
John Barnes

 123

LN
CS

 8
33

8

The Language
The Standard Libraries

Ada 2012
Rationale

www.allitebooks.com

http://www.allitebooks.org

Lecture Notes in Computer Science 8338
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

www.allitebooks.com

http://www.allitebooks.org

John Barnes

Ada 2012
Rationale
The Language
The Standard Libraries

13

www.allitebooks.com

http://www.allitebooks.org

Author

John Barnes
John Barnes Informatics
11 Albert Road, Caversham, Reading RG4 7AN, UK
E-mail: jgpb@jbinfo.demon.co.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-45209-3 e-ISBN 978-3-642-45210-9
DOI 10.1007/978-3-642-45210-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013954445

CR Subject Classification (1998): D.3, D.4, D.1, D.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

The right of John Barnes to be identified as author of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

© 2011, 2012, 2013 John Barnes Informatics
© 2013 Ada-Europe
© 2013 Ada Resource Association

Typeset by John Barnes Informatics.
Camera-ready by author, data conversion by Markus Richter, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.allitebooks.com

http://www.allitebooks.org

 v

Foreword

Programming languages and their user and implementer communities are living organisms, which –
as time goes by – either decay and perish in obsolescence or evolve in a dynamic combination of
wisdom that comes with age and freshness that comes with vision.

Almost six years after writing the foreword to the Rationale for Ada 2005, I look with marvel at Ada
2012, at how it has come about, at the extent of innovation that it carries, and at the competence,
dedication, rigour, perseverance and solidity of the community that has worked to make it happen.

Ada 2005 was in many ways a beautiful programming language, perhaps more intellectually than
aesthetically, as in the Ada style of things. It brought the promises of Ada 95 to maturation and
added great features in a number of its key areas of strength. The technology gap was important for
some vendors however, and the user community had to invest considerable resources in digesting
the novelty that it brought about. Ada 2005 attracted attention to itself from outside its niche market
and gained respect from those knowledgeable in object orientation, real-time and systems
programming and container libraries. So one may wonder what caused the Ada 2012 project to start
at all, aside from the normative obligation entailed by ISO governance, to confirm, withdraw or
amend every individual standard at five year intervals.

The term that comes to mind to explain the Ada 2012 project is “vision”. Ada has always been
strong in application domains where safety and criticality concerns are paramount. For as much as
those domains are intrinsically conservative and not inclined to giant leaps, their needs, however, are
not static and, as of late, have begun to evolve more rapidly than in the past, to keep pace with
internal and external changes. New needs emerged, which required fresh attention and timely
response. It takes vision to see those needs coming and even more so to devise a response to them
that meets the user requirement, can be satisfactorily developed by language implementers, and fits
in with the language structure, style and use.

One major emerging need was for specification contracts to protect the program from incorrect
composition at run time. For programs to be robust, safely reusable and long lasting, you want
expressive contracts to be attached to specifications – contracts that talk to the programmer and not
only to the compiler – so that a solid and semantically rich understanding can be established
between the user of the program component, be it a procedure or a type, and its implementer. The
Ada 2012 response to this challenge was to introduce pre- and post-conditions for subprograms,
invariants for types and predicates for subtypes. This was a bold move that made Ada the first
mainstream programming language to offer those features as part of an ISO standard.

The other main need was to allow Ada programs to run, with adequate guarantees of time
predictability, on multicore and multithreaded architectures. The Ada response to this need has been
solid so that users can build on it safely and effectively but also cautious: multicore architectures
and parallel programming are very complex beasts, which defeat intuition, break composability and
threaten predictability. Much more research is needed to learn how to master all aspects of them
before relevant solutions become mature enough to make it into industrial technology such as Ada.

While working on those two momentous challenges, as directed by WG9, the body within ISO/IEC
JTC1/SC22 which has responsibility for the maintenance of the Ada standard, the ARG (the body of
technical experts that actually does the language standard maintenance work) of course also
considered corrective and adaptive maintenance needs arising from user and implementation
experience with Ada 2005. In the end, the amount of work that went into the Ada 2012 project and

www.allitebooks.com

http://www.allitebooks.org

vi Ada 2012 Rat ionale

the extent of changes that resulted from it were larger than anticipated: evidence that there is energy
that can be drawn from in the Ada community.

It is a pleasure for me to invite the reader to read and enjoy this Rationale for Ada 2012, under the
knowledgeable hand, deft guidance, and witty style of its author, John Barnes, who continues to
surprise me with how vast, profound, and complete is his understanding of the language, no matter
how large it grows. It is especially instructive for me to appreciate how humbling it is to parallel my
standing to his, in all matters of Ada authority.

Producing this book as an LNCS volume is a financial burden that Ada-Europe would not have been
able to sustain alone. On behalf of Ada-Europe, I am grateful to all those who supported the
production project. Particularly prominent, in fact, and indeed vital, in that respect has been the role
of AdaCore, which I want to acknowledge both personally and institutionally.

Much as happened with the Rationale for Ada 2005, the readers of the Ada User Journal, the
quarterly publication of Ada-Europe, were able to get first-hand incremental instalments of the
Rationale for Ada 2012. Having stepped from the role of editor-in-chief of the Ada User Journal to
that of President of Ada-Europe I have perhaps gained in status but lost the privilege of being the
first reader of those instalments. An LNCS volume entirely devoted to the Rationale for Ada 2012 is
a great achievement, as a prestigious venue in itself, and as the continuation of the Ada presence in a
lead vehicle for the publication of advances in computer science.

It is most likely that writing this Foreword closes the bracket that inaugurated my service as
President of Ada-Europe by writing the Foreword to the 2005 edition of the Rationale. I am taking
this as a wish that Ada 2012 will have a sufficiently long and successful life to see me safely go
before a new Foreword will have to be written.

Dear reader: I am delighted that I can again present to your doorstep, or to a library near you, a book
of this value; I promise you that it will be worth your reading.

Tullio Vardanega
Ada-Europe, President

Padua
Italy

September 2013

www.allitebooks.com

http://www.allitebooks.org

 vii

Preface

Welcome to Ada 2012. This Rationale should enable those familiar with Ada 2005 to gain a basic
understanding of the new features introduced into Ada 2012 and the reasons for the changes from
Ada 2005.

This document starts with an introduction which provides an overview of the changes. There are
then a number of major chapters looking at seven key areas (contracts, expressions, structure and
visibility, tasking, general stuff, predefined library and containers) and finally an epilogue largely
concerned with compatibility issues.

Earlier versions of individual chapters were previously published in the Ada User Journal as a
number of separate papers in the issues from September 2011 until September 2013.

I need to thank all those who have helped in the preparation of this document. First I must
acknowledge the help of AdaCore and Ada-Europe for financial support for attending various
meetings. And then I must thank those who have helped in various ways. There are almost too many
to name, but I must give thanks to Randy Brukardt, Ed Schonberg and Tucker Taft of the ARG, to
Jeff Cousins, Alan Burns and other colleagues on the UK Ada Panel (BSI/IST/5/–/9), to Joyce Tokar
of WG9, and to Tullio Vardanega, Luis Miguel Pinho and Patricia López Martínez of Ada-Europe.

I must especially thank Randy for his diligence and patience in reviewing various drafts of the
individual papers and putting me back on track when I got lost. In addition, I must thank Randy for
his efforts in creating a version of this Rationale for the web and especially for creating an extremely
valuable index which is incorporated here.

Writing this rationale has been a learning experience for me and I trust that readers will also find the
material useful in learning about Ada 2012. An integrated description of Ada 2012 as a whole
including some further examples will be found in a forthcoming version of my textbook.

Finally, for the full details, please consult the Ada 2012 Reference Manual or the version known as
the Annotated Ada Reference Manual which contains much additional commentary. These will be
found online on the AdaIC website at http://www.adaic.org/ada-resources/standards/ada12.

Moreover, the Ada 2012 Reference Manual is also published as LNCS 8339 in the same style as this
Rationale.

John Barnes
Caversham

England
October 2013

www.allitebooks.com

http://www.allitebooks.org

 ix

Contents

Foreword v

Preface vii

1 Introduction 1

1.1 Revision process 1
1.2 Scope of revision 1
1.3 Overview of changes 3
 1.3.1 Contracts 4
 1.3.2 Expressions 9
 1.3.3 Structure and visibility 15
 1.3.4 Tasking and real-time facilities 18
 1.3.5 General improvements 21
 1.3.6 Standard library 25
1.4 Conclusions 30

2 Contracts and Aspects 33

2.1 Overview of changes 33
2.2 Aspect specifications 34
2.3 Preconditions and postconditions 42
2.4 Type invariants 51
2.5 Subtype predicates 56
2.6 Default initial values 61
2.7 Storage occupancy checks 63

3 Expressions 65

3.1 Overview of changes 65
3.2 If expressions 66
3.3 Case expressions 70
3.4 Quantified expressions 71
3.5 Expression functions 73
3.6 Membership tests 77
3.7 Qualified expressions 80

4 Structure and Visibility 83

4.1 Overview of changes 83
4.2 Subprogram parameters 84
4.3 Incomplete types 88
4.4 Discriminants 92

www.allitebooks.com

http://www.allitebooks.org

x Ada 2012 Rationale

4.5 Use clauses 92
4.6 Extended return statements 95

5 Tasking and Real-Time 99

5.1 Overview of changes 99
5.2 Scheduling 100
5.3 Multiprocessors 103
5.4 Interrupt timers and budgets 108
5.5 Volatile 109
5.6 Synchronized interfaces and requeue 110

6 Iterators, Pools, etc. 115

6.1 Overview of changes 115
6.2 Position of pragmas and labels 116
6.3 Iteration 120
6.4 Access types and storage pools 132
6.5 Restrictions 139
6.6 Miscellanea 143

7 Predefined Library 147

7.1 Overview of changes 147
7.2 Strings and characters 148
7.3 Directories 152
7.4 Locale 155
7.5 Hashing and comparison 156
7.6 Miscellanea 156

8 Containers 159

8.1 Overview of changes 159
8.2 Bounded and unbounded containers 159
8.3 Iterating and updating containers 164
8.4 Multiway tree containers 168
8.5 The holder container 178
8.6 Queue containers 180
8.7 Sorting 187
8.8 Streaming 189

9 Epilogue 191

9.1 Compatibility 191
 9.1.1 Incompatibilities with Ada 2005 191
 9.1.2 Inconsistencies with Ada 2005 193
9.2 Retrospective changes to Ada 2005 193
 9.2.1 Incompatibilities with original Ada 2005 194
 9.2.2 Inconsistencies with original Ada 2005 194

www.allitebooks.com

http://www.allitebooks.org

Contents xi

9.3 Unfinished topics from Ada 2005 195
 9.3.1 Aggregates for private types 195
 9.3.2 Partial generic instantiation 196
 9.3.3 Support for IEEE 559: 1989 196
 9.3.4 Defaults for generic parameters 196
 9.3.5 Pre/post conditions for subprograms 197
 9.3.6 Type and package invariants 197
 9.3.7 Exceptions as types 197
 9.3.8 Sockets operations 197
 9.3.9 In out parameters for functions 197
 9.3.10 Application defined scheduling 198
9.4 Unfinished topics for Ada 2012 198
 9.4.1 Integrated packages 198
 9.4.2 Cyclic fixed point 198
 9.4.3 Global annotations 199
 9.4.4 Shorthand for assignments 199
9.5 Postscript 199

References 205

Index 207

www.allitebooks.com

http://www.allitebooks.org

 1

1 Introduction
This first chapter covers the background to the development of Ada 2012 and gives a brief
overview of the main changes from Ada 2005. Other chapters then look at the changes in
more detail.

1.1 Revision process
Ada has evolved over a number of years and, especially for those unfamiliar with the background, it
is convenient to summarize the processes involved. The first version was Ada 83 and this was
developed by a team led by the late Jean Ichbiah and funded by the USDoD. The development of
Ada 95 from Ada 83 was an extensive process also funded by the USDoD. Formal requirements
were established after comprehensive surveys of user needs and competitive proposals were then
submitted resulting in the selection of Intermetrics as the developer under the leadership of Tucker
Taft. Then came Ada 2005 and this was developed on a more modest scale. The work was almost
entirely done by voluntary effort with support from within the industry itself through bodies such as
the Ada Resource Association and Ada-Europe.

After some experience with Ada 2005 it became clear that some further evolution was appropriate.
Adding new features as in Ada 2005 always brings some surprises regarding their use and further
polishing is almost inevitable. Accordingly, it was decided that a further revision should be made
with a goal of completion in 2012.

As in the case of Ada 2005, the development was performed under the guidance of ISO/IEC
JTC1/SC22 WG9 (hereinafter just called WG9). Previously chaired by Jim Moore, it is now under
the chairmanship of Joyce Tokar. This committee has included national representatives of many
nations including Belgium, Canada, France, Germany, Italy, Japan, Spain, Sweden, Switzerland, the
UK and the USA. WG9 developed guidelines [1] for a revision to Ada 2005 which were then used
by the Ada Rapporteur Group (the ARG) in drafting the revised standard.

The ARG is a team of experts nominated by the national bodies represented on WG9 and the two
liaison organizations, ACM SIGAda and Ada-Europe. In the case of Ada 2005, the ARG was
originally led by Erhard Plödereder and then by Pascal Leroy. For Ada 2012, it was led by Ed
Schonberg. The editor, who at the end of the day actually writes the words of the standard, continues
to be the indefatigable Randy Brukardt.

Suggestions for the revised standard have come from a number of sources such as individuals on the
ARG, national bodies on WG9, users and implementers via email discussions on Ada-Comment and
so on. Also several issues were left over from the development of Ada 2005.

The revision process was completed early in 2012 and the new standard was approved late in 2012
thanks to a revised fast track mechanism.

1.2 Scope of revision
The changes from Ada 95 to Ada 2005 were significant (although not so large as the changes from
Ada 83 to Ada 95). The main additions were

 in the OO area, multiple inheritance using interfaces and the ability to make calls using
prefixed notation,

 more flexible access types with anonymous types, more control over null and constant, and
downward closures via access to subprogram types,

2 Int roduct ion

 enhanced structure and visibility control by the introduction of limited with and private with
clauses and by an extended form of return statement,

 in the real-time area, the Ravenscar profile [2], various new scheduling polices, timers and
execution time budget control,

 some minor improvements to exception handling, numerics (especially fixed point) and some
further pragmas such as Assert,

 various extensions to the standard library such as the introduction of operations on vectors and
matrices, further operations on times and dates, and operations on wide wide characters; and
especially:

 a comprehensive library for the manipulation of containers of various kinds.

The changes from Ada 2005 to Ada 2012 were intended to be relatively modest and largely to lead
on from the experience of the additions introduced in Ada 2005. But one thing led to another and in
fact the changes are of a similar order to those from Ada 95 to Ada 2005.

From the point of view of the ISO standard, Ada 2005 is the Ada 95 standard modified by two
documents. First there was a Corrigendum issued in 2001 [3] and then an Amendment issued in
2005 [4]. In principle the poor user thus has to study these three documents in parallel to understand
Ada 2005. However, they were informally incorporated into the Ada 2005 Reference Manual [5].

In the case of Ada 2012, this process of developing a further formal amendment would then lead to
the need to consult four documents which would be madness and so this time we have simply a new
Edition based formally on a single Revision.

The scope of this Revision is guided by a document issued by WG9 to the ARG in October 2008
[1]. The essence was that the ARG was requested to pay particular attention to

A Improvements that will maintain or improve Ada's advantages, especially in those user
domains where safety and criticality are prime concerns. Within this area it cites improving the
use and functionality of containers, the ability to write and enforce contracts for Ada entities
(for instance, via preconditions) and the capabilities of Ada on multicore and multithreaded
architectures.

B Improvements that will remedy shortcomings in Ada. It cites in particular the safety, use, and
functionality of access types and dynamic storage management.

So the ARG was asked to improve both OO and real-time with a strong emphasis on real-time and
high integrity features. Moreover, "design by contract" features should be added whereas for the
previous amendment they were rejected on the grounds that they would not be static.

The ARG was also asked to consider the following factors in selecting features for inclusion:

 Implementability. Can the feature be implemented at reasonable cost?

 Need. Do users actually need it?

 Language stability. Would it appear disturbing to current users?

 Competition and popularity. Does it help to improve the perception of Ada and make it more
competitive?

 Interoperability. Does it ease problems of interfacing with other languages and systems?

 Language consistency. Is it syntactically and semantically consistent with the language's
current structure and design philosophy?

1.2 Scope of rev is ion 3

As before, an important further statement is that "In order to produce a technically superior result, it
is permitted to compromise backwards compatibility when the impact on users is judged to be
acceptable." In other words don't be paranoid about compatibility.

Finally, there is a warning about secondary standards. Its essence is don't use secondary standards if
you can get the material into the RM itself.

The guidelines conclude with the target schedule. This includes WG9 approval of the scope of the
amendment in June 2010 which was achieved and submission to ISO/IEC JTC1 in late 2011.

1.3 Overview of changes
It would be tedious to give a section by section review of the changes as seen by the Reference
Manual language lawyer. Instead, the changes will be presented by areas as seen by the user. There
can be considered to be six areas:

1 Introduction of dynamic contracts. These can be seen to lead on from the introduction of the
Assert pragma in Ada 2005. New syntax (using with again) introduces aspect specifications
which enable certain properties of entities to be stated where they are declared rather than later
using representation clauses. This is put to good use in introducing pre- and postconditions for
subprograms and similar assertions for types and subtypes.

2 More flexible expressions. The introduction of preconditions and so on increases the need for
more powerful forms of expressions. Accordingly, if expressions, case expressions, quantified
expressions and expression functions are all added. A related change is that membership tests
are generalized.

3 Structure and visibility control. Functions are now permitted to have out and in out
parameters, and rules are introduced to minimize the risk of inadvertent dependence on order
of evaluation of parameters and other entities such as aggregates. More flexibility is permitted
with incomplete types and another form of use clause is introduced. There are minor
enhancements to extended return statements.

4 Tasking and real-time improvements. Almost all of the changes are in the Real-Time Systems
annex. New packages are added for the control of tasks and budgeting on multiprocessor
systems, and the monitoring of time spent in interrupts. There are also additional facilities for
non-preemptive dispatching, task barriers and suspension objects.

5 Improvements to other general areas. More flexibility is allowed in the position of labels,
pragmas, and null statements. A number of corrections are made to the accessibility rules,
improvements are made to conversions of access types, and further control over storage pools
is added. The composability of equality is now the same for both tagged and untagged record
types.

6 Extensions to the standard library. Variants on the existing container packages are introduced
to handle bounded containers more efficiently. Additional containers are added for a simple
holder, multiway trees and queues. Moreover, a number of general features have been added to
make containers and other such reusable libraries easier to use. Minor additions cover
directories, locale capabilities, string encoding and further operations on wide and wide wide
characters.

The reader might feel that the changes are quite extensive but each has an important role to play in
making Ada more useful. Indeed the solution of one problem often leads to auxiliary requirements.
The desire to introduce stronger description of contracts led to the search for good syntax which led
to aspect specifications. And these strengthened the need for more flexible forms of expressions and
so on. Some changes were driven by outside considerations such as multiprocessors and others stem
from what now seem to be obvious but minor flaws in Ada 2005.

4 Int roduct ion

A number of potential changes were rejected as really unnecessary. For example, the author was at
one time enthused by a desire for fixed point cyclic types. But it proved foolish without base 60
hardware to match our inheritance of arithmetic in a Babylonian style for angles.

Before looking at the six areas in a little more detail it is perhaps worth saying a few words about
compatibility with Ada 2005. The guidelines gave the ARG freedom to be sensible in this area. Of
course, the worst incompatibilities are those where a valid program in Ada 2005 continues to be
valid in Ada 2012 but does something different. It is believed that incompatibilities of this nature
will be most unlikely to arise in practice.

However, incompatibilities whereby a valid Ada 2005 program fails to compile in Ada 2012 are
tolerable provided they are infrequent. A few such incompatibilities are possible. The most obvious
cause is the introduction of one more reserved word, namely some, which is used in quantified
expressions to match all. Thus if an existing Ada 2005 program uses some as an identifier then it
will need modification. Once again, the introduction of a new category of unreserved keywords was
considered but was eventually rejected as confusing.

1.3.1 Contracts
One of the important issues highlighted by WG9 for the Amendment was the introduction of
material for enforcing contracts such as preconditions and postconditions. As a simple example
consider a stack with procedures Push and Pop. An obvious precondition for Pop is that the stack
must not be empty. If we have a function Is_Empty for testing the state of the stack then a call of
Is_Empty would provide the basis for an appropriate precondition.

The question now is to find a good way to associate the expression not Is_Empty with the
specification of the procedure Pop. Note that it is the specification that matters since it is the
specification that provides the essence of the contract between the caller of the procedure Pop and
the writer of its body. The contract provided by a traditional Ada subprogram specification is rather
weak – essentially it just provides enough information for the compiler to generate the correct code
for the calls but says nothing about the semantic behaviour of the associated body.

The traditional way to add information of this kind in Ada is via a pragma or by giving some kind of
aspect clause. However, there were problems with this approach. One is that there is no convenient
way to distinguish between several overloaded subprograms and another is that such information is
given later on because of interactions with freezing and linear elaboration rules.

Accordingly, it was decided that a radical new approach should be devised and this led to the
introduction of aspect specifications which are given with the item to which they relate using the
reserved word with.

In the case of preconditions and postconditions, Ada 2012 introduces aspects Pre and Post. So to
give the precondition for Pop we augment the specification of Pop by writing

procedure Pop(S: in out Stack; X: out Item)
 with Pre => not Is_Empty(S);

In a similar way we might give a postcondition as well which might be that the stack is not full. So
altogether the specification of a generic package for stacks might be

generic
 type Item is private;
package Stacks is
 type Stack is private;

 function Is_Empty(S: Stack) return Boolean;
 function Is_Full(S: Stack) return Boolean;

1.3 Overv iew of changes 5

 procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S),
 Post => not Is_Empty(S);

 procedure Pop(S: in out Stack; X: out Item)
 with
 Pre => not Is_Empty(S),
 Post => not Is_Full(S);

private
 ...
end Stacks;

Note how the individual aspects Pre and Post take the form of

aspect_mark => expression

and that if there are several then they are separated by commas. The final semicolon is of course the
semicolon at the end of the subprogram declaration as a whole. Thus the overall syntax is now

subprogram_declaration ::=
 [overriding_indicator]
 subprogram_specification
 [aspect_specification] ;

and in general

aspect_specification ::=
 with aspect_mark [=> expression] { ,
 aspect_mark [=> expression] }

Pre- and postconditions are controlled by the same mechanism as assertions using the pragma
Assert. It will be recalled that these can be switched on and off by the pragma Assertion_Policy.
Thus if we write

pragma Assertion_Policy(Check);

then assertions are enabled whereas if the parameter of the pragma is Ignore then all assertions are
ignored.

In the case of a precondition, whenever a subprogram with a precondition is called, if the policy is
Check then the precondition is evaluated and if it is False then Assertion_Error is raised and the
subprogram is not entered. Similarly, on return from a subprogram with a postcondition, if the
policy is Check then the postcondition is evaluated and if it is False then Assertion_Error is raised.

So if the policy is Check and Pop is called when the stack is empty then Assertion_Error is raised
whereas if the policy is Ignore then the predefined exception Constraint_Error would probably be
raised (depending upon how the stack had been implemented).

Note that, unlike the pragma Assert, it is not possible to associate a specific message with the raising
of Assertion_Error by a pre- or postcondition. The main reason is that it might be confusing with
multiple conditions (which can arise with inheritance) and in any event it is expected that the
implementation will give adequate information about which condition has been violated.

Note that it is not permitted to give the aspects Pre or Post for a null procedure; this is because all
null procedures are meant to be interchangeable.

6 Int roduct ion

There are also aspects Pre'Class and Post'Class for use with tagged types (and they can be given
with null procedures). The subtle topic of multiple inheritance of pre- and postconditions is
discussed in detail in Section 2.3.

Two new attributes are useful in postconditions. X'Old denotes the value of X on entry to the
subprogram whereas X denotes the value on exit. And in the case of a function F, the value returned
by the function can be denoted by F'Result in a postcondition for F.

As a general rule, the new aspect specifications can be used instead of aspect clauses and pragmas
for giving information regarding entities such as types and subprograms.

For example rather than

type Bit_Vector is array (0 .. 15) of Boolean;

followed later by

for Bit_Vector'Component_Size use 1;

we can more conveniently write

type Bit_Vector is array (0 .. 15) of Boolean
 with Component_Size => 1;

However, certain aspects such as record representation and enumeration representations cannot be
given in this way because of the special syntax involved.

In cases where aspect specifications can now be used, the existing pragmas are mostly considered
obsolescent and condemned to Annex J.

It should be noted that pragmas are still preferred for stating properties of program units such as
Pure, Preelaborable and so on. However, we now talk about the pure property as being an aspect of
a package. It is a general rule that the new aspect specifications are preferred with types and
subprograms but pragmas continue to be preferred for program units. Nevertheless, the enthusiast
for the new notation could write

package Ada_Twin
 with Pure is
end Ada_Twin;

which illustrates that in some cases no value is required for the aspect (by default it is True).

A notable curiosity is that Preelaborable_Initialization still has to be specified by a pragma (this is
because of problems with different views of the type).

Note incidentally that to avoid confusion with some other uses of the reserved word with, in the case
of aspect specifications with is at the beginning of the line.

There are two other new facilities of a contractual nature concerning types and subtypes. One is
known as type invariants and these describe properties of a type that remain true and can be relied
upon. The other is known as subtype predicates which extend the idea of constraints. The distinction
can be confusing at first sight and the following extract from one of the Ada Issues might be helpful.

“Note that type invariants are not the same thing as constraints, as invariants apply to all values of a
type, while constraints are generally used to identify a subset of the values of a type. Invariants are
only meaningful on private types, where there is a clear boundary (the enclosing package) that
separates where the invariant applies (outside) and where it need not be satisfied (inside). In some
ways, an invariant is more like the range of values specified when declaring a new integer type, as
opposed to the constraint specified when defining an integer subtype. The specified range of an

1.3 Overv iew of changes 7

integer type can be violated (to some degree) in the middle of an arithmetic computation, but must
be satisfied by the time the value is stored back into an object of the type.”

Type invariants are useful if we want to ensure that some relationship between the components of a
private type always holds. Thus suppose we have a stack and wish to ensure that no value is placed
on the stack equal to an existing value on the stack. We can modify the earlier example to

package Stacks is
 type Stack is private
 with
 Type_Invariant => Is_Unduplicated(Stack);

 function Is_Empty(S: Stack) return Boolean;
 function Is_Full(S: Stack) return Boolean;
 function Is_Unduplicated(S: Stack) return Boolean;

 procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S),
 Post => not Is_Empty(S);

 -- and so on

The function Is_Unduplicated then has to be written (in the package body as usual) to check that all
values of the stack are different.

Note that we have mentioned Is_Unduplicated in the type invariant before its specification. This
violates the usual "linear order of elaboration". However, there is a general rule that all aspect
specifications are only elaborated when the entity they refer to is frozen. Recall that one of the
reasons for the introduction of aspect specifications was to overcome this problem with the existing
mechanisms which caused information to become separated from the entities to which it relates.

The invariant on a private type T is checked when the value can be changed from the point of view
of the outside user. That is primarily

 after default initialization of an object of type T,

 after a conversion to type T,

 after a call that returns a result of a type T or has an out or in out or access parameter of type
T.

The checks also apply to subprograms with parameters or results whose components are of the type
T.

In the case of the stack, the invariant Is_Unduplicated will be checked when we declare a new object
of type Stack and each time we call Push and Pop.

Note that any subprograms internal to the package and not visible to the user can do what they like.
It is only when a value of the type Stack emerges into the outside world that the invariant is
checked.

The type invariant could be given on the full type in the private part rather than on the visible
declaration of the private type (but not on both). Thus the user need not know that an invariant
applies to the type.

Type invariants, like pre- and postconditions, are controlled by the pragma Assertion_Policy and
only checked if the policy is Check. If an invariant fails to be true then Assertion_Error is raised at
the appropriate point.

8 Int roduct ion

There is also an aspect Type_Invariant'Class for use with tagged types.

The subtype feature of Ada is very valuable and enables the early detection of errors that linger in
many programs in other languages and cause disaster later. However, although valuable, the subtype
mechanism is somewhat limited. We can only specify a contiguous range of values in the case of
integer and enumeration types.

Accordingly, Ada 2012 introduces subtype predicates as an aspect that can be applied to type and
subtype declarations. The requirements proved awkward to satisfy with a single feature so in fact
there are two aspects: Static_Predicate and Dynamic_Predicate. They both take a Boolean
expression and the key difference is that the static predicate is restricted to certain types of
expressions so that it can be used in more contexts.

Suppose we are concerned with seasons and that we have a type Month thus

type Month is (Jan, Feb, Mar, Apr, May, ..., Nov, Dec);

Now suppose we wish to declare subtypes for the seasons. For most people winter is December,
January, February. (From the point of view of solstices and equinoxes, winter is from December 21
until March 21 or thereabouts, but March seems to me generally more like spring rather than winter
and December feels more like winter than autumn.) So we would like to declare a subtype
embracing Dec, Jan and Feb. We cannot do this with a constraint but we can use a static predicate
by writing

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb;

and then we are assured that objects of subtype Winter can only be Dec, Jan or Feb (provided once
more that the Assertion_Policy pragma has set the Policy to Check). Note the use of the subtype
name (Winter) in the expression where it stands for the current instance of the subtype.

The aspect is checked whenever an object is default initialized, on assignments, on conversions, on
parameter passing and so on. If a check fails then Assertion_Error is raised.

The observant reader will note also that the membership test takes a more flexible form in Ada 2012
as explained in the next section.

If we want the expression to be dynamic then we have to use Dynamic_Predicate thus

type T is ... ;
function Is_Good(X: T) return Boolean;
subtype Good_T is T
 with Dynamic_Predicate => Is_Good(Good_T);

Note that a subtype with predicates cannot be used in some contexts such as index constraints. This
is to avoid having arrays with holes and similar nasty things. However, static predicates are allowed
in a for loop meaning to try every value. So we could write

for M in Winter loop...

Beware that the loop uses values for M in the order, Jan, Feb, Dec and not Dec, Jan, Feb as the user
might have wanted.

As another example, suppose we wish to specify that an integer is even. We might expect to be able
to write

subtype Even is Integer
 with Static_Predicate => Even mod 2 = 0; -- illegal

1.3 Overv iew of changes 9

Sadly, this is illegal because the expression in a static predicate is restricted and cannot use some
operations such as mod. We have to use a dynamic predicate thus

subtype Even is Integer
 with Dynamic_Predicate => Even mod 2 = 0; --OK

and then we cannot write

for X in Even loop ...

but have to spell it out in detail such as

for X in Integer loop
 if X mod 2 = 0 then -- or if X in Even then
 ... -- body of loop
 end if;
end loop;

The assurance given by type invariants and subtype predicates can depend upon the object having a
sensible initial value. There is a school of thought that giving default initial values (such as zero) is
bad since it can obscure flow errors. However, it is strange that Ada does allow default initial values
to be given for components of records but not for scalar types or array types. This is rectified in Ada
2012 by aspects Default_Value and Default_Component_Value. We can write

type Signal is (Red, Amber, Green)
 with Default_Value => Red;

type Text is new String
 with Default_Component_Value => Ada.Characters.Latin_1.Space;

type Day is range 1 .. 31
 with Default_Value => 1;

Note that, unlike default initial values for record components, these have to be static.

Finally, two new attributes are introduced to aid in the writing of preconditions. Sometimes it is
necessary to check that two objects do not occupy the same storage in whole or in part. This can be
done with two attributes thus

X'Has_Same_Storage(Y)
X'Overlaps_Storage(Y)

As an example we might have a procedure Exchange and wish to ensure that the parameters do not
overlap in any way. We can write

procedure Exchange(X, Y: in out T)
 with Pre => not X'Overlaps_Storage(Y);

Attributes are used rather than predefined functions since this enables the semantics to be written in
a manner that permits X and Y to be of any type and moreover does not imply that X or Y are read.

1.3.2 Expressions
Those whose first language was Algol 60 or Algol 68 or who have had the misfortune to dabble in
horrid languages such as C will have been surprised that a language of the richness of Ada does not
have conditional expressions. Well, the good news is that Ada 2012 has at last introduced
conditional expressions which take two forms, if expressions and case expressions.

The reason that Ada did not originally have conditional expressions is probably that there was a
strong desire to avoid any confusion between statements and expressions. We know that many errors
in C arise because assignments can be used as expressions. But the real problem with C is that it also

10 Int roduct ion

treats Booleans as integers, and confuses equality and assignment. It is this combination of fluid
styles that causes problems. But just introducing conditional expressions does not of itself introduce
difficulties if the syntax is clear and unambiguous.

If expressions in Ada 2012 take the form as shown by the following statements:

S := (if N > 0 then +1 else 0);

Put(if N = 0 then "none" elsif N = 1 then "one" else "lots");

Note that there is no need for end if and indeed it is not permitted. Remember that end if is vital for
good structuring of if statements because there can be more than one statement in each branch. This
does not arise with if expressions so end if is unnecessary and moreover would be heavy as a
closing bracket. However, there is a rule that an if expression must always be enclosed in
parentheses. Thus we cannot write

X := if L > 0 then M else N + 1; -- illegal

because there would be confusion between

X := (if L > 0 then M else N) + 1; -- and

X := (if L > 0 then M else (N + 1));

The parentheses around N+1 are not necessary in the last line above but added to clarify the point.

However, if the context already provides parentheses then additional ones are unnecessary. Thus an
if expression as a single parameter does not need double parentheses.

It is clear that if expressions will have many uses. However, the impetus for providing them in Ada
2012 was stimulated by the introduction of aspects of the form

Pre => expression

There will be many occasions when preconditions have a conditional form and without if
expressions these would have to be wrapped in a function which would be both heavy and obscure.
For example suppose a procedure P has two parameters P1 and P2 and that the precondition is that
if P1 is positive then P2 must also be positive but if P1 is not positive then there is no restriction on
P2. We could express this by writing a function such as

function Checkparas(P1, P2: Integer) return Boolean is
begin
 if P1 > 0 then
 return P2 > 0;
 else -- P1 is not positive
 return True; -- so don't care about P2
 end if;
end Checkparas;

and then we can write

procedure P(P1, P2: Integer)
 with Pre => Checkparas(P1, P2);

This is truly gruesome. Apart from the effort of having to declare the wretched function
Checkparas, the consequence is that the meaning of the precondition can only be determined by
looking at the body of Checkparas and that could be miles away, typically in the body of the
package containing the declaration of P. This would be a terrible violation of information hiding in
reverse; we would be forced to hide something that should be visible.

However, using if expressions we can simply write

www.allitebooks.com

http://www.allitebooks.org

1.3 Overv iew of changes 11

Pre => (if P1 > 0 then P2 > 0 else True);

and this can be abbreviated to

Pre => (if P1 > 0 then P2 > 0);

because there is a convenient rule that a trailing else True can be omitted when the type is a
Boolean type. Many will find it much easier to read without else True anyway since it is similar to
saying P1 > 0 implies P2 > 0. Adding an operation such as implies was considered but rejected as
unnecessary.

The precondition could be extended to say that if P1 equals zero then P2 also has to be zero but if
P1 is negative then we continue not to care about P2. This would be written thus

Pre => (if P1 > 0 then P2 > 0 elsif P1 = 0 then P2 = 0);

There are various sensible rules about the types of the various branches in an if expression as
expected. Basically, they must all be of the same type or convertible to the same expected type.
Thus consider a procedure Do_It taking a parameter of type Float and the call

Do_It (if B then X else 3.14);

where X is a variable of type Float. Clearly we wish to permit this but the two branches of the if
statement are of different types, X is of type Float whereas 3.14 is of type universal_real. But a value
of type universal_real can be implicitly converted to Float which is the type expected by Do_It and
so all is well.

There are also rules about accessibility in the case where the various branches are of access types;
the details need not concern us in this overview!

The other new form of conditional expression is the case expression and this follows similar rules to
the if expression just discussed. Here is an amusing example based on one in the AI which
introduces case expressions.

Suppose we are making a fruit salad and add various fruits to a bowl. We need to check that the fruit
is in an appropriate state before being added to the bowl. Suppose we have just three fruits given by

type Fruit_Kind is (Apple, Banana, Pineapple);

then we might have a procedure Add_To_Salad thus

procedure Add_To_Salad(Fruit: in Fruit_Type);

where Fruit_Type is perhaps a discriminated type thus

type Fruit_Type (Kind: Fruit_Kind) is private;

In addition there might be functions such as Is_Peeled that interrogate the state of a fruit.

We could then have a precondition that checks that the fruit is in an edible state thus

Pre => (if Fruit.Kind = Apple then Is_Crisp(Fruit)
 elsif Fruit.Kind = Banana then Is_Peeled(Fruit)
 elsif Fruit.Kind = Pineapple then Is_Cored(Fruit));

(This example is all very well but it has allowed the apple to go in uncored and the pineapple still
has its prickly skin.)

Now suppose we decide to add Orange to type Fruit_Kind. The precondition will still work in the
sense that the implicit else True will allow the orange to pass the precondition unchecked and will
go into the fruit salad possibly unpeeled, unripe or mouldy. The trouble is that we have lost the full
coverage check which is such a valuable feature of case statements and aggregates in Ada.

12 Int roduct ion

We overcome this by using a case expression and writing

Pre => (case Fruit.Kind is
 when Apple => Is_Crisp(Fruit),
 when Banana => Is_Peeled(Fruit),
 when Pineapple => Is_Cored(Fruit),
 when Orange => Is_Peeled(Fruit));

and of course without the addition of the choice for Orange it would fail to compile.

Note that there is no end case just as there is no end if in an if expression. Moreover, like the if
expression, the case expression must be in parentheses. Similar rules apply regarding the types of
the various branches and so on.

Of course, the usual rules of case statements apply and so we might decide not to bother about
checking the crispness of the apple but to check alongside the pineapple (another kind of apple!) that
it has been cored by writing

Pre => (case Fruit.Kind is
 when Apple | Pineapple => Is_Cored(Fruit),
 when Banana | Orange => Is_Peeled(Fruit));

We can use others as the last choice as expected but this would lose the value of coverage checking.
There is no default when others => True corresponding to else True for if expressions because that
would defeat coverage checking completely.

A further new form of expression is the so-called quantified expression. Quantified expressions
allow the checking of a Boolean expression for a given range of values and will again be found
useful in pre- and postconditions. There are two forms using for all and for some. Note carefully
that some is a new reserved word.

Suppose we have an integer array type

type Atype is array (Integer range <>) of Integer;

then we might have a procedure that sets each element of an array of integers equal to its index. Its
specification might include a postcondition thus

procedure Set_Array(A: out Atype)
 with Post => (for all M in A'Range => A(M) = M);

This is saying that for all values of M in A'Range we want the expression A(M) = M to be true. Note
how the two parts are separated by =>.

We could devise a function to check that some component of the array has a given value by

function Value_Present(A: Atype; X: Integer) return Boolean
 with Post => Value_Present'Result = (for some M in A'Range => A(M) = X);

Note the use of Value_Present'Result to denote the result returned by the function Value_Present.

As with conditional expressions, quantified expressions are always enclosed in parentheses.

The evaluation of quantified expressions is as expected. Each value of M is taken in turn (as in a for
statement and indeed we could insert reverse) and the expression to the right of => then evaluated.
In the case of universal quantification (a posh term meaning for all) as soon as one value is found to
be False then the whole quantified expression is False and no further values are checked; if all
values turn out to be True then the quantified expression is True. A similar process applies to
existential quantification (that is for some) where the roles of True and False are reversed.

1.3 Overv iew of changes 13

Those with a mathematical background will be familiar with the symbols and which correspond
to for all and for some respectively. Readers are invited to discuss whether the A is upside down
and the E backwards or whether they are both simply rotated.

As a somewhat more elaborate example suppose we have a function that finds the index of the first
value of M such that A(M) equals a given value X. This needs a precondition to assert that such a
value exists.

function Find(A: Atype; X: Integer) return Integer
 with
 Pre => (for some M in A'Range => A(M) = X),
 Post => A(Find'Result) = X and
 (for all M in A'First .. Find'Result–1 => A(M) /= X);

Note again the use of Find'Result to denote the result returned by the function Find.

Quantified expressions can be used in any context requiring an expression and are not just for pre-
and postconditions. Thus we might test whether an integer N is prime by

RN := Integer(Sqrt(Float(N)));
if (for some K in 2 .. RN => N mod K = 0) then
 ... -- N not prime

or we might reverse the test by

if (for all K in 2 .. RN => N mod K / = 0) then
 ... -- N is prime

Beware that this is not a recommended technique if N is at all large!

We noted above that a major reason for introducing if expressions and case expressions was to avoid
the need to introduce lots of auxiliary functions for contexts such as preconditions. Nevertheless the
need still arises from time to time. A feature of existing functions is that the code is in the body and
this is not visible in the region of the precondition – information hiding is usually a good thing but
here it is a problem. What we need is a localized and visible shorthand for a little function. After
much debate, Ada 2012 introduces expression functions which are essentially functions whose
visible body comprises a single expression. Thus suppose we have a record type such as

type Point is tagged
 record
 X, Y: Float := 0.0;
 end record;

and the precondition we want for several subprograms is that a point is not at the origin. Then we
could write

function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0);

and then

procedure Whatever(P: Point; ...)
 with Pre => not P.Is_At_Origin;

and so on.

Such a function is known as an expression function; naturally it does not have a distinct body. The
expression could be any expression and could include calls of other functions (and not just
expression functions). The parameters could be of any mode (see next section).

14 Int roduct ion

Expression functions can also be used as a completion. This arises typically if the type is private. In
that case we cannot access the components P.X and P.Y in the visible part. However, we don't want
to have to put the code in the package body. So we declare a function specification in the visible part
in the normal way thus

function Is_At_Origin(P: Point) return Boolean;

and then an expression function in the private part thus

private
 type Point is ...

 function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0);

and the expression function then completes the declaration of Is_At_Origin and no function body is
required in the package body.

Observe that we could also use an expression function for a completion in a package body so that
rather than writing the body as

function Is_At_Origin(P: Point) return Boolean is
begin
 return P.X = 0.0 and P.Y = 0.0;
end Is_At_Origin;

we could write an expression function as a sort of shorthand.

Incidentally, in Ada 2012, we can abbreviate a null procedure body in a similar way by writing

procedure Nothing(...) is null;

as a shorthand for

procedure Nothing(...) is
begin
 null;
end Nothing;

and this will complete the procedure specification

procedure Nothing(...);

Another change in this area is that membership tests are now generalized. In previous versions of
Ada, membership tests allowed one to see whether a value was in a range or in a subtype, thus we
could write either of

if D in 1 .. 30 then

if D in Days_In_Month then

but we could not write something like

if D in 1 | 3 | 5 | 6 ..10 then

This is now rectified and following in we can now have one or more of a value, a range, or a
subtype or any combination separated by vertical bars. Moreover, they do not have to be static.

A final minor change is that the form qualified expression is now treated as a name rather than as a
primary. Remember that a function call is treated as a name and this allows a function call to be
used as a prefix.

1.3 Overv iew of changes 15

For example suppose F returns an array (or more likely an access to an array) then we can write

F(...)(N)

and this returns the value of the component with index N. However, suppose the function is
overloaded so that this is ambiguous. The normal technique to overcome ambiguity is to use a
qualified expression and write T'(F(...)). But in Ada 2005 this is not a name and so cannot be used as
a prefix. This means that we typically have to copy the array (or access) and then do the indexing or
(really ugly) introduce a dummy type conversion and write T(T'(F(...)))(N). Either way, this is a
nuisance and hence the change in Ada 2012.

1.3.3 Structure and visibility
What will seem to many to be one of the most dramatic changes in Ada 2012 concerns functions. In
previous versions of Ada, functions could only have parameters of mode in. Ada 2012 permits
functions to have parameters of all modes.

There are various purposes of functions. The purest is simply as a means of looking at some state.
Examples are the function Is_Empty applying to an object of type Stack. It doesn't change the state
of the stack but just reports on some aspect of it. Other pure functions are mathematical ones such as
Sqrt. For a given parameter, Sqrt always returns the same value. These functions never have any
side effects. At the opposite extreme we could have a function that has no restrictions at all; any
mode of parameters permitted, any side effects permitted, just like a general procedure in fact but
also with the ability to return some result that can be immediately used in an expression.

An early version of Ada had such features, there were pure functions on the one hand and so-called
value-returning procedures on the other. However, there was a desire for simplification and so we
ended up with Ada 83 functions.

In a sense this was the worst of all possible worlds. A function can perform any side effects at all,
provided they are not made visible to the user by appearing as parameters of mode in out! As a
consequence, various tricks have been resorted to such as using access types (either directly or
indirectly). A good example is the function Random in the Numerics annex. It has a parameter
Generator of mode in but this does in fact get updated indirectly whenever Random is called. So
parameters can change even if they are of mode in. Moreover, the situation has encouraged
programmers to use access parameters unnecessarily with increased runtime cost and mental
obscurity.

Ada 2012 has bitten the bullet and now allows parameters of functions to be of any mode. But note
that operators are still restricted to only in parameters for obvious reasons.

However, there are risks with functions with side effects whether they are visible or not. This is
because Ada does not specify the order in which parameters are evaluated nor the order in which
parts of an expression are evaluated. So if we write

X := Random(G) + Random(G);

we have no idea which call of Random occurs first – not that it matters in this case. Allowing
parameters of all modes provides further opportunities for programmers to inadvertently introduce
order dependence into their programs.

So, in order to mitigate the problems of order dependence, Ada 2012 has a number of rules to catch
the more obvious cases. These rules are all static and are mostly about aliasing. For example, it is
illegal to pass the same actual parameter to two formal in out parameters – the rules apply to both
functions and procedures. Consider

16 Int roduct ion

procedure Do_It(Double, Triple: in out Integer) is
begin
 Double := Double * 2;
 Triple := Triple * 3;
end Do_It;

Now if we write

Var: Integer := 2;
...
Do_It(Var, Var); -- illegal in Ada 2012

then Var might become 4 or 6 in Ada 2005 according to the order in which the parameters are
copied back.

These rules also apply to any context in which the order is not specified and which involves function
calls with out or in out parameters. Thus an aggregate such as

(Var, F(Var))

where F has an in out parameter is illegal since the order of evaluation of the expressions in an
aggregate is undefined and so the value of the first component of the aggregate will depend upon
whether it is evaluated before or after F is called.

Full details of the rules need not concern the normal programmer – the compiler will tell you off!

Another change concerning parameters is that it is possible in Ada 2012 to explicitly state that a
parameter is to be aliased. Thus we can write

procedure P(X: aliased in out T; ...);

An aliased parameter is always passed by reference and the accessibility rules are modified
accordingly. This facility is used in a revision to the containers which avoids the need for expensive
and unnecessary copying of complete elements when they are updated. The details will be found in
Sections 4.2 and 6.3.

A major advance in Ada 2005 was the introduction of limited with clauses giving more flexibility to
incomplete types. However, experience has revealed a few minor shortcomings.

One problem is that an incomplete type in Ada 2005 cannot be completed by a private type. This
prevents the following mutually recursive structure of two types having each other as an access
discriminant

type T1;
type T2 (X: access T1) is private;
type T1 (X: access T2) is private; -- OK in Ada 2012

The rules in Ada 2012 are changed so that an incomplete type can be completed by any type,
including a private type (but not another incomplete type obviously).

Another change concerns the use of incomplete types as parameters. Generally, we do not know
whether a parameter of a private type is passed by copy or by reference. The one exception is that if
it is tagged then we know it will be passed by reference. As a consequence there is a rule in Ada
2005 that an incomplete type cannot be used as a parameter unless it is tagged incomplete. This has
forced the unnecessary use of access parameters.

In Ada 2012, this problem is remedied by permitting incomplete types to be used as parameters (and
as function results) provided that they are fully defined at the point of call and where the body is
declared.

1.3 Overv iew of changes 17

A final change to incomplete types is that a new category of formal generic parameter is added that
allows a generic unit to be instantiated with an incomplete type. Thus rather than having to write a
signature package as

generic
 type Element is private;
 type Set is private;
 with function Empty return Set;
 with function Unit(E: Element) return Set;
 with function Union(S, T: Set) return Set;
 ...
package Set_Signature is end;

which must be instantiated with complete types, we can now write

generic
 type Element;
 type Set;
 with function Empty return Set;
 ...
package Set_Signature is end;

where the formal parameters Element and Set are categorized as incomplete. Instantiation can now
be performed using any type, including incomplete or private types as actual parameters. This
permits the cascading of generic packages which was elusive in Ada 2005 as will be illustrated in
Section 4.3. Note that we can also write type Set is tagged; which requires the actual parameter to
be tagged but still permits it to be incomplete.

There is a change regarding discriminants. In Ada 2005, a discriminant can only have a default
value if the type is not tagged. Remember that giving a default value makes a type mutable. But not
permitting a default value has proved to be an irritating restriction in the case of limited tagged
types. Being limited they cannot be changed anyway and so a default value is not a problem and is
permitted in Ada 2012. This feature is used in the declaration of the protected types for
synchronized queues in Section 1.3.6.

Another small but useful improvement is in the area of use clauses. In Ada 83, use clauses only
apply to packages and everything in the package specification is made visible. Programming
guidelines often prohibit use clauses on the grounds that programs are hard to understand since the
origin of entities is obscured. This was a nuisance with operators because it prevented the use of
infixed notation and forced the writing of things such as

P."+"(X, Y)

Accordingly, Ada 95 introduced the use type clause which just makes the operators for a specific
type in a package directly visible. Thus we write

use type P.T;

However, although this makes the primitive operators of T visible it does not make everything
relating to T visible. Thus it does not make enumeration literals visible or other primitive operations
of the type such as subprograms. This is a big nuisance.

To overcome this, Ada 2012 introduces a further variation on the use type clause. If we write

use all type P.T;

18 Int roduct ion

then all primitive operations of T are made visible (and not just primitive operators) and this
includes enumeration literals in the case of an enumeration type and class wide operations of tagged
types.

Finally, there are a couple of small changes to extended return statements which are really
corrections to amend oversights in Ada 2005.

The first is that a return object can be declared as constant. For example

function F(...) return LT is
...
 return Result: constant LT := ... do

 end return;
end F;

We allow everything else to be declared as constant so we should here as well especially if LT is a
limited type. This was really an oversight in the syntax.

The other change concerns class wide types. If the returned type is class wide then the object
declared in the extended return statement need not be the same in Ada 2012 provided it can be
converted to the class wide type. Thus

function F(...) return T'Class is
...
 return X: TT do
 ...
 end return;
end F;

is legal in Ada 2012 provided that TT is descended from T and thus covered by T'Class. In Ada 2005
it is required that the result type be identical to the return type and this is a nuisance with a class
wide type because it then has to be initialized with something and so on. Note the analogy with
constraints. The return type might be unconstrained such as String whereas the result (sub)type can
be constrained such as String(1 .. 5).

1.3.4 Tasking and real-time facilities
There are a number of improvements regarding scheduling and dispatching in the Real-Time
Systems annex.

A small addition concerns non-preemptive dispatching. In Ada 2005, a task wishing to indicate that
it is willing to be preempted has to execute

delay 0.0;

(or delay until Ada.Real_Time.Time_First in Ravenscar). This is ugly and so a procedure Yield is
added to the package Ada.Dispatching.

A further addition is the ability to indicate that a task is willing to be preempted by a task of higher
priority (but not the same priority). This is done by calling Yield_To_Higher which is declared in a
new child package with specification

package Ada.Dispatching.Non_Preemptive is
 pragma Preelaborate(Non_Preemptive);
 procedure Yield_To_Higher;
 procedure Yield_To_Same_Or_Higher renames Yield;
end Ada.Dispatching.Non_Preemptive;

1.3 Overv iew of changes 19

Another low-level scheduling capability concerns suspension objects; these were introduced in Ada
95. Recall that we can declare an object of type Suspension_Object and call procedures to set it
True or False. By calling Suspend_Until_True a task can suspend itself until the state of the object is
true.

Ada 2005 introduced Earliest Deadline First (EDF) scheduling. The key feature here is that tasks are
scheduled according to deadlines and not by priorities. A new facility introduced in Ada 2012 is the
ability to suspend until a suspension object is true and then set its deadline sometime in the future.
This is done by calling the aptly named procedure Suspend_Until_True_And_Set_Deadline in a new
child package Ada.Synchronous_Task_Control.EDF.

A new scheduling feature is the introduction of synchronous barriers in a new child package
Ada.Synchronous_Barriers. The main features are a type Synchronous_Barrier with a discriminant
giving the number of tasks to be waited for.

type Synchronous_Barrier(Release_Threshold: Barrier_Limit) is limited private;

There is also a procedure

procedure Wait_For_Release(The_Barrier: in out Synchronous_Barrier;
 Notified: out Boolean);

When a task calls Wait_For_Release it gets suspended until the number waiting equals the
discriminant. All the tasks are then released and just one of them is told about it by the parameter
Notified being True. The general idea is that this one task then does something on behalf of all the
others. The count of tasks waiting is then reset to zero so that the synchronous barrier can be used
again.

A number of other changes in this area are about the use of multiprocessors and again concern the
Real-Time Systems annex.

A new package System.Multiprocessors is introduced as follows

package System.Multiprocessors is
 type CPU_Range is range 0..implementation-defined;
 Not_A_Specific_CPU: constant CPU_Range := 0:
 subtype CPU is CPU_Range range 1 .. CPU_Range'Last;
 function Number_Of_CPUs return CPU;
end System.Multiprocessors;

A value of subtype CPU denotes a specific processor. Zero indicates don't know or perhaps don't
care. The total number of CPUs is determined by calling the function Number_Of_CPUs. This is a
function rather than a constant because there could be several partitions with a different number of
CPUs on each partition.

Tasks can be allocated to processors by an aspect specification. If we write

task My_Task
 with CPU => 10;

then My_Task will be executed by processor number 10. In the case of a task type then all tasks of
that type will be executed by the given processor. The expression giving the processor for a task can
be dynamic. The aspect can also be set by a corresponding pragma CPU. (This is an example of a
pragma born obsolescent.) The aspect CPU can also be given to the main subprogram in which case
the expression must be static.

Further facilities are provided by the child package System.Multiprocessors.Dispatching_Domains.
The idea is that processors are grouped together into dispatching domains. A task may then be
allocated to a domain and it will be executed on one of the processors of that domain.

20 Int roduct ion

Domains are of a type Dispatching_Domain. They are created by a function Create

function Create(First, Last: CPU) return Dispatching_Domain;

that takes the first and last numbered CPU of the domain and then returns the domain. All CPUs are
initially in the System_Dispatching_Domain. If we attempt to do something silly such as create
overlapping domains, then Dispatching_Domain_Error is raised.

Tasks can be assigned to a domain in two ways. One way is to use an aspect

task My_Task
 with Dispatching_Domain => My_Domain;

The other way is by calling the procedure Assign_Task whose specification is

procedure Assign_Task(Domain: in out Dispatching_Domain;
 CPU: in CPU_Range := Not_A_Specific_CPU;
 T: in Task_Id := Current_Task);

There are a number of other subprograms for manipulating domains and CPUs. An interesting one is
Delay_Until_And_Set_CPU which delays the calling task until a given real time and then sets the
processor.

The Ravenscar profile is now defined to be permissible with multiprocessors. However, there is a
restriction that tasks may not change CPU. Accordingly the definition of the profile now includes
the following restriction

No_Dependence => System.Multiprocessors.Dispatching_Domains

In order to clarify the use of multiprocessors with group budgets the package
Ada.Execution_Time.Group_Budgets introduced in Ada 2005 is slightly modified. The type
Group_Budget (which in Ada 2005 is just tagged limited private) has a discriminant in Ada 2012
giving the CPU thus

type Group_Budget(CPU: System.Multiprocessors.CPU :=
 System.Multiprocessors.CPU'First) is tagged limited private;

This means that a group budget only applies to a single processor. If a task in a group is executed on
another processor then the budget is not consumed. Note that the default value for CPU is CPU'First
which is always 1.

Another improvement relating to times and budgets concerns interrupts. Two Boolean constants are
added to the package Ada.Execution_Time

Interrupt_Clocks_Supported: constant Boolean := implementation-defined;
Separate_Interrupt_Clocks_Supported: constant Boolean := implementation-defined;

The constant Interrupt_Clocks_Supported indicates whether the time spent in interrupts is accounted
for separately from the tasks and then Separate_Interrupt_Clocks_Supported indicates whether it is
accounted for each interrupt individually. There is also a function

function Clocks_For_Interrupts return CPU_Time;

This function gives the time used over all interrupts. Calling it if Interrupt_Clocks_Supported is
false raises Program_Error.

A new child package accounts for the interrupts separately if Separate_Interrupt_Clocks_Supported
is true.

www.allitebooks.com

http://www.allitebooks.org

1.3 Overv iew of changes 21

package Ada.Execution_Time.Interrupts is
 function Clock(Interrupt: Ada.Interrupts.Interrupt_Id) return CPU_Time;
 function Supported(Interrupt: Ada.Interrupts.Interrupt_Id) return Boolean;
end Ada.Execution_Time.Interrupts;

The function Supported indicates whether the time for a particular interrupt is being monitored. If it
is then Clock returns the accumulated time spent in that interrupt handler (otherwise it returns zero).
However, if the overall constant Separate_Interrupt_Clocks_Supported is false then calling Clock
for a particular interrupt raises Program_Error.

Multiprocessors have an impact on shared variables. The existing pragma Volatile (now the aspect
Volatile) requires access to be in memory but this is strictly unnecessary. All we need is to ensure
that reads and writes occur in the right order. A new aspect Coherent was considered but was
rejected in favour of simply changing the definition of Volatile.

The final improvement in this section is in the core language and concerns synchronized interfaces
and requeue. The procedures of a synchronized interface may be implemented by a procedure or
entry or by a protected procedure. However, in Ada 2005 it is not possible to requeue on a procedure
of a synchronized interface even if it is implemented by an entry. This is a nuisance and prevents
certain high level abstractions.

Accordingly, Ada 2012 has an aspect Synchronization that takes one of By_Entry,
By_Protected_Procedure, and Optional. So we might write

type Server is synchronized interface;
procedure Q(S: in out Server; X: in Item);
 with Synchronization => By_Entry;

and then we are assured that we are permitted to perform a requeue on any implementation of Q.

As expected there are a number of consistency rules. The aspect can also be applied to a task
interface or to a protected interface. But for a task interface it obviously cannot be
By_Protected_Procedure.

In the case of inheritance, any Synchronization property is inherited. Naturally, multiple aspect
specifications must be consistent. Thus Optional can be overridden by By_Entry or by
By_Protected_Procedure but other combinations conflict and so are forbidden.

A related change is that if an entry is renamed as a procedure then we can do a requeue using the
procedure name. This was not allowed in Ada 95 or Ada 2005.

1.3.5 General improvements
As well as the major features discussed above there are also a number of improvements in various
other areas.

We start with some gentle stuff. Ada 95 introduced the package Ada thus

package Ada is
 pragma Pure(Ada);
end Ada;

However, a close reading of the RM revealed that poor Ada is illegal since the pragma Pure is not in
one of the allowed places for a pragma. Pragmas are allowed in the places where certain categories
are allowed but not in place of them. In the case of a package specification the constructs are basic
declarative items, but "items" were not one of the allowed things. This has been changed to keep
Ada legal.

A related change concerns a sequence of statements. In a construction such as

22 Int roduct ion

if B then
 This;
else
 That;
end if;

there must be at least one statement in each branch so if we don't want any statements then we have
to put a null statement. If we want a branch that is just a pragma Assert then we have to put a null
statement as well thus

if B then
 pragma Assert(...); null;
end if;

This is really irritating and so the rules have been changed to permit a pragma in place of a
statement in a sequence of statements. This and the problem with the package Ada are treated as
Binding Interpretations which means that they apply to Ada 2005 as well.

A similar change concerns the position of labels. It is said that gotos are bad for you. However,
gotos are useful for quitting an execution of a loop and going to the end in order to try the next
iteration. Thus

for I in ... loop
 ...
 if this-one-no-good then goto End_Of_Loop; end if;
 ...
<<End_Of_Loop>> null; -- try another iteration
end loop;

Ada provides no convenient way of doing this other than by using a goto statement. Remember that
exit transfers control out of the loop. The possibility of a continue statement as in some other
languages was discussed but it was concluded that this would obscure the transfer of control. The
great thing about goto is that the label sticks out like a sore thumb. Indeed, a survey of the code in a
well known compiler revealed an orgy of uses of this handy construction.

However, it was decided that having to put null was an ugly nuisance and so the syntax of Ada 2012
has been changed to permit the label to come right at the end.

There is a significant extension to the syntax of loops used for iteration. This arose out of a
requirement to make iteration over containers easier (as outlined in the next section) but the general
ideas can be illustrated with an array. Consider

for K in Table'Range loop
 Table(K) := Table(K) + 1;
end loop;

This can now be written as

for T of Table loop
 T := T + 1;
end loop;

The entity T is a sort of generalized reference and hides the indexing. This mechanism can also be
used with multidimensional arrays in which case just one loop replaces a nested set of loops.

A minor problem has arisen with the use of tags and Generic_Dispatching_Constructor. There is no
way of discovering whether a tag represents an abstract type other than by attempting to create an
object of the type which then raises Tag_Error; this is disgusting. Accordingly, a new function

1.3 Overv iew of changes 23

function Is_Abstract(T: Tag) return Boolean;

is added to the package Ada.Tags.

There were many changes to access types in Ada 2005 including the wide introduction of
anonymous access types. Inevitably some problems have arisen.

The first problem is with the accessibility of stand-alone objects of anonymous access types such as

A: access T;

Without going into details, it turns out that such objects are not very useful unless they carry the
accessibility level of their value in much the same way that access parameters carry the accessibility
level of the actual parameter. They are therefore modified to do this.

Programmers have always moaned about the need for many explicit conversions in Ada.
Accordingly, implicit conversions from anonymous access types to named access types are now
permitted provided the explicit conversion is legal. The idea is that the need for an explicit
conversion with access types should only arise if the conversion could fail. A curious consequence
of this change is that a preference rule is needed for the equality of anonymous access types.

An issue regarding allocators concerns their alignment. It will be recalled that when implementing a
storage pool, the attribute Max_Size_In_Storage_Units is useful since it indicates the maximum size
that could be requested by a call of Allocate. Similarly, the new attribute Max_Alignment_
For_Allocation indicates the maximum alignment that could be requested.

Another problem is that allocators for anonymous access types cause difficulties in some areas.
Rather than forbidding them completely a new restriction identifier is added so that we can write

pragma Restrictions(No_Anonymous_Allocators);

Another new restriction is

pragma Restrictions(No_Standard_Allocators_After_Elaboration);

This can be used to ensure that once the main subprogram has started no further allocation from
standard storage pools is permitted. This prevents a long lived program suffering from rampant heap
growth.

However, this does not prevent allocation from user-defined storage pools. To enable users to
monitor such allocation, additional functions are provided in Ada.Task_Identification, namely
Environment_Task (returns the Task_Id of the environment task) and Activation_Is_Complete
(returns a Boolean result indicating whether a particular task has finished activation).

A new facility is the ability to define subpools using a new package System.Storage_
Pools.Subpools. A subpool is a separately reclaimable part of a storage pool and is identified by a
subpool handle name. On allocation, a handle name can be given.

Further control over the use of storage pools is provided by the ability to define our own default
storage pool. Thus we can write

pragma Default_Storage_Pool(My_Pool);

and then all allocation within the scope of the pragma will be from My_Pool unless a different
specific pool is given for a type. This could be done using the aspect Storage_Pool as expected

type Cell_Ptr is access Cell
 with Storage_Pool => Cell_Ptr_Pool;

A pragma Default_Storage_Pool can be overridden by another one so that for example all allocation
in a package (and its children) is from another pool. The default pool can be specified as null thus

24 Int roduct ion

pragma Default_Storage_Pool(null);

and this prevents any allocation from standard pools.

Note that coextensions and allocators as access parameters may nevertheless be allocated on the
stack. This can be prevented (somewhat brutally) by the following restrictions

pragma Restrictions(No_Coextensions);

pragma Restrictions(No_Access_Parameter_Allocators);

A number of other restrictions have also been added. The introduction of aspects logically requires
some new restrictions to control their use. Thus by analogy with No_Implementation_Pragmas, we
can write

pragma Restrictions(No_Implementation_Aspect_Specifications);

and this prevents the use of any implementation-defined aspect specifications. The use of individual
aspects such as Default_Value can be prevented by

pragma Restrictions(No_Specification_of_Aspect => Default_Value);

Implementations and indeed users are permitted to add descendant units of Ada, System and
Interfaces such as another child of Ada.Containers. This can be confusing for maintainers since they
may be not aware that they are using non-standard packages. The new restriction

pragma Restrictions(No_Implementation_Units);

prevents the use of such units.

In a similar vein, there is also

pragma Restrictions(No_Implementation_Identifiers);

and this prevents the use of additional identifiers declared in packages such as System.

A blanket restriction can be imposed by writing

pragma Profile(No_Implementation_Extensions);

and this is equivalent to the following five restrictions

No_Implementation_Aspect_Specifications,
No_Implementation_Attributes,
No_Implementation_Identifiers,
No_Implementation_Pragmas,
No_Implementation_Units.

Finally, the issue of composability of equality has been revisited. In Ada 2005, tagged record types
compose but untagged record types do not. If we define a new type (a record type, array type or a
derived type) then equality is defined in terms of equality for its various components. However, the
behaviour of components which are records is different in Ada 2005 according to whether they are
tagged or not. If a component is tagged then the primitive operation is used (which might have been
redefined), whereas for an untagged type, predefined equality is used even though it might have
been overridden. This is a bit surprising and so has been changed in Ada 2012 so that all record
types behave the same way and use the primitive operation. This is often called composability of
equality so that we can say that in Ada 2012, record types always compose for equality. Remember
that this only applies to records; components which are of array types and elementary types always
use predefined equality.

1.3 Overv iew of changes 25

1.3.6 Standard library
The main improvements in the standard library concern containers. But there are a number of other
changes which will be described first.

In Ada 2005, additional versions of Index and Index_Non_Blank were added to the package
Ada.Strings.Fixed with an additional parameter From indicating the start of the search. The same
should have been done for Find_Token. So Ada 2012 adds

procedure Find_Token(Source: in String;
 Set: in Maps.Character_Set;
 From: in Positive;
 Test: in Membership;
 First: out Positive;
 Last: out Natural);

Similar versions are added for bounded and unbounded strings to the corresponding packages.

New child packages of Ada.Strings are added to provide conversions between strings, wide strings,
or wide wide strings and UTF-8 or UTF-16 encodings. They are

Ada.Strings.UTF_Encoding – declares a function Encoding to convert a String into types UTF_8,
UTF_16BE, or UTF_16LE where BE and LE denote Big Endian and Little Endian respectively.

Ada.Strings.UTF_Encoding.Conversions – declares five functions Convert between the UTF
schemes.

Ada.Strings.UTF_Encoding.Strings – declares functions Encode and Decode between the type
String and the UTF schemes.

Ada.Strings.UTF_Encoding.Wide_Strings – declares six similar functions for the type
Wide_String.

Ada.Strings.UTF_Encoding.Wide_Wide_Strings – declares six similar functions for the type
Wide_Wide_String.

Further new packages are Ada.Wide_Characters.Handling and Ada.Wide_Wide_Characters.
Handling. These provide classification functions such as Is_Letter and Is_Lower and conversion
functions such as To_Lower for the types Wide_Character and Wide_Wide_Character in a similar
way to the existing package Ada.Characters.Handling for the type Character.

Experience with the package Ada.Directories added in Ada 2005 has revealed a few shortcomings.

One problem concerns case sensitivity. Unfortunately, common operating systems differ in their
approach. To remedy this the following are added to Ada.Directories

type Name_Case_Kind is (Unknown, Case_Sensitive, Case_Insensitive, Case_Preserving);

function Name_Case_Equivalence(Name: in String) return Name_Case_Kind;

Calling Name_Case_Equivalence enables one to discover the situation for the operating system
concerned.

Another problem is that the basic approach in Ada.Directories is a bit simplistic and assumes that
file names can always be subdivided into a directory name and a simple name. Thus the existing
function Compose is

function Compose(Containing_Directory: String := "";
 Name: String; Extension: String := "") return String;

and this requires that the Name is a simple name such as "My_File" with possibly an extension if one
is not provided.

26 Int roduct ion

Accordingly, an optional child package is introduced, Ada.Directories.Hierarchical_File_Names, and
this adds the concept of relative names and a new version of Compose whose second parameter is a
relative name and various functions such as Is_Simple_Name and Is_Relative_Name.

Programs often need information about where they are being used. This is commonly called the
Locale. As an example, in some regions of the world, a sum such as a million dollars is written as
$1,000,000.00 whereas in others it appears as $1.000.000,00 with point and comma interchanged.
An early attempt at providing facilities for doing the right thing was fraught with complexity. So
Ada 2012 has adopted the simple solution of enabling a program to determine the country code (two
characters) and the language code (three characters) and then do its own thing. The codes are given
by ISO standards. Canada is interesting in that it has one country code ("CA") but uses two language
codes ("eng" and "fra").

The information is provided by a new package Ada.Locales which declares the codes and the two
functions Language and Country to return the current active locale (that is, the locale associated
with the current task).

And finally, we consider the container library. Containers were a major and very valuable addition
to Ada 2005 but again, experience with use has indicated that some enhancements are necessary.

We start with a brief summary of what is in Ada 2005. The parent package Ada.Containers has six
main children namely Vectors, Doubly_Linked_Lists, Hashed_Maps, Ordered_Maps, Hashed_Sets,
and Ordered_Sets. These manipulate definite types.

In addition there are another six for manipulating indefinite types with names such as
Indefinite_Vectors and so on.

There are also two packages for sorting generic arrays, one for unconstrained types and one for
constrained types.

There are four new kinds of containers in Ada 2012

 bounded forms of the existing containers,

 a container for a single indefinite object,

 various containers for multiway trees, and

 various containers for queues.

In addition there are a number of auxiliary new facilities whose purpose is to simplify the use of
containers.

We will start by briefly looking at each of the new kinds of containers in turn.

The existing containers are unbounded in the sense that there is no limit to the number of items that
can be added to a list for example. The implementation is expected to use storage pools as
necessary. However, many applications in high integrity and real-time areas forbid the use of access
types and require a much more conservative approach. Accordingly, a range of containers is
introduced with bounded capacity so that there is no need to acquire extra storage dynamically.

Thus there are additional packages with names such as Containers.Bounded_Doubly_Linked_Lists.
A key thing is that the types List, Vector and so on all have a discriminant giving their capacity thus

type List(Capacity: Count_Type) is tagged private;

so that when a container is declared its capacity is fixed. A number of consequential changes are
made as well. For example, the bounded form has to have a procedure Assign

procedure Assign(Target: in out List; Source: in List);

1.3 Overv iew of changes 27

because using built-in assignment would raise Constraint_Error if the capacities were different.
Using a procedure Assign means that the assignment will work provided the length of the source is
not greater than the capacity of the target. If it is, the new exception Capacity_Error is raised.
Moreover, a similar procedure Assign is added to all existing unbounded containers so that
converting from a bounded to an unbounded container or vice versa is (reasonably) straightforward.

A new function Copy is also needed for the bounded containers and for uniformity is similarly
added to the unbounded versions.

Conversion between bounded and unbounded containers is also guaranteed with respect to
streaming.

There are no bounded indefinite containers; this is because if the components are indefinite then
dynamic space allocation is required for the components anyway and making the overall container
bounded would be pointless.

In Ada, it is not possible to declare an object of an indefinite type that can hold any value of the
type. Thus if we declare an object of type String then it becomes constrained by the mandatory
initial value.

S: String := "Crocodile";

We can assign other strings to S but they must also have nine characters. We could assign "Alligator"
but not "Elephant". (An elephant is clearly too small!)

This rigidity is rather a nuisance and so a new form of container is defined which enables the
cunning declaration of an object of a definite type that can hold a single value of an indefinite type.
In other words it is a wrapper. The new package is Ada.Containers.Indefinite_Holders and it takes a
generic parameter of the indefinite type and declares a definite type Holder which is tagged private
thus

generic
 type Element_Type (<>) is private;
 with function "="(Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Indefinite_Holders is
 type Holder is tagged private;
 ... -- various operations
end Ada.Containers. Indefinite_Holders;

The various operations include a procedure Replace_Element which puts a value into the holder and
a function Element which returns the current value in the holder.

Three new containers are added for multiway trees (unbounded, bounded, and indefinite). It might
have been thought that it would be easy to use the existing containers (such as the list container) to
create a tree structure. But it is difficult for various reasons concerning memory management. And
so it was concluded that new containers for multiway trees should be added to Ada 2012.

The package Ada.Containers.Multiway_Trees is the unbounded form similar to the existing
containers for other structures. It has all the operations required to operate on a tree structure where
each node can have multiple child nodes to any depth. Thus there are operations on subtrees, the
ability to find siblings, to insert and remove children and so on. The other new containers are
Ada.Containers.Bounded_Multiway_Trees and Ada.Containers.Indefinite_Multiway_Trees which
provide bounded and indefinite forms respectively.

Finally, there is a group of containers for queues. This topic is particularly interesting because it has
its origins in the desire to provide container operations that are task safe. However, it turned out that
it was not easy to make the existing containers task safe in a general way which would satisfy all
users because there are so many possibilities.

28 Int roduct ion

However, there was no existing container for queues and in the case of queues it is easy to see how
to make them task safe.

There are in fact four queue containers and all apply to queues where the element type is definite;
these come in both bounded and unbounded forms and for synchronized and priority queues. We get
(writing AC as an abbreviation for Ada.Containers)

 AC.Unbounded_Synchronized_Queues,

 AC.Bounded_Synchronized_Queues,

 AC.Unbounded_Priority_Queues,

 AC.Bounded_Priority_Queues.

These in turn are all derived from a single synchronized interface. This is a good illustration of the
use of synchronized interfaces and especially the aspect Synchronization discussed earlier (see
Section 1.3.4). First there is the following generic package which declares the type Queue as a
synchronized interface (writing AC as an abbreviation for Ada.Containers and ET for Element_
Type)

generic
 type ET is private; -- element type for definite queues
package AC.Synchronized_Queue_Interfaces is
 pragma Pure(...);
 type Queue is synchronized interface;

 procedure Enqueue(Container: in out Queue; New_Item: in ET) is abstract
 with Synchronization => By_Entry;

 procedure Dequeue(Container: in out Queue; Element: out ET) is abstract
 with Synchronization => By_Entry;

 function Current_Use(Container: Queue) return Count_Type is abstract;
 function Peak_Use(Container: Queue) return Count_Type is abstract;
end AC.Synchronized_Queue_Interfaces;

Then there are generic packages which enable us to declare actual queues. Thus the essence of the
unbounded synchronized version is as follows (still with abbreviations AC for Ada.Containers, ET
for Element_Type)

with System; use System;
with AC.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new AC.Synchronized_Queue_Interfaces(<>);
 Default_Ceiling: Any_Priority := Priority'Last;
package AC.Unbounded_Synchronized_Queues is
 pragma Preelaborate(...);

 package Implementation is
 -- not specified by the language
 end Implementation;

 protected type Queue(Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

1.3 Overv iew of changes 29

 overriding
 entry Enqueue(New_Item: in Queue_Interfaces.ET);
 overriding
 entry Dequeue(Element: out Queue_Interfaces.ET);

 overriding
 function Current_Use return Count_Type;
 overriding
 function Peak_Use return Count_Type;

 private
 ...
 end Queue;

private
 ...
end AC.Unbounded_Synchronized_Queues;

The discriminant gives the ceiling priority and for convenience has a default value. Remember that a
protected type is limited and when used to implement an interface (as here) is considered to be
tagged. In Ada 2012, defaults are allowed for discriminants of tagged types provided they are
limited as mentioned in Section 1.3.3.

Note that the Priority is given by an aspect specification. Programmers who are allergic to the
multiple uses of with could of course use the old pragma Priority in their own code.

(The need for the package Implementation will be briefly explained in Section 8.6 and can be
completely ignored by the user.)

Now to declare our own queue of integers say we first write

package My_Interface is new AC.Synchronized_Queue_Interfaces(ET => Integer);

This creates an interface for dealing with integers. Then to obtain an unbounded queue package for
integers we write

package My_Q_Package is new AC.Unbounded_Synchronized_Queues(My_Interface);

This creates a package which declares a protected type Queue. Now at last we can declare an object
of this type and perform operations on it.

The_Queue: My_Q_Package.Queue;
...
The_Queue.Enqueue(37);

The various calls of Enqueue and Dequeue are likely to be in different tasks and the protected
object ensures that all is well.

The other generic queue packages follow a similar style. Note that unlike the other containers, there
are no queue packages for indefinite types. Indefinite types can be catered for by using the holder
container as a wrapper or by using an access type.

In Ada 2005 there are two generic procedures for sorting arrays; one is for constrained arrays and
one is for unconstrained arrays. In Ada 2012, a third generic procedure is added which can be used
to sort any indexable structure. Its specification is

30 Int roduct ion

generic
 type Index_Type is (<>);
 with function Before(Left, Right: Index_Type) return Boolean;
 with procedure Swap(Left, Right: Index_Type);
procedure Ada.Containers.Generic_Sort(First, Last: Index_Type'Base);
pragma Pure(Ada.Containers.Generic_Sort);

Note that there is no parameter indicating the structure to be sorted; this is all done indirectly by the
subprograms Before and Swap working over the range of values given by First and Last. It's almost
magic!

A frequent requirement when dealing with containers is the need to visit every node and perform
some action, in other words to iterate over the container. And there are probably many different
iterations to be performed. In Ada 2005, this has to be done by the user defining a subprogram for
each iteration or writing out detailed loops involving calling Next and checking for the last element
of the container and so on. And we have to write out this mechanism for each such iteration.

In Ada 2012, after some preparatory work involving the new package Ada.Iterator.Interfaces it is
possible to simplify such iterations hugely. For example, suppose we have a list container each of
whose elements is a record containing two components of type Integer (P and Q say) and we want to
add some global X to Q for all elements where P is a prime. In Ada 2005 we have to write the
laborious

C := The_List.First; -- C declared as of type Cursor
loop
 exit when C = No_Element;
 E := Element(C);
 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;
 C := Next(C);
end loop;

Not only is this tedious but there is lots of scope for errors. However, in Ada 2012 we can simply
write

for E of The_List loop
 if Is_Prime(E.P) then E.Q := E.Q + X; end if;
end loop;

The mechanism is thus similar to that introduced in the previous section for arrays.

There are also a number of minor new facilities designed to simplify the use of containers. These
include the introduction of case insensitive operations for comparing strings and for writing hash
functions.

1.4 Conclusions
This overview of Ada 2012 should have given the reader an appreciation of the important new
features in Ada 2012. Some quite promising features failed to be included partly because the need
for them was not clear and also because a conclusive design proved elusive.

The remaining chapters will expand on the six major topics of this overview in more detail.

It is worth briefly reviewing the guidelines (see Section 1.2 above) to see whether Ada 2012 meets
them.

www.allitebooks.com

http://www.allitebooks.org

1.4 Conclus ions 31

The group A items were about extending the advantages of Ada and specifically mentioned
containers, contracts and real-time. There are many new features for containers, pre- and
postconditions have been added and so have facilities for multiprocessors.

The group B items were about eliminating shortcomings, increasing safety and particularly
mentioned improvements to access types and storage management. This has been achieved with
corrections to accessibility checks, the introduction of subpools and so on.

It seems clear from this brief check that indeed Ada 2012 does meet the objectives set for it.

 33

2 Contracts and Aspects
This chapter describes the mechanisms for including contracts in Ada 2012.
The main feature is that preconditions and postconditions can be given for subprograms. In
addition, invariants can be given for types and predicates can be given for subtypes.
In attempting to find a satisfactory way of adding these features it was found expedient to
introduce the concept of an aspect specification for describing properties of entities in
general. It is thus convenient to describe aspect specifications in this chapter.

2.1 Overview of changes
The WG9 guidance document [1] identifies very large complex systems as a major application area
for Ada. It further identifies four areas for improvements, one of which is

 Improving the ability to write and enforce contracts for Ada entities (for instance, via
preconditions).

The idea of contracts has been a cornerstone of programming for many years. The very idea of
specifying parameters for subroutines is a simple form of contract going back to languages such as
Fortran over half a century ago. More recently the idea of contracts has been brought to the fore by
languages such as SPARK and Eiffel.

SPARK is, as many readers will be aware, a subset of Ada with annotations providing assertions
regarding state embedded as Ada comments. The subset excludes features such as access types and
dynamic dispatching but it does include Ravenscar tasking and generics. The subset was chosen to
enable the contracts to be proved prior to execution. Thus SPARK is a very appropriate vehicle for
real programs that just have to be correct because of concerns of safety and security.

Eiffel, on the other hand, is a language with a range of dynamic facilities much as in Ada and has
found favour as a vehicle for education. Eiffel includes mechanisms describing contracts which are
monitored on a dynamic basis at program execution.

The goal of this amendment to Ada is to incorporate matters such as pre- and postconditions but
with the recognition that they are, like those in Eiffel, essentially for checking at runtime.

Adding pre- and postconditions and similar features has had quite a wide ranging impact on Ada and
has required much more flexibility in many areas such as the form of expressions which will be
addressed in later chapter s.

The following Ada issues cover the key changes and are described in detail in this chapter:

145 Pre- and postconditions

146 Type invariants

153 Subtype predicates

183 Aspect specifications

191 Aliasing predicates

228 Default initial values for types

229 Specifiable aspects

230 Inheritance of null procedures with precondition

243 Clarification of categorization

34 Contracts and aspects

247 Preconditions, postconditions, multiple inheritance and dispatching calls

250 Thoughts on type invariants

254 Do we really have contracts right?

267 Improvements for aspect specifications

287 Some questions on subtype predicates

289 Invariants and in mode parameters

297 First_Valid and Last_Valid attributes

These changes can be grouped as follows.

First we lay the syntactic foundations necessary to introduce features such as preconditions by
discussing aspect specifications which essentially replace or provide an alternative to pragmas for
specifying many features (183, 229, 243, 267).

Then we discuss the introduction of pre- and postconditions on subprograms including the problems
introduced by multiple inheritance (145, 230, 247, 254).

Two other related topics are type invariants and subtype predicates which provide additional means
of imposing restrictions on types (146, 153, 250, 287, 289, 297).

Finally, two auxiliary features are the ability to provide default values for scalar types and array
types (228) and means of checking that aliasing does not occur between two objects (191).

2.2 Aspect specifications
Although in a sense the introduction of aspect specifications is incidental to the main themes of Ada
2012 which are contracts, real-time, and containers, the clarity (and some might say upheaval)
brought by aspect specifications merits their description first.

An early proposal to introduce preconditions was by the use of pragmas. Thus to give a precondition
not Is_Full to the usual Push procedure acting on a stack S and a corresponding postcondition not
Is_Empty, it was proposed that this should be written as

pragma Precondition(Push, not Is_Full(S));
pragma Postcondition(Push, not Is_Empty(S));

But this looks ugly and is verbose since it mentions Push in both pragmas. Moreover, potential
problems with overloading means that it has to be clarified to which procedure Push they apply if
there happen to be several. As a consequence it was decreed that the pragmas had to apply to the
immediately preceding subprogram. Which of course is not the case with pragma Inline which with
overloading applies to all subprograms with the given name. Other curiosities include the need to
refer to the formal parameters of Push (such as S) so that the expression has to be resolved taking
heed of these even though it is detached from the actual specification of Push.

Other pragmas proposed were Inherited_Precondition and Inherited_Postcondition for use with
dispatching subprograms.

So it was a mess and an alternative was sought. The solution which evolved was to get away from
wretched pragmas in such circumstances. Indeed, the Ada 83 Rationale [6] says "In addition, a
program text can include elements that have no influence on the meaning of the program but are
included as information and guidance for the human reader or for the compiler. These are:
Comments; Pragmas..."

2.2 Aspect speci f icat ions 35

So pragmas were meant to have no effect on the meaning of the program. Typical pragmas in Ada
83 were List, Inline, Optimize and Suppress. But in later versions of Ada, pragmas are used for all
sorts of things. The days when pragmas had no effect are long gone!

The basic need was to tie the pre- and postconditions syntactically to the specification of Push so
that there could be no doubt as to which subprogram they applied; this would also remove the need
to mention the name of the subprogram again. And so, as described in the Introduction, we now
have

procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S),
 Post => not Is_Empty(S);

The syntax for aspect specification is

aspect_specification ::=
 with aspect_mark [=> expression] { ,
 aspect_mark [=> expression] }

and this can be used with a variety of structures, subprogram declaration being the example here.

Note especially the use of the reserved word with. Serious attempts were made to think of another
word so as to avoid using with again but nothing better was suggested. It might be thought that it
would be confusing to use with which is firmly associated with context clauses. However, recall that
with has also been used to introduce generic formal subprogram parameters without causing
confusion since 1983. Thus

generic
 with function This ...
procedure That ...

Moreover, Ada 95 introduced the use of with for type extension as in

type Circle is new Object with
 record
 Radius: Float;
 end record;

So in Ada 95 there were already many distinct uses of with and another one will surely do no harm.
It's a versatile little word.

Any risk of confusion is easily avoided by using a sensible layout. Thus a with clause should start
on a new line at the left and aligned with the following unit to which it applies. A formal generic
parameter starting with with should be aligned with other formal parameters and indented after the
word generic. In the case of type extension, with should be at the end of the line. Finally, in the case
of aspect specifications, with should be at the beginning of a line and indented after the entity to
which it applies.

Having introduced aspect specifications which are generally so much nicer than pragmas, it was
decided to allow aspect specifications for all those situations where pragmas are used and an aspect
specification makes sense (typically where it applies to an entity rather than a region of text). And
then to make most of the pragmas obsolete.

Before looking at the old pragmas concerned in detail, two general points are worth noting.

The usual linear elaboration rules do not apply to the expression in an aspect specification. It is
essentially sorted out at the freezing point of the entity to which the aspect applies. The reason for
this was illustrated by an example in the Introduction which was

36 Contracts and aspects

type Stack is private
 with
 Type_Invariant => Is_Unduplicated(Stack);

The problem here is that the function Is_Unduplicated cannot be declared before that of the type
Stack and yet it is needed in the aspect specification of the declaration of Stack. So there is a
circularity which is broken by saying that the elaboration of aspect specifications is deferred.

The other general point is that some aspects essentially take a Boolean value. For example the
pragma Inline is replaced by the aspect Inline so that rather than writing

procedure Do_It(...);
pragma Inline(Do_It);

we now write

procedure Do_It(...)
 with Inline;

The aspect Inline has type Boolean and so we could write

procedure Do_It(...)
 with Inline => True;

To have insisted on this would have been both pedantic and tedious and so in the case of a Boolean
aspect there is a rule that says that => True can be omitted and True is then taken by default. But this
does not apply to Default_Value and Default_Component_Value as explained later in Section 2.6 on
Default initial values.

Note however that omitting the whole aspect by just writing

procedure Do_It(...);

results of course in the Inline aspect of Do_It being False.

A mad programmer could even use defaults for preconditions and postconditions. Thus writing

procedure Curious(...)
 with Pre;

in which by default the precondition is taken to be True, results in the Curious procedure always
being callable.

We will now consider the fate of the various pragmas in Ada 2005. Some are replaced by aspect
specifications and the pragmas made obsolete (of course, they can still be used, but should be
discouraged in new programs). Some are paralleled by aspect specifications and the user left with
the choice. Some are unchanged since for various reasons aspect specifications were inappropriate.
Some pragmas are new to Ada 2012 and born obsolete.

The following are the obsolete pragmas with some examples of corresponding aspect specifications.

The pragmas Inline, No_Return, and Pack are examples having Boolean aspects. We can now write

procedure Do_It(...)
 with Inline;

procedure Fail(...)
 with No_Return;

type T is ...
 with Pack;

2.2 Aspect speci f icat ions 37

Some thought was given as to whether the name of the Pack aspect should be Packing rather than
Pack because this gave better resonance in English. But the possible confusion in having a different
name to that of the pragma overrode the thought of niceties of (human) language.

Curiously enough the old pragmas Inline and No_Return could take several subprograms as
arguments but naturally the aspect specification is explicitly given to each one.

If several aspects are given to a procedure then we simply put them together thus

procedure Kill
 with Inline, No_Return;

rather than having to supply several pragmas (which careless program maintenance might have
scattered around).

In the case of a procedure without a distinct specification, the aspect specification goes in the
procedure body before is thus

procedure Do_It(...)
 with Inline is
 ...
begin
 ...
end Do_It;

This arrangement is because the aspect specification is very much part of the specification of the
subprogram. This will be familiar to users of SPARK where we might have

procedure Do_It(...)
--# global in out Stuff;
is ...

If a subprogram has a distinct specification then we cannot give a language-defined aspect
specification on the body; this avoids problems of conformance. If there is a stub but
no specification then any aspect specification goes on the stub but not the body. Thus aspect
specifications go on the first of specification, stub, and body but are never repeated. Note also that
we can give aspect specifications on other forms of stubs and bodies such as package bodies, task
bodies and entry bodies but none are defined by the language.

In the case of a stub, abstract subprogram, and null subprogram which never have bodies, the aspect
specification goes after is separate, is abstract or is null thus

procedure Action(D: in Data) is separate
 with Convention => C;

procedure Enqueue(...) is abstract
 with Synchronization => By_Entry;

procedure Nothing is null
 with Something;

The above example of the use of Synchronization is from the package Synchronized_Queue_
Interfaces, a new child of Ada.Containers as mentioned in the Introduction.

The same style is followed by the newly introduced expression functions thus

function Inc (A: Integer) return Integer is (A + 1)
 with Inline;

38 Contracts and aspects

Other examples of Boolean aspects are Atomic, Volatile, and Independent. We now write for
example

Converged: Boolean := False
 with Atomic;

The aspects Atomic_Components, Volatile_Components and Independent_Components are similar.

The three pragmas Convention, Import and Export are replaced by five aspects, namely Import,
Export, Convention, External_Name and Link_Name.

For example, rather than, (see [8] page 702)

type Response is access procedure (D: in Data);
pragma Convention(C, Response);

procedure Set_Click(P: in Response);
pragma Import(C, Set_Click);

procedure Action(D: in Data) is separate;
pragma Convention(C, Action);

we now more neatly write

type Response is access procedure (D: in Data)
 with Convention => C;

procedure Set_Click(P: in Response)
 with Import, Convention => C;

procedure Action(D: in Data) is separate
 with Convention => C;

Note that the aspects can be given in any order whereas in the case of pragmas, the parameters had
to be in a particular order. We could have written with Import => True but that would have been
pedantic. As another example (see the RM 7.4), instead of

CPU_Identifier: constant String(1 .. 8);
pragma Import(Assembler, CPU_Identifier, Link_Name => "CPU_ID");

we now have

CPU_Identifier: constant String(1 .. 8)
 with Import, Convention => Assembler, Link_Name => "CPU_ID";

Observe that we always have to give the aspect name such as Convention whereas with pragmas
Import and Export, the parameter name Convention was optional. Clearly it is better to have to give
the name.

The pragma Controlled which it may be recalled told the system to keep its filthy garbage collector
off my nice access type is plain obsolete and essentially abandoned. It is doubted whether it was
ever used. The subclause of the RM (13.11.3) relating to this pragma is now used by a new pragma
Default_Storage_Pools which will be discussed in Section 6.4 on Access types and storage pools.

The pragma Unchecked_Union is another example of a pragma replaced by a Boolean aspect. So we
now write

type Number(Kind: Precision) is
 record
 ...

2.2 Aspect speci f icat ions 39

 end record
 with Unchecked_Union;

Many obsolete pragmas apply to tasks. The aspect Storage_Size takes an expression of any integer
type. Thus in the case of a task type without a task definition part (and thus without is and matching
end) we write

task type T
 with Storage_Size => 1000;

In the case of a task type with entries we write

task type T
 with Storage_Size => 1000 is
 entry E ...
 ...
end T;

The interrupt pragmas Attach_Handler and Interrupt_Handler now become

procedure P(...)
 with Interrupt_Handler;

which specifies that the protected procedure P can be a handler and

procedure P(...)
 with Attach_Handler => Some_Id;

which actually attaches P to the interrupt Some_Id.

The pragmas Priority and Interrupt_Priority are replaced by corresponding aspect specifications for
example

task T
 with Interrupt_Priority => 31;

protected Object
 with Priority => 20 is -- ceiling priority

Note that a protected type or singleton protected object always has is and the aspect specification
goes before it.

Similarly, instead of using the pragma Relative_Deadline we can write

task T
 with Relative_Deadline => RD;

The final existing pragma that is now obsolete is the pragma Asynchronous used in the Distributed
Systems Annex and which can be applied to a remote procedure or remote access type. It is replaced
by the Boolean aspect Asynchronous.

That covers all the existing Ada 2005 pragmas that are now obsolete.

Two new pragmas in Ada 2012 are CPU and Dispatching_Domain but these are born obsolete. Thus
we can write either of

task My Task is
 pragma CPU(10);

or

task My_Task
 with CPU => 10 is

40 Contracts and aspects

and similarly

task Your_Task is
 pragma Dispatching_Domain(Your_Domain);

or

task Your_Task
 with Dispatching_Domain => Your_Domain is

The reason for introducing these pragmas is so that existing tasking programs with copious use of
pragmas such as Priority can use the new facilities in a similar style. It was considered inelegant to
write

task My_Task
 with CPU => 10 is
 pragma Priority(5);

and a burden to have to change programs to

task My_Task
 with CPU => 10, Priority => 5 is

So existing programs, can be updated to

task My_Task is
 pragma CPU(10);
 pragma Priority(5);

(One other pragma that was never born at all was Implemented which turned into the aspect
Synchronization often used to ensure that an abstract procedure is actually implemented by an entry
as illustrated earlier.)

A number of existing pragmas are paralleled by aspect specifications but the pragmas are not made
obsolete. Examples are the pragmas relating to packages such as Pure, Preelaborate,
Elaborate_Body and so on.

Thus we can write either of

package P is
 pragma Pure(P);
end P;

or

package P
 with Pure is
end P;

The author prefers the former but some avant garde programmers might like to use the latter.

Note that Preelaborable_Initialization is unusual in that it cannot be written as an aspect specification
for reasons that need not bother us. The inquisitive reader can refer to AI-229 for the details.

Finally, there are many pragmas that do not relate to any particular entity and so for which an aspect
specification would be impossible. These include Assert and Assertion_Policy, Suppress and
Unsuppress, Page and List, Optimize and Restrictions.

As well as replacing pragmas, aspect specifications can be used instead of attribute definition
clauses. For example rather than

type Byte is range 0 .. 255;

2.2 Aspect speci f icat ions 41

followed (perhaps much later) by

for Byte'Size use 8;

we can now write

type Byte is range 0 .. 255
 with Size => 8;

Similarly

type My_Float is digits 20
 with Alignment => 16;

Loose_Bits: array (1 .. 10) of Boolean
 with Component_Size => 4;

type Cell_Ptr is access Cell
 with Storage_Size => 500 * Cell'Size / Storage_Unit, Storage_Pool => Cell_Ptr_Pool;

S: Status
 with Address => 8#100#;

type T is delta 0.1 range –1.0 .. +1.0
 with Small => 0.1;

But we cannot use this technique to replace an enumeration representation clause or record
representation clause. Thus although we can write

type RR is
 record
 Code: Opcode;
 R1: Register;
 R2: Register;
 end record
 with Alignment => 2, Bit_Order => High_Order_First;

the layout information has to be done by writing

for RR use
 record
 Code at 0 range 0 .. 7;
 R1 at 1 range 0 .. 3;
 R2 at 1 range 4 .. 7;
 end record;

It is interesting to note that attribute definition clauses were not made redundant in the way that
many pragmas were made redundant. This is because there are things that one can do with attribute
definition clauses that cannot be done with aspect specifications. For example a visible type can be
declared in a visible part and then details of its representation can be given in a private part. Thus we
might have

package P is
 type T is ...
private
 Secret_Size: constant := 16;
 for T'Size use Secret_Size;
end P;

www.allitebooks.com

http://www.allitebooks.org

42 Contracts and aspects

It's not that convincing because the user can use the attribute T'Size to find the Secret_Size anyway.
But some existing programs are structured like that and hence the facility could hardly be made
redundant.

The examples above have shown aspect specifications with the following constructions: subprogram
declaration, subprogram body, stub, abstract subprogram declaration, null procedure declaration, full
type declaration, private type declaration, object declaration, package declaration, task type
declaration, single task declaration, and single protected declaration. In addition they can be used
with subtype declaration, component declaration, private extension declaration, renaming
declaration, protected type declaration, entry declaration, exception declaration, generic declaration,
generic instantiation, and generic formal parameter declaration.

The appropriate layout should be obvious. In the case of a large structure such as a package
specification and any body, the aspect specification goes before is. But when something is small and
all in one piece such as a procedure specification, stub, null procedure, object declaration or generic
instantiation any aspect specification goes at the end of the declaration; it is then more visible and
less likely to interfere with the layout of the rest of the structure.

In some cases such as exception declarations there are no language defined aspects that apply but
implementations might define their own aspects.

2.3 Preconditions and postconditions
We will look first at the simple case when inheritance is not involved and then look at more general
cases. Specific preconditions and postconditions are applied using the aspects Pre and Post
respectively whereas class wide conditions are applied using the aspects Pre'Class and Post'Class.

To apply a specific precondition Before and/or a specific postcondition After to a procedure P we
write

procedure P(P1: in T1; P2: in out T2; P3: out T3)
 with Pre => Before,
 Post => After;

where Before and After are expressions of a Boolean type (that is of type Boolean or a type derived
from it).

The precondition Before and the postcondition After can involve the parameters P1 and P2 and P3
and any visible entities such as other variables, constants and functions. Note that Before can
involve the out parameter P3 inasmuch as one can always read any constraints on an out parameter
such as the bounds if it were an array.

The attribute X'Old will be found useful in postconditions; it denotes the value of X on entry to P.
Old is typically applied to parameters of mode in out such as P2 but it can be applied to any visible
entity such as a global variable. This can be useful for monitoring global variables which are
updated by the call of P. But note that 'Old can only be used in postconditions and not in arbitrary
text and it cannot be applied to objects of a limited type.

Perhaps surprisingly 'Old can also be applied to parameters of mode out. For example, in the case of
a parameter of a record type that is updated as a whole, nevertheless we might want to check that a
particular component has not changed. Thus in updating some personal details, such as address and
occupation, we might want to ensure that the person's date of birth and sex are not tampered with by
writing

Post => P.Sex = P.Sex'Old and P.Dob = P.Dob'Old

In the case of an array, we can write A(I)'Old which means the original value of A(I). But A(I'Old) is
different since it is the component of the final value of A but indexed by the old value of I.

2.3 Precondi t ions and postcondi t ions 43

Remember that the result of a function is an object and so 'Old can be applied to it. Note carefully
the difference between F(X)'Old and F(X'Old). The former applies F to X on entry to the subprogram
and saves it. The latter saves X and applies F to it when the postcondition is evaluated. These could
be different because the function F might also involve global variables which have changed.

Generally 'Old can be applied to anything but there are restrictions on its use in certain conditional
structures in which it can only be applied to statically determined objects. This is illustrated by the
following (based on an example in the AARM)

Table: array (1 .. 10) of Integer := ... ;
procedure P(I: in out Natural)
 with Post => I > 0 and then Table(I)'Old = 1; -- illegal

The programmer's intent is that the postcondition uses a short circuit form to avoid evaluating
Table(I) if I is not positive on exit from the procedure. But, 'Old is evaluated and stored on entry and
this could raise Constraint_Error because I might for example be zero. This is a conundrum since the
compiler cannot know whether the value of Table(I) will be needed and also I can change so it
cannot know which I anyway. So such structures are forbidden.

(The collector of Ada curiosities might be amused to note that we can write

subtype dlo is Character;

and then in a postcondition we could have

dlo'('I')'old

which is palindromic. If the subtype were blo rather than dlo then the expression would be mirror
reflective!

I am grateful to Jean-Pierre Rosen for this example.)

In the case of a postcondition applying to a function F, the result of the function is denoted by the
attribute F'Result. Again this attribute can only be used in postconditions.

Some trivial examples of declarations of a procedure Pinc and function Finc to perform an increment
are

procedure Pinc(X: in out Integer)
 with Post => X = X'Old+1;

function Finc(X: Integer) return Integer
 with Post => Finc'Result = X'Old+1;

Preconditions and postconditions are controlled by the pragma Assertion_Policy. They are enabled
by

pragma Assertion_Policy(Check);

and disabled by using parameter Ignore. It is the value in effect at the point of the subprogram
declaration that matters. So we cannot have a situation where the policy changes during the call so
that preconditions are switched on but postconditions are off or vice versa.

And so the overall effect of calling P with checks enabled is roughly that, after evaluating any
parameters at the point of call, it as if the body were

if not Before then -- check precondition
 raise Assertion_Error;
end if;

evaluate and store any 'Old stuff;

44 Contracts and aspects

call actual body of P;

if not After then -- check postcondition
 raise Assertion_Error;
end if;

copy back any by-copy parameters;

return to point of call;

Occurrences of Assertion_Error are propagated and so raised at the point of call; they cannot be
handled inside P. Of course, if the evaluation of Before or After themselves raise some exception
then that will similarly be propagated to the point of call.

Note that conditions Pre and Post can also be applied to entries.

Before progressing to the problems of inheritance it is worth reconsidering the purpose of pre- and
postconditions.

 A precondition Before is an obligation on the caller to ensure that it is true before the
subprogram is called and it is a guarantee to the implementer of the body that it can be relied
upon on entry to the body.

 A postcondition After is an obligation on the implementer of the body to ensure that it is true
on return from the subprogram and it is a guarantee to the caller that it can be relied upon on
return.

The symmetry is neatly illustrated by the diagram below

 Pre Post

Call writer obligation guarantee

Body writer guarantee obligation

The simplest form of inheritance occurs with derived types that are not tagged. Suppose we declare
the procedure Pinc as above with the postcondition shown and supply a body

procedure Pinc(X: in out Integer) is
begin
 X := X+1;
end Pinc;

and then declare a type

type Apples is new Integer;

then the procedure Pinc is inherited by the type Apples. So if we then write

No_Of_Apples: Apples;
...
Pinc(No_Of_Apples);

what actually happens is that the code of the procedure Pinc originally written for Integer is called
and so the postcondition is inherited automatically.

If the user now wants to add a precondition to Pinc that the number of apples is not negative then a
completely new subprogram has to be declared which overrides the old one thus

2.3 Precondi t ions and postcondi t ions 45

procedure Pinc(X: in out Apples)
 with Pre => X >= 0,
 Post => X = X'Old+1;

and a new body has to be supplied (which will of course in this curious case be essentially the same
as the old one). So we cannot inherit an operation and change its conditions at the same time.

We now turn to tagged types and first continue to consider the specific conditions Pre and Post. As
a perhaps familiar example, consider the hierarchy consisting of a type Object and then direct
descendants Circle, Square and Triangle.

Suppose the type Object is

type Object is tagged
 record
 X_Coord, Y_Coord: Float;
 end record;

and we declare a function Area thus

function Area(O: Object) return Float
 with Pre => O.X_Coord > 0.0,
 Post => Area'Result = 0.0;

This imposes a requirement on the caller that the function is called only with objects with positive x-
coordinate (for some obscure reason), and a requirement on the implementer of the body that the
area is zero (raw objects are just points and have no area).

If we now declare a type Circle as

type Circle is new Object with
 record
 Radius: Float;
 end record;

and override the inherited function Area then the Pre and Post conditions on Area for Object are not
inherited and we have to supply new ones, perhaps

function Area(C: Circle)
 with Pre => C.X_Coord – C.Radius > 0.0,
 Post => Area'Result > 3.1 * C.Radius**2 and
 Area'Result < 3.2 * C.Radius**2;

The conditions ensure that all of the circle is in the right half-plane and that the area is about right!

So the rules so far are exactly as for the untagged case. If an operation is not overridden then it
inherits the conditions from its ancestor but if it is overridden then those conditions are lost and new
ones have to be supplied. And if no new ones are supplied then they are by default taken to be True.

In conclusion, the conditions Pre and Post are very much part of the actual body. One consequence
of this is that an abstract subprogram cannot have Pre and Post conditions because an abstract
subprogram has no body.

We now turn to the class wide conditions Pre'Class and Post'Class which are subtly different. The
first point is that the class wide ones apply to all descendants as well even if the operations are
overridden. In the case of Post'Class if an overridden operation has no condition given then it is
taken to be True (as in the case of Post). But in the case of Pre'Class, if an overridden operation has
no condition given then it is only taken to be True if no other Pre'Class applies (no other is
inherited). We will now look at the consequences of these rules.

46 Contracts and aspects

It might be that we want certain conditions to hold throughout the hierarchy, perhaps that all objects
concerned have a positive x-coordinate and nonnegative area. In that case we can use class wide
conditions.

function Area(O: Object) return Float
 with Pre'Class => O.X_Coord > 0.0,
 Post'Class => Area'Result >= 0.0;

Now when we declare Area for Circle, Pre'Class and Post'Class from Object will be inherited by the
function Area for Circle. Note that within a class wide condition a formal parameter of type T is
interpreted as of T'Class. Thus O is of type Object'Class and thus applies to Circle. The inherited
postcondition is simply that the area is not negative and uses the attribute 'Result.

If we do not supply conditions for the overriding Area for Circle and simply write

overriding
function Area(C: Circle) return Float;

then the precondition inherited from Object still applies. In the case of the postcondition not only is
the postcondition from Object inherited but there is also an implicit postcondition of True. So the
applicable conditions for Area for Circle are

Pre'Class for Object

Post'Class for Object
True

Suppose on the other hand that we give explicit Pre'Class and Post'Class for Area for Circle thus

overriding
function Area(C: Circle) return Float
 with Pre'Class => ... ,
 Post'Class => ... ;

We then find that the applicable conditions for Area for Circle are

Pre'Class for Object
Pre'Class for Circle

Post'Class for Object
Post'Class for Circle

Incidentally, it makes a lot of sense to declare the type Object as abstract so that we cannot declare
pointless objects. In that case Area might as well be abstract as well. Although we cannot give
conditions Pre and Post for an abstract operation we can still give the class wide conditions
Pre'Class and Post'Class.

If the hierarchy extends further, perhaps Equilateral_Triangle is derived from Triangle which itself is
derived from Object, then we could add class wide conditions to Area for Triangle and these would
also apply to Area for Equilateral_Triangle. And we might add specific conditions for Equilateral_
Triangle as well. So we would then find that the following apply to Area for Equilateral_Triangle

Pre'Class for Object
Pre'Class for Triangle
Pre for Equilateral Triangle

Post'Class for Object
Post'Class for Triangle
Post for Equilateral_Triangle

2.3 Precondi t ions and postcondi t ions 47

The postconditions are quite straightforward, all apply and all must be true on return from the
function Area. The compiler can see all these postconditions when the code for Area is compiled and
so they are all checked in the body. Note that any default True makes no difference because B and
True is the same as B.

However, the rules regarding preconditions are perhaps surprising. The specific precondition Pre for
Equilateral_Triangle must be true (checked in the body) but so long as just one of the class wide
preconditions Pre'Class for Object and Triangle is true then all is well. Note that class wide
preconditions are checked at the point of call. Do not get confused over the use of the word apply.
They all apply but only the ones seen at the point of call are actually checked.

The reason for this state of affairs concerns dispatching and especially redispatching. Consider the
case of Ada airlines which has Basic, Nice and Posh passengers. Basic passengers just get a seat.
Nice passengers also get a meal and Posh passengers also get a limo. The types Reservation,
Nice_Reservation and Posh_Reservation form a hierarchy with Nice_Reservation being extended
from Reservation and so on. The facilities are assigned when a reservation is made by calling an
appropriate procedure Make thus

procedure Make(R: in out Reservation) is
begin
 Select_Seat(R);
end Make;

procedure Make(NR: in out Nice_Reservation) is
begin
 Make(Reservation(NR));
 Order_Meal(NR);
end Make;

procedure Make(PR: in out Posh_Reservation) is
 Make(Nice_Reservation(PR));
 Arrange_Limo(PR);
end Make;

Each Make calls its ancestor in order to avoid duplication of code and to ease maintenance.

A variation involving redispatching introduces two different procedures Order_Meal, one for Nice
passengers and one for Posh passengers. We then need to ensure that Posh passengers get a posh
meal rather than a nice meal. We write

procedure Make(NR: in out Nice_Reservation) is
begin
 Make(Reservation(NR));
 -- now redispatch to appropriate Order_Meal
 Order_Meal(Nice_Reservation'Class(NR));
end Make;

Now suppose we have a precondition Pre'Class on Order_Meal for Nice passengers and one on
Order_Meal for Posh passengers. The call of Order_Meal sees that it is for Nice_Reservation'Class
and so the code includes a test of Pre'Class on Nice_Reservation. It does not necessarily know of
the existence of the type Posh_Reservation and cannot check Pre'Class on that Order_Meal. At a
later date we might add Supersonic passengers (RIP Concorde) and this can be done without
recompiling the rest of the system so it certainly cannot do anything about checking Pre'Class on
Order_Meal for Supersonic_Reservation which does not exist when the call is compiled. So when
we eventually get to the body of one of the procedures Order_Meal all we know is that some
Pre'Class on Order_Meal has been checked somewhere. And that is all that the writer of the code of

48 Contracts and aspects

Order_Meal can rely upon. Note that nowhere does the compiled code actually "or" a lot of
preconditions together.

In summary, class wide preconditions are checked at the point of call. Class wide postconditions and
both specific pre- and postconditions are checked in the actual body.

A small point to remember is that a class wide operation such as

procedure Do_It(X: in out T'Class);

is not a primitive operation of T and so although we can specify Pre and Post for Do_It we cannot
specify Pre'Class and Post'Class for Do_It.

We noted above that the aspects Pre and Post cannot be specified for an abstract subprogram
because it doesn't have a body. They cannot be given for a null procedure either, since we want all
null procedures to be identical and do nothing and that includes no conditions.

We now turn to the question of multiple inheritance and progenitors.

In the case of multiple inheritance we have to consider the so-called Liskov Substitution Principle
(LSP). The usual consequence of LSP is that in the case of preconditions they are combined with
"or" (thus weakening) and the rule for postconditions is that they are combined with "and" (thus
strengthening). But the important thing is that a relevant concrete operation can be substituted for
the corresponding operations of all its relevant ancestors.

In Ada, a type T can have one parent and several progenitors. Thus we might have

type T is new P and G1 and G2 with ...

where P is the parent and G1 and G2 are progenitors. Remember that a progenitor cannot have
components and cannot have concrete operations (apart possibly for null procedures). So the
operations of the progenitors have to be abstract or null and cannot have Pre and Post conditions.
However, they can have Pre'Class and Post'Class conditions. It is possible that the same operation
Op is primitive for more than one of these. Thus the progenitors G1 and G2 might both have an
operation Op thus

procedure Op(X: G1) is abstract;
procedure Op(X: G2) is abstract;

If they are conforming (as they are in this case) then the one concrete operation Op of the type T
derived from both G1 and G2 will implement both of these. (If they don't conform then they are
simply overloadings and two operations of T are required). Hence the one Op for T can be
substituted for the Op of both G1 and G2 and LSP is satisfied.

Now suppose both abstract operations have pre- and postconditions. Take postconditions first, we
might have

procedure Op(X: G1) is abstract
 with Post'Class => After1;

procedure Op(X: G2) is abstract
 with Post'Class => After2;

Users of the Op of G1 will expect the postcondition After1 to be satisfied by any implementation of
that Op. So if using the Op of T which implements the abstract Op of G1, it follows that Op of T
must satisfy the postcondition After1. By a similar argument regarding G2, it must also satisfy the
postcondition After2.

It thus follows that the effective postcondition on the concrete Op of T is as if we had written

2.3 Precondi t ions and postcondi t ions 49

procedure Op(X: T)
 with Post'Class => After1 and After2;

But of course we don't actually have to write that since we simply write

overriding
procedure OP(X: T);

and it automatically inherits both postconditions and the compiler inserts the appropriate code in the
body. Remember that if we don't give a condition then it is True by default but anding in True makes
no difference.

If we do provide another postcondition thus

overriding
procedure OP(X: T)
 with Post'Class => After_T;

then the overall class wide postcondition to be checked before returning will be After1 and After2
and After_T.

Now consider preconditions. Suppose the declarations of the two versions of Op are

procedure Op(X: G1) is abstract
 with Pre'Class => Before1;

procedure Op(X: G2) is abstract
 with Pre'Class => Before2;

Assuming that there is no corresponding Op for P, we must provide a concrete operation for T thus

overriding
procedure Op(X: T)
 with Pre'Class => Before_T;

This means that at a point of call of Op the precondition to be checked is Before_T or Before1 or
Before2. As long as this is satisfied it does not matter that Before1 and Before2 might have been
different.

If we do not provide an explicit Pre'Class then the condition to be checked at the point of call is
Before1 or Before2.

An interesting case arises if a progenitor (say G1) and the parent have a conforming operation. Thus
suppose P itself has the operation

procedure Op(X: P);

and moreover that the operation is not abstract. Then (ignoring preconditions for the moment) this
Op for P is inherited by T and thus provides a satisfactory implementation of Op for G1 and all is
well.

Now suppose that Op for P has a precondition thus

procedure OP(X: P)
 with Pre'Class => Before_P;

and that Before_P and Before1 are not the same. If we do not provide an explicit overriding for Op,
it would be possible to call the body of Op for P when the precondition it knows about, Before_P, is
False (since Before1 being True would be sufficient to allow the call to proceed). This would
effectively mean that no class wide preconditions could be trusted within the subprogram body and

50 Contracts and aspects

that would be totally unacceptable. So in this case there is a rule that an explicit overriding is
required for Op for T.

If Op for P is abstract then a concrete Op for T must be provided and the situation is just as in the
case for the Op for G1 and G2.

If T itself is declared as abstract (and P is not abstract and Op for P is concrete) then the inherited
Op for T is abstract.

(These rules are similar to those for functions returning a tagged type when the type is extended; it
has to be overridden unless the type is abstract in which case the inherited operation is abstract.)

We finish this somewhat mechanical discussion of the rules by pointing out that if silly
inappropriate preconditions are given then we will get a silly program.

At the end of the day, the real point is that programmers should not write preconditions that are not
sensible and sensibly related to each other. Because of the generality, the compiler cannot tell so
stupid things are hard to prohibit. There is no defence against stupid programmers.

A concrete example using simple numbers might help. Suppose we have a tagged type T1 and an
operation Solve which takes a parameter of type T1 and perhaps finds the solution to an equation
defined by the components of T1. Solve delivers the answer in a parameter A with a parameter D
giving the number of significant digits required in the answer. Also we impose a precondition on the
number of digits D thus

type T1 is tagged record ...

procedure Solve(X: in T1; A: out Float; D: in Integer)
 with Pre'Class => D < 5;

The intent here is that the version of Solve for the type T1 always works if the number of significant
digits asked for is less than 5.

Now suppose we declare a type T2 derived from T1 and that we override the inherited Solve with a
new version that works if the number of significant digits asked for is less than 10

type T2 is new T1 with ...

overriding
procedure Solve(X: in T2; A: out Float; D: in Integer)
 with Pre'Class => D < 10;

And so on with a type T3

type T3 is new T2 with ...

overriding
procedure Solve(X: in T3; A: out Float; D: in Integer)
 with Pre'Class => D < 15;

Thus we have a hierarchy of algorithms Solve with increasing capability.

Now suppose we have a dispatching call

An_X: T1'Class := ... ;
Solve(An_X, Answer, Digs);

this will dispatch to one of the Solve procedures but we do not know which one. The only
precondition that applies is that on the Solve for T1 which is D < 5. That is fine because D < 5
implies D < 10 and D < 15 and so on. Thus the preconditions work because the hierarchy weakens
them.

2.3 Precondi t ions and postcondi t ions 51

Similarly, if we have

An_X: T2'Class := ... ;
Solve(An_X, Answer, Digs);

then it will dispatch to a Solve for one of T2, T3, ..., but not to the Solve for T1. The applicable
preconditions are D < 5 and D < 10 and these are notionally ored together which means D < 10 is
actually required. To see this suppose we supply D = Digs = 7. Then D < 5 is False but D < 10 is
True so by oring False and True we get True, so the call works.

On the other hand if we write

An_X: T2 := ... ;
Solve(An_X, Answer, Digs);

then no dispatching is involved and the Solve for T2 is called. But both class wide preconditions D <
5 and D < 10 apply and so again the resulting ored precondition that is required is D < 10.

Now it should be clear that if the preconditions do not form a weakening hierarchy then we will be
in trouble. Thus if the preconditions were D < 15 for T1, D < 10 for T2, and D < 5 for T3, then
dispatching from the root will only check D < 15. However, we could end up calling the Solve for
T2 which expects the precondition D < 10 and this might not be satisfied.

Care is thus needed with preconditions that they are sensibly related.

Finally, note that pre- and postconditions are allowed on generic units but not on instances. See
Section 9.5 of the Epilogue.

2.4 Type invariants
Type invariants are designed for use with private types where we want some relationship to always
hold between components of the type. Like pre- and postconditions there are both specific invariants
that can be applied to any type and class wide invariants that can only be applied to tagged types.

One example mentioned above and discussed in the Introduction was a type Stack with specific
invariant Is_Unduplicated. Thus we write

type Stack is private
 with Type_Invariant => Is_Unduplicated(Stack);

After calls of Push and Pop and any other operations that manipulate the stack, the function
Is_Unduplicated is called to ensure that there are no duplicates on the stack.

The monitoring is controlled by the pragma Assertion_Policy in the same way as pre- and
postconditions. If an invariant fails (that is, has value False) then Assertion_Error is raised.

The invariant Is_Unduplicated is a curious example because it cannot be violated by Pop anyway
since if there were no duplicates then removing the top item cannot make one appear.

Moreover, Push needs to ensure that the item to be added is not a duplicate of one on the stack
already and so essentially much of the checking is repeated. Indeed, when writing Push we should
be able to assume that no items are already duplicated and hence all we need to do is check that the
new item to be added is not equal to one of the existing items (so n comparisons). However, a
general function Is_Unduplicated will need to compare all pairs and thus require a double loop (so
n(n+1)/2 comparisons).

The reader is invited to meditate over this conundrum. One's first reaction might be that this is a bad
example. However, one way to ensure reliability is to introduce redundancy. Thus if the encoding of
Is_Unduplicated and Push are done independently then there is an increased probability that any
error will be detected.

www.allitebooks.com

http://www.allitebooks.org

52 Contracts and aspects

The aspect Type_Invariant requires an expression of a Boolean type. The mad programmer could
therefore also write

type Stack is private
 with Type_Invariant;

which would thus be True by default and so useless! Actually it might not be entirely useless since it
might act as a placeholder for an invariant to be defined later and meanwhile the program will
compile and execute.

Type invariants are useful whenever a type is more than just the sum of its components. Note
carefully that the invariant may not hold when an object is being manipulated by a subprogram
having access to the full type. In the case of Push and Pop and the invariant Is_Unduplicated this
will not happen but consider the following simple example.

Suppose we have a type Point which describes the position of an object in a plane. It might simply
be

type Point is
 record
 X, Y: Float;
 end record;

Now suppose we want to ensure that all points are within a unit circle. We could ensure that a point
lies within a square by means of range constraints by writing

type Point is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

but we need to ensure that X**2 + Y**2 is not greater than 1.0, and that cannot be done by individual
constraints. So we might declare a type Disc_Pt with an invariant as follows

package Places is

 type Disc_Pt is private
 with Type_Invariant => Check_In(Disc_Pt);

 function Check_In(D: Disc_Pt) return Boolean
 with Inline;
 ... -- various operations on disc points
private

 type Disc_Pt is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 function Check_In(D: Disc_Pt) return Boolean is
 (D.X**2 + D.Y**2 <= 1.0);

end Places;

Note that we have used an expression function for Check_In. Expression functions were outlined in
the Introduction and will be discussed in detail in the next chapter. They are very useful for small
functions in situations like this and typically will be given the aspect Inline on the specification as
shown.

2.4 Type invariants 53

Now suppose that we wish to make available to the user a procedure Flip that reflects a Disc_Pt in
the line x = y, or in other words interchanges its X and Y components. The body might be

procedure Flip(D: in out Disc_Pt) is
 T: Float; -- temporary
begin
 T := D.X; D.X := D.Y; D.Y := T;
end Flip;

This works just fine but note that just before the assignment to D.Y, it is quite likely that the
invariant does not hold. If the original value of D was (0.1, 0.8) then at the intermediate stage it will
be (0.8, 0.8) and so well outside the unit circle.

So there is a general principle that an intermediate value not visible externally need not satisfy the
invariant. There is an analogy with numeric types. The intermediate value of an expression can fall
outside the range of the type but will be within range when the final value is assigned to the object.
For example, suppose type Integer is 16 bits (a small machine) but the registers perform arithmetic
in 32 bits, then a statement such as

J := K * L / M;

could easily produce an intermediate result K * L outside the range of Integer but the final value
could be in range.

In many cases it will not be necessary for the user to know that a type invariant applies to the type; it
is after all merely a detail of the implementation. So perhaps the above should be rewritten as

package Places is

 type Disc_Pt is private;
 ... -- various operations on disc points
private

 type Disc_Pt is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record
 with Type_Invariant => Disc_Pt.X**2 + Disc_Pt.Y**2 <= 1.0;

end Places;

In this case we do not need to declare a function Check_In at all. Note the use of the type name
Disc_Pt in the invariant expression. This is another example of the use of a type name to denote a
current instance (this is familiar from way back in Ada 83 with task type names).

We now turn to consider the places where a type invariant on a private type T is checked. These are
basically when it can be changed from the point of view of the outside user. They are

 after default initialization of an object of type T,

 after a conversion to type T,

 after assigning to a view conversion involving descendants and ancestors of type T,

 after a call of T'Read or T'Input,

 after a call of a subprogram declared in the immediate scope of T and visible outside that has a
parameter (of any mode including an access parameter) with a part of type T or returns a result
with a part of type T.

54 Contracts and aspects

Note that by saying a part of type T, the checks not only apply to subprograms with parameters and
results of type T but they also apply to parameters and results whose components are of the type T or
are view conversions involving the type T. Observe that parameters of mode in are also checked
because, as is well known, there are accepted techniques for changing such parameters.

But note that checks on in parameters only apply to procedures and not to functions. This was a
retrospective change after ISO standardization as explained in Section 9.5 of the Epilogue.

Beware, however, that the checks do not extend to deeply nested situations, such as components
with components that are access values to objects that themselves involve type T or worse. Thus
there are holes in the protection offered by type invariants. However, if the types are straightforward
and the writer does not do foolish things like surreptitiously exporting access types referring to T
then all will be well. It is another example of there being no defence against foolish programmers.

The checks on type invariants regarding parameters and results can be conveniently implemented in
the body of the subprogram in much the same way as for postconditions. This saves duplicating the
code of the tests at each point of call.

If a subprogram such as Flip which is visible outside is called from inside then the checks still apply.
This is not strictly necessary of course, but fits the simple model of the checks being in the body and
so simplifies the implementation.

If an untagged type is derived then any existing specific invariant is inherited for inherited
operations. However, a further invariant can be given as well and both will apply to the inherited
operations. This fits in with the model of view conversions used to describe how an inherited
subprogram works on derivation. The parameters of the derived type are view converted to the
parent type before the body is called and back again afterwards. As mentioned above, view
conversions are one of the places where invariants are checked.

However, if we add new operations then the old invariant does not apply to them. In truth, the
specific invariant is not really inherited at all; it just comes along for free with the inherited
operations that are not overridden. So if we do add new operations then we need to state the total
invariant required.

Note that this is not quite the same model as specific postconditions. We cannot add postconditions
to an inherited operation but have to override it and then any specific postconditions on the parent
are lost. In any event, in both cases, if we want to use inheritance then we should really use tagged
types and class wide aspects.

So there is also an aspect Type_Invariant'Class for use with private tagged types. The distinction
between Type_Invariant and Type_Invariant 'Class has similarities to that between Post and
Post'Class.

The specific aspect Type_Invariant can be applied to any type but Type_Invariant'Class can only be
applied to tagged types. A tagged type can have both an aspect Type_Invariant and
Type_Invariant'Class.

Type_Invariant cannot be applied to an abstract type.

Type_Invariant'Class is inherited by all derived types; it can also be applied to an abstract type.

Note the subtle difference between Type_Invariant and Type_Invariant'Class. Type_Invariant'Class
is inherited for all operations of the type but as noted above Type_Invariant is only incidentally
inherited by the operations that are inherited.

2.4 Type invariants 55

An interesting rule is that Type_Invariant'Class cannot be applied to a full type declaration which
completes a private type such as Disc_Pt in the example above. This is because the writer of an
extension will need to see the applicable invariants and this would not be possible if they were in the
private part.

So if we have a type T with a class wide invariant thus

type T is tagged private
 with Type_Invariant'Class => F(T);
procedure Op1(X: in out T);
procedure Op2(X: in out T);

and then write

type NT is new T with private
 with Type_Invariant'Class => FN(NT);
overriding
procedure Op2(X: in out NT);
not overriding
procedure Op3(X: in out NT);

then both invariants F and FN will apply to NT.

Note that the procedure Op1 is inherited unchanged by NT, procedure Op2 is overridden for NT and
procedure Op3 is added.

Now consider various calls. The calls of Op1 will involve view conversions as mentioned earlier
and these will apply the checks for FN and the inherited body will apply the checks for F. The body
of Op2 will directly include checks for F and FN as will the body of Op3. So the invariant F is
properly inherited and all is well.

Remember that if the invariants were specific and not class wide then although Op1 will have
checks for F and FN, Op2 and Op3 will only check FN.

In the case of the type Disc_Pt we might decide to derive a type which requires that all values are
not only inside the unit circle but outside an inner circle – in other words in an annulus or ring. We
use the class wide invariants so that the parent package is

package Places is

 type Disc_Pt is tagged private
 with Type_Invariant'Class => Check_In(Disc_Pt);

 function Check_In(D: Disc_Pt) return Boolean
 with Inline;
 ... -- various operations on disc points
private

 type Disc_Pt is tagged
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 function Check_In(D: Disc_Pt) return Boolean is
 (D.X**2 + D.Y**2 <= 1.0);

end Places;

And then we might write

56 Contracts and aspects

package Places.Inner is

 type Ring_Pt is new Disc_Pt with null record
 with Type_Invariant'Class => Check_Out(Ring_Pt);

 function Check_Out(R: Ring_Pt) return Boolean
 with Inline;

private

 function Check_Out(R: Ring_Pt) return Boolean is
 (R.X**2 + R.Y**2 >= 0.25);

end Places.Inner;

And now the type Ring_Pt has both its own type invariant but also that inherited from Disc_Pt
thereby ensuring that points are within the ring or annulus. It is unfortunate that we could not make
the size of the inner circle a discriminant but a discriminant cannot be of a real type. Ah well,
perhaps in Ada 2020??

Finally, it is worth emphasizing that it is good advice not to use inheritance with specific invariants
but they are invaluable for checking internal and private properties of types.

2.5 Subtype predicates
The final major facility to be discussed here is subtype predicates. These are not really contractual in
the sense that preconditions, postconditions and invariants are contractual but are more akin to
constraints.

Subtype predicates are of two kinds, Static_Predicate and Dynamic_Predicate. They can be applied
to subtype declarations and to type declarations using aspect specifications. For example, in the
Introduction we met

subtype Even is Integer
 with Dynamic_Predicate => Even mod 2 = 0;

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb;

The predicates take an expression of a Boolean type and again we note the use of the subtype name
to denote the current instance. In the case of Dynamic_Predicate, the expression can be any Boolean
expression.

However, in the case of Static_Predicate, the expression is restricted and can only be

 a static membership test where the choice is selected by the current instance,

 a case expression whose dependent expressions are static and selected by the current instance,

 a call of the predefined operations =, /=, <, <=, >, >= where one operand is the current instance,

 an ordinary static expression,

and, in addition, a call of a Boolean logical operator and, or, xor, not whose operands are such
static predicate expressions, and, a static predicate expression in parentheses.

So we see that the predicate in the subtype Even cannot be a static predicate because the operator
mod is not permitted with the current instance. But mod could be used in an inner static expression.

However, the predicate in the subtype Winter can be a static predicate because it takes the from of a
membership test where the choice is selected by the current instance and whose individual items are

2.5 Subtype predicates 57

static. Note that membership tests are considerably enhanced in Ada 2012; further details will be
given in Section 3.6. Another useful example of this kind is

subtype Letter is Character
 with Static_Predicate => Letter in 'A' .. 'Z' | 'a' .. 'z';

Static case expressions are valuable because they provide the comfort of covering all values of the
current instance. Suppose we have a type Animal

type Animal is (Bear, Cat, Dog, Horse, Wolf);

We could then declare a subtype of friendly animals

subtype Pet is Animal
 with Static_Predicate => Pet in Cat | Dog | Horse;

and perhaps

subtype Predator is Animal
 with Static_Predicate => not (Predator in Pet);

or equivalently

subtype Predator is Animal
 with Static_Predicate => Predator not in Pet;

Now suppose we add Rabbit to the type Animal. Assuming that we consider that rabbits are pets and
not food, we should change Pet to correspond but we might forget with awkward results. Maybe we
have a procedure Hunt which aims to eliminate predators

procedure Hunt(P: in out Predator);

and we will find that our poor rabbit is hunted rather than petted!

What we should have done is use a case expression controlled by the current instance thus

subtype Pet is Animal
 with Static_Predicate =>
 (case Pet is
 when Cat | Dog | Horse => True,
 when Bear | Wolf => False);

and now if we add Rabbit to Animal and forget to update Pet to correspond then the program will
fail to compile.

Note that a similar form of if expression where the current instance has to be of a Boolean type
would not be useful and so is excluded.

Static subtypes with static predicates can also be used in case statements. Thus elsewhere in the
program we might have

case Animal is
 when Pet => ... -- feed it
 when Predator => ... -- feed on it
end case;

Observe that we do not have to list all the individual animals and naturally there is no others clause.
If other animals are added to Pet or Predator then this case statement will not need changing. Thus
not only do we get the benefit of full coverage checking, but the code is also maintenance free. Of
course if we add an animal that is neither a Pet nor Predator (Sloth perhaps?) then the case statement
will need updating.

58 Contracts and aspects

Subtype predicates, like pre- and postconditions and type invariants are similarly monitored by the
pragma Assertion_Policy. If a predicate fails (that is, has value False) then Assertion_Error is raised.

Subtype predicates are checked in much the same sort of places as type invariants. Thus

 on a subtype conversion,

 on parameter passing (which covers expressions in general),

 on default initialization of an object.

Note an important difference from type invariants. If a type invariant is violated then the damage has
been done. But subtype predicates are checked before any damage is done. This difference
essentially arises because type invariants apply to private types and can become temporarily false
inside the defining package as we saw with the procedure Flip applying to the type Disc_Pt.

If an object is declared without initialization and no default applies then any subtype predicate might
be false in the same way that a subtype constraint might be violated.

Beware that subtype predicates like type invariants are not foolproof. Thus in the case of a record
type they apply to the record as a whole but they are not checked if an individual component is
modified.

Subtype predicates can be given for all types in principle. Thus we might have

type Date is
 record
 D: Integer range 1 .. 31;
 M: Month;
 Y: Integer;
 end record;

and then

subtype Winter_Date is Date
 with Dynamic_Predicate => Winter_Date.M in Winter;

Note how this uses the subtype Winter which was itself defined by a subtype predicate. However,
Winter_Date has to have a Dynamic_Predicate because the selector is not simply the current
instance but a component of it.

We can now declare and manipulate a Winter_Date

WD: Winter_Date := (25, Dec, 2011);
...
Do_Date(WD);

and the subtype predicate will be checked on the call of Do_Date. However, beware that if we write

WD.Month := Jun; -- dodgy

then the subtype predicate is not checked because we are modifying an individual component and
not the record as a whole.

Subtype predicates can be given with type declarations as well as with subtype declarations.
Consider for example declaring a type whose only allowed values are the possible scores for an
individual throw when playing darts. These are 1 to 20 and doubles and trebles plus 50 and 25 for an
inner and outer bull's eye.

We could write these all out explicitly

2.5 Subtype predicates 59

type Score is new Integer
 with Static_Predicate =>
 Score in 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21
 | 22 | 24 | 25 | 26 | 27 | 28 | 30 | 32 | 33 | 34 | 36 | 38 | 39 | 40 | 42 | 45 | 48 | 50
 | 51 | 54 | 57 | 60;

But that is rather boring and obscures the nature of the predicate. We can split it down by first
defining individual subtypes for singles, doubles and trebles as follows

subtype Single is Integer range 1 .. 20;

subtype Double is Integer
 with Static_Predicate =>
 Double in 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20;

subtype Treble is Integer
 with Static_Predicate =>
 Treble in 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30;

subtype Score is Integer
 with Static_Predicate =>
 Score in Single or Score in Double or Score in Treble or Score in 25 | 50;

Note that it would be neater to write

subtype Score is Integer
 with Static_Predicate =>
 Score in Single | Double | Treble | 25 | 50;

Observe that it does not matter that the individual predicates overlap. That is a score such as 12 is a
Single, a Double and a Treble.

If we do not mind the predicates being dynamic then we can write

subtype Double is Integer
 with Dynamic_Predicate =>
 Double mod 2 = 0 and Double / 2 in Single;

and so on. Or we could even use a quantified expression

subtype Double is Integer
 with Dynamic_Predicate =>
 (for some K in Single => Double = 2*K);

or go all the way in one lump

type Dyn_Score is new Integer
 with Dynamic_Predicate =>
 (for some K in 1 .. 20 => Score = K or Score = 2*K or Score = 3*K) or Score in 25 | 50;

There are some restrictions on the use of subtypes with predicates.

If a subtype has a static or dynamic predicate then it cannot be used as an array index subtype. This
is to avoid arrays with holes. So we cannot write

type Winter_Hours is array (Winter) of Hours; -- illegal

type Hits is array (Score range <>) of Integer; -- illegal

Similarly, we cannot use a subtype with a predicate to declare the range of an array object or to
select a slice. So if we have

60 Contracts and aspects

type Month_Days is array (Month range <>) of Integer;
The_Days: Month_Days := (31, 28, 31, 30, ...);

then we cannot write

Winter_Days: Month_Days(Winter); -- illegal array

The_Days(Winter) := (Jan | Dec => 31, Feb => 29); -- really nasty illegal slice

However, a subtype with a static predicate can be used in a for loop thus

for W in Winter loop ...

and in a named aggregate such as

(Winter => 10.0, others => 14.0); -- OK

but a subtype with a dynamic predicate cannot be used in these ways. Actually the restriction is
slightly more complicated. If the original subtype is not static such as

subtype To_N is Integer range 1 .. N;

then even if To_N has a static predicate it still cannot be used in a for loop or named aggregate.

These rules can also be illustrated by considering the dartboard. We might like to accumulate a
count of the number of times each particular score has been achieved. So we might like to declare

type Hit_Count is array (Score) of Integer; -- illegal

but sadly this would result in an array with holes and so is forbidden. However, we could declare an
array from 1 to 60 and then initialize it with 0 for those components used for hits and –1 for the
unused components. Of course, we ought not to repeat literals such as 1 and 60 because of potential
maintenance problems. But, we can use new attributes First_Valid and Last_Valid thus

type Hit_Count is array (Score'First_Valid .. Score'Last_Valid) of Integer :=
 (Score => 0, others => –1);

which uses Score to indicate the used components. The attributes First_Valid and Last_Valid can be
applied to any static subtype but are particularly useful with static predicates.

In detail, First_Valid returns the smallest valid value of the subtype. It takes any range and/or
predicate into account whereas First only takes the range into account. Similarly Last_Valid returns
the largest value. Incidentally, they are illegal on null subtypes (because null subtypes have no valid
values at all).

The Hit_Count array can then be updated by the value of each hit as expected

A_Hit: Score := ... ; -- next dart

Hit_Count(A_Hit) := Hit_Count(A_Hit) + 1;

If we attempt to assign a value of type Integer which is not in the subtype Score to A_Hit then
Assertion_Error is raised.

After the game, we can now loop through the subtype Score and print out the number of times each
hit has been achieved and perhaps accumulate the total at the same time thus

for K in Score loop
 New_Line; Put(Hit); Put(Hit_Count(K));
 Total := Total + K * Hit_Count(K);
end loop;

The reason for the distinction between static and dynamic predicates is that the static form can be
implemented as small sets with static operations on the small sets. Hence the loop

2.5 Subtype predicates 61

for K in Score loop ...

can be implemented simply as a sequence of 43 iterations. However, a loop such as

for X in Even loop ...

which might look innocuous requires iterating over the whole set of integers. Thus we insist on
having to write

for X in Integer loop
 if X in Even then ...

which makes the situation quite clear.

Another restriction on the use of subtypes with predicates is that the attributes First, Last and Range
cannot be applied. But Pred and Succ are permitted because they apply to the underlying type. As a
consequence, if a generic body uses First, Last or Range on a formal type and the actual type has a
subtype predicate then Program_Error is raised.

Subtype predicates can be applied to abstract types but not to incomplete types.

Subtype predicates are inherited as expected on derivation. Thus if we have

type T is ...
 with Static_Predicate => SP(T);

and then

type NT is new T
 with Dynamic_Predicate => DP(NT);

the result is that both predicates apply to NT rather as if we had written the predicate as SP(NT) and
DP(NT). So if several apply they are anded together. If any one is dynamic then restrictions on the
use of subtypes with a dynamic predicate apply.

There is no need for special predicates for class wide types in the way that we have both
Type_Invariant and Type_Invariant'Class. So in the general case where a tagged type is derived from
a parent and several progenitors

type T is new P and G1 and G2 with ...

where P is the parent and G1 and G2 are progenitors, the subtype predicate applicable to T is simply
those for P, G1 and G2 all anded together.

A number of improvements were made in this area after ISO standardization as described in Section
9.5 of the Epilogue. These concern a new aspect Predicate_Failure which enables specific messages
to be associated with a failure and rules regarding the order of evaluation of predicates if several
apply.

2.6 Default initial values
It is often important that we can rely upon an object having a value within its subtype even before it
is assigned to and this especially applies in the face of type invariants and subtype predicates.
Consider a type Location whose type invariant In_Place requires the point to be within some place.

package Places is
 type Location is private
 with Type_Invariant => In_Place(Location);

 function In_Place(L: Location) return Boolean;
 procedure Do_It(X: in out Location; ...);

www.allitebooks.com

http://www.allitebooks.org

62 Contracts and aspects

private

 type Location is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 ...

end Places;

If we just declare an object of type Location thus

Somewhere: Location;

then there is no guarantee that Somewhere is anywhere in particular. If the type invariant In_Place
applies and a subprogram with an in out parameter such as Do_It is called

Do_It(Somewhere);

then it might be that some paths through Do_It do not assign a new value to X. Nevertheless, on
return from Do_It, the type invariant In_Place will be checked on the parameter. If Somewhere by
chance had an accidental initial value outside the space implied by In_Place then the call will fail.
Now it might be that other parameters of the procedure indicate to the caller that Somewhere has
not been updated in this case but unfortunately this information is unlikely to be available to the
invariant.

One solution to this is to ensure that objects always have an initial value satisfying the requisite
constraints, predicates or invariants. One might do this by assigning a safe initial value thus

Somewhere: Location := (0.0, 0.0); -- illegal

but this is illegal because the type is private. We could of course export from the package Places a
safe initial value so that we could write

Somewhere: Location := Places.Haven;

But this is often frowned upon because giving an explicit initial value can hide flow errors. It is thus
best to ensure that the object automatically has a safe default value by writing perhaps

 type Location is
 record
 X, Y: Float range –1.0 .. +1.0 := 0.0;
 end record;

It is curious that Ada allows default initial values for components of records and provides them
automatically for access types (null) but not for scalar types or for array types. This is remedied in
Ada 2012 by the introduction of aspects Default_Value and Default_Component_Value for scalar
types and arrays of scalar types respectively. The format is as expected

type My_Float is digits 20
 with Default_Value => 0.5;

type OK is new Boolean
 with Default_Value => True;

The usual rule regarding the omission of => True does not apply in the case of Default_Value for
Boolean types for obvious reasons.

If possible, a special value indicating the status of the default should be supplied. This particularly
applies to enumeration types. For example

2.6 Defaul t ini t ia l values 63

type Switch is (On, Off, Unknown)
 with Default_Value => Unknown;

In the case of an array type this can be constrained or unconstrained and the default value will apply
to all components.

type Vector is array (Integer range <>) of Integer
 with Default_Component_Value => 0;

Default initial values cannot be given to the predefined types but they can be given to types derived
from them such as the Boolean type OK above.

In the case of a private type, any default has to be given on the full type declaration.

It is important to note that default initial values can only be given for types and not for subtypes. If a
default initial value lies outside the range of a subtype then declaring an object of a subtype without
its own specific initial value will raise Constraint_Error. So writing

subtype Known_Switch is Switch range On .. Off;
A_Switch: Known_Switch;

raises Constraint_Error because the default initial value Unknown is outside the range of the subtype
Known_Switch.

If a record type is declared and some components are given initial values but others are not then
explicitly given initial values take precedence over default values given by these aspects. Thus if we
have

 type Location is
 record
 X: My_Float range –1.0 .. +1.0 := 0.0;
 Y: My_Float range –1.0 .. +1.0;
 end record;

then the component X has default value 0.0 but component Y has default value 0.5, (since My_Float
declared above has default value 0.5).

A final important point is that default initial values supplied by these aspects have to be static unlike
default initial values for record components.

2.7 Storage occupancy checks
Finally, two new attributes are introduced to aid in the writing of preconditions. Sometimes it is
necessary to check that two objects do not occupy the same storage in whole or in part. This can be
done with two functional attributes X'Has_Same_Storage and X'Overlaps_Storage which apply to
an object X of any type.

Their specifications are

function X'Has_Same_Storage(Arg: any_type) return Boolean;

function X'Overlaps_Storage(Arg: any_type) return Boolean;

As an example we might have a procedure Exchange and wish to ensure that the parameters do not
overlap in any way. We can write

procedure Exchange(X, Y: in out T)
 with Pre => not X'Overlaps_Storage(Y);

Attributes are used rather than predefined functions since this enables the semantics to be written in
a manner that permits X and Y to be of any type and moreover does not imply that X or Y are read.

64 Contracts and aspects

The object X and the parameter Y could be components such as A(5) or indeed A(J) or even a slice
A(1 .. N). Thus the actual addresses to be checked may not be statically determined but have to be
determined at the point of call.

AI-191 shows the following curious example

procedure Count(A: in out Arrtype; B: in Arrtype)
 with Pre => not A'Overlaps_Storage(B)
is
 -- intended to count in A the number of value
 -- occurrences in B as part of a distribution sort
begin
 for I in B'Range loop
 A(B(I)) := A(B(I)) + 1;
 end loop;
end Count;

The author seems to have assumed that the array A has appropriate components and that they are
initialized to zero. This also illustrates the use of an aspect specification in a subprogram body.

At the machine level Overlaps_Storage means that at least one bit is in common and
Has_Same_Storage means that all bits are in common. Hence X'Has_Same_Storage(Y) implies
X'Overlaps_Storage(Y).

In some applications involving the possibility of aliasing (messing with tree structures comes to
mind) we do really want to check that two entities are not in the same place rather than just
overlapping in which case it is more logical to use Has_Same_Storage.

 65

3 Expressions
This chapter describes the introduction of more flexible forms of expressions in Ada 2012.
There are four new forms of expressions. If expressions and case expressions define a value
and closely resemble if statements and case statements. Quantified expressions take two
forms using for all and for some to return a Boolean value. Finally, expression functions
provide a simple means of parameterizing an expression without the formality of providing
a function body.
These more flexible forms of expressions will be found invaluable in formulating contracts
such as preconditions. It is interesting to note that Ada now has conditional expressions
over 50 years after their introduction in Algol 60.

3.1 Overview of changes
One of the key areas identified by the WG9 guidance document [1] as needing attention was
improving the ability to write and enforce contracts. These were discussed in detail in the previous
chapter.

When defining the new aspects for preconditions, postconditions, type invariants and subtype
predicates it became clear that without more flexible forms of expressions, many functions would
need to be introduced because in all cases the aspect was given by an expression.

However, declaring a function and thus giving the detail of the condition, invariant or predicate in
the function body makes the detail of the contract rather remote for the human reader. Information
hiding is usually a good thing but in this case, it just introduces obscurity.

Four forms are introduced, namely, if expressions, case expressions, quantified expressions and
expression functions. Together they give Ada some of the flexible feel of a functional language.

In addition, membership tests are generalized to allow greater flexibility which is particularly useful
for subtype predicates.

The following Ada issues cover the key changes and are described in detail in this chapter:

 3 Qualified expressions and names

147 Conditional expressions

158 Generalizing membership tests

176 Quantified expressions

177 Expression functions

188 Case expressions

These changes can be grouped as follows.

First there are conditional expressions which come in two forms, if expressions and case
expressions, which have a number of features in common (147, 188).

Then there is the introduction of quantified expressions which use for all to describe a universal
quantifier and for some to describe an existential quantifier. Note that some is a new reserved word
(176).

Next comes the fourth new form of expression which is the expression function (177).

66 Expressions

Finally, membership tests are generalized (158) and there is a minor change regarding qualified
expressions (3).

3.2 If expressions
It is perhaps very surprising that Ada does not have if expressions as well as if statements. In order
to provide some background context we briefly look at two historic languages that are perhaps the
main precursors to modern languages; these are Algol 60 [8] and CPL [9].

Algol 60 had conditional expressions of the form

Z := if X = Y then P else Q

which can be contrasted with the conditional statement

if X = Y then
 Z := P
else
 Z := Q

Conditional statements in Algol 60 allowed only a single statement in each branch, so if several
were required then they had to be grouped into a compound statement thus

if X = Y then
 begin
 Z := P; A := B
 end
else
 begin
 Z := Q; A := C
 end

It may be recalled that statements were not terminated by semicolons in Algol 60 but separated by
them. However, a null statement was simply nothing so the effect of adding an extra semicolon in
some cases was harmless. However, accidentally writing

if X = Y then ;
 begin
 Z := P; A := B
 end;

results in a disaster because the test then just covers a null statement and the assignments to Z and A
always take place. The complexity of compound statements did not arise with conditional
expressions.

The designers of Algol 68 [10] sensibly recognized the problem and introduced closing brackets
thus

if X = Y then
 Z := P; A := B;
fi;

where fi matches the if. Conditional expressions in Algol 68 were similar

Z := if X = Y then P else Q fi;

An alternative shorthand notation was

Z := (X = Y | P | Q);

3.2 I f expressions 67

which was perhaps a bit too short.

The next major language in this series was Pascal [11]. The designers of Pascal rejected everything
that had been learnt from Algol 68 and foolishly continued the Algol 60 style for compound
statements and also dropped conditional expressions. Only with Modula did they realise the need for
bracketing rather than compounding.

The other foundation language was CPL [9]. Conditional statements in CPL took the following form

if X = Y then do Z := P

if X = Y then do § Z := P; A := B §|

where compound statements were delimited by section symbols (note that the closing symbol has a
vertical line through it).

From CPL came BCPL, B and C. Along the way, the expressive := for assignment got lost in favour
of = which then meant that = had to be replaced by == for equality. And the section brackets became
{ and } so in C the above conditional statements become

if (X == Y) Z = P;

if (X == Y) {Z = P; A = B;}

This suffers from the same stray semicolon problem mentioned above with reference to Algol 60.

Steelman [12] did not require Ada to have conditional expressions and since they were not required
they were not provided (the requirements were treated with considerable reverence). A further
influence might have been that the new language had to be based on one of Pascal, Algol 68 and
PL/I and Ada is based on Pascal which did not have conditional expressions as mentioned above.

Moreover, the Ada designers felt that the Algol 68 style with reversed keywords such as fi (or worse
esac) for conditional statements would not be acceptable to the USDoD or the public at large and so
we have end if as the closing bracket thus

if X = Y then
 Z := P;
 A := B;
end if;

Remember that semicolons terminate statements in Ada and so those above are all required.
Moreover, since null statements in Ada have to be given explicitly, placing a stray semicolon after
then gives a compiler error.

The absence of conditional expressions is a pain. It leads to unnecessary duplication such as having
to write

if X > 0 then
 P(A, B, D, E);
else
 P(A, C, D, E);
end if;

where all parameters but one are the same. This can even lead to disgusting coding using the fact
that Boolean'Pos(True) is 1 whereas Boolean'Pos(False) is 0. Thus (assuming that B and C are of
type Integer) the above could be written as a single procedure call thus

P(A, Boolean'Pos(X>0)*B+Boolean'Pos(X<=0)*C, D, E);

So it is a great relief in Ada 2012 to be able to write

68 Expressions

P(A, (if X>0 then B else C), D, E);

A worse problem was when a static expression was required such as the initial value for a named
number as in the following gruesome code

Febdays: constant := Boolean'Pos(Leap)*29 + Boolean'Pos(not Leap)*28;

which we can now thankfully write as

Febdays: constant := (if Leap then 29 else 28);

Note carefully that there is no end if. One reason is simply that it is logically unnecessary since
there can be only a single expression after else and also end if would have been obtrusively heavy
(compared say with fi of Algol 68). However, it was felt that some demarcation was required to aid
clarity and so a conditional expression is always enclosed in parentheses. If the context already has
parentheses then additional ones are not required. Thus in the case of a positional call with a single
parameter we just write

P(if X > 0 then B else C);

but if we use named notation then extra parentheses are required

P(Para => (if X > 0 then B else C));

Note carefully that the term conditional expression in Ada 2012 embraces both if expressions and
case expressions (which are discussed in the next section).

As expected, a series of tests can be done using elsif thus

P(if X > 0 then B elsif X < 0 then C else D);

and expressions can be nested

P(if X > 0 then (if Y > 0 then B else C) else D);

Without the rule requiring enclosing parentheses this could be written as

P(if X > 0 then if Y > 0 then B else C else D); -- illegal

which seems more than a little confusing.

There is a special rule if the type of the expression is Boolean (that is of the predefined type Boolean
or derived from it). In that case a final else part can be omitted and is taken to be true by default.
Thus the following are equivalent

P(if C1 then C2 else True);

P(if C1 then C2);

Such abbreviations appear frequently in preconditions as was illustrated in the Introduction where
we had

Pre => (if P1 > 0 then P2 > 0);

which has the obvious meaning that the precondition requires that if P1 is positive then P2 must be
positive as well but if P1 is not positive then all is well and we don't care about P2.

This abbreviated form has the same effect as an implies operation.

R := C1 implies C2; -- not Ada!

with the following truth table

3.2 I f expressions 69

 C1 = False C1 = True

C2 = False R = True R = False

C2 = True R = True R = True

Some consideration was given to including such an operation in Ada 2012 (it existed in Algol 60).
However, this is exactly the same as

R := not C1 or C2;

and so somewhat unnecessary. Moreover, although implies might appeal to some programmers it
could lead to maintenance problems since it might be considered incomprehensible by many others.

There are important rules regarding the types of the various dependent expressions in the branches
of an if expression. Basically they have to all be of the same type or convertible to the same
expected type. But there are some interesting situations.

If the conditional expression is the argument of a type conversion then effectively the conversion is
considered pushed down to the dependent expressions. Thus

X := Float(if P then A else B);

is equivalent to

X := (if P then Float(A) else Float(B));

As a consequence we can write

X := Float(if P then 27 else 0.3);

and it doesn't matter that 27 and 0.3 are not of the same type.

If the expected type is class wide, perhaps giving the initial value for a class wide variable V, then
the individual dependent expressions have that same expected class wide type but they need not all
be of the same specific type within the class. Thus we might write

V: Object'Class := (if B then A_Circle else A_Triangle);

where A_Circle and A_Triangle are objects of specific types Circle and Triangle which are
themselves descended from the type Object.

If the expected type is a specific tagged type then various situations can arise regarding the various
branches which are similar to the rules for calling a subprogram with several controlling operands.
Either they all have to be dynamically tagged (that is class wide) or all have to be statically tagged.
They might all be tag indeterminate in which case the conditional expression as a whole is also tag
indeterminate.

Some obscure curiosities arise. Remember that the controlling condition for an if statement can be
any Boolean type. Consider

type My_Boolean is new Boolean;

My_Cond: My_Boolean := ... ;

if (if K > 10 then X = Y else My_Cond) then -- illegal
 ...
end if;

70 Expressions

The problem here is that X = Y is of type Boolean but My_Cond is of type My_Boolean. Moreover,
the expected type for the condition in the if statement is any Boolean type so it cannot make up its
mind. We could overcome this foolishness by putting a type conversion around the if expression.

There are also rules regarding staticness. If all branches are static then a conditional expression as a
whole is static as in the example of Febdays above. Thus the definition of a static expression has
been extended to permit the inclusion of static conditional expressions.

The avid reader of the Reference Manual will find that the term statically unevaluated has been
introduced. This relates to situations where expressions are not evaluated because a prior expression
is static. Consider

X := (if B then P else Q);

If B, P and Q are all static then the conditional expression as a whole is static. If B is true then the
answer is P and there is not any need to even look at Q. We say that Q is statically unevaluated and
indeed it does not matter that if Q had been evaluated it would have raised an exception. Thus we
might write

Average := (if Count = 0 then 0.0 else Total/Count);

and there is no risk of dividing by zero.

Similar rules regarding being statically unevaluated apply to short circuit conditions, case
expressions, and membership tests.

As might be expected there are rules regarding access types and accessibility. The accessibility level
of a conditional expression is simply that of the chosen dependent expression and thus (generally)
determined dynamically.

Readers might feel that Ada has embarked on a slippery slope by introducing more flexibility
thereby possibly damaging Ada's reputation for reliability. Certainly a number of additional rules
have been required but from the users' point of view these are almost intuitive. It should be
remembered that the difficulties in C stem from a combination of things

 that assignment is permitted as an expression,

 that integer values are used as Booleans,

 that null statements are invisible.

None of these applies to Ada so all is well.

3.3 Case expressions
Case expressions have much in common with if expressions and the two are collectively known as
conditional expressions.

Thus given a variable D of the familiar type Day, we can assign the number of hours in a working
day by

Hours := (case D is
 when Mon .. Thurs => 8,
 when Fri => 6,
 when Sat | Sun => 0);

A slightly more adventurous example involving nested if expressions is

Days := (case M is
 when September | April | June | November => 30,
 when February =>

3.2 I f expressions 71

 (if Year mod 100 = 0 then
 (if Year mod 400 =0 then 29 else 28)
 else
 (if Year mod 4 = 0 then 29 else 28)),
 when others => 31);

The reader is invited to improve this!

Note the similarity to the rules for if expressions. There is no closing end case. Case expressions
are always enclosed in parentheses but they can be omitted if the context already provides
parentheses.

If M and Year are static then the case expression as a whole is also static. If M is static and equal to
September, April, June or November then the value is statically known to be 30 so that the
expression for February is statically unevaluated even if Year is not static. Note that the various
choices are evaluated in order.

The rules regarding the types of the dependent expressions are exactly as for if expressions. Thus if
the case expression is the argument of a type conversion then the conversion is effectively pushed
down to the dependent expressions.

It is always worth emphasizing that an important advantage of case constructions is that they give a
coverage check. Thus in the previous chapter we had

subtype Pet is Animal
 with Static_Predicate =>
 (case Pet is
 when Cat | Dog | Horse => True,
 when Bear | Wolf => False);

which is much more reliable than

subtype Pet is Animal
 with Static_Predicate => Pet in Cat | Dog | Horse;

because when we add Rabbit to the type Animal, we are forced to include it in one branch of the case
expression whereas it is all too easy to forget it using an if expression.

3.4 Quantified expressions
Another new form of expression in Ada 2012 is the quantified expression. The syntax is

 quantified_expression ::=
 for quantifier loop_parameter_specification => predicate
 | for quantifier iterator_specification => predicate

 quantifier ::= all | some

 predicate ::= boolean_expression

The form involving iterator_specification concerns generalized iterators and will be found
particularly useful with containers; it will be discussed in detail in Section 6.3 on Iteration. Here we
will concentrate on the use of the familiar loop parameter specification.

The type of a quantified expression is Boolean. So we might write

B := (for all K in A'Range => A(K) = 0);

which assigns true to B if every component of the array A has value 0. We might also write

B := (for some K in A'Range => A(K) = 0);

72 Expressions

which assigns true to B if some component of the array A has value 0.

Note that the loop parameter is almost inevitably used in the predicate. A quantified expression is
very much like a for statement except that we evaluate the expression after => on each iteration
rather than executing one or more statements. The iteration is somewhat implicit and the words loop
and end loop do not appear.

The expression is evaluated for each iteration in the appropriate order (reverse can be inserted of
course) and the iteration stops as soon as the value of the expression is determined. Thus in the case
of for all, as soon as one value is found to be False, the overall expression is False whereas in the
case of for some as soon as one value is found to be True, the overall expression is True. An
iteration could raise an exception which would then be propagated in the usual way.

Like conditional expressions, a quantified expression is always enclosed in parentheses which can
be omitted if the context already provides them, such as in a procedure call with a single positional
parameter.

Incidentally, predicate is a fancy word meaning Boolean expression. Older folk might recall that it
also means the part of a sentence after the subject. Thus in the sentence "I love Ada", the subject is
"I" and the predicate is "love Ada".

The forms for all and for some are technically known as the universal quantifier and existential
quantifier respectively.

Note that some is a new reserved word (the only one in Ada 2012). There were six new ones in Ada
95 (abstract, aliased, protected, requeue, tagged and until) and three new ones in Ada 2005
(interface, overriding and synchronized). Hopefully we are converging.

The type of a quantified expression can be any Boolean type (that is the predefined type Boolean or
perhaps My_Boolean derived from Boolean). The predicate must be of the same type as the
expression as a whole. Thus if the predicate is of type My_Boolean then the quantified expression is
also of type My_Boolean.

The syntax for quantified expressions uses => to introduce the predicate. This is similar to the
established notation in SPARK [13]. Consideration was given to using a vertical bar which is
common in mathematics but that would have been confusing because of its use in membership tests
and other situations with multiple choices.

As illustrated in the Introduction, quantified expressions will find their major uses in pre- and
postconditions. Thus a procedure Sort on an array A of type Atype such as

type Atype is array (Index) of Float;

might have specification

procedure Sort(A: in out Atype)
 with Post => A'Length < 2 or else
 (for all K in A'First .. Index'Pred(A'Last) => A(K) <= A(Index'Succ(K)));

where we are assuming that the index type need not be an integer type and so we have to use Succ
and Pred. Note how the trivial cases of a null array or an array with a single component are
dismissed first.

Quantified expressions can be nested. So we might check that all components of a two-dimensional
array are zero by writing

B := (for all I in AA'Range(1) => (for all J in AA'Range(2) => AA(I, J) = 0));

This can be done rather more neatly using the syntactic form

3.4 Quant i f ied expressions 73

 for quantifier iterator_specification => predicate

as will be discussed in detail in Section 6.3 on Iteration. We just write

B := (for all E of AA => E = 0);

which iterates over all elements of the array AA however many dimensions it has.

3.5 Expression functions
The final new form to be discussed is the expression function. As outlined in the Introduction, an
expression function provides the effect of a small function without the formality of introducing a
body. It is important to appreciate that strictly speaking an expression function is basically another
form of function and not another form of expression. But it is convenient to discuss expression
functions in this chapter because like conditional expressions and quantified expressions they arose
for use with aspect clauses such as pre- and postconditions.

The syntax is

 expression_function_declaration ::=
 [overriding_indicator]
 function_specification is
 (expression)
 [aspect_specification] ;

As an example we can reconsider the type Point and the function Is_At_Origin thus

package P is
 type Point is tagged
 record
 X, Y: Float := 0.0;
 end record;

 function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0)
 with Inline;

 ...
end P;

The expression function Is_At_Origin is a primitive operation of Point just as if it were a normal
function with a body. If a type My_Point is derived from Point then Is_At_Origin would be inherited
or could be overridden with a normal function or another expression function. Thus an expression
function can be prefixed by an overriding indicator as indicated by the syntax.

Expression functions can have an aspect clause and since by their very nature they will be short, this
will frequently be with Inline as in this example.

The result of an expression function is given by an expression in parentheses. The parentheses are
included to immediately distinguish the structure from a normal body which could start with an
arbitrary local declaration. The expression can be any expression having the required type. It could
for example be a quantified expression as in the following

function Is_Zero(A: Atype) return Boolean is
 (for all J in A'Range => A(J) = 0);

This is another example of a situation where the quantified expression does not need to be enclosed
in its own parentheses because the context supplied by the expression function provides parentheses.

74 Expressions

Expression functions can be completions as well as standing alone and this introduces a number of
possibilities. Remember that many declarations require completing. For example an incomplete type
such as

type Cell; -- an incomplete type

is typically completed by a full type declaration later on

type Cell is
 record ... end record; -- its completion

Completion also applies to subprograms. Typically the declaration (that is the specification plus
semicolon) of a subprogram appears in a package specification thus

package P is
 function F(X: T); -- declaration
 ...
end P;

and then the body of F which completes it appears in the body of P thus

package body P is
 function F(X: T) is -- completion
 begin
 ...
 end F;
 ...
end P;

A function body cannot appear in a package specification. The only combinations are

function declaration F function body F

in spec of P in body of P

in body of P in body of P

none in body of P

Remember that mutual recursion may require that a body be given later so it is possible for a distinct
declaration of F to appear in the body of P before the full body of F. In addition to the above the
function body could be replaced by a stub and the proper body compiled separately but that is
another story.

The rules regarding expression functions are rather different. An expression function can be
declared alone as in the example of Is_At_Origin above; or it can be a completion of a function
declaration and that completion can be in either the package specification or body. A frequently
useful combination occurs with a private type where we need to make a function visible so that it
can be used in a precondition and the expression function then occurs in the private part as a
completion thus

package P is
 type Point is tagged private;
 function Is_At_Origin(P: Point) return Boolean
 with Inline;

3.5 Express ion funct ions 75

 procedure Do_It(P: in Point; ...)
 with Pre => not Is_At_Origin;

private

 type Point is tagged
 record
 X, Y: Float := 0.0;
 end record;

function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0);

 ...
end P;

Note that we cannot give an aspect specification on an expression function used as a completion so
it is given on the function specification; this makes it visible to the user. (This rule applies to all
completions such as subprogram bodies and is not special to expression functions.)

An expression function can also be used in a package body as an abbreviation for

function Is_At_Origin(P: Point) return Boolean is
begin
 return P.X = 0.0 and P.Y = 0.0;
end Is_At_Origin;

The possible combinations regarding a function in a package are

function declaration F expression function F

in spec of P in spec or body of P

in body of P in body of P

none in spec or body of P

We perhaps naturally think of an expression function used as a completion to be in the private part
of a package. But we could declare a function in the visible part of a package and then an expression
function to complete it in the visible part as well. This is illustrated by the following interesting
example of two mutually recursive functions.

package Hof is

 function M(K: Natural) return Natural;
 function F(K: Natural) return Natural;

 function M(K: Natural) return Natural is
 (if K = 0 then 0 else K – F(M(K–1)));

 function F(K: Natural) return Natural is
 (if K =0 then 1 else K – M(F(K–1)));

end Hof;

These are the Male and Female functions described by Hofstadter [14]. They are inextricably
intertwined and both are given with completions for symmetry.

76 Expressions

Almost inevitably, at least one of the expression functions in a mutually recursive pair will include
an if expression (or else or else) otherwise the recursion will not stop.

Expression functions can also be declared in subprograms and blocks (they are basic declarative
items). Moreover, an expression function that completes a function can also be declared in the
subprogram or block.

This is illustrated by the following Gauss-Legendre algorithm which computes to an amazing
accuracy determined by the value of the constant K.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Long_Long_Float_Text_IO;
use Ada.Long_Long_Float_Text_IO;
with Ada.Numerics.Long_Long_Elementary_Functions;
use Ada.Numerics.Long_Long_Elementary_Functions;
procedure Compute_Pi is

 function B(N: Natural) return Long_Long_Float;

 function A(N: Natural) return Long_Long_Float is
 (if N = 0 then 1.0 else (A(N–1)+B(N–1))/2.0);

 function B(N: Natural) return Long_Long_Float is
 (if N = 0 then Sqrt(0.5) else Sqrt(A(N–1)*B(N–1)));

 function T(N: Natural) return Long_Long_Float is
 (if N = 0 then 0.25 else
 T(N–1)–2.0**(N–1)*(A(N–1)–A(N))**2);

 K: constant := 5; -- for example
 Pi: constant Long_Long_Float := ((A(K) + B(K))**2 / (4.0*T(K));
begin
 Put(Pi, Exp => 0);
 New_Line;
end Compute_Pi;

With luck this will output 3.14159265358979324 (depending on the accuracy of Long_Long_Float).

The functions A and B give successive arithmetic and geometric means. They call each other and so
B is given as a function specification which is then completed by the expression function.

I am grateful to Brad Moore and to Ed Schonberg for these instructive examples.

The rules regarding null procedures (introduced in Ada 2005 primarily for use with interfaces) are
modified in Ada 2012 to be uniform with those for expression functions regarding completion. Thus

procedure Nothing(X: in T) is null;

can be used alone as a declaration of a null operation for a type or as a shorthand for a traditional
null procedure thus possibly completing the declaration

procedure Nothing(X: in T);

Expression functions and null procedures do not count as subprogram declarations and so cannot be
declared at library level. Nor can they be used as proper bodies to complete stubs. Library
subprograms are mainly intended for use as main subprograms and to use an expression function in
that way would be somewhat undignified!

Thus if we wanted to declare a useful function to compute sin 2x from time to time, we cannot write

3.5 Express ion funct ions 77

with Ada.Numerics.Elementary_Functions;
use Ada.Numerics.Elementary_Functions;
function Sin2(X: Float) is -- illegal
 (2.0 * Sin(X) * Cos(X));

but either have to write it out the long way or wrap the expression function in a package.

3.6 Membership tests
Membership tests in Ada 83 to Ada 2005 are somewhat restrictive. They take two forms

 to test whether a value is in a given range, or

 to test whether a value is in a given subtype.

Examples of these are

if M in June .. August then

if I in Index then

However, the restrictions are annoying. If we want to test whether it is safe to eat an oyster (there
has to be an R in the month) then we would really like to write

if M in Jan .. April | Sep .. Dec then -- illegal in Ada 2005

whereas we are forced to write something like

if M in Jan .. April or M in Sep .. Dec then

which means repeating M and then perhaps worrying about whether to use or or or else. Or in this
case we could do the test the other way

if M not in May .. Aug then

What we would really like to do is use the vertical bar as in case statements and aggregates to select
a combination of ranges, subtypes, and values.

Ada 2012 is much more flexible in this area. To see the differences it is probably easiest to look at
the old and new syntax. The relevant old syntax for Ada 2005 is

 relation ::=
 simple_expression [relational_operator simple_expression]
 | simple_expression [not] in range
 | simple_expression [not] in subtype_mark

where the last two productions define membership tests. The syntax regarding choices in aggregates
and case statements in Ada 2005 is

 discrete_choice_list ::= discrete_choice { | discrete_choice}

 discrete_choice ::= expression | discrete_range | others

 discrete_range ::= discrete_subtype_indication | range

The syntax in Ada 2012 is rather different and changes relation to use new productions for
membership_choice_list and membership_choice (this enables the vertical bar to be used in
membership tests). And then a membership choice in turn uses choice_expression and
choice_relation as follows

 relation ::=
 simple_expression [relational_operator simple_expression]
 | simple_expression [not] in membership_choice_list

78 Expressions

 membership_choice_list ::= membership_choice { | membership_choice}

 membership_choice ::= choice_expression | range | subtype_mark

 choice_expression ::=
 choice_relation {and choice_relation}
 | choice_relation {or choice_relation}
 | choice_relation {xor choice_relation}
 | choice_relation {and then choice_relation}
 | choice_relation {or else choice_relation}

 choice_relation ::= simple_expression [relational_operator simple_expression]

The difference between a choice_relation and a relation is that the choice_relation does not include
membership tests. Moreover, discrete_choice is changed to

 discrete_choice ::= choice_expression | discrete_subtype_indication | range | others

the difference being that a discrete_choice now uses a choice_expression rather than an expression
as one of its possibilities.

The overall effect of the changes is to permit the vertical bar in membership tests without getting too
confused by nesting membership tests.

Here are some examples that are now permitted in Ada 2012 but were not permitted in Ada 2005

if N in 6 | 28 | 496 then -- N is small and perfect!

if M in Spring | June | October .. December then
 -- combination of subtype, single value and range

if X in 0.5 .. Z | 2.0*Z .. 10.0 then -- not discrete or static

if Obj in Triangle | Circle then -- with tagged types

if Letter in 'A' | 'E' | 'I' | 'O' | 'U' then -- characters

Membership tests are permitted for any type and values do not have to be static. There is no change
here but it should be remembered that existing uses of the vertical bar in case statements and
aggregates do require the type to be discrete and the values to be static.

Another important point about membership tests is that the membership choices are evaluated in
order and as soon as one is found to be true (or false if not is present) then the relation as a whole is
determined and the other membership choices are not evaluated. This is therefore the same as using
short circuit forms such as or else and so gives another example of expressions which are statically
unevaluated.

There is one very minor incompatibility. In Ada 2005 we can write

X: Boolean := ...
case X is
 when Y in 1 .. 10 => F(10);
 when others => F(5);
end case;

This is rather peculiar. The discrete choice Y in 1 .. 10 must be static. Suppose Y is 5, so that Y in 1
.. 10 is true; then if X is True, we call F(10) whereas if X is false we call F(5). And vice versa for
values of Y not in the range 1 to 10.

3.6 Membership tests 79

This is syntactically illegal in Ada 2012 because a discrete choice can no longer be an expression
and so be a membership test. This was imposed because otherwise we might have been tempted to
write

X: Boolean := ...
case X is
 when Y in 1 .. 10 | 20 => F(10);
 when others => F(5);
end case;

and this is syntactically ambiguous because it might be parsed as (Y in 1 .. 10) | 20 rather than as if
we were allowed to write Y in (1 .. 10) | 20. Although it would be rejected anyway because of the
type mismatch.

A nastier example might make this clearer. Consider

case X is
 when Y in False | True => Do_This;
 when others => Do_That;
end case;

Now suppose that Y itself is of type Boolean. Is it (Y in False) | True rather than Y in (False | True)?
If Y happens to have the value True then the first interpretation gives False | True so whatever the
value of X we always Do_This but in the second interpretation we get just True so if X happens to be
False we Do_That. So it really is seriously ambiguous without any type mismatch in sight and has to
be forbidden.

However, this is clearly very unlikely to be a problem. Case statements over Boolean types are
pretty rare anyway.

There is one other change to membership tests which concerns access types and so will be
considered again in Section 6.4 when we discuss Access types and storage pools. The change is that
membership tests can be used to check accessibility.

It is often the case that one uses a membership test before a conversion to ensure that the conversion
will succeed. This avoids raising an exception which then has to be handled. Thus we might have

subtype Score is Integer range 1 .. 60;
Total: Integer;
S: Score;
... -- compute Total somehow
if Total in Score then
 S := Score(Total) -- reliable conversion
 ... -- now use S knowing that it is OK
else
 ... -- Total was excessive
end if;

If we are indexing some arrays whose range is Score then it is an advantage to use S as an index
since we know it will work and no checks are needed.

However, in Ada 2005, we cannot use a membership test to check accessibility. But Ada 2012
permits this and we can write

type Ptr is access all T;

80 Expressions

procedure P(X: access T) is
 Local: Ptr;
begin
 if X in Ptr then
 Local := Ptr(X); -- reliable conversion
 ... -- now use Ptr knowing that it is OK
 else
 ... -- would have failed accessibility check
 end if;
end P;

We could also do the check in a precondition thus

procedure P(X: access T)
 with Pre => X in Ptr;

Here we have a precondition where the expression is simply a membership test X in Ptr. Of course
this does not avoid the exception because it will raise Assertion_Error if the accessibility is wrong.

Finally, note that two changes have been made in the syntax for relation since ISO standardization.
One concerns the addition of a new form of expression, the raise expression; the other concerns an
ambiguity discovered in membership tests. These changes are described in Section 9.5 of the
Epilogue.

3.7 Qualified expressions
We conclude this discussion of expressions by considering some points regarding names and
primaries.

In Ada 2005 we have

 name ::= direct_name | explicit_dereference | indexed_component
 | slice | selected_component | attribute_reference
 | type_conversion | function_call | character_literal

 primary ::= numeric_literal | null | string_literal | aggregate | name
 | qualified_expression | allocator | (expression)

And in Ada 2012 we have

 name ::= direct_name | explicit_dereference | indexed_component
 | slice | selected_component | attribute_reference
 | type_conversion | function_call | character_literal
 | qualified_expression | generalized_reference | generalized_indexing

 primary ::= numeric_literal | null | string_literal | aggregate | name
 | allocator | (expression) | (conditional_expression) | (quantified_expression)

The important thing to observe here is that qualified_expression has moved from being a form of
primary to being a name.

We also note the addition of conditional_expression and quantified_expression (both in parentheses)
as forms of primary as discussed earlier in this chapter and the addition of generalized_reference and
generalized_indexing as forms of name. These are used in the new forms of iterator briefly alluded
to at the end of the discussion on quantified expressions and which will be discussed in detail in
Section 6.3.

Returning to qualified expressions, the main reason for allowing them as names is to avoid
unnecessary conversions as mentioned in the Introduction.

3.7 Qual i f ied express ions 81

Consider

A: T; -- object of type T
type Art is array (1 .. 10) of T; -- array of type T
function F(X: Integer) return Art;

A function call can be used as a prefix and so a call returning an array can be indexed as in

A := F(3)(7);

which assigns to A the value of the 7th component of the array returned by the call of F.

Now suppose that F is overloaded so that F(3) is ambiguous. The normal solution to such
ambiguities is to use qualification and write Art'(F(3)) as in

A := Art'(F(3))(7); -- illegal in Ada 2005

but this is illegal in Ada 2005 because a qualified expression is not a name and so cannot be used as
a prefix. What one has to do in Ada 2005 is either copy the wretched array (really naughty) or add a
type conversion (a type conversion is a name) thus

A := Art(Art'(F(3)))(7);

This is really gruesome; but in Ada 2012, qualification is permitted as a name so we can simply
write

A := Art'(F(3))(7); -- OK in Ada 2012

Although a qualified expression is now classed as a name rather than a primary, a qualified variable
is not considered to be a variable. As a consequence, a qualified variable cannot be used as the
destination of an assignment or as an actual parameter corresponding to an out or in out parameter.
This would have added complexity for no useful purpose. Ambiguity generally involves calls on
overloaded functions, and the result of a function call is always a constant, so ambiguous names of
variables are unlikely!

Other uses might involve strings which can also give rise to ambiguities. For example

("a string")'Length

is ambiguous (it could be a String or Wide_String). But now we can write

String'("a string")'Length

which was not permitted in Ada 2005.

 83

4 Structure and Visibility
This chapter describes various improvements in the areas of structure and visibility for Ada
2012.
Perhaps the most amazing change is that functions may now have parameters of all modes.
In earlier versions of Ada, functions could only have parameters of mode in and so could
not change variables explicitly passed as parameters; however, they could silently
manipulate global variables in any way whatsoever. In order to ameliorate any risks of
foolishness with this new freedom, there are new rules regarding order dependence.
There are also important improvements to incomplete types which make them much more
useful; these include completion by a private type, their use as parameters and a new form
of generic parameter.
Other improvements include a new form of use clause and changes to extended return
statements.

4.1 Overview of changes
The WG9 guidance document [1] does not specifically identify problems in this area other than
through a general exhortation to remedy shortcomings.

The following Ada Issues cover the relevant changes and are described in detail in this chapter:

 15 Constant return objects

 19 Primitive subprograms are frozen with a tagged type

 32 Extended return statements for class-wide functions

 53 Aliased views of unaliased objects

142 Explicitly aliased parameters

143 In out parameters for functions

144 Detecting dangerous order dependencies

150 Use all type clause

151 Incomplete types as parameters and result

162 Incomplete types completed by partial views

213 Formal incomplete types

214 Default discriminants for limited tagged types

235 Accessibility of explicitly aliased parameters

277 Aliased views of extended return objects

296 Freezing of subprograms with incomplete parameters

These changes can be grouped as follows.

First there is the exciting business of allowing parameters of all modes for functions (143) and the
associated rules to prevent certain order dependences (144). Another change concerning parameters
is permitting explicitly aliased parameters (142, 235).

84 Structure and v is ibi l i ty

There are then a number of improvements in the area of incomplete types (151, 162) including the
ability to permit them as formal generic parameters (213, 296). There are also related changes to the
freezing rules (19).

There is also a minor change regarding discriminants (214).

The existing two forms of use clause (use package clause and use type clause) are augmented by a
third form: the use all type clause (150).

Finally, there are a number of changes (corrections really) to extended return statements which were
introduced in Ada 2005 (15, 32, 277). An associated change is the introduction of the idea of an
immutably limited type (53).

4.2 Subprogram parameters
The main topic here is the fact that functions (but not operators) in Ada 2012 can have parameters of
any mode.

This is a topic left over from Ada 2005. The epilogue to the Rationale for Ada 2005 [15] discusses a
number of topics that were abandoned and in the case of function modes says:

"Clearly, Ada functions are indeed curious. But strangely this AI (that is AI95-323) was abandoned
quite early in the revision process on the grounds that it was 'too late'. (Perhaps too late in this
context meant 25 years too late.)" It was not possible to agree on a way forward and so effort was
devoted to other topics.

But mists clear with time. The big concern was that allowing parameters of all modes might open
the door to dangerous programming practices but a solution to that was found in the introduction of
stricter rules preventing many order dependences.

It is instructive to quickly go through the various historical documents.

A probably little known document is one written in 1976 by David Fisher of the Institute for
Defense Analyses [16] which provided the foundation for the requirements for the development of a
new language. It doesn't seem to distinguish between procedures and functions; it does mention the
need for parameters which are constant and those which effectively rename a variable. Moreover, it
does say (item C1 on page 81): Side effects which are dependent on the evaluation order among the
arguments of an expression will be evaluated left-to-right. This does not actually require left-to-right
evaluation but the behaviour must be as if it were. I have always thought it tragic that this was not
observed.

This document was followed by a series known as Strawman, Woodenman, Tinman, Ironman [17]
and finishing with Steelman [12].

The requirement on left-to-right evaluation remained in Tinman and was even stronger in Ironman
but was somewhat weakened in Steelman to allow instrumentation and ends with a warning about
being erroneous.

Further requirements are introduced in Ironman which requires both functions and procedures as we
know them. Moreover, Ironman has a requirement about assignment to variables non-local to a
function; they must be encapsulated in a region that has no calls on the function; this same
requirement notes that it implies that functions can only have input parameters. This requirement
does not seem to have carried forward to Steelman.

However, Ironman also introduces a requirement on restrictions to prevent aliasing. One is that the
same actual parameter of a procedure cannot correspond to more than one input-output parameter.
This requirement does survive into Steelman. But, it only seems to apply to procedures and not to

4.2 Subprogram parameters 85

functions and Steelman appears not to have noticed that the implied requirement that functions can
only have input parameters has vanished.

It interesting to then see what was proposed in the sequence of languages leading to Ada 83, namely,
Preliminary Green [18], Green [19], Preliminary Ada [20], and Ada [21]. Note that Preliminary
Green was based on Ironman whereas Green was based on Steelman.

In Preliminary Green we find procedures and functions. Procedures can have parameters of three
modes, in, out and access (don't get excited, access meant in out). Functions can only have
parameters of mode in. Moreover,

 side effects to variables accessible at the function call are not allowed. In particular, variables
that are global to the function body may not be updated in the function body. The rationale for
Preliminary Green makes it quite clear that functions can have no side effects whatsoever.

In Green we find the three modes in, out, and in out. But the big difference is that as well as
procedures and functions as in preliminary Green, there are now value returning procedures such as

procedure Random return Real range –1.0 .. 1.0;

The intent is that functions are still free of all side effects whereas value returning procedures have
more flexibility. However, value returning procedures can only have parameters of mode in and

 assignments to global variables are permitted within value returning procedures. Calls of such
procedures are only valid at points of the program where the corresponding variables are not
within the scope of their declaration. The order of evaluation of these calls is strictly that given
in the text of the program. Calls to value returning procedures are only allowed in assignment
statements, initializations and procedure calls.

The rationale for Green notes that if you want to instrument a function then use a pragma. It also
notes that functions

 with arbitrary side effects would undermine the advantage of the functional approach to
software. In addition it would complicate the semantics of all language structures where
expressions involving such calls may occur. Hence this form of function is not provided.

And now we come to Ada herself. There are manuals dated July 1979 (preliminary Ada), July 1980
(draft mil-std), July 1982 (proposed ANSI standard), and January 1983 (the ANSI standard usually
known as Ada 83).

In Preliminary Ada, we have procedures, functions and value returning procedures exactly as in
Green. Indeed, it seems that the only difference between Green and Preliminary Ada is that the
name Green has been converted to Ada.

But the 1980 Ada manual omits value returning procedures and any mention of any restrictions on
what you can do in a function. And by 1982 we find that we are warned that parameters can be
evaluated in any order and so on.

The Rationale for Ada 83 [6] didn't finally emerge until 1986 and discusses briefly the reason for the
change which is basically that benevolent side effects are important. It concludes by quoting from a
paper regarding Algol 60 [22]

 The plain fact of the matter is (1) that side-effects are sometimes necessary, and (2)
programmers who are irresponsible enough to introduce side-effects unnecessarily will soon
lose the confidence of their colleagues and rightly so.

However, an interesting remark in the Rationale for Ada 83 in the light of the change in Ada 2012 is

86 Structure and v is ibi l i ty

 The only limitation imposed in Ada on functions is that the mode of all parameters must be in:
it would not be logical to allow in out and out parameters for functions in a language that
excludes nested assignments within an expression.

Hmm. That doesn't really seem to follow. Allowing assignments in expressions as in C is obnoxious
and one of the sources of errors in C programs. It is not so much that permitting side-effects in
expressions via functions is unwise but more that treating the result of an assignment as a value
nested within an expression is confusing. Such nested constructions are naturally still excluded from
Ada 2012 and so it is very unlikely that the change will be regretted.

Now we must turn to the question of order dependences. Primarily, to enable optimization, Ada does
not define the order of evaluation of a number of constructions. These include

 the parameters in a subprogram or entry call,

 the operands of a binary operator,

 the destination and value in an assignment,

 the components in an aggregate,

 the index expressions in a multidimensional name,

 the expressions in a range,

 the barriers in a protected object,

 the guards in a select statement,

 the elaboration of library units.

The expressions involved in the above constructions can include function calls. Indeed, as AI-144
states "Arguably, Ada has selected the worst possible solution to evaluation order dependences (by
not specifying an order of evaluation), it does not detect them in any way, and then says that if you
depend upon one (even if by accident), your code will fail at some point in the future when your
compiler changes. Something should be done about this."

It is far too late to do anything about specifying the order of evaluation so the approach taken is to
prevent as much aliasing as possible since aliasing is an important cause of order of evaluation
problems. Ada 2012 introduces rules for determining when two names are "known to denote the
same object".

Thus they denote the same object if

 both names statically denote the same stand-alone object or parameter; or

 both names are selected components, their prefixes are known to denote the same object, and
their selector names denote the same component.

and so on with similar rules for dereferences, indexed components and slices. There is also a rule
about renaming so that if we have

C: Character renames S(5);

then C and S(5) are known to denote the same object. The index naturally has to be static.

A further step is to define when two names "are known to refer to the same object". This covers
some cases of overlapping. Thus given a record R of type T with a component C, we say that R and
R.C are known to refer to the same object. Similarly with an array A we say that A and A(K) are
known to refer to the same object (K does not need to be static in this example).

Given these definitions we can now state the two basic restrictions.

4.2 Subprogram parameters 87

The first concerns parameters of elementary types:

 For each name N that is passed as a parameter of mode in out or out to a call of a subprogram
S, there is no other name among the other parameters of mode in out or out to that call of S
that is known to denote the same object.

Roughly speaking this comes down to saying two or more parameters of mode out or in out of an
elementary type cannot denote the same object. This applies to both functions and procedures.

This excludes the example given in the Introduction which was

procedure Do_It(Double, Triple: in out Integer) is
begin
 Double := Double * 2;
 Triple := Triple * 3;
end Do_It;

with

Var: Integer := 2;
...
Do_It(Var, Var); -- illegal in Ada 2012

The key problem is that parameters of elementary types are always passed by copy and the order in
which the parameters are copied back is not specified. Thus Var might end up with either the value
of Double or the value of Triple.

The other restriction concerns constructions which have several constituents that can be evaluated in
any order and can contain function calls. Basically it says:

 If a name N is passed as a parameter with mode out or in out to a function call that occurs in
one of the constituents, then no other constituent can involve a name that is known to refer to
the same object.

Constructions cover many situations such as aggregates, assignments, ranges and so on as listed
earlier.

This rule excludes the other example in the Introduction, namely, the aggregate

(Var, F(Var)) -- illegal in Ada 2012

where F has an in out parameter.

The rule also excludes the assignment

Var := F(Var); -- illegal

if the parameter of F has mode in out. Remember that the destination of an assignment can be
evaluated before or after the expression. So if Var were an array element such as A(I) then the
behaviour could vary according to the order. To encourage good practice, it is also forbidden even
when Var is a stand-alone object.

Similarly, the procedure call

Proc(Var, F(Var)); -- illegal

is illegal if the parameter of F has mode in out. Examples of overlapping are also forbidden such as

ProcA(A, F(A(K)); -- illegal

ProcR(R, F(R.C)); -- illegal

88 Structure and v is ibi l i ty

assuming still that F has an in out parameter and that ProcA and ProcR have appropriate profiles
because, as explained above, A and A(K) are known to refer to the same object as are R and R.C.

On the other hand

Proc(A(J), F(A(K)); -- OK

is permitted provided that J and K are different objects because this is only a problem if J and K
happen to have the same value.

For more details the reader is referred to the AI. The intent is to detect situations that are clearly
troublesome. Other situations that might be troublesome (such as if J and K happen to have the same
value) are allowed, since to prevent them would make many programs illegal that are not actually
dubious. This would cause incompatibilities and upset many users whose programs are perfectly
correct.

The other change in Ada 2012 concerning parameters is that they may be explicitly marked aliased
thus

procedure P(X: aliased in out T; ...);

As a consequence within P we can write X'Access. Recall that tagged types were always considered
implicitly aliased anyway and always passed by reference. If the type T is a by-copy type such as
Integer, then adding aliased causes it to be passed by reference. (So by-copy types are not always
passed by copy!)

The possibility of permitting explicitly aliased function results such as

function F(...) return aliased T; -- illegal Ada 2012

was considered but this led to difficulties and so was not pursued.

The syntax for parameter specification is modified thus

 parameter_specification ::=
 defining_identifier_list: [aliased] mode [null exclusion] subtype_mark
 [:= default_expression]
 | defining_identifier_list: access_definition [:= default_expression]

showing that aliased comes first as it does in all contexts where it is permitted.

The rules for mode conformance are modified as expected. Two profiles are only mode conformant
if both or neither are explicitly marked as aliased. Although adding aliased for a tagged type
parameter makes little difference since tagged types are implicitly aliased, if this is done for a
subprogram declaration then it must be done for the corresponding body as well.

There are (of course) rules regarding accessibility; these are much as expected although a special
case arises in function return statements. These allow a function to safely return an access to a part
of an explicitly aliased parameter and be assured that the result will not outlive the parameter. As
usual, if the foolish programmer does something silly, the compiler will draw attention to the error.

Explicitly aliased parameters are used in the functions Reference (and Constant_Reference)
declared in the various container packages. See Section 6.3 on Iteration and Section 8.3 on Iterating
and updating containers.

4.3 Incomplete types
Incomplete types in Ada 83 were very incomplete. They were mostly used for the traditional linked
list such as

4.3 Incomplete types 89

type Cell; -- incomplete
type Cell_Ptr is access Cell;

type Cell is -- the completion
 record
 Next: Cell_Ptr;
 Element: Pointer;
 end record;

The incomplete type could only be used in the declaration of an access type. Moreover, the
incomplete declaration and its completion had to be in the same list of declarations. However, if the
incomplete declaration is in a private part then the completion can be deferred to the body; this is the
so-called Taft Amendment added to Ada 83 at the last minute.

Ada 95 introduced tagged types and generalized access types and so made the language much more
flexible but made no changes to incomplete types as such. However, it soon became clear that the
restrictive nature of incomplete types was a burden regarding mutually dependent types and was a
key issue in the requirements for Ada 2005.

The big step forward in Ada 2005 was the introduction of the limited with clause. This enables a
package to have an incomplete view of a type in another package and solves many problems of
mutually recursive types.

However, the overall rule remained that an incomplete type could only be completed by a full type
declaration and, moreover, a parameter could not (generally) be of an incomplete type. This latter
restriction encouraged the use of access parameters.

As mentioned in the Introduction, the first rule prevented the following

type T1;
type T2 (X: access T1) is private;
type T1 (X: access T2) is private; -- illegal in Ada 2005

since the completion of T1 could not be by a private type.

This is changed in Ada 2012 so that an incomplete type can be completed by any type (other than
another incomplete type). Note especially that an incomplete type can be completed by a private
extension as well as by a private type.

The other major problem in Ada 2005 was that with mutually dependent types in different packages
we could not use incomplete types as parameters because it was not known whether they were by-
copy or by-reference. Of course, if they were tagged then we did know they were by reference but
that was a severe restriction.

The need to know whether parameters are by reference or by copy was really a red herring. The
model used for parameter passing in versions of Ada up to and including Ada 2005 was basically
that at the point of the declaration of a subprogram we need to have all the information required to
call the subprogram. Thus we needed to know how to pass parameters and so whether they were by
reference or by copy.

But this is quite unnecessary; we don't need to know the mechanisms involved until a point where
the subprogram is actually called or the body itself is encountered since it is only at those points that
the parameter mechanism is really required. It is only at those points that the compiler has to grind
out the code for the call or for the body.

So the rules in Ada 2012 are changed to use this "when we need to know" model. This is discussed
in AI-19 which is actually a binding interpretation and thus retrospectively applies to Ada 2005 as

90 Structure and v is ibi l i ty

well. This is formally expressed by the difference between freezing a subprogram and freezing its
profile. This was motivated by a problem with tagged types whose details need not concern us.

As a highly benevolent consequence, we are allowed to use incomplete types as both parameters and
function results provided that they are fully defined at the point of call and at the point where the
body is defined.

But another consequence of this approach is that we cannot defer the completion of an incomplete
type declared in a private part to the corresponding body. In other words, parameters of an
incomplete type are allowed provided the Taft Amendment is not used for completing the type.

The other exciting change regarding incomplete types is that in Ada 2012 they are allowed as
generic parameters. In Ada 2005 the syntax is

 formal_type_declaration ::=
 type defining_identifier [discriminant_part] is formal_type_definition ;

whereas in Ada 2012 we have

 formal_type_declaration ::=
 formal_complete_type_declaration
 | formal_incomplete_type_declaration

 formal_complete_type_declaration ::=
 type defining_identifier [discriminant_part] is formal_type_definition ;

 formal_incomplete_type_declaration ::=
 type defining_identifier [discriminant_part] [is tagged] ;

So the new kind of formal generic parameter has exactly the same form as the declaration of an
incomplete type. It can be simply type T; or can require that the actual be tagged by writing type T
is tagged; – and in both cases a discriminant can be given.

A formal incomplete type can then be matched by any appropriate incomplete type. If the formal
specifies tagged, then so must the actual. If the formal does not specify tagged then the actual
might or might not be tagged. Of course, a formal incomplete type can also be matched by an
appropriate complete type. And also, in all cases, any discriminants must match as well.

An example of the use of a formal incomplete type occurs in the package Ada.Iterator_Interfaces
whose generic formal part is

generic
 type Cursor;
 with function Has_Element(Position: Cursor) return Boolean;
package Ada.Iterator_Interfaces is ...

The formal type Cursor is incomplete and can be matched by an actual incomplete type. The details
of this package will be described in Section 6.3 on Iteration.

Another example is provided by a signature package as mentioned in the Introduction. We can write

generic
 type Element;
 type Set;
 with function Empty return Set is <>;
 with function Unit(E: Element) return Set is <>;
 with function Union(S, T: Set) return Set is <>;
 with function Intersection(S, T: Set) return Set is <>;

4.3 Incomplete types 91

 ...
package Set_Signature is end;

Such a signature generic can be instantiated with an actual set type and then the instance can be
passed into other generics that have a formal package such as

generic
 type VN is private;
 type VN_Set is private;
 with package Sets is
 new Set_Signature(Element => VN, Set => VN_Set, others => <>);
 ...
package Analyse is ...

This allows the construction of a generic that needs a Set abstraction such as a flow analysis
package. Remember that the purpose of a signature is to group several entities together and to check
that various relationships hold between the entities. In this case the relationships are that the types
Set and Element do have the various operations Empty, Unit and so on.

The set generic could be included in a set container package thus

generic
 type Element is private;
package My_Sets is
 type Set is tagged private;

 function Empty return Set;
 function Unit(E: Element) return Set;
 function Union(S, T: Set) return Set;
 function Intersection(S, T: Set) return Set;
 ...
 package My_Set is new Set_Signature(Element, Set);
private
 ...
end My_Sets;

The key point is that normally an instantiation freezes a type passed as a generic parameter. But in
the case of a formal incomplete untagged type, this does not happen. Hence the actual in the
instantiation of Set_Signature in the generic package My_Sets can be a private type such as Set.

This echoes back to the earlier discussion of changing the freezing rules. We cannot call a
subprogram with untagged incomplete parameters (whether formal or not) because we do not know
whether they are to be passed by copy or by reference. But we can call a subprogram with tagged
incomplete parameters because we do know that they are passed by reference (and this has to remain
true for compatibility with Ada 2005). So just in case the actual subprogram in the tagged case is
called within the generic, the instantiation freezes the profile. But in the untagged case, we know
that the subprogram cannot be called and so there is no need to freeze the profile.

This means that the type Set should not be given as tagged incomplete in the package Set_Signature
since we could not then use the signature in the package My_Sets.

If a subprogram has both tagged and untagged formal incomplete parameters then the untagged
incomplete parameters win and the subprogram cannot be called.

(If this is all too confusing, do not worry, the compiler will moan at you if you make a mistake.)

92 Structure and v is ibi l i ty

Another rule regarding incomplete formal types is that the controlling type of a formal abstract
subprogram cannot be incomplete.

4.4 Discriminants
There is one minor change in this area which was mentioned in the Introduction.

In Ada 2005, a discriminant can only have a default if it is not tagged. But in Ada 2012, a default is
also permitted in the case of a limited tagged type.

Ada typically uses defaults as a convenience so that in many cases standard information can be
omitted. Thus it is convenient that the procedure New_Line has a default of 1 since it would be
boring to have to write New_Line(1); all the time.

In the case of discriminants however, a default as in

type Polynomial(N: Index := 0) is
 record
 A: Integer_Vector(0 .. N);
 end record;

also indicates that the type is mutable. This means that the value of the discriminant of an object of
the type can be changed by a whole record assignment. However, tagged types in Ada 2005 never
have defaults because we do not want tagged types to be mutable. On the other hand, if a tagged
type is limited then it is immutable anyway. And so it was concluded that there is no harm in
permitting a limited tagged type to have a default discriminant.

This may seem rather academic but the problem arose in designing containers for queues. It was felt
desirable that the protected type Queue should have a discriminant giving its ceiling priority and
that this should have a default for convenience. As illustrated in the Introduction this resulted in a
structure as follows

generic
 with package Queue_Interfaces is new ...
 Default_Ceiling: Any_Priority := Priority'Last;
package AC.Unbounded_Synchronized_Queues is
 ...
 protected type Queue(Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with ...

Now the problem is that a protected type such as Queue which is derived from an interface is
considered to be tagged because interfaces are tagged. On the other hand a protected type is always
limited and its discriminant provides a convenient way of providing the ceiling priority. So there
was a genuine need for a change to the rule.

Note incidentally that the default is itself provided with the default value of Priority'Last since it is a
generic parameter with its own default.

4.5 Use clauses
Ada 2012 introduces a further form of use clause. In order to understand the benefit it is perhaps
worth just recalling the background to this topic.

The original use clause in Ada 83 made everything in a package directly visible. Consider the
following package

4.5 Use clauses 93

package P is
 I, J, K: Integer;

 type Colour is (Red, Orange, Yellow, Green, Blue, ...);
 function Mix(This, That: Colour) return Colour;

 type Complex is
 record
 Rl, Im: Float;
 end record;
 function "+"(Left, Right: Complex) return Complex;
 ...
end P;

Now suppose we have a package Q which manipulates entities declared in P. We need a with clause
for P, thus

with P;
package Q is ...

With just a with clause for P we have to refer to entities in P using the prefix P. So we get
statements and declarations in Q such as

P.I := P.J + P.K;

Mucky: P.Colour := P.Mix(P.Red, P.Green);

W: P.Complex := (1.0, 2.0);
Z: P.Complex := (4.0, 5.0);
D: P.Complex := P."+"(W, Z);

This is generally considered tedious especially if the package name is not P but
A_Very_Long_Name. However, adding a package use clause to Q thus

with P; use P;
package Q ...

enables the P prefix to be omitted and in particular allows infix notation for operators so we can
now simply write

D: Complex := W + Z;

But as is well known, the universal use of such use clauses introduces ambiguity (if the same
identifier is in two different packages and we have a use clause for both), obscurity (you can't find
the wretched declaration of Red) and possibly a maintenance headache (another package is added
which duplicates some identifiers). So there is a school of thought that use clauses are bad for you.

However, although the prefix denoting the package is generally beneficial it is a pain to be forced to
always use the prefix notation for operators. So in Ada 95, the use type clause was added enabling
us to write

with P; use type P.Complex;
package Q is ...

This has the effect that only the primitive operators of the type Complex are directly visible. So we
can now write

D: P.Complex := W + Z;

Note that the type name Complex is not itself directly visible so we still have to write P.Complex in
the declaration of D.

94 Structure and v is ibi l i ty

However, some users still grumbled. Why should only those primitive operations that happen to be
denoted by operators be visible? Why indeed? Why cannot Mucky be declared similarly without
using the prefix P for Mix, Red and Green?

It might be worth briefly recalling exactly which operations of a type T are primitive operations of
T. They are basically

 predefined operations such as "=" and "+",

 subprograms declared in the same package as T and which operate on T,

 enumeration literals of T,

 for a derived type, inherited or overridden subprograms.

The irritation is solved in Ada 2012 by the use all type clause which makes all primitive operations
visible. (Note another use for the reserved word all.)

So we can write

with P; use all type P.Colour;
package Q is ...

and now within Q we can write

Mucky: P.Colour := Mix(Red, Green);

Thus the enumeration literals such as Red are made directly visible as well as obvious primitive
subprograms such as Mix.

Another impact concerns tagged types and in particular operations on class wide types.

Remember that subprograms with a parameter (or result) of type T'Class are not primitive
operations unless they also have a parameter (or result of type T) as well.

Actually it is usually very convenient that operations on a class wide type are not primitive
operations because it means that they are not inherited and so cannot be overridden. Thus we are
assured that they do apply to all types of the class.

So, suppose we have

package P is
 type T is tagged private;
 procedure Op1(X: in out T);
 procedure Op2(Y: in T; Z: out T);
 function Fop(W: T) return Integer;
 procedure List(TC: in T'Class);
private
 ...
end P;

Then although List is not a primitive operation of T it will certainly look to many users that it
belongs to T in some broad sense. Accordingly, writing use all type P.T; makes not only the
primitive operations such as Op1, Op2 and Fop, visible but it also makes List visible as well.

Note that this is the same as the rule regarding the prefixed form of subprogram calls which can also
be used for both primitive operations and class wide operations. Thus given an object A of type T, as
well as statements A.Op1; and A.Op2(B); and a function call A.Fop we can equally write

A.List; -- prefixed call of class wide procedure

Moreover, suppose we declare a type NT in a package NP thus

4.5 Use clauses 95

package NP is
 type NT is new T with ...
 ...
end NP;

If we have an object AN of type NT then not only can we use prefixed calls for inherited and
overridden operations but we can also use prefixed calls for class wide operations in ancestor
packages such as P. So we can write

AN.List; -- prefixed call of List in ancestor package

Similarly, writing use all type NP.NT; on Q makes the inherited (or overridden) operations Op1,
Op2 and Fop visible and also makes the class wide operation List declared in P visible. We do not
also have to write use all type P.T; on Q as well.

We conclude by remarking that the maintenance problem of name clashes really only applies to use
package clauses. In the case of use type and use all type clauses, the entities made visible are
overloadable and a clash only occurs if two have the same profile which is very unlikely and almost
inevitably indicates a bug.

4.6 Extended return statements
The final topic in this chapter is the extended return statement. This was introduced in Ada 2005
largely to solve problems with limited types. However, some glitches have come to light and these
are corrected in Ada 2012.

A description of the reasons for and general properties of the extended return statement will be
found in [15].

The syntax for extended return statement in Ada 2005 as found in [5] is

 extended_return_statement ::=
 return defining_identifier: [aliased] return_subtype_indication [:= expression] [do
 handled_sequence_of_statements
 end return] ;

Before going further, it should be mentioned that there was some confusion regarding limited types
and so the term immutably limited was introduced in the course of the maintenance of Ada 2005.
There were various problems. Basically, limitedness is a property of a view of a type. Thus even in
Ada 83 a private type might be limited but the full view found in the private part would not be
limited. Ada 95 introduced explicitly limited types. Ada 2005 introduced coextensions and these
could even include such obviously limited things as task types thus adding a limited part to what
was otherwise a seemingly nonlimited type. It became clear that it was necessary to introduce a term
which meant that a type was really and truly limited and could not subsequently become nonlimited
for example in a private part or in a child unit. So a type is immutably limited if

 it is an explicitly limited record type,

 it is a task type, protected type or synchronized interface,

 it is a non-formal limited private type that is tagged or has an access discriminant with a
default expression,

 it is derived from an immutably limited type.

It was then realised that there were problems with extended return statements containing an explicit
aliased. Consequently, it was decided that there was really no need for aliased if there was a rule
that immutably limited return objects were implicitly aliased. So aliased was removed from the
syntax. However, some users had already written aliased and this would have introduced an

96 Structure and v is ibi l i ty

irritating incompatibility. So finally it was decided that aliased could be written but only if the type
were immutably limited.

Another small problem concerned constants. Thus we might write

return X: T do
 ... -- compute X
end return;

However, especially in the case of a limited type LT, we might also give the return object an initial
value, thus

return X: LT := (A, B, C) do
 ... -- other stuff
end return;

Now it might be that although the type as a whole is limited one or more of its components might
not be and so could be manipulated in the sequence of statements. But if we want to ensure that this
does not happen, it would be appropriate to indicate that X were constant. But, almost surely by an
oversight, we cannot do that since it is not permitted by the syntax. So the syntax needed changing
to permit the addition of constant.

To aid the description the syntax in Ada 2012 is actually written as two productions as follows

 extended_return_object_declaration ::=
 defining_identifier: [aliased] [constant] return_subtype_indication [:= expression]

 extended_return_statement ::=
 return extended_return_object_declaration [do
 handled_sequence_of_statements
 end return] ;

The other small change to the extended return statement concerns the subtype give in the profile of
the function and that in the extended return statement itself. The result type of the function can be
constrained or unconstrained but that given in the extended return statement must be constrained.

This can be illustrated by considering array types. (These examples are from [15].) Suppose we have

type UA is array (Integer range <>) of Float;
subtype CA is UA(1 .. 10);

then we can write

function Make(...) return CA is
begin
 ...
 return R: UA(1 .. 10) do -- statically matches
 ...
 end return;
end Make;

This is allowed because the subtypes statically match.

If the subtype in the function profile is unconstrained then the result must be constrained either by
its subtype or by its initial value. For example

function Make(...) return UA is
begin
 ...
 return R: UA(1 .. N) do

4.6 Extended return statements 97

 ...
 end return;
end Make;

and here the result R is constrained by its subtype. A similar situation can arise with records with
discriminants. Thus we can have

type Person(Sex: Gender) is ... ;

function F(...) return Person is
begin
 if ... then
 return R: Person(Sex => Male) do
 ...
 end return;
 else
 return R: Person(Sex => Female) do
 ...
 end return;
 end if;
end F;

which shows that we have the possibility of returning a person of either gender.

However, what is missing from Ada 2005 is that we can have analogous situations with tagged types
in that a function might wish to return a value of some type in a class.

So we would like to write things such as

function F(...) return Object'Class is
begin
 if ... then
 return C: Circle do
 ...
 end return;
 elsif ... then
 return S: Square do
 ...
 end return;
 end if;
end F;

This is not permitted in Ada 2005 which required the types to be the same. This can be overcome by
writing

return C: Object'Class := Circle_Func do
 ...
end return;

where Circle_Func is some local function that returns the required object of type Circle.

This is all rather irksome so the wording is changed in Ada 2012 to say that in this situation the
subtype in the extended return statement need not be the same as that in the profile but simply must
be covered by it. There are also related slight changes to the accessibility rules.

 99

5 Tasking and Real-Time
This chapter describes various improvements in the tasking and real-time areas for Ada
2012.
The most important is perhaps the recognition of the need to provide control over task
allocation on multiprocessor architectures.
There are also various improvements to the scheduling mechanisms and control of budgets
with regard to interrupts.
An interesting addition to the core language is the ability to specify restrictions on how a
procedure of a synchronized interface is to be implemented.

5.1 Overview of changes
The WG9 guidance document [1] identifies real-time systems as an important application area for
Ada. In particular it says that attention should be paid to

 improving the capabilities of Ada on multicore and multiprocessor architectures.

Ada 2012 does indeed address the issues of multiprocessors as well as other real-time
improvements.

The following Ada Issues cover the relevant changes and are described in detail in this chapter:

 30 Requeue on synchronized interfaces

117 Memory barriers and Volatile objects

166 Yield for non-preemptive dispatching

167 Affinities for programs on multiprocessor platforms

168 Extended suspension objects

169 Group budgets for multiprocessors

170 Monitoring time spent in interrupt handlers

171 Pragma CPU and Ravenscar profile

174 Implement task barriers in Ada

215 Pragma Implemented should be an aspect

278 Set_CPU called during a protected action

These changes can be grouped as follows.

First there are a number of improvements and additions to the scheduling mechanisms (166, 168,
174). These are in the Real-Time Systems annex (D).

A number of additions recognise the importance of the widespread introduction of multiprocessors
and provide mechanisms for associating tasks with particular CPUs or groups of CPUs known as
dispatching domains (167, 171, 278). There is an associated change to group budgets which were
introduced in Ada 2005 (169). These changes also concern Annex D.

Other changes concerning budgets relate to the time spent in interrupt handlers (170). In some
systems it may be possible to account for time spent in individual interrupts whereas in others it
might only be possible to account for time spent in interrupts as a whole. Again these changes
concern Annex D.

100 Tasking and Real-Time

The definition of Volatile is updated to take account of multiprocessors (117).

Finally, there are changes to the core language regarding synchronized interfaces and requeue (30,
215).

5.2 Scheduling
Ada 83 was remarkably silent about the scheduling of tasks. It muttered about tasks being
implemented on multiprocessors or using interleaved execution on a single processor. But it said
nothing about how such interleaving might be achieved. It also indicated that a single Ada task
might be implemented using several actual processors if the effect would be the same.

Ada 83 introduced the pragma Priority and stated

 if two task with different priorities are both eligible for execution ... then it cannot be the case
that the task with the lower priority is executing while the task with the higher priority is not.

The Rationale for Ada 83 says that this rule requires preemptive scheduling. But it says nothing
about what happens if several tasks have the same priority. It does however have a dire warning

 Priorities are provided as a tool for indicating relevant degrees of urgency and on no account
should their manipulation be used as a technique for attempting to obtain mutual exclusion.

So, apart from the existence of priorities, implementations were free to use whatever scheduling
algorithms they liked such as Round Robin time slicing or simply running until blocked.

There was also a bit of a mystery about the delay statement. On the one hand Ada 83 says

 suspends execution of the task for at least the duration specified.

The words "at least" caused much confusion. The intent was simply a reminder that a task might not
get the processor back at the end of the interval because another task might have become eligible for
execution meanwhile. It did not mean that the implementation could willy-nilly delay execution for
a longer time.

Another mystery surrounded the meaning of

delay 0.0;

Ada 83 did state that delay with a negative value is equivalent to a delay statement with a zero
value. But it did not say what a delay with a zero value meant. The Rationale remained mute on the
topic as well.

However, a general convention seemed to arise that delay 0.0; indicated that the task was willing to
relinquish the processor and so force a scheduling point.

Ada 95 brought some clarity to the situation in the new Real-Time Systems annex by introducing
the pragma Task_Dispatching_Policy and the standard argument of FIFO_Within_Priorities. But the
core language did not clarify the effect of a delay of zero. It does say that a delay causes a task to be
blocked but if the expiration time has already passed, the task is not blocked. So clearly a negative
delay does not block. However, it still has the note that a negative delay is equivalent to delay zero
so we could deduce that delay zero does not block and so cannot force scheduling.

But help is at hand in the Real-Time Systems annex where it clearly states that even if a delay does
not result in blocking, nevertheless the task goes to the end of the ready queue for its active priority.
But that is only for the standard policy of FIFO_Within_Priorities. If a malevolent vendor introduces
a curious policy called perhaps Dodgy_Scheduling then it need not follow this rule.

Ada 2005 added further policies namely

 Non_Preemptive_FIFO_Within_Priorities

5.2 Schedul ing 101

 Round_Robin_Within_Priorities

 EDF_Across_Priorities

In the case of Non_Preemptive_FIFO_Within_Priorities a non-blocking delay also sends the task to
the end of the ready queue for its active priority. However, a non-blocking delay has absolutely no
effect in the case of Round_Robin_Within_Priorities and EDF_Across_Priorities.

The introduction of non-preemptive dispatching revealed a shortcoming that is cured in Ada 2012.
The problem is that in such a system there is a need to be able to indicate that a task is willing to be
preempted by a task of a higher priority but not by one of the same priority. So somehow we need to
say Yield_To_Higher.

Moreover, some felt that it was time to get rid of this strange habit of writing delay 0.0; to indicate a
scheduling point. Those restricted to the Ravenscar profile, had been forced to write something
really gruesome such as

delay until Ada.Real_Time.Time_First;

Accordingly, the procedure Yield is added to the package Ada.Dispatching so that it becomes

package Ada.Dispatching is
 pragma Preelaborate(Dispatching);
 procedure Yield;
 Dispatching_Policy_Error: exception;
end Ada.Dispatching;

Calling Yield is exactly equivalent to delay 0.0; and similarly causes a bounded error if called from
within a protected operation.

There is also a new child package thus

package Ada.Dispatching.Non_Preemptive is
 pragma Preelaborate(Non_Preemptive);
 procedure Yield_To_Higher;
 procedure Yield_To_Same_Or_Higher renames Yield;
end Ada.Dispatching.Non_Preemptive;

Calling Yield_To_Higher provides the additional facility required for non-preemptive scheduling.
Note that, unlike Yield, it can be called from within a protected operation and does not cause a
bounded error.

The pedantic programmer can call the precisely named Yield_To_Same_Or_Higher which simply
renames Yield in the parent package.

Incidentally, note that since Yield has a side effect, Ada.Dispatching has been downgraded to
preelaborable whereas it was pure in Ada 2005.

We now turn to consider an interaction between suspension objects introduced in Ada 95 and EDF
scheduling introduced in Ada 2005.

Remember that suspension objects are manipulated by the following package

package Ada.Synchronous_Task_Control is
 type Suspension_Object is limited private;
 procedure Set_True(S: in out Suspension_Object);
 procedure Set_False(S: in out Suspension_Object);
 function Current_State(S: Suspension_Object) return Boolean;
 procedure Suspend_Until_True(S: in out Suspension_Object);
private

102 Tasking and Real-Time

 ...
end Ada.Synchronous_Task_Control;

The state of a suspension object can be set by calls of Set_True and Set_False. The key feature is
that the procedure Suspend_Until_True enables a task to be suspended until the suspension object is
set true by some other task. Thus this provides a neat mechanism for signalling between tasks.

Earliest Deadline First (EDF) scheduling is manipulated by the following child package of
Ada.Dispatching introduced in Ada 2005 (with use clauses added to save space)

with Ada.Real_Time; with Ada.Task_Identification;
use Ada.Real_Time; use Ada.Task_Identification;
package Ada.Dispatching.EDF is
 subtype Deadline is Ada.Real_Time.Time;
 Default_Deadline: constant Deadline := Time_Last;

 procedure Set_Deadline(D: in Deadline; TT: in Task_Id := Current_Task);
 procedure Delay_Until_And_Set_Deadline(Delay_Until_Time: in Time;
 Deadline_Offset: in Time_Span);
 function Get_Deadline(T: Task_Id := Current_Task) return Deadline;
end Ada.Dispatching.EDF;

The procedure Delay_Until_And_Set_Deadline is the key feature. It enables a task to be blocked
until the time given by the parameter Delay_Until_Time and sets the deadline so that it is
Deadline_Offset after that.

But what is missing in Ada 2005 is the ability for a sporadic task triggered by a suspension object to
have its deadline set in a similar manner. This is remedied in Ada 2012 by the addition of the
following child package

with Ada.Real_Time;
package Ada.Synchronous_Task_Control.EDF is
 procedure Suspend_Until_True_And_Set_Deadline(S: in out Suspension_Object;
 TS: in Ada.Real_Time.Span);
end Ada.Synchronous_Task_Control.EDF;

This enables a task to be blocked until the suspension object S is set true; it then becomes ready with
a deadline of Ada.Real_Time.Clock + TS.

The other new feature concerning scheduling in Ada 2012 is the addition of a package
Ada.Synchronous_Barriers. This enables many tasks to be blocked and to be released together.

The rationale for needing this facility is explained in the AI concerned. As general purpose
computing is moving to parallel architectures and eventually to massively parallel machines, there is
a need to efficiently schedule many tasks using barrier primitives. The POSIX OS interface provides
a barrier primitive where N tasks wait on a barrier and are released simultaneously when all are
ready to execute.

There are many situations where the release of N tasks is required to execute an algorithm in
parallel. Often the calculation is relatively small for each task on each iteration but the number of
tasks is relatively high. As an example consider the solution of partial differential equations where
one task is allocated to each node of a grid; there might easily be several thousand nodes. Such an
example is outlined in [7]. The cost of linearly scheduling and releasing them could remove almost
all gains made through parallelization in the first place.

The new package is

5.2 Schedul ing 103

package Ada.Synchronous_Barriers is
 pragma Preelaborate(Synchronous_Barriers);

 subtype Barrier_Limit is range 1 .. implementation-defined;
 type Synchronous_Barrier(Release_Threshold: Barrier_Limit) is limited private;
 procedure Wait_For_Release(The_Barrier: in out Synchronous_Barrier;
 Notified: out Boolean);
private
 ...
end Ada.Synchronous_Barriers;

The type Synchronous_Barrier has a discriminant whose value indicates the number of tasks to be
waited for. When an object of the type is declared its internal counter is set to zero. Thus we might
write

SB: Synchronous_Barrier(Release_Threshold => 100);

When a task calls the procedure Wait_For_Release thus

Wait_For_Release(SB, My_Flag);

then the task is blocked and the internal counter in SB is incremented. If the counter is then equal to
the release threshold for that object (100 in this example), then all the tasks are released. Just one
task will have the parameter Notified set to true (the mechanism for selecting the chosen task is not
defined). This specially chosen task is then expected to do some work on behalf of all the others.
Typically all the tasks will be of the same task type so the code of that type might have

Wait_For_Release(SB, My_Flag);
if My_Flag then -- Gosh, I am the chosen one
 ... -- do stuff
end if;

Once all the tasks are released, the counter in SB is reset to zero so that the synchronous barrier can
be used again.

Care is needed regarding finalization, aborting tasks and other awkward activities. For example, if a
synchronous barrier is finalized, then any tasks blocked on it are released and Program_Error is
raised at the point of the call of Wait_For_Release.

Many embedded real-time programs, such as those conforming to the Ravenscar profile, run forever.
However, there are soft multitasking programs which are hosted on systems such as Windows or
Linux and these require closing down in an orderly manner. There are also programs that have mode
changes in which the set of tasks involved can be changed dramatically. In such situations it is
important that synchronous barriers are finalized neatly.

5.3 Multiprocessors
In recent years the cost of processors has fallen dramatically and for many applications it is now
more sensible to use several individual processors rather than one high performance processor.

Moreover, society has got accustomed to the concept that computers keep on getting faster. This
makes them applicable to more and more high volume but low quality applications. But this cannot
go on. The finite value of the velocity of light means that increase in processor speed can only be
achieved by using devices of ever smaller size. But here we run into problems concerning the
nonzero size of Planck's constant. When devices get very small, quantum effects cause problems
with reliability.

104 Tasking and Real-Time

No doubt, in due course, genuine quantum processors will emerge based perhaps on attributes such
as spin. But meanwhile, the current approach is to use multiprocessors to gain extra speed.

One special feature of Ada 2012 aimed at helping to use multiprocessors is the concept of
synchronous barriers which were described above. We now turn to facilities for generally mapping
tasks onto numbers of processors.

The key feature is a new child package of System thus

package System.Multiprocessors is
 pragma Preelaborate(Multiprocessors);

 type CPU_Range is range 0 .. implementation-defined;
 Not_A_Specific_CPU: constant CPU_Range := 0;
 subtype CPU is CPU_Range range 1 .. CPU_Range'Last;

 function Number_Of_CPUs return CPU;
end System.Multiprocessors;

Note that this is a child of System rather than a child of Ada. This is because System is generally
used for hardware related features.

Processors are given a unique positive integer value from the subtype CPU. This is a subtype of
CPU_Range which also includes zero; zero is reserved to mean not allocated or unknown and for
clarity is the value of the constant Not_A_Specific_CPU.

The total number of CPUs is determined by calling the function Number_Of_CPUs. This is a
function rather than a constant because there could be several partitions with a different number of
CPUs on each partition. And moreover, the compiler might not know the number of CPUs anyway.

Since this is not a Remote Types package, it is not intended to be used across partitions. It follows
that a CPU cannot be used by more than one partition. The allocation of CPU numbers to partitions
is not defined; each partition could have a set starting at 1, but they might be numbered in some
other way.

Tasks can be allocated to processors by an aspect specification. If we write

task My_Task
 with CPU => 10;

then My_Task will be executed by processor number 10. In the case of a task type then all tasks of
that type will be executed by the given processor. The expression giving the processor for a task can
be dynamic.

Moreover, in the case of a task type, the CPU can be given by a discriminant. So we can have

task type Slave(N: CPU_Range)
 with CPU => N;

and then we can declare

Tom: Slave(1);
Dick: Slave(2);
Harry: Slave(3);

and Tom, Dick and Harry are then assigned CPUs 1, 2 and 3 respectively. We could also have

Fred: Slave(0);

and Fred could then be executed by any CPU since 0 is Not_A_Specific_CPU.

5.3 Mult iprocessors 105

The aspect can also be set by a corresponding pragma CPU. (This is an example of a pragma born
obsolescent as explained in Section 2.2 on Aspect specifications.) The aspect CPU can also be given
to the main subprogram in which case the expression must be static.

Further facilities are provided by the child package System.Multiprocessors.Dispatching_Domains
as shown below. Again we have added use clauses to save space and also have often abbreviated
Dispatching_Domain to D_D.

with Ada.Real_Time; with Ada.Task_Identification;
use Ada.Real_Time; use Ada.Task_Identification;
package System.Multiprocessors.Dispatching_Domains is
 pragma Preelaborate(Dispatching_Domains);

 Dispatching_Domain_Error: exception;

 type Dispatching_Domain(<>) is limited private;
 System_Dispatching_Domain: constant D_D;

 function Create(First, Last: CPU) return D_D;
 function Get_First_CPU(Domain: D_D) return CPU;
 function Get_Last_CPU(Domain: D_D) return CPU;

 function Get_Dispatching_Domain(T: Task_Id := Current_Task) return D_D;

 procedure Assign_Task(Domain: in out Dispatching_Domain;
 CPU: in CPU_Range := Not_A_Specific_CPU;
 T: in Task_Id := Current_Task);

 procedure Set_CPU(CPU: in CPU_Range; T: in Task_Id := Current_Task);

 function Get_CPU(T: in Task_Id := Current_Task) return CPU_Range;

 procedure Delay_Until_And_Set_CPU(Delay_Until_Time: in Time;
 CPU: in CPU_Range);
private
 ...
end System.Multiprocessors.Dispatching_Domains;

The idea is that processors are grouped together into dispatching domains. A task may then be
allocated to a domain and it will be executed on one of the processors of that domain.

Domains are of the type Dispatching_Domain. This has unknown discriminants and consequently
uninitialized objects of the type cannot be declared. But such an object can be initialized by the
function Create. So to declare My_Domain covering processors from 10 to 20 inclusive we can write

My_Domain: Dispatching_Domain := Create(10, 20);

All CPUs are initially in the System_Dispatching_Domain. A CPU can only be in one domain. If we
attempt to do something silly such as create overlapping domains by for example also writing

My_Domain_2: Dispatching_Domain := Create(20, 30);

then Dispatching_Domain_Error is raised because in this case, CPU number 20 has been assigned to
both My_Domain and My_Domain_2.

The environment task is always executed on a CPU in the System_Dispatching_Domain. Clearly we
cannot move all the CPUs from the System_Dispatching_Domain other wise the environment task
would be left high and dry. Again an attempt to do so would raise Dispatching_Domain_Error.

A very important rule is that Create cannot be called once the main subprogram is called. Moreover,
there is no operation to remove a CPU from a domain once the domain has been created. So the

106 Tasking and Real-Time

general approach is to create all domains during library package elaboration. This then sets a fixed
arrangement for the program as a whole and we can then call the main subprogram.

Each partition has its own scheduler and so its own set of CPUs, dispatching domains and so on.

Tasks can be assigned to a domain in two ways. One way is to use an aspect

task My_Task
 with Dispatching_Domain => My_Domain;

If we give both the domain and an explicit CPU thus

task My_Task
 with CPU => 10, Dispatching_Domain => My_Domain;

then they must be consistent. That is the CPU given must be in the domain given. If it is not then
task activation fails (hands up all those readers who thought it was going to raise
Dispatching_Domain_Error). If for some reason we write

task My_Task
 with CPU => 0, Dispatching_Domain => My_Domain;

then no harm is done. Remember that there is not a CPU with number zero but zero simply indicates
Not_A_Specific_CPU. In such a case it would be better to write

task My_Task
 with CPU => Not_A_Specific_CPU, Dispatching_Domain => My_Domain;

The other way to assign a task to a domain is by calling the procedure Assign_Task. Thus the above
examples could be written as

Assign_Task(My_Domain, 10, My_Task'Identity);

giving both domain and CPU, and

Assign_Task(My_Domain, T => My_Task'Identity);

which uses the default value Not_A_Specific_CPU for the CPU.

Similarly, we can assign a CPU to a task by

Set_CPU(A_CPU, My_Task'Identity);

Various checks are necessary. If the task has been assigned to a domain there is a check to ensure
that the new CPU value is in that domain. If this check fails then Dispatching_Domain_Error is
raised. Of course, if the new CPU value is zero, that is Not_A_Specific_CPU then it simply means
that the task can then be executed on any CPU in the domain.

To summarize the various possibilities, a task can be assigned a domain and possibly a specific CPU
in that domain. If no specific CPU is given then the scheduling algorithm is free to use any CPU in
the domain for that task.

If a task is not assigned to a specific domain then it will execute in the domain of its activating task.
In the case of a library task the activating task is the environment task and since this executes in the
System_Dispatching_Domain, this will be the domain of the library task.

The domain and any specific CPU assigned to a task can be set at any time by calls of Assign_Task
and Set_CPU. But note carefully that once a task is assigned to a domain other than the system
dispatching domain then it cannot be assigned to a different domain. But the CPU within a domain
can be changed at any time; from one specific value to another specific value or maybe to zero
indicating no specific CPU.

It is also possible to change CPU but for the change to be delayed. Thus we might write

5.3 Mult iprocessors 107

Delay_Until_And_Set_CPU(Delay_Until_Time => Sometime, CPU => A_CPU);

Recall we also have Delay_Until_And_Set_Deadline in Ada.Dispatching.EDF mentioned earlier.

Note that calls of Set_CPU and Assign_Task are defined to be task dispatching points. However, if
the task is within a protected operation then the change is deferred until the next task dispatching
point for the task concerned. If the task is the current task then the effect is immediate unless it is
within a protected operation in which case it is deferred as just mentioned. Finally, if we pointlessly
assign a task to the system dispatching domain when it is already in that domain, then nothing
happens (it is not a dispatching point).

There are various functions for interrogating the situation regarding domains. Given a domain we
can find its range of CPU values by calling the functions Get_First_CPU and Get_Last_CPU. Given
a task we can find its domain and CPU by calling Get_Dispatching_Domain and Get_CPU. If a task
is not assigned a specific CPU then Get_CPU naturally returns Not_A_Specific_CPU.

In order to accommodate interrupt handling the package Ada.Interrupts is slightly modified and now
includes the following function

function Get_CPU(Interrupt: Interrupt_Id) return System.Multiprocessors.CPU_Range;

This function returns the CPU on which the handler for the given interrupt is executed. Again the
returned value might be Not_A_Specific_CPU.

The Ravenscar profile is now defined to be permissible with multiprocessors. However, there is a
restriction that tasks may not change CPU. Accordingly the definition of the profile now includes
the following restriction

No_Dependence => System.Multiprocessors.Dispatching_Domains

In order to clarify the use of multiprocessors with group budgets the package
Ada.Execution_Time.Group_Budgets introduced in Ada 2005 is slightly modified. The Ada 2005
version is

with System;
package Ada.Execution_Time.Group_Budgets is

 type Group_Budget is tagged limited private;

 type Group_Budget_Handler is access protected procedure (GB: in out Group_Budget);

 ... -- and so on
private
 ...
end Ada.Execution_Time.Group_Budgets;

However, in Ada 2012 the type Group_Budget has a discriminant giving the CPU thus

type Group_Budget(CPU: System.Multiprocessors.CPU :=
 System.Multiprocessors.CPU'First)
 is tagged limited private;

This means that a group budget only applies to a single processor. If a task in a group is executed on
another processor then the budget is not consumed. Note that the default value for CPU is CPU'First
which is always 1.

Note that the definition of dispatching domains above assumes that the set of CPU values is
contiguous. After ISO standardization it was realised that this was unreasonable and accordingly the
definition was changed to allow any set of values as described in Section 9.5 of the Epilogue.

108 Tasking and Real-Time

5.4 Interrupt timers and budgets
It will be recalled that Ada 2005 introduced three packages for monitoring the CPU time used by
tasks. They are a root package Ada.Execution_Time plus two child packages thus

Ada.Execution_Time – this is the root package and enables the monitoring of execution time of
individual tasks.

Ada.Execution_Time.Timers – this provides facilities for defining and enabling timers and for
establishing a handler which is called by the run time system when the execution time of the
task reaches a given value.

Ada.Execution_Time.Group_Budgets – this enables several tasks to share a budget and provides
means whereby action can be taken when the budget expires.

The execution time of a task, or CPU time, is the time spent by the system executing the task and
services on its behalf. CPU times are represented by the private type CPU_Time declared in the root
package Ada.Execution_Time.

However, it was left implementation defined in Ada 2005 as to how the time spent in interrupts was
to be accounted. The Ada 2005 RM says

 It is implementation defined which task, if any, is charged the execution time that is consumed
by interrupt handlers and run-time services on behalf of the system.

As noted in the AI, a common and simple implementation will charge the time consumed by the
interrupt handlers to the task executing when the interrupt is generated. This is done under the
assumption that the effect of interrupt handlers on the execution time clocks is negligible since the
interrupt handlers are usually very short pieces of code. However, in real-time systems that
undertake an intensive use of interrupts, this assumption may not be realistic. For example, Ada
2005 introduced timed events that can execute handlers in interrupt context. The facility is
convenient and has low overheads, and therefore programmers are tempted to put more code into
these handlers.

It is thus considered important to be able to measure time spent in interrupts and so facilities to do
this are added in Ada 2012.

The root package is extended by the addition of two Boolean constants, Interrupt_Clocks_Supported
and Separate_Interrupt_Clocks_Supported, and also a function Clocks_For_Interrupts so in outline
it becomes

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time is

 type CPU_Time is private;

 ...

 function Clock(T: Task_Id := Current_Task) return CPU_Time;

 ...

 Interrupt_Clocks_Supported: constant Boolean := implementation-defined;
 Separate_Interrupt_Clocks_Supported: constant Boolean := implementation-defined;

 function Clocks_For_Interrupts return CPU_Time;

5.4 Interrupt t imers and budgets 109

private
 ... -- not specified by the language
end Ada.Execution_Time;

The constant Interrupt_Clocks_Supported indicates whether the time spent in interrupts is accounted
for separately from the tasks and then Separate_Interrupt_Clocks_Supported indicates whether the
time is accounted for each interrupt individually.

The new function Clocks_For_Interrupts returns the CPU_Time used over all interrupts. It is
initialized to zero.

Time accounted for in interrupts is not also accounted for in individual tasks. In other words there is
never any double accounting.

Calling the function Clocks_For_Interrupts if Interrupt_Clocks_Supported is false raises
Program_Error. Note that the existing function Clock has a parameter giving the task concerned
whereas Clocks_For_Interrupts does not since it covers all interrupts.

A new child package of Ada.Execution_Time is provided for monitoring the time spent in individual
interrupts. Note that this package always exists even if the Boolean constant
Separate_Interrupt_Clocks_Supported is false. Its specification is

package Ada.Execution_Time.Interrupts is
 function Clock(Interrupt: Ada.Interrupts.Interrupt_Id) return CPU_Time;
 function Supported(Interrupt: Ada.Interrupts.Interrupt_Id) return Boolean;
end Ada.Execution_Time.Interrupts;

The function Supported indicates whether the time for a particular interrupt is being monitored. If it
is then Clock returns the accumulated CPU_Time spent in that interrupt handler (otherwise it returns
zero). However, if the overall constant Separate_Interrupt_Clocks_Supported is false then calling
this function Clock for any particular interrupt raises Program_Error.

The package Ada.Execution_Time.Timers is exactly the same in Ada 2012. However, as mentioned
earlier, the package Ada.Execution_Time.Group_Budgets is now defined to work on a single
processor and the type Group_Budget is modified to include a discriminant giving the CPU
concerned.

5.5 Volatile
This is a curious topic and created much debate. For the collector of statistics the real part of the AI
is less than two pages but the appendix has nearly twenty pages of chatter!

The problem is all about sharing variables and ensuring that things happen in the correct order.
Moreover, we need to avoid the overhead of protected objects particularly on microprocessors
where we might be using low level features such as memory barriers discussed in Section 2 above.

Suppose we have two tasks A and B which access some shared data perhaps in a nice package
Common thus

package Common is
 ...
 Data: Integer;
 pragma Volatile(Data);
 Flag: Boolean;
 pragma Volatile(Flag);
 ...
end Common;

110 Tasking and Real-Time

and in task A we write

with Common; use Common;
task A is
 ...
 Data := 42;
 Flag := True;
 ...
end A;

whereas in task B we have

with Common; use Common;
task B is
 Copy: Integer;
begin
 ...
 loop
 exit when Flag; -- spin
 end loop;
 Copy := Data;
 ...
end B;

The idea is that task A assigns some value to Data and then indicates this to task B by setting Flag to
true. Meanwhile, task B loops checking Flag and when it is found to be true, then reads the Data.

Does this work in Ada 2005? Hmm. Nearly. There are three things that need to be ensured. One is
that Flag gets changed in one lump. Another is that the new value of Data assigned by task A truly is
updated when task B reads it. And the third is that the actions happen sequentially. Well, we should
have applied pragma Atomic to Flag to ensure the first but since it is of type Boolean we might get
away with it. And note that Atomic implies Volatile anyway. Also Atomic ensures that the actions are
sequential.

So, with the pragma Volatile changed to Atomic for Flag, it does indeed work in Ada 2005 because
Volatile ensures that read and writes are to memory and so things do happen in the correct order.
However, this is overkill. It is not necessary that all accesses are to memory; all that matters is that
they happen in the correct order so they could be to some intermediate cache. Indeed, there might be
nested caches and as hardware evolves it is becoming more difficult to make general statements
about its structure; hence we can really only make statements about the effect.

The possibility of introducing a new pragma Coherent was debated for some time. However, it was
ultimately concluded that the definition of Volatile should be weakened. In Ada 2005 it says

 For a volatile object all reads and updates of the object as a whole are performed directly to
memory.

In Ada 2012 it says

 All tasks of the program (on all processors) that read or write volatile variables see the same
order of updates to the variables.

Of course, in Ada 2012, we use aspects so the package Common becomes

package Common is
 ...
 Data: Integer
 with Volatile;

5.5 Volat i le 111

 Flag: Boolean
 with Atomic; -- Atomic implies Volatile
 ...
end Common;

where we have given Atomic for Flag. As mentioned above, Atomic implies Volatile so it is not
necessary to give both. However, if we do have to give two aspects, it is much neater that the one
aspect specification does this whereas two distinct pragmas would be necessary.

It is said that this change brings the meaning of volatile into line with that in C. However, it has also
been said that the definition of volatile in C is unclear.

5.6 Synchronized interfaces and requeue
Ada 2005 introduced interfaces of various kinds: limited, nonlimited, synchronized, task, and
protected. These form a hierarchy and in particular task and protected interfaces are forms of
synchronized interfaces. The essence of this was to integrate the OO and real-time features of Ada.
However, a problem was discovered regarding requeue as described in a paper presented at IRTAW
2007 [23].

Some examples of interfaces will be found in [7] or [15] where various implementations of the
readers and writers paradigm are explained.

The operations of a synchronized interface are denoted by subprograms. Thus we might have

package Pkg is
 type Server is synchronized interface;
 procedure Q(S: in out Server; X: in Item) is abstract;
end Pkg;

We can then implement the interface by a task type or by a protected type. This introduces several
different ways of implementing the operation Q. It can be by an entry, or by a protected procedure or
by a normal procedure. For example using a task type we might have

package TP1 is
 task type TT1 is new Server with
 -- Q implemented by entry
 entry Q(X: in Item);
 end TT1;
end TP1;

or

package TP2 is
 task type TT2 is new Server with
 -- Q implemented by a normal procedure
 end TT2;
 procedure Q(S: in out TT2; X: in Item);
end TP2;

Similarly using a protected type we might have

package PP1 is
 protected type PT1 is new Server with
 -- Q implemented by entry
 entry Q(X: in Item);
 ...

112 Tasking and Real-Time

 end PT1;
end PP1;

or

package PP2 is
 protected type PT2 is new Server with
 -- Q implemented by a protected procedure
 procedure Q(X: in Item);
 ...
 end PT2;
end PP2;

or

package PP3 is
 protected type PT3 is new Server with
 -- Q implemented by a normal procedure
 ...
 end PT3;
 procedure Q(X: In out PT3; X: in Item);
end PP3;

So the interface Server could be implemented in many different ways. And as usual we could
dispatch to any of the implementations. We could have

Server_Ptr: access Server'Class := ...
...
Server_Ptr.Q(X => An_Item);

and this will dispatch to the implementation of Q concerned.

So a call of Q could end up as a call of an entry in a task, an entry in a protected object, a protected
procedure in a protected object, or an ordinary procedure.

Two curious situations arise. One concerns timed calls. We could write a timed call such as

select
 Server_Ptr.Q(An_Item);
or
 delay Seconds(10);
end select;

and this will always be acceptable. It will dispatch to the appropriate operation. If it is an entry then
it will be a timed call. But if it is not an entry then no time-out is possible and so by default the call
will always go ahead.

The other curious situation concerns requeue. In this case there is no obvious default action. It is not
possible to requeue a procedure call since there is no queue on which to hang it.

The first proposal to do something about this was simply not to allow requeue at all on interfaces.
And indeed this was the solution adopted in Ada 2005.

However, this is not really acceptable as explained in [23]. The next idea was to raise some
exception if it turned out that the destination was not an entry. But this was considered
unsatisfactory.

5.6 Synchronized interfaces and requeue 113

So it was concluded that if we do a requeue then it must be statically checked that it will dispatch to
an entry so that the requeue is possible. The next proposal was that there should be a pragma
Implemented giving requirements on the operation. Thus we might have

 procedure Q(S: in out Server; X: in Item) is abstract;
 pragma Implemented(Q, By_Entry);

and the compiler would ensure that all implementations of the interface Server did indeed
implement Q by an entry so that requeue would always work. The other possible values for the
pragma were By_Protected_Procedure and By_Any.

The world changed when the notion of an aspect was invented and so after much discussion the final
solution is that we there is now an aspect Synchronization so we write

 procedure Q(S: in out Server; X: in Item) is abstract
 with Synchronization => By_Entry;

and we are now assured that we are permitted to do a requeue on Q for any implementation of
Server. The other possible values for the aspect Synchronization are By_Protected_Procedure and
Optional.

In summary, if the property is By_Entry then the procedure must be implemented by an entry, if the
property is By_Protected_Procedure then the procedure must be implemented by a protected
procedure, and if the property is Optional then it can be implemented by an entry, procedure or
protected procedure. Naturally enough, the aspect cannot be given for a function.

There are a number of rules regarding consistency. The aspect Synchronization can be applied to a
task interface or protected interface as well as to a synchronized interface. However, if it is applied
to a task interface then the aspect cannot be specified as By_Protected_Procedure for obvious
reasons. If a type or interface is created by inheritance from other interfaces then any
Synchronization properties are also inherited and must be consistent. Thus if one is By_Entry then
the others must also be By_Entry or Optional.

A final minor improvement mentioned in the Introduction concerns renaming. Since the days of Ada
83 it has been possible to rename an entry as a procedure thus

procedure Write(X: in Item) renames Buffer.Put;

where Put is an entry in a task Buffer. But in Ada 83 it was not possible to do a timed call using
Write. This was corrected in Ada 2005 which allows a timed call on a renaming. Similarly, when
requeue was introduced in Ada 95, it was not possible to do a requeue using Write. This anomaly is
corrected in Ada 2012. So now both timed calls and requeue are permitted using a renaming of an
entry.

 115

6 Iterators, Pools, etc.
This chapter describes various improvements in a number of general areas in Ada 2012.
There are some minor but perhaps surprising changes concerning matters such as the
placement of pragmas and labels.
There are important new features regarding indexing and accessing largely introduced to
simplify iterating over containers.
There are also a number of additional Restrictions identifiers many related to the
introduction of aspect specifications.
The functionality of access types and storage management is made more flexible by the
introduction of subpools.
Finally, a number of minor additions and corrections are made to a range of topics such as
generics.

6.1 Overview of changes
The areas mentioned in this chapter are not specifically mentioned in the WG9 guidance document
[1] other than under the request to remedy shortcomings and improve the functionality of access
types and dynamic storage management.

The following Ada Issues cover the relevant changes and are described in detail in this chapter.

 6 Nominal subtypes for all names

 71 Class-wide operations for formal subprograms

 95 Address of intrinsic subprograms

100 Placement of pragmas

111 Subpools, allocators & control of finalization

119 Package Calendar, Daylight Saving Time and UTC_Offset

123 Composability of equality

139 Syntactic sugar for access, containers & iterators

148 Accessibility of anonymous access stand-alone objects

149 Access type conversion and membership

152 Restriction No_Anonymous_Allocators

163 Pragmas in place of null

173 Testing of tags representing abstract types

179 Labels at end of a sequence of statements

189 Restriction No_Standard_Allocators_After_Elaboration

190 Global storage pool control

193 Alignment of allocators

212 Accessors and iterators for Ada.Containers

241 Aspect-related restrictions

116 I terators, Pools, etc.

242 No_Implementation_Units restriction

246 Restrictions No_Implementation_Identifiers and Profile No_Implementation_Extensions

252 Questions on subpools

253 Accessibility of allocators for anonymous access of an object

255 User-defined iterators and quantified expressions

272 Pragma and attribute restrictions

292 Terminology: indexable type is confusing

These changes can be grouped as follows.

First there are some minor changes to elementary matters such as the placement of pragmas, labels
and null statements (100, 163, 179).

An important addition is the introduction of more user-friendly mechanisms for iterating over
structures such as arrays and containers (139, 212, 255, 292).

Further flexibility for storage management is provided by the introduction of subpools of storage
pools (111, 190, 252). A number of issues concerning anonymous access types and allocators are
also resolved (148, 149, 193, 253).

A number of new Restrictions identifiers have been added. They include No_Coextensions,
No_Standard_Allocators_After_Elaboration, No_Anonymous_Allocators, No_Implementation_Units,
and No_Implementation_Identifiers. A blanket new profile covering a number of restrictions,
No_Implementation_Extensions, is also added (152, 189, 241, 242, 246, 272).

Finally, there are a number of minor unrelated improvements. Four are actually classed as binding
interpretations and so apply to Ada 2005 as well; they concern nominal subtypes (6), address of intrinsic
subprograms (95), time in the package Calendar (119), and class wide operations on formal generic
subprograms (71). The other miscellaneous issues concern the composability of equality (123), and tags of
abstract types (173).

6.2 Position of pragmas and labels
It is surprising that basic stuff such as where one can place a pragma should be the subject of
discussion thirty years after Ada became an ANSI standard.

However, there is a real problem in this area which one could imagine might have led to headlines in
the Wall Street Journal and Financial Times such as

Collapse of NY Stock Market because of Safety Fears in Avionic Applications after
Discovery that Ada is Illegal

Indeed, it seems that the package Ada in Ada 2005 might be illegal. This surprising conclusion was
triggered by the consideration of

task type TT is
 pragma Priority(12);
end TT;

The rules in Ada 83, Ada 95 and Ada 2005 concerning the position of pragmas say

Pragmas are only allowed at the following places in a program:

 After a semicolon delimiter, but not within a formal part or discriminant part.

 At any place where the syntax rules allow a construct defined by a syntactic category whose
name ends with "declaration", "statement", "clause", or "alternative"; or one of the syntactic

6.2 Posit ion of pragmas and labels 117

categories variant or exception_handler; but not in place of such a construct. Also at any place
where a compilation_unit would be allowed.

Now the syntax for task_definition in Ada 2005 is

 task_definition ::=
 {task_item}
 [private
 {task_item}]
 end [task_identifier]

There are at least two problems. The key one here is that the list of categories in the rule does not
include "item". The other concerns the words "not in place of". It seems that the intent was that if at
least one instance of the construct is required (as in a sequence of statements) then the pragma
cannot be given in place of a single statement. So it looks as if the task type TT is not legal.

It has probably been permitted because task_item itself splits down into aspect_clause or
entry_declaration and they seem to be allowed. But if none is present then we cannot tell which
category is permitted!

Note rather scarily that the package Ada is given as

package Ada is
 pragma Pure(Ada);
end Ada;

and the same problem applies.

The entities in a package specification are of the category basic_declarative_item and again although
it splits down into things ending _clause or _declaration we don't know which.

The fear concerning package Ada made one member of the ARG concerned that the sky might be
falling in. Of course, we don't ever have to submit a package Ada in our file (on punched cards,
paper tape or whatever media we are using). The package Ada is just in the mind of the compiler so
that it behaves as if she were declared. The same applies to Standard. They are sort of synthesized
and not actually declared.

Anyway, the upshot is that in Ada 2012, the description of the placement of pragmas is corrected by
adding "item" to the list and clarifying the meaning of not in place of.

A further discussion considered sequences of statements. In a structure such as an if statement the
syntax is

 if_statement ::=
 if condition then
 sequence_of_statements
 ...

where

 sequence_of_statements ::= statement {statement}

The important point is that a sequence_of_statements must have at least one statement. Moreover,
the rules for placing pragmas in Ada 2005 do not allow a pragma in place of a construct so we
cannot write

if B then
 pragma Assert(...); -- illegal in Ada 2005
else ...

118 I terators, Pools, etc.

but have to include at least one statement (such as a null statement) by writing perhaps

if B then
 pragma Assert(...); null;
else ...

or

if B then
 null; pragma Assert(...);
else ...

On reflection this seemed irritating so the rules for the placement of pragmas are further amended to
include another bullet

 In place of a statement in a sequence_of_statements

A useful note on a language definition principle is added to the AARM which is that if all pragmas
are treated as unrecognized then a program should remain legal.

Incidentally, there are other places in the language where at least one item is required such as in a
component list. Again if we don't want any components we have to write a null component as in

type Nothing is
 record
 null;
 end record;

One might have thought that we could similarly now allow one to write

type T is
 record
 pragma Page;
 end record;

Indeed, it might have been thought that we could simply say that in general a pragma can be given
"in place of" an entity. But this doesn't work in some cases. For example, an asynchronous select
statement can take the form of a series of statements in its triggering alternative thus

select
 S1(...);
 S2(...);
 S3(...);
then abort
 ...
end select;

Now the call of S1 is the triggering statement and has a different status to S2 and S3. It would be
very confusing to be able to replace the call of S1 by a pragma. So such generalization was
dismissed as leading to trouble.

The final topic in this vein concerns the position of labels. This was triggered by the consideration
of the problem of quitting one iteration of a loop if it proves unsuccessful and then trying the next
iteration. As described in the Introduction this can be done by writing

for I in Some_Range loop
 ...
 if not OK then goto End_Of_Loop; end if;
 ... -- lots of other code

6.2 Posit ion of pragmas and labels 119

<<End_Of_Loop> null; -- try another iteration
end loop;

Of course, maybe we should avoid the goto and write

for I in Some_Range loop
 ...
 if OK then
 ... -- lots of other code
 end if;
 -- try another iteration
end loop;

At first sight the latter structure looks nicer. However, if the "lots of other code" encounters several
situations which mean that the iteration has to be abandoned then we quickly get a deeply nested
structure which is not easy to understand and becomes heavily indented.

Much consideration was given to the introduction of a continue statement but it was felt that this
would obscure the existence of the transfer of control. Although the goto may be deprecated as
obscure, the corresponding obvious label in its aggressive double angle brackets is a strong clue to
the existence of the transfer of control.

In the end it was decided that the only sensible improvement was to remove the need for the null
statement at the end of the loop.

This is achieved by changing the syntax for a sequence of statements to

 sequence_of_statements ::= statement {statement} {label}

where (as before)

 statement ::= {label} simple_statement | {label} compound_statement

so that as well as being permitted before a statement, a label can also follow a sequence of
statements. In addition, a rule is added to the effect that if one or more labels end a sequence of
statements then an implicit null statement is inserted after the labels. This rule is necessary because
the effect of the goto statement is described in terms of going to the statement after the label. So the
loop example can now be written as

for I in Some_Range loop
 ...
 if not OK then goto End_Of_Loop; end if;
 ... -- lots of other code
<<End_Of_Loop> -- try another iteration
end loop;

More generally we can write

if B then
 S1; S2; <<My_Label>>
end if;

as well as giving the null explicitly thus

if B then
 S1; S2; <<My_Label>> null;
end if;

but we still cannot write

120 I terators, Pools, etc.

if B then
 <<My_Label>> -- illegal
end if;

since a sequence of statements must still include at least one statement. Of course, we could never
jump to such a label anyway since control cannot be transferred into a structure.

6.3 Iteration
Iteration and subprogram calls are in some sense the twin cornerstones of programming. We are all
familiar with the ubiquitous nature of statements such as

for I in A'Range loop
 A(I) := 0;
end loop;

which in one form or another exist in all (normal) programming languages.

The detail of giving the precise description of the iteration and the indexing is really a violation of
abstraction by revealing unnecessary detail. All we want to say is "assign zero to each element of the
set A".

However, although it's not too much of a hassle with arrays, the introduction of containers revealed
that detailed iteration could be very heavy-handed. Thus, as mentioned in the Introduction, suppose
we are dealing with a list, perhaps a list of the type Twin declared as

type Twin is
 record
 P, Q: Integer;
 end record;

To manipulate every element of the list in Ada 2005, we have to write something like

C := The_List.First; -- C declared as of type Cursor
loop
 exit when C = No_Element;
 E := Element(C); -- E is of type Twin
 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;
 C := Next(C);
end loop;

This reveals the gory details of the iterative process whereas all we want to say is "add X to the
component Q for all members of the list whose component P is prime".

There is another way in Ada 2005 and that is to use the procedure Iterate. In that case the details of
what we are doing have to be placed in a distinct subprogram called perhaps Do_It. Thus we can
write

declare
 procedure Do_It(C: in Cursor) is
 begin
 E := Element(C); -- E is of type Twin
 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;
 end Do_It;

6.3 I terat ion 121

begin
 The_List.Iterate(Do_It'Access);
end;

This avoids the fine detail of calling First and Next but uses what some consider to be a heavy
infrastructure.

However, in Ada 2012 we can simply say

for E of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

Not only is this just five lines of text rather than nine or eleven, the key point is that the possibility
of making various errors of detail is completely removed.

The mechanisms by which this magic abstraction is achieved are somewhat laborious and it is
anticipated that users will take a cookbook approach (show us how to do it, but please don't explain
why – after all, this is the approach taken with boiling an egg, we can do it without deep knowledge
of the theory of coagulation of protein material).

We will start by looking at the process using arrays. Rather than

for I in A'Range loop
 if A(I) /= 0 then
 A(I) := A(I) + 1;
 end if;
end loop;

we can write

for E of A loop
 if E /= 0 then
 E := E + 1;
 end if;
end loop;

In the case of a two-dimensional array, instead of

for I in AA'Range(1) loop
 for J in AA'Range(2) loop
 A(I, J) := 0.0;
 end loop;
end loop;

we can write

for EE of AA loop
 EE := 0.0;
end loop;

In Ada 2005 (and indeed in Ada 95 and Ada 83), the syntax for a loop is given by

 loop_statement ::= [loop_statement_identifier :]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_identifier] ;

122 I terators, Pools, etc.

 iteration_scheme ::= while condition
 | for loop_parameter_specification

 loop_parameter_specification ::= defining_identifier in
 [reverse] discrete_subtype_definition

This is all quite familiar. In Ada 2012, the syntax for loop_statement remains the same but
iteration_scheme is extended to give

 iteration_scheme ::= while condition
 | for loop_parameter_specification
 | for iterator_specification

Thus the new form iterator_specification is introduced which is

 iterator_specification ::=
 defining_identifier in [reverse] iterator_name
 | defining_identifier [: subtype_indication] of [reverse] iterable_name

The first production defines a generalized iterator whereas the second defines an array component
iterator or a container element iterator. For the moment we will just consider the second production
which has of rather than in. The iterable_name can refer to an array or a container. Suppose it is an
array such as A or AA in the examples above.

We note that we can optionally give the subtype of the loop parameter. Suppose that the type A is
given as

type A is array (index) of Integer;

then the subtype of the loop parameter (E in the example) if not given will just be that of the
component which in this case is simply Integer. If we do give the subtype of the loop parameter then
it must cover that of the component. This could be useful with tagged types.

Note carefully that the loop parameter does not have the type of the index of the array as in the
traditional loop but has the type of the component of the array. So on each iteration it denotes a
component of the array. It iterates over all the components of the array as expected. If reverse is not
specified then the components are traversed in ascending index order whereas if reverse is specified
then the order is descending. In the case of a multidimensional array then the index of the last
dimension varies fastest matching the behaviour of AA in the expanded traditional version as shown
(and which incidentally is the order used in streaming). However, if the array has convention Fortran
then it is the index of the first dimension that varies fastest both in the case of the loop and in
streaming.

There are other obvious rules. If the array A or AA is constant then the loop parameter E or EE is
also constant. So it all works much as expected. But do note carefully the use of the reserved word
of (rather than is) which distinguishes this kind of iteration from the traditional form using an index.

As another array example suppose we have the following

type Artwin is array (1 .. N) of Twin;

The_Array: Artwin;

which is similar to the list example above. In the traditional way we might write

for K in Artwin'Range loop
 if Is_Prime(The_Array(K).P) then
 The_Array(K).Q := The_Array(K).Q + X;
 end if;
end loop;

6.3 I terat ion 123

Using the new notation this can be simplified to

for E: Twin of The_Array loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

where we have added the subtype Twin to clarify the situation. Similarly, in the simple list example
we could write

for E: Twin of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

Note the beautiful similarity between these two examples. The only lexical difference is that
The_Array is replaced by The_List showing that arrays and containers can be treated equivalently.

We now have to consider how the above can be considered as behaving like the original text which
involves C of type Cursor, and subprograms First, No_Element, Element, Replace_Element and
Next.

This magic is performed by several new features. One is a generic package whose specification is

generic
 type Cursor;
 with function Has_Element(Position: Cursor) return Boolean;
package Ada.Iterator_Interfaces is
 pragma Pure(Iterator_Interfaces);

 type Forward_Iterator is limited interface;
 function First(Object: Forward_Iterator) return Cursor is abstract;
 function Next(Object: Forward_Iterator; Position: Cursor) return Cursor is abstract;

 type Reversible_Iterator is limited interface and Forward_Iterator;
 function Last(Object: Reversible_Iterator) return Cursor is abstract;
 function Previous(Object: Reversible_Iterator;
 Position: Cursor) return Cursor is abstract;

end Ada.Iterator_Interfaces;

This generic package is used by the various container packages such as
Ada.Containers.Doubly_Linked_Lists. Its actual parameters corresponding to the formal parameters
Cursor and Has_Element come from the container which includes an instantiation of
Ada.Iterator_Interfaces. The instantiation then exports the various required types and functions.
Thus in outline the relevant part of the list container now looks like

with Ada.Iterator_Interfaces;
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
 ...
 type List is tagged private ...
 ...
 type Cursor is private;

124 I terators, Pools, etc.

 ...
 function Has_Element(Position: Cursor) return Boolean;
 package List_Iterator_Interfaces is
 new Ada.Iterator_Interfaces(Cursor, Has_Element);
 ...
 ...
end Ada.Containers.Doubly_Linked_Lists;

The entities exported from the generic package Ada.Iterator_Interfaces are the two interfaces
Forward_Iterator and Reversible_Iterator. The interface Forward_Iterator has functions First and
Next whereas the Reversible_Iterator (which is itself descended from Forward_Iterator) has
functions First and Next inherited from Forward_Iterator plus additional functions Last and Previous.

Note carefully that a Forward_Iterator can only go forward but a Reversible_Iterator can go both
forward and backward. Hence it is reversible and not Reverse_Iterator.

The container packages also contain some new functions which return objects of the type
Reversible_Iterator'Class or Forward_Iterator'Class. In the case of the list container they are

function Iterate(Container: in List) return
 List_Iterator_Interfaces.Reversible_Iterator'Class;
function Iterate(Container: in List; Start: in Cursor) return
 List_Iterator_Interfaces.Reversible_Iterator'Class;

These are new functions and are not to be confused with the existing procedures Iterate and
Reverse_Iterate which enable a subprogram to be applied to every element of the list but are
somewhat cumbersome to use as shown earlier. The function Iterate with only one parameter is used
for iterating over the whole list whereas that with two parameters iterates starting with the cursor
value equal to Start.

Now suppose that the list container is instantiated with the type Twin followed by the declaration of
a list

package Twin_Lists is
 new Ada.Containers.Doubly_Linked_Lists(Element_Type => Twin);

The_List: Twin_Lists.List;

So we have now declared The_List which is a list of elements of the type Twin. Suppose we want to
do something to every element of the list. As we have seen we might write

for E: Twin of The_List loop
 ... -- do something to E
end loop;

However, it might be wise at this point to introduce the other from of iterator_specification which is

 defining_identifier in [reverse] iterator_name

This defines a generalized iterator and uses the traditional in rather than of used in the new array
component and container element iterators. Using this generalized form we can write

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

In the body of the loop we manipulate the elements using cursors in a familiar way. The reader
might wonder why there are these two styles, one using is and the other using of. The answer is that

6.3 I terat ion 125

the generalized iterator is more flexible; for example it does not need to iterate over the whole
structure. If we write

for C in The_List.Iterate(S) loop

then the loop starts with the cursor value equal to S; this is using the version of the function Iterate
with two parameters. On the other hand, the new array component and container element iterators
using of are more succinct where applicable.

The generalized iterators for the list container use reversible iterators because the functions Iterate
return a value of the type Reversible_Iterator'Class. The equivalent code generated uses the
functions First and Next exported from List_Iterator_Interfaces created by the instantiation of
Ada.Iterator_Interfaces with the actual parameters The_List.Cursor and The_List.Has_Element. The
code then behaves much as if it were (see paragraph 13/3 of subclause 5.5.2 of the RM)

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...
C := F.First;
loop
 exit when not The_List.Has_Element(C);
 E := The_List.Element(C);
 ... -- do something to E
 C := F.Next(C);
end loop;

Of course, the user does not need to know all this in order to use the construction. Note that the
functions First and Next used here (which operate on the class Forward_Iterator and are inherited by
the class Reversible_Iterator) are not to be confused with the existing functions First and Next which
act on the List and Cursor respectively. The existing functions are retained for compatibility and for
use in complex situations.

It should also be noted that the initialization of F is legal since the result returned by Iterate is a
value of Reversible_Iterator'Class and this is a subclass of Forward_Iterator'Class.

If we had written

for C in reverse The_List.Iterate loop
 ... -- do something via cursor C
end loop;

then the notional code would have been similar but have used the functions Last and Previous rather
than First and Next.

Another point is that the function call F.First will deliver the very first cursor value if we had written
The_List.Iterate but the value S if we had written The_List.Iterate(S). Remember that we are dealing
with interfaces so there is nothing weird here; the two functions Iterate return different types in the
class and these have different functions First so the notional generated code calls different functions.

If we use the form

for E: Twin of The_List loop
 ... -- do something to E
end loop;

126 I terators, Pools, etc.

then the generated code is essentially the same. However, since we have not explicitly mentioned an
iterator, a default one has to be used. This is given by one of several new aspects of the type List
which actually now is

type List is tagged private
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;

The aspect we need at the moment is the one called Default_Iterator which as we see has the value
Iterate (this is the one without the extra parameter). So the iterator F is initialized with this default
value and once more we get

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...

The use of the other aspects will be explained in a moment.

Lists, vectors and ordered maps and sets can be iterated in both directions. They all have procedures
Reverse_Iterate as well as Iterate and the two new functions Iterate return a value of
Reversible_Iterator'Class.

However, it might be recalled that the notion of iterating in either direction makes no sense in the
case of hashed maps and hashed sets. Consequently, there is no procedure Reverse_Iterate for
hashed maps and hashed sets and there is only one new function Iterate which (in the case of hashed
maps) is

function Iterate(Container: in Map) return
 Map_Iterator_Interfaces.Forward_Iterator'Class;

and we note that this function returns a value of Forward_Iterator'Class rather than
Reversible_Iterator'Class in the case of lists, vectors, ordered maps, and ordered sets.

Naturally, we cannot put reverse in an iterator over hashed maps and hashed sets nor can we give a
starting value. So the following are both illegal

for C in The_Hash_Map.Iterate(S) loop -- illegal

for E of reverse The_Hash_Map loop -- illegal

The above should have given the reader a fair understanding of the mechanisms involved in setting
up the loops using the new iterator forms. We now turn to considering the bodies of the loops, that is
the code marked "do something via cursor C " or "do something to E ".

In the Ada 2005 example we wrote

if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
end if;

It is somewhat tedious having to write Replace_Element when using a container whereas in the case
of an array we might directly write

if Is_Prime(A(I).P) then
 A(I).Q := A(I).Q + X;
end if;

6.3 I terat ion 127

The trouble is that Replace_Element copies the whole new element whereas in the array example
we just update the one component. This doesn't matter too much in a case where the components are
small such as Twin but if they were giant records it would clearly be a problem. To overcome this
Ada 2005 includes a procedure Update_Element thus

procedure Update_Element(Container: in out List;
 Position: in Cursor;
 Process: not null access procedure (Element: in out Element_Type));

To use this we have to write a procedure Do_It say thus

procedure Do_It(E: in out Twin) is
begin
 E.Q := E.Q + X;
end Do_It;

and then

if Is_Prime(E.P) then
 Update_Element(The_List, C, Do_It'Access);
end if;

This works fine because E is passed by reference and no giant copying occurs. However, the
downside is that the distinct procedure Do_It has to be written so that the overall text is something
like

declare
 procedure Do_It(E: in out Twin) is
 begin
 E.Q := E.Q + X;
 end Do_It;
begin
 if Is_Prime(E.P) then
 Update_Element(The_List, C, Do_It'Access);
 end if;
end;

which is a bit tedious.

But of course, the text in the body of Do_It is precisely what we want to say. Using the historic
concepts of left and right hand values, the problem is that The_List(C).Element cannot be used as a
left hand value by writing for example

The_List(C).Element.Q := ...

The problem is overcome in Ada 2012 using a little more magic by the introduction of generalized
reference types and various aspects. In particular we find that the containers now include a type
Reference_Type and a function Reference which in the case of the list containers are

type Reference_Type(Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

function Reference(Container: aliased in out List;
 Position: in Cursor) return Reference_Type;

Note the aspect Implicit_Dereference applied to the type Reference_Type with discriminant
Element.

128 I terators, Pools, etc.

There is also a type Constant_Reference_Type and a function Constant_Reference for use when the
context demands read-only access.

The alert reader will note the inclusion of aliased for the parameter Container of the function
Reference. As discussed in Section 4.2 on Subprogram parameters, this ensures that the parameter is
passed by reference (it always is for tagged types anyway); it also permits us to apply 'Access to the
parameter Container within the function and to return that access value.

It might be helpful to say a few words about the possible implementation of Reference and
Reference_Type although these need not really concern the user.

The important part of the type Reference_Type is its access discriminant. The private part might
contain housekeeping stuff but we can ignore that. So in essence it is simply a record with just one
component being the access discriminant

type Reference_Type(E: not null access Element_Type) is null record;

and the body of the function might be

function Reference(Container: aliased in out List;
 Position: in Cursor) return Reference_Type is
begin
 return (E => Container.Element(Position)'Access);
end Reference;

The rules regarding parameters with aliased (which we gloss over) ensure that no accessibility
problems should arise. Note also that it is important that the discriminant of Reference_Type is an
access discriminant since the lifetime of the discriminant is then just that of the return object.

Various aspects are given with the type List which as shown earlier now is

type List is tagged private
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;

The important aspect here is Variable_Indexing. If this aspect is supplied then in essence an object of
the type can be used in a left hand context by invoking the function given as the value of the aspect.
In the case of The_List this is the function Reference which returns a value of type Reference_Type.
Moreover, this reference type has a discriminant which is of type access Element_Type and the
aspect Implicit_Dereference with value Element and so gives direct access to the value of type
Element.

We can now by stages transform the raw text. So using the cursor form we can start with

for C in The_List.Iterator loop
 if Is_Prime(The_List.Reference(C).Element.all.P) then
 The_List.Reference(C).Element.all.Q :=
 The_List.Reference(C).Element.all.Q + X;
 end if;
end loop;

This is the full blooded version even down to using all.

Omitting the all and using the dereferencing with the aspect Implicit_Dereference we can omit the
mention of the discriminant Element to give

6.3 I terat ion 129

for C in The_List.Iterator loop
 if Is_Prime(The_List.Reference(C).P) then
 The_List.Reference(C).Q := The_List.Reference(C).Q + X;
 end if;
end loop;

Remember that Reference is a function with two parameters. It might be clearer to write this
without prefix notation which gives

for C in Iterator(The_List) loop
 if Is_Prime(Reference(The_List, C).P) then
 Reference(The_List, C).Q := Reference(The_List, C).Q + X;
 end if;
end loop;

Now because the aspect Variable_Indexing for the type List has value Reference, the explicit calls of
Reference can be omitted to give

for C in The_List.Iterator loop
 if Is_Prime(The_List(C).P) then
 The_List(C).Q := The_List(C).Q + X;
 end if;
end loop;

It should now be clear that the cursor C is simply acting as an index into The_List. We can compare
this text with

for C in The_Array'Range loop
 if Is_Prime(The_Array(C).P) then
 The_Array(C).Q := The_Array(C).Q + X;
 end if;
end loop;

which shows that 'Range is analogous to .Iterator.

Finally, to convert to the element form using E we just replace The_List(C) by E to give

for E of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

The reader might like to consider the transformations in the reverse direction to see how the final
succinct form transforms to the expanded form using the various aspects. This is indeed what the
compiler has to do.

This underlying technique which transforms the sequence of statements of the container element
iterator can be used quite generally. For example, we might not want to iterate over the whole
container but just manipulate a particular element given by a cursor C. Rather than calling
Update_Element with another subprogram Do_Something, we can write

The_List.Reference(C).Q := ...

or simply

The_List(C).Q := ...

130 I terators, Pools, etc.

Moreover, although the various aspects were introduced into Ada 2012 primarily to simplify the use
of containers they can be used quite generally.

The reader may feel that these new features violate the general ideas of a language with simple
building blocks. However, it should be remembered that even the traditional form of loop such as

for Index in T range L .. U loop
 ... -- statements
end loop;

is really simply a shorthand for

declare
 Index: T;
begin
 if L <= U then
 Index := L;
 loop
 ... -- statements
 exit when Index = U;
 Index := T'Succ(Index);
 end loop;
 end if;
end;

Without such shorthand, programming would be very tedious and very prone to errors. The features
described in this section are simply a further step to make programming safer and simpler.

Further examples of the use of these new features with containers will be given in Chapter 8
dedicated to containers.

The mechanisms discussed above rely on a number of new aspects, a summary of which follows and
might be found useful. It is largely based on extracts from the RM.

Dereferencing

The following aspect may be specified for a discriminated type T.

Implicit_Dereference This aspect is specified by a name that denotes an access discriminant of the
type T.

A type with a specified Implicit_Dereference aspect is a reference type. The Implicit_Dereference
aspect is inherited by descendants of type T if not overridden.

A generalized_reference denotes the object or subprogram designated by the discriminant of the
reference object.

Indexing

The following aspects may be specified for a tagged type T.

Constant_Indexing This aspect is specified by a name that denotes one or more functions declared
immediately within the same declaration list in which T is declared. All such functions shall have at
least two parameters, the first of which is of type T or T'Class, or is an access-to-constant parameter
with designated type T or T'Class.

Variable_Indexing This aspect is specified by a name that denotes one or more functions declared
immediately within the same declaration list in which T is declared. All such functions shall have at
least two parameters, the first of which is of type T or T'Class, or is an access parameter with

6.3 I terat ion 131

designated type T or T'Class. All such functions shall have a return type that is a reference type,
whose reference discriminant is of an access-to-variable type.

These aspects are inherited by descendants of T (including T'Class). The aspects shall not be
overridden, but the functions they denote may be.

An indexable container type is a tagged type with at least one of the aspects Constant_Indexing or
Variable_Indexing specified.

An important difference between Constant_Indexing and Variable_Indexing is that the functions for
variable indexing must return a reference type so that it can be used in left hand contexts such as the
destination of an assignment. Note that, in both cases, the name can denote several overloaded
functions; this is useful, for example, with maps to allow indexing both with cursors and with keys.

Both Constant_Indexing and Variable_Indexing can be provided since the constant one might be
more efficient whereas the variable one is necessary in left hand contexts. But we are not obliged to
give both, just Variable_Indexing might be enough for some applications.

Iterating

An iterator type is a type descended from the Forward_Iterator interface.

The following aspects may be specified for an indexable container type T.

Default_Iterator This aspect is specified by a name that denotes exactly one function declared
immediately within the same declaration list in which T is declared, whose first parameter is of type
T or T'Class or an access parameter whose designated type is type T or T'Class, whose other
parameters, if any, have default expressions, and whose result type is an iterator type. This function
is the default iterator function for T.

Iterator_Element This aspect is specified by a name that denotes a subtype. This is the default
element subtype for T.

These aspects are inherited by descendants of type T (including T'Class).

An iterable container type is an indexable container type with specified Default_Iterator and
Iterator_Element aspects.

The Constant_Indexing and Variable_Indexing aspects (if any) of an iterable container type T shall
denote exactly one function with the following properties:

 the result type of the function is covered by the default element type of T or is a reference type
with an access discriminant designating a type covered by the default element type of T;

 the type of the second parameter of the function covers the default cursor type for T;

 if there are more than two parameters, the additional parameters all have default expressions.

These functions (if any) are the default indexing functions for T.

The reader might care to check that the aspects used in the examples above match these definitions
and are used correctly. Note for example that the Default_Iterator and Iterator_Element aspects are
only needed if we use the of form of iteration (and both are needed in that case, giving one without
the other would be foolish).

This section has largely been about the use of iterators with loop statements. However, there is one
other use of them and that is with quantified expressions which are also new to Ada 2012.
Quantified expressions were discussed in some detail in Section 3.4 of the chapter on Expressions so
all we need here is to consider a few examples which should clarify the use of iterators.

132 I terators, Pools, etc.

Instead of

B := (for all K in A'Range => A(K) = 0);

which assigns true to B if every component of the array A has value 0, we can instead write

B := (for all E of A => E = 0);

Similarly, instead of

B := (for some K in A'Range => A(K) = 0);

which assigns true to B if some component of the array A has value 0, we can instead write

B := (for some E of A => E = 0);

In the case of a multidimensional array, instead of

B := (for all I in AA'Range(1) => (for all J in AA'Range(2) => AA(I, J) = 0));

we can write

B := (for all E of AA => E = 0);

which iterates over all elements of the array AA however many dimensions it has.

We can also use these forms with the list example. Suppose we are interested in checking whether
some element of the list has a prime component P. We can write

B := (for some E of The_List => Is_Prime(E.P));

or perhaps

B := (for some C in The_List.Iterator => Is_Prime(The_List(C).P));

which uses the explicit iterator form.

6.4 Access types and storage pools
A significant change in Ada 2005 was the introduction of anonymous access types. It is believed
that the motivation was to remove the feeling that Ada 95 was unnecessarily pedantic in requiring
the introduction of lots of named access types whereas in languages such as C one can just place a
star on the identifier of the type being referenced in order to introduce a pointer type.

However, anonymous access types raised more complex accessibility check problems which did not
arise with named access types. Most of these problems were resolved in the definition of Ada 2005
but one remained concerning stand-alone objects of anonymous access types. Interestingly, such
stand-alone objects were added to Ada 2005 late in the development process; perhaps hastily as it
turned out.

In Ada 2005, local stand-alone objects take the accessibility level of the master in which they are
declared.

Consider an attempt to use a local stand-alone object in an algorithm to reverse a list. We assume
that the list comprises nodes of the following type

type Node is
 record
 ...
 Next: access Node;
 end record;

and we write

6.4 Access types and storage pools 133

function Reverse(List: access Node) return access Node is
 Result: access Node := null;
 This_Node: access Node := List;
 Next_Node: access Node := null;
begin
 while This_Node /= null loop
 Next_Node := This_Node.Next;
 This_Node.Next := Result; -- access failure in 2005
 Result := This_Node;
 This_Node := Next_Node;
 end loop;
 return Result; -- access failure in 2005
end Reverse;

This uses the obvious algorithm of working down the list and rebuilding it. However, in Ada 2005
there are two accessibility failures associated with the variable Result. The assignment to
This_Node.Next fails because Result might be referring to something local and we cannot assign
that to a node of the list since the list itself lies outside the scope of Reverse_List. Similarly,
attempting to return the value in Result fails.

The problem with returning a result can sometimes be solved by using an extended return statement
as illustrated in [7]. But this is not a general remedy. The problem is solved in Ada 2012 by treating
stand-alone access objects rather like access parameters so that they carry the accessibility of the last
value assigned to them as part of their value.

Another reason for introducing anonymous access types in Ada 2005 was to reduce the need for
explicit type conversions (note that anonymous access types naturally have no name to use in an
explicit conversion). However, it turns out that in practice it is convenient to use anonymous access
types in some contexts (such as the component Next of type Node) but in other contexts we might
find it logical to use a named access type such as

type List is access Node;

In Ada 2005, explicit conversions are often required from anonymous access types to named access
types and this has been considered to be irritating. Accordingly, the rule has been changed in Ada
2012 to say that an explicit conversion is only required if the conversion could fail.

This relaxation covers both accessibility checks and tag checks. For example we might have

type Class_Acc is access T'Class; -- named type
type Rec is
 record
 Comp: access T'Class; -- anon type
 end record;

R: Rec;

and then some code somewhere

Z: Class_Acc;
...
Z := R.Comp; -- OK in Ada 2012

The conversion from the anonymous type of Comp to the named type Class_Acc of Z on the
assignment to Z cannot fail and so does not require an explicit conversion whereas it did in Ada
2005. However, a conversion from a stand-alone access object or an access parameter always

134 I terators, Pools, etc.

requires an explicit conversion to check the accessibility level carried as part of the value as
explained above since such a check could fail.

With regard to tag checks, if it is statically known that the designated type of the anonymous access
type is covered by the designated type of the named access type then there is no need for a tag check
and so an explicit conversion is not required.

It will be recalled that there is a fictitious type known as universal_access (much as
universal_integer, root_Integer and so on). For example, the literal null is of this universal type.
Moreover, there is a function "=" used to compare universal_access values. Permitting implicit
conversions requires the introduction of a preference rule for the equality operator of the universal
type. Suppose we have

type A is access Integer;
R, S: access Integer;
...
if R = S then

Now since we can do an implicit conversion from the anonymous access type of R and S to the type
A, there is confusion as to whether the comparison uses the equality operator of the type
universal_access or that of the type A. Accordingly, there is a preference rule that states that in the
case of ambiguity there is a preference for equality of the type universal_access. Similar preference
rules already apply to root_integer and root_real.

A related topic concerns membership tests which were described in Section 3.6 of the chapter on
Expressions.

If we want to ensure that a conversion from perhaps Integer to Index will work and not raise
Constraint_Error we can write

subtype Index is Integer range 1 .. 20;
I: Index;
K: Integer;
...
if K in Index then
 I := Index(K); -- bound to work
else
 ... -- remedial action
end if;

This is much neater than attempting the conversion and then handling Constraint_Error.

However, in Ada 2005, there is no similar facility for testing to see whether an access type
conversion would fail. So membership tests in Ada 2012 are extended to permit such a test. So if we
have

type A is access T1;
X: A;
...
type Rec is
 record
 Comp: access T2;
 end record;

R: Rec;
Y: access T2;

we can write

6.4 Access types and storage pools 135

if R.Comp in A then
 X := A(R.Comp) -- conversion bound to work
else ...

The membership test will return true if the type T1 covers T2 and the accessibility rules are satisfied
so that the conversion is bound to work. Note that the converted expression (R.Comp in this case)
can be an access parameter or a stand-alone access object such as Y; in these cases a dynamic test
may be required.

We now turn to consider various features concerning allocation and storage pools.

It will be recalled that if we write our own storage pools then we have to declare a pool type derived
from the type Root_Storage_Pool in the package System.Storage_Pools. So we might write

package My_Pools is
 type Pond(Size: Storage_Count) is new Root_Storage_Pool with private;
 ...

where the discriminant gives the size of the pool. We then have to provide procedures Allocate and
Deallocate for our own pool type Pond corresponding to those for Root_Storage_Pool. The
procedures Allocate and Deallocate both have four parameters. For example, the procedure Allocate
is

procedure Allocate(Pool: in out Root_Storage_Pool;
 Storage_Address: out Address;
 Size_In_Storage_Elements;
 Alignment: in Storage_Count) is abstract;

When we declare our own Allocate we do not have to use the same names for the formal parameters.
So we might more simply write

procedure Allocate(Pool: in out Pond;
 Addr: out Address;
 SISE: in Storage_Count;
 Align: in Storage_Count);

As well as Allocate and Deallocate we also have to write a function Storage_Size and procedures
Initialize and Finalize. However, the key procedures are Allocate and Deallocate which give the
algorithms for determining how the storage in the pool is manipulated.

Two parameters of Allocate give the size and alignment of the space to be allocated. However, it is
possible that the particular algorithm devised might need to know the worst case values in
determining an appropriate strategy. The attribute Max_Size_In_Storage_Elements gives the worst
case for the storage size in Ada 2005 but there is no corresponding attribute for the worst case
alignment.

This is overcome in Ada 2012 by the provision of the attribute Max_Alignment_For_Allocation.
There are various reasons for possibly requiring a different alignment to that expected. For example,
the raw objects might simply be byte aligned but the algorithm might decide to append dope or
monitoring information which is integer aligned.

The collector of Ada curiosities might remember that Max_Size_In_Storage_Elements is the
attribute with most characters in Ada 2005 (28 of which 4 are underlines). Curiously,
Max_Alignment_For_Allocation also has 28 characters of which only 3 are underlines.

There are problems with anonymous access types and allocation. Consider

136 I terators, Pools, etc.

package P is
 procedure Proc(X: access Integer);
end P;

with P;
procedure Try_This is
begin
 P.Proc(new Integer'(10));
end Try_This;

The procedure Proc has an access parameter X and the call of Proc in Try_This does an allocation
with the literal 10. Where does it go? Which pool? Can we do Unchecked_Deallocation? There are
special rules for allocators of anonymous access types which aim to answer such questions. The
pool is "created at the point of the allocator" and so on.

But various problems arise. An important one is that it is not possible to do unchecked deallocation
because the access type has no name; this is particularly serious with library level anonymous access
types. An example of such a type might be that of the component Next if the record type Node
discussed earlier had been declared at library level.

Consequently, it was concluded that it is best to use named access types if allocation is to be
performed. We can always convert to an anonymous type if desired after the allocation has been
performed.

In order to avoid encountering such problems a new restriction identifier is introduced. So writing

pragma Restrictions(No_Anonymous_Allocators);

prevents allocators of anonymous access types and so makes the call of the procedure Proc in the
procedure Try_This illegal.

Many long-lived control programs have a start-up phase in which various storage structures are
established and which is then followed by the production phase in which various restrictions may be
imposed. Ada 2012 has a number of features that enable this to be organized and monitored.

One such feature is the new restriction

pragma Restrictions(No_Standard_Allocators_After_Elaboration);

This specifies that an allocator using a standard storage pool shall not occur within a parameterless
library subprogram or within the statements of a task body. In essence this means that all such
allocation must occur during library unit elaboration. Storage_Error is raised if allocation occurs
afterwards.

However, it is expected that systems will permit some use of user-defined storage pools. To enable
the writers of such pools to monitor their use some additional functions are added to the package
Task_Identification so that it now takes the form

package Ada.Task_Identification is
 ...
 type Task_Id is private;
 ...
 function Current_Task return Task_Id;
 function Environment_Task return Task_Id;
 procedure Abort_Task(T: in Task_Id);

 function Is_Terminated(T: Task_Id) return Boolean;
 function Is_Callable(T: Task_Id) return Boolean;
 function Activation_Is_Complete(T: Task_Id) return Boolean;

6.4 Access types and storage pools 137

private
 ...
end Ada.Task_Identification;

The new function Environment_Task returns the identification of the environment task. The function
Activation_Is_Complete returns true if the task concerned has finished activation. Moreover, if
Activation_Is_Complete is applied to the environment task then it indicates whether all library items
of the partition have been elaborated.

A major new facility is the introduction of subpools. This is an extensive subject so we give only an
overview. The general idea is that one wants to manage heaps with different lifetimes. It is often the
case that an access type is declared at library level but various groups of objects of the type are
declared and so could be reclaimed at a more nested level. This is done by splitting a pool into
separately reclaimable subpools. This is far safer and often cheaper than trying to associate lifetimes
with individual objects.

A new child package of System.Storage_Pools is declared thus

package System.Storage_Pools.Subpools is
 pragma Preelaborate(Subpools);

 type Root_Storage_Pool_With_Subpools is abstract new Root_Storage_Pool with private;

 type Root_Subpool is abstract tagged limited private;

 type Subpool_Handle is access all Root_Subpool'Class;
 for Subpool_Handle'Storage_Size use 0;

 function Create_Subpool(Pool: in out Root_Storage_Pool_With_Subpools)
 return not null Subpool_Handle is abstract;

 function Pool_Of_Subpool (Subpool: not null Subpool_Handle) return access
 Root_Storage_Pool_With_Subpools'Class;

 procedure Set_Pool_Of_Subpool(Subpool: not null Subpool_Handle;
 To: in out Root_Storage_Pool_With_Subpools'Class);

 procedure Allocate_From_Subpool(Pool: in out Root_Storage_Pool_With_Subpools;
 Storage_Address: out Address;
 Size_In_Storage_Elements: in Storage_Count;
 Alignment: in Storage_Count;
 Subpool: in not null Subpool_Handle) is abstract
 with Pre'Class => Pool_Of_Subpool(Subpool) = Pool'Access;

 procedure Deallocate_Subpool(Pool: in out Root_Storage_Pool_With_Subpools;
 Subpool: in out Subpool_Handle) is abstract
 with Pre'Class => Pool_Of_Subpool(Subpool) = Pool'Access;

 function Default_Subpool_For_Pool(Pool: in out Root_Storage_Pool_With_Subpools)
 return not null Subpool_Handle;

 overriding
 procedure Allocate(Pool: in out Root_Storage_Pool_With_Subpools;
 Storage_Address: out Address;
 Size_In_Storage_Elements: in Storage_Count;
 Alignment: in Storage_Count);

 overriding
 procedure Deallocate(...) is null;

138 I terators, Pools, etc.

 overriding
 function Storage_Size(Pool: Root_Storage_Pool_With_Subpools) return Storage_Count is
 (Storage_Count'Last);

private
 ... -- not specified by the language
end System.Storage_Pools.Subpools;

If we wish to declare a storage pool that can have subpools then rather than declare an object of the
type Root_Storage_Pool in the package System.Storage_Pools we have to declare an object of the
derived type Root_Storage_Pool_With_Subpools declared in the child package.

The type Root_Storage_Pool_With_Subpools inherits operations Allocate, Deallocate and
Storage_Size from the parent type. Remember that Allocate and Deallocate are automatically called
by the compiled code when items are allocated and deallocated. In the case of subpools we don't
need Deallocate to do anything so it is null. The function Storage_Size determines the value of the
attribute Storage_Size and is given by a function expression.

Subpools are separately reclaimable parts of a storage pool and are identified and manipulated by
objects of the type Subpool_Handle (these are access values). We can create a subpool by a call of
Create_Subpool. So we might have (assuming appropriate with and use clauses)

package My_Pools is
 type Pond(Size: Storage_Count) is new Root_Storage_Pool_With_Subpools with private;

 subtype My_Handle is Subpool_Handle;
 ...

and then

My_Pool: Pond(Size => 1000);

Puddle: My_Handle := Create_Subpool(My_Pool);

The implementation of Create_Subpool should call

Set_Pool_Of_Subpool(Puddle, My_Pool);

before returning the handle. This enables various checks to be made.

In order to allocate an object of type T from a subpool, we have to use a new form of allocator. But
first we must ensure that T is associated with the pool itself. So we might write

type T_Ptr is access T;
for T_Ptr'Storage_Pool use My_Pool;

And then to allocate an object from the subpool identified by the handle Puddle we write

X := new (Puddle) T'(...);

where the subpool handle is given in parentheses following new.

Of course we don't have to allocate all such objects from a specified subpool since we can still write

Y := new T'(...);

and the object will be allocated from the parent pool My_Pool. It is actually allocated from a default
subpool in the parent pool and this is determined by writing a suitable body for the function
Default_Subpool_For_Pool and this is called automatically by the allocation mechanism. Note that
in effect the whole of the pool is divided into subpools one of which may be the default subpool. If
we don't provide an overriding body for Default_Subpool_For_Pool then Program_Error is raised.
(Note that this function has a parameter of mode in out for reasons that need not bother us.)

6.4 Access types and storage pools 139

The implementation carries out various checks. For example, it will check that a handle refers to a
subpool of the correct pool by calling the function Pool_Of_Subpool. Both this function and
Set_Pool_Of_Subpool are provided by the Ada implementation and typically do not need to be
overridden by the implementer of a particular type derived from Root_Storage_Pool_
With_Subpools.

In the case of allocation from a subpool, the procedure Allocate_From_Subpool rather than Allocate
is automatically called. Note the precondition to check that all is well.

It will be recalled that for normal storage pools, Deallocate is automatically called from an instance
of Unchecked_Deallocation. In the case of subpools the general idea is that we get rid of the whole
subpool rather than individual items in it. Accordingly, Deallocate does nothing as mentioned earlier
and there is no Deallocate_From_Subpool. Instead we have to write a suitable implementation of
Deallocate_Subpool. Note again the precondition to check that the subpool belongs to the pool.

Deallocate_Subpool is called automatically as a consequence of calling the following library
procedure

with System.Storage_Pools.Subpools;
use System.Storage_Pools.Subpools;
procedure Ada.Unchecked_Deallocate_Subpool(Subpool: in out Subpool_Handle);

So when we have finished with the subpool Puddle we can write

Unchecked_Dellocate_Subpool(Puddle);

and the handle becomes null. Appropriate finalization also takes place.

In summary, the writer of a subpool implementation typically only has to provide Create_Subpool,
Allocate_From_Subpool and Deallocate_Subpool since the other subprograms are provided by the
Ada implementation of the package System.Storage_Pools.Subpools and can be inherited
unchanged.

An example of an implementation will be found in subclause 13.11.6 of the RM. This shows an
implementation of a Mark/Release pool in a package MR_Pool. Readers are invited to create
variants called perhaps Miss_Pool and Dr_Pool!

Further control over the use of storage pools (nothing to do with subpools) is provided by the ability
to define our own default storage pool as mentioned in the Introduction. Thus we can write (and
completing our Happy Family of Pools)

pragma Default_Storage_Pool(Master_Pool);

and then all allocation within the scope of the pragma will be from Master_Pool unless a different
specific pool is given for a type. This could be done by using an attribute definition clause thus

type Cell_Ptr is access Cell;
 for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

or by using an aspect specification thus

type Cell_Ptr is access Cell
 with Storage_Pool => Cell_Ptr_Pool;

A pragma Default_Storage_Pool can be overridden by another one so that for example all allocation
in a package (and its children) is from another pool.

The default pool can be specified as null thus

pragma Default_Storage_Pool(null);

140 I terators, Pools, etc.

and this prevents any allocation from standard pools.

Allocation normally occurs from the default pool unless a specific pool has been given for a type.
But there are two exceptions, one concerns access parameter allocation and the other concerns
coextensions; in these cases allocation uses a pool that depends upon the context.

Thus in the case of the procedure Proc discussed above, a call such as

P.Proc(new Integer'(10));

might allocate the space in a secret pool created on the fly and that secret pool might be placed on
the stack.

Such allocation can be prevented by two more specific restrictions. They are

pragma Restriction(No_Access_Parameter_Allocators);

and

pragma Restriction(No_Coextensions);

These two pragmas plus using the restriction Default_Storage_Pool with null ensure that all
allocation is from user-defined pools.

6.5 Restrictions
Restrictions provide a valuable way of increasing security. Ada is a rich language and even richer
with Ada 2012 and although individual features are straightforward, certain combinations can cause
problems.

The new restrictions introduced into Ada 2012 have already been described in this or earlier
chapters such as the Introduction. However, for convenience here is a complete list giving the annex
where appropriate.

The new Restrictions identifiers are

No_Access_Parameter_Allocators High-Integrity
No_Anonymous_Allocators High-Integrity
No_Coextensions High-Integrity
No_Implementation_Aspect_Specifications
No_Implementation_Identifiers
No_Implementation_Units
No_Specification_Of_Aspect
No_Standard_Allocators_After_Elaboration Real-Time
No_Use_Of_Attribute
No_Use_Of_Pragma

Some of the new Restrictions identifiers are in the High-Integrity annex. They are

pragma Restrictions(No_Access_Parameter_Allocators);

pragma Restrictions(No_Anonymous_Allocators);

pragma Restrictions(No_Coextensions);

and these were discussed in the previous section.

In a similar vein there is one new restriction in the Real-Time annex, namely

pragma Restrictions(No_Standard_Allocators_After_Elaboration);

and this was also discussed in the previous section.

6.5 Rest r ic t ions 141

A number of restrictions prevent the use of implementation-defined features. They are

pragma Restrictions(No_Implementation_Aspect_Specifications);

pragma Restrictions(No_Implementation_Identifiers);

pragma Restrictions(No_Implementation_Units);

These do not apply to the whole partition but only to the compilation or environment concerned.
This helps us to ensure that implementation dependent areas of a program are identified. They were
discussed in the Introduction and join similar restrictions No_Implementation_Attributes and
No_Implementation_Pragmas introduced in Ada 2005.

The restrictions on implementation-defined aspect specifications, attributes and pragmas are obvious
but some clarification of what is meant by the restrictions on units and identifiers might be helpful.

It will be recalled that the predefined packages are Ada, System and Interfaces plus various
children. In the so-called standard mode, implementations are not permitted to add their own child
packages of Ada but can add grandchildren. Thus an implementation might add an additional
container package called perhaps Ada.Containers.Slopbucket. If a program were to use this
grandchild then clearly it would be unlikely to be portable to other implementations. Accordingly,
giving the restriction No_Implementation_Units prevents such potential difficulties. Similarly, this
restriction prevents the use of implementation-defined child units of System and Interfaces.

The restriction No_Implementation_Identifiers is more subtle. It will be recalled that several
predefined packages are permitted to add implementation-defined identifiers. They are

Standard, System, Ada.Command_Line, Interfaces.C, Interfaces.C.Strings,
Interfaces.C.Pointers, Interfaces.COBOL, and Interfaces.Fortran.

Moreover, the following predefined packages only contain implementation-defined identifiers

Interfaces, System.Machine_Code, Ada.Directories.Information, Ada.Directories.Names,
and the packages Implementation nested in the queue containers.

The restriction No_Implementation_Identifiers prevents the use of any of these.

There is a slight subtlety regarding Long_Integer and Long_Float in Standard. The types Integer and
Float must be provided. Types such as Short_Integer and Long_Long_Float may be provided but are
definitely considered to be implementation-defined and so excluded by the restriction on
implementation identifiers. However, Long_Integer and Long_Float should be provided (if the
hardware is capable) and so are considered to be predefined and not covered by the restriction.
Nevertheless, an implementation on a specialized small machine might not provide them.

Finally, there are restrictions preventing the use of particular facilities

pragma Restrictions(No_Specification_Of_Aspect => X);

pragma Restrictions(No_Use_Of_Attribute => X);

pragma Restrictions(No_Use_Of_Pragma => X);

where X is the name of a specific aspect, attribute or pragma respectively. They are similar to the
restriction No_Dependence introduced in Ada 2005. They apply to a complete partition.

Note that No_Specification_Of_Aspect prevents the specification of an aspect by any means.
Remember that some aspects can be specified by an aspect specification or by a pragma or by an
attribute definition clause. Thus we mentioned above that a storage pool could be given by an
attribute definition clause thus

142 I terators, Pools, etc.

type Cell_Ptr is access Cell;
 for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

or by using an aspect specification thus

type Cell_Ptr is access Cell
 with Storage_Pool => Cell_Ptr_Pool;

Writing

pragma Restrictions(No_Specification_Of_Aspect => Storage_Pool);

prevents both of these whereas

pragma Restrictions(No_Use_Of_Attribute => Strorage_Pool);

prevents only the first. Naturally, No_Use_Of_Attribute prevents both setting an attribute and
reading it whereas No_Specification_Of_Aspect prevents just setting it. Thus we might want to read
'Size but prevent setting it.

Similarly

pragma Restrictions(No_Specification_Of_Aspect => Pack);

prevents both

type Flags is array (1 .. 8) of Boolean
 with Pack;

and

type Flags is array (1 .. 8) of Boolean;
pragma Pack(Flags);

whereas

pragma Restrictions(No_Use_Of_Pragma => Pack);

prevents only the latter.

In summary, No_Specification_Of_Aspect does not mean No_Aspect_Specification (which does not
exist).

Remember that several restrictions can be given in one pragma, so we might have

pragma Restrictions(No_Use_Of_Pragma => P,
 No_Use_Of_Attribute => A);

As mentioned in the Introduction there is also a new profile No_Implementation_Extensions. This is
specified by

pragma Profile(No_Implementation_Extensions);

and is equivalent to writing

pragma Restrictions(No_Implementation_Aspect_Specifications,
 No_Implementation_Attributes,
 No_Implementation_Identifiers,
 No_Implementation_Pragmas,
 No_Implementation_Units);

thus providing blanket security against writing programs that use language extensions. This profile
is defined in the core language. The only other profile defined in Ada 2012 is Ravenscar which was

6.5 Rest r ic t ions 143

introduced in Ada 2005 and is in the Real-Time systems annex. Remember that the pragma Profile is
a configuration pragma.

Finally, those of a recursive nature might note that writing

pragma Restrictions(No_Use_Of_Pragma => Restrictions);

is illegal (this prevents the risk that the compiler might melt down). More curiously, there is not a
restriction No_Implementation_Restrictions. This might be because of similar concern regarding
what would happen with its recursive use.

6.6 Miscellanea
A number of improvements do not neatly fit into any other section of this book and so are lumped
together here.

The first four are in fact binding interpretations and thus apply to Ada 2005 as well.

First, nominal subtypes are defined for enumeration literals and attribute references so that all names
now have a nominal subtype.

This is clearly a matter for the language lawyer rather than the happy programmer. Consider the
following weird example

subtype S is Integer range 1 .. 10;
...
case S'Last is
 when 0 => -- ????

This is clearly nonsense. However, Ada 2005 does not define a nominal subtype for attributes such
as S'Last and so we cannot determine whether 0 is allowed as a discrete choice. The language
definition is tidied up to cover such cases.

The second gap in Ada 2005 concerns intrinsic subprograms. Remember that intrinsic subprograms
are functions such as "+" on the type Integer that only exist in the mind of the compiler. Clearly they
have no address. The following is added to the RM:

 The prefix of X'Address shall not statically denote a subprogram that has convention Intrinsic.
X'Address raises Program_Error if X denotes a subprogram that has convention Intrinsic.

The dynamic check is needed because of the possibility of passing an intrinsic operation as a generic
parameter.

The third of these binding gems concerns the package Ada.Calendar. The problem is that
Calendar.Time is not well-defined when a time zone change occurs as for example when Daylight
Saving Time is introduced or removed. Thus operations involving several time values (such as
subtraction) might give the "correct" answer or might be an hour adrift. The conclusion reached was
simply to admit that it is not defined so the wording is slightly changed.

Another problem with the wording in Ada 2005 is that the sign of the difference between local time
and UTC as returned by UTC_Offset is not clearly defined. The sign is clarified so that for example
UTC_Offset is negative in the American continent.

There is another problem with the package Calendar which will need to be addressed at some time
(probably long after the author is dead). Much effort was exerted in Ada 2005 to cope with leap
seconds. These arise because the angular velocity of rotation of the Earth is gradually slowing down.
In earlier epochs when measurements of time were not accurate this did not matter. However, we
now have atomic clocks and the slowdown is significant so that clocks are adjusted by one second as
necessary and these are known as leap seconds.

144 I terators, Pools, etc.

But leap seconds are under threat. There is a move to suggest that tiny adjustments of one second are
not worth the effort and that we should wait until the time is a whole hour wrong. A simple
adjustment similar to that with which we are familiar with Daylight Saving changes is all that is
needed. In other words we will have a leap hour every now and then. Indeed, if leap seconds occur
about once a year as they have done on average since 1972 then a leap hour will be needed
sometime in the 37th century. This will probably need to be addressed in Ada 3620 or so.

The final binding interpretation concerns class wide types and generics. An annoyance was recently
discovered concerning the use of indefinite container packages such as

generic
 type Index_Type is range <>;
 type Element_Type(<>) is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Indefinite_Vectors is
 ...

We can instantiate this with an indefinite type such as String by writing perhaps

package String_Vectors is
 new Containers.Indefinite_Vectors(Positive, String);

The third actual parameter can be omitted because the predefined operation "=" on the type String
exists and does what we want.

Class wide types are another example of indefinite types. Thus we might like to create a vector
container whose elements are a mixture of objects of types Circle, Square, Triangle and so on.
Assuming these are all descended from the abstract type Object we want to instantiate with the class
wide type Object'Class.

However, unlike String, class wide types such as Object'Class do not have a predefined equals (class
wide types do not themselves have any predefined primitive operations). This is annoying since the
derived types Circle, Square, and Triangle (being just records) do have a predefined equals.

So we have to write something like

function Equal(L, R: Object'Class) is
begin
 return L = R;
end Equal;

Note that this will dispatch to the predefined equals of the type of the objects passed as parameters.
They both must be of the same type of course; we cannot compare a Circle to a Triangle (anymore
than we can compare Thee to a Summer's Day).

So we can now instantiate thus

package Object_Vectors is
 new Containers.Indefinite_Vectors(Positive, Object'Class, Equal);

Note irritatingly that we cannot write Equal as just "=" because this causes ambiguities.

This is all a bit annoying and so in Ada 2012, the required "=" is automatically created, we do not
have to declare Equal, and the instantiation can simply be

package Object_Vectors is
 new Containers.Indefinite_Vectors(Positive, Object'Class);

This improvement is also a binding interpretation and so applies to Ada 2005 as well.

6.6 Miscel lanea 145

A more serious matter is the problem of the composability of equality. In Ada 2005, tagged record
types compose but untagged record types do not. If we define a new type (a record type, array type
or a derived type) then equality is defined in terms of equality for its various components. However,
the behaviour of components which are records is different in Ada 2005 according to whether they
are tagged or not. If a component is tagged then the primitive operation is used (which might have
been redefined), whereas for an untagged type, predefined equality is used even though it might
have been overridden.

Consider

type Tagrec is tagged
 record
 X1: Integer;
 X2: Integer;
 end record;

type Untagrec is
 record
 Y1: Integer;
 Y2: Integer;
 end record;

type Index is range 0 .. 64;

...

function "=" (L, R: Tagrec) return Boolean is
begin
 return L.X1 = R.X1; -- compare only first component
end;

function "=" (L, R: Untagrec) return Boolean is
begin
 return L.Y1 = R.Y1; -- compare only first component
end;

function "=" (L, R: Index) return Boolean is
begin
 raise Havoc;
 return False;
end;

...

type Mixed is
 record
 T: Tagrec;
 U: Untagrec;
 Z: Index;
 end record;

Here we have a type Mixed whose components are of a tagged record type Tagrec, an untagged
record type Untagrec, and an elementary type Index. Moreover, we have redefined equality for these
types.

In Ada 2005, the equality for the type Mixed uses the redefined equality for the component T but the
predefined equality for U and Z. Thus it compares T.X1, U.Y1 and U.Y2 and does not raise Havoc.

146 I terators, Pools, etc.

In Ada 83, the predefined equality always emerged for the components of arrays and records. One
reason was to avoid confusion if an inconsistency arose between "=", "<" and "<=". Remember that
many elementary types and certain array types have predefined "<" as well as "=" and to get the
relationship messed up would have been confusing.

However, Ada 95 introduced tagged record types and inheritance of operations became an important
feature. So it seemed natural that if a structure (array or record) had components of a tagged type
and equality for that tagged type had been redefined then it would be natural to expect that equality
for the structure should use the redefined equality. But, fearful of introducing an incompatibility, the
rule for untagged record types was left unchanged so that predefined equality reemerges.

On reflection, this difference between tagged and untagged records was surprising and so has been
changed in Ada 2012 so that all record types behave the same way and use the primitive operation.
This is often called composability of equality so we can say that in Ada 2012, record types always
compose for equality. Remember that this only applies to records; components which are of array
types and elementary types continue to use predefined equality. So in Ada 2012, equality for Mixed
only compares T.X1 and U.Y1 but not U.Y2 and still does not raise Havoc.

Concern for incompatibility and inconsistency has been allayed by a deep analysis of a number of
programs. No nasties were revealed and in the only cases where it made a difference it was clear that
the original behaviour was in fact wrong.

The final miscellaneum (singular of miscellanea?) concerns tags.

The package Ada.Tags defines various functions operating on tags. For example

function Parent_Tag(T: Tag) return Tag;

returns the tag of the parent unless the type has no parent in which case it returns No_Tag.

A type can be abstract or concrete. The key property of abstract types is that we cannot have an
object of an abstract type. If we wish to create an object using Generic_Dispatching_Constructor and
the tag passed as a parameter represents an abstract type then Tag_Error is raised. It would, of
course, be far better to check whether a tag represents an abstract type before using
Generic_Dispatching_Constructor.

However, given a tag, there is no sensible way in Ada 2005 to find out whether it represents an
abstract type. We could attempt to create an object and see if it raises Tag_Error. If it doesn't then
we know that it was not abstract but we have also created an object we maybe didn't want; if it does
raise Tag_Error then it might or might not have been abstract since there are other reasons for the
exception being raised. Either way this is madness.

In Ada 2012, we can test the tag using the new function

function Is_Abstract(T: Tag) return Boolean;

which is added near the end of the package Ada.Tags just before the declaration of the exception
Tag_Error.

 147

7 Predefined library
This chapter describes various relatively minor improvements to the predefined library in
Ada 2012. The major changes concerning the container library will be described in the
chapter.

7.1 Overview of changes
The WG9 guidance document [1] does not specifically identify problems in this area other than
through a general exhortation to remedy shortcomings.

We have already discussed the additional library packages in the area of tasking and real-time in
Chapter 5. There are also many additional library packages concerning containers and these will be
discussed in the next chapter. The following Ada issues cover the relevant changes in other areas
and are described in detail in this chapter:

 1 Bounded containers and other container issues

 31 Add a From parameter to Find_Token

 49 Extend file name processing in Ada.Directories

127 Adding locale capabilities

137 String encoding package

185 Wide_Character and Wide_Wide_Character classification and folding

233 Questions on locales

266 Use latest version of ISO/IEC 10646

283 Stream_IO should be preelaborated

285 Defaulted environment variable queries

286 Internationalization of Ada

These changes can be grouped as follows.

A number of enhancements concern strings and characters. These include comprehensive new
packages to support conversions between strings (and wide strings and wide-wide strings) and the
UTF-8 and UTF-16 encodings (137). It is important to note that Ada 2012 directly supports source
code in UTF-8 (286). Additional facilities are also provided for the classification of characters and
new packages added for similar operations on wide characters and wide wide characters (185, 266).
A minor change is the provision of a further procedure Find_Token with an additional parameter
giving the start of the search (31).

The file name processing in Ada.Directories is enhanced to overcome some shortcomings (49).

A new package is added to enable a program to identify the locale in which it is being used (127,
233).

There are a number of additional facilities regarding hashing and case insensitive comparisons. The
hashing issues really relate to containers but are briefly mentioned here for completeness (1, 286).

Finally, other improvements are that the package Ada.Streams.Stream_IO is now preelaborated
(283) and that an additional function Value is added to the package Ada.Environment_Variables
(285).

148 Predef ined l ibrary

7.2 Strings and characters
Ada 95 added a number of packages for manipulating strings and characters. Three child packages
of Ada.Strings enable the manipulation of fixed length, bounded and unbounded strings. They are
Ada.Strings.Fixed, Ada.Strings.Bounded and Ada.Strings.Unbounded. The packages have many
subprograms with similar facilities.

In particular there are functions Index and Index_Non_Blank which search through a string and
return the index of the first character satisfying some criteria and procedures Find_Token which
search through a string and find the first instance of a slice satisfying some other criteria.

As originally defined in Ada 95 these subprograms all started the search at the beginning of the
string. This proved to be somewhat inconvenient and so in Ada 2005, versions of the functions
Index and Index_Non_Blank with an extra parameter From were added to enable the search to be
started at any position. However, the fact that versions of the procedures Find_Token with an extra
parameter From should also have been added was overlooked. This is remedied in Ada 2012.

So in Ada 2012 corresponding additional subprograms Find_Token are added to the appropriate
packages. They are

procedure Find_Token(Source: in String;
 Set: in Maps.Character_Set;
 From: in Positive;
 Test: in Membership;
 First: out Positive;
 Last: out Natural);

procedure Find_Token(Source: in Bounded_String;
 Set: in Maps.Character_Set;
 From: in Positive;
 Test: in Membership;
 First: out Positive;
 Last: out Natural);

procedure Find_Token(Source: in Unbounded_String;
 Set: in Maps.Character_Set;
 From: in Positive;
 Test: in Membership;
 First: out Positive;
 Last: out Natural);

Note also that the wording for Find_Token is modified to make it clear that the values of First and
Last identify the longest possible slice starting at From. If no characters satisfy the criteria then First
is set to From and Last is set to zero.

The existing procedures Find_Token are now defined as calls of the new ones with From set to
Source'First.

The encodings UTF-8 and UTF-16 are now widely used but Ada 2005 provides no mechanisms to
convert between these encodings and the types String, Wide_String, and Wide_Wide_String.

The encoding UTF-8 works in terms of raw bytes and is straightforward; it is defined in Annex D of
ISO/IEC 10646. However, UTF-16 comes in two forms according to whether the arrangement of
two bytes into a 16-bit word uses big-endian or little-endian packing. So there are two forms UTF-
16BE and UTF-16LE; they are defined in Annex C of ISO/IEC 10646.

7.2 St r ings and characters 149

The different encodings can be distinguished by a special value known as a BOM (Byte Order
Mark) at the start of the string. So we have BOM_8, BOM_16BE, BOM_16LE, and just BOM_16 (for
wide strings).

To support these encodings, Ada 2012 includes the following five new packages

Ada.Strings.UTF_Encoding
Ada.Strings.UTF_Encoding.Conversions
Ada.Strings.UTF_Encoding.Strings
Ada.Strings.UTF_Encoding.Wide_Strings
Ada.Strings.UTF_Encoding.Wide_Wide_Strings

The first package declares items that are used by the other packages. It is

package Ada.Strings.UTF_Encoding is
 pragma Pure(UTF_Encoding);

 type Encoding_Scheme is (UTF_8, UTF_16BE, UTF_16LE);

 subtype UTF_String is String;
 subtype UTF_8_String is String;
 subtype UTF_16_Wide_String is Wide_String;

 Encoding_Error: exception;

 BOM_8: constant UTF_8_String :=
 Character'Val(16#EF#) &
 Character'Val(16#BB#) &
 Character'Val(16#BF#);

 BOM_16BE: constant UTF_String :=
 Character'Val(16#FE#) &
 Character'Val(16#FF#);

 BOM_16LE: constant UTF_String :=
 Character'Val(16#FF#) &
 Character'Val(16#FE#);

 BOM_16: constant UTF_16_Wide_String := (1 => Wide_Character'Val(16#FEFF#);

 function Encoding(Item: UTF_String; Default: Encoding_Scheme := UTF_8)
 return Encoding_Scheme;

end Ada.Strings.UTF_Encoding;

Note that the encoded forms are actually still held in objects of type String or Wide_String.
However, in order to aid understanding, the subtypes UTF_String, UTF_8_String and
UTF_16_Wide_String are introduced and these should be used when referring to objects holding the
encoded forms.

The type Encoding_Scheme defines the various schemes. Note that an encoded string might or
might not start with the identifying BOM; it is optional. The function Encoding takes a UTF_String
(that is a plain old string), checks the BOM if present and returns the value of Encoding_Scheme
identifying the scheme. If there is no BOM then it returns the value of the parameter Default which
itself by default is UTF_8.

Note carefully that the function Encoding does not do any encoding – that is done be functions
Encode in the other packages which will be described in a moment. Note also that there is no
corresponding function Encoding for wide strings; that is because there is only one relevant scheme
corresponding to UTF_16_Wide_String, namely that with BOM_16.

150 Predef ined l ibrary

We will now look at the other packages. The package UTF_Encoding.Strings contains functions
Encode and Decode which convert between the raw type String and the UTF forms. Similar
packages apply to wide and wide wide strings. The package UTF_Encoding.Conversions contains
functions Convert which convert between the various UTF forms.

The package for the type String is

package Ada.Strings.UTF_Encoding.Strings is
 pragma Pure(Strings);

 function Encode(Item: String; Output_Scheme: Encoding_Scheme;
 Output_BOM: Boolean := False) return UTF_String;

 function Encode(Item: String; Output_BOM: Boolean := False) return UTF_8_String;

 function Encode(Item: String; Output_BOM: Boolean := False)
 return UTF_16_Wide_String;

 function Decode(Item: UTF_String; Input_Scheme: Encoding_Scheme) return String;

 function Decode(Item: UTF_8_String) return String;

 function Decode(Item: UTF_16_Wide_String) return String;

end Ada.Strings.UTF_Encoding.Strings;

The functions Encode take a string and return it encoded. The first function has a parameter
Output_Scheme which determines whether the encoding is to be to UTF_8, UTF_16BE or
UTF_16LE. The second function is provided as a convenience for the common case of encoding to
UTF_8 and the third function is necessary for encoding to UTF_16_Wide_String. In all cases there is
a final optional parameter indicating whether or not an appropriate BOM is to be placed at the start
of the encoded string.

The functions Decode do the reverse. Thus the first function takes a value of subtype UTF_String
and a parameter Input_Scheme giving the scheme to be used and returns the decoded string. If a
BOM is present which does not match the Input_Scheme, then the exception Encoding_Error is
raised. The second function is a convenience for the common case of decoding from UTF_8 and the
third function is necessary for decoding from UTF_16_Wide_String; again, if a BOM is present that
does not match the expected scheme then Encoding_Error is raised.

In all cases all the strings returned have a lower bound of 1.

The packages UTF_Encoding.Wide_Strings and UTF_Encoding.Wide_Wide_Strings are identical
except that the type String is replaced by Wide_String or Wide_Wide_String throughout.

Finally, the package for converting between the various UTF forms is as follows

package Ada.Strings.UTF_Encoding.Conversions is
 pragma Pure(Conversions);

 function Convert(Item: UTF_String;
 Input_Scheme: Encoding_Scheme
 Output_Scheme: Encoding_Scheme;
 Output_BOM: Boolean := False) return UTF_String;

 function Convert(Item: UTF_String;
 Input_Scheme: Encoding_Scheme
 Output_BOM: Boolean := False) return UTF_16_Wide_String;

 function Convert(Item: UTF_8_String;
 Output_BOM: Boolean := False) return UTF_16_Wide_String;

7.2 St r ings and characters 151

 function Convert(Item: UTF_16_Wide_String;
 Output_Scheme: Encoding_Scheme;
 Output_BOM: Boolean := False) return UTF_String;

 function Convert(Item: UTF_16_Wide_String;
 Output_BOM: Boolean := False) return UTF_8_String;

end Ada.Strings.UTF_Encoding.Conversions;

The purpose of these should be obvious. The first converts between encodings held as strings with
parameters indicating both the Input_Scheme and the Output_Scheme. If the input string has a
BOM that does not match the Input_Scheme then the exception Encoding_Error is raised. The final
optional parameter indicates whether or not an appropriate BOM is to be placed at the start of the
converted string.

The other functions convert between UTF encodings held as strings and wide strings. Two give the
explicit Input_Scheme or Output_Scheme and two are provided for convenience for the common
case of UTF_8.

The final topic in this section concerns the classification and conversion of characters and strings.
The package Ada.Characters.Handling was introduced in Ada 95; this contains various classification
functions such as Is_Lower, Is_Digit and so on. This package also contains functions such as
To_Upper and To_Lower which convert characters to upper case or lower case.

These facilities are extended in Ada 2012 by the addition of a few more classification functions in
the package Ada.Characters.Handling plus similar packages named Ada.Wide_Characters.Handling
for dealing with wide characters and Ada.Wide_Wide_Characters.Handling for dealing with wide
wide characters.

It should be noticed that these new packages are children of Ada.Wide_Characters and
Ada.Wide_Wide_Characters respectively. These packages were introduced in Ada 2005 but are
empty other than for pragmas Pure.

The additional character classification functions in Ada.Characters.Handling are

function Is_Line_Terminator ...
function Is_Mark(Item: Character) return Boolean;
function Is_Other ...
function Is_Punctuation_Connector ...
function Is_Space ...

In each case they have a single parameter Item of type Character and return a result of type Boolean.

The meanings are as follows

Is_Line_Terminator – returns True if Item is one of Line_Feed (10), Line_Tabulation (11),
Form_Feed (12), Carriage_Return (13), or Next_Line (133).

Is_Mark – always returns False.

Is_Other_Format – returns True if Item is Soft_Hyphen (171).

Is_Punctuation_Connector – returns True if Item is Low_Line (95); this is often known as
Underscore.

Is_Space – returns True if Item is Space (32) or No_Break_Space (160).

Readers might feel that Is_Mark is a foolish waste of time. However, it is introduced because the
corresponding functions in the new packages for wide and wide wide characters can return True.

152 Predef ined l ibrary

An important point is that these classifications enable a compiler to analyze Ada source code
without direct reference to the definition of ISO/IEC 10646. Note further that case insensitive text
comparison which is useful for the analysis of identifiers is now provided by new functions
described in Section 5 below.

The new package Wide_Characters.Handling is very similar to the package Characters.Handling (as
modified by the additional functions just described) with Character and String everywhere replaced
by Wide_Character and Wide_String. However, there are no functions corresponding to Is_Basic,
Is_ISO_646, To_Basic and To_ISO_646. In the case of Is_Basic this is because there is no
categorization of Basic in 10646. In the case of ISO-646 it is not really necessary because it would
seem rather unlikely that one would want to check a wide character WC to see if it was one of the 7-
bit ISO-646 set. In any event, one could always write

WC in Wide_Characters'POS(0) .. Wide_Characters'POS(127)

The package Wide_Characters.Handling also has the new function Character_Set_Version thus

function Character_Set_Version return String;

The string returned identifies the version of the character set standard being used. Typically it will
include either "10646:" or "Unicode". The reason for introducing this function is because the
categorization of some wide characters depends upon the version of 10646 or Unicode being used.
So rather than specifying that the package uses a particular set (which might be a nuisance in the
future if the character set standard changes), it seemed more appropriate to enable the program to
find out exactly which version is being used. For most programs, it won't matter at all of course.

Note that there is no corresponding function in Ada.Characters.Handling. This is because the set
used for the type Character is frozen as at 1995 and the classification functions defined for the type
Character are frozen as well (and so do not now exactly match 10646 which has since evolved). It
might be that classifications for wide and ever wider characters might change in the future for some
obscure characters but the programmer can rest assured that Character is for ever reliable.

So Wide_Characters.Handling in essence is

package Ada.Wide_Characters.Handling is
 pragma Pure(Handling);

 function Character_Set_Version return String;

 function Is_Control(Item: Wide_Character) return Boolean;

 ... -- and so on

 function To_Upper(Item: Wide_String) return Wide_String);

end Ada.Wide_Characters.Handling;

The new package Wide_Wide_Characters.Handling is the same as Wide_Characters.Handling with
Wide_Character and Wide_String replaced by Wide_Wide_Character and Wide_Wide_String
throughout.

7.3 Directories
The package Ada.Directories was introduced in Ada 2005. However, experience with its use has
revealed a number of shortcomings which are rectified in Ada 2012.

Three specific problems are mentioned in AI-49.

First, it is not possible to concatenate a root directory such as "/tmp" with a relative pathname such
as "public/file.txt" using the procedure Compose thus

7.3 Di rector ies 153

The_Path: String := Compose("/tmp", "public/file.txt");

This is because the second parameter of Compose has to be a simple name such as just "file" if there
is no extension parameter. If we supply the extension parameter thus

The_Path: String := Compose("/tmp", "public/file", "txt");

then the second parameter has to be just a base name such as "public".

Another problem is that there is no sensible way to check for a root directory. Thus suppose the
string S is a directory name and we want to see whether it is just a root such as "/" in Unix then the
only thing that we can do is write

Containing_Directory(S)

which will raise Use_Error which is somewhat ugly.

We could write if S ="/" then but this would not be portable from Unix to other systems. Indeed, the
whole purpose of providing file name operations in Ada.Directories is so that file names can be
manipulated in an abstract manner without fiddling with text strings.

The third problem concerns case sensitivity. At the moment it is not possible to write portable
programs because operating systems differ in their approach to this issue.

This last problem is solved by adding an enumeration type Name_Case_Kind and a function
Name_Case_Equivalence to the file and directory name operations of the package Ada.Directories.
So in outline we now have

with Ada.IO_Exceptions; with Ada.Calendar;
package Ada.Directories is
 ...

 -- File and directory name operations:

 function Full_Name(Name: String) return String;
 function Simple_Name(Name: String) return String;
 function Containing_Directory(Name: String) return String;
 function Extension(Name: String) return String;
 function Base_Name(Name: String) return String;
 function Compose(Containing_Directory: String := "";
 Name: String;
 Extension: String := "") return String;

 type Name_Case_Kind := (Unknown, Case_Sensitive, Case_Insensitive, Case_Preserving);
 function Name_Case_Equivalence(Name: String) return Name_Case_Kind;

 -- File and directory queries:

 -- and so on

end Ada.Directories;

The function Name_Case_Equivalence returns the file name equivalence rule for the directory
containing Name. It raises Name_Error if Name is not a Full_Name.

It returns Case_Sensitive if file names that differ only in the case of letters are considered to be
different. If file names that differ only in the case of letters are considered to be the same, then it
returns Case_Preserving if the name has the case of the file name used when a file is created and
Case_Insensitive otherwise. It returns Unknown if the name equivalence rule is not known.

154 Predef ined l ibrary

We thus see that Unix and Linux are Case_Sensitive, Windows is Case_Preserving, and historic
systems such as CP/M and early MS/DOS were Case_Insensitive.

The other problems are solved by the introduction of an optional child package for dealing with
systems with hierarchical file names. Its specification is

package Ada.Directories.Hierarchical_File_Names is

 function Is_Simple_Name(Name: String) return Boolean;
 function Is_Root_Directory_Name(Name: String) return Boolean;
 function Is_Parent_Directory_Name(Name: String) return Boolean;
 function Is_Current_Directory_Name(Name: String) return Boolean;
 function Is_Full_Name(Name: String) return Boolean;
 function Is_Relative_Name(Name: String) return Boolean;

 function Simple_Name(Name: String) renames Ada.Directories.Simple_Name;
 function Containing_Directory(Name: String)
 renames Ada.Directories.Containing_Directory;

 function Initial_Directory(Name: String) return String;
 function Relative_Name(Name: String) return String;

 function Compose(Directory: String := "";
 Relative_Name: String;
 Extension: String := "") return String;

end Ada.Directories.Hierarchical_File_Names;

Note that the six functions, Full_Name, Simple_Name, Containing_Directory, Extension,
Base_Name and Compose in the existing package Ada.Directories just manipulate strings
representing file names and do not in any way interact with the actual external file system. The same
applies to many of the new functions such as Is_Simple_Name.

In particular, Is_Root_Directory_Name returns true if the string is syntactically a root and so cannot
be decomposed further. It therefore solves the second problem mentioned earlier. Thus

Is_Root_Directory_Name("/")

returns true for Unix. In the case of Windows "C:\" and "\\Computer\Share" are roots.

The function Is_Parent_Directory_Name returns true if and only if the Name is ".." for both Unix
and Windows.

The function Is_Current_Directory_Name returns true if and only if Name is "." for both Unix and
Windows.

The function Is_Full_Name returns true if the leftmost part of Name is a root whereas
Is_Relative_Name returns true if Name allows identification of an external file but is not a full
name. Note that relative names include simple names as a special case.

The functions Simple_Name and Containing_Directory are just renamings of those in the parent
package and are provided for convenience.

Finally, the functions Initial_Directory, Relative_Name and Compose provide the ability to
manipulate relative file names and so solve the problem with Compose mentioned at the beginning
of this section.

Thus Initial_Directory returns the leftmost directory part of Name and Relative_Name returns the
entire full name apart from the initial directory portion.

7.3 Di rector ies 155

If we apply Relative_Name to a string that is just a single part of a name then Name_Error is raised.
In particular this happens if Relative_Name is applied to a name which is a Simple Name, a Root
Directory Name, a Parent Directory Name or a Current Directory Name.

The function Compose is much like Compose in the parent package except that it takes a relative
name rather than a simple name. It therefore allows us to write

The_Path: String := Compose("/tmp", "public/file.txt");

as required.

The result of calling Compose is a full name if Is_Full_Name(Directory) is true and otherwise is a
relative name.

7.4 Locale
When writing portable software it is often necessary to know the locality in which the software is to
be run. Two key items are the country and the language (human language that is, not programming
language).

To enable this to be done, Ada 2012 includes the following package

package Ada.Locales is
 pragma Preelaborate(Locales);
 pragma Remote_Types(Locales);

 type Language_Code is array (1 .. 3) of Character range 'a' .. 'z';

 type Country_Code is array (1 .. 2) of Character range 'A' .. 'Z';

 Language_Unknown: constant Language_Code := "und";
 Country_Unknown: constant Country_Code := "ZZ";

 function Language return Language_Code;
 function Country return Country-Code;

end Ada.Locales;

The various country codes and language codes are defined in ISO/IEC 3166-1:2006 and ISO/IEC
639-3:2007 respectively.

Knowledge of the locale is important for writing programs where the convention for certain
information varies. Thus in giving a date we might want to add the name of the day of the week and
clearly in order to do this we need to know what language to use. An earlier (really grotesque)
attempt at providing this information introduced a host of packages addressing many issues.
However, it was decided that for simplicity and indeed reliability all that is really needed is to know
the language to use and the country.

Canada is interesting in that it has just one country code ("CA") but two language codes ("eng" and
"fra"). In Quebec, a decimal value for a million dollars and one cent is written as $1.000.000,01
whereas in English language parts it is written as $1,000,000.01 with the comma and stop
interchanged.

Sometimes, several locales might be available on a target. Some environments define a system
locale and a locale for the current user. In the case of an Ada program the active locale is the one
associated with the partition of the current task.

Finally, note that subsequent to ISO standardization, some serious difficulty was found in the
practical use of the types Language_Code and Country_Code. Accordingly, they have been changed
as described in Section 9.5 of the Epilogue.

156 Predef ined l ibrary

7.5 Hashing and comparison
New library functions are added for case insensitive comparisons and hashing. Thus we have

function Ada.Strings.Equal_Case_Insensitive(Left, Right: String) return Boolean;
pragma Pure(Ada.Strings.Equal_Case_Insensitive);

This simply compares the strings Left and Right for equality but ignoring case. Thus

Equal_Case_Insensitive("Pig", "PIG")

is true.

The function Ada.Strings.Fixed.Equal_Case_Insensitive is a renaming of the above. There are also
similar functions Ada.Strings.Bounded.Equal_Case_Insensitive for bounded strings and
Ada.Strings.Unbounded.Equal_Case_Insensitive for unbounded strings. And, as expected, there are
similar functions for wide and wide wide versions.

Note that the comparison for strings can be phrased as convert to lower case and then compare. But
this does not always work for wide and wide wide strings. The proper terminology is "apply locale-
independent case folding and then compare".

Although it comes to the same thing for Latin-1 characters there are problems with some character
sets where there is not a one-one correspondence between lower case and upper case. This used to
apply to English with the two forms of lower case S and still applies to the corresponding letters in
Greek where the upper case character is and there are two lower case versions namely and . So

Ada.Wide_Strings.Equal_Case_Insensitive(" ", " ")

returns true. Note that if we just convert to lower case first rather than applying case folding then it
would not be true.

Furthermore there is also

function Ada.Strings.Less_Case_Insensitive(Left, Right: String) return Boolean;
pragma Pure(Ada.Strings.Less_Case_Insensitive);

which does a lexicographic comparison.

As expected there are similar functions for fixed, bounded and unbounded strings and, naturally, for
wide and wide wide versions.

Ada 2005 has functions for hashing such as

with Ada.Containers;
function Ada.Strings.Hash(Key: String) return Containers.Hash_Type;

Ada 2012 adds case insensitive versions as well such as

with Ada.Containers;
function Ada.Strings.Hash_Case_Insensitive(Key: String) return Containers.Hash_Type;

There are also fixed, bounded and unbounded versions and the inevitable wide and wide wide ones
as well.

7.6 Miscellanea
The first item is that the package Stream_IO should be marked as preelaborated. So in Ada 2012 it
now begins

with Ada.IO_Exceptions;
package Ada.Streams.Stream_IO is

7.6 Miscel lanea 157

 pragma Preelaborate(Stream_IO);
 ...

The reason for making this change concerns the use of input–output in preelaborated packages. The
normal input–output packages such as Text_IO are not preelaborated and so cannot be used in
packages that are themselves preelaborated. This makes preelaborated packages awkward to debug
since they cannot do straightforward output for monitoring purposes. To make packages such as
Text_IO preelaborated is essentially impossible because they involve local state. However, no such
problem exists with Stream_IO, and so making it preelaborated means that it can be used to
implement simple logging facilities in other preelaborated packages.

In principle, there is a similar problem with pure units. But they cannot change state anyway and so
cannot do output since that changes the state of the environment. They just have to be written
correctly in the first place.

(I have been told that there are naughty ways around this with pure packages but I will not
contaminate innocent minds with the details.)

The package Ada.Environment_Variables was introduced in Ada 2005 as follows

package Ada.Environment_Variables is
 pragma Preelaborate(Environment_Variables);

 function Value(Name: String) return String;
 function Exists(Name: String) return Boolean;
 procedure Set(Name: in String; Value: in String);
 procedure Clear(Name: in String);
 procedure Clear;

 procedure Iterate(Process: not null access procedure (Name, Value: in String));

end Ada.Environment_Variables;

If we do not know whether an environment variable exists then we can check by calling Exists prior
to accessing the current value. Thus a program might be running in an environment where we might
expect an environment variable "Ada" whose value indicates the version of Ada currently supported.

So as in [7] we might write

if not Exists("Ada") then
 raise Horror;
end if;
Put("Current Ada is ");
Put_Line(Value("Ada"));

But this raises a possible race condition. After determining that Ada does exist some malevolent
process (such as another Ada task or an external human agent) might execute Clear("Ada"); and then
the call of Value("Ada") will raise Constraint_Error.

The other race condition might arise as well. Having decided that Ada does not exist and so taking
remedial action some kindly process might have created Ada.

These problems are overcome in Ada 2012 by the introduction of an additional function Value with
a default parameter

 function Value(Name: String; Default: String);

Calling this version of Value returns the value of the variable if it exists and otherwise returns the
value of Default.

 159

8 Containers
This chapter describes improvements to the predefined container library in Ada 2012.

8.1 Overview of changes
The WG9 guidance document [1] specifically says that attention should be paid to

 improving the use and functionality of the predefined containers.

The predefined containers were introduced in Ada 2005 and experience with their use revealed a
number of areas where they could be improved.

The following Ada Issues cover the relevant changes and are described in detail in this chapter.

 1 Bounded containers and other container issues

 69 Holder container

136 Multiway tree container

139 Syntactic sugar for access, containers & iterators

159 Queue containers

184 Compatibility of streaming of containers

212 Accessors and iterators for Ada.Containers

251 Problems with queue containers

These changes can be grouped as follows.

The existing containers are unbounded and generally require dynamic storage management to be
performed behind the scenes. However, for high-integrity systems, such dynamic management is
often unacceptable. Accordingly, bounded versions of all the existing containers are added (1).

A number of facilities are added to make important operations on containers more elegant. These are
the updating of individual elements of a container and iteration over a container (139, 212).

Ada 2005 introduced containers for the manipulation of lists and it was expected that this would
provide a basis for manipulating trees. However, this proved not to be the case, so specific
containers are added for the manipulation of multiway trees (136). There are versions for unbounded
indefinite and unbounded definite trees and for bounded definite trees.

A further new kind of container is just for single indefinite objects and is known as the holder
container (69).

A range of containers are added for manipulating queues with defined behaviour regarding multiple
task access to the queues (159, 251).

The Ada 2005 container library also introduced sorting procedures for constrained and
unconstrained arrays. An additional more general sorting mechanism is added in Ada 2012 (1).

Finally, an oversight regarding the streaming of containers is corrected (184).

8.2 Bounded and unbounded containers
It is perhaps worth starting this discussion by summarizing the containers introduced in Ada 2005.
First, there is a parent package Ada.Containers which simply declares the types Hash_Type and
Count_Type.

160 Containers

Then there are six containers for definite objects, namely (abbreviating the prefix Ada.Containers to
just A.C)

A.C.Vectors
A.C.Doubly_Linked_Lists
A.C.Hashed_Maps
A.C.Ordered_Maps
A.C.Hashed_Sets
A.C.Ordered_Sets

The declarations of these six containers all start with

generic
 ...
 type Element_Type is private;
 ...
package Ada.Containers.XXX...

and we see that the type Element_Type has to be definite. There are also containers for the
manipulation of indefinite types whose names are

A.C.Indefinite_Vectors
A.C.Indefinite_Doubly_Linked_Lists
A.C.Indefinite_Hashed_Maps
A.C.Indefinite_Ordered_Maps
A.C.Indefinite_Hashed_Sets
A.C.Indefinite_Ordered_Sets

and these are very similar to the definite containers except that the formal type Element_Type is
now declared as

 type Element_Type(<>) is private;

so that the actual type can be indefinite such as String.

Finally, there are two generic packages for sorting arrays namely

A.C.Generic_Array_Sort
A.C.Generic_Constrained_Array_Sort

which apply to unconstrained and constrained arrays respectively.

The first change in Ada 2012 is that the parent package Ada.Containers now includes the declaration
of the exception Capacity_Error so that it becomes

package Ada.Containers is
 pragma Pure(Containers);

 type Hash_Type is mod implementation-defined;
 type Count_Type is range 0 .. implementation-defined;
 Capacity_Error: exception;

end Ada.Containers;

The names of the new containers with bounded storage capacity are

A.C.Bounded_Vectors
A.C.Bounded_Doubly_Linked_Lists
A.C.Bounded_Hashed_Maps
A.C.Bounded_Ordered_Maps

8.2 Bounded and unbounded containers 161

A.C.Bounded_Hashed_Sets
A.C.Bounded_Ordered_Sets

The facilities of the bounded containers are almost identical to those of the original unbounded ones
so that converting a program using one form to the other is relatively straightforward. The key point
of the bounded ones is that storage management is guaranteed (implementation advice really) not to
use features such as pointers or dynamic allocation and therefore can be used in high-integrity or
safety-critical applications.

The major differences between the packages naturally concern their capacity. In the case of the
bounded packages the types such as Vector have discriminants thus

type Vector(Capacity: Count_Type) is tagged private;

whereas in the original packages the type Vector is simply

type Vector is tagged private;

The other types in the bounded packages are

type List(Capacity: Count_Type) is tagged private;

type Map(Capacity: Count_Type; Modulus: Hash_Type) is tagged private;

type Map(Capacity: Count_Type) is tagged private;

type Set(Capacity: Count_Type; Modulus: Hash_Type) is tagged private;

type Set(Capacity: Count_Type) is tagged private;

Note that the types for hashed maps and sets have an extra discriminant to set the modulus; this will
be explained in a moment.

Remember that the types Count_Type and Hash_Type are declared in the parent package
Ada.Containers shown above.

When a bounded container is declared, its capacity is set once and for all by the discriminant and
cannot be changed. If we subsequently add more elements to the container than it can hold then the
exception Capacity_Error is raised.

If we are using a bounded container and want to make it larger then we cannot. But what we can do
is create another bounded container with a larger capacity and copy the values from the old
container to the new one. Remember that we can check the number of items in a container by calling
the function Length.

So we might have a sequence such as

My_List: List(100);
... -- use my list
if Length(My_List) > 90 then -- Gosh, nearly full
...
 declare
 My_Big_List: List := Copy(My_List, 200);
 begin
 ...

The specification of the function Copy is

function Copy(Source: List; Capacity: Count_Type := 0) return List;

If the parameter Capacity is not specified (or is given as zero) then the capacity of the copied list is
the same as the length of Source.

162 Containers

If the given value of Capacity is larger than (or equal to) the length of the Source (as in our
example) then the returned list has this capacity and the various elements are copied. If we foolishly
supply a value which is less than the length of Source then Capacity_Error is naturally raised.
Remember that a discriminant can be set by an initial value.

Note that if we write

declare
 My_Copied_List: List := My_List;
begin

then My_Copied_List will have the same capacity as My_List because discriminants are copied as
well as the contents.

In order to make it easier to move from the bounded form to the unbounded form, a function Copy is
added to the unbounded containers as well although it does not need a parameter Capacity in the
case of lists and ordered maps and sets. So in the case of the list container it is simply

function Copy(Source: List) return List; -- unbounded

Similar unification between bounded and unbounded forms occurs with assignment. In Ada 2005, if
we have two lists L and M, then we can simply write

L := M;

and the whole structure is copied (including all its management stuff). Note that this will almost
certainly require that the value of L be finalized which might be a nuisance. Such an assignment
with discriminated types needs to check the discriminants as well (and raises Constraint_Error if
they are different). This is a nuisance because although the capacities might not be the same, the
destination L might have plenty of room for the actual elements in the source M.

This is all rather bothersome and so procedures Assign are added to both unbounded and bounded
containers which simply copy the element values. Thus in both case we have

procedure Assign(Target: in out List; Source: in List);

In the bounded case, if the length of Source is greater than the capacity of Target, then
Capacity_Error is raised. In the unbounded case, the structure is automatically extended.

It might be recalled that in Ada 2005, lists and ordered maps and sets do not explicitly have a notion
of capacity. It is in their very nature that they automatically extend as required. However, in the case
of vectors and hashed maps and sets (which have a notion of indexing) taking a purely automatic
approach could lead to lots of extensions and copying so the notion of capacity was introduced. The
capacity can be set by calling

procedure Reserve_Capacity(Container: in out Vector; Capacity: in Count_Type);

and the current value of the capacity can be ascertained by calling

function Capacity(Container: Vector) return Count_Type;

which naturally returns the current capacity. Note that Length(V) cannot exceed Capacity(V) but
might be much less.

If we add items to a vector whose length and capacity are the same then no harm is done. The
capacity will be expanded automatically by effectively calling Reserve_Capacity internally. So the
user does not need to set the capacity although not doing so might result in poorer performance.

The above refers to the existing unbounded forms and is unchanged in Ada 2012. For uniformity the
new bounded forms for vectors and hashed maps and sets also declare a procedure
Reserve_Capacity. However, since the capacity cannot be changed for the bounded forms it simply

8.2 Bounded and unbounded containers 163

checks that the value of the parameter Capacity does not exceed the actual capacity of the container;
if it does then Capacity_Error is raised and otherwise it does nothing. There is of course also a
function Capacity for bounded vectors and hashed maps and sets which simply returns the fixed
value of the capacity.

Many operations add elements to a container. For unbounded containers, they are automatically
extended as necessary as just explained. For the bounded containers, if an operation would cause the
capacity to be exceeded then Capacity_Error is raised.

There are a number of other differences between the unbounded and bounded containers. The
original unbounded containers have pragma Preelaborate whereas the new bounded containers have
pragma Pure.

The bounded containers for hashed maps and hashed sets are treated somewhat differently to those
for the corresponding unbounded containers regarding hashing.

In the case of unbounded containers, the hashing function to be used is left to the user and is
provided as an actual generic parameter. For example, in the case of hashed sets, the package
specification begins

generic
 type Element_Type is private;
 with function Hash(Element: Element_Type) return Hash_Type;
 with function Equivalent_Elements(Left, Right: Element_Type) return Boolean;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Hashed_Sets is
 pragma Preelaborate(Hashed_Sets);

What the implementation actually does with the hash function is entirely up to the implementation
The value returned is in the range of Hash_Type which is a modular type declared in the root
package Ada.Containers. The implementation will typically then map this value onto the current
range of the capacity in some way. If the unbounded container becomes nearly full then the capacity
will be automatically extended and a new mapping will be required; this in turn is likely to require
the existing contents to be rehashed. None of this is visible to the user.

In the case of the new bounded containers, these problems do not arise since the capacity is fixed.
Moreover, the modulus to be used for the mapping is given when the container is declared since the
type has discriminants thus

type Set(Capacity: Count_Type; Modulus: Hash_Type) is tagged private;

The user can then choose the modulus explicitly or alternatively can use the additional function
Default_Modulus whose specification is

function Default_Modulus(Capacity: Count_Type) return Hash_Type;

This returns an implementation defined value for the number of distinct hash values to be used for
the given capacity. Thus we can write

My_Set: Set(Capacity => My_Cap; Modulus => Default_Modulus(My_Cap));

Moreover, for these bounded hashed maps and sets, the function Copy has an extra parameter thus

function Copy(Source: Set; Capacity: Count_Type := 0; Modulus: Hash_Type := 0)
 return Set;

If the capacity is given as zero then the newly returned set has the same capacity as the length of
Source as mentioned above. If the modulus is given as zero then the value to be used is obtained by
applying Default_Modulus to the new capacity.

164 Containers

As mentioned in Section 7.5 on Hashing and comparison, Ada 2012 introduces additional functions
for hashing strings (fixed, bounded and unbounded) to provide for case insensitive, wide and wide
wide situations.

Finally, note that there are no bounded containers for indefinite types. This is because the size of an
object of an indefinite type (such as String) is generally not known and so indefinite types need
some dynamic storage management. However, the whole point of introducing bounded containers
was to avoid such management.

8.3 Iterating and updating containers
This topic was largely covered in Chapter 6 on Iterators and Pools which introduced the generic
package Ada.Iterator.Interfaces whose specification is

generic
 type Cursor;
 with function Has_Element(Position: Cursor) return Boolean;
package Ada.Iterator_Interfaces is
 pragma Pure(Iterator_Interfaces);

 type Forward_Iterator is limited interface;
 function First(Object: Forward_Iterator) return Cursor is abstract;
 function Next(Object: Forward_Iterator; Position: Cursor) return Cursor is abstract;

 type Reversible_Iterator is limited interface and Forward_Iterator;
 function Last(Object: Reversible_Iterator) return Cursor is abstract;
 function Previous(Object: Reversible_Iterator; Position: Cursor) return Cursor is abstract;

end Ada.Iterator_Interfaces;

This generic package is used by both existing and new container packages. For illustration we
consider the list container Ada.Containers.Doubly_Linked_Lists. Here is its specification giving all
new and changed material in full (marked -- 12) and identifying most existing entities by comment
only.

with Ada.Iterator_Interfaces; -- 12
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
 pragma Preelaborate(Doubly_Linked_Lists);
 pragma Remote_Types(Doubly_Linked_Lists) -- 12

 type List is tagged private -- 12
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;
 pragma Preelaborable_Initialization(List);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_List: constant List;
 No_Element: constant Cursor;

 function Has_Element(Position: Cursor) return Boolean; -- moved 12

8.3 I terat ing and updat ing containers 165

 package List_Iterator_Interfaces is -- 12
 new Ada.Iterator_Interfaces(Cursor, Has_Element);

 ... -- functions "=", Length, Is_Empty, Clear, Element
 ... -- procedures Replace_, Query_, Update_Element

 type Constant_Reference_Type -- 12
 (Element: not null access constant Element_Type) is private
 with Implicit_Dereference => Element;

 type Reference_Type -- 12
 (Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 function Constant_Reference -- 12
 (Container: aliased in List; Position: in Cursor)
 return Constant_Reference_Type;

 function Reference -- 12
 (Container: aliased in out List; Position: in Cursor)
 return Reference_Type;

 procedure Assign(Target: in out List; Source: in List); -- 12

 function Copy(Source: List) return List; -- 12

 ... -- Move, Insert, Prepend, Append,
 ... -- Delete, Delete_First, Delete_Last,
 ... -- Reverse_Elements, Swap, Swap_Links, Splice,
 ... -- First, First_Element, Last, Last_Element,
 ... -- Next, Previous, Find, Reverse_Find,
 ... -- Contains, Iterate, Reverse_Iterate

 function Iterate(Container: in List) -- 12
 return List_Iterator_Interfaces.Reversible_Iterator'Class;

 function Iterate(Container: in List; Start: in Cursor) -- 12
 return List_Iterator_Interfaces.Reversible_Iterator'Class;

 ... -- generic package Generic_Sorting

private
 ... -- not specified by the language
end Ada.Containers.Doubly_Linked_Lists;

Note that the function Has_Element has been moved. In Ada 2005 it was declared towards the end
between Contains and Iterate. It has been moved so that it can be used as an actual parameter in the
declaration of List_Iterator_Interfaces using the instantiation of Ada.Iterator_Interfaces.

It will be recalled from Section 6.3 on Iteration, that in Ada 2012 we can simply write

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

or even

for E of The_List loop
 ... -- do something to Element E
end loop;

166 Containers

rather than the laborious and error prone

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...
C := F.First;
loop
 exit when not The_List.Has_Element(C);
 E := The_List.Element(C);
 ... -- do something to E
 C := F.Next(C);
end loop;

Note that in the case of

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

we are not permitted to assign to C since that would upset the mechanism of the loop. There is an
analogy with the traditional loop statement. If we write

for K in A'Range loop
 A(K) := 0;
end loop;

then the language prevents us from making a direct assignment to the loop parameter K.

If we write

for E of The_List loop
 ... -- do something to Element E
end loop;

then we can change the element E unless The_List has been declared as constant.

It will be recalled that subprograms Replace_Element, Query_Element and Update_Element are
defined for all containers in Ada 2005. Query_Element and Update_Element permit in situ
operations. Thus in order to find the value of some component Q of an element of The_List
identified by cursor C we can write either

X := Element(C).Q;

or we can first declare a slave procedure

procedure Get_Q(E: in Element_Type) is
begin
 X := E.Q;
end Get_Q;

and then call Query_Element thus

Query_Element(C, Get_Q'Access);

The advantage of the former is that it is easy but it could be slow because it copies the whole
element which could be enormous. The advantage of the latter is that it does not copy the element;
its disadvantage is that it is somewhat incomprehensible.

8.3 I terat ing and updat ing containers 167

In Ada 2012, we can do much better. The type List now has new functions Reference and
Constant_Reference, so we can write for example

X := The_List.Constant_Reference(C).Q;

This works because the function Constant_Reference returns a value of Constant_Reference_Type
and this moreover has aspect Implicit_Dereference whose value is Element.

However, we can simplify this even more because the type List has aspects Constant_Indexing and
Variable_Indexing which refer to the functions Constant_Reference and Reference. The result is
that we can simply write

X := The_List(C).Q; -- gosh that's better

which is a lot better than calling Query_Element.

Similarly, if we just want to update the component Q of some element given by a cursor C, then in
Ada 2005 we either have to create a whole new element with the new value for Q and then use
Replace_Element thus

Temp: E_Type := Element(C);
...
Temp.Q := X;

Replace_Element(The_List, C, Temp);

or declare a slave procedure and use Update_Element thus

procedure Put_Q(E: in out Element_Type) is
begin
 E.Q := X;
end Put_Q;

Update_Element(The_List, C, Put_Q'Access);

Again the first is slow, the second is gruesome (well, they are both gruesome really).

In Ada 2012 we simply write

The_List(C).Q := X; -- gosh again

which implicitly uses the aspect Variable_Indexing to call the function Reference which gives
access to the element.

It will be remembered that there are dire warnings in Ada 2005 about tampering with elements and
cursors. Thus we must not use Update_Element (that is via Put_Q in the example above) to do other
things such as add new elements.

Although tampering is still possible in Ada 2012; the new features discourage it. Thus if we write

The_List(C).Q := X;

rather than calling Update_Element then no tampering can occur (unless X is some gruesome
function).

Similarly if we write

for C in My_Container loop
 ...
 Delete(My_Container, Position => C); --illegal
 ...
end loop;

168 Containers

then we are prevented from madness since the parameter Position of Delete is of mode in out and
this is not matched by the loop parameter C which is a constant. However, if we write the loop out
using First and Next as illustrated earlier then we could get into trouble.

8.4 Multiway tree containers
Three new containers are added for multiway trees; two correspond to the existing unbounded
definite and unbounded indefinite forms for existing structures such as Lists and Maps in Ada 2005.
There is also a bounded form corresponding to the newly introduced bounded containers for the
existing structures discussed above. As expected their names are

A.C.Multiway_Trees
A.C.Indefinite_Multiway_Trees
A.C.Bounded_Multiway_Trees

These containers have all the operations required to operate on a tree structure where each node can
have multiple child nodes to any depth. Thus there are operations on subtrees, the ability to find
siblings, to insert and remove children and so on. It will be noted that many of the operations on
trees are similar to corresponding operations on lists.

We will look in detail at the unbounded definite form by giving its specification interspersed with
some explanation. It starts with the usual generic parameters.

with Ada.Iterator_Interfaces;
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Multiway_Trees is
 pragma Preelaborate(Multiway_Trees);
 pragma Remote_Types(Multiway_Trees);

 type Tree is tagged private
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;
 pragma Preelaborable_Initialization(Tree);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_Tree: constant Tree;
 No_Element: constant Cursor;

 function Has_Element(Position: Cursor) return Boolean;
 package Tree_Iterator_Interfaces is
 new Ada.Iterator_Interfaces(Cursor, Has_Element);

This is much as expected and follows the same pattern as the start of the list container in the
previous section.

 function Equal_Subtree(Left_Position: Cursor; Right_Position: Cursor) return Boolean;
 function "=" (Left, Right: Tree) return Boolean;

 function Is_Empty(Container: Tree) return Boolean;

 function Node_Count(Container: Tree) return Count_Type;
 function Subtree_Node_Count(Position: Cursor) return Count_Type;

 function Depth(Position: Cursor) return Count_Type;

8.4 Mult iway t ree containers 169

 function Is_Root(Position: Cursor) return Boolean;
 function Is_Leaf(Position: Cursor) return Boolean;
 function Root(Container: Tree) return Cursor;
 procedure Clear(Container: in out Tree);

A tree consists of a set of nodes linked together in a hierarchical manner. Nodes are identified as
usual by the value of a cursor. Nodes can have one or more child nodes; the children are ordered so
that there is a first child and a last child. Nodes with the same parent are siblings. One node is the
root of the tree. If a node has no children then it is a leaf node.

All nodes other than the root node have an associated element whose type is Element_Type. The
whole purpose of the tree is of course to give access to these element values in a structured manner.

The function "=" compares two trees and returns true if and only if they have the same structure of
nodes and corresponding nodes have the same values as determined by the generic parameter "=" for
comparing elements. Similarly, the function Equal_Subtree compares two subtrees.

The function Node_Count gives the number of nodes in a tree. All trees have at least one node, the
root node. The function Is_Empty returns true only if the tree consists of just this root node. Note
that A_Tree = Empty_Tree, Node_Count(A_Tree) = 1 and Is_Empty(A_Tree) always have the same
value. The function Subtree_Node_Count returns the number of nodes in the subtree identified by
the cursor. If the cursor value is No_Element then the result is zero.

The functions Is_Root and Is_Leaf indicate whether a node is the root or a leaf respectively. If a tree
is empty and so consists of just a root node then that node is both the root and a leaf so both
functions return true.

The function Depth returns 1 if the node is the root, and otherwise indicates the number of ancestor
nodes. Thus a node which is an immediate child of the root has depth equal to 2. The function Root
returns the cursor designating the root of a tree. The procedure Clear removes all elements from the
tree so that it consists just of a root node.

 function Element(Position: Cursor) return Element_Type;

 procedure Replace_Element(Container: in out Tree;
 Position: in Cursor;
 New_Item: in Element_Type);

 procedure Query_Element(Position: in Cursor;
 Process : not null access procedure (Element: in Element_Type));

 procedure Update_Element(Container: in out Tree; Position: in Cursor;
 Process: not null access procedure (Element: in out Element_Type));

These subprograms have the expected behaviour similar to other containers.

 type Constant Reference_Type(Element: not null access constant Element_Type)
 is private
 with Implicit_Dereference => Element;

 type Reference_Type(Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 function Constant_Reference(Container: aliased in Tree; Position: in Cursor)
 return Constant_Reference_Type;

 function Reference(Container: aliased in out Tree; Position: in Cursor)
 return Reference_Type;

170 Containers

These types and functions are similar to those for the other containers and were explained in Section
6.4 on Iteration and also in the previous section.

 procedure Assign(Target: in out Tree; Source: in Tree);

 function Copy(Source: Tree) return Tree;

 procedure Move(Target: in out Tree; Source: in out Tree);

The subprograms Assign and Copy behave as expected and were explained in Section 8.2 on
Bounded and unbounded containers. The procedure Move moves all the nodes from the source to the
target after first clearing the target; it does not make copies of the elements so after the operation the
source only has a root node.

 procedure Delete_Leaf(Container: in out Tree; Position: in out Cursor);

 procedure Delete_Subtree(Container: in out Tree; Position: in out Cursor);

 procedure Swap(Container: in out Tree; I, J: in Cursor);

The procedures Delete_Leaf and Delete_Subtree check that the cursor value designates a node of
the container and raise Program_Error if it does not. Program_Error is also raised if Position
designates the root node and so cannot be removed. In the case of Delete_Leaf, if the node has any
children then Constraint_Error is raised. The appropriate nodes are then deleted and Position is set to
No_Element.

The procedure Swap interchanges the values in the two elements denoted by the two cursors. The
elements must be in the given container (and must not denote the root) otherwise Program_Error is
raised.

 function Find(Container: Tree; Item: Element_Type) return Cursor;

 function Find_In_Subtree(Item: Element_Type; Position: Cursor) return Cursor;

 function Ancestor_Find(Item: Element_Type; Position: Cursor) return Cursor;

 function Contains(Container: Tree; Item: Element_Type) return Boolean;

These search for an element in the container with the given value Item. The function Contains
returns false if the item is not found; the other functions return No_Element if the item is not found.
The function Find searches the whole tree starting at the root node, Find_In_Subtree searches the
subtree rooted at the node given by Position including the node itself; these searches are in depth-
first order. The function Ancestor_Find searches upwards through the ancestors of the node given by
Position including the node itself.

Depth-first order is explained at the end of the section.

 procedure Iterate(Container: in Tree;
 Process: not null access procedure (Position: in Cursor));

 procedure Iterate_Subtree(Position: in Cursor;
 Process: not null access procedure (Position: in Cursor));

These apply the procedure designated by the parameter Process to each element of the whole tree or
the subtree. This includes the node at the subtree but not at the root; iteration is in depth-first order.

 function Iterate(Container: in Tree) return Tree_Iterator_Interfaces.Forward_Iterator'Class;

 function Iterate_Subtree(Position: in Cursor)
 return Tree_Iterator_Interfaces.Forward_Iterator'Class;

The first of these is called if we write

8.4 Mult iway t ree containers 171

for C in The_Tree.Iterate loop
 ... -- do something via cursor C
end loop;

and iterates over the whole tree in the usual depth-first order. In order to iterate over a subtree we
write

for C in The_Tree.Iterate(S) loop
 ... -- do something via cursor C
end loop;

and this iterates over the subtree rooted at the cursor position given by S.

If we use the other new form of loop using of thus

for E of The_Tree loop
 ... -- do something to element E
end loop;

then this also calls Iterate since the aspect Default_Iterator of the type Tree (see above) is Iterate.
However, we cannot iterate over a subtree using this mechanism.

 function Child_Count(Parent: Cursor) return Count_Type;

 function Child_Depth(Parent, Child: Cursor) return Count_Type;

The function Child_Count returns the number of child nodes of the node denoted by Parent. This
count covers immediate children only and not grandchildren.

The function Child_Depth indicates how many ancestors there are from Child to Parent. If Child is
an immediate child of Parent then the result is 1; if it is a grandchild then 2 and so on.

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 New_Item: in Element_Type;
 Position: out Cursor;
 Count: in Count_Type := 1);

 procedure Insert_Child(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Position: out Cursor;
 Count: in Count_Type := 1);

These three procedures enable one or more new child nodes to be inserted. The parent node is given
by Parent. If Parent already has children then the new nodes are inserted before the child node
identified by Before; if Before is No_Element then the new nodes are inserted after all existing
children. The second procedure is similar to the first but also returns a cursor to the first of the added
nodes. The third is like the second but the new elements take their default values. Note the default
value of one for the number of new nodes.

172 Containers

 procedure Prepend_Child(Container: in out Tree;
 Parent: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

 procedure Append_Child(Container: in out Tree;
 Parent: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type:= 1);

These insert the new children before or after any existing children.

 procedure Delete_Children(Container: in out Tree;
 Parent: in Cursor);

This procedure simply deletes all the children, grandchildren, and so on of the node designated by
Parent.

 procedure Copy_Subtree(Target: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Source: in Cursor);

This copies the complete subtree rooted at Source into the tree denoted by Tree as a subtree of
Parent at the place denoted by Before using the same rules as Insert_Child. Note that this makes a
complete copy and creates new nodes with values equal to the corresponding existing nodes. Note
also that Source might be within Tree but might not. There are the usual various checks.

 procedure Splice_Subtree(Target: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Source: in out Tree;
 Position: in out Cursor);

 procedure Splice_Subtree(Container: in out Tree;
 Parent: in Cursor;
 Before: in Cursor;
 Position: in Cursor);

 procedure Splice_Children(Target: in out Tree;
 Target_Parent: in Cursor;
 Before: in Cursor;
 Source: in out Tree;
 Source_Parent: in Cursor);

 procedure Splice_Children(Container: in out Tree;
 Target_Parent: in Cursor;
 Before: in Cursor;
 Source_Parent: in Cursor);

These are similar to the procedures Splice applying to lists. They enable nodes to be moved without
copying. The destination is indicated by Parent or Target_Parent together with Before as usual
indicating where the moved nodes are to be placed with respect to existing children of Parent or
Target_Parent.

The first Splice_Subtree moves the subtree rooted at Position in the tree Source to be a child of
Parent in the tree Target. Note that Position is updated to be the appropriate element of Target. We

8.4 Mult iway t ree containers 173

can use this procedure to move a subtree within a tree but an attempt to create circularities raises
Program_Error.

The second Slice_Subtree is similar but only moves a subtree within a container. Again, circularities
cannot be created.

The procedures Splice_Children are similar but move all the children and their descendants of
Source_Parent to be children of Target_Parent.

 function Parent(Position: Cursor) return Cursor;

 function First_Child(Parent: Cursor) return Cursor;
 function First_Child_Element(Parent: Cursor) return Element_Type;
 function Last_Child(Parent: Cursor) return Cursor;
 function Last_Child_Element(Parent: Cursor) return Element_Type;

 function Next_Sibling(Position: Cursor) return Cursor;
 function Previous_Sibling(Position: Cursor) return Cursor;
 procedure Next_Sibling(Position: in out Cursor);
 procedure Previous_Sibling(Position: in out Cursor);

Hopefully, the purpose of these is self-evident.

 procedure Iterate_Children(Parent: in Cursor;
 Process: not null access procedure (Position: in Cursor));

 procedure Reverse_Iterate_Children(Parent : in Cursor;
 Process: not null access procedure (Position: in Cursor));

These apply the procedure designated by the parameter Process to each child of the node given by
Parent. The procedure Iterate_Children starts with the first child and ends with the last child whereas
Reverse_Iterate_Children starts with the last child and ends with the first child. Note that these do
not iterate over grandchildren.

 function Iterate_Children(Container: in Tree; Parent: in Cursor) return
 Tree_Iterator_Interfaces.Reversible_Iterator'Class;

This is called if we write

for C in Parent.Iterate_Children loop
 ... -- do something via cursor C
end loop;

and iterates over all the children from Parent.First_Child to Parent.Last_Child. Note that we could
also insert reverse thus

for C in reverse Parent.Iterate_Children loop
 ... -- do something via cursor C
end loop;

in which case the iteration goes in reverse from Parent.Last_Child to Parent.First_Child. The
observant reader will note that this function returns Reversible_Iterator'Class and so can go in either
direction whereas the functions Iterate and Iterate_Subtree described earlier use
Forward_Iterator'Class and cannot be reversed.

private
 ... -- not specified by the language
end Ada.Containers.Multiway_Trees;

174 Containers

The above descriptions have not described all the situations in which something can go wrong and
so raise Constraint_Error or Program_Error. Generally, the former is raised if a source or target is
No_Element; the latter is raised if a cursor does not belong to the appropriate tree. In particular, as
mentioned above, an attempt to create an illegal tree such as one with circularities using
Splice_Subtree raises Program_Error. Remember also that every tree has a root node but the root
node has no element value; attempts to remove the root node or read its value or assign a value
similarly raise Program_Error.

The containers for indefinite and bounded trees are much as expected.

In the case of the indefinite tree container the generic formal type is

type Element_Type(<>) is private;

The other significant difference is that the procedure Insert_Child without the parameter New_Item
is omitted; this is because indefinite types do not have a default value.

In the case of the bounded tree container the changes are similar to those for the other containers.
One change is that the package has pragma Pure; the other changes concern the capacity. The type
Tree is

type Tree(Capacity: Count_Type) is tagged private;

and the function Copy is

function Copy(Source: Tree; Capacity: Count_Type := 0) return Tree;

And of course the exception Capacity_Error is raised in various circumstances.

Applications of trees are usually fairly complex. The tree structure for depicting the analysis of a
program for a whole language such as even Ada 83 has an enormous variety of nodes corresponding
to the various syntactic structures. And trees depicting human relationships are complex because of
multiple marriages, divorces, illegitimacy and so on. So we content ourselves with a couple of small
examples.

A tree representing a simple algebraic expression involving just the binary operations of addition,
subtraction, multiplication and division applied to simple variables and real literals is
straightforward. Nodes are of three kinds, those representing operations have two children giving the
two operands, and those representing variables and literals have no children and so are leaf nodes.

We can declare the element type thus

type Operator is ('+', '–', '×', '/');
type Kind is (Op, Var, Lit);

type El(K: Kind) is
 record
 case K is
 when Op =>
 Fn: Operator;
 when Var =>
 V: Character;
 when Lit =>
 Val: Float;
 end case;
 end record;

Note that the variables are (as typically in mathematics) represented by single letters.

So the expression

8.4 Mult iway t ree containers 175

 (x + 3) × (y – 4)

is represented by nodes with elements such as

(Op, '×')
(Var, 'x')
(Lit, 3.0)

So now we can declare a suitable tree thus

package Expression_Trees is
 new Ada.Containers.Multiway_Trees(El);

use Expression_Trees;

My_Tree: Tree := Empty_Tree;

C: Cursor;

and then build it by the following statements

C := Root(My_Tree);

Insert_Child(Container => My_Tree,
 Parent => C,
 Before => No_Element,
 New_Item => (Op, '×'),
 Position => C);

This puts in the first real node as a child of the root which is designated by the cursor C. There are
no existing children so Before is No_Element. The New_Item is as mentioned earlier. Finally, the
cursor C is changed to designate the position of the newly inserted node.

We can then insert the two children of this node which represent the mathematical operations +
(plus) and – (minus).

Insert_Child(My_Tree, C, No_Element, (Op, '+'));
Insert_Child(My_Tree, C, No_Element, (Op, '–'));

These calls are to a different overloading of Insert_Child and have not changed the cursor. The
second call also has Before equal to No_Element and so the second child goes after the first child.

We now change the cursor to that of the first newly inserted child and then insert its children which
represent x and 3. Thus

C := First_Child(C);
Insert_Child(My_Tree, C, No_Element, (Var, 'x'));
Insert_Child(My_Tree, C, No_Element, (Lit, 3.0));

And then we can complete the tree by inserting the final two nodes thus

C := Next_Sibling(C);
Insert_Child(My_Tree, C, No_Element, (Var, 'y'));
Insert_Child(My_Tree, C, No_Element, (Lit, 4.0));

Of course a compiler will do all this recursively and keep track of the cursor rather more neatly than
we have in this manual illustration.

The resulting tree should be as in Figure 1.

176 Containers

Figure 1 The expression tree

We can assume that the variables are held in an array which might be as follows

subtype Variable_Name is Character range 'a' .. 'z';

Variables: array (Variable_Name) of Float;

We can then evaluate the tree by a recursive function such as

function Eval(C: Cursor) return Float is
 E: El := Element(C);
 L, R: Float
begin
 case E.K is
 when Op =>
 L := Eval(First_Child(C));
 R := Eval(Last_Child(C));
 case E.Fn is
 when '+' => return (L+R);
 when '–' => return (L–R);
 when '×' => return (L*R);
 when '/' => return (L/R);
 end case;
 when Var =>
 return Variables(E.V);
 when Lit =>
 return E.Val;
 end case;
end Eval;

Finally, we obtain the value of the tree by

X := Eval(First_Child(Root(My_Tree)));

Remember that the node at the root has no element so hence the call of First_Child.

An alternative approach would be to use tagged types with a different type for each kind of node
rather than the variant record. This would be much more flexible and would have required the use of
the unbounded indefinite container Ada.Containers.Indefinite_Multiway_Trees.

As a more human example we can consider the family tree of the Tudor Kings and Queens of
England. We start with Henry VII, who had four children, Arthur, Margaret, Henry VIII and Mary.
See Figure 2.

8.4 Mult iway t ree containers 177

Figure 2 The Tudor tree

Arthur died young, Margaret married James IV of Scotland and had James (who was thus James V
of Scotland), Henry VIII had three children, namely Edward VI, Mary I and Elizabeth I. And Mary
had Frances. Henry VII was succeeded by Henry VIII and he was succeeded by his three children.

Remember the rules of primogeniture. The heir is the eldest son if there are sons; if not then the heir
is the eldest daughter. If there are no offspring at all then we go back a generation and try again.
Hence Edward VI became king despite being younger than Mary.

Since Edward, Mary and Elizabeth had no children we go back to the descendants of the other
children of Henry VII. Margaret, her son James, and his daughter Mary Queen of Scots were all
dead by then, so the throne of England went to the son of Mary who became James I of England and
VI of Scotland and thus united the two thrones. So the Tudor line died with Elizabeth (Good Queen
Bess).

Incidentally, Frances, the daughter of Mary, the fourth child of Henry VII, had a daughter, Lady
Jane Grey; she was Queen for 9 days but lost her head over a row with Mary I.

Representing this is tricky, especially with people such as Henry VIII having so many wives. But
the essence could be represented by a tree with a simple element type thus

type Person is
 record
 Name: String(1 .. 10);
 Sex: Gender;
 Birth: Date;
 Death: Date;
 end record;

With such a structure and the dates, starting from Henry VII and using the rules of primogeniture,
one should be able to trace the monarchs (apart from poor Lady Jane Grey who would I am sure
much rather not have been involved).

The overall tree structure is shown in Figure 2.

With the obvious connections we can define useful functions such as

function Are_Cousins(A, B: Cursor) return Boolean is
 (Parent(A) /= Parent (B) and then Parent(Parent(A)) = Parent(Parent(B)));

More of a challenge is to define a function Is_Successor using the rules described above. The reader
can contemplate these and other family relationships and attempt to construct the Tudor tree.

178 Containers

Finally, an explanation of depth-first order. The general principle is that child nodes are visited in
order before their parent. We can symbolically write this as

procedure Do_Node(N) is
begin
 for CN in N.First_Child .. N.Last_Child loop
 Do_Node(CN);
 end loop;
 if not N.Is_Root then
 Do_Element(N);
 end if;
end Do_Node;

and the whole thing is triggered by calling Do_Node(Root). Remember that the root node has no
element. The result is that the first element to be processed is that of the leftmost leaf.

Thus in the tree illustrated below in Figure 3, the elements are visited in order A, B, C, D, and so on.
Note that the root has no element and so is not visited.

Figure 3 A tree showing depth-first order

8.5 The holder container
As mentioned in the Introduction, it is not possible to declare an object of an indefinite type that can
hold any value of that type since the object becomes constrained by the mandatory initial value.
Thus we can write

Pet: String := "dog";

We can assign "cat" to Pet but we cannot assign "rabbit" because it is too long.

This is overcome in Ada 2012 by the introduction of the holder container which can hold a single
indefinite object. Its specification is

generic
 type Element_Type(<>) is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Indefinite_Holders is
 pragma Preelaborate(Indefinite_Holders);
 pragma Remote_Types(Indefinite_Holders);

 type Holder is tagged private;
 pragma Preelaborable_Initialization(Holder);

8.5 The holder container 179

 Empty_Holder: constant Holder;

 function "=" (Left, Right: Holder) return Boolean;

 function To_Holder(New_Item: Element_Type) return Holder;

 function Is_Empty(Container: Holder) return Boolean;

 procedure Clear(Container: in out Holder);

 function Element(Container: Holder) return Element_Type;

 procedure Replace_Element(Container: in out Holder; New_Item: in Element_Type);

 procedure Query_Element(Container: in Holder;
 Process: not null access procedure (Element: in Element_Type));

 procedure Update_Element(Container: in out Holder;
 Process: not null access procedure (Element: in out Element_Type));

 type Constant_Reference_Type(Element: not null access constant Element_Type)
 is private
 with Implicit_Dereference => Element;

 type Reference_Type(Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

 function Constant_Reference(Container: aliased in Holder)
 return Constant_Reference_Type;

 function Reference(Container: aliased in out Holder) return Reference_Type;

 procedure Assign(Target: in out Holder; Source: in Holder);

 function Copy(Source: Holder) return Holder;

 procedure Move(Target: in out Holder; Source: in out Holder);

private
 ... -- not specified by the language
end Ada.Containers.Indefinite_Holders;

Hopefully, the purpose of the facilities provided by this container are obvious given an
understanding of the use of the existing containers. It would be possible to use a list container with
just a single element to act as a holder but it seems better to have an explicit container with probably
less overhead and risk of confusion.

A trivial example of its use might be to provide a holder for pets. We write
package Strings is
 new Ada.Containers.Indefinite_Holders(String);

Kennel: Strings.Holder := To_Holder("cat");

This declares an object Kennel which is a wrapper for a string and initializes it with the string "cat".
We can replace the cat with a rabbit by writing

Kennel := To_Holder("rabbit");

However, using To_Holder in this way could be a bit slow since this will create a new object which
has to be destroyed after the assignment. It is better to write

Replace_Element(Kennel, "rabbit");

If we want to print out the contents of the kennel we just write

180 Containers

Put(Element(Kennel));

Operations such as Update_Element are provided partly for uniformity but also because the object
might be large so that it is better to update it in situ. Alternatively, we can use the functions such as
Reference as explained earlier.

8.6 Queue containers
When the goals of the revision to Ada 2005 were discussed, one of the expectations was that it
would be possible to improve the containers, or maybe introduce variants, that would be task safe.
However, further investigation revealed that this would not be practicable because the number of
ways in which several tasks could interact with a container such as a list or map was large.

However, one data structure that is amenable to controlled access by several tasks is the queue. One
or more tasks can place objects on a queue and one or more can remove them. Moreover, the
existing container library did not include queues as such so we were not tied to any existing
structures.

There are in fact four different queue containers in Ada 2012. These are all for elements of a definite
type. Two are bounded and two are unbounded. And there are priority and synchronized queues.
The names are

A.C.Unbounded_Synchronized_Queues
A.C.Bounded_Synchronized_Queues
A.C.Unbounded_Priority_Queues
A.C.Bounded_Priority_Queues

At one stage it was also planned to have unbounded containers for elements of an indefinite type.
This would then have been similar to the other containers which have unbounded definite,
unbounded indefinite and bounded definite forms. However, there were significant problems with
the Dequeue operation to remove an indefinite object related to the fact that Ada does not have
entry functions. This is easily overcome by making the elements of the queue a holder container as
described in the previous section.

These four different queue containers are all derived from a single synchronized interface declared
in a generic package whose specification is as follows

generic
 type Element_Type is private; -- definite
package A.C.Synchronized_Queue_Interfaces is
 pragma Pure(Synchronized_Queue_Interfaces);

 type Queue is synchronized interface;

 procedure Enqueue(Container: in out Queue; New_Item: in Element_Type) is abstract
 with Synchronization => By_Entry;

 procedure Dequeue(Container: in out Queue; Element: out Element_Type) is abstract
 with Synchronization => By_Entry;

 function Current_Use(Container: Queue) return Count_Type is abstract;
 function Peak_Use(Container: Queue) return Count_Type is abstract;
end A.C.Synchronized_Queue_Interfaces;

This generic package declares the synchronized interface Queue and four operations on queues.
These are the procedures Enqueue and Dequeue to add items to a queue and remove items from a
queue respectively; note the aspect Synchronization which ensures that all implementations of these

8.6 Queue containers 181

abstract procedures must be by an entry. There are also functions Current_Use and Peak_Use which
can be used to monitor the number of items on a queue.

The four queue containers are generic packages which themselves declare a type Queue derived in
turn from the interface Queue declared in the package above. We will look first at the synchronized
queues and then at the priority queues.

The package for unbounded synchronized queues is as follows

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new A.C.Synchronized_Queue_Interfaces(<>);
 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Unbounded_Synchronized_Queues is
 pragma Preelaborate(Unbounded_Synchronized_Queues);

 package Implementation is
 ... -- not specified by the language
 end Implementation;

 protected type Queue(Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 overriding
 entry Enqueue(New_Item: in Queue_Interfaces.Element_Type);
 overriding
 entry Dequeue(Element: out Queue_Interfaces.Element_Type);

 overriding
 function Current_Use return Count_Type;
 overriding
 function Peak_Use return Count_Type;

 private
 ... -- not specified by the language
 end Queue;

private
 ... -- not specified by the language
end A.C.Unbounded_Synchronized_Queues;

Note that there are two generic parameters. The first (Queue_Interfaces) has to be an instantiation of
the interface generic Synchronized_Queue_Interfaces; remember that the parameter (<>) means that
any instantiation will do. The second parameter concerns priority and has a default value so we can
ignore it for the moment.

Inside this package there is a protected type Queue which controls access to the queues via its
entries Enqueue and Dequeue. This protected type is derived from Queue_Interfaces.Queue and so
promises to implement the operations Enqueue, Dequeue, Current_Use and Peak_Use of that
interface. And indeed it does implement them and moreover implements Enqueue and Dequeue by
entries as required by the aspect Synchronization.

As an example suppose we wish to create a queue of some records such as

type Rec is record ... end record;

First of all we instantiate the interface package (using named notation for clarity) thus

182 Containers

package Rec_Interface is
 new A.C.Synchronized_Queue_Interfaces(Element_Type => Rec);

This creates an interface from which we can create various queuing mechanisms for dealing with
objects of the type Rec.

Thus we might write

package Unbounded_Rec_Package is
 new A.C.Unbounded_Synchronized_Queues(Queue_Interfaces => Rec_Interface);

Finally, we can declare a protected object, My_Rec_UQ which is the actual queue, thus

My_Rec_UQ: Unbounded_Rec_Package.Queue;

To place an object on the queue we can write

Enqueue(My_Rec_UQ, Some_Rec);

or perhaps more neatly

My_Rec_UQ.Enqueue(Some_Rec);

And to remove an item from the queue we can write

My_Rec_UQ.Dequeue(The_Rec);

where The_Rec is some object of type Rec which thereby is given the value removed.

The statement

N := Current_Use(My_Rec_UQ);

assigns to N the number of items on the queue when Current_Use was called (it could be out of date
by the time it gets into N) and similarly Peak_Use(My_Rec_UQ) gives the maximum number of
items that have been on the queue since it was declared.

This is all task safe because of the protected type; several tasks can place items on the queue and
several, perhaps the same, can remove items from the queue without interference.

It should also be noticed that since the queue is unbounded, we never get blocked by Enqueue since
extra storage is allocated as required just as for the other unbounded containers (I suppose we might
get Storage_Error).

The observant reader will note the mysterious local package called Implementation. This enables the
implementation to declare local types to be used by the protected type. It will be recalled that there
is an old rule that one cannot declare a type within a type. These local types really ought to be within
the private part of the protected type; maybe this is something for Ada 2020.

The package for bounded synchronized queues is very similar. The only differences (apart from its
name) are that it has an additional generic parameter Default_Capacity and the protected type Queue
has an additional discriminant Capacity. So its specification is

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new A.C.Synchronized_Queue_Interfaces(<>);
 Default_Capacity: Count_Type;
 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Bounded_Synchronized_Queues is
 pragma Preelaborate(Bounded_Synchronized_Queues);

8.6 Queue containers 183

 package Implementation is
 ... -- not specified by the language
 end Implementation;

 protected type Queue(Capacity: Count_Type := Default_Capacity,
 Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 ... -- etc as for the unbounded one

end A.C.Bounded_Synchronized_Queues;

So using the same example, we can use the same interface package Rec_Interface. Now suppose we
wish to declare a bounded queue with capacity 1000, we can write

package Bounded_Rec_Package is
 new A.C.Bounded_Synchronized_Queues
 (Queue_Interfaces => Rec_Interface, Default_Capacity => 1000);

Finally, we can declare a protected object, My_Rec_BQ which is the actual queue, thus

My_Rec_BQ: Bounded_Rec_Package.Queue;

And then we can use the queue as before. To place an object on the queue we can write

My_Rec_BQ.Enqueue(Some_Rec);

And to remove an item from the queue we can write

My_Rec_BQ.Dequeue(The_Rec);

The major difference is that if the queue becomes full then calling Enqueue will block the calling
task until some other task calls Dequeue. Thus, unlike the other containers, Capacity_Error is never
raised.

Note that having given a value for Default_Capacity, it can be overridden when the queue is
declared, perhaps

My_Rec_Giant_BQ: Bounded_Rec_Package.Queue(Capacity => 100000);

These packages also provide control over the ceiling priority of the protected type. By default it is
Priority'Last. This default can be overridden by our own default when the queue package is
instantiated and can be further specified as a discriminant when the actual queue object is declared.
So we might write

My_Rec_Ceiling_BQ: Bounded_Rec_Package.Queue(Ceiling => 10);

In the case of the bounded queue, if we do not give an explicit capacity then the ceiling has to be
given using named notation. This does not apply to the unbounded queue which only has one
discriminant, so to give that a ceiling priority we can just write

My_Rec_Ceiling_UQ: Unbounded_Rec_Package.Queue(10);

But clearly the use of the named notation is advisable.

Being able to give default discriminants is very convenient. In Ada 2005, this was not possible if the
type was tagged. However, in Ada 2012, it is permitted in the case of limited tagged types and a
protected type is considered to be limited. This was explained in detail in Section 4.4 on
Discriminants.

If we wanted to make a queue of indefinite objects, then as mentioned above, there is no special
container for this because Dequeue would be difficult to use since it is a procedure and not a

184 Containers

function. So the actual parameter would have to be constrained which means knowing before the
call the value of the discriminant, tag, or bound of the object which is unlikely. However, we can
use the holder container to wrap the indefinite type so that it looks definite.

So to create a queue for strings, using the example of the previous section, we can write

package Strings is
 new Ada.Containers.Indefinite_Holders(String);

package Strings_Interface is
 new A.C.Synchronized_Queue_Interfaces(Element_Type => Strings.Holder);

package Unbounded_Strings_Package is
 new A.C.Unbounded_Synchronized_Queues(Queue_Interfaces => Strings_Interface);

and then finally declare the actual queue

My_Strings_UQ: Unbounded_Strings_Package.Queue;

To put some strings on this queue, we write

My_Strings_UQ.Enqueue(To_Holder("rabbit"));

My_Strings_UQ.Enqueue(To_Holder("horse"));

or even

My_Strings_UQ.Enqueue(Element(Kennel));

We now turn to considering the two other forms of queue which are the unbounded and bounded
priority queues.

Here is the specification of the unbounded priority queue

with System; use System;
with A.C.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new
 A.C.Synchronized_Queue_Interfaces(<>);

 type Queue_Priority is private;
 with function Get_Priority(Element : Queue_Interfaces.Element_Type)
 return Queue_Priority is <>;
 with function Before(Left, Right : Queue_Priority) return Boolean is <>;

 Default_Ceiling: Any_Priority := Priority'Last;
package A.C.Unbounded_Priority_Queues is
 pragma Preelaborate(Unbounded_Priority_Queues);

 package Implementation is
 ... -- not specified by the language
 end Implementation;

 protected type Queue(Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 overriding
 entry Enqueue(New_Item: in Queue_Interfaces.Element_Type);
 overriding
 entry Dequeue(Element: out Queue_Interfaces.Element_Type);

8.6 Queue containers 185

 not overriding
 procedure Dequeue_Only_High_Priority(At_Least: in Queue_Priority;
 Element: in out Queue_Interfaces.Element_Type;
 Success: out Boolean);

 overriding
 function Current_Use return Count_Type;
 overriding
 function Peak_Use return Count_Type;

 private
 ... -- not specified by the language
 end Queue;

private
 ... -- not specified by the language
end A.C.Unbounded_Priority_Queues;

The differences from the synchronized bounded queue are that there are several additional generic
parameters, namely the private type Queue_Priority and the two functions Get_Priority and Before
which operate on objects of the type Queue_Priority, and also that the protected type Queue has an
additional operation, the protected procedure Dequeue_Only_High_Priority.

The general idea is that elements have an associated priority which can be ascertained by calling the
function Get_Priority. The meaning of this priority is given by the function Before.

When we call Enqueue, the new item is placed in the queue taking due account of its priority with
respect to other elements already on the queue. So it will go before all less important elements as
defined by Before. If existing elements already have the same priority then it goes after them.

As expected Dequeue just returns the first item on the queue and will block if the queue is empty.

The new procedure Dequeue_Only_High_Priority (note that it is marked as not overriding unlike
the other operations) is designed to enable us to process items only if they are important enough as
defined by the parameter At_Least. The priority of the first element E on the queue is P as given by
Get_Priority(E). And so if Before(At_Least, P) is false, then the item on the queue is indeed
important enough and so is removed from the queue and the Boolean parameter Success is set to
true. On the other hand if Before(At_Least, P) is true then the item is not removed and Success is
set to false. Note especially that Dequeue_Only_High_Priority never blocks. If the queue is empty,
then Success is just set to false; it never waits for an item to be put on the queue.

As an (unrealistic) example, suppose we decide to make the queue of strings into a priority queue
and that the priority is given by their length so that "rabbit" takes precedence over "horse".
Remember that the type of the elements is Strings.Holder. We can define the priority as given by the
attribute Length so we might as well make the actual type corresponding to Queue_Priority as
simply Natural. Then we define

function S_Get_Priority(H: Strings.Holder) return Natural is
 (H.Element'Length);

function S_Before(L, R: Natural) return Boolean is
 (L > R);

Note the convenient use of expression functions for this sort of thing.

The instantiation now becomes

186 Containers

package Unbounded_Priority_Strings_Package is
 new A.C.Unbounded_Priority_Queues(Queue_Interfaces => Strings_Interface,
 Queue_Priority => Natural,
 Get_Priority => S_Get_Priority,
 Before => S_Before);

and we then declare a queue thus

My_Strings_UPQ: Unbounded_Priority_Strings_Package.Queue;

To put some strings on this queue, we write

My_Strings_UPQ.Enqueue(To_Holder("rabbit"));

My_Strings_UPQ.Enqueue(To_Holder("horse"));

My_Strings_UPQ.Enqueue(To_Holder("donkey"));

My_Strings_UPQ.Enqueue(To_Holder("gorilla"));

The result is that "gorilla" will have jumped to the head of the queue despite having been put on last.
It will be followed by "rabbit" and "donkey" and the "horse" is last.

If we do

My_Strings_UPQ.Dequeue_Only_High_Priority(7, Kennel, OK);

then the "gorilla" will be taken from the queue and placed in the Kennel and OK will be true. But if
we then do it again, nothing will happen because the resulting head of the queue (the "rabbit") is not
long enough.

Finally, we need to consider bounded priority queues. They are exactly like the unbounded priority
queues except that they have the same additional features regarding capacity as found in the
synchronized queues. Thus the only differences (apart from the name) are that there is an additional
generic parameter Default_Capacity and the protected type Queue has an additional discriminant
Capacity.

As a final example we will do a bounded priority queue of records. Suppose the records concern
requests for servicing a dishwasher. They might included usual information such as the model
number, name and address of owner and so on. They might also have a component indicating degree
of urgency, such as

Urgent – machine has vomited dirty water all over floor; housewife/husband having a tantrum,

Major – machine won't do anything; husband refuses to help with washing up,

Minor – machine leaves some dishes unclean, mother-in-law is coming next week,

Routine – machine needs annual service.

So we might have

type Degree is (Urgent, Major, Minor, Routine);

type Dish_Job is
 record
 Urgency: Degree;
 Name: ...
 ...
 end record;

First we declare the interface for this type

8.6 Queue containers 187

package Dish_Interface is
 new A.C.Synchronized_Queue_Interfaces(Element_Type => Dish_Job);

and then we declare the two slave functions for the priority mechanism thus

function W_Get_Priority(X: Dish_Job) return Degree is
 (X.Urgency);

function W_Before(L, R: Degree) return Boolean is
 (Degree'Pos(L) < Degree'Pos(R));

The instantiation is then

package Washer_Package is
 new A.C.Bounded_Priority_Queues(Queue_Interfaces => Dish_Interface,
 Queue_Priority => Degree,
 Get_Priority => W_Get_Priority,
 Before => W_Before,
 Default_Capacity => 100);

and we declare the queue of waiting calls thus

Dish_Queue: Washer_Package.Queue;

which gives a queue with the default capacity of 100.

The staff taking requests then place the calls on the queue by

Dish_Queue.Enqueue(New_Job);

To cope with the possibility that the queue is full, they can do a timed entry call; remember that this
is possible because the procedure Enqueue in the interface package has Synchronization =>
By_Entry.

And then general operatives checking in and taking the next job do

Dish_Queue.Dequeue(Next_Job);

However, at weekends we can suppose that just one operative is on call and deals with only Urgent
and Major calls. He might check the queue from time to time by calling

Dish_Queue.Dequeue_Only_High_Priority(Major, My_Job, Got_Job);

and if Got_Job is false, he can relax and go back to digging the garden or playing golf.

8.7 Sorting
Ada 2005 provides two containers for sorting arrays; one is for unconstrained array types and one is
for constrained array types. The specification of the unconstrained one is

generic
 type Index_Type is (<>);
 type Element_Type is private;
 type Array_Type is array (Index_Type range <>) of Element_Type;
 with function "<" (Left, Right: Element_Type) return Boolean is <>;
procedure Ada.Containers.Generic_Array_Sort(Container: in out Array_Type);
pragma Pure(Ada.Containers.Generic_Array_Sort);

This does the obvious thing. It sorts the array Container so that the components are in the order
defined by the generic parameter "<".

We could for example sort the letters in a string into alphabetical order. We would declare

188 Containers

procedure String_Sort is
 new Ada.Containers.Generic_Array_Sort(Positive, Character, String);

and then if we had a string such as

Bigpet: String := "rabbit";

we could apply String_Sort to it thus

String_Sort(Bigpet);

and the value in Bigpet will now be "abbirt".

That is all in Ada 2005. However, sorting doesn't just apply to arrays and Ada 2012 provides a much
more flexible approach. An additional container is provided whose specification is

generic
 type Index_Type is (<>);
 with function Before(Left, Right: Index_Type) return Boolean;
 with procedure Swap(Left, Right: in Index_Type);
procedure Ada.Containers.Generic_Sort(First, Last: Index_Type'Base);
pragma Pure(Ada.Containers.Generic_Sort);

This can be used to sort any indexable structure and not just arrays. The generic parameters define
the required ordering through the parameter Before much as expected. The cunning trick however, is
that the means of interchanging two items in the structure is provided by the parameter Swap.

As an illustration we can use this on the array Bigpet. We can use an expression function for
BP_Before and so we write

function BP_Before(L, R: Positive) return Boolean is
 (Bigpet(L) < Bigpet(R));

procedure BP_Swap(L, R: in Positive) is
 Temp: Character;
begin
 Temp := Bigpet(L);
 Bigpet(L) := Bigpet(R);
 Bigpet(R) := Temp;
end BP_Swap;

procedure BP_Sort is
 new Ada.Containers.Generic_Sort(Positive, BP_Before, BP_Swap);

and then we actually do the sort by

BP_Sort(Bigpet'First, Bigpet'Last);

That may seem to be rather a struggle but the key point is that the technique can be used to sort
items in any indexable structure such as a vector container.

Suppose we have a number of records of a type Score which might be

type Score is
 record
 N: Natural := 0;
 OS: Other_Stuff;
 end record;

and we declare a vector container to hold such objects thus

8.7 Sort ing 189

package Scores is
 new Ada.Containers.Vectors(Natural, Score);

My_Vector: Scores.Vector;

Now assume that we have added various objects of the type Score to our vector and that we decide
that we would like them sorted into order determined by their component N.

We write

function MV_Before(L, R: Natural) return Boolean is
 (Scores.Element(My_Vector, L).N < Scores.Element(My_Vector, R).N);

procedure MV_Swap(L, R: in Natural) is
begin
 Scores.Swap(My_Vector, L, R);
end MV_Swap;

procedure MV_Sort is
 new Ada.Containers.Generic_Sort(Natural, MV_Before, MV_Swap);

and then we do the sort by

MV_Sort(Scores.First_Index(My_Vector), Scores.Last_Index(My_Vector));

Note that the vectors container package conveniently already has a procedure Swap.

This vector example is not very exciting because it might be recalled that the vectors containers
already have their own internal generic sort. To use it on this example we would have to write

package MV_Sorting is
 new Scores.Generic_Sorting(MV_Before);

MV_Sorting.Sort(My_Vector);

which is somewhat simpler. However, note that this sorts the whole vector. If we only wanted to sort
part of it, say from elements in index range P to Q then it cannot be used. But that would be easy
with the new one since we would simply write

MV_Sort(P, Q);

Note that curiously this does not need to mention My_Vector.

8.8 Streaming
Ada 2005 was somewhat unclear regarding streaming values from and to containers. This is clarified
in Ada 2012. Thus if V is a vector container then V'Write writes Length(V) elements to the stream
concerned.

An important point is that in order to simplify the interchange between containers, we are assured
that we can stream between them using 'Write and 'Read. Thus we can stream between a bounded
and an unbounded container as well as between two bounded or two unbounded containers provided
of course that the elements all have the same subtype.

 191

9 Epilogue
This last chapter summarizes a small number of general issues of importance to the user
such as compatibility between Ada 2012 and Ada 2005. It also briefly revisits a number of
problems that were considered for Ada 2005 but rejected for various reasons; the important
ones have been solved in Ada 2012.
Finally, it discusses a small number of corrections that have been found necessary since the
standard was approved.

9.1 Compatibility
There are two main sorts of problems regarding compatibility. These are termed Incompatibilities
and Inconsistencies.

An incompatibility is a situation where a legal Ada 2005 program is illegal in Ada 2012. These can
be annoying but not a disaster since the compiler automatically detects such situations.

An inconsistency is where a legal Ada 2005 program is also a legal Ada 2012 program but might
have a different effect at execution time. These can in principle be really nasty but typically the
program is actually wrong anyway (in the sense that it does not do what the programmer intended)
or its behaviour depends upon the raising of a predefined exception (which is generally considered
poor style) or the situation is extremely unlikely to occur.

As mentioned below in Section 2, during the development of Ada 2012 a number of corrections
were made to Ada 2005 and these resulted in some incompatibilities and inconsistencies with the
original Ada 2005 standard. These are not considered to be incompatibilities or inconsistencies
between Ada 2005 and Ada 2012 and so are not covered in this section.

9.1.1 Incompatibilities with Ada 2005
Each incompatibility listed below gives the AI concerned and the paragraph in the AARM which in
some cases will give more information. Where relevant, the section in this rationale where the topic
is discussed is also given. Where appropriate the incompatibilities are grouped together.

Note that this list only covers those incompatibilities that might reasonably occur. There are a
number of others which are so unlikely that they do not seem worth mentioning.

1 – The word some is now reserved. Programs using it as an identifier will need to be changed.
(AI-176, 2.9)

Adding new reserved words is a very visible incompatibility. Six were added in Ada 95, three in
Ada 2005, and now just one in Ada 2012. Perhaps this is the end of the matter. The word some is
used in quantified expressions; it already was reserved in SPARK [13] where it is used in quantified
expressions in proof contexts.

2 – If a predefined package has additional entities then incompatibilities can arise. Thus suppose
the predefined package Ada.Stuff has an additional entity More added to it. Then if an Ada 2005
program has a package P containing an entity More then a program with a use clause for both
Ada.Stuff and P will become illegal in Ada 2012 because the reference to More will become
ambiguous. This also applies if further overloadings of an existing entity are added.

This can be overcome by adding child packages of course. However, adding lots of child packages
can be an inconvenience for the user and so in many cases extending a package seemed more
appropriate especially if the identifiers concerned are unlikely to have been used by programmers.

The following packages have been extended with additional entities as listed.

192 Epi logue

Ada.Characters.Handling – Is_Line_Terminator, Is_Mark, Is_Other_Format, Is_Punctuation_
Connector, Is_Space. (AI-185, A.3.2)

Ada.Containers – Capacity_Error. (AI-1, A.18.1)

Ada.Containers.Vectors – Assign, Copy, Constant_Reference, Constant_Reference_Type, Iterate,
Reference, Reference_Type, Vector_Iterator_Interfaces. (AI-1, AI-212, A.18.2)

There are similar additions to the other containers Ada.Containers.Doubly_Linked_Lists etc.

Ada.Directories – Name_Case_Kind, Name_Case_Equivalence. (AI-49, A.16)

Ada.Dispatching – Yield. (AI-166, D.2.1)

Ada.Environment_Variables – Value. (AI-285, A.17)

Ada.Execution_Time – Interrupt_Clocks_Supported, Separate_Interrupt_Clocks_Supported,
Clocks_For_Interrupts. (AI-170, D.14)

Ada.Task_Identification – Environment_Task, Activation_
Is_Complete. (AI-189, C.7.1)

Ada.Strings.Fixed – Find_Token. (AI-31, A.4.3)

Ada.Strings.Bounded – Find_Token. (AI-31, A.4.4)

Ada.Strings.Unbounded – Find_Token. (AI-31, A.4.5)

There are similar additions to Ada.Strings.Wide_Fixed, Ada.Strings.Wide_Bounded and
Ada.Strings.Wide_Unbounded. (AI-31, A.4.7)

Ada.Tags – Is_Abstract. (AI-173, 3.9)

It seems unlikely that existing programs will be affected by these potential incompatibilities.

3 – Membership tests are no longer allowed as a discrete choice. This is explained in detail in
Section 3.6 of the chapter on Expressions. (AI-158, 3.8.1)

4 – Allowing functions to have parameters of all modes led to the introduction of stricter rules on
aliasing. It is possible that a program that seemed to work in Ada 2005 is illegal in Ada 2012. See
Section 4.2 of the chapter on Structure and Visibility. (AI-144, 6.4.1)

5 – Implicit conversion is now allowed from anonymous access types to general access types. Such
conversions can make calls ambiguous in the presence of overloading where only one call was
permitted in Ada 2005. Consider

type RT is access all T;
function F return RT;
function F return access T;

procedure B(R: RT);

and then the call

B(F); -- ambiguous in Ada 2012

The call of B is ambiguous in Ada 2012 because the call could be to either function F. But in Ada
2005, the implicit conversion is not possible and so the call has to be to the first function F. (AI-149,
8.6)

6 – It is now illegal to declare a formal abstract subprogram whose controlling type is incomplete.
This is related to various improvements to incomplete types described in Section 4.3 of the chapter
on Structure and Visibility. (AI-296, 12.6)

9.1 Compat ib i l i ty 193

7 – The pragma Controlled has been removed from the language. It was never implemented
anyway. (AI-229, 13.11.3)

– The package Ada.Dispatching was Pure in Ada 2005 but has been downgraded to
Preelaborable because of the addition of Yield. This is unlikely to be a problem. (AI-166, D.2.1)

9.1.2 Inconsistencies with Ada 2005
Note that this list only covers those inconsistencies that might reasonably occur. There are a number
of others which are so unlikely that they do not seem worth mentioning.

1 – The definition of character sets can change with time. It is thus possible that the result of
character classification functions for obscure characters might be or become inconsistent. (AI-91,
AI-227, AI-266, 2.1, 2.3)

2 – User defined untagged record equality is now defined to compose and be used in generics.
Code which assumes that predefined equality reemerges in generics and in predefined equals for
composite types could fail. However, it is more likely that this change will fix bugs. (AI-123, 4.5.2)

3 – A stand alone object of an anonymous access type now has dynamic accessibility. This is most
likely to make illegal programs now legal. However, it is possible that a program that raised
Program_Error in Ada 2005 will not do so in Ada 2012. It seems very unlikely that a program would
rely on the raising of this exception. (AI-148, 4.6)

4 – There is an obscure interaction between the change to the composability of equality and
renaming. Renaming of user-defined untagged record equality is now defined to call the overridden
body so long as the overriding occurred before the renames. Consider

package P is
 type T is
 record
 ...
 end record;
 -- (1) consider renaming here
private
 function "=" (L, R: T) return Boolean;
end P;

with P;
package Q is
 function Equals renames P."=";
end Q;

In Ada 2005, Equals refers to the predefined equality, whereas in Ada 2012 it refers to the
overridden user-defined equality in the private part. This is so that composed equality and explicit
calls on "=" give the same answer. However, if the renaming had been at the point (1) then calling
Equal would call the predefined equality. Remember that renaming squirrels away the operation so
that it can be retrieved. (AI-123, 8.5.4)

5 – A group budget is now defined to work on a single processor. However, it is unlikely that any
implementation of Ada 2005 managed to implement this on multiprocessors anyway. (AI-169,
D.14.2)

9.2 Retrospective changes to Ada 2005
In the course of the development of Ada 2012, a number of small changes were deemed to apply
also to Ada 2005 and thus were classified as binding interpretations rather than amendments. Some
were mentioned in previous chapters (including that which ensured that package Ada is legal); see

194 Epi logue

Sections 6.2 and 6.6 of the chapter on Iterators, Pools etc. Most of these do not introduce
incompatibilities or inconsistencies so will not be discussed further.

A few binding interpretations do introduce minor incompatibilities or inconsistencies and will now
be briefly discussed.

9.2.1 Incompatibilities with original Ada 2005
There are a small number of incompatibilities between the original Ada 2005 and that resulting from
various corrections.

1 – The rules for full conformance have been strengthened; for example, null exclusions must now
match. (AI-46, AI-134, AI-207, 6.3.1)

2 – When an inherited subprogram is implemented by a protected function, the first parameter has
to be an in parameter, but not an access to variable type. Ada 2005 allowed access to variable
parameters in this case; the parameter will need to be changed to access to constant by the addition
of the constant keyword. (AI-291, 9.4)

3 – A missing rule is added that a limited with clause cannot name an ancestor unit. (AI-40, 10.1.2)

4 – Matching of formal access to subprogram types uses subtype conformance in Ada 2012
whereas it only used mode conformance in original Ada 2005. This change was necessary to avoid
undefined behaviour in some situations. (AI-288, 12.5.4)

5 – An address attribute with a prefix of a subprogram with convention Intrinsic is now illegal. This
is discussed in Section 6.6 of the chapter on Iterators, Pools etc. (AI-95, 13.3)

6 – Stream attributes must be specified by a static subprogram name rather than by a dynamic
expression. (AI-39, 13.13.2)

– The use of discriminants on Unchecked_Union types is now illegal in record representation
clauses. It makes no sense to specify the position of something that is not supposed to exist. (AI-26,
B.3.3)

– A nonvolatile generic formal derived type precludes a volatile actual type. (AI-218, C.6)

– The restriction No_Relative_Delay has been extended to also prohibit a call of
Timing_Events.Set_Handler with a Time_Span parameter. (AI-211, D.7)

– Various restrictions have been reworded to prevent the bypassing of the restriction by calling
the forbidden subprogram via renames. (AI-211, D.7)

9.2.2 Inconsistencies with original Ada 2005
There are a small number of inconsistencies between the original Ada 2005 and that resulting from
various corrections.

1 – The description of Dependent_Tag has been changed to say that it must raise Tag_Error if there
is more than one type that matches the requirements. (AI-113, 3.9)

2 – A curious omission regarding checking arrays allows a component in an aggregate whose value
is given as <> even if the component is outside the bounds. It is now clarified that Constraint_Error
is raised. (AI-37, 4.3.3)

3 – The first procedure Split in Ada.Calendar.Formatting raises Time_Error for a value of exactly
86400.0. This was unspecified in Ada 2005. (AI-238, 9.6.1)

4 – An address attribute with a prefix of a generic formal subprogram whose actual parameter has
convention Intrinsic now raises Program_Error. (AI-95, 13.3)

9.2 Retrospect ive changes to Ada 2005 195

5 – User specified external tags that conflict with other external tags now raise Program_Error or
are illegal. (AI-113, 13.3)

6 – The definition of Set_Line is corrected. As originally defined in Ada 95 and Ada 2005,
Set_Line(1) could call New_Line(0) which would raise Constraint_Error which is unhelpful. This
was mentioned right at the end of the Postscript in the Rationale for Ada 2005 [15]. (AI-38, A.10.5)

7 – The definitions of Start_Search, Search, Delete_Directory, and Rename are clarified so that
they raise the correct exception if misused. (AI-231, A.16)

8 – If Count = 0 for a container Insert subprogram that has a Position parameter, the Position
parameter is set to the value of the Before parameter by the call. The original wording remained
silent on this. (AI-257, A.18.3)

9.3 Unfinished topics from Ada 2005
A number of topics which seemed to be good ideas initially were abandoned during the development
of Ada 2005 for various reasons. Usually the reason was simply that a good solution could not be
produced in the time available and the trouble with a bad solution is that it is hard to put it right
later. This section briefly reconsiders these topics which were discussed in the Rationale for Ada
2005 [15]; some have now been solved in Ada 2012; the others were considered unimportant.

9.3.1 Aggregates for private types
The <> notation was introduced in Ada 2005 for aggregates to mean the default value if any. A
curiosity is that we can write

type Secret is private;

type Visible is
 record
 A: Integer;
 S: Secret;
 end record;

X: Visible := (A => 77; S => <>);

but we cannot write

S: Secret := <>; -- illegal

The argument is that this would be of little use since the components take their default values
anyway.

For uniformity it was proposed that we might allow

S: Secret := (others => <>);

for private types and also for task and protected types. One advantage would be that we could then
write

S: constant Secret := (others => <>);

whereas it is not possible to declare a constant of a private type because we are unable to give an
initial value.

However, discussion of this issue led into a quagmire in Ada 2005 and so was abandoned. It remains
abandoned in Ada 2012!

196 Epi logue

9.3.2 Partial generic instantiation
Certain attempts to use signature packages led to circularities in Ada 95. Consider

generic
 type Element is private;
 type Set is private;
 with function Union(L, R: Set) return Set is <>;
 with function Intersection(L, R: Set) return Set is <>;
 ... -- and so on
package Set_Signature is end;

Remember that a signature is a generic package consisting only of a specification. When we
instantiate it, the effect is to assert that the actual parameters are consistent and the instantiation
provides a name to refer to them as a group.

If we now attempt to write

generic
 type Elem is private;
 with function Hash(E: Elem) return Integer;
package Hashed_Sets is
 type Set is private;
 function Union(L, R: Set) return Set;
 function Intersection(L, R: Set) return Set;
 ...
 package Signature is new Set_Signature(Elem, Set);
private
 type Set is
 record
 ...
 end record;
end Hashed_Sets;

then we are in trouble. The problem is that the instantiation of Set_Signature tries to freeze the type
Set prematurely.

After a number of false starts this problem is partially overcome in Ada 2012 by the introduction of
incomplete formal generic parameters. This is discussed in Section 4.3 of the chapter on Structure
and Visibility. See also Section 9.4.1 of this chapter.

9.3.3 Support for IEEE 559: 1989
The proposal was to provide full support for all aspects of IEEE 559 arithmetic such as NaNs (a
NaN is Not A Number). This would have necessitated adding attributes such as S'Infinity, S'Is_NaN,
S'Finite and so on plus a package Ada.Numerics.IEC_559.

The proposal was abandoned because it would have had a big impact on implementers and it was
not clear that there was sufficient demand. It was not reconsidered for Ada 2012.

9.3.4 Defaults for generic parameters
Generic subprogram parameters and object parameters of mode in can have defaults. But other
parameters such as packages and types cannot. This was considered irksome and untidy and efforts
were made to define a suitable notation for all possible generic parameters.

However, it was abandoned partly because an appropriate syntax seemed hard to find and more
importantly, it was not felt to be that important. Again, it was not deemed important enough to be
reconsidered for Ada 2012.

9.3 Unf inished topics f rom Ada 2005 197

9.3.5 Pre/post-conditions for subprograms
The original proposal was to add pragmas such as Pre_Assert and Post_Assert. Thus in the case of a
subprogram Push on a type Stack we might write

procedure Push(S: in out Stack; X: in Item);
pragma Pre_Assert(Push, not Is_Full(S));
pragma Post_Assert(Push, not Is_Empty(S));

This was all abandoned in Ada 2005 for various reasons; one being that pragmas are ugly for such
an important matter.

However, this is neatly solved in Ada 2012 by the introduction of aspect specifications so we can
now write

procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S),
 Post => not Is_Empty(S);

which is really excellent; this is discussed in detail in Chapter 2 on Contracts and Aspects.

9.3.6 Type and package invariants
This defined further pragmas similar to those in the previous proposal but concerned with packages
and types. Thus the pragma Package_Invariant proposed for Ada 2005 identified a function
returning a Boolean result. This function would be implicitly called after the call of each
subprogram in the package and if the result were false the behaviour would be as for an Assert
pragma that failed.

This proposal was also abandoned for Ada 2005. However, Ada 2012 has introduced type invariants
thus

type Stack is private
 with Type_Invariant => Is_Unduplicated(Stack);

as discussed in Chapter 2 on Contracts and Aspects. On the other hand, package invariants remain
abandoned.

9.3.7 Exceptions as types
This proposal originally arose out of a workshop organized by Ada-Europe. It was quite complex
and considered far too radical a change and probably expensive to implement. As a consequence it
was slimmed down considerably. But having been slimmed down it seemed pointless and was then
abandoned. The only part to survive was the idea of raise with message which became a separate AI
and was incorporated into Ada 2005.

This was not pursued in Ada 2012.

9.3.8 Sockets operations
This seemed a very good idea at the time but no detailed proposal was forthcoming and so it died. It
has been left dead.

9.3.9 In out parameters for functions
The proposal was to allow functions to have parameters of all modes. The rationale for the proposal
was well summarized thus "Ada functions can have arbitrary side effects, but are not allowed to
announce that in their specifications".

But strangely, this AI was abandoned quite early in the Ada 2005 revision process on the grounds
that it was "too late". (Perhaps too late in this context meant 25 years too late.)

198 Epi logue

However, in Ada 2012, the bullet has been bitten and functions can indeed now have parameters of
all modes. See the discussion in Section 4.2 of the chapter on Structure and Visibility.

9.3.10 Application defined scheduling
The International Real-Time Ada Workshops have been a source of suggestions for improvements
to Ada. The Workshop at Oporto suggested a number of further scheduling algorithms [24]. Most of
these such as Round Robin and EDF were included in Ada 2005. But that for application defined
scheduling was not.

No further action on this topic was taken in Ada 2012.

9.4 Unfinished topics for Ada 2012
A number of topics which seemed to be good ideas initially were abandoned during the development
of Ada 2012 for various reasons. It is interesting to note that there are far fewer of these loose ends
than there were in Ada 2005. The following deserve mention.

9.4.1 Integrated packages (AI-135)
Difficulties sometimes arise with nested packages. Consider for example a package that needs to
export a private type T and a container instantiated for that type. We cannot write

package P is
 type T is private;
 package T_Set is new Ordered_Sets(T);
private
 ...
end P;

because the type T is not frozen. We have to write something like

package P is
 package Inner is
 type T is private;
 private
 ...
 end Inner;
 package T_Set is new Ordered_Sets(Inner.T);
end P;

What we now want is some way to say that the declarations in Inner are really at the level of P itself
after all. In other words we want to integrate the package Inner with the outer package P.

Various attempts were made to solve this by another kind of use clause or perhaps by putting Inner
in a <> box. But all attempts led to difficulties so this remains unresolved.

9.4.2 Cyclic fixed point (AI-175)
Measurements in the physical world of Euclid and Newton are either lengths or angles. Angles are
cyclic in nature and so can be mapped with a modular type. However, this leaves scaling in the
hands of the user and is machine dependent. Consideration was given to the possibility of a cyclic
form of fixed point. Sadly, there was much hidden complexity and so no solution was agreed.

One might have thought that it would be easy to use the natural wrap-around hardware. However,
with a binary machine, if 180 degrees is held exactly then 60 degrees is not which excludes an exact
representation of an equilateral triangle. The whole point about using fixed point is that it is precise
but it just doesn't work unless the hardware uses a base with divisibility by 60. The Babylonians

9.4 Unf inished topics for Ada 2012 199

would have understood. The text of AI-175 includes a generic which might be useful for many
applications.

9.4.3 Global annotations (AI-186)
The idea here was that the specification of a subprogram should have annotations indicating the
global objects that it might manipulate. For example a function can have side effects on global
variables but this important matter is not mentioned in the specification. This topic has strong
synergy with the information given in contracts such as pre- and postconditions. However, it was
abandoned perhaps because of the complexity arising from the richness of the full Ada language. It
should be noted that such annotations have always featured in SPARK as comments and moreover, at
the time of writing, are being considered using the aspect notation in a new version of SPARK.

9.4.4 Shorthand for assignments (AI-187)
Consideration was given to having some short of shorthand for assignments where source and target
have commonality as in statements such as

A(I) := A(I) + 1;

But maybe the thought of C++ was too much. In any event no agreement that it was worthwhile was
reached and there was certainly no agreement on what syntax might be acceptable.

9.5 Postscript
It should also be noticed that a few corrections and improvements have been made since Ada 2012
was approved as a standard. The more important of these will now be discussed.

A new form of expression, the raise expression, is added (AI12-22). This means that by analogy
with

if X < Y then
 Z := +1;
elsif X > Y then
 Z := –1;
else
 raise Error;
end if;

we can also write

Z := (if X<Y then 1 elsif X>Y then –1 else raise Error);

A raise expression is a new form of relation so the syntax for relation (see Section 3.6 of the chapter
on Expressions) is extended as follows

 relation ::=
 simple_expression [relational_operator simple_expression]
 | simple_expression [not] in membership_choice_list
 | raise_expression

 raise_expression ::=
 raise exception_name [with string_expression]

Since a raise expression is a relation it has the same precedence and so will need to be in parentheses
in some contexts. But as illustrated above it does not need parentheses when used in a conditional
expression which itself will have parentheses.

Raise expressions will be found useful with pre- and postconditions. Thus if we have

200 Epi logue

procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S);

and the precondition is false then Assertion _Error is raised. But we can now alternatively write

procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S) or else raise Stack_Error;

and of course we can also add a message thus

 Pre => not Is_Full(S) or else raise Stack_Error with "wretched stack is full";

On a closely related topic the new syntax for membership tests (also see Section 3.6 of the chapter
on Expressions) has been found to cause ambiguities (AI12-39).

Thus

A in B and C

could be interpreted as either of the following

(A in B) and C -- or
A in (B and C)

This is cured by changing the syntax for relation yet again to

 relation ::=
 simple_expression [relational_operator simple_expression]
 | tested_simple_expression [not] in membership_choice_list
 | raise_expression

and changing

 membership_choice ::=
 choice_expression | range | subtype_mark

to

 membership_choice ::=
 choice_simple_expression | range | subtype_mark

Thus a membership_choice no longer uses a choice_expression. However, the form
choice_expression is still used in discrete_choice.

A curious difficulty has been found in attempting to use the seemingly innocuous package
Ada.Locales described in Section 7.4 of the chapter on the Predefined Library.

The types Language_Code and Country_Code were originally declared as

type Language_Code is array (1 .. 3) of Character range 'a' .. 'z';

type Country_Code is array (1 .. 2) of Character range 'A' .. 'Z';

The problem is that a value of these types is not a string and cannot easily be converted into a string
because of the range constraints and so cannot be a simple parameter of a subprogram such as Put. If
LC is of type Language_Code then we have to write something tedious such as

Put(LC(1)); Put(LC(2)); Put(LC(3));

9.5 Postscr ipt 201

Accordingly, these types are changed so that they are derived from the type String and the
constraints on the letters are then imposed by dynamic predicates. So we have

type Language_Code is new String(1 .. 3)
 with Dynamic_Predicate => (for all E of Language_Code => E in 'a' .. 'z');

with a similar construction for Country_Code (AI12-37).

Readers might like to contemplate whether this is an excellent illustration of some of the new
features of Ada 2012 or simply an illustration of static strong or maybe string typing going astray.

AI12-45 notes that pre- and postconditions are allowed on generic units but they are not allowed on
instances. See Section 2.3 of the chapter on Contracts and Aspects where this topic should have
been mentioned.

Another modification in this area is addressed by AI12-44 which states that type invariants are not
checked on in parameters of functions but are checked on in parameters of procedures. See Section
2.4 of the chapter on Contracts and Aspects. This change was necessary to avoid infinite recursion
which would arise if an invariant itself called a function with a parameter of the type. Note also that
a class wide invariant could not be used at all without this modification.

A further aspect, Predicate_Failure, is defined by AI12-54-2. The expected type of the expression
defined by this aspect is String and gives the message to be associated with a failure. So we can
write

subtype Open_File_Type is File_Type
 with
 Dynamic_Predicate => Is_Open(Open_File_Type),
 Predicate_Failure => "File not open";

If the predicate fails then Assertion_Error is raised with the message "File not open". See Section 2.5
of the chapter on Contracts and Aspects.

We can also use a raise expression and thereby ensure that a more appropriate exception is raised. If
we write

 Predicate_Failure => raise Status_Error with "File not open";

then Status_Error is raised rather than Assertion_Error with the given message. We could of course
explicitly mention Assertion_Error thus by writing

 Predicate_Failure => raise Assertion_Error with "A message";

Finally, we could omit any message and just write

 Predicate_Failure => raise Status_Error;

in which case the message is null.

A related issue is discussed in AI12-71. If several predicates apply to a subtype which has been
declared by a refined sequence then the predicates are evaluated in the order in which they occur.
This is especially important if different exceptions are specified by the use of Predicate_Failure
since without this rule the wrong exception might be raised. The same applies to a combination of
predicates, null exclusions and old-fashioned subtypes.

This can be illustrated by an extension of the above example. Suppose we have

subtype Open_File_Type is File_Type
 with
 Dynamic_Predicate => Is_Open(Open_File_Type),
 Predicate_Failure => raise Status_Error;

202 Epi logue

subtype Read_File_Type is Open_File_Type
 with
 Dynamic_Predicate => Mode(Real_File_Type) = In_File,
 Predicate_Failure => raise Mode_Error with "Can't read file: " & Name(Read_File_Type);

The subtype Read_File_Type refines Open_File_Type. If the predicate for it were evaluated first
and the file was not open then the call of Mode would raise Status_Error which we would not want
to happen if we wrote

if F in Read_File_Type then ...

Care is needed with membership tests. The whole purpose of a membership test (and similarly the
Valid attribute) is to find out whether a condition is satisfied. So if we write

if X in S then
 ... -- do this
else
 ... -- do that
end if;

we expect the membership test to be true or false. However, if the evaluation of S itself raises some
exception then the purpose of the test is violated.

It is important to understand these related topics. Another example might clarify. Suppose we have a
very simple predicate as in Section 2.5 of the chapter on Contracts and Aspects such as

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb;

where

type Month is (Jan, Feb, Mar, Apr, ..., Nov, Dec);

and we declare a variable W thus

W: Winter := Jan;

If we now do

W := Mar;

then Assertion_Error will be raised because the value Mar is not within the subtype Winter (we
assume that the assertion policy is Check). If, however, we would rather have Constraint_Error
raised then we can modify the declaration of Winter to

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb,
 Predicate_Failure => raise Constraint_Error;

and then obeying

W := Mar;

will raise Constraint_Error.

On the other hand suppose we declare a variable M thus

M: Month := Mar;

and then do a membership test

9.5 Postscr ipt 203

if M in Winter then
 ... -- do this if M is a winter month
else
 ... -- do this if M is not a winter month
end if;

then of course no exception is raised since this is a membership test and not a predicate check.

Note however, that we could write something odd such as

subtype Winter2 is Month
 with Dynamic_Predicate => (if Winter2 in Dec | Jan | Feb then true else raise E);

then the very evaluation of the predicate might raise the exception E so that

M in Winter2

will either be true or raise the exception E but will never be false. Note that in this silly example the
predicate has to be a dynamic one because a static predicate cannot include a raise expression.

So this should clarify the reasons for introducing Predicate_Failure. It enables us to give a different
behaviour for when the predicate is used in a membership test as opposed to when it is used in a
check and it also allows us to add a message.

Finally, it should be noted that the predicate expression might involve the evaluation of some
subexpression perhaps through the call of some function. We might have a predicate describing
those months that have 30 days thus

subtype Month30 is Month
 with Static_Predicate => Month30 in Sep | Apr | Jun | Nov;

which mimics the order in the nursery rhyme. However, suppose we decide to declare a function
Days30 to do the check so that the subtype becomes

subtype Month30 is Month
 with Dynamic_Predicate => Days30(Month30);

and for some silly reason we code the function incorrectly so that it raises an exception (perhaps it
accidentally runs into its end and always raises Program_Error). In this situation if we write

M in Month30

then we will indeed get Program_Error and not false.

Perhaps this whole topic can be summarized by simply saying that a membership test is not a check.
Indeed a membership test is often useful in ensuring that a subsequent check will not fail as was
discussed in Section 6.4 of the chapter on Iterators, Pools etc.

On a rather different topic, AI12-28 discusses the import of variadic C functions (that is functions
with a variable number of parameters). In Ada 95, it was expected that such functions would use the
same calling conventions as normal C functions; however, that is not true for some targets today.
Accordingly, this AI adds additional conventions to describe variadic C functions so that the Ada
compiler can compile the correct calling sequence.

Finally, an important modification is made to the topic of dispatching domains by AI12-33. See
Section 5.3 of the chapter on Tasking and Real-Time.

As defined originally, a dispatching domain consists of a set of processors whose CPU values are
contiguous. However, this is unrealistic since CPUs are often grouped together in other ways.
Accordingly, the package System.Multiprocessors.Dispatching_Domains is extended by the addition
of a type CPU_Set and two further functions thus

204 Epi logue

type CPU_Set is array (CPU range <>) of Boolean;

function Create(Set: CPU_Set) return Dispatching_Domain;
function Get_CPU_Set(Domain: Dispatching_Domain) return CPU_Set;

So if we want to create a domain consisting of processors 0, 4, and 8 we can write

My_Set: CPU_Set(0 .. 8) := (0 | 4 | 8 => true, others => false);

and then

My_Domain: Dispatching_Domain := Create(My_Set);

and so on. The function Get_CPU_Set can be applied to any domain and returns the appropriate
array representing the set of CPUs. Note that this function can be applied to any domain and not just
to one created from a CPU_Set.

 205

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions to the Ada Rapporteur Group from

SC22/WG9 for Preparation of Amendment 2 to ISO/IEC 8652.

[2] ISO/IEC TR 24718:2004 Guide for the use of the Ada Ravenscar profile in high integrity
systems.

[3] ISO/IEC 8652:1995/COR 1:2001 Ada Reference Manual – Technical Corrigendum 1.

[4] ISO/IEC 8652:1995/AMD 1:2007 Ada Reference Manual – Amendment 1.

[5] S. T. Taft et al (eds) (2007) Ada 2005 Reference Manual, LNCS 4348, Springer-Verlag.

[6] Jean Ichbiah, John Barnes, Robert Firth, Mike Woodger (1986) Rationale for the Design of
the Ada Programming Language, Honeywell and Alsys.

[7] John Barnes (2006) Programming in Ada 2005, Addison-Wesley.

[8] P. Naur (ed.) Revised Report on the Algorithmic Language ALGOL 60 (1963)
Communications of the Association for Computing Machinery, Vol. 6, p. 1.

[9] D. W. Barron et al (1963) The main features of CPL, Computer Journal vol. 6, pp 134-143.

[10] A. van Wijngaarden et al (eds) (1973) Revised Report on the Algorithmic Language – ALGOL
68, Springer-Verlag.

[11] K. Jensen and N. Wirth (1975) Pascal User Manual and Report, Springer-Verlag.

[12] Defense Advanced Research Projects Agency (1978) Department of Defense Requirements
for High Order Computer Programming Languages – STEELMAN, USDoD.

[13] John Barnes (2012) SPARK – The proven approach to High Integrity Software, Altran Praxis.

[14] D. R. Hofstadter (1980) Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books.

[15] John Barnes (2008) Ada 2005 Rationale, LNCS 5020, Springer-Verlag.

[16] David Fisher (1976) A Common Programming Language for the Department of Defense –
Background and Technical Requirements, Institute for Defense Analyses, Arlington, Virginia.

[17] Defense Advanced Research Projects Agency (1977) Department of Defense Requirements
for High Order Computer Programming Languages – Revised IRONMAN, USDoD.

[18] Jean Ichbiah et al (1978) Preliminary Reference Manual for the Green Programming
Language, Honeywell Inc.

[19] Jean Ichbiah et al (1979) Reference Manual for the Green Programming Language,
Honeywell Inc.

[20] ACM (1979) Preliminary Ada Reference Manual, Sigplan Notices, Vol 14, No 6.

[21] ANSI / Mil–Std 1815A (1983) Ada Reference Manual.

[22] B Higman (1963) What everybody should know about Algol, Computer Journal, vol 6, no 1,
pp 50-56.

[23] A. Burns and A. Wellings (2007) Integrating OOP and Tasking – the missing requeue,
Proceedings of the 13th International Real-Time Ada Workshop, Ada Letters, Vol 27, No 2.

[24] ACM (2003) Proceedings of the 12th International Real-Time Ada Workshop, Ada Letters,
Vol 23, No 4.

 207

Index

A

access type
 conversion 133
Activation_Is_Complete function 137
Ada package 117
Ada Resource Association 1
Ada-Europe 1
Ada.Calendar package 143
Ada.Containers package 160
Ada.Containers.Bounded_Doubly_Linked_Lists
 package 160
Ada.Containers.Bounded_Hashed_Maps
 package 160
Ada.Containers.Bounded_Hashed_Sets
 package 161
Ada.Containers.Bounded_Multiway_Trees
 package 27, 168
Ada.Containers.Bounded_Ordered_Maps
 package 160
Ada.Containers.Bounded_Ordered_Sets
 package 161
Ada.Containers.Bounded_Priority_Queues
 package 180
Ada.Containers.Bounded_Synchronized_Queues
 package 180
Ada.Containers.Bounded_Vectors package 160
Ada.Containers.Generic_Array_Sort procedure 187
Ada.Containers.Generic_Sort procedure 188
Ada.Containers.Indefinite_Holders
 package 27, 178
Ada.Containers.Indefinite_Multiway_Trees
 package 27, 168
Ada.Containers.Multiway_Trees package 27, 168
Ada.Containers.Synchronized_Queue_Interfaces
 package 28, 180
Ada.Containers.Unbounded_Priority_Queues
 package 180
Ada.Containers.Unbounded_Synchronized_Queues
 package 28, 180
Ada.Directories package 25, 152
Ada.Directories.Hierarchical_File_Names
 package 26, 154
Ada.Dispatching package 18, 101
Ada.Dispatching.EDF package 102

Ada.Dispatching.Non_Preemptive
 package 18, 101
Ada.Environment_Variables package 157
Ada.Execution_Time package 20, 108
Ada.Execution_Time.Group_Budgets package 107
Ada.Execution_Time.Interrupts package 21, 109
Ada.Iterator_Interfaces generic package 123, 164
Ada.Locales package 26, 155, 200
Ada.Streams.Stream_IO package 156
Ada.Strings.Hash function 156
Ada.Strings.Hash_Case_Insensitive function 156
Ada.Strings.Less_Case_Insensitive function 156
Ada.Strings.UTF_Encoding package 25, 149
Ada.Strings.UTF_Encoding.Conversions
 package 25, 150
Ada.Strings.UTF_Encoding.Strings
 package 25, 150
Ada.Strings.UTF_Encoding.Wide_Strings
 package 25, 150
Ada.Strings.UTF_Encoding.Wide_Wide_Strings
 package 25, 150
Ada.Synchronous_Barriers package 19, 103
Ada.Synchronous_Task_Control package 101
Ada.Synchronous_Task_Control.EDF
 package 19, 102
Ada.Tags package 146
Ada.Task_Identification package 136
Ada.Unchecked_Deallocate_Subpool
 procedure 139
Ada.Wide_Characters package 151
Ada.Wide_Characters.Handling package 25, 152
Ada.Wide_Wide_Characters package 151
Ada.Wide_Wide_Characters.Handling package 25
Address attribute 143
Algol 60 66, 85
Algol 68 66
aliased
 extended return object 95
aliased parameter 16, 88
anonymous access type 132
array component iterator 122
aspect
 Asynchronous 37
 Atomic 38, 110
 Atomic_Components 38

208 Ada 2012 Rationale

 Attach_Handler 39
 Constant_Indexing 130
 Convention 37, 38
 CPU 19, 39, 104
 Default_Component_Value 9, 62
 Default_Iterator 131
 Default_Value 9, 62
 Dispatching_Domain 9, 39
 Dynamic_Predicate 8, 56
 Elaborate_Body 40
 Export 38
 External_Name 38
 Implicit_Dereference 130
 Import 38
 Independent 38
 Independent_Components 38
 Inline 36
 Interrupt_Handler 39
 Interrupt_Priority 39
 Iterator_Element 131
 Link_Name 38
 No_Return 36
 Pack 36
 Post 4, 42
 Post'Class 6, 42
 Pre 4, 42
 Pre'Class 6, 42
 Predicate_Failure 201
 Preelaborate 40
 Priority 39
 Pure 40
 Relative_Deadline 39
 Static_Predicate 8, 56
 Storage_Size 39
 Synchronization 21, 113
 Type_Invariant 7, 51
 Type_Invariant'Class 8, 54
 Unchecked_Union 38
 Variable_Indexing 130
 Volatile 38, 110
 Volatile_Components 38
aspect specification 35
Assert pragma 40
assertion policy 5
Assertion_Policy pragma 40, 43, 51, 58
assignment statement 199
Asynchronous aspect 37
Atomic aspect 38, 110

Atomic_Components aspect 38
Attach_Handler aspect 39
attribute
 Address 143
 First_Valid 60
 Has_Same_Storage 9, 63
 Last_Valid 60
 Max_Alignment_For_Allocation 135
 Max_Size_In_Storage_Elements 135
 Old 6, 42
 Overlaps_Storage 9, 63
 Result 6, 43

B

BOM 149
born obsolescent 39, 105
bounded containers 26, 160
Brukardt
 Randy 1
Byte Order Mark 149

C

C 86
Capacity_Error 160
 raised 161
case expression 11, 70
case sensitivity
 of file names 153
case-insensitive string comparison 156
character set version 152
child node 168
class-wide invariant 54
class-wide postcondition 45
class-wide precondition 45
composability of equality 145
conditional expression 9, 66
constant
 extended return object 96
Constant_Indexing aspect 130
Constant_Reference function 167
container
 bounded 160
 holder 178
 multiway tree 168
 queue 180
container element iterator 122

Index 209

continue statement 119
contract 4
Controlled pragma 38
Convention aspect 37, 38
conversion of access types 133
CPL 66
CPU
 aspect 104
 pragma 105
 subtype 104
 set 203
CPU aspect 19, 39

D

Daylight Saving Time 143
deadline 19
Decode 150
default element subtype 131
default indexing function 131
default iterator function 131
default storage pool 23, 139
Default_Component_Value aspect 9, 62
Default_Iterator aspect 131
Default_Storage_Pool pragma 23, 139
Default_Value aspect 9, 62
delay statement 100
discriminant
 with a default 92
dispatching domain 20, 105, 203
Dispatching_Domain aspect 19. 39
domain
 dispatching 105, 203
dynamic predicate 56
Dynamic_Predicate aspect 8, 56

E

EDF 19
EDF_Across_Priorities 101
Eiffel 33
Elaborate_Body aspect 40
Encode 150
environment variable 157
Environment_Task function 137
equality of records 145
execution time 108
existential quantifier 72

explicitly aliased parameter 88
Export aspect 38
expression function 13, 73
extended return object
 aliased 95
 constant 96
extended return statement 95
External_Name aspect 38

F

FIFO_Within_Priorities 100
Find_Token 25, 148
First_Valid attribute 60
fixed point
 cyclic 198
formal incomplete type 90
Forward_Iterator interface 124
freezing
 a profile 90
 a profile with a formal incomplete parameter 91
 a subprogram 90
 actual types of an instance 91
function
 Activation_Is_Complete 137
 Ada.Strings.Hash 156
 Ada.Strings.Hash_Case_Insensitive 156
 Ada.Strings.Less_Case_Insensitive 156
 Environment_Task 137
 Is_Abstract 146
 Iterate 124
function result
 having an incomplete type 90

G

generalized iterator 122
generic formal incomplete type 90
generic formal subprogram 143
generic package
 Ada.Iterator_Interfaces 123, 164
global annotation 199
Green Programming Language 85
group budget 107

H

Has_Same_Storage attribute 9, 63

210 Ada 2012 Rationale

holder container 27, 178

I

Ichbiah
 Jean 1
if expression 10, 66
immutably limited type 95
implicit conversion
 anonymous access 132
Implicit_Dereference aspect 130
Import aspect 38
in out parameter 15, 84
incompatibility
 with Ada 2005 191
incomplete type 88
 as parameter type 89
 completed by private type 89
 generic formal 90
inconsistency
 with Ada 2005 193
Independent aspect 38
Independent_Components aspect 38
indexable container type 131
Inline aspect 36
interface
 Forward_Iterator 124
 Reversible_Iterator 124
interface types 111
interrupt handler
 execution time 108
Interrupt_Handler aspect 39
Interrupt_Priority aspect 39
invariant
 class-wide 54
 specific 51
Ironman 84
Is_Abstract function 146
ISO 10646 148
iterable container type 131
Iterate function 124
iterator
 array component 122
 container 30
 container element 122
 generalized 122
Iterator_Element aspect 131
Iterator_Interfaces generic package 123, 164

K

known to denote the same object 86
known to refer to the same object 86

L

label 118
language
 locale 155
Last_Valid attribute 60
leaf node 169
leap seconds 143
Leroy
 Pascal 1
Link_Name aspect 38
Liskov Substitution Principle 48
List pragma 40
locale 26, 155
LSP 48

M

Max_Alignment_For_Allocation attribute 135
Max_Size_In_Storage_Elements attribute 135
membership test 77, 202
 of an access type 134
mode
 function parameters 84
Moore
 Jim 1
multiple inheritance 48
multiprocessor 103
Multiprocessors package 19
multiway tree container 27, 188
mutable 92

N

No_Access_Parameter_Allocators
 restriction 24, 140
No_Anonymous_Allocators
 restriction 23, 136, 140
No_Coextensions restriction 24, 140
No_Implementation_Aspect_Specifications
 restriction 24, 141
No_Implementation_Extensions profile 24, 142

Index 211

No_Implementation_Identifiers
 restriction 24, 141
No_Implementation_Units restriction 24, 141
No_Return aspect 36
No_Specification_of_Aspect restriction 24, 141
No_Standard_Allocators_After_Elaboration
 restriction 23, 136, 140
No_Use_Of_Attribute restriction 141
No_Use_Of_Pragma restriction 141
node
 child 168
 leaf 169
 root 169
 tree 169
nominal subtype 143
Non_Preemptive_FIFO_Within_Priorities 101

O

Old attribute 6, 42
Optimize pragma 40
order of evaluation
 unspecified 86
Overlaps_Storage attribute 9, 63

P

Pack aspect 36
package
 Ada 117
 Ada.Calendar 143
 Ada.Containers 160
 Ada.Containers.Bounded_Doubly_Linked_Lists
 160
 Ada.Containers.Bounded_Hashed_Maps 160
 Ada.Containers.Bounded_Hashed_Sets 161
 Ada.Containers.Bounded_Multiway_Trees
 27, 168
 Ada.Containers.Bounded_Ordered_Maps 160
 Ada.Containers.Bounded_Ordered_Sets 161
 Ada.Containers.Bounded_Priority_Queues 180
 Ada.Containers.Bounded_Synchronized_Queues
 180
 Ada.Containers.Bounded_Vectors 160
 Ada.Containers.Indefinite_Holders 27, 178
 Ada.Containers.Indefinite_Multiway_Trees
 27, 168
 Ada.Containers.Multiway_Trees 27, 168

 Ada.Containers.Synchronized_Queue_Interfaces
 28, 180
 Ada.Containers.Unbounded_Priority_Queues 180
 Ada.Containers.Unbounded_Synchronized_Queues
 28, 180
 Ada.Directories 25, 152
 Ada.Directories.Hierarchical_File_Names
 26, 154
 Ada.Dispatching 18, 101
 Ada.Dispatching.EDF 102
 Ada.Dispatching.Non_Preemptive 18, 101
 Ada.Environment_Variables 157
 Ada.Execution_Time 21, 108
 Ada.Execution_Time.Group_Budgets 107
 Ada.Execution_Time.Interrupts 20, 109
 Ada.Iterator_Interfaces generic 123, 164
 Ada.Locales 26, 155, 200
 Ada.Streams.Stream_IO 156
 Ada.Strings.UTF_Encoding 25, 149
 Ada.Strings.UTF_Encoding.Conversions 25, 150
 Ada.Strings.UTF_Encoding.Strings 25, 150
 Ada.Strings.UTF_Encoding.Wide_Strings 25, 150
 Ada.Strings.UTF_Encoding.Wide_Wide_Strings
 25, 150
 Ada.Synchronous_Barriers 19, 103
 Ada.Synchronous_Task_Control 101
 Ada.Synchronous_Task_Control.EDF 19, 102
 Ada.Tags 146
 Ada.Task_Identification 136
 Ada.Wide_Characters 151
 Ada.Wide_Characters.Handling 25, 152
 Ada.Wide_Wide_Characters 151
 Ada.Wide_Wide_Characters.Handling 25
 System.Multiprocessors 19, 104
 System.Multiprocessors.Dispatching_Domains
 19, 105, 203
 System.Storage_Pools.Subpools 137
package use clause 93
Page pragma 40
parameter
 aliased 16, 88
 in out 15, 87
 of an incomplete type 89
Pascal 67
Plödereder
 Erhard 1
pool
 default 23, 139

212 Ada 2012 Rationale

Post aspect 4, 42
Post'Class aspect 6, 42
postcondition 4
 class-wide 45
 specific 42
pragma
 Assert 40
 Assertion_Policy 40, 43, 51, 58
 Controlled 38
 CPU 105
 Default_Storage_Pool 23, 139
 List 40
 Optimize 40
 Page 40
 Preelaborable_Initialization 40
 Profile 142
 Restrictions 40, 140
 Suppress 40
 Unsuppress 40
Pre aspect 4, 42
Pre'Class aspect 6, 42
precondition 4
 class-wide 45
 specific 42
predicate
 dynamic 56
 static 56
Predicate_Failure aspect 201
Preelaborable_Initialization pragma 40
Preelaborate aspect 40
Preliminary Ada 85
Preliminary Green 85
primitive operations 93
priority 100
Priority aspect 39
procedure
 Ada.Containers.Generic_Array_Sort 187
 Ada.Containers.Generic_Sort 188
 Ada.Unchecked_Deallocate_Subpool 139
profile
 No_Implementation_Extensions 24, 142
Profile pragma 142
Pure aspect 40

Q

qualified expression 80
quantified expression 12, 71, 131

Query_Element procedure 166
queue containers 27, 180

R

raise expression 199
Ravenscar profile 18
Reference function 167
reference type 127
Relative_Deadline aspect 39
renaming of entry 113
Replace_Element procedure 166
requeue 112
reserved words 191
restriction
 No_Access_Parameter_Allocators 24, 140
 No_Anonymous_Allocators 23, 136, 140
 No_Coextensions 24, 140
 No_Implementation_Aspect_Specifications
 24, 141
 No_Implementation_Identifiers 24, 141
 No_Implementation_Units 24, 141
 No_Specification_Of_Aspect 24, 141
 No_Standard_Allocators_After_Elaboration
 23, 136, 140
 No_Use_Of_Attribute 141
 No_Use_Of_Pragma 141
Restrictions pragma 40, 140
Result attribute 6, 43
Reversible_Iterator interface 124
root directory 152
root node 169
Round_Robin_Within_Priorities 101

S

scheduling 100
Schonberg
 Ed 1
scope
 of revision 1
shared variable 109
sorting 29
SPARK 33
specific invariant 51
specific postcondition 42
specific precondition 42
stand-alone object

Index 213

 of an anonymous access type 133
static conditional expression 70
static predicate 56
Static_Predicate aspect 8, 56
Steelman 84
storage pool 23, 135
Storage_Size aspect 39
streaming 189
subpool 23
 of a storage pool 137
subtype
 CPU 104
subtype predicate 8, 56
Suppress pragma 40
suspension object 19, 101
Synchronization aspect 21, 113
synchronized interface 111
synchronous barrier 19
System.Multiprocessors package 19, 104
System.Multiprocessors.Dispatching_Domains
 package 19, 105, 203
System.Storage_Pools.Subpools package 137

T

Taft
 Tucker 1
Taft amendment type 90
Tags package 146
task
 priority 100
 scheduling 100
task execution time 108
Task_Dispatching_Policy 100
Task_Identification package 136
time zone 143
Tokar
 Joyce 1

tree container 27
tree node 169
type invariant 6
 class-wide 54
 specific 51
Type_Invariant aspect 7, 51
Type_Invariant'Class aspect 8, 54

U

Unchecked_Union aspect 38
universal quantifier 72
Unsuppress pragma 40
Update_Element procedure 166
use all type clause 17, 94
use clause
 package 93
use type clause 93
UTC_Offset 143
UTF-16 encoding 25, 148
UTF-16BE 148
UTF-16LE 148
UTF-8 encoding 25, 148

V

Value
 environment variables 157
Variable_Indexing aspect 130
volatile 109
Volatile aspect 38, 110
Volatile_Components aspect 38

Y

Yield procedure 18, 101
Yield_To_Higher procedure 18, 101

	Foreword
	Preface
	Contents
	1 Introduction
	1.1 Revision process
	1.2 Scope of revision
	1.3 Overview of changes
	1.3.1 Contracts
	1.3.2 Expressions
	1.3.3 Structure and visibility
	1.3.4 Tasking and real-time facilities
	1.3.5 General improvements
	1.3.6 Standard library

	1.4 Conclusions

	2 Contracts and Aspects
	2.1 Overview of changes
	2.2 Aspect specifications
	2.3 Preconditions and postconditions
	2.4 Type invariants
	2.5 Subtype predicates
	2.6 Default initial values
	2.7 Storage occupancy checks

	3 Expressions
	3.1 Overview of changes
	3.2 If expressions
	3.3 Case expressions
	3.4 Quantified expressions
	3.5 Expression functions
	3.6 Membership tests
	3.7 Qualified expressions

	4 Structure and Visibility
	4.1 Overview of changes
	4.2 Subprogram parameters
	4.3 Incomplete types
	4.4 Discriminants
	4.5 Use clauses
	4.6 Extended return statements

	5 Tasking and Real-Time
	5.1 Overview of changes
	5.2 Scheduling
	5.3 Multiprocessors
	5.4 Interrupt timers and budgets
	5.5 Volatile
	5.6 Synchronized interfaces and requeue

	6 Iterators, Pools, etc.
	6.1 Overview of changes
	6.2 Position of pragmas and labels
	6.3 Iteration
	6.4 Access types and storage pools
	6.5 Restrictions
	6.6 Miscellanea

	7 Predefined library
	7.1 Overview of changes
	7.2 Strings and characters
	7.3 Directories
	7.4 Locale
	7.5 Hashing and comparison
	7.6 Miscellanea

	8 Containers
	8.1 Overview of changes
	8.2 Bounded and unbounded containers
	8.3 Iterating and updating containers
	8.4 Multiway tree containers
	8.5 The holder container
	8.6 Queue containers
	8.7 Sorting
	8.8 Streaming

	9 Epilogue
	9.1 Compatibility
	9.1.1 Incompatibilities with Ada 2005
	9.1.2 Inconsistencies with Ada 2005

	9.2 Retrospective changes to Ada 2005
	9.2.1 Incompatibilities with original Ada 2005
	9.2.2 Inconsistencies with original Ada 2005

	9.3 Unfinished topics from Ada 2005
	9.3.1 Aggregates for private types
	9.3.2 Partial generic instantiation
	9.3.3 Support for IEEE 559: 1989
	9.3.4 Defaults for generic parameters
	9.3.5 Pre/post-conditions for subprograms
	9.3.6 Type and package invariants
	9.3.7 Exceptions as types
	9.3.8 Sockets operations
	9.3.9 In out parameters for functions
	9.3.10 Application defined scheduling

	9.4 Unfinished topics for Ada 2012
	9.4.1 Integrated packages (AI-135)
	9.4.2 Cyclic fixed point (AI-175)
	9.4.3 Global annotations (AI-186)
	9.4.4 Shorthand for assignments (AI-187)

	9.5 Postscript

	References
	Index

