
www.allitebooks.com

http://www.allitebooks.org

ARM Assembly Language with Hardware
Experiments

www.allitebooks.com

http://www.allitebooks.org

Ata Elahi • Trevor Arjeski

ARM Assembly Language
with Hardware Experiments

www.allitebooks.com

http://www.allitebooks.org

ISBN 978-3-319-11703-4 ISBN 978-3-319-11704-1 (eBook)
DOI 10.1007/978-3-319-11704-1

Library of Congress Control Number: 2014955658

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilms or in any other physical way, and transmission or in-
formation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Ata Elahi
Southern Connecticut State University
New Haven
Connecticut
USA

Trevor Arjeski
Southern Connecticut State University
New Haven
Connecticut
USA

www.allitebooks.com

http://www.allitebooks.org

v

Preface

ARM is one of the leading suppliers of microprocessors for the entire world. ARM
has designed and developed a CPU that partner companies can manufacture and add
more peripherals to the processor. An ARM processor has a wide range of applica-
tion in today’s technology, such as mobile phones, tablets, televisions, and auto-
mobiles. Learning the ARM instruction set and ARM assembly programming is an
essential tool in the development of low-level applications for the ARM processor.
Engineers will benefit significantly from the understanding of computer architec-
ture and assembly language, especially if they are working in an industry where
performance is crucial or hardware is being developed.

Organization This book contains seven chapters. The reader does not require any
background in ARM assembly language to understand material of this book.

Chapters one and two of this book form a foundation for the rest of the chapters.
Chapter 1 covers some necessary knowledge of digital signals, analog signals,

number systems and transmission methods.
Chapter 2 covers logic gates, registers and an introduction to computer architec-

ture.
Chapters 3 and 4 cover the ARM processor architecture with its instructions.
Chapter 5 covers ARM assembly language programming using Keil develop-

ment tools.
Chapter 6 covers ARM Cortex-M3 processor architecture, the MBED NXP

LPC1768 and basic GPIO Programming.
Chapter 7 covers lab experiments that include:

• Creating a binary counter using onboard LEDs
• Configuring an Analog-To-Digital Converter (ADC)
• Creating a voltmeter with an ADC
• Configuring Digital to Analog Converter (DAC)
• Converting binary to output for a hexadecimal display
• Configuring a Real-Time Clock (RTC)

Intended Audience This book is written primarily as an introduction to assembly
language for students who are studying computer science, computer engineering,

www.allitebooks.com

http://www.allitebooks.org

vi Preface

or hobbyists who are simply interested in learning ARM assembly programming
with hands-on experiments. This book can be used as a first course in computer
system which covers numbers systems, Digital Logics, Introduction to Computer
Architecture and Assembly language for computer science and computer technol-
ogy students.

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

1 Number Systems and Data Communication ... 1
1.1 Introduction ... 1
1.2 Analog Signals .. 1
1.3 Digital Signals ... 4
1.4 Number System ... 4
1.5 Coding Schemes .. 10
1.6 Clock ... 12
1.7 Transmission Modes.. 13
1.8 Transmission Methods .. 14

2 Logic Gates and Introduction to Computer Architecture 17
2.1 Introduction ... 17
2.2 Logic Gates ... 17
2.3 Integrated Circuit (IC) Classification .. 21
2.4 Registers .. 22
2.5 Introduction to Computer Architecture ... 22
2.6 Memory ... 27
2.7 Multiplexer and Decoder ... 30

3 ARM Instructions Part I ... 35
3.1 Introduction ... 35
3.2 Instruction Set Architecture (ISA) .. 38
3.3 ARM Instructions .. 39
3.4 Register Swap Instructions (MOV and MVN) 42
3.5 Shift and Rotate Instructions ... 43
3.6 ARM Unconditional Instructions and Conditional Instructions 46
3.7 ARM Data Processing Instruction Format .. 47
3.8 Stack Operation and Instructions .. 49
3.9 Branch (B) and Branch with Link Instruction (BL) 51
3.10 Multiply (MUL) and Multiply-Accumulate (MLA) Instructions 53

www.allitebooks.com

http://www.allitebooks.org

viii Contents

4 ARM Instructions and Part II .. 57
4.1 ARM Data Transfer Instructions ... 57
4.2 ARM Addressing Mode... 59
4.3 Data Transfer Instruction Format .. 61
4.4 Block Transfer Instruction and Instruction Format 62
4.5 Swap Memory and Register (SWAP) .. 62
4.6 Bits Field Instructions ... 63
4.7 Data Representation and Memory ... 65

5 ARM Assembly Language Programming Using Keil
Development Tools Introduction ... 69
5.1 Introduction ... 69
5.2 Keil Development Tools for ARM Assembly 69
5.3 Program Template ... 76
5.4 Programming Rules ... 76
5.5 Directives .. 77

6 ARM Cortex-M3 Processor and MBED NXP LPC1768 83
6.1 Introduction ... 83
6.2 MBED NXP LPC1768 .. 86
6.3 Basic GPIO Programming ... 88
6.4 Flashing the NXP LPC1768 .. 95

7 Lab Experiments .. 97
7.1 Introduction ... 97
7.2 Lab#1 Binary Counter Using Onboard LEDs 97
7.3 Lab2: Configuring the Real-Time Clock (RTC) 100
7.4 Lab#3 Configuring Analog-To-Digital Converter (ADC) 104
7.5 Lab #4: Digital to Analog Converter (DAC) 113
7.6 Experiment #5: Binary to Hexadecimal Display 116
7.7 Universal Asynchronous Receiver/Transmitter (UART) 118

Solution to the Problems and Questions .. 123

References ... 139

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Number Systems and Data Communication

© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1_1

1.1 Introduction

In order to understand network technology it is important to know how information
is represented for transmission from one computer to another. Information can be
transferred between computers in one of two ways: an analog signal or a digital
signal.

1.2 Analog Signals

An analog signal is a signal whose amplitude is a function of time and changes
gradually as time changes. Analog signals can be classified as non-periodic and
periodic signals.

Non-Periodic Signal In a non-periodic signal there is no repeated pattern in the
signal as shown in Fig. 1.1.

Periodic Signal A signal that repeats a pattern within a measurable time period is
called a periodic signal and completion of a full pattern is called a cycle. The simplest
periodic signal is a sine wave, which is shown in Fig. 1.2. In the time domain, a sine
wave’s amplitude a t() can be represented mathematically as () ()a t ASin tω θ= +
where A is the maximum amplitude, ω is the angular frequency and θ is the phase
angle.

A periodic signal can also be represented in the frequency domain where the
horizontal axis is the frequency and the vertical axis is the amplitude of signal. Fig-
ure 1.3 shows the Frequency domain representation of a sine wave signal.

Usually an electrical signal representing voice, temperature or a musical sound,
is made of multiple waveforms. These signals have one fundamental frequency and
multiple frequencies that are called harmonics.

Characteristics of Analog Signal The characteristics of a periodic analog signal
are frequency, amplitude, and phase.

www.allitebooks.com

http://www.allitebooks.org

2 1 Number Systems and Data Communication

Frequency: Frequency (F) is the number of cycles in one second; F
T

=
1 , repre-

sented in Hz (Hertz). If each cycle of an analog signal is repeated every one second,
the frequency of the signal is one Hz . If each cycle of an analog signal is repeated
1000 times every second (once every millisecond) the frequency is:

Table 1.1 shows different values for frequency and their corresponding periods.

Amplitude: The Amplitude of an analog signal is a function of time as shown in
Fig. 1.4 and may be represented in volts (unit of voltage). In other word, the ampli-
tude is its voltage value at any given time. At the time of t1, the amplitude of signal
is V1.

f
T

Hz kHz= = = =−

1 1
10

1000 13

Amplitude

ωω

A

Fig. 1.3 Frequency represen-
tation of a sine wave

T

TIME

VFig. 1.2 Time domain repre-
sentation of a sin wave

Time

Voltage

0

Fig. 1.1 Representation of a
non-periodic analog signal

www.allitebooks.com

http://www.allitebooks.org

31.2 Analog Signals

Phase: Two signals with the same frequency can differ in phase. This means that
one of the signals starts at a different time from the other one. This difference can
be represented by degree, from 0 to 360 degrees or by radians where 360 2o π=
radians. A sine wave signal can be represented by the equation () ()a t ASin tω θ= +
where A is the peak amplitude; ω (omega) is frequency in radians per second; t is
time in seconds; and θ is the phase angle. Cyclic frequency f can be expressed
in terms of ω according to

2
f ω

π
= . A phase angle of zero means the sine wave

starts at time t = 0 and phase angle of 90° mean the signal start at 90° as shown in
Fig. 1.5.

Example 1.1: Find the equation for a sine wave signal with frequency of 10 Hz,
maximum amplitude of 20 V and phase angle of zero.

2 2 3.1416 10 62.83
sec

() 20sin(62.83)

radf

a t t

ω π= = × × =

=

Table 1.1 Typical units of frequency and period
Units of frequency Numerical value Units of period Numerical value
Hertz (Hz) 1 Hz Second (s) 1 s

Kilo Hertz (kHz) 103 Hz Millisecond (ms) 10−3 s

Mega Hertz (MHz) 106 Hz Micro Second (µs) 10−6 s

Giga Hertz (GHz) 109 Hz Nanosecond (ns) 10−9 s

Tera Hertz (THz) 1012 Hz Pico Second ( ps) 10−12 s

T/4

T/2 3T/4 T
t

-A

+A

a(t)

t1=

V1=

Fig. 1.4 A sine wave signal over one cycle

4 1 Number Systems and Data Communication

1.3 Digital Signals

Modern computers communicate by using digital signals. Digital signals are repre-
sented by two voltages: one voltage represents the number 0 in binary and the other
voltage represents the number 1 in binary. An example of a digital signal is shown
in Fig. 1.6, where 0 V represents 0 in binary and + 5 V represents 1.

1.4 Number System

Numbers can be represented in different bases, consider the following number in
decimal:

356 has a base of 10 or, more commonly called, decimal.
In general, a number can be represented in the form
(a5 a4 a3 a2 a1 a0 .a−1 a−2 a−3) r where r is base of the number and ai has to be less

then r
Equation 1.1 can be used to converting a number in given base to decimal

(1.1)

356 6 50 300 6 10 5 10 3 100 1 2= + + = + +* * *

5 4 3 2 1 0 1 2 3 r

Integer Fraction

0 1 2 3 1 2 3
0 1 2 3 1 2 2

(a a a a a a a a a)

a r a r a r a r a r a r a r

− − −

− − −
− − −

⋅

= × + × + × + × +…+ × + × + ×

������� �����

+5
1 0 0 1 1 1 0 1

0 time

Fig. 1.6 Digital signal

90°

270°

Signal A Signal B Signal C

Fig. 1.5 Three sine waves with different phases

51.4 Number System

Example 1.2 Converting (27.35)8 to base 10

Example 1.3 Convert 1101111 to decimal

Converting from Binary to Decimal Equation 1.2 represent any binary number.

 (1.2)

where
ai is a binary digit or bit (either 0 or 1)
Equation 1.2 can be converted to decimal number by using Eq. 1.1

(1.3)
Example 1.4: To convert (110111.101)2 to decimal:

Or

Binary, or Base-2 numbers, are represented by 0’s and 1’s. A binary digit, 0 or 1, is
called a bit. Eight bits are equal to one byte, and 4 bytes is called a word.

0 1 1 2
8 10(27.35) 7*8 2*8 3*8 5*8 7 16 .375 .078125 (23.45)− −= + + + = + + + =

() * * * * * * *1101111 1 2 1 2 1 2 1 2 0 2 1 2 1 2
1 2 4 8 32 6

2
0 1 2 3 4 5 6= + + + + + +

= + + + + + 44 111 10= ()

5 4 3 2 1 0 1 2 3 2(a a a a a a a a a)− − −⋅

()

0 1 2 3
5 4 3 2 1 0 1 2 3 2 0 1 2 3 1

Integer Fraction

1 2
2 5 4 3 2 1 0 1 2 3 2

1 1
4 80 1 2 3 4 5 6 1 2

a a a a a a a a a a 2 a 2 a 2 a 2 a

2 a 2 a a a a a a a a a

a 2a 4a 8a 16a 32a 64a ½ *a *a a

(

3

)

*

− − − −

− −
− − − −

− −

⋅ = × + × + × + × +……+

× + × + ⋅

+ + + + + + += + + −

����� �� � � �

…

� �

(.) * * * * *

* * **

110111 101 1 2 1 2 1 2 0 2 1 2

1 2 1 2 0 2 1
2

0 1 2 3 4

5 1 2

= + + + +

+ + + +− − ** .2 55 6253− =

1
832 16 8 4 2 1 ½ ¼

 . 1 1 0 1 1 1 1 0 1

32 16 0 4 2 1 1/ 2 0 1/ 8+ + + + + + + +

6 1 Number Systems and Data Communication

Converting From Decimal Integer to Binary: To convert an integer number from
decimal to binary, divide the decimal number by the new base (2 for binary), which
will result in a quotient and a remainder (either 0 or 1). The first remainder will be
the least significant bit of the binary number. Continually divide the quotient by the
new base, while taking the remainders as each subsequent bit in the binary number,
until the quotient becomes zero.

Example 1.5: Convert 34 in decimal to binary.

Quotient Remainder
34/2 = 17 0 = a0

17/2 = 8 1 = a1
8/2 4 0 = a2
4/2 2 0 = a3
2/2 1 0 = a4
1/2 0 1 = a5

Therefore 34 = (100010)2

Converting Decimal Fraction to Binary: A decimal number representation of
(0.XY)10 can be converted into base 2 resulting in the representation, (0.a−1 a−2
a−3….)2.

The fraction number is multiplied by 2, the result of integer part is a−1 and frac-
tion part multiply by 2 and then separate integer part from fraction, the integer part
represent a−2, this processes continues until the fraction becomes zero.

Sometime the fraction does not reach zero and how many bits a decimal fraction
should be represented depend on accuracy the user define.

The 0.35 = 0.01011 in binary
The hexadecimal number system has a base of 16, and therefore has 16 symbols

(0 through 9, and A through F). Table 1.2 shows the decimal numbers, their binary
values from 0 to 15, and their hexadecimal equivalents.

71.4 Number System

Converting from Binary to Hex: Table 1.2 can also be used to convert a number
from hexadecimal to binary and from binary to hexadecimal.

Example 1.5 Convert the binary number 001010011010 to hexadecimal. Each
4 bits are grouped from right to left. By using Table 2.2, each 4-bit group can be
converted to its hexadecimal equivalent.

0010 1001 1010
2 9 A

Example 1.6: Convert (3D5)16 to binary. By using Table 2.2, the result in binary is

3 D 5
0011 1101 0101

The resulting binary number is: 001111010101

Example 1.7: Convert 6DB from hexadecimal to binary. By using Table 1.2, the
result in binary is

6 D B
0110 1101 1011

The resulting binary number is: 011011011011

Decimal Binary (base 2) Hexadecimal (Base
16) or HEX

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table 1.2 Decimal numbers
with binary and hexadecimal
equivalents

8 1 Number Systems and Data Communication

Example 1.8: Convert (110111.101)2 to decimal:

Binary Addition:

Complement and Two’s Complement: The complement of 1 is zero and comple-
ment of 0 is one.

The complement of a binary number is calculated by complementing each bit of
the number.

Example 1.9: The complement of 101101 is 010010
Two’s Complement of a number = Complement of a number + 1

Example 1.10: The two’s complement of 101011 is

Example: Find the two’s complement of 10000

Subtraction using Two’s Complement: Following procedure describe to subtract
B = b5 b4 b3 b2 b1 b0 from A = a5 a4 a3 a2 a1 a0.

1. Add Two’s complement of B to the A
2. Check if result produce carry

a. If result produce carry then discard the carry and result is positive
b. If result does not produce carry, take two’s complement of result and result is

negative.

110111 101 1 2 1 2 1 2 0 2 1 2 1 2
1 2 0 2 1

2
0 1 2 3 4 5

1 2

. * * * * * *
* *

*() = + + + + +
+ + +− − ** .2 55 6253− =

010100 1 010101 (complement) + =

01111 1 10000 (complement) + =

91.4 Number System

As we can see, adding two 6 bit number results in a 6 bits answer. There is no carry
over flow so we just take the two’s complement of the result.

Two’s Complement of 110101 = 001010 + 1 = − 001011

Unsigned, Signed Binary and Signed Two’s Complement Numbers: In an
unsigned number all bits are used to represent the number but in a signed number
the most significant bit of the number represents the sign. A 1 represents a negative
sign and 0 represents a positive sign. The unsigned number 1101 is 13

Signed Number: In a signed number the most significant bit represents the sign,
where 1101 = − 5 or 0101 = + 5

Signed Two’s Complement: A signed two’s complement apply to negative num-
ber, if the sign bit of number is negative, the number is represented by signed two’s
complement.

Example 1.12: Representing − 5 with 4 bits in signed two’s complement.
− 5 in signed number is 1101, the two’s complement of 101 (5) is 011 then 1011

represent −5 in signed two’s complement.

Example 1.13: Represent − 23 with 8 bit signed two’s complement
23 in binary is 10111,
23 in 8 bit signed number is 10010111, the two’s complement (not including the

sign) is
11101001

Binary Coded Decimal (BCD): In daily life we use decimal numbers where the
largest digit is 9, which is represented by 1001 in binary. Table 1.3 shows decimal
number and corresponding BCD code.

10 1 Number Systems and Data Communication

Example 1.14 Converting 345 to BCD.
Using the table: 0011 0100 0101.

Example 1.15 Converting (10100010010)BCD to decimal, separate each four bits
from right to left and substituting the corresponding decimal number with BCD
results in 512.

1.5 Coding Schemes

Since computers can only understand binary numbers (0 or 1), all information (such
as numbers, letters and symbols) must be represented as binary data. One com-
monly used code to represent printable and non-printable characters is the American
Standard Code for Information Interchange (ASCII).

ASCII Code Each character in ASCII code has a representation using 8 bits, where
the most significant bit is used for parity bit. Table 2.3 shows the ASCII code and
its hexadecimal equivalent.

Characters from hexadecimal 00 to 1F and 7F are control characters which are
nonprintable characters, such as NUL, SOH, STX, ETX, ESC and DLE (data link
escape).

Example 1.16 Convert the word “Network” to binary and show the result in hexadeci-
mal. By using Table 1.4 each character is represented by seven bits and results in:

1001110 1100101 1110100 1110111 1101111 1110010 1101011
N e t w o r k

or in hexadecimal

4E 65 74 77 6F 72 6B

Decimal BCD
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table 1.3 Binary Coded
Decimal (BCD)

111.5 Coding Schemes

Universal Code or Unicode: Unicode is a new 16-bit character-encoding standard
for representing characters and numbers in most languages such as Greek, Arabic,
Chinese and Japanese. The ASCII code uses eight bits to represent each character
in Latin, and it can represent 256 characters. The ASCII code does not support
mathematical symbols and scientific symbols. Since Unicode uses 16 bits it can
represent 65536 characters or symbols. A character in Unicode is represented by
16-bit binary, equivalent to four digits in hexadecimal. For example, the character
B in Unicode is U0042H (U represents Unicode). The ASCII code is represented
between (00)16 to (FF)16. For converting ASCII code to Unicode, two zeros are
added to the left side of ASCII code; therefore, the Unicode to represent ASCII
characters is between (0000)16 to (00FF)16. Table 1.5 shows some of the Unicode
for Latin and Greek characters. Unicode is divided into blocks of code, with each
block assigned to a specific language. Table 1.6 shows each block of Unicode for
some different languages.

Binary Hex Char Binary Hex Char Binary Hex Char Binary Hex Char

0000000 00 NUL 0100000 20 SP 1000000 40 @ 1100000 60 ’
0000001 01 SOH 0100001 21 ! 1000001 41 A 1100001 61 a
0000010 02 STX 0100010 22 “ 1000010 42 B 1100010 62 b
0000011 03 ETX 0100011 23 # 1000011 43 C 1100011 63 c
0000100 04 EOT 0100100 24 $ 1000100 44 D 1100100 64 d
0000101 05 ENQ 0100101 25 % 1000101 45 E 1100101 65 e
0000110 06 ACK 0100110 26 & 1000110 46 F 1100110 66 f
0000111 07 BEL 0100111 27 ‘ 1000111 47 G 1100111 67 g
0001000 08 BS 0101000 28 (1001000 8 H 1101000 68 h
0001001 09 HT 0101001 29) 1001001 49 I 1101001 69 i
0001010 0A LF 0101010 2A * 1001010 4A J 1101010 6A j
0001011 0B VT 0101011 2B + 1001011 4B K 1101011 6B k
0001100 0C FF 0101100 2C , 1001100 4C L 1101100 6C l
0001101 0D CR 0101101 2D - 1001101 4D M 1101101 6D m
0001110 0E SO 0101110 2E . 1001110 4E N 1101110 6E n
0001111 0F SI 0101111 2F / 1001111 4F O 1101111 6F o
0010000 10 DLE 0110000 30 0 1010000 50 P 1110000 70 p
0010001 11 DC1 0110001 31 1 1010001 51 Q 1110001 71 q
0010010 12 DC2 0110010 32 2 1010010 52 R 1110010 72 r
0010011 13 DC3 0110011 33 3 1010011 53 S 1110011 73 s
0010100 14 DC4 0110100 34 4 1010100 54 T 1110100 74 t
0010101 15 NACK 0110101 35 5 1010101 55 U 1110101 75 u
0010110 16 SYN 0110110 36 6 1010110 56 V 1110110 76 v
0010111 17 ETB 0110111 37 7 1010111 57 W 1110111 77 w
0011000 18 CAN 0111000 38 8 1011000 58 X 1111000 78 x
0011001 19 EM 0111001 39 9 1011001 59 Y 1111001 79 y
0011010 1A SUB 0111010 3A : 1011010 5A Z 1111010 7A z
0011011 1B ESC 0111011 3B ; 1011011 5B [1111011 7B [
0011100 1C FS 0111100 3C < 1011100 5C \ 1111100 7C \
0011101 1D GS 0111101 3D = 1011101 5D] 1111101 7D }
0011110 1E RS 0111110 3E < 1011110 5E ^ 1111110 7E ~
0011111 1F US 0111111 3F ? 1011111 5F - 1111111 7F DEL

Table 1.4 American Standard Code for Information Interchange (ASCII)

12 1 Number Systems and Data Communication

1.6 Clock

0 and 1 continuously repeated is called clock as shown in Fig. 1.7.
Each cycle of clock consist of 1 and 0 and it is measured by time, if one cycle

represented by T and unit of T is second then
F (Frequency) = 1/T the unit of frequency is Hertz (Hz) and unit of T is second
Example: What is frequency of a clock if one cyle of the clock equal to.5 ms

1000 Hz KHz (kilo Hertz)
106 Hz MHz (Mega Hertz)
109 Hz GHz (Giga Hertz)

F T Hz= = × =−1 1 0 5 10 20003/ / .

Table 1.6 Unicode block allocations
Start Code(Hex) End Code(Hex) Block name
U0000 U007F Basic Latin
U0080 U00FF Latin supplement
U0370 U03FF Greek
U0530 U058F Armenian
U0590 U05FF Hebrew
U0600 U06FF Arabic
U01A0 U10FF Georgian

Fig. 1.7 Clock signals

Table 1.5 Unicode values for some Latin and Greek characters
Latin Greek
Character Code (Hex) Character Code (Hex)
A U0041 ϕ U03C6
B U0042 α U03B1
C U0043 γ U03B3
0 U0030 µ U03BC
8 U0038 β U03B2

www.allitebooks.com

http://www.allitebooks.org

131.7 Transmission Modes

1.7 Transmission Modes

When data is transferred from one computer to another by digital signals, the receiv-
ing computer has to distinguish the size of each signal to determine when a signal
ends and when the next one begins. For example, when a computer sends a signal
as shown in Fig. 1.8, the receiving computer has to recognize how many ones and
zeros are in the signal. Synchronization methods between source and destination
devices are generally grouped into two categories; Asynchronous and synchronous.

Asynchronous Transmission Asynchronous transmission occurs character by
character and is used for serial communication, such as by a modem or serial printer.
In asynchronous transmission each data character has a start bit which identifies the
start of the character, and one or two bits which identifies the end of the character,
as shown in Fig. 1.9. The data character is 7 bits. Following the data bits may be
a parity bit, which is used by the receiver for error detection. After the parity bit is
sent, the signal must return to high for at least one bit time to identify the end of the
character. The new start bit serves as an indicator to the receiving device that a data
character is coming and allows the receiving side to synchronize its clock. Since the
receiver and transmitter clock are not synchronized continuously, the transmitter
uses the start bit to reset the receiver clock so that it matches the transmitter clock.
Also, the receiver is already programmed for the number of bits in each character
sent by the transmitter.

Synchronous Transmission Some applications require transferring large blocks
of data, such as a file from disk or transferring information from a computer to
a printer. Synchronous transmission is an efficient method of transferring large
blocks of data by using time intervals for synchronization.

One method of synchronizing transmitter and receiver is through the use of an
external connection that carries a clock pulse. The clock pulse represents the data
rate of the signal, as shown in Fig. 1.10, and is used to determine the speed of data
transmission. The receiver of Fig. 2.9 reads the data as 01101, each bit width repre-
sented by one clock.

Start
Bit Bit Bit Bit

D0 D1 D2 D3 D4 D5 D6 Parity Stop Stop

One Character

0

LSB MSB

Fig. 1.9 Asynchronous transmission

Fig. 1.8 Digital signals

14 1 Number Systems and Data Communication

Figure 1.10 shows an extra connection is required to carry the clock pulse for
synchronous transmission. In networking, one medium is used for transmission of
both information and the clock pulse. The two signals are encoded in a way that the
synchronization signal is embedded into the data. This can be done with Manchester
encoding or Differential Manchester encoding.

1.8 Transmission Methods

There are two types of transmission methods used for sending digital signals from
one station to another across a communication channel: serial transmission and par-
allel transmission.

Serial Transmission In serial transmission, information is transmitted one bit at
a time over one wire as shown in Fig. 2.11.

Ground Line (Fig. 1.11)

Parallel Transmission In parallel transmission, multiple bits are sent simulta-
neously, one byte or more at a time, instead of bit by bit as in serial transmission.
Figure 1.12 shows how computer A sends eight bits of information to computer B
at the same time by using eight different wires. Parallel transmission is faster than
serial transmission, at the same clock speed.

Ground Line

1 0 01 1 1 0 1

Fig. 1.11 Serial transmission

1
0

1
0
1
1
0

1
Clock

Computer
A

Computer
B

Fig. 1.12 Parallel
transmission

Clock

0 1 1 0 1
dataFig. 1.10 Synchronous

transmission

151.8 Transmission Methods

Problems and Questions

1. Show an analog signal
2. Show a digital signal
3. Convert following decimal numbers to binary

a. 35
b. 85
c. 23.25

4. Convert following binary numbers to decimal

a. 1111101
b. 1010111.1011
c. 11111111
d. 10000000

5. Convert following Binary numbers to Hexadecimal

a. 1110011010
b. 1000100111
c. 101111.101

6. Convert following number to binary

a. (3FDA)16
b. (FDA.5F)16

7. Find two’s complements of following numbers

a. 11111111
b. 10110000
c. 10000000
d. 00000000

8. Convert the word “ LOGIC” to ASCII then represent each character in hex
9. Subtract following numbers using two’s complement

a. 11110011–11000011
b. 10001101–11111000

10. List the types of transmission modes.
11. Why does a synchronous transmission require a clock?
12. What is frequency of an Analog signal repeated every 0.05 ms

17

Chapter 2
Logic Gates and Introduction to Computer
Architecture

© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1_2

2.1 Introduction

The basic components of an Integrated Circuit (IC) is logic gates which made of
transistors, in digital system there are three basic logic operations and they are
called AND, OR and NOT.

2.2 Logic Gates

AND Logic The AND Logic is represented by “.”. The most of the time, the period
is left out. X.Y or XY is pronounced as X AND Y.

X AND Y Z Z if and only if X and Y otherwise Z= = = = =, .1 1 1 0 The AND
logic operation can represented by electrical circuit of Fig. 2.1.

Assume X and Y are switches and Z is the light, X = 0, Y = 0 means switches are
open and light off means zero and light on means one, then we can make a Table 2.1
shows the operation of Fig. 2.1.

Figure 2.2 shows 2-Input AND gate and Table 2.2 show Truth table for AND
gate. The output of AND gate is one when both inputs are one.

OR Logic The OR operation is represented by a + or V, where + is the most popular
symbol used. X + Y is pronounced X OR Y.

This OR operation can be represented by the electrical circuit in Fig. 2.3. In Fig. 2.3,
the light is off when both switches are off, and light is on when at least one switch is
close. Figure 2.4 shows 2-Input OR gate and Table 2.3 shows truth table for 2-Input
OR gate.

X Y Z, Z 1 if X 1 OR Y 1 or both X 1 and Y 1.+ = = = = = =

18 2 Logic Gates and Introduction to Computer Architecture

X Y Z

0 0 0
0 1 0
1 0 0
1 1 1

Table 2.2 AND gate
truth table

X
Y

Z=XY
Fig. 2.2 2-Input AND
gate

X Y Light

Off Off Off
Off On Off
On Off Off
On On On

Table 2.1 Operation of
Fig. 2.1

X Y

Light

Fig. 2.1 Representation of
AND operation

NOT Logic The NOT logic performs a complement, meaning it converts a 1 to 0
and 0 to 1. Also called an inverter, the NOT X is represented by X’ or X . Figure 2.5
shows NOT gate and Table 2.4 shows truth table for NOT gate (Inverter)

192.2 Logic Gates

X X’
0 1
1 0

Table 2.4 Truth table
for not gate

X X
Fig. 2.5 NOT gate

X Y Z

0 0 0
0 1 1
1 0 1
1 1 1

Table 2.3 Truth table of
2-Input OR gate

X
Y

Z =X +Y
Fig. 2.4 2-Input OR gate

X

LightBa�ery

Y
Fig. 2.3 Electrical
circuit representation of
OR operation

NAND Gate Figure 2.6 shows 2-input NAND gate, The NAND gate can be made
from an AND and a NOT gate as shown in Fig. 2.7, Table 2.5 shows truth table of
2-Input NAND gate

20 2 Logic Gates and Introduction to Computer Architecture

NOR Gate Figure 2.8 shows a NOR logic gate. NOR gates are made of OR and
NOT gates, Table 2.6 shows Truth table of 2-Input NOR gate.

Exclusive OR Gate Figure 2.9 shows an exclusive OR gate. Exclusive OR is rep-
resented by and labeled XOR and Table 2.7 shows truth table for XOR gate.

Exclusive NOR Gate Figure 2.10 shows an exclusive NOR gate. Exclusive NOR
is represented by and labeled XNOR and Table 2.8 shows Truth Table for Exclu-
sive NOR gate.

Fig. 2.8 NOR gate

X Y XY

0
0
1 1
1

1
1

01
0
1
0

Table 2.5 Truth table of
2-Input NAND

X
Y

XY XYFig. 2.7 AND-NOT

Fig. 2.6 2-Input NAND
gate

Table 2.6 Truth table
for 2-Input NOR gate

212.3 Integrated Circuit (IC) Classification

2.3 Integrated Circuit (IC) Classification

A transistor is a basic component of Integrated Circuits (IC). The Fig. 2.11 shows
a transistor with an IC. Transistors act like a switch in Integrated Circuits. An Inte-
grated circuit is made from 100 to millions transistors.

Integrated circuit classified based on number of the gates such SSI, MSI, LSI
and VLSI.

Small Scale Integration (SSI) SSI refers to an IC that has less than 10 gates.

Medium Scale Integration (MSI) Refers to an IC that contains between 10 and
100 gates such as Decoders and Multiplexers.

Fig. 2.10 Exclusive
NOR gate

X Y X Y
0 0 0
0 1 1
1 0 1
1 1 0

⊕Table 2.7 Truth table
for XOR gate

Fig. 2.9 2-Input XOR

Table 2.8 Truth table
for exclusive NOR gate

22 2 Logic Gates and Introduction to Computer Architecture

Large Scale Integration (LSI) Refers to an IC that contains between 100 to 1000
gates.

Very Large Scale integration (VLSI) Refers to an IC that contains more than
1000 gates.

2.4 Registers

The registers are read/write memory that holds information inside the CPU. Each
bit of a register is made of a D-flip flop as shown in Fig. 2.12 and Table 2.9 shows
characteristic table for D-flip flop.

D Flip-Flop Operation As shown in Fig. 2.12, if the input of the flip flop is D = 0
then by applying a clock pulse the output is set to zero. If D = 1, applying a clock
pulse sets the output to 1. The data will be stored in the flip-flop after applying a
clock pulse. A register uses multiple D flip-flops that have a common clock pulse.
Figure 2.13 shows 4 bit register.

If 32 D flip-flops use a common clock then it is called a 32-bit register.

Tri-State Device Figure 2.14 shows the diagram of tri-state device, the control line
controls the operation of tri state device.

In Fig. 2.14 if control line set to zero there is no connection between input and
output. If control line set to one the output value is equal to the input value.

2.5 Introduction to Computer Architecture

Just as the architecture of a building defines its overall design and functions, so
computer architecture defines the design and functionality of a computer system.
The components of a microcomputer are designed to interact with one another, and
this interaction plays an important role in the overall system operation.

Fig. 2.11 Transistor ( left),
IC ( right)

232.5 Introduction to Computer Architecture

2.5.1 Components of a Microcomputer

A standard microcomputer consists of a microprocessor (CPU), buses, memory,
parallel input/output, serial input/output, programmable I/O interrupt and direct
memory access DMA. Figure 2.15 shows components of microcomputer.

Central Processing Unit (CPU) The central processing unit (CPU) is the “brain”
of the computer and is responsible for accepting data from input devices, processing
the data into information, and transferring the information to memory and output
devices. The CPU is organized into the following three major sections:

Fig. 2.14 Tri-State device

Fig. 2.13 4 bit register

Table 2.9 Characteristic table
of D-Flip Flop

Fig. 2.12 D-Flip Flop

www.allitebooks.com

http://www.allitebooks.org

24 2 Logic Gates and Introduction to Computer Architecture

1. Arithmetic Logic Unit (ALU)
2. Control Unit
3. Registers

Arithmetic Logic Unit (ALU: The function of the Arithmetic Logic Unit (ALU)
is to perform arithmetic operations such as addition, subtraction, division and mul-
tiplication, and logic operations such as AND, OR and NOT. Figure 2.16 shows
block diagram of ALU

Control Unit The function of the control unit is to control input/output devices,
generate control signals to the other components of the computer such as read and
write signals, and perform instruction execution. Information is moved from mem-
ory to the registers; the registers then pass the information to the ALU for logic and
arithmetic operations.

It should be noted that the function of the microprocessor and CPU are the same.
If the control unit, registers and the ALU are packaged into one integrated circuit
(IC), then the unit is called a microprocessor, otherwise the unit is called a CPU.
The difference in packaging is shown in Fig. 2.17.

There are two types of technology used to design a CPU: Reduced Instruction
Set Computer (RISC) and Complex Instruction Set Computer (CISC).

CISC Architecture In 1978, Intel developed the 8086 microprocessor chip. The
8086 was designed to process a 16-bit data word; it had no instruction for floating
point operations. At the present time, the Pentium processes 32-bit and 64-bit words
and it can process floating-point instructions. Intel designed the Pentium processor
in such a way that it can execute programs written for earlier 80 × 86 processors.

Programmable
Interrupt

Direct memory Access
DMA

Memory

Parallel Input/Output
Interface

Serial Input/Output
Interface

Arithmetic
Logic Unit

Registers

Control Unit

CPU

Data Bus

Address BUS

Control Bus

Fig. 2.15 Components of a microcomputer

252.5 Introduction to Computer Architecture

The characteristics of 80 × 86 are called Complex Instruction Set Computers
(CISC), which include instructions for earlier Intel processors. Another CISC pro-
cessor is VAX 11/780, which can execute programs for the PDP-11 computer. The
CISC processor contains many instructions with different addressing modes, for
example: the VAX 11/780 has more than 300 instructions with 16 different address
modes.

The major characteristics of CISC processor are:

1. A large number of instructions
2. Many addressing modes
3. Variable length of instructions
4. Most instruction can manipulate operands in the memory
5. Control unit is microprogrammed

Control Unit

Register
Register
Register
Register

ALU

Microprocessor

Control Unit

Register

Register
Register

ALU

CPU

Fig. 2.17 Block diagram of
microprocessor and CPU

Fig. 2.16 Block diagram
of ALU

26 2 Logic Gates and Introduction to Computer Architecture

RISC Architecture Until the mid-1990s, computer manufactures were designing
complex CPUs with large sets of instructions. At that time, a number of computer
manufacturers decided to design CPUs capable of executing only a very limited set
of instructions.

One advantage of reduced-instruction set computer is that they can execute their
instructions very fast because the instructions are simple. In addition, the RISC chip
requires fewer transistors then the CISC chip. Some of the RISC processors are the
PowerPC, MIPS processor, IBM RISC System/6000, ARM and SPARC.
The major characteristics of RISC processors are:

1. All instructions are the same length (they can be easily decoded)
2. Most instructions are executed in one machine clock cycle
3. Control unit is hardwired
4. Few address modes
5. A large number of registers

Computer Bus When more than one wire carries the same type of information, it is
called a bus. The most common buses inside a microcomputer are the address bus,
the data bus, and the control bus.

Address Bus The address bus defines the number of addressable locations in a
memory IC by using the 2n formula, where n represents the number of address lines.
If the address bus is made up of three lines then there are 23 = 8 addressable memory
locations, as shown in Fig. 2.18. The size of the address bus directly determines the
maximum numbers of memory locations that can be accessed by the CPU.

Data Bus The data bus is used to carry data to and from the memory and represents
the size of each location in memory. In Fig. 2.14 each location can hold only four
bits. If a memory IC has eight data lines, then each location can hold eight bits. The
size of a memory IC is represented by 2n × m where n is the number of address lines
and m is the size of each location. In Fig. 3.3, where n = 3 and m = 4, the size of the
memory is:

Control Bus The control bus carries control signals from the control unit to the
computer components in order to control the operation of each component. In addi-
tion, the control unit receives control signals from computer components. Some of
the control signals are as follows:

Read signal The read signal is used to read information from memory or input/
output (I/O) devices.

Write signal The write line is used to write data into the memory.

Interrupt Indicates an interrupt request.

Bus request The device is requesting to use the computer bus.

2 4 323 * = bits

272.6 Memory

Bus Grant Gives permission to the requesting device to use the computer bus.

I/O Read and Write I/O read and write is used to read from or write to I/O devices.

2.5.2 CPU Architecture

There are two types of CPU architecture and they are:

a. Von Neumann Architecture

A program is made of code (instructions) and data. Figure 2.19 shows a block dia-
gram of the Von Neumann Architecture. Von Neumann uses the data bus to transfer
data and instructions from the memory to the CPU.

b. Harvard Architecture

Harvard Architecture uses separate buses for instructions and data as shown in
Fig. 2.20. The instruction address bus and instruction bus are used for reading in-
structions from memory. The address bus and data bus are used for writing and
reading data to and from memory.

2.6 Memory

In general, memory can hold information either temporarily or permanently. The
following are some types of memory:

• Semiconductor Memory or Memory IC
• Floppy disk and Hard disk
• Tape
• CD ROM (Compact Disk-Read Only Memory)
• Flash ROM

000
001
010
011

100
101

110
111

Address Bus Data Bus

Read/Write

Fig. 2.18 A memory
with three address lines
and four data lines

28 2 Logic Gates and Introduction to Computer Architecture

Semiconductor Memory There are two types of semiconductor memory: Ran-
dom Access Memory (RAM) and Read only Memory (ROM).

Memory Memory holds instruction and data. Figure 2.21 shows the block diagram
of memory unit.

Memory is defined by the number of address lines it has (n) and size of each of its
locations (M). The size of a memory is defined by 2n × M.

Memory requires two control signals and they are:

Memory Write CPU writes data into memory by placing an address on the address
bus and data on the data bus then activating the memory write signal. The data will
then be stored in the specified memory location.

Memory Read CPU places the address on address bus and activates memory read
signal. The data stored in memory is then placed on the data bus.

Data can be read from or written into Random Access Memory (RAM). The
RAM can hold the data as long as power is supplied to it.

There are many types of RAM, such as Dynamic RAM (DRAM), Synchro-
nous DRAM (SDRAM), EDO RAM, DDR SDRAM, RDRAM, and Static RAM
(SRAM).

• Dynamic RAM (DRAM) is used in main memory. It needs to be refreshed (re-
charged) about every 1 ms. The CPU cannot read from or write to memory while
the DRAM is being refreshed—this makes DRAM the slowest running memory.
A DRAM comes in different types of packaging such as the SIMM (Single In-
Line Memory Module) and the DIMM (Dual In-Line Memory Module). The
SIMM is a small circuit board that holds several chips. It has a 32-bit data bus.

CPU

Instruction Address Bus

Instruction Bus

Address Bus

Data Bus

Fig. 2.20 Harvard
architecture

CPU

Address Bus

Data Bus

Instruction

Data

MemoryFig. 2.19 Von Neumann
architecture

292.6 Memory

The DIMM is a circuit board that holds several memory chips. A DIMM has a
64-bit data bus.

• Synchronous DRAM (SDRAM) technology uses DRAM and adds a special in-
terface for synchronization. It can run at much higher clock speeds than DRAM.
SDRAM uses two independent memory banks. While one bank is recharging,
the CPU can read and write to the other bank. Figure 2.22 shows a block diagram
of SDRAM.

Extended Data Out RAM (EDORAM) transfers blocks of data to or from mem-
ory.

• Double Data Rate SDRAM (DDR SDRAM) is a type of SDRAM that transfers
data at both the rising edge and the falling edge of the clock.

• Rambus DRAM (RDRAM) was developed by Rambus corporation. It uses
multiple DRAM banks with a new interface that enables DRAM banks to trans-
fer multiple words and also transfer data at the rising edge and the falling edge of
clock. The RDRAM refreshing is done by the interface. The second generation
of RDAM is called DRDRAM (Direct RDRAM) and it can transfer data at a rate
of 1.6 Gbps. Figure 2.23 shows a RDRAM module.

DRAM Packaging DRAM comes in different types of packaging such as: SIMMs
(Single In-Line Memory Module) and DIMM (Dual-in Line Memory Module).

Figure 2.24 shows SIMM, which is a small circuit board that holds several chips.
It has a 32 bit data bus.

DIMM is a circuit board that also holds several memory chips, but has a 64 bit
data bus.

• Static RAM (SRAM) is used in cache memory. SRAM is almost twenty times
faster than DRAM and is also much more expensive.

• ROM (Read Only Memory)

Like its name suggest, information can be ready only from Read Only Memory
(ROM). ROM holds information permanently, even while there is no power to the
ROM. Two types of ROM are listed below:

Fig. 2.21 Block diagram of a memory

30 2 Logic Gates and Introduction to Computer Architecture

• Erasable Programmable Read Only Memory (EPROM): EPROM can be
erased with ultraviolet light and reprogrammed with a device called an EPROM
programmer. Flash ROM is a type of EEPROM.

• Electrically Erasable PROM (EEPROM): EEPROM can be erased by apply-
ing specific voltage to one of the pins and can be reprogrammed with an EPROM
programmer.

• Flash Memory: Flash memory is a type of EEPROM that allows multiple
memory location to be written or erased one operation but EEPROM only one
memory location at a time to be erased or written

2.7 Multiplexer and Decoder

Multiplexer (MUX) Multiplexer has n inputs and one ouytput, Fig. 2.25 showes a
2*1 MUX, if S = 0 the outpout is A and if S = 1 then output is B.

Figure 2.26 shows 8*1 mux and Table 2.10 shows the function of multiplexer, S2
S1 S0 seclet the input to the MUX.

Decoder The function of decoder is to generate minterms of input at the ouput of
decoder.

Fig. 2.24 DRAM SIMM

Fig. 2.23 Rambus memory module. (Courtesy Samsung Corp)

Control Bus

Address Bus Data Bus
Control

TOP
Bank

Bottom
Bank

Output buffer

Fig. 2.22 Block diagram of SDRAM

312.7 Multiplexer and Decoder

A 2*4 decoder has 2 inputs and 4 outputs, outputs represent minterms of inputs
Fig. 2.27 shows a block diagram of 2*4 decoder and Table 2.11 shows truth table
of 2*4 decoder.

Fig. 2.25 2*1 MUX

Fig. 2.26 8*1 MUX

Table 2.10 Operation of
8*1 MUX

32

Table 2.11 shows
decoder truth table

2 Logic Gates and Introduction to Computer Architecture

Short Answer Questions
1. List the components of a microcomputer.
2. Explain the functions of a CPU.
3. List the functions of an ALU.
4. What is the function of a control unit?
5. What does RAM stand for?
6. What is SRAM? discuss its applications
7. Define DRAM and SDRAM and explain their applications.
8. Explain the function of an address bus and a data bus.
9. What does IC stand for?

10. What is the capacity of a memory IC with 10 address lines and 8 data buses?
11. What is ROM?
12. What does EEPROM stand for, and what is its application?
13. What does RDRAM stand for?
14. What is SIMM?
15. Explain the function of cache memory and give its location.
16. What is the application of a parallel port?
17. What is the application of a serial port?
18. Explain the difference between CISC processors and RISC processors

Explain difference between Von Neumann and Harvard Architecture.

Fig. 2.27 Block diagram
of 2*4 Decoder

332.7 Multiplexer and Decoder

Problems
1. If A = 11001011 and B = 10101110 then, what is the value of following operation

a. a. A AND B
b. b. A OR B

2. If A = 11001011 and B = 10101110, what is the value of following Operations

a. A NOT
b. A XOR B
c. A AND 0F
d. A AND F0

3. Draw logic circuit for following functions

4. Find the truth table for following function

5. If A = 10110110 and B = 0110110011, then find

a. A. A NAND B
b. B. A NOR B
c. C. A XOR B

6. Show output of following logic circuits

B.

()A. F X,Y,Z X’Y’ XZ’= +

B.F X,Y,Z X + Y X Z() = () +()

()F X,Y,Z XY’ YZ’ XZ’= + +

www.allitebooks.com

http://www.allitebooks.org

34 2 Logic Gates and Introduction to Computer Architecture

C.

7. Following multiplexer is given show the output

35

Chapter 3
ARM Instructions Part I

© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1_3

3.1 Introduction

Advanced RISC Machine (ARM) was developed by the Acorn Company. ARM is
a leader supplier of microprocessors in the world, ARM develop the core CPU and
thousand of suppliers add more functional units to the core. ARM uses two types in-
struction called Thumb and Thumb-2. Thumb instructions are 16 bits and thumb-2
instructions are 32 bits, currently most ARM processors uses 32 bit instructions.

ARM contains 15 registers called R0 through R15, R0 and R12 called general
propose registers. ARM able to execute Thumb instructions (16 bit instructions) and
Thumb-2 32 bits instruction, Thumb instructions use on R0 through R7 registers.

ARM is intended for applications that require power efficient processors, such
as Telecommunications, Data Communication (protocol converter), Portable Instru-
ment, Portable Computer and Smart Card. ARM is basically a 32-bit RISC proces-
sor (32-bit data bus and address bus) with fast interrupt response for use in real time
applications. A block diagram of ARM7 processor is shown in Fig. 3.1.

Instruction Decoder and Logic Control: The function of instruction decoder and
logic control is to decode instructions and generate control signals to other parts of
processor for execution of instructions.

Address Register: To hold a 32-bit address for address bus.

Address Increment: It is used to increment an address by four and place it in
address register.

Register Bank: Register bank contains thirty-one 32-bit registers and six status
registers.

Barrel Shifter: It is used for fast shift operation.

ALU; 32-bit ALU is used for Arithmetic and Logic Operation.

36 3 ARM Instructions Part I

Write Data Register: The processor put the data in Write Data Register for write
operation.

Read Data Register: When processor reads from memory it places the result in
this register.

ARM Operation Mode: ARM can operates in one of the following mode:
1. User Mode: Use for normal operation.
2. IRQ Mode: This Interrupt mode is designed for handling interrupt operations.
3. Supervisory Mode: Used by operating system.
4. FIQ Mode: Fast Interrupt mode.

Fig. 3.1 Block diagram of ARM7 architecture

373.1 Introduction

5. Undefined Mode: When an undefined instruction executed.
6. Abort Mode: This mode indicates that current memory access cannot be com-

pleted, such as when data is not in memory and processor require more time to
access disk and transfer block of data to memory.

ARM Registers: ARM7 has 31 general registers and 6 status registers. At user
mode only 16 registers and one Program Status Register (PSR) are available to
programmers. The registers are labeled R0 through R15. R15 is used for Program
Counter (PC), R14 is used for Link Register and R13 is used for Stack Pointer (SP).
Figure 3.2 shows user mode registers.

Current Program Status Register (CPSR): Figure 3.3 shows the format of PSR.
This register is used to store control bits and flag bits. The flag bits are N, Z, C and
V, and the control bits are I, F, and M0 through M4. The flag bits may be changed
during a logical, arithmetic and compare operation.

Flag Bits N (negative): N = 1 means result of an operation is negative and N = 0
means result of an operation is positive.

Z (zero): Z = 1 means result of an operation is zero and Z = 0 result of an operation
is not zero.

C (carry): C = 1 means result of an operation generated a carry, and C = 0 means
result of an operation did not produce a carry.

 R0
 R1
 R2
 R3
 R4
 R5
 R6
 R7
 R8
 R9
 R10
 R11
 R12
 R13
 R14
 R15 (PC) CPSR

31 0 Fig. 3.2 User mode registers

31 30 29 28 27 7 6 5 4 3 2 1 0
N Z C V Unused I F T M4 M3 M2 M1 M0

Fig. 3.3 Storage format for CPSR

38 3 ARM Instructions Part I

V (overflow): V = 1 means result of an operation generated an overflow and V = 0
means result of an operation did not generate an overflow.

Control Bits I (interrupt bit): When this bit set to one, it will disable the interrupt
and this means the processor does not accept any software interrupt.

F bit is used to disable and enable fast interrupt request mode (FIQ) mode.

M4, M3, M2, M1 and M0 are mode bits and they are equal to 10000 for user mode.

T (State bit): T = 1 Processor executing thumb instructions, T = 0 processor execut-
ing ARM instructions

3.2 Instruction Set Architecture (ISA)

Manufacturers of CPUs publish a document that contains information about the
processor such as list of registers, function of each register, size of data bus, size
of address bus and list of instructions that can be executed by the CPU. Each CPU
has a known instruction set that a programmer can use to write assembly language
programs. Instruction sets are specific to each type of processor. That being said,
Pentium processors use a different instruction set than ARM processors. The In-
structions are represented in mnemonic form means abbreviation, for example, the
Addition instruction represented by “ADD” Subtraction instruction represent by
“SUB” for example, the addition instruction is represented by

ADD R1, R2, R3; means add contents of R2 with R3 and store results in R1. R1,
R2, and R3 are called operands

A. Classification of Instruction base on number of operands
No Operand Instructions: The following are some of the instructions that do not
require any operands:

HLT—Halt the CPU

NOP—No operation

PUSH operand: Push operand into top of the stack

POP operand: Remove the operand from top of the stack

One Operand Instructions: The following are some of the instructions that
require one operand.

393.3 ARM Instructions

Two Operand Instructions: The following are some of the instructions that
require two operands:

Three Operand Instructions: Most modern processors use instructions with three
operands, such ARM, MIPS and Itanium.

3.3 ARM Instructions

ARM Architecture support Thumb 16 bit and Thumb-2 32 bit instruction set. Most
of the ARM instructions use three operands. These instructions are classified based
on their instructions format and are listed as followings:

A. Data Processing Instructions
B. Single Data Swap
C. Shift and Rotate Instructions
D. Unconditional Instructions and Conditional Instructions:
E. Stack Operations
F. Branch
G. Multiply Instructions
E: Data Transfer

3.3.1 Data Processing Instructions

The data processing instructions are as follows: AND, EOR, SUB, RSB, ADD,
ADC, SBC, RSB TST, TEQ, CMP, CMN, ORR, MOV, BIC and MNW. Data pro-
cessing instructions use register operands and immediate operand. The general for-
mat of Data processing instructions is

Mnemonic {S}{Condition} Rd, Rn, operand2 Mnemonic: Mnemonic is abbre-
viation of an operation such as ADD for addition

{}: Commands inside the { } is optional such as S and condition

S: When an instruction contains S mean update the Processor Status Register (PSR)
flag bits

40 3 ARM Instructions Part I

Condition: Condition define the instruction will executed if meet the condition
Rd: Rd is destination register
Rn: Rn is operand1
Operand2: Operand2 can be register or immediate value

A. Registers Operands: The operands are in registers. First register is destination
register, second register is operand1 and third register is operand2.

Following are Arithmetic and Logic operations Instructions with register oper-
ands

Example 3.1: Assume contents of R1 is 1111111111011111 and R2 is 1000 0100
1110 0011 after execution of BIC R0,R1, R2 the R0 contains 0111 101100011100

B. Immediate Operand: In immediate operand, operand2 is an immediate value
and maximum can be 12 bits

413.3 ARM Instructions

Example 3.2: What is contents of R1 after executing following instruction, assume
R2 contains 0x12345678

The ADD instruction will add contains of R2 with 0x2345 and store the result in R1,
then R1 = 0x123459BD

Setting Flag Bits of PSR: The above instructions do not affect the flag bit of PSR
because the instructions do not have option S. By adding suffix S to the instruction,
the instruction would affect the flag bit.

Compare and Test Instructions: ARM processor uses the compare and test
instructions to set flag bits of PSR and following are Compare and Test instructions

CMP, CMN, TST, and TEQ: These instruction uses two operands for compare
and test, the result of their operations do not write to any register

CMP Instruction (Compare Instruction): The CMP instruction has following
format

CMP Operand 1, Operand2: The CMP instruction compares Operand1 with
Operand2, this instruction subtract Operand2 from Operand 1 and sets the appropri-
ate flag. The flag bit set based on the result of the operation as follow

Z flag set if Operand2 equal operand 1
N flag is set if operand1 less than operand2
C flag is set if result of operation generate carry

Example 3.4: Assume R1 contains 0x00000024 and R2 contains 0x00000078, the
operation CMP R1, R2 will set N flag to 1

CMP Rd, immediate value, the immediate value can be 8 bits such as
CMP R1, #0xFF
CMN Compare Negate: The CMN has following format

CMN Operand1, Operand2: The instruction will add operand1 with operand 2
and set appropriate flag bit

42 3 ARM Instructions Part I

Example 3.5: Assume R1 contains 0x00000024 and R2 contains 0x13458978, the
operation CMN R1, R2 with result carry and set C flag to 1.

TST (Test Instruction): The test instruction has following format

TST Oprand1, Operand2: The Test Instruction performs AND operation between
operand1 and Operand2 and set appropriate flag bit. The operand to can be immedi-
ate value or Register such as

If R1 equal to R2 then Z flag set to one

3.4 Register Swap Instructions (MOV and MVN)

The register swap instructions has following general formats

Example 3.6: What is contents of R1 after Execution of following instruction

Assume R2 contains 0X0000FFFF

←

←

433.5 Shift and Rotate Instructions

MOV{S}{condition} Rd, immediate value

Immediate value is 16 bits, The range of immediate value if from 0x00000000 to
0x0000FFFF

Example 3.7: MOV R2, # 0x45, the contents of R2 will be 0x00000045

Conditional MOV

3.5 Shift and Rotate Instructions

ARM combined the Rotate and Shift operation with other Instructions, the ARM
processor performs following shift operations

Logical Shift Left (LSL): In logical shift left operations each bit of register shifted
to the left as shown in Fig. 3.4 and a zero will placed in the least significant bit, the
logical shift left multiply the contents of register by 2.

www.allitebooks.com

http://www.allitebooks.org

44 3 ARM Instructions Part I

Example 3.8: What is contents of R1 after executing following Instruction, assume
R1 contains 0x00000500.

LSL R1, R1, 8

R1= 0x00050000

Logical Shift Right (LSR): In logical shift right operations each bit of register
shifted to the right as shown in Fig. 3.5 and a zero will placed in the most significant
bit, the logical right divides the contents of register by 2.

Example 3.9 What is contents of R1 after executing following Instruction, assume
R1 contains 0x00000500.

Arithmetic Shift Right (ASR): In Arithmetic shift right the most significant bit
does not change and each bit shifted to the right as shown in Fig. 3.6.

Rotate Right: Figure 3.7 shows an eigth bit rgister and Fig. 3.7 shows the regiter
after rotating one times

0 0 1 11 11 0 0 0

0 1 11 0 0 0 00
Carry Flag

Fig. 3.4 Logical shift left

Carry Flag

1101 0001

101 00010 1

Fig. 3.5 Logical Shift Left

453.5 Shift and Rotate Instructions

Example 3.10 What is content of R1 after rotating 16 times, assum R1 contains
0x0000FFFF

ARM combines data processing instructions and shift operation, shift operation is
applied to the second operand of the instruction.

Example 3.11: Register R2 containes 0xEEEEFFFF, by executing

by rotating 16 times the contains of R1 will be 0xFFFFEEE

Also a register can hold number of times the operand2 must be shifted.

1101 0001

101 00011 1
Carry Flag

Fig. 3.6 Arithmetic shift
right

B7 B6 B5 B4 B3 B2 B1 B0

B0 B7 B6 B5 B4 B3 B2 B1

Fig. 3.7 Rotate right
operation

46 3 ARM Instructions Part I

3.6 ARM Unconditional Instructions and Conditional
Instructions

Figure 3.8 shows the general format of an ARM instruction. ARM instruction de-
fines two types of instructions, namely:

1. Unconditional Instruction
2. Conditional Instruction

Condition code defines the type of conditions. If this field is set to 1110 then the
instruction is an unconditional instruction, otherwise the instruction is a conditional
instruction. To use an instruction as a conditional instruction, the condition will suf-
fix to the instruction. The suffixes are:

Condition Code Condition
0000 EQ Equal
0001 NE Not equal
0010 CS Carry set
0111 CC Carry is clear
0100 MI Negative (N flag is set)
0101 PL Positive (N flag is zero)
0110 VS Overflow set
0111 VC Overflow is clear
1000 HI Higher for unsigned number
1001 LS Less than for unsigned number
1010 GT Greater for signed number
1011 LT Signed less than
1100 GT Greater Than
1101 LE Less than or equal
1110 AL Unconditional instructions
1111 Unused code

Condition
Code

Instruction

31 28 27 1

Fig. 3.8 General format of an ARM instruction

47

Processor checks condition flag before executing the conditional instruction. If it
matches with the condition instruction then processor executes the instruction, oth-
erwise skips the instruction.

Example 3.10: Convert the following HLL to ARM assembly language.

ARM assembly language for the above program would be:

Example 3.11: Convert the following HLL to ARM assembly language.

ARM assembly language for the above program would be:

3.7 ARM Data Processing Instruction Format

Figure 3.9 shows data processing instruction format.

Condition Code: To determine if the instruction is a conditional or a unconditional
instruction

31 28 27 26 25 24 21 20 19 16 15 12 11 0
Cond 0 0 I Op code S Rn RD Operand 2

Fig. 3.9 Data processing instruction format

3.7 ARM Data Processing Instruction Format

48 3 ARM Instructions Part I

I bit I = 0 means the operand2 is a register, I = 1 means the operand 2 is an immedi-
ate value.

Op Code: To determine types of operation and they are as followings:

S bit: S = 0 do not change flag bits of PSR register, S = 1 set condition flags of PSR
register

Rn: Rn is first operand and it can be any of 16 registers, R0 through R15

Rd: Rd is destination register and it can be any of 16 registers, R0 through R15

Operand2: When I = 0 the operand2 is a register and Fig. 3.10 shows operand2’s
format.

Shift: To determine immediate value for number of times Rm must be shifted

SH: To determine types of shift operation

Rm: Second operand

Operation SH value
LSL 00 Logical Shift Left
LSR 01 Logical Shift Right
ASR 10 Arithmetic Shift Right
ROR 11 Rotate Right

When bit 4 of operand2 is set to 1, the number of times Rm must be shifted is in a
register.

11 7 6 5 4 3 0
shift SH 0 Rm

Fig. 3.10 Operand2’s format
when bit 4 is equal to 0

493.8 Stack Operation and Instructions

Figure 3.11 shows format of operand2 of Fig. 3.9.

I = 1 The operand 2 would have following format.

11 0
Immediate value

Example 3.12: Convert the following instruction to machine code.

3.8 Stack Operation and Instructions

Part of memory is used for temporary storage is called stack, the stack pointer holds
the address of top of the stack as shown in Fig. 3.12

The register R13 assigned as Stack Pointer (SP), the stack uses following in-
structions
a. Push {condition} Rn: transfer the contains of Rn into stack and add 4 to the

stack pointer

Example 3.12 Assume contains of R3 is 0x01234567, Fig. 3.13 show the contents
of Stack after executing push R3.

Example 3.14 Shows contents of stack and SP in Fig. 3.13 after execution of Push
R4, assume R4 contains 0x5645321F.

POP Instruction: The POP instruction has following format.
POP{condition} Rn

POP Rn: The pop instruction remove the word from top the stack and store it into
register rn and automatically decrement stach pointer by 4.

Example 3.15: Show the contents of stack and SP of Fig. 3.14 after execution POP
R0, the contents of will be R0 = 0x1FAD7856 and stack will look like as Fig. 3.15.

Fig. 3.11 Format of Oper-
and2 when bit 4 is equal to 1

50 3 ARM Instructions Part I

010000A
0100009
0100008
0100007
0100006
0100005
0100004
0100003
0100002
0100001
0100000SP=r13=0x010000

Fig. 3.12 Stack architecture

010000A
0100009
0100008
0100007
0100006
0100005
0100004
0100003
0100002
0100001
0100000

SP=r13=0x010004
67
45
23
01

Fig. 3.13 Shows contents
of stack after execution of
Push R3

010000A
0100009
0100008
0100007
0100006
0100005
0100004
0100003
0100002
0100001
0100000

SP=r13=0x010008

67
45
23
01

56
45
32
1F

Fig. 3.14 Shows Stack after
push operations

513.9 Branch (B) and Branch with Link Instruction (BL)

3.9 Branch (B) and Branch with Link Instruction (BL)

The Branch instruction has following general format
B{condition} label

Example 3.16: Write a sub-routine to find the value of Y = 16X + 4, assume R1
holds the Y and R2 holds X.

010000A
0100009
0100008
0100007
0100006
0100005
0100004
0100003
0100002
0100001
0100000

SP=r13=0x010004
67
45
23
01

Fig. 3.15 Contains of stack
after POP operation

52 3 ARM Instructions Part I

B and BL Instruction Format:

L = 0 means Branch and condition for branch can be set by Cond field.
L = 1 Mean Branch and Link

Instruction
B Branch always
BAL Branch Always
BEQ Branch if Equal
BNE Branch if Not equal
BPL Branch on positive
BMI Branch on negative
BCC Branch if carry flag is clear
BLO Branch below for unsigned number
BCS Branch carry flag is set
BHS Branch if higher for unsigned number
BVC Branch if Over flow flag is clear
BVS Branch if Over flow flag is clear
BGT Branch greater for signed number
BGE Branch greater or equal for signed number
BLT Branch Less than for signed number
BLE Branch Less than for signed number
BLS Branch less than or equal for unsigned number

Example 3.17: Rewrite following assembly language using conditional
instructions.

533.10 Multiply (MUL) and Multiply-Accumulate (MLA) Instructions

By using conditional instructions the above assembly language can be represented
by

3.10 Multiply (MUL) and Multiply-Accumulate (MLA)
Instructions

Multiply Instruction Format:

A = 0 MUL instruction
A = 1 MLA instruction
S = 0 Do not change flag bit
S = 1 Set the flag bits
Rd is destination register
Rs, Rm and Rn are the operands

www.allitebooks.com

http://www.allitebooks.org

54 3 ARM Instructions Part I

Problems

1. What is contents of R5 after execution of following instruction, assume R2 con-
tains 0X34560701 and R3 contains 0X56745670

2. What is contents of R1? assume R2 = 0x00001234

3. What is difference between these two instructions?

4. Convert following HLL language to ARM instructions

553.10 Multiply (MUL) and Multiply-Accumulate (MLA) Instructions

5. Convert following HLL language to ARM instructions

6. Convert following flowchart to ARM assembly language

7. Write a program to add ten numbers from 0 to 10 or Convert following C lan-
guage to ARM assembly Language

56 3 ARM Instructions Part I

8. Write a program to convert following HLL to ARM assembly

 9. Convert following HLL to ARM assembly

10. Convert Following Flow Chart to ARM Assembly

57

Chapter 4
ARM Instructions and Part II

© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1_4

4.1 ARM Data Transfer Instructions

The data transfer instructions are used to transfer data from memory to registers and
from registers to memory and they are Load (LDR) and Store (STR) instructions.

4.1.1 Load Instructions (LDR)

The LDR instruction is used to load data to a register from memory and it has fol-
lowing general format.

LDR[type]{condition} Rd, Address Where “type” define following load
instructions

LDR load 32 bits (word)

LDRB load 1 byte

LDRH Load 16 bits (Half word)

LDRS load signed byte

LDRSB Load sign extension

LDRSH Load Signed half word

LDM Load multiple words

Condition is an optional such as LDREQ load data if Z flag = 1 and Rd is destina-
tion register

Example 4.1 Assume R0 hold address 0000 and following memory is given, show
the contains of R1 and R3 after executing following instructions (ARM Little
Indian)

58 4 ARM Instructions and Part II

Address Contents
0000 0x85
0001 0xF2
0002 0x86
0003 0xB6

LDRH R1, [R0]; R1 = 0x0000F285
LDRSH R3, [R0]; R3 = 0xFFFFF285

4.1.2 ARM Pseudo Instructions

ARM support multiple pseudo instructions, the pseudo instruction is used by the
programmer and assembler convert the pseudo instruction to ARM instruction

ADR Pseudo Instruction ADR is used to load the address of memory location into
a register and has following format
ADR Rd, Address

Example 4.2 The following instructions will read the address of data and then load
the data into register R3

ADR R0, Table; Move address represented by Table
LDR R3, [R0]; R3 = 0x23456780

Address Data
Table 0x23456780

LDR Pseudo Instruction LDR Pseudo instruction is use for loading a constant
into a register. In order to move a 32 bits contestant into a register, The instruction
MOV Rd, #value only can move 16 bits to the register Rd, The LDR Pseudo instruc-
tion has following format
LDR Rd, = Value

Example 4.3 The following instruction will load the R1 with 0x23456789

4.1.3 Store Instructions (STR)

The STR instruction is used to transfer contents of a register to memory and have
following general format

STR[type]{condition} Rd, [address] Where “type” define following instruction
types

LDR R1,=0x23456789

594.2 ARM Addressing Mode

STR Store 32 bits (word)
STRB Store 1 byte
STRH Store 16 bits (Half word)
STM Store multiple words

Example 4.4 STR R5, [R3]
; Store contents of R5 in into the memory location that R3 holds the address, R3 is
the base register.

4.2 ARM Addressing Mode

The ARM processor support indirect, pre-index and post-index addressing for load-
ing data from memory to the registers and storing data the memory.

4.2.1 Register Indirect Addressing

In Register Indirect Addressing the register inside the brackets holds the address of
data such as

LDR R0, [Rn]

4.2.2 Pre-Index Addressing

The pre-index addressing uses following two format

A. LDR R0, [Rn, #Offset]

Where Rn is Base Register and the effective address (EA) is calculated by

The offset can be immediate value or register or register with shift operation

A1. Pre-Index Addressing with Immediate Offset

Example 4.5 What is the effective address of following address assume R5 con-
tains 0x00002345

[R5, #0x25]

Effective Address (EA) = contents of Rn

EA Rn Offset= +

60 4 ARM Instructions and Part II

A2. Pre-index Addressing with Register Offset

Example 4.6 What is effective address of following Pre-index addressing, assume
R5 = 0x00001542 and R2 = 0x00001000

[R5, R2]

A3. Pre-Index Addressing with Register Shift operation

Example 4.7 What is EA of following instruction
LDR R0, [Rn, R2, LSL#2]

R2 shifted to the left twice (multiply by 4) and added to Rn

4.2.3 Pre-Index Addressing with Auto Index

The general format for Pre-index addressing with Auto-indexing is

[Rn, Offset]!

The Exclamation (!) character is used for auto-indexing; the offset can be immedi-
ate value or register or shifted register

A1. Offset is an Immediate Value

LDR R0, [R1,# -4]!
EA = R1 − 4 and R1 updated by R1 = R1 − 4.

Example 4.8 What is effective address and final value of R5 for following Instruc-
tion, assume the contents of R5 = 0x00002456.

LDR R0, [R5, #0x4]!

A2. Offset is a Register

LDR R0, [R1, R2]!

Example 4.9 What is effective address and final value of R5 of following Instruc-
tion, assume the contents of R5 = 0x00002456 and R2 = 0x00002222

LDR R0, [R5, R2]!

EA 0X000002345 0X25 0X0000236A= + =

EA R5 + R2 = 0X00001542 + oX00001000 = 0X00002542=

EA Rn R= + 2 4*

EA R5 0x4 0x000245A= + =

R5 R5 0X4 0x000245A= + = =

614.3 Data Transfer Instruction Format

4.2.4 Post -Index Addressing

The general format of Post-index addressing is
LDR R0, [Rn], Offset
Offset can be immediate value or register or shifted register

A. Offset is an Immediate Value

LDR R0, [Rn], #4

B. Offset is a Register

LDR R0, [Rn], Rm

C. Offset is a shifted register

LDR R0, [Rn], Rm, SHL #4

4.3 Data Transfer Instruction Format

Figure 4.1 shows format of Data Transfer Instruction
Rd: Destination Register
Rn: Base Register
L = 0 Store to memory, L = 1 Load from Memory
W = 0 no write back (keep Base address the same value), W = 1 modify base ad-

dress write back (auto indexing)
B = 0 transfer word, B = 1 transfer a byte
Up/Down bit; U = 0 subtract offset from base register, U = 1 add offset to the base

register
P = 0 Post, add offset after transfer, P = 1 Pre, add offset before transfer
I = 0 offset is an immediate value

EA R5 R2 0x00004678= + =

R5 R5 R2 0x00004678= + =

Effective address Rn and Rn Rn Rm= = +

Effective address Rn and Rn Rn Rm 16= = + *

Fig. 4.1 Data transfer format

62 4 ARM Instructions and Part II

I = 1 Offset is a register and offset has following format

Where shift field determine number of time RM must be shifted

4.4 Block Transfer Instruction and Instruction Format

Block transfer instruction is used to load from memory to the registers or store con-
tents of registers to memory (Fig. 4.2).

LDMIA R1, {R0,R2,R3};Load data from memory to registers R0,R2 and R3
,R0=memory[R1], R2=memory[R1+4], and R3=memory
[R1+8].

STMIA R0, {R2,R3} ;Store R2 and R3 starting at memory location addressed by
R0.

4.5 Swap Memory and Register (SWAP)

The swap instruction combines the load and store instructions into one instruction
and it has following format

31 28 27 25 24 23 22 21 20 19 16 15 0
cond 100 P U S W L Rn Register list

Base register
L=0 Load, L=1 store

Write back bit

S=0 do not change PSR, S=1 change CPSR or flag bits

Up/down bit, 0 =down ;subtract offset from base
U=1 add offset to the base

Pre/Post index bit
P=0 Post index
P=1 Pre index bit

Fig. 4.2 Format of Block Transfer Instruction

634.6 Bits Field Instructions

SWP Rd, Rm, [Rn] The register Rd is destination register, Rm is the source regis-
ter and Rn is base register.

The Swap instruction perform following functions (Fig. 4.3).

Rd memory [Rn]; Load Rd from memory location [Rn]

[Rn] Rm ;store the contents of Rm in memory location [Rd]

SWPB Rd ,Rm, [Rn] ;Swap one byte

4.6 Bits Field Instructions

ARM offers two bit field instructions and they are Bit Field Clear (BFC) and Bit
Field Insertion (BFI).

A. BFC (Bit Field Clear Instruction): BFC has following general format BFC
{cond} Rd, # lsb, #width

Rd is destination register
lsb determine start of bit position in the source register (Rd) to be clear
Width determine number of bits to be clear from lsb to msb of the Rd register

Example 4.10 Write an instruction to clear bits 7 through 15 of register R4,
assumeR4 contains 0x FFFEFEFE

BFC R4, #7, #8 clear bit 7 through bit 15 (8 bits) of register R4
The initial value in R4 is

31 28 27 23 22 21 20 19 16 15 12 11 4 3 0
Cond 00010 B 00 Rn Rd 00001001 Rm

Fig. 4.3 SWP instruction format

www.allitebooks.com

http://www.allitebooks.org

64 4 ARM Instructions and Part II

After clearing bit 7 through 15 of R4 results

B. BFI (Bit Insertion Instruction)
Bit insertion is used copy a set of bit from one register Rn into register Rd start-

ing from lsb of Rd, BFI has following format
BFI{cond} Rd, Rn, #lsb, #width

Rd is destination Reg
Rn Source register
#lsb starting bit from Rn
#width number of bit starting from lsb of Rn

Example 4.11 Copy 8 bits of R3 starting from bit 4 to R4, assume R3 contains 0x
FFFFEBCD and R4 contains 0xEE035007

BFI R4, R3, #4, #8, this instruction will copy 8 bits from B4 to B11 of R3 into
B0 through B7 of R4, The initial value of R3 in binary

The initial value of R4 in binary is

The instruction will copy 8 bits from bit 4 of R3 into R4 starting from bit 0 of R4

654.7 Data Representation and Memory

4.7 Data Representation and Memory

ARM processors define a word as 4 bytes and a half word as 2 bytes. Data can be
represented in the form of hexadecimal, decimal and binary.

a. Decimal numbers, such as 345
b. Hexadecimal numbers, such as 0x2345, where ‘x’ represents hexadecimal
c. Binary or base 2, such as 2_10111100

Memory holds data and code. Figure 4.4 shows a block diagram of memory. The ad-
dress of memory defines the location of the data, where each location of ARM pro-
cessor memory holds one byte. In assembly language a label, as shown in Fig. 4.5,
represents the address of memory.

Figure 4.4 shows how each memory location holds one byte. Storing two bytes
(half word) of data, such as 0x4563, can be stored two different ways called Big
Endian and Little Endian.

Big Endian: In Big Endian the most significant byte (MSB) of data is stored first
in memory.

The ARM 7 operates in Big and Little Endian; each memory location of ARM7
holds one byte and a word (4 bytes) can be store in memory in two different ways:
Big Endian and Little Endian.

00
01
10
11

23
4A
56
F5

Fig. 4.4 Byte addressable
memory

Fig. 4.5 Byte addressable
memory using a label

66 4 ARM Instructions and Part II

Example 4.12: The 0x34569312 may be stored in Big Endian form as shown in
Fig. 4.6.

Little Endian: In little Endian the least significant byte of a word is stored at the
lowest address.

Example 4.13: Hex number 34569312 may be stored in Little Endian form as
shown in Fig. 4.7.

0 12

1 93

2 56

3 34

4

Fig. 4.7 Little Endian
representation of hex number
34569312

0 34

1 56

2 93

3 12

4

Fig. 4.6 Big Endian rep-
resentation of hex number
34569312

674.7 Data Representation and Memory

Problem

1. Trace following instructions, assume list start at memory location 0x0000018
and using ARM Big Indian

2. Work problem #1 part A and B using Litle Endian

3. What is contents of register R7 after execution following program

ADR R0, LIST

LDRSB R7, [R0]

LIST DC 0xF5

4. What is contents of register Ri for following load Instructions, assume R0 hold
the address of list using little Endian

68 4 ARM Instructions and Part II

5. Following memory is given, show the contents of each register, assume
R1 = 0x0001000 and R2 = 0x00000004 (use Little Endian)

6. What is effective address and contains of R5 after executing following instruc-
tions? assume R5 contains 0x18 and r6 contains 0x00000020

A. STR R4, [R5]
B. STR R4, [R5, #4]
C. STR R4, [R5, #8]
D. STR R4, [R5, R6]
E. STR R4, [R5], #4

69

Chapter 5
ARM Assembly Language Programming Using
Keil Development Tools Introduction

© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1_5

5.1 Introduction

Manufacturers of CPUs publish a document that contains information about the
processor such as list of registers, function of each register, size of data bus, size
of address bus and list of instructions that can be executed by the CPU. Each CPU
has a known instruction set that a programmer can use to write assembly language
programs. Instruction sets are specific to each type of processor. That being said,
Pentium processors use a different instruction set than ARM processors. Using In-
structions of processor to write program is call assembly language and function of
Assembler is to convert assembly language to machine code (binary) that the CPU.

Cross Assembler: The assembler which runs on a different CPU is called a cross
assembler.

Development Tool: The development tool is a processor simulator that runs on a
workstation using a Windows or Linux operating system and enables the program-
mer to write and test programs, then download the program to the processor target.
The following development tools support ARM processors:

1. Keil Development: The programmer can download ARM Assembler from http://
www.keil.com/download/list/arm.htm

2. IAR System Development tool: the evaluation tool is available for 30 days http//
www.iar.com/website1/1.0.1.0/675/1

3. GNU ARM Assembler from http://www.gnu.org

5.2 Keil Development Tools for ARM Assembly

Download the Keil development tools from http://www.keil.com/demo/eval/armv4.
htm, you need to register in order to download.

http//www.iar.com/website1/1.0.1.0/675/1
http//www.iar.com/website1/1.0.1.0/675/1
http://www.keil.com/demo/eval/armv4.htm
http://www.keil.com/demo/eval/armv4.htm

70 5 ARM Assembly language programming Using Keil Development …

The Keil development tools were selected for running assembly language
throughout this book and following steps describe how to use Keil development
tools for writing Assembly Language.

After installing Keil µVision to your computer, you will be able to begin creating
programs for the ARM, Open µVision as shown in Fig. 5.1.

On µvision click on project and select new project and give a name, such as
project2, to display Fig. 5.2 target device window.

From the target device window select NXP manufacture then LPC1768, press
ok. Will display Fig. 5.3.

In Fig. 5.3 press yes and display Fig. 5.4 windows, in Fig. 5.4 click on Target and
you will see start file is added to the target.

On Fig. 5.4 window click File and select new file, type following sample pro-
gram. Save this file with the ‘.asm’ extension.

AREA NAME, CODE, READONLY

SystemInit

__main

; program code

EXPORT SystemInit
EXPORT __main

MOV R1, #0x25
MOV R2, #023

END

Fig. 5.1 Keil µVision window

715.2 Keil Development tools for ARM Assembly

Fig. 5.2 Target device window

Fig. 5.4 Project window

Fig. 5.3 Copy startup window

72

Save the file in project directory with extension .s (p2.s).
Click on target then right click on Source Group 1 to display Fig. 5.5. Then

select Add Existing File to Group and add the file to the group.
Select Project then select options for target to display Fig. 5.6, Now, select Use

MicoLIB and click ok.

5.2.1 Building a Project

Once you have added a file to your project, and are ready to compile, you can either
navigate to Project→Build Target or hit F7 on the keyboard. The Build Output
panel on the bottom of the window will show any errors, warnings or if the project
was built successfully as shown in Fig. 5.7.

Fig. 5.6 Option for target

Fig. 5.5 Adding file to Group

5 ARM Assembly language programming Using Keil Development …

735.2 Keil Development tools for ARM Assembly

5.2.2 Debugging a Program

Now that you have some compiled a piece of code, you will want to debug the code
for testing. Navigate to Debug→Start/Stop Debug Session to switch to the debug
environment as shown in Fig. 5.8.

Controls
Run—F5—Runs the program until it hits a breakpoint or the end of the program.
Step Into—F11—Steps through the code and follows into functions.
Step Over—F10—Steps through the code and jumps over functions.
Step Out—Ctrl+F11—Step out of a function.

Fig. 5.7 Build output

Fig. 5.8 Debug environment

74

Breakpoints You can add a breakpoint to a line of code that you would like the
debugger to stop, or “break”, at when reached. Once a breakpoint is reached, you
can use the controls above to step through the code as shown in Fig. 5.9.

The debugger will monitor the CPU’s registers and update their values in the
register bank on the left side of the window as shown in Fig. 5.10.

5 ARM Assembly language programming Using Keil Development …

Fig. 5.9 Use of breakpoint

Fig. 5.10 Register bank

75

While program in debug mode by selecting peripheral will display peripheral of
the LPC1786 processor as shown in Fig. 5.11, in Fig. 5.11 the LCP 1786 contain
GFIO fast Interface which consist of five ports p0 through p4.

Also while in debug mode by selecting view then memory windows then mem-
ory1 will display the contents of memory as shown in Fig. 5.12.

5.2 Keil Development tools for ARM Assembly

Fig. 5.11 LCP1768 Peripherals

Fig. 5.12 Content of memory1

76 5 ARM Assembly language programming Using Keil Development …

5.3 Program Template

Figure 5.13 shows the template that is used when writing assembly source code.
The BOLD words are needed for all program and program code placed between
__main and END.

5.4 Programming Rules

CSAE Rules Instructions, symbols and labels can be written in uppercase or low-
ercase but cannot be combined.

A generic line of assembly language has the following format:

Label Mnemonic Operand(s); Comment

Label A label is used to define a memory location. The assembler calculates its
numerical value. Labels must start on the first column of each line of the source
file. Labels can be any string of characters with an unlimited size, but cannot begin
with a number.

Fig. 5.13 Keil template
for writing NXP Cotex-M3
assembly language

775.5 Directives

Mnemonic An instruction represented in mnemonic form. For example, ADD
represents the instruction for addition and SUB represents the instruction for
subtraction.

Operand(s) Each instruction may have one or more operand.

ADD R1, R1, R2; This instruction has three operands, R1, R2, and R3.

Comments The programmer can write comments after a semicolon (;)

MOV R1, R2; Moving contents of R1 to R2.

5.5 Directives

A directive is an assembler command that is executed by the assembler. Directives
never produce any machine code. Directives are used to assign start of code, data
and end of the program, A simple directive is END, which constitutes the end of a
program. Here is a list of the most useful directives used by the ARM Assembler.

AREA Defines a segment of memory.
ENTRY Defines the start of the program.
EQU Used to assign a constant to a label.
Book EQU 0x25.

5.5.1 Data Directive

Data directives that define types and size of data and they are:
DCB (Define Constant Byte), DCW (Define Constant Half Word), DCD (Define

Constant Word), and SPACE.

DCB (Define Constant Byte) DCB means define constant byte is used for allocat-
ing one or more than once byte in memory. Figure 5.14 shows how the List stored
in memory.

Fig. 5.14 Byte addressable
memory using a label

78

list DCB 0x34, 0x56, 0x78, 2_01100101

DCB also can be represented by hexadecimal, binary and decimal

Label DCB 0x23, 2_00011111, 23

Define Constant Half Word (DCW) DCW define constant word is used to define
a half word (16 bits) and requires two memory locations per half word such as

List DCW 0x2345

Label2 DCW 0x2345, 0xFEEE, 0x4567

Define Constant Word (DCD) DCD is used to define a word and requires four
memory locations per word such as

List DCD 0x23456789

Character Strings A sequence of characters is called a character string. In ARM
Assembly, character strings are represented inside double quotation marks, fol-
lowed by a comma and a zero. If there is a dollar sign ($) or double quotation (“)
inside the string then the character must be repeated such as

List DCB “Assembly”,0

or

List DCB “I have $ 250.00”,0

Single Character When storing a single character in a register or memory location
the character must be inside single quotation marks.

List DCB 0x23, ‘A’

or

MOV R1, #’A’

or

Reserving Memory SPACE is used to reserve memory locations for later use.

MOV R1, #0x41 ;0x41 is ASCII for the character'A'

List SPACE 20 ;reserve 20 memory locations starting at the aaddress of List

5 ARM Assembly language programming Using Keil Development …

795.5 Directives

Problems

1. Write a program to add elements of List1 and store in List2.

List1 DCB 0x23, 0x45, 0X23, 0x11
List2 DCB 0x0

2. Write a program to find the largest number and store it in memory location List3.

List1 DCD 0x23456754
List2 DCD 0X34555555
List3 DCD 0x0

3. Write a program find the sum of data in memory location LIST and store the
SUM in memory location Sum using loop.

List1 DCB 0x23, 0x45, 0X23, 0x11
List2 DCB 0x0

4. Show the content of registers R1 through R5 after execution of following
program.

AREA NAME, CODE, READONLY

SystemInit

__main

EXPORT SystemInit
EXPORT __main
ENTRY

ADR R0, LIST1
LDRB R1, [R0]
LDRB R2, [R0, #1]!

LDRB R4, [R0,#1]!
LDRB R5, [R0,#1]

LDRB R3, [R0,#1]!

List DCB 0x23, 0x24, 0x67, 0x22, 0x99

SUM DCD 0x0
 align

 align

END

80

5. Write assembly language to clear bit position 0, 3, 5, and 6 of R12, the other bits
must be unchanged (using ARM Instruction).

6. Write assembly language program for following HLL.

7. Write a program to read memory location LIST1 and LIST2 and them then store
the sum in LIST3.

8. Write a program to multiplying two Numbers using subroutine.
9. Write a program to add 8 numbers using Indirect addressing.

LIST DCB 0x5, 0x2,0x6,0x7 ,0x9,0x1,0x2,0x08

10. Write a program to add 8 numbers using Post Index addressing.

LIST DCB 0x5, 0x2,0x6,0x7 ,0x9,0x1,0x2,0x08

11. Write a program to convert following HLL language to ARM instructions.

5 ARM Assembly language programming Using Keil Development …

815.5 Directives

12. What is Contents of R4 after Execution of following Program.

SystemInit

__main

LDR R1, =0xFF00FF

LIST1 DCD 0X45073487

EXPORT SystemInit
EXPORT __main
ENTRY

ADR R0, LIST1
LDR R2, [R0]
AND R4, R2, R1

AREA NAME, CODE, READONLY

 END

13. Write a program to convert following HLL to assembly language.

14. Write a subroutine to calculate value of Y where Y = X * 2 + x + 5, assume x rep-
resented by List DCB 0x5

LIST DCB 0x5

LIST1 DCB 0x5

15. Write a program to rotate R1 16 times, assume R1 contains 0x12345678.
16. Write a program to compare two numbers and store largest number in a memory

location LIST.

82

M1 EQU 5
N1 EQU 6
LIST2 DCB 0x0

17. Write a program to read a word memory location LIST and Clear bit position
B4 through B7 of register R5, assume R5 contains 0XFFFFFFF.

LDR R0, =0x000000F0
LDR R5, =0xFFFFFFFF

18. Write program to load Register R1, R2, R3, and R4 from memory location
LIST.

LIST DCD LIST DCD 0x12345AAA, 0x0000BBBB, 0x0000CCCC, 0X0000DDD

LIST DCD 0x12345AAA, 0x0000BBBB, 0x0000CCCC , 0X0000DDDD
END

5 ARM Assembly language programming Using Keil Development …

83

Chapter 6
ARM Cortex-M3 Processor and MBED
NXP LPC1768

© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1_6

6.1 Introduction

ARM offers variety of the core processor base on their applications and they are:

Cortex A series: Cortex A series is a High performance processor for open operat-
ing system, the Cortex-A50 is a 64 bit process, application of Cortex-A series are
Smart phones, Netbook, Digital TV, and eBook readers

Cortex-R series: Cortex-R series is design for real time application such as auto-
mobile braking, mass storage controller, printers and networking

ARM Secure Processor: This is an ultra-low power processor and it is used for
SIMs cards, smart cards and electronics passport. Figure 6.1 shows the general
Architecture of ARM Processor

ARM Cortex M series: ARM Cortex M series is used as microcontroller for
applications such as smart sensors, automobile control system, motor control, smart
meters and airbags. The ARM Corporation develop ARM core processor and ARM
developer partners add more Peripherals to the ARM processor such as A/D, D/A,
CAN, Ethernet and USB.

The Cortex-M3 is based on Harvard Architecture with 3 stage pipeline Archi-
tecture.

The ARM cortex is a low power processor and it is designed for embedded ap-
plication with following features

84 6 ARM Cortex-M3 Processor and MBED NXP LPC1768

ARM Cortex-M3 Specifications

ARM Cortex-M3 Features
ISA Support Thumb®/Thumb-2
Pipeline 3-stage
Performance Efficiency 3.32 CoreMark/MHz* − 1.25 to 1.50 DMIPS/MHz**
Memory Protection Optional 8 region MPU with sub regions and background

region
Interrupts Non-maskable Interrupt (NMI) + 1 to 240 physical interrupts
Interrupt Priority Levels 8 to 256 priority levels
Wake-up Interrupt Controller Up to 240 Wake-up Interrupts
Sleep Modes Integrated WFI and WFE Instructions and Sleep On Exit

capability.Sleep & Deep Sleep Signals.
Optional Retention Mode with ARM Power Management Kit

Bit Manipulation Integrated Instructions & Bit Banding
Enhanced Instructions Hardware Divide (2–12 Cycles), Single-Cycle (32 × 32) Mul-

tiply, Saturated Math Support.
Debug Optional JTAG & Serial-Wire Debug Ports. Up to 8 Break-

points and 4 Watchpoints.
Trace Optional Instruction Trace (ETM), Data Trace (DWT), and

Instrumentation Trace (ITM)

Figure 6.2 shows Internal components of ARM Cortex-M3 (http://www.microsemi.
com/products/fpga-soc/soc-processors/arm-cortex-m3)

Nested Vector Interrupt Controller (NIVC): The NVIC supports up to 240 Pri-
ority interrupts The main purpose of the NVIC is to handle low-latency exceptions
and interrupts, and control the CPU’s power management. The NVIC supports

Fig. 6.1 Block diagram of ARM processor with peripherals

856.1 Introduction

nested interrupts by maintaining knowledge of the stack, which allows for tail-
chaining interrupts, the NVIC also supports interrupt masking.

Bus Matrix: The bus matrix connects the processor and debug interface to the
external buses and it is interfaces with the following external buses.

I-Code Bus: I-Code Bus is used to fetch Instruction fetch from memory.

D-Code Bus: It is used for data load/store and debug accesses to code space.

System Bus: For instruction and vector fetches, data load/store and debug accesses
to system space.

Memory Protection Unit (MPU): The MPU provides support for protecting
memory regions, overlapping protection regions, memory access permissions, and
exporting memory attributes to the system. The MPU can be used for enforcing
privilege rules, separating processes, and enforcing access rules.

Flash Patch and Breakpoint (FPB) Unit: The FPB implements hardware break-
points and can be used to patch code and data from code space to system space.

Data Watch Point and Trace Unit (DWT): The DWT is a unit that performs
debugging functions.

AHB-AP: The AHB-AP is an optional debug access port for the Cortex-M3 sys-
tem, and provides access to all memory and registers in the system.

Private Peripheral
 Bus (internal)

INTNMI
INTNMI[149:0]

SLEEPING
SLEEPDEEP

NVIC CM3Core

MPU

FPB DWT

TPIU

ITM

APB
i/f

ROM
Table

Bus
Matrix

AHB-APSW/
SWJ-DP

ETM

Interrupts
 Sleep
 Debug

SW/
JTAG

Trigger

Private
Peripheral

Bus (external)

Cortex-M3

Instr. Data

I-Code Bus

D-Code Bus

System Bus

Trace Port
(serial wire

or multi-pin)

Fig. 6.2 Internal components of ARM Cortex-M3

86 6 ARM Cortex-M3 Processor and MBED NXP LPC1768

Memory: Cortex-M3 support 32 address lines which enable it to access 232 mem-
ory location and each memory location holds one byte, the cortex-M3 can have 4
Gigabytes of Memory and Fig. 6.3 shows ARM Cortex Memory Map.

6.2 MBED NXP LPC1768

For the hardware experiments we selected MBED NXP LPC1768 which is one of
the most popular microcontroller with ARM Cortex-M3 processor, Fig. 6.4 shows
MBED NXP LPC1768 pin out and its peripherals

The MBED contains following components

 1. ARM Cortex-M3 Processor with following features
 A. Clock Operation 100MHZ
 B. Nested Vector Interrupt Controller
 C. Weak up Interrupt Controller
 D. Reduced power mode

 2. Memory
 A. 512 KB of Flash memory
 B. 64 K bytes of SRAM (Static RAM)

 3. Three Universal Asynchronous Receiver/Transmitter (Serial Input/
Output)

Fig. 6.3 Cortex-M3 Memory Map

0x44000000

0x42000000
0x40100000

0x40000000

0x24000000

0x22000000
0x20100000

0x20000000

Bit Band
Alias 32MB

Bit Band
Alias 32MB

Bit Band
Region 1 MB

31 MB

31 MB
Bit Band

Region 1 MB

0xFFFFFFFF

0x0E010000

0x0E004000

0x0E000000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

System

Private Peripheral
Bus External

Private Peripheral
Bus Internal

External Device
1.0 GB

External RAM
1.0 GB

Peripheral
0.5 GB
SRAM
0.5 GB
Code

0.5 GB

876.2 MBED NXP LPC1768

 4. USB port
 5. CAN (Controlled Area network): CAN is a two-wire serial bus communica-

tions originally developed for the automotive industry
 6. SPI (Serial Peripheral Interface): SPI is a synchronous serial data link
 7. I²C (Inter-Integrated Circuit): it is a multi-master serial single-ended com-

puter bus and it used for connecting low-speed peripherals to a microcontroller
 8. 12 bit Analog to Digital (A/D) Convert with 8 channels
 9. 10 bit Digital to Analog (D/A) Convert
10. PWM (Motor Control):
11. Timer/Counter
12. General Purpose Input and outputs
13. 4 LEDs

Figure 6.4 shows MBED LPC 1768, MEBD uses Cortex-M3 processor, the Cortex-
M3 has 4 ports and it is called P0, P1, P2 and P3, each port has 32 pins and each pin
represented by Px.y, where x represented port number and y represent pin number.
The MBED board uses some of the ports of Cortex M3 not all of them. There are
four LEDs on the MBED board which are connected to the following ports

LED1 LED2 LED3 LED4
P1.18 P1.20 P1.21 P1.23

GND
VIN 4.5v - 9.0v In
VB
nR

0v

p5
p6
p7
p8
p9

p10
p11
p12
p13
p14
p15
p16
p17
p18
p19
p20

VOUT
VU
IF-
IF+
RD-
RD+
TD-
TD+

D-
D+

p30
p29
p28
p27
p26
p25
p24
p23
p22
p21

mosi
miso
sck

SPI

tx
rx

Serial sda
scl I2C

mosi
miso
sck

SPI
tx
rx

Serial

AnalogOut
AnalogIn

3.3v Regulated Out
5.0v USB Out

Ethernet

USB

CAN
rd
td

I2C
sda
scl

Serial tx
rx

PwmOut

P0.9
P0.8
P0.7
P0.6
P0.0
P0.1
P0.18
P0.17
P0.15
P0.16
P0.23
P0.24
P0.25
P0.26
P0.30
P0.31

P0.4
P0.5
P0.10
P0.11
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5

Fig. 6.4 MBED Block diagram [2],image from http://www.nxp.com/documents/leaflet/LPC1768.
pdf

88 6 ARM Cortex-M3 Processor and MBED NXP LPC1768

6.3 Basic GPIO Programming

The following steps describe how to program a General Purpose Input/output pin
using assembly language. Some applications of GPIO pins include driving LEDs,
controlling external devices, sensing digital inputs, and waking up the device. In
this guide, the GPIO pins will be used as simple I/O by manipulating the registers
dedicated to configuring GPIO Port 0.

A. Setting the Pin Function
B. Setting the Pin Direction
C. Setting Fast GPIO Port Mask Register
D. Setting output Pin to logic high
E. Clearing a Pin
F. Reading a Pin Value

A. Setting the Pin Function

Each pin of MBED can be used for multiple functions such as Input/output, Serial
Receiver (RX) or Serial Transmitter (TX) and some pins can have four different
functions. Two bits are used to select function of each pin, therefore 64 bits are
required to selecting function of a 32 bit port such as port P0. This 64 bits is repre-
sented by two 32 bit registers called PINSEL0 and PINSEL1 each register define
by an address, for selecting port P0 pins function. Figure 6.5 show PINSEL0 and
corresponding pins of P0/y

Bits B1B0 select function of P0.0, For using P0.0 as Input/output the B1B0 must
set to 00 result P0.0 can be used as I/O

Table 6.1 shows PINSELX registers with their corresponding address and cor-
responding pins and Table 6.2 shows PINSEL0 function bits.

B31B30 B18B17 B16B15 B14B12 B12B11 B11B10 B9B8 B7B6 B5B4 B3B2 B1B0

P0.9 P0.8 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0P0.15

PINSEL0

Fig. 6.5 PINSEL0 Register

Table 6.1 PINSELX Register with corresponding Address and Port function bits
Register Name Address Port function bits
PINSEL0 0X4002C000 P0.15-P0.0
PINSEL1 0X4002C004 P0.31-P0.16
PINSEL2 0X4002C008 P1.15-P1.0
PINSEL3 0X4002C00C P1.31-P1.16
PINSEL4 0X4002C010 P2.15-P2.0
PINSEL4 0X4002C01C P2.31-P2.16

896.3 Basic GPIO Programming

B. Setting the Pin Direction

The Fast GPIO Direction Register (FIOxDR) is used to set direction of I/O pins as
input or output of a port, X in FIOXDR represent the port number, each port has one
FIOxDR register and each register is represented an address

FIO0DR with the address 0x2009C000 is used to set P0.0 through P0.31 as input
or output

FIO1DR with the address 0x2009C020 is used to set P1.0 through P1.31 as input
or output

FIO2DR with the address 0x2009C040 is used to set P2.0 through P2.31 as input
or output

The direction of the pin determines if the pin will act as an input or an output.
Each bit in the FIOxDR Register corresponds to a GPIO pin. Figure 6.6 shows
FDIO0DR Register with Address FIO0DR = 0x2009C00

In the above configuration P0.0 is set to output and P0/1 is set to input.

C. Fast GPIO Port Mask register (FIOxMASK)

There is a mask register that is dedicated to selecting which pins on the port will and
will not be affected by write accesses. This register will also filter the ports contents
when reading inputs. Writing a 0 in this register’s bits enables read and write access
to the corresponding pin. If a bit’s value is 1 then the corresponding pin will not
be changed with a write access and that pin will not be updated in the register that
holds pins’ values. Every Port assigned as FIOxMASK register, the Table 6.3 shows
FIOxMASK and correspond address for port 0 and port1 with address 0x2009C000.
Figure 6.7 show FIO0MASK with b1b0 equal 00.

Table 6.2 PINSEL0 function bits (0x4002C000)
Bits Pin name Function

when 00
Function
when 01

Function
when 10

Function
when 11

Reset
Value

1:0 P0.0 GPIO Pin 0 RD1 TXD3 SDA1 00
3:2 P0.1 GPIO Pin 1 TD1 RXD3 SCL1 00
5:4 P0.2 GPIO Pin 2 TXD0 AD0.7 Reserved 00
7:6 P0.3 GPIO Pin 3 RXD0 AD0.6 Reserved 00
9:8 P0.4 GPIO Pin 4 I2SRX_CLK RD2 CAP2.0 00
11:10 P0.5 GPIO Pin 5 I2SRX_WS TD2 CAP2.1 00
13:12 P0.6 GPIO Pin 6 I2SRX_SDA SSEL1 MAT2.0 00
15:14 P0.7 GPIO Pin 7 I2STX_CLK SCK1 MAT2.1 00
17:16 P0.8 GPIO Pin 8 I2STX_WS MISO1 MAT2.2 00
19:18 P0.9 GPIO Pin 9 I2STX_SDA MOSI1 MAT2.3 00
21:20 P0.10 GPIO Pin 10 TXD2 SDA2 MAT3.0 00
23:22 P0.11 GPIO Pin 11 RXD2 SCL2 MAT3.1 00
29:24 – Reserved Reserved Reserved Reserved 0.0
31:30 P0.15 GPIO Pin 15 TXD1 SCK0 SCK 00

90 6 ARM Cortex-M3 Processor and MBED NXP LPC1768

D.Setting Output Pin (FIOxSET)

Once you have a pin configured as an output, it will be a very simple to modify the
value of the pin. There is a pin set register that produces a high level output on the
pins selected (again, they must be in output mode). Writing a 1 to any bit in this
register will produce a high level output on the corresponding pins. Also, if the pin
is configured as an input, writing a 1 will have no effect.

Each port has a FIOxSET register, Table 6.4 shows FIOxSET address and cor-
responding port

Figure 6.8 shows FIO0SET register with b0 set to one and the default reset value
for this register is 0x0.

E. Clearing a Pin (FLOxCLR)

There is a register dedicated to producing a low level output to a pin. Writing a 1
to this register will produce a low level output to the corresponding pin. Writing a
0 will have no effect, and pins that are not configured as outputs will remain un-
changed. Each port has one Cleraring register which represent by FIOxCLR, The
FLO0CLR with address—0x2009C01C is used for P0 (port zero). Figure 6.9 show
that P0/1 is set to zero and The default reset value for this register is 0x0.

F. Reading a Pin Value (FIOxPIN)

There is a register that provides the value of pins configured as digital inputs or
outputs. When this register is read it will return the logic value of the pin regardless
of its configuration, as long as it is a digital I/O. Writing to this register will store

Fig. 6.7 FIO0MASK with b1b0 = 00

Fig. 6.6 FIOxDR Register format

Table 6.3 FIOxMASK with corresponding address and port
Register Address Port number
FIO0MASK 0x0x2009C010 P0
FIO1MASK 0x0x2009C030 P1

916.3 Basic GPIO Programming

the values written to the pins. When you write to this register, although bypassing
the need for the SET and CLR register, it affects the entire ports pins, therefore the
pins should be properly masked. Each port has one FIOxPIN register and Fig. 6.10
shows the contents of FIO0PIN register after reading

The above register has a value of 0x1 and pin 0 has a high level value. The de-
fault reset value for this register is 0x0.

Fig. 6.10 FIO0PIN register Contents

Table 6.4 FIOxSET Register with corresponding Address and Port
Register Address Port number
FIO0SET 0x0x2009C018 P0
FIO1SET 0x0x2009C038 P1

Fig. 6.9 FLO0CLR register (0x2009C01C)

Fig. 6.8 FIO0SET with b0 set to 1

92 6 ARM Cortex-M3 Processor and MBED NXP LPC1768

Example: In this example the P0/0 is set as output with logic high and P0/1 set to input

FIO0PIN EQU 0x2009C014
FIO0SET EQU 0x2009C018
FIO0CLR EQU 0x2009C01C

; Set the pin function for pin0 and pin1
 LDR R0, =PINSEL0
 LDR R1, [R0]
 BIC R1, R1, #0x3 ; clear bits 0 and 1
 STR R1, [R0]

 ; Set the direction of pin0 to output and pin1 input
LDR R0, =FIO0DIR

 LDR R1, [R0]
 ORR R1, R1, #0x1
 BIC R1, R1, #0x2
 STR R1, [R0]

 ; Set the mask to only allow R/W to pins0 and1
 LDR R0, =FIO0MASK
 LDR R1, [R0]
 ORR R1, R1, #0xFFFFFFFF
 BIC R1, R1, #0x3
 STR R1, [R0]

__main

AREA gpio, CODE, READONLY
 EXPORT SystemInit
 EXPORT __main
SystemInit

PINSEL0 EQU 0x4002C000
FIO0DIR EQU 0x2009C000
FIO0MASK EQU 0x2009C010

936.3 Basic GPIO Programming

LCP 1768 Peripheral: Another way to configure the value for GPIO control reg-
ister is to used Peripheral simulator for I/O port, on uvision window click on debug
then start while uvision in debug mode click on Peripheral and select GPIO fast
interface port 0 will display following windows

Stepping Through Code and Debugging: Once you have the code in Keil uVi-
sion, press F7 to compile and then Ctrl-F5 to enter debugging mode. Now, go to
Peripherals- > GPIO Fast Interface- > Port 0 to bring up all the registers for
GPIO Port 0. When stepping through the program, we will be able to see the regis-
ters change when written to. Step through (F11) the initialization code and observe
the changes in the corresponding registers.

Outputting a High Signal/Writing a 1 to a pin: When you get to the STR instruc-
tion, the value generated is written to the specified register. In this case, you will see
the checkbox appear for bit 0 on the FIO0SET register.

94 6 ARM Cortex-M3 Processor and MBED NXP LPC1768

Reading the value of a pin: Before we step over the line LDR R1, [R0], let us
manually set the value on pin 1 to HIGH by checking the checkbox for bit 1 in the
FIO0SET register on the peripheral window.

Now, we can step over LDR R1, [R0] to read the value of the pins into R1. Keep in
mind that all 32 pin values will be in register R1. In the register bank you will see
that R1 has the value 0x3 (11 in binary), which means that pin 0 and pin 1 are both
HIGH.

95

Clearing a Pins Value: The next code block sets pin 0 to LOW by writing a 1 to
the FIO0CLR register. Notice that after the STR instruction, the checkbox is cleared
on bit 0.

6.4 Flashing the NXP LPC1768

There are some prerequisites that need to be met before you can flash the NXP
LPC1768 with a program.

Follow the guide to update the unit’s firmware: http://mbed.org/handbook/Firm-
ware-LPC1768-LPC11U24

Once that firmware update is complete, you are ready to flash the device with
software. If you navigate to the directory where your project is save, you will no-
tice that there is a.axf file with the same name as your project. This file needs to be
converted from ELF format to a binary that can be run on the device. Luckily, Keil
provides a tool with uVision, called fromelf, that we can use for this conversion.
The binary ‘fromelf’ is located inside the install directory of Keil uVision in ARM/
ARMCC/bin/. We will have uVision automatically run the command to create the
appropriate binary file after project building.

Open a new project, or a current project in uVision and go to Project- > Options
for Target ‘project-name’ then the ‘User’ tab.

Add this line to ‘Run #1’ under Run User Programs After Build/Rebuild:
Be sure to use the correct path to the ‘fromelf’ executable and also the correct file
name for the input file (after-bin) to match your project name. The output file name
can be anything you wish plus the.bin.

6.4 Flashing the NXP LPC1768

97

Chapter 7
Lab Experiments

© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1_7

7.1 Introduction

The objectives of these labs are to use assembly language to program peripherals of
microcontroller, you can use simulator of Keil development tools to observe result
of your programs or use of MBED microcontroller.

7.2 Lab#1 Binary Counter Using Onboard LEDs

The Objective of this lab is design a counter to count from 0000 to 1111 and display
the result of the count on LEDs of MBED.

Now that we know how to program GPIO pins and how to flash the device, we
can use that knowledge to toggle the onboard LEDs on our MBED LPC1768. If
you don’t have the physical device, you can still follow along using the simulator
in uVision and watch the pins count in binary on the simulator’s peripheral viewer.
Enter debug mode, Ctrl-F5 (On uvision window select debug then start), Navigate
to Peripherals- > GPIO Fast Interface- > Port 1.

Each onboard LED will represent a bit in a binary counter that will count from 0
to 15 (0xF/0b1111). Since the LEDs are mapped to GPIO pins that are not all in or-
der, we will need to figure out the values that will output the correct binary number
on the LEDs. Bits 23 (most significant bit), 21, 20, and 18 (least significant bit) of
GPIO Port 1 are the LED bits.

7 Lab Experiments98

We will start counting from 0 to 1111, in binary. Then map the values to the 32 bit
register so they reflect correctly on the LED bits. You may use the Keil peripheral
viewer to convert the values to hex (toggle the checkboxes in FIO1SET).

0000

0001

0010

0011

The complete list of values is provided in the coding example. We will loop through
the list to count in binary with the LEDs.

7.2 Lab#1 Binary Counter Using Onboard LEDs 99

7 Lab Experiments100

The uVision simulator interface for GPIO port 1, running the binary counter pro-
gram.

7.3 Lab2: Configuring the Real-Time Clock (RTC)

The objective of this lab to set up initial value of the LPC1768 Real –Time Clock.
A real-time clock is a peripheral on a computer or embedded system that keeps

track of the current time even when the system is off. Real-time clocks are more ac-
curate at keeping time than other methods and also free the system by being a piece
of hardware. The LPC17XX contains a Real Time Clock and user able to set this
clock for operation, The RTC has following specifications.

Specifications

• Provides seconds, minutes, hours, day of the month, month, year, day of the
week, and day of the year.

• Low power consumption. Less than 1 microamp for battery operation. Uses CPU
power when present.

• 32 kHz oscillator.
• Calibration adjustment to ±1 s/day with 1 s resolution.
• Interrupts can be generated by increments of any field of the time registers.
• Interrupts: Interrupts can be used to control the RTC state (wake-up, sleep, pow-

er-down).
• General purpose registers to store data during system power off.

Configuration Following registers must be configured in order Real Time Clock
initialize with time and date

1. Power Control for Peripherals register (PCONP—address 0x400F C0C4)
2. Clock Control Register (CCR-0x40024008)
3. Table 7.1 shows Registers that must loaded with Initial values and they are Read/

Write Registers and their contents do not change by resetting the processor

7.3 Lab2: Configuring the Real-Time Clock (RTC) 101

Table 7.2 Clock Control Register (CCR)—0x40024008 [1]
Bit Symbol Value Description Reset value
0 CLKEN Clock enable NC

1 Time counters enabled
0 Time counters disabled

1 CTCRST CTC Reset 0
1 Resets oscillator divider
0 No Effect

3:2 – – Must be 0 NC
4 CCALEN Calibration enable NC

1 Calibration counter disabled
0 Calibration counter is enabled and

counting
31:5 – – Reserved –

Table 7.1 Clock registers
Register Name Description Address
SEC Second Register 0x4002 4020
MIN Minute Register 0x4002 4024
HOUR Hours Register 0x4002 4028
DOM Day of Month Register 0x4002402C
DOW Day of Week Register 0x4002 4030
DOY Day of Year Register 0x4002 4034
MONTH Months Register 0x4002 4038
YEAR Years Register 0x4002403C

• Power Control for Peripherals register (PCONP—address 0x400F C0C4)

By setting of bit 9 of PCOP will enable RTC

• Clock Control Register (CCR)—0x40024008

Table 7.2 shows CCR fields, The clock will be enable by set ting bit zero (b0) of
CCR one.

7 Lab Experiments102

Programming Example—Set Date and Time in RTC

7.3 Lab2: Configuring the Real-Time Clock (RTC) 103

7 Lab Experiments104

In the simulator you will see the values being set in the RTC registers. Let the pro-
gram run and you will see the seconds count up and eventually trigger the minutes.

7.4 Lab#3 Configuring Analog-To-Digital Converter (ADC)

Objective of this lab is to become familiarize with operation of ADC and how to
program A/D converter for operation

Introduction The function of ADC is to convert analog signal to digital, Fig. 7.1
shows block diagram of 3 bits ADC.

Vref (Voltage Reference) It is used to compare input voltage with Vref, and also to
determine the maximum amplitude voltage of input signal.

Outputs B2B1B0 are output binary numbers representing input voltage.
Assume Vref is 8 v and the resolution of ADC is 8/23 = 1 V. This means, when the

input changes 1 V then the output will change 1 bit.
As seen in Table 7.3 if input voltage 1.5 V the output will be 001. In order to have

less error the number of outputs need to be increased. Most ADC converters come
with 8, 12, 16, and 24 bits output. If an 8-bit ADC were used then the resolution
will be 8/28 = 8/258 = 0.03125 V, this mean that input voltage from 0- < 0.03125 will

7.4 Lab#3 Configuring Analog-To-Digital Converter (ADC) 105

represent 00000000 in binary. Another way to have better a resolution is to decrease
voltage reference, but it is important that the VRef should not be less than the maxi-
mum of input voltage Vin.

If Vref equals 4 V with a 3 bits ADC, then the resolution will be 4/23 = 0.5 V,
therefore smaller the resolution the smaller margin of error.

S/H (Sample and Hold) The function of S/H is to take samples of Input signals
then have ADC convert it to binary, but the question is how many sample per second
must take by S/H? According to Neyquest’s theorem the sample rate must be at least
twice the frequency of the input signal. If frequency of the input to the ADC be
8KHZ then the sampling rate should be 8000 or more sample per second.

Most A/D converter offers Multiple Inputs by using Analog Multiplexer, Fig. 7.2
shows A/D converter with 4 analog inputs, the function of S1 S0 is to select the
input to the ADC converter

The A/D converter of NXP LPC 1768 has 8 inputs but MBED uses only 6 of
them as shown in Fig. 6.3 Chap. 6.

Fig. 7.1 Block diagram og
ADC

Input Voltage Binary output
0- < 1 000

1- < 2 001

2- < 3 010

3- < 4 011

4- < 5 100

5- < 6 101

6- < 7 110

7- < 8 111

Table 7.3 The Input voltage range
and binary outputs

7 Lab Experiments106

MBED ADC Specifications

• 12-bit analog to digital converter.
• Input multiplexing among 6 pins.
• Power-down mode.
• Burst conversion mode

Configuration Flowing steps describe the configuration of ADC

• Power: PCONP—set PCADC bit
• Clock: PCLKSEL0—set bit PCLK_ADC
• Control Register: AD0CR—control the A/D
• Pins: PINSEL—select ADC0 pin

Power Control for Peripherals register—PCONP—0x400F C0C4 Set bit 12
to enable power/clock on ADC0. Disabled by default. Must clear the PDN pin in
AD0CR before clearing this bit, and set this bit before setting PDN as shown in
Fig. 7.3

Peripheral Clock Selection—PCLKSEL0–0x400F C1A8 Set bits 24 and 25 to
enable the clock on the ADC, disabled by default as shown in Fig. 7.4.

Fig. 7.4 Peripheral clock selection—PCLKSEL0–0x400F C1A8

Bit 3
1

0

- - - - - - 1 1 -

Fig. 7.3 Power control for peripherals register

Bit 3 0
- - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - -

Fig. 7.2 Block diagram of A/D converter with 4 inputs

7.4 Lab#3 Configuring Analog-To-Digital Converter (ADC) 107

A/D Control Register (AD0CR)—0x40034000: A/D control register is used to set
up operation of A/D converter such as selecting input to A/D and clock as shown
in Table 7.4

We will first use this register to put the ADC in operational mode by setting the
PDN bit to 1. This register will then be used to select what A/D pins will be sampled
for conversion using the SEL register.

Bit Symbol Value Description Reset value
7:0 SEL Selects A/D pins to be sampled and converted.

Bit 0 = AD0.0 on the board, and bit 7 = AD0.7.
0x01

8:15 CLKDIV PCLK_ADC0 is divided by this to produce the
A/D clock. < = 13 MHz.

0

16 BURST 1 A/D converter does repeated conversions of the
pins selected in SEL.

0

20:17 - Reserved -
21 PDN 1 A/D converter is operational. 0

0 A/D converter is in power-down mode.
23:22 - Reserved -
26:24 START 000 0

001 When BURST is disabled, these bits control the
A/D conversion.

010 No Start.
011 Start conversion now.
100 Start conversion when the edge selected occurs

on P2.10.
101 Start conversion when the edge selected occurs

on the P1.27.
110
111

Start conversion when the edge selected occurs
on MAT0.1.
Start conversion when the edge selected occurs
on MAT0.3.
Start conversion when the edge selected occurs
on MAT1.0.
Start conversion when the edge selected occurs
on MAT1.1.

27 EDGE 1 Only significant when the START field contains
010–111

0

0 Start on falling edge
Start on rising edge

31:28 – Reserved –

Table 7.4 A/D Control Register (AD0CR)—0x40034000 [1]

7 Lab Experiments108

A/D Pin Selection—Pin Select Register—PINSEL0–0x4002C000 The PIN-
SEL0 register is used to select function of the input pins as shown in Table 7.5 [1].

A/D Global Data Register (AD0GDR)—0x40034004 This register keeps the latest
conversion done by the A/D converter. When the done bit set to one means conver-
sion completed and result available on the bits b4 through b15 of this register. Each
input channel allocated a Data register, Table 7.6 shows A/D global Data Register

Table 7.6 A/D Global Data Register (AD0GDR)—0x40034004 [1]
Bit Symbol Description Reset Value
3:0 – Reserved –
15:4 RESULT When DONE is 1, this field contains a binary

fraction representing the voltage on the pin
selected by SEL in the control register.

–

23:16 – Reserved –
26:24 CHN The bits contain the channel that the RESULT bits

were converted from.
–

29:27 – Reserved –
30 OVERRUN This bit is 1 in burst mode if the results of one or

more conversions were lost and overwritten.
0

31 DONE This bit is set to 1 when the A/D conversion is
completed. It is cleared when this register is read
and when the ADCR is written.

0

Table 7.5 A/D Pin Selection—Pin Select Register—PINSEL0—0x4002C000
Bits Pin name Function when

00
Function when
01

Function
when 10

Function
when 11

Reset
Value

1:0 P0.0 GPIO Pin 0 RD1 TXD3 SDA1 00
3:2 P0.1 GPIO Pin 1 TD1 RXD3 SCL1 00
5:4 P0.2 GPIO Pin 2 TXD0 AD0.7 Reserved 00
7:6 P0.3 GPIO Pin 3 RXD0 AD0.6 Reserved 00
9:8 P0.4 GPIO Pin 4 I2SRX_CLK RD2 CAP2.0 00
11:10 P0.5 GPIO Pin 5 I2SRX_WS TD2 CAP2.1 00
13:12 P0.6 GPIO Pin 6 I2SRX_SDA SSEL1 MAT2.0 00
15:14 P0.7 GPIO Pin 7 I2STX_CLK SCK1 MAT2.1 00
17:16 P0.8 GPIO Pin 8 I2STX_WS MISO1 MAT2.2 00
19:18 P0.9 GPIO Pin 9 I2STX_SDA MOSI1 MAT2.3 00
21:20 P0.10 GPIO Pin 10 TXD2 SDA2 MAT3.0 00
23:22 P0.11 GPIO Pin 11 RXD2 SCL2 MAT3.1 00
29:24 - Reserved Reserved Reserved Reserved 0.0
31:30 P0.15 GPIO Pin 15 TXD1 SCK0 SCK 00

7.4 Lab#3 Configuring Analog-To-Digital Converter (ADC) 109

Figure 7.5 show LPC1786 A/D simulation, it can be observed the contents of A/D
simulator while program in debug mode.

Programming Example—Voltmeter This program is best run on the actual NXP
device, with a potentiometer connected to ADC0. The LEDs will light up based on
the input voltage of the ADC pin.

Fig. 7.5 LPC1768 Simulator A/C peripheral view

7 Lab Experiments110

The program may be run in debug mode by opening the ADC peripheral (Pe-
ripheral- > A/D Converter).

Manipulate the virtual input voltage by changing the value in the VREF box
before stepping through the read section of the code. Observe the value of RESULT.

7.4 Lab#3 Configuring Analog-To-Digital Converter (ADC) 111

7 Lab Experiments112

LDR R1, [R0]
BIC R1, R1, #0xFF
ORR R1, R1, #0x1
STR R1, [R0]

; GPIO CONFIG
; Set the pin function for pin18, 20, 21, 23
LDR R0, =PINSEL3
LDR R1, [R0]
MOV R2, #0x6F30
BIC R1, R1, R2
STR R1, [R0]

; Set the direction of pin18, 20, 21, 23 to output
LDR R0, =FIO1DIR
LDR R1, [R0]
ORR R1, R1, #0xB40000
STR R1, [R0]

; Set the mask to only allow R/W to pin18, 20, 21, and 23
LDR R0, =FIO1MASK
LDR R1, [R0]
ORR R1, R1, #0xFFFFFFFF
BIC R1, R1, #0xB40000
STR R1, [R0]

__main

LDR R0, =AD0CR_R
LDR R2, =AD0GDR_R
LDR R7, =FIO1PIN
LDR R8, [R7]
MOV R6, #0xFFF ; for isolating RESULT
; Start conversion

start
; Set the START bits to 001 to commence an A/D conversion
LDR R1, [R0]
ORR R1, R1, #0x1000000
STR R1, [R0]
NOP
NOP

read
LDR R5, [R2]
; get RESULT into R5
LSR R5, R5, #4
AND R5, R5, R6

; Toggle LED based on Voltage
; VOLTAGE_3 >= 3 Volts
; VOLTAGE_2 >= 2 Volts
; VOLTAGE_1 >= 1 Volts

MOV R1, #VOLTAGE_3

7.5 Lab #4: Digital to Analog Converter (DAC) 113

7.5 Lab #4: Digital to Analog Converter (DAC)

The function of DAC is to convert digital to Analog, DAC has wide range applica-
tions such as Audio Amplifier, Voice over IP, motor control, and CD player, Fig. 7.6
shows block diagram of 4 bit DAC

Reference Voltage (Vrf) Reference voltage determine the maximum Analog out-
put voltage,

Fig. 7.6 Block diagram of 4
bit DAC

7 Lab Experiments114

Resolution The resolution of DAC depend on number of inputs, the resolution for
4 bit DAC is define by

R = Vrf/2N

Example The resolution of a 4 bit DAC with Vrf of 4 V is
R = 4/24 = 0.25 V,
This means that when input change from 0000 to 0001 the output change by

025 V

MBED DAC MBED contains 10 bit DAC and P0.26 represent the analog output
pin, the voltage reference for DAC is 3.3 V. Following steps describe how to set
DAC for operation

1. Pin Function Select Register 1 (PINSEL1—0x4002 C004)

Pin P0, 26 is used for DAC output and by setting bits b21b20 of PINSEL1 register
to 01 will set P0, 26 as output of DAC

2. Peripheral Clock Selection register 0 (PCLKSEL0—address 0x400F C1A8)

The b23b22 is used to select clock for DAC

00 PCLK_peripheral = CCLK/4 00
01 PCLK_peripheral = CCLK
10 PCLK_peripheral = CCLK/2
11 PCLK_peripheral = CCLK/8,

3. D/A Converter Register (DACR—0x4008 C000)

The b6 through b15 holds the digital value to be converted to Analog.
Following Program will set DAC for operation; the user can check output of

DAC by Accessing DAC peripheral of Uvision simulator

7.5 Lab #4: Digital to Analog Converter (DAC) 115115

The result of the above program is shown by Fig. 7.7 DAC simulation, as show in
this figure

A. The 10 bits converted to analog is 0x3FF
B. The voltage reference is 3.3 V
C. The analog output is 3.2968 V
D. Error 3.3 − 3.2968 = 0.0032 V

Fig. 7.7 D/A Converter simulation

Resolution The resolution of DAC depend on number of inputs, the resolution for
4 bit DAC is define by

R = Vrf/2N

Example The resolution of a 4 bit DAC with Vrf of 4 V is
R = 4/24 = 0.25 V,
This means that when input change from 0000 to 0001 the output change by

025 V

MBED DAC MBED contains 10 bit DAC and P0.26 represent the analog output
pin, the voltage reference for DAC is 3.3 V. Following steps describe how to set
DAC for operation

1. Pin Function Select Register 1 (PINSEL1—0x4002 C004)

Pin P0, 26 is used for DAC output and by setting bits b21b20 of PINSEL1 register
to 01 will set P0, 26 as output of DAC

2. Peripheral Clock Selection register 0 (PCLKSEL0—address 0x400F C1A8)

The b23b22 is used to select clock for DAC

00 PCLK_peripheral = CCLK/4 00
01 PCLK_peripheral = CCLK
10 PCLK_peripheral = CCLK/2
11 PCLK_peripheral = CCLK/8,

3. D/A Converter Register (DACR—0x4008 C000)

The b6 through b15 holds the digital value to be converted to Analog.
Following Program will set DAC for operation; the user can check output of

DAC by Accessing DAC peripheral of Uvision simulator

7 Lab Experiments116

7.6 Experiment #5: Binary to Hexadecimal Display

The objective of this lab is to read in a 4 bit binary number and display the number
in hexadecimal on a 7-segment display.

Figure 7.8 shows the 4 inputs to Port P0 and the 7 outputs from Port P0 to the
7-segment display. A 7-segment display consists of 7 LEDs that can be turned on
with a logical one. The pin P0/4 will be connected to the LED marked ‘a’ on the
7-segment display, pin P0/5 will be connected to ‘b’…and pin P0/11 will be con-
nected to ‘g’.

Table 7.7 shows the input values and output values of P0 with the corresponding
display values.

Fig. 7.8 Connection between
port and 7-segment display

Table 7.7 Binary Input and port output
Input Output of P0 Display
ABCD g f e d c b a
0000 0 1 1 1 1 1 1 (0x3F) 0
0001 0 0 0 0 1 1 0 (0x30) 1
0010 1 0 1 1 0 1 1 (0x5B) 2
0011 1 0 0 1 1 1 1 (0x4F) 3
0100 1 1 0 0 1 1 0 (0x66) 4
0101 1 1 0 1 1 0 1 (0x6D) 5
0110 1 1 1 1 1 0 1 (0x7D) 6
0111 0 0 0 0 1 1 1 (0x07) 7
1000 1 1 1 1 1 1 1 (0x7F) 8
1001 1 1 0 1 1 1 1 (0x6F) 9
1010 1 1 1 0 1 1 1 (0x77) A
1011 1 1 1 1 1 0 0 (0x7C) b
1100 0 1 1 1 0 0 1 (0x39) c
1101 1 0 1 1 1 1 0 (0x5E) d
1110 1 1 1 1 0 0 1 (0x79) E
1111 1 1 1 0 0 0 1 (0x71) F

7.6 Experiment #5: Binary to Hexadecimal Display 117117

7 Lab Experiments118

7.7 Universal Asynchronous Receiver/Transmitter
(UART)

Introduction UART is a peripheral that handles serial communication between
devices without using a clock for synchronization. It converts received serial data to
parallel data and also translates parallel data to serial data for transmission; Fig. 7.9
shows the block diagram of a UART.

Receiving Data Bits (RX) The serial Data In register is populated by left shifting
bits into itself based on the data on the input line, then the CPU reads the data in
parallel from the register.

Transmitting Data Bit (TX) The CPU stores a byte of data in the Data Out Regis-
ter and shift right bit by bit to the output line.

UART Baud Rate Defined by number of bits transmitted in one second. Popular
baud rates are 9600 bits/second and 115200 bits/second.

The common standard for the UART is RS232 or EIA 232, the Voltage level
for RS-232 are ± 3 to ± 15 V, where + 15 represent logical 0 and + 15 V represents a
logical 1.

Figure 7.10 shows UART frame format, it shows one start bit and two stop bits
and 8 data bits

Start Bit Indicates start of transmission

Data Bits can be 5 to 8 bits

P (Parity bit) P is used for error detection

Stop bits It can be one or two bits represent end of data frame
Figure 7.11 shows connection between two devices using UART
Most Microcontrollers come with at least one UART. This experiment demon-

strates how to configure a UART for operation on the MBED NXP LPC1768, which
is equipped with 3 UARTs.

Fig. 7.9 Block diagram of
UART

7.7 Universal Asynchronous Receiver/Transmitter (UART) 119

Configuring Universal Asynchronous Receiver/Transmitter (UART) The fol-
lowing steps show how to configure UART0 in MBED

A. Pin Select Register—PINSEL0–0 × 4002C000
B. Power Control for Peripherals register (PCONP—0x400F C0C4)
C. Peripheral Clock Selection register (PCLKSEL0—0x400F C1A8)
D. UART Line Control Register (U0LCR)—0x4000 C00C
E. Setting the Baud rate of UART:
F. Configuring UART0 FIFO Control Register (U0FCR)—0x4000C008

Pin Select Register—PINSEL0–0 × 4002C000 Refereeing to Table 7.5 show pin
selection register PINSEL0, the UART0, the UART0 uses P0.2 for TXD0 and pin
P0.3 for RXDo, in order to uses these pins bits 4, 5, 6, and 7 of PINSEL0 Register
must set to 0101

• Power Control for Peripherals register (PCONP—0x400F C0C4)

The PCONP register allows turning on and off selected peripheral function for the
purpose of saving power. The bit thee (b3) of register PCONP is used for UART0,
if this bit set to one the UART0 is enabled.

• Peripheral Clock Selection Register (PCLKSEL0—0x400F C1A8)

The bits b7b6 of PCLKSEL0 register is used to select clock rate for UART0 and
offers following clock rates

B7b6 Clock Rate
00 CCLK/4
01 CCLK
10 CCLK/2
11 CCLK/8

119

Fig. 7.11 Connection
between two devices using
USRT

Fig. 7.10 USRT frame format

7 Lab Experiments120

• UART Line Control Register (U0LCR)—0x4000 C00C

The U0LCR is used to selecting format of the data such as number of bits in data,
number of stop bits, and parity bit, each UART has one UARTn Line Control regis-
ter, Table 7.8 show U0LCR register fields for UART0

By setting bit 7 to one will enable access to DLL and DLM register for setting
the baud rate.

Setting the Baud Rate of UART The baud rate is calculated using following
equation

Baud rate = System Clock/16 (256 * U0DLM + U0DLL)

U0DLM and U0SLM are called UART divisor latch and they use to decrease sys-
tem clock to obtain proper baud rate. U0DLM and U0SLl each are 8 bits and com-
bination of this two register are 16 bits. The baud rate and system clock are given,
this equation is used to find the value for U0DLM and U0DLL

Example What are the value of UART latches for transmit date at 115200 baud,
assume system clock of 8 MHZ

115200 = 8 * 106/16 (UART Divisor)

Table 7.8 U0LCR register fields for UART0 [1]
Bit Symbol Value Description Reset Value
1:0 Word Length 00 5-bit 0

01 6-bit
10 7-bit
11 8-bit

2 Stop Bit 0 1 stop bit 0
1 2 stop bits

3 Parity Enable 0 Disable 0
1 Enable

5:4 Parity Select 00 Odd parity 0
01 Event Parity
10 Forced “1”
11 Forced “0”

6 Break Control 0 Disable 0
1 Enable

7 Divisor Latch 0 Disable 0
1 Enable

31:8 – – Reserved –

7.7 Universal Asynchronous Receiver/Transmitter (UART) 121

UART divisor = 434, this number is converted to binary and the result of binary
number is divided to MSB and LSB, U0DLL holds the LSB and U0DLM hold MSB

UART Divisor Latch LSB Register (U0DLL)—0x4000C000

Bit Symbol Description Reset Value
7:0 DLLSB Baud Rate 0 × 01

UART Divisor Latch MSB Register (U0DLL)—0x4000C004

Bit Symbol Description Reset Value
7:0 DLMSB Baud Rate 0 × 00

UART0 FIFO Control Register (U0FCR)—0x4000C008 Most UART has buffer
can holds multiple byte f or transmission, the buffer operates based on First-In- First
Out. Table 7.9 shows the U0FCR register

Table 7.9 UART0 FIFO Control Register (U0FCR)—0x4000C008
Bit Symbol Value Description Reset

Value
0 FIFO Enable 0 Disabled 0

1 Active Enable
1 RX FIFO reset 0 No Impact 0

1 Clear all bytes in Rx FIFO
2 TX FIFO reset 0 No impact 0

1 Clear all bytes in Tx FIFO
3 DMA Mode Select Selected by bit 0 (FIFO Enable) 0
5:4 – Reserved –
7:6 RX Trigger Level Determines how many UART FIFO

chars must be written
0

00 before an interrupt or DMA request
is activated.

01 1 character
10 4 characters
11 8 characters

14 characters
31:8 – – Reserved -

123© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1

Solution to the Problems and Questions

Chapter 1

Problems and Questions

1. Show an analog signal

2. Show a digital signal

124 Solution to the Problems and Questions

3. Convert following decimal numbers to binary

a. 35

100011
b. 85

1010101
c. 23.25

10111.01

4. Convert following binary numbers to decimal

a. 1111101
125

b. 1010111.1011
87.6875

c. 11111111
28-1 = 255

d. 10000000
128

5. Convert following Binary numbers to Hexadecimal

a. 1110011010
39A

b. 1000100111
227

c. 101111.101
2F.A

6. Convert following number to binary

a. (3FDA)16 = 0011 1111 1101 1010
b. (FDA.5F)16 = 1111 1101 1010.0101 1111

125Chapter 1

7. Find two’s complements of following numbers

a. 11111111
00000001

b. 10110000
01010000

c. 10000000
10000000

d. 00000000
00000000

8. Convert the word “LOGIC” to ASCII then represent each character in hex

L O G I C
1001100 1001111 1000111 1001001 1000011 ASCII
4C 4F 47 49 43 Hex

9. Subtract following numbers using two’s complement

a.11110011 – 11000011
Two’s complement of 11000011 is 00111101
11110011 + 00111101 = 1 00110000 , discard carry then result is + 00110000

b.10001101 – 11111000
Tows complement of 11111000 = 00001000

10001101 + 00001000 = 10010101 result does not produce carry then

Tow’s complement of 10010101 = - 01101011

10. List the types of transmission modes.
 Asynchronous Transmission and Synchronous Transmission
11. Why does a synchronous transmission require a clock?
 Synchronous transmission use clock for synchronization (clock is used to rep-

resent speed of data)
12. What is frequency of an Analog signal repeated every 0.05 ms
 F = 1/T = 1/0.05 * 10−3 = 20 KHz

126 Solution to the Problems and Questions

Chapter 2

Problem

1. If A= 11001011 and B= 10101110 then, what is the value of following operation

a. A AND B
10001010

b. A OR B
11101111

2. If A=11001011 and B=10101110, what is the value of following Operations

a. A NOT

00110100

b. A XOR B

A AND OF

0110010

c.

00001011

d. A AND F0

11000000

3. Draw logic circuit for following functions

A. F (X,Y,Z) = X’Y’ +X Z’

X

X'

Y

Y'

127Chapter 2

B. F(X, Y,Z) = (X + Y) (X+Z)

4. Find the truth table for following function

5. If A=10110110 and B= 01101100, then find

A. A NAND B
11011011

B. A NOR B
0000001

C. A XOR B
11011010

128 Solution to the Problems and Questions

1. Show output of following logic circuits

129Chapter 2

1. Following multiplexer is given show the output

Short Answer Questions

 1. List the components of a microcomputer.
 CPU, Memory, Parallel port, Serial Port , and DMA
 2. Explain the functions of a CPU.
 CPU execute instruction and control other components in a computer
 3. List the functions of an ALU.
 Arithmetic and logic operation
 4. What is the function of a control unit?
 Generates Control signal and execute instruction
 5. What does RAM stand for?
 Random Access Memory
 6. What is SRAM ? discuss its applications
 Static RAM and it used in Cache memory
 7. Define DRAM and SDRAM and explain their applications.
 DRAM is Dynamic RAM
 SDRAM is Synchronous DRAM
 8. Explain the function of an address bus and a data bus.
 The address BUS carry Address and data BUS carry data
 9. What does IC stand for?
10. What is the capacity of a memory IC with 10 address lines and 8 data buses?
 210 *8 bits or 210 =1024 bytes
11. What is ROM?
 Read Only Memory
12. What does EEPROM stand for, and what is its application?
 Electrically Erasable ROM. It used in flash drive
13. What does RDRAM stand for?
 Rambus DRAM
14. What is SIMM?
 Single In-Line Memory Module

130 Solution to the Problems and Questions

15. Explain the function of cache memory and give its location.
 Cache memory is fastest memory and reside in CPU
16. What is the application of a parallel port?
 Printer with parallel port
17. What is the application of a serial port?
 COM1, RS232
18. Explain the difference between CISC processors and RISC processors
 CISC has variable instrucrion format, less registers, Control Uni is microcode
 RISC has fixed instruction format, control unit is hardware, uses only Load and

store instructions to access memory
19. Explain difference between Von Neumann and Harvard Architecture
 Van Neumann uses of BUS for transferring Data and Instruction
 Harvard Architecture uses separate BUS for Data and Instruction

Chapter 3

Problems

1. What is contents of R5 after execution of following instruction, assume R2 con-
tains 0X34560701 and R3 contains 0X56745670

a. ADD R5, R2, R3
R5=0x8ACA5D71

b. AND R5, R3, R2
R5= 0x14540600

c. XOR R5, R2,R3
R5=0x66225171

d. ADD R5, R3, #0x45
R5=0X567456B5

2. What is contents of R1? assume R2= 0x00001234

a. MOV R1, R2, LSL #4
R1= 0x00012340

b. MOV R1, R2, LSR #4
R1 = 0x00000123

131Chapter 3

3. What is difference between these two instructions?

a. SUBS R1, R2, R2
b. SUB R1,R2, R2

Question a does not change bits in PSR register, question b will change bits in PSR

4. Convert following HLL language to ARM instructions

5. Convert following HLL language to ARM instructions

6. Convert following flowchart to ARM assembly language

132 Solution to the Problems and Questions

7. Write a program to add ten numbers from 0 to 10 or Convert following C lan-
guage to ARM assembly Language

int sum;

 int i;

sum = 0;

for (i = 10 ; i > 0 ; i - -){

sum = sum +1

8. Write a program to convert following HLL to ARM assembly

a= 10;

b=45;

while (a! =b) {

if a <b then;

a = a +5;

else ;

b= b+5;

9. Convert following HLL to ARM assembly

IF R1>R2 AND R3>R4 then
R1= R1 +1

Endif

Else
R3=R3 +R5*8

133Chapter 4

10. Convert Following Flow Chart to ARM Assembly

R5=R3-R4

R12=R10-R11

F

T

T

F

R5=R3+R4

If R5>R6

IF R1=R2

Chapter 4

Problem

1. Trace following instructions, assume list start at memory location 0x0000018
and using ARM Big Indian

ADR R0, LIST ; Load R0 with address of memory location List

MOV R10, #0x2

a. LDR R1, [R0] ;R0= 0x18 R1=0x34F532E5

b. LDR R2, [R0, #4]! ;R0= 0x1C R2 =0x010208FE

c. LDRB R3, [R0] , #1 ;R0= 0x19 R3=0x34

d. LDRB R4, [R0 , R10]! ;R0= 0x1A R4=0X32

e. LDRSB R5, [R0], #1 R5;R0= 0x19 =0x34

f. LDRSH R6, [R0] ;R0= 0x18 R6=0x34F5

LIST DCB 0x34, 0xF5, 0x32, 0xE5, 0x01, 0x02,0x8,0xFE

134 Solution to the Problems and Questions

2. Work problem #1 part A and B using Little Endian

a. R1= 0xE532F534
b. R2= 0xFE080201

3. What is contents of register R5 after execution following program

ADR R0, LIST

LDRSB R7, [R0]

LIST DC 0xF5

R7= 0xFFFFFFF5

4. What is contents of register Ri for following load Instructions, assume R0 hold
the address of list using little Endian

a. LDR R1, [R0] ;R1=0xE532F534
b. LDRH R2, [R0] ;R2=0x0000F534
c. LDRB R3, [R0] , #1 ;R3=0x00000034
d. LDRB R4, [R0] ;R4=0x000000F5
e. LDRSB R5, [R0], #1 ;R5=0xFFFFFFF5
f. LDRSH R6, [R0] ;R6=0xFFFFE532

List DCB 0x34, 0xF5, 0x32, 0xE5, 0x01, 0x02

135Chapter 5

5. Following memory is given, show the contents of each register, assume
R1 = 0x0001000 and R2 = 0x00000004 (use Little Endian)

a. LDR R0, (R1) R0 = 0x00561323
b. LDR R0 , (R1, #4) R0=0x88211145
c. LDR R0 , (R1, R2) R0=0x88211145

d. LDR R0 , (R1, #4)! R0= 0x88211145 R1=0x1004

6. What is effective address and contains of R5 after executing following instruc-
tions ? assume R5 contains 0x 18 and r6 contains 0X00000020

A. STR R4, [R5] EA= 0x18
B. STR R4, [R5, #4] EA= 0x18 + 4= 0x1C
C. STR R4, [R5, #8] EA=0x18 +8=0x20
D. STR R4, [R5, R6]
E. STR R4, [R5], #4

 EA= 0x18 +0x20 = 0x38
EA= 0x18 , R5=0x18 +4=0x1C

Chapter 5

1. Write a program to add elements of list1 and store in List2

136 Solution to the Problems and Questions

2. Write a program to find the largest number and store it in memory location
LIST3, Assume Numbers are in location LIST1 and LIST2

3. Write a program to add data in memory location LIST and store the SUM in
memory location Sum.

4. Write a program to Add two number , the number represented by

5. Write assembly language for following HLL

6. Write a program to read memory location LIST1 and LIST2 and them then store
LIST3

7. Move two 32 bits number to R1 and R2 and add the result

LDR R1, =0x22222222

 LDR R2, =0x33333333

ADD R3, R1,R2

8. Write a program to multiplying two numbers

9. Write a program to add 8 numbers using Indirect addressing

137Chapter 5

10. Write a program to add 8 numbers using Post Index addressing

LIST DCB 0x5, 0x2,0x6,0x7 ,0x9,0x1,0x2,0x08

11. Write a program to convert following HLL language to ARM instructions

12. What is Contents of R4 after Execution of following Program

138 Solution to the Problems and Questions

13. Write a program to convert following HLL to assembly language

14. Write a subroutine to calculate value of Y where Y = X*2 + x + 5, assume x rep-
resented by

N1 EQU 0x5

15. Write a program to rotate R1 16 times assume R1 contains 0x12345678

16. Write a program to compare two numbers and store largest number in a mem-
ory location LIST

17. Write a program to read a word memory location LIST and Clear bit position
B4 through B7 of register R5, assume R5 contains 0XFFFFFFF

18. Write program to load Register R1, R2, R3, and R4 from memory location
LIST

139

References

 1. NXP Corp LPC16XX user manual
 2. http://infocenter.arm.com. ARM V7 manual
 3. Keil Corp, Uvission Development tool
 4. NXP Cop, Rapid prototyping for the LPC1768 MCU
 5. MBED Microcontroller. https://mbed.org
 6. ARM Cortex-M3 Technical Reference Manual
 7. Furber SB (2000) ARM system-on-chip architecture. Adison Wesly
 8. Holm W (2009) ARM assembly language. CRC Press
 9. Schindler K (2013) Introduction to microprocessor based system using the ARM processor.

Pearson
10. Clements A (2014) Computer organization and architecture themes and variations. Cengage

Learning
11. Valvano JW (2011) Embeded systems real-time interfacing to the ARN Cortex-M3
12. Lewis D (2013) Fundamentals of embedded software with ARMCotex-M3. Pearson
13. Gibson R (2007) ARM assembly language–an introduction. Lulu

© Springer International Publishing Switzerland 2015
A. Elahi, T. Arjeski, ARM Assembly Language with Hardware Experiments,
DOI 10.1007/978-3-319-11704-1

http://infocenter.arm.com

	Preface
	Contents
	Chapter-1
	Number Systems and Data Communication
	1.1 Introduction
	1.2 Analog Signals
	1.3 Digital Signals
	1.4 Number System
	1.5 Coding Schemes
	1.6 Clock
	1.7 Transmission Modes
	1.8 Transmission Methods

	Chapter-2
	Logic Gates and Introduction to Computer Architecture
	2.1 Introduction
	2.2 Logic Gates
	2.3 Integrated Circuit (IC) Classification
	2.4 Registers
	2.5 Introduction to Computer Architecture
	2.5.1 Components of a Microcomputer
	2.5.2 CPU Architecture

	2.6 Memory
	2.7 Multiplexer and Decoder

	Chapter-3
	ARM Instructions Part I
	3.1 Introduction
	3.2 Instruction Set Architecture (ISA)
	3.3 ARM Instructions
	3.3.1 Data Processing Instructions

	3.4 Register Swap Instructions (MOV and MVN)
	3.5 Shift and Rotate Instructions
	3.6 ARM Unconditional Instructions and Conditional Instructions
	3.7 ARM Data Processing Instruction Format
	3.8 Stack Operation and Instructions
	3.9 Branch (B) and Branch with Link Instruction (BL)
	3.10 Multiply (MUL) and Multiply-Accumulate (MLA) Instructions

	Chapter-4
	ARM Instructions and Part II
	4.1 ARM Data Transfer Instructions
	4.1.1 Load Instructions (LDR)
	4.1.2 ARM Pseudo Instructions
	4.1.3 Store Instructions (STR)

	4.2 ARM Addressing Mode
	4.2.1 Register Indirect Addressing
	4.2.2 Pre-Index Addressing
	4.2.3 Pre-Index Addressing with Auto Index
	4.2.4 Post -Index Addressing

	4.3 Data Transfer Instruction Format
	4.4 Block Transfer Instruction and Instruction Format
	4.5 Swap Memory and Register (SWAP)
	4.6 Bits Field Instructions
	4.7 Data Representation and Memory

	Chapter-5
	ARM Assembly Language Programming Using Keil Development Tools Introduction
	5.1 Introduction
	5.2 Keil Development Tools for ARM Assembly
	5.2.1 Building a Project
	5.2.2 Debugging a Program

	5.3 Program Template
	5.4 Programming Rules
	5.5 Directives
	5.5.1 Data Directive

	Chapter-6
	ARM Cortex-M3 Processor and MBED NXP LPC1768
	6.1 Introduction
	6.2 MBED NXP LPC1768
	6.3 Basic GPIO Programming
	6.4 Flashing the NXP LPC1768

	Chapter-7
	Lab Experiments
	7.1 Introduction
	7.2 Lab#1 Binary Counter Using Onboard LEDs
	7.3 Lab2: Configuring the Real-Time Clock (RTC)
	7.4 Lab#3 Configuring Analog-To-Digital Converter (ADC)
	7.5 Lab #4: Digital to Analog Converter (DAC)
	7.6 Experiment #5: Binary to Hexadecimal Display
	7.7 Universal Asynchronous Receiver/Transmitter (UART)

	Solution to the Problems and Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	References

