP Memory

EE Program-specific buffering in internal tables

The most important properties of this buffer are summarized in Table 14.4.

Cross-User Buffering

Table Buffer Shared Objects Shared Memory Shared Buffer

Possible
Purpose

Simple tables
data

Complex data,
object networks

Extracts,
metadata

Extracts,
metadata

Copy-Free
Access

No Yes No No

Compression No No Optional Optional

Synchronization Yes No No No

Displacement Yes No No Yes

ABAP
Statement

Open SQL Methods
of the class
cl_shm_area

EXPORT TO
SHARED MEMORY

IMPORT FROM
SHARED MEMORY
DELETE FROM
SHARED MEMORY

EXPORT TO
SHARED BUFFER

IMPORT FROM
SHARED BUFFER
DELETE FROM
SHARED BUFFER

User-Specific Buffering

Internal Tables ABAP Memory SAP Memory

Possible
Purpose

Smaller amounts of master
data

Extracts, metadata Parameter

Copy-Free
Access

Yes, if implemented
appropriately

No No

Compression Yes, if implemented
appropriately

Optional No

Table 14.4 Properties of Cross-User and User-Specific Buffers

User-specific
buffers

548

14 Practical Tips

User-Specific Buffering

Internal Tables ABAP Memory SAP Memory

ABAP
Statement

Statements for internal
tables (READ, LOOP, and
so on)

EE EXPORT TO
MEMORY ID

EE IMPORT FROM
MEMORY ID

EE DELETE FROM
MEMORY ID

EE SET PARAMETER
ID

EE GET PARAMETER
ID

Table 14.4 Properties of Cross-User and User-Specific Buffers (Cont.)

Basically, there are no changes to the recommendations for buffering data
when using SAP HANA. Accessing the buffer on the application server
is still faster than accessing the database, also in the case of SAP HANA.
This is because, among other things, the main memory in the application
server is on the same server on which the ABAP program is running. For
the main memory in the database, however, a network is located between
the application server and the database. In addition, several software
layers are involved in accessing the database. We will highlight the table
buffer in particular below because it is one of the most important buffers.

Accessing the table buffer is approximately 10 times faster than accessing
data in the database. Tables that are frequently read, rarely changed, and
are not too big should be buffered. When doing so, you should consider
the following:

EE Due to the synchronization between the application servers, there may
be a delay in the availability of the changed data for other users. This
must be acceptable from the application perspective. Thus, tables where
the latest level is always required should not be buffered.

EE Tables that are frequently changed (> 0.1% to 1% of all accesses) should
be not buffered, because performance tends to deteriorate rather than
improve due to the synchronization effort and reloading.

EE A buffered table should only occupy a small percentage (up to 5%) of
the table buffer.

EE In SAP NetWeaver 7.4, both primary and secondary keys are used
efficiently in the table buffer for the search. In earlier releases, this

Table buffer

Buffer
considerations

549

Performance Recommendations for Open SQL 14.4

was true only for the primary key, and accesses via the secondary key
were not optimized.

When accessing buffered tables, you must ensure that the SQL statements
can use the buffer. Basically, accesses pass the table buffer if the WHERE
condition applies to more than one buffer object. Thus, all fields of the
generic key must be specified for generically buffered tables. All fields
of the primary key must be specified for single-record buffered tables. In
addition, there are still a number of statements that read past the buffer:

EE Accesses with the addition BYPASSING BUFFER

EE Accesses with IN lists in key fields that contain more than one element

EE Accesses with the addition FOR UPDATE in the SELECT clause

EE Accesses with aggregate functions

EE Accesses with the addition DISTINCT

EE Accesses with the IS NULL operator

EE Accesses with subqueries

EE Accesses with ORDER BY (except ORDER BY PRIMARY KEY)

EE Accesses with JOIN

EE Accesses with the addition CLIENT SPECIFIED if the client is not spec-
ified

EE Accesses that were written in Native SQL

EE Accesses that are executed after calling the function module DB_SET_
ISOLATION_LEVEL (see SAP Note 1376858)

The Code Inspector helps you search for such statements with the check
“SELECT statements that bypass the buffer.”

The rules remain the same also for the other buffers (for example, shared
objects, shared memory, shared buffer, internal tables, ABAP Memory,
and SAP Memory). This means you should continue to store in such
buffers any data that is time-consuming to obtain or calculate, or which
is used more than once, in order to relieve the database of repeated
costly queries. These include, for example, the results of analytic views
or database procedures which you have created using code pushdown.

Accesses that read
past the buffer

Other buffers

550

14 Practical Tips

If you need the results several times in the application context, it is better
just to read the data once from the database and then to buffer it in the
application server. The buffers you choose will depend on whether the
data is required across multiple users or only within an application. You
will find the most important properties of the various buffers in Table
14.4 at the beginning of this section. Through this, you can relieve the
database of unnecessary multiple accesses that are repeated with the
same parameters.

Sorting To Improve Performance

In Section 14.1.4, we discussed the functional aspects of sorting for the
database migration. The question remained open as to whether you
want to sort in the database or in the ABAP program. The rules have not
changed here. If the sorting in the database cannot be mapped via an
index that is used for the selection, you should sort in the ABAP applica-
tion server—especially if the total dataset to be sorted is required by the
application. If, however, the sorting of a large dataset is required to cal-
culate a smaller result (for example, determining the five best customers
in relation to order value), the sorting should be left to the database. If
the sorting is part of the calculation or can be performed cost-effectively
in the database, it should also take place in the database.

Avoiding Identical Accesses

Another measure is avoiding identical accesses—that is, you should avoid
the multiple reading of identical data. This reduces not only the number
of accesses to the database (see golden rule #3), but avoids especially
unnecessary load on the database. Usually, internal tables or even buffers
are used to avoid identical accesses.

Summary and Significance for SAP HANA

A consistent application of this fifth rule for classic databases leads to
reduced CPU consumption and to a reduced load on the network. The
I/O effort may also be reduced by avoiding multiple accesses.

Also with SAP HANA, the buffers on the application server continue to
be justified because they offer faster access times and can relieve the
database of unnecessary accesses. This means, for example, that you can

Sorting in
database or

application server

Buffering
calculations to be
frequently called

551

Performance Recommendations for Native Implementations in SAP HANA 14.5

in fact execute complex calculations via code pushdown in the database
on SAP HANA, but you only call these calculations as often as necessary.
If a result has to be queried multiple times, it should be stored in a buffer.

Significance of Rule #5 for SAP HANA

The strongest feature of SAP HANA is the execution of complex calculations
on large sets of data. These calculations should be done on the database. On
the other hand, it does not make sense to send the same calculations or access
commands to the database over and over again. Thus, the fifth rule can be
worded as: “Relieve the database of unnecessary accesses.” Thus formulated,
this rule applies unchanged and with the same priority to SAP HANA, because
CPU and network resources can be relieved here, too.

The buffering rules also remain unchanged when using SAP HANA. All buffers
continue to be used in those places where the database can be relieved from
repeated accesses. Sortings can also provide relief if they are executed on the
application server, where this is useful. Identical requests should always be
avoided, because this also relieves the database.

14.4.6 Summary of Rules

As you have seen in the previous sections, most golden rules for database
programming also apply to SAP HANA. Only a few priorities change.
Therefore, the number of accesses to the database is more important
for SAP HANA than it is in classic databases. Thus rule #3 has a higher
priority. On the other hand, indexes are required on SAP HANA only
under certain circumstances, so rule #4 has a lower priority. To sum up,
it can be said that observing the golden rules means fewer adjustments
to ABAP programs for performance optimization.

14.5 Performance Recommendations for Native
Implementations in SAP HANA

After having discussed performance recommendations for working with
Open SQL in the previous section, we would now like to provide some
recommendations for working with Native SQL, modeled and imple-
mented SAP HANA views, as well as SQLScript.

Same rules,
changed priorities

552

14 Practical Tips

14.5.1 Recommendations for Native SQL

In connection with the use of Native SQL via ADBC, we would like—in
addition to the recommendations for Open SQL, which apply in the same
way as Native SQL—to refer to two topics separately. This involves the use
of Prepared statements and mass operations. We have presented both in
Section 3.2.4, so we only want to discuss the performance aspects here.
For the topics presented here (and for others), there is an example in
the subroutines INSERT_ROWS and INSERT_ITAB in the ABAP test program
ADBC_DEMO, which is provided with the standard SAP.

Prepared Statements

Unlike Open SQL, which is optimized for performance by the SAP ker-
nel, the programmer must ensure optimal use when using Native SQL
via ADBC. If the class CL_SQL_STATEMENT is used, this involves a dynamic
statement that is transferred to the database for each execution with the
method EXECUTE_QUERY, which analyzes the SQL statement in turn as a
character string. The parameters are included in the analysis. The follow-
ing two SQL statements are thus different for the database because two
different character strings are involved:

SELECT * FROM scarr WHERE carrid = 'AA';
SELECT * FROM scarr WHERE carrid = 'UA';

For each of these two statements, the database must perform, among
other things, the following steps:

EE Parse the statement (for example, for the syntax).

EE Reserve memory for the statement and the execution plan.

EE Create the execution plan and store it in the SQL cache.

These steps are known as the prepare phase because the statement for
execution is prepared here. If a very large number of SQL statements is
sent to the database, which differ only in the parameters that are used,
the database has to make a relatively large effort in preparing each state-
ment. The time required can lie in the mid-three-digit microsecond range
and thus may be as high as the time required for actually executing the
statement. Frequent executions therefore quickly involve additional effort,
which can constitute a significant part of the runtime.

Prepare phase

553

Performance Recommendations for Native Implementations in SAP HANA 14.5

If only the parameters of an SQL statement change, the SQL statement
can be transferred to the database using the class CL_PREPARED_STATEMENT
with a parameter marker. The transferred statement looks, for example,
as follows:

SELECT * FROM scarr WHERE carrid = ?;

This statement is prepared once only and is stored in the SQL cache.
Immediately before execution, the parameters that were set with the
method SET_PARAM are used instead of the parameter marker when you
call the method EXECUTE_QUERY of the class CL_PREPARED_STATEMENT. That
means you can reduce the effort in preparing the SQL statements to the
bare minimum. Once you no longer require the prepared SQL statement,
you should use the method CLOSE to close the class CL_PREPARED_STATE-
MENT, so you can release the resources required by the SQL statement as
soon as possible.

You should use the class CL_SQL_STATEMENT to execute statements that are
executed only once. For SQL statements that you want to execute several
times, you should use the class CL_PREPARED_STATEMENT, and pass the dif-
ferent parameters seperately. That helps keep the effort in preparing SQL
statements as low as possible and contributes to relieving the database.

Mass Operations

As of SAP NetWeaver AS ABAP 7.4, an array interface is available for
modifying SQL statements via ADBC. You can add, for example, multiple
rows at once and do not have to proceed row by row. Since a reduced
number of statements has a positive effect on the performance of an appli-
cation, we recommend that you use this option not only for read accesses,
but also for write accesses. As discussed in Section 14.1.6, however, you
should modify data via the ADBC interface only in exceptional situations.

14.5.2 Recommendations for SAP HANA Views

In Chapter 4, you learned about different view types. When modeling and
implementing SAP HANA views, you can make certain errors that have
a particularly adverse effect on performance. We would like to provide
a few basic recommendations for modeling SAP HANA views.

Advantage
of prepared
statements

Recommendation
for use

554

14 Practical Tips

Selecting the Correct View Type

First, it’s incredibly important to select the correct view type when
modeling in SAP HANA Studio. Your options are shown in Figure 14.3.

Figure 14.3 is derived from the SAP HANA SQLScript Reference and
supports you in decision-making.

Data Modeling in
SAP HANA

Analytic View

Attribute Views

Modeled
Calculation Views

Implemented Calculation
View with CE Functions

Implemented Calculation
View with SQLScript

yes

yes

yes

yes

no

no

no

no

Only joins
and calculated

attributes?

Calculation
views with CE

functions
sufficient?

Star schema
and/or

aggregation?

Modeled
calculation view

sufficient?

Figure 14.3 Selecting the View Type in SAP HANA

When selecting the view type, you should first check whether you need
a star schema to map a given requirement and/or would like to aggregate
a large number of data records. If this is the case, we recommend that
you use an analytic view. Otherwise, you can first use an attribute view.
An attribute view allows you to relate multiple tables to each other using
joins. If necessary, you can also define calculated fields.

If you cannot map a given requirement through an analytic view nor an
attribute view, use a calculation view. You can use a modeled calculation

Analytic and
attribute views

Calculation views

555

Performance Recommendations for Native Implementations in SAP HANA 14.5

view if you want to use only the operations JOIN, PROJECTION, AGGREGA-
TION, and UNION. Otherwise, you must implement the calculation view and
either use only CE functions or rely on the additional options of SQLScript.

Modeling/Implementation

In addition to selecting the correct view type, you should consider some
other recommendations for modeling and implementing SAP HANA
views to achieve optimum performance.

You very often need several SAP HANA views (see Figure 14.4) to solve
a given requirement, as in the following situation:

EE You aggregate various key figures with different analytic views (that
could be, for example, an analytic view based on the SFLIGHT table
and a second analytic view based on the SBOOK table; the first analytic
view determines the load, while the second determines the sum of
baggage weights per flight connection).

EE You then combine the interim results of the analytic views for the final
result (by using the UNION operation within a calculation view).

EE Finally, you can enrich the final result with additional master data (for
example, by using the JOIN operation and an attribute view based on
the SPFLI table within the calculation view to read the master data of
the flight connections).

In such a case, several engines (see Section 1.3) are involved in calculating
the final result. This is illustrated schematically in Figure 14.4.

Calculation Views
(Calculation Engine)

Analytic Views
(OLAP Engine)

Attribute Views
(Join Engine)

Figure 14.4 Combination of SAP HANA Views

You can support the engine involved in solving a given task by following
some rules:

Combination of
several views

Support engine
in solving tasks

556

14 Practical Tips

EE Keeping	datasets	small
As when using Open SQL within ABAP applications, we recommend
that you minimize the dataset that is read and exchanged between the
engines for modeling SAP HANA views. You achieve this by filtering
data as soon as possible (by defining a suitable filter or WHERE condi-
tions) and aggregating (especially via analytic views). In addition, you
should read only the columns that are actually required.

EE Aggregating	data	as	soon	as	possible	and	performing	calculations	on	
aggregated	data	
By aggregating data as soon as possible and performing calculations
on aggregated data, you achieve two things: First, you reduce the
dataset for further processing and thus also the dataset which must,
for example, be transferred from the OLAP Engine to the Calculation
Engine. Secondly, you minimize the number of calculations under cer-
tain circumstances (for instance, to convert amounts to a single cur-
rency).

EE Avoiding	complex	joins
Avoid complex joins—that is, long concatenations of JOIN operations
and joins between very large database tables. These can be very expen-
sive. Alternatively, in some cases, you can first aggregate key figures
from different fact tables independently of each other via different
analytic views, and then combine the interim results via the UNION
operation.

EE Reading	master	data	as	late	as	possible
Read master data as late as possible, if it is not required for the previ-
ous calculation steps.

EE Recommendations	for	SQLScript
When using implemented calculation views, also note the recommen-
dations for SQLScript in the following section.

14.5.3 Recommendations for SQLScript

If you have to use SQLScript to implement a requirement (because the
requirement cannot be mapped by modeling an SAP HANA view), note
the following rules. We have already discussed them to some extent in
Chapter 5:

Important rules for
SAP HANA views

Important rules
for SQLScript

557

Performance Recommendations for Native Implementations in SAP HANA 14.5

EE Minimizing	complexity	of	SQL	statements	
You can break down complex SQL statements using table variables.
This makes it easier for you to read the code, and also facilitates the
work of the HANA database optimizer. It makes it easier in some cases,
for example, by decomposing complex database queries, to identify
redundant subqueries and to avoid calculating them several times.

EE Avoiding	dependency	of	SQL	statements
As described in Chapter 5, multiple SQL statements within a database
procedure or a calculation view are executed in parallel by the database
as often as possible. However, this assumes that these SQL statements
are independent of each other. Thus, avoid unnecessary dependencies
between SQL statements.

EE Avoiding	mixture	of	SQL	and	CE	Plan	Operator	functions
SQL and CE Plan Operator functions are optimized independently of
each other. Avoid mixing both if possible.

EE Avoiding	imperative	programming
Imperative language elements (especially loops and cursor processing)
make the parallelization more difficult or may prevent it completely.
Try to work with declarative language elements. For data-intensive
calculations, use loops and cursors in particular only if you cannot
solve a requirement differently.

EE Using	strengths	of	OLAP	and	Join	Engine
If you need SQLScript to implement a requirement, it doesn’t neces-
sarily mean that you have to implement the requirement solely with
SQLScript. You can often delegate parts of the task within a database
procedure or a calculation view to analytic views and attribute views.
Check this option, because it allows you to use the strengths of OLAP
and Join Engine.

EE Avoiding	dynamic	SQL
The optimization options of dynamic SQL are restricted. Dynamic SQL
must be re-compiled for each call under certain circumstances. Avoid
dynamic SQL where it is not necessarily required.

For more information, refer to SAP HANA SQLScript Reference in the SAP
online help.

558

14 Practical Tips

14.6 Summary of Recommendations

At the end of this chapter (and the book), we would like to compile again
the five main recommendations for successful ABAP development on SAP
HANA in a more concentrated and striking form:

EE Tip	1:	Not	seeing	the	database	as	a	black	box
Our first recommendation is more theoretical and involves the inter-
action between application server and database. You should no longer
see the database as a pure black box that provides only the basic CRUD
functions (create, read, update, delete) for you as a developer. Instead,
it provides a rich platform that offers a variety of services.

There are various channels for using these services, of which SQL is
the most important. For this reason, the SQL knowledge and related
database programming concepts, which you have acquired within this
book, are very important.

Another change from the past is that the database platform is no lon-
ger used solely by an ABAP system, but also by other users such as
business intelligence tools or the XS Engine.

EE Tip	2:	Performing	performance	optimizations	as	much	as	possible	
with	standard	tools
For an optimization, we always recommend that you proceed gradu-
ally. After an analysis of the status quo, the optimization potential of
Open SQL and standard ABAP programming (and standard ABAP
components) should be used in the first step. Ideally, you can already
change the ABAP code in this step so that further potential optimiza-
tion of database accesses can be easily performed by a native imple-
mentation.

The performance recommendations for Open SQL in ABAP do not
change fundamentally on SAP HANA, but are mainly weighted differ-
ently (see Section 14.4). Familiarize yourself with the rules and also
get to know the new tools for performance analyses.

EE Tip	3:	Encapsulation	and	testing	are	essential	for	implementations	
in	the	database
If you cannot solve a requirement (whether in terms of performance
or functions) with standard tools, use HANA-specific functions.

559

Summary of Recommendations 14.6

Bear in mind that a clean encapsulation and good test coverage are
important, especially for implementations near the database. Define
appropriate test cases, provide appropriate test data, and run automated
tests if possible to make sure that the system still responds correctly,
even after an adjustment is made to an SAP HANA view or a database
procedure.

EE Tip	4:	Maintainability,	correctness,	and	robustness	are	ultimately	
more	important	than	optimal	performance
The relocating of application code from the application layer to the
database layer provides a lot of potential. However, it may also increase
the complexity of ABAP programs—for example, if you also have to
reserve an implementation for traditional databases in addition to the
optimized implementation of a program for SAP HANA.

In addition, the result of a program can change due to the relocation
of the application code in the database, if you are not careful (see Sec-
tion 14.1.3). Always ensure that the data is handled correctly from a
business perspective.

We recommend that you not relocate application code unnecessarily
in SAP HANA views and database procedures. Only do so where there
is a real benefit in terms of performance and functions. Not every
ABAP program is performance-critical and must provide a result within
a fraction of a second.

EE Tip	5:	New	opportunities	and	application	patterns	beyond	perfor-
mance	optimizations
Consider SAP HANA as more than a technology to accelerate programs.
Particularly in the third part of this book, you encountered a number
of techniques through which you can gain new insights from existing
databases. OLTP and OLAP become blurred due to the possibilities of
SAP HANA, and new application patterns emerge. These sometimes
allow companies far more than solely performance improvements—
they can develop new business models and differentiate themselves
from competitors.

The opening of the ABAP programming model with regard to SAP
HANA’s native database technologies is a major step and will create new

Opening of
the ABAP
programming
model

560

14 Practical Tips

opportunities for ABAP developments together with further innovations
in SAP HANA. We hope that, with the recommendations in this book,
we’ve made it easier for you to get the maximum out of the HANA plat-
form within ABAP developments or enhancements.

561

Appendices

A Flight Data Model ... 563

B What’s New in ABAP in SAP NetWeaver 7.4 573

C Read and Write Access in the Column Store 579

D SAP Business Application Accelerator Powered
by SAP HANA ... 589

E Installing the Sample Programs 593

F The Authors ... 595

563

A Flight Data Model

In this book, we use the SAP NetWeaver flight data model as our data basis
(with some slight extensions). Therefore, information about the structure
of the flight data model is provided in this appendix as reference material.

The flight data model, often known as the SFLIGHT model, is a simple
example of classic application development using SAP NetWeaver AS
ABAP. It also provides the basis for numerous specialist books, training
courses, and documentation relating to SAP software. Essentially, the
data model comprises a set of database tables. An understanding of these
tables and their content is helpful in order to understand the examples
in this book.

As an ABAP developer, you have almost certainly worked with the SFLIGHT
model at some time or another. Therefore, we will focus our attention
on the relationships that exist between the tables used in this book and
classify them in the context of HANA data modeling, which was intro-
duced in Chapter 4.

First, we will briefly outline the simple underlying business process.
Then, we will explain the structure of and relationships between the most
important database tables used in this book. Finally, we will discuss the
various options associated with generating mass data.

A.1 Basic Principles of the Flight Data Model

The flight data model can be used to simulate various business scenarios
within the context of bookings for scheduled flights. Essentially, two
scenarios can be considered here:

EE Operating	an	airline	 	
An airline operator sells tickets either directly to customers or through
a travel agent. The system contains only data relating to this airline,
albeit for all bookings.

EE Simulating	a	travel	agency
A travel agency sells tickets on behalf of multiple airlines. The system

Scenarios

564

A Flight Data Model

contains the complete flight schedule. Furthermore, bookings for all
flights can be made here. This scenario is based on the assumption
that the system contains the latest booking information from the air-
lines so that the number of seats available on a flight is always known
locally. Only bookings made through a travel agent are held in the
system.

The flight data model is fully presented and documented in the Data
Modeler (Transaction SD11) for the BC_TRAVEL model. In addition to
individual flights, this model also makes it possible to combine multiple
flights (for example, flights with stops en route). However, this variant
is beyond the scope of this book.

Note that with regard to the simple implementation examples contained
in this book, we will not always exactly pursue a business process. In the
two end-to-end examples in Chapter 8 and Chapter 13, we will focus on
the second scenario, namely the scenario involving the travel company.

A.2 Database Tables for the Flight Data Model

There are approximately 25 database tables for business data that relates
to the flight data model. Standard configurations and Customizing also
play a role (for example, the client configuration, customizing for cur-
rencies, and so on). These are stored in additional tables.

In this section, we will discuss the structure of and relationships between
approximately 10 tables used in this book. We will classify these tables
on the basis of Customizing, master data, and transaction data.

Once we have introduced you to the main tables associated with the
SFLIGHT model, and their role within the business scenario, we will
discuss some general design decisions in relation to the data model, and
evaluate them in the context of SAP HANA.

A.2.1 Customizing

The flight data model uses the following settings for the ABAP applica-
tion server:

Business scenario
in this book

Settings for the
ABAP application

server

565

Database Tables for the Flight Data Model A.2

EE The client configuration, which is stored in the table T000 and is used
as a check table for the client field associated with other tables.

EE Customizing for currencies and conversion variants, which are stored
in the tables TCURR and TCURX. At this point, we must mention that
for training purposes, the flight data model uses a separate currency-
conversion variant based on the tables SCURR and SCURX. Since the
currency conversion in SAP HANA—which was introduced in Section
4.2.4—uses the standard variant, we will not discuss the special vari-
ant of the flight data model. Instead, we will implicitly assume that
the data (for example, the currencies available) is identical.

EE Customizing for units of measurement (lengths, weights, and so on)
from the table T006.

A.2.2 Master Data

In this book, we use the SFLIGHT model master data listed in Table A.1.

Table Description Important Content

SCARR Airlines Airline code and name

SPFLI Flight schedule Flight connection with information
about the origin/destination as well as
the flight duration

SAIRPORT Airports Airport names and time zones

SGEOCITY Cities Cities, including their geographical
data (longitude and latitude)

SCUSTOM Customer data Name, address, email address, and
authorized price reduction

SAPLANE Aircraft Information about the number of seats
available, as well as aircraft usage and
speed

Table A.1 Master Data for the Flight Data Model

Since this book primarily considers the scenario involving a travel agent
who sells tickets directly to customers, we will not use the tables for
configuring different travel agents (for example, table STRAVELAG) and

566

A Flight Data Model

business partners (for example, SBUSPART), which would be important
in the scenario that simulates operating an airline.

From a master data perspective, an important relationship exists between
the flight schedule, the airlines, the airports, and the cities. Figure A.1
shows the relevant tables and foreign key relationships in the form of an
attribute view in SAP HANA Studio.

Figure A.1 Master Data Tables for the Flight Schedule in the SFLIGHT Model

The other two tables—namely SCUSTOM and SAPLANE—have, above all,
connections to the transaction data, which we will show in the next sec-
tion as dimensions of a star schema.

A.2.3 Transaction Data

The flight data model primarily has two tables that contain transaction
data—namely, the flight bookings table (SBOOK) and the flights table
(SFLIGHT). Table A.2 summarizes the contents of each.

567

Database Tables for the Flight Data Model A.2

In certain respects, the table SFLIGHT plays a dual role here. On the one
hand, it contains transaction data because it represents an actual flight. On
the other hand, it can also be regarded as a dimension of the bookings.

Table Description Important Content

SFLIGHT Flights Information about a specific flight (flight
connection, time, and seats occupied)

Key performance indicators:

EE Flight price

EE Seats occupied/available

SBOOK Flight bookings Information about a flight booking in
relation to passenger information

Key performance indicators:

EE Booking price

EE Luggage weight

Table A.2 Transaction Data in the Flight Data Model

The business logic for creating transaction data is relatively simple. In the
case of a flight booking for a customer, both the flight and the customer
must exist in the system. Then, before making a flight booking, a check
is performed to determine whether any seats are available and, if so, the
number of seats available is reduced over the course of the transaction.
The booking price is also calculated from the passenger discount and the
previously configured flight price. This logic is encapsulated in a business
application programming interface, or BAPI (FlightBooking business
object), and can be called within function modules.

At this point, we will not discuss the transaction logic in any further
detail. Instead, we will consider how it interacts with the master data.
The cardinality of the transaction data (1 in Figure A.2) with respect to
the master data is n:1, because the master data is used in different trans-
actions (Each booking 2 for a flight 3 involves a customer 4 who can
make multiple bookings). Figure A.2 shows a section of the data model
in which the additional master data associated with a flight schedule in
5 (previously in Figure A.1) is not shown again.

Business logic

568

A Flight Data Model

Figure A.2 Transaction Data in the Flight Data Model

The model shown here is a simple, graphical representation of the rela-
tionships between the tables. When analyzing the transaction data in real
life, it is better to use an analytic view in SAP HANA (see Section 4.2).

A.2.4 Designing the SFLIGHT Data Model

In this section, we will discuss some design considerations associated with
the SFLIGHT data model. It is very obvious that the tables used here were
developed prior to SAP HANA, which is the case with most tables in an
SAP system. Next, we will discuss the technical structure of the tables
(primary and foreign keys, data types, indexes, and normalization) along
with the semantics of their contents.

Technical modeling of the SFLIGHT tables is typical of SAP R/3. This
includes the following structural characteristics:

Table structure

569

Data Generation A.3

EE Tables generally have a set of character-like key fields. No GUIDs (Glob-
ally Unique Identifiers) are used as generated, technical keys. Foreign
key relationships therefore comprise multiple conditions (see Figure
A.1 and Figure A.2).

EE A date is recorded in the date and time fields (DATS, TIMS). Time
stamps are not used (TIMESTAMP and TIMSTAMPL data elements).

EE Some numeric fields are recorded as a character-like field (NUMC) in
order to ensure that the display is formatted consistently (including
leading zeros). One example of this is the customer number in the
table SCUSTOM.

EE The model is not completely normalized. In other words, the tables
contain certain redundancies. In particular, this is a direct consequence
of avoiding technical keys. For example, a flight is defined using three
attributes (CARRID, CONNID, and FLDATE), which also exist in other tables.

Newer SAP Business Suite modules have pursued other approaches. Inter-
estingly, however, the aforementioned structural characteristics are also
well-suited to the SAP HANA architecture. On the other hand, GUIDs,
which often exist in the database as RAW types, do not have an optimal
compression behavior, and also the performance of join operations can
be negatively impacted. In the SFLIGHT data model, however, there are
also some design decisions that are not recommended unreservedly for
new developments within the context of SAP HANA.

For example, some calculated values are materialized as physical columns.
The booking price, for example, is stored twice in the table SBOOK, once
in the airline currency and once in the local currency. Such a field can
also be recorded as a calculated field within a view. You learned about
this in Section 4.1.3. Furthermore, numerical values that potentially play
a role for calculations should not be modeled as character strings (NUMC)
because the database cannot differentiate between these and other texts.
The DISCOUNT value in the table SCUSTOM is one such example.

A.3 Data Generation

To become familiar with the opportunities presented by SAP HANA, you
should always work with large volumes of data. Even though the SAP

Table content

570

A Flight Data Model

NetWeaver flight data model is a very simple data model, there are, in
reality, extremely large volumes of data in the underlying business sce-
nario. In 2011, for example, approximately 56 million flight passengers
passed through Frankfurt Airport (source: The Statistics Office for the
State of Hesse).

In order to have a large volume of data available during training, the
development of a prototype (or any productive development) tools for
data generation are often used. These tools help to generate a consistent
and realistic volume of records for a data model. The ABAP report SAPBC_
DATA_GENERATOR is available in the flight data model for this purpose. At
present, however, it cannot generate data volumes of arbitrary size (for
example, the number of bookings is currently limited to a maximum of
1.4 million).

Therefore, for this book, we developed a data generator that was suitable
for our examples—namely, the ABAP report ZR_A4H_BOOK_GENERATE_MASS_
DATA. It draws on data generated by the ABAP report SAPBC_DATA_GENERA-
TOR, and generates additional flights and flight bookings. In other words,
you must call this ABAP report first. At present, our data generator works
as follows:

EE In the first step, the data generator deletes the flights and flight book-
ings generated by the ABAP report SAPBC_DATA_GENERATOR.

EE It then generates flights (that is, entries in the database table SFLIGHT).
For each connection (each entry in the database table SPFLI), the pro-
gram generates one flight for each day that falls within the dates entered
on the selection screen. Flight capacity fluctuates between 70% and
100%. In some months (for example, during the Christmas period), a
higher average capacity is assumed than in other months. During these
months, the flight price is also higher than in other months.

EE Finally, the program generates the flight bookings in the database table
SBOOK and uses a random algorithm to determine the customers and
travel agencies associated with the bookings. The data generator deter-
mines the booking date on the basis of three hard-coded distribution
functions that are selected at random for each flight. There is a maxi-
mum of 180 days before the flight date.

Data generator

Mass data

571

Data Generation A.3

The ABAP report ZR_A4H_BOOK_GENERATE_MASS_DATA generates, on aver-
age, approximately three million bookings each year. Therefore, if you
schedule the program for a period of 10 years, you obtain a volume of
data that equates to approximately 30 million bookings. Since these are
distributed across approximately 4,500 customer master records, many
more bookings are accepted here for individual customers than would
be the case in reality. However, this is not a problem for our examples.
For more information about generating data, see Appendix E.

573

B What’s New in ABAP in
SAP NetWeaver 7.4

SAP NetWeaver 7.4 provides a number of compatible enhancements to
the ABAP programming language. Thanks to a greater orientation towards
expressions, these enable you to write shorter, more legible ABAP code.

One example is string templates. These were introduced in ABAP 7.02 and
provide an elegant, powerful option for defining compound character
strings that go far beyond the possibilities associated with CONCATENATE or
WRITE statements. In this appendix, we will provide a brief introduction
to some new features in ABAP 7.4, which are used throughout this book.
For comprehensive information about ABAP release 7.4, please refer to the
ABAP language documentation (see http://help.sap.com/abapdocu_740/en/).

In the context of ABAP development on SAP HANA, the new options
associated with expressions make it possible to reduce ABAP code to the
essential intention: The code pushdown paradigm discussed in this book
can be used to perform calculations within the database and (by using the
components contained in the ABAP Application Server) the application
can be orchestrated using considerably less application code.

B.1 Inline Declarations

Previously in ABAP, you always had to use a DATA statement to declare
variables before you could use them. Furthermore, you always had to
specify the data type—even if, during an assignment, this was canonical
from the context. Let’s take a look at the example in Listing B.1.

" Data declaration without inline declaration
DATA: lo_alv TYPE REF TO cl_salv_table,
 lo_exc TYPE REF TO cx_salv_msg.

TRY.
 " Generate table ALV in factory
 cl_salv_table=>factory(
 IMPORTING r_salv_table = lo_alv

Variables

574

B What’s New in ABAP in SAP NetWeaver 7.4

 CHANGING t_table = lt_data).

 " Display ALV
 lo_alv->display().
 CATCH cx_salv_msg INTO lo_exc.
 MESSAGE lo_exc TYPE 'I' DISPLAY LIKE 'E'.
ENDTRY.

Listing B.1 Classic Example without Inline Declaration

To define the corresponding variables, you have to know or find out the
names of the classes CL_SALV_TABLE and CX_SALV_MSG.

With an inline declaration using the DATA() statement, you can make an
implicit declaration and specify a type for a variable directly (inline) during
the assignment. Listing B.2 demonstrates this using the same example.

" Data declaration with inline declaration
TRY.
 " Generate table ALV in factory
 cl_salv_table=>factory(
 IMPORTING r_salv_table = DATA(lo_alv_inline)
 CHANGING t_table = lt_data).

 " Display ALV
 lo_alv_inline->display().
 CATCH cx_salv_msg INTO DATA(lo_exc_inline).
 MESSAGE lo_exc_inline TYPE 'I' DISPLAY LIKE 'E'.
ENDTRY.

Listing B.2 Example with Inline Declaration

Here, the variables for the ALV table and the exception CX_SALV_MSG in
the CATCH block are defined directly (inline) during the assignment. Inline
declarations can be used not only for classes and interfaces but also for
structures, table types, data references, and so on.

It is also possible to declare field symbols inline, as shown in Listing B.3.

LOOP AT lt_data ASSIGNING FIELD-SYMBOL(<line>).
 " ...
ENDLOOP.

Listing B.3 Inline Declaration of a Field Symbol

DATA() statement

Field symbols

575

Constructor Expressions B.2

When using inline declarations, you must consider the following:

EE Inline declarations do not change the scope of ABAP variables. There-
fore, it is not possible to use the same variable name multiple times
within a method, even if you seem to define it locally—as is the case
with the variables lo_exc_inline in Listing B.2, for example.

We recommend that you continue to define, at the very start of a
method implementation, variables that you want to use in several
places within an extensive method. Inline declaration is useful for
variables with a local, limited usage context (for example, the loop in
Listing B.3).

EE Inline declarations cannot be used in all situations. In particular, it is
not possible yet to use an inline declaration to define the result of a
SELECT statement (INTO, INTO TABLE).

B.2 Constructor Expressions

Constructor expressions enable you to create and initialize ABAP objects,
data structures, and data references by means of an expression. The benefit
of such expressions lies in the reduction of statements needed, as well as
compatibility with inline declarations.

Traditionally, ABAP objects can be created using the following statement:

CREATE OBJECT <variable> [TYPE <type>].

Of course, the variable must be declared beforehand and adjusted to
the instantiation. When we introduced you to inline declaration in the
previous section, you may have asked yourself whether it can be used in
connection with creating an object instance. In ABAP 7.4, this can be done
using the NEW operator, which enables you to declare an object instance
directly inline. The parameters for the constructor are transferred when
the method is called. For example, the following assignment is possible:

DATA(lo_object) = NEW lcl_my_class(iv_param = 1).

Of course, you can also define the variable lo_object separately.

Usage

NEW operator

576

B What’s New in ABAP in SAP NetWeaver 7.4

In addition to objects, you can also use expressions to initialize structures
and even internal tables. In this case, the VALUE operator shown in the
example in Listing B.4 is used.

DATA: ls_carr TYPE scarr.

" Classic initialization of a structure
ls_carr-carrid = 'LH'.
ls_carr-carrname = 'Lufthansa'.

" Alternative using the constructor expression
ls_carr = VALUE #(carrid = 'LH'
 carrname = 'Lufthansa').

Listing B.4 Using “VALUE” to Initialize a Structure

One benefit of the VALUE expression is that it can be combined with an
inline declaration. In this case, however, you must specify the exact data
type:

DATA(ls_carr) = VALUE scarr(carrid = 'LH'
 carrname = 'Lufthansa').

You can also use the VALUE operator to initialize internal tables, as shown
in Listing B.5.

DATA: lt_carrier TYPE TABLE OF scarr.
lt_carrier = VALUE #(
 (carrid = 'AA' carrname = 'American Airlines')
 (carrid = 'LH' carrname = 'Lufthansa')).

Listing B.5 Using “VALUE” to Initialize an Internal Table

In this example, it’s particularly evident that less code is needed, and
code is more legible, compared to using multiple APPEND statements to
perform a classic initialization of structures or to set up an internal table.

The final new element we wish to mention is the REF operator, which is
an expression-oriented alternative to generating a data reference (TYPE
REF TO DATA) with the ABAP statement GET REFERENCE. The example in
Listing B.6 uses this operator and inline declarations for an ADBC access
(ABAP Database Connectivity, see Listing 3.12 in Section 3.2.4).

VALUE operator

REF operator

577

Internal Tables B.3

TRY.
 " Prepare SQL connection and statement
 DATA(lo_result_set) =
 cl_sql_connection=>get_connection(
)->create_statement(
)->execute_query(lv_statement).

 lo_result_set->set_param_table(REF #(lt_result)).

 " Obtain result
 lo_result_set->next_package().
 lo_result_set->close().
CATCH cx_sql_exception INTO DATA(lo_exc).
 " Error handling
ENDTRY.

Listing B.6 ABAP 7.4: Expressions in an ADBC Context

In addition to NEW, VALUE, and REF, ABAP 7.4 has other new operators
such as conversions (CONV) or type conversions (CAST). For more informa-
tion, refer to the documentation at http://help.sap.com/abapdocu_740/en/.

When you use constructor expressions, you should not overlook runtime
considerations or the elegance of the code. If, for example, you require
an object in several places, you should not initialize it twice.

B.3 Internal Tables

Traditionally, READ TABLE statements were used to access the content of
internal tables, which facilitated the use of a key or line index to read
individual lines.

In ABAP release 7.4, this can be done using expressions that you assign
directly or process further. Listing B.7 shows an example of such use.

DATA: lt_carrier TYPE TABLE OF scarr WITH KEY carrid.
lt_carrier = VALUE #(
 (carrid = 'AA' carrname = 'American Airlines')
 (carrid = 'LH' carrname = 'Lufthansa')).

" Read first entry from the internal table
DATA(ls_carrier) = lt_carrier[1].

Performance
considerations

Access via an
index or key

578

B What’s New in ABAP in SAP NetWeaver 7.4

" Access with a key and use of an
" attribute
DATA(lv_name) = lt_carrier[carrid = 'LH']-carrname.

Listing B.7 Expressions for Access to Internal Tables

These new expressions also facilitate direct access in the case of mul-
tidimensional structures—that is, if an internal table in a column also
contains a table.

As is the case with constructor expressions, you should always bear per-
formance in mind and avoid unnecessary accesses with expressions for
internal tables. The following example demonstrates unfavorable usage of
table expressions because the same line is read multiple times. Instead,
you should temporarily store the line in a variable.

DATA(lv_carrid) = lt_carrier[1]-carrid.
DATA(lv_carrname) = lt_carrier[1]-carrname.

Performance
considerations

579

C Read and Write Access
in the Column Store

Having some technical background knowledge of the structure of the col-
umn store will help you understand the concept of read and write access
in SAP HANA. In this appendix, we will give you some key information
about the column store, as well as some background information about
processing accesses in the column store. First, we will examine the concept
of accesses without indexes. Then, we will outline the basic principles of
indexes in SAP HANA and explain how to use indexes to optimize accesses.

C.1 Basic Principles

In Section 1.2.2, you learned that a column in a column store is stored
internally in at least two structures: the dictionary vector and the attri-
bute vector.

Figure C.1 shows a sample table that comprises three columns: ID, Name,
and Gender. The data stored in this table is contained in Table C.1.

AV

1

2

3

4

5

6

7

8

9

10

11

12

13

…

1

2

3

4

5

6

7

8

9

10

…

1

2

3

4

5

6

7

8

9

10

11

12

13

…

1

2

Column: Name Column: Gender

1

2

3

4

5

6

7

8

9

10

11

12

13

…

1

2

3

4

5

6

7

8

9

10

11

12

13

…

Column: ID

AV DV AV DVDV

1

2

3

4

5

6

7

8

9

10

11

12

13

…

1

2

3

4

5

6

7

8

9

10

11

12

13

…

3

7

1

5

4

6

2

8

9

10

1

7

1

…

Alex

Anna

Christopher

Eric

Erica

Henry

Martina

Ralf

Tina

Yvonne

…

2

1

2

1

2

2

1

2

1

1

2

1

2

…

f

m

Figure C.1 Column Store with a Dictionary Vector and Attribute Vector

Dictionary and
attribute vectors

580

C Read and Write Access in the Column Store

ID Name Gender

1 Christopher M

2 Martina F

3 Alex M

4 Erica F

5 Eric M

6 Henry M

7 Anna F

8 Ralf M

9 Tina F

10 Yvonne F

11 Alex M

12 Martina F

13 Alex M

Table C.1 Sample Data for this Appendix

Each column has one dictionary vector and one attribute vector. In the
dictionary vector, the distinct contents of the column are saved once. The
data is held in the dictionary vector in sorted order, thus making it pos-
sible to quickly find relevant entries through a binary search. A value is
assigned to an entry’s position in the dictionary vector, and this value is
stored in the attribute vector instead of the actual value. In our example,
the name “Martina” occupies seventh position in the dictionary vector.
In the attribute vector, the number 7 occupies second and twelfth posi-
tion because “Martina” is both the second and the twelfth data record
in Table C.1’s data.

C.2 Read Access without an Index

The dictionary vector and attribute vector make it possible to store data
very efficiently and therefore process this data quickly. Very little data
needs to be transferred from the main memory to the CPU (central pro-
cessing unit). Consequently, in SAP HANA, indexes are not required in

581

Read Access without an Index C.2

many cases that previously would have needed them. In this section, we
will explain how a read access in the column store is processed and how
the dictionary vectors and attribute vectors are used.

We will now use an example that illustrates the column store’s search
function in greater detail. Figure C.2 shows a table that comprises the
following three columns: ID, Name, and Gender. The dictionary and attri-
bute vectors are shown for each column. To make it clearer, we have
displayed the row ID for each vector on the left-hand side of the figure.
This is implicitly determined by value’s position in the vector. It is not
persisted and it does not use any memory. Furthermore, no indexes are
defined. For the purpose of our example, we will use the condition WHERE
NAME = 'Alex.'

AV

1

2

3

4

5

6

7

8

9

10

11

12

13

…

1

2

3

4

5

6

7

8

9

10

…

1

2

3

4

5

6

7

8

9

10

11

12

13

…

1

2

Column: Name Column: Gender

1

2

3

4

5

6

7

8

9

10

11

12

13

…

1

2

3

4

5

6

7

8

9

10

11

12

13

…

Column: ID

AV DV AV DVDV

1

2

3

4

5

6

7

8

9

10

11

12

13

…

1

2

3

4

5

6

7

8

9

10

11

12

13

…

3

7

1

5

4

6

2

8

9

10

1

7

1

…

Alex

Anna

Christopher

Eric

Erica

Henry

Martina

Ralf

Tina

Yvonne

…

2

1

2

1

2

2

1

2

1

1

2

1

2

…

f

m

Figure C.2 Column Store Table with Three Columns

1. First, a binary search is performed in the dictionary vector to determine
the value for “Alex.” Since the dictionary vector has been sorted, an
optimized binary search can be used. “Alex” occupies first position in
the dictionary vector 1. Therefore, the value for Alex is 1.

2. The attribute vector is then searched for the value 1 2.

Read access in
the column store

582

C Read and Write Access in the Column Store

3. Then, the row IDs are used to reconstruct the rows for all hits. In other
words, in our example, the third, eleventh, and thirteenth entries in
the other columns are read 3.

Thanks to data compression, a relatively small volume of data needs to be
searched, and the search mainly compares integers. Since you can paral-
lelize the search across multiple CPU cores, the speed is usually sufficient,
and an index is not required. In the case of tables with fewer than half
a million entries, there is very little difference between having an index
and not having an index. If, on the other hand, the table has hundreds of
millions of entries, accessing a highly selective column without an index
is slower by a factor of 100 or more compared to accessing it with an
index. This factor increases as the table grows in size. If such an access
is performed very frequently, as may be the case, in an OLTP system, for
example, an index is vital for good performance.

Up to now, we have discussed only the concept of the main store, which
has been optimized for read accesses (see also Section 1.2.2). However,
data can also be stored in a delta store, which is generated by write accesses
and has been optimized for such accesses. In the next section, we will
discuss the differences between the main store and the delta store. We
will also explain how to transfer data from one to another.

C.3 Write Access without an Index

Since the dictionary vector in the main store has been sorted and this data
needs to be held in sorted order, it would be very time-consuming to have
direct write accesses to the main store. If the name “Adrian” was inserted
in the example in Section C.2, all existing values in the dictionary vector
would have to move one place. Therefore, the value for “Alex” would
change from 1 to 2 and the value for “Anna” would change from 2 to 3,
and so on. Then, the entire attribute vector would have to be changed
to include the new values.

To prevent this, write accesses are executed in the delta store. As is the
case with the main store, good data compression is facilitated by having
one dictionary vector and one attribute vector for each column in the
delta store. Unlike the main store, however, the dictionary vector in the

Performance

Main store and
delta store

Write accesses in
the delta store

583

Write Access without an Index C.3

delta store is not sorted. As a result, a new value can be inserted quickly
by simply appending it to the end of the dictionary vector. However, a
binary search can no longer be performed in the dictionary vector. For
this reason, each column has a B* tree index that makes it possible to
quickly find existing values in the dictionary vector. These structures
also make it possible to insert and compress data quickly. A schematic
representation of a main store and delta store is provided in Figure C.3.
To improve legibility, we have abbreviated the dictionary and attribute
vectors and omitted the implicit row IDs for each vector.

AV DV AV DV

Column: Name Column: Gender

AV DV

Column: ID

AV DV AV DV

Column: Name Column: Gender
AV DV

Column: ID

Main Store

Delta Store

…

6

7

8

9

10

11

…

…

6

7

8

9

10

11

…

…

6

7

9

10

1

…

8

Martina

Tina

Yvonne

…

…

Henry

Ralf

…

2

1

1

1

…

f

m

…

8

9

10

…

…

14

15

8

…

…

8

9

10

…

…

Tanya

Tara

Ralph

…

…

2

2

1

…

m

f

2

Figure C.3 Main Store and Delta Store

All change accesses are processed in the delta store. In the example shown
in Figure C.3, the following data records were added to in Table C.1:
(“14—Tanya—F” and “15—Tara—F”).

The following change was made to the data record “8—Ralf—M”: “Ralf”
was changed to “Ralph.” In SAP HANA, such an UPDATE is made using
the following sequence: SELECT (to find the old data record and mark it
for deletion) and INSERT. This action is known as INSERT ONLY because

584

C Read and Write Access in the Column Store

a change to a data record only ever results in a new version of the data
record being inserted. The deletion indicators are managed in another
internal structure not shown in Figure C.3. The old version of the data
record is deleted later when the merge action is performed.

Once a read access has searched the main store (as described earlier), it
must then search the delta store because data records that correspond to
the search request may have been written to the delta store. Since the
delta store has been optimized for write accesses, searches performed in
the delta store are more time-consuming. This is because, for example, the
delta store contains an additional memory structure—the B* tree—which
references the unsorted dictionary vector. It is therefore desirable to keep
the delta store quite small and to regularly transfer it to the main store.
This action is known as merge.

When the merge is performed, the data in the delta store is transferred to
the main store asynchronously. Old versions of data records are deleted
if there are no open transactions for these records.

During the merge process, data from the delta store is incorporated into
the main store’s dictionary and attribute vectors, so these vectors are
reorganized and assigned a new structure. A new main store (Main 2) is
generated from the old main store (Main 1) and delta store (Delta 1). Data
records that have an open transaction are not transferred to the new main
store but to a new delta store (Delta 2). Once this transfer is complete,
the old main store (Main 1) and old delta store (Delta 1) are discarded.

This process occurs at table level. During the merge, the data from the
old main store and delta store is transferred to a new main store, and
data from the old main store is still readable. However, write accesses
occur in the new delta store (Delta 2) while the merge is still running
and Delta 1 is being processed. A schematic representation of the merge
is shown in Figure C.4.

You can use different parameters to configure the execution times for
merge processes. Such parameters can take into consideration, for exam-
ple, the size of the delta store, the system load, and the number of entries
or the time since the last merge was performed. Therefore, a new main
store is created on a regular basis, and changes are bundled together and
transferred as efficiently as possible from the delta store to the main store.

Read accesses in
the delta store

Merge action
generates a new

main store

Write accesses
in the new
delta store

585

Read Accesses with an Index C.4

Prior to Merge After Merge

Read Accesses

Main 2

Read Accesses

Write
Accesses

Write
Accesses

During Merges

Main 1 Main 2 Delta 1 Delta 2

Read Accesses

Merge
Write

Accesses

Delta 2Main 1 Delta 1

Figure C.4 Merge

Figure C.3 and Figure C.5 in the next section show the dictionary and
attribute vectors both before and after the merge.

C.4 Read Accesses with an Index

Now that you have learned about accesses without an index, we will now
turn our attention to accesses with an index. As mentioned, read accesses
involving very large tables can, despite compression and parallelism, be
too slow if these are executed very frequently. In such cases, an index
should be created so you won’t have to scan the entire column. In SAP
HANA, a distinction is made between the following two types of indexes:

EE Inverted	index	 	
Inverted indexes refer to only one column. Here, the index data is
stored in internal memory structures that belong to the respective
column—namely, the index offset vector and the index position vec-
tor. For each value in the dictionary vector, the index offset vector
stores the position of this value’s first occurrence in the index position
vector. The index position vector contains the row ID assigned to the
data record in the attribute vector. The index position vector is sorted
according to the indexed column and uses the row ID to reference the
attribute vector.

586

C Read and Write Access in the Column Store

EE Composite	index	 	
Composite indexes refer to more than one column. First, the contents
these columns are grouped together in an internal column, and an
inverted index is then created for this internal column.

Let’s discuss read accesses for these two index categories.

As an example, we will create an index for the Name column. Since it
concerns only one column, we will create an inverted index as shown
in Figure C.5. We will continue to use the example from the previous
sections, namely the condition WHERE NAME = 'Alex'. When there is no
index, the entire attribute vector must be searched for the value deter-
mined from the dictionary vector.

Column: ID Invert. Index: NameColumn: Name Column: Gender

AV

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

…

Alex

Anna

Christopher

Eric

Erica

Henry

Martina

Ralph

Tanya

Tara

Tina

Yvonne

…

1

2

3

4

5

7

8

9

10

11

12

13

14

15

…

DV

3

7

1

5

4

6

2

8

11

12

1

1

9

10

…

IO

1

4

5

6

7

8

9

11

12

13

14

15

…

IP

3

11

13

7

1

5

4

6

2

12

8

14

15

9

12

…

AV

2

1

2

1

2

2

1

2

1

1

2

1

2

1

1

…

DV

f

m

6

7

AV DV

Figure C.5 Inverted Index for the “Name” Field

With an inverted index, however, this is no longer necessary. The search
process is then as follows:

1. First, in the dictionary vector, a binary search is performed to deter-
mine the value for “Alex.” This concerns the value “1” because “Alex”
occupies first position in the dictionary vector.

Inverted index

Search process

587

Read Accesses with an Index C.4

2. Then, the index offset vector is checked to see which value occupies
first position (and therefore contains information about the first value
in the dictionary vector). In this case, the number “1” is stored there,
which means that the positions of the value we require are stored in
the first position in the index position vector.

3. Here, you find the following values in succession: “3” (in first position),
“11” (in second position), and “13” (in third position). These values
are the positions (row IDs) in the attribute vector occupied by “Alex”
(the value “1”).

4. The search ends with the fourth entry in the index position vector
because position 4 describes the end of the section being searched
within the index offset vector. In other words, the value that lies after
the value “Alex” in the dictionary vector occupies position 4 in the
index position vector. Now, only the required columns from the other
attribute vectors need to be read using the predetermined row IDs.

In the next example, we will create a composite index for the Gender
and Name columns. In this case, an additional column is created in SAP
HANA and the contents of the Gender and Name columns are stored there
together. As described earlier, an inverted index is created for this internal
column which is not visible in the ABAP Data Dictionary. In our example,
we will search the database table using the condition WHERE GENDER ='F'
AND NAME = 'Tina'. When there was no index, the entire attribute vector
for the Name column had to be searched.

This is no longer necessary. The search process is as follows:

1. In the dictionary vector for the internal column composed from the
Gender and Name fields, a binary search is performed to determine the
position. The required value occupies position 6.

2. In the index offset vector, the reference to the position in the index
position vector (position 7 in our example) is obtained from position
6.

3. In the index position vector, the reference to the position in the attri-
bute vector (position 9 in our case) is at position 7.

4. We have now determined row IDs for the attribute vectors whose
columns are required for the SELECT.

Composite index

Search process

588

C Read and Write Access in the Column Store

Column: Name Column: GenderColumn: ID Concat. Index: Gender, Name

AV

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

…

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

…

DV

3

7

1

5

4

6

2

8

11

12

1

7

1

9

10

…

AV DV

Alex

Anna

Christopher

Eric

Erica

Henry

Martina

Ralph

Tanya

Tara

Tina

Yvonne

…

AV

2

1

2

1

2

2

1

2

1

1

2

1

2

1

1

…

DV

f

m

AV

9

3

8

2

10

11

1

12

6

7

8

3

8

4

5

…

DV

fAnna

fErica

fMartina

fTanya

fTara

fTina

fYvonne

mAlex

mChristopher

mEric

mHenry

mRalph

..

IO

1

2

3

5

6

7

8

9

12

13

14

15

…

IP

7

4

2

12

14

15

9

10

3

11

13

1

5

6

8

…

Figure C.6 Composite Index for the “Gender” and “Name” Fields

Write Accesses with an Index

Inverted and composite indexes occur in both the main store and the delta
store. As with classic databases, write accesses in the delta store are more
labor-intensive because the indexes have to be maintained. In the case of a
composite index, write accesses require more time and effort than with an
inverted index, because composite indexes require that more memory struc-
tures be maintained.

589

D SAP Business Application
Accelerator Powered by SAP HANA

Using the SAP Business Application Accelerator powered by SAP HANA,
you can accelerate existing programs by executing specific SQL accesses on
SAP HANA without having to change the programs. Since the redirection is
done via Customizing, there is no need to change the program itself. This
appendix explains how to use the SAP Business Application Accelerator.

SAP Note 1694697 details how to obtain the software, which comprises
the SAP kernel and add-on.

Technical Requirements

To install the SAP Business Application Accelerator, SAP kernel version 7.21
or higher and the SAP Business Application Accelerator add-on SWT2DB are
required. For the kernel, please check SAP Notes 1713986 and 1716826; for
the add-on, please read SAP Notes 1694697 and 1597627.

To use the SAP Business Application Accelerator, you’ll need an SAP HANA
database connected to your SAP system via a secondary connection (side-
by-side scenario). SAP Note 1597627 explains how to create a secondary
connection.

Moreover, tables are needed on SAP HANA that are replicated by the SAP
system which is to be used with the SAP Business Application Accelerator.
This is usually done via the SAP Landscape Transformation Replication Server.

One of the prerequisites for redirecting a program using the SAP Business
Application Accelerator is a large database time-share in the program
runtime. Only programs reading from the tables that are replicated by
the SAP system can be redirected. These are typically programs used in
reporting. When reading from replicated tables, it must be noted that the
data is presented in near real-time; i. e., there may be smaller delays until
the data is replicated. Since it is possible that position data is replicated
prior to header data, transactional consistency cannot be guaranteed for
short periods of time. You should therefore carefully assess which pro-
grams are suitable candidates for redirecting access to the data replicated
in SAP HANA. You should then evaluate which accesses would greatly
benefit from being redirected to SAP HANA.

Programs and
accesses for
redirection

590

D SAP Business Application Accelerator Powered by SAP HANA

To identify programs that are good candidates for redirection, we rec-
ommend the service SAP HANA Feasability Check (HFC) from SAP Active
Global Support (please also check SAP Note 1694697). Based on the
above criteria, this service identifies the programs where redirection is
possible and useful.

In Customizing, you can maintain a so-called context for the program to be
redirected. This is where entries for the combination of program, back-
ground job, and table/view are entered. For example, for each program,
you specify the tables for which reading accesses should be redirected. By
maintaining a background job, you can also specify whether this should
only be done if the program runs in the background. This customizing
is evaluated during runtime and all accesses are redirected accordingly.
Figure D.1 illustrates this process.

SAP Business
Suite SAP Business Application

Accelerator powered
by SAP HANA

Replication

Program C
JOB: BGDPGC
SELECT TAB1
SELECT TAB2
SELECT TAB3

Program A

SELECT TAB1
SELECT TAB2
SELECT TAB3

Program B

SELECT TAB1
SELECT TAB2
SELECT TAB3

C

SAP HANA

Program Job Table

Program A TAB1

Program A TAB2

Program B TAB2

Program B TAB3

Program C BGDPGC TAB2

Customizing

Program C

SELECT TAB1
SELECT TAB2
SELECT TAB3

Existing DB

Figure D.1 Redirecting Specific Table Accesses

Customizing

591

SAP Business Application Accelerator Powered by SAP HANA D

Redirection can only be done on application servers with the profile
parameter rsdb/rda = on set. If this parameter is set, access to the fol-
lowing objects can be redirected:

EE Transparent tables

EE Cluster tables (converted into transparent tables during replication)

EE Database views (if all underlying tables are replicated and the view
exists in SAP HANA)

Access to pool tables, table pools (the actual database tables containing
the pool tables), and table clusters (the actual database tables containing
the cluster tables) cannot be redirected.

Moreover, there are limitations with regard to the statements that can
be redirected. The following Open SQL statements can be redirected:

EE SELECT statements

EE OPEN CURSOR ... FETCH

However, the following accesses cannot be redirected:

EE SELECT statements with the addition CONNECTION (secondary connec-
tions)

EE SELECT ... FOR UPDATE

EE OPEN CURSOR WITH HOLD...

See SAP Note 1694697 for further details on the customizing of the SAP
Business Application Accelerator.

The SAP Business Application Accelerator can be used to accelerate pro-
grams where the runtime is dominated by read accesses without having
to change the program itself. The extent to which accesses can be acceler-
ated depends on the specific SQL statement. In several projects, custom-
ers observed performance increases of 20 to several hundred percent
compared to the original performance.

Technical details

Limitations

593

E Installing the Sample Programs

Together with this book, several sample programs are available to help
you better understand the explanations and contents provided in each
chapter. These sample programs can be found in the download area for
this book at www.sap-press.com. In this download area, you’ll find the code
used in this book. Moreover, it details the subsequent steps that must be
executed for your system.

All ABAP development objects are included in the TEST_A4H_BOOK package,
all SAP HANA development objects are included in the test.a4h.book
package. These packages include subpackages for each chapter of this book.

For all sample programs, SAP NetWeaver Application Server (AS) ABAP
7.4 (Support Package 2), ABAP Development Tools for SAP NetWeaver
2.7, and SAP HANA 1.0 (Support Package Stack 5) are required. For our
tests, SAP HANA 1.0 Revision 52 was used.

If your system does not meet these requirements, you can also install
the sample programs on a hosted test system. Since July 2013, you can
have an IaaS provider (currently Amazon Web Services) provision such a
test system as a virtual appliance for you. This system is comprised of
SAP NetWeaver AS ABAP 7.4 and the SAP HANA database. This offer is
based on a free 90-day Test and Evaluation License Agreement. However, you
must pay for all costs incurred for the infrastructure services of the IaaS
provider. For further information, please refer to the SAP Community
Network at http://scn.sap.com/docs/DOC-41566.

After importing the code, you should make sure to generate sufficient data
for your tests. For this purpose, use the ABAP report ZR_A4H_BOOK_GENER-
ATE_MASS_DATA. Details can be found in the download area.

Packages

Requirements

Hosted test system

Test data

595

F The Authors

Thorsten	Schneider is a product manager in the
Product & Innovation HANA Platform depart-
ment at SAP AG. In this position, he deals with
application development using the new in-mem-
ory database technology. His main focus is the
implementation of business applications based
on ABAP and SAP HANA. Prior to working as
a product manager, Thorsten was a consultant
at SAP Deutschland AG & Co. KG for several
years. During this time, he advised national and

international organizations on product lifecycle management and project
portfolio management matters.

Eric	Westenberger studied mathematics at the
University of Kaiserslautern, Germany, where
he was awarded his doctorate degree in the
field of singularity theory. Since 2005, he has
been working for SAP AG, where he is cur-
rently a product manager for SAP HANA and
SAP NetWeaver. Prior to this, he was involved
in the development of several components of the
SAP NetWeaver basis technology as a developer
and software architect for several years.

596

F The Authors

Hermann	Gahm is a principal consultant in the
performance CoE of SAP Global IT Application
Services. In this position, he is primarily respon-
sible for performance analysis and optimization
of the internal SAP ABAP systems powered by
SAP HANA. Between 2006 and 2012, Hermann
worked as an SAP technology consultant at SAP
SI AG and as an SAP support consultant in the
Technology & Performance division of the Active
Global Support department at SAP AG. In this

position, his main responsibilities were helping major SAP customers
solve performance problems in the context of ABAP developments and
system, database, and ABAP program tuning. During his in-service stud-
ies of information management, he worked as an ABAP developer in one
of the largest commercial enterprises in Germany and as an SAP system
administrator for a market-leading industrial mortgage company between
1998 and 2006. During this time, his main responsibilities were perfor-
mance analysis and optimization of mass data processing in SAP systems.

597

Index

A

ABAP, 21
code analysis, 295, 352
profiler, 295, 320
project, 76
proxy, 522
reports, 21
resource URL, 83
runtime environment, 105
schema, 109
table buffer, 307
trace, 372
type system, 112

ABAP 7.4, 573
ABAP application

transport, 518
ABAP-based frameworks, 23
ABAP Connectivity and Integration

Development Tools, 71
ABAP Core Development Tools, 71
ABAP Database Connectivity, 255
ABAP Data Dictionary, 77, 104, 111,

117, 206, 392
input help, 409
type system, 113

ABAP Development Tools for SAP
NetWeaver, 32, 207
ABAP resource URL, 78, 79
authorizations, 76
code analysis, 310
components, 71
create program, 80
debugger, 83
downward compatibility, 72
execute program, 83
favorite packages, 77
perspectives, 75
project, 76
Project Explorer, 77
SAP GUI integration, 77
system library, 77
templates, 81
user settings, 78

ABAP List Viewer, 453
ABAP Memory, 549
ABAP program

analysis, 364
runtime, 364

ABAP Test Cockpit, 82, 275, 295, 308,
311
trace, 318

ABAP Unit, 296
Access function, 241
Access time, 38

CPU cache, 39
Flash memory, 38
hard disks, 38
main memory, 39

ACID principle, 31
ADBC, 133, 255, 408, 516, 553

prepared statement, 136, 552
Add-on Assembly Kit, 273
Administration Console, 85
After-import method, 276, 290
Aggregate function, 125
Alternative implementation, 511
ALV, 469, 471

integrated data access, 494
Analytical functionality, 424
Analytical index, 440
Analytical search, 377
Analytic Engine, 428, 436

formulas, 439
hierarchy processing, 438
report-report interface, 439

Analytic privilege, 94
Analytics list component, 453
Analytic view, 94, 180, 554, 439

call, 373
create, 183

Appliance, 29
Application

optimization, 351, 355
Application Function Library, 34, 473

installation, 476
Application layer, 58

598

Index

Application logic, 58
Application scenario

accelerator scenarios, 54
integrated, 53, 55
side-by-side scenarios, 53

Array interface, 553
Attribute, 161

calculated, 172
vector, 45, 579
virtual, 172

Attribute view, 94, 161, 499, 554
fuzzy search, 398

Authorization
analytical, 86, 526
check, 525
package authorization, 86
SAP HANA Studio, 86
SQL authorization, 86
system authorization, 86

B

BAdI, 513
BEx Query Designer, 446
BFL, 34, 474
Blocking factor, 148
Breakpoint

dynamic, 83
external, 83
static, 83

BRFplus, 456
BSP Framework, 495
B* tree index, 583
Buffer

access, 369
cross-user, 546
trace, 152

Business Function Library, 474
Business functions, 31
Business intelligence, 21
Business logic, 221
Business process, 455
Business rule management system, 455
Business rule mining, 474

Business Server Pages (BSP), 495
BW query, 428, 446, 451

C

Calculation engine, 223, 241
Calculation logic, 58
Calculation view, 94, 215, 247, 440,

468, 499, 554
implemented, 197
SQLScript, 192

Calendar
fiscal, 176
Gregorian, 178

Call hierarchy, 325, 367
Cash flow, 477
CE Plan Operator, 239, 373, 555

CE_AGGREGATION, 240, 244
CE_CALC, 244
CE_CALC_VIEW, 242
CE_COLUMN_TABLE, 240, 241
CE_CONVERSION, 246
CE_JOIN, 242
CE_JOIN_VIEW, 241
CE_OLAP_VIEW, 242
CE_PROJECTION, 240, 243
CE_UNION_ALL, 244
CE_VERTICAL_UNION, 245, 483
data source access operator, 241
inner join, 242
other, 245
relational, 241, 242
special operator, 241
TRACE, 301

Change recording, 269, 273, 278
Change request, 273, 288, 289
Change transport, 269
Chart component, 454
CHIP, 494
Class

CL_PREPARED_STATEMENT, 553
CL_SQL_STATEMENT, 256, 553

Client handling, 107, 212, 252, 518
attribute view, 167
automatic, 232

599

Index

Client/server, 21
Cluster encoding, 47
Cluster table, 121, 516
Code completion, 80, 93, 210
Code Inspector, 295, 305, 352, 366

check variant, 305
Code pattern, 62
Code pushdown, 57, 549
Code-to-data paradigm, 57, 59, 362
Collective search help, 410
Column-based data storage, 42
Column-oriented data storage, 91
Column store, 42, 91, 120, 215, 579

composite index, 587
data types, 390
inverted index, 586
merge, 584
read access, 580
recommendation, 510
write access, 582

Column view, 90, 179, 183, 205, 210,
269

Commit
implicit, 130

Composite index, 587
Compression

techniques, 43, 46
Constructor expression, 206, 575
CONTAINS key word, 395
Content, 32
Control file, 276
Control structure, 250
Conversion exit, 514
Counter, 193
CPU cache, 38
CPU core, 37
CPU time, 377
CTS, 275

Deploy Web Service, 281
plug-in, 280

CTS+, 270, 292,
Currency conversion

Customizing, 188
parameterization, 189

Cursor, 128, 251, 557

D

DATA(), 574
Data analysis, 424
Data analyst, 473
Database

catalog, 89, 158, 205
index, 543
interface, 107, 516, 519
layer, 58
object, 90
optimizer, 50, 219, 331
relational, 31, 41, 158
type system, 113

Database connection
secondary, 139, 150
standard, 151

Database procedure, 52, 90, 95, 215,
216, 499, 522
compilation, 222
control structure, 250
create, 226
execution, 222
input parameter, 229
output parameter, 223, 229
processing logic, 230
proxy, 500
test, 523
types, 224

Database procedure proxy, 255, 263,
487, 518, 522
adjusting, 267
calling, 265
creating, 263
synchronization, 267

Database programming
tools, 143

Database schema, 89, 96
table, 90
technical, 89
trigger, 90
view, 118, 132

Data class, 120
Data Control Language (DCL), 116
Data declaration, 573
Data Definition Language (DDL), 116

600

Index

Data file, 275
Data inconsistency, 520, 523
Data layout, 41
Data Manipulation Language (DML),

116
Data mart, 427
Data model

virtual, 431
Data Modeler, 564
Data preview, 92, 100
Data reference, 576
Data replication, 34

Direct Extractor Connection (DXC),
35

SAP Landscape Transformation
Replication Server, 35

DataSource, 428, 445
Data-to-code paradigm, 57
Data type, 110, 119, 263

conversion, 464
SHORTTEXT, 390
TEXT, 390

Data warehouse, 426
DBA Cockpit, 140, 338
DBI, 107
DBSL, 33, 108
DDL, 224

statement, 50
Debug trace, 302
Decision rule, 455
Decision table, 95, 455, 457, 459, 494

actions, 457
conditions, 457
create, 459
transport, 471

Declarative language element, 557
Declarative programming, 220
Decoupling, 512, 523
Default schema, 228, 231
Delivery unit, 94, 278, 522
Delta compression, 46
Delta load, 34
Delta merge, 421
Delta store, 48, 421, 582
Design time, 260

object, 98

Development environment
ABAP Development Tools, 70, 75
installation, 69
SAP HANA Studio, 69

Development landscape
mixed, 518

Development object, 80, 89, 94
ABAP, 521
activate, 98
naming convention, 521
SAP HANA, 521
store, 96
test, 100
validate, 96

Development organization, 270, 271,
276
delivery unit, 278
package, 271
package hierarchy, 271, 277
package interface, 273
software component, 272
use access, 273

Diagnostics Agent, 36
Dictionary encoding, 43
Dictionary vector, 44, 579
Dimension, 181
Direct Extractor Connection (DXC), 35
Discount scheme, 492
Document Analysis Toolkit, 386
Domain, 119
DRAM, 39
Drilldown, 174
Dump, 299, 525

E

Easy Query, 437, 451
Eclipse, 31

ABAP development environment, 31
composite release, 65
editor, 74
extension point, 64
Foundation, 32, 63, 65
framework, 63
menu bar, 75

601

Index

Eclipse (Cont.)
perspective, 73
platform, 63, 65
plug-in, 64
project, 65
Release Train, 65
repository, 67
SAP, 66
SAP Release Train for Eclipse, 67
SDK, 64
toolbar, 75
update site, 67
view, 74
window, 73
Workbench, 72
workspace, 75

Elementary search help, 410
Embedded reporting, 437
Embedded Search, 389
Encapsulation, 522
Encoding

dictionary encoding, 43
indirect, 47
prefix encoding, 46
run-length encoding, 47
sparse encoding, 47

Engine, 52, 555
Enqueue server, 105
Enqueue Service, 519
Enqueue work process, 110
Enterprise Data Warehousing, 427
Enterprise Search, 389
Entity-relationship model, 157
Equi-join, 164
Error analysis, 293, 294, 296
Error handling, 524
ETL, 22
Exact search, 396
Exception handler, 254
Existence check, 307
Expensive SQL statement trace, 295
Explain plan, 295, 331

call, 332
output, 332

Exporting, 275

Export release preprocessing, 290
Extension index, 392

F

Factory class, 501
Factory pattern, 512
Fact table, 178, 181
Feeder class, 502
Field

calculated, 186
list, 533
symbol, 574

Filter, 162
value, 170

Fiscal year, 176
Flight data model, 105, 25

Customizing, 564
Floorplan Manager, 453, 502

feeder class, 502
FOR ALL ENTRIES, 124, 148, 540

driver table, 149, 307
Foreign key relationship, 118, 160
Forward navigation, 82
Full outer join, 243
Full text index, 391, 417, 499

displaying, 420,
Function

user-defined, 90
library, 89, 222

Function module
call, 368, 369

Fuzzy score, 401
Fuzzy search, 384, 385, 494, 499

index, 419, 420, 422
parameters, 401

G

GET_AGENCIES_FOR_CONNECTIONS,
217

Golden rules for database programming,
527

GUID, 569

602

Index

H

HANA transport container, 270, 286,
518

Hardware
certified, 37
innovations, 37
trends, 37

Hash, 51
partitioning, 51

HAVING Clause, 528, 543
Hierarchy, 162, 174, 182

level, 174
parent-child, 174

Hint, 131, 516
Hit list, 323
HTML5, 53, 433
Hybrid application, 57
Hypernym, 404
Hyponym, 404

I

Identical select, 328, 329
Imperative language element, 557
Imperative programming, 220, 250
Importing, 275
Index, 90

composite, 545
exclusion list, 121
inclusion list, 121
inverted, 585
primary index, 543
server, 52

Indirect encoding, 47
InfoObject, 428, 441

virtual, 443
InfoProvider, 427, 440

transient, 440
virtual, 441

InfoSet
classic, 445

Initial load, 34
Inline declaration, 206, 573

IN list, 149
In-memory database, 51
In-memory technology, 37
Input help, 383, 409
Input parameter, 189, 522
Insight to action, 424
Integer, 43
Integrated scenario, 55
Internal table, 549
Internet Communication Framework,

505
Inverted index, 586

J

Java Runtime Environment (JRE), 69
JDBC, 33
Job log, 97
Join, 92, 245, 372

complex, 556
full outer join, 162
inner, 122
inner join, 162, 242
join types, 162
left outer, 122, 243
left outer join, 162
outer join, 162
referential join, 163, 169
right outer, 243
right outer join, 162
self join, 200
text join, 163

Join Engine, 161, 557

K

Kernel, 105
Key field, 161
Key figure, 181

calculated, 186
K-means, 479, 484

603

Index

L

Large object, 421,
Left outer join, 243
Linguistic search, 396
List of suggestions, 385
List of synonyms, 388, 403
L node, 222
Load distribution, 49
Lock, 519

indicator, 274
object, 110, 119

Logical Unit of Work, 109
Loop, 557
LOOP loop, 542
Low-level technologies, 25
L (programming language), 222, 225
LUW concept, 109

M

Mainframe architecture, 21
Main memory, 37
Main store, 48, 582
Manifest, 64
Mass operation, 553
Master data, 181
Materialization, 157
MDX, 33, 52, 205
Measure, 181

restricted, 183
Merge, 584
Message server, 105
Mobile application, 496
Modeler, 85
Modification Assistant, 276
MODIFY, 148
Modularization, 523

unit, 307
Monitoring view, 420

N

Name server, 53
Namespace, 521

Native SQL, 373, 408, 552
ABAP tables, 518
ADBC, 133

Near real time, 589
Negative test, 297
NEW operator, 575
Noise words, 401
NUMA architecture, 39

O

Object instance
create, 575

OData, 53, 494
service, 433

ODBC, 33
ODBO, 33
OLAP, 57, 426
OLAP Engine, 557
OLTP, 57, 426
Online Analytical Processing (OLAP), 22
Online Transaction Processing (OLTP),

22
On the fly, 426
Open SQL, 59, 116, 219, 369, 103

array operations, 130
dynamic, 128
existence check, 127
hints, 131
package size, 129
transaction control, 130

Operational Data Provisioning, 445
Orchestration logic, 58
OR combination, 148
Original system, 276, 282
Outer join, 115
Output parameter, 522

P

Package, 94, 522
development package, 272, 277
encapsulated, 273
interface, 273
main package, 272

604

Index

Package (Cont.)
SAP HANA, 521
structure package, 272, 277
system-local, 278
test package, 273

PAL, 34, 475
Parallelization, 50
Parameter

marker, 553
stopwordListId, 403
stopwordTable, 403
textsearch, 403

Parameter types interface, 265
Partitioning, 48

explicit partition handling, 50
hash partitioning, 51
horizontal, 48
partition pruning, 50
range partitioning, 51
round-robin partitioning, 49, 51
types, 51
vertical, 48

Partition pruning, 51
PBO module, 469
Performance, 526
Phrase index, 419
Phrase-index ratio, 419
Planning engine, 52
PlanViz, 295, 333, 376,

analysis, 333
recording, 333

PMML, 479
Pool table, 516
Predictive analysis, 31, 473
Predictive Analysis Library, 475
Predictive Model Markup Language, 479
Prefix encoding, 46
Prefix namespace, 287
Prepared statement, 526
Prepare phase, 552
Preprocessor server, 53
Presentation layer, 58
Pretty Printer, 81
Primary database, 53, 256, 442
Program

create, 80

Program (Cont.)
execute, 83
hdbstudio, 72
regi, 236

Projection, 240
view, 118

Proxy object, 263
Public synonym, 99, 232, 233

R

R, 482
RAM, 37
Range, 124

partitioning, 51
Read-only procedures, 224
Read/write procedures, 224
Real time, 426, 19
Redirected Database Access (RDA), 140
Refactoring, 296
REF operator, 576
Relational operator, 241, 242
Repair flag, 276
Reporting, 424

operational, 426
Repository, 32
RESTful Service, 53
Result view, 468

wrapping, 468
Revision, 70
Right outer join, 243
Robust programming, 524
Role

management, 494
SAP HANA Studio, 86

Rollback, 130
Round-robin partitioning, 49, 51
Round trip, 148
Row-based data storage, 41
Row store, 41, 120, 215
R (programming language), 225
Rule, 458, 465
Run-length encoding, 47
Runtime, 260

analysis, 293, 295, 371
artifact, 179

605

Index

Runtime (Cont.)
error, 299
object, 98, 232

Runtime statistics, 313, 314, 356, 363
analysis, 314
selection, 314

S

SAP Business Application Accelerator,
589

SAP Business Explorer (BEx), 428
SAP BusinessObjects, 429
SAP BusinessObjects Business

Intelligence platform, 203, 431
SAP Business Suite, 55

powered by SAP HANA, 22, 513
SAP Community Network, 495
SAP CO-PA Accelerator, 54
SAP Crystal Reports, 453
SAP Data Services, 35
SAP HANA, 22

advanced functions, 24
application cases, 53
applications, 55
client software, 70
development, 86
Extended Application Services, 86,

433, 526
function libraries, 34
Live, 431
MDX Provider, 203
migration, 352, 515

SAP HANA Client, 33
HTTP, 34
Package for Microsoft Excel, 35, 203

SAP HANA database, 31
architecture, 51

SAP HANA Repository, 85, 94, 277,
521, 522
Client, 70, 236
view, 207

SAP HANA software component, 29
core components, 30
direct data preparation, 30
lifecycle management component, 30

SAP HANA software component (Cont.)
lifecycle management components, 36
software for data replication, 30

SAP HANA Studio, 31, 32, 85
authorizations, 86
database catalog, 89
hdbinst, 69
hdbsetup, 69
perspective, 85
SQL statement, 376
system connection, 87
templates, 93
user settings, 88
view modeling, 160, 164
workspace, 87

SAP HANA UI for Information Access,
35

SAP HANA view, 60, 205, 373, 518
performance, 553
selection, 212
test, 523
type, 554

SAP Host Agent, 36
SAP Landscape Transformation

Replication Server, 35
SAP Lumira, 475
SAP Management Console, 36
SAP Memory, 549
SAP NetWeaver AS ABAP, 33

architecture, 105
SAP NetWeaver Business Client, 493,

494, 506
SAP NetWeaver Business Warehouse

(BW), 22, 426
SAP NetWeaver Gateway, 437, 494

Service Builder, 496
SAP NetWeaver Operational Process

Intelligence, 458
SAP Predictive Analysis, 475
SAP software

real time, 21
SAP Solution Manager, 36
SAPUI5, 433, 494, 495

application, 504
Model View Controller, 505

Scalar parameter, 226
Scalar variable, 227

606

Index

Scale-out, 38, 105
Scale-up, 38
Schema, 89

handling, 518
mapping, 232, 283, 518

Scorecard, 474
Script server, 476
Search

facet, 386
freestyle, 385
fuzzy, 384, 385
linguistic, 385, 388
sentiment analysis, 386
synonym search, 385

Search help, 118, 410
default value, 415
exit, 410

Secondary connection, 150
Secondary database, 53, 139, 434
Secondary index, 543
Selectivity, 389
SELECT * statement, 369
SELECT statement

nested, 369, 540
Sentiment analysis, 384, 386, 417
Sequence, 90
Server component, 52
Service Builder, 503
Session context, 167
Set operation, 538
Shadow column, 391
Shared buffer, 549
Shared memory, 549
Shared objects, 549
Side-by-side scenario, , 22
Side panel, 492

configuration, 505
Single transaction analysis, 295, 330
Size category, 120
Slice and dice, 181
Smart device, 20
Software component, 272
Software innovation, 41
Software Update Manager for SAP

HANA (SUM), 36
Sort Behavior, 517
Sparse encoding, 47

SQL, 116
analysis, system-wide, 337
cache, 295, 340, 553
console, 92, 224
data type, 230, 231
dynamic, 252, 557
error code, 254
injection, 252, 526
Native, 60, 133, 255
Open, 59
performance optimization tool, 353
processor, 52
profile, 366
view, 158

SQL92, 215
SQL99, 215
SQLDBC library, 33
SQL Monitor, 296, 342, 352, 366

activate, 342
analysis, 342
entry point, 344

SQL Performance Tuning Worklist, 346,
356

SQLScript, 31, 60, 194, 373, 190
ABAP tables, 518
accessing the business logic, 221
activating, 222
basic principles, 223
BREAK, 250
CALL, 233
calling, 222
case distinction, 220, 250
case sensitivity, 232
CE Plan Operator, 239
client handling, 232, 252
CONTINUE, 250
control structures, 250
CREATE PROCEDURE, 226, 236
CREATE TYPE, 227
cursor processing, 251
custom exceptions, 254
debugger, 235
default exception, 254
dynamic, 525
dynamic SQL, 252
error handling, 254
EXEC, 252

607

Index

SQLScript (Cont.)
EXECUTE IMMEDIATE, 252
explicit typing, 237
implicit typing, 237
input parameter, 229, 262
loop, 220, 250
modularization, 216
optimizations, 247, 252
orchestration, 220
output parameter, 229, 258
parallelization, 219
performance, 249
processing, 222
processing logic, 230
qualities, 216
reuse, 217
rules, 556
scalar parameter, 226
scalar variable, 227, 238
SESSION_CONTEXT, 252
splitting up, 217
SQL versus CE Plan Operators, 246
system fields, 252
table parameter, 226
table type, 226, 227, 235
table variable, 217, 227, 237
typing, 237, 238
UDF, 225
user-defined functions, 225
variable, 237
WITH RESULT VIEW, 227

SQLScript debugger, 302
standard, 215

SQL statement
analysis, 354
BINARY SEARCH, 517
CREATE FULLTEXT INDEX, 391
EXEC, 525
EXEC SQL, 516
FOR ALL ENTRIES, 540, 541
INTO CORRESPONDING FIELDS OF,

533
ORDER BY, 517
SELECT COUNT(*), 534
UPDATE, 535
UPDATE ... SET, 536

SQL trace, 295, 326, 356, 366, 372
UP TO n ROWS, 531
analyze, 326
record, 326
recording, 145

Stack trace, 328
Standard database connection, 109
Star schema, 157, 182
Statement transformation, 143
Statistic record, 295
Statistics server, 53
Stop word, 389, 401
String, 46

templates, 573
Structure, 576
Subquery, 127, 541

scalar, 127
Synonym, 90, 99

public, 99
Syntax check, 81
System field, 512
System landscape

mixed, 290
System optimization, 353
System schema, 89, 109

T

Table, 117
internal, 576, 577
replicated, 589
access statistics, 364
buffer, 107, 120, 519, 542, 548
contents, 91
definition, 91
parameter, 226

Tablet, 496
type, 226, 227, 235
variable, 217, 227, 237

Temporary table, 260
global, 260
local, 260

Term mapping, 403
Test, 524

608

Index

Text analysis, 384, 386, 416
Text search, 386, 390
Thread, 340
Time data

generate, 176
Time zone, 513
Token, 390, 416
Totals table, 157
Trace, 313
Transaction

ATC, 295
DBACOCKPIT, 140, 295, 338
EQPREVIEW, 452
PFCG, 494, 505
RSDD_HM_PUBLISH, 440
SAT, 295, 318, 364, 372
SCI, 295, 305
SE11, 77
SE80, 414
SEGW, 503
SQLM, 296, 342
ST04, 338
ST05, 145, 151, 295, 372
ST12, 295, 330
ST22, 299
STAD, 295, 314, 356, 363, 371
SWLT, 346, 293, 366

Transactional system, 426
Transaction data, 181
Transport, 269

change recording, 269, 273, 278
change request, 288
combined, 285
control file, 276
CTS+, 292,
CTS Deploy Web Service, 281
CTS plug-in, 280
data file, 275
developer mode, 280
exporting, 280
HANA transport container, 270
importing, 280
lock indicator, 274
log, 276
logical transport object, 287
mechanisms, 270
mixed system landscape, 290

Transport (Cont.)
object list, 274
original system, 282
possible problems, 269
properties, 273
recommendations, 291
relocation, 276
schema mapping, 232
synchronization, 289
transport container, 286
transport directory, 275
Transport Domain Controller, 275,

280
transport layer, 274
transport log, 290
transport properties, 273, 278
transports of copies, 276
transport system, 274, 278

TREX, 389

U

Unit test, 296, 357, 524
Update, 105
UPSERT, 147
Use access, 273
User interface

building block, 453

V

Validation, 96
VALUE operator, 576
Variable, 237

declare, 573
scalar, 238
scope, 575
table variable, 237

Version history, 101
View, 90, 118, 157

analytic view, 159
attribute view, 159
calculation view, 159, 192
column view, 158, 269
database view, 132

609

Index

View (Cont.)
Dictionary View, 207
external, 207, 213, 269, 500, 518,

522
SQL view, 158

Virtual Data Model (VDM), 55

W

Web Dynpro ABAP, 414, 453, 493
context, 414
Eclipse, 414
Floorplan Manager, 498, 502

Web Dynpro ABAP Tools, 71

Weighted average, 483
BFL, 477

WHERE clause, 527, 543
Where-used list, 82
White list, 526
Widget, 493
Wild card, 383, 396
Word dictionary, 419
Work process, 105, 261
Wrapper function

AFL, 477

X

XS Engine, 34, 53, 90, 215

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do
recommend it, for example, by writing a review on http://www.sap-press.com. If you
think there is room for improvement, please get in touch with the editor of the book:
laura.korslund@galileo-press.com. We welcome every suggestion for improvement
but, of course, also any praise!

You can also navigate to our web catalog page for this book to submit feedback or
share your reading experience via Facebook, Google+, Twitter, email, or by writing
a book review. Simply follow this link: http://www.sap-press.com/H3320.

Supplements

Supplements (sample code, exercise materials, lists, and so on) are provided in your
online library and on the web catalog page for this book. You can directly navigate
to this page using the following link: http://www.sap-press.com/H3320. Should we
learn about typos that alter the meaning or content errors, we will provide a list
with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at SAP PRESS,
please feel free to contact our reader service: customer@sap-press.com.

i

http://www.sap-press.com
mailto:laura.korslund%40galileo-press.com?subject=
http://www.sap-press.com/H3320
http://www.sap-press.com/H3320
mailto:customer%40sap-press.com?subject=

ii

About Us and Our Program

The website http://www.sap-press.com provides detailed and first-hand information
on our current publishing program. Here, you can also easily order all of our books
and e-books. For information on Galileo Press Inc. and for additional contact options
please refer to our company website: http://www.galileo-press.com.

%20http://www.sap-press.com
http://www.sap-press.com
http://www.galileo-press.com

iii

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation
rights are reserved by the author and Galileo Press; in particular the right of repro-
duction and the right of distribution, be it in printed or electronic form.

© 2014 by Galileo Press Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you
may print the e-book for personal use or copy it as long as you store this copy on
a device that is solely and personally used by yourself. You are not entitled to any
other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third
parties. Furthermore, it is not permitted to distribute the e-book on the Internet,
in intranets, or in any other way or make it available to third parties. Any public
exhibition, other publication, or any reproduction of the e-book beyond personal
use are expressly prohibited. The aforementioned does not only apply to the e-book
in its entirety but also to parts thereof (e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark
may not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy. If you, dear reader, are not this person, you are violating
the copyright. So please refrain from using this e-book and inform us about this
violation. A brief email to customer@sap-press.com is sufficient. Thank you!

customer%40sap-press.com
mailto:customer%40sap-press.com?subject=

iv

Trademarks

The common names, trade names, descriptions of goods, and so on used in this
publication may be trademarks without special identification and subject to legal
regulations as such.

All of the screenshots and graphics reproduced in this book are subject to copyright
© SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. SAP, the SAP logo,
mySAP, mySAP.com, SAP Business Suite, SAP NetWeaver, SAP R/3, SAP R/2, SAP
B2B, SAPtronic, SAPscript, SAP BW, SAP CRM, SAP EarlyWatch, SAP ArchiveLink,
SAP HANA, SAP GUI, SAP Business Workflow, SAP Business Engineer, SAP Business
Navigator, SAP Business Framework, SAP Business Information Warehouse, SAP
interenterprise solutions, SAP APO, AcceleratedSAP, InterSAP, SAPoffice, SAPfind,
SAPfile, SAPtime, SAPmail, SAP-access, SAP-EDI, R/3 Retail, Accelerated HR, Acceler-
ated HiTech, Accelerated Consumer Products, ABAP, ABAP/4, ALE/WEB, Alloy, BAPI,
Business Framework, BW Explorer, Duet, Enjoy-SAP, mySAP.com e-business platform,
mySAP Enterprise Portals, RIVA, SAPPHIRE, TeamSAP, Webflow, and SAP PRESS are
registered or unregistered trademarks of SAP AG, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs,
neither the publisher nor the author, editor, or translator assume any legal respon-
sibility or any liability for possible errors and their consequences.

	Foreword
	Preface
	Introduction
	PART I Basic Principles
	1 Overview of SAP HANA
	1.1 Software Components of SAP HANA
	1.1.1 SAP HANA Database
	1.1.2 SAP HANA Studio
	1.1.3 SAP HANA Client
	1.1.4 SAP HANA Function Libraries
	1.1.5 Software for Data Replication
	1.1.6 Software for Direct Data Access
	1.1.7 Lifecycle Management Components

	1.2 Basic Principles of In-Memory Technology
	1.2.1 Hardware Innovations
	1.2.2 Software Innovations

	1.3 Architecture of the In-Memory Database
	1.4 Application Cases for SAP HANA
	1.5 How SAP HANA Affects Application Development
	1.5.1 New Technical Options
	1.5.2 Code Pushdown
	1.5.3 Database as Whitebox
	1.5.4 Required Qualifications for Developers

	2 Introducing the Development Environment
	2.1 Overview of Eclipse
	2.2 SAP's Eclipse Strategy
	2.2.1 Unbundling of Eclipse and SAP Software
	2.2.2 Central Update Site

	2.3 Installing the Development Environment
	2.3.1 Installing SAP HANA Studio
	2.3.2 Installing the ABAP Development Tools for SAP NetWeaver

	2.4 Getting Started in the Development System
	2.4.1 Basic Principles of Eclipse
	2.4.2 ABAP Development Tools for SAP NetWeaver
	2.4.3 SAP HANA Studio

	3 Database Programming Using SAP NetWeaver AS ABAP
	3.1 SAP NetWeaver AS ABAP Architecture
	3.1.1 Database Interface
	3.1.2 Role of the Database for the ABAP Application Server
	3.1.3 Data Types

	3.2 ABAP Database Access
	3.2.1 ABAP Data Dictionary
	3.2.2 Open SQL
	3.2.3 Database Views in the ABAP Data Dictionary
	3.2.4 Database Access via Native SQL
	3.2.5 Secondary Database Connections

	3.3 Analyzing Database Accesses Using the SQL Trace
	3.3.1 Statement Transformations
	3.3.2 Secondary Connections
	3.3.3 Native SQL
	3.3.4 Buffer

	PART II Introduction to ABAP Programming with SAP HANA
	4 View Modeling in SAP HANA Studio
	4.1 Attribute Views
	4.1.1 Basic Principles
	4.1.2 Creating Attribute Views
	4.1.3 Calculated Fields
	4.1.4 Hierarchies
	4.1.5 Attribute Views for Time Values
	4.1.6 Runtime Artifacts and SQL Access for Attribute Views

	4.2 Analytic Views
	4.2.1 Basic Principles
	4.2.2 Creating Analytic Views
	4.2.3 Calculated Key Figures
	4.2.4 Currency Conversion and Unit Conversion
	4.2.5 Runtime Artifacts and SQL Access for Analytic Views

	4.3 Calculation Views
	4.3.1 Basic Principles
	4.3.2 Graphical Modeling of Calculation Views
	4.3.3 Implementing Calculation Views via SQLScript
	4.3.4 Runtime Artifacts and SQL Access for Calculation Views

	4.4 Accessing Column Views via Microsoft Excel
	4.5 Using SAP HANA Views in ABAP
	4.5.1 Access via Native SQL
	4.5.2 External Views in the ABAP Data Dictionary
	4.5.3 Options for Accessing External Views
	4.5.4 Recommendations

	5 Programming Options in SAP HANA
	5.1 Overview of SQLScript
	5.1.1 Qualities of SQLScript
	5.1.2 Processing SQLScript

	5.2 Implementing Database Procedures
	5.2.1 Basic Principles of Database Procedures
	5.2.2 Creating Database Procedures
	5.2.3 Using Variables
	5.2.4 Calculation Engine Plan Operator
	5.2.5 Imperative Enhancements
	5.2.6 Accessing System Fields
	5.2.7 Error Handling

	5.3 Using Procedures in ABAP
	5.3.1 Access Using Native SQL
	5.3.2 Defining Database Procedure Proxies
	5.3.3 Calling Database Procedure Proxies
	5.3.4 Adjusting Database Procedure Proxies

	6 Application Transport
	6.1 Basic Principles of the Transport System
	6.1.1 Transport in SAP NetWeaver AS ABAP
	6.1.2 Transport in SAP HANA

	6.2 Combined ABAP/SAP HANA Transport
	6.2.1 HANA Transport Container
	6.2.2 Enhanced Transport System

	7 Runtime and Error Analysis with SAP HANA
	7.1 Overview of the Tools Available
	7.2 Error Analysis
	7.2.1 Unit Tests
	7.2.2 Dump Analysis
	7.2.3 Tracing in SQLScript
	7.2.4 Debugging SQLScript

	7.3 ABAP Code Analysis
	7.3.1 Checks and Check Variants
	7.3.2 Checks in the Development Infrastructure
	7.3.3 Global Check Runs in the System

	7.4 Runtime Statistics and Traces
	7.4.1 Runtime Statistics
	7.4.2 ABAP Trace and ABAP Profiler
	7.4.3 SQL Trace
	7.4.4 Single Transaction Analysis
	7.4.5 Explain Plan
	7.4.6 SAP HANA Plan Visualizer

	7.5 System-Wide SQL Analyses
	7.5.1 DBA Cockpit
	7.5.2 SQL Monitor

	7.6 SQL Performance Optimization

	8 Sample Scenario: Optimizing an Existing Application
	8.1 Optimization Procedure
	8.1.1 Migrating to SAP HANA
	8.1.2 System Optimization
	8.1.3 Application Optimization

	8.2 Scenario and Requirements
	8.2.1 Initial Situation
	8.2.2 Technical Implementation
	8.2.3 Current Problems

	8.3 Meeting the Requirements
	8.3.1 Narrowing Down the Problem Using the Runtime Statistics
	8.3.2 Detailed Analysis of the ABAP Program Using Transaction SAT
	8.3.3 Detailed Analysis of Database Accesses
	8.3.4 Analysis Result
	8.3.5 Optimization Using Open SQL
	8.3.6 Analysis of the First Optimization
	8.3.7 Analysis Result
	8.3.8 Optimization Using an Analytic View
	8.3.9 Analysis of the Second Optimization
	8.3.10 Analysis Result

	PART III Advanced Techniques for ABAP Programming for SAP HANA
	9 Text Search and Analysis of Unstructured Data
	9.1 Basic Principles of the Text Search in SAP HANA
	9.1.1 Technical Architecture
	9.1.2 Error-Tolerant Search
	9.1.3 SAP Components and Products for Search

	9.2 Types of Text Data and Full Text Indexes in SAP HANA
	9.3 Using the Text Search via SQL
	9.3.1 Fuzzy Search
	9.3.2 Synonyms and Noise Words
	9.3.3 Searching Across Date Fields and Address Data

	9.4 Using the Text Search in ABAP
	9.4.1 Calling the Text Search from ABAP via SQL
	9.4.2 Freely Defined Input Helps

	9.5 Text Analysis
	9.6 Resource Consumption and Runtime Aspects of the Text Search

	10 Integrating Analytical Functionality
	10.1 Introduction
	10.1.1 What is Analytical Functionality?
	10.1.2 Digression: SAP NetWeaver Business Warehouse

	10.2 Overview of Possible Architectures
	10.2.1 Direct Access to Analytical Functionality in SAP HANA
	10.2.2 Access via the SAP NetWeaver AS ABAP

	10.3 Selected Technologies and Tools
	10.3.1 InfoProviders when Using SAP HANA
	10.3.2 SAP BusinessObjects Portfolio
	10.3.3 Easy Query Interface

	10.4 User Interface Building Blocks

	11 Decision Tables in SAP HANA
	11.1 Basic Principles of Decision Tables
	11.2 Creating Decision Tables in SAP HANA Studio
	11.3 Decision Tables Based on SAP HANA Views
	11.4 Runtime Artifacts and SQL Access for Decision Tables
	11.5 Access to Decision Tables from ABAP

	12 Function Libraries in SAP HANA
	12.1 Basics of the Application Function Library
	12.1.1 Technical Basics
	12.1.2 Business Function Library
	12.1.3 Predictive Analysis Library

	12.2 Use of Application Function Library Functions in SQLScript
	12.3 Integration of Function Libraries in ABAP

	13 Sample Scenario: Development of a New Application
	13.1 Scenario and Requirements
	13.2 Application Design
	13.2.1 Management of Discounts by the Travel Company Owner
	13.2.2 Additional Evaluations via a Side Panel Application
	13.2.3 Mobile Application for the Air Passenger

	13.3 Implementation of the Application
	13.3.1 SAP HANA Views and Procedures
	13.3.2 Core of the ABAP Application
	13.3.3 User Interfaces

	13.4 Using the Applications

	14 Practical Tips
	14.1 General Recommendations
	14.1.1 Recommendations for Column and Row Store
	14.1.2 SAP HANA-Specific Implementations
	14.1.3 Checklist for Database-Specific Implementations
	14.1.4 Recommendations for Migration
	14.1.5 Development in Landscapes
	14.1.6 Modifying Data in SQLScript or Native SQL

	14.2 Conventions
	14.2.1 Naming Conventions
	14.2.2 Encapsulating Packages

	14.3 Quality Aspects
	14.3.1 Testing Views and Procedures
	14.3.2 Robust Programming
	14.3.3 Security Aspects

	14.4 Performance Recommendations for Open SQL
	14.4.1 Rule 1: Keeping Result Sets Small
	14.4.2 Rule 2: Keeping Transferred Datasets Small
	14.4.3 Rule 3: Reducing Number of Queries
	14.4.4 Rule 4: Minimizing Search Effort
	14.4.5 Rule 5: Reducing Load on Database
	14.4.6 Summary of Rules

	14.5 Performance Recommendations for Native Implementations in SAP HANA
	14.5.1 Recommendations for Native SQL
	14.5.2 Recommendations for SAP HANA Views
	14.5.3 Recommendations for SQLScript

	14.6 Summary of Recommendations

	Appendices
	A Flight Data Model
	A.1 Basic Principles of the Flight Data Model
	A.2 Database Tables for the Flight Data Model
	A.2.1 Customizing
	A.2.2 Master Data
	A.2.3 Transaction Data
	A.2.4 Designing the SFLIGHT Data Model

	A.3 Data Generation

	B What's New in ABAP in SAP NetWeaver 7.4
	B.1 Inline Declarations
	B.2 Constructor Expressions
	B.3 Internal Tables

	C Read and Write Access in the Column Store
	C.1 Basic Principles
	C.2 Read Access without an Index
	C.3 Write Access without an Index
	C.4 Read Accesses with an Index

	D SAP Business Application Accelerator Powered by SAP HANA
	E Installing the Sample Programs
	F The Authors

	Index

