_ o s 7 1TSS TIS IS A 7,
Advanced
Metaprogramming
In Classic C++

Davide Di Gennaro

L7777/ et
Apresse

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUthOrccvvimimmms e ————————=——=——— Xix
About the Technical REVIEWETccussssssmsssmssmsssmsssmssssssmsssmsssssssssssssssssssssssnssssssnns XXi
AcknowIledgmEeNtSccueersssssssnnnsnnmsmssssssssssnssssssssssssssssssnnsnssssssssssnnnnnnnssssssssnnnnnns XXiii
o (= £ T O XXV
#include <prerequisiteS> ..uuuuirmmmmmmmmnmsnnnnsssssssssssnnsnnsnnssnnnssnnnnnnnnnnnnnnnn 1
Chapter 1: Templates.....cccccirmmmmmmnsssmnmmmm s —————————————————- 3
Chapter 2: Small Object ToolKitccussmenmmssssnnnmmsssssnnmmssssnsssmsssssnnsssssssnnssssssnnnnns 93
#include <teChNiQUES>....ccuurimmmmmmnnnsssssssssssnnnnnnnmmmnmmmnnnnnnnnn e 119
Chapter 3: Static Programming.......ccccuseemmmnsssssnmmmsssssnmmssssssnmsssssssssssssssssssssnnns 121
Chapter 4: Overload ResolUtion........ccuemmmnisssmsmmmssssssnmsssssssnmssssssssssssssnsssssssnnnnns 173
Chapter 5: Interfacesc.crmusmmmmsmnmmssssmmsssnmssssnsssssnsssssssssssnsesssnsesssnsesssnnssssnnsss 229
Chapter 6: Algorithmscccccnieemmmninssnnnnnssesmmnssss s ——————— 275
Chapter 7: Code Generators..........cccnmmusmmmmmmssssnsmmsssssssnssssssssnnsssssssssssssnnnssssssnnnnns 327
Chapter 8: FUNCIOKScuuuieemmmnssssssnmmssssnsnmmssssnsssssssssssssssssnssssssssnnsessssnnnsssssnnnnnss 373
Chapter 9: The Opaque Type Principle.......ccucccmmnsssemnmmnssssnsmmsssssssssssssssssssssssnnnns 415
#include <applications>......cccnmmnnnnnssssssssseeensesesmsmn i ———— 475
Chapter 10: Refactoringcccvssseesnsnssssssnmsssssnsnsssssssssssssssnsssssssssssssssssnnssssssnnnnss 477
Chapter 11: Debugging Templates.........cccrnmsummnmmssssnnnmmmsssnmmmsssssmmmsssssmsssnn 501
Chapter 12: C++40X wuuueemmmmsssssmmmssssssnmmssssssnssssssnsnssssssnnsssssssnnnesssssnnnsssssannnsssssnnnnss 515
vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

ApPPendiX A: EXEICISES wuuuursssssssssssssssssssssssnssssssssssssssssnnsssssssssssssssnsnnnssssssssssssnnnnnns

Appendix B: Bibliographyccccocinmsssssssssssnmmmssnsnns

viii

[vww allitebooks.cond

http://www.allitebooks.org

PART 1

#include <prerequisites>

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1

Templates

“C++ supports a variety of styles.”

Bjarne Stroustrup, A Perspective on ISO C++

Programming is the process of teaching something to a computer by talking to the machine in one of its
common languages. The closer to the machine idiom you go, the less natural the words become.

Each language carries its own expressive power. For any given concept, there is a language where its
description is simpler, more concise, and more detailed. In assembler, we have to give an extremely rich
and precise description for any (possibly simple) algorithm, and this makes it very hard to read back. On
the other hand, the beauty of C++ is that, while being close enough to the machine language, the language
carries enough instruments to enrich itself.

C++ allows programmers to express the same concept with different styles and good C++ looks more natural.

First you are going to see the connection between the templates and the style, and then you will dig into
the details of the C++ template system.

Given this C++ fragment:

double x = sq(3.14);

Can you guess what sq is? It could be a macro:
#tdefine sq(x) ((x)*(x))

A function:
double sq(double x)

return x*x;

}

A function template:

template <typename scalar t>
inline scalar_t sq(const scalar t& x)

{

return x*x;

}

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

A type (an unnamed instance of a class that decays to a double):

class sq

{

double s_;
public:

sq(double x)
: s (x*x)

{}

operator double() const
{ return s_; }

};
A global object:
class sq_t
{
public:
typedef double value type;
value_type operator()(double x) const

return x*x;

}
};

const sq_t sq = sq_t();

Regardless of how sq(3.14) is implemented, most humans can guess what sq(3.14) does just looking
at it. However, visual equivalence does not imply interchangeableness. If sq is a class, for example, passing a
square to a function template will trigger an unexpected argument deduction:

template <typename T> void (T x);

f(cos(3.14)); // instantiates f<double>
f(sq(3.14)); // instantiates f<sg>. counterintuitive?

Furthermore, you would expect every possible numeric type to be squared as efficiently as possible, but
different implementations may perform differently in different situations:

std: :vector<double> v;
std: :transform(v.begin(), v.end(), v.begin(), sq);

If you need to transform a sequence, most compilers will get a performance boost from the last
implementation of sq (and an error if sq is a macro).

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 * TEMPLATES

The purpose of TMP is to write code that is:
e Visually clear to human users so that nobody needs to look underneath.
e Efficient in most/all situations from the point of view of the compiler.
e Self-adapting to the rest of the program.’

Self-adapting means “portable” (independent of any particular compiler) and “not imposing
constraints” An implementation of sq that requires its argument to derive from some abstract base class
would not qualify as self-adapting.

The true power of C++ templates is style. Compare the following equivalent lines:

double x1 = (-b + sqrt(b*b-4*a*c))/(2*a);

double x2 = (-b + sqrt(sq(b)-4*a*c))/(2*a);

All template argument computations and deductions are performed at compile time, so they impose
no runtime overhead. If the function sq is properly written, line 2 is at least as efficient as line 1 and easier to
read at the same time.

Using sq is elegant:

e Itmakes code readable or self-evident
e Itcarries no speed penalty
e [Itleaves the program open to future optimizations

In fact, after the concept of squaring has been isolated from plain multiplication, you can easily plug in
specializations:

template <typename scalar_t>
inline scalar t sq(const scalar t& x)

{

return x*x;

}

template <>
inline double sq(const double& x)

{

// here, use any special algorithm you have!

}

"Loosely speaking, that’s the reason for the “meta” prefix in “metaprogramming”.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

1.1. C++ Templates

The classic C++ language admits two basic types of templates—function templates and class templates*
Here is a function template:

template <typename scalar_ t>
scalar t sq(const scalar t& x)

{
return x*x;
}
Here is a class template:
template
<
typename scalar_t, // type parameter

bool EXTRA_PRECISION
typename promotion_t
>
class sum

{
/...

};

false, // bool parameter with default value
scalar_t // type parameter with default value

When you supply suitable values to all its parameters, a template generates entities during compilation.
A function template will produce functions and a class template will produce classes. The most important
ideas from the TMP viewpoint can be summarized as follows:

e You can exploit class templates to perform computations at compile time.

e Function templates can auto-deduce their parameters from arguments. If you
call sq(3.14), the compiler will automatically figure out that scalar_t is double,
generate the function sq<double>, and insert it at the call site.

Both kinds of template entities start declaring a parameter list in angle brackets. Parameters can include
types (declared with the keyword typename or class) and non-types: integers and pointers.®

Note that, when the parameter list is long or when you simply want to comment each parameter
separately, you may want to indent it as if it were a block of code within curly brackets.

Parameters can in fact have a default value:

sum<double> S1; // template argument is 'double', EXTRA_PRECISION is false
sum<double, true> S2;

’In modern C++ there are more, but you can consider them extensions; the ones described here are metaprogramming
first-class citizens. Chapter 12 has more details.

3Usually any integer type is accepted, including named/anonymous enum, bool, typedefs (like ptrdiff t and size t),
and even compiler-specific types (for example, __int64 in MSVC). Pointers to member/global functions are allowed
with no restriction; a pointer to a variable (having external linkage) is legal, but it cannot be dereferenced at compile
time, so this has very limited use in practice. See Chapter 11.

6

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 * TEMPLATES

A template can be seen as a metafunction that maps a tuple of parameters to a function or a class.
For example, the sq template

template <typename scalar_t>
scalar_t sq(const scalar t& x);

maps a type T to a function:
T > T (*)(const T&)

In other words, sq<double> is a function with signature double (*)(const double8).Note that double
is the value of the parameter scalar_t.
Conversely, the class template

template <typename char_t = char>
class basic_string;

maps a type T to a class:
T - basic_string<T>

With classes, explicit specialization can limit the domain of the metafunction. You have a general
template and then some specializations; each of these may or may not have a body.

// the following template can be instantiated
// only on char and wchar_t

template <typename char_t = char>
class basic_string;
// note: no body

template < >
class basic_string<char>

{..o)

template < >
class basic_string<wchar_t>

{..- B

char_t and scalar_t are called template parameters. When basic_string<char> and sq<double> are
used, char and double are called template arguments, even if there may be some confusion between double
(the template argument of sq) and x (the argument of the function sq<double>).

When you supply template arguments (both types and non-types) to the template, seen as a
metafunction, the template is instantiated, so if necessary the compiler produces machine code for the
entity that the template produces.

Note that different arguments yield different instances, even when instances themselves are identical:
sq<double> and sq<const double> are two unrelated functions.*

“The linker may eventually collapse them, as they will likely produce identical machine code, but from a language
perspective they are different.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

When using function templates, the compiler will usually figure out the parameters. We say that an
argument binds to a template parameter.

template <typename scalar_t>
scalar_t sq(const scalar t& x) { return x*x; }

double pi = 3.14;

sq(pi); // the compiler "binds" double to scalar t
double x = sq(3.14); // ok: the compiler deduces that scalar t is double
double x = sg<double>(3.14); // this is legal, but less than ideal

All template arguments must be compile-time constants.
e Type parameters will accept everything known to be a type.

¢ Non-type parameters work according to the most automatic
casting/promotion rule.’

Here are some typical errors:

template <int N>
class SomeClass

{

};

int main()
int A = rand();
SomeClass<A> s; // error: A is not a compile time constant
const int B = rand();
SomeClass s; // error: B is not a compile time constant
static const int C = 2;
SomeClass<C> s; // 0K

}

The best syntax for a compile-time constant in classic C++ is static const [[integer type]]
name = value;.

The static prefix could be omitted if the constant is local, in the body of a function, as shown previously.
However, it’s both harmless and clear (you can find all the compile-time constants in a project by searching
for "static const" rather than "const" alone).

SAn exception being that literal 0 may not be a valid pointer.
See Sections 1.3.6 and 11.2.2 for more complete discussions.

8

CHAPTER 1 * TEMPLATES

The arguments passed to the template can be the result of a (compile-time) computation. Every valid
integer operation can be evaluated on compile-time constants:

e Division by zero causes a compiler error.
e Function calls are forbidden.”

e Code that produces an intermediate object of non-integer/non-pointer type is
non-portable, except when inside sizeof: (int) (N*1.2), which is illegal. Instead use
(N+N/5). static_cast<void*>(0) is fine too.*

SomeClass<(27+56*5) % 4> si;
SomeClass<sizeof(void*)*CHAR BIT> si;

Division by zero will cause a compiler error only if the computation is entirely static. To see the
difference, note that this program compiles (but it won’t run).

template <int N>
struct tricky

{
int f(int i = 0)
{

return i/N; // i/N is not a constant
}
b

int main()
tricky<o> t;
return t.f();
}
test.cpp(5) : warning C4723: potential divide by 0

On the other hand, compare the preceding listing with the following two, where the division by zero
happens during compilation (in two different contexts):

int £()
{

return N/N; // N/N is a constant
}

test.cpp(5) : error C2124: divide or mod by zero
A\test.cpp(5) : while compiling class template member function
"int tricky<N>::f(void)'
with
[

]

N=0

’See the note in Section 1.3.2.
§You can cast a floating-point literal to integer, so strictly speaking, (int)(1.2) is allowed. Not all compilers are
rigorous in regard to this rule.

CHAPTER 1 © TEMPLATES

And with:
tricky<0/0> t;

test.cpp(12) : error C2975: 'N' : invalid template argument for 'tricky',
expected compile-time constant expression

More precisely, compile-time constants can be:
e Integer literals, for example, 27, CHAR_BIT, and 0x05

e sizeof and similar non-standard language operators with an integer result
(for example, __alignof__ where present)

e Non-type template parameters (in the context of an “outer” template)

template <int N>
class AnotherClass

{
};

SomeClass<N> myMember_;

e Static constants of integer type

template <int N, int K>
struct MyTemplate

static const int PRODUCT = N*K;
};

SomeClass< MyTemplate<10,12>::PRODUCT > si;

e Some standard macros, such as__LINE__ (There is actually some degree of freedom;
as arule they are constants with type long, except in implementation-dependent
“edit and continue” debug builds, where the compiler must use references. In this
case, using the macro will cause a compilation error.)°

SomeClass<_ LINE_ > s1; // usually works...
A parameter can depend on a previous parameter:

template
<
typename T,
int (*FUNC)(T) // pointer to function taking T and returning int
>
class X
{
};

°The use of __LINE__ as a parameter in practice occurs rarely; it’s popular in automatic type enumerations (see Section 7.6)
and in some implementation of custom assertions.

10

CHAPTER 1

template
<
typename T, // here the compiler learns that 'T' is a type
T VALUE // may be ok or not... the compiler assumes the best
>
class Y
{
};

Y<int, 7> yi1; // fine
Y<double, 3> y2; // error: the constant '3' cannot have type 'double’

Classes (and class templates) may also have template member functions:
// normal class with template member function

struct mathematics

{
template <typename scalar t>
scalar t sq(scalar_t x) const
{
return x*x;
}
};

// class template with template member function

template <typename scalar_t>
struct more mathematics

{
template <typename other t»>*
static scalar t product(scalar t x, other t y)
{
return x*y;
}
};

double A = mathematics().sq(3.14);
double B = more mathematics<double>().product(3.14, 5);

1.1.1. Typename
The keyword typename is used:
e Asasynonym of class, when declaring a type template parameter

e Whenever it’s not evident to the compiler that an identifier is a type name

1We have to choose a different name, to avoid shadowing the outer template parameter scalar_t.

TEMPLATES

11

CHAPTER 1 © TEMPLATES

For an example of “not evident” think about MyClass<T>: :Y in the following fragment:

template <typename T>
struct MyClass

typedef double Y; // Y may or may not be a type
typedef T Type; // Type is always a type
5
template < >
struct MyClass<int>

{
static const int Y = 314; // Y may or may not be a type
typedef int Type; // Type is always a type
5
int Q = 8;

template <typename T>
void SomeFunc()
{
MyClass<T>::Y * Q; // what is this line? it may be:
// the declaration of local pointer-to-double named Q;
// or the product of the constant 314, times the global variable Q
};

Y is a dependent name, since its meaning depends on T, which is an unknown parameter.
Everything that depends directly or indirectly on unknown template parameters is a dependent name.
If a dependent name refers to a type, then it must be introduced with the typename keyword.

template <typename X>
class AnotherClass

{
MyClass<X>::Type t1_; // error: 'Type' is a dependent name
typename MyClass<X>::Type t2_; // ok
MyClass<double>::Type t3_; // ok: 'Type' is independent of X

};

Note that typename is required in the first case and forbidden in the last:

template <typename X>
class AnotherClass

{

typename MyClass<X>::Y memberi_; // ok, but it won't compile if X is 'int'.
typename MyClass<double>::Y member2 ; // error

};

12

CHAPTER 1 * TEMPLATES

typename may introduce a dependent type when declaring a non-type template parameter:

template <typename T, typename T::type N>
struct SomeClass

{
};

struct S1

{
typedef int type;

)
SomeClass<S1, 3> x; // ok: N=3 has type 'int'

As a curiosity, the classic C++ standard specifies that if the syntax typename T1::T2yields a non-type
during instantiation, then the program is ill-formed. However, it doesn’t specify the converse: if T1: : T2 has a
valid meaning as a non-type, then it could be re-interpreted later as a type, if necessary. For example:

template <typename T>
struct B

{
static const int N = sizeof(A<T>::X);
// should be: sizeof(typename A...)

};

Until instantiation, B “thinks” it’s going to call sizeof on a non-type; in particular, sizeof is a valid
operator on non-types, so the code is legal. However, X could later resolve to a type, and the code would be

legal anyway:

template <typename T>
struct A

{

static const int X = 7;

};

template <>
struct A<char>

typedef double X;

)

Although the intent of typenanme is to forbid all such ambiguities, it may not cover all corner cases.!!

""See also http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#666.

13

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#666

CHAPTER 1 © TEMPLATES

1.1.2. Angle Brackets

Even if all parameters have a default value, you cannot entirely omit the angle brackets:

template <typename T = double>
class sum {};

sum<> S1; // ok, using double
sum S2; // error

Template parameters may carry different meanings:

e Sometimes they are really meant to be generic, for example, std: :vector<T>
or std: :set<T>. There may be some conceptual assumptions about T—say
constructible, comparable...—that do not compromise the generality.

e Sometimes parameters are assumed to belong to a fixed set. In this case, the class
template is simply the common implementation for two or more similar classes."

In the latter case, you may want to provide a set of regular classes that are used without angle brackets,
so you can either derive them from a template base or just use typedef'®:

template <typename char_t = char>

class basic_string

{
// this code compiles only when char t is either 'char' or 'wchar t'
/...

};

class my_string : public basic_string<>
{

// empty or minimal body

// note: no virtual destructor!

1
typedef basic_string<wchar_t> your_string;

A popular compiler extension (officially part of C++0x) is that two or more adjacent “close angle
brackets” will be parsed as “end of template,” not as an “extraction operator”. Anyway, with older compilers,
it’s good practice to add extra spaces:

std::vector<std::list<double>> vi;
// AN
// may be parsed as "operator>>"

std::vector<std::list<double> > v2;
// ANN
// always ok

2Even if it’s not a correct example, an open-minded reader may want to consider the relationship between std: : string,
std::wstring, and std::basic_string<T>.
BSee 1.4.9.

14

CHAPTER 1 * TEMPLATES

1.1.3. Universal Constructors

A template copy constructor and an assignment are not called when dealing with two objects of the very
same kind:

template <typename T>

class something

{

public:
// not called when S == T
template <typename S>
something(const something<S>& that)
{
}

// not called when S == T
template <typename S>
something® operator=(const something<S>& that)

return *this;

}
};

something<int> so;
something<double> s1, s2;

s0 = si; // calls user defined operator=
s1 = s2; // calls the compiler generated assignment

The user-defined template members are sometimes called universal copy constructors and universal
assignments. Note that universal operators take something<X>, not X.
The C++ Standard 12.8 says:

e “Because a template constructor is never a copy constructor, the presence of such a
template does not suppress the implicit declaration of a copy constructor.”

e ‘“Template constructors participate in overload resolution with other constructors,
including copy constructors, and a template constructor may be used to copy an
object if it provides a better match than other constructors.”

In fact, having very generic template operators in base classes can introduce bugs, as this
example shows:

struct base

base() {}

template <typename T>
base(T x) {}
};

15

CHAPTER 1 © TEMPLATES

struct derived : base
derived() {}

derived(const derived& that)
: base(that) {}
};

derived di;
derived d2 = di;

The assignment d2 = di causes a stack overflow.

An implicit copy constructor must invoke the copy constructor of the base class, so by 12.8 above it can
never call the universal constructor. Had the compiler generated a copy constructor for derived, it would
have called the base copy constructor (which is implicit). Unfortunately, a copy constructor for derived
is given, and it contains an explicit function call, namely base(that). Hence, following the usual overload
resolution rules, it matches the universal constructor with T=derived. Since this function takes x by value,
it needs to perform a copy of that, and hence the call is recursive.'

1.1.4. Function Types and Function Pointers

Mind the difference between a function type and a pointer-to-function type:

template <double F(int)>
struct A

{
};

template <double (*F)(int)>
struct B

{
};

They are mostly equivalent:

double f(int)
{

}

return 3.14;

A<ty t1; // ok
B<f> t2; // ok

1As a side note, this shows once more that in TMP, the less code you write, the better.

16

CHAPTER 1 * TEMPLATES

Usually a function decays to a function pointer exactly as an array decays to a pointer. But a function
type cannot be constructed, so it will cause failures in code that look harmless:

template <typename T>
struct X
{

T member_;

X(T value)

: member (value)

{

}
};
X<double (int)> ti(f); // error: cannot construct 'member '
X<double (*)(int)> t2(f); // ok: 'member ' is a pointer

This problem is mostly evident in functions that return a functor (the reader can think about std: :not1
or see Section 4.3.4). In C++, function templates that get parameters by reference prevent the decay:

template <typename T>
X<T> identify by val(T x)

{
return X<T>(x);

}

template <typename T>
X<T> identify by ref(const T& x)

{
return X<T>(x);
}
double f(int)
{
return 3.14;
}

identify by val(f); // function decays to pointer-to-function:
// template instantiated with T = double (*)(int)

identify by ref(f); // no decay:
// template instantiated with T = double (int)

For what concerns pointers, function templates with explicit parameters behave like ordinary functions:

double f(double x)
{

}

return x+1;

17

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

template <typename T>
T g(T x)
{

}

typedef double (*FUNC T)(double);

return x+1;

FUNC_T f1 = f;
FUNC_T f2 = g<double>;

However, if they are members of class templates and their context depends on a yet unspecified
parameter, they require an extra template keyword before their name'®:

template <typename X>
struct outer

{
template <typename T>
static T g(T x)
return x+1;
}
b

template <typename X>
void do_it()
{

FUNC_T 1
FUNC_ T 2

outer<X>::g<double>; // error!
outer<X>::template g<double>; // correct

}
Both typename and template are required for inner template classes:

template <typename X>
struct outer

{
template <typename T>

struct inner {};

};

template <typename X>
void do_it()
{

typename outer<X>::template inner<double> I;

Some compilers are not rigorous at this.

SCompare with the use of typename described in Sectionl.1.1.

18

CHAPTER 1 * TEMPLATES

1.1.5. Non-Template Base Classes

If a class template has members that do not depend on its parameters, it may be convenient to move them
into a plain class:

template <typename T>

class MyClass

{
double value_;
std::string name_;
std::vector<T> data_;

public:
std::string getName() const;
b

should become:

class MyBaseClass

{
protected:

~MyBaseClass() {}

double value ;
std::string name_;

public:
std::string getName() const;
b

template <typename T>
class MyClass : MyBaseClass

{

std::vector<T> data_;

public:
using MyBaseClass::getName;

)

The derivation may be public, private, or even protected.'® This will reduce the compilation complexity
and potentially the size of the binary code. Of course, this optimization is most effective if the template is
instantiated many times.

16See the “brittle base class problem” mentioned by Bjarne Stroustrup in his “C++ Style and Technique FAQ” at
http://www.research.att.com/~bs/.

19

http://www.research.att.com/~bs/

CHAPTER 1 © TEMPLATES

1.1.6. Template Position

The body of a class/function template must be available to the compiler at every point of instantiation,
so the usual header/cpp file separation does not hold, and everything is packaged in a single file, with the
hpp extension.

If only a declaration is available, the compiler will use it, but the linker will return errors:

// sq.h

template <typename T>
T sq(const T& x);

// sq.cpp

template <typename T>
T sq(const T& x)

return x*x;

}
// main.cpp

#include "sq.h" // note: function body not visible

int main()

{
double x = sq(3.14); // compiles but does not link

A separate header file is useful if you want to publish only some instantiations of the template. For example,
the author of sq might want to distribute binary files with the code for sq<int> and sq<double>, so that they
are the only valid types.

In C++, it’s possible to explicitly force the instantiation of a template entity in a translation unit without
ever using it. This is accomplished with the special syntax:

template class X<double>;
template double sq<double>(const doubled);

Adding this line to sq.cpp will “export” sq<double> as if it were an ordinary function, and the plain
inclusion of sq.h will suffice to build the program.

This feature is often used with algorithm tags. Suppose you have a function template, say encrypt or
compress, whose algorithmic details must be kept confidential. Template parameter T represents an option
from a small set (say T=fast, normal, best); obviously, users of the algorithm are not supposed to add
their own options, so you can force the instantiation of a small number of instances—encrypt<fast>,
encrypt<normal>, and encrypt<best>—and distribute just a header and a binary file.

Note C++0x adds to the language the external instantiation of templates. If the keyword extern is used
before template, the compiler will skip instantiation and the linker will borrow the template body from another
translation unit.

See also Section 1.6.1 below.

20

CHAPTER 1 * TEMPLATES

1.2. Specialization and Argument Deduction

By definition, we say that a name is at namespace level, at class level, or at body level when the name appears
between the curly brackets of a namespace, class, or function body, as the following example shows:

class X // here, X is at namespace level
{
public:
typedef double value_type; // value_type is at class level
X(const X& y) // both X and y are at class level
{
}
void () // f is at class level
{
int z = 0; // body level
struct LOCAL {}; // LOCAL is a local class
}
};

Function templates—member or non-member—can automatically deduce the template argument
looking at their argument list. Roughly speaking,'” the compiler will pick the most specialized function that
matches the arguments. An exact match, if feasible, is always preferred, but a conversion can occur.

A function F is more specialized than G if you can replace any call to F with a call to G (on the same
arguments), but not vice versa. In addition, a non-template function is considered more specialized than a
template with the same name.

Sometimes overload and specialization look very similar:

template <typename scalar t>
inline scalar_t sq(const scalar t& x); // (1) function template

inline double sq(const double& x); // (2) overload

template <>
inline int sq(const int& x); // (3) specialization of 1

But they are not identical; consider the following counter-example:

inline double sq(float x); // ok, overloaded sq may

// have different signature
template <> // error: invalid specialization
inline int sq(const int x); // it must have the same signature

"The exact rules are documented and explained in [2]. You’re invited to refer to this book for a detailed explanation of
what’s summarized here in a few paragraphs.

21

CHAPTER 1 © TEMPLATES

The basic difference between overload and specialization is that a function template acts as a single
entity, regardless of how many specializations it has. For example, the call sq(y) just after (3) would force
the compiler to select between entities (1) and (2). If y is double, then (2) is preferred, because it’s a normal
function; otherwise, (1) is instantiated based on the type of y: only at this point, if y happens to be int, the
compiler notices that sq has a specialization and picks (3).

Note that two different templates may overload:

template <typename T>
void f(const T& x)
{

}

std::cout << "I am f(reference)";

or:

template <typename T>
void f(const T* x)

{
}

std::cout << "I am f(pointer)";

On the other hand, writing a specialization when overloaded templates are present may require you to
specify explicitly the parameters:

template <typename T> void f(T) {}
template <typename T> void f(T*) {}

template <>
void f(int*) // ambiguous: may be the first f with T=int*
{} // or the second with T=int

template <>
void f<int>(int*) // ok
(}

Remember that template specialization is legal only at the namespace level (even if most compilers will
tolerate it anyway):

class mathematics

{
template <typename scalar_t>
inline scalar t sq(const scalar t& x) { ... }; // template member function
template <>
inline int sq(const int& x) { ... }; // illegal specialization!
};

The standard way is to call a global function template from inside the class:

// global function template: outside
template <typename scalar_t>
inline scalar t gsq(const scalar t& x) { ... };

22

CHAPTER 1 * TEMPLATES

// specialization: outside
template <>
inline int gsq(const int& x) { ... };

class mathematics

{

// template member function
template <typename scalar_t>
inline scalar t sq(const scalar t8& x)

{

return gsq(x);
b

Sometimes you may need to specify explicitly the template parameters because they are unrelated to
function arguments (in fact, they are called non-deducible):

class cre32 { ... };
class adler { ... };

template <typename algorithm_t>
size t hash_using(const char* x)

{
/...

}
size_t j = hash_using<crc32>("this is the string to be hashed");

In this case, you must put non-deducible types and arguments first, so the compiler can work out all the
remaining:

template <typename algorithm_t, typename string t>
int hash_using(const string t& x);

std::string arg("hash me, please");
int j = hash_using<crc32>(arg); // ok: algorithm t is crc32
// and string t is std::string

Argument deduction obviously holds only for function templates, not for class templates.
It's generally a bad idea to supply an argument explicitly, instead of relying on deduction, except in
some special cases, described next.

¢ When necessary for disambiguation:

template <typename T>
T max(const T& a, const T& b)

{...1}

int a = 7;
long b = 6;

23

CHAPTER 1

TEMPLATES
long m1 = max(a, b); // error: ambiguous, T can be int or long
long m2 = max<long>(a, b); // ok: T is long

When a type is non-deducible':

template <typename T>
T get_random()
{...}

double r = get_random<double>();
When you want a function template to look similar to a built-in C++ cast operator:

template <typename X, typename T>
X sabotage cast(T* p)

{
}

return reinterpret cast<X>(p+1);
std::string s = "don't try this at home";
double* p = sabotage cast<double*>(8s);
To perform simultaneously a cast and a function template invocation:
double y = sq<int>(6.28) // casts 6.28 to int, then squares the value

When an algorithm has an argument whose default value is template-dependent
(usually a functor)':

template <typename LESS_T>
void nonstd sort (..., LESS T cmp = LESS T())
{

}

/...
// call function with functor passed as template argument
nonstd sort< std::less<...> > (...);

// call function with functor passed as value argument
nonstd_sort (..., std::less<...>());

A template name (such as std: : vector) is different from the name of the class it generates (such as
std: :vector<int>). At the class level, they are equivalent:

template <typename T>
class something

{

13See the next section.
This example is taken from [2].

24

CHAPTER 1 * TEMPLATES

public:
something() // ok: don't write something<T>

// at local level, 'something' alone is illegal

}

something(const something®& that); // ok: 'something&' stands for
// "something<T>&'

template <typename other_t>
something(const something<other t>& that)
{
}

};

As arule, the word something alone, without angle brackets, represents a template, which is a
well-defined entity of its own. In C++, there are template-template parameters. You can declare a template
whose parameters are not just types, but are class templates that match a given pattern:

template <template <typename T> class X>
class example

{

X<int> x1_;
X<double> x2_;

};

typedef example<something> some_example; // ok: 'something' matches
Note that class and typename are not equivalent here:

template <template <typename T> typename X> // error

Class templates can be fully or partially specialized. After the general template, we list specialized
versions:

// in general T is not a pointer
template <typename T>
struct is_a_pointer_ type
{
static const int value = 1;

};

// 2: full specialization for void*
template <>

struct is_a pointer_ type<void*>

{

static const int value = 2;

};

25

CHAPTER 1 © TEMPLATES

// 3: partial specialization for all pointers
template <typename X>
struct is_a_pointer_type<X*»>

{
};

static const int value = 3;

int b1 = is_a_pointer_type<int*>::value; // uses 3 with X=int
int b2 = is_a_pointer_type<void*>::value; // uses 2
int b3 = is_a pointer type<float>::value; // uses the general template

Partial specialization can be recursive:

template <typename X>
struct is_a pointer type<const X>

{
};

static const int value = is_a pointer type<X>::value;

The following example is known as the pointer paradox:
#include <iostream>

template <typename T>
void f(const T& x)

{
}

std::cout << "My arg is a reference";

template <typename T>
void f(const T* x)

{
}

std::cout << " My arg is a pointer";

In fact, the following code prints as expected:

const char* s = "text";
(s);
f(3.14);

My arg is a pointer
My arg is a reference

Now write instead:

double p = 0;
£(8p);

You would expect to read pointer; instead you get a call to the first overload. The compiler is correct,
since type double* matches const T* with one trivial implicit conversion (namely, adding const-ness), but it
matches const T8& perfectly, setting T=double*.

26

CHAPTER 1 * TEMPLATES

1.2.1. Deduction

Function templates can deduce their parameters, matching argument types with their signature:

template <typename T>
struct arg;

template <typename T>
void f(arg<T>);

template <typename X>
void g(arg<const X>);

arg<int*> a;

f(a); // will deduce T = int*
arg<const int> b;

f(b); // will deduce T = const int
g(b); // will deduce X = int

Deduction also covers non-type arguments:

template < int I>
struct arg;

template <int I>
arg<I+1> f(arg<I>);

arg<3> a;
f(a); // will deduce I=3 and thus return arg<4>

However, remember that deduction is done via “pattern matching” and the compiler is not required to
perform any kind of algebra®:

// this template is formally valid, but deduction will never succeed...
template <int I>
arg<I> f(arg<I+1y)

/] ...
}
arg<3> a;
f(a); // ...the compiler will not solve the equation I+1==3
arg<2+1> b;
f(b); // ...error again

No matching function for call to 'f'
Candidate template ignored: couldn't infer template argument 'I'

2In particular, the compiler is not required to notice that void f(arg<2*N>) and void f(arg<N+N>) are the same
template function, and such a double definition would make a program ill-formed. In practice, however, most compilers
will recognize an ambiguity and emit an appropriate error.

27

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

On the other hand, if a type is contained in a class template, then its context (the parameters of the
outer class) cannot be deduced:

template <typename T>
void f(typename std::vector<T>::iterator);

std: :vector<double> v;
f(v.begin()); // error: cannot deduce T

Note that this error does not depend on the particular invocation. This kind of deduction is logically not
possible; T may not be unique.

template <typename T>
struct A
{ typedef double type; };

// if A<X>::type is double, X could be anything
A dummy argument can be added to enforce consistency:

template <typename T>
void f(std::vector<T>&, typename std::vector<T>::iterator);

The compiler will deduce T from the first argument and then verify that the second argument has the
correct type.
You could also supply explicitly a value for T when calling the function:

template <typename T>
void f(typename std::vector<T>::iterator);

std::vector<double> w;
f<double>(w.begin());

Experience shows that it’s better to minimize the use of function templates with non-deduced
parameters. Automatic deduction usually gives better error messages and easier function lookup; the
following section lists some common cases.

First, when a function is invoked with template syntax, the compiler does not necessarily look for a
template. This can produce obscure error messages.

struct base

{
template <int I, typename X> // template, where I is non-deduced
void foo(X, X)
{
}
1

28

CHAPTER 1 * TEMPLATES

struct derived : public base

void foo(int i) // not a template
{

foo<314>(i, i); // line #13
}

};

1>error: 'derived::foo': function call missing argument list; use '8derived::foo' to create
a pointer to member

1>error: '<' : no conversion from 'int' to 'void (_ cdecl derived::*)(int)'

1> There are no conversions from integral values to pointer-to-member values

1>error: '<' : illegal, left operand has type 'void (__cdecl derived::*)(int)'

1>warning: '>' : unsafe use of type 'bool' in operation

1>warning: '>' : operator has no effect; expected operator with side-effect

When the compiler meets T00<314>, it looks for any foo. The first match, within derived, is void
foo(int) and lookup stops. Hence, f00<314> is misinterpreted as (ordinary function name) (less) (314)
(greater). The code should explicitly specify base: : foo.

Second, if name lookup succeeds with multiple results, the explicit parameters constrain the overload
resolution:

template <typename T>
void f();

template <int N>
void f();

f<double>(); // invokes the first f, as "double" does not match "int N"
<7>0); // invokes the second f

However, this can cause unexpected trouble, because some overloads? may be silently ignored:

template <typename T>
void g(T x);

double pi = 3.14;
g<double>(pi); // ok, calls g<double>

template <typename T>
void h(T x);

void h(double x);

double pi = 3.14;
h<double>(pi); // unexpected: still calls the first h

Z'Template functions cannot be partially specialized, but only overloaded.

29

CHAPTER 1 © TEMPLATES

Here’s another example:

template <int I>
class X {};

template <int I, typename T>
void g(X<I>, T x);

template <typename T> // a special 'g' for X<0>
void g(X<0>, T x); // however, this is g<T>, not g<o,T>

double pi = 3.14;

X<0> x;
g<0>(x, pi); // calls the first g
g(x, pi); // calls the second g

Last but not least, old compilers used to introduce subtle linker errors (such as calling the wrong
function).

1.2.2. Specializations

Template specializations are valid only at the namespace level**:

struct X

{
template <typename T>
class Y

{}

template <> // illegal, but usually tolerated by compilers
class Y<double>
3

};

template <> // legal
class X::Y<double>

{
};

The compiler will start using the specialized version only after it has compiled it:

template <typename scalar_t>
scalar_t sq(const scalar t& x)

{ ...}

2Unfortunately, some popular compilers tolerate this.

30

CHAPTER 1 * TEMPLATES

struct A

{
A(int i = 3)
{

int j = sq(i); // the compiler will pick the generic template
b

template <>
int sq(const int& x) // this specialization comes too late, compiler gives error

{ ...}

However, the compiler will give an error in such a situation (stating that specialization comes after
instantiation). Incidentally, it can happen that a generic class template explicitly “mentions” a special case, as
a parameter in some member function. The following code in fact causes the aforementioned compiler error.

template <typename T>
struct C
{
C(Ccvoidy)
{
}
b

template <>
struct C<void>

{
};

The correct version uses a forward declaration:

template <typename T>
struct C;

template <>
struct C<void>
{

b

template <typename T>
struct C

C(C<void>)
{
}

};

31

CHAPTER 1 © TEMPLATES

Note that you can partially specialize (and you'll do it often) using integer template parameters:

// general template
template <typename T, int N>
class MyClass

{.o)

// partial specialization (1) for any T with N=0
template <typename T>
class MyClass<T, 0>

{.-)

// partial specialization (2) for pointers, any N
template <typename T, int N>

class MyClass<T*, N>

{..- 5

However, this approach can introduce ambiguities:

MyClass<void*, 0> m; // compiler error:
// should it use specialization (1) or (2)?

Usually you must explicitly list all the “combinations” If you specialize X<T1, T2> for all T1 € A and for
all T2 € B, then you must also specialize explicitly X<T1,T2> € AxB.

// partial specialization (3) for pointers with N=0
template <typename T>
class MyClass<T*, 0>

{..o)

It’s illegal to write a partial specialization when there are dependencies between template parameters
in the general template.

// parameters (1) and (2) are dependent in the general template

template <typename int_t, int_t N>
class AnotherClass

{}

template <typename T>
class AnotherClass<T, 0>

i

error: type 'int t' of template argument '0' depends on template parameter(s)
Only a full specialization is allowed:
template <>

class AnotherClass<int, 0>

{}

32

CHAPTER 1 * TEMPLATES

A class template specialization may be completely unrelated to the general template. It need not have
the same members, and member functions can have different signatures.

While a gratuitous interface change is a symptom of bad style (as it inhibits any generic manipulation of
the objects), the freedom can be usually exploited:

template <typename T, int N>
struct base_with_array

{
T data_[N];
void fill(const T& x)
{
std::fill n(data_, N, x);
}
};

template <typename T>
struct base_with_array<T, 0>

{
void fill(const T& x)
{
}

};

template <typename T, size t N>
class cached_vector : private base with_array<T, N>

{
/...
public:
cached_vector()
this->fill(T());
}
b

1.2.3. Inner Class Templates

A class template can be a member of another template. One of the key points is syntax; the inner class has its
own set of parameters, but it knows all the parameters of the outer class.

template <typename T>
class outer
{
public:
template <typename X>
class inner

{
};

// use freely both X and T
};

33

CHAPTER 1 © TEMPLATES

The syntax for accessing inner is outer<T>: :inner<X> if T is a well-defined type; if T is a template
parameter, you have to write outer<T>: :template inner<X>:

outer<int>::inner<double> a; // correct

template <typename Y>

void f()

{
outer<Y>::inner<double> x1; // error
outer<Y>::template inner<double> x1; // correct

}

It's usually difficult or impossible to specialize inner class templates. Specializations should be listed
outside of outer, so as a rule they require two template <...> clauses, the former for T (outer), the latter for
X (inner).

Primary template: it defines an inner<X> which we’ll template <typename T>
call informally inner_1. class outer
{

template <typename X>
class inner

{
};
};
Full specializations of outer may contain an inner<X>, template <>
which to the compiler is completely unrelated to class outer<int>
inner_1; we’ll call this inner_2. {
template <typename X>
class inner
{
// ok
};
};
inner_2 can be specialized: template <>
class outer<int>::inner<float>
{
// ok
};

(continued)

34

CHAPTER 1

TEMPLATES

specialization of inner_1 for fixed T (=double) and

generic X.

specialization of inner_1 for fixed T (=double) and

fixed X (=char).

It’s illegal to specialize inner_1 for fixed X with any T.

template <>
template <typename X>
class outer<double>::inner
{
// ok
};
template <>
template <>
class outer<double>::inner<char>
{
// ok
b
template <typename T>
template <>
class outer<T>::inner<float>

{

// error!

|5

Note that, even if X is the same, inner_1<X> and inner_2<X> are completely different types:

template <typename T>
struct outer

{

template <typename X> struct inner {};

};

template <>
struct outer<int>

{

template <typename X> struct inner {};

};

int main()

outer<double>::inner<void> I1;
outer<int>::inner<void> I2;

I1 = I2;

}

error: binary '='

: no operator found which takes a right-hand operand of type

"outer<inty::inner<X>' (or there is no acceptable conversion)

35

CHAPTER 1 © TEMPLATES

It's impossible to write a function that, say, tests any two "inner"s for equality, because given an
instance of inner<X>, the compiler will not deduce its outer<T>.

template <typename T, typename X>
bool f(outer<T>::inner<X>); // error: T cannot be deduced?

The actual type of variable I1 is not simply inner<void>, but outer<double>: :inner<void>. If for any X,
all innexr<X> should have the same type, then inner must be promoted to a global template. If it were a plain
class, it would yield simply:

struct basic_inner

{
};

template <typename T>
struct outer

{

typedef basic_inner inner;
5
template <>
struct outer<int>

typedef basic_inner inner;

};
If inner does not depend on T, you could write*:

template <typename X>
struct basic_inner

{

};

template <typename T>
struct outer

{
template <typename X>
struct inner : public basic_inner<X>
{
inner& operator=(const basic_inner<X>& that)
{
static_cast<basic_inner<X>&>(*this) = that;
return *this;
}
b
b

BConsider the simpler case when outer<T> is a container, inner1 is an “iterator,” inner2 is “const_iterator,” and
they both derive from an external common base, basic_outer_ iterator.

36

CHAPTER 1 * TEMPLATES

template <>
struct outer<int>

{
template <typename X>
struct inner : public basic_inner<X>
{
inner& operator=(const basic_inner<X>& that)
{
static_cast<basic_inner<X>&>(*this) = that;
return *this;
}
b
b

Otherwise, you have to design basic_inner’s template operators that support mixed operations:

template <typename X, typename T>

struct basic_inner

{
template <typename T2>
basic_inner& operator=(const basic_inner<X, T2>&)
{7* ... %}

b

template <typename T>
struct outer
{
template <typename X>
struct inner : public basic_inner<X, T>

{
template <typename ANOTHER T>
innerd operator=(const basic_inner<X, ANOTHER_T>& that)
{
static_cast<basic_inner<X, T>&>(*this) = that;
return *this;
}
};

};

template <>
struct outer<int>
{
template <typename X>
struct inner : public basic_inner<X, int>

{
template <typename ANOTHER T>
innerd operator=(const basic_inner<X, ANOTHER_T>& that)
static_cast<basic_inner<X, int>&> (*this) = that;
return *this;
}
};

};
37

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

int main()

{
outer<double>: :inner<void> I1;
outer<int>::inner<void> I2;

I1 = I2; // ok: it ends up calling basic_inner::operator=

}

This is known in the C++ community as the SCARY initialization.**

SCARY stands for “Seemingly erroneous (constrained by conflicting template parameters), but actually
work with the right implementation”. Put simply, two inner types that should be different (specifically,
outer<T1>::inner and outer<T2>::inner) actually share the implementation, which means it’s possible to
treat them uniformly as “two inners”.

As you've seen for function templates, you should never instantiate the master template before the
compiler has met all the specializations. If you use only full specializations, the compiler will recognize a
problem and stop. Partial specializations that come too late will be just ignored:

struct A

{
template <typename X, typename Y>

struct B
{

};

void ()
{

void do_it() {} // line #1

B<int,int> b; // line #2: the compiler instantiates B«<int,int>
b.do_it();
}
};

template <typename X>
struct A::B<X, X> // this should be a specialization of B<X,X>
// but it comes too late for B<int,int>

{
void do_it() {} // line #3
};
A a;
a.f(); // calls do_it on line #1

*#The extra “Y” is little more than poetic license. Refer to the excellent article from Danny Kalev at
http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=454.

38

http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=454

CHAPTER 1 * TEMPLATES

Furthermore, adding a full specialization of B will trigger a compiler error:

template <>
struct A::B<int, int>

{ void do_it() {}
};
error: explicit specialization; 'A::B<X,Y>' has already been instantiated
with
[
X=int,
Y=int

]

The obvious solution is to move the function bodies after the specializations of A: :B.

1.3. Style Conventions

Style is the way code is written; this definition is so vague that it includes many different aspects of
programming, from language techniques to the position of curly braces.

All the C++ objects in namespace std exhibit a common style, which makes the library more coherent.

For example, all names are lowercase® and multi-word names use underscores. Containers have a
member function bool T::empty() const that tests if the object is empty and a void T::clear() that
makes the container empty. These are elements of style.

A fictional STL written in pure C would possibly have a global function clear, overloaded for all
possible containers. Writing code such as cont.clear() or clear(&cont) has the same net effect on cont,
and might even generate the same binary file, but granted, it has a very different style.

All these aspects are important during code reviews. If style agrees with the reader forma mentis, the
code will look natural and clear, and maintenance will be easier.

Some aspects of style are indeed less important, because they can be easily adjusted. For example,
using beautifiers—each worker in a team might have a pre-configured beautifier on his machine, integrated
with the code editor, which reformats braces, spaces, and newlines at a glance.

Note JEdit (see http://www.jedit.org) is a free multiplatform code editor that supports plugins.

AStyle (Artistic Style) is a command-line open source code beautifier (see http://astyle.sourceforge.net)
whose preferences include the most common formatting option (see Figure 1-1).

Except std: :numeric_limits<T>::quiet_NaN().

39

http://www.jedit.org/
http://astyle.sourceforge.net/

CHAPTER 1 * TEMPLATES

BBl options: Plugins: AStyle Beautifier

Sidekick

Break one-line blocks:

Enforce Tabs:

Fill empty lines:

Format On Save:

Indlent blocks:

Indent brackets:

Incent case statements:

Indent classes:

Indert labels:

Indent namespaces:

Indent preprocessor lines:
Indent switch blocks:

Max. multi-line statement indent:
Min. multi-line statement inclent:
Pad operators:

Pad parenthesis:

Separate 'else'fcatch’ blocks:

=-Plugins Bracket format mode: [None =l
AStyle Beatifier = [—j

— Code Browser Break 'else if: |False
rror List Break before closing headers: IFa1se P l
QuickNotepad Break muttiple statement lines: ITrue et I

IFa‘Ise o l
IFa‘Ise x l
IFa1se ¥ I

Separate unrelated blocks: IF&1SB it l

|/\h:ther unrelated blocks of code should be separated with empty
ines.

4 o™
|

Figure 1-1. The AStyle plugin for JEdit

Most reasonable style conventions are equivalent; it’s important to pick one and try to be consistent for
some time.*®

Ideally, if code is written according to some common behavior conventions, a reader may deduce how it
works based on the style, without looking into the details.

*Even source code has a lifecycle and eventually it’s going to “die,” i.e., it will be rewritten from scratch. However the
more robust the design, the longer its life will be, and style is part of the design. See also [5].

40

CHAPTER 1 * TEMPLATES

For example:

void unknown f(multidimensional vector<double, 3, 4>& M)
{
if (!M.empty())
throw std::runtime_error("failure");

Most readers will describe this fragment as, “If the multidimensional vector is not empty, then throw an
exception” However, nothing in the code states that this is the intended behavior except style.

In fact, multidimensional_vector: :empty could in principle make the container empty and return a
non-zero error code if it does not succeed.?”

The naming convention is a big component of style.

The following example lists some ideas for how to convey extra meaning when building the name of an
object. It is not intended as a set of axioms, and in particular no item is worse/better than its opposite, but
it’s a detailed example of how to assemble a style that can help you diagnose and solve problems.

Remember that the C++ standard prescribes that some identifiers are “reserved to the implementation
for any use” and some are reserved for names in the global or std namespace. That means user names
should never:

e Begin with an underscore (in particular, followed by a capital letter)
e Contain a double underscore

e Contain a dollar sign (it’s tolerated by some compilers, but it’s not portable)

1.3.1. Comments

“Many good programming practices boil down to preparing for change or expressing
intent. Novices emphasize the former, experts the latter.”

—John D. Cook

Remember to add lots of comments to your code. If this is valid for any programming language, it is
especially true for TMP techniques, which can easily be misunderstood. The correct behavior of TMP is
based on bizarre entities, like empty classes, void functions, and strange language constructs that look like
errors. It’s really hard for the author of the code to remember why and how these techniques work, and even
harder for other people who have to maintain the code.

1.3.2. Macros

Macros play a special role in TMP. Some programmers consider them a necessary evil and indeed they are
necessary, but it’s not obvious they are also evil.
Macros must:

e Allow the reader to recognize them

e Prevent name collisions

YAs discussed in [5], usually member function names should be actions. Thus empty should be a synonym for
make_empty and not for is_empty. However, STL convention is established and universally understood. When in doubt,
do as std: :vector does.

41

CHAPTER 1 © TEMPLATES

The easiest way to satisfy both requirements is to choose a unique and sufficiently ugly common prefix
for all macros and play with lower/uppercase to give extra meaning to the name.

As an example, you could agree that all macros begin with MXT . If the macro is persistent, i.e. never
undefined, the prefix will be MXT. If the macro’s scope is limited (it’s defined and undefined later in the
same file), the prefix will be mXT_.

#ifndef MXT_filename_

#define MXT_filename_ // this is "exported" - let's name it MXT_*
#define mXT_MYVALUE 3 // this macro has limited "scope"

const int VALUE = mXT_MYVALUE; // let's name it mXT_*

#undef mXT_MYVALUE //

#endif //MXT_filename_
A lowercase prefix mxt is reserved to remap standard/system function names in different platforms:

#ifdef WIN32

#define mxt_native_dbl_isfinite _finite
#else

#define mxt_native dbl isfinite isfinite
#endif

For better code appearance, you could decide to replace some keywords with a macro:

#tdefine MXT_NAMESPACE BEGIN(x) namespace x {
#define MXT_NAMESPACE_END(x) }

#define MXT_NAMESPACE _NULL BEGIN() namespace {
#define MXT_NAMESPACE_NULL_END() }

And/or enclose the namespace directives in an ASCII-art comment box:
11177771777177717771777177117711771777117711717117711171711171711717717771
MXT_NAMESPACE_BEGIN(XT)
IITTP0T0007T77707707077070717777777077777777777777117771771177111717

It's useful to have some (integer) functions as a set of macros:

#tdefine MXT_M_MAX(a,b) ((a)<(b) ? (b) : (a))
#define MXT_M _MIN(a,b) ((a)<(b) ? (a) : (b))
#define MXT _M_ABS(a) ((@)<o ? -(a) : ()
#tdefine MXT M SQ(a) ((@)*(a))

The infix M _stands for “macro” and these will be useful when working with templates:

template <int N>
struct SomeClass

{
};

static const int value = MXT_M_SQ(N)/MXT_M_MAX(N, 1);

42

CHAPTER 1 * TEMPLATES

Note The C++11 Standard introduced a new keyword: constexpr.?

A function-declared constexpr has no side effects and it always returns the same result, deterministically, from
the same arguments. In particular, when such a function is called with compile-time constant arguments, its
result will also be a compile-time constant:

constexpr int sq(int n) { return n*n; }
constexpr int max(int a, int b)
{ return a<b ? b : a; }

template <int N>
struct SomeClass

{

static const int value = sq(N)/max(N, 1);

Finally, consider a special class of macros. A macro directive is a macro whose usage logically takes an
entire line of code.

In other words, the difference between an ordinary macro and a directive is that the latter cannot
coexist with anything on the same line (except possibly its arguments):

// directive
MXT_NULL_NAMESPACE_BEGIN O

#define MXT_PI 3.1415926535897932384626433832795029
// the use of MXT_PI does not take the whole line
// so it is not a directive.

const double x = std::cos(MXT PI);

// directive
MXT_NULL_NAMESPACE_END()

The definition of a macro directive, in general, should not end with a semicolon, so the user is forced to
close the line manually (when appropriate), as if it were a standard function call.

// note: no trailing ';'

#tdefine MXT_INT I(k) int 1 = (k)
int main()
MXT_INT I(0); // put ';' here
return 0;
}

#Seehttp://en.cppreference.com/w/cpp/language/constexpr for the exact requirements and specifications.

43

http://en.cppreference.com/w/cpp/language/constexpr

CHAPTER 1 © TEMPLATES

Here is a more complex example. Note that the trailing semicolon is a very strong style point, so it's used
even in places where, in ordinary code, a semicolon would be unnatural.

#define mXT_C(NAME,VALUE)

static scalar_t NAME()

{
static const scalar_t NAME## = (VALUE);
return NAME## ;

~ s

}

template <typename scalar_t>
struct constant

{

// the final ';' at class level is legal, though uncommon
mXT_C(Pi, acos(scalar t(-1)));
mXT_C(TwoPi, 2*acos(scalar t(-1)));
mXT_C(PiHalf, acos(scalar t(0)));
mXT_C(PiQrtr, atan(scalar t(1)));
mXT_C(Log2, log(scalar t(2)));
};

#undef mXT_C
double x = constant<double>::TwoPi();

However, special care is required when invoking macro directives, which expand to a sequence of
instructions:

#define MXT _SORT2(a,b) if ((b)<(a)) swap((a), (b))

#tdefine MXT _SORT3(a,b,c) \
MXT_SORT2((a),(b)); MXT_SORT2((a),(c)); MXT _SORT2((b),(c))

inta=5,b=2, c=3;
MXT_SORT3(a,b,c); // apparently ok: now a=2, b=3, c=5

Nevertheless, this code is broken:
inta=5,b=2, c=3;

if (a>10)
MXT_SORT3(a,b,c); // problem here!

Since it expands to:

if (a>10)
MXT_SORT2(a,b);

MXT_SORT2(a,c);
MXT_SORT2(b,c);

44

CHAPTER 1 * TEMPLATES

More surprising is that the following fragment is clear, but incorrect:

if (a>10)
MXT_SORT2(a,b);

else
MXT_SORT2(c,d);

Because of the way if-then-else associates in C++, the macro expands as

if (a»10)
if (a<b)
swap(a,b);
else
if (c<d)
swap(c,d);

The indentation does not resemble the way code is executed; the block actually groups as

if (a»10)
if (a<b)
swap(a,b);
else if (c<d)
swap(c,d);
}

To solve the problem, you can use the do {...} while (false) idiom:

#define MXT_SORT3(a,b,c) \
do { MXT_SORTZ((a),(b)); MXT_SORTZ((a),(C)); MXT_SORTZ((b),(C)); J I
while (false)

This allows both to put “local code” inside a block and to terminate the directive with a semicolon.
Remember that this will not save you from an error like:

MXT_SORT3(a, b++, c); // error: b will be incremented more than once

This is why we insist that macros are immediately recognizable by a “sufficiently ugly” prefix.
To tackle the “if” macro problem, write a do-nothing else branch:

#define MXT _SORT2(a,b) if ((b)<(a)) swap((a),(b)); else

Now MXT_SORT2(a,b); expandstoif (...) swap(...); else; where the last semicolon is the empty
statement. Even better®:

#define MXT SORT2(a,b) if (!((b)<(a))) {} else swap((a),(b))

PThe difference between the last two implementations is largely how they react to an invalid syntax. As an exercise,
consider some malicious code like MXT_SORT2(x, y) if (true) throw an_exception;.

45

CHAPTER 1 © TEMPLATES

As a final remark, never make a direct use of types that come from macros. Always introduce a typedef.
If the macro is not carefully written, the association between * and const may give unexpected results.
Consider:

Tx=0;
const T* p = &x; // looks correct

Unless:

#define T char*

Instead, consider intercepting the macro:

typedef T MyType; // ok, even if T is a macro.
// #undef T if you like
MyType x = 0; //

const MyType* p = 8x; // now it works.

1.3.3. Symbols

Most C++ projects contain several kinds of symbols (classes, functions, constants, and so on). A rough
division line can be drawn between system/framework utilities, which are completely abstract and generic,
and project specific entities, which contain specific logic and are not expected to be reused elsewhere.

This simple classification may turn out important for (human) debuggers. If any piece of code is
considered a “system utility,” then it’s implicitly trusted and it may usually be “stepped over” during debug.
On the other hand, project-specific code is possibly less tested and should be “stepped in”.

We can agree that stable symbols should follow the STL naming conventions (lowercase, underscores,
such as stable_sort, hash_map, and so on). This often will be the case for class templates.

The rest should be camel case (the Java convention is fine).

(framework header) sq.hpp

template <typename scalar t>
scalar_t sq(const scalar t& x) { return x*x; }; // 'system-level' function - lowercase

(project file) custom_scalar.h
struct MySpecialScalarType // 'project-level' class - mixed case

/...
};

(project file) main.cpp

int main()

{
MySpecialScalarType x = 3.14;
MySpecialScalarType y = sq(x);

return 0;

}

46

CHAPTER 1 * TEMPLATES

A functor is an instance of an object that implements at least one operator (), so the name of the
instance behaves like a function.*

A functor is said to be modifying if it takes arguments by non-const references.

A predicate is a non-modifying functor that takes all arguments of the same type and returns a boolean.
For example, less is a binary predicate:

template <typename T>
struct less

{
bool operator()(const T8, const T&) const;
};

Most functors contain a typedef for the return type of operator (), usually named result_type or
value_type.™

Functors are usually stateless or they carry few data members, so they are built on the fly. Occasionally,
you may need a meaningful name for an instance, and this may not be so easy, because if the functor has a
limited “scope,” the only meaningful name has already been given to the class.

calendar myCal;
std::find_if(year.begin(), year.end(), is_holiday(myCal));

// is_holiday is a class
// how do we name an instance?

You can use one of the following:
e Use alowercase functor name and convert it to uppercase for the instance:
calendar myCal;

is_holiday IS HOLIDAY(myCal);
std::find_if(year.begin(), year.end(), IS HOLIDAY);

e Use alowercase functor name with a prefix/postfix and remove it in the instance:
calendar myCal;

is_holiday t is holiday(myCal);
std::find_if(year.begin(), year.end(), is_holiday);

3The reader might want to review the simple example early in this chapter.
See Section 6.2.1.

47

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

1.3.4. Generality

The best way to improve generality is to reuse standard classes, such as std: :pair.

This brings in well-tested code and increases interoperability; however, it may often hide some specific
logic, for example the meaning of pair: :first and pair: : second may not be obvious at first sight. See the
following paradigmatic example:

struct id_value
{
int id;
double value;
};
id value FindIDAndValue(...);
This may be replaced by:
std::pair<int, double> FindIDAndValue(...)

However, the caller of the first function can write p.id and p.value, which is easier to read than
p.first and p.second. You may want to provide a less generic way to access pair members:

. Macros
#define id first // bad idea?
#define value second // bad idea?
#define id(P) P.first // slightly better
#tdefine value(P) P.second // slightly better

e Global functions (these are called accessors; see Section 6.2.1)

inline int& id(std::pair<int, double>& P)
{ return P.first; }

inline int id(const std::pair<int, double>& P)
{ return P.first; }

e Global pointer-to-members
typedef std::pair<int, double> id value;

int id_value::*ID = &id_value::first;
double id_value::*VALUE = &id_value::second;

// later

std::pair<int, double> p;
p.*ID = -5;

p.*VALUE = 3.14;

48

CHAPTER 1 * TEMPLATES

To make ID and VALUE constants, the syntax is:

int id value::* const ID = &id value::first;

1.3.5. Template Parameters

A fairly universally accepted convention is to reserve UPPERCASE names for non-type template parameters.
This could cause some name conflict with macros. It’s not always necessary to give a name to template
parameters (as with function arguments), so when it’s feasible, you'd better remove the name entirely:

// the following line is likely to give strange errors
// since some compilers define BIGENDIAN as a macro!

template <typename T, bool BIGENDIAN = false>
class SomeClass

{
};

template <typename T>
class SomeClass<T, true>

{
};

A safer declaration would be®:

template <typename T, bool = false>
class SomeClass

Type parameters are usually denoted by a single uppercase letter—usually T (or T1, T2...) if type can be
indeed anything.*®* A and R are also traditionally used for parameters that match arguments and results:

int foo(double x) { return 5+x; }
template <typename R, typename A>
inline R apply(R (*F)(A), A arg)
{

return F(arg);

}

template <typename R, typename A1, typename A2>
inline R apply(R (*F)(A1, A2), A1 argl, A2 arg2)

return F(argl, arg2);

}

double x = apply(&foo 3.14);

32Some compilers, such as MSVC71, used to have problems with unnamed parameters; refer to paragraph 11.3.3 for a
detailed example.

3Some authors reserve the keyword typename for this purpose. In other words, they declare template <typename T>
to mean that T is “any type” and template <class T> to suggest that T is indeed a class as opposed to a native type.
However, this distinction is rather artificial.

49

CHAPTER 1 © TEMPLATES

Otherwise, you might want to use a (meaningful) lowercase name ending with _t (for example, int_t,
scalar_t, object_t, any_t, or that_t).

template <typename T, int N>
class do_nothing

{
};

template <typename int_t> // int_t should behave as an integer type
struct is_unsigned

{
};

static const bool value = ...;

The suffix _t, which in C originally means typedef, is also widely used for (private) typedefs standing
for template instances:

template <typename scalar_t>
class SomeContainer
{
// informally means:
// within this class, a pair always denotes a pair of scalars

private:
typedef std::pair<scalar_t, scalar_t> pair_t;

)

On the other hand, a public typedef name usually is composed of lowercase regular English words
(such as iterator_category). In that case, _type is preferred:

template <typename scalar_ t>
class SomeContainer
{
public:
typedef scalar_t result_type;
b

1.3.6. Metafunctions

We often meet stateless class templates whose members are only enumerations (as a rule, anonymous),
static constants, types (typedefs or nested classes), and static member functions.

Generalizing Section 1.1, we consider this template a metafunction that maps its tuple of parameters to
a class, which is seen as a set of results (namely, its members).

3#Note that this is not a formal requirement; it’s just a name! The name reflects how we think the type should be; later we
will enforce this, if necessary.

50

CHAPTER 1

template <typename T, int N>
struct F

{
typedef T* pointer_type;
typedef T& reference type;

static const size t value = sizeof(T)*N;

};

The metafunction F maps a pair of arguments to a triple of results:

(T,N) > (pointer_type, reference_type, value)
{type}x{int} > {type}x{type}x{size t}

TEMPLATES

Most metafunctions return either a single type, conventionally named type, or a single numeric

constant (an integer or an enumeration), conventionally named value.*

template <typename T>
struct largest precision_type;

template <>
struct largest precision_type<float>

typedef double type;
template <>
struct largest precision_type<double>

typedef double type;
};

template <>
struct largest precision_type<int>

{
typedef long type;
};

Similarly:

template <unsigned int N>
struct two_to

{

static const unsigned int value = (1<«<N);

};

3The mathematically inclined reader should consider the latter as a special case of the former. The constant 5’ can be
replaced by a type named five or static_value<int, 5>. This leads to greater generality. See [3] for more information.

51

CHAPTER 1 © TEMPLATES

template <unsigned int N>
struct another two to

{
enum { value = (1<<N) };
b
unsigned int i = two_to<55::value; // invocation

largest_precision<inty::type j = i + 100; // invocation
Historically, the first metafunctions were written using enums:

template <size t A>
struct is_prime

{
};

template <>
struct is_prime<2>

{
};

template <>
struct is_prime<3>

{
};
/...

enum { value = 0 };

enum { value = 1 };

enum { value = 1 };

The main reason was that compilers were unable to deal with static const integers (including bool).
The advantage of using an enum over a static constant is that the compiler will never reserve storage space for
the constant, as the computation is either static or it fails.

Conversely, a static constant integer could be “misused” as a normal integer, for example, taking its
address (an operation that the compiler will disallow on enums).

Note According to the classic C++ standard, the use of a static constant as a normal integer is illegal
(unless the constant is re-declared in the . cpp file, as any other static data member of a class).
However, most compilers allow it, as long as the code does not try to take the address of the constant or bind it
to a const reference. The requirement was removed in modern C++.

Furthermore, the language allows declaring a static integer constant (at function scope, not at class scope)
that is dynamically initialized, and so not a compile-time constant:

static const int x = INT_MAX; // static
static const int y = std::numeric_limits<int>::max(); // dynamic
static const int z = rand(); // dynamic
double dataly]; // error

52

CHAPTER 1 * TEMPLATES

In practice, an enumis usually equivalent to a small integer. enums are in general implemented as signed
int, unless their value is too large. The most important difference is that you cannot bind an unnamed enum
to a template parameter without an explicit cast:

double data[10];
std::fill n(data, is_prime<3>::value, 3.14); // may give error!

The previous code is non-portable, because std: : fill_n may be defined.

template <..., typename integer t, ...>
void fill n(..., integer t I, ...)
{

++I; // whatever...

--I; // whatever...

}

error C2675: unary '--' : "does not define this operator or a conversion to a type
acceptable to the predefined operator
see reference to function template instantiation
'void std:: Fill n<double*, Diff, Ty>(OutIt, Diff,const Ty &,std:: Range checked iterator tag)'
being compiled
with
[
_Diff=,
_Ty=double *,
_OutIt=double **
]

In practice, an enum is fine to store a small integer (for example, the logarithm of an integer in base 2).
Because its type is not explicit, it should be avoided when dealing with potentially large or unsigned
constants. As a workaround for the std: : fill n call, just cast the enumeration to an appropriate integer:
std::fill n(..., int(is_prime<3>::value), ...); // now ok!

Frequently, metafunctions invoke helper classes (you'll see less trivial examples later):

template <int N>
struct ttnpi_helper

{
static const int value = (1<«<N);
};
template <int N>
struct two_to_plus_one
{
static const int value = ttnpil_helper<N>::value + 1;
};

53

CHAPTER 1 © TEMPLATES

The moral equivalent of auxiliary variables are private members. From a TMP perspective, numeric
constants and type(def)s are equivalent compile-time entities.

template <int N>
struct two_to_plus_one

{
private:

static const int aux = (1<<N);
public:

static const int value = aux + 1;
};

The helper class is not private and not hidden,* but it should not be used, so its name is “uglified” with
_helper or _t (or both).

1.3.7. Namespaces and Using Declarations

Usually all “public” framework objects are grouped in a common namespace and “private” objects reside in
special nested namespaces.

namespace framework

{
namespace undocumented private
void handle with care()
{
/...
};
}
inline void public_documented function()
{
undocumented private::handle with care();
}
}

It's not a good idea to multiply the number of namespaces unnecessarily, since argument-dependent
name lookup may introduce subtle problems, and friend declarations between objects in different
namespaces are problematic or even impossible.

Usually, the core of a general-purpose metaprogramming framework is a set of headers (the extension
* . hpp is in fact used for pure C++ headers). Using-namespace declarations in header files are generally
considered bad practice:

my framework.hpp

using namespace std;

3Tt should reside in an anonymous namespace, but this does not make it inaccessible.

54

CHAPTER 1 * TEMPLATES

main.cpp
#include "my_ framework.hpp"

// main.cpp doesn't know, but it's now using namespace std

However, using-function declarations in header files are usually okay and even desirable (see the
do_something example later in the paragraph).

A special use for using-namespace declarations is header versioning.*

This is a very short example:

namespace X

{
namespace version 1 0
{
void funci();
void func2();
}
namespace version 2 0
{
void funci();
void func2();
}

#ifdef USE_1 0

using namespace version_1 0;
#else

using namespace version_2 0;
#endif
}

Thus the clients using the header always refer to X: : func1.

Now we are going to describe in detail another case where using declarations can make a difference.

Function templates are often used to provide an “external interface,” which is a set of global functions
that allow algorithms to perform generic manipulations of objects*:

The author of a fictitious framework1 provides a function is_empty that works on a broad class of
containers and on C strings:

// frameworki.hpp
MXT_NAMESPACE_BEGIN(framework1)

template <typename T>
inline bool is_empty(T const& x)

{
}

return x.empty(); // line #1

3"The advantages are described extensively in Apple Technical Note TN2185; refer to the following page:
http://developer.apple.com/technotes/tn2007/tn2185.html.
3Such functions are denoted shims in [5].

55

http://developer.apple.com/technotes/tn2007/tn2185.html

CHAPTER 1 © TEMPLATES

template <>
inline bool is_empty(const char* const& x)

{
}

MXT_NAMESPACE_END(framework1)

return x==0 || *x==0;

One of the good properties of this approach is the ease of extensibility. For any new type X, you can
provide a specialized is_empty that will have priority over the default implementation. However, consider
what happens if the function is explicitly qualified:

// framework2.hpp
#include "frameworkl.hpp"

MXT_NAMESPACE_BEGIN(framework2)

template <typename string t>
void do_something(string t constd x)

if (!frameworki::is_empty(x)) // line #2
{

/...
}

}
MXT_NAMESPACE_END(framework2)
#include "framework2.hpp"

namespace framework3

{
class EmptyString
};
bool is_empty(const EmptyStringd x)
return true;
}
}
int main()
{
framework3: :EmptyString s;
framework2::do_something(s); // compiler error in line #1
}

56

CHAPTER 1 * TEMPLATES

The user-supplied is_empty is ignored in line #2, since do_something explicitly takes is_empty from
namespace framework1. To fix this, you can either reopen namespace framework1 and specialize is_empty
there or modify do_something like this:

framework2.hpp
MXT_NAMESPACE_BEGIN(framework2)

using frameworki::is_empty;

template <typename string t>
void do_something(string t const& x)

{
if (!is_empty(x))
{

//...

}
};

Thus, you let argument-dependent lookup pick an available is_empty but ensure that framework1 can
always supply a default candidate (see also the discussion in Section 1.4.2).

1.4. Classic Patterns

When coding a framework/library, it’s typical to use and reuse a small set of names. For example, containers
can be expected to have a member function [[integer type]] size() const thatreturns the number of
elements.

Adopting a uniform style increases interoperability of objects; for more details, see Chapter 6.All the
following paragraphs will try to describe the traditional meaning connected to a few common C++ names.

1.4.1. size_t and ptrdiff_t

In C++ there’s no unique standard and portable way to name large integers. Modern compilers will in
general pick the largest integers available for long and unsigned long. When you need alarge and fast
integer quickly, the preferred choices are size_t (unsigned) and ptrdiff t (signed).

size_t, being the result of sizeof and the argument of operator new, is large enough to store any
amount of memory; ptrdiff_t represents the difference of two pointers. Since the length of an array of
chars is end-begin, as a rule of thumb they will have the same size.

Furthermore, in the flat C++ memory model, sizeof(size t) also will be the size of pointers, and these
integers will likely have the natural size in an architecture—say, 32 bits on a 32-bit processor and 64 bits on
a 64-bit processor. They will also be fast (the processor bus will perform atomic transport from registers to
memory).

57

[vww allitebooks.cond

http://dx.doi.org/10.1007/9781484210116_6
http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

Given this class:

template <int N>
struct A
{

char data[N];
};

sizeof(A<N>) is atleast N, so it also follows that size t is not smaller than int.*

1.4.2. void T::swap(T&)

This function is expected to swap *this and the argument in constant time, without throwing an exception.
A practical definition of constant is “an amount of time depending only on T”.%

If T has a swap member function, the user expects it to be not worse than the traditional three-copy
swap (that is, X=A; A=B; B=X). Indeed, this is always possible, because a member function can invoke each
member’s own swap:

class TheClass

{
std: :vector<double> theVector_;
std::string theString_;
double theDouble ;

public:
void swap(TheClass& that);
{
theString .swap(that.theString);
theVector .swap(that.theVector);
std: :swap(theDouble , that.theDouble);
}
};

The only step that could take non-fixed time is swapping dynamic arrays element by element, but this
can be avoided by swapping the arrays as a whole.

The class std: :tr1::array<T,N> has a swap that calls std: : swap_range on an array of length N,
thus taking time proportional to N and depending on T. However, N is part of the type, so according to this
definition, it is constant time. Furthermore, if T is a swappable type (e.g., std: :string), swap_range will
perform much better than the three copy procedure, so the member swap is definitely an advantage.

¥If a is an array of T of length 2, then (char*) (&a[1])-(char*)(&a[0]) is a ptrdiff_t, which is at least as large as
sizeof(T). That means ptrdiff t is at least as large as int as well. This argument actually shows that every result of
sizeof can be stored in a ptrdiff_t. A generic size_t may not be stored in a ptrdiff_t, because sizeof is not
necessarily surjective—there may be a size_t value that is larger than every possible sizeof.

“For example, to create a copy of std: :string takes time proportional to the length of the string itself, so this depends
not only on the type, but also on the instance; alternatively, copying a double is a constant-time operation. Mathematically
speaking, the notion of “constant time” is not well defined in C++; the issue is too complex for a footnote, but we’ll sketch
the idea. An algorithm is 0(1) if its execution time is bounded by a constant K, for any possible input. If the number

of possible inputs is finite, even if it’s huge, the algorithm is automatically 0(1). For example, in C++ the sum of two

int is 0(1). In general, the C++ memory model has a finite addressable space (because all objects have a fixed size,

and an “address” is an object) and this implies that the number of possible inputs to some algorithms is finite. Quicksort
complexity is 0(N*1og(N)), but std: : sort may be formally considered 0(1), where—loosely speaking—the constant

K is the time required to sort the largest possible array.

58

CHAPTER 1 * TEMPLATES

The first problem to address is how to swap objects of unspecified type T:

template <typename T>
class TheClass

{
T theObj_; // how do you swap two objects of type T?
void swap(TheClass<T>& that)
std: :swap(theObj_, that.theObj);
}
};

The explicit qualification std: : is an unnecessary constraint. You'd better introduce a using declaration,
as seen in Section 1.3.7:

using std::swap;

template <typename T>
class TheClass

{
T theObj_;
public:
void swap(TheClass<T>& that) // line #1
swap(theObj_, that.theObj); // line #2
}
};

However, this results in a compiler error, because by the usual C++ name resolution rules, swap in line 2
is the swap defined in line 1, which does not take two arguments.
The solution, an idiom known as swap with ADL, is to introduce a global function with a different name:

using std::swap;

template <typename T>
inline void swap with ADL(T& a, T& b)

swap(a, b);

template <typename T>
class TheClass

{
T theObj_;

59

CHAPTER 1 © TEMPLATES

public:
void swap(TheClass<T>& that)

{
swap_with_ ADL(theObj , that.theObj);

Due to lookup rules, swap_with_ADL forwards the call to either a swap function defined in the same
namespace as T (which hopefully is T’s own version), or to std: : swap if nothing else exists. Since there’s no
local member function with a similar name, lookup escapes class level.

The traditional argument for swap is T& however, it may make sense to provide more overloads. If an
object internally holds its data in a standard container of type X, it might be useful to provide void swap(X&),
with relaxed time-complexity expectations:

template <typename T>
class sorted_vector

{

std::vector<T> data_;

public:
void swap(sorted vector<T>& that)

{
}

void swap(std::vector<T>& that)

data_.swap(that.data);

data_.swap(that);
std::sort(data_.begin(), data_.end());
}
};

And even more*':

struct unchecked_type t {};
inline unchecked type t unchecked() { return unchecked type t(); }

template <typename T>
class sorted_vector

{
/...
void swap(std::vector<T>& that, unchecked type t (*)())
{
assert(is_sorted(that.begin(), that.end()));
data_.swap(that);
}
b

4“'Compare with Section 2.3.1.

60

CHAPTER 1

sorted_vector<double> x;
std: :vector<double> t;

load_numbers_into(x);
x.swap(t);

// now x is empty and t is sorted
// later...

x.swap(t, unchecked); // very fast

To sum up:

e Explicitly qualify std: : swap with parameters of fixed native type (integers, pointers,
and so on) and standard containers (including string).

e Write a using declaration for std: : swap and call an unqualified swap when
parameters have undefined type T in global functions.

e Callswap_with_ADL inside classes having a swap member function.

std: : swap grants the best implementation for swapping both native and std types.
swap is used in algorithms with move semantics:

void doSomething(X& result)

{
X temp;
// perform some operation on temp, then...
swap(temp, result);
}

and in implementing an exception-safe assignment operator in terms of the copy constructor:

class X

{

public:
X(const X&);
void swap(X8&);

“X0);

X8 operator=(const X& that)

{
X temp(that); // if an exception occurs here, *this is unchanged
temp.swap(*this); // no exception can occur here
return *this; // now temp is destroyed and releases resources

}

};

TEMPLATES

61

CHAPTER 1 © TEMPLATES

If you perform an unconditional swap, the most efficient solution is to take the argument by value:

X& operator=(X that)
{
that.swap(*this);
return *this;

}

On the other hand, you might want to perform additional checks before invoking the copy constructor
by hand, even if it’s less efficient**:

X8 operator=(const X& that)

if (this != &that)
{
X temp(that);
temp.swap(*this);

return *this;

}

The drawback is that at some point, both that and temp are alive, so you may need more free resources
(e.g., more memory).

1.4.3. bool T::empty() const; void T::clear()

The former function tests whether an object is empty; the latter makes it empty. If an object has a member
function size(), then a call to empty() is expected to be no slower than size()==0.

Note that an object may be empty but still control resources. For example, an empty vector might hold
araw block of memory, where in fact no element has yet been constructed.

In particular, it’'s unspecified if a clear function will or won'’t release object resources; clear is a
synonym of reset.

To enforce resource cleanup of an auto variable, the usual technique is to swap the instance with a
temporary:

T x;
// now x holds some resources...
T().swap(x);

1.4.4. X T::get() const; X T::base() const

The name get is used when type T wraps a simpler type X. A smart pointer’s get would thus return the
internal plain pointer.

The function base instead is used to return a copy of the wrapped object, when the wrapper is just a
different interface. Since a smart pointer typically adds some complexity (for example, a reference count),
the name base would not be as appropriate as get. On the other hand, std: :reverse_iteratorisan
interface that swaps ++ and - - of an underlying iterator, so it has a base().

“Some objects may want to check in advance if overwrite is feasible. For example, if T is std: : string whose
size()==that.size() then it might be able to perform a safe memcpy.

62

CHAPTER 1 * TEMPLATES

1.4.5. X T::property() const; void T::property(X)

In this section, “property” is a symbolic name. A class can expose two overloaded member functions called
“property” with two different intents.

The first form returns the current value of the property for the current instance; the second sets the
property to some new value. The property-set function can also have the form:

X T::property(X newval)

const X oldval = property();
set_new_val(newval);
return oldval;

}

This convention is elegant but not universally used; it is present in std: : iostream.

1.4.6. Action(Value); Action(Range)

In this section, “action” is again a symbolic name for an overloaded function or member function.

If an object’s own action—for example container.insert(value)—is likely to be invoked sequentially,
an object may provide one or more range equivalents. In other words, it can provide member functions with
two or more parameters that identify a series of elements at a time. Some familiar examples are:

e Anelement and a repeat counter
e Two iterators pointing to (begin...end)
e Anarray and two indexes

It's up to the implementation to take advantage of the range being known in advance. As usual, the
range-equivalent function should never be worse than the trivial implementation action(range)
:= for (x in range) { action(x); }.

1.4.7. Manipulators

Manipulators are one of the least known and more expressive pieces of the C++ standard. They are simply
functions that take a stream as an argument. Since their signature is fixed, streams have a special insertion
operator that runs them:

class ostream

{
public:
ostream& operator<<(ostreamd (*F)(ostreamd))
{ return F(*this);
}
inline ostreamd endl(ostream& os)
{
0s << '\n';
return os.flush();
}
};

63

CHAPTER 1 © TEMPLATES

int main()

{
// actually execute endl(cout << "Hello world")
std::cout << "Hello world" << std::endl;

}

Some manipulators have an argument. The implementation may use a template proxy object to
transport this argument to the stream:

struct precision_proxy t

{
int prec;
};
inline ostream& operator<<(ostream& o, precision proxy t p)
{
o.precision(p.prec);
return o;
}
precision_proxy t setprecision(int p)
{
precision proxy t result = { p };
return result;
}

cout << setprecision(12) << 3.14;

Note that a more realistic implementation may want to embed a function pointer in the proxy, so as to
have only one insertion operator:

class ostream;

template <typename T, ostreamd (*FUNC)(ostream&, T)>
struct proxy

{
T arg;

proxy(const T& a)
: arg(a)
{
}
};

class ostream

{

public:
template <typename T, ostreamd (*FUNC)(ostreamd, T)>
ostream& operator<<(proxy<T, FUNC> p)

64

{
return FUNC(*this, p.arg);

}
};
ostream& global setpr(ostream& o, int prec)
{

o.precision(prec);

return o;
}
proxy<int, global setpr> setprecision(int p)
{

return p;
}

cout << setprecision(12) << 3.14;

CHAPTER 1

TEMPLATES

Note Observe that in classic C++ FUNC would just be a member:

template <typename T>
struct proxy

T arg;
ostream& (*FUNC)(ostream&, T);
};

class ostream

{
public:
template <typename T>
ostream& operator<<(proxy<T> p)

{

}
};

return p.FUNC(*this, p.arg);

In principle, a function template could be used as a manipulator, such as:

stream << manipi;

stream << manip2(argument);
stream << manip3<N>;

stream << manip4<N>(argument);

But in practice this is discouraged, as many compilers won’t accept manip3.

65

CHAPTER 1 © TEMPLATES

1.4.8. Position of Operators

It’s important to understand the difference between member and non-member operators.

When member operators are invoked, the left side has already been statically determined, so if any
adjustment is necessary, it’s performed only on the right side. Alternatively, non-member operators will only
match exactly or give errors.

Suppose you are rewriting std: :pair:

template <typename T1, typename T2>
struct pair

{
T1 first;
T2 second;
template <typename S1, typename S2>
pair(const pair<S1, S2>& that)
: first(that.first), second(that.second)
{
}
b

Now add operator==. First as a member:

template <typename T1, typename T2>
struct pair

{
/...
inline bool operator== (const pair<T1,T2>& that) const
{
return (first == that.first) 88 (second == that.second);
}
b

Then you compile the following code:

pair<int, std::string> P(1,"abcdefghijklmnop");
pair<const int, std::string> Q(1,"qrstuvwxyz");
if (P ==0)

{...}

This will work and will call pair<int, string>::operator==. This function requires a constant
reference to pair<int, string> andinstead it was given pair<const int, string>.It will silently invoke
the template copy constructor and make a copy of the object on the right, which is undesirable, as it will
make a temporary copy of the string.

It is slightly better to put the operator outside the class:

template <typename T1, typename T2>
bool operator== (const pair<T1,T2>& x, const pair<T1,T2>8 y)

{

}
66

return (x.first == y.first) 88 (x.second == y.second);

CHAPTER 1 * TEMPLATES

At least, this code will now fail to compile, since equality now requires identical pairs. Explicit failure is
always more desirable than a subtle problem.

Analogous to the classic C++ rule, “if you write a custom copy constructor, then you'll need a custom
assignment operator,” we could say that if you write a universal copy constructor, you'll likely need universal
operators, to avoid the cost of temporary conversions. In this case, use either a template member function
with two parameters or a global operator with four. Some programmers prefer global operators when it’s
possible to implement them using only the public interface of the class (as previously shown).

template <typename T1, typename T2 >
struct pair

{
/...
template <typename S1, typename S2>
inline bool operator== (const pair<S1, S2>& that) const
{
return (first == that.first) 88 (second == that.second);
}
b

This will work if this->first and that.first are comparable (for example, int and const int).
Note that you may still have temporary conversions, because you are delegating to an unspecified
T1::operator==."

1.4.9. Secret Inheritance

Public derivation from a concrete class can be used as a sort of “strong typedef”:

class A

{

// concrete class
/...

};

class B : public A
{

};

// now B works "almost" as A, but it's a different type

You may need to implement one or more “forwarding constructors” in B.

“Note that the best option is to demand that the paired objects provide suitable operators, so we delegate the comparison.
For example, pair<const char*, int> and pair<std::string, int> are unlikely to trigger the construction of
temporary strings, because we expect the STL to supply an operator==(const char*, const std::stringd).

67

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © TEMPLATES

This is one of the strategies to simulate template typedefs (which do not exist yet in C++; see
Section 12.6):

template <typename T1, typename T2>
class A

{
};

/1 ...

template <typename T>
class B : public AT, T>

{
};

However, this is acceptable only if A is a private class whose existence is unknown or undocumented:

template <typename T>
class B : public std::map<T, T> // bad idea

namespace std

{
template <...>
class map : public _Tree<...> // ok: class _Tree is invisible to the user

A secret base class is often a good container of operators that does not depend on some template
parameters. For example, it may be reasonable to test equality between two objects, ignoring all the
parameters that are purely cosmetic:

template <typename T, int INITIAL_CAPACITY = 16>
class C;

template <typename T>
class H

{
public:

H& operator==(const H&) const;
};

template <typename T, int INITIAL_CAPACITY>
class C : public H<T>

{
};

Comparisons between two containers C with a different INITIAL_CAPACITY will succeed and call their
common base H: :operator==.

68

CHAPTER 1 * TEMPLATES

1.4.10. Literal Zero

Sometimes you need to write a function or an operator that behaves differently when a literal zero is passed.
This is often the case with smart pointers:

template <typename T>
class shared ptr

{
/...
};

shared_ptr<T> P;
T Q;

7; // should not compile
0; // should compile
Q; // should compile

P
P
P

You can distinguish 0 from a generic int by writing an overload that accepts a pointer to member of a
class that has no members:

class dummy {};
typedef int dummy::*literal zero_t;

template <typename T>
class shared ptr

{
...

bool operator==(literal zero t) const

{

The user has no way of creating a literal zero_t, because dummy has no members of type int, so the
only valid argument is an implicit cast of a literal zero (unless a more specialized overload exists).

1.4.11. Boolean Type

Some types, such as std: : stream, have a cast-to-boolean operator. If implemented naively, this can lead to
inconsistencies:

class stream

{
/..

operator bool() const

/] ...
}
};

stream s;

69

CHAPTER 1 © TEMPLATES

if (s) // ok, that's what we want
{

int i =5+ 2; // unfortunately, this compiles
}

A classic workaround was to implement cast to void*:

class stream

{
/1 ...
operator void*() const
// return 'this' when true or '0' when false
}
};
stream s;
if (s) // ok, that's what we want
{
int i =5 + 2; // good, this does not compile...
free(s); // ...but this goes on
}

A better solution is again a pointer to member:

struct boolean_type t
{

};

int true_;

typedef int boolean_type t::*boolean_type;

#define mxt_boolean true &boolean type t::true_
#define mxt_boolean false 0

class stream

{
/..
operator boolean type() const
{
// return mxt_boolean_true or mxt_boolean_false
}

70

CHAPTER 1 * TEMPLATES

1.4.12. Default and Value Initialization

If T is a type, then the construction of a default instance does not imply anything about the initialization of
the object itself. The exact effect of

T x;

depends heavily on T. If T is a fundamental type or a POD, then its initial value is undefined. If T is a class,
it’s possible that some of its members are still undefined:

class A

{
std::string s_;
int i_;

public:

A() {} // this will default-construct s_ but leave i_ uninitialized

5
On the other hand, the line
Tx=T(0;

will initialize T to 0, say for all fundamental types, but it may crash if T is A, because it’s illegal to copy the
uninitialized member i_ from the temporary on the right into x.
So to sum up:

T a(); // error:
// a is a function taking no argument and returning T
// equivalent to T (*a)()

T b; // ok only if T is a class with default constructor
// otherwise T is uninitialized

T c(T(O)); // error: c is a function taking a function and returning T
// equivalent to T (*c)(T (*)())

Td={} // ok only if T is a simple aggregate* (e.g. a struct
// without user-defined constructors)
Te=T(); // requires a non-explicit copy constructor

// and may yield undefined behaviour at runtime

“The definition of “aggregate” changed in C++11, where uniform initialization was introduced. As the issue is quite
complex and detailed, readers may want to see the bibliography.

71

CHAPTER 1 © TEMPLATES

Value initialization (see paragraphs 8.5.1-7 of the standard) is a way to work around this problem. Since
it works only for class members, you have to write:

template <typename T>
struct initialized value

{

T result;

initialized value()
: result()
{
}
};

If T is a class with a default constructor, that will be used; otherwise, the storage for T will be set to 0. If T
is an array, each element will be recursively initialized:

initialized_value<double> x; // x.result is 0.0

initialized value<double [5]> y; // y.result is {0.0, ..., 0.0}
initialized value<std::string> z; // z.result is std::string()

1.5. Code Safety

The spirit of TMP is “elegance first” In theory, some techniques can open vulnerabilities in source code,
which a malicious programmer could exploit to crash a program.*
Consider the following situations:

#include <functional>

class unary_F : public std::unary_function<int,float>

{

public:
/...

};

int main()

{
unary F u;
std::unary_function<int,float>* ptr = &u; // ok, legal!
delete ptr; // undefined behaviour!
return 0;

}

“There may be a huge cost in increased complexity that comes from writing code “totally bulletproof”. Sometimes this
complexity will also inhibit some compiler optimizations. As a rule, programmers should always reason pragmatically
and accept the fact that code will not handle every possible corner case.

72

CHAPTER 1

The system header <functional> could make the counter-example fail by defining a protected
destructor in the unary_function:

template<class _Arg, class _Result>
struct unary_function
{
typedef _Arg argument_type;
typedef Result result_type;

protected:
~unary function()
{
}

};

But this in general does not happen.*
The following idea is due to Sutter ([4]):

myclass.h
class MyClass
{
private:
double x_;
int z_;

public:
template <typename stream_t>
void write x_to(stream t& y)

{
}

y << X_;
};

Is it possible to legally read/modify the private member MyClass: :z_? Just add a specialization
somewhere after including myclass.h:

struct MyClassHACK

{
};

template <>

void MyClass::write x to(MyClassHACK&)

{
// as a member of MyClass, you can do anything...
z_=3;

}

46See Section 1.6.

TEMPLATES

73

CHAPTER 1 © TEMPLATES

Finally, there are problems when declaring template friendship. First, there’s no standard and portable
way to declare friendship with a template parameter (refer to [5] for more details).

template <typename T, int N>
class test

friend class T; //uhm...

};

Second, there is no way to make test<T,N> a friend of test<T, J> (there is nothing like partial template
friendship). A common workaround is to declare test<T,N> a friend of test<X, J> for any other type X.

template <typename T, int N>
class test

{
template <typename X, int J>
friend class test; //0k, but every test<X,J> has access

};
The same malicious user, who wrote MyClassHACK, can add:

template <>
class test<MyClassHACK, 0>

{
public:
template <typename T, int N>
void manipulate(test<T,N>& x)
{
// a friend can do anything!

}

};

You'll see that TMP sometimes makes use of techniques that are correctly labeled bad practice in
conventional C++, including (but not limiting to):

e Lack of non-virtual protected destructor in (empty) base class
¢ Implementing cast operators operator T() const

¢ Declaring a non-explicit constructor with a single argument

1.6. Compiler Assumptions

Heavy usage of templates implies massive work for the compiler. Not all standard-conforming techniques
behave identically on every platform.*”

You denote by language-neutral idioms all the language features that don’t have a standard-prescribed
behavior but only a reasonable expected behavior. In other words, when you use language-neutral
idiom, you can expect that most compilers will converge on some (optimal) behavior, even if they are not
demanded by the standard to do so.

“'By platform, usually we mean the set { processor, operating system, compiler, linker }.

74

CHAPTER 1 * TEMPLATES

Note For example, the C++ standard prescribes that sizeof(T)>0 for any type T, but does not require the
size of a compound type to be minimal. An empty struct could have size 64, but we expect it to have size 1
(or at worst, a size not larger than a pointer).

A standard-conforming compiler can legally violate the optimality condition, but in practice, such a
situation is rare. In other words, a language-neutral idiom is a language construction that does not make a
program worse, but gives a nice opportunity of optimization to a good compiler.

Several possible problems can arise from a perfect standard-conforming code fragment:

e Unexpected compiler errors

e Failures at runtime (access violations, core dumps, blue screens, and panic
reactions)

e Huge compilation/link time
e Suboptimal runtime speed

The first two issues are due to compiler bugs and involve finding a language workaround (but the
second one is usually met when it’s too late).

The third problem mostly depends on poorly written template code.

The fourth problem involves finding language-neutral idioms that are not recognized by the optimizer
and therefore unnecessarily slow down the program execution.

An example of expected behavior we do care about is the addition of an empty destructor to a base
class.

class base
{
public:
void do_something() {}

protected:
~base() {}

)

class derived : public base

{
};

Since the empty destructor adds no code, we expect the executable to be identical both with and
without it.*®

The compiler will be assumed able to understand and deal optimally with the situations listed in the
next paragraphs.

“8From empirical analysis, it looks like sometimes a protected empty destructor inhibits optimizations. Some
measurements have been published in [3].

75

CHAPTER 1 © TEMPLATES

1.6.1. Inline

The compiler must be able to manage function inlining by itself, ignoring the inline directives and the code
positioning (where the body of the member functions is written).

The all-inline style places definitions and declarations inside the body of the class; every member
function is implicitly inline:

template <typename T>
class vector

{
public:
bool empty() const
{
// definition and declaration
}
b

The merged header style splits definitions and declarations of non-inline member functions, but keeps
them in the same file:

template <typename T>
class vector

{
public:
bool empty() const; // declaration, non inline

)

template <typename T>
bool vector <T>::empty() const

{
}

// definition

In any case, whether you explicitly write it or not, the inline directive is just more than a hint. Some
popular compilers indeed have an option to inline any function at the compiler’s discretion.
Specifically, we assume that

e Asequence of inline functions is always “optimal” if the functions are simple enough,
no matter how long the sequence is:

template <typename T, int N>
class recursive

{

recursive<T,N-1> 1_;
public:
int size() const

{
}

return 1 + r_.size();

};

76

CHAPTER 1 * TEMPLATES

template <typename T>
class recursive<T, 0>

{
public:
int size() const
{
return 0;
}
};

In the previous construction, recursive<T,N>::size() will be inlined and the optimizer will simplify
the call down to return N.*

e The compiler can optimize a call to a (const) member function of a stateless object,
the typical case being binary relation’s operator().

It’'s a common STL idiom to let a class hold a copy of a functor as a private member:

template <typename T>
struct less

{

bool operator()(const T& x, const T& y) const

return x<y;

}
};
template < typename T, typename less t = std::less<T> >
class set
{

less t less_; // the less functor is a member
public:

set(const less t& less = less t())
: less (less)

{

}

void insert(const T& x)

{
/...
if (less_(x,y)) // invoking less t::operator()
/...

}

};

“Notethat recursive<T, -1> will not compile.

7

CHAPTER 1 © TEMPLATES

If the functor is indeed stateless and operator () is const, the previous code should be equivalent to:

template <typename T>
struct less

{
static bool apply(const T& x, const T& y)
{
return x<y;
}
};
template < typename T, typename less t = std::less<T> >
class set
{
public:
void insert(const T& x)
{
/7 ...
if (less_t::apply(x,y))
{}
}
};

However, you pay for the greater generality since the less_member will consume at least one byte of
space. You can solve both issues if the compiler implements the EBO (empty base optimization).

class stateless_base

{
};

class derived : public stateless base

{
};

/...

In other words, any derivation from a stateless base will not make the derived class larger.*”* If less is
actually a stateless structure, the EBO will not add extra bytes to the layout of set.

template <typename T>
struct less

{
bool operator()(const T& x, const T& y) const

return x<y;
}
};

Most compilers implement this optimization, at least in the case of single inheritance.

78

CHAPTER 1 * TEMPLATES

template < typename T, typename less t = std::less<T> >
class set : private less t

{

inline bool less(const T& x, const T& y) const

{

}

public:
set(const less t& 1 = less t())
: less t(1)
{
}

void insert(const T& x)

{

return static_cast<const less t& (*this)(x,y);

/...
if (less(x,y)) // invoking less t::operator() through *this
{}
}
};

Note the auxiliary member function less, which is intended to prevent conflicts with any other
set::operator().

1.6.2. Error Messages

You would like a compiler to give precise and useful error diagnostics, especially when dealing with templates.
Unfortunately, the meaning of “precise” and “useful” may not be the same for a human and a compiler.

Sometimes TMP techniques specifically induce the compiler to output a hint in the error message. The
user, on the other hand, should be ready to figure out the exact error from some keywords contained in the
compiler log, ignoring all the noise. Here’s an example of noise:

\include\algorithm(21) : error 'void DivideBy10<T»::operator ()(T &) const' : cannot convert
parameter 1 from 'const int' to 'int &'

with

[

]

Conversion loses qualifiers

iterator.cpp(41) : see reference to function template instantiation ' Fni
std: :for_each<XT::pair_iterator<iterator t,N>,DivideBy10<T>>(_InIt, InIt, Fn1)'
being compiled

with

[

T=int

_Fn1= DivideBy10<int>,

iterator_t=std:: Tree<std:: Tmap_traits<int,double,std::less<int>,std::allocator
<std::pair<const int,double>>,false>>::iterator,

N=1,

T=int,
_InIt=XT::pair_iterator<std:: Tree<std:: Tmap_traits<int,double,std::less<int>,
std::allocator<std: :pair<const int,double>>,false>>::iterator,1>

79

CHAPTER 1 © TEMPLATES

Here’s what the user should see:

iterator.cpp(41) : error in 'std::for_each (iterator, iterator, DivideByio<int>)'
with
iterator = XT::pair_iterator<std::map<int, double>::const_iterator, 1>

'void DivideBy10<T»::operator ()(T &) const' : cannot convert parameter 1 from 'const int'
to 'int &'

This means that the caller of for_each wants to alter (maybe divide by 10?) the (constant) keys of a
std: :map, which is illegal. While the original error points to <header>, the true problem is in iterator.cpp.
Unfriendly entries in error messages happen because the “bare bones error” that the compiler sees may
be “distant” from the semantic error.

Long Template Stack

As shown previously, a function template can report an error, due to a parameter passed from its callers.
Modern compilers will list the whole chain of template instantiations. Since function templates usually rely
on template frameworks, these errors are often several levels deep in the stack of function calls.

Implementation Details

In the previous example, the compiler shows std: :_Tree instead of std: :map because map: : iterator
happens to be defined in a separate base class (named _Tree). std: :map has a public typedef that borrows
an iterator from its base class:

typedef typename _Tree<...>::iterator iterator;

These implementation details, which are usually hidden from the user of std: :map, may leak in the
error log.

Expanded Typedefs

An error with std: : string may show up as std: :basic_string<char, ...>because some compilers will
replace typedefs with their definition. The substitution may introduce a type that’s unknown to the user.
However, it is truly impossible for the compiler to decide whether it’s convenient or not to perform
these substitutions.
Suppose there are two metafunctions called F<T1>: :type and G<T2>: : type:

typedef typename G<T>::type GT;
typedef typename F<GT>::type FGT;

An error may occur

e When Tis not a valid argument for G, and in this case you'd like to read:

error "F<GT> [where GT=G<int>::type]...".

80

CHAPTER 1 * TEMPLATES

e Because G<T>: :type (which is defined but unknown to the user) is rejected by F, so it
may be more useful:

error "F<GT> [where GT=double]...".

However, if you don’t know the result of G, a log entry such as F<X> [where X=double]... canbe
misleading (you may not even be aware that you are invoking F<double>).

Incomplete Types

If wisely used, an incomplete type can cause a specific error (see Section 2.2). However, there are situations

where a type is not yet complete and this may cause bizarre errors. A long, instructive example is in Appendix A.
As arule, when a compiler says that “a constant is not a constant” or that “a type is not a type,” this usually

means that you are either defining a constant recursively or are using a not-yet-complete class template.

1.6.3. Miscellaneous Tips

Regardless of assumptions, real compilers can do any sort of things, so this section outlines a few generic tips.

Don’t Blame the Compiler

Bugs can lie:
e In the code, with probability (100-¢)%
e In the optimizer, with probability slightly greater than (¢/2)%
¢ In the compiler, with probability less than (¢/2)%

Even problems that show up only in release builds are rarely due to optimizer bugs. There are some
natural differences between debug and release builds, and this may hide some errors in the program.
Common factors are #ifdef sections, uninitialized variables, zero-filled heap memory returned by debug
allocators, and so on.

Compilers do have bugs, but a common misconception is that they show up only in release builds.
The following code, compiled by MSVC7.1, produces the right values in release and not in debug:

#include <iostream>

int main()

{
unsigned _ int64 x = 47;
inty = -1;
bool testl = (x+y)<0;
X += Y;
bool test2 = (x<0);
bool test3 = (x<0);

std::cout << testl <« test2 << test3; // it should print 000

return 0;

81

CHAPTER 1 © TEMPLATES

GCC4 in Mac OSX in debug builds does not warn the user that there are multiple main functions in a
console program and it silently produces a do-nothing executable.*

Keep Warnings at the Default Level

A warning is just a guess. All compilers can recognize “idioms” that can be, with some probability, a
symptom of human errors. The higher the probability is, the lower the warning level. Displaying top-level
warnings is very unlikely to reveal an error, but it will flood the compiler log with innocuous messages.*

Do Not Silence Warnings with “Dirty” Code Modifications

If some particular warning is annoying, legitimate, and probably not an error, don’t modify the code. Place
a compiler-specific #pragma disable-warning directive around the line. This will be useful to future code
reviewers.

However, this solution should be used with care (a warning in a deeply-nested function template might
generate many long, spurious entries in the compiler log).

One of the most dangerous warnings that should rnot be fixed is the “signed/unsigned comparison”

Many binary operations between mixed operands involve the promotion of both to unsigned, and
negative numbers become positive and very large.* Compilers will warn in some—not all—of these
situations.

bool f(int a)
{
unsigned int c = 10;
return ((a+5)<c);
}
testol.cpp(4) : warning C4018: '<' : signed/unsigned mismatch

The function returns true for a € {-5,-4,...,4}. If you change c to int, the warning disappears, but the
function will behave differently.
The same code in a metafunction produces no warning at all:

template <int A>
class BizarreMF

{
static const int B = 5;
static const unsigned int C = 10;
public:
static const bool value = ((A+B)<C);
};
bool t = BizarreMF<-10>::value; // returns false

S'Mac OS X 10.4.8, XCode 2.4.1, GCC 4.01.
2Set warnings at maximum level only once, in the very last development phase or when hunting for mysterious bugs.
33See 3.7.2 in the standard.

82

CHAPTER 1 * TEMPLATES

In real code, two situations are likely vulnerable to “signedness bugs”:

e Updating a metafunction return type from enum to a static unsigned constant:

static const bool value = (A+5) < OthexrMF<B»::value;
// unpredictable result: the type of OtherMF is unknown / may vary

e Changing a container:

The C++ standard does not define univocally an integer type for array indices. If p
has type T*, then p[i] == *(p+i), so i should have type ptrdiff_t, which is signed.
vector<T>: :operator[] however takes an unsigned index.

To sum up, warnings are:
e Compiler specific

e Notrelated to code correctness (there exist both correct code that produces warnings
and incorrect code that compiles cleanly)

Write code that produces the least warnings possible, but not less.

Maintain a Catalog of Compiler Bugs

This will be most useful when upgrading the compiler.

Avoid Non-Standard Behavior

This advice is in every book about C++, but we repeat it here. Programmers®* tend to use their favorite
compiler as the main tool to decide if a program is correct, instead of the C++ standard. A reasonable
empirical criterion is to use two or more compilers, and if they disagree, check the standard.

Don’t Be Afraid of Language Features

Whenever there’s a native C++ keyword, function, or std: : object, you can assume that it’s impossible to do
better, unless by trading some features.>

It’s usually true that serious bottlenecks in C++ programs are related to a misuse of language features
(and some features are more easily misused than others; candidates are virtual functions and dynamic
memory allocation), but this does not imply that these features should be avoided.

Any operating system can allocate heap memory fast enough that a reasonable number of calls to
operator new will go unnoticed.*

Some compilers allow you to take a little memory from the stack via a function named alloca; in
principle, alloca followed by a placement new (and an explicit destructor call) is roughly equivalent to new,
but it incurs alignment problems. While the standard grants that heap memory is suitably aligned for any
type, this does not hold for a stack. Even worse, building objects on unaligned memory may work by chance
on some platforms and, totally unobserved, may slow down all data operations.*”

*Including the author of this book.

350f course, there are known exceptions to this rule: some C runtime functions (sprintf, floor) and even a few STL
functions (string: :operator+).

SReleasing memory may be a totally different matter, anyway.

370n AMD processors, double should be aligned to an 8-byte boundary; otherwise, the CPU will perform multiple
unnecessary load operations. On different processors, accessing an unaligned double may instantly crash the program.

83

CHAPTER 1 © TEMPLATES

The opposite case is trading features. It is sometimes possible to do better than new under strong extra
hypotheses; for example, in a single threaded program where the allocation/deallocation pattern is known:

// assume T1 and T2 are unspecified concrete types, not template parameters
std: :multimap<T1, T2> m;
while (m.size()>1)

std::multimap<T1, T2>::iterator one
std::multimap<T1, T2>::iterator two

««.; // pick an element.
...; // pick another one.

std::pair<T1, T2> new_element = merge elements(*one, *two);

m.erase(one); // line #1
m.erase(two); // line #2
m.insert(new_element); // line #3

}

Here you may hope to outperform the default new-based allocator, since two deletions are always
followed by a single allocation. Roughly speaking, when this is handled by system new/delete, the operating
system has to be notified that more memory is available in line #2, but line #3 immediately reclaims the
same amount of memory back.*®

Think About What Users of Your Code Would Do

Human memory is not as durable as computer memory. Some things that may look obvious or easily
deducible in classic C++ may be more difficult in TMP.
Consider a simple function such as:

size t find_number in_string(std::string s, int t);

You can easily guess that the function looks for an occurrence of the second argument within the first.
Now consider:

template <typename T, typename S>
size t find number in string(S s, T t);

8In an empirical test on a similar algorithm, a map with a custom allocator improved the whole program by 25%. A general
strategy is to reserve memory in chunks and free them with some degree of laziness.

84

CHAPTER 1 * TEMPLATES

While this may look natural to the author (S stands for string, after all), we should consider some
memory-helping tricks.

e Any IDE with code completion will show the argument names:

template <typename T, typename S>
size t find number in string(S str, T number);

template <typename NUMBER_T, typename STRING T>
size t find_number_in_string(STRING T str, NUMBER_T number);

e Insert one line of comment in the code before the function; an IDE could pick it up
and show a tooltip.

e Adopt some convention for the order of arguments, or the result type
(like C’s memcpy).

1.7. Preprocessor
1.7.1. Include Guards

As already mentioned, a project is usually spread across many source files. Each file must be organized such
that all dependencies and prerequisites are checked by the included file, not by the caller. In particular,
header inclusion should never depend on the order of #include statements.

file "container.hpp"

#include <vector> // dependency is resolved here, not outside
#ifdef _WIN32 // preconditions are checked here

#error This file requires a 128-bit operating system. Please, upgrade.
#endif

template <typename T>
class very large container

{

// internally uses std::vector...
};
Most frameworks end up having a sort of root file that takes care of preparing the environment:
e Detection of the current platform
e Translation of compiler-specific macros to framework macros
e Definition of general macros (such as MXT_NAMESPACE_BEGIN)
e Inclusion of STL headers
e Definition of lightweight structures, typedefs, and constants

All other headers begin by including the root file, which is rarely modified. This will often decrease
compilation time, since compilers can be instructed to distill a pre-compiled header from the root file.

85

CHAPTER 1 © TEMPLATES

An example follows:

LILIITTII2000071107070777177070777177777777117777777111177777111117117
// platform detection

#if defined(_MSC_VER)

#define MXT_INT64 _ int64
#elif defined(__GNUC_)
#define MXT_INT64 long long
f#else

/...

#endif

LILITTIIIL00000 1170077777 777007777777077771177177777111117771111117111
// macro translation
// the framework will rely on MXT_DEBUG and MXT_RELEASE

#if defined(DEBUG) || defined(DEBUG) || !defined(NDEBUG)
#define MXT_DEBUG

#else

#define MXT_RELEASE

#endif

IILTILLTII07170771770770777177077777171771717717777117717171171771111771
// general framework macros

#tdefine MXT_NAMESPACE BEGIN(x) namespace x {
#tdefine MXT_NAMESPACE END(x) }

[I1107777777777777771777777777777777777777777777777771117171171117171171171711177
// STL

#include <complex>

#include <vector>

#include <map>

#include <utility>
HITTILLIIILTI00071007770077107171771707711707717177111771117111171111117

using std::swap;
using std::size_t;

typedef std::complex<double> dcmplx;
typedef unsigned int uint;

[117777177717777777777777777777777777777777777771777117177171171171177111717171177

struct empty

};

86

CHAPTER 1 * TEMPLATES

According to the basic include guard idiom, you should enclose each header in preprocessor directives,
which will prevent multiple inclusions in the same translation unit:

#ifndef MXT_filename_
#define MXT_filename_

// put code here
#endif //MXT_filename_

As a small variation of this technique, you can assign a value to MXT_filename_. After all, the whole
point of this book is storing information in unusual places:

#ifndef MXT_filename_
#define MXT_filename_ 0x1020 // version number

// put code here
#endif //MXT_filename_
#include "filename.hpp"
#if MXT_filename_ < 0x1010
#error You are including an old version!
#endif
Anyway, such a protection is ineffective against inclusion loops. Loops happen more frequently in TMP,
where there are only headers and no *. cpp file, so declarations and definitions either coincide or lie in the
same file.
Suppose A. hpp is self-contained, B. hpp includes A. hpp, and C. hpp includes B. hpp.
// file "A.hpp"

#ifndef MXT_A_
#define MXT_A_ 0x1010

template <typename T> class A {};
#endif
// file "B.hpp"

#ifndef MXT B_
#define MXT_B _ 0x2020

#include "A.hpp"
template <typename T> class B {}; // B uses A

#endif

87

CHAPTER 1 © TEMPLATES

Later, a developer modifies A. hpp so that it includes C. hpp.
// file "A.hpp"
#ifndef MXT_A_
#define MXT_A_ 0x1020
#include "C.hpp"
Now unfortunately, the preprocessor will produce a file that contains a copy of B before A:

// MXT_A_ is not defined, enter the #ifdef
#define MXT_A_ 0x1020

// A.hpp requires including "C.hpp"

// MXT_C_ is not defined, enter the #ifdef
#define MXT_C_ 0x3030

// C.hpp requires including "B.hpp"
// MXT_B_ is not defined, enter the #ifdef
#define MXT_B _ 0x2020
// B.hpp requires including A.hpp
// however MXT_A is already defined, so do nothing!
template <typename T> class B {};
// end of include "B.hpp"
template <typename T> class C {};
// end of include "C.hpp"
template <typename T> class A {};
This usually gives bizarre error messages.
To sum up, you should detect circular inclusion problems where a file includes (indirectly) a copy of
itself before it has been fully compiled.

The following skeleton header helps (indentation is for illustration purposes only).

#ifndef MXT_filename_
#define MXT_filename_ 0x0000 // first, set version to "null"

#include "other_header.hpp"
LILITIIITI0000700717007107771177177771177117177111771117111777
MXT_NAMESPACE BEGIN(framework)
LIPTIILTTI0001700717000710771710717177111711117111771117111171

// write code here

88

CHAPTER 1 * TEMPLATES

LILTIIITTI000070071700710077107711777111771171771117711171111771
MXT_NAMESPACE_END(framework)
HIPITLLTIIL001700717000000777100717077111711717111771117111171

// finished! remove the null guard
#undef MXT_filename_

// define actual version number and quit
#define MXT_filename_ 0x1000

#else // if guard is defined...
#if MXT_filename_ == 0x0000 // ...but version is null
#error Circular Inclusion // ...then something is wrong!
#endif

#endif //MXT_filename_

Such a header won't solve circular inclusion (which is a design problem), but the compiler will diagnose

it as soon as possible. Anyway, sometimes it might suffice to replace the #error statement with some
forward declarations:

#ifndef MXT_my vector_
#define MXT_my vector_ 0x0000

template <typename T>
class my_vector

{
public:
/...
};

#undef MXT_my vector_
#define MXT_my vector 0x1000

#else
#if MXT_my_vector_ == 0x0000

template <typename T>
class my_vector;

#endif

#endif //MXT_my vector_

89

CHAPTER 1

TEMPLATES

1.7.2. Macro Expansion Rules

A smart use of macros can simplify metaprogramming tasks, such as automation of member function
generation. We briefly mention the non-obvious preprocessor rules here*:

The token-concatenation operator ## produces one single token from the
concatenation of two strings. It’s not just a “whitespace elimination” operator. If the
result is not a single C++ token, it’s illegal:

#tdefine M(a,b,c) a #i#b ## c

e

S

~+

—
I

= M(3,+,2); // error, illegal: 3+2 is not a single token
M(0,x,2); // ok, gives 0Ox2

.
S
~+
(-]
n

The stringizer prefix # converts text® into a valid corresponding C++ string, thus it
will insert the right backslashes, and so on.

Generally macro expansion is recursive. First, arguments are completely expanded,
then they are substituted in the macro definition, then the final result is again
checked and possibly expanded again:

#define A1 100
#define A2 200
#tdefine Z(a,b) a #tt b

Z(A, 1); // expands to A1, which expands to 100
Z(A, 3); // expands to A3

The two operators # and ##, however, inhibit macro expansion on their arguments, so:
Z(B, A1); // expands to BA1, not to B100

To make sure everything is expanded, you can add an additional level of indirection
that apparently does nothing:

#tdefine Y(a,b) a ## b
#define Z(a,b) Y(a,b)

Z(B,A1);

// expands first to Y(B,A1). Since neither B nor Al is an operand
// of #or ##, they are expanded, so we get Y(B,100),

// which in turn becomes B100

*For a complete reference, consider the GNU manual http://gcc.gnu.org/onlinedocs/cpp.pdf.
Tt can be applied only to a macro argument, not to arbitrary text.

90

http://gcc.gnu.org/onlinedocs/cpp.pdf

CHAPTER 1 * TEMPLATES

e Macros cannot be recursive, so while expanding Z, any direct or indirect reference to
Z is not considered:

#define X Z
#define Z X+Z

Z;

// expands first as X+Z. The second Z is ignored; then the first X
// is replaced by Z, and the process stops,
// so the final result is "Z+Z"

e Apopular trick is to define a macro as itself. This is practically equivalent to an
#undef, except that the macro is still defined (so #ifdef and similar directives don’t
change behavior).

#define A A
As afinal recap:

#define A 1

#tdefine X2(a, b) const char* c#t#fa = b

#tdefine X(x) X2(x, #x)

#tdefine Y(x) X(x)

X2(A, "A"); // > const char* c##A = "A" > const char* cA = "A";
X(A); /1 > X2(A, #A) > X2(1, "A") > const char* c1 = "A";
Y(A); /1 > X(A) 2> X(1) > X2(1, "1") > const char* c1 = "1";

Observe that, in this code, X may look just as a convenience shortcut for X2, but it’s not. Normally you
cannot observe the difference, but before X expands to X2, argument expansion occurs, something that direct
invocation of X2 could have prevented.

How safe is it to replace a macro that defines an integer with a constant (either enum or static const
int)? The answer is in the previous code snippet. After the change, preprocessor tricks will break:

//#define A 1
static const int A = 1;

/7 ...

X(A); // const char* cA = "A";
Y(A); // const char* cA =

I
=
- c-

But if A is not guaranteed to be a macro, the replacement should be transparent.®!

®!Some C libraries, for example, list all the possible error codes without specifying the exact nature of these constants.
In this case, they should be used as enums. In particular, it should be safe to undefine them, if they happen to be macros,
and to replace them with real enumerations.

91

CHAPTER 1 © TEMPLATES

One more rule that is worth mentioning is that the preprocessor respects the distinction between
macros with and without arguments. In particular it will not try to expand A followed by an open bracket,
and similarly for X not followed by a bracket. This rule is exploited in a popular idiom that prevents
construction of unnamed instances of a type C*:

template <typename T>
class C

{
public:
explicit C([[one argument here]]);

};
#define C(a) sizeof(sorry anonymous instance not_allowed from ## a)

C x("argument"); // ok: C not followed by bracket is not expanded
return C("temporary"); // error: the sizeof statement does not compile

Finally, since many template types contain a comma, it’s not generally possible to pass them safely
through macros:

#define DECLARE_x OF TYPE(T) T x

DECLARE_x_OF TYPE(std::map<int, double>); /* error:
ANANANNANNNNNNAN ANANANANNAN -two arguments */

There are several workarounds for this:

e Extra brackets (as a rule, this is unlikely to work, as in C++ there’s not much use for a
type in brackets):

DECLARE_x_OF _TYPE((std::map<int, double>));
// > (std::map<int, double>) x; > error

e Atypedef will work, unless the type depends on other macro arguments:

typedef std::map<int, double> map_int_double;
DECLARE_x_OF TYPE(map_int_double);

e Another macro:
#define mxt APPLY2(T, T1, T2) T< T1, T2 >

DECLARE x OF TYPE(mxt APPLY2(std::map,int,double));

©2This example will actually be clear only after reading Section 2,2.

92

CHAPTER 2

Small Object Toolkit

The previous chapter focused on the connection between template programming and style. In short,
templates are elegant, as they allow you to write efficient code that looks simple because they hide the
underlying complexity.
If you recall the introductory example of sq from Chapter 1, it’s clear that the first problem of TMP is
choosing the best C++ entity that models a concept and makes the code look clear at the point of instantiation.
Most classic functions use internally temporary variables and return a result. Temporary variables are
cheap, so you must give the intermediate results a name to increase the readability of the algorithm:

int n_dogs = GetNumberOfDogs();
int n_cats = GetNumberOfCats();

int n_food_portions = n_dogs + n_cats;
BuyFood(n_food_portions);

In TMP, the equivalent of a temporary variable is an auxiliary type.

To model a concept, we will freely use lots of different types. Most of them do nothing except “carry a
meaning in their name,” as in n_food_portions in the previous example.

This is the main topic of Section 2.3.

The following paragraphs list some extremely simple objects that naturally come up as building blocks of
complex patterns. These are called “hollow,” because they carry no data (they may have no members at all).
The code presented in this chapter is freely reused in the rest of the book.

2.1. Hollow Types
2.1.1. instance_of

One of the most versatile tools in metaprogramming is instance_of:

template <typename T>
struct instance of

{
typedef T type;

instance_of(int = 0)
{
}

};

93

CHAPTER 2 © SMALL OBJECT TOOLKIT

The constructor allows you to declare global constants and quickly initialize them.

const instance_of<int> I_INT = instance_of<int>(); // ok but cumbersome
const instance_of<double> I_DOUBLE = 0; // also fine.

Note Remember that a const object must either be explicitly initialized or have a user-defined default
constructor. If you simply write

struct empty
empty() {}
const empty EMPTY;

the compiler may warn that EMPTY is unused. A nice workaround to suppress the warning is in fact:

struct empty

{
empty(int = 0) {}

)

const empty EMPTY = 0;

2.1.2. Selector

A traditional code in classic C++ stores information in variables. For example, a bool can store two different
values. In metaprogramming, all the information is contained in the type itself, so the equivalent of a bool is
a (template) type that can be instantiated in two different ways. This is called a selector:

template <bool PARAMETER>
struct selector

{

b

typedef selector<true> true_ type?;
typedef selector<false> false type;

Note that all instances of selector<true> convey the same information. Since their construction is
inexpensive, instance_of and selector are both useful to replace explicit template parameter invocation:

template <bool B, typename T>
void f(const T& x)

{

}

'Readers who are familiar with modern C++ will recognize that such a typedef already exists in namespace std. I will say
more on this argument in Section 12.1.

94

CHAPTER 2 © SMALL OBJECT TOOLKIT

int main()

double d = 3.14;
f<true>(d); // force B=true and deduce T=double

)

Or equivalently:

template <typename T, bool B>
void f(const T& x, selector)

{
}
int main()
{
double d = 3.14;
f(d, selector<true>()); // deduce B=true and T=double
};

One of the advantages of the latter implementation is that you can give a meaningful name to the
second parameter, using a (cheap) constant:

const selector<true> TURN_ON DEBUG_LOGGING;

/...

double d = 3.14;

f(d, TURN_ON_DEBUG_LOGGING); // deduce B=true and T=double

2.1.3. Static Value

The generalization of a selector is a static value:

template <typename T, T VALUE>
struct static_parameter

{

};

template <typename T, T VALUE>
struct static_value : static_parameter<T, VALUE>
{

static const T value = VALUE;

};

Note that you could replace selector with static_value<bool, B>.In factfrom now on, you can
assume that the implementation of the latter is the same.?

In a static_value, T must be an integer type; otherwise, the static const initialization becomes illegal.
Instead, in static_parameter, T can be a pointer (and VALUE can be a literal zero).

2You could let selector derive from the other, but you can’t assume explicitly that they are convertible. Under C++0x, you
could also write a template typedef with the new using notation (see Section 12.6).

95

CHAPTER 2 © SMALL OBJECT TOOLKIT

A member cast operator may be added to allow switching from a static constant to a runtime integer*:

template <typename T, T VALUE>
struct static_value : static_parameter<T, VALUE>

{
static const T value = VALUE;

operator T () const

return VALUE;
}

static_value(int = 0)
{
}

};

So you can pass an instance of static_value<int, 3> to afunction that requires int. However, it’s
usually safer to write an external function:

template <typename T, T VALUE>
inline T static_value_cast(static_value<T, VALUE>)

{
};

return VALUE;

2.1.4. Size of Constraints

The C++ standard does not impose strict requirements on the size of elementary types* and compound types
can have internal padding anywhere between members.

Given a type T, say you want to obtain another type, T2, whose sizeof is different.

A very simple solution is:

template <typename T>
class larger than

T body [2]; // private, not meant to be used

)

It must hold that sizeof(T)<2*sizeof(T)£sizeof(larger_ than<T>). However, the second inequality
can be indeed strict, if the compiler adds padding (suppose T is char and any struct has a minimum size of
four bytes).

The most important use of this class is to define two types (see Section 4.2.1):

typedef char no_type;
typedef larger than<no_type> yes type;

3See also Section 4.12.
*Only weak ordering is granted: 1=sizeof(char)<sizeof(short)<sizeof(int)<sizeof(long).

96

CHAPTER 2 © SMALL OBJECT TOOLKIT

Warning These definitions are not compatible with C++0x std: : false_type and std: : true_type, which
instead are equivalent to static_value<bool, false> and static_value<bool, true>.

In practice, you can safely use char, whose size is 1 by definition, and ptrdiff t (in most platforms a
pointer is larger than one byte).
It is possible to declare a type having exactly size N (with N>0):

template <size t N>
struct fixed_size
{

typedef char type[N];

};

So that sizeof(fixed size<N>::type) == N.

Note that fixed_size<N> itself can have any size (at least N, but possibly larger).

Remember that it’s illegal to declare a function that returns an array, but a reference to an array is fine
and has the same size®:

fixed size<3>::type f(); // error: illegal
int three = sizeof(f());
fixed size<3>::typed f(); // ok

int three = sizeof(f()); // ok, three ==

2.2. Static Assertions

Static assertions are simple statements whose purpose is to induce a (compiler) error when a template
parameter does not meet some specification.

Iillustrate here only the most elementary variations on the theme.

The simplest form of assertion just tries fo use what you require. If you need to ensure that a type T
indeed contains a constant named value or a type named type, you can simply write:

template <typename T>
void myfunc()

{
typedef typename T::type ERROR_T_DOES_NOT_CONTAIN_type;

const int ASSERT T MUST HAVE STATIC CONSTANT value(T::value);
};

If T is not conformant, you will get an error pointing to a sort of “descriptive” line.
For more complex assertions, you can exploit the fact that an incomplete type cannot be constructed, or
that sizeof(T) causes a compiler error if T is incomplete.

>This remark will be clear in view of the material presented in Section 4.2.1.

97

CHAPTER 2 © SMALL OBJECT TOOLKIT

2.2.1. Boolean Assertions

The easiest way to verify a statement is to use a selector-like class whose body is not present if the condition
is false:

template <bool STATEMENT>
struct static_assertion

{
};

template <>
struct static_assertion<false>;

int main()

{
static_assertion<sizeof(int)==314> ASSERT LARGE_INT;
return 0;

}

error C2079: 'ASSERT_LARGE_INT' uses undefined struct 'static_assertion<false>'

All variations on the idiom try to trick the compiler into emitting more user-friendly error messages.
Andrei Alexandrescu has proposed some enhancements. Here’s an example.

template <bool STATEMENT>
struct static_assertion;

template <>
struct static_assertion<true>

{ static_assertion()
{}
template <typename T>
static_assertion(T)
{1

b

template <> struct static_assertion<false>;
struct error CHAR IS UNSIGNED {};

int main()

{

const static_assertion<sizeof(double)!=8> ASSERT1("invalid double");
const static_assertion<(char(255)>0)> ASSERT2(error CHAR IS UNSIGNED());
}

If the condition is false, the compiler will report something like, “cannot build static_assertion<false>
from error CHAR_IS UNSIGNED”

98

CHAPTER 2 © SMALL OBJECT TOOLKIT

Each assertion wastes some bytes on the stack, but it can be wrapped in a macro directive using sizeof:
#tdefine MXT_ASSERT(statement) sizeof(static_assertion<(statement)>)
The invocation
MXT_ASSERT(sizeof(double)!=8);

will translate to [[some integer]] if successful and to an error otherwise. Since a statement like 1 is a no-op,
the optimizer will ignore it.
The very problem with macro assertions is the comma:

MXT_ASSERT(is well defined< std::map<int, double> >::value);
/7 "

// comma here

//

// warning or error! MXT_ASSERT does not take 2 parameters

The argument of the macro in this case is probably the string up to the first comma (is_well_defined<
std: :map<int), so even if the code compiles, it won’t behave as intended.

Two workarounds are possible—you can either typedef away the comma or put extra brackets around
the argument:

typedef std::map<int, double> map_type;
MXT_ASSERT(is_well defined<map type>::value);

or:
MXT_ASSERT((is_well defined< std::map<int, double> >::value));

The C++ preprocessor will be confused only by commas that are at the same level® as the argument of
the macro:

assert(f(x,y)==4); // comma at level 2: ok
assert(f(x),y==4); // comma at level 1: error

static_assertion can be used to make assertions in classes using private inheritance:

template <typename T>

class small object allocator : static_assertion<(sizeof(T)<64)>
{

b

°The level of a character is the number of open brackets minus the number of closed brackets in the string from the
beginning of the line up to the character itself.

99

CHAPTER 2 © SMALL OBJECT TOOLKIT

Note static_assert is a keyword in the modern C++ Standard. Here, | use a similar name for a class for
illustration purposes. C++0x static_assert behaves like a function that takes a constant Boolean expression
and a string literal (an error message that the compiler will print):

static_assert(sizeof(T)<64, "T is too large");

Similarly to the private inheritance described previously, C++0x static_assert can also be a class member.

2.2.2. Assert Legal

A different way of making assertions is to require that some C++ expression represents valid code for type T,
returning non-void (most often, to state that a constructor or an assignment is possible).

#define MXT ASSERT LEGAL(statement) sizeof(statement)
If void is allowed instead, just put a comma operator inside sizeof:
#tdefine MXT_ASSERT LEGAL(statement) sizeof((statement), 0)
For example:

template <typename T>
void do_something(T& x)

{
MXT_ASSERT LEGAL(static_cast<bool>(x.empty()));

If (x.empty())
{

/] ...

This example will compile, and thus it will not reject T if x. empty (), whatever it means, returns
(anything convertible to) bool. T could have a member function named empty that returns int or a member
named empty whose operator () takes no argument and returns bool.

Here's another application:

#tdefine MXT_CONST REF_TO(T) (*static_cast<const T*>(0))
#tdefine MXT_REF_TO(T) (*static_cast<T*>(0))

template <typename obj_t, typename iter_t>
class assert_iterator

{

enum

{

verify construction =
MXT_ASSERT LEGAL(obj_t(*MXT_CONST REF TO(iter t))),

verify assignment =
MXT ASSERT LEGAL(MXT REF_TO(obj_t) = *MXT CONST REF_TO(iter t)),

100

CHAPTER 2 © SMALL OBJECT TOOLKIT

verify preincr =
MXT_ASSERT LEGAL(++MXT REF_TO(iter t)),

verify postincr =
MXT_ASSERT LEGAL(MXT REF TO(iter t)++)
};
};

A human programmer should read, “I assert it’s legal to construct an instance of obj_t from the result of
dereferencing a (const) instance of iter_t” and similarly for the remaining constants.

Note Observe that some standard iterators may fail the first test. For example, a back_insert iterator may
return itself when dereferenced (a special assignment operator will take care of making *i = x equivalentto i = x).

The assert_iterator<T,I> will compile only if I acts like an iterator having a value type (convertible to) T.
For example, if I does not support post-increment, the compiler will stop and report an error in
assert_iterator<T,I>::verify postincr

Remember that, with the usual restrictions on comma characters in macros, MXT_ASSERT_LEGAL never
instantiates objects. This is because sizeof performs only a dimensional check on its arguments’.

Also, note the special use of a macro directive. MXT_ASSERT_LEGAL should take the whole line, but since
it resolves to a compile-time integer constant, you can use enums to “label” all the different assertions about
aclass (asin assert_iterator) and make the code more friendly.

The compiler might also emit useful warnings pointing to these assertions. If obj_tisint and iter_tis
double*, the compiler will refer to the verify assignment enumerator and emit a message similar to:

warning: '=' : conversion from 'double' to 'int', possible loss of data
: see reference to class template instantiation 'XT::assert_iterator<obj_t,iter_ t>'
being compiled
with
[
obj_t=int,
iter_t=double *

]

Using the very same technique, you can mix static assertions of different kinds:
#define MXT_ASSERT(statement) sizeof(static_assertion<(statement)>)

template <typename obj_t, typename iter_ t>
class assert_iterator
{ enum

{

"However, a few compilers will generate a warning on MXT_INSTANCE_OF anyway, reporting that a null reference is
not allowed.

101

CHAPTER 2 © SMALL OBJECT TOOLKIT

//...
construction =
MXT_ASSERT LEGAL(obj t(*MXT_CONST REF TO(iter t))),
size =
MXT_ASSERT(sizeof(int)==4)
b
b

As an exercise, I list some more heuristic assertions on iterators.
As s, class assert_iterator validates forward const_iterators. We can remove the const-ness:

template <typename obj_t, typename iter t>
class assert_nonconst_iterator : public assert_iterator<obj t, iter t>

{

enum
{
write =
MXT_ASSERT LEGAL(*MXT_REF_TO(iter t) = MXT_CONST REF TO(obj t))
b
b

Sometimes, an algorithm that works on iterators does not need to know the actual type of the
underlying objects, which makes the code even more general. For example, std: : count could look like this:

template <typename iter t, typename object t>
int count(iter t begin, const iter t end, const object t& x)

{
int result = 0;
while (begin != end)
if (*begin == x)
++result;
}
return result;
}

You don’t need to know if *begin has the same type as x. Regardless of what exactly *begin is, you can
assume that it defines an operator== suitable for comparing against an object_t.

Suppose instead you have to store the result of *begin before comparison.

You may require the iterator type to follow the STL conventions, which means that object_t and
iterator::value_type must somehow be compatible®:

template <typename obj_t, typename iter_t>
class assert_stl iterator

{

typedef typename std::iterator traits<iter t>::value_type value_type;

enum

{

8Actually, dereferencing the iterator returns std: :iterator traits<iterator t>::reference, but value type
can be constructed from a reference.

102

CHAPTER 2 © SMALL OBJECT TOOLKIT

assignl =
MXT_ASSERT_LEGAL (MXT_REF_TO(obj_t) = MXT_CONST_REF_TO(value_type)),

assign2 =
MXT_ASSERT LEGAL(MXT_REF_TO(value_type) = MXT_CONST REF_TO(obj_t))
};

};

Finally, you can perform a rough check on the iterator type, using indicator_traits to getits tag or
writing operations with MXT_ASSERT_LECGAL:

enum

{

random_access =
MXT_ASSERT LEGAL(
MXT_CONST REF TO(iter t) + int() == MXT_CONST REF_TO(iter t))
};

2.2.3. Assertions with Overloaded Operators

sizeof can evaluate the size of an arbitrary expression. You can thus create assertions of the form
sizeof(f(x)), where f is an overloaded function, which may return an incomplete type.

Here, I just present an example, but the technique is explained in Section 4.2.1.

Suppose you want to put some checks on the length of an array:

Tarr[] ={ ... };
// later, assert that length_of(arr) is some constant
Since static assertions need a compile-time constant, you cannot define length_of as a function.

template <typename T, size t N>
size t length_of(T (&)[N])

return N;

}

MXT_ASSERT(length_of(arr) == 7); // error: not a compile-time constant

A macro would work:
#define length of(a) sizeof(a)/sizeof(a[0])

But it’s risky, because it can be invoked on an unrelated type that supports operator|]
(such as std: :vector or a pointer), with nasty implications.

However, you can write:

class incomplete type;
class complete type {};

template <size t N>

103

CHAPTER 2 © SMALL OBJECT TOOLKIT

struct compile time const

{
complete_type& operator==(compile_time_const<N>) const;
template <size t K>
incomplete typed operator==(compile time_ const<K>) const;
};

template <typename T>
compile time const<0> length of(T)

{
}

return compile time const<0>();

template <typename T, size t N>
compile_time_const<N> length_of(T (&)[N])
{

}

return compile time const<N>();

This works, but unfortunately the syntax of the assertion is not completely natural:
MXT_ASSERT LEGAL(length of(arr) == compile time const<7>());

You can combine these techniques and the use of fixed size<N>::type from Section 2.1.4, wrapping
in an additional macro:

template <typename T, size t N>
typename fixed size<N>::typed not_an array(T (&)[N]); // note: no body

#tdefine length of(X) sizeof(not_an_array(X))

Now length_of is again a compile-time constant, with some additional type-safety checks. The name
not_an_array was chosen on purpose; it is usually hidden from the user, but it will usually be printed when
the argument is incorrect:

class AA {};

int a[5];
int b = length of(a);

AA aa;
int ¢ = length of(aa);

error: no matching function for call to 'not_an_array(AA8)'

2.2.4. Modeling Concepts with Function Pointers

The following idea has been documented by Bjarne Stroustrup.
A concept is a set of logical requirements on a type that can be translated to syntactic requirements.

104

CHAPTER 2 © SMALL OBJECT TOOLKIT

For example, a “less-than comparable” type must implement operator < in some form. The exact
signature of a<b doesn’t matter as long as it can be used as a Boolean.

Complex concepts may require several syntactic constraints at once. To impose a complex constraint
on a tuple of template parameters, you simply write a static member function, where all code lines together
model the concept (in other words, if all the lines compile successfully, the constraint is satisfied). Then, you
induce the compiler to emit the corresponding code simply by initializing a dummy function pointer in the
constructor of a dedicated assertion class (the concept function never runs):

template <typename T1, typename T2>
struct static_assert can_copy T1 to T2

{
static void concept check(T1 x, T2 y)
{
T2 z(x); // T2 must be constructable from T1
y = X; // T2 must be assignable from T1
}
static_assert can _copy T1 to T2()
void (*f)(T1, T2) = concept check;
}
b

The concept check can be triggered when you're either building an instance on the stack or deriving
from it:

template <typename T>
T sqrt(T x)

static_assert_can_copy T1 to T2<T, double> CHECK1;

}

template <typename T>
class math_operations : static_assert can_copy T1 to T2<T, double>

{}

2.2.5. Not Implemented

While C++0x allows you to “delete” member functions from a class, in classic C++, you'll sometimes want to
express the fact that an operator should not be provided:

template <typename T>
class X

{
...

X<T>& operator= (X<T>& that) { NOT_IMPLEMENTED; }
};

105

CHAPTER 2 © SMALL OBJECT TOOLKIT

where the last statement is a macro for a static assertion that fails. For example:

#define NOT_IMPLEMENTED MXT_ASSERT(false)

The rationale for this idiom is that the member operator will be compiler-only on first use, which is
exactly what you want to prevent.

However, this technique is risky and non-portable. The amount of diagnostics that a compiler can
emit on unused template member function varies. In particular, if an expression does not depend on T, the
compiler may legitimately try to instantiate it, so MXT_ASSERT(false) may trigger anytime.

At least, the return type should be correct:

X<T>& operator= (X<T>& that) { NOT_IMPLEMENTED; return *this; }
A second choice is to make the assertion dependent on T:
#define NOT_IMPLEMENTED MXT_ASSERT(sizeof(T)==0)

Finally, a portable technique is to cause a linker error with a fake annotation. This is less desirable than
a compiler error, because linker errors usually do not point back to a line in source code. This means they
are not easy to trace back.

#define NOT_IMPLEMENTED

X<T>& operator= (X<T>& that) NOT_IMPLEMENTED;

2.3. Tagging Techniques

Assume you have a class with a member function called swap and you need to add a similar one called
unsafe swap. In other words, you are adding a function that’s a variation of an existing one. You can:

e Write a different function with a similar name and (hopefully) a similar signature:
public:
void swap(T8& that);
void unsafe_swap(T& that);

e Add (one or more) overloads of the original function with an extra runtime
argument:

private:
void unsafe_swap(T& that);

public:
void swap(T& that);

enum swap_style { SWAP_SAFE, SWAP_UNSAFE };

void swap(T& that, swap_style s)

{
if (s == SWAP_SAFE)
this->swap(that);
else
this->unsafe_swap(that);
}

106

CHAPTER 2 © SMALL OBJECT TOOLKIT

e Add an overload of the original function with an extra static useless argument:

public:
void swap(T& that);
void swap(T& that, int); // unsafe swap: call as x.swap(y, 0)

None of these options is completely satisfactory. The first is clear but does not scale well, as the
interface could grow too much. The second may pay a penalty at runtime. The last is not intuitive and should
be documented.

Instead, TMP makes heavy use of language-neutral idioms, which are language constructs that have no
impact on code generation.

A basic technique for this issue is overload resolution via tag objects. Each member of the overload set
has a formal unnamed parameter of a different static type.

struct unsafe {};

class X

{
public:
void swap(T8& that);
void swap(T& that, unsafe);

};
Here’s a different example:

struct naive_algorithm tag {};
struct precise algorithm tag {};

template <typename T>
inline T logip(T x, naive_algorithm tag)
{

return log(x+1);

template <typename T>
inline T logip(T x, precise algorithm tag)

const T xpl = x+1;
return xpl==1 ? x : x*log(xp1)/(xp1-1);

}

// later...

double t1 = loglp(3.14, naive algorithm tag());

double t2 = loglp(0.00000000314, precise algorithm tag());

Building a temporary tag is inexpensive (most optimizing compilers will do nothing and behave as if
you had two functions named loglp naive and loglp precise, with one parameter each).

So, let’s dig a bit further into the mechanisms of overload selection.

Recall that you are facing the problem of picking the right function at compile time, supplying an extra
parameter that’s human-readable.

107

CHAPTER 2 © SMALL OBJECT TOOLKIT

The extra parameter is usually an unnamed instance of an empty class:

template <typename T>
inline T logip(T x, selector<truey);

template <typename T>
inline T logip(T x, selector<false>);

// code #1
return logip(x, selector<PRECISE_ALGORITHM>());

You might wonder why a type is necessary, when the same effect can be achieved with simpler syntax:

// code #2
if (USE_PRECISE ALGORITHM)
return loglp precise(x);
else
return loglp standard(x);

The key principle in tag dispatching is that the program compiles only the functions that are strictly
necessary. In code #1, the compiler sees one function call, but in the second fragment, there are two. The if
decision is fixed, but is irrelevant (as is the fact that the optimizer may simplify the redundant code later).

In fact, tag dispatching allows the code to select between a function that works and one that would not
even compile (see the following paragraph about iterators).

This does not imply that every if with a static decision variable must be turned into a function call.
Typically, in the middle of a complex algorithm, an explicit statement is cleaner:

do_it();
do_it again();

if (my_options<T>::need to clean up)

std: :fill(begin, end, T());
}

2.3.1. Type Tags

The simplest tags are just empty structures:

struct naive_algorithm tag {};
struct precise algorithm tag {};

template <typename T>
inline T logip(T x, naive_algorithm tag);

template <typename T>
inline T logip(T x, precise algorithm_tag);

You can use template tags to transport extra parameters to the function:
template <int N>

struct algorithm_precision_level {};

108

CHAPTER 2 © SMALL OBJECT TOOLKIT

template <typename T, int N>
inline T logip(T x, algorithm_precision_level<N>);

/7 ..

double x = logip(3.14, algorithm precision_level<4>());

You can use derivation to build a tag hierarchy.
This example sketches what actual STL implementations do (observe that inheritance is public by default):

struct input _iterator tag {};

struct output_iterator tag {};

struct forward iterator tag : input_iterator tag {};

struct bidirectional iterator tag : forward iterator tag {};
struct random access iterator tag : bidirectional iterator_ tag {};

template <typename iter t>
void somefunc(iter_ t begin, iter t end)
{
return somefunc(begin, end,
typename std::iterator_traits<iter t>::iterator_category());

template <typename iter_ t>
void somefunc(iter t begin, iter t end, bidirectional iterator tag)
{

// do the work here

}

In this case, the bidirectional and random_access iterators will use the last overload of somefunc.
Alternatively, if somefunc is invoked on any other iterator, the compiler will produce an error.
A generic implementation will process all the tags that do not have an exact match®:

template <typename iter_ t, typename tag_t>
void somefunc(iter_t begin, iter t end, tag t)
{
// generic implementation:
// any tag for which there's no *exact* match, will fall here

This generic implementation can be made compatible with the tag hierarchy using pointers:

template <typename iter t>
void somefunc(iter_ t begin, iter t end)
{
typedef
typename std::iterator_traits<iter_t>::iterator_category cat_t;
return somefunc(begin, end, static_cast<cat t*>(0));

}

°In particular, this will process random_access iterators as well. That is, it blindly ignores the base/derived tag hierarchy.

109

CHAPTER 2 © SMALL OBJECT TOOLKIT

template <typename iter_t>

void somefunc(iter t begin, iter t end,
std::bidirectional iterator tag*)

{

}

// do the work here

template <typename iter t>

void somefunc(iter t begin, iter t end,
void*)

{

}

// generic

The overload resolution rules will try to select the match that loses less information. Thus, the cast
derived*-to-base* is a better match than a cast to void*. So, whenever possible (whenever the iterator
category is at least bidirectional), the second function will be taken.

Another valuable option is:

template <typename iter t>
void somefunc(iter_ t begin, iter t end, ...)

{
}

// generic

The ellipsis operator is the worst match of all, but it cannot be used when the tag is a class (and this is
exactly why you had to switch to pointers and tags).

2.3.2. Tagging with Functions

A slightly more sophisticated option is to use function pointers as tags:

enum algorithm tag t

{

NAIVE,

PRECISE
b
inline static_value<algorithm_tag t, NAIVE> naive_algorithm tag()
{

return 0; // dummy function body: calls static_value<...>(int)
}

inline static_value<algorithm tag t, PRECISE> precise_algorithm_ tag()
{

}

return 0; // dummy function body: calls static_value<...>(int)

110

CHAPTER 2 © SMALL OBJECT TOOLKIT

The tag is not the return type, but the function itself. The idea comes somehow from STL stream
manipulators (that have a common signature).

typedef
static_value<algorithm tag t, NAIVE> (*naive_algorithm tag t)();

typedef
static_value<algorithm tag t, PRECISE> (*precise_algorithm_tag t)();

template <typename T>
inline T logip(T x, naive_algorithm tag t);

// later
// line 4: pass a function as a tag

double y = logip(3.14, naive algorithm tag);

Since each function has a different unique signature, you can use the function name (equivalent to a
function pointer) as a global constant. Inline functions are the only “constants” that can be written in header
files without causing linker errors.

You can then omit brackets from the tags (compare line 4 above with its equivalent in the previous
example). Function tags can be grouped in a namespace or be static members of a struct:

namespace algorithm tag

inline static_value<algorithm tag t, NAIVE> naive()
{ return o; }

inline static_value<algorithm tag t, PRECISE> precise()
{ return o; }

}

or:

struct algorithm tag

{
static static_value<algorithm tag t, NAIVE> naive()

{ return o; }

static static_value<algorithm_tag t, PRECISE> precise()
{ return o; }

1
double y = logip(3.14, algorithm_tag::naive);

Another dramatic advantage of function pointers is that you can adopt a uniform syntax for the same
runtime and compile-time algorithms:

enum binary operation

{

sum, difference, product, division

111

CHAPTER 2 © SMALL OBJECT TOOLKIT

};

#define mxt_SUM X+y

#define mxt_DIFF x-y

#define mxt_PROD x*y

#define mxt_DIV x/y

// define both the tag and the worker function with a single macro

#tdefine mxt DEFINE(OPCODE, FORMULA)

inline static_value<binary operation, OPCODE> static_tag ##OPCODE()
{

}

return 0;

template <typename T>
T binary(T x, Ty, static_value<binary operation, OPCODE>)

Pl g g gl S

return (FORMULA);
}

mxt_DEFINE(sum, mxt SUM);

mxt DEFINE(difference, mxt DIFF);
mxt_DEFINE(product, mxt PROD);
mxt DEFINE(division, mxt DIV);

template <typename T, binary operation OP>
inline T binary(T x, Ty, static_value<binary operation, OP> (*)())

{
}

return binary(x, y, static_value<binary operation, OP>());

This is the usual machinery needed for the static selection of the function. Due to the way you defined
overloads, the following calls produce identical results (otherwise, it would be quite surprising for the user),
even if they are not identical. The first is preferred:

double a1 = binary(8.0, 9.0, static_tag product);
double a2 = binary(8.0, 9.0, static_tag product());

However, with the same tools, you can further refine the function and add a similar runtime algorithm':

template <typename T>
T binary(T x, Ty, const binary operation op)

{
switch (op)
{

case sum: return mxt_SUM;
case difference: return mxt DIFF;

!9This example anticipates ideas from Section 7.3.

112

case product: return mxt_PROD;
case division: return mxt_DIV;
default:

throw std::runtime_error("invalid operation");

}
}

The latter would be invoked as:

double a3 = binary(8.0, 9.0, product);

SMALL OBJECT TOOLKIT

This may look similar, but it’s a completely different function. It shares some implementation (in this

case, the four kernel macros), but it selects the right one at runtime.

e Manipulators (see Section 1.4.7 are similar to functions used as compile-time

constants. However, they differ in a few ways too:

e Manipulators are more generic. All operations have a similar signature (which must
be supported by the stream object) and any user can supply more of them, but they

involve some runtime dispatch.

e Function constants are a fixed set, but since there’s a one-to-one match between

signatures and overloaded operators, there is no runtime work.

2.3.3. Tag Iteration

A useful feature of functions tagged with static values is that, by playing with bits and compile-time
computations, it’s possible to write functions that automatically unroll some “iterative calls”

For example, the following function fills a C array with zeroes:

template <typename T, int N>

void zeroize helper(T* const data, static_value<int, N>)

{

zeroize helper(data, static value<int, N-1>());
data[N-1] = T();
}

template <typename T>

void zeroize_helper(T* const data, static_value<int, 1>)

{
data[o] = T();
}

template <typename T, int N>
void zeroize(T (&data)[N])
{

zeroize helper(data, static_value<int, N>());

}

113

CHAPTER 2 © SMALL OBJECT TOOLKIT

You can swap two lines and iterate backward:

template <typename T, int N>
void zeroize helper(T* const data, static_value<int, N>)
{

data[N-1] = T();

zeroize helper(data, static value<int, N-1>());

}

This unrolling is called linear and with two indices, you can have exponential unrolling. Assume for
simplicity that N is a power of two:

template <int N, int M>
struct index

{

b

template <typename T, int N, int M>
void zeroize helper(T* const data, index<N, M>)
{
zeroize helper(data, index<N/2, M>());
zeroize helper(data, index<N/2, M+N/2>());

}

template <typename T, int M>
void zeroize helper(T* const data, index<1, M»)

{
}

data[M] = T();

template <typename T, int N>
void zeroize(T (&data)[N])

{
zeroize helper(data, index<N, 0>());
}
double test[8];
zeroize(test);
i<1,0>
—<2'0>< <1,1>
 <4,0: f?
— < =
<20k m—
a5 —]
<0, e
—— 54 i<1,4>
24> =2
' 1<1,5>
<44 e
‘_i< <2 6><—{1 £
L 1<1,7>

Figure 2-1. Exponential unrolling for N=8

114

CHAPTER 2 © SMALL OBJECT TOOLKIT

As a more complex case, you can iterate over a set of bits.
Assume an enumeration describes some heuristic algorithms in increasing order of complexity:

enum

{
ALGORITHM 1,
ALGORITHM 2,
ALGORITHM 3,
ALGORITHM 4,
/...

};

For each value in the enumeration, you are given a function that performs a check. The function returns
true when everything is okay or false if it detects a problem:

bool heuristic([[args]], static_value<size t, ALGORITHM 1>);
bool heuristic([[args]], static_value<size t, ALGORITHM 2>);

/7 ...

What if you wanted to run some or all of the checks, in increasing order, with a single function call?
First, you modify the enumeration using powers of two:

enum

{
ALGORITHM 1 = 1,
ALGORITHM 2 = 2,

ALGORITHM_ 3 = 4,
ALGORITHM_4 = 8,
/...

};
The user will use a static value as a tag, and algorithms will be combined with “bitwise or” (or +).

typedef static_value<size t, ALGORITHM 1 | ALGORITHM 4> mytag t;

// this is the public function

115

CHAPTER 2 © SMALL OBJECT TOOLKIT

template <size t K>
bool run heuristics([[args]], static_value<size t, K>)
{
return heuristic([[args]],
static_value<size t, K>(),
static value<size t, 0>());

Here are the “private” implementation details:

#define VALUE(K) static_value<size t, K>

template <size t K, size t J>
bool heuristic([[args]], VALUE(K), VALUE(J))
{

static const size t JTH BIT = K & (size t(1) << J);

// JTH_BIT is either 0 or a power of 2.

// try running the corresponding algorithm, first.

// if it succeeds, the &% will continue with new tags,

// with the J-th bit turned off in K and J incremented by 1

return
heuristic([[args]], VALUE(JTH BIT)()) 8&
heuristic([[args]], VALUE(K-JTH BIT)(), VALUE(J+1)());

}

template <size t J>

bool heuristic([[args]], VALUE(0), VALUE(J))

{
// finished: all bits have been removed from K
return true;

}

template <size t K>
bool heuristic([[args]], VALUE(K))

{
// this is invoked for all bits in K that do not have
// a corresponding algorithm, and when K=0
// i.e. when a bit in K is off
return true;
}

2.3.4. Tags and Inheritance

Some classes inherit additional overloads from their bases. So an object that dispatches a tagged call might
not know which of the bases will answer.

116

CHAPTER 2 © SMALL OBJECT TOOLKIT

Suppose you are given a simple allocator class, which, given a fixed size, will allocate one block of
memory of that length.

template <size t SIZE>
struct fixed size allocator
{

void* get block();
b

You now wrap it up in a larger allocator. Assuming for simplicity that most memory requests have a size
equal to a power of two, you can assemble a compound_pool<N> that will contain a fixed_size_allocator<J>
forJ=1,2,4,8. It will also resort to : :operator newwhen no suitable J exists (all at compile-time).

The syntax for this allocation is'":

compound_pool<64> A;
double* p = A.allocate<double>();

The sketch of the idea is this. compound_pool<N> contains a fixed_size_allocator<N> and derives
from compound_pool<N/2>. So, it can directly honor the allocation requests of N bytes and dispatch all other
tags to base classes. If the last base, compound_pool<0>, takes the call, no better match exists, so it will call
operator new.

More precisely, every class has a pick function that returns either an allocator reference or a pointer.

The call tag is static_value<size_t, N>, where Nis the size of the requested memory block.

template <size t SIZE>
class compound_pool;

template < >
class compound_pool<o>

{

protected:

template <size t N>
void* pick(static_value<size_t, N»>)

{

}
};

return ::operator new(N);

template <size t SIZE>
class compound_pool : compound_pool<SIZE/2>

{

fixed size allocator<SIZE> p_;

"Deallocation has been omitted on purpose.

117

CHAPTER 2 © SMALL OBJECT TOOLKIT

protected:
using compound_pool<SIZE/2>::pick;

fixed_size_allocator<SIZE>& pick(static_value<SIZE»)

{
}

return p_;

public:
template <typename object t>
object_t* allocate()

{
typedef static_value<size t, sizeof(object_t)> selector t;
return static_cast<object_t*>(get_pointer(this-spick(selector t())));
}
private:

template <size_t N>
void* get_pointer(fixed_size_allocator<N»3 p)

{
return p.get block();

void* get_pointer(void* p)

{
}

return p;
b
Note the using declaration, which makes all the overloaded pick functions in every class visible. Here,

compound_pool<0>: :pick has a lower priority because it’s a function template, but it always succeeds.
Furthermore, since it returns a different object, it ends up selecting a different get_pointer.

118

PART 2

#include <techniques>

CHAPTER 3

Static Programming

Templates are exceptionally good at forcing the compiler and optimizer to perform some work only when
the executable program is generated. By definition, this is called static work. This is as opposed to dynamic
work, which refers to what is done when the program runs.

Some activities must be completed before runtime (computing integer constants) and some activities
have an impact on runtime (generating machine code for a function template, which is later executed).

TMP can produce two types of code—metafunctions, which are entirely static (for example, a
metafunction unsigned_integer<N>::type that returns an integer holding at least N bits) and mixed
algorithms, which are part static and part runtime. (STL algorithms rely on iterator_category or on the
zeroize function explained in Section 4.1.2.

This section deals with techniques for writing efficient metafunctions.

3.1. Static Programming with the Preprocessor

The classic way to write a program that takes decisions about itself is through preprocessor directives.
The C++ preprocessor can perform some integer computation tests and cut off portions of code that are not
appropriate.

Consider the following example. You want to define fixed-length unsigned integer types, such as
uint32_t, to be exactly 32-bits wide, and do the same for any bit length that’s a power of two.

Define

template <size t S>
struct uint_n;

#tdefine mXT_UINT_N(T,N) \
template <> struct uint_n<N> { typedef T type; }

and specialize uint_n for all sizes that are indeed supported on the current platform.

If the user tries uint_n<16>: :type and there’s no suitable type, she will get a proper and intelligible
compiler error (about a missing template specialization).

121

CHAPTER 3 ' STATIC PROGRAMMING

So you have to ask the preprocessor to work out the sizes by trial and error’:

#include <climits>

#define MXT_I32BIT oxffffffffu
#define MXT_I16BIT oxffffu
#define MXT_I8BIT oxffu

#if (UCHAR MAX == MXT I8BIT)
mXT_UINT N(unsigned char,8);
#endif

#if (USHRT MAX == MXT I16BIT)
mXT_UINT N(unsigned short,16);
#elif UINT MAX == MXT_I16BIT
mXT_UINT N(unsigned int,16);
#endif

#if (UINT_MAX == MXT I32BIT)
mXT_UINT N(unsigned int,32);
#elif (ULONG MAX == MXT_I32BIT)
mXT_UINT N(unsigned long,32);
#endif

This code works, but it’s rather fragile because interaction between the preprocessor and the compiler
is limited.?

Note that this is not merely a generic style debate (macro versus templates), but a matter of correctness.
If the preprocessor removes portions of the source file, the compiler does not have a chance to diagnose
all errors until macro definitions change. On the other hand, if the TMP decisions rely on the fact that the
compiler sees a whole set of templates, then it instantiates only some of them.

Note The preprocessor is not “evil”.

Preprocessor-based “metaprogramming,” like the previous example, usually compiles much faster and—if it’s
simple—it’s highly portable. Many high-end servers still ship with old or custom compilers that do not support
language-based (template) metaprogramming. On the other hand, | should mention that, while compilers tend
to conform 100% to the standard, this is not true for preprocessors. Therefore, obscure preprocessor tricks may
fail to produce the desired results, and bugs caused by misusing the preprocessor are quite hard to detect.?

An implementation of uint_n that does not rely on the preprocessor is shown and explained in
Section 3.6.10.

'"Remember that the preprocessor runs before the compiler so it cannot rely on sizeof.
’Read the previous note again ©.
3See also http://www.boost.org/doc/libs/1_46_0/1libs/wave/doc/preface.html.

122

http://www.boost.org/doc/libs/1_46_0/libs/wave/doc/preface.html

CHAPTER 3 ' STATIC PROGRAMMING

3.2. Compilation Complexity

When a class template is instantiated, the compiler generates:
e Every member signature at class level
e Allstatic constants and typedefs
e Only strictly necessary function bodies

If the same instance is needed again in the same compilation unit, it’s found via lookup (which need not
be particularly efficient, but it’s still faster than instantiation).
For example, given the following code:

template <size t N>
struct sum_of_integers up_to

{
};

static const size t value = N + sum_of integers up to<N-1>::value;

template <>
struct sum_of integers up_to<o0>

{
static const size t value = 0;

};
int n9 = sum_of_integers_up_to<9»::value; // mov dword ptr [n9],2Dh
int n8 = sum_of_integers_up_to<8>::value; // mov dword ptr [n8],24h

The initialization of n9 has a cost of 10 template instantiations, but the subsequent initialization of n8
has a cost of one lookup (not 9). Both instructions have zero runtime impact, as the assembly code shows.

As arule, most metafunctions are implemented using recursion. The compilation complexity is the
number of template instances recursively required by the metafunction itself.

This example has linear complexity, because the instantiation of X<N> needs X<N-1>... X<0>. While
you'll usually want to look for the implementation with the lowest complexity (to reduce compilation times,
not execution times), you can skip this optimization if there’s a large amount of code reuse. Because of
lookups, the first instantiation of X<N> will be costly, but it allows instantiation of X<M> for free in the same
translation unit if M<N.

Consider this example of an optimized low-complexity implementation:

template <size t N, size t K>
struct static_raise

{
};

static const size t value = /* N raised to K */;

The trivial implementation has linear complexity:

template <size t N, size t K>
struct static_raise

{
};

static const size t value = N * static_raise<N, K-1>::value;

123

CHAPTER 3 ' STATIC PROGRAMMING

template <size t N>
struct static_raise<N, 0>

{
};

static const size t value = 1;

To obtain static_raise<N,K>::value, the compiler needs to produce K instances: static_raise<N,K-1>,
static_raise<N,K-2>,...

Eventually static_raise<N,1> needs static_raise<N,0>, which is already known (because there’s an
explicit specialization). This stops the recursion.

However, there’s a formula that needs only about 1og(K) intermediate types:

Note If the exponent is a power of two, you can save a lot of multiplications via repeated squaring. To
compute X8, only three multiplications are needed if you can store only the intermediate results. Since
X8 = ((X??)?, you need to execute

t = x*¥x; t = t*t; t = t*t; return t;
In general, you can use recursively the identity:

2
N [[[()(l 2 N/2

#tdefine MXT_M SQ(a) ((d)*(a))

template <size t N, size t K>
struct static_raise;

template <size t N>
struct static_raise<N, 0>

{
};

static const size t value = 1;

template <size t N, size t K>
struct static_raise

{
private:

static const size t v0 = static_raise<N, K/2>::value;
public:

static const size t value = MXT_M _SQ(vO)*(K % 2 ? N : 1);
};

Note the use of MXT_M_SQ (see Section 1.3.2).

124

CHAPTER 3 ' STATIC PROGRAMMING

A final remark: Just because the natural implementation of metafunctions involves recursion, does not
mean that any recursive implementation is equally optimal.*

Suppose N is an integer in base 10 and you want to extract the i-th digit (let’s agree that digit 0 is the
right-most) as digit<I,N>::value:

template <int I, int N>
struct digit;

Clearly, you have two choices. One is a “full” recursion on the main class itself

template <int I, int N>
struct digit

{

};

template <int N>
struct digit<o, N>

{
};

static const int value = digit<i-1, N/10>::value;

static const int value = (N % 10);

Or you can introduce an auxiliary class main class:

template <int I>
struct power_of 10

{
};

template <>
struct power_of 10<0>

{

b

template <int I, int N>
struct digit

{

};

static const int value

10 * power of_10<I-1>::value;

static const int value

n
[N
-

static const int value = (N / power_of 10<I>::value) % 10;

While the first implementation is clearly simpler, the second scales better. If you need to extract the 8™ digit
from 100 different random numbers, the former is going to produce 800 different specializations because
chances of reuse are very low. Starting with digit<8,12345678>, the compiler has to produce the sequence
digit<7,1234567>, digit<6,123456>..., and each of these classes is likely to appear only once in the
entire program.

On the other hand, the latter version produces eight different specialized powers of 10 that are reused
every time, so the compiler workload is just 100+10 types.

“This example was taken from a private conversation with Marco Marcello.

125

CHAPTER 3 ' STATIC PROGRAMMING

3.3. Classic Metaprogramming Idioms

Metafunctions can be seen as functions that take one or more types and return types or constants. You'll see
in this section how to implement some basic operations.

Binary operators are replaced by metafunctions of two variables. The concept T1==T2 becomes
typeequal<T1, T2>::value:

template <typename T1, typename T2>
struct typeequal

static const bool value = false;

};

template <typename T>
struct typeequal<T, T>

static const bool value = true;

};

Whenever possible, you should derive from an elementary class that holds the result, rather than
introduce a new type/constant. Remember that public inheritance is implied by struct

template <typename T1, typename T2>
struct typeequal : public selector<false> // redundant

{
};

template <typename T>
struct typeequal<T, T> : selector<true> // public

{
};

The ternary operator TEST ? T1 : T2 becomes typeif<TEST, T1, T2>::type:

template <bool STATEMENT, typename T1, typename T2>
struct typeif

typedef T1 type;
};

template <typename T1, typename T2>
struct typeif<false, T1, T2>

{
typedef T2 type;

)

Or, according to the previous guideline:

template <bool STATEMENT, typename T1, typename T2>
struct typeif : instance_of<T1>

};

126

CHAPTER 3 ' STATIC PROGRAMMING

template <typename T1, typename T2>
struct typeif<false, T1, T2> : instance_of<T2>

{
};

The strong motivation for derivation is an easier use of tagging techniques. Since you will often “embed”
the metafunction result in a selector, it will be easier to use the metafunction itself as a selector. Suppose you
have two functions that fill a range with random elements:

template <typename iterator_ t>
void random fill(iterator t begin, iterator t end, selector<falses)

{
for (; begin != end; ++begin)
*begin = rand();

}

template <typename iterator_ t>
void random fill(iterator t begin, iterator t end, selector<trues)

{
for (; begin != end; ++begin)
*begin = 'A" + (rand() % 26);
Compare the invocation:
random fill(begin, end, selector<typeequal<T, char*>::value>());
with the simpler®:

random_fill(begin, end, typeequal<T, char*>());

Note Note as a curiosity, that header files that store a version number in their guard macro can be used in
a typeif. Compare the following snippets

#include "myheader.hpp"

typedef
typename typeif<MXT_MYHEADER_==0x1000, double, float>::type float_t;

#if MXT_MYHEADER == 0x1000
typedef double float_t;
#else

typedef float float t;
#endif

The first snippet will not compile if MXT_MYHEADER _is undefined. The preprocessor instead would behave
as if the variable were o.

’I do not always use the derivation notation in the book, mainly for sake of clarity. However, I strongly encourage adopting
it in production code, as it boosts code reuse.

127

CHAPTER 3 ' STATIC PROGRAMMING

3.3.1. Static Short Circuit

As a case study of template recursion, let’s compare the pseudo-code of a static and dynamic operator:

template <typename T>
struct F : typeif<[[CONDITION]], T, typename G<T>::type>

{
};
int F(int x)
{
return [[CONDITION]] ? x : G(x);
}

These statements are not analogous:

¢ The runtime statement is short-circuited. It will not execute code unless necessary,
s0 G(x) might never run.

e The static operator will always compile all the mentioned entities, as soon as one of
their members is mentioned. So the first F will trigger the compilation of G<T>: : type,
regardless of the fact that the result is used (that is, even when the condition is true).

There is no automatic static short-circuit. If underestimated, this may increase the build times without
extra benefits, and it may not be noticed, because results would be correct anyway.
The expression may be rewritten using an extra “indirection”:

template <typename T>

struct F
{
typedef
typename typeif<[[CONDITION]], instance of<T>, G<T> >::type
aux_t;

typedef typename aux_t::type type;
b

Here, only G<T> is mentioned, not G<T>: : type. When the compiler is processing typeif, it needs only
to know that the second and third parameters are valid types; that is, that they have been declared. If the
condition is false, aux_t is set to G<T>. Otherwise, it is set to instance_of<T>. Since no member has been
requested yet, nothing else has been compiled. Finally, the last line triggers compilation of either
instance_of<T> or G<T>.

So, if CONDITION is true, G<T>: : type is never used. G<T> may even lack a definition or it may not contain
a member named type.

To summarize:

e Delay accessing members as long as possible

e Wrap items to leverage the interface

128

CHAPTER 3 ' STATIC PROGRAMMING

An identical optimization applies to constants:
static const size t value = [[CONDITION]] ? 4 : alignment of<T>::value;

typedef typename
typeif<[[CONDITION]], static_value<size t, 4>, alignment_of<T>>::type
aux_t;

static const size t value = aux_t::value;

At first, it may look like there’s no need for some special logic operator, since all default operators on
integers are allowed inside of templates®:

template <typename T1, typename T2>
struct naive OR
{
static const bool value = (T1::value || T2::value); // ok, valid

};

The classic logical operators in C++ are short-circuited; that is, they don’t evaluate the second operator
if the first one is enough to return a result. Similarly, you can write a static OR that does not compile its second
argument unnecessarily. If T1: :value is true, T2: :value is never accessed and it might not even exist (AND is
obtained similarly).

// if (T1::value is true)
// return true;

// else

// return T2::value;

template <bool B, typename T2>
struct static_OR_helper;

template <typename T2>

struct static_OR_helper<false, T2> : selector<T2::value>
{

};

template <typename T2>

struct static_OR_helper<true, T2> : selector<true>
{

};

template <typename T1, typename T2>

struct static_OR : static_OR_helper<Ti::value, T2>
{

};

’Except casts to non-integer types. For example, N*1.2 is illegal, but N+N/5 is fine.

129

CHAPTER 3 ' STATIC PROGRAMMING

3.4. Hidden Template Parameters

Some class templates may have undocumented template parameters, generally auto-deduced, that silently
select the right specialization. This is a companion technique to tag dispatching, and an example follows:

template <typename T, bool IS SMALL OB] = (sizeof(T)<sizeof(void*))>
class A;

template <typename T>
class A<T, true>

{
};

// implementation follows

template <typename T>
class A<T, false>

{
};

// implementation follows

The user of A will accept the default, as a rule:

A<char> c1;
A<char, true> c2; // exceptional case. do at own risk

The following is a variation of an example that appeared in[3].

template <size t N>
struct fibonacci

{

static const size t value =
fibonacci<N-1>::value + fibonacci<N-2>::value;

};

template <>
struct fibonacci<o>

{
};

static const size t value

1}
o
-e

template <>
struct fibonacci<1>

{
};

static const size t value = 1;

130

CHAPTER 3 ' STATIC PROGRAMMING

It can be rewritten using a hidden template parameter:

template <size t N, bool TINY NUMBER = (N<2)>
struct fibonacci
{
static const size_t value =
fibonacci<N-1>::value + fibonacci<N-2>::value;
};

template <size t N>
struct fibonacci<N, true>
{

static const size t value = N;

};

To prevent the default from being changed, you can rename the original class by appending the
suffix _helper and thus introducing a layer in the middle:

template <size t N, bool TINY NUMBER>
struct fibonacci_helper

{

// all as above

};

template <size t N>

class fibonacci : fibonacci_helper<N, (N<2)>
{

};

3.4.1. Static Recursion on Hidden Parameters

Let’s compute the highest bit of an unsigned integer x. Assume that x has type size_t and, if x==0, it will
conventionally return -1.

A non-recursive algorithm would be: set N = the number of bits of size_t; test bit N-1, then N-2..., and
so on, until a non-zero bit is found.

First, as usual, a naive implementation:

template <size t X, size t K>
struct highest bit helper
{
static const int value =
((X >> K) % 2) ? K : highest bit helper<X, K-1>::value;
};

template <size t X>
struct highest bit helper<X, 0>
{

static const int value = (X % 2) ? 0 : -1;

};

131

CHAPTER 3 ' STATIC PROGRAMMING

template <size t X>

struct static_highest bit

: highest_bit_helper<X, CHAR_BIT*sizeof(size t)-1>
{

};

As written, it works, but the compiler might need to generate a large number of different classes per
static computation (that is, for any X, you pass to static_highest bit).

First, you can rework the algorithm using bisection. Assume X has N bits, divide it in an upper and a
lower half (U and L) having (N-N/2) and (N/2) bits, respectively. If U is 0, replace X with L; otherwise, replace X
with U and remember to increment the result by (N/2)":

In pseudo-code:

size t hibit(size t x, size t N = CHAR BIT*sizeof(size t))

{
size t u = (x>>(N/2));
if (u»0)
return hibit(u, N-N/2) + (N/2);
else
return hibit(x, N/2);
}

This means:

template <size t X, int N>
struct helper

{
static const size t U = (X >> (N/2));
static const int value =
U ? (N/2)+helper<U, N-N/2>::value : helper<X, N/2>::value;
};

As written, each helper<X, N> induces the compiler to instantiate the template again twice—namely
helper<U, N-N/2>and helper<X, N/2>—even if only one will be used.

Compilation time may be reduced either with the static short circuit, or even better, by moving all the
arithmetic inside the type.®

template <size t X, int N>
struct helper

{
static const size t U = (X >> (N/2));
static const int value = (U ? N/2 : 0) +
helper<(U ? U : X), (U ? N-N/2 : N/2)>::value;
};

’In practice, N is always even, so N-N/2 ==N/2.
8See also the double-check stop in Section 7.2.

132

CHAPTER 3 ' STATIC PROGRAMMING

This is definitely less clear, but more convenient for the compiler.
Since N is the number of bits of X, N>0 initially.
You can terminate the static recursion when N==1:

template <size t X>
struct helper<X, 1>
{

static const int value = X ? 0 : -1;

b
Finally, you can use derivation from static_value to store the result:

template <size t X>

struct static_highest bit

: static_value<int, helper<X, CHAR BIT*sizeof(size t)»>::value>
{

};

The recursion depth is fixed and logarithmic. static_highest bit<X> instantiates at most five or six
classes for every value of X.

3.4.2. Accessing the Primary Template

A dummy parameter can allow specializations to call back the primary template.
Suppose you have two algorithms, one for computing cos(x) and another for sin(x), where X is any
floating-point type. Initially, the code is organized as follows:

template <typename float_t>
struct trigonometry

{ static float t cos(const float t x)
{
/...
}
static float t sin(const float t x)
{
/] ...
}
};

template <typename float_t>
inline float t fast cos(const float t x)

{
}

template <typename float_t>
inline float t fast sin(const float t x)

{
}

return trigonometry<float t>::cos(x);

return trigonometry<float t>::sin(x);

133

CHAPTER 3 ' STATIC PROGRAMMING

Later, someone writes another algorithm for cos<float>, but not for sin<float>.
You can either specialize/overload fast_cos for float or use a hidden template parameter, as shown:

template <typename float t, bool = false>
struct trigonometry

{ static float_t cos(const float_t x)
{
/] ...
}
static float t sin(const float t x)
{
/] ...
}
};

template <>
struct trigonometry<float, false>

{
static float t cos(const float t x)
{
// specialized algorithm here
}
static float t sin(const float t x)
{
// calls the general template
return trigonometry<float, trues::sin(x);
}
};

Note that in specializing the class, it's not required that you write <float, false>.You can simply enter:

template <>
struct trigonometry<floats

{

because the default value for the second parameter is known from the declaration.

Any specialization can access the corresponding general function by setting the Boolean to true
explicitly.

This technique will appear again in Section 7.1.

A similar trick comes in handy to make partial specializations unambiguous.

C++ does not allow specializing a template twice, even if the specializations are identical. In particular,
if you mix cases for standard typedefs and integers, the code becomes subtly non-portable:

template <typename T>
struct is_integer

{
};

static const bool value = false;

134

CHAPTER 3 ' STATIC PROGRAMMING

template < > struct is_integer<short>
{ static const bool value = true; };

template < > struct is_integer<int>
{ static const bool value = true; };

template < > struct is_integer<long>
{ static const bool value = true; };

template < > struct is_integer<ptrdiff_t> // problem:
{ static const bool value = true; }; // may or may not compile

If ptrdiff_t is afourth type, say long long, then all the specializations are different. Alternatively,
ifptrdiff_tissimply a typedef for long, the code is incorrect. Instead, this works:

template <typename T, int = 0>
struct is_integer
{

static const bool value = false;

};

template <int N> struct is_integer<short, N>
{ static const bool value = true; };
template <int N> struct is_integer<int , N>
{ static const bool value = true; };
template <int N> struct is_integer<long , N>
{ static const bool value = true; };

template <>
struct is_integer<ptrdiff t»
{

static const bool value = true;

};

Since is_integer<ptrdiff t, 0>ismore specialized than is_integer<long, N>, it will be used
unambiguously.’

This technique does not scale well,'* but it might be extended to a small number of typedefs, by adding
more unnamed parameters. This example uses int, but anything would do, such as bool = false or
typename = void

template <typename T, int = 0, int = 0>
struct is_integer

{

static const bool value = false;

};

°I insist that the problem is solvable because the implementations of is_integer<long> and is_integer<ptrdiff t>are
identical; otherwise, it is ill-formed. For a counterexample, consider the problem of converting a time_t and long to a
string; even if time_t is long, the strings need to be different. Therefore, this issue cannot be solved by TMP techniques.
"This is a good thing, because a well-built template class shouldn’t need it.

135

CHAPTER 3 ' STATIC PROGRAMMING

template <int N1, int N2>
struct is_integer<long, N1, N2>
{ static const bool value = true; };

template <int N1>

struct is_integer<ptrdiff t, Ni>

{ static const bool value = true; };
template < >

struct is_integer<time t>
{ static const bool value = true; };

3.4.3. Disambiguation

In TMP it’s common to generate classes that derive several times from the same base (indirectly). It’s not yet
time to list a full example, so here’s a simple one:

template <int N>
struct A {};

template <int N>
struct B : AKN % 2>, B<N / 2> {};

template <>
struct B<o> {};

For example, the inheritance chain for B<9> is illustrated in Figure 3-1.

— AALL>

B<9> <7 A<O>
B<4> <ﬁ < A<0> vn)

— <2> <1>

B> (B

Figure 3-1. The inheritance chain for B<9>

Note that A<0> and A<1> occur several times. This is allowed, except that you cannot cast, explicitly or
implicitly, B<9> to A<0> or A<1>:

template <int N>
struct A

int getN() { return N; }

b

136

CHAPTER 3 ' STATIC PROGRAMMING

template <int N>
struct B : A<N % 2>, B<N / 2>

int doIt() { return A<N % 2>::getN(); } // error: ambiguous
5

What you can do is add a hidden template parameter so that different levels of inheritance correspond
to physically different types.
The most popular disambiguation parameters are counters:

template <int N, int FAKE = 0>
struct A {};

template <int N, int FAKE = 0>
struct B : A<N % 2, FAKE"'>, B<N / 2, FAKE+1> {};

template <int FAKE>
struct B<o, FAKE> {};

f

A<1.,0> _
——— JA<0,1> —
—— ~A<0,2>
B<2,2>

B<9,0>

X

'B< 1,3>‘ e
B<0,4>

Figure 3-2. The modified inheritance chain for B<9> using a counter

Another commonly used disambiguator tag is the type this:

template <int N, typename T>
struct A {};

template <int N>
struct B : A<N % 2, B<N» >, B<N/2> {};

template <>
struct B<o> {};

"Here, FAKE and FAKE+1 both work.

137

CHAPTER 3 ' STATIC PROGRAMMING

A<1, B<9>>! =

' _|a<0, B<a>>
| L

B<9> e
A<0, B<2>>

A<l, B<1>>!

Figure 3-3. The modified inheritance chain for B<9> using a tag-type

This idea is used extensively in Section 5.2

3.5. Traits

Traits classes (or simply, traits) are a collection of static functions, types, and constants that abstract the
public interface of a type T. More precisely, for all T representing the same concept, traits<T> is a class
template that allows you to operate on T uniformly. In particular, all traits<T> have the same public
interface.'?

Using traits, it’s possible to deal with type T by ignoring partially or completely its public interface.
This makes traits an optimal building layer for algorithms.

Why ignore the public interface of T? The main reasons are because it could have none or it could be
inappropriate.

Suppose T represents a “string” and you want to get the length of an instance of T. T may be const
char* or std: :string, but you want the same call to be valid for both. Otherwise, it will be impossible to
write template string functions. Furthermore, 0 may have a special meaning as a “character” for some T, but
not for all.

The first rigorous definition of traits is an article by Nathan Myers,"* dated 1995.

The motivation for the technique is that, when writing a class template or a function, you'll realize that
some types, constants, or atomic actions are parameters of the “main” template argument.

So you could put in additional template parameters, but that’s usually impractical. You could also
group the parameters in a traits class. Both the next example and the following sentences are quotes from
Myers’ article'*:

12Same does not imply that all functions must be identical, as some differences may have a limited impact on “uniform use”.
As a trivial example, arguments may be passed by value or by const reference.

3Available at: cantrip.org/trails.html. The article cites as previous bibliography [10], [11] and [12].

The sentences have been slightly rearranged.

138

CHAPTER 3 ' STATIC PROGRAMMING

Because the user never mentions it, the [traits class] name can be long and descriptive.

template <typename char_t>
struct ios_char_traits

{

};

template <>
struct ios_char_traits<char>

{

typedef char char_type;

typedef int int type;

static inline int type eof() { return EOF; }
};

template <>
struct ios_char_traits<wchar_ t»

{

typedef wchar_t char_type;

typedef wint_t int_type;

static inline int type eof() { return WEOF; }
};

The default traits class template is empty. What can anyone say about an unknown
character type? However, for real character types, you can specialize the template and
provide useful semantics.

To put a new character type on a stream, you need only specialize ios_char_traits for the
new type.

Notice that ios_char_traits has no data members; it only provides public definitions.
Now you can define the streambuf template:

template <typename char_t>
class basic_streambuf

Notice that it has only one template parameter, the one that interests users.
In fact, Myers concludes his article with a formal definition and an interesting observation:

Traits class:

A class used in place of template parameters. As a class, it aggregates useful types and
constants. As a template, it provides an avenue for that “extra level of indirection” that
solves all software problems.

This technique turns out to be useful anywhere that a template must be applied to native
types, or to any type for which you cannot add members as required for the template’s
operations.

139

CHAPTER 3 ' STATIC PROGRAMMING

Traits classes may be “global” or “local” Global traits are simply available in the system and they can
be freely used anywhere. In particular, all specializations of a global traits class have system-wide scope (so
specializations are automatically used everywhere). This approach is in fact preferred when traits express
properties of the platform.

template <typename char_t>
class basic_streambuf

{

typedef typename ios_char_ traits<char_ t>::int_type int_type;

N

Note For example, you could access the largest unsigned integer, of float, available. Consider the
following pseudo-code:

template <typename T>
struct largest;

template <>
struct largest<int>

{
typedef long long type;

)

template <>
struct largest<float>

typedef long double type;
};

template <>
struct largest<unsigned>

{
};

typedef unsigned long long type;

Evidently, a call such as largest<unsigneds>: : type is expected to return a result that’s constant in the
platform, so all customizations—if any—should be global to keep the client code coherent.

A more flexible approach is to use local traits, passing the appropriate type to each template instance
as an additional parameter (which defaults to the global value).

template <typename char_t, typename traits t = ios_char_traits<char t> >
class basic_streambuf

{
typedef typename traits_t::int_type int_type;
};

140

CHAPTER 3 ' STATIC PROGRAMMING

The following sections focus on a special kind of traits—pure static traits, which do not contain
functions but only types and constants. You will come back to this argument in Section 4.2.

3.5.1. Type Traits

Some traits classes provide typedefs only, so they are indeed multi-value metafunctions. As an example,
consider again std: :iterator_traits.

Type traits® are a collection of metafunctions that provide information about qualifiers of a given type
and/or alter such qualifiers. Information can be deduced by a static mechanism inside traits, can be explicitly
supplied with a full/partial specialization of the traits class, or can be supplied by the compiler itself.'®

template <typename T>

struct is_const : selector<false>
{

b

template <typename T>

struct is_const<const T> : selector<true>
{

b5

Note Today, type traits are split to reduce compile times, but historically they were large monolithic classes
with many static constants.

template <typename T>
struct all_info_together

{
static const bool is _class = true;
static const bool is pointer = false;
static const bool is_integer = false;
static const bool is floating = false;
static const bool is_unsigned = false;
static const bool is const = false;
static const bool is reference = false;
static const bool is volatile = false;

};

B5The term type traits, introduced by John Maddock and Steve Cleary, is used here as a common name, but it is also popular
as a proper name, denoting a particular library implementation. See http://cppreference.com/header/type traits
or http://www.boost.org/doc/1ibs/1_57_0/libs/type_traits/doc/html/index.html.

'In modern C++, there’s a dedicated <type_traits> header that contains most of the metafunctions described here, and
many more that cannot be replicated in classic C++. For example, has_trivial destructor<T> is indeducible without
the cooperation of the compiler, and current implementations always return false, except for built-in types.

141

http://cppreference.com/header/type_traits
http://www.boost.org/doc/libs/1_57_0/libs/type_traits/doc/html/index.html

CHAPTER 3 ' STATIC PROGRAMMING

As arule, traits have a general implementation with conservative defaults, including partial specializations
with meaningful values for classes of types and full specializations customized on individual types.

template <typename T>
struct add_reference

{
typedef T& type;
};

template <typename T>
struct add_reference<T&>

typedef T& type;
};

template < >
struct add_reference<void>

{
};

// reference to void is illegal. don't put anything here

Traits are often recursive:

template <typename T>

struct is_unsigned integer : selector<false>
{

b

template <typename T>

struct is_unsigned integer<const T> : is_unsigned integer<T>
{

};

template <typename T>

struct is_unsigned_integer<volatile T> : is_unsigned_integer<T>
{

};

template < >
struct is_unsigned_integer<unsigned int> : selector<true>

{
};

template < >
struct is_unsigned_integer<unsigned long> : selector<true>

{
};

// add more specializations...

It’s possible to define add_reference<voidy: :type to be void.

142

CHAPTER 3

Traits can use inheritance and then selectively hide some members:

template <typename T>
struct integer traits;

template <>
struct integer traits<int>
{
typedef long long largest type;
typedef unsigned int unsigned_type;
b

template <>
struct integer_ traits<long> : integer traits<int»
{
// keeps integer traits<int>::largest type
typedef unsigned long unsigned_type;
b

STATIC PROGRAMMING

Note In C++, a template base class is not in scope of name resolution:

template <typename T>
struct BASE

{
typedef T type;

)

template <typename T>
struct DER : public BASE<T>

{
type t; // error: 'type' is not in scope

};
However, from a static point of view, DER does contain a type member:

template <typename T>
struct typeof

{
typedef typename T::type type;

)

typeof< DER<int> >::type i = 0; // ok: int i =0

143

CHAPTER 3 ' STATIC PROGRAMMING

Type traits, if not carefully designed, are vulnerable to hard conceptual problems, as the C++ type

system is a lot more complex than it seems:

template <typename T>

struct is_const : selector<false>
{

b

template <typename T>
struct is_const<const T> :
{

b

template <typename T>

struct add_const : instance_of<const T>
{

};

template <typename T>
struct add_const<const T> :
{

};

selector<true>

Here are some oddities:

instance_of<const T>

e IfNisacompile-time constant and T is a type, you can form two distinct array types:

T [N]andT [].'®

e Qualifiers such as const applied to array types behave a bit oddly. If T is an array, for
example, double [4], const Tis an “array of four const double,” not “const array of
four double” In particular, const Tis not const:

typedef double T1;

typedef add_const<Ti1>::type T2;
T2 x = 3.14;

bool b1 = is_const<T2>::value;

typedef double T3[4];

typedef add_const<T3>::type T4;
T4 a = { 1,2,3,4 })

bool b2 = is_const<T4>::value;

So, you should add more specializations:

template <typename T, size t N>
struct is _const<const T [N]>

{
};

static const bool value = true;

"This is actually used. Some smart pointers, including std::unique_ptr, use operator delete [] when the type

matches T[] and single deletion in any other case.

144

// x has type const double
// b1 is true

// T4 is "array of 4 const double"...

// ...which does not match "const T"
// so b2 is false

CHAPTER 3 ' STATIC PROGRAMMING

template <typename T >
struct is _const<const T []>

{
};

static const bool value = true;

There are two possible criteria you can verify on types:
e Amatch is satisfied; for example, const int matches const T with T==int.

e Alogical test is satisfied; for example, you could say that T is const if const Tand T
are the same type.

The C++ type system is complex enough that criteria may look equivalent in the majority of cases, but
still not be identical. As a rule, whenever such a logical problem arises, the solution will come from more
precise reasoning about your requirements. For any T, is_const<T8&>: :value is false because T& does not
satisfy a match with a const type. However, add_const<T&>: : type is again T8 (any qualifiers applied to a
reference are ignored). Does this mean that references are const?

Should you add a specialization of is_const<T&> that returns true? Or do you really want
add_const<T&>: :type to be const T&?

In C++, objects can have different degrees of const-ness. More specifically, they can be

e Assignable
e Immutable
e const

Being assignable is a syntactic property. An assignable object can live on the left side of operator=.

A const reference is not assignable. In fact, however, T8 is assignable whenever T is. (Incidentally, an
assignment would change the referenced object, not the reference, but this is irrelevant.)

Being immutable is a logical property. An immutable object cannot be changed after construction,
either because it is not assignable or because its assignment does not alter the state of the instance. Since
you cannot make a reference “point” to another object, a reference is immutable.

Being const is a pure language property. An object is const if its type matches const T for some T.

A const object may have a reduced interface and operator= is likely one of the restricted member functions.

References are not the only entities that are both immutable and assignable. Such a situation can be
reproduced with a custom operator=.

template <typename T>
class fake ref

{
T* const ptr_;
public:
/1 ...
const fake ref& operator=(const T& x) const
{
*ptr_ = x; // ok, does not alter the state of this instance
return *this;
}
};

145

CHAPTER 3 ' STATIC PROGRAMMING

This also shows that const objects may be assignable,' but it does not imply that references are const,
only that they can be simulated with const objects.

So the standard approach is to provide type traits that operate atomically, with minimal logic and just a
match. is_const<T&>: :value should be false.

However, type traits are also easy to extend in user code. If an application requires it, you can introduce
more concepts, such as “intrusive const-ness”

template <typename T>

struct is_const_intrusive : selector<false>
{

};

template <typename T>

struct is_const_intrusive<const T> : selector<true>
{

};

template <typename T>
struct is_const_intrusive<const volatile T> : selector<true>

{
};

template <typename T>
struct is_const_intrusive<T&» : is_const_intrusive<T»
{
};
Type traits have infinite applications; this example uses the simplest. Assume that C<T> is a class
template that holds a member of type T, initialized by the constructor. However, T has no restriction, and in

particular it may be a reference.

template <typename T>

class C
{
T member_;
public:
explicit C(argument_type x)
: member (x)
{
}

};

You need to define argument_type. If T is a value type, it’s best to pass it by reference-to-const. But if T is
areference, writing const T8 is illegal. So you'd write:

typedef typename add_reference<const T>::type argument_type;

YAlternatively, std: :pair<const int, double> is neither const nor assignable.

146

CHAPTER 3 ' STATIC PROGRAMMING

Here, add_reference<T> returns const T&, as desired.
If T is a reference or reference-to-const, const Tis T and add_reference returns T. That means the
argument type is again T.

3.5.2. Type Dismantling

A type in C++ can generate infinitely many “variations” by adding qualifiers, considering references,
pointers, and arrays, and so on. But it can happen that you have to recursively remove all the additional
attributes, one at a time. This recursive process is usually called dismantling.*®

This section shows a metafunction, named copy_g, that shifts all the “qualifiers” from type T1 to type T2
so copy_g<const doubled, int>::typewill be const int&

Type deduction is entirely recursive. You dismantle one attribute at a time and move the same attribute
to the result. To continue with the previous example, const double& matches T& where T is const double,
so the result is “reference to the result of copy_g<const double, int>,” which in turn is “const result of
copy_g<double, int>” Since this does not match any specialization, it gives int.

template <typename T1, typename T2>
struct copy q

typedef T2 type;

)

template <typename T1, typename T2>
struct copy q<T1&, T2>

typedef typename copy_q<T1, T2>::type& type;

)

template <typename T1, typename T2>
struct copy_g<const T1, T2>

typedef const typename copy_q<T1, T2>::type type;
};

template <typename T1, typename T2>
struct copy_g<volatile T1, T2>

typedef volatile typename copy q<T1, T2>::type type;
;
template <typename T1, typename T2>
struct copy_q<T1*, T2>

typedef typename copy q<T1, T2>::type* type;

)

The expression “type dismantling” was introduced by Stephen C. Dewhurst.

147

CHAPTER 3 ' STATIC PROGRAMMING

template <typename T1, typename T2, int N>
struct copy_g<T1 [N], T2>

typedef typename copy q<T1, T2>::type type[N];

)

A more complete implementation could address the problems caused by T2 being a reference:

copy_qg<double&, int&>::type erri; // error: reference to reference
copy_g<double [3], int&>::type err2; // error: array of 'intd'

However, it’s questionable if such classes should silently resolve the error or stop compilation. Let’s just
note that declaring a std: :vector<int&> is illegal, but the compiler error is not “trapped”:

/usr/include/gcc/darwin/4.0/c++/ext/new_allocator.h: In instantiation of
'__gnu_cxx::new_allocator<int8&>":
/usr/include/gcc/darwin/4.0/c++/bits/allocator.h:83: instantiated from
'std::allocator<int&>’
/usr/include/gcc/darwin/4.0/c++/bits/stl_vector.h:80: instantiated from
'std:: Vector base<int8, std::allocator<int&> >:: Vector impl'
/usr/include/gcc/darwin/4.0/c++/bits/stl_vector.h:113: instantiated from
'std:: Vector_base<int&, std::allocator<int&> >'
/usr/include/gcc/darwin/4.0/c++/bits/stl_vector.h:149: instantiated from
'std::vector<int®, std::allocator<int8> >'

main.cpp:94: instantiated from here
/usr/include/gcc/darwin/4.0/c++/ext/new_allocator.h:55: error: forming pointer to
reference type 'intd'

3.6. Type Containers

So what is a typelist? It’s got to be one of those weird template beasts, right?

—Andrei Alexandrescu

The maximum number of template parameters is implementation-defined, but it’s usually large enough to
use a class template as a container of types.*!

This section shows how some elementary static algorithms work, because you'll reuse the same
techniques many times in the future. Actually, it’s possible to implement most STL concepts in TMP,
including containers, algorithms, iterators, and functors, where complexity requirements are translated at
compilation time.*

This section shows the ideas of the elementary techniques; you'll see some applications later.

The simplest type containers are pairs (the static equivalent of linked lists) and arrays (resemble C-style
arrays of a fixed length).

2'The C++ Standard contains an informative section, called “Implementation Quantities,” where a recommended minimum
is suggested for the number of template arguments (1024) and for nested template instantiations (1024), but compilers do
not need to respect these numbers.

2The reference on the argument is [3].

148

CHAPTER 3 ' STATIC PROGRAMMING

template <typename T1, typename T2>
struct typepair

typedef T1 head_t;
typedef T2 tail t;
};

struct empty

{
};

In fact, you can easily store a list of arbitrary (subject to reasonable limitations) length using pairs of
pairs. In principle, you could form a complete binary tree, but for simplicity’s sake, a list of types
(T1, T2... Tn)isrepresented as typepair<T1i, typepair<T2, ...> >.Inotherwords, you'll allow the
second component to be a pair. Actually, it forces the second component to be a typepair or an empty,
which is the list terminator. In pseudo-code:

PO = empty

P1 = typepair<Ti, empty >

P2 = typepair<T2, typepair<Ti, empty> >
/7 ...

Pn = typepair<Tn, P_>

This incidentally shows that the easiest operation with typepair-sequences is push_front.

Following Alexandrescu’s notation (see [1]), I call such an encoding a fypelist. You say that the first
accessible type Tn is the head of the list and Pn-1 is the tail.

Alternatively, if you fix the maximum length to a reasonable number, you can store all the types in a row.
Due to the default value (which can be empty or void), you can declare any number of parameters on the
same line:

#define MXT GENERIC TL_ MAX 32
// the code "publishes" this value for the benefit of clients

template

<
typename T1 empty,
typename T2 = empty,
/7 ...
typename T32

>

struct typearray

{

};

empty

typedef typearray<int, double, std::string> array 1; // 3 items
typedef typearray<int, int, char, array 1> array 2; // 4 items

The properties of these containers are different. A typelist with J elements requires the compiler to
produce] different types. On the other hand, arrays are direct-access, so writing algorithms for type arrays
involves writing many (say 32) specializations. Typelists are shorter and recursive but take more time to
compile.

149

CHAPTER 3 ' STATIC PROGRAMMING

Note Before the theoretical establishment made by Abrahams in [3], there was some naming confusion.
The original idea of type pairs was fully developed by Alexandrescu (in [1] and subsequently in CUJ), and he
introduced the name typelist.

Apparently, Alexandrescu was also the first to use type arrays as wrappers for declaring long typelists in an
easy way:

template <typename T1, typename T2, ..., typename Tn>
struct cons

{
typedef typepair<Ti, typepair<T2, ...> > type;

)

However, the name typelist is still widely used as a synonym of a more generic type container.

3.6.1. typeat

typeat is a metafunction that extracts the Nth type from a container.
struct Error UNDEFINED_TYPE; // no definition!

template <size t N, typename CONTAINER, typename ERR = Error UNDEFINED TYPE>
struct typeat;

If the Nth type does not exist, the result is ERR.

The same metafunction can process type arrays and typelists. As anticipated, arrays require all the
possible specializations. The generic template simply returns an error, then the metafunction is specialized
first on type arrays, and then on typelists.

template <size t N, typename CONTAINER, typename ERR = Error UNDEFINED TYPE>
struct typeat

typedef ERR type;
};

template <typename T1, ... typename T32, typename ERR>
struct typeat<o, typearray<Ti, ..., T32>, ERR>

typedef T1 type;
b

template <typename T1, ... typename T32, typename ERR>
struct typeat<1, typearray<Ti, ..., T32>, ERR>

{
typedef T2 type;

)

// write all 32 specializations

150

CHAPTER 3 ' STATIC PROGRAMMING

The same code for typelists is more concise. The Nth type of the list is declared equal to the (N-1)th type
in the tail of the list. If N is 0, the result is the head type. However, if you meet an empty list, the result is ERR.

template <size t N, typename T1, typename T2, typename ERR>
struct typeat<N, typepair<Ti, T2>, ERR>

{
typedef typename typeat<N-1, T2, ERR>::type type;

5
template <typename T1, typename T2, typename ERR>
struct typeat<o, typepair<Ti, T2>, ERR>

typedef T1 type;
};

template <size t N, typename ERR>
struct typeat<N, empty, ERR>

typedef ERR type;
};

Observe that, whatever index you use, typeat<N, typearray<...>>requires just one template
instantiation. typeat<N, typepair<...>> mayrequire N different instantiations.
Note also the shorter implementation:

template <size t N, typename T1, typename T2, typename ERR>
struct typeat<N, typepair<Ti, T2>, ERR> : typeat<N-1, T2, ERR>

{
};

3.6.2. Returning an Error

When a metafunction F<T> is undefined, such as with typeat<N, empty, ERR>, common options for
returning an error include:

e Removing the body of F<T> entirely.
e Giving F<T> an empty body, with no result (type or value).

e Defining F<T>: : type so that it will cause compilation errors, if used
(void or a class that has no definition).

e Defining F<T>: :type using an user-supplied error type (as shown previously).

Remember that forcing a compiler error is quite drastic; it’s analogous to throwing exceptions. It’s hard
to ignore, but a bogus type is more like a return false. A false can be easily converted to a throwand a
bogus type can be converted to a compiler error (a static assertion would suffice).

151

CHAPTER 3 ' STATIC PROGRAMMING

3.6.3. Depth

Dealing with type arrays can be easier with the help of some simple macros®:

#define MXT_LIST o(T)

#define MXT_LIST 1(T) T##1

#define MXT_LIST 2(T) MXT_LIST 1(T), T##2
#define MXT_LIST 3(T) MXT_LIST 2(T), T##3
/...

#define MXT_LIST 32(T) MXT_LIST 31(T), T##32

Surprisingly, you can write class declarations that look extremely simple and concise. Here is an
example (before and after preprocessing).

template <MXT_LIST 32(typename T)>
struct depth< typelist<MXT _LIST 32(T)> >

template <typename T1, ... , typename T32>
struct depth< typelist<T1i, ... T32> >

The metafunction called depth returns the length of the typelists:

template <typename CONTAINER>
struct depth;

template <>

struct depth< empty > : static_value<size t, 0>
{

};

template <typename T1, typename T2>
struct depth< typepair<Ti, T2> > : static_value<size_t, depth<T2>::value+1>

{
};

e The primary template is undefined, so depth<int> is unusable.

e Ifthe depth of a typelist is K, the compiler must generate K different intermediate
types (namely depth<P1>. .. depth<Pn> where Pj is the jth tail of the list).

For type arrays, you use macros again. The depth of typearray<> is 0; the depth of typearray<T1> is 1;
and in fact the depth of typearray<MXT_LIST N(T)>isN.

template <MXT_LIST o(typename T)>
struct depth< typearray<MXT _LIST o(T)> >
: static value<size t, 0> {};

BThe boost preprocessor library would be more suitable, anyway, but its description would require another chapter.
Here, the focus is on the word simple: a strategic hand-written macro can improve the esthetics of code noticeably.

152

CHAPTER 3 ' STATIC PROGRAMMING

template <MXT_LIST 1(typename T)>
struct depth< typearray<MXT_LIST 1(T)> >
. static_value<size t, 1> {};

/7 ...

template <MXT_LIST 32(typename T)>
struct depth< typearray<MXT_LIST 32(T)> >
1 static_value<size t, 32> {};

Note that even if a malicious user inserts a fake empty delimiter in the middle, depth returns the
position of the last non-empty type:

typedef typearray<int, double, empty, char> t4;
depth<t4>::value; // returns 4

In fact, this call will match depth<T1, T2, T3, T4>, where it happens that T3 = empty.
In any case, empty should be confined to an inaccessible namespace.

3.6.4. Front and Back

This section shows you how to extract the first and the last type from both type containers.

template <typename CONTAINER>
struct front;

template <typename CONTAINER>
struct back;

First, when the container is empty, you cause an error:

template <>
struct back<empty>;

template <>
struct front<empty>

{
};

While front is trivial, back iterates all over the list:

template <typename T1, typename T2>
struct front< typepair<Ti, T2> >

{
};

typedef T1 type;

template <typename T1>
struct back< typepair<Ti, empty> >

{
typedef T1 type;
};

153

CHAPTER 3 ' STATIC PROGRAMMING

template <typename T1, typename T2>
struct back< typepair<Ti, T2> >

{
typedef typename back<T2>::type type;

)
or simply:

template <typename T1, typename T2>
struct back< typepair<T1, T2> > : back<T2>

{
};

For type arrays, you exploit the fact that depth and typeat are very fast and you simply do what is
natural with, say, a vector. The back element is the one at size-1. In principle, this would work for typelists
too, but it would “iterate” several times over the whole list (where each “iteration” causes the instantiation of

anew type).

template <MXT_LIST 32(typename T)>
struct back< typearray<MXT_LIST 32(T)> >

{
typedef typelist<MXT LIST 32(T)> aux_t;
typedef typename typeat<depth<aux_t>::value - 1, aux_t>::type type;

};

template <>
struct back< typearray<> >

{
};

template <MXT_LIST 32(typename T)>
struct front< typearray<MXT_LIST 32(T)> >

{
typedef T1 type;
};

template <>
struct front< typearray<> >

{
};

3.6.5. Find

You can perform a sequential search and return the index of the (first) type that matches a given T. If T does
not appear in CONTAINER, you return a conventional number (say -1), as opposed to causing a compiler error.
The code for the recursive version basically reads:

e Nothing belongs to an empty container.
e Thefirst element of a pair has index 0.

e Theindexis one plus the index of T in the tail, unless this latter index is undefined.

154

CHAPTER 3

template <typename T, typename CONTAINER>
struct typeindex;

template <typename T>
struct typeindex<T, empty>

{

static const int value = (-1);

};

template <typename T1, typename T2>
struct typeindex< T1, typepair<Ti, T2> >

static const int value = 0;

};

template <typename T, typename T1, typename T2>
struct typeindex< T, typepair<Ti, T2> >

static const int aux_v = typeindex<T, T2>::value;
static const int value = (aux_v==-1 ? -1 : aux_v+1);

b
The first implementation for type arrays is:
/* tentative version */

template <MXT_LIST_32(typename T)>
struct typeindex< T1, typearray<MXT_LIST_32(T)> >

static const int value = 0;

};

template <MXT_LIST 32(typename T)>
struct typeindex< T2, typearray<MXT_LIST_32(T)> >
{

static const int value = 1;

};

/7 ...

STATIC PROGRAMMING

If the type you are looking for is identical to the first type in the array, the value is 0; if it is equal to the

second type in the array, the value is 1, and so on. Unfortunately the following is incorrect:

typedef typearray<int, int, double> t3;

int i = typeindex<int, t3>::value;

There’s more than one match (namely, the first two), and this gives a compilation error. I defer the

solution of this problem until after the next section.

155

CHAPTER 3 ' STATIC PROGRAMMING

3.6.6. Push and Pop

It was already mentioned that the easiest operation with type pairs is push_front. It is simply a matter of
wrapping the new head type in a pair with the old container:

template <typename CONTAINER, typename T>
struct push_front;

template <typename T>
struct push_front<empty, T>

{
typedef typepair<T, empty> type;
};

template <typename T1, typename T2, typename T>
struct push_front<typepair<T1, T2>, T>

{
typedef typepair< T, typepair<Ti, T2> > type;

)

Quite naturally, pop_front is also straightforward:

template <typename CONTAINER>
struct pop front;

template <>
struct pop_front<empty>;

template <typename T1, typename T2>
struct pop_front< typepair<Ti, T2> >

{
typedef T2 type;

)

To implement the same algorithm for type arrays, you must adopt a very important technique named
template rotation. This rotation shifts all template parameters by one position to the left (or to the right).

template <P1, P2 = some_default, ..., P, = some_default>
struct container

{
};

typedef container<P2, P3, ..., P,, some_default> tail t;*

The type resulting from a pop_front is called the tail of the container (that’s why the source code
repeatedly refers to tail_t).
Parameters need not be types. The following class computes the maximum in a list of positive integers.

*In principle, some_default should not be explicitly specified. All forms of code duplication can lead to maintenance
errors. Here, I show it to emphasize the rotation.

156

CHAPTER 3 ' STATIC PROGRAMMING

#tdefine MXT M _MAX(a,b) ((a)<(b) ? (b) : (a))

template <size t S1, size t S2=0, ... , size t S32=0>
struct typemax : typemax<MXT M MAX(S1, S2), S3, ..., S32>
{

};

template <size t S1>
struct typemax<S1,0,0,...,0> : static_value<size t, S1>

};

As a side note, whenever it’s feasible, it’s convenient to accelerate the rotation. In the previous example,
you would write

template <size t S1, size t S2=0, ... , size t S32=0>

struct typemax

: typemax<MXT_M_MAX(S1, S2), MXT_M_MAX(S3, S4), ..., MXT_M_MAX(S31, S32)>
{

};

To compute the maximum of N constants, you need only 1og2 (N) instances of typemax, instead of N.
It’s easy to combine rotations and macros with elegance®:

template <typename TO, MXT_LIST 31(typename T)>
struct pop_front< typearray<To, MXT_LIST 31(T)> >

{
typedef typearray<MXT LIST 31(T)> type;

)

template <MXT_LIST 32(typename T), typename T>
struct push_front<typearray<MXT _LIST 32(T)>, T>
{

typedef typearray<T, MXT_LIST 31(T)> type;

)

Using pop_front, you can implement a generic sequential find. Note that for clarity, you want to add
some intermediate typedefs. As in metaprogramming, types are the equivalent of variables in classic C++.
You can consider typedefs as equivalent to (named) temporary variables. Additionally, private and public
sections help separate “temporary” variables from the results:

The procedure you'll follow here is:

e Theindex of T in an empty container is -1.

e Theindex of T1in array<T1, ...>is 0 (this unambiguously holds, even if T1 appears
more than once).

»See Section 3.6.3.

157

CHAPTER 3 ' STATIC PROGRAMMING

e To obtain the index of Tin array<T1, T2, T3, ...> youcomputeitsindexina
rotated array and add 1 to the result.

template <typename T>
struct typeindex<T, typearray<> >

{

static const int value = (-1);

};

template <MXT_LIST 32(typename T)>
struct typeindex< T1, typearray<MXT_LIST_32(T)> >

static const int value = 0;

};

template <typename T, MXT LIST 32(typename T)>
struct typeindex< T, typearray<MXT_LIST 32(T)> >

private:
typedef typearray<MXT_LIST 32(T)> argument_t;
typedef typename pop_front<argument_t>::type tail t;

static const int aux_v = typeindex<T, tail t>::value;

public:
static const int value = (aux_v<0) ? aux_v : aux_v+1;

};

3.6.7. More on Template Rotation

Template arguments can be easily rotated; however, it’s usually simpler to consume them left to right.
Suppose you want to compose an integer by entering all its digits in base 10. Here’s some pseudo-code.

template <int D1, int D2 = 0, ... , int D, = 0>
struct join_digits

{
};

static const int value = join_digits<D2, ..., Dp>::value * 10 + D1;

template <int D1>
struct join_digits<D1>

{
};

static const int value

D1;

join_digits<3,2,1>::value; // compiles, but yields 123, not 321

158

CHAPTER 3 ' STATIC PROGRAMMING

Observe instead that it’s not so easy to consume DN in the rotation. This will not compile, because
whenever DN is equal to its default (zero), value is defined in terms of itself:

template <int D1, int D2
struct join_digits
{

static const int value = join_digits<D1,D2, ...,D >::value * 10 + D ;

};

0, ..., int D, = 0, int D, = 0>

Rotation to the right won’t produce the correct result:

template <int D1, int D2 = 0, ..., int D, = 0, int D, = 0>
struct join_digits
{

static const int value = join_digits<0,D1,D2, ...,D _>::value * 10 + D;
};

The solution is simply to store auxiliary constants and borrow them from the tail:

template <int D1 = 0, int D2 = 0, ..., int D, = 0>
struct join_digits

{
typedef join_digits<D2, ..., D> next_t;
static const int pow10 = 10 * next t::pow10;
static const int value = next t::value + D1*pow10;
};

template <int D1>
struct join_digits<D1>

{
static const int value = Di;
static const int pow10 = 1;
};
join_digits<3,2,1>::value; // now really gives 321

Template rotation can be used in two ways:
e Direct rotation of the main template (as shown previously):
template <int D1 = 0, int D2 = 0, ..., int D, = 0>

struct join_digits
{... 5
template <int D1>

struct join_digits<D1>

{.o)

159

CHAPTER 3 ' STATIC PROGRAMMING

e Rotation on a parameter. This adds an extra “indirection”:

template <int D1 = 0, int D2 = 0, ..., int D, = 0>
struct digit_group
{
// empty
};

template <typename T>
struct join_digits; // primary template not defined

template <int D1, int D2, ..., int Dp
struct join_digits< digit_group<D1, ..., D> >
{

// as above

};

template <>
struct join_digits< digit_group<> >
{

// as above

};

The first solution is usually simpler to code. However, the second has two serious advantages:

e TypeT, which “carries” the tuple of template parameters, can be reused. T is usually a
type container of some kind.

e Suppose for the moment that join_digits<...>is atrue class (not a metafunction),
and it is actually instantiated. It will be easy to write generic templates accepting any
instance of join_digits. They just need to take join_digits<X>.But, if join_digits
has a long and unspecified number of parameters, clients will have to manipulate
itas X.*

3.6.8. Agglomerates

The rotation technique encapsulated in pop_front can be used to create tuples as agglomerate objects.

In synthesis, an agglomerate A is a class that has a type container C in its template parameters. The class
uses front<C> and recursively inherits from A< pop_front<C> >. The simplest way to “use” the front type is
to declare a member of that type. In pseudo-code:

template <typename C>
class A : public A<typename pop_front<C>::type>

{

typename front<C>::type member_;

public:
/...
};

*This need not be a problem’ if join_digits were a functor, clients would likely take it as X anyway.

160

CHAPTER 3 ' STATIC PROGRAMMING

template < >
class A<empty>
{

};

template < >
class A< typearray<> >

};

e Inheritance can be public, private, or even protected.

e There are two possible recursion stoppers: A<empty typelist> and
A<empty_typearray>.

So, an agglomerate is a package of objects whose type is listed in the container. If C is typearray<int,
double, std::string>, the layout of Awould be as shown in Figure 3-4.

A<int, double, std::string, ...>

“'Acdouble, std::string, ...>

“greek pi”

. double member

3.14
S

int member

]

Figure 3-4. Layout of the agglomerate A

Note that in the implementation under review, the memory layout of the objects is reversed with
respect to the type container.

To access the elements of the package, you use rotation again. Assume for the moment that all members
are public. You'll get a reference to the Nth member of the agglomerate via a global function and the
collaboration of a suitable traits class.

There are two equally good development strategies: intrusive traits and non-intrusive traits.

Intrusive traits require the agglomerate to expose some auxiliary information:

template <typename C>
struct A : public A<typename pop front<C>::type>
{
typedef typename front<C>::type value_type;
value_type member;

typedef typename pop_front<C>::type tail_t;

b

161

CHAPTER 3 ' STATIC PROGRAMMING

template <typename agglom_t, size t N>
struct reference traits

{
typedef reference_traits<typename agglom_t::tail_t, N-1> next_t;
typedef typename next_t::value_type value_type;
static value typed ref(agglom t& a)
{
return next_t::ref(a);
}
b

template <typename agglom t>
struct reference_traits<agglom t, 0>

{
typedef typename agglom_t::value_type value_ type;
static value typed ref(agglom t& a)
{
return a.member;
}
b

template <size t N, typename agglom_t>
inline typename reference traits<agglom t,N>::value typed ref(agglom t& a)

return reference traits<agglom t, N>::ref(a);

}

A quick example:

typedef typearray<int, double, std::string> C;

A<C> a;

ref<o>(a) = 3;
ref<1>(a) = 3.14;
ref<2>(a) = "3.14";

Non-intrusive traits instead determine the information with partial specializations:

template <typename agglom_t, size t N>
struct reference traits;

template <typename C, size t N>

struct reference traits< A<C», N >

{
typedef reference traits<typename pop_front<Cs>::type, N-1> next t;
typedef typename front<Cs::type value_ type;

};

162

CHAPTER 3 ' STATIC PROGRAMMING

When feasible, non-intrusive traits are preferred. It's not obvious that the author of reference_traits
can modify the definition of A. However it's common for traits to require reasonable “cooperation” from
objects. Furthermore, auto-deduction code is a duplication of class A internals and auto-deduced values
tend to be “rigid,” so intrusiveness is not a clear loser.

A special case is an agglomerate modeled on a typelist containing no duplicates. The implementation is
much simpler, because instead of rotation, a pseudo-cast suffices:

template <typename T, typename tail t> // cast-like syntax
T& ref(A< typepair<T, tail t> >& a) // T is non-deduced

return a.member;

}

typedef typepair<int, typepair<double, typepair<std::string, empty> > > C;
A<C> a;

ref<double>(a) = 3.14;
ref¢std: :string>(a) = "greek pi";
ref<int>(a) = 3;

The cast works because the syntax ref<T>(a) fixes the first type of the pair and lets the compiler match
the tail that follows. This is indeed possible, due to the uniqueness hypothesis.

In fact, the C++ Standard allows one derived-to-base cast before argument deduction, if it’s a necessary
and sufficient condition for an exact match.

Here, the only way to bind an argument of type A<C> to a reference to A< typepair<std::string,
tail t> >istocastittotypepair<std::string, empty> andthen deduce tail t = empty.

To store a value extracted from an agglomerate, declare an object of type reference_traits
<agglom t,N>::value_type.

Finally, with a little more intrusiveness, you just add a member function to A:

template <typename C>
struct A : public A< typename pop_front<C>::type >

{
typedef typename front<C>::type value_type;
value_type member;

typedef typename pop_front<C>::type tail t;

tail_t& tail() { return *this; }
b

template <typename agglom t, size t N>
struct reference_traits

{
/...
static value_typed get ref(agglom t& a)
{
return next_t::get ref(a.tail());
}
b

163

CHAPTER 3 ' STATIC PROGRAMMING

Invoking a member function instead of an implicit cast allows you to switch to private inheritance or
even to a has-a relationship:

template <typename C>

class A

{

public:
typedef typename pop_front<C>::type tail t;
typedef typename front<C>::type value_type;

private:
A<tail _t> tail_;
value_type member;

public:
tail t& tail() { return tail ; }

/...
};

The memory layout of the object is now in the same order as the type container.

3.6.9. Conversions

Many algorithms in fact require a linear number of recursion steps, both for typelists and for type arrays. In
practice, the typepair representation suffices for most practical purposes except one—: the declaration of a
typelist is indeed unfeasible.

As anticipated, it’s very easy to convert from a type array to typelist and vice versa.

It is an interesting exercise to provide a unified implementation®”:

template <typename T>
struct convert

{
typedef typename pop_front<T>::type tail t;
typedef typename front<T>::type head_t;
typedef
typename push_front<typename convert<tail t>::type, head t>::type
type;
};

template <>
struct convert< typearray<> >

{
typedef empty type;

)

YIt’s another exercise of type dismantling; note also that using push_back instead of push_front would reverse
the container.

164

CHAPTER 3 ' STATIC PROGRAMMING

template <>
struct convert< empty >
{
typedef typearray<> type;

)

Note that T in this code is a generic type container, not a generic type.

Before, you used partial template specialization as a protection against bad static argument types.

For example, if you try front<int>: : type, the compiler will output that front cannot be instantiated on int
(if you did not define the main template) or that it does not contain a member type (if it's empty).

However, such a protection is not necessary here. convert is built on top of front and pop_front, and
they will perform the required argument validation. In this case, the compiler will diagnose that front<int>,
instantiated inside convert<inty, is illegal.

The problem is just a less clear debug message. Among the options you have to correct the problem, you
can write type traits to identify type containers and then place assertions:

template <typename T>
struct type container

static const bool value = false;

};

template <typename T1, typename T2>
struct type container< typepair<Ti, T2> >

{

static const bool value = true;

};

template <>
struct type_container<empty>

{

static const bool value = true;

};

template <MXT_LIST 32(typename T)>
struct type_ container< typearray<MXT_LIST 32(T)> >

static const bool value = true;
};
template <typename T>
struct convert
: static_assert< type_container<T>::value >
{

//...

Very likely, the compiler will emit the first error pointing to the assertion line.

165

CHAPTER 3 ' STATIC PROGRAMMING

Note Section 5.2 is fully devoted to bad static argument types. You will meet function templates that
statically restrict their template parameters to those having a particular interface.

It can be useful to extend type container traits by inserting a type representing the empty container of
that kind (the primary template is unchanged).

template <typename T1, typename T2>
struct type container< typepair<Ti, T2> >

static const bool value = true;
typedef empty type;
};

template <>
struct type_container<empty>

static const bool value = true;
typedef empty type;
};

template <MXT_LIST 32(typename T)>
struct type container< typearray<MXT LIST 32(T)> >

static const bool value = true;
typedef typearray<s> type;
b

When enough “low-level” metafunctions—such as front, back, push_front, and so on—are available,
most meta-algorithms will work on arrays and lists. You just need two different recursion terminations, as
well as a specialization for typearray<> and one for empty.

Another option is the empty-empty idiom: Let a helper class take the original type container as T and a
second type, which is the empty container of the same kind (obtained from traits). When these are equal,
you stop.

template <typename T>

struct some_metafunction

: static_assert<type_container<T>::value>

, helper<T, typename type container<T>::type>
{

b

template <typename T, typename E>
struct helper

{
// general case:
// T is a non-empty type container of any kind
// E is the empty container of the same kind
};

166

template <typename E>
struct helper<k, E>

{
};

// recursion terminator

3.6.10. Metafunctors

CHAPTER 3 ' STATIC PROGRAMMING

User functors, predicates, and binary operations can be replaced by template-template parameters. Here is a

simple metafunctor:

template <typename T>
struct size of

{

static const size t value

};

CHAR BIT*sizeof(T);

template <>
struct size_of<void>

{

static const size t value = 0;

};
Here is a simple binary metarelation:

template <typename X1, typename X2>

struct less by size : selector<(sizeof(X1) < sizeof(X2))>
{

b

template <typename X>

struct less by size<void, X> : selector<true>
{

};

template <typename X>

struct less by size<X, void> : selector<false>
{

};

template <>
struct less by size<void, void> : selector<false>

{
};

167

CHAPTER 3 ' STATIC PROGRAMMING

And here’s the skeleton of a metafunction that might use it:

template <typename T, template <typename X1, typename X2> class LESS>
struct static_stable sort
. static_assert< type_container<T>::value >

{

// write LESS<T1, T2>::value instead of "T1<T2"

typedef [[RESULT]] type;
};

Instead of describing an implementation, this section sketches a possible application of static_stable
sort. Suppose our source code includes a collection of random generators that return unsigned integers:

class linear generator

{ typedef unsigned short random_type;
.

class mersenne_twister

{ typedef unsigned int random_type;
.

class mersenne_twister 64bit

{ typedef /* ... */ random_type;

.

The user will list all the generators in a type container, in order from the best (the preferred algorithm)
to the worst. This container can be sorted by sizeof(typename T::random_type). Finally, when the user
asks for a random number of type X, you scan the sorted container and stop on the first element whose
random_type has at least the same size as X. You then use that generator to return a value. Since sorting is
stable, the first suitable type is also the best in the user preferences.

As promised earlier, I turn now to the problem of selecting unsigned integers by size (in bit).

First, you put all candidates in a type container:

typedef typearray<unsigned char, unsigned short, unsigned int,
unsigned long, unsigned long long> all unsigned;

You have to scan the list from left to right and use the first type that has a specified size (it’s also possible
to append to the list a compiler-specific type).

168

CHAPTER 3 ' STATIC PROGRAMMING

Note A little algebra is necessary here. By definition of the sign function, for any integer, you have the
identity &-sign(8)=I06l. On the other hand, if S is a prescribed constant in {-1, 0, 1}, the equality 5-S=I8l
implies respectively 6<0, 6=0, 6=0. This elementary relationship allows you to represent three predicates
(less-or-equal-to-zero, equal-to-zero, and greater-or-equal-to-zero) with an integer parameter.

In the following code, T is any type container:
#tdefine MXT M ABS(a) ((a)<o 2 -(a) : (a))

enum
{
LESS_OR_EQUAL = -1,
EQUAL = o,
GREATER OR_EQUAL = +1
};

template
<
typename T,
template <typename X> class SIZE_OF,
int SIGN,
size_t SIZE BIT N
>
struct static_find_if
: static_assertion< type_container<T>::value >

{
typedef typename front<T>::type head_t;

static const int delta = (int)SIZE_OF<head_t»::value - (int)SIZE BIT N;

typedef typename typeif
<
SIGN*delta == MXT_M ABS(delta),
front<T>,
static_find_if<typename pop front<T>::type,
SIZE OF, SIGN, SIZE BIT N>
>:itype aux_t;

typedef typename aux_t::type type;
};

// define an unsigned integer type which has exactly 'size' bits

template <size t N>

struct uint_n

: static_find_if<all_unsigned, size_of, EQUAL, N>
{

};

169

CHAPTER 3 ' STATIC PROGRAMMING

// defines an unsigned integer type which has at least 'size' bits

template <size t N>

struct uint_nx

: static_find_if<all_unsigned, size_of, GREATER_OR_EQUAL, N>
{

};

typedef uint_n<8>::type uint8;

typedef uint_n<16>::type uint16;
typedef uint_n<32>::type uint32;
typedef uint_n<64>::type uint64;

typedef uint_nx<32>::type uint32x;

Note that the order of template parameters was chosen to make clear the line that uses static_find_if,
not static_find_if itself.®

What happens if a suitable type is not found? Any invalid use will unwind a long error cascade (the code
has been edited to suppress most of the noise):

uint_n<25>::type io

= 8;
uint_nx<128>::type i1 =

8;

error C2039: 'type' : is not a member of 'front<typearray<>>'
: see declaration of 'front<typearray<>>'
: see reference to class template instantiation
'static_find_if<T,SIZE_OF,SIZE_BIT N,SIGN>' being compiled
with
[
T=pop_front<pop_front<pop_ front<pop_ front<pop front<all unsigned>::type>::type>::type>::
type>: :itype,
]

: see reference to class template instantiation
'static_find_if<T,SIZE_OF,SIZE_BIT_N,SIGN>' being compiled
with
[

T=pop_front<pop_front<pop_front<pop_front<all unsigned>::type>::type>::type>::type,

: see reference to class template instantiation
'static_find_if<T,SIZE_OF,SIZE BIT N,SIGN>' being compiled
with
[
T=pop_front<pop_front<pop_front<all unsigned>::type>::type>::type,

[...]

: see reference to class template instantiation

#[adopted the name find_if with some abuse of notation; a genuine static_find_if would be static_find_
if<typename T, template <typename X> class F>, which returns the first type in T where F<X>: :value is true

170

CHAPTER 3 ' STATIC PROGRAMMING

'static_find_if<T,SIZE OF,SIZE BIT N,SIGN>' being compiled
with
[

]
: see reference to class template instantiation
'uint_n<SIZE BIT N>' being compiled
with
[

]

T=all _unsigned,

SIZE_BIT N=25

Basically, the compiler is saying that, during deduction of uint_n<25>: :type, after applying pop_front
to the type array five times, it ended up with an empty container, which has no front type.

However it’s easy to get a more manageable report. You just add an undefined type as a result of the
recursion terminator:

template
<
template <typename X> class SIZE_OF,
int SIGN,
size t SIZE BIT N
>
struct static_find_if<typearray<», SIZE_OF, SIGN, SIZE BIT_N>
{

typedef error_UNDEFINED_TYPE type;
};

Now the error message is more concise:

error C2079: 'io' uses undefined class 'error UNDEFINED TYPE'
error C2079: 'i1' uses undefined class 'error UNDEFINED TYPE'

3.7. A Summary of Styles

When programming metafunctions, identify:
e Asuggestive name and syntax.
e Which template parameters are needed to express the concept.
e Which atomic actions the algorithm depends on.
e Arecursive efficient implementation.
e Special cases that must be isolated.

If the metafunction name is similar to a classic algorithm (say, find_if), then you can adopt a similar name
(static_find_if)or even an identical one if it resides in a specific namespace (say, typelist::find_if).

Some authors append an underscore to pure static algorithms, because this allows mimicking real
keywords (typeif would be called if).

171

CHAPTER 3 ' STATIC PROGRAMMING

If several template parameters are necessary, write code so that the users will be able to remember their
meaning and order. It’s a good idea to give a syntax hint through the name:

: static_find_if<all unsigned, size_of, GREATER_OR_EQUAL, N>
Many unrelated parameters should be grouped in a traits class, which should have a default

implementation that is easy to copy.
Finally, the following table may help you translate a classic algorithm to a static one.

Classic C++ Function Static Metaprogramming

What they manipulate Instances of objects Types

Argument handling Via argument public interface Via metafunctions

Dealing with different Function overload Partial template specializations

arguments

Return result Zero or one return statement Zero or more static data (type or
constant), usually inherited

Error trapping try...catchblock Extra template parameter ERR

User-supplied callbacks Functors Template-template parameters

Temporary objects Local variables Private typedef/static const

Function calls Yes, as subroutines Yes, also via derivation

Algorithm structure Iteration or recursion Static recursion, stopped with suitable
full/partial template specializations

Conditional decisions Language constructs (if, switch) Partial specializations

Error handling e Throw an exception o Abort compilation

¢ Return false ¢ Return no result
o Setresult to an incomplete type

172

CHAPTER 4

Overload Resolution

This chapter presents TMP techniques based on overload resolution.
The common underlying schema is as follows:

e You want to test if type T satisfies a condition.

e You write several static functions with the same name, say test, and pass them a
dummy argument that “carries” type T (in other words, an argument that allows
deduction of T, such as T*).

e The compiler selects the best candidate, according to C++ language rules.

e You deduce which function was used, either using the return type or indirectly from
a property of this type, and eventually make a decision.

The first section introduces some definitions.

4.1. Groups

A group is a class that provides optimized variants of a single routine. From the outside, a group acts as a
monolithic function that automatically picks the best implementation for every call.
A group is composed of two entities:

e Atemplate struct containing variants of a (single) static member function.

e A companion global function template that just forwards the execution to the correct
member of the group, performing a static decision based on the auto-deduced
template parameter and on some framework-supplied information.

The group itself is usually a template, even if formally unnecessary (it may be possible to write the group
as a normal class with template member functions).

Finally, observe that groups and traits are somehow orthogonal. Traits contain all the actions of a
specific type, while groups contain a single action for many types.

Traits<T1> Traits<T2> Group_F1 Group_F2
{ { { {
Func1(T1); Func1(T2); «> Func1(T1); Func2(T1);
Func2(T1); Func2(T2); Func1(T2); Func2(T2);
} } } }

173

CHAPTER 4 © OVERLOAD RESOLUTION

4.1.1. From Overload to Groups

A group is the evolution of a set of overloaded functions.
Step 1: You realize that a default template implementation can handle most cases, so you just add
overloaded variants:

template <typename T>
bool is product negative(T x, T y)

{
return x<0 " y<0;
}
bool is product negative(short x, short y)
{
return int(x)*int(y) < 0;
}
bool is product negative(unsigned int x, unsigned int y)
{
return false;
}
bool is product_negative(unsigned long x, unsigned long y)
{
return false;
}

Step 2: Implementation is clustered in several templates that are picked using tags.

template <typename T>
bool is product negative(T x, Ty, selector<falsey)

{
}

return x<0 " y<0;

template <typename T>
bool is product negative(T x, Ty, selector<true>)

{
}

return int(x)*int(y) < 0;

template <typename T>

bool is product negative(T x, T y)

{
typedef selector<(sizeof(T)<sizeof(int))> small int t;
return is_product_negative(x, y, small_int t());

}

174

CHAPTER 4 © OVERLOAD RESOLUTION

Step 3: Group all the auxiliary functions in a class and leave a single function outside that dispatches
the work:

// companion function

template <typename T>
bool is product negative(T x, T y)

{

return is_product_negative t<T>::doIt(x, y);

}

template <typename T>
struct is_product_negative_ t

{

static bool doIt(T x, T y)
{... }

static bool doIt(unsigned, unsigned)
{ return false; }

};
Here is another very simple group:

struct maths

{

template <typename T>
inline static T abs(const T x)

{ return x<0 ? -x : Xx;
}
inline static unsigned int abs(unsigned int x)
{
return x;
}

};

template <typename T>
inline T absolute value(const T x)

{
return maths::abs(x);

}

Note Remember that the group class, being a non-template, is always fully instantiated. Furthermore,
a non-template function in a header file must be declared inline.

175

CHAPTER 4 © OVERLOAD RESOLUTION

Suppose further that you have a metafunction named has_abs_method, such that
has_abs_method<T>: :value is true if the absolute value of an object x of type T is given by x.abs().!

This allows your group to grow a bit more complex. In the next example, you'll specialize the whole
group for double, and the specialization will ignore the actual result of has_abs_method<double>.?

template <typename scalar t>
struct maths

{
static scalar_t abs(const scalar t& x, selector<false>)
{
return x<0 ? -x : Xx;
}
static scalar_t abs(const scalar t& x, selector<true»)
{
return x.abs();
}
};

template <>
struct maths<double>

{
template <bool UNUSED>
static double abs(const double x, selector< UNUSED »>)
{
return std::fabs(x);
}
};

template <typename scalar t>

inline scalar t absolute value(const scalar t& x)

{
typedef selector< has_abs_method<scalar_t>::value > select_t;
return maths<scalar t>::abs(x, select t());

}

Too many overloads will likely conflict. Remember that a non-template function is preferred to a matching
template, but this does not hold for a member function that uses the template parameter of the class:

template <typename scalar_ t>
struct maths

{
static scalar t abs(const scalar t& x, selector<false>)
{
return x<0 ? -x : X;
}

'Sections 5.3 and 5.3.1 show how to detect if T has a member function T T::abs() const.
20f course, you could have written a method that takes selector<false>, but using a template as a replacement for
C ellipsis can be of some interest.

176

CHAPTER 4 © OVERLOAD RESOLUTION

static int abs(const int x, selector<false>)

{
return std::abs(x);
}
}

error: ambiguous call to overloaded function, during instantiation of absolute_value<int>

This is precisely the advantage of a “double-layer” template selection. “Layer one” is the automatic
deduction of scalar_t in the companion function and “layer two” is the overload selection, performed
inside a class template (the group) whose parameter has already been fixed:

template <typename scalar_t>
inline scalar t absolute value(const scalar t& x)
{
// collect auxiliary information, if needed
return math<scalar_t>::abs(x, ...);

}

Combining them, you have fewer global function templates (too many overloads are likely to cause
“ambiguous calls”). In addition, the group can have subroutines (private static member functions).
The user has several expansion choices:

e Specialize the whole group (if it’s a template)
e Specialize the global companion function

e Model types to take advantage of the existing framework (for example, specialize
has_abs_method)

The selection part can be even subtler, with additional layers in the middle. As the following example
shows, the right member of the group is chosen via an implicit argument promotion:

#include <cmath>

struct tag_floating

{
tag_floating() {}
tag_floating(instance of<float>) {}
tag_floating(instance of<double>) {}
tag_floating(instance of<long double>) {}

};

struct tag_signed int

{
tag signed int() {}
tag_signed_int(instance_of<short>) {}
tag_signed_int(instance_of<int>) {}
tag_signed_int(instance_of<long>) {}

b

177

CHAPTER 4 © OVERLOAD RESOLUTION

struct tag_unsigned int

{
tag_unsigned int() {}
tag_unsigned_int(instance_of<unsigned short>) {}
tag_unsigned int(instance of<unsigned int>) {}
tag_unsigned_int(instance_of<unsigned long>) {}
};

template <typename scalar_t>
struct maths

{
inline static scalar_t abs(const scalar t x, tag signed int)
{
return x<0 ? -x : Xx;
}
inline static scalar t abs(const scalar t x, tag_unsigned int)
{
return x;
}
inline static scalar_t abs(const scalar t x, tag floating)
{
return fabs(x);
}
};

template <typename scalar_t>
inline scalar t absv(const scalar t& x)

{
}

return maths<scalar t>::abs(x, instance of<scalar t>());

The same effect could be obtained with a reversed selector hierarchy (for example, letting
instance_of<double> derive from scalar floating), but instance_of is a general-purpose template and
I treat it as non-modifiable.

You could also introduce intermediate selectors (unfortunately, you have to write the constructors
by hand):

struct tag_int

{
tag_int() {}
tag_int(instance_of<short>) {}
tag_int(instance_of<int>) {}
tag_int(instance_of<long>) {}
tag_int(instance_of<unsigned short>) {}
tag_int(instance_of<unsigned int>) {}
tag_int(instance_of<unsigned long>) {}

};

178

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename scalar t>
struct maths

{
static scalar t mod(const scalar t x, const scalar t y, tag int)
{
return x % y;
}

static scalar t mod(const scalar t& x, const scalar t& y, tag floating)

{

}
};

return fmod(x, y);

template <typename scalar_t>
inline scalar t mod(const scalar t& x, const scalar t& y)

{

return maths<scalar t>::mod(x, y, instance of<scalar t>());

}

Note in this code that maths<double> contains a method that must not be called (there’s no operator%
for double). Had operation been a non-template class, it would have been instantiated anyway, thus
yielding a compiler error.

However, when parsing an expression depending on a template parameter, the compiler, not knowing
the actual type involved, will accept any formally legal C++ statement.® So if at least one of the two arguments
x and y has generic type T, x % y is considered valid until instantiation time.

The former example works unambiguously because the companion function restricts the call to
members of maths<double> named mod, and for any type T, instance_of<T> can be promoted to at most one
of either tag_int or tag_floating

Sometimes groups are associated with a special header file that detects platform information using
macro blocks and translates it in C++ using typedefs:

// file "root.hpp"
// note: this code is fictitious

struct msvc {};
struct gcc {};

#if defined(__MSVC) // preprocessor compiler detection...
typedef msvc compiler_type; // ...translated in c++

#elif defined(_GCC_)

typedef gcc compiler type;

#endif

// from here on, there's a global type tag named "compiler type"

3An illegal statement would be, for example, a call to an undeclared function. Recall that compilers are not required to
diagnose errors in templates that are not instantiated. MSVC skips even some basic syntax checks, while GCC does
forbid usage of undeclared functions and types. See also Section 5.2.3 about platform specific traits.

179

CHAPTER 4 © OVERLOAD RESOLUTION

In different platforms, the same function could have a different “best” implementation, so you can
select the most suitable one using compiler_type as a tag (but all functions must be legal C++ code):

template <typename scalar_t, typename compiler t>
struct maths
{
static scalar_t multiply by two(const scalar t x)
{ return 2*x; }

};

template < >
struct maths<unsigned int, msvc>

{
static unsigned int multiply by two(const unsigned int x)
{ return x << 1; }

};

template <typename scalar_t>
inline scalar t multiply by two(const scalar t& x)

{
}

return maths<scalar t, compiler type>::multiply by two(x);

Note that you can branch the selection of member functions as you wish—either simultaneously on
multiple tags or hierarchically.

As arule, you might want to use the “compiler tag” whenever you need to manipulate the result of a
standard function that is defined as compiler-specific to some extent, for example, to pretty-print a string
given by typeid(...).name().

Consider a real-world example. According to the standard, if A and B are both signed integers, not both
positive, the sign of A % B is undefined (if instead A>0 and B>0, the standard guarantees thatA % B > 0).

For example, -10 % 3 can yield either -1 or +2, because -10 can be written as 3*(-3)+(-1) or 3*(-4)+(+2)
and both |-1|<3 and | 2]<3. In any case, both solutions will differ by 3.

However, operator% is often implemented so that Aand (A % B) both have the same sign (which, in fact,
is the same rule used for fmod). It therefore makes sense to write a reminder function that grants this condition.

Since (-A) % B == -(A % B)andA % (-B) == A % B, you can deduce that you can return
sign(A)*(|A| % |B|) when the native implementation of A % B yields a different result.

A simple implementation can rely on (-3) % 2 being equal to +1 or -1. (Note that the following code is
not 100% bulletproof, but it’s a good compromise.)

template <typename T, int X = (-3)%2, int Y = (-3)%(-2), int Z = 3%(-2)>
struct modgroup;

// if X=+1, Y=-1, Z=+1 then operator% already does what we want
// (strictly speaking, we tested only int)

template <typename T>
struct modgroup<T, 1, -1, 1>

{ static scalar t mod(const T x, const T y)
{
return x % y;
}
};

180

CHAPTER 4

// in any other case, fall back to the safe formula

template <typename T, int X, int Y, int 2>
struct modgroup

{
static scalar t mod(const T x, const T y)
{
const T result = abs(x) % abs(y);
return x<0 ? -result : result;
}
};

template <typename scalar_t>
struct maths

{

static scalar t mod(const scalar t x, const scalar t vy,

tag_int)
{
return modgroup<scalar_t»::mod(x, y);

}

static scalar t mod(const scalar t& x, const scalar t& vy,
tag_floating)
{

}
};

return fmod(x, y);

template <typename scalar_ t>
inline scalar_t mod(const scalar t& x, const scalar t& y)

{

return maths<scalar t>::mod(x, y, instance of<scalar t>());

}

4.1.2. Runtime Decay

OVERLOAD RESOLUTION

A type tag may implement a special cast operator so that if no overload in the group matches the tag exactly,
the execution continues in a default function, which usually performs some work at runtime. The prototype

is a static integer that decays into a normal integer if there’s no better match.
Suppose you want to fill a C array with zeroes:

template <typename T, T VALUE>
struct static_value

{
/1 ...

operator T() const

return VALUE;
}
};

181

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename T>
struct zeroize helper

{
static void apply(T* const data, static_value<int, 1>)
*data = T();
}
static void apply(T (&data)[2], static_value<int, 2>)
{
data[o] = data[1] = T();
}
static void apply(T* const data, const int N)
{
std::fill n(data, N, T());
}
};

template <typename T, int N>
void zeroize(T (&data)[N])

{
}

zeroize helper<T>::apply(data, static_value<int, N>());

e Instead of 0, you write T(), which works for a broader range of types.
e IfNislarger than 2, the best match is the third member.

e Each function in the group can decide freely to cast, or even to ignore,
the static_value.

e The default case may accept every static_value not necessarily performing
all the work at runtime, but with another template function:

template <>
struct zeroize_helper<char>

{

template <int N>
struct chunk

char data[N];
};

template <int N>
static void apply(char* const data, static_value<int, N>, selector<true»)

{
}

reinterpret_cast<chunk<N>>(data) = chunk<N>();

182

CHAPTER 4 © OVERLOAD RESOLUTION

template <int N>
static void apply(char* const data, static_value<int, N>, selector<false>)

{

memset(data, N, 0);

}

template <int N>
static void apply(char* const data, static_value<int, N> S)

apply(data, S, selector<sizeof(chunk<N>) == N>());

};

4.2. More Traits

This section completes the review of traits.
This time you are going to use traits restricted for static programming, but also as function groups.
Let’s start with a concrete case.

4.2.1. A Function Set for Strings

Suppose you are going to write some generic algorithms for strings. Surely you can use iterators, in particular
random-access iterators, right? Most STL implementations have char-optimized algorithms, such as
std::find, std: :copy, and so on.

The only burden on the user is a large number of calls to strlen to find the end of range. strlenisa
very fast function, but this is a violation of STL assumptions, as “end” is assumed to be obtained in constant
time, not linear time.

const char* c_string = "this is an example";

// can we avoid this?
std::copy(c_string, c_string+strlen(c_string), destination);

You can squeeze in even more optimization using traits:

template <typename string t>
struct string_traits

{
typedef /* dependent on string t */ const_iterator;
typedef const string t& argument_type;

const_iterator begin(argument_type s);
const_iterator end (argument type s);

static bool is_end of string(const iterator i, argument type s);

};

183

CHAPTER 4 © OVERLOAD RESOLUTION

Assuming that for every meaningful string, string traits has the same interface, you can write an
algorithm as follows:

template <typename string t>
void loop_on_all chars(const string t& s)

{
typedef string traits<string t> traits_t;
typename traits t::const iterator i = traits t::begin(s);
while (!traits t::is end of string(i, s))
{
std::cout << *(i++);
}
}

The code is verbose but clear. Yet at this point it may not be evident what you accomplished.
The semi-opaque interface of string_traits gives more freedom in doing comparisons:

template <typename char_t>
struct string traits< std::basic_string<char_t> >

{
typedef char_t char_type;
typedef
typename std::basic_string<char type>::const_iterator
const_iterator;

typedef const std::basic_string<char_type>& argument_type;

static const_iterator begin(argument type text)

{
}

return text.begin();

static const_iterator end(argument_type text)

{
}

return text.end();

static bool is_end of string(const iterator i, argument type s);

{
}

return i == s.end();
};

template <>
struct string traits<const char*>

{
typedef char char_type;

typedef const char* const_iterator;
typedef const char* argument_type;

184

CHAPTER 4 © OVERLOAD RESOLUTION

static const_iterator begin(argument_ type text)

{
return text;
}
static const_iterator end(argument_type text)
{
return 0; // constant-time
}

static bool is_end_of string(const_iterator i, argument_type s);
{
// a constant-time "C" test for end of string
return (i==0) || (*i==0);
}
b5

Since end is now constant-time, you save a linear-time pass (you'll meet this very same problem again

and solve it with a different technique in Section 6.2.2.
You can easily extend string_traits to a full interface (some words have been renamed for ease
of reading):

template <typename string t>
struct string traits

{
typedef /* ... */ char_type;

typedef /* ... */ const_iterator;
typedef /* ... */ argument_type; // either string t or const string t&

static size t npos();

static size t findist(arg t txt, const char t c, size t offset=0);
static size t findist(arg t txt, const arg t s, size t offset=0);

static size t findlast(arg t txt, const char_t s, size t offset);
static size t findlast(arg t txt, const arg t s, size t offset);

static size t findist in(arg t txt, const char t* charset, size t offs=0);
static size t findist out(arg t txt, const char_t* charset, size t offs=0);

static size t size(arg t txt);

static const_iterator begin(arg t txt);
static const_iterator end(arg t txt);

static const char t* c_str(arg t txt);

185

CHAPTER 4 © OVERLOAD RESOLUTION

static bool empty(const_iterator begin, const iterator end);
static bool less(const iterator begin, const iterator end);
static size t distance(const iterator begin, const iterator end);

};

To leverage the interface and take advantage of std: : string member functions, consider the following
convention:

e Alliterators are random-access.

e The find functions return either the index of the character (which is portable in all
kind of strings) or npos (), which means “not found”

static size t findist(arg t text, const char_type c, size t offset=0)

{

const char_t* pos = strchr(text+offset, c);
return pos ? (pos-text) : npos();

}

In the specialization for const char*, you carry on the ambiguity on the end iterator, which can be a
null pointer to mean “until char 0is found” Thus, you could implement distance as follows:

static size t distance(const iterator begin, const_iterator end)

{
}

return end ? end-begin : (begin ? strlen(begin) : 0);

Finally, you can inherit function sets via public derivation, as usual with traits, because they are
stateless (so the protected empty destructor can be omitted):

template <>

struct string traits<char*> : string_traits<const char*»
{

1

4.2.2. Concept Traits

As you repeatedly saw in the first chapters, traits classes prescribe syntax, not precise entities. Code may
borrow from traits in such a way that several different implementations are possible.

Suppose you have some kind of smart pointer class whose traits class is also responsible for
freeing memory:

template <typename T, typename traits_t = smart_ptr_ traits<T> >
class smart_ptr

{

typedef typename traits t::pointer pointer;
pointer p_;

186

CHAPTER 4 © OVERLOAD RESOLUTION

public:
~smart_ptr()
traits_t::release(p_);

/...
};
traits::release canbe

e A public static function (or functor); the relevant code is in the function body.

template <typename T>
struct smart_ptr_traits

{
typedef T* pointer;

static void release(pointer p)

{
}

delete p;
e Apublic static function that triggers a conversion operator, which in fact
runs the code.

template <typename T>
struct smart_ptr traits

{ static void release(bool)
{
};
class pointer
{
/...
public:
operator bool()
{...}
};
/] oo,

Using a slightly different syntax, you can rewrite this as follows:

template <typename T, typename traits_t = smart_ptr traits<T> >
class smart_ptr
{

typedef typename traits t::pointer pointer;

pointer p_;

187

CHAPTER 4 © OVERLOAD RESOLUTION

static void traits_release(typename traits_t::release)

{
};

public:
~smart_ptr()

// note: empty body

traits_release(p_);

}

Release can now be a type, and the relevant code is in the (non-explicit) constructor body.

template <typename T>
struct smart_ptr_traits

{
typedef T* pointer;

struct release

{

release(pointer p)

delete p;

}
};

The code can, again, trigger a conversion operator:

template <typename T>
struct smart_ptr_traits

{
struct release
{
b
class pointer
{
/...
public:
operator release()
{
delete p_;
return release();
}
b
b

All these implementations are valid and you can choose the best positioning of the code that is
actually executed.*

“Mostly, the choice will depend on release and pointer being independent or provided by the same traits.

188

CHAPTER 4 © OVERLOAD RESOLUTION

If traits::releaseis provided as a type, it may have static data that is easily shared with the rest of the
program (you could, for example, log all the released pointers).

4.2.3. Platform-Specific Traits

Recall that traits classes can be “global” or “local” Global traits classes are visible everywhere and local traits
should be passed as parameters.
Global traits are preferred to make some platform properties easily accessible to clients:

template <typename char_t>
struct textfile traits

{

static char_t get eol() { return "\n'; }
/...
};

The following full example represents a timer object with a class template and borrows additional
information from a “timer traits” class:

e How to get current time (in an unspecified unit)

e How to convert time into seconds (using a frequency)

template <typename traits_t>

class basic_timer

{
typedef typename traits t::time type tm t;
typedef typename traits t::difference type diff t;

tm_t start_;

tm_t stop_;

inline static tm t now()

{
return traits t::get time();

}

double elapsed(const tm t end) const

{
static const tm t frequency = traits t::get freq();
return double(diff t(end-start))/frequency;

}

public:

typedef tm_t time_type;
typedef diff_t difference_type;

basic_timer()

: start ()
{3

189

CHAPTER 4 © OVERLOAD RESOLUTION

difference type lap() const
{ return now()-start_; }

time_type start()
{ return start_ = now(); }

difference type stop()
{ return (stop_ = now())-start_; }

difference_type interval() const
{ return stop -start ; }

double as_seconds() const
{ return elapsed(stop_); }

double elapsed() const
{ return elapsed(now()); }
};

Here is a sample traits class that measures clock time (in seconds):

#include <ctime>
struct clock_time traits

{
typedef size t time_type;
typedef ptrdiff_t difference type;

static time_type get time()
{

time t t;

return std::time(&t);
}

static time_type get freq()
{

}

return 1;
};
Here’s a different traits class that accounts for CPU time:
struct cpu_time_traits
{ typedef size t time_type;
typedef ptrdiff_t difference type;

static time_type get time()
{

}

return std::clock();

190

static time_type get freq()
{

}
};

return CLOCKS_PER_SEC;

And a short use case:

basic_timer<clock time_traits> t;
t.start();

/...

t.stop();

std::cout << "I ran for

<< t.as_seconds() << "

CHAPTER 4 © OVERLOAD RESOLUTION

The fundamental restriction of traits is that all member functions must contain valid C++ code, even if

unused. You cannot use compiler-specific code in one of the functions.

Since different operating systems can expose more precise APIs for time measurement, you might be

tempted to write specialized traits:
#include <windows.h>
struct windows_clock_time traits

{
typedef ULONGLONG time_type;

typedef LONGLONG difference_type;

static time_type get time()

{
LARGE_INTEGER i;
QueryPerformanceCounter(8i);
return i.QuadPart;

}

static time_type get freq()

{
LARGE_INTEGER value;
QueryPerformanceFrequency(&value);
return value.QuadPart;

}

};

#include <sys/time.h>

struct macosx_clock_time_traits

{
typedef uint64_t time_type;
typedef int64 t difference_type;

191

CHAPTER 4 © OVERLOAD RESOLUTION

static time_type get time()
{

timeval now;
gettimeofday(&now, 0);
return time type(now.tv_sec) * get freq() + now.tv_usec;

}

static time_type get freq()
{

}

return 1000000;
};

Apart from the typedefs for large integers, this traits interface is standard C++, so you might are
tempted to isolate the preprocessor in a “factory header” and rely entirely on template properties later:

// platform_detect.hpp

struct windows {};
struct macosx {};
struct other os {};

#if defined(WIN32)

typedef windows platform type;
#elif defined(_APPLE_)
typedef macosx platform type;
#else

typedef other_os platform_type;
#tendif

// timer traits.hpp

template <typename platform_t>
struct clock_time traits;

template < >
struct clock_time traits<windows>

{
};

// implementation with QPC/QPF

template < >
struct clock_time traits<macosx>

{
};

// implementation with gettimeofday

192

CHAPTER 4 © OVERLOAD RESOLUTION

template < >
struct clock_time traits<other_os>

{
// implementation with std::time

};
typedef basic_timer< clock_time traits<platform type> > native_timer type;

Unfortunately, the code is non-portable (if it compiles, however, it runs correctly).

According to the standard, a compiler is not required to diagnose errors in unused template
member functions, but if it does, it requires that all mentioned entities be well-defined. In particular,
GCCwill report an error in clock_time_traits<windows>::get time, because no function named
QueryPerformanceCounter has been declared.

As the approach is attractive, some workarounds are possible:

e Define a macro with the same name and as many arguments as the function:

// define as nothing because the return type is void
// otherwise define as an appropriate constant, e.g. 0

#define QueryPerformanceCounter(X)

#if defined(WIN32)

#undef QueryPerformanceCounter // remove the fake...
#include <windows.h> // ...and include the true function
#endif

e Declare—but do not define—the function. This is the preferred solution, because
Windows traits should not link in other operating systems.

#if !defined(WIN32)
void QueryPerformanceCounter(void*);
#endif

Note A common trick, if the function returns void, is to define the name of the function itself to <nothing>.
The comma-separated argument list will be parsed as a comma operator.

This also allows ellipsis functions to be used:
#define printf

printf("Hello world, %f", cos(3.14));

However, there are a couple of potential issues. First, the macro changes the return type of the expression to
double (the last argument). Furthermore, the program is still evaluating cos(3.14). An alternative that also
minimizes the runtime effort—although it’s not totally bulletproof—is:

inline bool discard everything(...) { return false };

#define printf false && discard_everything

193

CHAPTER 4 © OVERLOAD RESOLUTION

4.2.4. Merging Traits

Especially when you're dealing with large traits, it’s good practice to enable the users to customize
smaller parts of the traits class. Typically, the problem is solved by splitting the traits class into parts and
recombining them using public inheritance to form a traits default value.

Suppose you are grouping some comparison operators in traits:

template <typename T>
struct binary relation_traits

{

static bool gt(const T& x, const T& y) { return x>y; }
static bool 1t(const T& x, const T& y) { return x<y; }

static bool gteq(const T& x, const T& y) { return x>=y; }
static bool lteq(const T& x, const T& y) { return x<=y; }

static bool eq(const T& x, const T& y) { return x==y; }
static bool ineq(const T& x, const T& y) { return x!=y; }

};
The general implementation of binary relation_traits assumes that T defines all six comparison
operators, but this example supports two important special cases, namely:
e Tdefines operator< only
e Tdefines operator< and operator== only
Without your support, the users will have to implement all the traits structure from scratch. So you must

rearrange the code as follows:

template <typename T>
struct b_r ordering traits

{
static bool gt(const T& x, const T& y) { return x>y; }
static bool 1t(const T& x, const T& y) { return x<y; }
static bool gteq(const T& x, const T& y) { return x>=y; }
static bool lteq(const T& x, const T& y) { return x<=y; }
};

template <typename T>

struct b_r equivalence traits

{
static bool eq(const T& x, const T& y) { return x==y; }
static bool ineq(const T& x, const T& y) { return x!=y; }

s

template <typename T>

struct binary relation traits

: public b_r ordering traits<T»

, public b_r_equivalence_traits<T>
{

};

194

CHAPTER 4

Then you have to write the alternative blocks, which can be combined:

template <typename T>
struct b_r ordering less traits

{
static bool gt(const T& x, const T& y) { return y<x; }
static bool 1t(const T& x, const T& y) { return x<y; }
static bool gteq(const T& x, const T& y) { return !(x<y); }
static bool lteq(const T& x, const T& y) { return !(y<x); }
};

template <typename T>

struct b_r equivalence equal_ traits

{
static bool eq(const T& x, const T& y) { return x==y; }
static bool ineq(const T& x, const T& y) { return !(x==y); }

};

template <typename T>
struct b_r equivalence less traits

{
static bool eq(const T& x, const T& y) { return !(x<y) 8& !(y<x); }
static bool ineq(const T& x, const T& y) { return x<y || y<x; }
};
Finally, you combine the pieces via derivation and a hidden template parameter.
enum
{
HAS JUST OPERATOR_LESS,
HAS_OPERATOR_LESS_AND_EO,
HAS_ALL_6_OPERATORS
};

template <typename T, int = HAS_ALL_6_OPERATORS>
struct binary relation_traits

: b_r ordering traits<T>

, b_r equivalence_traits<T»

{

};

template <typename T>

struct binary relation traits<T, HAS_JUST OPERATOR_LESS>
: b_r ordering less traits<T>

, b_r_equivalence_less traits<T>

{

};

OVERLOAD RESOLUTION

195

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename T>

struct binary relation traits<T, OPERATOR_LESS AND_EQ>
: b_r ordering less traits<T>

, b_r_equivalence_equal_traits<T>

{

};

Further, traits can be chained using appropriate enumerations and “bitwise-or” syntax.®

What if you wanted to provide an enumeration set, containing powers of two that will be combined
using the standard flags idiom, but at compile time:
fstream fs("main.txt", ios::in | ios:out);
typedef binary relation_traits<MyType, native::less | native::eq> MyTraits;

First, you let the flags start at 1, since you need powers of two.

namespace native

{
enum
{
1t =1,
1t _eq =2,
gt =4,
gt_eq = 8,
eq = 16,
ineq = 32
b
}

Second, you split the traits class into atoms, using partial specialization:

template <typename T, int FLAG>
struct binary relation_traits; // no body!

template <typename T>
struct binary relation traits<T, native::1t>

{
};

static bool 1t(const T& x, const T& y) { return x<y; }

template <typename T>
struct binary_relation traits<T, native::1t_eq>

{
};

static bool lteq(const T& x, const T& y) { return x<=y; }

// and so on...

See Section 2.3.3.

196

CHAPTER 4 © OVERLOAD RESOLUTION

If the user-supplied bitmask FLAG is set to (native: :ineq | ...), traits<T,FLAGS> should derive from
both traits<T, native::ineq> and traits <T, FLAGS - native::ineg>.

You need an auxiliary metafunction called static_highest_bit<N>::value, which returns the index of
the highest bit set in a (positive) integer N, such as the exponent of the largest power of two less or equal to N.°

Having this tool at your disposal, you come up with an implementation:

template <typename T, unsigned FLAG>
struct binary relation traits;

template <typename T>
struct binary relation_traits<T, 0>

{
// empty!

};

template <typename T>
struct binary relation_traits<T, native::1t>

{
static bool 1t(const T& x, const T& y) { return x<y; }

};

template <typename T>
struct binary relation_traits<T, native::gt>

{
static bool gt(const T& x, const T& y) { return x>y; }

};

// write all remaining specializations
// then finally...

template <typename T, unsigned FLAG>

struct binary relation_traits

: binary_relation_traits<T, FLAG & (1 << static_highest_bit<FLAG>::value)>
, binary relation traits<T, FLAG - (1 << static_highest bit<FLAG>::value)>

{
// empty!

5
Now the user can select binary_relation_traits members at compile time:
typedef binary relation_traits<MyType, native::less | native::eq> MyTraits;
MyType a, b;

MyTraits::1t(a,b); // ok.
MyTraits::1teq(a,b); // error: undefined

SThe details of static_highest_bit are in Section 3.4.1.

197

CHAPTER 4 © OVERLOAD RESOLUTION

This technique is interesting in itself, but it does not meet the original requirements, since you can only
pick “native” operators. But you can add more flags:

namespace native

{
enum
{
1t =1,
1t eq =2,
gt =4,
gt_eq =8,
eq = 16,
ineq = 32
};
}
namespace deduce
{
enum
{
ordering = 64,
equivalence = 128,
ineq = 256
};
}

template <typename T>
struct binary_relation_traits<T, deduce::ordering>

{
static bool gt(const T& x, const T& y) { return y<x; }
static bool gteq(const T& x, const T& y) { return !(x<y); }
static bool lteq(const T& x, const T& y) { return !(y<x); }
};

template <typename T>
struct binary relation_traits<T, deduce ::ineq>

{
};

static bool ineq(const T& x, const T& y) { return !(x==y); }

template <typename T>
struct binary relation_traits<T, deduce::equivalence>

{
static bool eq(const T& x, const T& y) { return !(x<y) 8& !(y<x); }

static bool ineq(const T& x, const T& y) { return x<y || y<x; }
};

198

CHAPTER 4 © OVERLOAD RESOLUTION

typedef
binary relation_traits
<
MyType,
native::less | deduce::ordering | deduce::equivalence
>
MyTraits;

Note that any unnecessary duplication (such that native::ineq | deduce::ineq) will trigger a
compiler error at the first use. If traits<T,N> and traits<T,M> both have a member x, traits<T,N+M>::x is
an ambiguous call.

4.3. SFINAE

The “substitution failure is not an error” (or SFINAE) principle is a guarantee that the C++ standard offers.
You will see precisely what it means and how to remove function templates from an overload set when they
do not satisfy a compile-time condition.

Remember that when a class template is instantiated, the compiler generates:

e Every member signature at class level
e Only strictly necessary function bodies

As a consequence, this code does not compile:

template <typename T>
struct A

{
typename T::pointer f() const

{

return 0;

}
};

A<int> x;

As soon as A<int> is met, the compiler will try to generate a signature for every member function, and it
will give an error because int: :pointer is not a valid type. Instead, this would work:

template <typename T>
struct A

{

int () const

{
typename T::type a = 0;
return a;

}
};

A<int> x;

199

CHAPTER 4 © OVERLOAD RESOLUTION

Aslong as A<int>::f() is unused, the compiler will ignore its body (and that is good news, because it
contains an error).

Furthermore, when the compiler meets f(x) and x has type X, it should decide which particular f is
being invoked, so it sorts all possible candidates from the best to the worst and tries to substitute X in any
template parameter. If this replacement produces a function with an invalid signature (signature, not body!),
the candidate is silently discarded. This is the SFINAE principle.

template <typename T>
typename T::pointer f(T*);

int f(void*);

int* x = 0;

f(x);

The first f would be preferred because T* is a better match than void*; however, int has no member
type called pointer, so the second f is used. SFINAE applies only when the substitution produces an
expression that is formally invalid (like int: :pointer). Instead, it does not apply when the result is a type
that does not compile:

template <typename T, int N>
struct B

{
};

template <typename T>
B<T, 0> f(T*);

static const int value = 100/N;

int f(void*);

B<T, 0> isavalid type, but its compilation gives an error. The first f will be picked anyway, and the
compiler will stop.

To take advantage of SFINAE, when you want to “enable” or “disable” a particular overload of a function
template, you artificially insert in its signature a dependent name that may resolve to an invalid expression
(anon-existent type like int: :pointer).

If all candidates have been discarded, you get a compiler error (trivial uses of SFINAE look in fact like
static assertions).

There are two main applications of SFINAE: when f runs after being selected and when f is not
executed at all.

4.3.1. SFINAE Metafunctions

Using SFINAE and sizeof, you can write metafunctions that take a decision based on the interface of a
type T. This is very close to what is called reflection in different programming languages.
The basic ingredients are:

e Two (or more) types with different sizes; let’s call them YES and NO.

e Asetofoverloaded functions f, where at least one must be a template, returning
either YES or NO.

e Astatic constant defined in terms of sizeof (f(something)).

200

CHAPTER 4 © OVERLOAD RESOLUTION

The following paradigm helps clarify this:

template <typename T>

class YES { char dummy[2]; }; // has size > 1
typedef char NO; // has size == 1
template <typename T>

class MF

{

template <typename X>
static YES<[[condition on X]]> test(X);

static NO test(...);
static T this_type();

public:
static const bool value = sizeof(test(this type())) != sizeof(NO);
};

The compiler has to decide which test is being called when the argument has type T. It will try to
evaluate YES<[[condition on T]]» first (because void* and the ellipsis . . . have very low priority). If this
generates an invalid type, the first overload of test is discarded and it will select the other.

Note some important facts:

e The static functions need not have a body; only their signature is used in sizeof.

e YES<T> need not have size 2. It would be an error to write sizeof(test(this_
type())) == 2. However, char must have size 1, so you could verify if
sizeof(test(this_type()))>1.

e Atleast one of the test functions should be a template that depends on a new
parameter X. It would be wrong to define test in terms of T (the parameter of MF),
since SFINAE would not apply.

e You use a dummy function that returns T instead of, say, invoking test (T()) because
T might not have a default constructor.

Some compilers will emit a warning because it’s illegal to pass an object to an ellipsis function. Actually,
the code does not run, since sizeof wraps the whole expression, but warnings may be long and annoying.
A good workaround is to pass pointers to functions:

template <typename X>
static YES<[[condition on X]]> test(X*);

static NO test(...);
static T* this_type();

If you switch to pointers:
e void becomes an admissible type (since T* exists).

e References become illegal (a pointer to a reference is an error).

201

CHAPTER 4 © OVERLOAD RESOLUTION

So either way, you'll have to write some explicit specialization of MF to deal with corner cases.
SFINAE applies if any substitution of the template parameter produces an invalid type, not necessarily
in the return type. Sometimes, in fact, it’'s more convenient to use arguments:

template <typename T>
class MF
{
template <typename X>
static YES<void> test([[type that depends on X]]*);

template <typename X>
static NO test(...);

public:
static const bool value = sizeof(test<T»(0)) != sizeof(NO);
};

If the substitution of X in the first expression produces a valid type, thus a valid pointer, test<T>(0)
takes it as the preferred call. (It casts O to a typed pointer and returns YES<void> or whatever yes-type.)
Otherwise, 0 is passed without any cast (as integer) to test(. . .), which returns NO.

The explicit call test<T> works because the ellipsis test function has a dummy template parameter;
otherwise, it would never match.”

As a simple example, you can test if type T has a member type named pointer:

template <typename T>
class has_pointer_type

{

template <typename X>

static YES<typename X::pointer> test(X*);

static NO test(...);

static T* this_type();
public:

static const bool value = sizeof(test(this_type())) != sizeof(NO);
b

or (almost) equivalently:*®

template <typename T>
class has_pointer_type
{
template <typename X>
static YES<void> test(typename X::pointer*);

’See Section 1.2.1.
8This would fail if X: :pointer were a reference; at the moment, you don’t need to worry about this.

202

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename X>
static NO test(...);

public:
static const bool value = sizeof(test<T»(0)) == sizeof(YES);

};

By modifying the template parameter of YES, you can check if T has a static constant named value.
Once again, it’s convenient to derive from a common yes-type:

// copied from Section 2.1.4
typedef char no_type;
typedef larger than<no_type> yes type;

template <int VALUE>
struct YES2 : yes_type

{
};

template <typename T>
class has_value

{

template <typename X>
static YES2<X::value> test(X*);

/...
};

Or you can check for the presence of a member function with a fixed name and signature?’:

template <typename T, void (T::*F)(T&)>
struct YES3 : yes_type

{

};

template <typename T>
class has_swap_member

{
template <typename X>

static YES3<X, &X::swap> test(X*);

/...
};

The swap-detection problem is actually much more difficult; it’s discussed later in this section.

203

CHAPTER 4 © OVERLOAD RESOLUTION

Finally, a popular idiom checks if T is a class or a fundamental type using a fake pointer-to-member.
(Literal zero can be cast to int T::*ifTis a class, even if it has no member of type int.)

template <typename T>
class is_class

{

template <typename X>

static yes_type test(int X::*);

template <typename X>

static no_type test(...);
public:

static const bool value = (sizeof(test<T>(0))!=sizeof(no_type));
};

4.3.2. Multiple Decisions

The examples shown so far take a single yes/no decision path, but some criteria can be more complex. Let’s
write a metafunction that identifies all signed integers'’:

if (T is a class)
return false

if (T is a pointer)
return false

if (T is a reference)
return false

if (we can have a non-type template parameter of type T)

{
if (the expression "T(0) > T(-1)" is well-formed and true)
return true
else
return false
}
else
{
return false
}

9The “main algorithm” alone would not suffice. It will work when T is a fundamental type. Some compilers evaluate the
expression T(0) < T(-1) as true when T is a pointer; other compilers will give errors if T is a type with no constructor.
That’s why you add explicit specializations for pointers, references, and class types. Note, however, that this approach

is superior to an explicit list of specializations, because it’s completely compiler/preprocessor independent.

204

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename X, bool IS CLASS = is_class<X>::value>
class is_signed_integer;

template <typename X>

class is_signed_integer<X*, false> : public selector<false>
{

b

template <typename X>

class is_signed_integer<X&, false> : public selector<false>
{

};

template <typename X>

class is_signed_integer<X, true> : public selector<false>
{

b

template <typename X>
class is_signed_integer<X, false>

{

template <typename T>

static static_parameter<T, 0>* decide int(T*);

static void* decide int(...);

template <typename T>

static selector<(T(0) > T(-1))> decide signed(static_parameter<T, 0>*);

static selector<false> decide signed(...);

static yes type cast(selector<truey);

static no_type cast(selector<false»);

static X* getX();
public:

static const bool value =

sizeof(cast(decide_signed(decide _int(getX()))))==sizeof(yes_type);

};

cast maps all possible intermediate return types to yes_type or no_type, for the final sizeof test.
In general, it’s possible to stretch this idea and return an enumeration (more precisely, a size_t),
instead of bool. Suppose you had more intermediate decision cases:

static T1 decide(int*);
static T2 decide(double*);

static Tn decide(void*);

205

CHAPTER 4 © OVERLOAD RESOLUTION

Then you can map T1, T2,... Tnto an enumeration using fixed_size:

static fixed size<1>::typed cast(T1);
static fixed size<2>::typed cast(T2);
/...

public:
static const size t value = sizeof(cast(decide(...)));

};

4.3.3. Only_If

Another interesting use of SFINAE is in excluding elements from a set of overloaded (member) functions
that are not compliant with some condition:

template <bool CONDITION>
struct static_assert SFINAE
{

typedef void type;

)

template <>

struct static_assert SFINAE<false>
{

};

If a function has an argument of type pointer-to-X, where X is defined as static_assert_
SFINAE<...>::type, substitution of any CONDITION that evaluates to false generates an invalid expression.
So that particular function is removed from the set of overloads.

The fake pointer argument has a default value of 0, which means the user can safely ignore its existence.!

#define ONLY_IF(COND) typename static_assert SFINAE<COND>::type* = 0

template <typename T>

void f(T x, ONLY_IF(is_integer<T>::value))
{

}

void f(float x)
{
}

// later...

double x = 3.14;
f(x); // calls f(float)

Sometimes it’s desirable to document C++ code, not literally, but just as the user is supposed to use it. This kind of
functional documentation is also a part of C++ style. The example illustrated here documents that £(T) is a single
argument function, even if it’s not. All the implementation details should be hidden.

206

CHAPTER 4 © OVERLOAD RESOLUTION

This technique is often useful in universal-copy constructors of class templates:

template <typename T1>
class MyVector

{

public:
// not used if T2 is T1
template <typename T2>
MyVector(const MyVector<T2>& that)
{
}

};

Restrictions on T2 may be easily introduced using ONLY_IF (has_conversion is fully documented
in Section 4.4.

template <typename T2>

MyVector(const MyVector<T2>& that,
ONLY_IF((has_conversion<T2,T1>::L2R)))

{

}

Another application is the “static cast” of static_value. You might need to convert, say,
static_value<int, 3> tostatic_value<long, 3>:

template <typename T, T VALUE>
struct static_value

{

static const T value = VALUE,;

static value(const int = 0)

{
}

template <typename S, S OTHER>
static_value(const static_value<S, OTHER>,
typename only if<VALUE==0THER, int>::type = 0)

};
Sometimes it can be useful to apply the idiom, not to arguments, but to the return value:

template <bool CONDITION, typename T = void>
struct only if

{
typedef T type;

)

207

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename T>
struct only if<false, T>

{
};

template <typename T>
typename only if<is_integer<T>::value,T>::type multiply by 2(const T x)

return x << 1;

}

This function is either ill-formed or takes a const T and returns T.

4.3.4. SFINAE and Returned Functors

The various test functions you've seen so far have no use for their return type, whose size is all that matters.
Sometimes they will instead return a functor that is immediately invoked. Consider a simple example,
where the function number_of elemreturns x.size() if x has a type member called size_type and
otherwise returns 1.

template <typename T, typename S>
struct get_size

S operator()(const T& x) const { return x.size(); }

get size(int) {}

)

struct get_one

{

template <typename T>
size t operator()(const T&) const { return 1; }

get one(int) {}

)

template <typename T>
get size<T, typename T::size_type> test(const T* x) // SFINAE

{
return 0;
}
get one test(const void*)
{
return 0;
}

208

template <typename T>
size t number of elem(const T& x)

{
return test(&x)(x);

}

std::vector<int> v;
std: :map<int, double> m;

double x;

number of elem(v); // returns v.size()
number_of elem(m); // returns m.size()
number_of elem(x); // returns 1

CHAPTER 4 © OVERLOAD RESOLUTION

You can use some techniques from the previous paragraph to describe an implementation of a logging

callback, with a variable log level, based on metaprogramming.

In scientific computing, you can meet functions that run for a long time. So it’s necessary to maintain
some interaction with the function even while it’s running, for example, to get feedback on the progress or to
send an abort signal. Since there is no hypothesis on the environment (computational routines are usually
portable), you cannot pass a pointer to a progress bar, and you have to design an equally portable interface.

A possible solution follows. The function internally updates a structure (whose type is known to its caller)
with all the meaningful information about the state of the program, and it invokes a user functor regularly on

the structure:

struct algorithm_info

{

int iteration_current;
int iteration_max;

double best tentative solution;

size t time_elapsed;
size_t memory used;

};

template <..., typename logger t>
void algorithm(..., logger t LOG)
{

algorithm_info I;

for (...)

{
// do the work...

I.iteration_current = ...;

I.best tentative solution = ...

LOG(I);

209

CHAPTER 4 © OVERLOAD RESOLUTION

You can try to design some static interaction between the logger and the algorithm so that only some
relevant portion of the information is updated. If LOG does nothing, no time is wasted updating I.

First, all recordable information is partitioned in levels. logger t will declare a static constant named
log_level and the algorithm loop will not update the objects corresponding to information in ignored levels.

By convention, having no member log_level or having log_level=0 corresponds to skipping the log.

template <int LEVEL = 3>
struct algorithm_info;

template <>
struct algorithm_info<0>

{
};

template <>
struct algorithm info<1> : algorithm_info<o>

{

int iteration_current;
int iteration_max;

};

template <>
struct algorithm_info<2> : algorithm_info<1>

double best_value;

};

template <>
struct algorithm_info<3> : algorithm_info<2>

{
size t time_elapsed;
size t memory used;

b
Second, you use SFINAE to query logger t for a constant named log_level:

template <int N>
struct log level t

{

operator int () const

return N;

}
};

template <typename T>
log level t<T::log_level> log level(const T*)
{

}

return log level t<T::log level>();

210

CHAPTER 4 © OVERLOAD RESOLUTION

inline int log level(...)

{

return 0;

}

Finally, a simple switch will do the work. If logger t does contain log level, SFINAE will pick the
first overload of log_level, returning an object that’s immediately cast to integer. Otherwise, the weaker
overload will immediately return 0.

switch (log level(8LOG))

case 3:
I.time_elapsed = ...;
I.memory used = ...;

case 2: // fall through
I.best _value = ...;

case 1: // fall through
I.iteration_current = ...;

I.iteration_max = ...;

case 0: // fall through

default:
break;
}
LOG(I);

This implementation is the simplest to code, but LOG still has access to the whole object I, even the part
that is not initialized.

The static information about the level is already contained in log_level _t, so it’s appropriate to
transform this object into a functor that performs a cast.

template <int N>
struct log level t

{

operator int () const

return N;

}

typedef const algorithm_info<N>& ref_n;
typedef const algorithm_info< >& ref;

ref n operator()(ref i) const

return i;

}
};

211

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename T>
log level t<T::log level> log level(const T*)

{

return log level t<T::log level>();
}
inline log level t<0> log level(...)
{

return log level t<0>();
}

switch (log_level(&LOG))

{

// as above...
}

LOG(log level(&LOG)(I));

This enforces LOG to implement an operator () that accepts exactly the right “slice” of information.

4.3.5. SFINAE and Software Updates

One of the many uses of SFINAE-based metafunctions is conditional requirement detection.

TMP libraries often interact with user types and user functors, which must usually satisfy some
(minimal) interface constraint. New releases of these libraries could in principle impose additional
requirements for extra optimizations, but this often conflicts with backward compatibility.

Suppose you sort a range by passing a custom binary relation to an external library function, called
nonstd: :sort:

struct Myless

{

bool operator()(const Person& x, const Person & y) const

/] ...

}
};

std: :vector<Person> v;
nonstd: :sort(v.begin(), v.end(), MyLess());

Version 2.0 of the sorting library requires MyLess to contain an additional function called static void
CompareAndSwap(Person& a, Persond b), so this code will not compile.

Instead, the library could easily detect if such a function is provided, and, if so, automatically invoke a
faster parallel CAS-based algorithm.

This “self-detection” of features allows independent upgrades of the underlying libraries.

212

CHAPTER 4 © OVERLOAD RESOLUTION

This applies also to traits:

struct MyTraits

{
static const bool ENABLE_FAST ALLOCATOR = true;

static const bool ENABLE_UTF8 = true;
static const bool ENABLE_SERIALIZATION = false;

b
typedef nonstd::basic_string<char, MyTraits> MyString;
Version 2.0 of the string library has a use for an extra member:

struct MyTraits

{
static const bool ENABLE_FAST ALLOCATOR = true;

static const bool ENABLE_UTF8 = true;
static const bool ENABLE_SERIALIZATION = false;

static const size t NUMBER_OF THREADS = 4;
};

But the author of the library should not assume that this new constant is present in the traits class he
receives. However, he can use SFINAE to indirectly extract this value, if it exists, or use a default:

template <typename T, size t DEFAULT>
class read NUMBER_OF THREADS

{
template <typename X>
static static_value<size t, X::NUMBER_OF THREADS> test(X*);
static static_value<size t, DEFAULT> test(void*);

template <size t N>
static typename fixed size<N+1>::type8 cast(static_value<size t,N>);

static T* getT();
public:
static const size t value = sizeof(cast(test(getT()))) - 1;

};

The +1/-1 trick is necessary to avoid arrays of length zero.

213

CHAPTER 4 © OVERLOAD RESOLUTION

The author of nonstd: :basic_string will write:

template <typename char_t, typename traits t>
class basic_string

{
/...

int n = read NUMBER_OF THREADS<traits t, 4>::value;

So this class compiles even with older traits.

As arule, you don’t need to check that NUMBER_OF _THREADS has indeed type (static const) size_t.
Any integer will do. It's possible to be more rigorous, but it is generally not worth the machinery. I am going
to show all the details, but you should consider the rest of this section an exercise. You need three additional
metafunctions:

e Detectif T has any constant named NUMBER_OF THREADS, with the usual techniques.
e Ifthisis false, the result is immediately false (line #2).

e Otherwise, use a different specialization, where it’s legal to write
T::NUMBER_OF_THREADS. You pass this “item” to a test function (line #1). The best
choice is a non-template function with an argument of type REQUIRED_T; the other
option is a template that will match everything else, so no cast can occur.

template <typename T>
struct has_any NUMBER_OF THREADS

{
template <typename X>
static static_value<size t, X::NUMBER_OF THREADS> test(X*);
static no_type test(void*);

template <size t N>
static yes type cast(static_value<size t, N>);

static no_type cast(no_type);
static T* getT();

static const bool value = (sizeof(cast(test(getT()))) > 1);
};

template <typename REQUIRED T, typename T, bool>
struct check NUMBER_OF_THREADS type;

template <typename REQUIRED T, typename T>
struct check NUMBER_OF THREADS type<REQUIRED T, T, true>

{
static yes_type test(REQUIRED_T);
template <typename X>
static no_type test(X);

214

CHAPTER 4

static const bool value
= sizeof(test(T::NUMBER_OF THREADS))>1; // line #1

};

template <typename REQUIRED T, typename T>
struct check NUMBER_OF THREADS type<REQUIRED T, T, false>

{
static const bool value = false; // line #2
};
template <typename T>
struct has_valid NUMBER OF THREADS

: check NUMBER_OF_THREADS type<size_t, T,
has_any NUMBER_OF_THREADS<T>::value>
{

};

4.3.6. Limitations and Workarounds

OVERLOAD RESOLUTION

SFINAE techniques ultimately rely on the compiler handling an error gracefully, so they are especially

vulnerable to compiler bugs.
If the correct code does not compile, here’s a checklist of workarounds:

e Give all functions a body.
e Move static functions outside of the class, in a private namespace.
e Remove private and use struct.

e Think of a simpler algorithm.

215

CHAPTER 4 © OVERLOAD RESOLUTION

Table 4-1. side-by-side comparison of the code, before and after the workarounds

template <typename X>
class is_signed_integer

{

template <typename T>

static static_value<T, 0>* decide_int(T*);

static void* decide_int(...);

template <typename T>

static selector<(T(0)>T(-1))>
decide_signed(static_value<T,0>*);

static selector<false> decide_signed(...);

static yes_type cast(selector<true>);
static no_type cast(selector<false>);

static X* getX();

public:
static const bool value =

sizeof(cast(decide_signed(decide_int(getX()))))

== sizeof(yes_type);
b

namespace priv {

template <typename T>
static_value<T, 0>* decide_int(T*);

void* decide_int(...);

template <typename T>
selector<(T(0)>T(-1))>
decide_signed(static_value<T, 0>*);

selector<false> decide_signed(...);

yes_type cast(selector<true>);
no_type cast(selector<false>);

template <typename X>
struct is_signed_integer_helper

{
X* getX();

static const bool value =
sizeof(cast(decide_signed(decide_int(getX()))))
==sizeof(yes_type);
b

}// end of namespace

template <typename T>

struct is_signed_integer

: public selector<priv::is_signed_integer_
helper<T>::value>

{

2

A corner case in the standard is a substitution failure inside a sizeof that should bind to a template
parameter. The following example usually does not compile:

template <typename T>
class is_dereferenceable

{

template <size_t N>
class YES { char dummy[2]; };

template <typename X>

static YES<sizeof(*X())> test(X*);

216

CHAPTER 4 © OVERLOAD RESOLUTION

static NO test(...);
static T* this_type();

public:
static const bool value = sizeof(test(this type()))>1;
};

Detection of member functions is extremely problematic. Let’s rewrite the metafunction here.

template <typename S>

class has_swap_member

{
template <typename T, void (T::*)(T8&) >
class YES { char dummy[2]; };

typedef char NO;

template <typename T>
static YES<T, &T::swap> test(T*);

static NO test(...);
static S* ptr();

public:
static const bool value = sizeof(test(ptr()))>1;

};

Suppose that classes D1 and D2 have a public template base called B<T1> and B<T2>, and they have
no data members of their own. swap will likely be implemented only once in B, with signature void
B<T>::swap(B<T>&), but the users will see it as D1: : swap and D2: : swap (an argument of type D1 will be cast
to B<T1>8).12

However, has_swap_member<D1>: :value is false because YES<D1, &D1::swap> does not match
YES<T, void (T::*F)(T&)>.

Hypothetically, it would match either YES<T1,void(T2::*F)(T2&)> or even YES<T1,void(T1::*F)
(T28)>, but this pointer cast is out of scope, because T2 is unknown.

Furthermore, the standard explicitly says that you cannot take a pointer to a member function of a
library object, because the implementation is allowed to modify the prototype, as long as the syntax works as
expected. For example, you could have a perfectly valid void T::swap(T&, int = 0).

So the fact that has_swap_member<T>: :value is false does not mean that the syntax a.swap(b) is illegal.

The best you can do is integrate the detection phase with the swap itself and create a function that
swaps two references with the best-known method. When swap detection fails, ADL will usually find an
equivalent routine in the right namespace (at least for all STL containers; see Section 1.4.2.

"2This may look like a corner case, but it’s quite common. In popular STL implementation, let D1=std: :map, D2=std: : set
and B<T> be an undocumented class that represents a balanced tree.

217

CHAPTER 4 © OVERLOAD RESOLUTION
using std::swap;

struct swap_traits

{
template <typename T>

inline static void apply(T& a, T& b)

{
applyi(a, b, test(&a));

private:

template <typename T, void (T::*F)(T&)>
struct yes : public yes type
{
yes(int = 0)
{}
};

template <typename T>
static yes<T, &T::swap> test(T*)
{ return o; }

static no_type test(void*)
{ return o; }

template <typename T>
inline static void apply1(T& a, T& b, no_type)
{
swap(a, b);
}

template <typename T>
inline static void apply1(T& a, T& b, yes type)
{
a.swap(b);
}
};

template <typename T>
inline void smart swap(T& x, T& y)

{
}

swap_traits::apply(x, y);

Note that all functions have a body, as they are truly invoked.

218

CHAPTER 4 © OVERLOAD RESOLUTION

The workflow is as follows. smart_swap(x,y) invokes apply, which in turn is apply1(x,y, [[condition
on T]]). apply1lis an ADL swap when the condition is no and a member swap invocation otherwise.

#include <map>

struct swappable

{
void swap(swappable&)
{
}
};
int main()
{
std::map<int, int> a, b;
smart_swap(a, b); // if it fails detection of map::swap
// then it uses ADL swap, which is the same
swappable c, d;
smart_swap(c, d); // correctly detects and uses swappable::swap
int i =3, j=4;
smart_swap(i, j); // correctly uses std::swap
}

Note The true solution requires the C++0x keyword decltype. See Section 12.2.

One final caveat is to avoid mixing SFINAE with private members.

The C++ 2003 Standard says that access control occurs after template deduction. So, if T: : type exists
but it’s private, SFINAE will select an action based on the information that T: : type actually exists, but a
compiler error will generally occur immediately after (since T: : type is inaccessible)."

template <typename T>
typename T::type F(int);

template <typename T>

char F(...);
class X
{

typedef double type; // note: private, by default
};

3This was changed in the C++11 Standard. See
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170.

219

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html%231170

CHAPTER 4 © OVERLOAD RESOLUTION

// A condensed version of the usual SFINAE machinery...
// We would expect the code to compile and N==1.

// This occurs only in C++0x

int N = sizeof(F<X>(0));

error: type "X::type" is inaccessible
typename T::type F(int);

detected during instantiation of "F" based on template argument <X>

4.3.7. SFINAE with Partial Specializations

SFINAE applies also to partial specialization of class templates. When a condition that should be used
to select the partial specialization is ill-formed, that specialization is silently removed from the set of
candidates. This section shows a practical application with an example."

Suppose you have a template class called A<T>, which you want to specialize when type T contains a
typedef called iterator.

You start by adding a second template parameter to A and a partial specialization on the second
(you will define DEFAULT_TYPE and METAFUNC later):

template <typename T, typename X = DEFAULT_TYPE>
struct A

{.o b

template <typename T>
struct A<T, typename METAFUNC<typename T::iterator>::type >

{.o b

According to SFINAE, when T: :iterator does not exist, the specialization is ignored and the general
template is used. However, when T: :iterator indeed exists (and METAFUNC is well defined), both definitions
are valid. But according to the C++ language rules, if DEFAULT_TYPE happens to be the same as METAFUNCTION
<T::iterator>::type, the specialization of A is used. Let’s rewrite the example more expliticly:

template <typename T>
struct METAFUNC

{
typedef int type;

)

template <typename T, typename X = int>
struct A

{.o b

template <typename T>
struct A<T, typename METAFUNC<typename T::iterator>::type >

{.o b

A<int> a1; // uses the general template
A¢std::vector<int>> a2; // uses the specialization

!“Walter Brown recently made this technique popular. See http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n3911.

220

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911

CHAPTER 4 © OVERLOAD RESOLUTION

4.4. Other Classic Metafunctions with Sizeof

An overload may be selected because the argument can be cast successfully.

This section shows a metafunction that returns three Boolean constants—has_conversion<L,R>::L2R
is true when L (left) is convertible to R (right) and has_conversion<L,R>::identity is true when L and R are
the same type.”®

template <typename L, typename R>
class has_conversion

{
static yes type test(R);
static no_type test(...);
static L left();
public:
static const bool L2R = (sizeof(test(left())) == sizeof(yes_type));
static const bool identity = false;
b

template <typename T>
class has_conversion<T, T>

{
public:
static const bool L2R = true;
static const bool identity = true;
};

This code passes a fake instance of L to test. If L is convertible to R, the first overload is preferred, and
the resultis yes_type.
Following Alexandrescu,'® you can deduce whether a type publicly derives from another:

template <typename B, typename D>
struct is_base of

{
static const bool value =
(
has_conversion<const D*, const B*>::L2R &&
has_conversion<const B*, const void*>::identity
)s
};

Implicit promotion techniques have been extensively used by David Abrahams.'” The key point is to
overload an operator at namespace level, not as a member.

5The left-right notation may not be the most elegant, but it’s indeed excellent for remembering how the class works.
1°See the bibliography.

"boost: :is_incrementable correctly strips qualifiers from T, but it allows operator++ to return void, which in general
is not desirable. In this case, the simpler version presented here gives a compile-time error.

221

CHAPTER 4 © OVERLOAD RESOLUTION

struct fake incrementable

{

template <typename T>

fake_incrementable(T); // non-explicit universal constructor
};
fake _incrementable operator++(fake incrementable); // line #1

yes_type test(fake_incrementable);

template <typename T>
no_type test(T);

template <class T>
struct has_preincrement

{
static T& getT();

static const bool value = sizeof(test(++getT())) == sizeof(no_type);
};

The ++getT() statement can either resolve to X’s own operator++ or (with lower priority) resolve to
a conversion to fake_incrementable, followed by fake_incrementable increment. This latter function is
visible, because, as anticipated, it is declared as a global entity in the namespace, not as a member function.
To test post-increment, replace line #1 with:

fake_incrementable operator++(fake incrementable, int);

Note that the computation of sizeof(test(++x)) must be done in the namespace where
fake_incrementable lives. Otherwise, it will fail:

namespace aux {
struct fake_incrementable

{
template <typename T>

fake_incrementable(T);

};
fake _incrementable operator++(fake incrementable);
yes_type test(fake_incrementable);

template <typename T>
no_type test(T);

}

222

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename T>
struct has_preincrement

{
static T& getT();
static const bool value
= sizeof(aux::test(++getT())) == sizeof(no_type);
};

You can also move the computation inside the namespace and recall the result outside:
namespace aux {
// ... (all as above)

template <typename T>
struct has_preincrement_helper
{
static T& getT();
static const bool value = sizeof(test(++getT())) == sizeof(no_type);

};
}

template <typename T>

struct has_preincrement : selector<aux::has_preincrement_helper<T>::value>
{

};

4.5. Overload on Function Pointers

One of the most convenient tag objects used to select an overloaded function is a function pointer, which is
then discarded.

A pointer is cheap to build yet can convey a lot of static information, which makes it suitable for
template argument deduction.

4.5.1. Erase

The following is the primary example. It iterates over an STL container, so you need to erase the element
pointed to by iterator i. Erasure should advance (not invalidate) the iterator itself. Unfortunately, the
syntax differs. For some containers, the right syntaxis i = c.erase(i), but for associative containers it is
c.erase(i++).

Taking advantage of the fact that C: : erase must exist (otherwise you wouldn’t know what to do and the
call to erase_gap would be ill formed), you just pick the right one with a dummy pointer:

template <typename C, typename iterator_ t, typename base t>
void erase gap2(C& c, iterator t& i, iterator t (base t::*)(iterator t))

i = c.erase(i);

223

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename C, typename iterator t, typename base t>
void erase gap2(C& c, iterator t& i, void (base t::*)(iterator t))

{
}

c.erase(i++);

template <typename C>
void erase gap(C& c, typename C::iterator& i)

{
erase_gap2(c, i, &C::erase);
int main()
{
for (i = c.begin(); i != c.end();)
if (need_to_erase(i))
erase _gap(c, i);
else
++1;
}
}

Observe that erasure is not invoked via the pointer. It’s just the type of the pointer that matters.
Also, the type of erase may notbe ... (C::*)(...), because a container could have a “hidden base”.
The exact type is therefore left open to compiler deduction.

4.5.2. Swap

The previous technique can be extended via SFINAE to cases where it's unknown if the member function
exists. To demonstrate, you need to extend swap_traits (introduced in Section 4.3.6) to perform the
following'®:

e IfThasvoid T::swap(T8&), usea.swap(b).

e IfThasstatic void swap(T&,T&), useT::swap(a,b).
e If T has both swaps, the call is ambiguous.

° In any other case, use ADL swap.

The first part simply reuses the techniques from the previous sections. In particular, observe that all
yes-types derive from a common “yes-base,” because the first test is meant only to ensure that the possible
swap member functions exist.

18This extension is to be considered an exercise, but not necessarily a good idea.

224

CHAPTER 4

struct swap_traits

{
template <typename T, void (T::*F)(T&)>
class yes1 : public yes type {};

template <typename T, void (*F)(T&, T&)>
class yes2 : public yes type {};

template <typename T>
inline static void apply(T& a, T& b)

{
applyi(a, b, test(8a));

private:
// first test: return a yes_type* if any allowed T::swap exists

template <typename T>
static yesi<T, &T::swap>* test(T*)
{ return o; }

template <typename T>
static yes2<T, &T::swap>* test(T*)
{ return o; }

static no_type* test(void*)
{ return o; }

OVERLOAD RESOLUTION

When the test is false, call ADL swap. Otherwise, perform a function-pointer based test. Call apply2 by

taking the address of swap, which is known to be possible because at least one swap exists.
private:

template <typename T>

inline static void apply1(T& a, T& b, no_type*)

{

}

swap(a, b);

template <typename T>
inline static void apply1(T& a, T& b, yes type*)
{

apply2(a, b, &T::swap);

template <typename T>
inline static void apply2(T& a, T& b, void (*)(T&, T&))
{

T::swap(a, b);

225

CHAPTER 4 © OVERLOAD RESOLUTION

template <typename T, typename BASE>
inline static void apply2(T& a, T& b, void (BASE::*)(BASE&))

{
a.swap(b);

template <typename T>
inline static void apply2(T& a, T& b, ...)
swap(a, b);
};

4.5.2. Argument Dominance

When a function template has several arguments whose type must be deduced, you may incur ambiguities:

template <typename T>
T max(T a1, T a2) { ... }

max(3, 4.0); // error: ambiguous, T may be int or double

It’s often the case that one argument is more important, so you can explicitly instruct the compiler to
ignore everything else during type deduction:

// here T must be the type of argi

template <typename T>
void add to(T& a1, Ta2) { ... }

double x = 0;
add_to(x, 3); // we would like this code to compile

The solution to this is to replace T with an indirect metafunction that yields the same result. Type
deduction is performed only on non-dependent names, and the compiler then ensures that the result is
compatible with any other dependent name:

template <typename T>
void add_to(T& a1, typename instance_of<T»>::type a2)

{...}
In this example, T8 is viable for type-detection. T=double is the only match. instance_of<double> does

indeed contain a type called type (which is double), so the match is feasible. So the function automatically
casts a2 to double.

226

CHAPTER 4 © OVERLOAD RESOLUTION

This idiom is very popular when a1 is a function pointer and a2 is the argument of a1:

template <typename A, typename R>
R function _call(R (*f)(A), R x)
{ return f(x); }

The function pointer is a dominating argument, because you can call f on everything that is convertible.
You should therefore consider disabling the detection on x:

template <typename A, typename R>

R function_call(R (*f)(A), typename instance_of<R>::type Xx)
{ return f(x); }

227

CHAPTER 5

Interfaces

/

Templates are used as interfaces in two different ways: to provide sets of atomic functions and to obtain

compile-time polymorphism.

If several functions use the same portion of the interface of an object, you can factor them out in a single

template:

void do_something(std::vector<double>& v)

if (v.empty())
// ...

. v.size();

for_each(v.begin(), v.end(), my functor());

}
void do_something(std::list<double>& L)

if (L.empty())
// .

... L.size();

for_each(L.begin(), L.end(), my functor());
}
becomes:

template <typename T>
void do_something(T& L)

if (L.empty())
/...
. L.size();

for_each(L.begin(), L.end(), my_functor());

229

CHAPTER 5 ' INTERFACES

This code unification is simpler when you follow common guidelines for containers (as listed in Section 1.4).
If necessary, as described in Section 3.4.3, you can replace calls to member functions with calls to small
global functions. Assume you have a third do_something that executes a slightly different test:

void do_something(MyContainer<double>& M)

if (M.size() == 0)

It’s better to isolate the test for “emptiness” in a different function:

template <typename T>
bool is empty(const T& c)

return c.empty();

}

template <typename T>
bool is empty(const MyContainer<T>& c)

return c.size() == 0;

}

template <typename T>
void do_something(T& L)

{
if (is_empty(L))

5.1. Wrapping References

A class template and its specializations can be used to make interfaces uniform:

class Dog

{
public:
void bark();
void go to _sleep();
};

class Professor

{
public:
void begin_lesson();
void end lesson();

};

230

CHAPTER 5 ' INTERFACES

template <typename T>
class Reference

{
T8 obj_;

public:
Reference(T& obj) : obj _(obj) {}
void start talking() { obj .talk(); }
void end talking() { obj_.shut(); }

};

template <>
class Reference<Dog>

{
Dog& obj_;

public:
Reference(Dog8 obj) : obj_(obj) {}

void start talking() { for (int i=0; i<3; ++i) obj_.bark(); }
void end talking() { obj_.go to sleep(); }
b

template <>
class Reference<Professor>

{
Professor& obj_;
public:
Reference(Professor& obj) : obj_(obj) {}
void start talking() { obj_.begin lesson(); }
void end talking() { obj_.end lesson(); }
b

Note that the wrapper may indeed contain some logic. Finally:

template <typename T>

void DoIt(T& any)

{
Reference<T> r(any);
r.start talking();
/1 ...
r.end_talking();

231

CHAPTER 5 ' INTERFACES

5.2. Static Interfaces

When a function template manipulates an object of unspecified type T, it actually forces the object to
implement an interface. For example, this very simple function contains a lot of hidden assumptions about
the (unknown) types involved:

template <typename iter1 t, typename iter2 t>
iter2 t copy(iteri t begin, const iterl t end, iter2 t output)

{
while (begin != end)
*(output++) = *(begin++),
return output;
}

Here, iterl tand iter2_ t musthave a copy constructor, called operator++(int). iter1 t also needs
operator!=. Furthermore, every operator++ returns a dereferenceable entity, and in the case of iter2_t, the
final result is an 1-value whose assignment blindly accepts whatever *(begin++) returns.

In short, template code pretends that all instructions compile, until the compiler can prove they don’t.

In general, it’s too verbose and/or generally not useful to list the assumptions on a type interface. In the
previous example, iterl t::operator++ will likely return iter1 t, which also implements operator*, but it
need not be exactly the case (for instance, copy would work if, say, iter1l t::operator++returned int*).

So you must try to list explicitly a minimal set of concepts that the template parameter must satisfy.
Informally, a concept is a requirement on the type that implies that a C++ statement is legal, whatever its
implementation.!

For example, this object will happily play the role of iter2_t:

struct black_hole iterator

{
const black hole iterator& operator++ () const
{
return *this;
}
const black hole iterator& operator++ (int) const
{
return *this;
}
const black hole iterator& operator* () const
{
return *this;
}

!The notion of concept was introduced in Section 2.2.4.

232

CHAPTER 5 ' INTERFACES

template <typename T>
const black hole iterator& operator= (const T&) const
{
return *this;
}
};

Here, the concept of “the object returned by operator* must be an l-value” is satisfied, even if in an
unusual way (the assignment does not modify the black hole).

Generally, you won't list the exact concepts for any generic function. However, some sets of concepts
have a standard name, so whenever possible, you'll adopt it, even if it’s a superset of what is actually needed.

In the previous copy template, it’s best to use an input iterator and an output iterator, because these are
the smallest universally known labels that identify a (super-)set of the concepts. As you will read in Chapter 6,
a true output iterator satisfies a few more properties (for example, it must provide some typedefs, which are
irrelevant here); however, this is a fair price for reusability.

Authors of template code often need to make concepts explicit. If they have a simple name, they can be
used as template parameters:

template <typename FwdIter, typename RandIter>
FwdIter special copy(RandIter beg, RandIter end, FwdIter output);

Note that in this function, nothing constrains beg to be an iterator except names (which are hints for
humans, not for the compiler). The template argument FwdIter will match anything, say double or void*,
and if you are lucky, the body of the function will report errors. It may happen that you pass a type that
works, but it does not behave as expected.?

On the other hand, classic C++ does offer a tool to constrain types: inheritance. You write pieces of
code that accept a BASE* and at runtime they invoke the right virtual functions.

Static interfaces are their equivalent in TMP. They offer less generality than a “flat” type T, but have the
same level of static optimizations.

A static interface is a skeleton class that limits the scope of validity of a template to types derived from
the interface, and at the same time it provides a default (static) implementation of the “virtual” callback
mechanism.

The details follow.

5.2.1. Static Interfaces

The original language idiom was called the “curiously recurring template” pattern (CRTP) and it is based
on the following observation: a static_cast can traverse a class hierarchy using only compile-time
information. Put simply, static_cast can convert BASE* to DERIVED*. If the inheritance relationship
between DERIVED and BASE is incorrect or ambiguous, the cast will not compile. However, the result will be
valid only if at runtime BASE* is pointing to a true DERIVED object.

The black hole iterator is a hack, not a perfect output iterator.
3This is why, for example, the standard describes carefully what happens to functors passed to STL algorithms, such as
how many times they are copied, and so on.

233

CHAPTER 5 ' INTERFACES

As a special case, there’s an easy way to be sure that the cast will succeed; that is, when each derived
class inherits from a “personal base”:

template <typename DERIVED T>
class BASE

{
protected:

~BASE() {}

)

class DERIVED1 : public BASE<DERIVED1>

{
};

class DERIVED2 : public BASE<DERIVED2>

{
};

An object of type BASE<T> is guaranteed to be the base of a T, because thanks to the protected
destructor, nobody except a derived class can build a BASE<T>, and only T itself derives from BASE<T>.
So BASE<T> can cast itself to T and invoke functions:

template <typename DERIVED T>
struct BASE

{
DERIVED T& true this()
{

}

const DERIVED T8& true this () const
{

}

return static_cast<DERIVED T&>(*this);

return static_cast<const DERIVED T&>(*this);

double getSomeNumber() const

{
}

return true_this().getSomeNumbex();
1
struct DERIVED rand : public BASE<DERIVED_rand>

double getSomeNumber() const
{

}

return std::rand();

};

234

CHAPTER 5 ' INTERFACES

struct DERIVED circle : public BASE<DERIVED circle>
double radius_;

double getSomeNumber() const

{

}
};

return 3.14159265359 * sq(radius);

Exactly as for virtual functions, normal calls via the derived class interface are inexpensive:

DERIVED rand d;
d.getSomeNumber(); // normal call; BASE is completely ignored

However, you can write a function template that takes a reference-to-base and makes an inexpensive
call to the derived member function. true_this will produce no overhead.

template <typename T>
void PrintSomeNumber (BASE<T>& b) // crucial: pass argument by reference
{

// here BASE methods will dispatch to the correct T equivalent

std::cout << b.getSomeNumber();

}

DERIVED circle C;
DERIVED_rand R;

PrintSomeNumber(C); // prints the area of the circle
PrintSomeNumber(R); // prints a random number

Conceptually, the previous function is identical to the simpler (but vaguer) function here:

template <typename T>
void PrintSomeNumber(T& b)
{
std::cout << b.getSomeNumber();

}

However, the replacement looks acceptable because PrintSomeNumber is a named function, not an
operator (think about writing a global operator+ with two arguments of type T). The following example
demonstrates the use of static interfaces with operators.* It will implement only operator+= and have
operator+ for free, simply deriving from the summable<...> interface.

“The boost library contains some more general code. See http://www.boost.org/doc/libs/1_57_0/1libs/utility/
operators.htm.

235

http://www.boost.org/doc/libs/1_57_0/libs/utility/operators.htm
http://www.boost.org/doc/libs/1_57_0/libs/utility/operators.htm

CHAPTER 5 ' INTERFACES

template <typename T>
struct summable

{
T& true_this()
return static_cast<T&>(*this);
}
const T& true this () const
{
return static_cast<const T&>(*this);
}
T operator+ (const T& that) const
T result(true_this());
result += that; // call dispatch to native T::operator+=
return result;
}
};
struct complex_number : public summable<complex_number>
{
complex_number& operator+= (const complex number& that)
{
}
b

complex_number a;
complex_number b;

complex_number s = a+b;

The (apparently simple) last line performs the following compile-time steps:

e adoesnot have an operator+ of its own, so cast a to its base that has it, namely const
summable<complex_number>8.

e const summable<complex_number>& can be summed to a complex_number, so b is
fine as is.

e summable<complex_number>::operator+ builds a complex_number named result,
which is a copy of true_this, because true_this isa complex_number.

e Dispatching execution to complex_number: :operator+=, the result is computed and
returned.

236

CHAPTER 5

Note that you could rewrite the base class as:

template <typename T>
struct summable

{
/...

T operator+ (const summable<T>& that) const

T result(true this());
result += that.true this();
return result;

};

Let’s call interface the base class and specializations the derived classes.

5.2.2. Common Errors

You just met a situation where the interface class makes a specialized copy of itself:
T result(true this());

This is not a problem, since the interface, which is static, knows its “true type” by definition.
However, the correct behavior of true_this can be destroyed by slicing:

template <typename DERIVED T>
void PrintSomeNumber (BASE<DERIVED_T» b)// argument by value
{
std::cout << b.getSomeNumber(); // error: slicing
// b is not a DERIVED_T any more

INTERFACES

Usually, it’s necessary to declare BASE destructor non-virtual and protected, and sometimes it’s a good
idea to extend protection to the copy constructor. Algorithms should not need to make a copy of the static
interface. If they need to clone the object, the correct idiom is to call the DERIVED T constructor and pass

true_this(), as shown previously.

template <typename DERIVED T>
struct BASE

{ DERIVED T& true_this()
{ return static_cast<DERIVED T&>(*this);
}
const DERIVED T& true this() const
i return static_cast<const DERIVED T8&>(*this);

237

CHAPTER 5 ' INTERFACES

protected:
~BASE()
{
}

BASE(const BASE&)
{
}

};

The interface of DERIVED is visible only inside the body of BASE member functions:

template <typename DERIVED T>
struct BASE

{
/1 ...
typedef DERIVED T::someType someType; // compiler error
void ()
{
typedef DERIVED T::someType someType; // ok here
};
class DERIVED : public BASE<DERIVED>
{

Typedefs and enums from DERIVED are not available at class level in BASE. This is obvious, because
DERIVED is compiled after its base, which is BASE<DERIVED>. When BASE<DERIVED> is processed, DERIVED is
known, but still incomplete.

It's a good idea (not an error) to make BASE expose a typedef for DERIVED_T. This allows external
functions to make a specialized copy of BASE.

template <typename DERIVED T>
struct BASE

{
typedef DERIVED T static_type;

However, DERIVED cannot access BASE members without full qualification, because a template base
class is out of scope for the derived objects.®

template <typename DERIVED T>
struct BASE

{
typedef double value type;

See [2] page 135.

238

CHAPTER 5 ' INTERFACES

value type f() const

return true_this().f();

}
/...
};
struct DERIVED1 : public BASE<DERIVED1>
{
value_type f() const // error: value_type is undefined
true this(); // error: true_this is undefined
return 0;
}
};
struct DERIVED2 : public BASE<DERIVED2>
{
BASE<DERIVED2>::value type f() const /7 ok
{
this->true_this(); // ok
return 0;
}
};

Note once again that scope restriction holds only “inside” the class. External users will correctly see
DERIVED1::value_type

template <typename T>
struct value_type of

{
typedef typename T::value_type type;

)

value type of<DERIVED1>::type Pi = 3.14; // ok, Pi has type double

Finally, the developer must ensure that all derived classes correctly announce their names to the base
in order to avoid a classic copy and paste error:

class DERIVED1 : public BASE<DERIVED1>

{
};

class DERIVED2 : public BASE<DERIVED1>

{
};

239

CHAPTER 5 ' INTERFACES

Benefits Problems

Write algorithms that take “not too generic objects” The developer must ensure that all algorithms take

and use them with a statically known interface. arguments by reference and avoid other common
€rTorS.

Implement only some part of the code in the derived Experimental measurements suggest that the

(specialized) class and move all common code in presence of non-virtual protected destructors and
the base. multiple inheritance may inhibit or degrade code
optimizations.

5.2.3. A Static_Interface Implementation

Many of the previous ideas can be grouped in a class:

template <typename T>
struct clone_of

{
typedef const T& type;

)

template <typename static_type, typename aux_t = void>
class static_interface

{
public:
typedef static_type type;

typename clone_of<static_type>::type clone() const

{
}

return true this();

protected:
static_interface() {}
~static_interface() {}
static_typed true this()

return static_cast<static_type&>(*this);

}

const static_type& true this() const
{

}

return static_cast<const static_type&>(*this);
};

You'll come back to the extra template parameter later in this chapter.

240

CHAPTER 5 ' INTERFACES

The helper metafunction clone_of can be customized and returning const reference is a reasonable
default choice. For small objects, it may be faster to return a copy:

template <typename T, bool SMALL OBJECT = (sizeof(T)<sizeof(void*))>
struct clone_of;

template <typename T>
struct clone of<T, true>

{
typedef T type;
};

template <typename T>
struct clone_of<T, false>

{
typedef const T& type;

};

First, you make some macros available to ease interface declaration.

An interface is defined by
#define MXT_INTERFACE(NAME) \

\

template <typename static_type> \

class NAME : public static_interface<static_type>
#define MXT_SPECIALIZED this->true this()
Here’s a practical example. The interface macro is similar to a normal class declaration.®

MXT_INTERFACE(random)

{

protected:

~random()

{
}

public:
typedef double random_type;

random_type max() const

return MXT SPECIALIZED.max();
}

®The downside of this technique is that the macro may confuse some IDEs that parse headers to build a graphical
representation of the project.

241

CHAPTER 5 ' INTERFACES

random_type operator()() const

{
}

return MXT_SPECIALIZED(); // note operator call
b
e random can access true_this() only with explicit qualification
(as MXT_SPECIALIZED does).
e randomneeds to declare a protected destructor.

e static_typeisavalid type name inside random, even if static_interface is out of
scope, because it’s the template parameter name.

Now let’s implement some random algorithms:
#tdefine MXT_SPECIALIZATION(S, I) class S : public Ik S »

MXT_SPECIALIZATION(gaussian, random)

{
public:

double max() const

{

return std::numeric_limits<double>::max();

}
double operator()() const

/...

};

MXT_SPECIALIZATION(uniform, random)

{
public:

double max() const

{

return 1.0;

}

/] ...
};

What if you need a template static interface, such as:

template <typename RANDOM T, typename SCALAR_T>
class random

{
public:
typedef SCALAR_T random_type;
/1 ...
};

242

CHAPTER 5 ' INTERFACES

template <typename T>
class gaussian : public random<gaussian<T>, T>

{
};

/7 ...

It’s easy to provide more macros for template static interfaces (with a small number of parameters).
A naive idea is:

#tdefine MXT TEMPLATE_INTERFACE(NAME,T) \
\

template <typename static_type, typename T> \
class NAME : public static_interface<static_type>
#tdefine MXT_TEMPLATE_SPECIALIZATION(S,I,T) \
template <typename T> \
class S : public I< S<T> >

Which is used like this:
MXT_TEMPLATE_INTERFACE(pseudo_array, value t)
{
protected:

~pseudo_array()

}
public:

typedef value_t value_type;

value_type operator[](const size t i) const

return MXT_SPECIALIZED.read(i, instance of<value type>());

}

size t size() const

{

return MXT SPECIALIZED.size(instance of<value type>());

}

};

A non-template class can use a template static interface. For example, you could have a bitstring class
that behaves like an array of bits, an array of nibbles, or an array of bytes:

typedef bool bit;

typedef char nibble;
typedef unsigned char byte;

243

CHAPTER 5 ' INTERFACES

class bitstring

: public pseudo_array<bitstring, bit>

, public pseudo_array<bitstring, nibble>
, public pseudo_array<bitstring, byte>

An interface need not respect the same member names as the true specialization. In this case,
operator[] dispatches execution to a function template read. This makes sense, because the underlying
bitstring can read the element at position i in many ways (there are three distinct i-th elements). But
inside pseudo_array, the type to retrieve is statically known, so using a bitstring as a pseudo_array is
equivalent to “slicing” the bitstring interface. This makes code much simpler.

The first problem you need to solve is that when the macro expands, the compiler reads:

template <typename static_type, typename value t>
class pseudo_array : public static_interface<static_type>

Thus bitstring inherits multiple times from static_interface<bitstring>, which will make the
static_castin true_this ambiguous.

@bitstring, byte>
static_interface<bitstring>

Figure 5-1. Ambiguous inheritance diagram

pseudo_array<bitstring, bit> pseudo_array<bitstring, nibble>

To avoid this issue, use an extra parameter in the static interface for disambiguation. The most
unambiguous type names are either T or the whole interface (pseudo_array<bitstring, T>). The macro
becomes:

#tdefine MXT TEMPLATE INTERFACE(NAME,T)

~ - -

template <typename static_type, typename T>
class NAME \
: public static_interface<static_type, NAME<static_type, T> >

#define MXT TEMPLATE SPECIALIZATION(S,I,T) \
\
template <typename T> \

class S : public I< S<T>, T >

244

CHAPTER 5 ' INTERFACES

pseudo_array<bitstring, byte>

pseudo_array<bitstring, bit> pseudo_array<bitstring, nibble>
static_interface<bitstring, bit> static_interface<bitstring, byte> static_interface<bitstring, nibble>

Figure 5-2. Improved inheritance diagram

5.2.4. The Memberspace Problem

Up to now, static interfaces have been described as techniques that limit the scope of some template
parameters. So instead of F(T), you write F(random<T>) where T is a special implementation of a random
generator. This is especially useful if F is indeed a (global) operator.

A second application of static interfaces is the memberspace problem.” The name memberspace is the
equivalent of a namespace, relative to the member functions of a class. In other words, it’s sort of a subspace
where a class can put member functions with duplicate names.

Assume that C is a container that follows the STL conventions, so the first element of C is *begin() and
the last is *rbegin().

This is the classic solution to partition an interface where function names have a unique prefix/suffix,
such as push+front, push+back, r+begin, and so on.

It's better to have a real partition, where front and back are both containers with their own interfaces:?

C MyList;
/] ...

first = MyList.front.begin();
last MyList.back.begin();

MyList.front.push(3.14);
MyList.back.push(6.28);
MyList.back.pop();

Indeed, you can use static interfaces to write code such as:*

class bitstring
: public pseudo_array<bitstring, bit>
» public pseudo_array<bitstring, nibble>
, public pseudo_array<bitstring, byte>
{
char* data_;
size t nbits_;

"Apparently, the term “memberspace” was introduced by Joaquin M Lopez Muiioz in “An STL-Like Bidirectional Map”
(see www.codeproject.com/vcpp/stl/bimap.asp). Also, the double-end queue example is from the same author.

8In the pseudo-code that follows, you should pretend that C is a class; of course a non-template container would be an
unusual beast.

°This code does not compile, because for conciseness, we removed all const versions of the member functions.
However, the fix should be obvious.

245

http://www.codeproject.com/vcpp/stl/bimap.asp

CHAPTER 5 ' INTERFACES

public:
pseudo_array<bitstring, bit>& as_bit() { return *this; }
pseudo_array<bitstring, nibble>& as_nibble() { return *this; }
pseudo_array<bitstring, byte>& as byte() { return *this; }

size t size(instance_of<byte>) const { return nbits_ / CHAR BIT; }
size t size(instance_of<bit>) const { return nbits_; }
size t size(instance_of<nibble>) const { return nbits_ / (CHAR_BIT / 2); }

bit read(size_t n, instance of<byte>) const { return ...; }
nibble read(size t n, instance of<bit>) const { return ...; }
byte read(size t n, instance of<nibble>) const { return ...; }

};

bitstring b;

int n1 = b.as_bit().size();
int n2 = b.as_byte().size();
Compare that with:

bitstring b;
int n1 = b.size(instance_of<bit tag>());
b.as_bit() is also sort of a container of its own, and it can be passed by reference to algorithms:

template <typename T, typename X>
X parity(pseudo_array<T, X>& data)
{

X result = 0;
for (size t i=0; i<data.size(); ++1i)
result *= data[i];

return result;

}

This technique is excellent, but it suffers from a limitation. As mentioned, typedefs provided in
the specialization are not available in the static interface, thus you have no way of declaring a member
function returning an iterator. This is because the static interface has to borrow the iterator type from the
specialization.

MXT_INTERFACE(front)
{

typename static_type::iterator begin() // <-- error here

{
}

return MXT_SPECIALIZED.begin();

246

CHAPTER 5 ' INTERFACES

typename static_type::iterator end() // <-- error again
{
return MXT_SPECIALIZED.end();
}
};
MXT_INTERFACE (back)
{
typename static_type::reverse_iterator begin() // <-- another error
{
return MXT_SPECIALIZED.rbegin();
}
typename static_type::reverse_iterator end() // <-- lots of errors
{
return MXT_SPECIALIZED.rend();
}
b
class C : public front<C>, public back<C>
{
/...
public:
front<C>& front()
{ return *this; }
back<C>& back()
{ return *this; }
};
C MyList;
MyList.front().begin(); // error
MyList.back().begin(); // error
/...

Note that it’s not a matter of syntax. Since C is still incomplete, C: : iterator does not yet exist. However,
there are some design fixes:

e Define iterator before C:

class C_iterator

{
/...
};

class C

{

// container implementation

typedef C_iterator iterator;

};

247

CHAPTER 5 ' INTERFACES

e Insertan additional layer between C and the interfaces, so that the static interface
compiles after C (and before the wrapper class):

class C

{

// container implementation

class iterator { ... };

};

MXT TEMPLATE_INTERFACE(front, impl t)

{
typename impl_t::iterator begin()

return MXT_SPECIALIZED.begin();
}

typename impl t::iterator end()

return MXT_SPECIALIZED.end();

}
};

/...
class C_WRAPPER : public front<C_WRAPPER, C>, public back<C_WRAPPER, C>
{
Cc;
public:
// reproduce C's interface

// dispatch all execution to c_

typename C::iterator begin()

{

return c_.begin();
}
/] ...,

};

5.2.5. Member Selection

The same technique used in merging traits (see Section 4.2.4 can be successfully applied to value objects.
The next listing, which is intentionally incomplete, suggests a possible motivation:

enum

{
empty =0,
year =1,

248

CHAPTER 5

month =2,
day = 4,
/...

1
template <unsigned CODE> struct time_val;

template <> struct time_val<empty> { }; // empty, I really mean it ©
template <> struct time_val<year> { int year; };
template <> struct time_val<month> { short month; };

/...

template <unsigned CODE>

struct time_val

: public time_val<CODE & static_highest bit<CODE>::value>
, public time_val<CODE - static_highest_bit<CODE>::value>
{

};

// an algorithm

template <unsigned CODE>
time val<(year | month | day)> easter(const time val<CODE>& t)

time_val<(year | month | day)> result;
result.year = t.year;

result.month = compute_easter month(t.year);
result.day = compute easter day(t.year);
return result;

time valcyear | month> tvi;

time_val<month | day> tv2;

easter(tvi); // ok.
easter(tv2); // error: tv2.year is undefined.

INTERFACES

Note that the algorithm acts unconditionally as if any time_val<CODE> had a member year. When

necessary, you can isolate this assumption using a wrapper:

template <unsigned CODE>
time_val<year | month | day> easter(const time_val<CODE>& t, selector<true>)

{
}

// implementation

249

CHAPTER 5 ' INTERFACES

template <int CODE>
time_val<year | month | day> easter(const time val<CODE>& t, selector<false>)

{
}

template <int CODE>
time_val<year | month | day> easter(const time val<CODE>& t)

{
}

// put whatever here: throw exception, static assert...

return easter(t, selector<CODE & year>());

5.3. Type Hiding

Classic C++ programs transform instances of objects into other instances that have possibly different types
(via function calls).

int i = 314;
double x = f(i); // transform an instance of int into an instance of double

Using templates, C++ can manipulate instances, compile-time constants, and types (constants are in
the middle because they share some properties with both). You can transform types and constants into
instances (trivially), types into types (via traits and metafunctions), types into constants (via metafunctions
and other operators, such as sizeof), instances into constants (via sizeof), and types into some special
system objects (using typeid). However, classic C++ has very limited language tools to transform an instance
into a type."

The most common example comes from iterator handling:

T t = *begin; // store a copy of the first element
// who is T?

At the moment, a suitable type is provided by metafunctions:
typename std::iterator_traits<iterator_ t>::value_type t = *begin;

There are tricks, which essentially avoid direct knowledge of T. The simplest option is to pass *begin as
a dummy unused parameter to a template function that will deduce its type:

template <typename iterator_t>
void f(iterator t beg, iterator t end)

if (beg == end)
return;

f_helper(beg, end, *beg);
}

"Modern C++ offers two new keywords: decltype and auto. The former returns the exact type of any expression,
similarly to sizeof. The latter allows an instance to “copy” the type of its initializer, so auto i = f() would declare a
variable 1 having the best possible type to store the result of ¥() locally. See Chapter 12 for more details.

250

CHAPTER 5 ' INTERFACES

template <typename iterator t, typename value t>
void f helper(iterator t beg, iterator t end, const value t&)

{
// for most iterators,
// value_t ~ iterator traits<iterator t>::value type

// however if *beg returns a proxy, value_t is the type of the proxy
// so this may not work with std::vector<bool> and in general,
// where value_t just stores a reference to the value.

}

In classic C++, there are two ways to store an object without knowing its type:

e Passitto a template function, as shown previously. However, the lifetime of the
object is limited.

e Cancelits interface, possibly via a combination of templates and virtual functions.
In the simplest case, the object can be merely stored and nothing else:"

class wrapper_base

public:
virtual ~wrapper base() {}

virtual wrapper_base* clone() const = 0;

};

template <typename T>
class wrapper : public wrapper base

{
T obj_;

public:
wrapper(const T& x)

s obj_(x) {}

wrapper<T>* clone() const

{
}

return new wrapper<T>(obj_);
};

template <typename T>
wrapper_base* make_ clone(const T8& x)

{

return new wrapper<T>(x);

}

""This example is important and it will be analyzed again in Section 5.4.1.

251

CHAPTER 5 ' INTERFACES

Sometimes it’s desirable to provide a common interface for several types. The most famous example is
given by variant objects (also known as discriminated unions), which are classes whose static types are fixed,
but whose internal storage can transport different types.

The rest of this section discusses in detail the problem of command-line parsing. Assume you are
coding a tool that gets options from the command line. Each option has a name and an associated value of
some fixed type. Options come first, and everything else is an argument:

tool.exe -i=7 -f=3.14 -d=6.28 -b=true ARGUMENT1 ARGUMENT2 ... ARGUMENTn

where iis an int, fis a float, and so on.

Ideally, you need a sort of map<string, T>, where T can vary for each pair. Also, you should be able to
query such a map for values having the right type, so that you can accept -f=3.14 but reject -f="hello world".

Assume, for extra simplicity, that you start with an array of strings, where each string is either [prefix]
[name] or [prefix][name]=[value],* and that each parameter value will be obtained via stream extraction
(operator>>).

You can produce two containers. The first, named option_map, stores name-value pairs, like std: :map,
but each value has an arbitrary type. The second container, named option_parser, is another map that
knows the desired pairing name-type (for example, “f” is a float) before parsing the command line. The
target is writing code like:

int main(int argc, char* argv[])

{
option_parser PARSER;
PARSER.declare_as<float>("f"); // we tell the parser what it should
PARSER.declare as<int>("i"); // expect, i.e. that "d" is a double,
PARSER.declare as<double>("d");// etc. etc.
option_map<std::string> CL; // only key type is a template parameter
try
{
const char* prefix = "-";
char** opt_begin = argv+1;
char** opt_end = argv+argc;
// finally we ask the parser to fill a map with the actual values
// this may throw an exception...
char** arg begin = PARSER.parse(CL, opt begin, opt_end, prefix);
double d;
if (!CL.get(d, "d"))
// the user did not specify a value for "d"
d = SOME_DEFAULT_VALUE;
}
12The prefix is a fixed character sequence, usually "-", "--", or "/".

252

CHAPTER 5 ' INTERFACES

}
catch (std::invalid_argument8 ex)
{
/...
}

}

5.3.1. Trampolines

The core technique for this kind of “polymorphism” is the use of trampolines.

Formally, a trampoline is a local class inside a function template, but the meaning of “local” should not
be taken literally.

The class has only static member functions. Its public interface accepts parameters of a fixed type
(say, void*), but being nested in a template, the body of the trampoline is aware of the “outer” template
parameter and uses it to perform safe static casts.

Here is a bare bones example—a naked struct that holds untyped pointers and a function template
that knows the static type of the object and apparently loses information.

struct generic_t

{
void* obj;
void (*del)(void*);
};
template <typename T> // outer template parameter
generic_t copy to generic(const T& value)
{
struct local cast // local class
{
static void destroy(void* p) // void*-based interface
{
delete static_cast<T*>(p); // static type knowledge
}
};

generic_t p;
p.obj = new T(value); // information loss: copy T* to void*
p.del = &local cast::destroy;
return p;
Actually, p.ob7j alone does not know how to destroy its attached object, but p.del points to (in pseudo-
code) copy_to_generic<T>::local _cast::destroy and this function will do the right thing, namely cast the

void* back to T* just before deleting it.

p.del(p.obj); // it works!

253

CHAPTER 5 ' INTERFACES

del is the functional equivalent of a virtual destructor. The analogy between trampolines and virtual
function tables is correct, but:

e Trampoline techniques allow you to work with objects, not with pointers (a classic
factory would have returned pointer-to-base, while copy_to_generic produces an
object).

e Trampoline pointers can be tested and modified at runtime. For example, del
can be replaced anytime with a do-nothing function if ownership of the pointer is
transferred.

e Trampolines are much less clear (that is, more difficult to maintain) than abstract
class hierarchies.

The advantage of structures like generic_t is that their type is statically known, so they can be used in
standard containers, and they are classes, so they can manage their own resources and invariants.

Unfortunately, while type T is known internally, it cannot be exposed. Function pointers like del cannot
have T anywhere in their signature. The interface of the trampoline class must be independent of T and it
cannot have template member functions (thus, for example, you cannot have a trampoline member that
takes a functor and applies it to the pointee).

Next, you'll need another tool—a wrapper for std: : type_info.

5.3.2. Typeinfo Wrapper

The typeid operator is a less-known C++ operator that determines the type of an expression at runtime and
returns a constant reference to a system object of type std: : type_info.

type_info: :before is a member function that can be used to simulate a total (but unspecified)
ordering on types.

Several wrappers have been proposed to give std: : type_info value semantics. This code is similar to
the elegant implementation found in [1] but the comparison operator ensures that a default-constructed
(null) typeinfo is less than any other instance.'

class typeinfo
const std::type info* p_;

public:
typeinfo()
: p_(0)
{}

typeinfo(const std::type infod t)
:p_(&t)
{

inline const char* name() const

{ un

return p_ ? p_->name() : "";

}

3The implementation uses short-circuit to prevent null pointer dereferencing, and it’s extremely concise. See also an
exercise in Appendix B.

254

};

CHAPTER 5 ' INTERFACES

inline bool operator<(const typeinfod that) const

{
return (p_ != that.p) &8
('p_ || (that.p_ 8&& static_cast<bool>(p_->before(*that.p))));

inline bool operator==(const typeinfod that) const

{
return (p_ == that.p_) ||

(p_ & that.p_ 8& static_cast<bool>(*p == *that.p));
}

5.3.3. Option_Map

Recall that option_map was introduced in Section 5.3 as a container to store values parsed from the
command line, together with their type. The interface for option_map is indeed very simple.

template <typename userkey t>
class option_map

{
public:
// typed find:
// MAP.find<T>("name") returns true
// if "name" corresponds to an object of type T
template <typename T>
bool find(const userkey t& name) const;
// typeless find:
// MAP.scan("name") returns true if "name" corresponds to any object
bool scan(const userkey t& name) const;
// checked extraction:
// MAP.get(x, "name") returns true
// if "name" corresponds to an object of type T;
// in this case, x is assigned a copy of such object;
// otherwise, x is not changed
template <typename T>
bool get(T& dest, const userkey t& name) const;
// unchecked extraction:
// MAP.get<T>("name") returns either the object of type T
// corresponding to "name", or T().

template <typename T>
T get(const userkey t& name) const;

255

CHAPTER 5 ' INTERFACES

// insertion
// MAP.put("name", x) inserts a copy of x into the map

template <typename T>
bool put(const userkey t& name, const T& value);

size t size() const;

~option_map();

};

Now for the implementation details—the idea of generic_t is developed a bit further, giving it the
ability to copy and destroy:

template <typename userkey t>
class option_map
{
struct generic_t
{
void* obj;
void (*copy)(void* , const void*);
void (*del)(void*);
};

Since you'll want to search the container both by name and by pair (name, type), you should pick the
latter structure as key, using the typeinfo wrapper class.

typedef std::pair<userkey t, typeinfo> key t;
typedef std::map<key t, generic_t> map_t;
typedef typename map_t::iterator iterator_t;

map_t map_;
The insertion routine is almost identical to the prototype example:

template <typename T>
bool put(const userkey t& name, const T& value)

{
struct local cast
{
static void copy(void* dest, const void* src)
{
static_cast<T>(dest) = *static_cast<const T*>(src);
}
static void destroy(void* p)
{
delete static_cast<T*>(p);
}
};

generic_t& p = map_[key t(name, typeid(T))];

256

CHAPTER 5 ' INTERFACES

p.obj = new T(value);
p.copy = &local cast::copy;
p.del = &local cast::destroy;

return true;

Some functions come for free on the top of std: :map:

size t size() const

{
}

return map_.size();

Here is the typed find:

template <typename T>
bool find(const userkey t& name) const

{
}

return map_.find(key t(name, typeid(T))) != map_.end();
To retrieve data from the option_map, you use the copy function. First, you do a typed find. If it
succeeds and the object is non-null, you perform the copy over the user-supplied reference:

template <typename T>
bool get(T& dest, const userkey t& name) const

{
const typename map_t::const_iterator i = map_.find(key t(name, typeid(T)));
const bool test = (i != map_.end());
if (test 8& i->second.obj)
i->second.copy(&dest, i->second.obj);
return test;
}

The unchecked retrieval is a shortcut implemented for convenience:

template <typename T>
T get(const userkey t& name) const

{
initialized value<T> v;
get(v.result, name);
return v.result;

}

257

CHAPTER 5 ' INTERFACES

At this moment, you simply let the destructor wipe out all the objects."
~option map()

iterator t i = map_.begin();
while (i != map_.end())

{
generic_t& p = (i++)->second;
if (p.del)
p.del(p.obj);
}

Finally, you can take advantage of the ordering properties of typeinfo for the typeless find. Due to the
way pairs are ordered, the map is sorted by name and entries with the same names are sorted by typeinfo.
First, you search for the upper bound of (name, typeinfo()). Any other pair with the same name will be
larger, because typeinfo() is the least possible value. So, if the upper bound exists and has the same name
you are looking for, it returns true.

bool scan(const userkey t& name) const

{
const typename map_t::const_iterator i
= map_.upper_bound(key t(name, typeinfo()));
return i != map_.end() &8 i->first.first == name;
}

Note that the container may hold more objects of different types having the same name.

5.3.4. Option_Parser

option_parser is not described in full, since it does not add anything to the concepts used in building
option_map. However, note that a trampoline may have parameters whose type is not void*. We leave some
details for exercise.

class option_parser

{
typedef option_map<std::string> option_map_t;
typedef bool (*store t)(option map t&, const char*, const char*);

typedef std::map<std::string, store t> map_t;
map_t map_;

“The implementation is obviously faulty; option map cannot be safely copied/assigned. To keep the code as simple
as possible, and even simpler, the discussion of this topic is deferred to Section 5.35.

258

CHAPTER 5 ' INTERFACES

public:

template <typename T>
void declare_as(const char* const name)

{
struct local_store
{
static bool store(option map t& m,
const char* name, const char* value)
{
std::istringstream is(value);
T temp;
return (is >> temp) && m.put(name, temp);
}
};

map_[name] = 8local_store::store;

}

Note that local_store::store does not take void* arguments. The only requirement for a trampoline
is to publish an interface independent of T.

template <typename iterator_ t>
iterator t parse(option _map t& m, iterator t begin, iterator t end)
{
for every iterator i=begin...end
{
get the string S = *i;
if S has no prefix
stop and return i;
else
remove the prefix

if S has the form "N=V"
split S in N and V
else
set N =35
set V = <empty string>

if N is not contained in map_
throw exception "unknown option”
else
set F := local_store::store
execute F(m, N, V)
if it fails, throw exception "illegal value"

259

CHAPTER 5 ' INTERFACES

5.3.5. Final Additions

Due to the way declare_as works, every type that can be extracted from a string stream is acceptable in the
command-line parser.
To include parameterless options, simply add an empty class:

struct option

{
};
inline std::istream& operator>>(std::istreamd is, option&)
{
return is;
}

This will enable a command-line switch, such as:
tool.exe -verbose

If the name is unique, the simplest way to retrieve the value of the switch is using a typeless find. This
will yield false if the switch is omitted.

PARSER.declare_as<option>("verbose");

char** arg begin = PARSER.parse(CL, opt begin, opt_end, prefix);
if (CL.scan("verbose"))

/] ...

Trampoline techniques can be easily optimized for space. Instead of creating one pointer for each
“virtual function,” you can group functions for type T in a static instance of a structure and therefore have a
single pointer, exactly as in the traditional implementation of virtual function tables.

This approach is also scalable. Should you need to add an extra “capability” to the interface, it requires
fewer modifications and almost no extra memory (since you have a single pointer table, as opposed to many
pointers per instance).

struct virtual function_table

{
void (*copy)(void* , void*);
void (*del)(void*);
void* (*clone)(const void*);
b

struct generic_t
void* obj;

const virtual_function_table* table; // single pointer-to-const

};

260

CHAPTER 5 ' INTERFACES

// identical implementation, but not a local class any more...

template <typename T>
struct local_cast

{
static void copy(void* dest, void* src)
{
static_cast<T>(dest) = *static_cast<T*>(src);
}
static void destroy(void* p)
{
delete static_cast<T*>(p);
}
static void* clone(const void* p)
{
return new T(*static_cast<const T*>(p));
}
};

template <typename T>
bool put(const userkey t& name, const T& value)

{
static const virtual function table pt =
{
&local cast<T>::copy,
&local cast<T>::destroy,
&local_cast<T>::clone
};
generic_t& p = map_[key t(name, typeid(T))];
p.obj = new T(value);
p.table = 8pt;
return true;
}

Of course, instead of p.del, you should write p.table->del and pay an extra indirection.
Finally, you make generic_t a true value by the rule of three: implementing copy constructor,

assignment, and destructor.

struct generic_t

{

void* obj;
const virtual function_table* table;

generic_t()
: obj(0), table(o0)

261

CHAPTER 5 ' INTERFACES

generic_t(const generic_t& that)
: table(that.table)

{

if (table)

obj = table.clone(that.obj);

}
generic_t& operator=(const generic t& that)
{

generic_t temp(that);

swap(obj, temp.obj);

swap(table, temp.table);

return *this;
}

~generic_t()

if (table && obj)
(table->del)(obj);
}
};

5.3.6. Boundary Crossing with Trampolines

This section briefly summarizes the last paragraphs. A trampoline function is used as a companion to a void
pointer when it contains enough information to recover the original type:

void* myptr_;
void (*del)(void*);

template <typename T>
struct secret class

{
static void destroy(void* p)
{
delete static_cast<T*>(p);
}
};

myptr_ = [[a pointer to T]];
del_ = &secret_class<T»>::destroy;

The information about T cannot be returned to the caller, because T cannot be present in the trampoline
interface.

So you will generally tackle the issue requiring the caller to specify a type T, and the trampoline
just ensures it’s the same as the original type (calling typeid, for example, see the “typed find”). This is
informally called an exact cast.

262

In short, an exact cast will fail if the type is not precisely what the program expects:

template <typename T>
T* exact_cast() const

{

return &secret class<T>::destroy == del ?
static_cast<T*>(myptr) : o;
A second possibility is to throw an exception:

template <typename T>
struct secret_class

{
static void throw T star(void* p)
{
throw static_cast<T*>(p);
}
};

struct myobj

{

};

void* myptr_;
void (*throw)(void*);

template <typename T>
myoby (T* p)
{

myptr_
throw_

P;
&secret_class<T>::throw T_star;

}

template <typename T>
T* cast_via_exception() const

{
try
(*throw_)(myptr);
catch (T* p) // yes, it was indeed a T*
return p;
}
catch (...) // no, it was something else
{
return 0;
}
}

CHAPTER 5

INTERFACES

263

CHAPTER 5 ' INTERFACES

This approach is several orders of magnitude slower (a try...catch block may not be cheap), but it
adds an interesting new feature. You can cast not only to the original type T, but also to any base class of T.
When the trampoline function throws DERIVED*, the exception handler will succeed in catching BASE*.

Remember that it’s not possible to dynamic_cast a void* directly, so this is actually the best you can
do. If efficiency is an issue, in practice you might want to adopt a scheme where you perform an exact cast to
BASE* using trampolines and execute a dynamic cast on the result later (after the trampoline code).

Observe also that, depending on the precise application semantics, you can sometimes limit the
number of “destination” types to a small set and hardcode them in the trampoline:

struct virtual function_table

{
bool (*safe to double)(void*, doubled);

std::string (*to_string)(void*);
};

template <typename T1, typename T2>
struct multi_cast

{
static T2 cast(void* src)
{
return has_conversion<T1,T2>::L2R ?
T2(*static_cast<T1*>(src)) : T2();
}
static bool safe cast(void* src, T2& dest)
{
if (has_conversion<T1,T2>::L2R)
dest = *static_cast<T1*>(src);
return has_conversion<T1,T2>::L2R;
}
};

to_double = &multi_cast<T, double>::safe_ cast;
to_string = &multi_cast<T, std::string>::cast;

5.4. Variant

The key point in type-hiding techniques is deciding who remembers the correct type of the objects. In
this example, the client of option_map is responsible for declaring and querying the right types, by calling
option_map::get<T>("name").

In some cases, the client needs or prefers to ignore the type and blindly delegate the “opaque” object.
This way, it performs the right action, whatever the stored object is.

264

CHAPTER 5 ' INTERFACES

5.4.1. Parameter Deletion with Virtual Calls

If you simply need to transport a copy of an object of arbitrary type, you can wrap it in a custom class
template, thereby “hiding” the template parameter behind a non-template abstract base class.
The following rough code snippet will help clarify this idea:

struct wrapper_base

virtual ~wrapper base()

{
}

virtual wrapper base* clone() const = 0;
// add more virtual functions if needed

virtual size t size() const = 0;

};

template <typename T>
struct wrapper : wrapper_base

T obj_;
wrapper(const T& that)
: obj (that)
{
}
virtual wrapper base* clone() const
{
return new wrapper<T>(obj);
}

// implement virtual functions delegating to obj_

virtual size t size() const

{
return obj .size();
}
};
class transporter
{
wrapper_base* myptr_;
public:

~transporter()

delete myptr_;
}

265

CHAPTER 5 ' INTERFACES

transporter(const transporterd that)
: myptr_(that.myptr ? that.myptr_->clone() : 0)

{

}
transporter()
: myptr (0)

}

template <typename T>
transporter(const T& that)

: myptr_(new wrapper<T>(that))
{

}

// implement member functions delegating to wrapper_ base

size t size() const

{

return myptr ? myptr ->size() : 0;
};
You can also add a custom (friend) dynamic cast:

template <typename T>
static T* transporter cast(transporter& t)
{
if (wrapper<T>* p = dynamic_cast<wrapper<T>*>(t.myptr_))
return &(p->obj_);
else
return 0;

5.4.2. Variant with Visitors

Opaque interfaces often make use of the visitor pattern. The visitor is a functor of unspecified type that is
accepted by the interface and is allowed to communicate with the real objects, whose type is otherwise hidden.
In other words, you need a way to pass a generic functor through the non-template trampoline interface.
As a prototype problem, you will code a concept class that can store any object of size not greater than a
fixed limit.'s

template <size t N>
class variant;

1>This is also known as an unbounded discriminated union. The code should be taken as a proof-of-concept, not as
production ready. Two big issues are not considered: const-ness and aligned storage. I suggest as a quick-and-dirty fix
that you put variant: :storage_in a union with a dummy structure having a single member double. See. A.
Alexandrescu’s “An Implementation of Discriminated Unions in C++”.

266

CHAPTER 5 ' INTERFACES

First, you define the required trampolines. variant will have some fixed-size storage where you place
the objects:

template <size t N>
class variant

{

char storage [N];
const vtable* vt;

};
Again from the rule of three, the tentative interface has three functions:

struct vtable

{

void (*construct)(void*, const void*);
void (*destroy)(void*);
void (*assign)(void*, const void*);

};

template <typename T>
struct vtable_impl

{

static void construct(void* dest, const void* src)

new(dest) T(*static_cast<const T*>(src));

}
static void destroy(void* dest)
{
static_cast<T*>(dest)->~T();
}
static void assign(void* dest, const void* src)
{
static_cast<T>(dest) = *static_cast<const T*>(src);
}
};

template <>
struct vtable impl<void>

{

static void construct(void* dest, const void* src)

{
}

static void destroy(void* dest)

{
}

267

CHAPTER 5 ' INTERFACES

static void assign(void* dest, const void* src)

{
}
};

template <typename T>
struct vtable_singleton

{
static const vtable* get()
{
static const vtable v =
&vtable_impl<T>::construct,
&vtable_impl<T>::destroy,
&vtable impl<T>::assign
};
return 8v;
}
};

template <size t N>
class variant

{

char storage [N];
const vtable* vt;

public:
~variant()

{
}

(vt->destroy) (storage);

variant()
: vt(vtable_singleton<void>::get())
{

}

variant(const variant8 that)
¢ vt(that.vt)
{

}

(vt->construct)(storage , that.storage);

template <typename T>
variant(const T& that)

: vt(vtable_singleton<T>::get())
{

MXT_ASSERT(sizeof(T)<=N);
(vt->construct)(storage , &that);

}
};

268

CHAPTER 5 ' INTERFACES

The constructors initialize the “virtual function table pointer” and invoke the construction over raw
memory.'

The assignment operator depends on a subtle issue: exceptions. If a constructor throws an exception,
since the object was never fully constructed it won'’t be destroyed either, and that’s exactly what you
need. However, if you need to overwrite an instance of T1 with an instance of T2, you destroy T1 first, but
construction of T2 may fail.

Thus, you need to reset the virtual table pointer to a no-op version, destroy T1, construct T2, and then
eventually store the right pointer.

void rebuild(const void* src, const vtable* newvt)

{
const vtable* oldvt = vt;
vt = vtable singleton<void>::get();
(oldvt->destroy)(storage);

// if construct throws,
// then variant will be in a consistent (null) state

(newvt->construct) (storage , src);
vt = newvt;

Thanks to rebuild, you can copy another variant and any other object of type T:

variant& operator=(const variantd that)

{
if (vt == that.vt)
(vt->assign)(storage , that.storage);
else
rebuild(that.storage , that.vt);

return *this;

}

template <typename T>
variant& operator=(const T& that)

{
MXT_ASSERT(sizeof(T)<=N);

if (vt == vtable_singleton<T>::get())
(vt->assign)(storage , &that);

else
rebuild(&that, vtable singleton<T>::get());

return *this;

}
};

1*We got rid of the " if pointer is null " tests initializing members with a dummy trampoline.

269

CHAPTER 5 ' INTERFACES

This variant is only pure storage, but consider this addition:

class variant

{
/...

template <typename visitor_ t>
void accept visitor(visitor t& v)

{

}
};

/1?2

Since trampolines need to have a fixed non-template signature, here the solution is virtual inheritance.
You define an interface for any unspecified visitor and another interface for a visitor who visits type T. Since
the trampoline knows T, it will try one dynamic cast.

Virtual inheritance is necessary because visitors may want to visit more than one type.

class variant_visitor base

{

public:
virtual ~variant visitor base()
{
}

};

template <typename T>
class variant_visitor : public wvirtual variant visitor base

{
public:
virtual void visit(T&) = 0;
virtual ~variant visitor()
{
}
};
struct bad visitor
{
};
struct vtable
{
/...
void (*visit)(void*, variant visitor base*);
b

270

CHAPTER 5 ' INTERFACES

template <typename T>
struct vtable impl

{
/...

static void visit(void* dest, variant visitor base* vb)
{
if (variant_visitor<T>* v = dynamic_cast<variant_visitor<T>*>(vb))
v->visit(*static_cast<T*>(dest));
else
throw bad visitor();
}

};

template <>
struct vtable_impl<void>

{
/...

static void visit(void* dest, variant visitor base* vb)
{
}

};

template <size t N>
class variant
{
public:
variant& accept visitor(variant_visitor base& v)

(vt->visit)(storage , &v);
return *this;

}

Finally, here’s a concrete visitor (which will visit three types, hence the importance of the virtual
base class):

struct MyVisitor

: public variant_visitor<int>

, public variant_visitor<double>

, public variant_visitor<std::string>

{ virtual void visit(std::string8 s)
{ std::cout << "visit: {s}" << s << std::endl;
}
virtual void visit(int& i)
i std::cout << "visit: {i}" << i << std::endl;

271

CHAPTER 5 ' INTERFACES

virtual void visit(doubled x)

{
}

std::cout << "visit: {d}" << x << std::endl;
};

variant<64> vi, v2, v3;
std::string s = "hello world!";
double x = 3.14;

int j = 628;
vl = s;
V2 = X;
v3 = 3;

MyVisitor mv;

vi.accept visitor(mv);
v2.accept _visitor(mv);
v3.accept _visitor(mv);

visit: {s}hello world!
visit: {d}3.14
visit: {i}628

Note for the sake of completeness that bounded discriminated unions, such as boost: :variant, adopt
a different approach. variant is a class template with N type parameters T1. . .Tn. At any time, variant holds
exactly one instance of Tj. The constructor can take any object of type T having an unambiguous conversion
to exactly one Tj, or it fails.

5.5. Wrapping Containers

New containers are often built on top of classical STL objects:

template <typename T, typename less t = std::less<T> >
class sorted vector
{

typedef std::vector<T> vector_t;

vector_t data_;

The sorted vector basically is equivalent to a set of functions that manipulates a vector, enforcing some
invariant (namely, preserving the ordering). So, a sorted_vector is a kind of a container adapter, because it
delegates the actual storage and it only alters the way data is stored.

Suppose you already have a vector and want to treat it as a sorted vector. Remember that it’s a bad idea
to expose the internals of the class (recall Section 1.4.4).

272

CHAPTER 5 ' INTERFACES

template <typename T, typename less t = std::less<T> >
class sorted vector

{
public:
vector t& base() // very bad
{ return data_; }
const vector_t& base() const // moderately bad
{ return data_; }
};

void causeDamage(sorted vector<double>d s)

{
std:random_shuffle(s.base().begin(), s.base().end());
laugh(); // evil laugh here

You can instead have an additional parameter that defines the storage, analogous to the container type
of std: :stack and similar to the allocator parameter for std: : vector.

template <typename T, typename less t = ..., typename vector t = std::vector<T> >
class sorted_vector

{

vector t data_;

public:
sorted vector(vector t data)
: data_(data)
{

}
};

void treatVectorAsSorted(vector<double>8 v)

{
sorted vector<double, less<double>, vector<double>&> sorted v(v);
/...

When you write the code of sorted_vector, you should behave as if vector_t is std: :vector, whose
interface is defined unambiguously. Any replacement type will have to satisfy the same contract.

Anyway, this solution is the most complex to code, since you need reference-aware functions. You
should explicitly support the case of vector_t being a reference to some vector, and this is likely to cause
problems when deciding to take arguments by value/by reference. This would be a good case for traits.

template <typename T>

struct s_v_storage traits

{
typedef const T& argument_type;
typedef T value_type;

};

273

CHAPTER 5 ' INTERFACES

template <typename T>
struct s_v_storage traits<T&>
{
typedef T& argument_type;
typedef T& value type;

};

template <typename T, typename less t = ..., typename vector_t = vector<T> >
class sorted_vector

{

typename s_v_storage traits<vector t>::value type data_;

public:
sorted vector(typename
s_v_storage_ traits<vector_ t>::argument_type data)
: data_(data)
{
}
};

A strong need to isolate the storage parameter comes from serialization. Modern operating systems can
easily map memory from arbitrary storage devices into the program address space at no cost.

In other words, you can get a pointer (or a pointer-to-const) from the OS that looks like ordinary
memory, but that’s actually pointing somewhere else, for example, to the hard drive.

Now you can create a sorted_vector that points directly to the mapped memory, plugging a suitable
class as vector_t:"”

template <typename T>
class read_only memory block
{

const T* data_;

size t size_;

public:
// constructor, etc....

// now implement the same interface as a const vector
typedef const T* const_iterator;

const_iterator begin() const { return data_; }
const_iterator end() const { return data_ + size ; }

const T& operator[](size t i) const { return data [i]; }
// ...
};

Observe that you don’t need a true drop-in replacement for vector. If you just call const member
functions, a subset of the interface will suffice.

"The mapped memory area is usually not resizable. Merely for simplicity, we assume it’s const, but that need not be the
case. A vector needs to store three independent pieces of data (for example, “begin,” “size,” and “capacity”; everything
else can be deduced). A read_write_memory block would also need these members, but the capacity would be a
constant and equal to “max size” from the beginning.

274

CHAPTER 6

Algorithms

The implementation of an algorithm needs a generic I/0 interface. You need to decide how and where
functions get data and write results, and how and what intermediate results are retained. Iterators are an
existing abstraction that helps solve this problem.

An iterator is a small data type that offers a sequential view over a dataset. Put simply, it’s a class that
implements a subset of the operations that pointers can perform.

The importance of iterators is that they decouple functions from the actual data storage. An algorithm
reads its input via a couple of iterators [begin. . .end) of unspecified type and often writes its output to
another range:

template <typename iterator_ t>
.. sort(iterator t begin, iterator t end);

template <typename iteri t, typename iter2 t >
.. copy(iter1 t input begin, iteri t input end, iter2 t output begin);

It’s possible to write a rough classification of algorithms based on their /O interface. Non-mutating
algorithms iterate on one or more read-only ranges. There are two sub-families:

e “find” algorithms return an iterator that points to the result (such as
std::min_element) or to end if no result exists.

e “accumulate” algorithms return an arbitrary value, which need not correspond to
any element in the range.

Selective copying algorithms take an input read-only range and an output range, where the results
are written. The output range is assumed to be writable. If the output range can store an arbitrary number
of elements or simply as many elements as the input range, only the left-most position is given (such as
std: :copy).

e Usually each algorithm describes what happens if input and output ranges overlap.
“transform” algorithms accept an output range that'’s either disjoint or entirely
coincident with begin. . .end.

Reordering algorithms shuffle the elements of the input range and ensure that the result will be in some
special position, or equivalently, that the result will be a particular sub-range (for example, std: :nth_
element and std: :partition).

e ‘“shrinking” algorithms (std: :remove_if) rearrange the data in begin...end and,
if the result is shorter than the input sequence, they return a new end1, leaving
unspecified elements in range end1. .end.

275

CHAPTER 6 * ALGORITHMS

Writing algorithms in terms of iterators can offer significant advantages:

e All containers, standard and nonstandard, can easily provide iterators, so it’s a way to
decouple algorithms and data storage.

e [terators have a default and a convenient way to signal “failure,” namely by returning end.

e Itmay be feasible, depending on the algorithm’s details, to ignore the actual “pointed
type” under the iterators.

On the other hand, there are two difficulties:

e Iterators are a view over a dataset. You'll often need to adapt a given view to match
what another algorithm expects. For example, you write a function that gets as input
asequence of pair<X, Y> butinternally you may need to invoke a routine that needs
a sequence of X. In some cases, changing the view requires a lot of effort.

e The exact type of the iterator should be avoided whenever possible. Assume that v is
a const-reference to a container and compare the following two ways to iterate over
all elements (let’s informally say two “loops”).

for (vector<string>::const iterator i = v.begin(); i !'= v.end(); ++1i)

{ ...}

std::for_each(v.begin(), v.end(), ...);

The first “loop” is less generic and more verbose. It is strongly tied to the exact container that you
are using (namely, vector<string>). If you replace the data structure, this code won’t compile any more.
Additionally, it recomputes v.end() once per iteration.’

The second loop has its disadvantages as well. You have to pass a function object as the “loop body,’
which may be inconvenient.

6.1. Algorithm 1/0

Algorithms are usually functions that perform their input/output operations via generic ranges. In this case, a
range is represented by a pair of iterators of generic type iterator_t, and the function assumes that iterator_t
supports all the required operations. You'll see, however, that this assumption is not only a convenient
simplification, it’s often the best you have, as it’s extremely hard to defect if a generic type T is an iterator.

The hypotheses are:

e *ireturnsstd::iterator traits<T>::reference, which behaves like a reference to
the underlying object.”

e Whatever *i returns, a copy of the pointed value can be stored as an std: :iterator_
traits<T>::value_type; often, you'll impose further that this type is assignable or
swappable.?

'In modern C++, there are member functions called cbegin() and cend that always return const-iterators, and so the
loop would be for (auto i = v.cbegin(); 1 != v.cend(); ++1i).

>The C++ Standard guarantees that *1 is a real reference, but it may be useful not to assume this unless necessary.
Not all containers are standard-compliant, and in fact not even std: :vector<bool> is.

Svalue_type is granted by the standard to be non-const qualified, but this is not enough. For example, std: :map’s
value_type is pair<const key_type, mapped_type> which is not assignable; more about this problem is in Section 6.3.

276

CHAPTER 6 © ALGORITHMS

e Any elementary manipulation of i (copy, dereference, increment, and so on) is
inexpensive.

¢ You can dispatch specialized algorithms for iterators of different types using
std::iterator_traits<T>::iterator category asa type tag.

e Allincrement/decrement operators that are valid on i return a dereferenceable
object (usually, another instance of T). This allows you to write safely * (i++).

Sometimes you'll implicitly assume that two copies of the same iterator are independent. This is usually
violated by I/O-related iterators, such as objects that read/write files or memory, like std: :back_insert_
iterator, because *i conceptually allocates space for a new object; it does not retrieve an existing element
of the range.

6.1.1. Swap-Based or Copy-Based

As a consequence of the basic assumptions, most (if not all) I/O in the algorithm should be written without
explicitly declaring types. Using reference and value_type should be minimized, if possible, usually via
swaps and direct dereference-and-assign.

For example, copy tackles the problem of output. It simply asks a valid iterator where the result is written:

template <typename iteri t, typename iter2_t>
iter2_t copy(iteri_ t begin, iteri t end, iter2_t output)

while (begin != end)
*(output++) = *(begin++); // dereference-and-assign

return output;

}

Not knowing what the elements are, you can assume that a swap operation is less heavy than an
ordinary assignment. A POD swap performs three assignments, so it is slightly worse, but if objects contain
resource handles (such as pointers to heap allocated memory), swaps are usually optimized to avoid
construction of temporary objects (which may fail or throw). If s1 is a short string and s2 is a very long string,
the assignment s1=s2 will require a large amount of memory, while swap(s1,s2) will cost nothing.

For example, an implementation of std: :remove_if could overwrite out-of-place elements with a
smart_swap.

move is a destructive copy process, where the original value is left in a state that’s consistent but
unknown to the caller.

template <typename iterator_ t>
void move iter(iterator t dest, iterator t source)
{
if (dest == source)
return;

if (is_class<std::iterator traits<iterator t>::value type>::value)
smart_swap(*dest, *source);

else
*dest = *source;

277

CHAPTER 6 * ALGORITHMS

template <typename iterator_ t, typename func_t>
iterator t remove if(iterator t begin, iterator t end, func_t F)

{
iterator_t i = begin;
while (true)
{
while (i != end && F(*i))
++1;
if (1 == end)
break;
move_iter(begint++, it++);
}
return begin;
}

This algorithm returns the new end of range. It will use an assignment to “move” a primitive type
and a swap to “move” a class. Since the decision rule is hidden,* it follows that the algorithm will leave
unpredictable objects between the new and old ends of range:

struct less_than_3 digits

{
bool operator()(const std::string& x) const
return x.size()<3;
}
bool operator()(const int x) const
return x <= 99;
}
};
S‘td::StIing Al[] - { l|111||, ||2||’ n3u, ||4444u, ||555555||, "66" };
int A2[] ={ 112, 2, 3, 4444, 555555, 66 };

remove_if(A1, A1+6, less_than_3_digits());
remove if(A2, A2+6, less than 3 digits());

4And possibly suboptimal, but this is not really relevant here.

278

CHAPTER 6 © ALGORITHMS

After executing this code, the arrays A1 and A2 will be different. The trailing range is filled with
unspecified objects, and they do vary.

[0] 111 "111"
[1] 4444 "4444"
[2] 555555 "555555"
[3] 4444 "2"

[4] 555555 "3"

[5] 66 "66"

Note C++0x has a language construct for move semantics: R-value references.

A function argument declared as an R-value reference-to-T (written T&&) will bind to a non-constant temporary
object. Being temporary, the function can freely steal resources from it. In particular, you can write a special
“move constructor” that initializes a new instance from a temporary object.

Furthermore, casting a reference to an R-value reference has the effect of marking an existing object as
“moveable” (this cast is encapsulated in the STL function std: :move).

Combining these features, the three-copy swap can be rewritten as:
void swap(T& a, T& b)

T x(std::move(a));

a = std::move(b);

b = std::move(x);

}

So if T implements a move constructor, this function has the same complexity as a native swap.

Other implementations of move_iter could:

o Testif (!has_trivial destructor<...>::value).It's worth swapping a class
that owns resources, and such a class should have a non-trivial destructor. Observe,
however, that if the type is not swappable, this approach may be slower, because it
will end up calling the three-copy swap, instead of one assignment.

e Test the presence of a swap member function and use assignment in any other case.

template <typename iterator_ t>
void move_iter(iterator t dest, iterator t source, selector<true>)

{

dest->swap(*source);

template <typename iterator_t>
void move iter(iterator t dest, iterator t source, selector<false>)

{

*dest = *source;

}

279

CHAPTER 6 * ALGORITHMS

template <typename iterator t»
void move iter(iterator t dest, iterator t source)
{
typedef typename std::iterator_traits<iterator_t>::value_type val t;
if (dest != source)
move_iter(dest, source, has_swap<val t>());

6.1.2. Classification of Algorithms

Recall the distinction between non-mutating, selective copy and reordering algorithms. This section shows
how sometimes, even when the mathematical details of the algorithm are clear, several implementations are
possible, and it discusses the side effects of each.

Let’s say you want to find the minimum and the maximum value of a range simultaneously. If the range
has N elements, a naive algorithm uses ~2N comparisons, but it’s possible to do better. While iterating, you
can examine two consecutive elements at a time and then compare the larger with the max and the smaller
with the min, thus using three comparisons per two elements, or about 1.5*N comparisons total.

First, consider a non-mutating function (the macro is only for conciseness)®:

#define VALUE_T typename std::iterator traits<iterator t>::value type

template <typename iterator_t, typename less t>
std::pair<VALUE T, VALUE_T> minmax(iterator t b, iterator t e, less t less)

minmax(begin, end) scans the range once from begin to end, without changing any element, and it
returns a pair (min, max). If the range is empty, you can either return a default-constructed pair or break the
assumption that result.first < result.second, usingstd::numeric_limits.

Here'’s a reasonable implementation, which needs only forward iterators:

template <typename scalar t, typename less t>
inline scalar t& mmax(scalar t& a, const scalar t& b, less t less)

{
}

return (less(a, b) ? a=b : a);

template <typename scalar t, typename less t>
inline scalar t& mmin(scalar t& a, const scalar t& b, less t less)

return (less(b, a) ? a=b : a);

}

template <typename iterator_ t, typename less t>

std::pair<...> minmax(iterator t begin, const iterator t end,
less t less)

{

typedef
typename std::iterator traits<iterator t>::value type value type;

°A similar function is part of the modern C++ standard. See http://en.cppreference.com/w/cpp/algorithm/minmax.

280

http://en.cppreference.com/w/cpp/algorithm/minmax

CHAPTER 6 * ALGORIT!

std::pair<value_type, value_type> p;
if (begin != end)

p.first = p.second = *(begint++);

}

while (begin != end)

{
const value_type& x0
const value_typed& x1

*(begin++);
(begin != end) ? *(begin++) : x0;

if (less(xo, x1))

mmax (p.second, x1, less);
mmin(p.first , x0, less);

}

else

{

mmax (p.second, x0, less);
mmin(p.first , x1, less);
}
}

return p;

}

As arule, it’s more valuable to return iterators, for two reasons. First, the objects may be expensive to
copy, and second, if no answer exists, you return end.
So, given that dereferencing an iterator is inexpensive, a possible refinement can be:

template <typen.ator_t, typename less_t>
std: :pair<iterator_t, iterator_t»> minmax(...)

{
std::pair<iterator t, iterator t> p(end, end);

if (begin != end)

p.first = p.second = begin++;

}

while (begin != end)
{

iterator_t io
iterator_t i1

(begint+);
(begin != end) ? (begin++) : io0;

if (less(*i1, *io0))
swap(io, i1);

// here *i0 is less than *i1

HMS

281

CHAPTER 6~ ALGORITHMS

if (less(*io, *p.first))
p.first = io;

if (less(*p.second, *i1))
p.second = i1;

}

return p;

Note that you never mention value_type any more.
Finally, you can outline the reordering variant:

template <typename iterator t>
void minmax(iterator t begin, iterator t end);

The function reorders the range so that, after execution, *begin is the minimum and *(end-1) is the
maximum. All the other elements will be moved to an unspecified position. Iterators are bidirectional, so
end-1 is just a formal notation.

Suppose F takes a range [begin. . .end). It compares the first and the last element, swaps them if they
are not in order, and then it proceeds to the second and the second to last. When the iterators cross, it stops
and it returns an iterator H, which points to the middle of the range. F executes about N/2 “compare and
swap” operations, where N is the length of the range.

Obviously, the maximum cannot belong to the left half and the minimum cannot belong to the right
half. You must invoke again F on both half-intervals and let HL=F (begin, HL) and HR=F(HR, end).

When there’s a single element in one of the intervals, it has to be the extreme.

If a unit of complexity is a single “compare and swap,” the algorithm performs N/2 at iteration 0 to find
H, 2-(N/4) for the second partition, 2- (N/8) for the third, and so on, so the total number of operations is again
about 3/2-N.

0 NN
H
: HEEREEe
HL HR
JENNENEENE
HL HR
JERREEEEE e
HL HR

Figure 6-1. A graphical representation of the reordering minmax algorithm

282

CHAPTER 6 © ALGORITHMS

6.1.3. Iterator Requirements

Algorithms have requirements about the kind of operation the iterator must provide. As a rule of
thumb, the “average” iterator is bidirectional.® It supports single increment and decrement (++ and --),
equality/inequality (== and !=). However, it does not offer additions of arbitrary integers, difference, and
operator<. Random-access iterators are used wherever maximum speed is needed, and for sorting, so they
usually deserve a special treatment with specialized algorithms.

As previously mentioned, you can ensure that a requirement on the iterator is met by dispatching to
another function that accepts an additional formal argument of type “iterator category”:

template <typename iter_t>
void do_something(iter t begin, iter t end)
{
return do_something(begin, end,
typename std::iterator traits<iter t>::iterator category());

template <typename iter t>
void do_something(iter t begin, iter t end, std::bidirectional iterator tag)

{
}

// do the work here

This technique was invented for invoking optimized versions of the algorithm for any iterator type, but
it can be used to restrict the invocation as well. Standard iterator tags form a class hierarchy, so a “strong” tag
can be cast nicely to a “weaker” requirement.

Here are some guidelines:

e Sometimes you'll write an algorithm first and then deduce which iterator is required
for the algorithm to work. While deduction a posteriori is perfectly acceptable, it is
easy to underestimate the requirements imposed by subroutines.

e It'susually good design to separate algorithms that have different requirements. For
example, instead of sorting and then iterating, just prescribe that the range should be
already sorted. This may bring down the requirements to bidirectional iterators.

template <typename iterator_ t>
void do_something(iterator t begin, iterator t end)

{
// the following line has stronger requirements than all the rest
std::sort(begin, end, std::greater<...>());
std::for_each(begin, end, ...);

}

template <typename iterator t>
void do_something on_sorted range(iterator t begin, iterator t end)

{

// much better: all lines have the same complexity

%This is of course fair, but arbitrary. About half the STL containers have bidirectional iterators and half random-access.
However, if you weight them by usage and include plain pointers, the average iterator would be more random-access.

283

CHAPTER 6 * ALGORITHMS

std::reverse(begin, end);
std::for_each(begin, end, ...);
}

6.1.4. An Example: Set Partitioning

Suppose you are given a set of integers X and you need to partition it into two subsets so that the sum in each
has roughly the same value.”

For this problem, heuristic algorithms are known that quickly find an acceptable partition (possibly
suboptimal). The simplest is the greedy algorithm, which states that:

Let P1={} and P2={} be empty sets;
While X is not empty, repeat:

{

Assign the largest remaining integer in X to the set Pi which currently has the lower sum
(break ties arbitrarily);

This prescription sounds like reordering, so you can consider a mutating algorithm. You reorder the input
range and return an iterator h, so that [begin, h) and [h, end) are the required partitions. Also, as an additional

bonus, you can compute the difference of the sums of both partitions ‘z ielbegin,h) *] —z il h,end) *] ‘ ,

which is the objective to be minimized. Thus, the result will be std: :pair<iterator, value_type>.
The implementation behaves like this:

e Therange is divided in three logical blocks: partition A [begin, end of A) on the
left, partition B on the right [begin of B, end), and a residual middle block M.

e Aand B are initially empty and M= [begin, end).
e While Mis non-empty, repeat:
e Elements of Mare sorted in decreasing order.

e Iterate over the elements of M. Objects assigned to A are swapped to the right of A
(in position “end of A”) and objects assigned to B are swapped to the left of B
(in position “begin of B minus 1”).

| begin | end_of A | begin_of B end

partition A residual range partition B

Ideally, you would like these sums to differ by 0 or 1. This is a NP-hard problem, anyway.

8The swapping process will leave some elements behind. That’s the reason for the loop on the size of M. In the worst
case, about half of the members of M will be skipped, so the algorithm complexity is still superlinear; that is, it takes time
proportional to ~ n-1og(n) when processing n elements.

284

CHAPTER 6

This code is a concise example of a mutating algorithm:
e Itdoes not allocate temporary memory
e Itsruntime complexity is documented
#define mxt_value_type(T) typename std::iterator traits<T>::value_ type
template <typename iterator_t>

std::pair<iterator t, mxt_value type(iterator t)>
equal_partition (iterator t begin, iterator t end)

{
typedef mxt_value_type(iterator t)> scalar_t;
scalar_t sum_a = 0;
scalar_t sum_b = 0;
iterator t end_of A = begin;
iterator t beg of B = end;
while (end _of A != beg of B)
{
std::sort(end_of A, beg of B, std::greater<scalar t>());
iterator t i = end_of_A;
do
{
if (sum b < sum_a)
{
sum_a = sum_a - sum_b;
sum_b = *i;
smart_swap(*i, *(--beg_of B));
}
else
{
sum_b = sum_b - sum_a;
sum_a = *i;
smart_swap(*i, *(end of A++));
}
}
while ((i != beg of B) & (++i != beg of B));
}
return std::make_pair(end of A,
sum_a<sum b ? sum_b-sum a : sum_a-sum b);
}

ALGORITHMS

285

CHAPTER 6 * ALGORITHMS

Let’s examine the implementation to determine the requirements on iterators and types.

e Atafirst glance, it may look like a bidirectional iterator_t suffices, because the
code only uses copy construction, inequality, ++, and --. However, std: :sort
requires random access iterators.’

e The underlying scalar_t needs to implement operator< and binary operator-.
Note that there’s a small difference between these lines:

sum_b = sum_b - sum_a;
sum_b -= sum_a;

The second option would introduce a new requirement (namely operator-=).

6.1.5. Identifying Iterators

The metafunction std: :iterator traits<T> returns several typesif T is an iterator or a pointer (in this case,
types are trivially deduced). It also is the most reliable way to ensure that T is an iterator, because for most
other types it will not compile:

template
<
typename T,
typename IS_ITERATOR = std::iterator traits<T>::value type
>
class require iterator
{
// similar to a static assertion,
// this will compile only if T is a compliant iterator

};

You can take an educated guess as to whether a type is a conforming iterator by using the five basic
typedefs that iterators are required to supply.'’
Using the SFINAE techniques' again, you would write:

template <typename T>
struct is_iterator
{
static const bool value =
static_AND
<
has_type value type<T>,
static_AND
<

The fastest classical algorithms, quicksort and heapsort, can sort a random-access container in place in superlinear time
(usually std: :sort is a combination of both). mergesort is a third superlinear method that works with forward iterators,
but it requires extra memory to hold a copy of the whole input. In practice, however, if such extra memory is available,

it may be convenient to copy/swap the input in a vector, sort the vector, and put the result back.

0Refer to the excellent description in Chapter 3 of [6].

1See Section 4.3.1 on SFINAE.

286

};

CHAPTER 6 © ALGORITHMS

has_type_reference<T>,

static_AND

<
has_type_pointer<T>,
static_AND
<

has_type iterator category<T>,
has_type difference_type<T>

>

>::value;

template <typename T>
struct is_iterator<T*>

{
};

static const bool value = true;

The rational for the heuristic is as follows:

std: :map is not an iterator, but it defines all types except iterator_category.
Therefore, you really need to test that all five types are present.

You cannot test if std: :iterator_traits is well defined, because it will not compile
if T is invalid.

There exist types where is_iterator is true, but they are not even dereferenceable
(trivially, let T be std: :iterator traits<int*>).

Here’s a test that, with good precision, will identify non const-iterators.?
The key motivation is the following:

An iterator will define a value type T and a reference type, usually T& or const T&.
T& is convertible to T, but not vice versa

const T& and T are mutually convertible.'

There are several possible cases:

If T is not an iterator, it’s not even a mutable iterator (that’s handled by the last partial
specialization).

If reference is value_type8 then the answer is true (this case is handled by the
helper class).

If reference is convertible to value_type, but not vice versa, the answer is again true.

120f course, if a metafunction is known to fail for some specific type, it’s always possible for the user to specialize it
explicitly. Note also that the boost library takes another approach: if x is an instance of T, it checks if *x can be converted
to T’s value_type. See boost::is readable iterator.

BRemember that X is convertible to Y if given two functions void F(X) andY G(), the call F(G()) is legal. If X=T and
Y=T& or Y=const T8, the call is fine. Alternatively, if X=T& and Y=T, the call is invalid. That’s precisely the way has_
conversion works.

287

CHAPTER 6 * ALGORITHMS

template <typename T1, typename T2>
struct is_mutable_iterator helper

{
static const bool value = false;

};

template <typename T>
struct is_mutable iterator helper<T&, T>

{
static const bool value = true;

};

template <typename T, bool IS ITERATOR = is_iterator<T>::value>
class is_mutable_iterator

{
typedef typename std::iterator_traits<T>::value_type val_t;
typedef typename std::iterator_ traits<T>::reference ref t;
public:
static const bool value =
static_OR
<
is_mutable_iterator helper<ref t, val t>,
selector
<
has_conversion<ref t, val _t>::L2R &&
'has_conversion<val _t, ref t>::L2R
>
>::value;
};

template <typename T>
class is_mutable_iterator<T, false>
{
public:
static const bool value = false;

};

e Has_conversion<ref_t, val_t>::L2R should be true by definition of value_type

e Youwrap a static bool in a selector, since static_OR needs two types, not
constants.

Some iterators are known to be views on sorted sets, for example, set<T>: :iterator. Can you detect them?
As is, the question is ill-formed: set<T>: :iterator is a dependent type, and in C++ there’s no “reverse
matching” to deduce T, given iterator.!

14As remarked in Chapter 1, there is actually a way to do this, but it does not scale well and it’s intrusive. It requires
cooperation from the author of std: : set; such a technique is the topic of Section 6.6.

288

CHAPTER 6 © ALGORITHMS

template <typename T>

void wrong(std::set<T>::iterator i) // error: T is non-deducible
{

}

However, you can make the problem easier if you limit the options to some special candidates. In fact, a
setis declared as set<T, L, A>,butinsome contexts you might take a guess on L and A.
A practical example is given in the following code:

template <typename T, typename less t, typename alloc_t = std::allocator<T> >
class sorted_vector
{

std::vector<T, alloc_t> data_;

less t less_;

public:
template <typename iterator_ t>
sorted vector(iterator t begin, iterator t end, less t less = less t())
: data_(begin, end), less (less)
{

// this is unnecessary if begin...end is already sorted

std::sort(data_.begin(), data_.end(), less);
}
};

Since the underlying sort algorithm will consume CPU even when the range is already sorted, try to
guess if this step can be avoided.'

There are two distinct tests. First, some iterators guarantee that the range they point to is sorted (this is a
“static test,” as it depends only on the iterator type); second, any iterator pair can happen to point at a sorted
range (this is a “runtime test”). You can combine the static and runtime tests in this order:

if (!is_sorted iterator<iterator t, less t>::value)
{
if (!is_sorted(begin, end, less)
std::sort(begin, end, less);

Avery important observation is that is_sorted_iterator<iterator_t, less_t> is allowed to return
false negatives but not false positives. You can tolerate unnecessary sorts, but you must not let an unsorted
range pass.

Note Testing if a range is already sorted takes linear time.

5Among all superlinear algorithms, only some mergesort variant may take advantage of a sorted input; quicksort and
heapsort, on the other hand, do not depend significantly on the “entropy” of the initial data.

289

CHAPTER 6 * ALGORITHMS

In C++0x, there’s a dedicated algorithm:

template <typename FwdIter>
bool is sorted(FwdIter begin, FwdIter end);

template <typename FwdIter, typename less_t>
bool is sorted(FwdIter begin, FwdIter end, less t LESS);

In classic C++, the implementation of the latter function is extremely concise:

using std::adjacent_find;

using std::reverse_iterator;

return
adjacent_find(reverse iterator<FwdIter>(end), reverse iterator<FwdIter>(begin), LESS)
== reverse_iterator<FwdIter>(begin);

is_sorted_iterator<iterator t, less_t> could simply try to match iterator_ t against some
special standard iterators:

#tdefine ITER(C,T1) typename std::C<T1,less t>::iterator
#define CONST_ITER(C,T1) typename std::C<T1,less t>::const_iterator
template

<

typename iter_t,
typename less t,
typename value t = typename std::iterator traits<iter t>::value_type

>
struct is_sorted iterator
{
static const bool value =
static_OR
<
static_OR
<
typeequal<iter t, ITER(set, value t)>,
typeequal<iter t, CONST_ITER(set, value t)>
>y
static_OR
<
typeequal<iter t, ITER(multiset, value t)>,
typeequal<iter t, CONST ITER(multiset, value t)>
>
>::value;
};

290

CHAPTER 6 © ALGORITHMS

There’s a partial specialization for maps:

#define ITER(C,T1,T2) typename std::C<T1,T2,less t>::iterator
#define CONST_ITER(C,T1,T2) typename std::C<T1,T2,less t>::const_iterator

template
<
typename iter_t,
typename less t,
typename T1,
typename T2
>
struct is_sorted iterator< iter t, less t, std::pair<const T1, T2> >
{
static const bool value =
static_OR
<
static_OR
<
static OR
<
typeequal<iter t, ITER(map,T1,T2)>,
typeequal<iter t, CONST_ITER(map,T1,T2)>
>,
static_OR
<
typeequal<iter t, ITER(multimap,T1,T2)>,
typeequal<iter t, CONST_ITER(multimap,T1,T2)>
>
>
static_OR
<
static_OR
<
typeequal<iter t, ITER(map,const T1,T2)>,
typeequal<iter t, CONST_ITER(map,const T1,T2)>
)
static_OR
<
typeequal<iter t, ITER(multimap,const T1,T2)>,
typeequal<iter t, CONST_ITER(multimap,const T1,T2)>
>
>
>::value;

};

201

CHAPTER 6 * ALGORITHMS

6.1.6. Selection by Iterator Value Type

A function that takes iterators may want to invoke another template, tagging the call with the iterator value
type. In particular, this allows some mutating algorithms to deal with anomalies, such as mutable iterators
that have constant references (for example, std: :map).

template <typename iterator_ t>
iterator t F(iterator t b, iterator t e)

{

typedef typename std::iterator traits<iterator_ t>::value_type value type;
return F(b, e, instance of<value_type>());

}

template <typename iterator_t, typename T1, typename T2>
iterator t F(iterator t b, iterator t e, instance of< std::pair<const T1, T2> >)

{
}

template <typename iterator_t, typename T>
iterator_t F(iterator_t b, iterator t e, instance_of<T>)

{
}

// modify only i->second

// modify *i

Selective-copy algorithms may use the output iterator value type to decide what to return. Suppose
a computation produces a series of values and the corresponding weights; if the output type is a pair, the
dump writes both; otherwise, it writes only the value:

template <[...], typename iterator t»
void do it([...], iterator t out begin, iterator t out_end)

{
typedef typename
std::iterator_traits<iterator t>::value type value type;
/] ...
dump([...], out_begin, out_end, instance_of<value_type>());
}
private:

template <[...], typename iterator t, typename T1, typename T2>
void dump([...], iterator t b, iterator t e, instance of< std::pair<T1, T2> >)

for (i=b; il!=e; ++i)
// write value in b->first and weight in b->second

}

template <typename iterator_t, typename T>
void dump([...], iterator t b, iterator t e, instance of<T>)

for (i=b; il=e; ++i)
// write value in *b

Note that the implementations may be unified using accessors. See the next section for details.
292

CHAPTER 6 © ALGORITHMS

6.2. Generalizations

This section discusses alternative ways of coding functions, with different I/O interfaces. Since iterators offer
aview over data, they may not be flexible enough, especially for algorithms that have special semantics.

Some computations may be described in terms of properties, such as “find the object whose price is the
minimum”. Surely, you will need iterators to scan the objects, but how is a price read?

6.2.1. Properties and Accessors

An algorithm that accepts iterators may not use the actual interface of the pointed type. Usually, they have
two versions, one where the required operations are handled directly by the pointed type, and one that takes
an extra functor that completely supersedes the object interface.

For example, std: :sort(b, e) assumes that the pointed type is less-than comparable and it uses
the pointer’s operator<, while std: :sort(b, e, LESS) uses an external binary predicate for all the
comparisons, and operator< may not exist at all.

As a generalization of this concept, algorithms may be defined in terms of properties.

Properties generalize data members: a (read-only) property is simply a non-void function of a single
(const) argument, which by default invokes a const member function of the argument or returns a copy of a
data member of the argument. Here’s a trivial example.

template <typename T>
struct property size

{
typedef size t value_type;

value type operator()(const T& x) const
{

}
};

return x.size();

An instance of property size passed to an algorithm is called the accessor of the property.

Many computational algorithms can be defined in terms of properties. They ignore the pointed type,
but they need to read “its size”; thus, they require a suitable accessor.

By hypothesis, applying an accessor is inexpensive.

Note A property is a functor, thus the right typedef should be result type, but the user needs to store a
copy of the property value, which conceptually lies in the object and is only “accessed” by the functor.
Therefore, value_type is preferred.

A read-write property has an additional member that writes back a value:

template <typename T>
struct property size

typedef size t value type;

293

CHAPTER 6 * ALGORITHMS

value_type operator()(const T& x) const

{
}

return x.size();

value_type operator()(T& x, const value type v) const

x.resize(v);
return x.size();
}
};

Accessors are useful in different contexts. In the simplest case, they save calls to std: : transform or to
custom binary operators.

Suppose you have a range of std: : string, and need to find the total size and the maximum size. Using
the classical STL, you can write a custom “sum” and a custom “less” The transformation from string to
integer (the size) is performed inside these functors.

struct sum_size

{
size t operator()(size t n, const std::stringd s) const
return n + s.size();
}
};
struct less by size
{
bool operator()(const std::string& si1, const std::string& s2) const
return si.size() < s2.size();
}
b

// assume beg!=end

size t tot = std::accumulate(beg, end, oU, sum size());
size t max = std::max_element(beg, end, less by size())->size();

Using accessors, you would have more code reuse:
#define VALUE typename accessor_t::value_type

template <typename iterator_ t, typename accessor_t>
VALUE accumulate(iterator t b, iterator t e, accessor t A, VALUE init = 0)

{
while (b != e)
init = init + A(*b++);

return init;

}

294

CHAPTER 6 © ALGORITHMS

template <typename iterator t, typename accessor_ t>
iterator t max_element(iterator t b, iterator t e, accessor t A)

{
if (b == e)
return e;

iterator t result = b;
while ((++b) != e)

if (A(*result) < A(*b))

result = b;
}
return result;
}
size t tot = accumulate(beg, end, property size<std::string>());
size t max = max_element(beg, end, property size<std::string>());

The default accessor returns the object itself:

template <typename T>
struct default accessor

{
typedef T value_type;

T& operator()(T& x) const

return x;

}
};

Accessors offer a good degree of abstraction in complex computational algorithms that need several
“named properties” at a time. We cite the knapsack problem as an example.

Each object has two properties: a (nonnegative) price and a (nonnegative) quality. You are given an
initial amount of money and your objective is to buy the subset of objects having maximal total quality. At
the end of the computation, (part of) the result is a subset of the original range, so you choose a reordering
algorithm. You return an iterator that partitions the range, paired with an additional by-product of the
algorithm—in this case, the total quality.

The function prototype in terms of accessors is long, but extremely clear:

#define QUALITY typename quality t::value type
#define PRICE typename price_t::value_type

template <typename price t, typename quality t, typename iterator t>
std::pair<iterator t, QUALITY> knapsack(iterator t begin, iterator t end,
PRICE budget,
price_t price,
quality t quality)

price_t and quality_t are accessors for the required properties.

295

CHAPTER 6 * ALGORITHMS

So the price of the element *1 is simply price(*1i), and it can be stored in a variable having type
typename price t::value type

To illustrate the usage, here’s a non-mutating function that simply evaluates the total quality of the
solution, assuming that you buy all elements possible starting from begin:

template <typename price t, typename quality t, typename iterator t>
QUALITY knapeval(iterator t begin, iterator t end, PRICE money,
price t price, quality t quality)

{
typename quality t::value_type total q = 0;
while (begin != end)
const typename price_t::value type p = price(*begin);
if (p > money)
break;
money -= p;
total q += quality(*begin++);
}
return total _g;
}

For algorithm testing, you will usually have the accessors fixed. It can be convenient to generate a
placeholder structure that fits:

struct property price

{
typedef unsigned value_type;
template <typename T>
value type operator()(const T& x) const
{
return x.price();
}
};

struct price tag t {};
struct quality tag t {};

struct knapsack_object

{
property<unsigned, price tag t> price;
property<unsigned, quality tag t> quality;

)

The property class is described next.
The extra tag forbids assignment between different properties having the same underlying type
(for example, unsigned int).

296

CHAPTER 6 © ALGORITHMS

template <typename object_t, typename tag t = void>
class property

{
object_t data_;
public:
property()
: data_() // default-constructs fundamental types to zero
{}
property(const object t& x)
: data_(x)
{}
const object_t& operator()() const
{
return data_;
}
const object t& operator()(const object t& x)
{
return data_ = x;
}
const char* name() const
{
return typeid(tag_t).name();
b
6.2.2. Mimesis

Some general-purpose algorithms accept a range—that is, two iterators [begin, end) and an additional
value—or a unary predicate. These algorithms are implemented twice. The latter version uses the predicate
to test the elements and the former tests for “equality with the given value”

A classic example is std: : find versus std: :find_if.

template <typename iter t, typename object_t> template <typename iter t, typename functor_t>

iter t find(iter t begin, iter t end, object_t x) iter t find if(iter_t begin, iter t end,
functor_t f)

{ {
for (; begin != end; ++begin) for (; begin != end; ++begin)
{ {
if (*begin == x) if (f(*begin))
break; break;
} }
return begin; return begin;
} }

297

CHAPTER 6 * ALGORITHMS

In principle, find could be rewritten in terms of find_if:

template <typename iter t, typename object t>
iter t find(iter t begin, const iter t end, object t x)
{

std::equal_to<object_t> EQ;

return std::find_if(begin, end, std::bind2nd(EQ, x));
}

But the converse is also possible:

template <typename functor_t>
class wrapper

{
functor t f ;
public:
wrapper(functor t f = functor t())
: f (f)
{
// verify with a static assertion that
// functor_t::result_type is bool
}
bool operator==(const typename functor t::argument typed that) const
return f_(that);
}
};

template <typename iter t, typename functor t»

iter t find_if(iter t begin, const iter t end, functor_t F)

{
}

return std::find(begin, end, wrapper<functor t>(F));

A mimesis object for type T informally behaves like an instance of T, but internally it’s a unary predicate.
A mimesis implements operator==(const T&), operator!=(const T8&), and operator “cast to T"

(all operators being const).
To invoke a predicate, you write:

if (f(x))
To invoke a mimesis, the equivalent syntax would be:

if (f == x)

298

CHAPTER 6 © ALGORITHMS

These requirements are slightly incomplete:

¢ The equality and inequality should take the mimesis itself and a T in any order, to
prevent the undesired usage of “cast to T” for comparisons (you'll read more about
this later).

e The cast operator should return a prototype value that satisfies the same criteria.

In other words, if M is a mimesis for type T, then the fundamental property for Mis:

M<T> m;
assert(m == static_cast<T>(m));

The simplest mimesis for type T is T itself.
As a very simple case, let’s implement a mimesis that identifies positive numbers:

template <typename scalar t >
struct positive

{
bool operator==(const scalar t& x) const
{
return 0<x;
}

bool operator!=(const scalar t& x) const

return !(*this == x);

}
operator scalar t() const
{
return 1; // an arbitrary positive number
}
b

Here’s the first application where you don’t need find_if any more.

double a[] = { -3.1, 2.5, -1.0 };
std::find(a, a+3, positive<double>()); // fine, returns pointer to 2.5

The key is that the value parameter in find has an independent template type, so positive<double> is
passed over as is, without casting.

A deduced template type, such as:

template <typename I>
iter t find(I, I, typename std::iterator traits<I>::value type x)

would have caused the mimesis to decay into its default value (and consequently, would return a wrong find
result).

299

CHAPTER 6 * ALGORITHMS

The mimesis interface can in fact be richer:

template <typename scalar_t, bool SIGN = true>
struct positive

{
bool operator==(const scalar t& x) const
{
return (0<x) * (!SIGN);
}
bool operator!=(const scalar t& x) const
return !(*this == x);
}
operator scalar t() const
{
// arbitrary positive and non-positive numbers
return SIGN ? +1 : -1;
}
positive<scalar_t, !SIGN> operator!() const
{
return positive<scalar_t, ISIGN>();
}
};

template <typename scalar_t, bool SIGN>
inline bool operator==(const scalar t& x, const positive<scalar t, SIGN> p)

{
}

return p == Xx;

template <typename scalar_t, bool SIGN>
inline bool operator!=(const scalar t& x,

const positive<scalar t, SIGN> p)
{

}

return p != x;

Thus positive<double, true> will compare equal to any strictly positive double and it will convert
to 1.0 when needed. On the other hand, positive<double, false> will compare equal to non-positive
numbers, and it will return -1.0.

Note that the user will simply write positive<T>() or positive<T>().

std::find(a, a+3, !positive<double>());

You have seen that writing a mimesis takes more effort than a functor, but it’s worth it, especially for
generalizing functions that take a special value as an argument. The next section offers another application.

300

CHAPTER 6 © ALGORITHMS

6.2.3. End of Range

Iterator-based algorithms cannot compute the end of a range dynamically. For example, you cannot express
the concept “find 5.0 but stop on the first negative number,” because the range is pre-computed. You need
two function calls.

using namespace std;
find(begin, find_if(begin, end, bind2nd(less<double>(), 0.0)), 5.0)

The canonical example of range inefficiency is given by C strings. Suppose you are copying a C string
and you get an output iterator to the destination:

const char* c_string = "this is an example";

// can we avoid strlen?
std::copy(c_string, c_string+strlen(c_string), destination);

strlen has to traverse the string looking for the terminator, then copy traverses it again. The process in
practice is extremely fast, but it does an unnecessary pass.

Suppose for a moment that you rewrite copy. You don’t change the function body, but just allow the
endpoints of the range to have different types.

template <typename iter1 t, typename iter2 t, typename end_t>
iter2 t copy 2(iteri_t begin, end_t end, iter2 t output)

while (begin != end)
*(output++) = *(begin++),

return output;

}

This is equivalent to asking that end be a mimesis for the type iter1_t.
Compare with the following code:

template <typename char_t, char_t STOP = 0>
struct c_string end

{

typedef char_t* iterator t;
operator iterator t() const { return o; }

bool operator!=(const iterator t i) const

return !(*this == i);

}

bool operator==(const iterator_t i) const

return i==0 || *i==STOP;
}
};

// implement operator== and != with arguments in different order
/...

301

CHAPTER 6 * ALGORITHMS

const char* begin = "hello world!";
copy_2(begin, c_string end<const char>(), output); // ok and efficient!
copy_2(begin, begin+5, output); // also ok!

The latter invocation of copy_2 is equivalent to std: : copy.
To sum up, a mimesis has two uses:

e Algorithms that accept a “test,” which can be either a value or a predicate.

e Algorithms that process a range begin. . .end, where end is just a termination criteria
(that is, it’s not decremented).

Note the difference between the two. The “test” mentioned in the first point is a skip-and-continue
condition on elements; end is a terminate-and-exit criterion on iterators.

The cast operator in the interface of a mimesis turns out to be useful when the object acts as a skip-and-
continue filter. Assume you are computing the average of all the elements that satisfy some criteria. First, you
write a tentative “classical” version.

template <class iter_t, class predicate_t>
typename std::iterator_ traits<iter t>::value_ type
average if(iter t begin, iter t end, predicate t f)
{
size t count = 0;
typename std::iterator_traits<iter_t>::value_type result = 0;

for (; begin != end; ++begin)
if (f(*begin))
{

result += *begin;
++count;
}
}

return count>0 ? result/count : [[???]];

If the predicate rejects all elements, you don’t know what to return, except possibly std: :numeric_
limits<...>::quiet_NaN() (hopingthathas_quiet NaNis true).

However, the best choice is to ask the functional object what to return. If F is seen as the rejection logic
(not the acceptance), it should be also responsible for providing a prototype of the rejected element, and
that’s exactly the fundamental property for a mimesis.

That’s why you rewrite the algorithm using a mimesis standing for a quiet_NaN:'

template <typename iter t, typename end_t, typename nan_t>
typename std::iterator traits<iter t>::value type
average(iter t begin, const end t end, nan_t NaN)
{
size t count = 0;

typename std::iterator_traits<iter_ t>::value_type result = 0;

!“The algorithm should now be named average_if not.

302

CHAPTER 6 © ALGORITHMS

for (; begin != end; ++begin)

{
if (NaN != *begin)
{
result += *begin;
++count;
}
}
return count>0 ? result/count : NaN;

A typical role of a mimesis is to represent an “exclusion filter”:

template <typename scalar_ t>
struct ieee_nan

{
operator scalar t() const
{
return std::numeric_limits<scalar t>::quiet NaN();
}
bool operator!=(const scalar t& x) const
{
return x == x;
}

bool operator==(const scalar t& x) const

return x I= x;

}
};

The dangerous downside of a cast operator is that it can be called unexpectedly. Consider again the
example four pages ago:

template <typename iterator_ t, char STOP = 0>
struct c_string end

{
/...

};

// ooops. forgot to implement operator== and !=
// with arguments in different order

// later...
while (begin != end)
{

}

/...

begin!=end will actually call bool operator!=(const char*, const char*) passingbegin, whichisalreadya
pointer, and applying a cast to end (which produces a null pointer). Therefore, the loop will never exit.
Note also that it’s possible to wrap a mimesis and turn it into a predicate and vice versa.

303

CHAPTER 6 * ALGORITHMS

6.3. lterator Wrapping

Writing STL-compliant iterators is a complex activity and it involves a lot of code duplication. Luckily,
writing const_iterators is far easier.

Awrapped iterator, const or non-const, is a class that contains another iterator as a member. The wrapper
forwards every “positioning operation” (for example, increments and decrements) to the member, but it intercepts
dereferencing, changing the result so as to express a logical view on the underlying dataset.

Since the end user may not see actual data, but a custom-forged value, it’s often impossible to modify
the original objects through the view, so that wrapped iterators are mostly const_iterators.

Suppose you have a vector of integers and an iterator wrapper that returns the actual value
multiplied by 5.

template <typename iterator_t>
class multiplier iterator

{
};

// Later...
int main()

{
std::vector<int> data;
data.push_back(8);

/1 ...

multiplier iterator<std::vector<int>::iterator> i(data.begin(), 5);

int a = *i; // now a = 5*8

*i = 25; // what about data[0] now???
assert(*i == 25);

*1 = 24; // what about data[0] now???
assert(*i == 25); // are you sure?

Evenifmultiplier iterator could physically write an integer at position data[0], what should it do?
Were it smart enough, it would write 25/5=5, so that *i returns 25 from that point on.

However, the instruction *i = 24 is even more problematic. Should it throw an exception? Or do
nothing? Or set data[0]=(24+(5-1))/5 anyway?

A correct implementation of operator-> is indeed the hardest issue. A lucky wrapper will simply
dispatch the execution to the wrapped iterator recursively, but since this usually reveals the “real” data
underneath, it may not be compatible with the wrapping logic.

Consider instead omitting operators that are less likely to be used. operator-> is the first candidate,
unless their implementation is both trivial and correct."”

The arrow operator is used to access members of the pointed type, but in portions of code where this
type is generic (for example, a template parameter may be deduced), these members are usually not known,
so the arrow should not be used.'

For example, std: :vector: :assign will generally work even on iterators having no operator->.

'7As a rule, iterator wrappers need not be 100% standard-conforming, as there are some common issues that won’t compromise
their functionality. The most common are lack of operator-> and operator* returning a value and not a reference (in other
words: iterator::reference and iterator::value_type are the same). On the other hand, the implementation with these
simplified features may be much easier. See the random_iterator example later in this chapter.

'8An exception is std: :map, which could legitimately call i->first and i->second.

304

CHAPTER 6 © ALGORITHMS

6.3.1. Iterator Expander

Iterator wrappers will delegate most operations to the wrapped object, such as operator++.
The dispatching part is extremely easy to automate using a static interface,' which is named
iterator expander:

class wrapper
: public iterator expander<wrapper>
, public std::iterator_traits<wrapped>

{

wrapped w_;

public:
wrapped& base()
{

return w_;

}

const wrappedd base() const

return w_;
}
wrapper (wrapped w)
tow_(w)
{
}
[...] operator* () const
{
// write code here
}
[...] operator-> () const
{
// write code here
}

};

The iterator expander interface (listed next) is responsible for all possible positioning (++, ++, +=,
-=, +, and -) and comparison operators. They are all implemented, and as usual, they will be compiled
only if used. If wrapped does not support any of them, an error will be emitted (no static assertion is
necessary, as the cause of the error will be evident).

Note also that every operator in the interface returns true_this(), not *this, because otherwise a
combined expression such as *(i++) would not work. iterator_expander does not implement operator*,
but true_this() returns the actual wrapper.

As usual, the Boost library offers a more complete solution, but this is simpler and fully functional.

305

CHAPTER 6 * ALGORITHMS

template <typename iterator t, typename diff t = ptrdiff t>
class iterator expander

{

protected:

// the static interface part, see Section 6.2

~iterator_ expander() {}
iterator expander() {}

iterator t& true this()
{ return static_cast<iterator t&>(*this); }

const iterator t& true this() const
{ return static_cast<const iterator t8»(*this); }

public:
iterator t& operator++() { ++true_this().base(); return true this(); }
iterator t& operator--() { --true_this().base(); return true this(); }

iterator t& operator+=(diff t i)
{ true_this().base() += i; return true this(); }
iterator t& operator-=(diff t i)
{ true_this().base() -= i; return true this(); }

iterator t operator++(int)
{ iterator t t(true this()); ++(*this); return t; }
iterator t operator--(int)
{ iterator t t(true this()); --(*this); return t; }

iterator t operator+(diff t i) const
{ iterator t t(true this()); t+=i; return t; }
iterator t operator-(diff t i) const
{ iterator t t(true_this()); t-=i; return t; }

diff t operator-(const iterator_expander& x) const
{ return true_this().base() - x.true this().base(); }

bool operator<(const iterator expander8 x) const
{ return true this().base() < x.true_this().base(); }

bool operator==(const iterator expander& x) const
{ return true_this().base() == x.true this().base(); }

bool operator!=(const iterator expander& x) const
{ return !(*this == x); }

bool operator> (const iterator expander& x) const
{ return x < *this; }

bool operator<=(const iterator expander& x) const
{ return !(x < *this); }

bool operator>=(const iterator expander& x) const
{ return !(*this < x); }

b

306

CHAPTER 6 © ALGORITHMS

You also need an external operator:

template <typename iterator_t, typename diff_t>
iterator t operator+(diff t n, iterator expander<iterator t, diff t> i)

{
}

return i+n;

Note that difference_type is taken, not deduced. iterator_expander<T> cannot read types defined
in T, because it's compiled before T since it’s a base of T.

So the wrapper will be declared as follows:

template <typename iterator_t>
class wrapper
: public iterator_ expander
<
wrapper<iterator_t»,
typename std::iterator traits<iterator_ t>::difference_type

{
};

/1 ...

Here’s a trivial practical example that also shows that the iterator base can be a simple integer.

class random_iterator
: public iterator expander<random_iterator>
, public std::iterator_traits<const int*>

{

int i_;

public:
int& base() { return i ; }
const int& base() const { return i ; }

explicit random iterator(const int i=0)

: i (1)
{
}

int operator*() const

return std::rand();
}
b

int main()

{

std::vector<int> v;
v.assign(random iterator(0), random_iterator(25));

// now v contains 25 random numbers
//...

307

CHAPTER 6 * ALGORITHMS

Note that this example skips the arrow operator and dereferencing returns a value, not a reference (but
since the class inherits const int* traits, it’s still possible to bind a reference to *iterator, as reference is
const int&).

Note Don't store copies of values in iterators. While this actually allows returning genuine references and
pointers, the referenced entity has a lifetime that is bound to the iterator, not to the “container” (in other words,
destroying the iterator, the reference becomes invalid), and this will lead to subtle bugs. Here’s some bad code:

class random_iterator
¢ public iterator expander<random_iterator>
, public std::iterator_traits<const int*>

{
int 1i_;
int val_; // bad
public:
const int& operator*() const
{
return val = std::rand(); // bad
}
const int* operator->() const
{
return &*(*this); // even worse
}
};

Iterator wrappers solve the problem of iterating over values in a map (or equivalently, the problem of
const-iterating over keys).

This time, the example is going to be a true non-const iterator implementation, because you iterate
over existing elements, so you can return pointers and references.

template <typename T, int N>
struct component;

template <typename T1, typename T2>
struct component<std::pair<T1, T2>, 1>
{

typedef T1 value type;

typedef T1& reference;

typedef const T1& const_reference;

typedef T1* pointer;

typedef const T1* const_pointer;

};

308

CHAPTER 6 © ALGORITHMS

template <typename T1, typename T2>
struct component<std::pair<const T1, T2>, 1>
{
typedef T1 value type;
typedef const T1& reference;
typedef const T1& const_reference;
typedef const T1* pointer;
typedef const T1* const_pointer;

};

template <typename T1, typename T2>

struct component<std::pair<T1, T2>, 2> : component<std::pair<T2, T1>, 1>
{

};

Assume that iterator_t (the wrapped type) points to a std: : pair-like class. If that’s not the case, the
compiler will give an error when compiling one of the ref overloads.

template <typename iterator t, int N>
class pair_iterator
: public iterator_expander< pair_ iterator<iterator t, N> >
{
static const bool IS MUTABLE =
is_mutable iterator<iterator t>::value;

iterator t i_;

typedef std::iterator_traits<iterator_ t> traits_t;
typedef component<typename traits t::value type, N> component t;

typedef typename component_t::reference ref t;
typedef typename component_t::const_reference cref_t;

typedef typename component_t::pointer ptr_t;
typedef typename component t::const pointer cptr t;

template <typename pair t>
static ref t ref(pair t8& p, static_value<int, 1)
{ return p.first; }

template <typename pair_t>
static ref t ref(pair t& p, static value<int, 2>)
{ return p.second; }

template <typename pair_t>
static cref_t ref(const pair t& p, static value<int, 1>)
{ return p.first; }

template <typename pair_t»

static cref t ref(const pair t& p, static value<int, 2>)
{ return p.second; }

309

CHAPTER 6 * ALGORITHMS

public:

explicit pair iterator(iterator t i)
: i (1)
{}

iterator t& base() { return i ; }
const iterator t& base() const { return i ; }

typedef typename typeif<IS MUTABLE, ref t, cref_t>::type reference;
typedef typename typeif<IS_MUTABLE, ptr_t, cptr_t>::type pointer;
typedef typename component_t::value_type value_type;

typedef typename traits t::iterator category iterator_ category;
typedef typename traits_t::difference_type difference_type;

reference operator* () const

{
return ref(*i , static value<int, N>());
}
pointer operator->() const
{
return &*(*this);
}

b
Here’s a driver function:

template <int N, typename iterator t>
inline pair_iterator<iterator t, N> select(iterator t i)

{
}

return pair iterator<iterator t, N>(i);

And finally some example code. The syntax for the driver is select<N> (i) where Nis 1 or 2 and i is an
iterator whose value_type is a pair:

template <typename T>
struct Doubler

{

void operator()(T& x) const

310

CHAPTER 6

template <typename T>
struct User

{

void operator()(const T& x) const

std::cout << x << ';';
}
b

typedef std::map<int, double> map_t;

MXT_ASSERT(!is_mutable iterator<map t::const iterator>::value);
MXT_ASSERT(is_mutable iterator<map t::iterator>::value);

map_t m;
const map t& c = m;

m(3] = 1.4;
m[6] = 2.8;
m[9] = 0.1;

// print 3;6;9; via iterator
std::for_each(select<1>(m.begin()), select<i>(m.end()), User<int>());

// print 3;6;9; via const_iterator
std::for_each(select<1>(c.begin()), select<1>(c.end()), User<int>());

// multiplies by 2 each value in the map
std::for_each(select<2>(m.begin()), select<2>(m.end()), Doubler<double>());

std: :vector<double> vi;
vl.assign(select<1>(c.begin()), select<i>(c.end()));

std::vector< std::pair<int, double> > v2(m.begin(), m.end());

// multiplies by 2 each key in the vector (the key is not constant)
std::for_each(select<1>(v2.begin()), select<i>(v2.end()), Doubler<int>());

// these two lines should give an error:

// std::for_each(select<1>(m.begin()), select<i>(m.end()), Doubler<int>());
// std::for_each(select<1>(c.begin()), select<i>(c.end()), Doubler<int>());

6.3.2. Fake Pairs

ALGORITHMS

The inverse problem is “merging” two logical views and obtaining a single iterator that makes them look like
pairs. With pair_iterator, you can build a vector of keys and a vector of values reading a map, but not the

other way around.

std::vector<int> key;
std: :vector<double> value;

std::map<int, double> m = /* 222 */;

311

CHAPTER 6 * ALGORITHMS

Actually, you can extend the interface of iterator expander to allow the possibility that the derived class
has more than one base. Simply let base have N overloads, taking a static_value<size_t, N>, and each can
possibly return a reference to an iterator of a different kind.

You can isolate the elementary modifiers to be applied to the bases and code a very simple statically-
recursive method.”

Since you do not know in advance what base(static_value<size t, K>) is, you must introduce some
auxiliary “modifier” objects with template member functions, as follows:

struct plusplus

{
template <typename any t>

void operator()(any t& x) const { ++x; }

};
class pluseq
const diff t i ;

public:
pluseq(const diff t i) : i (i) {}

template <typename any t>
void operator()(any t& x) const { x +=i_; }

};

template <typename iterator t, size t N, typename diff_t>
class iterator pack

{
protected:

typedef static_value<size_t, N> n_times;

~iterator pack() {}
iterator pack() {}

iterator t& true this()

{
return static_cast<iterator_ t8>(*this);
}
const iterator t& true this() const
{
return static_cast<const iterator t&>(*this);
}

2For brevity, all “subtractive” functions have been omitted.

312

CHAPTER 6 © ALGORITHMS

/* static recursion */

template <typename modifier t, size t K>
void apply(const modifier t modifier, const static_value<size t, K>)

modifier(true this().base(static_value<size t, K-1>()));
apply(modifier, static_value<size t, K-1>());

template <typename modifier t>
void apply(const modifier t modifier, const static_value<size t, 0>)

}
public:
typedef diff t difference_type;

iterator t& operator++()

apply(plusplus(), n_times());
return true this();

}

iterator t& operator+=(const diff t i)

{
apply(pluseq(i), n_times());
return true this();

}

You need to add a few more member functions. For simplicity, some operators, such as comparisons,
make use of the first element only: #

typedef static_value<size t,0> default_t;
diff t operator-(const iterator packd x) const
const default t d;

return true this().base(d) - x.true_this().base(d);
}

bool operator<(const iterator pack& x) const

const default t d;
return true this().base(d) < x.true_this().base(d);
}

bool operator==(const iterator_pack& x) const
const default t d;

return true this().base(d)==x.true_this().base(d);
}

2'In synthesis, an iterator pack is an iterator-like class that maintains synchronization between N different iterators. If P is
such a pack, you can call P += 2 only if all iterators are random-access. Otherwise, the code will not compile. However,
if the first component is a random-access iterator, the pack will have a constant-time difference.

313

CHAPTER 6 * ALGORITHMS

All other operators derive from the basic ones in the usual way—postfix ++ and operator+ from prefix
++ and += and other comparisons from < and ==.

With the new tool at your disposal, here’s a not-fully-standard iterator that pretends to iterate over std: :pair.
First, some highlights:

e Here, pointer is void, because you don’t want to support operator->, but to
compile std: :iterator_traits< iterator couple<...> > pointer needsto be
defined; however this definition will prevent any other use.

e iterator_category is the weaker of the two categories; however, you can statically-
assert that both categories should be comparable so as to avoid unusual pairs (such
as input/output iterators). Of course, the restriction could be removed.

e The main problem is how to define reference. Obviously, you have torelyon r1_t
and r2_t but cannot use std: :pair<r1 t, r2_t>.(Mainly because, in classic C++,
std: :pair does not support it and it will not compile.)?

#define TRAITS(N) std::iterator traits<iteratorNt# t>

template <typename iteratori t, typename iterator2 t>
class iterator couple
¢ public iterator pack

<
iterator couple<iteratori_t, iterator2 t»,
2,
typename TRAITS(1)::difference type
>
{
typedef typename TRAITS(1)::value type vi_t;
typedef typename TRAITS(2)::value type v2_t;
typedef typename TRAITS(1)::reference ri t;
typedef typename TRAITS(2)::reference 12 _t;
typedef typename TRAITS(1)::iterator category cati t;
typedef typename TRAITS(2)::iterator category cat2_t;
public:

iterator couple(iterator1 t i1, iterator2 t i2)
1 i1 (di1), 12 (i2)

{
}
typedef typename
typeif
<
is_base_of<cati_t, cat2_t>::value,
cat1_t,
cat2_t

>::type iterator_category;
typedef std::pair<vi t, v2_t> value_type;

typedef void pointer;

2std: :pair takes arguments in the constructor by const reference, but if either type is a reference, it creates a reference
to a reference, and that’s forbidden.

314

CHAPTER 6

struct reference

{
};

/* see below... */

iteratori t& base(static_value<size t, 0>) { return i1 ; }
iterator2_t& base(static_value<size t, 1>) { return i2_; }

const iteratori t& base(static_value<size t, 0>) const
{ return i1_; }
const iterator2 t& base(static_value<size t, 1>) const
{ return i2_; }

reference operator* () const

{
MXT_ASSERT
(
(is_base_of<cat1l_t, cat2_t>::value
|| is_base_of<cat2_t, cati_t>::value)
)s
return reference(*i1 , *i2);
}
private:

};

iterator1l t i1 ;
iterator2_t i2_;

You have to emulate a pair of references, which std: :pair does not allow:

struct reference

{

r1_t first;
r2_t second;

reference(rl t r1, r2_t r2)
¢ first(r1), second(r2)

{
}
operator std::pair<vi t, v2_t>() const
{
return std::pair<vi t, v2_t>(first, second);
}

template <typename anyl t, typename any2 t>
operator std::pair<anyi_t, any2_t>() const
{

}

return std::pair<anyl t, any2 t>(first, second);

ALGORITHMS

315

CHAPTER 6 * ALGORITHMS

referenced operator= (const std::pair<vi_t, v2_t>& p)

{
first = p.first;
second = p.second;
return *this;
}
void swap(referenced r)
{
swap(first, r.first);
swap(second, r.second);
}

void swap(std::pair<vi_t, v2_t>& p)

swap(first, p.first);
swap(second, p.second);
}
};

The template cast-to-pair operator is needed since std: :map will likely cast the reference not to
pair<Vi,V2>, butto pair<const V1i,V2>.
This implementation may suffice to write code like this:

template <typename iter1 t, typename iter2 t>
iterator_couple<iteri t, iter2_t> make_couple(iteri t i1, iter2 t i2)

{
}

std: :vector<int> k;
std::list<double> vi;
std: :vector<double> v2;

return iterator couple<iteri t, iter2 t>(i1, i2);

std::map<int, double> m;
std::pair<int, double> p = *make_couple(k.begin(), vi.begin());

m.insert(make_couple(k.begin(), vi.begin()),
make _couple(k.end(), vi.end()));

std::vector< std::pair<int, double> > v;
v.assign(make_couple(k.begin(), v2.begin()),
make_couple(k.end(), v2.end()));

Note that the first insert gets a bidirectional iterator, whereas the last assign gets a random-access
iterator.?

BInterestingly, the use of a global helper function avoids all the nasty ambiguities between a constructor and a function
declaration. The problem is described and solved in “Item 6” of [7].

316

CHAPTER 6 © ALGORITHMS

6.4. Receipts

Receipts are empty classes that can be created only by “legally authorized entities” and unlock the execution
of functions, as required parameters. Some receipts can be stored for later use, but some instead must be
passed on immediately.

In a very simple case, when you need to enforce that function F is called before G, you modify F and let
it return a receipt R, which cannot be constructed otherwise. Finally, G takes R as an additional—formal—
parameter.

Receipts are mostly useful in connection with hierarchy of classes, when a virtual member function foo
in every DERIVED should invoke BASE: : foo at some point.

Assume for the moment that foo returns void.

There are two similar solutions:

e Inthe public non-virtual/protected virtual technique, the base class implements a
public non-virtual foo, which calls a protected virtual function when appropriate.

class BASE
{
protected:
virtual void custom foo()

{
}

public:
void foo()
{
/¥ L0 X/
custom_foo();
}
};

e Usereceipts. BASE: : foo returns a secret receipt, private to BASE.

class BASE

{
protected:

class RECEIPT_TYPE

friend class BASE;

RECEIPT TYPE() {} // constructor is private
};

public:
virtual RECEIPT TYPE foo()
{
VARV
return RECEIPT TYPE();
}
};

317

CHAPTER 6 * ALGORITHMS

class DERIVED : public BASE

{
public:
virtual RECEIPT_TYPE foo()
{
VAV
// the only way to return is...
return BASE::foo();
}
1

If RECEIPT_TYPE has a public copy constructor, DERIVED can store the result of BASE: : foo at any time.
Otherwise, it’s forced to invoke it on the return line.

Note that a non-void return type T can be changed into std: : pair<T,RECEIPT_TYPE>, or a custom class,
which needs a receipt, but ignores it.

Receipts are particularly useful in objects, where you want to control the execution order of member
functions (algors are described in Section 8.6):

class an_algor

{
public:
bool initialize();
void iterate();
bool stop() const;
double get result() const;
};
double execute correctly algor(an_algor& a)
{
if (la.initialize())
throw std::logic_error("something bad happened");
do
{
a.iterate();
} while (!a.stop());
return a.get result();
}
double totally crazy execution(an_algor& a)
{
if (a.stop())
a.iterate();
if (a.initialize())
return a.get result();
else
return 0;
}

318

CHAPTER 6 © ALGORITHMS

In general, you want initialize to be called before iterate, and get_result after at least one
iteration. So you need to modify the interface as follows:

template <int STEP, typename T>
class receipt_t : receipt t<STEP-1, T>

{

friend class T;

receipt_t() {} // note: private
5
template <typename T>
class receipt_t<o, T>

friend class T;

receipt_t() {} // note: private
5
class a_better algor

{

public:
typedef receipt_t<0, a_better_algor> init_ok_t;
typedef receipt t<1, a_better algor> iterate ok t;

init ok t initialize();
iterate ok _t iterate(init ok t);
bool stop(iterate ok t) const;

double get result(iterate ok t) const;
};

With the necessary evil of a template friendship declaration (which is non-standard yet), the idea
should be clear: since the user cannot forge receipts, she must store the return value of initialize and pass
itto iterate. Finally, to get the result, it's necessary to prove that at least one iteration was performed:*

a_better algor A;
a_better_algor::init ok t RECEIPT1 = A.initialize();

while (true)
{
a_better algor::iterate ok t RECEIPT2 = a.iterate(RECEIPT1);
if (a.stop(RECEIPT2))
return a.get result(RECEIPT2);

A receipt system based on types does not deal with instances. For example, you could have two algors and unlock the
second with receipts from the first. This can be mitigated (at runtime!) by adding a state to the receipt. For example, you
may want to store a pointer to the algor in the receipt itself and add assertions in the algor to enforce that the pointer in
the receipt is indeed equal to “this”.

319

CHAPTER 6 * ALGORITHMS

Note The code:

template <typename T>
class ...

{

friend class T;

is not standard in classic C++ because the statement could be nonsensical when T is a native type I(say, int).
However, it’s accepted by some compilers as an extension. In C++0x, it’s legal, but the syntax is:

friend T;

As a workaround, some (but not all) classic C++ compilers accept this. The rationale for this workaround is
that it introduces an additional indirection, which allows the compiler to treat T as an “indirect” type, not as a
template parameter.

template <typename T>

class ...

{
struct nested t { typedef T type; };
friend class nested_t::type;

6.5. Algebraic Requirements
6.5.1. Less and NaN

Objects of generic type T are often assumed LessThanComparable.

This means that either T: :operator< is defined, or an instance of a binary predicate “less” is given as an
extra argument.”

An algorithm should avoid mixing different comparison operators, such as operator<= and operator>,
because they could be inconsistent. The best solution is to replace them with operator< (or with the binary
predicate “less”).

»As a rule of thumb, if T is such that there’s a single way to decide if A<B, because the comparison is trivial or fixed, then
you should supply T: :operator< (e.g., T = RomanNumber). Conversely, if there’s more than one feasible comparison,
you should not implement operator< and pass the right functional every time, to make your intentions explicit

(e.g., T = Employee). These functionals may be defined inside T.

320

CHAPTER 6 © ALGORITHMS

XY (assumed valid)
X>Y Y<X

X<Y 1(Y<X)

X2Y L(X<Y)

X==Y L(X<Y) 8& 1(Y<X)
X1=Y (X<Y) || (v<X)

It's questionable if operator== should be assumed valid or replaced with the equivalence test. In fact,
two calls to operator< may be significantly slower (as in std: : string). However, in some cases, with
additional hypotheses, one of the tests may be omitted. For example, if a range is sorted, a test with iterators
*j == *(i+k) canbereplaced by !less(*i, *(i+k)).

A NaN (Not-a-Number) is an instance of T that causes any comparison operator to “fail”. In other words,
if atleast one of x and y is NaN, then x OP y returns false if OP is <,>,<=,>=,== and returns true if OP is =
In fact, a NaN can be detected by this simple test:

template <typename T>
bool is nan(const T& x)
{

return x != x;

}

Types double and float have a native NaN.
If T has a NaN, it can create problems with sorting algorithms. Two elements are equivalent if neither is
less than the other,*® so a NaN is equivalent to any other element. If you write, for example:

std: :map<double, int> m;
// insert elements...
m{std: :numeric_limits<double>::quiet NaN()] = 7;

you are effectively overwriting a random (that is, an implementation dependent) value with 7.
The right way to deal with ranges that may contain NaN is to partition them out before sorting, or
modify the comparison operator, so for example they fall at the beginning of range:

template <typename T>
struct LessWithNAN

{

bool operator()(const T& x, const T& y) const

if (is_nan(x))

return !is nan(y);
else

return x<y;

};

*Alternatively, if both x<y and y<x are true, then the comparison operator is invalid.

321

CHAPTER 6 * ALGORITHMS

6.6. The Barton-Nackman Trick

Knuth wrote that a trick is a clever idea that is used once and a technique is a trick that is used at least twice.
The Barton-Nackman technique, also known as restricted template expansion, is a way to declare non-
member functions and operators inside a class, marking them as friends:

template <typename T>

class X
{
public:
friend int f(X<T> b) // global function #1
{
return 0;
}
friend bool operator==(X<T> a, X<T> b) // global operator #2
{
return ...;
}
};
X<double> x;
f(x); // calls #1
X == X; // calls #2

The non-member function and operator shown here are non-template functions that are injected in the
scope of X<T>, when the class is instantiated. In other words, they are found with ADL, so at least one of the
arguments must have type X<T>.

The main use of this technique is to declare global functions that take an inner class of a template class.

template <typename T>
struct outer
{
template <int N>
struct inner {};

};

You cannot write a template that takes outer<T>: :inner<N> for arbitrary T, because T is non-deducible.
However the Barton-Nackman trick will do:

template <typename T>
struct outer

{
template <int N>
struct inner
{
friend int f(inner<N>)
{ return N; }
b
b

322

CHAPTER 6 © ALGORITHMS

Regardless of the fact that f is not a template, you can manipulate the template parameters at will:

template <typename T>
struct outer
{
template <int N>
struct inner
{
friend inner<N+1»> operator++(inner<N»)
{ return inner<N+1>(); }
};
};

outer<double>::inner<o> I1;
++I1; // returns outer<double>::inner<1>

You can also write template functions in the same way, but all parameters should be deducible because
ADL does not find functions with explicit template parameters. The following code is correct:

template <typename T>
struct outer
{
template <int N>
struct inner

{
inner(void*) {}
template <typename X>
friend inner<N+1> combine(inner<N>, X x)
{ return inner<N+1>(8&x); }
};
};

outer<double>::inner<o> I;
combine(I, 0);

Instead, the following example works only when outer is in the global scope, but not if it's enclosed in a
namespace:

template <typename T>
struct outer
{
template <typename S>
struct inner

{
template <typename X>
friend inner<X> my cast(inner<S»)
{ return inner<X>(); }
};
};

323

CHAPTER 6 * ALGORITHMS

outer<double>::inner<int> I;
outer<double>::inner<float> F = my_cast<float>(I);

The only workaround for having a functional my_cast as shown here would be a static interface, with
the base class at namespace level, but the required machinery is non-negligible:

// note: global scope

template <typename T, typename S>
struct inner_interface

{
};
namespace XYZ
{
template <typename T>
struct outer
{
template <typename S>
struct inner : inner_interface<T, S>
{
inner(int = 0) {}
};
};
}

// note: global scope

template <typename X, typename T, typename S>
typename XYZ::outer<T>::template inner<X>
my_cast(const inner_interface<T,S>& x)

{
// cast x to outer<T»>::inner<S> if necessary
return 0;
}
int main()
{
XYZ::outer<double>::inner<int> I;
my cast<float>(I);
}

324

CHAPTER 6 © ALGORITHMS

Obviously, my_cast could be simply a template member function of inner, but this may force clients to

introduce a template keyword between the dot and the function name:

template <typename S>
struct inner

{
template <typename X»
inner<X»> my_cast() const
{ return inner<X>(); }
b

outer<double>::inner<int> I;
outer<double>::inner<float> F = I.my_cast<float>(); // Ok.

template <typename T>
void f(outer<T>& o)

{

o.get_inner().my_cast<float>();

// error: should be

// o.get_inner().template my cast<float>()
}
/...

325

CHAPTER 7

Code Generators

This chapter deals with templates that generate code—partly static, partly executed at runtime. Suppose you
have to perform a simple comparison of powers:

int x = ...;
if (3% < x5 < 47)

Clearly, you would like to have static constants for 3* and 47 and a corresponding runtime powering
algorithm to obtain x°. However, a call to std: :pow(x, 5) may be suboptimal, since 5 is a compile-time
constant that might possibly be “embedded” in the call.

One of the goals of TMP is in fact to make the maximum information available to the compiler, so that it
can take advantage of it.

7.1. Static Code Generators

Iteration can be used in a purely static context; recall the repeated squaring algorithm from Chapter 3:
#tdefine MXT M SQ(a) ((a)*(a))

template <size t X, size t Y>
struct static_raise;

template <size t X> struct static_raise<X,2>
{ static const size t value = X*X; };

template <size t X> struct static_raise<X,1>
{ static const size t value = X; };

template <size t X> struct static_raise<X,0>
{ static const size t value = 1; };

template <size t X, size t Y>
struct static_raise

{

static const size t vO = static_raise<X, Y/2>::value;
static const size t value = ((Y % 2) ? X : 1U) * MXT_M SQ(vo);
b

double data[static_raise<3, 4>::value]; // an array with 81 numbers

327

http://dx.doi.org/10.1007/9781484210116_3

CHAPTER 7 © CODE GENERATORS

static_raise does not generate any code, only a compile-time result (namely, a numeric constant).

The same algorithm is now used to implement static code generation. Static recursion generates a
function for any specified value of the exponent.

Assume that 1 is a valid scalar.

template <typename scalar_t, size t N>
struct static_pow

{

static inline scalar t apply(const scalar t& x)
{
return ((N % 2) ? x : 1) *
static_pow<scalar t,2>::apply(static_pow<scalar t,N/2>::apply(x));
}
b

template <typename scalar_t>

struct static_pow<scalar_t, 2>

{

static inline scalar t apply(const scalar t& x)
{ return x*x; }

};

template <typename scalar t>

struct static_pow<scalar t, 1>

{

static inline scalar_t apply(const scalar_t& x)
{ return x; }

b

template <typename scalar_t>

struct static_pow<scalar_t, 0>

{

static inline scalar t apply(const scalar t& x)
{ return 1; }

};
size t x = 3;
size t n = static pow<size t, 4>::apply(x); // yields 81

Here, template recursion does not produce a compile-time result, but a compile-time algorithm; in fact,
static_powis a code generator template.

328

CHAPTER 7 CODE GENERATORS

Note also that you can avoid multiplication by 1, which is implied by the ternary operator:

template <typename scalar_t, size t N>
struct static_pow

{

static inline scalar t apply(const scalar t& x, selector<false>)

{

return static_pow<2>::apply(static_pow<N/2>::apply(x));
}

static inline scalar_t apply(const scalar t& x, selector<true>)

{

return x*apply(x, selector<false>());

}

static inline scalar t apply(const scalar t& x)

{
return apply(x, selector<(N % 2)>());

};

In particular, this code generator is strongly typed. The user must specify the argument type in advance.
This is not necessary for the algorithm to work properly. In fact, a weaker version that deduces its arguments
is fine too:

template <size_t N>
struct static_pow

{
template <typename scalar_t>
static inline scalar t apply(const scalar t& x)
{...}
};

template <>
struct static_pow<2>
{
template <typename scalar_t>
static inline scalar t apply(const scalar t& x) { return x*x; }

};
/...

The invocation of strongly typed templates is more verbose, since the user explicitly writes a type that
could be deduced:

size t x = 3;
size_t n1 = static_pow<size_t, 4>::apply(x); // verbose
size t n2 = static_pow<4>::apply(x); // nicer

329

CHAPTER 7 © CODE GENERATORS

However, it sometimes pays to be explicit. A cast on the argument is quite different from a cast of the
result, because the code generator will produce an entirely new function:

double x1 = static_pow<double, 4>::apply(10000000); // correct
double x2 = static_pow<4>::apply(10000000); // wrong (it overflows)

double x3 = static_pow<4>::apply(10000000.0); // correct again

Usually it’s possible to code both a strong and a weak code generator at the same time by borrowing a
trick from groups. You move the weak generator into a partial specialization, which is recalled by the general
template.

struct deduce

{
};

template <size t N, typename scalar_t = deduce>
struct static_pow;

template <>
struct static_pow<2, deduce>

{
template <typename scalar_t>
static inline scalar t apply(const scalar t& x)
{...}

};

template <size t N>
struct static_pow<N, deduce>

{
template <typename scalar_t>
static inline scalar t apply(const scalar t& x)
{...}

};

// primary template comes last

template <size t N, typename scalar_t>
struct static_pow

{
static inline scalar t apply(const scalar t& x)
{
return static_pow<N»::apply(x);
}
};

A strict argument check is actually performed only by the primary template, which immediately
calls the deduce specialization. The order of declarations matters: static_pow<N, deduce> will likely use
static_pow<2, deduce>, so the latter must precede the former in the source file.

330

CHAPTER 7 CODE GENERATORS

7.2. Double checked Stop

Compile-time recursion is usually obtained by having a template call “itself” with a different set of template
parameters. Actually, there’s no recursion at all, since a change in template parameters generates a different
entity. What you get is static “loop unrolling”

The advantage of static recursion is that explicitly unrolled code is easier to optimize.

The following snippets perform a vector-sum of two arrays of known length:

template <size t N, typename T>
void vector sum LOOP(T* a, const T* b, const T* c)
{
for (int i=0; i<N; ++i)
a[i] = b[i] + c[i];
}

template <size t N, typename T>
void vector sum EXPLICIT(T* a, const T* b, const T* c)
{

a[o] = b[o] + c[0];

a[1] = b[1] + c[1];

/1 ...

// assume that it's possible to generate exactly N of these lines
/...

a[N-1] = b[N-1] + c[N-1];

The explicitly unrolled version will be faster for small N, because modern processors can execute a few
arithmetic/floating point operations in parallel. Even without specific optimizations from the compiler, the
processor will perform the sums, say, four at a time."

However, for large N, the code would exceed the size of the processor cache, so the first version will be
faster from some point on.

The ideal solution in fact is a mixture of both:

static const int THRESHOLD = /* platform-dependent */;

template <size t N, typename T>
void vector sum(T* a, const T* b, const T* c)

{
if (N>THRESHOLD)
{
int i=0;
for (; (i+4)<N; i+=4) // the constant 4 and...
a[i+0] = b[i+0] + c[i+0]; //
a[i+1] = b[i+1] + c[i+1]; // ...the number of lines in this block
a[i+2] = b[i+2] + c[i+2]; // are platform-dependent
a[i+3] = b[i+3] + c[i+3]; //
}

'Usually, this requires the additional assumption that a, b, and ¢ point to unrelated areas of memory, but modern
compilers will try to understand if these optimizations can be safely applied.

331

CHAPTER 7 © CODE GENERATORS

for (; i<N; ++i) // residual loop
{
a[i] = b[i] + c[i];
}
}
else
{
vector sum EXPLICIT<N>(a, b, c);
}

}

This implementation has a problem anyway. Suppose THRESHOLD is 1000. When the compiler
instantiates, say, vector_sum<1000,double>, it wastes time generating 1,000 lines that will never be called:

if (true)
/] ...
}
else
{
a[o] = b[o] + c[o0];
a[1] = b[1] + c[1];
/] ...
a[999] = b[999] + c[999];
}
To fix this issue, you add a double check:
else
{
vector sum EXPLICIT<(N>THRESHOLD ? 1 : N)>(a, b, c);
}

The double check is not simply an optimization. Static recursion can yield an unlimited number of lines,
Assume again you have an array of length N and need to fill it with consecutive integers. You hope to be able to
write a function template integrize whose call produces native machine code that is logically equivalent to:

{

data[o] = o;
data[1] = 1;
/...

data[N-1] = N-1;

But you guess that when N is very large, due to the effect of processor caches, the unrolled loop will
generate a huge amount of bytes, whose mass will eventually slow down the execution.?

This is commonly called code bloat.

332

CHAPTER 7 CODE GENERATORS

So you use integrize to select a compile-time strategy or a runtime strategy:

template<typename T, int N>
void integrize(T (&data)[N])

if (N<STATIC_LOWER_BOUND)
integrize helper<N>(data);
else
for (size t i=0; i<N; ++i)
data[i] = i;

First, start with an incorrect function:

template <int N, typename T>
void integrize helper(T* const data)

data[N-1] = N-1;
integrize helper<N-1>(data);

}

The recursion has no limit, so it will never compile successfully.
You might be tempted to make the following improvement:

template <int N, typename T>
void integrize helper (T* const data)

{
data[N-1] = N-1;
if (N>1)
integrize helper<N-1>(data);
}

This version still doesn’t work, since the compiler will produce a sequence of calls with unlimited
depth. From some point on, the condition if (N>1) is always false, but it doesn’t matter—such code would
be pruned by the optimizer, but the compiler will complain and stop much earlier!

data[2-1] = 2-1; // here N=2

if (true) /] 2>12

{ // integrize helper<2-1>
data[1-1] = 1-1; // here N=1
if (false) // 1>12?

// integrize_helper<1-1>
data[0-1] = 0-1; // here N=0

if (false) // 0>1?
{

/...
}

}
}

333

CHAPTER 7 © CODE GENERATORS

In other words, the compiler sees that integrize helper<1> dependson integrize helper<0>, hence
the unlimited recursion (at compile time).
The double checked stop idiom is again the solution:

template <int N, typename T>
void integrize helper(T* const data)

{
data[N-1] = N-1;
if (N>1)
integrize helper<(N>1) ? N-1 : 1>(data);
}

Note the extra parentheses around N>1 (otherwise, the > between N and 1 will be parsed as the angle
bracket that closes the template).
Thanks to the double check, the compiler will expand code like this:

data[2-1] = 2-1; // here N=2

if (true) // 2>0?

{ // integrize helper<2-1>
data[1-1] = 1-1; // here N=1
if (1>1)

call integrize_helper<i> again

The expansion is finite, since integrize helper<1> mentions only itself (which is a well-defined entity,
not a new one) and the recursion stops. Of course, integrize helper<1> will never call itself at runtime. The
optimizer will streamline the if(true) branches and remove the last if(false).

In general, the double checked stop idiom prescribes to stop a recursion, mentioning a template that
has been already instantiated (instead of a new one) and preventing its execution at the same time.

Finally, you again apply the idiom as an optimization against code bloat:

template<typename T, int N>
void integrize(T (&data)[N])

if (N<STATIC_LOWER BOUND)
integrize helper<(N<STATIC_LOWER_BOUND) ? N : 1>(data);
else
for (size t i=0; i<N; ++i)
data[i] = i;

334

CHAPTER 7 CODE GENERATORS

7.3. Static and Dynamic Hashing

Sometimes it’s possible to share an algorithm between a static and runtime implementation via kernel
macros. The following example shows how to hash a string statically.

Assume as usual that a hash is an integer stored in a size_t and that you have a macro. Taking x, the old
hash and a new character called ¢, here are some possibilities:

#tdefine MXT HASH(x, c) ((x) << 1) * (c)
#define MXT HASH(x, ¢) (x) + ((x) << 5) + (c)
#tdefine MXT _HASH(x, c) ((x) << 6) * ((x) & ((~size_t(0)) << 26)) * (c)

Note The hashing macros require that c be a positive number. You could replace c with (c-CHAR_MIN), but
this would make the hash platform-dependent. Where char is signed, “a’-CHAR_MIN equals 97-(-128) = 225
and where char is unsigned, the same expression yields 97-0 = 97.

Furthermore, the same text in a std: :string and in a std: :wstring should not return two different
hash codes.

Given that you disregard what happens for non-ASCII characters, an elegant workaround is to cast char ¢ to
unsigned char.

Constants should not be hard-coded, but rather generated at compile time.

You could replace the classic code

const char* text = ...;
if (strcmp(text, "FIRST")==0)

/7 ...

}
else if (strcmp(text, "SECOND")==0)

{

}
else if (strcmp(text, "THIRD")==0)

/7 ...

/7 ..

335

CHAPTER 7 © CODE GENERATORS

with something like this:

const char* text = ...;
switch (dynamic_hash(text))

case static_hash<'F','I','R",'S",'T'>::value:
/...
break;

case static_hash<'s','E','C','0",'N','D'>::value:

/] ...
break;
}
e Hashing will save a lot of string comparisons, even if it could produce false positives.®
e Ifstatic_hash produces duplicate values, the switch won’t compile, so it will never
produce false negatives (that is, the words “FIRST’, “SECOND’, and so on will always be
matched without ambiguities).
The static algorithm uses template rotation and a very neat implementation:
template
<
char C0=0, char C1=0, char C2=0, char C3=0, ..., char C23=0,
size t HASH = 0
>

struct static_hash

: static_hash<C1,C2...,C23,0, MXT _HASH(HASH, static_cast<unsigned char>(C0))>
{

};

template <size_t HASH>

struct static_hash<o,0,0,0,...,0, HASH>
: static_value<size_t, HASH>

{

};

The only degree of freedom in dynamic_hash is the function signature.
Here’s a fairly general one, with some plain old vanilla C tricks:

std::pair<size t, const char*> dynamic_hash(const char* text,
const char* separ = 0,
const char* end = 0)

size t h = 0;
const char* const endl = separ ? text+strcspn(text, separ) : end;
const char* const end2 = (end 8% end<end1) ? end : endi;

3There are 26N sequences of N letters, and “only” say 2% different hash values, so for N>14, no hash can be injective;
however a good hashing algorithm will “scatter” conflicts, so strings having the same hash will be really different.

336

CHAPTER 7 CODE GENERATORS

while (end2 ? text<end2 : (*text != 0))

{
const size t ¢ = static_cast<unsigned char>(*(text++));
h = MXT_HASH(h, c);
}
return std::make pair(h, text);
}
int main()
{
const char* text = “hello, dynamic hash”;
dynamic_hash(text); // hash all string, up to char(0)
dynamic_hash(text, ";,"); // hash up to any of the separators

dynamic_hash(text, ";,", text+10); // up to separator, at most 10 chars

I chose to return a composite result, the hash value and the updated “iterator”.

7.3.1. A Function Set for Characters

The selection of the correct function set can be done either by a deduced template parameter (as seen in
string traits in Section 4.2.1) or by an environment template parameter.

A natural example is the problem of a character set: some string-conversion functions can be
accelerated, given that some set of characters, say {'0', '1'... '9'}, is contiguous. If c belongs to the
set, you can convert c to integer via a simple subtraction c - '0', but if the digit character set is arbitrarily
scattered, a more complex implementation is needed.

You scan sets of characters with template rotation:

namespace charset {

template

<
typename char_t,
char_t Co,
char t C1 =0,
char_t C2 = 0,
/...
char t (9 =0

>

struct is_contiguous

{

static const bool value = (CO+1==C1) 88&
is_contiguous<char_t,C1,C2,C3,C4,C5,C6,C7,C8,C9>: :value;
};

template <char Co>
struct is_contiguous<char,Co>

{

static const bool value = true;

};

337

CHAPTER 7 © CODE GENERATORS

template <wchar_t CO>
struct is_contiguous<wchar_t,Co>

{

};
}

static const bool value = true;

Next, the result of a static test can be saved in a global traits structure:

struct ascii
{
static const bool value lowerc
charset::is_contiguous<char,
‘a','b','c','d",'e","f','g",'h", M1, g > rvalue
&&
charset::is_contiguous<char,
5,k 1, e, ety 0, pt, 'Y, e, s> tvalue
&&
charset::is_contiguous<char,
", ut, v e, ', Ty, Tz > tvalue;

static const bool value_upperc
charset::is_contiguous<char,
'A','B','C','D',"E',"F','G","H","I", "I > :value
&&
charset::is_contiguous<char,
3, 'K, LY, MY, N, 0, P, TR, R, TS > value
&&
charset::is_contiguous<char,
ST, U,V T, X, Y, 2 > s rvalue;

static const bool value 09 =
charset::is_contiguous<char,
IOI’lll’lzl’I3I’I4I’ISI’I6I’I7I’I8I’I9I>::Va1ue;

static const bool value = value 09 && value lowerc && value upperc;

};

Suppose for the moment that ascii: :value is true. You can write a function set to deal with the
special case:

template <typename T, T lower, T upper>
inline bool is between(const T c)

{
}

return !(c<lower) &3 !(upper<c);

struct ascii_traits

{
typedef char char_type;

338

};

CHAPTER 7

static inline bool isupper(const char type c)

{
return is_between<char,'A','Z"'>(c);
}
static inline bool islower(const char type c)
{
return is_between<char,'a','z'>(c);
}
static inline bool isalpha(const char type c)
{
return islower(c) || isupper(c);
}
static inline bool isdigit(const char type c)
{
return is_between<char,'0','9'>(c);
}
/...
static inline char tolower(const char c)
{
return isupper(c) ? c-'A'+'a' : c;
}
static inline char toupper(const char c)
{
return islower(c) ? c-'a'+'A" : c;
}

In a different implementation, you use std: : locale:

template <typename char_t>
struct stdchar_traits

{

typedef char_t char_type;

static inline bool isupper(const char t c)

{
return std::isupper(c, locale());
}
static inline bool islower(const char t c)
{
return std::islower(c, locale());
}

CODE GENERATORS

339

CHAPTER 7 © CODE GENERATORS

static inline bool isalpha(const char t c)

{
return std::isalpha(c, locale());
}
static inline bool isdigit(const char t c)
{
return std::isdigit(c, locale());
}

static inline char t tolower(const char_t c)

{
return std::tolower(c, std::locale());
}
static inline char t toupper(const char t c)
{
return std::toupper(c, std::locale());
}

};
And eventually combine these types:

struct standard {};
struct fast {};

template <typename char_t, typename charset t = fast>
struct char_traits : stdchar_traits<char_t>

{

};

template <>
struct char_traits<char, fast»
: typeif<ascii::value, ascii traits, stdchar_traits<char> >::type

};

The environment parameter charset_t is by default set to fast. If it’s possible in the current platform,
the fast set is preferred; otherwise, the standard set is used.*

“As an exercise, the reader might generalize the idea to wchar_t, which in this implementation always picks the
locale-based function set.

340

CHAPTER 7 CODE GENERATORS

7.3.2. Changing Case

This section lists some utilities used to change the case of characters. First, it introduces some tags. Note that
“case_sensitive” is treated as a “no conversion” label.’

struct case_sensitive {};
struct upper case {};
struct lower case {};

This example exploits the fact that char_traits offers a leveraged interface to mutate characters at
runtime (the example is limited to char). The classic part of the work is a collection of functors.

template <typename mutation_t, typename traits_t = char_traits<char> >
struct change_case;

template <typename traits_t>
struct change case<case_sensitive, traits_t>

{
typedef typename traits_t::char_type char_type;

char_type operator()(const char_type c) const

return c;

}
};

template <typename traits_t>
struct change_case<lower case, traits_t>

{
typedef typename traits_t::char_type char_type;

char_type operator()(const char_type c) const

return traits t::tolower(c);

}
};

template <typename traits_t>
struct change case<upper case, traits_t>

{
typedef typename traits_t::char_type char_type;

char_type operator()(const char_type c) const

return traits t::toupper(c);

}
};

SThe motivation will be evident when you see an application to string hashing, later in the paragraph.

341

CHAPTER 7 © CODE GENERATORS

int main()

{

std::string s = "this is a lower case string";
std: :transform(s.begin(), s.end(), s.begin(), change case<upper case>());

}

Now you move to the analogous conversion at compile time.

template <typename case t, char C, bool FAST = ascii::value>
struct static_change case;

FAST is a hidden parameter; regardless of its value, a case-sensitive conversion should do nothing:

template <char C, bool FAST>
struct static_change case<case sensitive, C, FAST>

{
};

static const char value = C;
If FAST is true, the transformation is trivial. If FAST is false, unfortunately, every character that can
change case needs its own specialization. Macros will save a lot of typing here.

template <char C>
struct static_change_case<lower_case, C, true>

{
};

static const char value = ((C>='A"' 8& C<='Z") ? C-'A'+'a"' : (O);

template <char C>
struct static_change_case<upper_case, C, true>

{
};

static const char value = ((C>="'a' 8% Ck='z') ? C-'a'+'A' : ();

template <char C>
struct static_change_case<lower case, C, false>

{
};

static const char value = C; // a generic char has no case

template <char C>
struct static_change_case<upper_case, C, false>

{
};

#define mxt_STATIC_CASE_GENERIC(C_LO, C_UP)

static const char value = C; // a generic char has no case

template <> struct static_change_case<lower_case, C_UP, false>
{ static const char value = C_LO; };

P

template <> struct static_change case<upper_case, C_LO, false>

342

CHAPTER 7 CODE GENERATORS

{ static const char value = C_UP; }
mxt_STATIC CASE_GENERIC('a', 'A");
mxt_STATIC CASE_GENERIC('b', 'B');
é;é_STATIC_CASE_GENERIC('z', '7');
#undef mxt_ STATIC_CASE_GENERIC
This has an immediate application to both static_hash and dynamic_hash.

As usual, the macro is merely for convenience. Note that a non-deduced template parameter is
introduced in the dynamic hash.

#define mxt_FIRST CHAR(c) \

static_cast<unsigned char>(static_change_case<case_t, C>::value)
template
<

typename case_t,
char C0=0, char C1=0, char C2=0, char C3=0, ..., char C23=0,
size t HASH = 0
>
struct static_hash
: static_hash<case t,C1,C2,...,C23,0, MXT_HASH(HASH, mxt FIRST CHAR(CO))>
{
};

template <typename case t, size t HASH>
struct static_hash<case_t,0,0,0,0,...,0, HASH>
: static_value<size_t, HASH>

{

};

template <typename case_t>

inline ... dynamic_hash(const char* text, ...)
{

const change_case<case_t> CHANGE;

size t h = 0;

const char* const end1l = (separ ? text+strcspn(text, separ) : end);
const char* const end2 = (end 88 end<end1l) ? end : endi;

while (end2 ? text<end2 : (*text != 0))

{

const size t ¢ = static_cast<unsigned char>(CHANGE(*(text++)));
h = MXT_HASH(h, c);
}

return std::make_pair(h, text);

343

CHAPTER 7 © CODE GENERATORS

Such a modified algorithm will alter the case of a string inside the computation of the hash value, so an
“upper case hash” is effectively a case-insensitive value:

switch (dynamic_hash<upper case>(text).first)

case static_hash<'F','I','R','S", 'T'>::value:
// will match "First", "FIRST", "first", "fiRST"...
break;

7.3.3. Mimesis Techniques

This section rewrites the dynamic_hash using mimesis techniques. In the new prototype, end is not optional,
so you have to provide more overloads to get a flexible syntax. As for the original C version:

template <typename case t, typename iterator t, typename end t>
std::pair<size t, iterator t»
dynamic_hash(iterator t begin, const end t end, size t h = 0)
{
typedef typename std::iterator_traits<iterator_t>::value_type char_t;
const change case< case t, char_traits<char t> > CHANGE;

while (end != begin)

{
const size t ¢ = static_cast<unsigned char>(CHANGE(*(begin++)));
h = MXT_HASH(h, c);
}
return std::make_pair(h, begin);
}

template <typename case_t, typename iterator_ t>
inline std::pair<size t, iterator t>

dynamic_hash(iterator t begin, size t h = 0)
{

return dynamic_hash(begin, c_string end<iterator t>(), h);

}

You can plug in some useful mimesis-like objects®:

template <typename char_t, char_t CLOSE_TAG>
struct stop_at
{
template <typename iterator_ t>
inline bool operator!=(const iterator t i) const
{
return (*i != 0) &% (*1 != CLOSE_TAG);
}
b

®There’s no need for a complete mimesis implementation: a cast operator is not needed.

344

CHAPTER 7 CODE GENERATORS

size t h = dynamic_hash<case_insensitive>(text, stop_at<char, ';'>()).first;

template <bool (*funct)(const char), bool NEGATE>
struct apply f

template <typename iterator t>
inline bool operator!=(const iterator t i) const
{
return funct(*i) ~ NEGATE;
}
};

typedef apply f<char_ traits<char>::isspace, true> end_of word;
typedef apply f<char_traits<char>::isalpha, false> all alpha;

end_of_word stops at the first space, and all_alpha stops at the first non-alphabetical character.

7.3.4. Ambiguous Overloads

The evolution of the dynamic_hash has led to adding more template parameters and more overloads. You
need to be careful not to cause compilation problems because of ambiguous overload resolution.

The exact overload resolution rules are described in Appendix B of [2], but a rough summary is
described here.

When the compiler meets a function call, it must pick, from the set of all functions with the same name,
the most specialized set that matches the given arguments. It must emit an error if no such function exists or
if the best match is ambiguous.

If you have several function templates named F, you denote them as F[1], F[2], and so on.” You say
that F[1] is more specialized than F[2] if F[2] can be used wherever F[1] is used, with an exact argument
match, but not vice versa.

For example:

template <typename T1, typename T2>
void F(T1 a, T2 b); // this is F[1]

template <typename T>
void F(T a, T b); // this is F[2]

template <typename T>
void F(T a, int b); // this is F[3]

The second template, F[2], is more specialized than F[1], because the call F(X,X) can refer to either
one, but only F[2] matches F(X,Y) exactly. Similarly, F[3] is more specialized than F[1].

"This syntax will be used only in this section, where there’s no possibility of confusion.

345

CHAPTER 7 © CODE GENERATORS

However, this is a partial ordering criterion. If no function is more specialized than the other(s), the
compiler will abort, reporting an ambiguous overload. In fact, in the previous example, F[2] and F[3] are
not comparable. F[3] will not match exactly F(X,X) and F[2] will not match exactly F(X, int).

int z = 2;
F(z, z); // error: could be F[2] with T=int or F[3] with T=int

Informally, an easy unambiguous special case is total replacement. If a template parameter is
completely replaced by fixed types or previous template parameters, the resulting function is more
specialized than the original. Take F[1], replace every occurrence of T2 with T1, and obtain F[2]; replace T2
with int and obtain F[3].

A library writer usually provides a set of overloads, where one or more elements are function templates.
One of the problems, often underestimated or ignored, is to decide in advance if the set is well-ordered.

A well-ordered set will never generate ambiguity errors.
The combination of default arguments and templates often makes deduction very hard.

template <typename case_t, typename iterator_ t, typename end_t>
[...] dynamic_hash(iterator_ t begin, const end t end,
size t crc = 0); // dynamic_hash[1]

template <typename case t, typename iterator t>
[...] dynamic_hash(iterator_t begin, size t crc = 0); // dynamic_hash[2]

To determine if this set is well-ordered, you need only to consider the case of a call with two arguments,
and it’s evident that the total replacement condition holds (replace end_t with size t).

However, note that dynamic_hash(T, int) will invoke dynamic_hash[1]:
dynamic_hash(text, 123); // invokes (1) [with end t = int]

A user-friendly library will try to avoid ambiguities, first by using additional types:

struct hash_type

{

size_t value;

hash_type() : value(0) {}

explicit hash_type(const size t c) : value(c) {}
};

template <typename case_t, typename iterator_ t, typename end_t>
[...] dynamic_hash(iterator t begin, end t end, hash_type h = hash_type());

template <typename case_ t, typename iterator_ t>
[...] dynamic_hash(iterator_ t begin, hash_type h = hash_type());

8 Another common error is the argument crossover. Suppose a class C has two template parameters T1 and T2. If you partially
specialize C<T1,Y> and C<X, T2> for some fixed X and Y, C<X, Y> is ambiguous, so it must be explicitly specialized too.

346

CHAPTER 7 CODE GENERATORS

While this does not change the way the compiler picks functions, it will make the error more evident to
the user, because now dynamic_hash(text, 123) will not even compile.

dynamic_hash(text, hash_type(123)); // this instead is correct

A radical change instead is obtained by wrapping the original return type in a typename only
if<[[condition]], ...>::type clause (See Section 4.3.3).

template <typename T1, typename T2>
struct different : selector<true>

{}

template <typename T>
struct different<T, T> : selector<false>

{}

template <typename case_t, typename iterator_ t, typename end_t>
typename only_if<different<end_t, hash_types::value, [...]>::type
dynamic_hash(iterator t begin, const end t end, hash_type h = hash_type());

Suppose that you add the C version back in (denoted as dynamic_hash[3]):

template <typename case_t>
[...] dynamic_hash(const char* text, const char* const separator = 0, const char* const end
= 0, size_ t h = 0)

This function, as is, can generate an ambiguous call. dynamic_hash(const char*) matches either
dynamic_hash[2] (with iterator t = const char*)or dynamic_hash[3]. The error depends on both
functions being templates. Because case_t: had dynamic_hash[3] was a classic function, it would have
been picked with higher priority.

To avoid the problem, remove the default arguments to separator and end.

7.3.5. Algorithm I/0

You can let dynamic_hash return a pair that contains the updated iterator position and the hash value.
Often the user will need to store the result just to split it:

std:pair<size t, const char*> p = dynamic_hash(text);
text = p.second;

switch (p.first)

{

}

/...

347

CHAPTER 7 © CODE GENERATORS

This can be verbose, especially if the iterator has a long type.’
C++11 gave a new meaning to the keyword auto exactly for this purpose:

auto p = dynamic_hash(text);
But observe that auto cannot refer to a part of an object. The following line is illegal:
std::pair<auto, const char*> p = dynamic_hash(text);

You could take an iterator by reference and update it, but this is not a fair solution, as it forces the caller
to duplicate the iterator if you want to save the original value.

Instead, you modify the return type. It will be an object conceptually similar to a pair, with the option to
overwrite a reference with the result:

template <typename iterator_ t>
struct dynamic_hash_result
{

size_t value;

iterator_t end;

dynamic_hash _result(const size t v, const iterator t i)
: value(v), end(i)
{

}

dynamic_hash_result8 operator>>(iterator t& i)
{
i = end;
return *this;
}
b

You change the return statement in the dynamic_hash functions accordingly (namely, replace
std: :make_pair(...) with dynamic_hash_result(...)).

The final function call is indeed compact. It updates text and returns the hash at the same time.
Additionally, the .value suffix reminds you of static_hash<>: :value. Of course, more variations are
possible.'®

switch ((dynamic_hash(text) >> text).value)

case static_hash<'a','b','c'>::value:
/...

°The problem actually falls under the opaque type principle. If the return type of a function is “complex,” you should
either publish a convenient typedef to the users or allow them to use the object by ignoring its type (refer to Chapter 9
for more details).

19As follows from the opaque type principle, it’s not necessary to document what the exact return type is, just state that
it works like a std: :pair with an extra operator>>. In principle, it would be reasonable to add a conversion operator
from dynamic_hash_result to std::pair<size t,iterator_t>.

348

CHAPTER 7 CODE GENERATORS

7.3.6. Mimesis Interface

Mimesis objects are lightweight and conceptually similar to functors, but their expressivity is close to a
scalar. Since they are indeed instantiated, let’s investigate the possibility of combining them with operators:

size t h = dynamic_hash<case_insensitive>(text,
stop_at<char, ';'>() || stop_at<char, ','>()).value;

This is a good task for a static interface':

template <typename static_type>
class hash_end_type

{
public:
const static_type& true this() const
{
return static_cast<const static_type&>(*this);
}

template <typename iterator_t>
inline bool operator!=(const iterator t i) const

{

}
};

// note the CRTP

return true this() != i;

template <bool (*funct)(const char), bool NEGATE>
struct apply f : public hash_end_type< apply f<funct, NEGATE> >

template <typename iterator_t>
inline bool operator!=(const iterator t i) const

{

}
};

return funct(*i) ~ NEGATE;

// note again the CRTP
template <typename char_t, char_t CLOSE_TAG>
struct stop_at : public hash_end type< stop_at<char_t, CLOSE_TAG> >

{
template <typename iterator_ t>
inline bool operator!=(const iterator t i) const
{
return (*i != CLOSE_TAG);
}
};

Since there’s a single function in the class, this example does not derive from static_interface but replicates the code.

349

CHAPTER 7 © CODE GENERATORS

Having all objects inherit the same interface, you can define “combo type” and logic operators:

struct logic AND {};
struct logic OR {};

template <typename T1, typename T2, typename LOGICAL_OP>
class hash_end_type combo
: public hash_end type< hash _end type combo<T1, T2, LOGICAL OP> >
{
T1 t1_;
T2 t2_;

public:
hash_end type combo(const T1& t1, const T2& t2)
:ot1 (t1), t2 (t2)
{
}

template <typename iterator_ t>
inline bool operator!=(const iterator t i) const

{
}

return combine(i, LOGICAL OP());

private:
template <typename iterator t>
bool combine(const iterator t i, logic AND) const
{

}

return (t1_ != i) & (t2_ != i);

template <typename iterator t>
bool combine(const iterator t i, logic OR) const

{
}

return (t1_ != i) || (t2_ != i);
b

template <typename K1, typename K2>
inline hash_end_type_combo<K1, K2, logic_AND>
operator8d (const hash_end type<K1>& ki, const hash_end type<K2>& k2)
{
return hash_end_type combo<K1, K2, logic AND>(ki.true this(), k2.true_this());

}

template <typename K1, typename K2>
inline hash_end_type combo<K1, K2, logic OR>
operator|| (const hash_end_type<K1>& ki, const hash_end_type<K2>8 k2)

{
return hash_end_type_combo<K1, K2, logic_OR>(ki.true_this(), k2.true_this());

}
350

CHAPTER 7 CODE GENERATORS

Note the counterintuitive use of the operation tag. You may be tempted to replace logic_AND with an
“active tag,” such as std: :1logical and<bool>, drop combine entirely, and just use the tag as a function call
to produce the result:

template <typename iterator_ t>
inline bool operator!=(const iterator t i) const

{
}

return LOGICAL OP()(t1_ !'= i, t2_ != i);

This is incorrect, as it would blow short-circuit (when you express, say, A 8& B as F(A,B), all the
arguments must be evaluated before calling F).

size_t h = dynamic_hash<case_insensitive>(text,
stop_at<char,';'>() || stop_at<char,','>() || stop_at<char,0>()).value;

Note also that the check for null char is removed in stop_at. It now has to be added explicitly, but it’s
performed only once.
This syntax is an example of a lambda expression, which is the main topic of Section 9.2.

7.4. Nth Minimum

This section gives a step-by-step example of a simple recursive compile-time function that involves a data
structure.

You write a container called nth_min<T, N>.An instance of this container receives values of type T, one
at a time,'? via an insert member function, and it can be asked for the smallest N elements met so far.

For a reason to be discussed later, let’s impose the extra requirement that the container should not
allocate its workspace from dynamic memory.

template <typename scalar_t, size t N>
class nth_min

{
scalar t data_[N];

public:
void insert(const scalar t& x)

{
update(data_, x);

}

const scalar t& operator[](const size t i) const

{

return data_[i];

}
};

12This is an online problem. In offline problems, all the input values are given at the same time. There’s a data structure
by David Eppstein (see http://www.ics.uci.edu/~eppstein/pubs/kbest.html) that solves the online problem using
memory proportional to N and exhibits amortized constant-time operations. This example focuses on how to improve a
naive implementation, not on creating an efficient algorithm.

351

http://www.ics.uci.edu/~eppstein/pubs/kbest.html

CHAPTER 7 © CODE GENERATORS

The following paragraphs produce a suitable update function.”

template <typename scalar_t, int N>
inline void update(scalar_t (&data)[N], const scalar t& x)

{
}

// now N is known, start iterations here

First, you need to visualize the algorithm in recursive form. Assume as the induction hypothesis that
data_ contains the N smallest values met so far, in ascending order.

if (x > data_[N-1])
// x is not in the N minima
discard x and return;
Else
// here x < data_[N-1], so
// data_[N-1] will be replaced either by x or by data_[N-2]
if (x = data_[N-2])
data_[N-1] = x and return;
Else
data_[N-1] = data_[N-2];
if (x = data_[N-3])
data_[N-2] = x and return;
Else
data_[N-2] = data_[N-3];
dits 15 aly 24 31 35 X 29
0 1 . N-3 N-2 N-1
g 15 17 24 31 31 overwrite element N-1
ata with N-2
0 1 ves N-3 N-2 N-1
Jai 15 17 24 29 31 overwrite element N-2
el with x
0 1 ves N-3 N-2 N-1

"Here, update and its auxiliary subroutines are global functions. This just makes the illustration easier, because it allows
you to focus on one feature at a time. You can safely declare all these functions as private static members of the container.

352

CHAPTER 7 CODE GENERATORS

Now observe that “discard x” is equivalent to “write x in the non-existent position N” You factor out the
write operation using a custom selector:

template <int N>
struct nth

{

};

template <typename scalar_t, int N, int SIZE>
void write(scalar t (&data)[SIZE], const scalar t& x, nth<N>)
{
data[N] = x;
}

template <typename scalar_t, int SIZE>

void write(scalar t (&data)[SIZE], const scalar t& x, nth<SIZE>)
{

}

The second overload uses the dimension of the array. So write(data,x,nth<I>()) actually means
“write x in the Ith position of array data, if possible; otherwise, do nothing”.
This small abstraction permits you to extend the same recursive pattern to the whole algorithm:

if (x » data_[N-1])
// x is not in the N minima
data_[N] = x and return;
else
if (x 2 data_[N-2])
data_[N-1] = x and return;
else

template <typename scalar_t, int N, int SIZE>
void iterate(scalar t (&data)[SIZE], const scalar t& x, nth<N>)
if (x < data[N])

data[N] = data[N-1];
iterate(data, x, nth<N-1>());

}
else
{
write(data, x, nth<N+1>()); // write x at position N+1
}

}

353

CHAPTER 7 © CODE GENERATORS

Next, you have to write an iteration terminator, and you can begin identifying values of template
parameters that make the rest of the code meaningless. When N==0, data[N-1] is for sure not well-formed,
so you specialize/overload the case where N is 0. In fact, if you have to track down only the smallest element
of the sequence, there’s no shift involved:

template <typename scalar_t, int SIZE>
void iterate(scalar t (&data)[SIZE], const scalar t& x, nth<0s)

{
// here N=0, after this point, stop iterations
// if x is less than minimum, keep x, else discard it
if (x < data[o0])
data[o] = x;
else
write(data, x, nth<1>());
}

The else branch cannot be omitted, but if SIZE is 1, the optimizing compiler will wipe it out.
Finally, the recursion starts backwards on the last element of the array, so you pass N-1:

template <typename scalar t, int N>
void update(scalar t (&data)[N], const scalar t& x)

{
}

iterate(data, x, nth<N-1>());

What's not elegant in this implementation is that iterate<0> contains duplicated code from
iterate<N>. The most elegant solution would end with an empty function.

Another generalization is needed. All write operations involve either a shift data[K] = data[K-1] or
the insertion data[K] = x, respecting array bounds. Can a single function template represent both?

Yes, if you are able to identify x with an element of data and specify only the index of the element to
pick:

template <typename scalar_t, int N, int SIZE, int J>
void write(scalar t (&data)[SIZE], const scalar t& x, nth<N>, nth<J>)
{

}

data[N] = data[J];

template <typename scalar_t, int SIZE, int J>

void write(scalar t (&data)[SIZE], const scalar t& x, nth<SIZE>, nth<J>)
{

}

If you compare the instructions data[K] = data[K-1] and data[0] = x from the implementation, you
see that x is naturally identified with data[-1].

354

CHAPTER 7 CODE GENERATORS

So you add two more specializations:

template <typename scalar t, int N, int SIZE>
void write(scalar t (&data)[SIZE], const scalar t& x, nth<N>, nth<-15)

{
}

template <typename scalar_t, int SIZE>

void write(scalar t (&data)[SIZE], const scalar t& x, nth<SIZE>, nth<-1>)
{

}

data[N] = x;

To sum up, write(data, x, N, J)isacomplicated way to say data[N] = data[J];Nand J are
selectors, not integers. As usual, the function deduces the length of the array, so out-of-bounds accesses
become no-ops.

template <typename scalar_t, int N, int SIZE>
void iterate(scalar t (&data)[SIZE], const scalar t& x, nth<N>)

if (x < data[N])

write(data, x, nth<N>(), nth<N-1>());
iterate(data, x, nth<N-1>());

}
else
{
write(data, x, nth<N+1>(), nth<-1>()); // line #1
}

}

template <typename scalar_t, int SIZE>

void iterate(scalar t (&data)[SIZE], const scalar t& x, nth<-1>)
{

}

When N=0 in the code, write translates to data[0] = X, as required, and iteration -1 is empty.

Note that you pay the price of generality in line 1, which is rather unclear at first sight, since you have to
explicitly use nth<-1> to access x.

If N is large, the fastest algorithm would possibly store objects in a large chunk of memory and sort
them when necessary, doing all the work at runtime. In the worst case, if K is the number of items inserted,
execution time is proportional to K.N for the static version, but for small values of N and simple POD types
(that is, when operator< and assignment do not have significant overhead), the static version will usually
perform faster, due to its compactness and absence of hidden constants.'*

14Tt seems that this kind of “greedy compact style” for small values of N gets most benefit from an aggressive optimizing
compiler. A rudimentary stress test with 10.000.000 insertions and N<32 showed a very large runtime difference
(30—40%) between a “normal” and an “extreme” release build. Greedy algorithms and compact code take advantage of
technological factors, such as processor caches.

355

CHAPTER 7 © CODE GENERATORS

Finally, you can replace the write function call, whose hidden meaning is an assignment, with a real
assignment. Just use a proxy:

struct null_reference

{

template <typename scalar_t>
null reference& operator= (const scalar t8&)

{
}

return *this;
};

template <int K>
struct nth

{
template <typename scalar t, int SIZE>

static scalar t& element(scalar t (&data)[SIZE], const scalar t& x)
{

}

return data[K];

template <typename scalar_t>
static null reference element(scalar t (&data)[K], const scalar t8& x)

{
}

return null reference();
};

template <>
struct nth<o>

{
template <typename scalar_t, int SIZE>
static scalar t& element(scalar t (&data)[SIZE], const scalar t& x)
{
return data[o0];
}
};

template <>
struct nth<-1>

{
template <typename scalar_t, int SIZE>
static const scalar t& element(scalar t (&data)[SIZE], const scalar t& x)
{
return x;
}
b

356

CHAPTER 7 CODE GENERATORS

struct nth_min

{
template <typename scalar_t, int SIZE>

static void update(scalar_t (&data)[SIZE], const scalar t& x)
{

}

iterate(data, x, nth<SIZE-1>());

private:
template <typename scalar_t, int N, int SIZE>
static void iterate(scalar t (&data)[SIZE], const scalar t& x, nth<N>)

if (x < data[N])
{

nth<N>::element(data, x) = nth<N-1>::element(data, x);
iterate(data, x, nth<N-1>());

}

else

{
}

nth<N+1>::element(data, x) = nth<-1>::element(data, x);

}

template <typename scalar_t, int SIZE>
static void iterate(scalar t (&data)[SIZE], const scalar t& x, nth<-1>)
{
}
b

7.5. The Template Factory Pattern

Templates are good at making compile-time decisions, but all programs need to take runtime decisions.

The factory pattern solves the runtime decision problem via polymorphism. An isolated function, called
the factory, embeds all the logic and returns a pointer to a dynamically-created object, which drives the
program flow with its virtual member function calls:

class abstract_task

{
public:
virtual void do it() = o0;
virtual ~abstract task()
{
}
};

357

CHAPTER 7 © CODE GENERATORS

class first task : public abstract task

{
public:
first task(/* parameters */)
{
/...
}
virtual void do_it()
{
// ..
}
};

enum task_type

FIRST_TASK, SECOND_TASK, THIRD TASK

};
abstract_task* factory(task type t)
{
switch (t)
case FIRST TASK: return new first task(...);
case SECOND TASK: return new second task(...);
case THIRD TASK: return new third task(...);
default: return 0;
}
}
int main()
{
task_type t = ask_user();
abstract_task* a = factory(t);
a->do_it();
delete a;
return 0;
}

Note that the only switch...case construct, that is, the link between the user choice and the program
flow, is hidden inside the factory.
As expected, templates have no exact equivalent, but the following pattern is definitely similar:

template <typename TASK T>
void do_the work(TASK T task)

{
task.loadParameters(...);
task.run();
task.writeResult(...);

}

358

CHAPTER 7 CODE GENERATORS

enum task type

{
FIRST_TASK, SECOND_TASK, THIRD_TASK

1
void factory(task_type t)

first task ti1;
second_task t2;
third_task t3;

switch (t)

{
case FIRST TASK: do_the work(t1); break;
case SECOND TASK: do_the work(t2); break;
case THIRD TASK: do_the work(t3); break;
default: throw some_exception();

The function do_the_work is an example of static polymorphism. The usage of an object determines its
interface and vice versa. Every static type for which the syntax is valid is automatically usable.

This approach offers the advantage of a unified workflow. There’s a single function to debug and
maintain, Obviously, having three overloads of do_the_work would minimize this benefit.

Here’s another example—a function that takes an array and computes either the sum or the product of
all elements.

enum compute_type { SUM, MULTIPLY };

double do_the work(compute_type t, const double* data, size t length)

{
switch (t)
{

case SUM:
return std::accumulate(data,data+length,0.0);

case MULTIPLY:
return std::accumulate(data,data+length,1.0,std: :multiplies<double>());

default:
throw some exception();

}
}

You want to rework the code so that it takes numbers from a given text file and performs the requested
operation on all elements, and all computations should be performed with a user-supplied precision.

359

CHAPTER 7 © CODE GENERATORS

This requires a multi-layer template factory. Roughly speaking, you have N function templates. The Kth
function has N-K arguments and K template parameters and it uses a switch block to branch execution to
one of the possible (K+1)th functions.

enum result type { SUM, MULTIPLY };
enum data_type { FLOAT, DOUBLE };

template <typename T>
T factory LAYER3(result type t, const std::vector<T>& data)
{
switch (t)
{
case SUM:
return std::accumulate(data.begin(),data.end(),T(0));

case MULTIPLY:
return std::accumulate(data.begin(),data.end(),T(1),std: :multiplies<T>());

default:
throw some_exception();
}
}

template <typename T>
T factory LAYER2(result type t, std::istreamd i)

std::vector<T> data;

std::copy(std::istream iterator<T>(i), std::istream iterator<T>(),
std::back inserter(data));

return factory LAYER3(t, data);

}
double ML factory(result type t, data_type d, const char* filename)
{
std::ifstream i(filename);
switch (d)
{
case FLOAT:
return factory LAYER2<float>(t, i);
case DOUBLE:
return factory LAYER2<double>(t, i);
default:
throw some_exception();
}
}

The hardest design problem in template factories is usually the type of the result.
Here the code silently exploits the fact that all functions return a result convertible to double.

360

CHAPTER 7 CODE GENERATORS

7.6. Automatic Enumeration of Types

It's possible to exploit the _ LINE__ macro to create an easily extensible collection of types that can be
accessed as an enumeration.
Consider the following prototype—you can trivially map an integer index into a selector:

template <int N>

struct single_value : selector<false>
{

};

template <>
struct single value<7> : selector<true> // user supplied case #1

{
};

template <>
struct single value<13> : selector<true> // user supplied case #2

{
};

/7 ...

template <>

struct single value<128> // terminator, equivalent to max size;
{ // it will be useful shortly
};

With greater generality we can write:

template <>

struct single_value<7> : MyTypel // user supplied case #1
{

};

template <>

struct single_value<13> : MyType2 // user supplied case #2
{

};

In fact, single_value is a metafunction that maps a range of integers, say [0...127] for simplicity, on
types, which always returns selector<false>, except 7 > MyTypel and 13 -> MyType2.

Assume again that MyType is just selector<true>

Now you will see a template class, enum_hunter, that maps consecutive indices to the user-supplied
cases, so that enum_hunter<1> is'> single_value<7>, enum_hunter<2> is single value<13>, and so on.

5is means derives from.

361

CHAPTER 7 © CODE GENERATORS

The key idea is as follows:
e Since a default implementation is given, any single_value<N> exists.
e User-supplied specializations have their member : :value == true.

e enum_hunter<N> will inspect all single value<J>, starting at J==0, until it finds the
Nth user-supplied value.

e enum_hunter<N> is actually enum_hunter<N, 0>

e enum_hunter<N,J> inspects single_value<J>::value. Ifit’s false, it inherits from
enum_hunter<N, J+1>. Otherwise, it inherits from enum_hunter<N-1,J+1> (except
when N-1 would be zero, where you pick <0, J> because the final result is precisely
single_value<J>).

e When Nreaches 0, you are done. You met exactly N user-supplied values. If the initial
N is too large, J will reach the terminator before N drops to 0, and since the terminator
is an empty class, the compiler will complain.

All this yields a surprisingly compact implementation (for the moment, ignore the fact that everything is
hard-coded):

template <int N, int J=0>

struct enum_hunter

: enum_hunter<N-single value<J>::value, J+1-(N == single_value<J>::value)>
{

};

template <int J>

struct enum_hunter<o, J> : single value<J>
{

b

template <>
struct enum_hunter<o, 0> : single value<o0>

{
};

This skeleton technique can lead to a couple of different applications—the simplest is to build a sparse
compile-time array between arbitrary (but small) integers and types:

#define MXT_ADD_ENUMERATION(N, TYPE) \
template <> struct single_value<N> : public TYPE, selector<true> {}

struct Mapped1

static double do_it() { return 3.14; }
};

struct Mapped2

{
static double do_it() { return 6.28; }

};

362

CHAPTER 7 CODE GENERATORS

MXT_ADD_ENUMERATION(7, Mapped1);
MXT_ADD_ENUMERATION(13, Mapped2);

double xx1 = enum_hunter<1>::do_it();
double xx2 = enum_hunter<2>::do_it();

3.14
6.28

// =
// =

Polishing up the macros, you parameterize the name of enum_hunter as ENUM and rename single_value
as ENUM##_case.
#tdefine MXT_BEGIN_ENUMERATION(ENUM)

template <int N> struct ENUM## case : static_value<int, 0> {};

template <int N, int J=0> struct ENUM
: ENUMCN-ENUM#t# case<J>::value, J+1-(N == ENUM## case<J>::value)> {};

template <int N> struct ENUM<O, N> : ENUM## case<N> {};

g

template <> struct ENUM<O, 0> : ENUM## case<0> {}
struct empty class {};

#tdefine MXT _END ENUMERATION(ENUM, K) \
template <> struct ENUM## case<K> : {}

// we explicitly add a member “value” without using derivation.
// this allows TYPE itself to be selector<true>

#define MXT_ADD_ENUMERATION(ENUM, TYPE, K) \
template <> struct ENUM##_case<K> : TYPE \
{ static const int value = 1; }

When using the macros, every directive in the sequence between begin/end will be added
automatically using line numbers as a progressive index. Two directives on the same line won'’t compile,
since you cannot specialize a class template twice.

MXT_BEGIN_ENUMERATION(MyTypeEnum);

MXT_ADD_ENUMERATION(MyTypeEnum, Mappedi, 7); // this gets index 1
MXT_ADD_ENUMERATION(MyTypeEnum, Mapped2, 13); // this gets index 2

MXT_END_ENUMERATION(MyTypeEnum, 128);

So MyTypeEnum<1> is Mapped1, MyTypeEnum<2> is Mapped2, but MyTypeEnum_case<. . .> is still available
to the code. Observe that 7 and 13 in the example may not be needed, if you plan to use the enumeration
via contiguous indices. However, you need to provide unique and ascending values. So you can just pass
__LINE__ as parameter K.

Another application of type enumeration is that, unlike classic enums, several headers can add their
own values. So you can “distribute” a function between different files.

363

CHAPTER 7 © CODE GENERATORS

Suppose you want to gather the list of files included in a cpp and you don’t want each header to access a
global variable:

#include "H1.hpp"
#include "H2.hpp"
#include "H3.hpp"

int main(int argc, const char* argv[])

{

std::vector<std::string> global list;
// here initialize global_list
}

A rough solution could be as follows:
// flag_init.hpp
#define MXT_INIT_LIST

// equivalent to BEGIN_ENUMERATION
template <int N> struct flag init

{
static void run(std::vector<std::string>& v)
{
}

};

template <int N>
void run flag init(std::vector<std::string>& v, static_value<int, N>)

{
flag_init<N>::run(v);
run_flag init(v, static_value<int, N+1>());

}

// magic constant, terminator
inline void run_flag_init(std::vector<std::string>8 v, static_value<int, 64>)

{
}

// Hi.hpp
#ifdef MXT_INIT_LIST

// equivalent to ADD_ENUMERATION
// pick a random number < 64

template < > struct flag init<7>

{
static void run(std::vector<std::string>& v)
{
v.push_back("hello, I am " _FILE);
}
b

364

CHAPTER 7

#tendif

// the rest of Hi.hpp, then write similarly H2 and H3
// main.cpp

#include "flag init.hpp"

#include "H1i.hpp"
#include "H2.hpp"
#include "H3.hpp"

int main(int argc, const char* argv[])

{
std::vector<std::string> global list of_flags;
run_flag init(global list of flags);

}

7.7. If-Less Code

CODE GENERATORS

Sometimes program logic can be embedded in “smart objects” that know what to do, thus eliminating the

need for if/switch blocks.

7.7.1. Smart Constants

As an example, suppose you need to code a suitable print function for a date class:

class date
{
public:
int day() const;
int month() const;
int year() const;

};

enum dateformat_t

{

YYYYMMDD,
YYMMDD,
DDMMYYYY,

// many more...

};
void print(date d, dateformat t f)

switch (f)
{

case YYYYMMDD:
// Very verbose...

365

CHAPTER 7 © CODE GENERATORS

Instead, you can write branch-free code. As usual, TMP techniques take advantage of storing

information in places where it’s not evident that meaningful data can be stored!

Suppose the format constants like YYYYMMDD are actually numbers with six decimal digits in the form
[f1 e1 f2 e2 f3 e3], where fiis the index of the “date field to print” (say, O=year, 1I=month and 2=day)

and ei is the width as a number of digits.

For example, 041222 would be “year with four digits (04), month with two digits (12), and day with two

digits (22),” or simply YYYY-MM-DD. This would enable you to write:

const int pow10[]
const int data[3]
const char* sep[]

1, 10, 100, 1000, 10000, ... };
d. ea:f(), d.month(), d. day() };

{
{
{

J

for (int i=0; i<3; ++i)

std::cout << std::setw(e[i]) << (data[f[i]] % pow1o[e[i]]) << sep[i];

Generating such constants is easy:
enum { Y, M, D };

template <unsigned F, unsigned W =

struct datefield : static_value<unsigned, F*10 + (W % 10)>
{

};

template <typename T1, typename T2 = void, typename T3 = void>
struct dateformat
{
static const unsigned pow10 = 100 * dateformat<T2,T3>::pow10;
static const unsigned value

};

template < >
struct dateformat<void, void, void>

powl0 * T1::value + dateformat<T2,T3>:

:value;

{ static const unsigned value = 0;

static const unsigned powi0o = 1;

};
enum
{

YYYYMMDD = dateformat<datefield<Y,4>, datefield<M>, datefield<D> >::value,
DDMMYY = dateformat<datefield<D>, datefield<M>, datefield<Y> »>::value,
YYYYMM = dateformat<datefield<Y,4>, datefield<M> >::value,

/] ...

b

366

CHAPTER 7 CODE GENERATORS

For simplicity, this implementation uses rotation on three parameters only.'¢
The print function follows:

void print(date d, dateformat t f)

const unsigned powio[] = { 1, 10, 100, 1000, 10000, ... };
const int data[3] = { d.year(), d.month(), d.day() };

for (unsigned int fc = f; fc != 0; fc /= 100)

{

unsigned w = fc % 10;

unsigned j = (fc % 100) / 10;

std::cout << std::setw(w) << (data[j] % pow1o[w]);
}

7.7.2. Converting Enum to String

Similarly to what you did in the previous paragraph, you can encode a short string inside the value of an
enumeration. The C++ standard guarantees that an enum is represented by a large unsigned integer, if any
of the values are large. In practice, you can assume the enum will be a 64-bit integer. Since 2% > 40'2, you can
store a string of length 12 as an integer in base 40, where A=1, B=2, and so on.

First you define the “alphabet”:

template <char C> struct char2int;
template <size t N> struct int2char;

#tdefine C2I(C, I) \
template <> struct char2int<C> { static const size t value = I; }

#define I2C(C, I) \
template <> struct int2char<I> { static const char value = C; }

#define TRANSLATE1(C1, N) \
c21(c1, N); I20(C1, N)

#define TRANSLATE2(C1, C2, N) \
C2I(Ca, N); C2I(C2, N); I2C(C1, N)

TRANSLATE2('a', 'A', 1); // convert both ‘A’ and ‘a’ to 1, and 1 to ‘a’
TRANSLATE2('b', 'B', 2);

/...

TRANSLATE2('z', 'Z', 26);

1So you cannot generate patterns like YYYYMMDDYY.

367

CHAPTER 7 © CODE GENERATORS

TRANSLATE1('0", 27);
TRANSLATE1('1', 28);
/...

TRANSLATE1('9", 36);
TRANSLATEL('_", 37);

static const size t SSTRING BASE = 40;

template <size t N, bool TEST = (N<SSTRING BASE)>
struct verify_num

{

static const size t value = N;

};

template <size t N>
struct verify num<N, false>

{

// this will not compile if a number >= 40 is used by mistake

};

template <char C1, char C2 = 0, ..., char C12 = 0>
struct static_string
{
static const size t aux
= verify num< char2int<Ci>::value >::value;
static const size t value
= aux + static_string<C2,...,C12>::value * SSTRING BASE;
b

template <>
struct static_string<o>

{

static const size t value = 0;

};

template <size t VALUE>
std::string unpack(static_value<size t, VALUE>)

{
std::string result(1, char(int2char<VALUE % SSTRING BASE>::value));
return result + unpack(static_value<size t, VALUE/SSTRING BASE>());

}

std::string unpack(static_value<size t, 0>)

{

std::string result;
return result;

}

368

CHAPTER 7 CODE GENERATORS

#define MXT_ENUM DECODER(TYPE) \
template <TYPE VALUE> \
std::string decode() \

{ return unpack(static_value<size t, VALUE>()); }
Note that you separate the generic code from the “implementation”. Now you define an enum:

enum MyEnum

{
first = static_string<'f','i','r',"'s','t'>::value,
verylong = static_string<'v','e','r','y','l",'0",'n", 'g'>::value

5
MXT_ENUM_DECODER (MyEnum); // Write this to get a “decode” function
std::cout << decode<first>(); // prints “first”

For simplicity, this example implements static decoding (that is, the decoded enum value is known at
compile time). However, the same operation can be performed at runtime."’
In general this technique is effective when the actual value of the enum is not meaningful to the program.

7.7.3. Self-Modifying Function Tables

Consider a trivial example of a circular container, where elements are “pushed back” (at the moment,
pretend anything is public):

template <typename T, size t N>
struct circular_array

{
T data_[N];
size t pos_;

circular array()
: data (), pos_(0)

{
}
void push_back(const T& x)
{

data_[pos_] = x;

if (++pos_ == N)

pos_ = 0;
}
};

You can convert push_back into a sort of self-modifying function, similar to trampolines (see Section 5.3.1).
You will use a function pointer initialized with a suitable function template.

"Hint: Use a const array of char of length SSTRING_BASE and initialize it with { 0, int2char<1>::value,
int2char<2>::value, ... }.

369

CHAPTER 7 © CODE GENERATORS

template <typename T, size t N>
struct circular array

{
T data_[N];

typedef void (*push_back t) (circular_array<T, N>& a, const T& x);
push_back t pb_;

template <size t K>
struct update_element_at

{

static void apply(circular_array<T, N>& a, const T& x)
{
a.data_[K] = x;
a.pb_ = update_element at<(K+1) % N>::apply;
}
};

circular array()
: data_(), pb_(8update_element_at<0>::apply)
{

}

void push_back(const T& x)
{

}

pb_(*this, x);
};

The key point of this pattern is that you have a collection of functions where all elements know the
action that follows, and so they can update a pointer with this information.

Updating the function pointer is not mandatory. A function may select itself as the next candidate.
Suppose you change the container policy so as to keep the first N-1 elements and then constantly overwrite
the last:

if ((K+1)<N)
a.pb_ = &update_element_at<K+1>::apply;

Self-modifying functions are usually elegant, but slightly less efficient than a classic switch, mostly
because of technology factors such as caches or program flow predictors.

Applications include data structures whose behavior during initialization is different (a “warm-up”
phase) until a minimum number of elements have been inserted.

370

CHAPTER 7 CODE GENERATORS

Note /CF, identical code folding, is a widespread optimization technique applied by compilers. Put simply,
the linker will try to find “duplicate functions” and generate binary code only once. For example, vector<int*>
and vector<double*> will probably generate identical code, so they can be merged.

While this reduces the size of the binary, it has the side effect that equality of function pointers may not work as
expected. If F and G are identical (suppose they have an empty body), it'’s possible that F != G in a debug build
and F == G in an ICF-optimized build.

Be careful when writing a self-modifying function that relies on equality/inequality of function pointers
(obviously, comparisons with NULL pointers work fine).

371

CHAPTER 8

Functors

This chapter focuses on several techniques that help when writing (or when not writing) functors.
Most STL algorithms require compile-time function objects and this usually requires some manual coding:

struct Person

{
unsigned int age;
std::string home_address;
double salary() const;

};

std: :vector<Person> data;
std::sort(data.begin(), data.end(), /* by age */);
std::partition(data.begin(), data.end(), /* by salary */);

If you can modify Person, sometimes an elegant and quick solution is to write a public static member
function and a member functor. This simultaneously attains the maximum efficiency and control, as your

code has access to private members:

struct Person

{
private:
unsigned int age;
public:
static bool less by age(const Persond a, const Person& b)
{
return a.age < b.age;
}
struct BY_AGE
{
bool operator()(const Persond a, const Persond b) const
return Person::less_by age(a, b);
}
};
};

373

CHAPTER 8 © FUNCTORS

std::vector<Person> data;
std::sort(data.begin(), data.end(), Person::less by age); // suboptimal
std::sort(data.begin(), data.end(), Person::BY AGE()); // good

A static member function has access to private data. However it will be much harder for the compiler to
inline the comparison, so a functor is usually better.
You can even factor out some code that converts the former to the latter:

template <typename T, bool (*LESS)(const T&, const T&)>
struct less_compare_t

{
typedef T first argument_type;
typedef T second_argument_type;
typedef bool result type;
bool operator()(const T& x, const T& y) const
return LESS(x, y);
}
};
struct Person
{
private:
unsigned int age;
public:
static bool less by age(const Persond a, const Person& b)
{

return a.age < b.age;

}

typedef less_compare_t<Person, Person::less_by_age> BY AGE;

)

The name of the function/functor is chosen to make the expression clear at the point of instantiation,
not at the point of definition.

Note that non-generic functors (whose arguments have a fixed type) are usually members of the class.

It's generally fair to assume that a functor can be freely copied and passed by value. If a functor needs
many data members, you had better collect them in a separate structure and store only a reference. The
caller of the functor will be responsible for keeping the extra information alive:

struct information_needed to_sort_elements

{
};

/7 ...

class my less

{

const information_needed_to_sort_elementsd ref ;

374

CHAPTER 8 © FUNCTORS

public:

explicit functor(const information needed to sort elements& ref)
: ref (ref)

{
}
bool operator()(const Person& p1, const Persond P2) const

{ ...}
};

int main()

{
information_needed to sort elements i;
// build a suitable container data...
std::sort(data.begin(), data.end(), my less(i));

}

STL algorithms do not provide any guarantee concerning the number of copies of function objects.

Another interesting feature is that a functor static type is irrelevant, because it’s always deduced. If the
functor is returned from a function, it will be used immediately (see Section 4.3.4); if it’s passed to a function
template, it will bind to an argument that accepts anything.

This allows clients to generate anonymous instances of complex function objects at the call site:

i = std::find_if(begin, end, std::bind2nd(std::less<double>(), 3.14));

// the exact type of the functor is irrelevant
// since find_if has an argument that binds to anything:

// template <typename I, typename F>
// 1 find_if(I begin, I end, F func)

Note C+-+0x includes support for creation of lambda objects.

It is a new syntax that can pass anonymous “pieces of code” in curly brackets as if they were functors. This
mitigates the problem of name pollution. In other words, it’s not necessary to give a name to an entity that is not
reused.

See Section 12.4 for more details.

375

CHAPTER 8 © FUNCTORS

8.1. Strong and Weak Functors

Some functors are strongly typed. This means that the user fixes the argument of the function call when
determining the template arguments. All standard functionals are strongly typed.

template <typename T»
struct less

bool operator()(const T& lhs, const T& rhs) const

return lhs < rhs;

}
};

std::sort(data.begin(), data.end(), less<Person>());
Alternatively, you can have a weak functor that accepts arguments with more freedom*:

struct weak less

{
template <typename T>
bool operator()(const T& lhs, const T& rhs) const
return lhs < rhs;
}
};

std::sort(data.begin(), data.end(), weak less());

A strongly typed functor statically blocks all types that are incompatible with T, but since this is limited
to the interface, it can actually share the implementation with a weak functor:

template <typename T»
struct less : private weak_less

{

bool operator()(const T& lhs, const T& rhs) const

return static_cast<const weak less8>(*this)(lhs, rhs);

}
};

'These functors have been voted into C++14 with a slightly different terminology; they are called “transparent”.
To the knowledge of the author, this book was the first place where the idea appeared publicly. For all the details,
see http://www.open-std.org/jtci1/sc22/wg21/docs/papers/2012/n3421.htm.

376

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3421.htm

CHAPTER 8 © FUNCTORS

8.2. Functor Composition Tools

The STL offers facilities to compose functors and values. For example, std: :bind2nd turns a binary
operation and an operand into a unary function. Often, you'll need tools that perform the reverse.

The prefix by in by age is actually the composition of a binary relation with an accessor. age extracts
the age from a person and by compares two ages. Here’s a minimal implementation that abstracts this
composition concept.

template <typename functor_ t>
class by t

{

functor_t f_;

public:
by t(functor t f)
: f (F)
{}

template <typename argument_t>
bool operator()(const argument t& a, const argument t& b) const

return f_(a) < f_(b);

}
};

template <typename functor_ t>
inline by t<functor t> by(const functor t& f)

{
}

// see Section 1.1.4

return f;

template <typename R, typename A>
inline by t<R (*)(A)> by(R (*f)(A))
{

return f;
}
struct age t
{
unsigned int operator()(const Persond p) const
{
return p.age;
}
age_t(int = 0)
{
}
};

377

CHAPTER 8 © FUNCTORS

static const age t AGE = 0%

int main()

{

std: :vector<Person> data;
std::sort(data.begin(), data.end(), by(AGE));
}

by is a functor composition tool. Since it does not impose any requirement on functor_t, it will accept
suitable static member functions, which are convenient if Person: :age is private:

struct Person

{
private:
unsigned int age;
public:
static int AGE(const Persond p)
{
return p.age;
}
};

std::sort(data.begin(), data.end(), by(Person::AGE)); // ok!

A functor/accessor may be given powerful lambda semantics.
Here is another preview of Section 9.2. In pseudo-intuitive notation, comparator (A, S) isa predicate
that returns true on object 0 if A(0) is “less” than S. “less” is a generic binary predicate.

template
<
typename scalar t,
typename accessor_t,
template <typename T> class less t
>
class comparator
{
scalar t x_;
accessor_t a_;

public:
comparator(scalar t x, accessor t a = accessor t())

: x_(x), a_(a)

2Since most functors are stateless, and so are not affected by initialization problems, global constants can be created in
header files.

378

CHAPTER 8 © FUNCTORS

template <typename argument_t>
bool operator()(const argument t& obj) const

less_t<scalar_t> less_;
return less (a_(obj), x);

}
};

Using a template-template parameter instead of a normal binary predicate saves you from typing
scalar_t twice and makes an anonymous instance quite clear to read:

comparator<double, SALARY, std::greater>(3.0)

Another minor point is the class layout: x_ is declared before a_, because a_ will often be stateless and is
therefore a small object. x_ might have stronger alignment constraints.
Now you can add operators to the functor and promote it to a lambda predicate®:

struct age t

{

int operator()(const Person& a) const

return a.age;

}

template <typename T>
comparator<T,age_t,std::less> operator<(const T& x) const

{
return comparator<T,age t,std::less>(x, *this);

}

template <typename T>
comparator<T,age_t,std::equal_to> operator==(const T& x) const

{

return comparator<T,age t,std::equal to>(x, *this);
}
};

std::partition(data.begin(), data.end(), Person::AGE < 35);
std::partition(data.begin(), data.end(), Person::AGE == 18);

3As arule, for expressiveness, it’s best to write a fully-qualified Person: : AGE rather than just AGE, so you must assume
that there’s a static constant of type age_t inside Person. This also allows age_t to be friend of Person. You can also
consider Person: :AGE () where AGE is either a member typedef for age_t or a static member function that returns a
default instance of age_t.

379

CHAPTER 8 © FUNCTORS

With a little effort, you can add more syntactic tricks to the chaining operator:

const selector<true> INCREASING;
const selector<false> DECREASING;

template <typename T>
bool oriented less(const T& x, const T& y, selector<true>)

{
}

return xy;

template <typename T>
bool oriented less(const T& x, const T8 y, selector<false>)

{
}

return y<x;

oriented_less can flip operator< and simulate operator>.

template <typename functor_t, bool ASCENDING = true>
class by t

{
functor_t f_;

public:
by t(functor t f) : f (f) {}

template <typename argument_t>
bool operator()(const argument t& a, const argument t& b) const

return oriented less(f (a), f (b), selector<ASCENDING>());
}

// inversion operators:

by t<functor t, true> operator+() const

{
}

return f_;

by t<functor t, false> operator-() const

{
}

return f_;

};

380

CHAPTER 8 © FUNCTORS

And finally, there’s another by helper function:

template <bool DIRECTION, typename functor t>
by t<functor_t, DIRECTION> by(selector<DIRECTION>, const functor t& v)

{
return by t<functor t, DIRECTION>(v);
}

All this allows writing:

std::sort(data.begin(), data.end(), +by(Person::AGE));
std::sort(data.begin(), data.end(), -by(Person::AGE));
std::sort(data.begin(), data.end(), by(DECREASING, Person::AGE));

Note |chose operator+ and operator- because by deals with numeric properties; the logical inversion of
a unary predicate is better expressed with operator!

Also, lines #2 and #3 are identical. It's only a matter of style to pick the clearest.

The last improvement to by _t is to perform strict type checking in operator().
The function call operator accepts almost anything, so more type checking will trap errors arising from
code that compiles merely by chance:

std::vector<Animal> data;
std::sort(data.begin(), data.end(), by(Person::AGE));

A convenient approach is to exploit cooperation from the functor. If functor t hasamember argument_type,
it also will be the argument of a strong operator (). Otherwise, you use the weak function call operator.

As usual, you hide the decision in a template parameter and provide two partial specializations. First,
some traits:

template <typename T>
struct argument_type of

{
typedef typename T::argument_type type;

)

template <typename A, typename R>
struct argument_type of<R (*)(A)>

{
typedef A type;
};

template <typename A, typename R>
struct argument_type of<R (*)(const A&)>

{
typedef A type;

)

381

CHAPTER 8 © FUNCTORS

template <typename T>

struct has_argument_type

: selector<[[true if T::argument_type exists*]]>
{

};

template <typename A, typename R>
struct has_argument type<R (*)(A) >
: selector<true>

{

};

/...
The first specialization performs strict type checking.

template
<
typename functor_t,
bool ASCENDING = true,
bool STRICT CHECK = has_argument_type<functor_t>
>
struct by t;

template <typename functor_t, bool ASCENDING>
struct by t<functor t, ASCENDING, true>

{
/...

::value

typedef typename argument type of<functor t>::type argument_type;

// note: strong argument type

bool operator()(const argument typed a, const argument typed b) const

return oriented less(f (a), f (b), selector<ASCENDING>());

}
};

template <typename functor_t, bool ASCENDING>
struct by t<functor t, ASCENDING, false>

{
/...

// note: weak argument type. This will accept anything

template <typename argument_t>

bool operator()(const argument t& a, const argument t& b) const

return oriented less(f_(a), f (b), selector<ASCENDING>());

}
};

“Details are described in Section 4.2.1.

382

CHAPTER 8 © FUNCTORS

To minimize code duplication, you factor out the function call operator in a template base and use a
static_cast, asin CRTP:

template <typename functor_t, bool ASCENDING = true>
struct by_t;

template <typename functor_t, bool ASCENDING, bool STRICT_CHECK>
struct by base t;

template <typename functor_t, bool ASCENDING>
struct by base_ t<functor_t, ASCENDING, true>

{

const functor t& f() const

{
typedef by t<functor t, ASCENDING> real type;

return static_cast<const real type&>(*this).f ;

}

typedef typename argument_type_of<functor_t>::type argument_type;
bool operator()(const argument_typed a, const argument_typed b) const

return oriented less(f()(a), f()(b), selector<ASCENDING>());

}
};

template <typename functor_t, bool ASCENDING>
struct by base t<functor_ t, ASCENDING, false>

{

const functor t& f() const

typedef by t<functor t, ASCENDING> real type;
return static_cast<const real type&>(*this).f ;

}

template <typename argument_t>
bool operator()(const argument t& a, const argument t& b) const

return oriented less(f()(a), f()(b), selector<ASCENDING>());

}
};
template <typename functor t, bool ASCENDING = true>
struct by t
: by_base_t<functor_t,ASCENDING,has_argument_type<functor t>::value>>
{

/...

};

383

CHAPTER 8 © FUNCTORS

8.3. Inner Template Functors

Functor wrappers may be used as interface-leveraging tools.
Syntactically, you take advantage of the fact that inner class templates know template parameters of the
outer class.

8.3.1. Conversion of Functions to Functors

Assume for simplicity that you have a collection of functions with a similar signature T £(T, T, ..., T),

where the number of arguments varies. Suppose further that the list of functions to be executed will be known

at runtime, so you need a base class with a virtual call whose unique signature could be (const T*, size t).
Let’s look for an automatic way of performing the conversion:

template <typename T>
struct base

{

virtual T eval(const T*, size t) const = 0;

virtual ~base() {}
};

Given a function, say double F(double,double), you could embed it in a functor, but you would have
to deduce T and F simultaneously:

template <typename T, T (*F)(T,T)>
struct functor : public base<T>

{
s

/...

Actually, you need T before F, so you can build a class template on T only, and after that an inner
template class:

template <typename T>
struct outer

{
template <T (*F)(T,T)>
struct inner : public base<T>

{

First you identify outer<T>, then you build inner:

template <typename T>
struct function call traits
{
template <T (*F)()>
struct eval 0 : public base<T>

SThe careful reader will notice that the following example does pass the length of the array, even if it is always ignored.

384

CHAPTER 8 © FUNCTORS

{

};

template <T (*F)(T)>

struct eval 1 : public base<T>
{

};

template <T (*F)(T, T)>

struct eval_2 : public base<T>
{

};

/7 ..

virtual T eval(const T* , size t) const { return F(); }

virtual T eval(const T* x, size t) const { return F(x[0]); }

virtual T eval(const T* x, size t) const { return F(x[0], x[1]); }

template <T (*F)()>
eval_0<F>* get_ptr() const

{

}
template <T (*F)(T)>
eval 1<F>* get ptr() const

{

}
template <T (*F)(T, T)>
eval 2<F>* get ptr() const

{

}
/...

return new eval O<F>;

return new eval 1<F>;

return new eval 2<F>;

};

template <typename T>
inline function_call traits<T> get function call(T (*F)())
{

}

return function_call_traits<T>();

template <typename T>
inline function_call traits<T> get function_call(T (*F)(T))

{
}

return function_call_traits<T>();

385

CHAPTER 8 © FUNCTORS

template <typename T>
inline function call traits<T> get function call(T (*F)(T, T))
{

}

/...

return function call traits<T>();

#tdefine MXT_FUNCTION CALL PTR(F) get_function_call(F).get_ptr<F>()

Note that:
e Fisused twice, first as a pointer, then as a template argument.

e Theget_ptr functions are not static, bizarre as it may look, this is an example of a
traits class that’s actually meant to be instantiated (but used anonymously).

double addo()

return 6.28;

}

double addi(double x)
{

}

double add2(double x, double y)
{

}

return x+3.14;

return x+y;

int main()

{
double x[5] = {1,2,3,4,5};

base<double>* f[3] =

{
MXT_FUNCTION_CALL_PTR(addo),

MXT_FUNCTION CALL PTR(add1),
MXT_FUNCTION CALL PTR(add2)

};

for (int i=0; i<3; ++i)
std::cout << f[i]->eval(x, 5);

// normal destruction code has been omitted for brevity

The previous example executes addo(), add1(x[0]), and add2(x[0], x[1]) via calls to the
same interface.

386

CHAPTER 8 © FUNCTORS

8.3.2. Conversion of Members to Functors

The very same technique seen in the previous section can transform pointers into functors.®
In C++, simple structures with no access restrictions are often used to transport small pieces of data.
Ideally, you'll want to maintain this simplicity and be able to write code with no overhead:

struct Person

{
unsigned int age;
double salary() const;

};

std: :vector<Person> data;

// warning: pseudo-c++
std::sort(data.begin(), data.end(), by(Person::age));
std::sort(data.begin(), data.end(), by(Person::salary));

Because you can use a pointer-to-member as a template argument, it’s not too hard to write an auxiliary
wrapper that can help. Unfortunately, the instantiation is too verbose to be useful.

template <typename from_t, typename to t, to_t from t::* POINTER>
struct data_member

{
const to_t& operator()(const from t& x) const
{
return x.*POINTER;
}
};

template <typename from t, typename to t, to t (from t::*POINTER)() const>
struct property member

to t operator()(const from t& x) const

return (x.*POINTER)();
}
};

struct TEST
{

int A;

int B() const { return -A; }
};

TEST data[3] = {2,1,3};

®The analogous STL structures instead merely embed a pointer in a functor.

387

CHAPTER 8 © FUNCTORS

// very verbose...
std::sort(data, data+3, by(data member<TEST, int, 8TEST::A>()));
std::sort(data, data+3, by(property member<TEST, int, &TEST::B>()));

However, it’s not possible to write a generic class pointer as the only template parameter:

template <typename A, typename B, B A::*POINTER>
struct wrapper<POINTER> // illegal: not c++

You have to resort again to a nested class template:

template <typename from_t, typename to_t>
struct wrapper

{
template <to_t from_t::*POINTER> // legal!

struct dataptr_t
{

const to t& operator()(const from t& x) const

{
return x.*POINTER;

}
};

template <to t from_t::*POINTER>
dataptr_t<POINTER> get() const
{

}

return dataptr t<POINTER>();
};

template <typename from_t, typename to_t>
wrapper<from t, to t> get wrapper(to t from t::* pointer)

return wrapper<from t, to t>();

}

The example includes a function that takes the pointer to perform the first deduction, and again you
have to supply the same pointer twice, once at runtime (whose value is basically ignored, but whose type is
used for deduction) and once at compile-time:

#define MEMBER(PTR) get wrapper(PTR).get<PTR>()
e get wrapper deduces arguments T1 and T2 automatically from PTR,

so get_wrapper (PTR) will return wrapper<T1, T2>.

e Then you ask this wrapper to instantiate its member function get again on PTR,
which returns the right object.

If PTR has type int TEST::*, the macro will produce a functor of type dataptr_t<PTR> (technically,
wrapper<TEST, int>:: dataptr_t<PTR>).

388

CHAPTER 8 © FUNCTORS

However, any other overload will do. Here’s an extended version:

template <typename from_t, typename to_t>
struct wrapper

template <to_t from_t::* POINTER>
struct dataptr_t

{
// optional:

// typedef from_t argument_type;

const to t& operator()(const from t& x) const

{
}

return x.*POINTER;
};

template <to t (from t::*POINTER)() const>
struct propptr_t

// optional:
// typedef from_t argument_type;

to_t operator()(const from t& x) const

return (x.*POINTER)();

}
};

template <to_t from_t::* POINTER>
dataptr t<POINTER> get() const
{

}

template <to t (from t::*POINTER)() const>
propptr t<POINTER> get() const

return dataptr t<POINTER>();

return propptr t<POINTER>();

}
};

template <typename from_t, typename to_t>
wrapper<from_t, to_t> get wrapper(to_t from t::* pointer)

return wrapper<from t, to t>();

}

389

CHAPTER 8 © FUNCTORS

template <typename from_t, typename to_t>
wrapper<from_t, to t> get wrapper(to_t (from_t::*pointer)() const)

{
}

return wrapper<from t, to t>();

#define mxt_create_accessor(PTR) get wrapper(PTR).get<PTR>()

struct TEST
{

int A;
int B() const { return -A; }
};

TEST data[3] = {2,1,3};

std::sort(data, data+3, by(mxt create accessor(&TEST::A)));
std::sort(data, data+3, by(mxt create accessor(&TEST::B)));

As usual, if the name of the class contains a comma (such as std: :map<int, float>), youneed to
typedef it before calling the macro.

The & is not strictly necessary. It’s possible to redefine the macro as get_wrapper(PTR).get<&PTR>() in order
to invoke it on the plain qualified name.

According to the Standard, the macro does not work inside templates as written. An additional template
keyword is necessary for the compiler to deduce correctly what get is, so the best option is to define a second
macro named (say)

mxt_create_accessor_template

get_wrapper(PTR).template get<8PTR>()

This version needs to be used whenever PTR depends on a template parameter that has impact on the line
where the macro expands. On the other hand, it is forbidden whenever PTR does not depend on anything else.”

8.3.3. More on the Double Wrapper Technique
In the previous paragraph, you saw a macro that looks like this one:
#define MEMBER(PTR) get wrapper(PTR).get<PTR>()
The argument PTR is used twice—the first time as an argument of a template function, which ignores its

value but uses only its type and returns an “intermediate functor”; the second time as a template parameter
of the functor itself, which produces the final object that you need.

’Some compilers, including VC, won’t notice the difference; however, GCC does care.

390

CHAPTER 8 © FUNCTORS

Let’s revise this technique, to face an apparently unrelated problem.? In classic C++, enumeration
values decay automatically to integers. This may cause bugs:

enum A { XA
enum B { XB

1};
1};

int main()

{

= XA;

= XB;

= b; // compiles and returns true, even if enums are unrelated

[5]

A
B
a

Let’s introduce a simple helper functor: an object of type enum_const is a static value that compares
exactly equal to one value from the same (non-anonymous) enumeration, but it cannot be compared to an
integer or to a different type.

template <typename T, T VALUE>
struct enum_const

{
bool operator==(T that) const
{
return VALUE == that;
}
// Barton-Nackman, see section 6.6
friend inline bool operator==(T lhs, enum_const<T, VALUE> rhs)
{
return rhs == lhs;
}
};

template <typename T>
struct enum_const_helper

{
template <T VALUE>
enum_const<T, VALUE> get() const
{
return enum_const<T, VALUE>();
}
};

template <typename T>
inline enum_const_helper<T> wrap(T)

{
}

return enum_const_helper<T>();

8This paragraph is intended exclusively as a teaching example, not as a solution for production code. In practice, this
issue would be solved by promoting a compiler warning to an error, or by using modern C++ strongly-typed enumerations.
However, it’s instructive as an example of how a (meta) programmer can bend the C++ syntax to solve small problems.

391

CHAPTER 8 © FUNCTORS

So you can write code like:

#define enum_static_const(X) wrap(X).get<X>()

int main()
{
A a = XA;
Bb = XB;
a == b; // ok
b == enum_static_const(XA); // error
enum_static_const(XB) == a; // error
}

error: invalid operands to binary expression ('int' and 'enum_const<A, (A)1U>")
b == enum_static_const(XA); // fails

~ A

note: candidate template ignored: deduced conflicting types for parameter 'T' ('B' vs. 'A')
inline bool operator==(T lhs, enum const<T, VALUE> rhs)

error: invalid operands to binary expression ('enum const<B, (B)1U>' and 'int')
enum_static_const(XB) == a; // fails

A ~

note: candidate function not viable: no known conversion from 'A' to 'B' for 1st argument;
bool operator==(T that) const

The macro as written works, but it needs X to be a compile-time constant:
#define enum_static_const(X) wrap(X).get<X>()

Let’s look for a workaround. The first question is, can wrap detect if X is a constant or a variable? It can
partially —a variable can bind to a reference.’

template <typename T>
inline enum_const_helper<T> wrap(T, ...)

{
}

return enum_const_helper<T>();

template <typename T>
inline enum_var_helper<T> wrap(T& x, int)

{
}

return enum_var_helper<T>(x);

°If X has type const A, wrap will deduce T=const A and pick the second overload, if you carefully implement
enum_var_helper.

392

CHAPTER 8 © FUNCTORS

Note the additional argument to wrap. Suppose X is a variable and you write wrap (X); both wrap(T&)
and wrap(T) are valid matches, so the overload resolution is ambiguous. On the other hand, the expression
wrap(X, 0) will prefer to match (T8, int) when possible, because 0 has exactly type int (which is better
than ellipsis). So the macro becomes:

#define enum_static_const(X) wrap(X, 0).get<X>()

The second question is, if X is a variable, can you give a meaning to get<X>()?
Again, let’s introduce a dummy argument of type int:

template <typename T>
struct enum_const_helper

{
template <T VALUE>
enum_const<T, VALUE> get(int) const
{
return enum_const<T, VALUE>();
}
};

And here’s the final version of the macro:
#tdefine enum static_const(X) wrap(X, 0).get<X»(0)

Now the syntax is different: get may be a member object and get<X>(0) is actually
(get.operator<(X)).operator>(0). This is valid, since the object returned by wrap has no dependency on
other template parameters.

Here’s the missing piece of code:

template <typename T>
struct enum_var

{

const T value_;

explicit enum var(T val)
: value (val) {}

bool operator==(T that) const
{

}

return value == that;

// Barton-Nackman again
friend inline bool operator==(T lhs, enum_var<T> rhs)

{
}

return rhs == lhs;

393

CHAPTER 8 © FUNCTORS

enum_var operator<(T) const // dummy operator<
{ return *this; }

enum_var operator>(int) const // dummy operator>
{ return *this; }

};

template <typename T>
struct enum_var_helper

{
enum_var<T> get; // surprise: data member called get
enum_var_helper(T& x)
s get(x) {}
B
enum_static_const(XB) == b; // picks enum_const<B,1>::operator==(b)
enum_static_const(b) == XB; // picks enum var(b).operator==(XB)

8.4. Accumulation

An accumulator is a functor that performs a logical “pass” over a sequence of elements and is updated via
operator+= or operator+. This is implemented in the STL algorithm std: :accumulate.

template <typename iterator t, typename accumulator t>
accumulator t accumulate(iterator t b, iterator t e, accumulator t x)
{
while (b !=e)
X = X + ¥(b++);

return x;

}

If x is value_type(0), this actually produces the sum over the range.

Accumulators can be classified as online or offline. Offline objects may accumulate only once over a
range, and no more values can be added. On the other hand, online objects can accumulate disjoint ranges.
(An ordinary sum is an online accumulation process, because the new total depends only on the previous
total and the new values. An exact percentile would be an offline process, because the P-th percentile over
two disjoint ranges depends on all the values at once.')

The first step in a generalization is to accumulate F(*1), not necessarily *i.!!

template <typename T>
struct identity

T operator()(T x) const { return x; }

)

There are online accumulators that estimate percentiles with good accuracy, though.
"You might want to look back at Chapter 5 again.

394

CHAPTER 8

template <typename iter t, typename accumulator t, typename accessor_ t>
accumulator t accumulate(iter t b, iter t e, accumulator t x, accessor t F)

{
while (b != e)
X = X + F(*(b++));

return x;

}

template <typename iter_t, typename accumulator_t>
accumulator t accumulate(iterator t b, iterator t e, accumulator t x)

{

return accumulate(b, e, x,
identity<typename std::iterator traits<iter t»::reference>());

With TMP it’s possible to build multi-layered accumulators on the fly:

e Recognize a set of similar operations that will get a performance boost from being
performed simultaneously, rather than sequentially.'

e Define a reasonable syntax for instantiating an unnamed multiple accumulator.

e Define areasonable syntax for extracting the results.

8.4.1. A Step-by-Step Implementation

The rest of the section will write a suitable function named collect that will make it possible to
write the following:

// collect F(*i) for each i in the range
// and produce sum, gcd and max

std::accumulate(begin, end, collect(F)*SUM*GCD*MAX)

FUNCTORS

You'll take advantage of the fact that std: :accumulate returns the accumulator to dump the desired

results, either one or many at a time:

int data[7] = { ... };
int S = std::accumulate(data, data+7, collect(identity<int>())*SUM).result(SUM);

int sum, gcd, max;
std: :accumulate(begin, end, collect(F)*SUM*GCD*MAX)
.result(SUM >>sum, GCD >>gcd, MAX >>max);

2For example, the maxmin algorithm has a complexity 25% lower than computing max and min in two steps.

395

CHAPTER 8 © FUNCTORS

Let’s restart from the beginning.
First, you identify the elementary operations and assign a code to each:

enum

{

op_void, // null-operation
op_gcd,
op_max,
op_min,
op_sum

};

Again, you'll use template rotation. The main object contains the list of operations; it executes the first,
then rotates the list and dispatches execution. T is the accessor.

template <typename T, int 01 = op_void, int 02 = op_void,..., int On = op_void>
class accumulate_t

{
typedef accumulate_t<T, 02, 03, ..., On > next_t; // rotation

static const int OP_COUNT = 1+next_t::0P_COUNT;
scalar_t data_[OP_COUNT];

static void apply(/* ... */)
{

// perform operation 01 and store result in data_[0]
// then...

next t::apply(...);
};
Then you implement the binary operations (some code is omitted for brevity):

template <int N>
struct op_t;

template <>

struct op_t<op_void>
{

private:

explicit op t(int = 0) {}

};

template <>
struct op_t<op_sum>

{

explicit op t(int = 0) {}

396

CHAPTER 8 © FUNCTORS

template <typename scalar_t>
scalar_t operator()(const scalar t a, const scalar t b) const
{
return a+b;
}
};

You create some global constant objects; the explicit constructor has exactly this purpose.

const op_t< op_gcd > GCD(0);
const op_t< op_sum > SUM(0);
const op_t< op_max > MAX(0);
const op_t< op_min > MIN(0);

Note that nobody can construct op_t<op_void>.
Since you can perform exactly four different operations, you put four as the limit of template parameters:

template

<

typename accessor_t,

int 01 = op_void, int 02 = op_void, int 03 = op_void, int 04 = op_void
>
class accumulate t

{

typedef typename accessor_ t::value_ type scalar_t;
typedef accumulate_t<accessor_t,02,03,04> next_t;

template <typename T, int I1, int I2, int I3, int I4>
friend class accumulate t;

static const int OP_COUNT = 1 + next_t::0P_COUNT;
scalar t data [OP_COUNT];

size t count_;
accessor_t accessor_;

Every object is constructed via an instance of the accessor:
public:

accumulate t(const accessor t& v = accessor t())
: accessor_(v), count (0), data ()

{
}

// more below...

};

You have an array of results named data_. The i-th operation will store its result in data_[1i].

397

CHAPTER 8 © FUNCTORS

The recursive computation part is indeed simple. There’s a public operator+= that calls a private static
member function:

template <typename object t>
accumulate t& operator+=(const object t& t)

apply(data_, accessor (t), count); // <-- static
return *this;

}

and a global operator+:

template <typename accessor t, int N1, ..., int N4, typename scalar t>
accumulate_t<accessor_t,N1,N2,N3,N4>
operator+(accumulate t<accessor t,N1,N2,N3,N4> s, const scalar t x)

return s += x;

}

accessor_(t) yields the value to be accumulated over the memory cell *data. If count is 0, which
means that the cell is “empty,” just write the value. Otherwise, invoke the first binary operation that merges the
previous cell value and the new one. Then, advance the pointer to the next cell and forward the call to next_t:

static void apply(scalar t* const data, const scalar t x, size t& count)

{
*data = (count>0) ? op_t<01>()(*data, x) : x;
next t::apply(data+1, x, count);

}

The recursion is stopped when all operations are op_void. At this point, you update the counter.

template <typename accessor_t>
class accumulate_t <accessor_t, op_void, op_void, op_void, op_void>

{
VAV
static const int OP_COUNT = 0;

static void apply(scalar t* const, const scalar t, size t& count)

{
++count;

}

You need another static recursion to retrieve the result:

private:
template <int N>
static scalar_t get(const scalar t* const data, op_t<N>)

{
}

return 01==N ? data[0] : next t::get(data+1, op t<N>());

398

CHAPTER 8 © FUNCTORS

public:
template <int N>
scalar_t result(op_t<N>) const

{
}

return get(data_, op t<N>());

The recursion stopper is not expected to be invoked. However, it’s necessary because next_t::getis
mentioned (and thus, fully compiled anyway). It will be executed only if one asks for result(op_t<K>) for an
object of type accumulate_t<K1...Kn> and Kis not in the list.

In this case, you can induce any suitable runtime error:

template <typename accessor_t>
class accumulate_t <accessor_t, op_void, op_void, op_void, op_void>
{
private:
template <int N>
static scalar_t get(const scalar t* const, op_t<N>)

{
// if you prefer,
// throw std::runtime_error("invalid result request");
return std::numeric_limits<scalar_t>::quiet_NaN();
}
public:
/* nothing here */
};

Since SUM is a global constant of the right type, you are eventually going to call std: :accumulate
(begin,end,[...]).result(SUM).

At this point, you can write code that computes the result and code that retrieves the result, but you're
still missing the accumulator factory. As frequently happens for all objects based on template rotation, you
give the user a helper function that initially produces an “empty accumulator” (namely, accumulate_t<T>,
or more precisely, accumulate_t<T, 0, 0, ... ,0>)and this empty object can be combined repeatedly
with one or more op_t. In other words: there’s an operator that combines accumulate t<T> and an
operation N1, performing a static “push-front” and returning accumulate t<T, Ni>.

If you pick operator* (binary multiplication) for chaining, the function looks like this:

template <int N, int N1, ... int Nk>
accumulate t<T, N, N1, N2,..,Nk-1> operator*(accumulate t<T, Ni,..,Nk-1, Nk>, op t<N>)

This chaining operator will contain a static assertion to ensure that the “dropped term” Nk is op_void.
Here’s the global helper function:

template <typename accessor_t>
inline accumulate t<accessor t> collect(const accessor t& v)

{

return v;

}

399

CHAPTER 8 © FUNCTORS

Finally, here is a listing of the whole class, side by side with the recursion stopping specialization:

template

<

typename accessor_t,

int 01 = op_void, int 02 = op void,
int 03 = op_void, int 04 = op_void
>

class

accumulate_t

{

typedef typename accessor_ t::value_type
scalar t;

template <typename T, int I1, int I2,
int I3, int I4>

friend class accumulate t;

typedef

accumulate_t<accessor_t,02,03,04,0p_void>
next_t;

static const int OP_COUNT = 1+next_t::0P_

COUNT;
scalar_t data_[OP_COUNT];

size t count_;

accessor_t accessor_;

static void apply(scalar t* const data,
const scalar_t x, size t& count)

{

*data = (count>0) ? op t<01>()(*data, x) :

X3

next t::apply(data+1, x, count);
}

template <int N>

static scalar t get(const scalar t* const
data, op_t<N>)

{

return 01==N ?

data[o] : next t::get(data+1, op t<N>());
}

400

template
<
typename accessor_t

>

class
accumulate_t<accessor_t,op_void,...,op_void>

{

typedef typename accessor_t::value_type
scalar_t;

template <typename T, int I1, int I2, int
I3, int I4>

friend class accumulate_t;

static const int OP_COUNT = 0;

accessor_t accessor_;

static void apply(scalar t* const,
const scalar_t, size t& count)

{

++count;

}

template <int N>

static scalar_t get(const scalar_t* const,
op_t<N>)

{

assert(false);
return 0;

}

public:

accumulate_t(const accessor t& v =
accessor_t())

: accessor_(v), count_(0), data ()
{

}

template <int N>
accumulate_t<accessor_t,N,01,02,03>
operator* (op_t<N») const

{

MXT_ASSERT(04 == op_void);

return accessor_;

}

template <typename object t>
accumulate t& operator+=(const object t& t)
{

apply(data_, accessor (t), count);
return *this;

}

template <int N>

scalar_t result(op t<N>) const

{

return get(data_, op t<N>());

}

size t size() const

{

return count_;

}
};

CHAPTER 8

public:

accumulate_t(const accessor t& v =
accessor_t())

: accessor_(v)
{
}

template <int N>
accumulate_t<accessor_t, N>
operator* (op_t<N>) const

{

return accessor_;

template <typename object t>
accumulate_t& operator+=(const object t& t)

{

return *this;

}

};

The last feature provides the ability to retrieve more results at one time. This is extremely important,

since it avoids storing the result of the accumulation.

You simply introduce an operator that binds a reference to each op_t (this example uses operator>>
since it resembles an arrow). Another possible choice is operator<=, since <= can be seen as <) and builds
areference wrapper of unique type. From this temporary, an overloaded accumulator: :result will extract

both operands and perform the assignment.

RESULT1 r1;
RESULT2 r2;
accumulator.result(SUM >> r1, MAX >> 12);

401

FUNCTORS

CHAPTER 8 © FUNCTORS

The implementation is as follows:

template <typename scalar t, int N>
struct op_result t

{
scalar_t& value;
op_result t(scalar t& x)
: value(x)
{
}

b

template <typename scalar_t, int N>
inline op result_t<scalar_t, N> operator>> (const op_t<N>, scalar t& x)

{
}

return op_result t<scalar_t, N>(x);

Then you add these methods to the general template (the macro is for brevity only):

#tdefine ARG(J) const op result t<scalar t, N##1> oftt]
// ARG(1) expands to "const op_result t<scalar t, Ni> o1"

template <int N1>
const accumulate t& result(ARG(1)) const

{

ol.value = result(op t<N1>());
return *this;

}

template <int N1, int N2>
const accumulate t& result(ARG(1), ARG(2)) const
{

result(o2);
return result(o1);

}

template <int N1, int N2, int N3>
const accumulate t& result(ARG(1), ARG(2), ARG(3)) const

result(o3);
return result(o1, o2);

}

template <int N1, int N2, int N3, int N4>
const accumulate t& result(ARG(1), ARG(2), ARG(3), ARG(4)) const

result(o4);
return result(o1, 02, 03);

}
#undef ARG

402

CHAPTER 8 © FUNCTORS

The expression MAX>>x silently returns op_result t<[[type of x]],op_max>(x).

If x does not have the same type as the accumulated results, it will not compile.

A couple of extra enhancements will save some typing. Instead of having many result, you just add the
first one and chain the subsequent calls via operator ().

template <int N1>
const accumulate t& result(const op result t<scalar t,Ni> o1) const

{
ol.value = result(op t<N1>());
return *this;

}

template <int N1>
const accumulate t& operator()(const op result t<scalar t,N1> o1) const

{

return result(ol);

}

So instead of:

int q_sum, q_gcd, q_max;
std::accumulate(...).result(SUM >> q_sum, GCD >> q_gcd, MAX >> q_max);

the new syntax is:
std::accumulate(...).result(SUM >> g_sum)(GCD >> q_gcd)(MAX >> q_max);
or even:
std::accumulate(...)(SUM >> q_sum)(GCD >> q_gcd) (MAX >> q_max);
Second, you add an overload that returns the first result for functions that accumulate a single quantity:
scalar_t result() const
{ // MXT_ASSERT(02 == op_void);
} return result(op_t<01>());

// now .result(SUM) is equivalent to .result()
int S = std::accumulate(data, data+7, collect(...)*SUM).result();

3More on this in Section 9.3.

403

CHAPTER 8 © FUNCTORS

8.5. Drivers

A well-written algorithm avoids unnecessary multiplication of code. To rewrite an existing algorithm for
greater generality, you have to remove some “fixed” logic from it and plug it in again through a template
parameter, usually a functor:

template <typename iterator_ t>
void sort(iterator t begin, iterator t end)

{
for (...)
{
/...
if (a<b) // operator< is a good candidate for becoming a functor
{}
}
}

So you rewrite this as:

template <typename iterator_t, typename less t>
void sort(iterator t begin, iterator t end, less t less)

{
for (...)
{
// now we ask the functor to "plug" its code in the algorithm
if (less(a,b))
{}
}
}

A driver is an object that can guide an algorithm along the way.

The main difference between a functor and a driver is that the former has a general-purpose function-
like interface (at least, operator()), which is open to user customization. On the other hand, a driver is a low
level object with a verbose interface, and it’s not meant to be customized (except for its name, it might not
even be documented, as if it were a tag type). The framework itself will provide a small fixed set of drivers.

Consider the following example. You need an sq function that optionally logs the result on std: : cerr.
Because you cannot enforce such a constraint if you receive a generic logger object, you switch to drivers
and then provide some:

struct dont_log at all

{
bool may I log() const { return false; }
};
struct log_everything
{
bool may I log() const { return true; }
};

404

CHAPTER 8 © FUNCTORS

struct log_ask_once

{
bool may I log() const
{

static bool RESULT = AskUsingMessageBox("Should I log?", MSG YN);
return RESULT;
}
};

template <typename scalar_t, typename driver t>
inline scalar t sq(const scalar t& x, driver t driver)
{
const scalar t result = (x*x);
if (driver.may I log())
std::cerr << result << std::endl;
return result;

}

template <typename scalar_t>
inline scalar t sq(const scalar t& x)
{
return sq(x, dont_log_at_all());
}

Note that driver t::may I log() contains neither code about squaring, nor about logging. It just
makes a decision, driving the flow of the algorithm.

The big advantage of drivers is to reduce debugging time, since the main algorithm is a single function.
Usually drivers have minimal runtime impact. However nothing prevents a driver from performing long and
complex computations.

As arule, you always invoke drivers through instances. An interface such as

template <typename driver t>
void explore(maze t& maze, driver t driver)

while (!driver.may I stop())
} {...}

is more general than its stateless counterpart'*:

template <typename driver t>
void explore(maze t& maze)
{
while (driver t::may I stop())
{...}
}

“Traits would be somehow equivalent to stateless drivers.

405

CHAPTER 8 © FUNCTORS

A driver is somehow analogous to the “public non-virtual / protected virtual” classic C++ idiom
(see Section 6.3). The key similarity is that the structure of the algorithm is fixed. The user is expected to
customize only specific parts, which run only when the infrastructure needs them to.'®

8.6. Algors

An algor, or algorithmic functor, is an object that embeds an algorithm, or simply an algorithm with state.

The standard C++ library provides an <algorithm> header, which includes only functions. So it’s natural
to identify function and algorithms, but it need not be the case.

The algor object implements a simple function-like interface—typically operator () —for the execution
of the algorithm, but its state grants faster repeated executions.

The simplest case where an algor is useful is buffered memory allocation. std: :stable_sort may
require the allocation of a temporary buffer that’s necessarily released when the function returns. Usually
this is not an issue, since time spent in (a single) memory allocation is dominated by the execution of the
algorithm itself. A small input will cause a small memory request, which is “fast” (operating systems tend
to favor small allocations). A large input will cause a “slow” memory request, but this extra time will be
unnoticed, since the algorithm will need much more time to run.

However, there are situations where a single buffer would suffice for many requests. When stable-
sorting many vectors of similar length, you can save allocation/deallocation time if you maintain the buffer
in an object:

template <typename T>
class stable_sort_algor

{
buffer_type buffer_;
public:
template <RandomAccessIterator>
void operator()(RandomAccessIterator begin, RandomAccessIterator end)
// ensure that buffer_ is large enough
// if not, reallocate
// then perform the stable sort
}
~stable sort_algor()
{
// release buffer_
}
};

To sum up, the simplest algor is just a sort of functor with state (in the last case, a temporary buffer), but
algors may have a richer interface that goes beyond functors.

5See also http://www.gotw.ca/publications/mill18.htm.

406

http://www.gotw.ca/publications/mill18.htm

CHAPTER 8 © FUNCTORS

As arule, algors are not copied or assigned. They are constructed and reused (say, in a loop) or used
as unnamed temporaries for a single execution. You therefore don’t need to worry about efficiency, only
about safety. If buffer_type cannot be safely copied (if it’s a pointer), you explicitly disable all the dangerous
member functions, making them private or public do-nothing operations. If buffer type is a value type (for
example, vector<T>), you let the compiler generate safe, possibly inefficient, operators.

Another useful kind of algor is a self-accumulator that holds multiple results at once. There’s no buffer
involved (see Section 8.4).

template <typename T>
class accumulator
{

T max_;

T min_;

T sum_;

/1 ...

public:
accumulator()
: sum_(0) // ...
{
}

template <typename iterator_ t>
accumulator<T>8 operator()(iterator t begin, iterator t end)

{

for (;begin != end; ++begin)

sum_ += *begin;
/1 ...

}

return *this;

}

T max() const { return max_; }
T min() const { return min_; }
T sum() const { return sum_; }
// ...

};

int main()

{
double data[] = {3,4,5 };

// single invocation
double SUM = accumulator<double>()(data, data+3).sum();

// multiple results are needed
accumulator<double> A;

A(data, data+3);
std::cout << "Range:

<< A.max()-A.min();

407

CHAPTER 8 © FUNCTORS

An interactive algor has an interface that allows the caller to run the algorithm step-by-step. Suppose for
example you have to compute the square root to some level of precision:

template <typename scalar t>
class interactive_square_root
{

scalar_t x_;

scalar t y ;

scalar_t error_;

public:
interactive square_root(scalar_t x)
: x_(x)
{

}

iterate();

void iterate()

{

// precondition:
// y_ is some kind of approximate solution for y2=x
// error_ is |y2-x|

// now compute a better approximation

}

scalar t error() const

{
}

return error_;

operator scalar t() const

{
}

return y_;
};
It's the user who drives the algorithm:

int main()

{

interactive square_root<double> ISR(3.14);
while (ISR.error()>0.00001)

{

}
double result = ISR;

ISR.iterate();

408

CHAPTER 8 © FUNCTORS

An algor of this kind usually takes all its parameters from the constructor.

A common use-case is an algorithm that produces a set of solutions. After execution, a member
function permits the user to “visit” all the solutions in some order.’® These algors might do all the work in the
constructor:

template <typename string t>
class search_a_substring

{

const string t& text ;
std::vector<size t> position_;

public:
search_a_substring(const string t& TEXT, const string t& PATTERN)
: text (TEXT)
{

// search immediately every occurrence of PATTERN in TEXT
// store all the positions in position_

}

bool no _match() const { return position .empty(); }

// the simplest visitation technique

// is... exposing iterators

typedef std::vector<size t>::const_iterator position_iterator;

position_iterator begin() const

{
return position .begin();
}
position_iterator end() const
{
return position .end();
}
};

In the case of substring matching, the iterator will likely visit the matches from the first to the last. In a
numerical minimization problem, the solutions may be N points where the function has the minimum value
found so far.

'“This has some similarity with the way std: :regex works.

409

CHAPTER 8 © FUNCTORS

A more complex visitor-accepting interface could accept two output iterators, where the algor would

write its solutions. You could build a “custom view” on the solutions according to the iterator value_type.
For example, an algor that internally computes pairs (Xj, Yj) may emit just the first component or the entire
pair (a simplified example follows):

class numerical_minimizer

{

std: :function<double (double)> F;
std::vector<double> X_; // all the points where F has minima

public:

/7 ...

template <typename out_t>
out_t visit(out t beg, out t end) const

{
typedef typename std::iterator_traits<out_t>::value_type> val_t;

int i=0;
while (beg != end)
*beg++ = build result(i++, instance_of<val t>());

return beg;

}

private:

};

410

template <typename T>
double build result(int i, instance_of<T>) const

{
return X [i];

}
using std::pair;

template <typename T>
pair<double,double> build result(int i, instance_of<pair<T,T>>) const

{
return std::make_pair(X_[i], F(X_[i]));
}

CHAPTER 8 © FUNCTORS

8.7. Forwarding and Reference Wrappers

It's a common idiom for a class template to hold a member of a generic type, to which the class
dispatches execution.

template <typename T>
class test

{

T functor_;

public:

};

typename T::value type operator()(double x) const

return functor (x); // call forward

}

Since the exact type of the member is not known, you may have to implement several overloads of

test::operator(). Since this is a template, this is not a problem, because what'’s actually needed will be
instantiated and the rest is ignored.

template <typename T>
class test

{

T functor_;

public:

};

/* we don't know how many arguments functor_ needs */

template <typename T1>
typename T::value type operator()(T1 x) const

return functor (x); // call forwarding

}

template <typename T1, typename T2>
typename T::value type operator()(T1 x, T2 y) const

{

return functor (x, y); // call forwarding
}
// more...

411

CHAPTER 8 © FUNCTORS

Invoking the wrong overload (that is, supplying too many or unsupported arguments) will cause a
compiler error. However, note that arguments are forwarded by value, so you can modify the prototypes:

template <typename T1>
typename T::value type operator()(const T1& x) const

{
}

return functor (x); // call forwarding

But if T requires an argument by non-const reference, the code will not compile.

To understand the severity of the problem, consider a slightly different example, where you construct a
member with an unspecified number of parameters.

The STL guidelines suggest writing a single constructor for class test, which takes (possibly) a
previously constructed object of type T:

test(const T& data = T())
: member (data)

{

}

This strategy is not always possible. In particular, T might have an inaccessible copy constructor or it
may be a non-const reference.
In fact, let’s forget the STL style for a moment and adapt the same idiom of operator () as shown previously.

template <typename T>
class bad_test
{

T member_;

public:
template <typename X1>
bad_test(X1 argl)
: member (argl)
{
}

template <typename X1, typename X2>
bad_test(X1 argi, X2 arg2)
: member (argl, arg2)
{
}
};

As written, bad_test<T&> compiles, but a subtle bug arises'”:
int main(int argc, char* argv[])

{
double x = 3.14;

The example is written as if all members were public.

412

CHAPTER 8 © FUNCTORS

bad_test<double&> urgh(x); // unfortunately, it compiles
urgh.member = 6.28; // bang!

int i = 0;

assert(x == 6.28); // assertion failed!

/...

The constructor of urgh is instantiated on type double, not doubleg, so urgh.member_refers to a
temporary location in the stack of its constructor (namely, the storage space taken by arg1), whose content
is a temporary copy of x.

So you modify bad_test to forward arguments by const reference. At least, good_test<double&> will
not compile (const double& cannot be converted to doubled).

template <typename T>
class good_test

{

T member_;
public:
template <typename X1>

good_test(const X1& argil)
: member (argl)

};
However, an additional wrapping layer can solve both problems:

template <typename T>
class reference_wrapper

{
T& ref_;
public:
explicit reference wrapper(T& r)
: ref (1)
{
}

operator T& () const

return ref_;

}

T* operatord () const
return &ref_;

}
};

413

CHAPTER 8 © FUNCTORS

template <typename T>
inline reference wrapper<T> by ref(T& x)

{
return reference wrapper<T>(x);
}
int main()
{

double x = 3.14;
good_test<double> yo(x); // ok: x is copied into y0.member_

good_test<doubled> y1(x); // compiler error!
yl.member = 6.28; // would be dangerous, but does not compile

good_test<doubled> y2(by ref(x));
y2.member = 6.28; // ok, now x == 6.28

Using by _ref, the good_test<double&> constructor is instantiated on argument
const reference_wrapper<double&>&, which is then converted to doubled

Note Once again, the argument-forwarding problem is solved in C++0x with R-value references.

414

CHAPTER 9

The Opaque Type Principle

Template type names can be too complex for the user to use directly, as they may be verbose or they may
require very complex syntax. So you should either publish a convenient typedef or allow users to ignore
their type altogether.

Plain Cis full of opaque types.

In C, afile stream is handled via a pointer to an unknown FILE structure that resides in system memory
(the C runtime pre-allocates a small number of these structures). To retrieve the current position in an open
file, you call fgetpos (FILE*, fpos t), passing the file pointer and another opaque type that acts as a
bookmark. You can’t know or modify the current position but can restore it via a call to fsetpos (FILE*, fpos t).
From the user perspective, an instance of fpos_t is completely opaque. Since only the name is known, the
type has no interface except for the default constructor, copy constructor, and assignment.

In the opaque type principle, opaqueness is related only to the type name, not to the interface. In other
words, the object has an unspecified type and a known interface—it may be an iterator or a functor.

Being the “difficult to write” type, you don’t want to store the object but should instead use it
immediately, on the creation site.

9.1. Polymorphic Results

Suppose a function performs a computation that produces several results at a time.
You can pack all of them in a polymorphic result and allow the user to select what’s needed.
Let’s take a simplified example:

template <typename iterator t >

[[???]] average(iterator t beg, iterator t end)

{
typename std::iterator_traits<iterator_t>::value_type total = 0;
total = std::accumulate(beg, end, total);
size t count = std::distance(beg, end);

return total/count;
A fixed return type will destroy the partial results, which could be useful. So you can delay the
aggregation of the sub-items and change the code like this:
template <typename T, typename I>

class opaque_average_result_t

{

415

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

T total ;
I count_;

public:
opaque_average result t(T total, I count)
: total (total), count (count)

{
}

// default result is the average
operator T () const

return total /count_;

}
T get_total() const

return total ;

}
I get _count() const

return count_;

}
};

template <typename VALUE_TYPE, typename iterator t >
opaque_average result t<VALUE TYPE, size t> average(iterator t beg, iterator t end)

VALUE_TYPE total = 0;
total = std::accumulate(beg, end, total);
size t count = std::distance(beg, end);

return opaque_average result t<VALUE TYPE, size t>(total, count);

Now the client can use the original algorithm in many more ways:
std::vector<double> v;
double avg = average<double>(v.begin(), v.end());
double sum = average<double>(v.begin(), v.end()).get total();

Since the return type is opaque, it’s not convenient to store the result, but it’s easy to pass it to a function
template, if needed:'

<???> x = average<double>(v.begin(), v.end());

'See also Section 12.3.

416

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename T>
void receive(T res, double& avg, double& sum)
{
avg = res;
sum = res.get total();
}

std: :vector<double> v;
double avg, sum;
receive(average<double>(v.begin(), v.end()), avg, sum);

9.2. Classic Lambda Expressions

Lambda expressions are opaque function objects created on the call site. They combine some elementary
pieces with meaningful operators. The resulting functor will later replay the operator sequence on its
arguments. For example, given two suitable objects of type “lambda variables” X and Y, then (X+Y)*(X-Y)
will be a functor that takes two arguments and returns their sum multiplied by their difference.

It's a good exercise to build a simplified implementation and understand the underlying template
techniques. These have been proposed originally by Todd Veldhuizen in his seminal article, “Expression
Templates”.

You can write code like this: cos (X+2.0) is an expression that returns a functor whose operator ()
computes cos(x+2.0) given a double x.

lambda_reference<const double> X;

std::find_if(..., X<5.0 && X>3.14);
std: :transform(..., cos(X+2.0));

lambda_reference<double> Y;
std::for each(..., Y+=3.14);

lambda_reference<const double, 0> ARG1;
lambda_reference<const double, 1> ARG2;

std::sort(..., (ARG1<ARG2));

You can make the following assumptions. Some will be removed later and some will hopefully become
clearer as you proceed:

e For clarity, T will be a friendly scalar type, double or float, so all the operators are
well-defined.

e Alambda expression will receive at most K=4 arguments, all of which are the same
type T&. In particular:

e lambda_reference<double> and lambda_reference<const double> are
different, the latter being a “lambda-const reference to double”.

e An expression must contain references to objects of the same type.

417

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

¢ For simplicity, all constants initially have type T and X+2 is considered invalid syntax,
because X refers to a double and 2 is an int. Therefore, you have to write X+2.0 (you
will learn how to remove this limitation later in this chapter).

e We explicitly try to write functions that look similar, so they easily can be generated
with preprocessor macros, even when they are not listed here.

9.2.1. Elementary Lambda Obijects

Let’s rewrite the fundamental definition here: a lambda object is a functor that is generated with a special
syntax (namely, assembling some placeholders with operators). The effect of the functor is to replay the
same operators on its actual arguments. For example, if X is one such placeholder, then the expression X+2
produces a functor that takes one argument and returns its argument plus 2.

First, you define an empty static interface. Observe that T is not used at the moment, but you will shortly
realize why it’s necessary.

template <typename true_t, typename T>
class lambda

{
protected:
~lambda()
{
}
public:
const true t& true this() const
{
return static_cast<const true t& (*this);
}
};

The first (trivial) object is a lambda-constant. That’s a functor that returns its constant result, whatever
the arguments. Since in particular it’s a lambda expression, you derive this from the interface:

template <typename T>
class lambda_const : public lambda<lambda_const<T>, T>

{
typedef const T& R;
Tc;

public:

typedef T result_ type;

lambda_const(R c)
: ¢ (c)

{

}

418

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

result type operator()(R =T(), R =T(), R =T(), R = T()) const
{

}
};

return c_;

Note that a lambda-constant can take zero or more arguments, but it is a function object, so the
invocation must use some form of operator ().

The second object is lambda_reference<T, N>, defined as a functor that takes at least N arguments of
type T& and returns the Nth. The choice of accepting T& as an argument implies that lambda_reference<T>
won’t work on a literal:

lambda_reference<double> X1;
lambda_reference<const double> Y1;

X1(3.14); // error: needs doubled
Y1(3.14); // ok: takes and returns const double8

The selection of a variable is not trivial. As usual, argument rotation is the preferred technique.
Furthermore, since a reference is cheap, this example introduces a technique known as the duplication of
the arguments in order to reduce the number of overloads. The last argument of operator () is “cloned” so it
always passes four items.

template <typename T, size t N = 0>
class lambda_reference: public lambda<lambda_reference<T, N>, T>

{
static T& apply k(static_value<size t,0>, T& x1, T&, T&, T&)
{
return x1;
}
template <size_t K>
static T& apply k(static_value<size t,K>, T& x1, T& x2, T& x3, T& x4)
return apply k(static_value<size t,K-1>(), x2, x3, x4, x1);
}
public:

typedef T& result_type;
result type operator()(T& x1, T& x2, T& x3, T& x4) const

{
MXT_STATIC ASSERT(N<4);

return apply k(static_value<size t,N>(), x1, x2, x3, x4);
result type operator()(T& x1, T& x2, T& x3) const

MXT_STATIC ASSERT(N<3);
return apply k(static_value<size t,N>(), x1, x2, x3, x3);

419

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

result type operator()(T& x1, T& x2) const

{
MXT_STATIC ASSERT(N<2);

return apply k(static_value<size t,N>(), x1, x2, x2, x2);

result type operator()(T& x1) const

MXT_STATIC ASSERT(N<1);
return apply k(static_value<size t,N>(), x1, x1, x1, x1);

};

9.2.2. Lambda Functions and Operators

A unary function F applied to a lambda expression is a functor that returns F applied to the result of the
lambda.?

Thanks to the static interface, the implementation can treat any lambda expression at once.

Also, lambda<X, T> can be stored in an object of type X (and the copy is cheap).

template <typename F, typename X, typename T>
class lambda_unary : public lambda<lambda_unary<F,X,T>, T>

{

X x_;
Ff;

public:
lambda_unary(const lambda<X,T>& that)
: x_(that.true this())

{
}

typedef typename F::result_type result_type;
result type operator()() const

return £ (x_());
}

result type operator()(T& x1) const

return f (x_(x1));

}

result type operator()(T8& x1, T& x2) const

return f_(x_(x1, x2));

}

?In symbols, (F(A))(x) := F(A(x)), where x may be a tuple.

420

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

result type operator()(T& x1, T& x2, T& x3) const

return f_(x_(x1, x2, x3));

}

/...
};

The previous code builds a functor f_, whose operator() is called, but you also need to plug in
global/static member functions. Thus, a small adapter is needed:

template <typename T, T (*F)(T)>
struct unary f wrapper

{
typedef T result type;

T operator()(const T& x) const { return F(x); }

5
Next, you collect all global functions in the traits class:

template <typename T>

struct unary_f_library

{
static T L_abs(T x) { return abs(x); }
static T L_cos(T x) { return cos(x); }

/7 ...
};
And eventually you start defining functions on lambda objects:
#define LAMBDA_ABS_TYPE \

lambda_unary<unary f wrapper<T, &unary f library<T>::L_abs>, X, T>

template <typename X, typename T>
LAMBDA_ABS_TYPE abs(const lambda<X, T>& x)

{
return LAMBDA ABS TYPE(x);

}

#define LAMBDA COS TYPE \
lambda_unary<unary f wrapper<T, &unary f library<T>::L_cos>, X, T>

template <typename X, typename T>
LAMBDA_COS_TYPE cos(const lambda<X, T>& x)

{
}

return LAMBDA COS TYPE(x);

421

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

This scheme applies also to unary operators, simply using a different functor.

template <typename T>
struct lambda_unary minus

{
typedef T result_type;

result type operator()(const T& x) const { return -x; }

)

#define LAMBDA U _MINUS TYPE lambda_unary<lambda_unary minus<T>, X, T>

template <typename X, typename T>
LAMBDA_U_MINUS_TYPE operator-(const lambda<X, T>& x)

{
}

return LAMBDA U MINUS TYPE(x);

The more features you add, the more complex the return types become, but these are completely
hidden from the user.

A binary operation, say +, can be defined similarly: (lambda<X1,T> + lambda<X2,T>) is a functor
that distributes its arguments to both its addends.? So, analogous to the unary case, you will define a
specific object to deal with the binary operators, namely lambda_binary<X1, F, X2, T>.In particular
mixed binary operations, such as lambda<X1,T> + T, are a special case, handled with a promotion of T to
lambda_const<T>.

template <typename X1, typename F, typename X2, typename T>
class lambda_binary : public lambda< lambda_binary<Xi,F,X2,T>, T >
{

X1 x1_;

X2 x2_;

Ff;

public:

lambda_binary(const lambda<X1,T>& x1, const lambda<X2,T>& x2)
: x1_(x1.true this()), x2_(x2.true_this())

{
}

typedef typename F::result type result type;
result type operator()() const

return £ (x1_(), x2_());

}
result type operator()(T& x1) const
{
return f_(x1_(x1), x2_(x1));
}

3In symbols again, (A1+A2)(x) :=A1(x)+A2(x), where X may be a tuple.

422

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

result type operator()(T& x1, T& x2) const

return f_(x1_(x1, x2), x2_(x1, x2));

}
result type operator()(T& x1, T& x2, T& x3) const

return f_(x1_(x1, x2, x3), x2_(x1, x2, x3));

}

/...
};

In this implementation, logical operators will not use short circuit. If T were int, the lambda object
X>0 && (1/X)<5 will crash on a division by zero, while the analogous C++ statement returns false.

Arithmetic operators like + can be written as f (x1_(...), x2_(...)) as previously, but this is incorrect
for 8& and | |, whose workflow is more complex:
b1 := x1 (...);
if (f_(b1, true) == f (b1, false))
return f (b1, true);

else
return f (b1, x2 (...))

In the discussion that follows, somewhat sacrificing correctness for clarity, we treat all operators as normal
binary predicates, and we leave writing partial specializations of 1lambda_binary for logical operators from the
pseudo-code above as an exercise.

Now you define “concrete” binary functions:

template <typename T, T (*f)(T, T)>
struct binary f wrapper

{
typedef T result type;
T operator()(const T& x, const T& y) const { return f(x,y); }

)

template <typename T>
struct binary f library

{
static T L_atan2(T x, T y) { return atan2(x, y); }
/...
b
#define ATAN2 T(X1, X2) \
lambda_binary<X1, \
binary f wrapper<T, &binary f library<T>::L_atan2>, \
X2, T>

423

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename X1, typename X2, typename T>
ATAN2_T(X1, X2) atan2(const lambda<X1,T>& L, const lambda<X2,T>& R)

{
}

return ATAN2 T(X1, X2) (L, R);

template <typename X1, typename T>
ATAN2_T(X1, lambda const<T>) atan2(const lambda<X1,T>& L, const T& R)

{
}

return atan2(L, lambda_const<T>(R));

template <typename T, typename X2>
ATAN2_T(lambda_const<T>, X2) atan2(const T& L, const lambda<X2,T>& R)

{
}

return atan2(lambda_const<T>(L), R);

Finally, you need another extension. There are three types of operators
e Binary predicates, with signature bool F(const T&, const T&)
e Binary operators, with signature T F(const T&, const T&)
e Assignments, with signature T& F(T8, const T8&)

This translates to the following C++ code:

enum lambda_tag

{
LAMBDA _LOGIC_TAG,
LAMBDA_ASSIGNMENT_TAG,
LAMBDA OPERATOR_TAG

};

template <typename T, lambda_tag TAG>
struct lambda_result traits;

template <typename T>
struct lambda_result traits<T, LAMBDA_ASSIGNMENT_TAG>

typedef T& result_type;

typedef T& first_argument_type;

typedef const T& second_argument_type;
};

template <typename T>
struct lambda_result_traits<T, LAMBDA_OPERATOR_TAG>
{

typedef T result type;

typedef const T& first_argument_type;

typedef const T& second argument type;

};

424

CHAPTER 9

template <typename T>
struct lambda_result traits<T, LAMBDA LOGIC TAG>
{
typedef bool result_type;
typedef const T& first_argument_type;
typedef const T& second_argument_type;
};

So you can write:

template <typename T>
struct lambda_less

{
typedef lambda_result traits<T, LAMBDA_LOGIC_TAG> traits_t;

typedef typename traits_t::result_type result_type;
typedef typename traits_t::first_argument_type argi t;
typedef typename traits_t::second_argument_type arg2 t;

result type operator()(argl t x, arg2 t y) const
{

}
};

return x < y;

template <typename T>
struct lambda_plus
{

typedef lambda_result traits<T, LAMBDA_OPERATOR_TAG> traits t;

typedef typename traits_t::result_type result_type;
typedef typename traits_t::first argument type argl t;
typedef typename traits_t::second_argument_type arg2 t;

result type operator()(argl t x, arg2 t y) const
{

}
};

return x + y;

template <typename T>
struct lambda_plus_eq

{
typedef lambda_result_traits<T, LAMBDA_ASSIGNMENT_TAG> traits_t;

typedef typename traits t::result type result_type;
typedef typename traits t::first argument type argi t;
typedef typename traits_t::second_argument_type arg2 t;

THE OPAQUE TYPE PRINCIPLE

425

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

result type operator()(argl t x, arg2 t y) const
{

}

return x += y;
};

These objects have minimal differences.
Logical and standard operators are identical to any other binary function, except the return type
(compare with atan2). Here is the implementation of lambda’s operator<:*

#define LSS T(X1,X2) lambda_binary<X1, lambda_less<T>, X2, T>
template <typename X1, typename X2, typename T>

LSS T(X1,X2) operator<(const lambda<X1,T>& L, const lambda<X2,T>& R)
{

}

return LSS T(X1, X2) (L, R);

template <typename X1, typename T>
LSS T(X1, lambda_const<T>) operator<(const lambda<X1,T>& L, const T& R)
{

}

return L < lambda_const<T>(R);

template <typename T, typename X2>
LSS T(lambda_const<T>, X2) operator<(const T& L, const lambda<X2,T>& R)
{

}

return lambda_const<T>(L) < R;
The assignment operators do not allow the third overload, which would correspond to a lambda
expression such as (2.0 += X), a somewhat suspicious C++ statement:
#define PEQ_T(X1,X2) lambda_binary<X1, lambda_plus_eq<T>, X2, T>
template <typename X1, typename X2, typename T>
PEQ T(X1,X2) operator+=(const lambda<X1,T>& L, const lambda<X2,T>& R)
{

}

return PEQ T(X1,X2) (L,R);

template <typename X1, typename T>
PEQ_T(X1,lambda_const<T>) operator+=(const lambda<X1,T>& L, const T&R)
{

}

return L += lambda_const<T>(R);

“We don’t explicitly list the code for operator+, which is almost identical, but we will use it freely in the rest of the section.

426

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

Here is a sample that uses all the previous code:

lambda_reference<double, 0> VX1;
lambda_reference<double, 1> VX2;

double data[] = {5,6,4,2,-1};
std::sort(data, data+5, (VX1<VX2));

std::for each(data,data+5, VX1 += 3.14);
std: :transform(data,data+5, data, VX1 + 3.14);
std: :transform(data,data+5, data, 1.0 + VX1);
std::for each(data,data+5, VX1 += cos(VX1));
Here’s a sample that deliberately produces an error, which is still human-readable:
const double cdata[] = {5,6,4,2,-1};
// add 3.14 to all the elements of a constant array...
std::for each(cdata, cdata+5, VX1 += 3.14);

error C2664: 'double &lambda_binary<X1i,F,X2,T>::operator ()(T &) const' :
cannot convert parameter 1 from 'const double' to 'double &'

with

[
X1=lambda_reference<double,0>,
F=lambda_plus_eq<double>,
X2=1ambda_const<double>,
T=double

]

Conversion loses qualifiers

see reference to function template instantiation being compiled
' Fn1 std::for_each<const double*,lambda_binary<X1,F,X2,T>>(_InIt, InIt, Fn1)'

with
[
_Fni=lambda_binary<lambda_reference<double,0x00>,lambda_plus_eq<double>,lambda_
const<double>,double>,
X1=lambda_reference<double,0>,
F=lambda_plus_eq<double>,
X2=lambda_const<double>,
T=double,
_InIt=const double *

]

You would expect the following code to work correctly; instead, it does not compile. The error log may
be long and noisy, but it all leads to operator+. The precise error has been isolated here:

}

double data[] = {5,6,4,2,
= {5,6,4,2,-1};

const double cdata[]

427

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

lambda_reference<const double> C1;
std: :transform(cdata,cdata+5, data, C1 + 1.0);

error: 'lambda_binary<X1,lambda plus<T>,lambda_const<T>,T> operator +(const lambda<true t,T>
&,const T &)' :

template parameter 'T' is ambiguous
could be 'double’
or 'const double’

This issue is equivalent to:

template <typename T>
struct A

{

};

template <typename T>
void F(A<T>, T)

{

}

A<const double> x;
double i=0;

F(x, i); // error: ambiguous call.
// deduce T=const double from x, but T=double from i

This is where type traits come in. You take the parameter T only from the lambda expression and let the
type of the constant be dependent. More precisely all mixed operators with an argument of type const T&
should be changed to accept typename lambda_constant_arg<T>::type.

template <typename T>
struct lambda_constant_arg

{
typedef const T& type;
};

template <typename T>
struct lambda_constant_arg<const T>

{
typedef const T& type;

)

The C++ Standard specifies that if a parameter can be deduced from one of the arguments, it’s deduced
and then substituted in the remaining ones. If the result is feasible, then the deduction is accepted as valid,
so in particular in a signature like this:

template <typename T>
void F(A<T> x, typename lambda_constant arg<T>::type i);

428

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

the only context where T is deducible is the type of x, so ambiguities cannot occur any more. In particular, it’s
now possible to add constants of any type convertible to T:

std: :transform(cdata, cdata+5, data, C1 + 1);
// don't need to write C1 + 1.0

Note finally that these lambda expressions are not too rigorous about the number of arguments. The
only explicit check occurs as a static assertion in lambda_reference.’

lambda_reference<const double, 0> C1;
lambda_reference<const double, 1> C2;

double t1 = ((C1<C2)+(-C1))(3.14); // error: C2 requires 2 args
double t2 = ((C1<C2)+(-C1))(3.14, 6.28); // ok
double t3 = ((C1<C2)+(-C1))(3.14, 6.28, 22/7); // ok, "22/7" ignored

9.2.3. Refinements

Note that unary and binary operations do contain a copy of the functor representing the operation, but the
functor is always default-constructed. You can add a wrapper that embeds any user functor in a lambda
expression. Just modify the constructor as follows:

public:
lambda_unary(const lambda<X,T>& that, F £ = F())
: x_(that.true_this()), f_(f)
{
}

This example uses this feature immediately to create a functor that takes a functor-on-T and returns a
functor-on-lambda:

int main()

{
MyFunctor F;
lambda_reference<double> X;

std::transform(data, data+n, data, lambda_wrap[F](3*X+14)); // = F(3*X+14)
}

lambda_wrap is a global instance of 1ambda_wrap_t<void> whose operator[] absorbs a suitable user
functor. The choice of [] instead of () gives extra visual clarity, since it avoids confusion with function
arguments.

template <typename F = void>
class lambda_wrap_t

{
Ff;

5This can be fixed, by storing a static constant named min_number_of arguments in every lambda implementation. Atomic
lambdas, such as lambda_reference, will define it directly and derived lambdas will take the maximum from their nested
types. Finally, this constant may be used for static assertions. We leave this as an exercise.

429

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

public:
lambda_wrap t(F f)
: f (F)
{
}

template <typename X, typename T>
lambda_unary<F, X, T> operator()(const lambda<X, T>& x) const

{
}

return lambda_unary<F, X, T>(x, f_);
};

template <>
class lambda_wrap_t<void>
{
public:
lambda_wrap_t(int = 0)
{
}

template <typename F>
lambda_wrap t<F> operator[](F f) const
{

}

return f;
};
const lambda_wrap_t<void> lambda_wrap = 0;
This is used as in:
struct MyF
typedef double result type;

result type operator()(const double& x) const
{

}

return 7*x - 2;
};

lambda_reference<double> V;
std::for_each(begin, end, lambda_wrap[MyF()](V+2)); // will execute MyF(V+2)

The same technique can be extended even further to implement the ternary operator (which cannot be
overloaded) and the hypothetical syntax could be:

if [CONDITION].then [X1].else [X2]

The dot that links the statements together shows clearly that the return type of if [(] is an object
whose member then has another operator[], and so on.

430

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

9.2.4. Argument and Result Deduction

Loosely speaking, a composite lambda object G:=F (1) takes an argument x and returns F(A(x)). The
argument type of G is the argument type of A and the result type of G is the result type of F.

Up to now, we avoided the problem of defining these types, because they were either fixed or
explicitly given.

e The scalar type T in the lambda interface acts as the argument of its operator().
Whenever a function is applied to lambda<X, T>, T is borrowed and plugged in the
result, which is say lambda<Y,T>.

¢ Thereturn type of lambda’s operator () instead may vary, so it's published as result_type.
For example, lambda_unary<F,X, T> takes T& x from the outside and returns whatever
F gives back from the call F(X(x)). F may return a reference to T or bool.

In the process, however, silent casts from bool to T may occur.

For example, the function object abs (C1<(2) takes two arguments of type double. It feeds them to less,
which in turn returns bool, but this is promoted again to double before entering abs.

In general, this is the desired behavior:

(C1<C2); // returns bool
((C1<C2)+2); // operator+ will promote "bool" to "double"

operatord& can be implemented as a clone of operator<; however, && would take two Ts, not two
bools. In simple cases, this will just work, but in general you'll need more flexibility.

(C1<C2) 8&& (C2>C1); // operator8& will promote two bools to double, then return bool

You should prescribe only the arguments of lambda_reference and let every lambda object borrow
both arguments and results correctly. lambda_reference is in fact the only user-visible object and its type
parameter is sufficient to determine the whole functor.

This change also allows you to remove T from the lambda interface:®

template <typename X>
class lambda

{
protected:
~lambda()
{
}
public:
const X& true this() const
{
return static_cast<const X& (*this);
}
b

The rest of the chapter assumes that all the code presented up to now has been updated.

431

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename T, size t N = 0>
class lambda_reference : public lambda< lambda_reference<T, N> >

{
public:
typedef T& result_type;
typedef T& argument_type;
result type operator()(argument_type x1) const
{
MXT_STATIC ASSERT(N<1);
return apply k(static_value<size t, N>(), x1, x1, x1, x1);
/7 ...
};

You are going to replace the usage of T in every “wrapping” lambda class with a (meta)function of the
result type of the inner object:

template <typename F, typename X>
class lambda_unary : public lambda< lambda_unary<F,X> >
{
X x_;
Ff;
public:
typedef typename F::result_type result_type;
typedef typename X::argument_type argument_type;

/...
};

However, while T is a plain type (maybe const qualified, but never a reference), argument_type will
often be a reference. So you need a metafunction to remove any qualifier:

template <typename T>
struct plain

{
typedef T type;

)

template <typename T>
struct plain<T& : plain<T>
{

};

template <typename T>
struct plain<const T> : plain<T>

{
};

432

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename T>
class lambda_const : public lambda< lambda_const<T> >

{
typedef typename plain<T>::type P;
Pc_;

public:

typedef P result type;
typedef const P& argument_type;

/...
};

The nasty issue lies in the binary operators, where you have two lambdas, X1 and X2.

Whose argument_type should you borrow? It’s easy to see that both types must be inspected, because
some deduction must be performed.

For example, if X is a lambda non-const reference, it needs T&. A lambda-constant needs const T&.
The expression (X+1.0) is a functor that takes an argument and passes it to both a lambda reference and
alambda-constant, so this should be T&. In general, you need a commutative metafunction that is able to
“deduce” a feasible common argument type.

template <typename X1, typename F, typename X2>
class lambda_binary : public lambda< lambda_binary<X1,F,X2> >
{

X1 x1_;

X2 x2_;

Ff;

public:
typedef typename F::result type result type;
typedef typename
deduce_argument<typename X1i::argument_type, typename X2::argument_type>::type
argument_type;

/...
};
The problem of combining two arbitrary functionals is even deeper. First, the elimination of T makes

all the return types more complex. For example, now the lambda_plus object will have to take care of the
addition not of two Ts, but of any two different results coming from any different lambdas:

// before
lambda_binary<X1, lambda_plus<T>, X2, T>

// after
lambda_binary<X1, lambda_plus<typename X1::result type, typename X2::result type>, X2>

Furthermore, the return type of “a generic addition” is not known:’

’On the other hand, assignment and logical operators have a deducible return type. The former returns its first argument
(a non-const reference); the latter returns bool. The new keyword decltype of C++0x would allow deducing this type
automatically.

433

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename T1, typename T2>
struct lambda_plus

{
typedef const typename plain<Ti>::type& argi t; // not a problem
typedef const typename plain<T2>::type& arg2 t; // not a problem
typedef [[???]] result_type;
result type operator()(argl t x, arg2 t y) const
{
return x + y;
}
};

So you need another metafunction “deduce result” that takes argl_t and arg2_t and gives back a suitable type.

Luckily, this issue is solvable by TMP techniques under reasonable assumptions, because you have only
a few degrees of freedom. Involved types are T (deduced from lambda_reference and unique in the whole
template expression), T&, const T8, and bool.

9.2.5. Deducing Argument Type
You'll now look for a metafunction F that deduces the common argument type. F should satisfy:
e Symmetry: F<T1,T2> := F<T2,T1>
e The strongest requirement prevails: F<T&, ...> = T&
e const T&and T have the same behavior: F<const T&, ...> = F<T, ...>
Meta-arguments of F are argument types of other lambda objects:
F<typename X1::argument_type, typename X2::argument_type>
Eventually it suffices that F returns either T& or const T&. The simplest implementation is to reduce
both arguments to references. If they have the same underlying type, you should pick the strongest;

otherwise, the compiler will give an error:

template <typename T>
struct as_reference

{
};

typedef const T& type;

template <typename T>
struct as_reference<T&>

{
typedef T& type;

5
template <typename T>
struct as_reference<const T&> : as_reference<T>

{
};

434

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename T1, typename T2>
struct deduce_argument
: deduce_argument<typename as_reference<T1>::type, typename as_reference<T2>::type>

{
};

template <typename T>
struct deduce_argument<T&, T&>

typedef T& type;

)

template <typename T>
struct deduce_argument<T&, const T&>

{
typedef T& type;
b

template <typename T>
struct deduce_argument<const T&, T&>

{
typedef T& type;

)

Observe that the specialization deduce_argument<T&, T&> will be used also when T is a const type.

9.2.6. Deducing Result Type

You can use a similar methodology to write code that deduces the result type. Namely, you will break down
the list of cases you want to cover and implement additional metafunctions as needed. First, notice that the
expected result of a function call is never a reference, so you must start ensuring that at the call location no
references are passed:

template <typename T1, typename T2>
struct lambda_plus

{
typedef const typename plain<T1>::typed argil t;
typedef const typename plain<T2>::type& arg2_t;
typedef
typename deduce result<typename plain<T1»::type, typename plain<T2»::type>::type
result type;
result type operator()(argl t x, arg2 t y) const
return x + y;
}
};

435

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

This time you need four specializations:

template <typename T1, typename T2>
struct deduce result;

template <typename T>
struct deduce_result<T, bool>

{
};

typedef T type;

template <typename T>
struct deduce_result<bool, T>

{
typedef T type;

5
template <typename T>
struct deduce_result<T, T>

{
typedef T type;
};

template <>
struct deduce_result<bool, bool>

{
typedef bool type;
};

The last specialization is necessary; otherwise, <bool, bool> would match any of the three (with
T=bool), so it would be ambiguous.

9.2.7. Static Cast

The limitations of a result/argument deduction may lead to some inconsistency. While a classic addition
bool+bool has type int, the addition of Boolean lambda objects returns bool:

lambda_reference<const double,0> C1;
lambda_reference<const double,1> C2;

((C1<C2) + (C2<C1))(x, ¥); // it returns bool

Both (C1<C2) and (C2<C1) have “function signature” bool (const doubled, const double&) and so
lambda_plus will be instantiated on <bool, bool>.By hypothesis, when arguments are equal,
deduce_result<X, X> givesX.

The only way to solve similar issues is a lambda-cast operator. Luckily, it’s easy to reproduce the syntax
of static_cast using a non-deducible template parameter:

template <typename T1, typename T2>
struct lambda_cast_t

{
436

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

typedef T2 result type;

result type operator()(const T1& x) const

return x;

}
};

#define LAMBDA CAST T(T,X) \
lambda_unary<lambda_cast_t<typename X::result type, T>, X>

template <typename T, typename X>
LAMBDA_CAST T(T,X) lambda_cast(const lambda<X>& x)

{

return x;

}

(lambda_cast<double>(C1<C2)+lambda_cast<double>(C1<C2))(3.14, 6.28);
// now returns 2.0

9.2.8. Arrays

Todd Veldhuizen pioneered the application of “template expressions” to fast operation on arrays, in order to
minimize the use of temporaries.?

valarray<double> A1 = ...;
valarray<double> A2 = ...;

valarray<double> A3 = 7*A1-4*A2+1;

Naive operators will, in general, produce more “copies” of the objects than necessary. The
subexpression 7*A1 will return a temporary array, where each element is seven times the corresponding
entry in A1; 4*A2 will return another temporary, and so on.

Instead, you can use a lambda-like expression:

template <typename X, typename T>
class valarray interface

{

// X is the true valarray and T is the scalar
/...

public:
// interface to get the i-th component

T get(size t i) const

return true this().get(i);
}

8The name valarray is used on purpose, to remark that these techniques fit std: :valarray.

437

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

size t size() const

{
}

operator valarray<T>() const

{

return true this().size();

valarray<T> result(size());
for (size t i=0; i<size(); ++i)
result[i] = get(i);

return result;

}
};

The interface can be cast to a real valarray. This cast triggers the creation of one temporary object,
which is filled componentwise (which is the most efficient way).

The product valarray<T> * Treturnsavalarray binary op< valarray<T»,std::multiplies<T>,
scalar_wrapper<T>, and T>. This object contains a const reference to the original valarray.

template <typename VA1, typename F, typename VA2, typename T>
class valarray binary op
: public valarray interface< valarray binary op<VA1,F,VA2,T> >
{

const VA1& val_;

const VA2& vaz_;

F op_;

public:
/...

T get(size t i) const
return op (vai .get(i), vaz_.get(i));

}
};

The key optimization for successfully using expression templates with complex objects, such as arrays,
is carefully using const references:

const VA1& val ;
const VA28 va2_;

A const reference is generally fine, since it binds to temporaries, but it will not prevent the referenced object
from dying.

For example, (A*7)+B will produce one temporary (A*7), and another object that has a const reference to it,
and a const reference to B. Since A*7 is alive “just in that line of code”, if one could store the expression and
evaluate it later, it would crash the program.

You may actually want to use traits to determine a suitable storage type. If VA1 is valarray<T>, then it's
convenient to use const VA1&. If VA1 is simply a scalar, const VA1 is safer.

438

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

To sum up, the line
valarray<double> A3 = A1*7;

will magically trigger the componentwise evaluation of the template expression on the right, using
either a cast operator in the interface, or—even better—a dedicated template constructor/assignment in
valarray<T>.?

The cast operator is not easy to remove. Since A1*7 is expected to be a valarray, it might even be used
as a valarray, say writing (A1*7)[3] or even (A1*7).resize(n). This implies that valarray and valarray
interface should be very similar, when feasible.

Another advantage of the static interface approach is that many different objects can behave as a fake
valarray. As an equivalent of lambda_const, you can let a scalar c act as the array [c, ¢, ..., c]:

template <typename T>
class scalar_wrapper
: public valarray interface< scalar wrapper<T> >
{
Tc;
size t size ;

public:
scalar_wrapper(T c, size t size)
: ¢ (c), size (size)

{
}
T get(size_t i) const

return c_;

}
};

9.3. Creative Syntax

This section is devoted to exploiting template syntax tricks, such as operator overloads, to express concepts
that differ from the standard meaning.

Some operators convey a natural associativity; the simplest examples are sequences connected with +,
<<, and comma:

std:string s = "hello";

std:string r = s + + "world" + 'I';

std: :ofstrean o("hello.txt");

0 << s <K << "world" << '!';

int a = 1,2,3,4,5,6,7;

°In other words, a constructor that takes const valarray_interface<X,T>&. The details should follow easily and are left
to the reader. The cast operator is required if operators return a type that you cannot modify directly (such as std: :string).

439

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

The user expects these operators to be able to form chains of arbitrary length. Additionally, operator|]
and operator () can sometimes have a similar meaning; in particular, the former should be used when the
length of the chain is fixed:

array a;

a[2]; // ok: the user expects a single subscript

matrix m;

m[2][3]; // ok: a matrix is expected to have 2 coordinates

SomeObject x;
x[2][3][2][4][5]; // bad style, here the meaning is obscure

Tensor<double,5> t;
t[2][3]1[2][4][5]; // good style: the user intuitively expects 5 "dimensions"

You can exploit this syntax by writing operators that consume the first argument and return something
that can handle the remaining chain. Consider the line:

std::cout << a << b << ¢;

This expression has the form: F(F(F(cout, a), b), c),soF(cout, a) should return an object X
such that there exists an overload of F that accepts X and b, and so on. In the simplest case, F(cout, a) just
returns cout.

You are now going to cover this argument in full detail.

9.3.1. Argument Chains with () and]

Sometimes operator () is used to form chains, starting from a function object.
Let’s analyze some hypothetical code:

double f(int, double, char, const char*);

double r1 = bind_to(f)(argument<2>('p')) (37, 3.14, "hello");
// ANNANNNNANNNNNNNNANNNNNANNNANNNN

// produces a new function:

//

// double fi(int a, double b, const char* c)

// { return f(a, b, 'p', c);

double 12
= bind_to(f)(argument<0>(17))(argument<2>('p')) (3.14, "hello");
// ANNANNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNNANNNNN
// produces a new function:
// double f2(double b, const char* c)
// { return f(17, b, 'p',);

440

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

Given that f is a function taking N arguments, you can guess the following facts:
e bind to(f) returns an object with two different operator().

e The first form takes an expression whose syntax is argument<K>(x) and returns a
functor that fixes x as the Kth argument of f. This first form can be invoked repeatedly
to fix several arguments in the same statement.

e The second operator() takes all the remaining arguments at a time and evaluates
the function.

bind to (f){(argument <0>(17))(argument <2>('p'))| (3.14, "hello")

ing fixed all the remaining arguments
%, %%, *)
e
first and third arguments fixed
17,9, %)

Another paradigmatic example is a function that needs several objects (usually functors or accessors,
but there’s no formal requirement), which you don’t want to mix with the other arguments, because either:

e There are toomany: F(..., x1, x2, X3, X4...).

e They cannot be sorted by “decreasing probability of having the default value
changed” and the caller may have to put arbitrary values in unspecified positions.
F(..., X1 x1 = X1(), X2 x2 = X2()...) may need to be invoked as F (...,
X1(), X2(), «.., x7, X8(), ...).

e Each object is associated with a distinct template parameter, say X1, X2...,soa
function call with two arguments swapped by mistake will likely compile.*

To illustrate the situation, let’s pick an algorithm that needs three objects: a less-comparator, a unary
predicate, and a logger:

template <typename iterator_t, typename less_t, typename pred t, typename logger t>
void MyFunc(iterator t b, iterator t e, less t less, pred t p, logger t& out)
{
std::sort(b, e, less);
iterator t i = std::find_if(b, e, p);
if (i !'=e)
out << *i;

10See “price” and “quality” in the knapsack examples in Section 6.2.1.

441

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

However, all these arguments would have a default type, namely std: :ostream as logger (and
std: :cout as a default value for out) and the following two types:

struct basic_comparator

{
template <typename T>
bool operator()(const T& lhs, const T& rhs) const
{ return lhs < rhs; }

};

struct accept_first

{
template <typename T>

bool operator()(const T&) const { return true; }

};

You might often want to change one of those, maybe the last. However, it’s difficult to provide overloads,
because arguments cannot be distinguished on their type:

template <typename iterator_ t, typename less t >
void MyFunc(iterator t b, iterator t e, less t less)

{...}

template <typename iterator_ t, typename logger t>
void MyFunc(iterator t b, iterator t e, logger t& out)
{...}

// ambiguous: these functions will generate errors, if given a named variable as 3rd
argument
So you use the argument pack technique. First, you tag the arguments.

enum { LESS, UNARY P, LOGGER };

template <size t CODE, typename T = void>
struct argument

{
T arg;
argument(const T& that)
: arg(that)
{
}
b

template <size t CODE>
struct argument<CODE, void>

{

argument(int = 0)
{
}

442

CHAPTER 9

template <typename T>
argument<CODE, T> operator=(const T& that) const
{

}

return that;
argument<CODE, std::ostreamd> operator=(std::ostreamd that) const
{

}
};

return that;

Then you provide named global constants:

const argument<LESS> comparator = O;
const argument<UNARY_P> acceptance = 0;
const argument<LOGGER> logger = 0;

template <typename T1, typename T2, typename T3>
struct argument_pack
{

T1 first;

T2 second;

T3 third;

argument_pack(int = 0)
{
}

argument_pack(T1 a1, T2 a2, T3 a3)
: first(a1), second(a2), third(a3)
{
}

THE OPAQUE TYPE PRINCIPLE

argument_pack: :operator[] takes an argument<N, T> and replaces its Nth template argument with T:

template <typename T>

argument_pack<T, T2, T3> operator[](const argument<o, T>& x) const

{
}

return argument pack<T, T2, T3>(x.arg, second, third);

template <typename T>

argument_pack<T1, T, T3> operator[](const argument<i, T>& x) const

return argument pack<T1, T, T3>(first, x.arg, third);

}

443

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename T>
argument_pack<T1, T2, T> operator[](const argument<2, T>& x) const

{
}

return argument pack<T1, T2, T>(first, second, x.arg);
b

This code introduces a global constant named where and overloads the original function twice
(regardless of the actual number of parameters):

typedef argument_pack<basic_comparator, accept first, std::ostream&> pack_t;

// note: a global variable called "where"
static const pack t where(basic_comparator(), accept first(), std::cout);

template <typename iterator t, typename T1, typename T2, typename T3>
void MyFunc(iterator t b, iterator t e, const argument_pack<T1,T2,T3> a)

{
}

template <typename iterator_ t >
void MyFunc(iterator t b, iterator t e)

{
}

return MyFunc(b, e, a.first, a.second, a.third);

return MyFunc(b, e, where);

So now it’s possible to write:

MyFunc(v.begin(), v.end(), where[logger=std::clog]);
MyFunc(v.begin(), v.end(), where[logger=std::cerr][comparator=greater<int>()]);

logger is a constant of type argument<2,void>, which gets upgraded to argument<2,std: :ostreamé>.
This instance replaces the third template parameter of pack_t with std: :ostreamd and the value of
pack_t::third with areference to std: :cerr.

Observe that the code shown in this section is not generic, but it’s strongly tied to the specific function
call. However, complex functions that require argument packs should generally be just a few per project.

9.4. The Growing Object Concept

Let’s start with an example. String sum has an expected cost of a memory reallocation'":

template <typename T>

std::string operator+(std::string s, const T& x)

{
// estimate the length of x when converted to string;
// ensure s.capacity() is large enough;

"Note that s is passed by value. According to the NVRO (Named Value Return Optimization), if there is only one return
statement and the result is a named variable, the compiler can usually elide the copy, directly constructing the result on the
caller’s stack.

444

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

// append a representation of x to the end of s;
return s;

If there are multiple sums on the same line, evidently, the compiler knows the sequence of arguments:

std::string s
std::string r

"hello";

s+ ' '+ "world!";

// repeated invocation of operator+ with arguments: char, const char*
// may cause multiple memory allocations

So you will want to:
e Collect all the arguments at once and sum their lengths
e Execute a single memory allocation
e Traverse the sequence of arguments again and concatenate them

The growing object is a pattern that allows traversing a C++ expression before execution. The idea of the
technique is to inject in the expression a proxy with special operators that “absorb” all the subsequent arguments.

The proxy is a temporary agglomerate object whose operators make it “grow” including references
to their arguments. Finally, when growth is complete, the object can process all arguments at once and
transform them into the desired result.

Thus in the previous example, s+' ' is not a string, but a proxy that contains a reference to s and a char.
This object grows when "world" is added, so s+' '+"world" contains also a const char*.

Informally, a growing object is implemented as a pair containing the previous state of the object and
some new tiny data (say, a reference). Additionally, there are three possible variants of “pair”:

e Aclass with two members: a reference to the previous growing object and a tiny object
e Aclass with two members: a copy of the previous growing object and a tiny object

e Aclass that derives from the previous growing object, with a tiny object as the
only member

In pseudo-template notation, the three different models can be written:

template <...>

class G1<N>

{
const GI1<N-1>& prev_;
T& data_;

};

template <...>
class G2<N>

{

G2<N-1> prev_;
T& data_;
};

445

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <...>
class G3<N> : public G3<N-1>
{

};

T& data_;

The first is the fastest to build, because augmenting a temporary object G1 with new data involves no
copy, but the lifetime of G1 is the shortest possible. The other types have similar complexity, since their
construction involves copying Gj<N-1> anyway, but they slightly differ in the natural behavior.

The great advantage of G1 is that both constructors and destructors run exactly once and in order.
Instead, to create a G2<N>, you must produce two copies of G2<N-1>, three copies of G2<N-2>. .., K+1 copies
of G2<N-K>. .., and so on.

This is especially important because you might need G<N> to run some code when the growth is
complete and the destructor of G<N> would be one of the options.

Any of these Gj contains references, so for example no growing object can be thrown.

Furthermore, there are some known recursive patterns in computing the result:

e Jnward link: GKN> either computes the result directly, or it delegates G<N-1>, passing
information “inward”:

private:
result do_it myself()
{
/] ...
}
result do_it(arguments)
{
if (condition)
return do_it myself();
else
return prev_.do_it(arguments);
}
public:
result do_it()
{
return do_it(default);
}

e Outward link: G<N> asks recursively for a result from G<N-1> and post-processes it.

result do_it()
{

result temp = prev_.do it();
return modify(temp);

446

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

Direct access: G<N> computes J and asks G<J> for a result. This pattern has a different
implementation for inheritance-based growing objects.

template <...>
class G1<N>

{
result do_it myself(static_value<int, 0>)
{
// really do it
}
template <int K>
result do_it myself(static_value<int, K>)
{
return prev_.do it myself(static_value<int, K-1>());
}
public:
result do_it()
{
static const int J = [...];
return do_it myself(static_value<int, 3>());
}
};

template <...>
class G3<N> : G3<N-1>

{ result do_it myself()
{
/...
}
public:
result do it()
{ static const int J = ...;
return static_cast<growing<J>&>(*this).do_it myself();
}
};

9.4.1. String Concatenation

You implement the first growing object with a sequence of agglomerates (see Section 3.6.8).

Since objects involved in a single statement live at least until the end of the expression, you can think of
an agglomeration of const references. The expression (string+T1)+T2 should not return a string, but rather
a structure containing references to the arguments (or copies, if they are small).'?

12See Section 9.2.8.

447

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename T1, typename T2>
class agglomerate;

template <typename T»
agglomerate<string, const T&> operator+(const string&, const T&);"

template <typename T1, typename T2, typename T>
agglomerate<agglomerate<T1, T2>, const T&>
operator+(const agglomerate<T1, T2>, const T&);

So the sum in the prototype example below would return agglomerate< agglomerate<string, char>,
const char*y:

std::string s
std::string r

"hello";

s + + "world!";

Eventually, all the work is done by a cast operator, which converts agglomerate to string:

e Sum thelengths of this->first and this->second (first is another agglomerate or
a string, so both have a size() function; second is a reference to the new argument).

e Allocate a string of the right size.

e Append all the objects to the end of the string, knowing that internally no
reallocation will occur.

Note that the agglomerates are built in reverse order, with respect to arguments; that is, the object that
executes the conversion holds the last argument. So, it has to dump its agglomerate member before its
argument member.

// using namespace std;

template <typename T, bool SMALL = (sizeof(T)<=sizeof(void*))>
struct storage traits;

template <typename T>
struct storage traits<T, true>

{
typedef const T type;

)

template <typename T>
struct storage traits<T, false>

{
typedef const T& type;
b

// assume that T1 is string or another agglomerate
// and T2 is one of: char, const char*, std::string

BThe example is obviously fictitious, as you cannot really add the operator to std: :string.

448

CHAPTER 9

template <typename T1, typename T2>
class agglomerate

{

T1 first;

typename storage traits<T2>::type second;

void write(string& result) const

{
// member selection based on the type of 'first'
write(result, &first);

}

template <typename T>

void write(string& result, const T*) const

{
// if we get here, T is an agglomerate, so write recursively:
// mind the order of functions
first.write(result);
result += this->second;

}

void write(string& result, const string*) const

{
// recursion terminator:
// 'first' is a string, the head of the chain of arguments
result = first;

}

size t size()

{
return first.size() + estimate length(this->second);

}

static size t estimate length(char)

{
return 1;

}

static size t estimate_length(const char* const x)

{
return strlen(x);

}

static size t estimate length(const string8 s)

{
return s.size();

}

public:

operator string() const

THE OPAQUE TYPE PRINCIPLE

449

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

{
string result;
result.reserve(size());
write(result);
return result; // NVRO
}

};
The first enhancement allows accumulating information in a single pass through the chain:

void write(string& result, size_t length = 0) const

{
}

write(result, &first, length + estimate_length(this-»second));

template <typename T>
void write(string& result, const T*, size t length) const
{

first.write(result, length);

result += this->second;

}

void write(string& result, const string*, size t length) const
{

result.reserve(length);

result = first;

}

operator string() const

string result;
write(result);
return result;

}

std::string s
std::string r

"hello";

s + + "world!";

In classic C++, each call to string: :operator+ returns a different temporary object, which is simply copied.
So the initial example produces two intermediate strings: namely t1="hello” and t2="hello world!". Since
each temporary involves a copy, this has quadratic complexity.

With C++0x language extensions, std: : string is a moveable object. In other words, its operators will
detect when an argument is a temporary object and allow you to steal or reuse its resources. So the
previous code might actually call two different sum operators. The first produces a temporary anyway
(because you are not allowed to steal from local variable ‘s’); the second detects the temporary and reuses
its memory.

450

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

Conceptually, the implementation could look like this:

string operator+(const string& s, char c)

string result(s);
return result += c;

}
string operator+(string&& tmp, const char* c)
string result;

result.swap(tmp);
return result += c;

Where the notation string88 denotes a reference to temporary. Even more simply:

string operator+(string s, char c)

return s += c;

}

string operator+(string8& tmp, const char* c)

return tmp += c;

In other words, C++0x string sum is conceptually similar to:'*

std::string s
std::string r

T += ;
T += "world!";

"hello";
s;

But a growing object performs even better, being equivalent to:

std::string s = "hello";

std::string r;
r.reserve(s.size()+1+strlen("world!");
I +=s;

r+="";
T += "world!";

So C++0x extensions alone will not achieve a better performance than a growing object.

14See also Scott Meyers, “Effective Modern C++,” Item 29: “Assume that move operations are not present, not cheap, and
not used.”

451

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

9.4.2. Mutable Growing Objects

A growing object may be used to provide enhanced assertions:*
std::string s1, s2;
SMART ASSERT(s1.empty() 8& s2.empty())(s1)(s2);
Assertion failed in matrix.cpp: 879412:
Expression: 'si.empty() && s2.empty()’
Values: s1 = "Wake up, Neo"

s2 = "It's time to reload."

This code may be implemented with a plain chainable operator():

class console_assert

{
std::ostreamd out_;
public:
console_assert(const char*, std::ostreamd out);
console_assert8 operator()(const std::stringd s) const
{
out_ << "Value = " << s << std::endl;
return *this;
}
console_assertd operator()(int i) const;
console_assertd operator()(double x) const;
/...
};

#define SMART_ASSERT(expr) \
if (expr) {} else console assert(#expr, std::cerr)

This macro starts an argument chain using operator (), and since it’s not a growing object, arguments
must be used immediately. But you could have a more intricate “lazy” approach:'

template <typename T1, typename T2>
class console_assert
{

const T1& ref ;

const T2& next_;

mutable bool run_;

15See the article on assertions by Alexandrescu and Torjo, which is also the source of the first sample in this paragraph: .
1For extra clarity, we omitted the information collection phase (the estimation of the string length) from this example. In
fact std: :ostream does not need to be managed.

452

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

public:
console assert(const T1& r, const T2& n)
: ref (r), next_(n), run_(false)

{}
std::ostream& print() const
{
std::ostream& out = next_.print();
out << "Value = " << ref_ << std::endl;
run_ = true;
return out;
}

template <typename X>
console_assert<X, console assert<Ti, T2> >
operator()(const X& x) const

return console assert<X, console assert<T1, T2> >(x, *this);

}
~console_assert()
{
if (!run_)
print();
}
};

template < >
class console_assert<void, void>

{

std::ostreamd out_;

public:
console_assert(const char* msg, std::ostreamd out)
: out_(out << "Assertion failed: " << msg << std::endl)

{
}
std::ostreamd print() const
{
return out_;
}

template <typename X>
console_assert<X, console assert<void, void> >
operator()(const X& x) const

return console_assert<X, console assert<void, void> >(x, *this);

}
};

453

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

#define SMART_ASSERT(expr) \
if (expr) {} else console assert<void, void>(#expr, std::cerr)

The previous sample shows that it’s possible to modify the growing object from inside, stealing or
passing resources through the members.

In particular, a step-by-step code expansion yields the following:
SMART ASSERT(s1.empty() 8& s2.empty())(s1)(s2);
if (s1.empty() && s2.empty())

{}

else
console_assert<void, void>("s1.empty() && s2.empty()", std::cerr)(s1)(s2);

Il AAAAANNNANNNNANNNNNNNANNNNNNNNANANNNNNNNNNNNNANNNNNANNNNNNANNNNANAN

// constructor of console_assert<void, void>

If assertion is false, three nested temporaries are created:

To console_assert<void,void>
T1 console_assert<string,console_assert<void,void>>
T2 console_assert<string,console assert<string,console assert<void,void>>>

e T2iscreated and immediately destroyed. Since run_ is false, it invokes print.
e printcallsnext_.print.
e TOpassesits stream to T1.
e T1printsits message, sets run_=true, and passes the stream up to T2.
e T2 prints its message and dies.
e Tiisdestroyed, but since run_is true, it stays silent.
e Tois destroyed.

A specialization such as console_assert<void,void> is called the chain starter. Its interface might be
significantly different from the general template.

The interface of the growing object usually does not depend on the number of arguments that were
glued together."”

9.4.3. More Growing Objects

Generalizing the pattern, given a type container C, you implement a generic agglomerate chain<traits, C>.
The only public constructor lies in the chain starter and the user can sum any chain and an argument.

""This is not obvious at all. In the last example of Section 9.3, we considered an agglomerate, namely bind_to(f)
(argument). .. (argument), whose syntax depends on the length of the chain. In fact, binding one argument of four yields
a functor that takes 4-1=3 free arguments, and so on.

454

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

For simplicity, the decision about how to store arguments in the chain (by copy or by reference) is given
by a global policy:*®

template <typename T>
struct storage_traits

{
typedef const T& type;

)

template <typename T>
struct storage traits<T*>

{
typedef T* type;
b

template <typename T>
struct storage traits<const T*>

{
typedef const T* type;

)

template <>
struct storage traits<char>

{
typedef char type;

)

During the “agglomeration,” a chain of length N+1 is generated by a chain of length N and a new
argument. The new chain stores both and combines some new piece of information (for example, it sums
the estimated length of the old chain with the expected length of the new argument).

Eventually, this piece of information is sent to a “target object,” which then receives all the arguments in
some order.

Since all these actions are parametric, you can combine them in a traits class:

e update collects information from arguments, one at a time.
e dispatch sends the cumulative information to the target object.

e transmit sends actual arguments to the target object.
struct chain_traits
{
static const bool FORWARD = true;

struct information_type

{
};

/...

typedef information_type& reference;

8This allows you to present simplified code. You can easily add a storage policy as a template parameter.

455

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

typedef ... target_type;

template <typename ARGUMENT_T>
static void update(const ARGUMENT T&, information typed);

static void dispatch(target type8, const information_type&);

template <typename ARGUMENT_T>
static void transmit(target type8, const ARGUMENT T&);
};

Update will be called automatically during object growth; dispatch and transmit will be called lazily if
the chain is cast to or injected in a target_type.

First you implement the empty chain.

Analogous to the stream reference in Section 9.4.2 above, this class will store just the common
information. Additional layers of the growing object will refer to it using traits: :reference.

template <typename traits_t, typename C = empty>
class chain;

template <typename traits_t>
class chain<traits_t, empty>

{
template <typename ANY1, typename ANY2>
friend class chain;
typedef typename traits_t::information_type information_type;
typedef typename traits_t::target_type target_type;
information_type info_;
void dump(target type8) const
{
}
public:
explicit chain(const information typed& i = information_type())
: info_(i)
{
}

#define PLUS T \
chain<traits_t, typename push_front<empty, T»::type>

template <typename T>
PLUS T operator+(const T& x) const
{

}

return PLUS T(x, *this);

456

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

const chain& operator >> (target typed x) const

{
x = target type();
return *this;

}

operator target type() const

return target type();
}
b

A nonempty chain instead contains:

e Adatamember of type front<C>, stored as a storage_traits<local_t>::type.

e Achain of type chain<pop_front<C>>, stored by const reference. Since C is nonempty,
you can safely pop_front it.

e Areference to the information object. Storage of information_type is
traits-dependent. It may be a copy (when traits_t::reference and
traits_t::information_type are the same) or a true reference.

The private constructor invoked by operator+ first copies the information carried by the tail chain, then
it updates it with the new argument.

template <typename traits_t, typename C>
class chain
{
template <typename ANY1, typename ANY2>
friend class chain;

typedef typename traits_t::target_type target_type;
typedef typename front<C>::type local t;
typedef chain<traits_t, typename pop_front<C>::type> tail t;

typename storage_ traits<local t>::type obj_;
typename traits_t::reference info_;
const tail t& tail ;

void dump(target type& x) const

{
tail .dump(x);
traits t::transmit(x, obj);
}
chain(const local t& x, const tail t& t)
: obj (x), tail (t), info_(t.info)
{

}

traits t::update(x, info);

457

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

public:
template <typename T>
chain<traits_t,typename push front<C,T>::type> operator+(const T& x) const
{
typedef
chain<traits_t, typename push_front<C, T>::type> result t;
return result t(x, *this);

}
const chain& operator >> (target typed x) const
{
traits t::dispatch(x, info);
dump(x) ;
return *this;
}

operator target type() const

target type x;
*this >> x;
return x;

}
};

The private dump member function is responsible for transmitting recursively all arguments to the
target. Note that you can make the traversal parametric and reverse it with a simple Boolean:

void dump(target type& x) const
if (traits_t::FORWARD)

tail .dump(x);
traits_t::transmit(x, obj_);

}

else

{
traits t::transmit(x, obj);
tail .dump(x);
}
}

Finally, you show an outline of the traits class for string concatenation:
struct string_chain_traits
{

static const bool FORWARD = true;

typedef size t information_type;
typedef size t reference;

typedef std::string target_type;

458

CHAPTER 9

template <typename ARGUMENT_T>
static void update(const ARGUMENT T& x, information type& s)

{
}

s += estimate_length(x);
static void dispatch(target type& x, const information type s)
{
}

template <typename ARGUMENT T>
static void transmit(target_type& x, const ARGUMENT T& y)

{
}

x.reserve(x.size()+s);

X +=Y;
b5
typedef chain<string chain_traits> begin_chain;

std::string q
std::string s

"o "
(begin_chain() + "hel" + q + 'w' + "orld!");

Figure 9-1. Chain diagram. Objects are constructed from bottom to top

u

m
u

obj="hel"

THE OPAQUE TYPE PRINCIPLE

459

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

e Since you are not allowed to modify std: : string, you have to start the chain
explicitly with a default-constructed object.

e Code that runs only once before a chain starts can be putin information_type
constructor. Then you can begin the chain with begin_chain(argument).

e The storage policy is a place where custom code may be transparently plugged in
to perform conversions. For example, to speed up the int-to-string conversion, you
could write:

template <>
struct storage_traits<int>

{
class type
{
char data [2+sizeof(int)*5/2];"
public:
type(const int i)
// perform the conversion here
itoa(i, data, 10);
}
operator const char* () const
{
return data_;
}
};
};

9.4.4. Chain Destruction

It may be possible to write custom code in the chain destructor.

Since you have only one copy of each chain (they are linked by const references), chain pieces are
constructed in order from the first argument to the last. They will be destroyed in the reverse order. You have
an opportunity to execute some finalization action at the end of the statement.

~chain()

{
traits t::finalize(obj_, info);

}

std::string s;
std::string q = "lo ";
(begin_chain() + "hel" + q + 'w' + "orld!") >> s;

YIf n is an integer of type int_t, the number of digits in base 10 for n is ceil(log10(n+1)). Assuming that a byte contains
eight bits and that sizeof(int_t) is even, the largest integer is 256" sizeof(int_t)-1. When you put this in place of n,
you’ll obtain a maximum number of ceil(1og10(256)*sizeof(int_t)) ~ (5/2)*sizeof(int_t) digits. You would
add 1 for sign and 1 for the terminator.

460

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

Then the leftmost object will append "hello world!" to s with at most a single reallocation. Finally, the
destructors will run finalize in reverse order (from left to right).

If chains are stored by value, the order of destruction is fixed (first the object, then its members).
But there will be multiple copies of each sub-chain (namely, all the temporaries returned by operator+).
Evidently, if C1 holds a copy of C0 and C2 holds a copy of C1, there are three copies of C0 and so, without some
additional work, you will not know which sub-chain is being destroyed.

9.4.5. Variations of the Growing Object

If you have to add growing objects to a read-only class (as std: : string should be), instead of inserting
manually a chain starter, you can:

e Replace the chain starter with a global function that processes the first argument
(this is equivalent to promoting the empty chain’s operator+ to a function).

e Switch to operator () for concatenation (this makes the bracket syntax uniform).

template <typename traits_t, typename T>
chain<traits_t,typename push_front<empty,T»>::type> concatenate(const T& x)

typedef chain<traits_t, typename push_front<empty, T>::type> result t;
return result t(x, chain<traits t>());

}

std::string s = concatenate("hello")("' ')("world");

Another variation involves the extraction of the result. Sometimes the cast operator is not desirable. You
may decide to replace both = and + with the stream insertion syntax, so you'd write:

std::string s;
s << begin_chain() << "hello" <«

' << "world";

This is feasible, but it requires some trick to break the associativity, because the language rules will
make the compiler execute:

(s << begin chain()) << "hello" << ' ' << "world";
While you would prefer:
s << (begin chain() << "hello" << ' ' << "world");

ANANNANNNNNNANNNNNNNNNNNNNNNNNNNNNANNNNNNNNNNNAN

In the old approach, the result was the last piece of information; now it’s the first. So you have to modify
the chain and carry it around. You store a pointer to the result in the empty chain so that it can be read only
once. The unusual operator« fills this pointer and then returns its second argument, not the first; this is the
associativity-breaker.

This section shows only briefly the differences from the previous implementation:

template <typename traits_t, typename C = empty>
class chain;

461

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <typename traits_t>
class chain<traits_t, empty>
{

/1 ...

mutable target type* result_;

public:
/1 ...

const chain& bind to(target typed x) const
{

result = &x;

return *this;

}
target type* release target() const

target_type* const t = result_;
result = 0;
return t;
}
};

template <typename traits_t>
const chain<traits_t>& operator<<(typename traits t::target typed x,
const chain<traits t>& c)

{
}

template <typename traits t, typename C>
class chain

{
/1.

return c.bind to(8x);

target type* release target() const

return tail .release target();

}

public:
template <typename T>
chain<traits_t, typename push_front<C,T>::type> operator<<(const T& x) const

{
typedef chain<traits_t, typename push_front<C, T>::type> result t;

return result t(x, *this);

}

~chain()

{

462

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

if (target_type* t = release_target())
dump (*t);
}
};

The last object in the chain will be destroyed first, and it will be the only one to succeed in
release_target.

9.5. Streams

As introduced in the previous section, the stream insertion syntax is one of the most uniform, so it’s visually
clear yet flexible and open to customizations.

9.5.1. Custom Manipulators and Stream Insertion

Say you want to print a bitstring (see Section 5.2.3) in the C++ way, via stream insertion.
A bitstring implements many static interfaces at the same time.

class bitstring

: public pseudo_array<bitstring, bit_tag>

, public pseudo_array<bitstring, nibble_tag>
, public pseudo_array<bitstring, byte_ tag>
{.o b

How do you decide which of the interfaces should send its data to the stream? In other words, how can
you elegantly select between bit-wise, byte-wise, and nibble-wise printing?

Recall that a manipulator is an object that flows in the stream, takes the stream object, and modifies
its state:*

using namespace std;

ostreamd flush(ostreamd o)

{
// flush the stream, then...

return o;

}

// a manipulator is a function pointer that takes and returns a stream by reference
typedef ostreamd (*manip t)(ostreamd);

ostream& operator<<(ostream& o, manip_t manip)

{
manip(o);
return o;

}

cout << flush << "Hello World!";

»See Section 1.4.7 on manipulators.

463

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

Note that, while some objects modify the state of the stream permanently, in general the effect of a
manipulator insertion is lost after the next insertion. In the previous code, cout will need reflushing after the
insertion of the string.

However, nothing prevents the manipulator from returning an entirely different stream. Being part of a
subexpression, the original stream is surely alive, so it can be wrapped in a shell that intercepts any further
call to operator<<.

class autoflush t

{
ostream8 ref;
public:
autoflush_t(ostreamd r)
1 ref(r)
{}
template <typename T>
autoflush_t& operator<<(const T& x)
{
ref << x << flush;
return *this;
}
operator ostream& () const
{
return ref;
}
};

autoflush_t* autoflush() { return o; }

inline autoflush_t operator<<(ostream& out, autoflush t* (*)())

{
return autoflush_t(out);
}
cout << autoflush << "Hello" << ' ' << "World";

All insertions after autoflush are actually calls to autoflush_t::operator<<, notto std: :ostream

Note also that the code generates a unique signature for the manipulator with the proxy itself.

A stream proxy need not be persistent. It may implement its own special insertion and a generic
operator that “unwraps” the stream again if the next object is not what’s expected.

Suppose you have a special formatter for double:

class proxy

{
ostreamd os_;

public:
explicit proxy(ostreamd os)
: os_(os)

464

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

{

}

ostream& operator<<(const double x) const

{
// do the actual work here, finally clear the effect of the
// manipulator, unwrapping the stream
return os_;

}

// the default insertion simply reveals the enclosed stream

template <typename T>
ostreamd operator<<(const T& x) const

{

}
};

return os_ << Xx;

proxy* special numeric() { return o; }
inline proxy operator<<(ostreamd os, proxy* (*)())

return proxy(os);

}

cout
<< special_numeric << 3.14 // ok, will format a double
<< special numeric << "hello"; // ok, the manipulator has no effect

If instead the template operator<< is omitted, a double will be required after the manipulator.
To sum up, by altering the return type of operator<<, you can write manipulators that:

e Affect only the next insertion, as long as an instance of X is inserted; otherwise, they
are ignored.

e Affect only the next insertion and require the insertion of X immediately thereafter;
otherwise, there’s a compiler error.

e Affect all the next insertions until the end of the subexpression.

o Affect all the next insertions until X is inserted:

template <typename any t>
proxy dumper& operator<<(const any t& x) const
{

0S_ << X;

return *this;

}

This is exactly the solution you need for bitstring; treating the static interface type tags as
manipulators. Insertion returns a template proxy that formats the next bitstring according to the (statically
known) type tag, using a suitable function from the static interface itself.

465

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

using std::ostream;

template <typename digit t>
class bistring stream proxy

{

ostreamd os_;

public:
bistring stream proxy(ostream& os)
: os_(os)
{
}

ostreamd operator<<(const pseudo_array<bitstring, digit t>& b) const

{
b.dump(os_);
return os_;

}

template <typename any t>
ostream& operator<<(const any t& x) const

{
}

return os_ << X;
};

inline bistring stream proxy<bit t> operator<<(ostreamd o, bit t)

{
}

return bistring stream proxy<bit t>(o);

inline bistring stream proxy<octet t> operator<<(ostream& o, octet t)

{
}

return bistring stream proxy<octet t>(o);

inline bistring stream_proxy<nibble t> operator<<(ostream& o, nibble_t)

{
}

return bistring stream proxy<nibble t>(o0);

9.5.2. Range Insertion with a Growing Object

Another exercise is the insertion of a range into a stream. You need a custom item to start a chain:

cout << range << begin << end;

466

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

The first proxy (returned by std: :cout << range) takes an iterator and grows (see the previous
section). The insertion of a second iterator of the same kind triggers the full dump:

template <typename iterator_t = void*>
class range t

{

std::ostreamd ref ;
iterator_t begin_;

public:
explicit range t(std::ostreamd ref)
: ref (ref), begin ()
{
}

range_t(range t<> r, iterator t i)
: ref (r.ref), begin (i)
{

}

std::ostreamd operator<<(iterator t end)

{
while (begin_!= end)
ref_ << *(begin_++);

return ref ;

}

std::ostreamd operator<<(size t count)

{

while (count--)
ref_ << *(begin ++);

return ref_;

}
};

range_t<>* range() { return 0; }

inline range t<> operator<<(std::ostreamd os, range<>* (*)())

{
}

return range_t<>(os);

template <typename iterator_ t>
inline range t<iterator t> operator<<(range t<> r, iterator t begin)

{
}

return range_t<iterator t>(r, begin);

467

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

The range proxy accepts a range represented either by [begin. ..end) or by [begin, N).In theory,it’s
possible to specialize even more:

template <typename iterator_t = void*>
class range t

{
private:
/1 ...
void insert(iterator t end, std::random_access iterator tag)

{
// faster algorithm here
}

public:
/7 ...

std::ostreamd operator<<(iterator t end)

{

insert(end, typename iterator traits<iterator t>::iterator category());
return ref_;

}
};

9.6. Comma Chains

The comma operator is sometimes overloaded together with assignment to get some form of lazy/iterative
initialization. This mimics the common C array initialization syntax:

int data[] = { 1,2,3 };

// equivalent to:
// data[o] = 1; data[1] = 2; data[2] = 3

Because of standard associativity rules, regardless of its meaning, an expression like this:
A=x,vy, z;
is compiled as
(((A=x),y), 2);
where each comma is actually a binary operator, so actually
((A.operator=(x)).operator, (y)).operator, (z)

Note the difference between this syntax and the growing object. The latter associates all the items on the
right side of assignment, left to right:

A = ((x+y)+2);

468

CHAPTER 9 © THE OPAQUE TYPE PRINCIPLE
Here, you have the opportunity to modify A iteratively, because the part of the expression containing A is
the first to be evaluated:
¢ Define a proxy object P<A>, which contains a reference to A.

e Define P<A>::operator so that it takes an argument x. It combines A and x and
returns *this (which is the proxy itself).

e Define A: :operator=(x) as return P<A>(*this),x.

Suppose you have a wrapper for a C array:

template <typename T, size t N>
struct array

{
T data[N];
};

Being a struct with public members, such an object can be initialized with the curly bracket syntax:
array<double, 4> a = { 1,2,3,4 };

However, you cannot do the same on an existing object:*
array<double, 4> a = { 1,2,3,4 };
// ok, but now assign {5,6,7,8} to a...

const array<double, 4> b = { 5,6,7,8 };
a=b;

// is there anything better?
Let the assignment return a proxy with a special comma operator:

template <typename T, size t N>
struct array

{
T data[N];

private:
template <size_t J>
class array initializer

{

array<T, N>* const pointer_;

friend struct array<T, N>;

2IC++0x language extensions allow you to initialize some objects (including std: :array) with a list in curly brackets. For
more details, refer to http://en.cppreference.com/w/cpp/utility/initializer list.

469

http://en.cppreference.com/w/cpp/utility/initializer_list

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

template <size_t K>
friend class array initializer;

array initializer(array<T, N>* const p, const T& x)
: pointer_(p)

MXT_ASSERT(J<N);
pointer ->data[J] = x;

}

The proxy, being the result of operator=, is conceptually equivalent to a reference, so it’s quite natural
to forbid copy and assignment by declaring a member const (as in this case) or reference.

For convenience, the proxy is an inner class of array and its constructor is private; array itself and all
proxies are friends. Note that the constructor performs a (safe) assignment.

The proxy has a public comma operator that constructs another proxy, moving the index to the
next position. Since the user expects the expression A = x to return a reference to A, you can also add a
conversion operator:

class array initializer

{
/7 ...
public:
array initializer<J+1> operator, (const T& x)
{
return array_initializer<J+1>(pointer_, x);
}
operator array<T, N>& ()
{
return *pointer_;
}

}; // end of nested class

Finally, the array assignment just constructs the first proxy:
public:

array initializer<0> operator=(const T& x)

{

}
};

return array initializer<o»(this, x);

Note that the fragment:

array<int,4> A;
A = 15,25,35,45;

is roughly equivalent to:

((((A = 15),25),35),45);

470

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

where, as mentioned, each comma is an operator. This expression, after array: :operator=, expands at
compile time to:

(((array_initializer<o>(A, 15), 25), 35), 45);

The construction of array_initializer<0> sets A[0]=15, then the array initializer comma
operator constructs another initializer that assigns A[1], and so on.

To build a temporary array_initializer<I>, you have to store a const pointer in a temporary on the
stack, so the whole process is somehow equivalent to:

array<int,4>* const P1 = 8A;
P1->data[0] = 15;
array<int,4>* const P2 = P1;
P2->data[1] = 25;
array<int,4>* const P3 = P2;
P3->data[2] = 35;
array<int,4>* const P4 = P3;

P4->data[3] = 45;

If the compiler can propagate the information that all assignments involve A, the code is equivalent to a
hand-written initialization. All const modifiers are simply hints for the compiler to make its analysis easier.

Comma chains often exploit another language property: destruction of temporary proxy objects. In
general, the problem can be formulated as: how can a proxy know ifit is the last one?

In the previous example, you might like:

array<int,4> A;
A = 15,25; // equivalent to {15,25,0,0}

but also

array<int,4> A;
A = 15; // equivalent to {15,15,15,15} not to {15,0,0,0}

The expression compiles as array initializer<o>(8A,15).operator, (25); this returns array
initializer<1>(&A,25).

The only way a proxy can transmit information to the next is via the comma operator. The object can
keep track of invocation and its destructor can execute the corresponding action:

template <size t J>
class array_initializer

{

array<T, N>* pointer ; // <-- non-const

public:
array initializer(array<T, N>* const p, const T& x)
: pointer (p)

MXT_ASSERT(J<N);

p->data[J] = x;
}

471

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

array initializer<J+1> operator, (const T& x)

{
array<T, N>* const p = pointer_;
pointer = 0; // <-- prevent method re-execution
return array_initializer<J+1>(p, x);
}
~array_initializer()
{
// if operator, has not been invoked
// then this is the last proxy in chain
if (pointer)
if (3 == 0)
std::fill_n(pointer_->data+1, N-1, pointer_->data[o0]);
else
std::fill n(pointer ->data+(J+1), N-(J3+1), T());
}
}

};

Altering the semantics of destructors, in general, is risky. Here, however, you can assume that these
objects should not be stored or duplicated, and the implementation enforces that so that (non-malicious)
users cannot artificially prolong the life of these proxies.*

e Put the proxy in a private section of array, so its name is inaccessible to the user.

e Declare all dangerous operators as non-const, so if a proxy is passed to a function by
const reference, they cannot be invoked. A non-const reference must refer to a non-
temporary variable, which is unlikely.

e Forbid copy construction.

While it is possible to perform an illegal operation, it really requires malicious code:

template <typename T>
T8 tamper(const T& x)

T& 1 = const_cast<T&>(x);
r, 6.28;

return r;

}

array<double, 10> A;
array<double, 10> B = tamper(A = 3.14);

2Exception safety may be a dependent issue. If the destructor of a proxy performs non-trivial work, it could throw.

472

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

e The argument of tamper is const T&, which can bind to any temporary. Thus it
defeats the name-hiding protection.

e const_cast removes the const protection and makes the comma operator callable.
e r.operator, (6.28) asaside effect sets r.pointer = 0.

e Thereturned reference is still alive when the compiler is going to construct B, but the
conversion operator dereferences the null pointer.

Observe that a function like tamper looks harmless and may compile for every T.

9.7. Simulating an Infix

Let’s analyze the following fragment:

double pi = compute PI();
assert(pi IS _ABOUT 3.14);

We will not solve the problem of comparing floats, but this paragraph will give you an idea of simulating
new infixes. If an expression contains operators of different priority, you can take control of the right part
before you execute the left part (or vice versa). For example, IS_ABOUT may be a macro that expands to:

assert(pi == SOMETHING() + 3.14);

SOMETHING: :operator+ runs first, so you immediately capture 3.14. Then a suitable operator== takes
care of the left side.
Here’s some code that will do:

template <typename float_t>
class about_t

{

float t value ;

public:
about_t(const float t value)
: value_(value)

{
}
bool operator==(const float t x) const
{
const float t delta = std::abs(value_ - x);
return delta < std::numeric_limits<float t>::epsilon();
}
b

template <typename float_t>
inline bool operator==(const float t x, const about t<float t> a)

{

return a == x;

}

473

CHAPTER 9 * THE OPAQUE TYPE PRINCIPLE

struct about creator t

{
template <typename float_t>

inline about t<float t> operator+(const float t f) const

{
}

return about_t<float t>(f);
};

#define IS ABOUT == about_creator t() +

Obviously, the role of + and == can be reversed, so as to read the left side first.
Note also that if all these objects belong to a namespace, the macro should qualify about_creator t fully.

The curious reader may wish to investigate the following algorithm, which is given without explanations.

Two numbers X and Y are given.

1. IfX==Yreturn true.

2. Check trivial cases when one or both numbers are infinite or NAN and return
accordingly.

Pick epsilon from std: :numeric_limits.
LetD := |X-Y|
max(|X[,[Y]).

Return R<epsilon OR D<(R*epsilon).

LetR

o o

A variant of the algorithm also tests D<epsilon.

474

PART 3

#include <applications>

CHAPTER 10

Refactoring

Templates can be considered a generalization of ordinary classes and functions. Often a preexisting function
or class, which is already tested, is promoted to a template, because of new software requirements; this will
often save debugging time.

However, be careful before adding template parameters that correspond to implementation
details, because they are going to be part of the type. Objects that do not differ significantly may not be
interoperable. Consider again the example from Section 1.4.9, which is a container that violates this rule:

template <typename T, size_t INITIAL_CAPACITY = 0>
class special_vector;

It makes sense to have operators test equality on any two special_vector<double>, regardless of their
initial capacity.

In general, all member functions that are orthogonal to extra template parameters either need to be
promoted to templates or be moved to a base class.'

In fact, two implementations are possible:

e Atemplate function special_vector<T,N>::operator== that takes const
special vector<T,K>8& for anyK:

template <typename T, size t N>
class special vector

{

public:
template <size t K>
bool operator==(const special_vector<T, K>&);
/...

};

'A similar debate was raised about STL allocators. The notion of “equality of two containers of the same kind”
obviously requires the element sequences to be equal, but it’s unclear whether this is also sufficient.

477

CHAPTER 10 REFACTORING

e special vector<T,N> inherits from a public special_vector base<T>
This base class has a protected destructor and operator==(const
special_vector_base<T>8):

template <typename T>
class special vector base

{
public:

bool operator==(const special vector base<T>&);

/...
};

template <typename T, size t N>
class special_vector : public special vector base<T>

{
};

/1 ...

The latter example allows more flexibility. The base class should not be directly used, but you can
expose wrappers as smart pointers/references, to allow arbitrary collections of special vectors (having the
same T) without risking accidental deletion. To illustrate this, suppose you were to change the code slightly
as follows:

template <typename T>
class pointer_to_special_vector;

template <typename T, size t N>
class special vector : private special vector base<T>

{
// thanks to private inheritance,
// only the friend class will be able to cast special_vector to
// its base class
friend class pointer to_special vector<T»;
};
template <typename T>
class pointer_to_special_vector // <-- visible to users
{
special vector base<T>* ptr_; // <-- wrapped type
public:

template <size t K>

pointer to special vector(special vector<T,K>* b = 0)
: ptr_(b)

{}

478

CHAPTER 10 © REFACTORING

// fictitious code...

T at(size_t i) const { return (*ptr)[i]; }

};
int main()
{
std::list< pointer to_special vector<double> > 1p;
special_vector<double, 10> svi;
special_vector<double, 20> sv2;
1p.push_back(&sv1);
1p.push_back(&sv2); // ok, even if svl and sv2 have different static types
}

10.1. Backward Compatibility

A typical refactoring problem consists of modifying an existing routine so that any caller can choose either
the original behavior or a variation.

To begin with a rather trivial example, assume you want to (optionally) log the square of each number,
and you don’t want to duplicate the code. So, you can modify the classic function template sq:

template <typename scalar t>
inline scalar t sq(const scalar t& x)

{
}

return x*x;

template <typename scalar_t, typename logger t>
inline scalar t sq(const scalar t& x, logger t logger)

{
// we shall find an implementation for this...
}
struct log_to_cout
{
template <typename scalar_t>
void operator()(scalar t x, scalar t xsq) const
std::cout << "the square of " << x << " is " << xsgq;
}
};
double x = sq(3.14); // not logged
double y = sq(6.28, log to_cout()); // logged

479

CHAPTER 10 REFACTORING

The user will turn on the log, passing a custom functor to the two-argument version of sq. But there are
different ways to implement the new function over the old one:

e Encapsulation: Make a call to sq(scalar_t) inside sq(scalar_t, logger t).

This solution’s implementation risk is minimal.

template <typename scalar_t>
inline scalar t sq(const scalar t& x)

{
}

return x*x;

template <typename scalar_t, typename logger t>
inline scalar t sq(const scalar t& x, logger t logger)

{
const scalar t result = sq(x);
logger(x, result);
return result;

}

e Interface adaptation: Transform sq(scalar_t) so as to secretly call
sq(scalar_t, logger t)with ano-op logger. This is the most flexible solution.?

struct dont_log at all

{
template <typename scalar_t>
void operator()(scalar t, scalar t) const
}

}

template <typename scalar_t, typename logger t>
inline scalar t sq(const scalar t& x, logger t logger)

{
const scalar t result = x*x; // the computation is performed here
logger(x, result);
return result;

}

template <typename scalar_ t>
inline scalar_t sq(const scalar t& x)

{
}

return sq(x, dont_log at all());

*While encapsulation conveys to the user a “sense of overhead,” interface adaptation suggests that the new sq is much
better and can be used freely.

480

CHAPTER 10 © REFACTORING

e Kernel macros: Work when the core of the algorithm is extremely simple and needs to
be shared between static and dynamic code.

#tdefine MXT M _SQ(x) ((x)*(x))

template <typename scalar_t>
inline scalar t sq(const scalar t& x)
{
return MXT M SQ(x);
}

template <typename int_t, int_t VALUE>
struct static_sq

{

static const int t result = MXT_M SQ(VALUE);
};

Note The use of kernel macros will be superseded by the C++0x keyword constexpr.

The square/logging example is trivial, but code duplication is regrettably common. In many STL
implementations, std: : sort is written twice:

template <typename RandomAccessIter>
void sort(RandomAccessIter _ first, RandomAccessIter last);

template <class RandomAccessIter, typename Compare>
void sort(RandomAccessIter _ first, RandomAccessIter _ last, Compare less);

Using interface adaptation, the first version is a special case of the second:

struct weak_less_compare

{

template <typename T1, typename T2>
bool operator()(const T1& lhs, const T2& rhs) const

return lhs < rhs;

}
};

template <typename RandomAccessIter>
void sort(RandomAccessIter _ first, RandomAccessIter last)

{

return sort(_ first, last, weak less compare());

}

481

CHAPTER 10 REFACTORING

10.2. Refactoring Strategies

This section considers an example problem and exposes some different techniques.

10.2.1. Refactoring with Interfaces

A preexisting private ptr class holds the result of amalloc in a void* and frees the memory block in the
destructor:

class private ptr

{
void* mem_;

public:
~private ptr() { free(mem); }
private ptr() : mem_(0)
{}
explicit private ptr(size t size) : mem_(malloc(size))
{1}
void* c_ptr() { return mem_; }
/...

};

Now you need to extend the class so that it can hold a pointer, either to amalloc block or to a new object

of type T.

Since private_ptr is responsible for the allocation, you could just introduce a private interface with
suitable virtual functions, create a single derived (template) class, and let private_ptr make the right calls:

class private ptr interface

{
public:

virtual void* c_ptr() = 0;

virtual ~private ptr interface() = 0;
};

template <typename T>
class private ptr object : public private ptr interface

{
T member_;
public:
private_ptr object(const T& x)
: member (x)
{
}

482

CHAPTER 10 © REFACTORING

virtual void* c_ptr()

{
return &member_;
}
virtual ~private ptr object()
{
}

};

template < >
class private_ptr object<void*> : public private ptr_ interface

void* member ;

public:
private ptr object(void* x)
: member (x)
{
}
virtual void* c_ptr()
{
return member_;
}

virtual ~private ptr object()

free(member);

}
};
class private ptr
{ private ptr interface* mem_;
public:

~private ptr()

delete mem_;

}

private ptr()
: mem_(0)

{

}

483

CHAPTER 10 © REFACTORING
explicit private_ptr(size_t size)

: mem_(new private_ptr_object<void*»(malloc(size)))
{
}

template <typename T>
explicit private_ptr(const T& x)

: mem_(new private_ptr_object<T»>(x))
{
}
void* c_ptr()
{
return mem ->c_ptr();
}
/...

};

Note that virtual function calls are invisible outside private_ptr.?

10.2.2. Refactoring with Trampolines

The former approach uses two allocations to store a void*: one for the memory block and one for the
auxiliary private ptr object. Trampolines can do better:

template <typename T>
struct private ptr traits

{
static void del(void* ptr)
{
delete static_cast<T*>(ptr);
}
b

template <typename T>
struct private ptr traits<T []>

{
static void del(void* ptr)
{
delete [] static_cast<T*>(ptr);
}
};

*In other words, callers of the code do not have to worry about inheritance. They can pass any T and the class will wrap it
silently and automatically. This idea was developed further in a talk by Sean Parent and is freely downloadable from this
link: http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil.

484

http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil

template < >
struct private ptr traits<void*>

{
static void del(void* ptr)

free(ptr);
}
};

template < >
struct private ptr traits<void>

{
static void del(void*)
{
}

};

class private ptr

{
typedef void (*delete t)(void*);
delete t del ;
void* mem_;

public:

~private ptr()

del (mem_);
}

private ptr()

: mem_(0), del (&private ptr traits<void>::del)
{

}

explicit private ptr(size t size)

mem_ = malloc(size);
del = &private ptr traits<void*>::del;

}

template <typename T>
explicit private ptr(const T& x)

mem_ = new T(x);
del = &private_ptr traits<T>::del;

}

CHAPTER 10

REFACTORING

485

CHAPTER 10 REFACTORING

template <typename T>
explicit private ptr(const T* x, size t n)

{

mem_ = X;
del = &private ptr traits<T []>::del;

}
void* c_ptr()

return mem_;

}

/...
};

10.2.3. Refactoring with Accessors

Suppose you have algorithms that process a sequence of simple objects:

struct stock price

{

double price;
time t date;

};

template <typename iterator_t>
double computePricelIncrease(iterator t begin, iterator t end)

{
return ((end-1)->price - begin->price)
/ std::difftime(begin->date, (end-1)->date) * (24*60*60);

Refactoring may be needed to allow you to process data from two independent containers:

std: :vector<double> prices;
std::vector<time_t> dates;

// problem: we cannot call computePriceIncrease

You have several choices for the new algorithm 1/0:

e Assume that iterators point to pair, where first is price and second is date
(in other words, write end->first - begin->first...). Thisin generalis a
poor style choice, as discussed previously.

e Mention explicitly begin->price and begin->date (as shown previously).
The algorithm does not depend on the iterator, but the underlying type is
constrained to the interface of stock_price.

e Pass two disjoint ranges. The complexity of this solution may vary.

486

CHAPTER 10 © REFACTORING

template <typename I1, typename I2>
double computePriceIncrease(I1 price begin, I1 price end, I2 date begin, I2 date end)

{
// the code must be robust and handle ranges of different length, etc.

}

. Pass one range and two accessors.

template <typename I, typename price_t, typename date_t>
double computePriceIncrease(I begin, I end, price t PRICE, date t DATE)

{
double p = PRICE(*begin);

time_t t = DATE(*begin);
/...
}
struct price_accessor
{
double operator()(const stock price& x) const
{
return x.price;
}
b
struct date_accessor
{
time_t operator()(const stock price& x) const
return x.date;
}
};

computePriceIncrease(begin, end, price accessor(), date_accessor());
Note that you can trick accessors into looking elsewhere, for example, in a member variable:

struct price_accessor_ex

{
const std::vector<double>d v_;
double operator()(const int x) const
{
return v_[x];
}
};

487

CHAPTER 10 REFACTORING

struct date_accessor ex

{

const std::vector<time t>& v_;

time_t operator()(const int x) const

{
}

return v_[x];
};

int main()

{

std: :vector<double> prices;
std::vector<time_t> dates;

/...
assert(prices.size() == dates.size());

std::vector<int> index(prices.size());
for (int i=0; i<prices.size(); ++1i)
index[i] = i;

price accessor ex PRICE = { prices };
date_accessor_ex DATE = { dates };

computePriceIncrease(index.begin(), index.end(), PRICE, DATE);

Accessors may carry around references to an external container, so they pick an element deduced from
the actual argument. In some special cases, you can use pointers to avoid creating a container of indices.
This approach, however, should be used with extreme care.

// warning: this code is fragile:
// changing a reference to a copy may introduce subtle bugs

struct price_accessor_ex
double operator()(const double& x) const

return x;

}
};

struct date_accessor ex

{

const double* first price ;
size t length_;
const time t* first date ;

488

CHAPTER 10 © REFACTORING

time t operator()(const doubled x) const

if ((8x >= first price) &% (&x < first price +length))
return first date [8x - first price];
else
throw std::runtime error("invalid reference");
}
};

int main()
{
price accessor_ex PRICE;
date_accessor_ex DATE = { &prices.front(), prices.size(), &dates.front() };

computePriceIncrease(prices.begin(), prices.end(), PRICE, DATE);

}

The algorithm takes a reference to a price and deduces the corresponding date accordingly.

10.3. Placeholders

Every C++ object can execute some actions. Empty objects, such as instance_of, can execute meta-actions,
such as declare their type and “bind” their type to a template parameter or to a specific function overload.
Sometimes the job of TMP is to prevent work from being done, by replacing an object with a similar
empty object and an action with a corresponding meta-action.
Type P<T> is called a placeholder for T if P<T> is a class whose public interface satisfies the same pre-
and post-conditions as T, but has the least possible runtime cost. In the most favorable case, it does nothing
atall.

10.3.1. Switch-Off

The switch-off is an algorithm-refactoring technique that allows you to selectively “turn off” some features
without rewriting or duplicating functions. The name comes from the paradigmatic situation where a
function takes an object by reference, which is “triggered” during execution, and eventually returns an
independent result, which is a by-product of the execution. The object may be a container that receives
information during the execution or a synchronization object.

void say_hello world_in(std::ostreamd out)

{

out << "hello world";

}

double read from_database(mutex& s)

{

// acquire the mutex, return a value from the DB, and release the mutex

}

489

CHAPTER 10 REFACTORING

A quick and elegant way to get a different result with minimal code rework is to supply a hollow object
with a reduced interface and that, in particular, does not need any dynamic storage. Step by step:

¢ Rename the original function and promote the parameter to a template type:

template <typename T>
void basic_say hello world in(T& o)

e Add an overload that restores the original behavior:

inline void say hello world in(std::streamd o)

{
}

return basic_say hello world in(o);

e Finally, provide an object that “neutralizes” most of the effort:

struct null ostream

{
template <typename T>
null ostreamd operator<<(const T&)
{
return *this;
}
};
inline void say_hello_world_in()
{
null stream ns;
basic_say hello world in(ns);
}

The switch-off idiom requires exact knowledge of the (subset of the) object’s interface used in the
main algorithm.

When you're designing a custom container, it may occasionally be useful to add an extra template
parameter to enable a hollow-mode. You take the original class and promote it to a template:

490

class spinlock

{

typedef void* ptr_t;

typedef volatile ptr t vptr t;
public:

spinlock(vptr t*const);

bool try acquire();

bool acquire();

/! ...

};

CHAPTER 10 © REFACTORING

template <bool SWITCH ON = true>
class spinlock;

template < >

class spinlock<true>

{

typedef void* ptr_t;

typedef volatile ptr t vptr_t;
public:

spinlock(vptr_t* const);

bool try acquire();

bool acquire();

/...

};

template < >

class spinlock<false>
{

// hollow implementation
spinlock(void*)

{

bool try acquire()

{ return true; }

bool acquire()

{ return true; }
//...

};

Had the class been a template, you would need to add one more Boolean parameter.

Of course, the crucial point of the duplication of the interface is the set of cautious, but meaningful,
default answers of the hollow class, provided that such duplication is possible (see below for a counter-
example). This also allows you to identify the minimal interface for an object to be considered “valid”

The interface of an object is defined by its usage.

Finally, you can restrict the program to spinlocks (which may be “on” or “off”):

template <typename ..., bool IS _LOCKING REQURED>
void run_simulation(..., spinlock<IS LOCKING REQURED>& spin)

{
if (spin.acquire())
{

//...

491

CHAPTER 10 REFACTORING

Or to objects of an unspecified type, whose interface is implicitly assumed compatible with spinlock:

template <typename ..., typename lock t>
void run_simulation(..., lock t& lock)

if (lock.acquire())

{
/...
}

Either choice is valid, but there are situations where one is preferred (see Section 5.2 for more details).

Another application is twin reduction. There are algorithms that manipulate one or two items at
a time and execute the same actions simultaneously on both. To avoid duplication, you want a single
implementation of the algorithm that accepts one or two arguments.

Prototype examples are sorting two “synchronized” arrays and matrix row reduction. This algorithm,
due to Gauss, performs a sequence of elementary operations on a matrix M and turns it into a diagonal
(or triangular) form. If the same operations are applied in parallel on an identity matrix, it also obtains the
inverse of M.*

So you can write a general-purpose function that always takes two matrices of different static type and
treats them as identical:

template <typename matrixi t, typename matrix2_t>
void row reduction(matrixi_t& matr, matrix2_t& twin)

{
/...
for (size_t k=i+1; k<ncols && pivot!=0; ++k)
{
matr(j, k) -= pivot*matr(i, k);
twin(j, k) -= pivot*twin(i, k);
}
/1.
}

Assume that you already have a matrix class:®

template <typename scalar_t>
class matrix
{
public:
typedef scalar_t value_type;

size t rows() const;
size t cols() const;

4A non-mathematically inclined reader may want to consider an analogous case: software that executes a series of
actions and at the same time records a list of “undo” steps.

>The interface of a data structure is frequently remodeled for ease of algorithms. This lesson was one of the milestones
of the STL design.

492

CHAPTER 10 © REFACTORING

void swap_rows(const size t i, const size t j);

value typed operator()(size t i, size t j);
value type operator()(size t i, size t j) const;
5
It's not possible to extend it following the hollow-mode idiom, because there’s no satisfactory default
answer for functions returning a reference:®

template <typename scalar_t, bool NO_STORAGE = false>
class matrix;

template <typename scalar t>
class matrix<scalar t, false>

{
};

/* put the usual implementation here */

template <typename scalar_t>
class matrix<scalar_t, true>

{
public:
value typed operator()(size t i, size t j)
{
return /* what? */
}
/...
};

So you drop the reference entirely and move down one level. You neutralize both the container and
the contained object. The twin matrix is a container defined on a ghost scalar; a class whose operators do
nothing:

template <typename T>
struct ghost

{
// all operators return *this
ghostd operator-=(ghost)
{
return *this;
}
/...
};

%As a rule, hollow containers own no memory. You could object that here you could use a single scalar_t data member
and return a reference to the same object for any pair of indices, but this strategy would consume a lot of CPU runtime,
overwriting the same memory location for no purpose.

493

CHAPTER 10 REFACTORING

template <typename T>
inline ghost operator*(T, ghost g) { return g; }

template <typename T>
inline ghost operator*(ghost g, T) { return g; }

template <typename scalar t>
class matrix<scalar_t, true>

{
size_t r_;
size t c_;
public:
typedef ghost<scalar_t»> value_type;
size t rows() const { return r_; }
size t cols() const { return c_; }
void swap_rows(const size t, const size t) {}
value_type operator()(size t i, size t j)
return value_type();
}
const value type operator()(size t i, size t j) const
{
return value_type();
}
};

ghost<T> will be a stateless class such that every operation is a no-op. In particular, the line
twin(j, k) -= pivot*twin(i, k) translates into a sequence of do-nothing function calls.
Some more detail on this point is needed.

10.3.2. The Ghost

There are no truly satisfactory ways to write ghost scalars. Most implementations are semi-correct but they
can have nasty side effects:

e Ghosts are likely to haunt your namespaces if they are not properly constrained.
Since their interfaces should support virtually all C++ operators, you will probably
need to write some global operators, and you want to be sure these will appear only
when necessary.

e The main purpose of ghosts is to prevent work from being done. If G is a ghost, then
G*3+7 should compile and do nothing. It’s very easy to obtain an implementation
that compiles, but erroneously does some work— say, because G is converted to
integer 0.

494

CHAPTER 10 © REFACTORING

A ghost should be a class template that mimics its template parameter T and it resides in a different
namespace. You can assume for simplicity that T is a built-in numeric type, so you can implement all
possible operators.

template <typename T>
struct ghost

{
ghost(T) {}
ghost() {}
//...

b

For coherence, comparison operators return a result compatible with the fact that ghost is monostate
(all ghosts are equivalent), so operator< is always false and operator==is always true.
As a rule, most arithmetic operators can be defined with suitable macros: ’

#define mxt GHOST ASSIGNMENT(OP) \
ghost8 operator OP##= (const ghost) { return *this; }

#tdefine mxt GHOST UNARY(OP) \
ghost operator OP() const { return *this; }

#define mxt GHOST INCREMENT(OP) \
ghost& operator OP () { return *this; } \

const ghost operator OP (int) { return *this; }

template <typename T>
struct ghost
{

ghost(const T&){}

ghost() {}

mxt_GHOST_INCREMENT(++); // defines pre- and post-increment
mxt_GHOST INCREMENT(--);

mxt GHOST ASSIGNMENT(+); // defines operator+=
mxt_GHOST ASSIGNMENT(-);
/...

mxt_GHOST UNARY(+);
mxt_GHOST UNARY(-);
/...

};

"Mind the use of token concatenation ##. You might be tempted to write operator ## OP to join operator and +, but this
is illegal, because in C++, operator and + are two different tokens. On the other hand, #4# is required between + and = to
generate operator +=, so you need to write operator OP ## =.

495

CHAPTER 10 REFACTORING

For the arithmetic/comparison operators, you need to investigate these possibilities:

1. Member operators with argument ghost<T>.

2. Member operators with argument T.

3. Template member operators with argument const X&, where X is an

independent template parameter.

4. Nonmember operators, such as
template <typename T>
ghost<T> operator+(ghost<T>, ghost<T>) // variant #1
template <typename T>
ghost<T> operator+(T, ghost<T>) // variant #2
template <typename T1, typename T2>
<???> operator+(ghost<T1>, ghost<T2>) // variant #3
template <typename T1, typename T2>
<???> operator+(T1, ghost<T2>) // variant #4

Each choice has some problems.

1.

Member operators will perform argument promotion on the right side, but
template global operators require a perfect match for argument deduction.®
With member operators ghost<T>: :operator+(ghost<T>) const, any sum of
the form ghost<T> + Xwill succeed whenever it’s possible to build a temporary
ghost<T> from X (since a ghost constructor is not explicit). However, X +
ghost<T> will not compile.

The problem is mostly evident when T is a numeric type (say, double) and X is a
literal zero. A member operator+ will take care of ghost<double> + 0, since 0
(int) > 0.0 (double) > ghost<double>, but 0 + ghost<double> must be handled
by a global operator whose signature cannot be too strict, as 0 is not a double.

This implies that in this case, only variant #4 is feasible, because no other
operator would match exactly (int, ghost<double>).

However, you want operators to match as many types as possible, but not more.
While you should be able to write int + ghost<double>, you don’t want to
accept anything.

ghost<double> g;

g + 0;
0+ g;

// should work
// should work

std::cout + g; // should not work!

g + std::

496

cout; // should not work!

CHAPTER 10 © REFACTORING

As arule, the global operator should delegate the execution to a member function:

template <typename T1, typename T2>
inline ghost<T2> operator+ (T1 x, const ghost<T2> y)

{

return y + x;

}

y + xisindeed a call to any member operator+, so you can pass the responsibility for accepting T1 as
argument to the ghost’s own interface (the compiler will try any overloaded operator+).
A conversion operator is necessary to make assignments legal:

operator T() const

return T();
}

ghost<double> g = 3.14;
double x = g; // error: cannot convert from ghost to double

Conversely, with the conversion operator and a bad implementation of operators, innocuous code will
suddenly become ambiguous:

ghost<double> g;
g + 3.14;
For example, there may be an ambiguity between:

e Promotion of 3.14 to ghost<double>, followed by
ghost<double>: :operator+(ghost<double>).

e Conversion of g to double, followed by an ordinary sum.

Since both paths have equal rank, the compiler will give up.
In different situations, the conversion will be unexpectedly called:

ghost<double> g = 3.14;
double x = 3*g + 7;

This code should be translated by the compiler into this sequence:
double x = (double)(operator*(3, g).operator+(ghost<double>(7)));

If the global operator* cannot be called for any reason (say, it expects double, ghost<doubley, so it
won't match), the code is still valid, but it silently executes something different:

double x = 3*(double)(g) + 7;

8The user-defined constructor that converts T to ghost<T> is considered only after template argument deduction.
Note that the constructor here is not even explicit. See [2], Section B.2.

497

CHAPTER 10 REFACTORING

This costs two floating-point operations at runtime, so it defeats the ghost purpose.’
Summing up, in the best implementation:

e The ghost constructor is strongly typed, so it needs one argument convertible to T.
¢ Youneed both member and non-member operators:

e Member operators that will accept any argument (any type X) and will check X
with a static assertion (using the constructor itself).

e Non-member operators that will blindly delegate anything to member functions.

What's described here is an implementation without making use of macros. Anyway, functions
generated by the same preprocessor directive have been grouped:

#tdefine mxt GHOST GUARD(x) sizeof(ghost<T>(x))

template <typename T>
struct ghost

{
ghost(const T&) {}

ghost() {}
operator T() const

return T();
}

ghostd operator++ () { return *this; }
const ghost operator++ (int) { return *this; }

ghost& operator-- () { return *this; }
const ghost operator-- (int) { return *this; }

template <typename X> ghost& operator+= (const X& x)
{ mxt_GHOST GUARD(x); return *this; }

template <typename X> ghost& operator-= (const X& x)
{ mxt_GHOST GUARD(x); return *this; }

template <typename X> ghost operator+ (const X& x) const
{ mxt_GHOST GUARD(x); return *this; }

template <typename X> ghost operator- (const X& x) const
{ mxt_GHOST_GUARD(x); return *this; }

template <typename X> bool operator== (const X& x) const
{ mxt_GHOST GUARD(x); return true; }

°Hint: always leave a breakpoint in the conversion operator.

498

template <typename X> bool operator!= (const X& x) const
{ mxt_GHOST GUARD(x); return false; }

ghost operator+() const { return *this; }

ghost operator-() const { return *this; }

};

template <typename X, typename Y>
ghost<Y> operator+ (const X& x, const ghost<Y> y) { return y + x; }

template <typename X, typename Y>
ghost<Y> operator- (const X& x, const ghost<Y> y) { return -(y - x); }

template <typename X, typename Y>
bool operator== (const X& x, const ghost<Y> y) { returny == x; }

template <typename X, typename Y>
bool operator!= (const X& x, const ghost<Y> y) { returny != x; }

CHAPTER 10

REFACTORING

499

CHAPTER 11

Debugging Templates

As TMP code induces the compiler to perform calculations, it’s virtually impossible to follow it step by step.
However, there are some techniques that can help. This chapter in fact contains a mix of pieces of advice and
debugging strategies.

11.1. Identify Types

Modern debuggers will always show the exact type of variables when the program is stopped. Moreover, a lot of
information about types is visible in the call stack, where (member) functions usually are displayed with their
full list of template arguments. However, you'll often need to inspect intermediate results and return types.

The following function helps:

template <typename T>
void identify(T, const char* msg = 0)

{
}

std::cout << (msg ? msg : "") << typeid(T).name() << std::endl;

Remember that type_info: :name gives no guarantees about the readability of the returned string.!
Using a free function to return void makes it easy to switch between debug and optimized builds, as the code
can simply use a preprocessor directive to replace the function, say, with an empty macro. However, this
approach does not work when you need to identify a class member, such as when you're debugging lambda
expressions. (See Section 9.2). You may want to check if the return type has been correctly deduced; the best
solution is to add a small, public data member:

template <typename X1, typename F, typename X2>
class lambda_binary : public lambda< lambda_binary<X1,F,X2> >

{
/...

typedef typename
deduce_argument

'See http://en.cppreference.com/w/cpp/types/type_info/name.

501

http://en.cppreference.com/w/cpp/types/type_info/name

CHAPTER 11 DEBUGGING TEMPLATES

typename X1::argument_type,
typename X2::argument_type
>:itype
argument_type;

#ifdef MXT DEBUG
instance_of<result_type> RESULT_;
#endif

result type operator()(argument type x1, argument type x2) const

identify(RESULT_);
return f_(x1_(x1, x2), x2_(x1, x2));
}
b

Adding a data member is especially useful because interactive debuggers allow you to inspect objects in
memory and display their exact type.

In general, whenever a metafunction compiles but gives the wrong results, add members of type
instance_of and static_value to inspect the intermediate steps of the computation, then create
a local instance of the metafunction on the stack.

template <size t N>
struct fibonacci

{
static const size t value = fibonacci<N-1>::value + fibonacci<N-2>::value;
static_value<size t, value> value_;
fibonacci<N-1> previ_;
fibonacci<N-2> prev2_;
};
int main()
{
fibonacci<12> F;
}
Then look at F in the debugger. You can inspect the constants from their type.?
11.1.1. Trapping Types

Sometimes in large projects, an erroneous pattern is detected. When this happens, you need to list all the
code lines where the bad pattern is used. You can use templates to create function traps that do not compile
and inject them in the error pattern, so that the compiler log will point to all the lines you are looking for.

2Additionally, there exist interactive meta-debuggers. Meta-debuggers use their own compiler under the hood, so their
output might differ from what is observed in the actual binary, but they are extremely valuable when investigating a
metafunction that does not compile. One can be found here: http://metashell.readthedocs.org/en/latest/

502

http://metashell.readthedocs.org/en/latest/

CHAPTER 11 I DEBUGGING TEMPLATES

Suppose for a moment that you discover that a std: : string is passed to printf and you suspect this
happens several times in the project.

std::string name = "John Wayne";
printf("Hello %s", name); // should be: name.c_str()

class Foo{};
printf("I am %s", Foo());

Brute-force iteration through all occurrences of printf would take too much time, so you can instead
add some trap code in a common included file. Note that you have to write a static assertion that is always
false, but depends on an unspecified parameter T. In the following code, MXT_ASSERT is a static assertion:

template <typename T>
void validate(T, void*)
{

}

template <typename T>
void validate(T, std::string*)
{

MXT_ASSERT(sizeof(T)==0); // if this triggers, someone is passing
// std::string to printf!
}

template <typename T>
void validate(T x)

{
validate(x, &x);
}

template <typename T1>
void printf trap(const char* s, T1 a)

validate(a);
}

template <typename T1, typename T2>
void printf trap(const char* s, T1 a, T2 b)

validate(b);
printf _trap(s, a);
}

template <typename T1, typename T2, typename T3>
void printf trap(const char* s, T1 a, T2 b, T3 c)

validate(c);
printf_trap(s, a, b);

}

/...

#define printf printf trap

503

CHAPTER 11 DEBUGGING TEMPLATES

This trap code will cause a compiler error every time a string is passed to printf.

It's important to be able to mention std: :string (in validate), so the previous file must include
<string>. Butif you are testing a user class, this might not be feasible (including project headers that might
cause loops), so you simply replace the explicit validation test with a generic SFINAE static assertion:

template <typename T>
void validate(T, void*)

{
}

MXT_ASSERT(!is_class<T>::value); // don't pass classes to printf;

11.1.2. Incomplete Types

Class templates might not require that T be a complete type. This requirement is usually not explicit, and it
depends on the internal template implementation details.

STL containers, such as vector, list, and set, can be implemented so as to accept incomplete types,
because they allocate storage dynamically. A necessary and sufficient condition to decide if T may be
incomplete is to put in a class a container of itself.

struct S1

double x;
std::vector<S1> v;

};

struct S2

{
double x;
std::1ist<S2> 1;

};

In particular, an allocator should not assume that T is complete; otherwise, it might be incompatible
with standard containers.
A static assertion is easily obtained by just asking the compiler the size of a type:

template <typename T>
struct must_be complete

{
static const size t value = sizeof(T);
};
struct S3
double x;
must_be_complete<S3> m;
b

test.cpp: error C2027: use of undefined type 'S3'

504

CHAPTER 11 I DEBUGGING TEMPLATES

This technique is used to implement safe deletion. A pointer to an incomplete type may be deleted, but
this causes undefined behavior (in the best case, T’s destructor won’t be executed).

template <typename T>
void safe_delete(T* p)

{
typedef T must_be_complete;
sizeof(must_be complete);
delete x;

}

Determining if a template will get a complete type as an argument may not be easy.

Standard allocators have a rebind member that allows any allocator<T> to create allocator<X>, and
different implementations will take advantage of the feature to construct their own private data structures.
A container, say std: :11st<T>, may need allocator<node<T>> and this class may be incomplete.

template <typename T>
class allocator

{

typedef T* pointer;

template <typename other t>
struct rebind

{
typedef allocator<other_t> other;

)

/...
};

template <typename T, typename allocator_ t>
struct list

{

struct node;
friend struct node;

typedef typename allocator t::template rebind<node>::other::pointer node pointer;
// the line above uses allocator<node> when node is still incomplete

struct node

{

node(node_pointer ptr)
{
}

};

/...
};

To compile the node constructor, node_pointer is needed. So the compiler looks at
allocator ::rebind<node>::other, which isin fact allocator<node>.

505

CHAPTER 11 DEBUGGING TEMPLATES

Suppose you now have an efficient class that manages memory blocks of fixed length N:

template <size t N>
class pool;

To wrap it correctly in a generic stateless allocator, you may be tempted to write:

template <typename T>
class pool allocator

{
static pool<sizeof(T)>& get_storage();

/...
};

But in this case, the presence of sizeof(T) at class level requires T to be complete. Instead, you switch
to a lazy instantiation scheme with a template member function:

template <typename T>
class pool allocator

{
template <typename X>
static pool<sizeof(X)>& get storage()
{
static pool<sizeof(X)>* p = new pool<sizeof(X)>;
return *p;
}
/..
void deallocate(pointer ptr, size type)
{
get storage<T>().release(ptr);
};

506

CHAPTER 11 I DEBUGGING TEMPLATES

Now, at class level, sizeof(T) is never mentioned.

Note As mentioned in Section 10.14 of [7], there’s a difference between stack and heap allocation:

static T& get1()

static T x;
return x;

}
static T& get2()

static T& x = *new T;
return x;

}

The former will destroy x at some unspecified moment at the end of the program, while the latter
never destroys x.

So, if T: :~T() releases a resource, say a mutex, the first version is the right one. However, if the destructor
of another global object invokes get1(), it might be that x has already been destroyed (a problem known as
“static initialization order fiasco”).

11.1.3. Tag Global Variables

A non-type template parameter can be an arbitrary pointer to an object having an external linkage.
The limitation is that this pointer cannot be dereferenced at compile time:

template <int* P>
struct arg

{
arg()
{

myMember = *P; // dereference at runtime

}

int myMember;
};
extern int I;
int I =09;
arg<dI> A;

It would be illegal instead to write:

template <int* P>
struct arg : static_value<int, *P> // dereference at compile time

507

CHAPTER 11 DEBUGGING TEMPLATES

You can use pointers to associate some metadata to global constants:
// metadata.hpp

template <typename T, T* global>
struct metadata

{
static const char* name;

};

#define DECLARE_CPP_GLOBAL(TYPE, NAME) \
TYPE NAME; \
template <> const char* metadata<TYPE, &NAME>::name = #NAME

// main.cpp

#include "metadata.hpp"
DECLARE_CPP_GLOBAL(double, xyz);

int main()

{

printf(metadata<double, 8xyz>::name); // prints "xyz"

11.2. Integer Computing

This section quickly reviews some problems that static integer computations may cause.

11.2.1. Signed and Unsigned Types

Common issues may arise from the differences between T(-1), -T(1), T()-1, and ~T() when T is an integer type.
e IfTisunsigned and large, they are all identical.
e IfTissigned, the first three are identical.

e IfTisunsigned and small, the second and third expressions may give
unexpected results.

Let’s borrow a function from the implementation of is_signed_integer (see Section 4.3.2).

template <typename T>
static selector<(T(0) » T(-1))> decide signed(static_value<T, 0>*);

Replace T(-1) with -T(1) and suddenly two regression tests fail. (But which ones?)

bool to1 = (!is signed integer<unsigned char>::value);

bool t02 = (!is_signed_integer<unsigned int>::value);

bool t03 = (!is_signed_integer<unsigned long long>::value);
bool t04 = (!is_signed_integer<unsigned long>::value);
bool t05 = (!is_signed integer<unsigned short>::value);

508

CHAPTER 11 I DEBUGGING TEMPLATES

bool t11 = (is_signed_integer<char>::value);
bool t12 = (is_signed_integer<int>::value);

bool t13 = (is_signed_integer<long long>::value);
bool t14 = (is_signed integer<long>::value);

bool t15 = (is_signed integer<short>::value);

The reason for failure is that the “unary minus” operator promotes small unsigned integers to int, so
-T(1) is int and the whole comparison is shifted into the int domain, where 0 > -1 is true. To see this,
execute the following:

unsigned short u = 1;

identify(-u);

11.2.2. References to Numeric Constants

As arule, don'’t pass static constants to functions directly:

struct MyStruct

{
static const int value = 314;
}
int main()
double myarray[MyStruct::value];
std::fill _n(myarray, MyStruct::value, 3.14); // not recommended
}

If fill_ntakes the second argument by const reference, this code may fail linking. Taking the address
of the constant requires the constant to be redeclared in the . cpp file (as is the case for any other static
member). In TMP, this is rarely the case.

As a cheap workaround, you can build a temporary integer and initialize it with the constant:

// not guaranteed by the standard, but usually ok
std::fill n(myarray, int(MyStruct::value), 3.14);

For extreme portability, especially for enumerations and bool, you can build a function on the fly:
template <bool B> struct converter;

template <> struct converter<true>
{ static bool get() { return true; } };

template <> struct converter<false>
{ static bool get() { return false; } };

// instead of: DoSomethingIf(MyStruct::value);
DoSomethingIf(converter<MyStruct::value>::get());

509

CHAPTER 11 DEBUGGING TEMPLATES

11.3. Common Workarounds
11.3.1. Debugging SFINAE

A common “cut and paste” error is the addition of a useless non-deducible template parameter to a
function. Sometimes, the compiler will complain, but if the function is overloaded, the SFINAE principle will
silently exclude it from overload resolution, which will generally lead to subtle errors:

template <typename X, size_t N>
static YES<[condition on X]> test(X*);

static NO test(...);

In this fragment, N cannot be deduced, thus the second test function will always be selected.

11.3.2. Trampolines

Compiler limitations may affect trampolines. In classic C++, local classes have some limitations (they cannot
bind to template parameters). They may cause spurious compiler and linker errors:

template <typename T>
struct MyStruct

{
template <typename X>
void doSomething(const X& m)
{
struct local
{
static T* myFunc(const void* p)
{
// compilers may have problems here using template parameter X
}
};
// call local::myFunc(8m);
}
};

The workaround is to move most of template code outside of the local class:

template <typename T>
struct MyStruct

{
template <typename X>

static T* MyFunc(const X& m)

// do the work here

510

CHAPTER 11 I DEBUGGING TEMPLATES

template <typename X>
void DoSomething(const X& m)

{
struct local
{
static T* MyFunc(const void* p)
{
// put nothing here, just a cast
return MyStruct<T>::MyFunc(*static_cast<const X*>(p));
}
};
/...
}
};
11.3.3. Compiler Bugs

Compiler bugs are rare, but they do occur, especially within template metaprogramming. They usually
produce obscure diagnostics.?

error C2365: 'function-parameter' : redefinition; previous definition was a 'template
parameter'. see declaration of 'function-parameter'

Compilers get confused by templates when:
e They cannot deduce that an expression is a type.

e They don’t perform automatic conversion correctly, or in the right order, so they
emit incorrect diagnostics.

e Some language keywords may not work correctly in a static context.

Here is an example of this last statement. sizeof will usually complain if an expression is invalid. Here
is what happens when you try to dereference a double:

int main()

{
}

sizeof(**static_cast<double*>(0));

error: illegal indirection

*Note that all the examples in this section rely on bugs of a specific version of some popular C++ compilers (which we
don’t mention), so hopefully, they won’t be reproducible. However, they are good examples of what could go wrong.

511

CHAPTER 11 DEBUGGING TEMPLATES

The same test may fail to trigger SFINAE correctly. The following code used to print "Hello" with an old
version of a popular compiler:*

template <size t N>
struct dummy

{

};

template <typename X>
dummy<sizeof (**static_cast<X*>(0))>* test(X*)

{ printf("Hello");
return 0;

}

char test(...)

{
return 0;

}

int main()

{
double x;
test(&x);

}

The next example is due to implicit conversions:
double a[1];
double b[1];
double (&c)[1] = true ? a : b;

error: 'initializing' : cannot convert from 'double *' to 'double (&)[1]'
A reference that is not to 'const' cannot be bound to a non-lvalue

Thus you can see that the compiler is erroneously converting the array to pointer in the ternary
operator. However, the bug might not trigger inside a template function:

template <typename T>

void f()
{
T a;
T b;

T& c = true ? a : b;

}

f<double [1]>();

‘decltype may suffer from similar issues.

512

CHAPTER 11 I DEBUGGING TEMPLATES

Ensuring portability is a non-trivial development effort. An informal definition of portability is, “code
that works in multiple platforms, potentially adapting to the platform itself (with preprocessor directives,
and so on)” Code that is standard conformant will work everywhere, without changes (given a bug-free
compiler). In practice, portability is a combination of both standard conformant code and code that works
around some specific compiler limitations/bugs. Some compilers have subtle non-standard behavior; they
may have extensions (for example, they may silently allow creating variable-length arrays on the stack), they
may tolerate minor syntax errors (such as this-> or the use of : : template), and even some ambiguities (for
example, static casts of objects with multiple bases). However, aiming for standard conformance is extremely
important, because it guarantees that if a piece of (metaprogramming) code works, it will continue working
even with future versions of the same compiler.

If code that looks correct does not compile, it may help to:

e Simplify a complex type introducing extra typedefs or vice versa.
¢ Promote a function to template or vice versa.

e Testa different compiler if the code cannot be changed further.

513

CHAPTER 12

C++0x

“I note that every C++0x feature has been implemented by someone somewhere.”

Bjarne Stroustrup

We conventionally call “classic C++” the language in its final revision in 2003, as opposed to “modern
C++” (also informally known as C++0x), introduced in 2011 and subsequently refined in 2014. The set of
changes was huge, but the new rules in general were written to ease TMP and make the code less verbose.
Additionally, compilers come with a new arsenal of standard classes, containers, language tools (like
std: :bind), and traits that expose meta-information previously known only to the compiler.!

The simplest example is the metafunction std: :has_trivial destructor<T>.

It's not possible to detect if a type has a trivial destructor by language only. The best default
implementation in classic C++ would be “return false unless T is a native type”?

This chapter briefly scratches the surface of a huge topic, so don’t consider this chapter a complete
reference. Some of the descriptions are slightly simplified, for the benefit of extra clarity.

12.1. Type Traits

Compilers already offer a complete set of metafunctions:
#include <type traits>

This will bring some metafunctions in namespace std or std: : tr1 (depending on the compiler and the
standard library).®

'As the situation is evolving quickly, refer to online documentation. It’s not easy to find a comparison table that is
simultaneously complete and up-to-date, but at the time of this writing, good references are http://wiki.apache.org/
stdcxx/C++0xCompilerSupport and http://cpprocks.com/c11-compiler-support-shootout-visual-studio-
gcc-clang-intel/.

2As a rule, however, it’s acceptable for metafunctions to return a “suboptimal” value. If a class destructor is known to

be trivial, then the code may be optimized. A drastic assumption like “no destructor is trivial” will probably make the
program slower, but it shouldn’t make it wrong.

3They are described in the freely downloadable “Draft Technical Report on C++ Library Extensions”
(http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf).

515

http://wiki.apache.org/stdcxx/C++0xCompilerSupport
http://wiki.apache.org/stdcxx/C++0xCompilerSupport
http://cpprocks.com/c11-compiler-support-shootout-visual-studio-gcc-clang-intel/
http://cpprocks.com/c11-compiler-support-shootout-visual-studio-gcc-clang-intel/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf

CHAPTER 12 C++0X

In particular, some metafunctions that were described in this book are present in C++0x, with a different
name. Some examples are listed in the following table.*

This Book C++0x Equivalent
static_value std::integral constant
only if std::enable_if

typeif std::conditional

has_conversion std::is_convertible

12.2. Decltype

Similarly to sizeof, decltype resolves to the type of the C++ expression given in brackets (without
evaluating it at runtime), and you can put it wherever a type is required:

int a;
double b;

decltype(a+b) x = 0; // x is double

decltype can have a positive impact on SFINAE. The following metafunction detects correctly a swap
member function, testing the expression x. swap(x), where x is a non-constant reference to X.

Since swap usually returns void, you use pointer-to-decltype for types that pass the test, and a
non-pointer class for the rest. Then you cast this to yes/no as usual:

#define REF_TO X (*static_cast<X*>(0))
struct dummy {};

template <typename T>
struct has_swap

{
template <typename X>
static decltype(REF_TO_X.swap(REF_TO_X))* test(X*);
static dummy test(...);

template <typename X>
static yes type cast(X*);

static no_type cast(dummy);

static const bool value = sizeof(cast(test((T*)0)))==sizeof(yes_type);
};

4A list of metafunctions that ship with C++11-compliant compilers can be found here:
http://en.cppreference.com/w/cpp/header/type traits.

516

http://en.cppreference.com/w/cpp/header/type_traits

CHAPTER 12 = C++0X

Additionally, the C++11 header <utility> adds a new function equivalent to the macro REF_TO_X.

In a SFINAE-expression, you may mention a member function call (the previous example reads
“the result of REF_TO X.swap(REF_TO X)”), so you need an instance of T. However, you cannot simply call
a constructor, say as T(), because T may not have a public default constructor. A workaround is to produce
a fake reference, such as REF_TO_X, as the expression is not evaluated anyway. But in C++11 you can just
use the expression std: :declval<T>(). This is safer because, as opposed to macros, it will work only in an
unevaluated context.

12.3. Auto

The keyword auto has a new meaning since C++11. It is used to declare a local variable that needs to be
initialized immediately. The initialization object is used to deduce the actual type of the variable, exactly as
it happens for template parameters:

auto i = 0;

The actual type of i is the same as the template deduced from the call £(0), where f would be
(pseudo-code):

template <typename auto>
void f(auto i);

auto will always resolve to a value type. In fact, its intended use is to store results coming from a
function, without explicitly mentioning their type (think auto i = myMap.begin()). If the user really wants a
reference, auto can be explicitly qualified (as any template parameter):
const auto8 i = co0s(0.0);

auto will resolve to double, because that’s what would happen when calling g(cos(0.0)), with

template <typename auto>
void g(const auto& i);

Remember that a generic template parameter will not match a reference:
int& get_ref();

template <typename T>
void (T x);

f(get_ref()); // T = int, not reference-to-int
On the other hand, decltype returns the exact static type of an expression, as defined:*

int 1 = 0;
decltype(get _ref()) j = i; // j is reference-to-int

SFor a detailed explanation of the differences between auto and decltype, see [17].

517

CHAPTER 12 C++0X

decltype has a few rules for handling references:

e decltype(variable) or decltype(class member) resultin the same declared type
as the operand; if x is a double in current scope, decltype(x) is deduced to be
double, not double&.

e decltype(function call) is the type of result returned by the function.®

e Ifnone of the previous rules is true and if the expression is an 1value of type T,
the result is T&; otherwise, it’s T.

In particular, some “bizarre-looking” expressions like dec1type (*8x), decltype((x)), or
decltype(true ? x : x) will yield double& because none of the operands is a plain variable, so the third
rule prevails.

12.4. Lambdas

Lambda expressions (“lambdas” for short) provide a concise way to create function objects on the fly.
They are not a new language feature, but rather a new syntax:

[1(int 1) { return i<7; }
[1(double x, double y) { return x>y; }

Each line represents an instance of an object of type “functor” (called closure) taking one or more
arguments and returning decltype(return statement).So you can pass this object to an algorithm:

std::partition(begin, end, [](int i) { return i<7; });

std::sort(begin, end, [](double x, double y) { return x>y; });
This is equivalent to the more verbose:

?truct LessThan7

bool operator()(int i) const

return i<7;
}
};

int main()

std::vector<int> v;
std::partition(v.begin(), v.end(), LessThan7());
}

®The compiler will find the appropriate function with the standard overload resolution rules, as if it were a normal call.

518

CHAPTER 12 = C++0X

The obvious advantages are more clarity (the line that executes the partitioning becomes
self-contained) and omission of irrelevant information (as you don’t need to find a meaningful name for
the functor, nor for its parameters).

The brackets [] are called lambda introducers, and they can be used to list local variables that you want
“captured,” which means added to the functor as members. In the example that follows, the closure gets a
copy of N (the introducer [&N] would pass a reference).

int N = 7;
std::partition(v.begin(), v.end(), [N](int i) { return i<N; });
Again, this lambda is equivalent to the more verbose:

class LessThanN

{

private:
int N_;

public:

LessThanN(int N)
: N_(N)
{}

bool operator()(int i) const

return i<N;

}
};

There are some more syntax details. You can specify the return type explicitly after the argument list.
This is indeed useful when you want to return a reference (by default, the return type is an rvalue).

[1(int i) -> bool { ... }
Closures can be stored using auto:
auto F = [](double x, double y) { return cos(x*y); }

Finally, a lambda created inside a member function is allowed to capture this; the lambda function call
operator will be able to access anything that was available in the original context. In practice, the code of the
lambda body works as if it were written directly in the place it’s declared.

class MyClass

{

private:
int myMember_;
void doIt() const { ... }
void doMore() { ... }

519

CHAPTER 12 C++0X

public:
int lambdizeMyself() const
{
auto L = [this]()
{
doIt(); // ok: doIt is in scope
doMore(); // error: doMore is non-const
return myMember_; // ok, private members can be read
};
return L();
}

};

The following example (due to Stephan T. Lavavej) shows that lambdas can interact with template
parameters. Here a lambda is used to perform the logical negation of an unspecified unary predicate.

template <typename T, typename Predicate>
void keep_if(std::vector<T>& v, Predicate pred)

{
auto notpred = [&pred](const T& t) { return !pred(t); };
v.erase(remove if(v.begin(), v.end(), notpred), v.end());

12.5. Initializers

If a function has a long return type, you may be forced to write it twice—both in the function signature
and when building the result. This redundancy is likely to cause maintenance and refactoring problems.
Consider the following example from 9.4.2:

template <typename X>
console_assert<X, console_assert<T1i, T2» » operator()(const X& x) const

{
}

return console_assert<X, console_assert<T1, T2» »(x, *this);

In classic TMP, this is avoided with non-explicit single-argument constructors (when feasible):

template <typename T1, typename T2>
class console_assert

{
public:
console assert(int = 0) {}

};

template <typename X>
console_assert<X, console_assert<T1, T2» » operator()(const X& x) const

{
}

return 0; // much simpler, but we cannot pass parameters...

520

CHAPTER 12 = C++0X

In C++0x, a new language feature called braced initializer list allows you to build an object using curly
brackets and (in some cases) to omit the type name:

std: :pair<const char*, double> f()

{
}

template <typename X>
console_assert<X, console assert<T1, T2> > operator()(const X& x) const

{
}

return { "hello", 3.14 };

return { x, *this };

The compiler will match the items in the initializer list against the arguments of all constructors and
pick the best, according to the overload resolution rules.

12.6. Template Typedefs

C++0x extends the traditional typedef syntax with a new using statement:
typedef T MyType; // old syntax
using MyType = T; // new syntax

However, the new syntax is also valid with templates:

template <typename T>
using MyType = std::map<T, double>; // declares MyType<T>

MyType<string> m; // std::map<string, double>

12.7. Extern Template
12.7.1. Linking Templates

In classic C++, the compiler needs to see the entire body of the function/class template, to be able to
generate template instantiations. The default behavior is to generate only member functions that are actually
used in the translation unit, so roughly speaking, every .cpp file that uses a template class will produce a
copy of the code in the corresponding binary object. Finally, the linker will collect all the binary objects and
produce a single executable, usually identifying and removing duplicates correctly.

521

CHAPTER 12 C++0X

Source Code Binary Code
include <vector> vector<int*>::vector();
vector<int*>::size();
ector<int*> v; >
int n = v.size();
A.cpp A.obj
include <vector> \vector<double*>::vector(); Sinale
vector<double*>::size(); E;(egcmabte
ector<double*> w; -
int k = w.size();
B.cpp B.obj
include <vector> vector<int*>::vector();
\vector<int*>::size();
ector<int*> c; -
int n = c.size();
C.cpp C.obj

In ordinary code, symbols cannot be defined twice, but template-generated code is marked as
“de-duplicable,” and the linker in the final step will remove both C++ duplicates (like vector<int*>: :size(),
which was generated twice) and machine-code duplicates. It may detect that all vector<T*> produce the
same assembly for every T, so the final executable will contain just one copy of each member function.

However, this happens because the vector header contains all the relevant code. Let’s write a template
class as if it were a plain class (remember that as a rule, this is incorrect).

// xyz.h

template <typename T>
class XYZ

{
public:
int size() const;

};
// xyz.cpp

template <typename T>
int XYZ<T>::size() const

{
};

return 7;

522

CHAPTER 12 = C++0X

Now any translation unit that includes xyz. h (and links against xyz . cpp) will be able to compile
correctly any code, including:

// main.cpp
#include <xyz.h>

int main()

{
XYZ<int> x;

return x.size();

}

However, the program won'’t link, because in the translation unitmain. cpp the compiler does not see
the relevant template bodies. On the other hand, XYZ can be fully used inside xyz . cpp:

// xyz.cpp

template <typename T>
int XYZ<T>::size() const

{
return 7;
};
int ()
{
XYZ<int> x; // 0Ok.
return x.size(); // Ok.
}

Now, as a side effect, the binary object xyz.ob7j will contain the binary code for the relevant member
functions that are used (namely, the constructor XYZ: :XYZ () and XYZ: : size). This implies that main.cpp
will now link correctly!

The compiler will verify that main. cpp is syntactically correct. Since it’s unable to produce the code
in-place, it will mark the symbols as “missing,” but the linker will eventually find and borrow them from
Xyz.cpp.

Needless to say, this works because both files are using XYZ<same type> and the same member
functions.

The standard offers a way to force instantiation of a template and all its member functions, in a
translation unit. This is called explicit instantiation.

template class XYZ<int>;

Namespaces and functions can be used:
// assume that we included <vector>
template class std::vector<int>;

// assume that we included this template function:
// template <typename T>
// void (T x)

template void f<int>(int x);

523

CHAPTER 12 C++0X

A possible use is to limit the set of types that the user can plug in to a template:
// xyz.cpp

template <typename T>
int XYZ<T>::size() const

{
};

return ...;

// these are the only types that the user will be able to plug in
// XYZ<T>. otherwise the program won't link.

template class XYZ<int>;
template class XYZ<double>;
template class XYZ<char>;

Now this translation unit will contain the binary code for all member functions of XYZ, so they can be
correctly “exported” to other units when assembling the final executable.

12.7.2. Extern Template

In C++0x (and as an extension in many classic C++ compilers), it’s possible to prevent the compiler from
instantiating a template automatically and force a behavior like the one described in the last section.

extern template class XYZ<int>;

This forces the template class to link like an ordinary class (so in particular, inlining is still possible), and
it may save compilation time.

According to the C++ standard, this syntax prevents implicit instantiation, but not explicit instantiation.
So you can in principle put a single extern template declaration in an . hpp file (after the template code), and
a single explicit instantiation in a . cpp file.”

II117177171171711711111111777
// special_string.hpp

template <typename T>
class special_string
{
public:
int size() const { ... }

};

extern template special string<char>;
extern template special string<wchar_t>;

’Older compilers need not respect this behavior when both directives are present, so some use of the preprocessor
may be required.

524

CHAPTER 12 = C++0X

II11717717117171171111111177
// special _string.cpp

#include "special_string.hpp"

template special string<char>;
template special string<wchar_ t>;

12.9. Variadic Templates

Since C++11, the list of template arguments can have a variable length:

template <typename... T>
struct typearray

{

template <size t... N>
struct list of int

};

typearray<int> t1; // 0Ok.

typearray<int, double, float> t3; // Also ok.

typearray<> t0; // An empty list also works.

The ellipsis (.. .) to the left of T declares that T can match a (possibly empty) list of parameters.
Tis indeed called a template parameter pack. On the other hand, an ellipsis to the right of an expression
involving a parameter pack name expands it (put simply, it clones the expression for every type in the pack):

template <typename... T>
void doSomething(T... args) // conceptually equivalent to:

// T1 argl, T2 arg2, ... , Tn argn
{

typearray<T> e; // error: T is unexpanded

typearray<T...> e; // ok, gives: <T1, ..., Tn>
list of int<sizeof(T)...> 1; // ok, gives: <sizeof(T1), ..., sizeof(Tn)>

}

You can use pattern matching to “iterate” over a parameter pack:

void doSomething() // will match 0 arguments

{
}

template <typename HEAD, typename... TAIL>
void doSomething(HEAD h, TAIL... tail) // will match 1 or more arguments

{

std::cout << h << std::endl;
doSomething(tail...);

525

CHAPTER 12 C++0X

As an exercise, take a look at this metafunction count<T, A...>, which counts how many times
atype T appears in a pack A:

template <typename T, typename... A>
struct count;

template <typename T, typename... A>
struct count<T, T, A...>

{
};

static const int value = 1 + count<T, A...>::value;

template <typename T, typename T2, typename... A>
struct count<T, T2, A...> : count<T, A...>

{5

template <typename T>
struct count<T> : std::integral_constant<int, 0>

{}

The ellipsis can trigger more than one expansion at the same time. Suppose for example that you want
to check that no type in a pack was repeated twice:

template <typename T, typename... A>

int assert()

{
static_assert(count<T, A...>::value <= 1, "error");
return 0;

}

template <typename... N>
void expand_all(N...)

{
}

template <typename... A>
void no_duplicates(A... a)

{
}

expand_all(assert<A, A...>()...); // double expansion

This double expansion will call:
expand_all(assert<A1, (all A)>(), assert<A2, (all A)>(), ...)
expand_all gets any number of arguments of any type and ignores them entirely. This is necessary to

trigger the expansion of the parameter pack. In practice, all assert<...> functions will either fail to compile
or return 0, so no_duplicates will be easily inlined and produce almost no code.

526

APPENDIX A

Exercises

A.1. Exercises

In all the following problems, the reader should assume that a single writable file with some template
code is given; more files can be added, and the rest of the project is read-only.

A.1.1. Extension

A function template is given:

template <typename T>

void f(T x)
{

printf("hello T");
}

e Add another overload that is to be called for every class that derives from BASE and
prints “hello BASE-or-derived”

e Ensure that your solution is robust. Change the return type of to int and see if your
solution still holds

e Ensure that your solution is robust. Add a plain function - say int f(double x) -in the
same file and see if compilation fails

e Think of an alternative solution that minimizes the changes to the existing code.

A.1.2. Integer

The following code:

template <typename T>
uint32 f(T x) { ... }

/] ...
printf("%x", f(a));

is emitting a warning: return type of f is incompatible with %x.
What kind of investigation would you perform?

527

APPENDIXA © EXERCISES

A.1.3. Date Format

Following Section 7.7.1, implement a constant generator with an even more natural syntax, such as:

YYYYMMDD = dateformat<'Y','Y',Y','Y','M','M','D','D'>::value

or

YYYYMMDD = dateformat<'Y','Y',Y','Y','/','M','M','/",'D",'D'>::value

A.1.4. Specialization

A template class is given:

template <typename T>
class X
{ /* very long implementation... */ };

Modify X so that X<double> has precisely one additional data member (say, int) and one extra member
function. Perform minimal changes to existing code (so if the source file is under version control software,
the differences are self-explanatory).

A.1.5. Bit Counting

The code below:
// returns the number of bits of base

template <size_t BASE>
struct nb
{
static const size t value
= nb<BASE % 8>::value
+ nb<(BASE/8) % 8>::value + nb<BASE/16>::value;

};

template <> struct nb<0>
template <> struct nb<1>
template <> struct nb<2>
template <> struct nb<3>
template <> struct nb<4>
template <> struct nb<5>
template <> struct nb<6>
template <> struct nb<7>

-
—
-

static const size t value =
static const size t value =
static const size t value =
static const size_t value =
static const size t value =
static const size t value =
static const size t value =
static const size t value =

e W
[N’
“ ee W

e we W
(SN)
e we e

{
{
{
{
{
{
{
{

W INNRNRRO
—
-

-
—
[

e Iscompletely correct and it shows a new technique not seen previously in this book
(or in any other equivalent book)

e Has atrivial bug, but the technique is comparable to Section 3.6.6 and thereafter

e Has at least one nontrivial bug, which cannot be easily fixed

528

APPENDIXA © EXERCISES

A.1.6. Prime Numbers

As an exercise for debugging techniques, we present an example of a non-trivial metafunction
is_prime<N>::value

The reader is expected to be able to understand the code, at least in principle, even if some of the
algorithm details are not known.

#define mxt EXPLICIT VALUE(CLASS, TPAR, VALUE) \
template <> struct CLASS<TPAR> { static const size t value = VALUE; }

template <size t N>
struct wheel prime;

mxt_EXPLICIT VALUE(wheel prime, 0, 7);
mxt_EXPLICIT VALUE(wheel prime, 1, 11);
mxt_EXPLICIT_VALUE(wheel_prime, 2, 13);
mxt_EXPLICIT VALUE(wheel prime, 3, 17);
mxt EXPLICIT VALUE(wheel prime, 4, 19);
mxt EXPLICIT VALUE(wheel prime, 5, 23);
mxt_EXPLICIT VALUE(wheel prime, 6, 29);
mxt_EXPLICIT_VALUE(wheel_prime, 7, 31);

template <size t A>
struct nth_tentative prime
{
static const size t value
= 30*((A-3)/8) + wheel prime<(A-3) % 8>::value;
};

mxt EXPLICIT VALUE(nth tentative prime, 0, 2);
mxt_EXPLICIT_VALUE(nth_tentative_prime, 1, 3);
mxt EXPLICIT VALUE(nth tentative prime, 2, 5);

template

<
size t A,
size t N,
size_t K = nth_tentative prime<N>::value,
size t M = (A %K)

>

struct is_prime_helper

{
static const bool EXIT
static const size t nex
static const size_t nex

};

template <size t A, size t N, size t K>
struct is_prime helper<A, N, K, 0>
{
static const size t next_A = 0;
static const size t next N = 0;

};

(EXIT 2 0 : A);
(EXIT ? 1 : N+1);

(A < MXT_M SO(K));
A
N

t_
t_

529

APPENDIXA © EXERCISES

template <size t A, size t N = 0>
struct is_prime

: is_prime<is_prime_helper<A, N>::next_A,
is_prime_helper<A, N>::next N>

{
};

template <> struct is_prime<0,0> {
template <> struct is_prime<0,1> {
template <> struct is prime<1,0> {
template <> struct is prime<2,0> {

static
static
static
static

A.1.7. Typeinfo without RTTI

The typeinfo wrapper in Section 5.3.2 relies on the compiler to generate a runtime identifier for different
types. If this is not available, then a different implementation can be used (at least in some cases):

e Create a traits class TI<T> having a single static member function T f() that returns T()

const bool value
const bool value
const bool value
const bool value

false;
true;
true;
true;

e Useareinterpret castand convert&TI<T>::ftovoid (*)()

e Use this latter pointer as indexin a std: :map

e Prove that this works (Hint: step #1 is necessary because of ICE see page 354; for step #3,

See Section 20.3.3 of the Standard)

e Note that pointer-based type identifiers work with static types, while typeinfo uses

dynamic types, so this technique in general is weaker.

A.1.8. Hints and Partial Solutions

We give a solution to Exercise #1, because of its practical importance.
Obviously overload alone doesn’t work. We can select BASE but a DERIVED will prefer the template

function (with T=DERIVED it’s an exact match).

template <typename T>
void f(T x)
{

printf("hello T");

void f(BASE& x)
{

}

printf("hello BASE");

Instead we introduce another layer:

template <typename T>

void f(T x)
{

g(&x) &x);
}

530

template <typename T>
void g(T* p, void*)

printf("hello T");
}

template <typename T>
void g(T* p, BASE*)

printf("hello BASE-OR-DERIVED");

}

Conversion of T* to BASE* is preferred.

APPENDIXA © EXERCISES

Note that the same technique solves also another problem; when invoking a member function on the

argument, we can prevent virtual calls:

template <typename T>
void g(T* p, void*)

printf("Not a BASE. No call was made.");

}

template <typename T>
void g(T* p, BASE* b)

b->doit(); // always virtual, if BASE::doit is virtual
p->doit(); // may be virtual or not
p->T::doit(); // always non-virtual

Observe that in principle T may hide BASE: :doit, so the second call won’t be virtual:

class BASE

{
public:
virtual void doit();

};

class D1 : public BASE

{
public:
void doit(int i = 0);

};

class D2 : public D1

{
public:
virtual void doit();

};

531

APPENDIX B

Bibliography

(1]
(2]

[3]

[4]
[5]
(6]
[7]
(8]
[9]

[10]

(1]

[12]

[13]

4]

[13]
[e]

Alexandrescu A., “Modern C++ Design’; Addison-Wesley

Vandevoorde, D. and Josuttis, N., “C++ Templates: The Complete Guide’,
Addison-Wesley

Abrahams D. and Gurtovoy A., “C++ Template Metaprogramming’,
Addison-Wesley

Sutter H., “Exceptional C++ Style’; Addison-Wesley

Wilson, “Imperfect C++, Addison-Wesley

Austern M., “Generic Programming and the STL, Addison-Wesley

Cline M., “C++ FAQ (lite); http://www.cs.rit.edu/~mjh/docs/c++-faq/
Meyers S., “Effective STL’

Coplien, J., “Curiously Recurring Template Patterns’, C++ Report,
February 1995, pp. 24-27.

Stroustrup, B., “Design and Evolution of C++) Addison-Wesley,
Reading, MA, 1993.

Barton, J.J. and Nackman L.R., “Scientific and Engineering C++’,
Addison-Wesley, Reading, MA, 1994.

Veldhuizen, T. “Expression Templates’; C++ Report, June 1995, reprinted in
C++ Gems, edited by Stanley Lippman.

Myers Nathan C., “A New and Useful Template Technique: Traits) C++ Report,
June 1995, http://www.cantrip.org/traits.html

C++ 0x (C++11) Final Committee Draft:
C++11 - ISO/IEC 14882:2011: $60 from ansi.org
Meyers S., Effective Modern C++, O'Reilly 2014

Meucci, A. “Risk and Asset Allocation’; Springer 2005

533

http://www.cs.rit.edu/~mjh/docs/c++-faq/
http://www.cantrip.org/traits.html
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2FISO%2FIEC+14882-2012

Index

A

Accessors, 486

Accumulation
accessor, 397
binary operations, 396
collect fuction, 395
elementary operations, 396
global constant objects, 397
global helper function, 399
i-th operation, 397
multi-layered accumulators, 395
operator*, 399
operator+, 398
op_void, 398
output, 401
recursion-stopping specialization, 400
runtime error, 399
static recursion, 398
template parameters, 397
template rotation, 396
types, 394

Agglomeration, 455

Algorithms
accessors, 294
algebraic requirements, 320
algorithm I/0, 347
Barton-Nackman trick, 322
classification, 280
*i returns, 276
iterator (see Iterators)
mimesis, 297
properties, 293, 296
range begin...end process, 301
receipts, 317
reordering algorithms, 275
selective copying algorithms, 275
set partition, 284
swap-based/copy-based, 277

Angle brackets, 14

Argument pack technique, 442
Argument rotation, 419
Artistic Style (AStyle), 39-40

Barton-Nackman trick, 322
Base copy constructor, 16
Bit counting, 528

Bitstring, 463

Body level, 21

Boolean type, 69
Buffer_type algor, 407

C

C++0x
auto, 517
decltype, 516
extern template, 524
initializers, 520
lambda expressions, 518
linking templates, 521
metafunctions, 516
typedef syntax, 521
variadic templates, 525

Chain destructor, 460

Chain starter, 454

Classic patterns
action(range), 63
action(value), 63
boolean type, 69
bool T::empty() const, 62
default and

value initialization, 71

literal zero, 69
manipulators, 63
operators position, 66

535

INDEX

Classic patterns (cont.)
ptrdiff_t, 57
secret inheritance, 67
size_t, 57
void T::clear(), 62
void T::property(X), 63
void T::swap(T&), 58
X T::base() const, 62
X T::get() const, 62
X T::property() const, 63
Class level, 21
Class template, 6
Code generators
double checked stop
arithmetic/floating
point operations, 331
integrize template, 333
loop unrolling, 331
vector-sum, 331
enumeration types, 361
If-Less code (see If-Less code)
Nth Minimum, 351
static (see Static code generators)
static and dynamic hashing
(see Static and dynamic hashing)
template factory pattern, 357
Code safety, 72
Comma chains, 468
CompareAndSwap, 212
Compile-time polymorphism, 229
Conversion functions, 384
C++ templates
angle brackets, 14
class template, 6
compiler error, 9
compile-time constants, 8
division by zero, 9
errors, 8
explicit specialization, 7
function template, 6
function types and function pointers, 16
integer literals, 10
integer operation, 9
metafunction, 7
non-standard language operators, 10
non-template base classes, 19
non-type parameters, 8, 10
parameter list, 6
position, 20
sizeof, 10
sq<double>, 7
static constants, 10
template
arguments, 7
member functions, 11
parameters, 7

536

typename, 11
type parameters, 8
types and non-types
integers and pointers, 6
universal constructors, 15
Curiously recurring template
pattern (CRTP), 233, 383

D

Date format, 528
Debugging templates
compiler bugs, 511
integer computations
references to numeric
constants, 509
signed and unsigned types, 508
portability, 513
SFINAE principle, 510
trampolines, 510
types
incomplete types, 504
tag global variables, 507
trapping types, 502
type_info::name, 501
Discriminated unions, 252
Drivers, 404

E

Enum conversion, 367
Exponential unrolling, 114
Extension, 527

F

fgetpos, 415
Forwarding/reference wrappers, 411
fsetpos, 415
Function pointers, 16
Function template, 6
Function types, 16
Functors, 47
accumulation (see Accumulation)
buffer_type algor, 407
composition tools
CRTP, 383
helper function, 381
lambda predicate, 379
person/age relationship, 378
template parameter, 381
template-template
parameter, 379
drivers, 404
forwarding/reference wrappers, 411
inner template

conversion functions, 384
members conversion
(see Members conversion)
interactive algor, 408
self-accumulator algor, 407
static member function, 373
strong/weak, 376

G

get_ptr functions, 386

H

has_abs_method, 176
Heuristic algorithms, 115
Hints and partial solutions, 530

I, J, K
Identical code folding (ICF), 371
If-Less code

enum conversion, 367

self-modifying function, 369

smart constants, 365
Implicit promotion techniques, 221
Inline function, 76
Inner class templates, 33
Input iterator, 233
Integer, 527
Interactive algor, 408
Interfaces

code unification, 229

compile-time polymorphism, 229

copy constructor, 232

dereferenceable entity, 232

emptiness, 230

global functions, 230

input iterator and output iterator, 233

member functions, 230

minimal set of concepts, 232

object returned by operator, 233

static

ambiguous inheritance diagram, 244
base class, 237

BASE<T> object, 234

bitstring class, 243

clone_of metafunction, 241
common errors, 237

compile-time steps, 236

CRTP, 233

declaration, 241

derived class, 234

grouping ideas, 240

improved inheritance diagram, 245
macro, 241

INDEX

member selection, 248
memberspace problem, 245
PrintSomeNumber function, 235
random algorithms, 242
reference-to-base, 235

static_cast, 233

summable<...> interface, 235
template, 242

“virtual” callback mechanism, 233

type hiding

*begin parameter, 250

boundary crossing with trampolines, 262
generic_t, 261

iterator handling, 250
metafunctions, 250

option_map container, 252, 255
option_parser container, 252, 258
parameterless options, 260
storing object, 251

trampolines, 253

typeinfo wrapper, 254

variant objects, 252

virtual function, 260

variant

opaque object, 264
parameter deletion with virtual calls, 265
with visitors, 266

wrapping

containers, 272
references, 230

Is_ PRIME<N> value, 529-530

Iterators
definition, 275
identification, 286
iterator_t, 276
metafunction, 286
requirements, 283
set partition, 284
sort algorithm, 289
value type, 292
wrapping

L

const_iterators, 304
expander, 305

fake pairs, 311
iterator_expander, 305
multiplier_iterator, 304
operator->, 304
pair_iterator, 311

Lambda-constant, 418

Lambda expressions, 518
argument and result deduction, 431
arithmetic operators, 423
arrays, 437

537

INDEX

Lambda expressions (cont.)
assignments, 424
binary operation, 422
binary operators, 424
binary predicates, 424
concrete binary functions, 423
cos(X+2.0), 417
deducing argument type, 434
deducing result type, 435
elementary lambda object, 418
enum lambda_tag, 424
error log, 427
global/static member
functions, 421
lambda-const reference, 417
logical and standard
operators, 426
refinements, 429
static cast, 436
unary function, 420
unary operators, 422
lambda_reference, 431
Lambda semantics, 378
lambda_wrap, 429
Less and NaN, 320
Literal zero, 69
Logger, 444

(0

Opaque type principle

bitstring, 463

comma, 439

comma chains, 468

growing object concept
chain destruction, 460
chain_traits, 455
console_assert, 454
definition, 445
direct access, 447
inward link, 446
outward link, 446
proxy, 445
pseudo-template notation, 445
SMART_ASSERT, 452
string concatenation, 447
string sum, 444
variations, 461

infix simulation, 473

lambda expressions

(see Lambda expressions)

operator(), 440

operator|], 443

polymorphic result, 415

range insertions, 466

operator(), 381
Output iterator, 233
M Overload resolution

Macro expansion rules, 90
Members conversion
enum_const, 391
get<X>(0), 393
nested class template, 388
pointer-to-member, 387
PTR, 388
wrap, 393
Memberspace problem, 245
Metafunctions, 50
Mimesis interface, 349
Mimesis techniques, 344
Multi-layered accumulators, 395
Multi-layer template factory, 360

N

Namespace level, 21

Non-inline member functions, 76
Non-mutating function, 280
Non-template base classes, 19
Nth Minimum, 351

538

concept traits, 186
fake_incrementable, 222
function pointers
argument dominance, 226
erase, 223
swap, 224
groups
auxiliary functions, 175
clustered implementation, 174
companion global
function template, 173

default template implementation, 174

definition, 173
“double-layer” template, 177
has_abs_method, 176

implicit argument promotion, 177

maths<double>, 178
non-template function, 176
operator%, 180

runtime decay, 181

single action, 173

template struct, 173
typedefs, 179

INDEX

has_conversion<L,R>::L2R, 221 switch-off, 489
implicit promotion techniques, 221 template parameters, 477
merging traits trampolines, 484
alternative blocks, 195 Reordering minmax algorithm, 282
binary_relation_traits, 194, 197
code rearrangement, 194 S
derivation and hidden
template parameter, 195 Secret inheritance, 67
flags idiom, 196 Self-accumulator algor, 407
“native” operators, 198 SFINAE principle, 510
static_highest_bit<N>::value, 197 Skeleton technique, 362
namespace, 223 Small object toolkit
platform-specific traits, 189 hollow types
SFINAE constraints, 96
advantage, 200 instance_of, 93
A<int>, 199 selector, 94
limitations, 216 static value, 95
multiple decisions, 204 static assertions
Only_If, 206 assert legal, 100
partial specializations, 220 Boolean assertions, 98
pointer, 200 overloaded operators, 103
returned functors, 208 pointers, 104
sizeof, 200 tagging techniques
software updates, 212 function pointers, 110
workarounds, 215 inheritance, 116
string function overload mechanisms, 107
constant-time, 185 program compiles, 108
const char*, 186 runtime argument, 106
semi-opaque interface, 184 similar signature, 106
std::string, 186 static useless argument, 107
strlen, 183 tag iteration, 113
tags type, 108
P Q sorted_vector, 272, 274
’ Specialization, 528
Partial specialization, 26 sq function, 404
Placeholder, 489 Static and dynamic hashing
Pointer paradox, 26 algorithm I/0, 347
Pointer-to-function type, 16 ambiguous overload, 345
Preprocessor changing case, 341
include guards, 85 character set functions, 337
macro expansion rules, 90 classic code, 335
PrintSomeNumber function, 235 macros, 335
Push_back, 369 mimesis interface, 349
mimesis techniques, 344
R template rotation, 336
Static code generators
Refactoring static_pow, 328
accessors, 486 static_raise, 328
compatibility strongly typed template, 329
encapsulation, 480 struct deduce, 330
interface adaptation, 480-481 Static interfaces
kernel macros, 481 ambiguous inheritance diagram, 244
template sq, 479 base class, 237
ghost, 494 BASE<T> object, 234
interfaces, 482 bitstring class, 243
placeholder, 489 clone_of metafunction, 241

539

INDEX

Static interfaces (cont.)
common errors, 237
compile-time steps, 236
CRTP, 233
declaration, 241
derived class, 234
grouping ideas, 240
improved inheritance diagram, 245
macro, 241
member selection, 248
memberspace problem, 245
PrintSomeNumber function, 235
random algorithms, 242
reference-to-base, 235
static_cast, 233
summable<...> interface, 235
template, 242
Static member function, 373
Static programming
compilation complexity
auxiliary class, 125
full recursion, 125
linear complexity, 123
low-complexity, 123
MXT_M_SQ, 124
template instances, 123

hidden template parameters
companion technique, 130
disambiguation, 136
primary template, 133
static recursion, 131

metaprogramming idioms
header files, 127
random elements, 127
static short circuit, 128
struct, 126
variables, 126

preprocessor, 121

traits (see Traits)

type containers
agglomerates, 160
arrays, 148
conversions, 164
depth, 152
empty/void, 149
find, 154
front and back, 153
metafunctors, 167
push and pop, 156
returning error, 151
template rotation, 158
typeat, 150
typelist, 149-150
typepair, 149

540

STL containers, 504
Strong/weak functors, 376
Style, 3

AStyle plugin, 39-40
comments, 41
elements, 39
generality, 48
macros
code appearance, 42
constexpr, 43
infix_ M_, 42
integer functions, 42
intercepting, 46
lowercase prefix mxt, 42
macro directive, 43
MXT, 42
namespace directives, 42
metafunctions, 50
multidimensional_vector::empty, 41
namespaces and using declarations, 54
naming convention, 41
symbols, 46
template parameters, 49

Substitution failure is not an error (SFINAE)

advantage, 200

A<int>, 199
limitations, 216
multiple decisions, 204
Only_If, 206

partial specializations, 220
pointer, 200

returned functors, 208
sizeof, 200

software updates, 212
workarounds, 215

Switch-off, 489

T

Tamper, 473
Templates

argument deduction
automatic deduction, 28
built-in C++ cast operator, 24

cast and function template invocation, 24

class template, 28
disambiguation, 23

dummy argument, 28
function templates, 23, 27
non-deduced parameters, 28
non-deducible, 24

non-type arguments, 27
obscure error messages, 28
overload resolution, 29

pattern matching, 27
template-dependent, 24
C++ (see C++ templates)
class and typename, 25
classic patterns (see Classic patterns)
code safety, 72
compiler assumptions
argument names, 85
bugs, 81
catalog, 83
dirty code modifications, 82
empty destructor addition, 75
error messages, 79
inline function, 76
language features, 83
language-neutral idioms, 74-75
memory-helping tricks, 85
non-standard behavior, 83
standard-conforming compiler, 75
warning, default level, 82
function template, 3
global object, 4
inner class, 33
parameter, 381
position, 20
preprocessor (see Preprocessor)
purpose of TMP, 5
rotation, 156
self-adapting, 5
specialization
class templates, 25
compiler error, 31
forward declaration, 31
full specialization, 32
global function template, 22
namespace level, 22, 30
non-deducible types, 23
and overload, 21
partial specialization, 32
sq,3,5
squaring numeric type, 4
style conventions (see Style)
template name, 24
template-template parameters, 25, 379
transforming sequence, 4
type, 4
visual equivalence, 4
Tentative interface, 267
Traits
concept, 186
definition, 138
ios_char_traits, 139

INDEX

largest unsigned integer, 140
merging
alternative blocks, 195
binary_relation_traits, 194, 197
code rearrangement, 194
derivation and hidden
template parameter, 195
flags idiom, 196
“native” operators, 198
static_highest_bit<N>::value, 197
platform-specific, 189
streambuf template, 139
string function
constant-time, 185
const char*, 186
semi-opaque interface, 184
std::string, 186
strlen, 183
type dismantling, 147
type traits
argument_type, 146
assignable, 145
base class, 143
codes implementation, 142
const objects, 146
definition, 141
DER, 143
immutable, 145
inheritance, 143
intrusive const-ness, 146
operator=, 145
specializations, 144
static constants, 141
Trampolines, 253, 484
boundary crossing with, 262
virtual function, 260
typeinfo wrapper, 530
typename, 11

U

Universal assignments, 15
Universal constructors, 15
Universal copy constructors, 15
Using-namespace
declarations, 54

VW, X, Y, Z

Variadic templates, 525
Virtual function table pointer, 269
Virtual inheritance, 270

541

Advanced
Metaprogramming in
Classic C++

Davide Di Gennaro

Apress®

Advanced Metaprogramming in Classic C++
Copyright © 2015 by Davide Di Gennaro

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1011-6
ISBN-13 (electronic): 978-1-4842-1010-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Sverrir Sigmundarson

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
atwww.apress.com/9781484210116. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484210116
www.apress.com/source-code/

Template metaprogramming and expression templates are not techniques for novice
programmers, but an advanced practitioner can use them to good effect.

Technical Report on C++ Performance, ISO/IEC TR 18015:2006(E)

Nothing described in this report involves magic.
Technical Report on C++ Performance, ISO/IEC TR 18015:2006(E)

People should not be asked to do things “just because we say so’ At least we can try to
explain the reasons behind the rules.

An Interview with Bjarne Stroustrup - Dr. Dobb’s Journal

I hope Tibet will find this book

as interesting as all the others he reads

Contents

/

Ahout the AUTNOLceeuvireemssssrressssssmsnsssssrssssssssssnssssssnnnnsssssnnnnsssnnnnnnssnsnnnnssnnnnnnssnnnnnasXIX
Ahout the TechniCal REVIBWETccueeeeerirremmssssmennssssmssnsssssssnnssssssnnssssnsnnnsssssnnnnssnsnnnnns XXi

Acknowledgments........ccccuuisssnmmmnmmmmmmmsssssssssssnnesssssssssssssnnnnesssssssssnnnnnnnsnsssssssnnnnnns Xxiii

o =] (1 ¢ 4 ||

#include <prerequisiteS> ...uuuvmmmmmmmmmmnsssssssssssssssssssssssssssnsnnnssnnssnssennnnens 1

Chapter 1: Templates...........connmmnm s ————————— 3
I O [T 1] = 6
T TYPENAIME ..o a e s a e s a e s e e e e e e R e s e e s e R e R e s R e sa e e e e e saeneeseenseneensesennan 11
1.1.2. ANGIE BraCKetS........ccceereriiciririsscriri st 14
1.1.3. UNiversal CONSITUCTONScvuvcirirrmsinissisisssss s sssens 15
1.1.4. Function Types and FUNCLION POINEEIS........ccccorerrvererere e ree e e s e sae e sae e saenanaens 16
1.1.5. NON-TeMPIAte BASE CIASSESccerurerrererrereruerereressersesersesessessssessssessesesssssssessssessssessesessssssassanaens 19
1.1.6. TeMPIALE POSITIONcoveeeeeereeere et re s se s e s e s sae e ae e sae e s e sas e s ae e saenenaenanaens 20
1.2. Specialization and Argument Deductionccervrierniernnnicnn s 21
IR R =011 0] 27
B 2020 o 2 (] 30
1.2.3. INNET Class TEMPIALES......ccceeererereeerererre e s sse e se e s sse s s sae e sae e saesassesas e saesesaesesaeanaens 33
1.3. Style CONVENTIONS.......cccoceicerirerir st n s 39
ST R T T OO 41
S L T (O 41
ST T 1] 0] OO 46
1.3.4. GENEIAIILY ... et e s s e e e e s R e e nnn s 48

ix

CONTENTS

1.3.5. Template Parameters.......ccoiiiirininirinene e sa e e e sa e e s sa e sa e e saesaesaesnns 49
1.3.6. Metafunclions..........cocvvnnnninnnn———————— 50
1.3.7. Namespaces and Using Declarationsc.covvnnsmnmsmsmsmsmsmmssssssssssss 54
1.4. ClasSiC PAtterns.........ccoviinirncnii s 57
1.4.1. size_t and Ptrdiff_T.......ocoo e ——————— 57
1.4.2. VOIt T:SWAP(TE) «.vvveueeerreeirerseeesessse e ssse e se s e sse e e e s ss e e e s se e e e ssa s s e nsennas 58
1.4.3. bool T::empty() cONSt; VOId T:ICIBAN() ..ecueueeereecererreesereseese s nens 62
1.4.4. XT::get() const; X T::D@SE() CONST.......ueeeieerccereeci et 62
1.4.5. X T::property() const; void T::property(X)......ccoeeeeeeeererereneseresesssesesssssesessssesesessssesesessssssssesssseas 63
1.4.6. Action(Value); ACHON(RANGE).......ccceururererrrrreererreeese s nes 63
1.4.7. MANIPUIATOTS......cceececcc ettt e p s st e s e e ne st s ae e e ae s 63
1.4.8. POSItioN Of OPEratOrs......cccceieriierre et se e sn s 66
1.4.9. Secret INNEMLANCE ... s 67
1.4.10. LIEral ZBrO ... 69
1.4.17. BOOIBAN TYPE ..ottt e e nnnn s 69
1.4.12. Default and Value Initialization ... 71
1.5. C00E SATBLYcveereeererrr e e 72
1.6. Compiler ASSUMPLIONS........ccoueierriiernere e s sn s sn s s sae e s 74
1.6.1. INHNE .. —————————————————————— 76
1.6.2. EITOr MESSAQES.veiveruereersersersersessessessessessessessessessessesaesaesaessessesaessssaessessssssssesssssessssssssessessessnssene 79
1.6.3. MISCEIIANEOUS TIPS .vevverrerrerrerrertersessessessessessessessessessesaesaessesaessesasssssassssssssasssssassasssssssssssssssssssssnne 81
1.7, PrEPIOCESSONeeuerereresesses s se s e s s s e s e s e s e s e e s e s e s e s e e e e s e s n e nn e nn e sn e e e nnennennnnnnnnan 85
1.7.1. INCIUAR GUAKTS.......cceiiiciieie e 85
1.7.2. Macro EXpanSion RUIESccoeriernicnencre st ss s st e s sss e sessesassessssessssesnssanaens 90
Chapter 2: Small Object TooIKitcccussmennrssssnnnnmsssssnnsssssssnssssssssnssesssssnsssssssnnnnns 93
2.1, HOIOW TYPES ...ttt sn e e e sn s snssn s sn s sn s sn s nn s sn s n s nn e nnnn s 93
2.1.1. INSEANCE_OF.....cvieieciiiii b 93
R - [| 94
2.1.3. STALC VAIUB.......eee 95

2.1.4. Size Of CONSITAINTS....ccceiiiiiiicic i ae s b e s s be s b e s s e be s b e s anesaenanesns 96

CONTENTS

2.2. StAtiC ASSEITIONSccccerverrerrsirrestsse e se s sas e s sn s sne e nnns 97
2.2.1. BOOIEAN ASSEITIONScvvrecereiecisrssssss s s s bbb bbb p b snsnsnenas 98
2.2.2. ASSEIT LEUAL......cecceereeecreriee et e e R e n e e p s 100
2.2.3. Assertions with Overloaded OPEratorsc.cccocereresereressesesesse s sesessssssessssssens 103
2.2.4. Modeling Concepts with FUNCEiON POINTEYScccorreecrinnecrrncseerer s 104
2.2.5. NOt IMPIEMENTEAc.ceiececeerecre s snenas 105

2.3. Tagging TECANIQUESceeverrerrerrersersersessesses e e sas e sas s s snssassassassassassns e s snssaesnssnssnnsnns 106
P 0 TR 1 o - T SRRSO 108
2.3.2. Tagging With FUNCHIONS.........ccovereeereereresereresersssessesessesessesessesasesaesessesessesessessssesssnssssssssssansens 110
P22 T T 1o I (=T 10 o R 113
2.3.4.Tags and INNEHTANCEcceccververeerereerererererererse e rsesessesessesessesse e ssesessesesaessssesassesssnsssensssesanaens 116

#include <techniques>........uceeemmmmmmnssssessennnnmssssssssssssnsessssssssssnnnes 119

Chapter 3: Static Programming........ccccceusssssssssssmmmmmmssssssssssssssssssssssssssssnsssssssssnss 121
3.1. Static Programming with the PreproCessorc.ccevrereresseresessesnsesesesssssssessens 121
3.2. Compilation COMPIEXILY.......ccererrerrerrerrerrerrerses s s e se e se e e sa e ssnenes 123
3.3. Classic Metaprogramming IdiomS..........ccceererrrrnsrssssss s ses s senneas 126
3.3.1. StatiC SNOIt CIrCUIL ...t 128
3.4. Hidden Template Parameterscccvevvrrernersessesses s ses s ses e ses e e sennens 130
3.4.1. Static Recursion on Hidden Parameters............cccovreeenernnnencsinsesesesssssese s sssesessssens 131
3.4.2. Accessing the Primary TEMPIALEccoveeceerrciesirreecsse e sssens 133
3.4.3. DiSaMDBIGUALION........ccceeeierererirerte et e s s s e e s e e s a e e ne e nenae s 136
B T T 11 OSSPSR 138
BT T T 1 o T T 141
3.5.2. TYPE DISMANTING ...ceeeveereererererertereree e s res e s ra e e sae e sserasaesas e saesesaesesaesassesassesaeesasanaeanaens 147
3.6. TYPE CONLAINEIS......cceeceecrreercee e sse s s sr s sn s sn s sr e sn s sr s sn e sn s nn e n e sn e nnnnn e nnnnan 148
BT TYPRAL.....ce e ———————————————— 150
3.6.2. REtUrNING @N EFTOT ..ottt ss e st s a st p e e ne e nnnne s 151
36,3 DEPEN o —————————————————————————————— e 152
3.6.4. Front @nd BACKccoeeeeeruiecrersccresese it 153

xi

CONTENTS

B3 T T 1 O PP 154
3.6.6. PUSH @NA POP....coveiriiicieiiriecie st sse s s e s s e e sas st sa s e sa s e st s st e st s sa e saesassassasssesssssnnenns 156
3.6.7. More on Template ROtation..........ccccveiininininnnnsin s sessasssssassasssssssssssenns 158
3.6.8. AQQIOMEIALES......cecveceerrereerte et a e naenen 160
BT I O 11 0] 1 164
3.6.10. MEtafUNCLONScvcviriririririss 167
3.7. ASUMMArY Of SEYIES ... s 171
Chapter 4: Overload ResoIUtion.......cccuueeernnssssnsnsmssssnsnsssssssssssssssssssssssnnnsssssssnnnss 173
O T € (R 173
4.1.1. From OVerload t0 GrOUPS......cccvverrrrerrerererirerasessssesss e e e ssssessssesseses e ssssesas e sassessssesssssssessssens 174
4.1.2. RUNTIME DBCAYc.cererreuecrerneeesesisseesesesss e s e e s ss e sa s e s se s se s s ss s e s sns s sesessssssessssnssaes 181
1 [T = | £ 183
4.2.1. AFUNCEON Set fOr STHNGS.....cccceeerreercrerrre e re e rs e nr s 183
4.2.2. CONCEPE TrAILS ..veveueerrrreeserrrssesessssssesesessssssesessssesssesssssss e sasss e e s sssssssssssssssessssssssssssssssssssssssessnes 186
4.2.3. Platform-SpeCifiC TraitScccererrrrrrerererrsssesersssesesesssssssessssssssessssssssesessssssessssssssssesssssssssssssssenes 189
4.2.4. MErging TrAIS.....ccceerrrreererrrssesesssssesessssssssesessssssese s s s e sasssss s s sssssessssssssssssssssssssssssssnsssssnsenes 194
4.3, SFINAE........cco ettt a s e ns s n s s ae e sae e s n e ae e nnernnens 199
4.3.1. SFINAE MetafunClions ... 200
4.3.2. MUILIPIE DECISIONSeevererreieerie e sie e ssessesaesaesaesaesaesaesaesaesaesae s e ssesaesassaesaesaesaesaesaesaesaessessnnsnns 204
T 11 | PP 206
4.3.4. SFINAE and Returned FUNCLOTS ... 208
4.3.5. SFINAE and Software UPUates........ccoererererererersnsersesersesessessssessssessesessesssssssssessssessssssssssssesassens 212
4.3.6. Limitations and WOrkarounds..........cuummmmmssssssssssssssssnssssssssssssssssssns 215
4.3.7. SFINAE with Partial Specializations..........c.ccoevvererererererereressersssersesessssessesessessssessssesssssssesassens 220
4.4. Other Classic Metafunctions with Sizeof...........cccoiniinnn 221
4.5. Overload on Function POINEErS ... 223
R I = 223
£.5.2. SWAP....cvevversssessssessesssssssssssssssssssssssessssssssessssss s s e E R e E RS S AR eSS R RS R e s R 224
4.5.2. Argument DOMINANCEc.oveeerrrrreserersssesesessssesesesssssesesssss s s ssssssssessssssssessssssssssssssssssssssssasenes 226

xii

CONTENTS

Chapter 5: Interfaces......cccciimmmmmmmssssnmmmmmmmsssss s ——————. 229

5.1. Wrapping REfEreNCEScccceeeeerercersirciesnr s ss s ss e s sn s snssnssnssnanas 230
5.2. StatiC INTEITACEScccerererirerre e 232
5.2.1. STAtiC INTEITACESceceeeereceececcr s 233
LI 0111110 04 (0] T 237
5.2.3. A Static_Interface Implementationcoo oo 240
5.2.4. The Memberspace PrODIEM...........cccoerreierirne e snsns 245
5.2.5. MEMDEI SEIBCLION ..ot 248
T T 17 T30 o 01 SR 250
5.3.1. TFAMPOIINESc.veeeeeeereerere s rer e ree e reeseraese s e sas e s se e sse e saesessesasaesaesesaesesaenesaesessesasnesaenesasasaeanaens 253
5.3.2. TYPINTO WIAPPEKeeeveeeeeereerererterersesersesessesassessesessesessesessessssessssessesessesssessssesssessenssssssssesaraens 254
LT 20 T 0 (4 o R 255
LT 2 0 (4 o 1 R 258
5.3.5. FINAI AAGItIONScvvrcieriiriisssniisss s 260
5.3.6. Boundary Crossing With TrampoliNESccoveeervererererere s rereeserse s sseses e ressesaesessssessesesaens 262
S.4.VAMANE ... ———————————— 264
5.4.1. Parameter Deletion with Virtual CallS............cccuviiiini, 265
5.4.2. Variant wWith VISItOrS ... 266
5.5. Wrapping CONtAINEIS........ccecvvereerierrirrerses s ses s s s e e snssnssn s snssnssnenas 272
Chapter 6: AlgOrithmscccininsennnmmsssssnnmnssesnnnsss s sns s snnnnes 275
6.1. AIGOITItRM 1/0 ...t sr e n e nn s 276
6.1.1. Swap-Based or COPY-BaSsed..........cccerrrerenerneresiriseescsesse s sesss s sessssnns 277
6.1.2. Classification of AIGQOITNMS ..o 280
6.1.3. [terator REQUIrEMENTS.........ccccceereccrirere e 283
6.1.4. An Example: Set Partitioningccccovrenerernenencsnssscsissescses e ses s 284
6.1.5. 1dentifying HEratorscccoeceerrriescrrreseser e 286
6.1.6. Selection by Ilterator ValUE TYPE........ccovreeerereresesirirsescsesse s sessssssessssssens 292

xiii

CONTENTS

6.2. GENEIAlIZALIONS.......coveereerrrereir s ne s nen s 293
6.2.1. PropertieS and ACCESSOIScocrrrrrerererrrsesesessssesssessssssssessnes 293
6.2.2. MIMESISecuceereeeeresseesesesase e e se e s e e s e s s s e e s s Re e e s nRe e e e nse e e e nsnnnaes 297
6.2.3. ENA OF RANQE ...ttt 301

6.3. [terator Wrapping.......cocecverrerrersessesses s ses s s sesssssessas s sssssssssssssessssssssnsnnns 304
6.3.1. RErator EXPANUEr ...t ss e e ss e sa e sa s sn s sa e a e a e sa e sn s sa e sa e sn e sn e nnennen 305
6.3.2. FAKE PAIIS.......ceeeeeeeeeeereeeseesesesessssssss s ss s s s s s s s sssssssssssssssssssssssssssssssssnsssnsns 311

6.4. BECEIPLSeeeeeeeecee et n e n e n s 317

6.5. AlgebraiC ReqUIremMEeNtS.........cccucceeniernseresssese e nsnens 320
6.5.1. LESS @NA NAN........coeereecereccrer e e se e e s ne e 320

6.6. The Barton-Nackman TriCK........c.coccocererrrencrnescreseserese s 322

Chapter 7: Code Generators.........ucccmmunssmmmmssssssnmmssssssnmmssssssnmssssssssssssssssnsssssnnnnns 327

7.1. Static Code GENErators.........ococeerererereeresesere e 327

7.2. Double CheCKed STOPccceceecercercrr s nn s 331

7.3. Static and Dynamic Hashingccuceervrennsenssnsesnsese s s ssesessesssssnnens 335
7.3.1. AFunction Set for CharaCters...........couriiinnnnsssssssss s ssssssssnns 337
7.3.2. ChanQing CaSE......ccceurueerererreeesesssseesessssesesessssssssessssssssesssnes 341
7.3.3. MimesSiS TECHNIQUEScocevrueecrerinecrerese e se s s s s e s 344
7.3.4. AMDIgUOUS OVEIIOAUScoveveeeeerirecrisise e se s ss s s e s 345
7.3.5. AIGOFTtRM 1/0 ...t n e e esn e nn e s 347
7.3.6. MIiMESIS INTEITACEcceerereeecrir et s 349

7.4, Nth MiNIMUM.....cce e 351

7.5. The Template Factory Pattern...........ccoooececececscc s 357

7.6. Automatic Enumeration of TYPES........ccevvrrernieresnssesssisssisse e ssesessesssssnsens 361

7.7, 1f-LESS COUE ... s 365
8 T 1 L 0T PP 365
7.7.2. Converting ENUM 0 STHNQ......cccorererre st ree e reesese e se s sse e s sesaesessesas e sassesassesassanaens 367
7.7.3. Self-Modifying FUNCHON TADIESccecevererererereereree e resesesersesessesessesessesessessssessssssssssssesassens 369

xiv

CONTENTS

(2T 1 0= gt H ST T (1] . ¥ £

8.1. Strong and Weak FUNCIOISccoecveeninesnc e se s 376
8.2. Functor Composition TOOISccccveerrrnrrerirrsir s sessrssnanas 377
8.3. Inner Template FUNCIOIS........cccvcerrierieerrerrrre s s e s e e sne s s sae e snessneenns 384
8.3.1. Conversion of FUNCHioNS t0 FUNCIOFS ... 384
8.3.2. Conversion of Members to FUNCLOIS..........cunminsssss s 387
8.3.3. More on the Double Wrapper TEChNIQUE..........ccceveeereerererererere e s e e e saesesaesesaesasaens 390
8.4. ACCUMUIALION......cucrieicr s 394
8.4.1. A Step-by-Step Implementation ... —————— 395
8.5, DIIVEIS ... eieceiereesrseris s saesr s s a e n s a e ae e s nnnn s 404
8.6. AlQOISuereeeuireeser st s e s s s e s e e s e e s s n e sn e e n e s en e e ne e e e nne e e e nnennennean 406
8.7. Forwarding and Reference Wrappers........ccccuceeeeeeesessessssssssssssssssssssssssssssssssssssnnes 411
Chapter 9: The Opaque Type PrinCiple......uuussssssssmmssmsssssssssssssssssssssssssssssssssssssnns 415
9.1. PolymorphiC RESUILS.........ccoceeeeeeereercer e sn s 415
9.2. Classic Lambda EXPreSSiONS.........ccccuereerrersersessessssssssssssssessssssssesssssssssssssssssssssnsens 417
9.2.1. Elementary Lambda ODJECES.........coceererereceerrcescr e 418
9.2.2. Lambda Functions and OPerators...........cccccererenereresssssesesssesesesssesesessssssesessssssssessssssssssssssssaes 420
9.2.3. REfiNEMENTS ..ot bbb nnens 429
9.2.4. Argument and ReSult DEAUCTION ... 431
9.2.5. Deducing ArgUMENT TYPE......ccceceerrreerirese e ses s se s se s s s sssss s e ssssnsnas 434
9.2.6. DeduCing RESUIL TYPEc.covreeecrerieecrtrese e 435
0.2.7. STALC CaST ..ot 436
0.2.8. AITAYS ...vvreeueererreseseressesesesesssse e s ssss e e ssss e e s e s ae e e e s s e e e s e e s e Re e e e A e Re e e A e Re e e e e Re e nE e nRe e e e nEenn s 437
8T T 00 (T LA I T] S 439
9.3.1. Argument Chains With () @Nd [.....cceeererrererrererrerererereresereresereesersesessesessessssessssessssessssessesasaens 440
9.4. The Growing Object CONCEPL.......cccccrerrirerriere e se s 444
9.4.1. String Concatenationcccveeirereceiiesise s r e e nn e nnn e 447
9.4.2. Mutable Growing ODJECEScccorercriecrer e re s sn e snn e 452
9.4.3. More Growing ODJECLSccccevurerrirerresesesesessses s sre s e e e sr e se e sse e e e e as e sse e sresesnesnsnesansens 454

XV

CONTENTS

9.4.4. Chain DeStrUCHON ..o 460
9.4.5. Variations of the Growing ODJECTccceveererrererererere s s s sersesessesessesessesassessssesassassesassens 461
0.5, SIBAMSece e ————— 463
9.5.1. Custom Manipulators and Stream INSErtionccccvvrrninnrnecr s 463
9.5.2. Range Insertion with @ Growing ODJECTocoeerereiere s 466
9.6. COMMA CRAINScoveererrrierresisse s s sse e e sresr s sne e sas e sne e esnnnnens 468
9.7. SImulating an INfiXcccovieernierr e 473

#include <applications>.......cccmmmmmnmnssssssmsmnnmsssssssssssnsssssssssssssnnes 479

Chapter 10: Refactoringuuseeeeemmmmmmmsssssssssssnnmmssssssssssssssnsssssssssssssssnsssssssssnns 477
10.1. Backward Compatibilitycccvverrernrnninrrser s sesens 479
10.2. Refactoring Strategies........cccvrvrerrierssnerrse e sn e 482
10.2.1. Refactoring With INTErfaces ... s 482
10.2.2. Refactoring With TrampPOliNES ..o s sr e sa e sr e s 484
10.2.3. Refactoring With ACCESSOIS ..o s 486
10.3. PIaCENOIES......cccruicirereeri e 489
10.3.1. SWILCN-0ff ... 489
10.3.2. THE GROSL.......coceereeecereeiecer e e s s e s s ae e sssne e e e nnennnnas 494
Chapter 11: Debugging Templates.........cccrmmnsnmmmmssssnnnmmmssssnmmmssssssssssssnessssnnn 501
11.1. 1dentify TYPES ..coccecercerrcerrr et n e n 501
B I B 1o o T LTRSS 502
11.1.2. INCOMPIETE TYPLS ...t e e 504
11.1.3. Tag GIobal VariabIs..........ccoourueeerireecrisireci et e 507
11.2. Integer COMPULING....ccvceeeerrerresrreserse e enn s 508
11.2.1. Signed and UNSIigNed TYPES.....ccceererrrrerersrrsesesessssesesessssssssesssnes 508
11.2.2. References 10 NUMeric CONSTANTS ... 509
11.3. CommON WOrkaroundsccocoererememmssnssssssesess s sssssssssssssssssesens 510
11.3.1. Debugging SFINAE............cccoererererererrerterereeresaesesseses e ssesessesessesessssassesassessesessssssassassesassesssneres 510
11.3.2. TEFAMPOLINES ..ot s s a e b e s a e s sa e s e ses 510
11.3.3. COMPIIET BUGS ...vevreeereereeereererseressesesersssessssessssessessssessssessssessesessessssessssessssessssssssassesassesssnenes 511

xvi

CONTENTS

Chapler 12: C++0X cuvvveeeesssmmmmmmmsssssssssssmsssssssssssssssssssssssssssnnssssssssssssssnnnnnssssssssssns 515
12.1. TYPE TraAIlS....erercerer s sr s sr s sr s nn e sr e sn e nn s nn e nn e nnnnan 915
12.2. DEBCHYPE ..ot 516
L N | (T 517
12.4. LAMDUES......coiiiiicini i 518
12.5. INIHANZEIS....cceieeeeeeceer e 520
12.6. Template Typedefs.......cccccvvrrrirrirrer e 521
12.7. EXtern TeMPIALe........ccvcerercercer s sn s sn e nnnnn 521
12.7.1. LinKing TEMPIALES.....c.ccceeceirecerecrrerir e se s e s s sr s e sn s s r e 521
12.7.2. EXIErN TEMPIALEc.eeceeece e sa e sa e sa e sa e s a e s a e a e n e sa e sa e e s 524
12.9. Variadic TeMPIALESccccovieriiircrncre e 525
ApPPendiX A: EXEICISS wuuuuusssssmssnmmmrrssssssssssssnnsssssssssssssnssnnsssssssssssssnsnnnssssssssssnsnnnns 527
A1, EXEICISES ...ucivierueresisressssesesssssesssesss s s ssss s s s sss s sss s s s sss s s s sss s sassnssmsssssssssssnssnes 527
0 R = 11 SO STTOPSR 527

LN B (11 o T SRR 527
A.1.3. DALE FOMMAL........coveeeceeeeccir e e p e e p e nn s 528

A 1.4, SPECIANIZATION ... e a e e p e e a e nnnr s 528
A.1.5. Bit COUNTING....cccoverrecirireesisese s e se s e s e nenp e s e npans 528
A.1.6. PrIME NUMDELS.......ecceeeeeecr et 529
A1.7. Typeinfo WItNOUL RTTH ...t 530
A.1.8. Hints and Partial SOIULIONScoorrririririrrrirrrrrree e 530
Appendix B: Bibliographycccommssmsmmmmmsssnmmssssssmmsssssssmssssssssssssssssssssssnsssssss 533
1T - 535

xvii

About the Author

I'm like a dog, when you whistle: yep, yep. Template? Good, good...
—Andrei Alexandrescu, build 2012

Davide loves to introduce himself as a mathematician, but a better definition would be a philosopher.
After studying history of art and functional analysis, he switched to algorithm design and C++. He has been
showing the marvels of metaprogramming techniques since the late 90s. As nobody could really understand
him, he was eventually nicknamed “the professor”. He works for big companies, where his real identity is
ignored, and he spends his free time as a photographer.

Someone said that, “he makes the impossible possible’.

Tibet was born on September, 6™ 1998, just close to the C++ standard.
He immediately showed an unusual intelligence, learning more than
100 keywords in our natural language.

Active and proud of his C++-related work, during 2014 his health
started to decline. Readers often ask when he will write another book.
He knows, but he simply smiles.

Xix

About the Technical Reviewer

Sverrir Sigmundarson has over 15 years of industry experience
building high performance, mission-critical software for the finance and
software industries. He holds an MSc degree in Computer Science from
Reykjavik University in Iceland. He is currently on a special assignment
as a stay-at-home-dad living in Strasbourg, France with his wife and son.
He can be contacted through his website coruscantconsulting.co.uk or via
linkedin.com/in/sverrirs.

xxi

http://coruscantconsulting.co.uk
http://linkedin.com/in/sverrirs

Acknowledgments

Learning C++ is a process that never ends. As someone wrote, C++ is the only language whose features get
discovered as though they were unexplored lands.

While a book may be the work of a single person, discovery always comes from teamwork.

The author would like to thank all the teams that made possible his journey through C++. They all had
something to teach, and their contributions—direct or indirect—led to this book. His family, Carla, Alberto,
Tibet and Asia; the people at Logikos, especially Max; the Natam core team, Alberto L., Alberto T., Bibo,
Fabio, Graziano, Marco, Roberto, Rocco; the friends at Brainpower, in particular Alberto, Andrea, Davide,
Fabio, Giacomo, Giancarlo, Luca, Marco D., Marco M., Matteo, Paolo, Pino, Vincenzo; and all the others.

I would like thank the many people at Apress who worked on the book, including Steve Anglin who
talked me into it, Mark Powers for managing the project, Sverrir Sigmundarson for a fine job as technical
reviewer, Jeff Pepper and Kezia Endsley for clarifying the words.

Many Googlers kindly reviewed the first chapters of the draft and provided suggestions, fixes,
constructive criticism, exercises, or simply appreciation.

A very special thank goes to Attilio Meucci, who proved that writing a book is not impossible, and it’s
always worthwhile.

xxiii

Preface

Template Metaprogramming (TMP from here on) is a new way of using C++:
e Ithasa scope: a known set of problems where it proves useful.
e Ithas a philosophy: a peculiar way of thinking about problems.
e Ithasalanguage: idioms and patterns.

This book, according to the 80-20 law, aims to be an introduction to the first 20% of
metaprogramming—its philosophy, scope, and language—that can improve 80% of daily programming
activities. All the chapters are driven by some simple ideas:

e With modern compilers, most practical benefits come from simple techniques, when
correctly applied.

e TMP indeed produces better software. “Better” is simply a placeholder for faster,
safer, more maintainable, more expressive, or a combination of these features.

e State-of-the-art TMP libraries usually offer a huge set of features. Unfortunately,
documentation is either too large or too small. While reuse is a long-term winning
strategy, mastering the basic principles may suffice.

e Getting gradually accustomed with elementary techniques, the reader will develop
a deeper comprehension of the problems and eventually, if necessary, look for more
advanced tools.

The reader is assumed at ease with classic C++ programming, including STL concepts and conventions.

A systematic study of TMP exceeds the capacity (in C++ sense) of any single book. With over five years
invested in creating this book, I hope you will find it more than a useful starting point. For comprehensive
and robust training, the interested reader may want to see the bibliography.

Source Code

This book is not focused on results, but on the path—the steps and motivations that lead to a project’s
implementation. Many examples derive from production code. However, in a book, problems must look as
easy and evident as possible, sometimes even more. In practice, they are never this way.

So for illustration purposes, the source code is unquestionably sub-optimal and oversimplified.
Oversimplification means partial or full omission of implementation details, special cases, namespaces,
system headers, compiler bugs, and so on. The most advanced programming technique is hardly an
advantage if it crashes the company’s official compiler.

In short, these details are important, as they make the difference between a curious prototype and a
useful implementation.

In addition, code has been streamlined to satisfy visual constraints. In particular, indentation is
systematically inconsistent, some function bodies have been removed, names may be shorter than
necessary, and macros have been introduced for the sole purpose of shortening the text.

XXV

PREFACE

Readers are asked to be patient and review the Errata section that follows.
Finally, I admit that results are rarely supported with experimental data. TMP techniques give a compiler
the opportunity to create optimized code, and as a rule, this book doesn’t verify that it is indeed the case.

Classic and Modern C++

The C++ standard is being updated with lots of new features. The first edition of the document in 1998 had
fewer than 800 pages. A 200-page technical report was published in 2003 and revised in 2006. In March 2010,
the committee released the FCD, a milestone draft more than 1,300 pages long. In August 2014, the vote

to approve the C++14 standard was completed. Some of the new language additions have already been
implemented in compilers.

This book deals with a very small part of “C++0x” (yes, I use the familiar nickname of the new standard)
and “C++14” More precisely, it discusses what has a serious impact on TMP code and is also available in the
major compilers. The focus of the book remains on classic C++, which can be utilized in any implementation
of C++. The so-called “modern C++” constituting the revisions incorporated in C++11 and C++14 is the topic
of discussion in Chapter 12 and is referenced accordingly in other parts of this book.

Book Structure

The book is divided into three sections, and chapters are designed to be read in order. Each chapter starts
with its own rationale, or a summary of the motivations for previous arguments.

The first section deals with the basics, and in particular Chapter 2 is a prerequisite for most of the
source code contained in the book. Chapter 2 contains a description of the basic class templates that will be
constantly and silently reused without further comments.

The second part of the book develops some techniques for writing software, in the approximate order of
increasing complexity.

The third part contains some practical advice for real-world issues, so it has been pretentiously labeled
“applications”

I refer to some compilers with abbreviations, followed by a version number: MSVC for Microsoft Visual
C++ and GCC for GNU G++.

From time to time, I show the output of some compiler, without mentioning explicitly which one, to
emphasize what a “generic” compiler would emit.

This is a note. The following text contains a sample of the typographic conventions used in this book.

// filename.cpp
this->is(source*code);

This is the resulting compiler output.
The same format denotes an algorithm description in pseudo-code.

int i = [[double square brackets denote
a piece of pseudo-code inside valid code]];

0dd for a book that emphasizes readability, fragments of source code have no syntax highlighting, so
they will look scarier than they actually are.

XXVi

PREFACE

Errata

Readers are encouraged to send their feedback to the book’s page on Apress.com
(www.apress.com/9781484210116).
Errata are published regularly on http://acppmp.blogspot.com.

Note to the Third Revision

This book was born in 2005, when C++11 was yet to come, and finished just before the new standard was
published. On purpose, most of the new techniques on the way were ignored, simply because they were
not widely available, not finalized, or just not completely understood. None of the revisions of this book
changed this view, which is still essentially correct. So, while vendors are still releasing C++11 compilers, no
herculean attempt was made to upgrade the book contents.

Nonetheless, this should not be considered a limitation in any way. Starting TMP at a low level and with
simpler language tools means that your code will run on existing compilers, and is a powerful educational
experience, and it will lead to a stronger appreciation of all the “syntactic sugar” that modern C++ offers.

xxvii

http://www.apress.com/9781484210116
http://acppmp.blogspot.com/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	PART 1: #include <prerequisites>
	PART 2: #include <techniques>
	PART 3: #include <applications>
	Index

