
www.allitebooks.com

http://www.allitebooks.org

Advanced UFT 12
for Test Engineers
Cookbook

Over 60 practical recipes to help you accomplish
automation tasks using UFT 12 and VBScript

Meir Bar-Tal

Jonathon Lee Wright

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Advanced UFT 12 for Test Engineers
Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1221114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-840-6

www.packtpub.com

Cover image by Faiz F (faizfattohi@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Meir Bar-Tal

Jonathon Lee Wright

Reviewers
Seth Eden

NaveenKumar Namachivayam

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Vinay Argekar

Content Development Editor
Anila Vincent

Technical Editors
Shubhangi H. Dhamgaye

Shweta Pant

Copy Editors
Shambhavi Pai

Merilyn Pereira

Project Coordinator
Priyanka Goel

Proofreaders
Simran Bhogal

Faye Coulman

Ameesha Green

Linda Morris

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Meir Bar-Tal holds a Master's Degree in Cognitive Psychology from the Ben-Gurion
University of the Negev, but he made a swift switch to the software industry in 2000 and is
currently an independent test automation architect. In 2007, Meir was one of the cofounders
of the popular knowledge sharing site www.advancedqtp.com (originally founded as a
personal blog by Yaron Assa) and has been its Editor in Chief and Forum Administrator ever
since (sole owner since 2011). The site's forums were among the final four candidates at the
Automated Testing Institute Awards several times, and once were second only to the renowned
SQA Forums. Apart from the materials he publishes on his site from time to time, Meir is
a regular contributor to several professional online groups and forums and also conducts
lectures on UFT at Ness IT Business College (Israel) and other institutions. In 2008, he joined
Yaron Assa and others in establishing a small consultancy firm, SOLMAR Knowledge Networks
Ltd., which was active until early 2011, when the partners decided to go their separate
paths. Since then, Meir worked as an independent freelancer and became a SmartBear
Software Authorized Provider. In 2011, he developed a QTP plugin for SeeTest, which enabled
interoperability and IntelliSense. In 2014, he joined UGenTech Ltd. as the Associate Director
of Automation.

Meir has been involved in many projects characterized by a wide array of technologies (COM,
Unix, Windows, Web, .NET, Win Forms, WPF, Java, C#, and so on) and business industries
(Derivatives, Banking, Medical, Storage, CRM, Billing, VOIP, and so on). The range of services
he provides is wide and includes consultancy, project management, design and development,
training and coaching, tools evaluation, and extensibility and plugins development.

Meir has provided services to firms such as HP Software, Experitest, Omnisys, IBM XIV,
Hermes Logistics, Bank Leumi, YIT, Ginger Software, and Mazor Robotics. Before he
co-found Solmar in 2008, he worked for several companies, including dbMotion, Type
Reader, Amdocs, Matrix, and ultimately, Super Derivatives. At Super Derivatives, he led
a team of QTP developers to implement an object-oriented framework for QTP, a point that
reflects his special interest in the design and development of frameworks and enthusiasm
to share the fruits of his research and experience with others. In 2013-2014, he was, as a
subcontractor, technical lead of a challenging project at HP Software, in which UFT was used
to automate end-to-end scenarios for HP ALM with great success. Besides this, he works
in close cooperation with HP Software R&D and periodically contributes his insights to
improve UFT.

www.allitebooks.com

http://www.allitebooks.org

It would not have been possible to accomplish this piece of work without
the assistance (and patience) of several people to whom I wish to express
my gratitude and deep appreciation. First and foremost, to my late father
who, by his own example, taught me that giving up is not an option; second,
to my beloved daughters who always give me strength to accomplish more
than what seems feasible; third, to my mother, who has always loved and
supported, though not understood, me and all my endeavors; fourth, to my
reviewers and editors, who contributed to me personally and to the final
quality of this book.

Last, but not least, to all members of Packt Publishing, for giving me this
wonderful, exciting, and challenging opportunity to share my knowledge. I
wish to extend my special appreciation to Anila Vincent, for her understanding
of the difficulties I faced during this project and her virtually unlimited
patience, which unfortunately, I was forced to put to the test more than once.

Jonathon Lee Wright has over 15 years of international automation experience with a
number of global organizations, including Lehman Brothers, Hitachi Consulting, Siemens,
Thomson Reuters, New Zealand Lotteries Commission, PlanIT (Sydney), Unisys (iPSL), Xerox
(BJSS), Hewlett Packard (Enterprise), and Microsoft (ALM). Currently, he provides enterprise-
wide Portfolio Lifecycle Management at Deutsche Bank as part of the test automation
transition initiative, targeting 2,700 applications for test automation across the bank's global
digital enterprise landscape/ecosystem.

Jonathon also contributed to the best-selling book Experiences of Test Automation: Case
Studies of Software Test Automation, Dorothy Graham and Mark Fewster, Addison Wesley, and
a number of books on Testing as a Service (TaaS) models (epistemic and systemic entropy)
and API testing in the cloud (service and network virtualization). He is the founder of Test
Automation as a Service (TaaaS.net) and Automation Development Services (automation.
org.uk) and the Hybrid approach pattern (2004). He has also presented at various
international testing conferences, such as Gartner (London), STARWest (California), Fusion
(Sydney), ANZTB (Melbourne), EuroSTAR (Gothenburg and Dublin), BCS SIGIST (London).
Further details about Jonathon can be found at www.linkedin.com/in/automation.

I would like to thank my father John Wright, without whose support and
encouragement none of this would have been possible, for providing the
solid foundation for my success over the years. Then, I would like to thank
everyone at Packt Publishing, especially Shweta Pant for her support during
the technical editing.

www.allitebooks.com

automation.org.uk
automation.org.uk
www.linkedin.com/in/automation
http://www.allitebooks.org

About the Reviewers

Seth Eden has a powerful drive to benefit success for the people and organizations that
he works with. He began his professional career while still in college, teaching AutoCAD labs,
managing the Minnesota State University of Mankato Computer Aided Design archive room,
and coordinating design changes and Vikings/Chiefs summer training camp for the NFL.
He has worked in a broad spectrum of computer and engineering fields, from mechanical
engineering R&D to university labs in Washington, Michigan, and Minnesota. He has written
tax-audit management systems for the US Department of Revenue, and most recently worked
with mega project engineers on a manufacturing project to support the heavy shipping
industry and the offshore oil and gas systems manufacturing at Intergraph. Now, he is working
to automate QA testing systems with various insurance companies in Birmingham, Alabama.

Seth is also taking on active research in 3D metal printing and alternative energy systems.

Seth has worked with Trent on a book called Soul Surviving with the goal to raise money for
the American Cancer Society. He has worked with Dr. Julio Sanchez on a yet unpublished
book on Assembly Language programming. He has also been involved in publications with the
International Mars Society, documentation on using AutoCAD to model and manage university
parking facilities, and processing of Landsat satellite imagery from NASA. You can find more of
his work at Writings.SethEden.com.

I would like to thank my wife for all the support she has given me through
this process. I could never have done it without her!

www.allitebooks.com

Writings.SethEden.com
http://www.allitebooks.org

NaveenKumar Namachivayam has been working as a test analyst with Infosys for the
past 8 years. He is highly proficient in automation testing (QTP/UFT), performance testing
(LoadRunner, JMeter, CA LISA, and Performance Center), and quality center.

NaveenKumar is a testing professional with strong analytical skills, an aptitude to
think innovatively, and troubleshoot problems to meet tight timelines. He blogs at
www.QAInsights.com about software testing tools. Also, he is an avid learner and
experiments with various trends in software testing.

Currently, he is writing a book on MS Excel titled Excel in MS Excel, which will release soon.

I would like to thank my parents for providing me with competence and
intellect. Also, I would like to thank my wife, Preethi, and my newborn baby
daughter, Diya, too.

www.allitebooks.com

http://www.QAInsights.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Data-driven Tests 7

Introduction 7
Creating a DataTable parameter 8
Retrieving data from a DataTable 9
Storing data in a DataTable 11
Importing an Excel file to a test 14
Exporting a DataTable 17
Parameterizing Test Object properties 18
Defining test cases using a DataTable 22
Storing data in the Environment object 28
Retrieving data from the Environment object 31
Reading values from an INI file 32
Using a configuration file to manage test environments 34
Using a global dictionary for fast shared data access 35
Using a global dictionary for fast shared code access 39

Chapter 2: Testing Web Pages 43
Introduction 43
Checking whether page links are broken 44
Deleting cookies 48
Managing multiple browser windows 50
Handling pop-up dialogs 53
Downloading a file using XMLHttp 57
Checking whether a website is up 67
Uploading a file using FTP 68
Identifying elements based on anchors 75
Synchronizing a test with a web page loading 79
Accessing web elements through DOM 81

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Testing XML and Database 83
Introduction 83
Establishing and closing a database connection 84
Using SQL queries programmatically 87
Using a database checkpoint 88
Using an XML checkpoint 99

Chapter 4: Method Overriding 107
Introduction 107
Overriding a Test Object method 108
Registering a method to all classes 112
Using method overriding to support object subtypes 117
Adding a new method to a class 120

Chapter 5: Object Identification 123
Introduction 123
Setting mandatory and assistive properties for a class 124
Using Descriptive Programming inline 126
Using the Description object 128
Using child objects 130
Using native properties for object identification 131
Identifying an object based on its parent 133

Chapter 6: Event and Exception Handling 135
Introduction 135
Catching errors inside a function or subroutine 136
Creating and using a recovery scenario 138
Using a global dictionary for recovery 146

Chapter 7: Using Classes 151
Introduction 151
Implementing a class 152
Implementing a simple search class 159
Implementing a generic Login class 163
Implementing function pointers 168
Implementing a generic Iterator 170

Chapter 8: Utility and Reserved Objects 175
Introduction 176
Using global variables (Environment) 176
Customizing mouse operations (DeviceReplay) 184
Managing processes (SystemUtil) 186
Measuring time (MercuryTimers) 188

iii

Table of Contents

Resolving file locations (PathFinder) 190
Loading shared object repositories (RepositoriesCollection) 191
Loading and creating XML documents (XMLUtil) 193
Drawing a rectangle on the screen with Win32 API methods (Extern) 194
Verifying binary file contents (FileCompare) 198
Implementing a custom reserved object 198
Using remote objects 200
Utility statements 202

Chapter 9: Windows Script Host 207
Introduction 207
Reading a key from the Windows® system registry 208
Writing a key to the Windows® system registry 209
Deleting a key from the Windows® system registry 210
Running a process using the Windows® system shell 211

Chapter 10: Frameworks 213
Introduction to test automation frameworks 213

Definition of a test automation framework 214
Advantages of using a test automation framework 214
Types of test automation frameworks 214

Selecting a framework type 215
Modular-driven framework 215
Data-driven frameworks 215
Keyword-driven frameworks 215
Hybrid frameworks 216

Designing a test automation framework 217
Key design activities for a framework 217
Components of a framework 217

Controller 218
Reusable components (actions) 218
Event handler 218
Reporter 218

Building a test controller 219
Building a reusable component (action) 227
Building an event handler 230
Building a test reporter 233

Appendix: Design Patterns 237
Auxiliary classes and functions 237
Action patterns 243
Runtime data patterns 249

Index 251

Preface
Unlock the full potential of Unified Functional Testing (UFT) 12 with the introduction of
new features and functionality. Learn the industry's best kept secrets, enhancing toolset
capabilities like you never thought possible. Whether you are a casual user of UFT or an
advanced power user searching for new automation design patterns to supercharge your
existing framework, look no further as this is the book for you.

Join the authors who, with three decades of automation expertise between them, are ready
to share with you ways to make your tests more relevant, effective, maintainable, efficient,
manageable, portable, and reliable. This book is designed to be an invaluable source of
reference for everyone with its clear and powerful coding examples. Why waste any more
time trying to reinvent the wheel? Instead, accelerate straight to the expert level in UFT today!

What this book covers
Chapter 1, Data-driven Tests, covers the design patterns required to truly unlock
the DataTable functionalities (create, retrieve, store, import, and export).

Chapter 2, Testing Web Pages, covers the design patterns required to manage
modern-day browser capabilities and the challenges: handling broken links, websites'
downtime, multiple browser instances, cookies, unexpected pop-ups, downloading and
uploading files, synchronization, and most importantly, object identification and checking
dynamic content through the DOM.

Chapter 3, Testing XML and Database, covers the design patterns required to manage
DB connections, executing SQL statements, and a walkthrough of advanced DB and
XML checkpoints.

Chapter 4, Method Overriding, covers the design patterns required to override a Test Object
method, enriching basic functions, and adding exception handling mechanisms.

Chapter 5, Object Identification, covers the design patterns required to effectively manage
the object identification process through techniques such as Inline Descriptive Programming,
Description Object, ChildObjects, and native properties.

Preface

2

Chapter 6, Event and Exception Handling, covers the design patterns required to provide
robust and maintainable tests that can deal with unexpected events or exceptions by
catching errors inside a function or subroutine, recovery scenarios, and how to use the
global dictionary for recovery.

Chapter 7, Using Classes, covers the design patterns required to implement classes in
VBScript, along with illustrative examples and implementing function pointers.

Chapter 8, Utility and Reserved Objects, covers the design patterns required to utilize
advanced functionality hidden within the depths of UFT.

Chapter 9, Windows Script Host, covers the design patterns surrounding the underlying
infrastructure provided by the platform to execute scripts written in a variety of
programming languages.

Chapter 10, Frameworks, covers the design patterns to implement modern-day test
automation frameworks exploring modular-driven, data-driven, keyword-driven, model-driven,
and hybrid techniques to find the best approach that works for you.

Appendix, Design Patterns, covers the additional design patterns, including auxiliary classes
and functions, to enhance the tool set capabilities and unlock the full potential of UFT. It
provides powerful examples for both the action and runtime data patterns to put into practice
what has been covered in the previous chapters.

What you will need for this book
The only prerequisite for this book is that you need the latest version of HP's UFT installed.
This can be downloaded directly from the HP enterprise website:

http://www8.hp.com/uk/en/software-solutions/unified-functional-
testing-automation/

The example code design patterns snippets are for reference only and need to be adapted
to become context-driven.

To add example code files to the UFT solution:

1. From the project navigate to File | Settings.

2. Click on the Resources section.

3. Click on the + button, then the ellipses button on the far right to browse to the
location where the function library is located.

4. Navigate to the location of the example code file and click on Open to associate to
the project resources.

5. Then a pop-up message will present itself with Automatic Relative Path Conversion
at which point you can decide to use a Absolute Path or Relative Path.

http://www8.hp.com/uk/en/software-solutions/unified-functional-testing-automation/
http://www8.hp.com/uk/en/software-solutions/unified-functional-testing-automation/

Preface

3

Alternatively, right-click on the test project and navigate to Add | Associate Function Library
to fast track the above process.

Who this book is for
This book is designed to be an invaluable source of reference for end users of HP's UFT.

Depending on your exposure level to coding with VBScript, you may require assistance
with some of the more advanced design patterns.

Sections
Each chapter contains sections using the following structure:

Getting ready
This section tells us what to expect in the recipe and describes how to set up any software
or any preliminary settings needed for the recipe.

How to do it…
This section characterizes the steps to be followed for "cooking" the recipe.

How it works…
This section usually consists of a brief and detailed explanation of what happened in the
previous section.

There's more…
It consists of additional information about the recipe in order to make the reader more
confident about using the recipe.

See also
This section will, where needed, contain additional references to the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We will
retrieve the value of a DataTable parameter, namely, LocalParam1, from the Action1
local sheet with the following code written in the code editor inside Action1"

Preface

4

A block of code is set as follows:

Dim MyLocalParam

MyLocalParam = DataTable.Value("LocalParam1", dtLocalSheet)
Print MyLocalParam

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Leave all the fields with the
default values and click on OK."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
Data-driven Tests

In this chapter, we will cover the following recipes:

 f Creating a DataTable parameter

 f Retrieving data from a DataTable

 f Storing data in a DataTable

 f Importing an Excel file to a test

 f Exporting a DataTable

 f Parameterizing Test Object properties

 f Defining test cases using a DataTable

 f Storing data in the Environment object

 f Retrieving data from the Environment object

 f Reading values from an INI file

 f Using a configuration file to manage test environments

 f Using a global dictionary for fast shared data access

 f Using a global dictionary for fast shared code access

Introduction
This chapter describes several ways by which data can be used to drive automated tests
in UFT. Data-driven tests enable us to cover different paths in a test flow, by supplying a
coded script with different sets of values to its parameters. These include input data for
manipulating GUI objects and, where relevant, also the expected output from the application
under test. In other words, a data-driven script is one whose behavior changes when fed with
different sets of input data.

www.allitebooks.com

http://www.allitebooks.org

Data-driven Tests

8

We can retrieve input data using the global DataTable object. The first seven recipes
explain how we can work with a DataTable to attain various goals related to the concept
of data-driven tests. The next two recipes deal with Environment variables using the
Environment object. The Reading values from an INI file and Using a configuration file
to manage test environments recipes show how to retrieve values from INI files and how to
manage test environments with them. Finally, the Using a global dictionary for fast shared
data access and Using a global dictionary for fast shared code access recipes describe
advanced techniques for fast shared data and code access using a Dictionary object.

When we work with a DataTable in UFT, we must keep in mind that an action
datasheet always carries the same name as the associated action, and that
its data is visible only to the action.

Creating a DataTable parameter
DataTable is a UFT object that acts as a wrapper to an MS Excel file, and its scope is global.
This means that it can be accessed from any action within a test, as well as from function
libraries that were attached to the test. When you create a new test or open an existing UFT
test, you will notice that the DataTable pane will always show a global and local datasheet,
one for each existing action within the test. In this section, we will see how to create a
DataTable parameter.

How to do it...
Perform the following steps to create the DataTable parameter LocalParam1 for the local sheet:

1. From the File menu, navigate to New | Test or use the Ctrl + N shortcut. When
a new test dialog opens, choose GUI Test and then click on the Create button.

2. We will create a DataTable parameter in the Action1 local sheet from the UFT data
pane by double-clicking on the column header and entering the parameter name
LocalParam1 in the dialog that opens, as shown in the following screenshot:

Similarly, for the test global sheet we will create a parameter named GlobalParam1.

Chapter 1

9

3. Next, we need to enter our input data in the remaining cells of the parameter column
in the global or local sheet, according to the requirements.

How it works...
If we open the Default.xls file in the test folder (which, as its name suggests, is the
default data source for a new test), we will notice that there are two worksheets, namely,
Global and Action1. In each of these, the first row holds the name of the parameters,
so we will see GlobalParam1 in the Global worksheet and LocalParam1 in the Action1
worksheet. You will also notice that the used rows have borders at the bottom of the
worksheet (the borders have no real function; UFT identifies the used range by the number
of used rows and columns based on the content range).

See also
For information about setting and retrieving values for a DataTable parameter, refer to
the next two recipes, Retrieving data from a DataTable and Storing data in a DataTable.

Retrieving data from a DataTable
DataTable is a UFT object that acts as a wrapper to an MS Excel file, and its scope is global.
This means that it can be accessed from any action within a test, as well as from function
libraries that were attached to the test. When you create a new test or open an existing UFT
test, you will notice that the DataTable pane will always show a global datasheet and a local
one for each existing action within the test.

Getting ready
Prior to getting started with this recipe, please ensure that you have followed the Creating
a DataTable parameter recipe.

How to do it...
We will retrieve the value of a DataTable parameter, namely, LocalParam1, from the
Action1 local sheet with the following code written in the code editor inside Action1:

Dim MyLocalParam

MyLocalParam = DataTable.Value("LocalParam1", dtLocalSheet)
Print MyLocalParam

Data-driven Tests

10

Similarly, the following code snippet shows how to retrieve the value of a DataTable parameter
from the test global sheet:

Dim MyGlobalParam
MyGlobalParam = DataTable("GlobalParam1", dtGlobalSheet)
'We can omit the explicit .Value property as given above since it is
the default property
Print MyGlobalParam
MyGlobalParam = DataTable("GlobalParam1")
'We can omit the second parameter as given above (dtGlobalSheet) since
the Global sheet is the default
Print MyGlobalParam

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The result of this code in UFT's console is as follows:

Of course, we need to ensure beforehand that the parameter exists in the DataTable class
as outlined in the previous Creating a DataTable parameter recipe.

How it works...
By using the DataTable.Value property we are referring to the column by the parameter
name in the underlying Excel worksheet (be it global or local):

MyLocalParam = DataTable.Value("LocalParam1", dtLocalSheet)
MyGlobalParam = DataTable("GlobalParam1", dtGlobalSheet)

Chapter 1

11

As we entered just a single value into the datasheet, the command retrieves just the value in
the first row. If multiple values were entered and action iterations were set to run on all rows,
then it would have retrieved the values from each row with each iteration.

The dtLocalSheet constant always refers to the datasheet by the name
of the current action. The dtGlobalSheet constant always refers to the
global datasheet and can be used in any action.

Storing data in a DataTable
Sometimes, data that is collected during a run session might be needed for later use. For
example, suppose that Application Under Test (AUT) is a mobile operator management
system. We could begin by executing a customer creation process, during which a customer
ID is assigned automatically by the system. We then proceed with the other operations, such
as selecting a phone number, an IMEI, credit card details, and so on. Later, we may wish to
retrieve the customer records and update some personal data such as the mailing address.
For this purpose, we will keep the customer ID in the global datasheet, so that any action
that is executed, which can be referenced later (for example, one that performs a customer
search), will have access to the data.

Data stored in the global datasheet is effective only until the test stops.
To see how to save data persistently for later run sessions, please refer to
the Exporting a DataTable and Importing an Excel file to a test recipes.

How to do it...
Proceed with the following steps:

1. From the File menu, select New | Test or use the Ctrl + N shortcut. When the new
test dialog opens, choose GUI Test and click on the Create button.

2. We will save the value of a DataTable parameter, CustomerID, to the global sheet
with the following code written in the code editor inside Action1:
Dim CustomerID

DataTable.GlobalSheet.AddParameter "CustomerID",
 "990011234"
CustomerID = DataTable("CustomerID")
Print Environment("ActionName") & ": " & CustomerID

Data-driven Tests

12

3. To retrieve the value from another action, we will now create a new action datasheet.
In the code editor, right-click on the next empty line and select Action | Call to New
Action, as shown in the following screenshot:

The following dialog will open:

Chapter 1

13

4. Leave all the fields with the default values and click on OK. You will see that a new
action named Action2 will appear in the Solution Explorer window and open on
the code editor's MDI region:

5. Now, we will retrieve the value of the CustomerID parameter from the global sheet
with the following code inside Action2:

Dim CustomerID

CustomerID = DataTable("CustomerID")
Print Environment("ActionName") & ": " & CustomerID

The result of this code in the UFT's console is shown in the following screenshot:

How it works…
When we run the test, UFT first executes Action1, and a new parameter named
CustomerID will be added to GlobalSheet (a property of the DataTable object
that refers to the GlobalSheet object) with the value given by the second parameter.

DataTable.GlobalSheet.AddParameter "CustomerID", "990011234"

We then immediately assign a variable with the retrieved value and print it to the console
(for illustration purposes, we also concatenate the current action's name from the
Environment object's built-in variables).

CustomerID = DataTable("CustomerID")
Print Environment("ActionName") & ": " & CustomerID

Next, UFT executes Action2 same as Action1.

Data-driven Tests

14

There's more...
There are other alternative ways of keeping and sharing data during a run session. The simplest
is by using public variables declared in a function library attached to the test. The disadvantage
of this approach is that these variables must be declared in advance and they are hard coded,
but the nature of automation often demands more flexibility to manage such data.

See also
For information on advanced methods to share data among sessions, refer to the Using a
global dictionary for fast shared data access recipe.

Importing an Excel file to a test
We can dynamically set the underlying Excel file that will serve as a data source for the whole
run session, though this is probably a very rare case, and even switch between such files
during the run session. It is possible to import a whole Excel workbook for a test or just a
single worksheet for a specific action.

The classical case of importing an Excel file to a test is when the same flow needs to be
executed on different environments, such as with multilingual systems. In such a case, the
test would require an external parameter to identify the environment, and then load the
correct Excel file. Another possibility is that the test identifies the language dynamically, for
example, by retrieving the runtime property value of a Test Object (TO), which indicates the
current language, or by retrieving the lang attribute of a web page or element.

Getting ready
Ensure that a new test is open and create a new action. Ensure that an external Excel sheet
exists with one global worksheet and worksheets named after each action in the test. The
Excel sheet will contain three worksheets, namely, Global, Action1, and Action2. The
Action2 worksheet will contain data shown in the following screenshot. In our example, we
will use the Excel sheet named MyDynamicallyLoadedExcel.xls, and to simplify matters,
we will put it under the same test folder (it should be placed in a separate shared folder):

Chapter 1

15

In the Flow pane, make sure that the Action Call properties are set to Run on all rows.

How to do it...
In order to load the MyDynamicallyLoadedExcel.xls file to the test, perform the
following steps:

1. We use the DataTable.Import method to load the Excel sheet. In Action1
(the first to be run), we use the following code to ensure that the Excel file is loaded
only once (to avoid loading Excel for each iteration in case the test is set to Run on
all rows):
Print "Test Iteration #" & Environment("TestIteration") & "
 - " & Environment("ActionName") & " - Action Iteration #"
 & Environment("ActionIteration")
if cint(Environment("TestIteration")) = 1 then
 DataTable.Import("MyDynamicallyLoadedExcel.xls")
end if

Data-driven Tests

16

2. In Action2, we use the following code to retrieve the values for all parameters
defined in the local datasheet for Action2. We first print the number of the current
action iteration, so that we may distinguish between the outputs in the console.

Print Environment("ActionName") & " - Action Iteration #" &
 Environment("ActionIteration")

For p = 1 to DataTable.LocalSheet.GetParameterCount

 print DataTable.LocalSheet.GetParameter(p)

Next

3. When a test is set to Run on all rows, it means that it will be executed repeatedly
for each row having data in GlobalSheet.

The output to the console looks like the following screenshot:

How it works...
In Action1, the DataTable.Import method replaces Default.xls with the target
Excel file. The code in Action2 retrieves and prints the values for each parameter, and
as the action was set to Run on all rows, the code repeats this for all rows with data.

Chapter 1

17

There's more...
To import just a worksheet for an action, use the DataTable.ImportSheet method
as follows:

DataTable.ImportSheet("MyDynamicallyLoadedExcel.xls", "Action1",
 "Action1")

Here, the first parameter is the Excel filename and the last two are the source datasheet
and target datasheet respectively.

See also
For information on saving values collected during a run session, refer to the next recipe,
Exporting a DataTable.

Exporting a DataTable
We may need to save data that is collected during a run session. For example, a comparison
of the current result with previous results might be required. Alternatively, we might wish to
update the expected results. In such scenarios, we can save the data to an external Excel
sheet for later use.

How to do it...
To save the DataTable in its current state before the run session ends, we will use the
DataTable.Export method, which takes the path and name of an Excel file as an
argument. There are two options to save the data table:

 f Using a hardcoded filename:
DataTable.Export(Environment("TestDir") &
 "\MyDynamicallySavedExcel.xls")

 f Using a variable filename:

DataTable.Export(Environment("TestDir") & "\" & strFileName
 & ".xls")

www.allitebooks.com

http://www.allitebooks.org

Data-driven Tests

18

How it works...
The preceding statement saves the current contents of the DataTable (all worksheets)
to a new Excel file (if not existent, otherwise it is overwritten). The statement
Environment("TestDir") returns a string with the path of the current test to which a
string with the name of the file we wish to create is concatenated (TestDir is one of the
built-in Environment variables covered in detail later in this chapter).

There's more...
To export just a single worksheet (in our example, the global sheet) for an action, use the
DataTable.ExportSheet method, as follows:

call DataTable.ExportSheet(Environment("TestDir") &
 "\MyDynamicallySavedSheet1.xls", "Global")

Here, the first parameter is the Excel filename and the second is the source datasheet.
The target datasheet will take the same name as the source.

Parameterizing Test Object properties
The same TOs might appear in different flavors. For example, a Submit button in a localized
English version would show the text Einreichen for the German version. If the objects were
given abstract IDs not related to their function or displayed text, then life for the automation
developer would be easy; however, this is generally not the case. As managing a separate
object repository for each language would pose a maintenance impasse for any automation
project, a more practical approach should be adopted. A good alternative is to store the values
for identification properties that change from one environment to another in an external data
source, which is loaded at the beginning of a run session according to the required language.
This recipe will show how to parameterize an identification property for a given TO and use the
dynamically loaded value to identify the object during runtime.

How to do it...
In this recipe, we will take the Google+ Sign In button, which carries a different text value
for each localized version. In our example, we will learn about the button in one language
(Afrikaans), store the TO in a single Object Repository (OR), and make it get the value for its
name attribute from an Environment variable named Google_Sign_In. The Environment
variables for the test will be loaded according to the application language (refer to the Using
global variables (Environment) recipe in Chapter 8, Utility and Reserved Objects).

Chapter 1

19

Proceed with the following steps:

1. With UFT already up, the Web add-in loaded and the test using it, navigate to File |
Settings and then open Internet Explorer. Now, navigate to the Google+ sign-in page.

2. At the bottom of the page, there is a list from which one can select a language;
select Afrikaans.

3. In UFT, navigate to Resources | Object Repository... (or use the Ctrl + R shortcut),
as shown in the following screenshot:

4. Click on the + icon bearing the tooltip Add Objects to Local, select the sign in button
with the mouse icon, and then add it to the OR.

Data-driven Tests

20

5. Click on the text to the right of the name property, and then click on the icon that
appears to the right, as shown:

6. In the Value Configuration Options dialog that opens, select Parameter. Now, from
the drop-down list in the Parameter field, select Environment, as shown in the
following screenshot:

7. In the name field (combobox), type <Google_Sign_In>. Leave the value as is and
click on OK.

Chapter 1

21

8. In OR, you will now notice that the value of the name property has changed to
<Google_Sign_in> and the icon on the left represents the Environment object.

When running the test, OR will take the value of the name property from the Environment
variable. Hence, if we have a set of such values for each language, then we will be able to
test an application in whichever language we choose, without having to change a single
line of script code!

As with this method, the value is stored as an internal Environment
variable, and we wish to load the values according to the language
interface under test. We need to export the environment to an external
XML file and load it at the beginning of the run session.

There's more...
The same basic approach can be used for object identification with the Using Descriptive
Programming inline recipe of Chapter 5, Object Identification.

Data-driven Tests

22

See also
The Importing an Excel file to a test and Using a configuration file to manage test
environments recipes.

Defining test cases using a DataTable
As mentioned earlier, a data-driven test is one that is designed to behave as required by
different sets of parameter values. Basically, such sets of values actually represent different
test cases. When executing a login test action, for example, valid or invalid values for the
username and the password will trigger different application responses. Of course, the best
is to have a single action (or function) that will handle all cases, with the flow branching
according to the input data.

Getting ready
Ensure that you have the Flight Reservation sample application shipped with the installed UFT.
You can check this by navigating to Start | All Programs | HP Software | Unified Functional
Testing | Sample Applications. You should have a shortcut named Flight GUI that launches
flight4a.exe. Create a new test by navigating to File | New | Test from the menu, or by
using the Ctrl + N keyboard shortcut. Rename Action1 to FR_Login (optional).

How to do it...
Proceed with the following steps:

1. In the DataTable, select the FR_Login (or Action1 if you decided not to rename
it) datasheet. Create the following parameters in the DataTable (as described in
the Creating a DataTable parameter recipe):

 � TC_ID

 � Agent

 � Password

 � Button

 � Message1

 � Message2

 � Description

Chapter 1

23

2. We will derive the test cases with reference to the system requirements, as we know
(for this example, we will ignore the Cancel and Help buttons):

 � The correct login password is always mercury. A wrong password triggers
an appropriate message.

 � The agent name must be at least four characters long. If shorter, the
application prompts the user with an appropriate message.

 � An empty agent name triggers an appropriate message.

 � An empty password triggers an appropriate message.

 � After four consecutive failed login attempts with a wrong password, the
application prompts the user with an appropriate message and then closes.

Accordingly, we will enter the following data to represent the test cases:

TC_ID Agent Password Button Message1 Message2 Description

1 AgentEmpty mercury OK Please
enter agent
name

Empty
agent

2 AgentLT4 Mer mercury OK Agent
name
must be
at least 4
characters
long

Agent with
less than 4
characters

3 Agent4EmptyPass Merc OK Please
enter
password

Wrong
password
#1 (empty)

4 Agent4WrongPass Merc Merc OK Incorrect
password.
Please try
again

Wrong
password
#2

5 Agent4WrongPass Merc 1234 OK Incorrect
password.
Please try
again

Wrong
password
#3

6 Agent4WrongPass Merc Gfrgfgh OK Incorrect
password.
Please try
again

Login
unsuccessful.
Please try
again later.

Wrong
password
#4; App
closes

7 SuccessfulLogin mercury mercury OK Correct
username
and
password

Data-driven Tests

24

3. Apart from learning the TOs for the login and the message dialogs, create two
checkpoints for the messages that appear after unsuccessful logins (one for the first
and the other for the second type mentioned in the preceding table), and name them
Message1 and Message2 respectively.

OR should contain the following TOs (smart identification should be turned off):

 � Dialog: Login (parent: none, description: text=Login,
nativeclass=#32770, is owned window=False, is child
window=False)

 � WinEdit: Agent Name (parent: Dialog Login, description:
nativeclass=Edit, attached text=Agent Name:)

 � WinEdit: Password (parent: Dialog Login, description:
nativeclass=Edit, attached text=Password:)

 � WinButton: OK (parent: Dialog Login, description: text=OK,
nativeclass=Button)

 � Dialog: Flight Reservations (parent: Dialog Login, description:
text= Flight Reservations, nativeclass=#32770, is owned
window=True, is child window=False)

 � Static: Message (parent: Dialog Flight Reservations,
description: window id=65535, nativeclass=Static)

 � WinButton: OK (parent: Dialog Flight Reservations,
description: text=OK, nativeclass=Button)

 � Window: Flight Reservation (parent: none, description:
regexpwndtitle=Flight Reservation, regexpwndclas=Afx:, is
owned window=False, is child window=False)

 � WinButton: Delete Order (parent: Window Flight Reservation,
description: text=&Delete Order, nativeclass=Button)

 � WinButton: Insert Order (parent: Window Flight Reservation,
description: text=&Insert Order, nativeclass=Button)

 � WinButton: Update Order (parent: Window Flight Reservation,
description: text=&Update Order, nativeclass=Button)

 � WinButton: FLIGHT (parent: Window Flight Reservation,
description: text=FLIGHT, nativeclass=Button)

 � WinRadioButton: First (parent: Window Flight Reservation,
description: text=First, nativeclass=Button)

Chapter 1

25

OR should contain the following Checkpoint objects:

 � Message1 and Message2: These checkpoints identify the static text
appearing in the message that opens after a failed attempt to log in. The
checkpoints should verify the enabled=True and text=LocalSheet
DataTable parameters for Message1 and Message2 respectively.

 � Flight Reservation: This checkpoint verifies that the main
window opens with the properties enabled=True and with text
(title)=Flight Reservation.

 � Delete Order, Insert Order, and Update Order: All three
checkpoints should verify that the buttons have the enabled=False and
text properties set while opening the main application window set as their
learned text property with the ampersand character (&) in the beginning of
the string.

 � First: This checkpoint for the WinRadiobutton should verify that upon
opening the main application window, the properties enabled=False and
checked=OFF are set.

4. In FR_Login (Action1), write the following code:

'Checks if either the Login or the Main window is already
 open
Function appNotOpen()
 appNotOpen = true
 If Dialog("Login").Exist(0) or Window("Flight
 Reservation").Exist(0) Then
 appNotOpen = false
 End If
End Function

'Opens the application if not already open
Function openApp()
 If appNotOpen() Then
 SystemUtil.Run "C:\Program Files\HP\Unified
 Functional Testing\samples\flight\
 app\flight4a.exe","","C:\Program Files\HP\Unified
 Functional Testing\samples\flight\app\",""
 openApp = Dialog("Login").WaitProperty("enabled",
 1, 5000)
 else

Data-driven Tests

26

 openApp = true
 End If
End function

'Handles the Login dialog: Enters the Agent Name and the
 Password and clicks on the OK button
Function login(agentName, password, button)
 with Dialog("Login")
 .WinEdit("Agent Name").Set agentName
 .WinEdit("Password").SetSecure password
 .WinButton(button).Click
 If .exist(0) Then
 login = false
 else
 login = true
 End If
 end with
End Function

'Performs a standard checkpoint on a message open by the FR
 application
Function checkMessage(id)
 If Dialog("Login").Dialog("Flight
 Reservations").Exist(0) Then
 checkMessage = Dialog("Login").Dialog("Flight
 Reservations").Static("Message").Check(CheckPoint
 ("Message"&id))
 Dialog("Login").Dialog("Flight
 Reservations").WinButton("OK").Click
 else
 checkMessage = false
 End if
End Function

'Performs several standard checkpoints on the Main window
 and on several of its child objects
'to verify its initial state
function verifyMainWndInitialState()
 with Window("Flight Reservation")
 if .Check(CheckPoint("Flight Reservation")) then
 .WinButton("FLIGHT").Check CheckPoint("FLIGHT")
 .WinRadioButton("First").Check
 CheckPoint("First")

Chapter 1

27

 .WinButton("Update Order").Check
 CheckPoint("Update Order")
 .WinButton("Delete Order").Check
 CheckPoint("Delete Order")
 .WinButton("Insert Order").Check
 CheckPoint("Insert Order")
 End if
 end with
End function

'Variables declaration and initialization
Dim agentName, password, button

agentName = DataTable("AgentName", dtLocalSheet)
password = DataTable("Password", dtLocalSheet)
button = DataTable("Button", dtLocalSheet)

'Tries to open the application
If not openApp() Then
 ExitTest
End If

'Tries to login with the input data
if not login(agentName, password, button) Then
 'Checks if a warning/error message opened, if it's
 correct in context and closes it
 if checkMessage("1") then
 'Checks if a second warning/error message opened,
 if it's correct in context and closes it
 if checkMessage("2") then
 If not Dialog("Login").Exist(0) Then
 reporter.ReportEvent micPass, "Login",
 "Maximum number of trials exceeded.
 Application closed."
 'If a second message opened, then the
 number of login trials was exceeded and
 the application closed, so we need to
 reopen the application
 call openApp()
 End If
 End if
 End If
else
 call verifyMainWndInitialState()
End if 'Tries to login

www.allitebooks.com

http://www.allitebooks.org

Data-driven Tests

28

How it works...
Now, we will explain the flow of the FR_Login action and the local functions.

We declare the variables that we need for the Login operation, namely, AgentName,
Password, and Button. We then initialize them by retrieving their values from the local
sheet in the DataTable. The button value is parameterized to enable further elaboration
of the code to incorporate the cases of clicking on the Cancel and Help buttons.

Next, we call the openApp() function and check the returned value. If it is False, then the
Flight Reservation application did not open, and therefore we exit the test.

We attempt to log in and pass the AgentName, Password, and Button parameters to the
function. If it returns true, then login was successful and the else block of code is executed
where we call the verifyMainWndInitialState() function to assert that the main
window opened as expected.

If the login did not succeed, we check the first message with a checkpoint that compares
the actual text with the text recorded in the DataTable, which is correct in the context of the
planned flow.

If the first message check passes, then we check to see if there is another message. Of
course, we could have used a counter for the actual password failures to see if the second
message is shown exactly by the fourth attempt. However, as we set the input data, the flow
is planned such that it must appear at the right time. This is the true sense of defining test
cases with input data. If a message appears, then the checkMessage(id) function closes
the message box. We then check if the login dialog box is closed with the code If not
Dialog("Login").Exist(0) Then, and it then calls openApp() to begin again for the
last iteration.

In the last iteration, with the input data on the seventh row (refer to the table in the
previous section), the script performs a successful login, and then calls the function
verifyMainWndInitialState(), as mentioned in the previous section.

Storing data in the Environment object
The Environment global object is one of UFT's reserved objects and it can be used to store
and retrieve both runtime and design-time data.

For a more detailed description of the Environment object, please see
the next recipe Retrieving data from the Environment object.

Chapter 1

29

How to do it...
Proceed with the following steps:

1. To store a parameter at design time, navigate to File | Settings from the UFT menu
and then select Environment. From the Variable type list box, select User-defined,
as shown in the following screenshot:

2. Click on the + button on the right of your Environment window. The Add New
Environment Parameter window will open. Enter the new parameter's (variable)
name and value:

Data-driven Tests

30

3. Click on the OK button to approve. You will notice that the newly created variable, with
its value, now appears on the list. You should pay attention to the Type column, in
which it indicates that the variable we just created is Internal:

What does it mean? A user-defined variable is Internal when we define it through the UFT
GUI. It becomes External when either we export the variables to an XML file or define them
directly in such a file and later, load the file with the variables and values to the test.

How it works...
Definitions of the types of variable classifications are as follows:

 f Internal variables: When you open an existing test, which has an Internal variable
defined, these will be loaded automatically. Changes made to their values during the
run session will not be saved. In this sense, the values given to Internal variables
using the GUI can be referred to as default values.

 f External variables: When you open an existing test, which has its user-defined
variables loaded from an external XML file, these will be loaded automatically. Their
values cannot be changed during the run session. In this sense, the values given to
External variables can be referred to as constant values.

Chapter 1

31

There's more...
We can also store a value to an Environment variable dynamically from the code. Such a
variable will have global scope but will be accessible during runtime only. This means that
you will not see it in the list of Internal variables, as shown in this recipe. The procedure
is equivalent to using the default Add method of the Scripting.Dictionary object, as
shown in the following line of code:

Environment("MyEnvParam") = "MyEnvValue"

See also
Refer to an article by Yaron Assa at http://www.advancedqtp.com/reserved-
objects-as-an-env-object-replacement.

Retrieving data from the Environment object
This recipe will show you how to retrieve data from the Environment object, which is a
kind of dictionary that stores key-value pairs. As we will see, unlike a regular dictionary, the
Environment object stores two types of variables:

 f Built-in

 f User-defined

Built-in Environment variables give access to two types of information:

 f Static data such as the OS, OSVersion, LocalHostName, SystemTempDir,
ProductDir (where UFT is installed), ProductName, ProductVer (UFT
version), UserName (the Windows login name), and several settings such as
UpdatingCheckpoints and UpdatingTODescriptions. In addition, we can
retrieve information about the current test, such as TestName and TestDir (the
path to the current test(s) from the Environment object).

 f Runtime data such as TestIteration, ActionName, and ActionIteration
can be retrieved via the Environment object during runtime. The iteration number
can be useful, for instance, when we need to perform an initialization procedure that
should be done only once. In this case, the iteration number must be equal to the
TestIteration parameter value.

Getting ready
Create a user-defined Environment variable named MyEnvParam (see the previous recipe,
Storing data in the Environment object).

http://www.advancedqtp.com/reserved-objects-as-an-env-object-replacement
http://www.advancedqtp.com/reserved-objects-as-an-env-object-replacement

Data-driven Tests

32

How to do it...
The following code shows how to retrieve either a built-in or a user-defined variable:

Print Environment("TestDir")
'Prints the Built-in TestDir (path) Environment variable to the
console
Print Environment("MyEnvParam")
'Prints the User-defined MyEnvParam Environment variable to the
console

How it works...
Similar to the workings of the Scripting.Dictionary object, by accessing an existing key,
the Environment object returns its paired value.

See also
User-defined Environment variables can be stored in an XML file and dynamically loaded
during the runtime session. Refer to the Using global variables (Environment) recipe of
Chapter 8, Utility and Reserved Objects.

Reading values from an INI file
Files with the extension .ini are the legacy of the old Windows versions (16 bit). In the past,
they were extensively used—and still are to some extent—ubiquitously to store the settings
for applications. Nowadays, it is common practice to store settings in the registry. Though
textual, such files have a very well-defined structure; there are sections and key-value pairs.
A section starts with a label enclosed in square brackets: [section-name] and a key-
value is implemented as <variable name>=<value>. Such a structure could be useful,
for instance, if we wanted to keep the settings organized by environments or by user profiles
within an.ini file.

In this recipe, you will also see an example of how to use the Extern
reserved object to define references to methods in external DLLs, such as
those of the Win32API. These methods can then be loaded and executed
during runtime. A more elaborate description is available in the Drawing
a rectangle on the screen with Win32 API methods (Extern) recipe of
Chapter 8, Utility and Reserved Objects.

Chapter 1

33

Getting ready
To complete this recipe, we need to use the global Extern object, which with proper use
provides the UFT with access to the methods of an external Dynamic Link Library (DLL). We
will define a variable and assign it a reference to the global Extern object (this is done to
avoid persistence, as Extern is a reserved object not released from memory until UFT closes):

Dim oExtern
set oExtern = Extern

Then, we will declare the method or methods we wish to call from the relevant Win32API.
In this case, the method is GetPrivateProfileString, which retrieves the value of
a given key within a specific section:

oExtern.Declare micInteger,"GetPrivateProfileString",
 "kernel32.dll","GetPrivateProfileStringA", _
 micString, micString, micString,
 micString+micByRef, micInteger, micString

How to do it...
After defining the connection to the DLL with its returned value and arguments, we
can retrieve the value of any key within a given section. In the following example, the
ConfigFileVersion key specified in the file wrls.ini is located in the UFT/bin
folder. In the end, the Extern object reference is destroyed at the end of the run:

call oExtern.GetPrivateProfileString("ProgramInformation",
 "ConfigFileVersion", "", RetVal, 255, "C:\Program
 Files\HP\Unified Functional Testing\bin\wrls_ins.ini")
print RetVal

set oExtern = nothing

The output to the console in this case was the string 1.05.

Data-driven Tests

34

Using a configuration file to manage test
environments

As shown in the previous recipe, it is possible to read variable values from an .ini file. We
will show how to define several environments within such a file and load the input data for
the current environment during runtime.

Getting ready
Follow the same steps stated in the Getting ready section of the Reading values from an
INI file recipe.

How to do it...
Create a new file with the name QA-env-settings.ini. Enter the following entries to
create three sets of parameters corresponding to three test environments QA1, QA2, and QA3:

[QA1]
InputDataSrc= "RegressionData1.xls"
Username = "user1"
URL = "http://www.url1.com"
Description = "Data for QA1 environment"

[QA2]
InputDataSrc= "RegressionData2.xls"
Username = "user2"
URL = "http://www.url2.com"
Description = "Data for QA2 environment"

[QA3]
InputDataSrc = "RegressionData3.xls"
Username = "user3"
URL = "http://www.url3.com"
Description = "Data for QA3 environment"

In our test, we will load the input data based on the value of the Environment variable
QA_ENV, which will take one of the following environments: QA1, QA2, or QA3. Before
running the test, ensure that the variable exists, and provide the value for the required
testing environment (see the Storing data in the Environment object recipe). Therefore,
our code in Action1 will look like the following code snippet:

Dim sDataSourcePath, sURL, sUsername

oExtern.GetPrivateProfileString(Environment("QA_ENV"), _

Chapter 1

35

"InputDataSrc", "", sDataSourcePath, 255, _
"QA_env_settings.ini")

oExtern.GetPrivateProfileString(Environment("QA_ENV"), _
"InputDataSrc", "", sURL, 255, "QA_env_settings.ini")

oExtern.GetPrivateProfileString(Environment("QA_ENV"), _
"InputDataSrc", "", sUsername, 255, "QA_env_settings.ini")

DataTable.Import(sDataSourcePath)

How it works...
We retrieve the value of the QA_ENV Environment variable, and accordingly load the values of
the variables in the corresponding section in the .ini file. The value of the InputDataSrc
key within the corresponding section is then retrieved (note that the parameter is passed by
reference and filled by the target method) and is used to import the Excel file (as you can
see in the Importing an Excel file to a test recipe) that contains the input data for the given
testing environment.

Using a global dictionary for fast shared
data access

Using a DataTable is a generally good practice because spreadsheet data is easy to create,
visualize, and maintain. This is because MS Excel lies behind the DataTable, which is,
as mentioned before, a wrapper to the Excel COM object. Other advantages of using the
DataTable include its full integration with the test and action iterations mechanism and
with the results report, in which one can visualize each iteration, along with the input data.

This is all good for the retrieval of input data that is prepared during design time. However,
using the DataTable for sharing between actions has two main drawbacks during runtime:

 f Repeated writes and reads may hinder performance when it comes to a large number
of iterations and a large number of parameters, as is quite often the case with many
information systems.

 f Sharing data with GlobalSheet is very difficult to implement. For example, suppose
we need to store the CustomerID given by the system upon customer creation.
In GlobalSheet, it will be stored at the current row. Though we may set the exact
row using the DataTable method, that is, SetCurrentRow (<rownumber>),
it is still a question of how to ensure that at a later stage, an action that needs a
CustomerID would know the correct row number.

Data-driven Tests

36

An alternative to sharing data among actions would be to use the UFT's
built-in Output and Input parameters. However, Input parameters
are good only to pass data from an action to its nested (called) actions,
and Output parameters are good only to pass data to other sibling
actions (that is, those which are at the same hierarchical level). Hence,
they do not enable the flexibility one may need when testing complex
systems and are cumbersome to manage.

A better approach is to have the data that must be shared and stored in the Dictionary
object of a global scope. A Dictionary object is actually a hash table with a capacity to
store values of different types, such as strings, numbers, Booleans, arrays, and references
to objects (including other nested Dictionary objects, which is a powerful, yet very
advanced technique that is out of scope here). Each value is stored with a unique key
by which it can be accessed later.

Getting ready
In UFT, create a new function library by navigating to File | New | Function Library
(or use the key shortcut Alt + Shift + N) and save it as UFT_Globals.vbs. It is
recommended to save it in a folder, which would be shared later by all tests.

Navigate to File | Settings and attach the function library to the test.

How to do it...
As any public variable declared in a function library attached to a test can be
accessed by any action, we will define a global variable and two functions to
initialize initGlobalDictionary and dispose disposeGlobalDictionary:

Dim GlobalDictionary

Function initGlobalDictionary()
 If not (lcase(typename(GlobalDictionary)) = "dictionary") Then
 Set GlobalDictionary =
 CreateObject("Scripting.Dictionary")
 End If
End Function
Function disposeGlobalDictionary()
 Set GlobalDictionary = nothing
End Function

Chapter 1

37

The initGlobalDictionary() function will check if the public variable GlobalDictionary
was not initialized earlier, and then set it with a reference to a new instance of a Dictionary
object, as mentioned in the previous code. The disposeGlobalDictionary() function is
given for the sake of completeness, as in any case, memory is released when the test stops.
However, we may wish to empty the GlobalDictionary variable in certain cases, so it is
recommended to include this function as well.

Now, in Action1 (or whichever action runs first in our test), we will write the following code:

If cint(Environment("TestIteration")) = 1 and
 cint(Environment("ActionIteration")) = 1 Then
 call initGlobalDictionary()
End If

The previous code will ensure that the GlobalDictionary variable is instantiated only once
at the beginning of the run session. If we need a new instance for every test iteration, then we
just need to change the code to the following lines of code, so that we get a new instance only
at the start of the first Action1 iteration:

If CInt(Environment("ActionIteration")) = 1 Then
 call initGlobalDictionary()
End If

With our test set up this way, we can now use this global object to share data as in the
following example. Create a new Action2 DataTable and make it run after Action1 (at the
end of the test). Now, write the following code in Action1:

GlobalDictionary.Add "CustomerID", "123456789"
Print Environment("ActionName") & ": " &
 GlobalDictionary("CustomerID")

In Action2, write the following code:

Print Environment("ActionName") & ": " &
 GlobalDictionary("CustomerID")

It is strongly recommended to remove a key from the dictionary when it is no longer required:

GlobalDictionary.Remove "CustomerID"

Alternatively, to remove all keys from the dictionary altogether at the end of a test iteration or
at the beginning of a test iteration greater than the first, use the following line of code:

GlobalDictionary.RemoveAll

www.allitebooks.com

http://www.allitebooks.org

Data-driven Tests

38

As mentioned earlier, keys must be unique and if we use the same keys in each test iteration,
it would cause a runtime error with the first key found to exist in the dictionary. Another way,
as mentioned earlier, is to call the disposeGlobalDictionary at the end of each test
iteration and the initializeGlobalDictionary() method at the start.

How it works...
When you run this test, in Action1, it first creates a new Dictionary instance and assigns
a reference to the public variable GlobalDictionary. Then, it adds a new key CustomerID
with the value 123456789, and prints the action name from the Environment built-in runtime
variables ("Action1") and the value, by referring to the CustomerID key we just added.
Then, it executes Action2, where it again prints in the same manner as in Action1.
However, as the ActionName Environment variable is dynamic, it prints "Action2". This
is to prove that Action2 actually has access to the key and value added in Action1. The
output of this test is as shown in the screenshot:

See also
Refer to the Using a global dictionary for fast shared code access recipe.

Chapter 1

39

Using a global dictionary for fast shared
code access

As we have shown in the recipe Using a global dictionary for fast shared data access, it is
possible to use a dictionary to store values of different types during runtime, and share them
during the test flow with other actions at any level. We mentioned that a dictionary has the
capacity to store any type of value, including objects. We further indicated that this opens the
possibility to have nested dictionaries (albeit out of the scope of the current chapter).

In a similar fashion, it is possible to load pieces of code globally and hence grant shared
access to all actions. In order to achieve this, we will recur to a well-known code design
pattern, the command wrapper.

Getting ready
Refer to the Getting ready section of the Using a global dictionary for fast shared data access
recipe. Basically, we can just add the code to the same function library and actions.

How to do it...
The first steps of defining the GlobalDictionary variable and the functions to manage
its instantiation and disposal are identical, as in the recipe Using a global dictionary for fast
shared data access, so we can just skip to the next step.

The remaining implementation deserves special attention. In the Globals.vbs function
library that we attached to the test, we will add the following pieces of code:

Class MyOperation1
 Function Run()
 Print typename(me) & " is now running..."
 End Function
End Class

Class MyOperation2
 Function Run()
 Print typename(me) & " is now running..."
 End Function
End Class

Function GetInstance(cls)
 Dim obj

 On error resume next
 Execute "set obj = new " & cls

Data-driven Tests

40

 If err.number <> 0 Then
 reporter.ReportEvent micFail, "GetInstance", "Class " &
 cls & " is not defined (error #" & err.number & ")"
 Set obj = nothing
 End If
 Set GetInstance = obj
End Function

The two classes follow the command wrapper design pattern. Note that they both contain
a Run function (any name would do). This follows a pattern, which enables us to load an
instance of each class and store it in our GlobalDictionary variable.

The GetInstance(cls) function acts as a generic constructor for our encapsulated
functions. It is absolutely necessary to have such a constructor in the function library because
UFT does not support instantiating classes with the operator new within an action. We use
the Execute function to make the line of code, resulting from concatenating the command
string with the cls parameter passed to the function, and hence, it can return an instance of
any class contained in any other associated function library. The function checks if an error
occurs while trying to create a new instance of the given class. This could happen if the string
naming the class is inaccurate. In such a case, the function returns nothing after reporting a
failure to the test report. In such a case, we may wish to halt the test run altogether by using
the ExitTest command.

In Action1, we will add the following code:

GlobalDictionary.Add "Op1", GetInstance("MyOperation1")
GlobalDictionary.Add "Op2", GetInstance("MyOperation2")

In Action2, we will add the following code:

GlobalDictionary("Op1").Run
GlobalDictionary("Op2").Run

The output of the test is now as shown in the following screenshot:

Chapter 1

41

How it works...
When you run this test, the initial process of GlobalDictionary instantiation is executed, as
in the previous recipe. Then, we simply add two keys to the GlobalDictionary and assign a
reference to each value to an instance of the command wrapper classes MyOperation1 and
MyOperation2. When the test flow reaches Action2, we access these instances by retrieving
the items (or the values) we stored with the keys, and then have access to the classes' public
methods, fields, and properties. The code line is as follows:

GlobalDictionary("Op1").Run

First, it retrieves the reference to the MyOperation1 object, and then, it applies to the Op1
operator to access the public Run method, which just prints the name of the class and a string.

There's more...
Of course, the Run method of the command wrapper pattern may need a variable number
of arguments, because different functions meet different requirements. This can easily be
resolved by defining the Run method as accepting one argument and passing a Dictionary
object with the keys and values for each variable that is required.

For example, assuming that the dic argument is a dictionary:

Class MyOperation1
 Function Run(dic)
 Print typename(me) & " is now running..."
 Print dic("var1")
 Print dic("var2")
 Print typename(me) & " ended running..."
 End Function
End Class

Now, we would use the following code in Action2 to call the Run method:

Set dic = CreateObject("Scripting.Dictionary")
dic.Add "var1", "Some value"
dic.Add "var2", "Some other value"
GlobalDictionary("Op1").Run

See also
Also refer to the Using a global dictionary for fast shared data access recipe in
this chapter. We will also delve more in depth into the command wrapper design pattern
in Chapter 7, Using Classes.

2
Testing Web Pages

In this chapter, we will cover:

 f Checking whether page links are broken

 f Deleting cookies

 f Managing multiple browser windows

 f Handling pop-up dialogs

 f Downloading a file using XMLHttp

 f Checking whether a website is up

 f Uploading a file using FTP

 f Identifying elements based on anchors

 f Synchronizing a test with a web page loading

 f Accessing web elements through DOM

Introduction
Unlike desktop (client) applications, the Web poses specific challenges that go beyond the
local machine. For instance, a web page may not display the intended content correctly
with regard to content, format, layout, and even functionality, due to missing or corrupted
resources located on a remote server. An application server, a database server, a Cascading
Style Sheet (CSS), and a configuration or JavaScript file (.js) are among the resources that
may have an impact on the web application functioning. Other challenges include the integrity
of the links, JavaScript bugs, and caching effects, to name a few. Security issues may also
prevent web pages from displaying contents properly, as is the case with images loaded
across domains.

Testing Web Pages

44

Automating tests for the GUI of a web page poses challenges related to script page
synchronization, object identification, and checking dynamic content, among others. This
chapter describes various common automation tasks related to the testing of web pages.

This chapter is not intended to be a tutorial on web technology, so some
basic background is required, for instance, being acquainted with basic
concepts such as Document Object Model (DOM). To learn about DOM,
it is recommended that you refer to the official specification at http://
www.w3.org/TR/DOM-Level-3-Core/introduction.html.

Checking whether page links are broken
Links are the most essential elements on a web page, as they are the connection between
different sections on a page, other pages, and external pages. A link must lead to a valid
Uniform Resource Locator (URL). If it leads to a non-existing or otherwise unavailable page,
then it will be marked as broken.

A link that is a permanent element of a page is also called a permalink. Such a link is
expected to always appear on a web page, and it will always lead to the same URL. Such a
link is easy to map, either with OR, or using descriptive programming. However, in many web
applications, links lead to dynamically generated pages, such as customer information, search
results, and so on. Needless to say, their href attribute is also dynamically built, based on
data that is known only during runtime. On a search results page, such as those generated
by Google and other search engines, even the number of links may vary. This is also true for
billing information and call details pages, which the web interface of mobile operators displays
to customers.

Testing links is one of the very basic tasks that automation can tackle very efficiently, and
hence, you need to free the manual tester to perform other tasks. In this recipe, we will
see a very simple method to check that links on a page are not broken.

Getting ready
From the File menu on the UFT home page, navigate to New | Function Library, or use
the Alt + Shift + N shortcut. Name the new function library as Web_Functions.vbs.

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html
http://www.w3.org/TR/DOM-Level-3-Core/introduction.html

Chapter 2

45

How to do it...
The seemingly obvious approach would be to get the collection of links on the page first, and
then retrieve the value of the href attribute for each link and click on the href value. After
the target page loads, check the URL and compare it to the original value taken from href.
Basically, this is more or less what a manual tester would do. However, this process does not
only check if a link is broken, but also checks if it is valid. This process is quite tedious and does
not take into account the fact that in many cases, the value of href does not predict what
would be the target URL. For example, the widespread usage of TinyURL!™ and redirections
makes this approach impractical. Another complication is that some links load the target page
on the same window and even the same tab, while others do it in a separate tab or window.
While using a link is an essential part of the business flow, it is logical to actually open the new
page (or navigate to the page on a new tab/window). After the target page loads, the test script
can manipulate its elements and hence, continue the test flow as planned.

If, however, we just need to check that the links are not broken, then it is possible to do it
using an instance of MSXML2.XmlHttp. In the following example, we will declare a global
variable for this object and write four functions in Web_RegisteredFunctions.vbs:

 f DisposeXMLHttp(): This function removes the reference to the global oXMLHttp
variable

 f InitXMLHttp(): This function creates an instance of XMLHttp, and then sets a
reference to oXMLHttp

 f GetLinks(URL): This function retrieves all the links on a web page using a
Description object

 f CheckLink(strHref): This function checks if a given link is broken or not

The code is as follows:

Dim oXMLHttp

Function disposeXMLHttp()
 Set oXMLHttp = Nothing
End Function

Testing Web Pages

46

Function initXMLHttp()
 Set oXMLHttp = CreateObject("MSXML2.XmlHttp")
End Function

function getLinks(oPage)
 Dim oAllLinks, oDesc

 Set oDesc = Description.Create
 oDesc("html tag").value = "a|A"
 oDesc("html tag").regularexpression = true
 Set oAllLinks = oPage.ChildObjects(oDesc)

 set getLinks = oAllLinks
End function

Function checkLink(URL)
 If lcase(typename(oXMLHttp)) <> "xmlhttp" Then
 initXMLHttp()
 End If

 if oXMLHttp.open("GET", URL, false) = 0 then
 On error resume next
 oXMLHttp.send()

 If oXMLHttp.Status<>200 Then
 reporter.ReportEvent micFail, "Check Link", "Link " &
 URL & " is broken: " & oXMLHttp.Status
 Else
 reporter.ReportEvent micPass, "Check Link", "Link " &
 URL & " is OK"
 End If
 End if
End Function

We then run Action1 with the following lines of code:

Dim i, j, oPage, oAllLinks, regex, sHref

call initXMLHttp()
'We build a filter to exclude links that are not "real", direct
 links but email, section and share links,

Chapter 2

47

Set regex = new RegExp
regex.pattern = "mailto:|\#|share=(facebook|google\-
 plus|linkedin|twitter|email)"
regex.ignorecase = true
regex.global = true

Set oPage = Browser("name:=.+").Page("title:=.+")

j=0
set oAllLinks = getLinks(oPage)
print "Total number of links: " & oAllLinks.count
For i = 0 to oAllLinks.count-1
 If oAllLinks(i).Exist(0) Then
 On error resume next
 sHref=oAllLinks(i).Object.href

 If not regex.test(sHref) Then
 j=j+1
 print j & ": " & sHref
 call checkLink(sHref)
 else
 reporter.ReportNote i & " - " & sHref & " is a mailto,
 section or share link."
 End if
 If err.number <> 0 Then
 reporter.ReportEvent micWarning, "Check Link", "Error:
 " & err.number & " - Description: " &
 err.description
 End If
 On error goto 0
 else
 reporter.ReportEvent micWarning, "Check Link",
 oAllLinks(i).GetTOProperty("href") & " does not exist."
 End If
Next
print "Total number of processed links: " & j

disposeXMLHttp()

www.allitebooks.com

http://www.allitebooks.org

Testing Web Pages

48

How it works...
In the function library, we declared objXMLHttp as a variable of global scope. The
InitXMLHttp() and DisposeXMLHttp()functions take care of creating and disposing
the instance of the MSXML2.XmlHttp class. The GetLinks(objPage) function uses a
Description object to retrieve the collection of all links from a page with a regular expression
(HTML a or A tag). This collection is returned by the GetLinks(objPage) function to the
calling action, where, for each item (link) in the collection, it retrieves and passes the href
attribute to the CheckLink(strHref) function. The latter method checks the link by opening
a connection to the URL given by strHref and waiting for a HTTP response to the send
command. If the target URL is available, then the status of the HTTP response should be 200.
We also check if there is some error during the process, with On Error Resume Next as
a precaution. (It is important to keep in mind that this may not work together with UFT's
out-of-the-box settings for error handling, by navigating to Test | Settings | Run. This will
work perfectly; using this setting, proceed to the next step). This is done because sometimes,
a link that is retrieved at the start of the process may not be available when we actually wish
to execute the checkpoint, as is the case with sliders and galleries with changing content.

There's more...
It is possible to further analyze the returned status with a Select Case decision structure
to report exactly what the problem is (404=Page not found, 500=Internal Server Error,
and so on).

See also
For technical documentation of the open method of the XMLHTTPRequest object used in
this recipe, please refer to http://msdn.microsoft.com/en-us/library/windows/
desktop/ms757849(v=vs.85).aspx.

Deleting cookies
Cookies are actually files containing data that is used by websites to remember user preferences
and other relevant information, such as authentication credentials. In some cases, we may need
to delete these cookies in order to do the following:

 f Test if a site detects that the cookies are missing

 f Test if a site responds according to the browser's configuration (for example,
it prompts for approval, and then stores the selection)

 f Test if a site responds according to the application requirements (for example,
prompts for login if an authentication cookie is missing)

http://msdn.microsoft.com/en-us/library/windows/desktop/ms757849(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms757849(v=vs.85).aspx

Chapter 2

49

There are several ways to achieve deletion of cookies, but here we will show the simplest way
with the undocumented WebUtil object and methods.

Getting ready
Let's take an example. From the File menu, navigate to New | Test, use the Ctrl + N shortcut,
or use the Web_Functions.vbs library you created in the previous recipe, to encapsulate
the commands in your own custom functions.

How to do it...
To delete all cookies, write the following code:

WebUtil.DeleteCookies()

To delete a specific cookie from a domain, write the following code:

WebUtil.DeleteCookie(Domain, Cookie)

To encapsulate the commands in custom functions, write the following functions in the
function library:

Function DeleteCookies()
 WebUtil.DeleteCookies()
End Function
Function DeleteCookie(ByVal Domain, ByVal Cookie)
 WebUtil.DeleteCookie(Domain, Cookie)
End Function

The WebUtil object operates only with an Internet Explorer (IE) browser.
To delete cookies for other browsers, a custom function needs to be
programmed to find the correct folder in which these are stored and then
perform their deletion.

How it works...
The previous code is self-evident. The first statement is equivalent to choosing to delete
cookies through the IE Internet Options in the Control Panel window by navigating to
Browsing history under the General tab, and then clicking on the Delete… button. This
opens a Delete Browsing History dialog. The second statement deletes a specific cookie
for a given domain. In that case, the name of the cookie must be accurate.

Testing Web Pages

50

Managing multiple browser windows
In particular cases, we may face a requirement to handle multiple browser windows or tabs.
A typical situation would be when clicking on a link or button, which leads to the opening of a
page in a pop-up browser window, or in another tab within the same window. This new page
might be a standard form, a Terms of Use page, or similar, and usually, this would either close
automatically upon completing a data-filling process (as in the case of a form), after reading
the document, or approving the terms, for instance. One of the challenges with dynamically
created pages, which are generated on the fly, is that we do not wish to clutter our OR with
such objects, but rather detect their presence during runtime, perform some checkpoints
to verify if the content is correct, and proceed with the test flow (usually by closing the newly
opened window first).

In other cases, we may need to test a complex web application with an administrator, client-
side GUI and an end user client-side GUI. For instance, we might want to test how changes
made by an administrator affect the way users use the application. A typical case would be,
for example, one in which a power user makes policy changes and so restricts features to
specific groups of users. Another related case example would be when a user needs to be
banned. In such cases, one would like to perform some operations on the admin side, and
test how they reflect on the end user side. To save time, we may wish to have both GUIs
open in separate browser windows.

Getting ready
The suggested method involves using a global dictionary. For background on this topic,
please refer to the Using a global dictionary for fast shared data access recipe in Chapter 1,
Data-driven Tests, to learn how to define and use such a dictionary.

How to do it...
The general method to manage multiple browsers is to use an hWnd (window handle). First,
we will get an hWnd for each browser window that opens and store it in a dedicated global
dictionary that we will declare. Though it changes from one run session to another, the hWnd
is always unique for an object, so it is the ultimate identifying property (though it is, of course,
a chicken and egg problem, as you first need to identify the object using other properties). Yet,
it is a good practice, especially because web applications quite often change the title of the
page according to the current context. Basically, UFT identifies the object using the title. Other
methods, such as CreationTime, are not robust enough, as CreationTime is a dynamic
property that changes as browser windows open and close. The hWnd property, on the other
hand, will remain constant as long as the browser window stays open.

Chapter 2

51

So, while the browser window or tab is open, we will be able to refer to it through its
associated key in the dictionary. When closing it, we shall remove the key-item pair from the
dictionary. In such a way, we will be able to track the open browsers and access them using
a key that reflects their function within the application context, without being sensitive to the
content of the currently loaded page.

In the Web_RegisteredFunctions.vbs function library, put the following code:

Dim oBrowsers

Function initBrowsers()
 Set oBrowsers = CreateObject("scripting.dictionary")
End Function

Function disposeBrowsers()
 Set oBrowsers = nothing
End Function

This code will take care of initializing and disposing of the objBrowsers global variable.

In Action1, we will execute the following logic for each browser:

1. Open a browser window with a specified URL.

2. Identify the object using the openurl property, making sure the URL has opened.
We will use a regular expression to suppress specific parameters that may be added
automatically to the URL.

3. Retrieve the window handle (the hWnd property) and push it to objBrowsers.

4. Highlight each browser window by accessing the keys in oBrowser.

5. Close each browser window and remove each associated key.

The code is as follows:

Dim arrURL

initBrowsers()

arrURL = Array("advancedqtp.com", "taaas.net",
 "relevantcodes.com")

For i = 0 To ubound(arrURL)
 SystemUtil.Run "IExplore.exe", arrUrl(i)
 If Browser("openurl:=.*"&arrURL(i)&".*").Exist Then
 oBrowsers.Add arrURL(i), Browser("openurl:=.*"&arrURL
(i)&".*").GetROProperty("hwnd")
 else

Testing Web Pages

52

 reporter.ReportEvent micFail, "Open Browser", "Browser
 didn't open with URL " & arrURL(i)
 End If
Next

'Show the Browsers
For i = 0 To ubound(arrURL)
 print "hwnd:="&oBrowsers(arrURL(i))
 Browser("hwnd:="&oBrowsers(arrURL(i))).highlight
Next

'Close the Browsers
For i = 0 To ubound(arrURL)
 print "Closing "& arrURL(i)
 Browser("hwnd:="&oBrowsers(arrURL(i))).close
 if not Browser("hwnd:="&oBrowsers(arrURL(i))).Exist(0) then
 oBrowsers.Remove arrURL(i)
 print oBrowsers.count
 End if
Next

disposeBrowsers()

A good alternative would be to actually add a reference to the Browser object itself.
The rest of the logic remains the same. The code is as follows:

Dim arrURL

initBrowsers()

arrURL = Array("advancedqtp.com", "taaas.net",
 "relevantcodes.com")

For i = 0 To ubound(arrURL)
 SystemUtil.Run "IExplore.exe", arrUrl(i)
 If Browser("openurl:=.*"&arrURL(i)&".*").Exist Then
 oBrowsers.Add arrURL(i), Browser("openurl:=.*"&arrURL(i)&".*")
 else
 reporter.ReportEvent micFail, "Open Browser", "Browser
 didn't open with URL " & arrURL(i)
 End If
Next

Chapter 2

53

'Show the Browsers
For i = 0 To ubound(arrURL)
 oBrowsers(arrURL(i)).highlight
Next

'Close the Browsers
For i = 0 To ubound(arrURL)
 print "Closing "& arrURL(i)
 oBrowsers(arrURL(i)).close
 if not oBrowsers(arrURL(i)).Exist(0) then
 oBrowsers.Remove arrURL(i)
 print oBrowsers.count
 End if
Next

disposeBrowsers()

How it works...
First, we initialize the objBrowsers global object, which is actually a dictionary. Next, we
open three browser windows using SystemUtil.Run, invoking IExplore.exe (Internet
Explorer's executable) for each URL, as defined in our arrURL array variable. For each
browser that opens, we store a key with the URL and either assign it hWnd or a reference to
a Browser TO. We then traverse the items in objBrowsers with the keys, access each TO
using descriptive programming with Browser("hwnd:="&objBrowsers(arrURL(i))),
and highlight them to demonstrate the correct identification. Finally, we close each browser
using its objBrowsers key, and after verifying that it is closed, we remove the key from
objBrowsers to keep our list updated.

Handling pop-up dialogs
It is common to encounter pop-up dialogs that open up while using software applications.
Mostly, these are application modals, which mean that no further operations can be
performed within the application context until the dialog is closed. Some can be system
modals, meaning that no further operations can be performed on the machine until the dialog
is closed. Quite often, these dialogs offer various options presented as buttons, such as OK,
Approve, Submit, Apply, Cancel, Ignore, and Retry. This variety needs to be managed in
a very accurate fashion, as the choice made affects the rest of the test flow substantially.
Moreover, sometimes another pop-up dialog may show up as a direct result of a given choice.
Such an event may be delayed a bit, for example, due to server-side validation, and hence
it is of utmost importance to detect it in a reliable yet efficient way.

Testing Web Pages

54

The basic problem with pop-up dialogs is that, quite often, their appearance is unexpected.
For instance, if there is some script error as a result of a bug, then a dialog will appear, but
our script would not know how to handle it unless we put that logic or intelligence into the
code. If we fail to do so, then our script will make a futile attempt to continue the normal flow,
and hence, precious time and resources would be lost. On the other hand, in such a case,
we would like our script to detect such an error dialog and report that a problem may have
been found. Perhaps we would like to exit that specific action or test, or even halt the whole
run session.

One way of handling unexpected pop-up dialogs is using the UFT built-in recovery scenario
feature. However, in my view, this practice is not recommended due to performance issues
and implementation complexity. Hence, it will not be covered here. Instead, we will suggest a
generic technique that is very simple to implement and can be custom tailored to any specific
requirement that may arise.

Getting ready
From the File menu, navigate to New | Function Library or use the Alt + Shift + N shortcut.
Name the new function library Web_Functions.vbs.

How to do it...
If we refrain from using the recovery scenario feature as I recommended, then the question
remains, how can we have any pop-up dialog appearance covered with the least amount of
code? If we take the risk of such dialogs too seriously, then we may end up with our code
cluttered with If-Then-End If statements, just to check that our application context is
normal and no pop-up dialog is opened.

The approach I will advocate here assumes that the risk of unexpected pop-up dialogs (for
instance, due to bugs) for a mature application is minimal. So instead of listening to pop-up
dialogs all the time (as is the case for a recovery scenario), we will check if there is a pop-up
dialog open, just in case an operation fails. For example, if we try to click on an object on a
web page while a pop-up dialog is open, a runtime error will be thrown by UFT. To prevent a
UFT pop-up dialog from opening and hence pausing the run session, we will catch the error
inside our code. After the pop-up dialog is handled (closed), our test will continue, stop, or
reroute the flow according to the analysis of the situation. Here, we shall assume that the
dialog is not consequential to the flow, and that just closing it solves the problem.

To implement our solution, we need to do two basic things:

 f Write one generic function, DialogHandler(), which can detect and handle any
open dialog.

Chapter 2

55

 f Catch an error in certain methods (where the presence of a pop-up dialog would
affect the flow) and invoke the dialogHandler() method. Here we will be using the
RegisterUserFunc technique explained in detail in Chapter 4, Method Overriding.

We will then write the following method to handle any pop-up dialog in our library Web_
Functions.vbs function:

Function handleDialog()
 Dim sMessageText

 'A popup dialog can be directly accessed but in some cases its
 parent Browser may be required
 'For instance: Browser("micclass:=Browser").Dialog("regexpwndcla
ss:=#32770")
 With Dialog("regexpwndclass:=#32770")
 'Check if a Dialog exists
 If .Exist(0) Then
 'Focus on the Dialog
 .Activate
 'Get the static text
 sMessageText= .Static("regexpwndtitle:=.+").
GetTOProperty("text")
 'Click on the OK button (can be parameterized in case
 of need)
 .WinButton("text:=OK").Click
 'Check again to verify that the Dialog was closed
 If not .Exist(0) Then
 Reporter.ReportEvent micPass, "handleDialog",
 "Dialog with message '" & sMessageText & "
 ' was closed."
 handleDialog=true
 else
 Reporter.ReportEvent micFail, "handleDialog",
 "Dialog with message '" & sMessageText & "
 ' was not closed."
 handleDialog=false
 End If
 else
 'No dialog was found so we return true
 handleDialog=true
 End If
 End With
End Function

Testing Web Pages

56

As an example, we will write the following overriding method in our Web_
RegisteredFunctions.vbs function library:

Function WebEdit_Set(obj, text)
 On error resume next
 'Try
 obj.set text
 'Catch
 if err.number <> 0 then
 'If there's a dialog open that is handled then retry.
 if handleDialog() then
 obj.set text
 else
 Reporter.ReportEvent micFail, "WebEdit_Set", "An error
 occurred while attempting to set " & text & " to the
 input. No dialog found or dialog could not be
 handled properly."
 'Stop the run session (or handle otherwise)
 ExitTest()
 End if
 End if
End Function

Of course, here we assume that closing the dialog is a good enough solution, but this may
not be the case. If a script error caused the browser to open a pop-up dialog, then it may
reopen. In such a case, a more sophisticated scheme would be required, which is out of the
scope of this basic recipe. Another thing that is worth noting is that if the HandleDialog()
method does not find any dialog open, it is up to the calling function or action to check for
other possible problems that caused the error. As mentioned earlier, the modal dialog may
be implemented as a Div element, so the inline descriptive programming-based description
would not fit.

The previous function serves only as an example of how to implement
the approach outlined in this recipe. Of course, the same logic should be
implemented for each operation (click, double-click, and so on) that can
be blocked by a pop-up dialog.

We will register the previous WebEdit_Set method before starting the test flow and
unregister it at the end of the flow (refer to Chapter 4, Method Overriding):

RegisterUserFunc "WebEdit", "Set", "WebEdit_Set"

'Test Flow goes here...

UnregisterUserFunc "WebEdit", "Set"

Chapter 2

57

How it works...
The HandleDialog() function uses a generic description to identify a dialog and close an
open one. Of course, this is a simplified version and may need to be expanded. For instance,
to make the function able to also handle application modal pop-up dialogs built on web Div
elements with JavaScript, one should add suitable working code with a matching description.
In addition, the function is built on the assumption that there is an OK button to close the
dialog. This, however, may not be the case, and dialogs with more than a single button would
require a more elaborate method.

The overriding WebEdit_Set(obj, text) method is an example of how to achieve the
effect of detecting an obstructing open modal dialog. First, we disable the automatic runtime
mechanism for error handling with On Error Resume Next. Next, we try to perform the
operation on the input field. If the operation fails, the error is trapped and HandleDialog()
is invoked.

Downloading a file using XMLHttp
This recipe will show you how to download a file using the XMLHttp object, which we have
seen in action in the Checking whether page links are broken recipe. Here we will expand on a
theme and see how to synchronize our script using the onreadystatechange event handler
to report on the progress of our download. The code includes the required modifications, and
is the same as the one I used in a project a few years ago.

Getting ready
From the File menu, navigate to New | Function Library or use the Alt + Shift + N shortcut.
Name the new function library as Web_Download.vbs. To use the AutoItX COM object,
go to https://www.autoitscript.com/site/autoit/downloads/ to download and
install AutoIt. This is absolutely necessary in order to ensure that the code given here will
work properly with regard to the notifications display.

How to do it...
This recipe will demonstrate how to download the last build JAR file from a remote build
machine and deploy it to the local machine. This is very useful to automate daily build
updates and trigger automated tests to check the new build for sanity. Please take note
that this solution comprises several components and is quite complex to grasp:

 f The Http class, which handles the download operation

 f The StateChangeHandler class, which listens to the onreadystatechange
event and handles notifications about the progress

www.allitebooks.com

https://www.autoitscript.com/site/autoit/downloads/
http://www.allitebooks.org

Testing Web Pages

58

 f The AutoIt class, which is a utility wrapper for the AutoItX COM object

 f The App_GetLastBuild class, which controls the whole process

Proceed with the following steps:

1. First, we will define the following constants in the function library (of course, it would
be better that at least some of these values be stored as Environment variables):
const S_OK = 0
const APP_PATH = "C:\Program Files\MyApp"
const DOWNLOAD_PATH = "C:\Documents and Settings\admin\My
 Documents\Downloads\"
const BUILD_PATH = "http://repository.app:8081/builds/last/"
const TMP_JAR = "App-1.0.0-build1.jar"
const APP_JAR = "App.jar"
const RES_ZIP = "App-1.0.0-build1-resources.zip"

The preceding values are for illustration purposes only.

2. The next step is to write the Http class to handle the download process. The
process is explained as follows:

 � First we will define the fields:
class Http
 Public m_objXMLHttp'The XMLHttp object
 Private m_objHandler 'Stores a reference to the handler
 of the event onreadystatechange
 Private m_strLocalfilename 'Name of local filename
 Private m_strUrl 'Address of download location

 � Next, we will write the initialization and termination subroutines for the class:
private sub class_initialize
 Handler = new StateChangeHandler
 Handler.Http = Me
 XML = createobject("MSXML2.XMLHTTP")
 end sub

 private sub class_terminate
 Handler = Nothing
 XML = Nothing
 end sub

Chapter 2

59

 � Then, we will write the properties for the class that will provide access to
the fields. Note especially the XMLHttp property, which is used to assign
the XMLHttp object to the m_objXMLHttp field and also to set the
StateChangeHandler object to the object's onreadystatechange event.
public property get XML
 set XML = m_objXML
 end property
 private property let XML(byref objXML)
 set m_objXML = objXML

 if typename(objXML) <> "Nothing" then _
 m_objXML.onreadystatechange = Handler
 end property

 � Other properties of the class are quite trivial, just being accessors to the fields:
public property get LocalFilename
 LocalFilename = m_strLocalfilename
 end property
 private property let LocalFilename(byval strFilename)
 m_strLocalfilename = strFilename
 end property

 public property get Filename
 Filename =
 createobject("Scripting.FileSystemObject")
 .GetFileName(Localfilename)
 end property

 public property get URL
 URL = m_strUrl
 end property
 private property let URL(byval strUrl)
 m_strUrl = strUrl
 end property

 private property get Handler
 set Handler = m_objHandler
 end property
 private property let Handler(byref objHandler)
 set m_objHandler = objHandler
 end property

Testing Web Pages

60

 � The DownBinFile method handles the process as shown in the
following code:

public function DownBinFile(byval strURL, byval
 strDownloadPath)
 const adTypeBinary = 1
 const adModeReadWrite = 3
 const adSaveCreateOverwrite = 2

 dim arrTmp, oStream, intStatus, FSO, strInfo

 arrTmp = Split(strURL, "/")
 URL = strURL
 LocalFilename = strDownloadPath & Unescape(arrTmp(UB
ound(arrTmp)))

 if XML.open("GET", strURL, false) = S_OK then
 XML.send

 set oStream = createobject("ADODB.Stream")
 with oStream
 .type = adTypeBinary
 .mode = adModeReadWrite
 .open
 do Until XML.readyState = 4
 Wscript.Sleep 500
 Loop
 .write XML.responseBody
 .SaveToFile LocalFilename,
adSaveCreateOverwrite

 strInfo = "Download of file '" & strURL &
 "' finished with "
 set FSO = createobject("Scripting.
FileSystemObject")
 if FSO.FileExists(LocalFilename) then
 strInfo = strInfo & "success."
 DownBinFile = 0
 else
 strInfo = strInfo & "failure."
 DownBinFile = 1
 end if
 with oAutoIt.Object

Chapter 2

61

 .ToolTip strInfo, 1100, 1000
 .Sleep 7000
 .ToolTip("")
 end with
 end with 'ADODB.Stream
 set oStream = Nothing
 else
 XML.abort
 strInfo = "Send download command to server
 failed" & vbNewLine & XML.statusText
 with oAutoIt.Object
 call .ToolTip(strInfo, 1100, 1000)
 .Sleep 7000
 call .ToolTip("")
 end with
 exit function
 end if
 end function
end class

3. The Http class here refers to StateChangeHandler, which in turn uses the
AutoItX COM object to display a notification to inform about the progress of the
download process.

The Exec method is defined as Public Default so that it is automatically
triggered when the object is referenced. As an instance of this object is assigned
to the onreadystatechange event of the Http request object, every time
readystate changes, this function is performed to display the updated data on the
download process in the notification area on the taskbar.

class StateChangeHandler
 public m_objHttp

 public default function Exec()
 dim strInfo, intDelay

 intDelay = 0
 strInfo = "State changed: " & Http.XML.readyState &
 vbNewLine & "Downloading file: " & Http.Filename
 Select Case Http.XML.readyState
 Case "3"
 strInfo = strInfo & vbNewLine & "Please
 wait..."
 Case "4"

Testing Web Pages

62

 strInfo = strInfo & vbNewLine & "Finished.
 Total " & len(Http.XML.responseBody)\512
 & "KB downloaded."
 intDelay = 1500
 Case else
 End Select
 'with AutoIt
 with oAutoIt.Object
 .ToolTip strInfo, 1100, 1000
 .Sleep 500+intDelay
 .ToolTip("")
 end with
 end function

 public property get Http
 set Http = m_objHttp
 end property
 public property let Http(byval objHttp)
 set m_objHttp = objHttp
 end property
end class

4. The AutoItX COM object is wrapped by the AutoIt class for easier use:
class AutoIt
 private m_oAutoIt

 public default property Get Object
 set Object = m_oAutoIt
 end property
 private property let Object(byval AutoItX)
 set m_oAutoIt = AutoItX
 end property

 private sub class_initialize
 Object = createobject("AutoItX3.Control")
 end sub
 private sub class_terminate
 Object = Nothing
 end sub
end class

Chapter 2

63

5. Finally, the next App_GetLastBuild class controls the whole process. The whole
process is explained as follows:

 � First, we define the fields as follows:
class App_GetLastBuild
 private oHttp
 private Status
 private FSO
 private FoldersToDelete 'Local folders to delete'
 private ResourcesZIP
 private OrigJar
 private DestJar
 private BuildPath
 private ExtractPath

 � Then, we define a method that will assign these fields the value:
public function SetArgs()
 FoldersToDelete = Array(APP_PATH & "\images",
 APP_PATH & "\properties", APP_PATH & "\wizards")
 ResourcesZIP = RES_ZIP
 OrigJar = TMP_JAR
 DestJar = APP_JAR
 ExtractPath = APP_PATH
 BuildPath = BUILD_PATH
 end function

 � Next, we define the Exec method as default; a method that will control the
whole process:
public default function Exec()
 call SetArgs()

 '1) Delete local folders
 DeleteFolders(FoldersToDelete)

 '2) Download resources zip
 Status = oHttp.DownBinFile(BUILD_PATH &
 ResourcesZIP, DOWNLOAD_PATH)
 if Status <> 0 then exit function
 'Extract the resources
 call ExtractZipFile(DOWNLOAD_PATH & ResourcesZIP,
 APP_PATH)
 'Delete resources zip
 FSO.DeleteFile(DOWNLOAD_PATH & ResourcesZIP)

Testing Web Pages

64

 '3) Delete main GUI jar
 FSO.DeleteFile(APP_PATH & "\lib\" & DestJar)

 '4) Download the updated GUI jar
 Status = oHttp.DownBinFile(BUILD_PATH & OrigJar,
 DOWNLOAD_PATH)
 if Status <> 0 then exit function
 'Copy the updated GUI jar
 call FSO.CopyFile(DOWNLOAD_PATH & OrigJar, APP_PATH
 & "\lib\", true)
 'Rename GUI jar
 call FSO.MoveFile(APP_PATH & "\lib\" & OrigJar,
 APP_PATH & "\lib\" & DestJar)

 'Delete the downloaded GUI jar
 FSO.DeleteFile(DOWNLOAD_PATH & OrigJar)
 end function

 � We then define the method to delete folders (for cleanup purposes before
downloading):
public function DeleteFolders(byval arrFolders)
 dim ix

 for ix = 0 To UBound(arrFolders)
 if FSO.FolderExists(arrFolders(ix)) then
 FSO.DeleteFile(arrFolders(ix) & "*.*")
 FSO.DeleteFolder(arrFolders(ix))
 end if
 next
 end function

 � Next, we define a method to uncompress a ZIP file:
public function ExtractZipFile(byval strZIPFile, byval
 strExtractToPath)
 dim objShellApp
 dim WsShell
 dim objZippedFiles

 set objShellApp = createobject("Shell.Application")
 set WsShell = createobject("Wscript.Shell")

Chapter 2

65

 set objZippedFiles = objShellApp.
NameSpace(strZIPFile).items

 objShellApp.NameSpace(strExtractToPath).
CopyHere(objZippedF
 iles)

 'Free Objects
 set objZippedFiles = Nothing
 set objShellApp = Nothing
 end function

 � Then we define the initialization and termination subroutines:

private sub class_initialize
 set FSO = createobject("Scripting.FileSystemObject")
 set oHttp = new Http
 end sub
 private sub class_terminate
 set FSO = Nothing
 set oHttp = Nothing
 end sub
end class

6. In Action1, the following code will launch the download process:

dim oAutoIt
dim oDownload

set oAutoIt = new AutoIt
set oDownload = new App_GetLastBuild

oDownload.Exec

set oDownload = Nothing
Set oAutoIt = nothing

How it works...
As mentioned in the previous section, the solution involves a complex architecture using
VBScript classes and several COM objects (AutoItX, FileSystemObject, ADODB.Stream,
and so on). A detailed explanation of this architecture is provided here.

Testing Web Pages

66

Let us start with the main process in Action1 and then delve into the intricacies of our
more complex architecture. The first step involves the instantiation of two of our custom
classes, namely, AutoIt and App_GetLastBuild. After our objects are already loaded
and initialized, we call objDownload.Exec, which triggers and controls the whole download
scenario. In this method we do the following:

 f Initialize the class fields.

 f Delete the local folders.

 f Download the binary resources file. We check if the returned status is OK; if it is
otherwise, we exit the function.

 f After the download process ends, we extract the contents of the ZIP file to the
application path, and then delete the ZIP file.

We then start the process for the main JAR file as follows:

 f Delete the old file.

 f Download the JAR file. We check if the returned status is OK; if it is otherwise, we exit
the function.

 f After the download process ends, we copy the file to the target location and rename
it (assuming the last build main JAR file always carries the same name, regardless of
the version).

Now, let us examine what happens behind the scenes after the two classes are instantiated,
as mentioned in this section.

The AutoIt class automatically instantiates the AutoItX.Control object through its
Private Sub Class_Initialize subroutine. The App_GetLastBuild class, through its
own Sub Class_Initialize, automatically creates these objects, namely, a Scripting.
FileSystemObject object and an instance of our Http custom class.

Let us take a close look at the Sub Class_Initialize of the Http class:

 private sub class_initialize
 Handler = new StateChangeHandler
 Handler.Http = Me
 XML = createobject("MSXML2.XMLHTTP")
 end sub

Here we can see a strange thing. Our Http object creates an instance of the
StateChangeHandler class and immediately assigns the Http property of the Handler
object a reference to itself)Handler.Http = me). That is, the parent object (Http) has a
reference to the child object (StateChangeHandler) and the latter has a reference to the
parent object stored in its Http property. The purpose of this seemingly strange design is to
enable interoperability between both objects.

Chapter 2

67

Finally, an instance of XMLHttp is created. As seen in our recipe, on checking for broken
links, this object provides the services we need to manage communication with a web server
through the HTTP protocol. Here, however, there is something extra because we want to notify
the end user about the progress of the download. Let us take a closer look at the way this
instantiation is handled:

private property let XML(byref objXML)
 set m_objXML = objXML

 if typename(objXML) <> "Nothing" then _
 m_objXML.onreadystatechange = Handler
 end property

We pass the XMLHttp object created in our Sub Class_Initialize subroutine and
check if it is a real object (which it always should be because of the way we have designed
our code). Then, we implicitly assign our handler's default method to the XMLHttp event
onreadystatechange. Recall that a public default function in a VBScript class is executed
whenever an object instance of the class is referenced without explicitly calling a method
or property using the dot operator. This way, whenever the readystate property of the
XMLHttp object changes, the default Exec method of the StateChangeHandler object is
automatically executed, and a notification about the status of the process is displayed using
the AutoIt COM object. Just one thing is missing from our code, a check of the Http status
after XMLHttp.send and later on.

Checking whether a website is up
This recipe will show you how to check that a site is up, using the XMLHttp object we have
seen in action in the Checking whether page links are broken recipe.

Getting ready
We will be using the Web_Functions.vbs function library, seen in the previous recipe,
to take advantage of the objXMLHttp global variable, along with the InitXMLHttp()
and DisposeXMLHttp() functions. Make sure the library is associated to the test.

How to do it...
Basically, here we will follow the same logic as in the Checking whether page links are broken
recipe, but instead of getting the URL from the page links dynamically, we will just pass
the URL to the function:

Function checkSiteIsUp(URL)
 If lcase(typename(oXMLHttp)) <> "xmlhttp" Then

Testing Web Pages

68

 initXMLHttp()
 End If

 if oXMLHttp.open("GET", URL, false) = 0 then
 oXMLHttp.send()

 If oXMLHttp.Status<>200 Then
 reporter.ReportEvent micFail, "Check site is up",
 "Site " & URL & " is unreachable: " &
 oXMLHttp.Status
 Else
 reporter.ReportEvent micPass, " Check site is up ",
 "Site " & URL & " is up"
 End If
 End if
End Function

In Action1, we will invoke the function as follows:

checkSiteIsUp("http://www.advancedqtp.com")

How it works...
As mentioned in this recipe, the logic here is pretty much the same as with checking for
broken links. We send an Http Get request and check the status returned by the server.

See also
The Checking whether page links are broken recipe.

Uploading a file using FTP
In a previous recipe, we have seen how to download a file using XMLHttp. Here we will see
how to upload a file to a web server using the FTP protocol.

Getting ready
From the File menu, navigate to New | Function Library or use the Alt + Shift + N shortcut.
Name the new function library FTP.vbs. Make sure the library is associated to the test. In
order to use the code given in this recipe, you must have an FTP user account on a server.
To understand this recipe, you should be familiar with FTP protocol and the command line.

Chapter 2

69

How to do it...
In the function library, we will put the following code.

1. First we will define the following constants for better readability and reusability:
const C_FSO="Scripting.FileSystemObject"
const C_SHELL="WScript.Shell"
const C_ASCII="ascii", C_BIN="binary"
const C_FTP_CMD="%comspec% /c FTP -n -s:"
const C_SYNC_TIME=5000
const C_TEMP="%TEMP%"
const C_OPENASDEFAULT=-2
const C_FAIL_IFNOT_EXIST=0
const C_FORREADING=1
const C_FORWRITING=2
const C_QUIT="quit"
const C_PROMPT="prompt n"
const C_PUT_OP="put "
const C_CD_OP="cd "
const C_FILE_TRANSFER_OK="226-File successfully transferred"
const C_FILE_NOT_FOUND="File not found"
const C_CANNOT_LOGIN="Cannot log in"
const C_UNKNOWN_ERROR="Unknown error"
const C_USER="USER "
const C_REDIRECT=" > "
const C_ERR_STR="Error: "

2. Next, we will define our FTP class with the following fields, which will be used to store
the data needed for the FTP operation:
class FTP
 private m_oFSO
 private m_oScriptShell

 private m_sLocalFile
 private m_sPassword
 private m_sRemotePath
 private m_sResultsTmpFilename
 private m_sScriptTmpFilename
 private m_sSite
 private m_sTType
 private m_sUsername

Testing Web Pages

70

3. We will then initialize our class upon instantiation with a FileSystemObject to
handle files and a WScript.Shell object to handle commands:
private sub class_initialize
 FSO=CreateObject(C_FSO)
 ScriptShell=CreateObject(C_SHELL)
 'default transfer type - binary
 TType=C_BIN
 end sub

4. We will take care of disposing of the same objects at the time the object is destroyed:
private sub class_terminate
 FSO=nothing
 ScriptShell=nothing
 end sub

5. Then we will initialize the object with our FTP account connection and login
information:
function init(sSite, sUsername, sPassword)
 Site=sSite
 Username=C_USER & sUsername
 Password=sPassword
 end function

6. Next, upload the local file with the following method:
function uploadFile(sLocalFile, sRemotePath, sTType)
 LocalFile=C_PUT_OP & sLocalFile
 RemotePath=C_CD_OP & sRemotePath
 TType=sTType

 me.createFTPScript()
'Run the FTP command through the command line
'we use the WScript.Shell object to run the FTP command
'through the command line, in which the –n switch
'suppresses auto-login upon initial connection and the –s:
'switch takes the path of the temporary script file we
'created as parameter. The commands contained in such a
'file run automatically after FTP starts. The > operator
'redirects the FTP verbose output to our temporary results
'file. The last parameter is set to TRUE and it indicates
'whether to wait until the FTP program finishes.
ScriptShell.Run C_FTP_CMD & ScriptTmpFilename & " " & Site
 & C_REDIRECT & ResultsTmpFilename, 0, TRUE

Chapter 2

71

 Wait 0, C_SYNC_TIME

 uploadFile=me.checkResults()

 if FSO.FileExists(ScriptTmpFilename) then
 FSO.DeleteFile(ScriptTmpFilename)
 end if
 end function

7. Check the results of the transfer, which are stored in ResultsTmpFile with the
following method:
function checkResults()
 dim fFTPResults, sResults

 'Check results of transfer.
 Set fFTPResults = FSO.OpenTextFile(ResultsTmpFilename, C_
FORREADING,
 C_FAIL_IFNOT_EXIST, C_OPENASDEFAULT)
 if not fFTPResults.AtEndOfStream then
 sResults = fFTPResults.ReadAll
 end if
 fFTPResults.Close

 if FSO.FileExists(ResultsTmpFilename) then
 FSO.DeleteFile(ResultsTmpFilename)
 end if

 If InStr(sResults, C_FILE_TRANSFER_OK) > 0 Then
 checkResults = micPass
 ElseIf InStr(sResults, C_FILE_NOT_FOUND) > 0 Then
 checkResults = micFail
 sResults=C_ERR_STR&C_FILE_NOT_FOUND&vbNewLine&sResults
 ElseIf InStr(sResults, C_CANNOT_LOGIN) > 0 Then
 checkResults = micFail
 sResults=C_ERR_STR&C_CANNOT_LOGIN&vbNewLine&sResults
 Else
 checkResults = micFail '"Error: Unknown."
 sResults=C_ERR_STR&C_UNKNOWN_ERROR&vbNewLine&sResults
 End If

 reporter.ReportEvent checkResults, typename(me) &
 ".uploadFile", sResults
 end function

Testing Web Pages

72

8. The CreateFTPScript() function creates the FTP script from the input file
fFTPScript:
function createFTPScript()
 dim fFTPScript 'As file
 dim sFTPScript 'As string
 dim sFTPTempPath 'As string
 dim sFTPTempFile 'As string

 'Input file for ftp command
 sFTPScript=join(array(Username, Password,
 RemotePath, TType, C_PROMPT, LocalFile, C_QUIT,
 C_QUIT, C_QUIT), vbNewLine)

 sFTPTempPath = ScriptShell.ExpandEnvironmentStrings(C_
TEMP)

 ScriptTmpFilename = sFTPTempPath & "\" &
 FSO.GetTempName
 ResultsTmpFilename = sFTPTempPath & "\" &
 FSO.GetTempName

 'Write the input file for the ftp command to a
 temporary file.
 Set fFTPScript = FSO.CreateTextFile(ScriptTmpFilename,
True)
 fFTPScript.WriteLine(sFTPScript)
 fFTPScript.Close
 Set fFTPScript = Nothing
 end function

9. Add the following properties as accessors to the fields:
public property get FSO()
 set FSO=m_oFSO
 end property
 public property let FSO(oFSO)
 set m_oFSO=oFSO
 end property

 public property get LocalFile()
 LocalFile=m_sLocalFile
 end property
 public property let LocalFile(sLocalFile)
 m_sLocalFile=sLocalFile
 end property

Chapter 2

73

 public property get Password()
 Password=m_sPassword
 end property
 public property let Password(sPassword)
 m_sPassword=sPassword
 end property

 public property get RemotePath()
 RemotePath=m_sRemotePath
 end property
 public property let RemotePath(sRemotePath)
 m_sRemotePath=sRemotePath
 end property

 public property get ResultsTmpFilename()
 ResultsTmpFilename=m_sResultsTmpFilename
 end property
 public property let ResultsTmpFilename(sResultsTmpFilename)
 m_sResultsTmpFilename=sResultsTmpFilename
 end property

 public property get ScriptTmpFilename()
 ScriptTmpFilename=m_sScriptTmpFilename
 end property
 public property let ScriptTmpFilename(sScriptTmpFilename)
 m_sScriptTmpFilename=sScriptTmpFilename
 end property

 public property get ScriptShell()
 set ScriptShell=m_oScriptShell
 end property
 public property let ScriptShell(oScriptShell)
 set m_oScriptShell=oScriptShell
 end property

 public property get Site()
 Site=m_sSite
 end property
 public property let Site(sSite)
 m_sSite=sSite
 end property

 public property get TType()
 TType=m_sTType
 end property
 public property let TType(sTType)

Testing Web Pages

74

 select case lcase(sTType)
 case C_ASCII, C_BIN
 m_sTType=lcase(sTType)
 case else
 m_sTType=C_BIN
 end select
 end property

 public property get Username()
 Username=m_sUsername
 end property
 public property let Username(sUsername)
 m_sUsername=sUsername
 end property
end class

The GetFTP method is used as a constructor for the FTP object:

function getFTP(sSite, sUsername, sPassword)
 dim oFTP
 on error resume next
 set oFTP=new FTP
 call oFTP.init(sSite, sUsername, sPassword)
 if err.number<>0 then set oFTP=nothing
 set getFTP=oFTP
end function

10. Finally, in Action1, we will invoke the FTP upload function with the following code,
which creates an FTP custom object (based on our class) and uploads the file.

dim sSite, sUsername, sPassword, sLocalFile, sRemotePath

sSite="www.mysite.com"
sUsername="admin"
sPassword="mypassword"
sLocalFile="mylocalpathname\" & "mylocalfile.txt"
sRemotePath="//ftp/admin/"

set oFTP=getFTP(sSite, sUsername, sPassword)
if not oFTP is nothing then
 call oFTP.uploadFile(sLocalFile, sRemotePath, "")
 set OFTP=nothing
else
 reporter.ReportEvent micFail, "FTP.uploadFile", "Could
 not create FTP object."
end if

Chapter 2

75

How it works...
First, we define the five variables required by the FTP protocol:

 f strSite: This is the URL of our FTP server

 f strUsername: This is the name of our FTP account

 f strPassword: This is the password for our FTP account

 f strLocalFile: This is the file to be uploaded

 f strRemotePath: This is the path on our FTP account in which we put our file

We then retrieve an instance of our FTP class by calling the getFTP method with three
arguments, namely, strSite, strUsername, and strPassword. A check is performed to
verify that a valid object was returned, and then the uploadFile method is called with two
arguments, strLocalFile and strRemotePath.

In the uploadFile method, we use these arguments to build a string with the FTP
commands required to perform the upload operation. The transfer type is validated (ASCII or
binary) in the TType property, with binary as the default type. A call to createFTPScript
writes this string to a temporary file, which then serves as input script for the FTP command.
We also create a temporary filename to store the results of the upload operation.

Next, we use the WScript.Shell object to run the FTP command through the command
line, in which the –n switch suppresses auto login upon initial connection, and the –s switch
takes the path of the temporary script file that we created as parameter. The commands
contained in such a file run automatically after FTP starts. The > operator redirects the
FTP verbose output to our temporary results file. The last parameter is set to TRUE, and
it indicates whether to wait until the FTP program finishes or not. After it does, we call
checkResults() to read the contents of the output file and return whether our upload was
successful or not according to the status returned by FTP, which is written to the file.

Identifying elements based on anchors
In some cases, the same web element is used more than once in a page. For example,
suppose that the application uses a toggle button implemented using an image to change the
value or the state of other elements, such as input controls (for example, WebEdit). Further,
let us assume that these elements possess exactly the same set of attributes, and that they
have no unique ID or name to reckon upon for unequivocal identification. In such a case, the
task of identifying these objects during runtime can be achieved using alternative options
given by UFT, such as the index or location of the object. However, this solution is not robust
enough, as I discovered in one of the projects in which I was involved.

Testing Web Pages

76

The problem was found precisely with such toggle buttons. At first, work was done relying
on the index (because the page layout was fixed), but soon I discovered that in some cases,
QTP clicked on the wrong button (the project was done in 2007-2008 with QTP 9.5). After
investigating the issue, it turned out that there was a bug in the application. Though the
intended toggle operation was indeed executed, in some cases, the image of the toggled
button did not change. As a result, all elements with an index greater than the unchanged
element remained with an index greater than expected. To illustrate the problem, suppose
that we have 10 such controls in a page, and we click on the third control (index = 2). Now, as
we expected the original image collection to decrease by one, reference to index = 2 should
have led to click on the Next Image button. However, as the image was not replaced to reflect
the new state of the element, the index = 2 continued to reference the same element! So, the
script got stuck on that control, clicking again and again. There was also a checkpoint that
verified that clicking on the toggle button actually switched the values of two input elements,
and of course, these never changed, as the wrong toggle button was clicked!

After facing such a bug (which was reported, of course) a dilemma arose. Should we stop the
run session or find a workaround to continue after reporting the problem? The decision was
quite easy, because the bug was considered minor. So we opted for the second alternative.

How to do it...
In automation, we usually refrain from identifying TOs based on their location on the screen.
Absolute coordinates are really bad identifiers, as the screen resolution can change (and also
modern browsers have zooming capabilities). In addition, using abs_x and abs_y would be
sensitive to any tiny layout change. However, if we know how to identify an object based on
its name, ID, or inner text, to name a few valid properties, then we can use it as an anchor to
identify other related objects in its vicinity. The idea is similar to that of attached text, which
was accustomed in older technologies. Actually, a label was identified, and then, the target
input control was identified based on a search algorithm for text to its left or top.

The idea was quite simple. First, get the collection of objects to search (in our case, it was
a collection of images). Second, get a reference to the target anchor object (input element
WebEdit by QTP/UFT). Finally, in the collection, find the one object that is closest to the
anchor (in our case, they were always aligned vertically, that is, at about the same height,
so the proximity was calculated along the x axis).

From these lines of reasoning, the following code emerged:

Const C_SEARCH_RANGE = 35 'Pixels

Function getObjectByAnchor(oParent, oTargetDesc, oAnchor)
 Dim i, oCollection
 Dim AnchorX, AnchorY, TargetX, TargetY

Chapter 2

77

 'Set the function to return nothing in case of failure
 Set getObjectByAnchor=nothing

 'Get the collection of candidate target objects
 Set oCollection = oParent.ChildObjects(oTargetDesc)

 'Check if the given description yielded an empty collection
 If oCollection.count = 0 Then
 Reporter.ReportEvent micWarning, "getObjectByAnchor", "No
 object matched the given description"
 Exit function
 End If

 'Get the Anchor's position
 With oAnchor
 AnchorX=.GetROProperty("abs_x")
 AnchorY=.GetROProperty("abs_y")
 End With

 'Search the collection of candidate objects
 For i = 0 To oCollection.count-1
 Set oTarget=oCollection(i)
 'Get the object's position
 With oTarget
 TargetX=.GetROProperty("abs_x")
 TargetY=.GetROProperty("abs_y")
 End With
 'Check if the objects are vertically aligned (along the Y
 axis)
 If TargetY=AnchorY Then
 'Check if it the objects are close enough (within a
 range defined in the global constant C_SEARCH_RANGE)
 If abs(TargetX-AnchorX) <= C_SEARCH_RANGE Then
 'Return the current candidate object as target
 set getObjectByAnchor=oTarget
 Exit Function
 End If
 End If
 Next
End Function

Testing Web Pages

78

In Action1, we would call the GetObjectByAnchor function as follows:

dim ele, oParent, oTargetDesc, oAnchor

Set oParent=Browser("title:=.*Advanced QTP.*").Page("title:=.+")
Set oTargetDesc=Description.Create()
oTargetDesc("micclass").Value="Image"
oAnchor=oParent.WebEdit("name:=s")
set ele = getObjectByAnchor(oParent, oTargetDesc, oAnchor)
If not ele is nothing Then
 ele.click
else
 reporter.ReportEvent micFail, "Click on Image", "No matching
object was found."
 exittest
End If

Recall that in VBScript, the value Nothing is an object, so it is not
enough to check the returned value with If Not IsObject(ele)
Then. Therefore, we used a less common syntax, namely, If Not
ele Is Nothing Then.

How it works...
The GetObjectByAnchor function accepts the following three arguments:

 f objParent: This is a reference to the parent object or container of the elements
from which we need to find our target element

 f objTargetDesc: This is a description object carrying the properties and values
pairs used to retrieve the collection of candidate target elements

 f objAnchor: This is a reference to the element to which the target element is
expected to be aligned

This function requires the execution of the following steps:

 f Get the collection of candidate target objects. If empty, report and exit the function
while returning the VBScript value of Nothing.

 f Get the position of objAnchor.

Chapter 2

79

 f Loop through the collection of candidate objects and do as follows for each of them:

 � Get the position of oTarget (which is assigned the current oCollection
item i).

 � Check if oTarget is vertically aligned (along the y axis) with respect to
objAnchor.

 � If it is vertically aligned, then check if, with respect to objAnchor,
oTarget is within the search range we defined in the C_SEARCH_RANGE
global constant.

 � If it's within the range, then oTarget is most probably the object we
are looking for. So exit the function while returning oTarget; if not,
continue searching.

In Action1, we get the value returned by the function and proceed accordingly. If the value
is not Nothing, then we click on the element. Otherwise, we report on a failure to find a
matching object and stop the test.

Synchronizing a test with a web page
loading

An essential requirement from any automated test script is that it must synchronize with
Application Under Test (AUT). This is especially true for GUI automation, because the test
script actually attempts to emulate the actions that a human user would perform on the
application's front end. Hence, it is of utmost importance to take care that operations on
a page are carried out when the controls are fully loaded and ready to accept inputs.

How to do it...
All web classes, Page, WebEdit, WebButton, Image, and so on, provide an attribute that
indicates the state of the element. This attribute is readystate, and its value ranges from
0 (uninitialized) to 4 (complete). So basically, to synchronize our script with the full loading
of a web element, we need to wait until its readystate attribute reaches the value of 4.

The following generic function accepts an element and a timeout period, and it waits until
the element reaches the load complete state or timeout:

Function WaitUntilComplete(o, timeout)
 Dim iElapsed

Testing Web Pages

80

 WaitUntilComplete=true
 iElapsed=0
 Do while o.Object.readystate <> 4
 wait 0, C_INTERVAL_MSEC
 iElapsed=iElapsed+C_INTERVAL_MSEC
 If iElapsed > timeout Then
 reporter.ReportEvent micWarning, "WaitUntilComplete",
"Element did not load within " & timeout & " msec."
 WaitUntilComplete=false
 Exit Do
 End If
 Loop
End Function

We will call the function in Action1 as follows:

Dim bPageComplete

bPageComplete=WaitUntilComplete(Browser("title:=.*Advanced
 QTP.*").Page("title:=.+"), 2000)

How it works...
The WaitUntilComplete function takes two arguments, the object to synchronize with
and the maximum time we are prepared to wait in milliseconds. We initialize this function
optimistically, and then loop while the native readystate attribute is not equal to 4
(complete), waiting for an interval of 200 milliseconds each time, as defined in the C_
INTERVAL_MSEC constant. The iElapsed variable increases with each cycle, and a check
is performed to see if it reaches the timeout. If it reaches timeout, we exit the Do loop after
assigning the function to return the value False. If true is returned, then it means that the
complete state was reached before the timeout; therefore, our test can continue as planned.

The readystate attribute is accessed through the element's Object
property, which provides access to the native properties and methods of
all TOs except standard Windows objects.

Chapter 2

81

Accessing web elements through DOM
Although UFT provides a rich interface that encapsulates the most common operations
required to manipulate web elements (for example, click, double-click, set, select, and so on),
it has some limitations. For instance, UFT does not give us an obvious way to verify the style
of the text. In such a case, we will refer to the Document Object Model (DOM) to get access
to the native methods and properties of the elements. Another situation that would justify
such usage would be when the performance of the test run is hindered when a huge amount
of elements needs to be processed. For example, processing a table with lots of rows and
columns through UFT's WebTable interface takes much longer than accessing these same
elements through DOM. In this recipe, we will see how to get the style of an element and how
to get a collection of elements with a particular HTML tag.

How to do it...
Proceed with the following steps:

1. First, we will get a reference to the document object:
Dim document

Set document = Browser("title:=.*Advanced
 QTP.*").Page("title:=.+").Object

The InternetExplorer.Application COM object is an alternative to the
previous code to get the document object:

Dim IE

Set IE = CreateObject("InternetExplorer.Application")

IE.Navigate "http://www.advancedqtp.com"

Set document = IE.Document

2. Let us see how we can get the style of an element.

The style of an element is actually an object that contains different attributes.
First, we will get a reference to a specific object:

Dim searchBox

Set searchBox = document.getElementByName("s")

Testing Web Pages

82

We will then be able to access the style attributes:

Dim searchBox

Print searchBox.style.backgroundColor
Print searchBox.style.fontSize
Print searchBox.style.fontFamily

3. Next, let's see how we can get a collection of elements with a particular HTML tag:

Here we will see how to get a collection of elements through DOM instead of using
UFT's ChildObjects method:
Dim allImages

Set allImages = document.getElementsByTagName("img")

It is then possible to loop through the individual elements and perform different
verifications and operations. Keep in mind that these are native HTML objects and
not UFT TOs.

How it works...
When we work through DOM, it is like stepping out of UFT. When we get a reference to the
document, all native methods and properties are available to us. In general, working through
DOM should be faster than working through the UFT interface. However, utilities provided
by UFT, such as the Object Repository, serve as a database to store the descriptions of the
objects that appear in AUT.

See also
Refer QTP Descriptive Programming Unplugged, KnowledgeInbox, by Anshoo Arora and
Tarun Lalwani

3
Testing XML and

Database

In this chapter, we will cover the following recipes:

 f Establishing and closing a database connection

 f Using SQL queries programmatically

 f Using a database checkpoint

 f Using an XML checkpoint

Introduction
This chapter provides some basic recipes to handle Database (DB) and XML testing
within UFT.

It provides essential support for data connectivity to both external databases and Extensible
Markup Language (XML) file formats within the function library.

This chapter does not detail the API test functionality that was recently introduced within
Unified Functional Tester Version 12 as part of the integration with the Service Test product
line, which provides native support and additional functionality around DB and XML within
the Standard Activities Toolbox.

Testing XML and Database

84

Establishing and closing a database
connection

In this recipe, we will show how to establish a DB connection using VBScript code. We will
build a simple custom class, DB_Handler that will be instantiated using a global scope
variable, oDBHandler. This global object will serve as the basis for all our DB operations.

Getting ready
From the File menu, navigate to New | Function Library... or use the Alt + Shift + N shortcut.
Name the new function library DB_Func.vbs.

How to do it...
The following code handles creating, opening, and closing a DB connection using ADODB:

Const C_ADODB_OBJ = "ADODB.Connection"
Dim oDBHandler

Function createDBHandler(p, ds, ic, uid, pwd)
 On error resume next
 Set oDBHandler=new DB_Handler

 call oDBHandler.Init(p, ds, ic, uid, pwd)

 createDBHandler=eval("err.number=0")
End Function

Class DB_Handler
 private m_oDBConnection
 Public Provider
 Public DataSource
 Public InitialCatalog
 Public Username
 Public Password

 Function Init()
 With me
 .Provider=p
 .DataSource=ds
 .InitialCatalog=ic
 .Username=uid

Chapter 3

85

 .Password=pwd
 End With
 End Function

 Function openDBConnection()
 m_oDBConnection.open(createConnectionString())
 End function

 Function closeDBConnection()
 m_oDBConnection.close()
 End Function

 Function createConnectionString()
 createConnectionString = "Provider="&Provider& _
 ";Data Source="&DataSource& _
 ";Initial
 Catalog="&InitialCatalog& _
 ";uid="&myUserName&";pwd="&Password
 End Function

 Function createDBConnection()
 If not lcase(typename(m_oDBConnection)) =
 lcase(C_ADODB_OBJ) Then
 Set m_oDBConnection = CreateObject(C_ADODB_OBJ)
 End If
 End Function
 Function disposeDBConnection()
 closeDBConnection()
 Set m_oDBConnection = nothing
 End Function

 Private Sub Class_Initialize()
 createDBConnection()
 End Sub
 Private Sub Class_Terminate()
 disposeDBConnection()
 End Sub
End Class

Now, we can run Action1 with the following lines of code:

dim p, ds, ic, uid, pwd

p="{SQL Server}"

Testing XML and Database

86

ds="yourServername"
ic="yourDatabasename"
uid="yourUsername"
pwd="yourPassword"

if not createDBHandler(p, ds, ic, uid, pwd) then
 Reporter.ReportEvent micFail, "DB Init", "Failed to create a
 DB Handler instance."
 exittest
end if

'Open the connection
oDBHandler.openDBConnection()

'Here goes code to query the DB (see recipe Using SQL queries
 programmatically)
'...
'...

'Close the connection
oDBHandler.closeDBConnection()

'Dispose the DB Handler
set oDBHandler=nothing

How it works...
We first declare the variables that we need to define our connection string. The Provider
connection string tells ADODB the database type we intend to use (Access, SQL Server, Oracle,
and so on). DataSource is the server or path on which our DB is located. InitialCatalog
is the DB we wish to use upon connecting to the server. Username and Password are, of
course, the credentials with which we log in to the DB.

We then call the createDBHandler(p, ds, ic, uid, pwd) method that serves as our
constructor for the DB_Handler class. We pass the arguments listed here, and the method
takes care of creating a new instance and initializing it with our parameters by calling the
class member function init(p, ds, ic, uid, pwd). If an error occurs, then the method
returns false (eval="err.number=0" would evaluate to false), and the code would exit
the test after reporting the event to the test results.

With our object already initialized, we can proceed to call its openDBConnection() function,
perform the SQL queries we need, and at the end take care of calling closeDBConnection().
At the end, we dispose of our DBHandler object.

Chapter 3

87

Using SQL queries programmatically
In the previous recipe, we discussed how to use a UFT DB checkpoint. Here, we will show you
how to execute a SQL statement using VBScript code.

Getting ready
We will use the function library DB_Func.vbs as in the previous recipe Establishing and
closing a database connection.

How to do it...
In our custom class DB_Handler, we will add a new private m_oRecordset field to hold the
results of our query and a new method executeSQLQuery(SQLQuery), which, of course,
accepts a string with a valid SQL query as the argument:

Private m_oRecordset

function executeSQLQuery(SQLQuery)
 Set m_oRecordset = m_oDBConnection.Execute(SQLQuery)
End Function

Additionally, in our Action1 datasheet, we would call the executeSQLQuery(SQLQuery)
method by passing our SQL string as the argument:

call oDBHandler.executeSQLQuery(SQLQuery)

As mentioned earlier, the method would store the returned Recordset in the m_
oRecordset field. Then, we will be able to perform operations with these data, such
as making comparison between the expected and actual results.

How it works...
With our oDBHandler object already initialized and having an open DB connection, as shown
in the previous recipe, we call the executeSQLQuery member function passing our SQL
query string as the parameter. Inside the m_oRecordset method, member field is assigned
the result of the Execute method of the ADODB.Connection object.

Testing XML and Database

88

Using a database checkpoint
We have seen in the previous recipes how to connect and perform SQL queries
programmatically. This knowledge is essential because it can give us more flexibility as
to how to access our DB and how to process the retrieved data. However, UFT provides
an in-built feature to perform DB checkpoints, which can be very useful especially when
the person implementing the automated tests is less skilled in coding.

Getting ready
We will use the flight32.mdb file supplied with the Flight application, which we used in
Chapter 1, Data-driven Tests. Make sure that the Microsoft Query application is installed
on your machine.

How to do it...
Proceed with the following steps:

1. From the UFT menu, navigate to Design | Checkpoint | Database Checkpoint:

Chapter 3

89

2. Now, the Database Query Wizard dialog will open:

3. Now, in the Database Query Wizard dialog, we can choose to define our SQL
statement using Microsoft Query, or we can do so manually. If we select the first
option, Create query using Microsoft Query, and leave the Show me how to use
Microsoft Query checkbox marked, the following dialog will appear:

Testing XML and Database

90

4. After closing the Instructions for Microsoft Query dialog, the Microsoft Query
application will open:

5. From the Choose Data Source dialog, we will select QT_Flight32*:

Chapter 3

91

6. Next, the Query Wizard - Choose Columns window will open:

7. For our sample query, we will select all columns from the Flights table. You can
opt to use fewer columns if you wish. Each column must be selected, and then the
> button should be clicked on to include it in the Columns in your query list to the
right of the window. The following screenshot shows an intermediate state of both
lists (Seats_Available and the selected columns):

Testing XML and Database

92

8. After finishing the selection of columns, we click on Next, and the next step is
to build a filter for our query (equivalent to the WHERE statement in a SQL query).
For example, we will select flights which depart on Sundays, as shown in the
following screenshot:

9. After clicking on Next, we will be able to define how we wish to sort the data. We
will choose to sort the data according to the Departure column in ascending
order, as shown:

10. Now, clicking on Next will lead to the last screen Query Wizard - Finish dialog:

Chapter 3

93

11. You can now save the query before exiting the process, view the data, or edit the
query. We will stick to the default action and exit the process to return to UFT, in
which the Database Checkpoint Properties dialog will open:

Testing XML and Database

94

In the grid at the top of the preceding screenshot, we can see the numbered
records of the Flights DB table, with the data in each cell for each of the columns
we selected. Below the grid, we see three tabs: Expected Data, Settings, and
Cell Identification.

12. Expected Data can be Constant (the default option) or Parameter. We can configure
the source of the parameter by selecting the Parameter radio button, and then
clicking on the edit icon to the right. The Parameter Options dialog will open.
Please note that Parameter will refer to the currently selected cell in the grid:

13. We can now select whether the value will be taken from the DataTable (either global
or local), Environment, or a random number in the case of a DB checkpoint. It is also
possible to define a parameter as a regular expression.

Chapter 3

95

14. The Settings tab enables us to define whether the data verification will be done as
a simple text or numeric comparison, or as a numeric range. We can also indicate
whether we require an exact match, whether spaces should be ignored, and whether
the letter case should be matched, as shown in the following screenshot:

Testing XML and Database

96

15. Finally, in the Cell Identification tab, we can define how we wish to identify our cells.
For the rows, it is possible to use its number or key columns, and use Value match
criteria defined in the Settings tab to identify a cell. For the columns, it is possible to
use the column position or name, as shown:

16. After finishing the definition of our checkpoint properties, we select whether we want
the resulting statement to appear before or after the current step. In our case, it does
not matter, so we will leave the default value (Before current step) as it is, and click
on OK. The resulting code is:
DbTable("DbTable").Check CheckPoint("DbTable")

Chapter 3

97

17. Our Object Repository now includes DbTable as Test Object and a DbTable
checkpoint object, as in the following screenshot:

The DbTable TO will show that three description properties are used:

 � source: This contains the SQL query we generated using the Microsoft
Query Wizard.

 � dbuniqueid: This contains a Globally Unique Identifier (GUID).

 � connectionstring: This contains the connection string used to connect
to the DB. We would use this to connect through raw VBScript code.

Testing XML and Database

98

The DbTable checkpoint will show the settings, as we defined earlier in the
Database Checkpoint Properties dialog:

How it works...
When invoking the Datatable, using the DbTable.check method with the DB checkpoint
object, a connection is established using the connection string. Then, the data will be
retrieved using the SQL query we defined, and each cell is compared to its identified
counterpart using the value match criteria. Running the previous code will result in a
results report, as follows:

Chapter 3

99

Using an XML checkpoint
Since the early 1990s XML files have been widely used for data transfer between application
modules and even between different systems. An XML file may contain, for instance, the
results of a billing record for a cellular phone customer. In such a case, it may be of high value
to be able to have preset expected results and be able to compare actual XML files with these.

How to do it...
Proceed with the following steps:

1. From the UFT menu navigate to Design | Checkpoint | XML Checkpoint (From
Resource), which will open the dialog by the same title:

Testing XML and Database

100

2. Click on the Browse button and select a file from the Open XML File dialog.
In our example, we will be using a sample XML given by Microsoft with the
following contents:
<?xml version="1.0"?>
<catalog>
 <book id="bk101">
 <author>Gambardella, Matthew</author>
 <title>XML Developer's Guide</title>
 <genre>Computer</genre>
 <price>44.95</price>
 <publish_date>2000-10-01</publish_date>
 <description>An in-depth look at creating applications
 with XML.</description>
 </book>
 <book id="bk102">
 <author>Ralls, Kim</author>
 <title>Midnight Rain</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2000-12-16</publish_date>
 <description>A former architect battles corporate
 zombies, an evil sorceress, and her own childhood to
 become queen of the world.</description>
 </book>
 <book id="bk103">
 <author>Lucas, George</author>
 <title>The Force Awakens</title>
 <genre>Sci-Fi</genre>
 <price>11.78</price>
 <publish_date>2015-12-18</publish_date>
 <description> Set approximately 30 years after the
 defeat of the Empire and the demise of Darth Vader,
 the plot follows a trio of young leads, along with
 characters from the previous installments.</description>
 </book>
 <book id="bk104">
 <author>Wright, Jonathon</author>
 <title>Experiences of Test Automation</title>
 <genre>Computer</genre>
 <price>25.95</price>
 <publish_date>2012-01-09</publish_date>
 <description>Software test automation has moved beyond a
 luxury to become a necessity. Applications and systems
 have grown ever larger and more complex, and manual testing
 simply cannot keep up.</description>

Chapter 3

101

 </book>
 <book id="bk105">
 <author>Crispin, Lisa</author>
 <title>Agile Testing: A Practical Guide</title>
 <genre>Computer</genre>
 <price>25.95</price>
 <publish_date>2008-12-30</publish_date>
 <description> Testing is a key component of agile
 development. The widespread adoption of agile methods
 has brought the need for effective testing.</description>
 </book>
 <book id="bk106">
 <author>Graham, Dorothy</author>
 <title>Software Test Automation</title>
 <genre>Computer</genre>
 <price>14.95</price>
 <publish_date>1999-05-28</publish_date>
 <description> This book describes how to build and implement
 an automated testing regime for software development.
 It presents a detailed account of the principles of
 automated testing.</description>
 </book>
 <book id="bk107">
 <author>Hendrickson, Elisabeth</author>
 <title>Explore It!</title>
 <genre>Computer</genre>
 <price>14.95</price>
 <publish_date>2013-03-03</publish_date>
 <description> Uncover surprises, risks, and potentially
 serious bugs with exploratory testing. Rather than
 designing all tests in advance, explorers design and
 execute small, rapid experiments.</description>
 </book>
 <book id="bk108">
 <author>Adzic, Gojko</author>
 <title>Specification by Example</title>
 <genre>Computer</genre>
 <price>24.95</price>
 <publish_date>2011-05-06</publish_date>
 <description> Specification by Example is an emerging
 practice for creating software based on realistic examples,
 bridging the communication gap between business
 stakeholders and the dev teams building the software.
 </description>
 </book>

Testing XML and Database

102

 <book id="bk109">
 <author>Whittaker, James</author>
 <title>How Google Tests Software</title>
 <genre>Computer</genre>
 <price>16.95</price>
 <publish_date>2012-03-23</publish_date>
 <description> Do you need to get it right, too? Then, learn
 from Google.</description>
 </book>
 <book id="bk110">
 <author>O'Brien, Tim</author>
 <title>Microsoft .NET: The Programming Bible</title>
 <genre>Computer</genre>
 <price>36.95</price>
 <publish_date>2000-12-09</publish_date>
 <description>Microsoft's .NET initiative is explored in
 detail in this deep programmer reference.</description>
 </book>
 <book id="bk111">
 <author>O'Brien, Tim</author>
 <title>MSXML3: A Comprehensive Guide</title>
 <genre>Computer</genre>
 <price>36.95</price>
 <publish_date>2000-12-01</publish_date>
 <description>The Microsoft MSXML3 parser is covered in
 detail, with attention to XML DOM interfaces, XSLT
 processing, SAX and more.</description>
 </book>
 <book id="bk112">
 <author>Galos, Mike</author>
 <title>Visual Studio 7: A Comprehensive Guide</title>
 <genre>Computer</genre>
 <price>49.95</price>
 <publish_date>2001-04-16</publish_date>
 <description>Microsoft Visual Studio 7 is explored in
 depth, looking at how Visual Basic, Visual C++, C#,
 and ASP+ are integrated into a comprehensive development
 environment.</description>
 </book>
</catalog>

Chapter 3

103

3. At the end, click on OK. The XML Checkpoint Properties dialog will appear,
as shown:

Now, for each node we will be able to define whether we wish to:

 � Check the number of attributes it has (if any).

 � Check the number of child elements.

 � Limit our verification to a particular type of child (relevant when more than a
single type is present). In our example, under the catalog root node, we only
have book nodes so it does not make any difference.

Testing XML and Database

104

When traversing the hierarchy we can view the specific values of nodes, as shown:

We can also click on the Activate Schema Validation button to validate the integrity
of the XML document with regards to a schema (XSD), either referenced in the
document or an external one:

Chapter 3

105

In case our, XML is expected to be based on such a schema, this would give us a
comprehensive checkpoint, which not only verifies the contents of the XML document
but also its structure.

4. At the end of the definitions, we click on OK, and the following statement is inserted
in Action:
XMLFile("catalog.xml").Check CheckPoint("catalog.xml")

In addition, our Object Repository now includes XMLFile as TO and a CheckPoint
object of XMLFile. The XMLFile TO carries a single description property, that is,
its filename, which stores its path. Of course, as with other TOs, it is possible to
parameterize this property. In a similar fashion, as with the DbTable checkpoint,
the CheckPoint object of XMLFile will have the properties as we defined in the
XML Checkpoint Properties dialog previously.

How it works...
When invoking the Check method of XMLFile with the XML CheckPoint object, the
target file is opened and checked against the data stored as expected results. Running the
command yields a results report, as follows (here we have deliberately changed one value in
the XML file to make the checkpoint fail):

Testing XML and Database

106

If prompted to allow ActiveX Add-In, then approve in order to see Captured Data. Clicking
on the View XML Checkpoint Results button in that pane will open a window titled XML
Checkpoint Results:

We see that for each node there is a checkpoint summary giving details about the checks
that were performed. As the tooltip shows, we can browse through our results very efficiently
to drill-down and examine the failures. Clicking on the icon to find the next error will lead us to
the node in which UFT found a discrepancy between the expected and actual data:

4
Method Overriding

In this chapter, we will cover the following recipes:

 f Overriding a Test Object method

 f Registering a method to all classes

 f Using method overriding to support object subtypes

 f Adding a new method to a class

Introduction
Method overriding is a feature of object-oriented programming languages such as C++, C#,
and Java. It enables us to adopt a method or property inherited from a base class in order to
address specific requirements of a class. In certain cases, overriding a method is necessary;
for example, when a method in the base class is defined as abstract, or when an interface
is implemented.

In UFT, the need to override a method may arise. The reasons can be diverse, from handling a
customized version of a common control, to enriching the basic function, or even integrating
the TO methods with an exception handling mechanism. As we will see in this chapter, it is
also possible to add methods to a TO(s).

Method Overriding

108

Overriding a Test Object method
In this recipe, we will see how to write a new implementation of a method for a TO.

Getting ready
From the File menu, navigate to New | Function Library… or use the Alt + Shift + N shortcut.
Name the new function library as FR_RegFunc.vbs.

How to do it...
As always, with programming, the task needs to be addressed in an orderly fashion. Therefore,
there is a series of implementation steps to follow:

1. Analyze the requirement, which means ask questions. For example:

 � What are the missing functions?

 � To which object class is it relevant?

2. Design the solution.

3. Code the function.

4. Test the function.

5. Register the function to the required object class.

In the following example, we will write a function in FR_RegFunc.vbs that overrides the
WinEdit_Set method. The new method will try to set the field, and if an error occurs, it
will check if there is a modal pop-up message that has opened in the Flight Reservation
application (refer to Chapter 1, Data-driven Test). If it has opened, the method will close
it and the flow may continue.

'If there is a problem when trying to set a WinEdit control with
 text, then the function checks whether a modal popup is open and
 closes it
Function FR_WinEdit_Set(obj, text)
 On error resume next
 reporter.Filter = rfDisableAll 'Disable automatic reporting
 obj.set text
 reporter.Filter = rfEnableAll 'Enable automatic reporting
 'If the operation failed
 If err.number <> 0 Then

Chapter 4

109

 'Report a warning so the test does not fail
 reporter.ReportEvent micWarning, "Set on " &
 obj.GetTOProperty("name"), "Tried to set WinEdit with
 value " & text & vbNewLine & _
 err.number & ": " & err.description
 'An error was found, check if a popup dialog is open
 If obj.GetTOProperty("parent").
 Dialog("ispopupwindow:=true").exist(0) Then
 'Report and Close popup
 Reporter.ReportEvent micDone, "Popup dialog found",
 "Closing dialog"
 obj.GetTOProperty("parent").Dialog("ispopupwindow:=true").
 WinButton("text:=OK").click
 'TODO: Decide which implementation is more suitable
 '1. We can try to set the field again
 '2. Return the control to the calling Action (as we do
 here)
 '3. Other
 End If
 End If
End Function

We then run Action1 with the following lines of code:

'Register the overriding method
RegisterUserFunc "WinEdit", "Set", "FR_WinEdit_Set"
'Try to set the Agent Name field in the FR Login dialog
Dialog("Login").WinEdit("Agent Name").Set "mercury"
'Unregister the overriding method
UnregisterUserFunc "WinEdit", "Set"

It is important to note that RegisterUserFunc is used during runtime
to load the custom function for native method mappings. However, it is also
possible to do this while designing via the UFT GUI, by navigating to Design
| Function Definition Generator from the menu. This will provide you
with autocomplete/intellisense in your test. Of course, the function library
containing the custom functions must be available in the test's resources.

Method Overriding

110

How it works...
The implemented custom method takes two arguments, namely, obj and text. The first is
for the TO, WinEdit and the second is for the text to be entered. First, to obtain full control
over the flow, we disable VBScript's native runtime error handling mechanism with On Error
Resume Next. Second, to avoid the test being marked as failed automatically, we disable
UFT's automatic event reporting by assigning Reporter.Filter = rfDisableAll to the
Filter property of the Reporter object. Next, we set the value and restore Filter to its
default value Reporter.Filter = rfEnableAll.

Mode Description
0 or rfEnableAll This is the default value. All reported events

are displayed in the run results.
1 or rfEnableErrorsAndWarnings This mode displays events with a warning or

failed status in the run results.
2 or rfEnableErrorsOnly This mode displays events with a failed status

in the run results.
3 or rfDisableAll This mode does not display any events in the

run results.

In the following example, we will demonstrate all Filter properties of the Reporter object
combinations from the preceding table:

Reporter.ReportEvent micPass, "Step 1", "Passed"
Reporter.ReportEvent micFail, "Step 2", "Failed"

'Disable all the Results
Reporter.Filter = rfDisableAll
Reporter.ReportEvent micPass, "Step 3", "Passed"
Reporter.ReportEvent micFail, "Step 4", "Failed"

'Enable Result Display
Reporter.Filter = rfEnableAll
Reporter.ReportEvent micWarning, "Step 5", "Warning"

'Enable only Errors and Warnings
Reporter.Filter = rfEnableErrorsAndWarnings
Reporter.ReportEvent micPass, "Step 6", "Passed"
Reporter.ReportEvent micFail, "Step 7", "Failed"
Reporter.ReportEvent micWarning, "Step 8", "Warning"

Chapter 4

111

If an error of any kind occurs, it will be caught by the If err.number <> 0 Then clause.
Then, our custom exception handling will be executed. In the preceding example, we report
all types of warnings, but a specific implementation may select one type, depending on
the requirements. For instance, the error may occur under controlled conditions (such as
negative test(s)), and hence, our implementation should be more complex to cover such
situations. In any case, it is recommended to leave the custom function as simple as possible.

The next step is to check if the parent container (window or dialog) has a child (owned) pop-up
dialog open, which, it is reasonable to assume, is modal and therefore obstructs the target
WinEdit, causing the error. If this is the case, then we report our findings and click on OK
on the pop-up dialog WinButton.

There's more...
At this stage one may ask, what now? How do we decide on the correct implementation? As
mentioned earlier, this depends on the requirements. For example, if the previous custom
method is meant to be a recovery scenario, then we might want to add the following code
to close the pop-up code that ensures WinEdit is actually assigned the text passed to the
function. In such a case, our function code would change to:

'Continued…
obj.GetTOProperty("parent").Dialog("ispopupwindow:=true").
 WinButton("text:=OK").click
obj.Set text

It is not recommended to use a recursion, for example, with the following:

Call FR_WinEdit_Set(obj, text)

However, it is possible to shorten the syntax:

obj.set text

There are two limitations that must be taken into account when using the RegisterUserFunc:

 f Number of arguments

 f Interoperability of registered functions

Number of function arguments
When defining a function that overrides a method, it must have the same signature. This
means that the overriding function cannot have a number of arguments different from the
original method that is overridden. A workaround is to have one of the mandatory arguments
sent as an array or, even better, as a dictionary. This way, you can have a customized version
of the method that, in practice, is able to operate with a different number of arguments. It is
even possible to design it in such a way that the custom method will treat items of the array
or dictionary as optional.

Method Overriding

112

Interoperability of registered functions
When a registered function includes a call to another registered function, be careful and use
the correct syntax. To call a registered function so that no changes to existing calls should be
carried out, we usually put a statement such as:

call obj.[native method]([arg1], [...], [argn])

To avoid a VBScript runtime error (Type Mismatch) during your run session, when a call from
one overriding method to another is required, the limitations can be overcome by coding the
call as follows:

call [custom method](obj, [arg1], [...], [argn])

See also
The following articles on www.advancedqtp.com also discuss RegisterUserFunc in depth:

 f An article by Yaron Assa at http://www.advancedqtp.com/a-fresh-look-on-
registeruserfunc

 f An article by Meir Bar-Tal at http://www.advancedqtp.com/override-the-
object-exist-property

 f An article by Meir Bar-Tal http://www.advancedqtp.com/limitations-of-
registeruserfunc

Registering a method to all classes
In some cases, we may need to customize a method that is common to all TO classes, or at least
to all references to a particular environment, such as the Web or Java. For example, suppose we
need to customize the Click method and register all Web TO classes. To write a statement for
each class is quite tedious, and it may be an error-prone practice. For example:

RegisterUserFunc "WebEdit", "Click", "AQTP_Click"
RegisterUserFunc "WebButton", "Click", "AQTP_Click"
RegisterUserFunc "WebRadiobutton", "Click", "AQTP_Click"

If the new implemented method needs to be registered to all classes of all environments,
then it becomes impractical and undesirable to maintain this via code. We can manage such
custom function registrations better by using a data-driven approach.

Getting ready
You can use the FR_RegFunc.vbs function library as in the Overriding a Test Object
method recipe.

www.advancedqtp.com
http://www.advancedqtp.com/a-fresh-look-on-registeruserfunc
http://www.advancedqtp.com/a-fresh-look-on-registeruserfunc
http://www.advancedqtp.com/override-the-object-exist-property
http://www.advancedqtp.com/override-the-object-exist-property
http://www.advancedqtp.com/limitations-of-registeruserfunc
http://www.advancedqtp.com/limitations-of-registeruserfunc

Chapter 4

113

How to do it...
Perform the following steps:

1. In the function library, we will write the following code:
Dim QTP_TO_ENVS

Function LoadTOEnvironments()
 Set QTP_TO_ENVS = CreateObject("Scripting.Dictionary")
 QTP_TO_ENVS("Java") = Array("JavaButton", _
 "JavaCalendar", _
 "JavaCheckBox", _
 "JavaDialog", _
 "JavaEdit", _
 "JavaExpandBar", _
 "JavaInternalFrame", _
 "JavaLink", _
 "JavaList", _
 "JavaMenu", _
 "JavaObject", _
 "JavaRadioButton", _
 "JavaSlider", _
 "JavaSpin", _
 "JavaStaticText", _
 "JavaTab", _
 "JavaTable", _
 "JavaToolbar", _
 "JavaTree", _
 "JavaWindow")
 QTP_TO_ENVS("Web") = Array("Browser", _
 "Frame", _
 "Image", _
 "Link", _
 "Page", _
 "ViewLink", _
 "WebArea", _
 "WebButton", _
 "WebCheckBox", _
 "WebEdit", _
 "WebElement", _
 "WebFile", _
 "WebList", _

Method Overriding

114

 "WebRadioGroup", _
 "WebTable", _
 "WebXML")

 QTP_TO_ENVS("StdWin") = Array("Desktop", _
 "Dialog", _
 "Static", _
 "SystemUtil", _
 "WinButton", _
 "WinCheckBox", _
 "WinComboBox", _
 "Window", _
 "WinEdit", _
 "WinEditor", _
 "WinList", _
 "WinListView", _
 "WinMenu", _
 "WinObject", _
 "WinRadioButton", _
 "WinScrollBar", _
 "WinSpin", _
 "WinStatusBar", _
 "WinTab", _
 "WinToolbar", _
 "WinTreeView")
End function

Public Function ValidateTOClasses(ByVal strAddIn, ByRef
 arrTOClasses)
 If IsArray(arrTOClasses) Then
 If UBound(arrTOClasses) = -1 Then
 'Empty Array, so assign default (all)
 arrTOClasses = QTP_TO_ENVS(strAddIn)
 End If
 Else
 'Not an Array, so assign default (all)
 arrTOClasses = QTP_TO_ENVS(strAddIn)
 End If
End Function

Function RegisterUserFuncEx(ByVal strAddIn, ByVal
 arrTOClasses, ByVal strOverriddenMethod, ByVal
 strNewMethod)

Chapter 4

115

 Dim ix

 Call ValidateTOClasses(strAddIn, arrTOClasses)

 If IsEmpty(strOverriddenMethod) Or
 Trim(strOverriddenMethod) = "" Then
 strOverriddenMethod = strNewMethod

 For ix = 0 To UBound(arrTOClasses)
 If Left(arrTOClasses(ix), 1) <> "-" Then
 Call RegisterUserFunction(arrTOClasses(ix),
 strOverriddenMethod, strNewMethod)
 Else
 Print "Char '-' found at left position 1.
 Skipped registration of function" &
 strNewMethod & " to method " &
 strOverriddenMethod & " in class " &
 strTOClass
 End If
 Next
End Function

Function UnregisterUserFuncEx(ByVal strAddIn, ByVal
 arrTOClasses, ByVal strOverriddenMethod)
 Dim ix

 Call ValidateTOClasses(strAddIn, arrTOClasses)

 If IsEmpty(strOverriddenMethod) Or
 Trim(strOverriddenMethod) = "" Then
 strOverriddenMethod = strNewMethod

 For ix = 0 To UBound(arrTOClasses)
 If Left(arrTOClasses(ix), 1) <> "-" Then
 Call UnregisterUserFunc(arrTOClasses(ix),
 strOverriddenMethod)
 Else
 Print "Char '-' found at left position 1.
 Skipped unregistering method " &
 strOverriddenMethod & " in class " &
 strTOClass
 End If
 Next
End function

Method Overriding

116

We will also add a custom function to override the Click method:

Function FR_Click(obj)
 Print "This is my custom Click function"

 obj.click
End Function

2. In Action, write the following code:
'Load the global dictionary with each environment’s classes
call LoadTOEnvironments()
'Register the overriding method to all classes in StdWin env
call RegisterUserFuncEx("StdWin", array(), "click", "FR_Click")
'Register the overriding method to the WinEdit class
RegisterUserFunc "WinEdit", "Set", "FR_WinEdit_Set"
'Try to set the Agent Name field in the FR Login dialog
Dialog("Login").WinEdit("Agent Name").Set "mercury"
'Unregister the overriding method
UnregisterUserFunc "WinEdit", "Set"
call UnregisterUserFuncEx("StdWin", array(), "click")

In the output pane, you will notice that the printed script is This is my custom Click function,
which is a line we added in our custom version of the Click method.

How it works...
Here, we will skip the parts of the code already explained in the Overriding a Test Object
method recipe.

First, we call the LoadTOEnvironments function to get a dictionary object assigned to our
QTP_TO_ENVS global variable, which will store for us a key for each environment we defined,
each pointing to an array with a list of all the classes within that environment.

Then, we call the RegisterUserFuncEx function (our custom version of
RegisterUserFunc) seeking to register the FR_Click function in the Click method for all
classes (hence the empty array is passed) within the StdWin environment.

The ValidateTOClasses function checks whether the argument passed to the
RegisterUserFuncEx function is an array or an empty array. In such a case, the function
registers the custom method to all classes listed in the QTP_TO_ENVS(strAddIn) array. If a
hyphen (-) is added to the left of the class name, then the method will not be registered to that
particular class (and eventually, of course, will not be unregistered at all).

Chapter 4

117

The flow is otherwise the same as in the previous recipe, but when the OK button of the
pop-up dialog is clicked, UFT reroutes the call to our registered FR_Click function, and
hence, the custom output (as mentioned in the previous section). In a way, we can say
that our custom function is actually a delegate of the native method.

At the end of the script, we unregister the custom function from all classes in the environment
(in this case, StdWin).

Using method overriding to support object
subtypes

In some cases, we may need to implement different versions of the same native method to
reflect different subtypes of a particular control class. To achieve this, we can use method
overriding with RegisterUserFunc and reroute our test flow dynamically. For example,
suppose that Application Under Test (AUT) uses different types of input controls, such as a
password (encrypted) field, specially formatted fields for ID, date, and email, or even just for
text, as opposed to numeric only data. In such cases, we might wish to use specific code to
validate the input data or even (in a very advanced implementation) to generate it randomly.

Let us take, for example, two input fields (WebEdit) having different class HTML native
attributes. We will write a custom version of the WebEdit_Set method (actually a delegate)
that will reroute the function to execute a specific piece of code for the given element class.

Getting ready
From the File menu, navigate to New | Function Library or use the Alt + Shift + N shortcut.
Name the new function library as Web_RegFunc.vbs.

In an external HTML editor, create an HTML file and name it WebEdit_Subtype.html.
Write the following HTML code and save the file:

<html>
 <head>
 <title>AdvancedQTP - Overriding TO Methods Example
 </title>
 </head>
 <body>
 <div>Username:<input class="normal"
 type="text" name="username"></input></div>
 <div>Password:<input class="pwd"
 type="password" name="password"></input></div>
 <div>Email:<input class="normal"
 type="text" name="email"></input></div>

Method Overriding

118

 <div>Tel:<input class="not_defined"
 type="text" name="tel"></input></div>
 </body>
 <footer>
 </footer>
</html>

Open the file in Internet Explorer and add the four input fields to the local OR. At the end of
every stage, do save the test.

How to do it...
Perform the following steps:

1. In the function library, we will write the following code:
Function WebEdit_SetEx(obj, str)
 'Reroute the flow based on the obj class
 Select case lcase(obj.GetTOProperty("class"))
 Case "normal"
 print "Regular input"
 obj.set str
 Case "pwd", "enc"
 print "Password input"
 obj.SetSecure
 case else
 print "N/A - Assuming regular input"
 obj.set str
 End Select
End Function

2. In Action, we will write our code as usual:
RegisterUserFunc "WebEdit", "Set", "WebEdit_SetEx"

with Browser("AdvancedQTP - Overriding").Page("AdvancedQTP
 - Overriding")
 .WebEdit("username").Set "Username"
 .WebEdit("password").Set "Password123"
 .WebEdit("email").Set "email@email.com"
 .WebEdit("tel").Set "(01) 23 456 789"
End with
UnregisterUserFunc "WebEdit", "Set"

Chapter 4

119

The flow has rerouted behind the scenes, as explained in the previous recipes. The print log
in the Output pane, for the four input fields defined in our HTML page, are:

Regular input

Password input

Regular input

N/A - Assuming regular input

How it works...
The WebEdit_Set method was overridden in a different way. While entering the function, the
code checks the type of control that invoked the method (the sender) by retrieving the value of
its class attribute. According to the result of this inquiry, the function enters the piece of code
that was written to handle the specific control subtype. In the case of the Password field, the
SetSecure method is invoked instead of Set, to enter the value. In this case, we could have
also used the Crypt.Encrypt method with Set, as follows:

Function WebEdit_SetEx(obj, str)
 'Reroute the flow based on the obj class
 Select case lcase(obj.GetTOProperty("class"))
 Case "normal"
 print "Regular input"
 obj.set str
 Case "pwd", "enc"
 print "Password input"
 obj.set Crypt.Encrypt(str)
 case else
 print "N/A - Assuming regular input"
 obj.set str
 End Select
End Function

There's more...
Another possible application of RegisterUserFunc is to have several versions of a
method to support different requirements. The specific custom method to use should
be selected during runtime from any Action or function, by calling RegisterUserFunc
and UnregisterUserFunc. This may cover cases where we are required to support
the following:

 f Different versions of the testware framework
 f Different configurations of AUT
 f The behavior of a TO with context-dependent or dynamically changing behavior

Method Overriding

120

However, if we do change the method registrations during runtime, then we must be extremely
cautious, as it may have an impact on the test results. A good practice to meet this risk would
be to implement a tracking mechanism, for instance, with a GlobalDictionary object
(refer to Chapter 1, Data-driven Tests) from which you would be able to retrieve any class and
method, which are the current effective and registered custom methods. Accordingly, it would
be possible to validate that the correct method is registered within a given context.

Adding a new method to a class
You can also override an existing TO method and we could actually extend a TO class with
new methods. Such custom methods will be registered in the same fashion as those which
override the existing ones. For example, if you wish to retrieve the comment property of a TO,
use the following code:

Print "username: " & Browser("AdvancedQTP -
 Overriding").Page("AdvancedQTP -
 Overriding").WebEdit("username").
 GetTOProperty("miccommentproperty")

Instead of writing this every time, the best practice would be to create a new method,
which passes in the properties of the TO and returns the retrieved value.

How to do it...
Proceed with the following steps:

1. Open Object Repository in which we previously added the objects from our HTML
sample page. Enter the following values (or whichever you choose) to their respective
comment fields in the Properties pane:
WebEdit("username"): Username
WebEdit("password"): Password123
WebEdit("email"): email@email.com
WebEdit("tel"): (01) 23 456 789

2. We will write the following custom method in our Web_RegFunc.vbs function library:
Function getTOComment(obj)
 getTOComment = obj.GetTOProperty("miccommentproperty")
End Function

3. In our test, we will write the following code:
RegisterUserFunc "WebEdit", "Comment", "getTOComment"

with Browser("AdvancedQTP - Overriding").Page("AdvancedQTP
 - Overriding")

Chapter 4

121

 Print "username: " & .WebEdit("username").Comment
 Print "password: " & .WebEdit("password").Comment
 Print "email: " &.WebEdit("email").Comment
 Print "tel: " &.WebEdit("tel").Comment
End with

UnregisterUserFunc "WebEdit", "Comment"

The print log in the Output pane will show the values as we set them in Object Repository:

username: Username

password: Password123

email: email@email.com

tel: (01) 23 456 789

How it works...
To add a new method or property, we simply map (register) it to a non-existing method,
in this case, Comment. UFT does not check whether the native TO method exists or not.

The custom function simply retrieves the value of miccommentproperty (an undocumented
property of TOs), and returns it to the calling function or Action.

During runtime, we call the method or property by the name we decided, in this case,
Comment, and UFT redirects the call to our getTOComment function.

See also
Refer to the following article at www.advancedqtp.com, which also discusses this topic
in depth:

 f An article by Meir Bar-Tal at http://www.advancedqtp.com/add-new-
methods-to-objects

www.advancedqtp.com
http://www.advancedqtp.com/add-new-methods-to-objects
http://www.advancedqtp.com/add-new-methods-to-objects

5
Object Identification

In this chapter, we will cover the following recipes:

 f Setting mandatory and assistive properties for a class

 f Using Descriptive Programming inline

 f Using the Description object

 f Using child objects

 f Using native properties for object identification

 f Identifying an object based on its parent

Introduction
This chapter will delve into different aspects of the features provided by UFT to identify GUI
Test Objects (TO). UFT brings along a wide array of add-ins to support different software
technologies such as Web, .NET, Java, Delphi, and PowerBuilder. However, despite this
diversity that requires a specific add-in implementation for each technology, the basic
underlying technology and approach within UFT is the same. In this chapter, we will explain
how to make use of this basic approach to tackle the identification of TOs during design and
run time. We will also see how to access native properties, which are not supported by UFT
out of the box when using GetROProperty and CheckProperty.

Object Identification

124

Setting mandatory and assistive properties
for a class

In this recipe, we will see how to change the default settings for object identification, which
identifies the TO properties that UFT uses in its attempt to achieve unequivocal object
identification. After reading this recipe, you will be able to view, analyze, and change the
properties UFT uses to identify a TO. You will also acquire a deep understanding of how these
properties are used by UFT to achieve object identification.

Getting ready
Before trying this recipe, ensure that the required hooks in the technology adapters, which are
defined as add-ins or plug-ins for each of the relevant technologies (Web, .NET, Java, and so
on.), are loaded, and that the current test has them defined in its settings.

How to do it...
Proceed with the following steps:

1. From the UFT home page, navigate to Tools | Object Identification…. The following
dialog will open:

Chapter 5

125

The preceding screenshot shows the dialog after selecting Web from the Environment
listbox and clicking on the WebEdit class. We can see that by default, UFT defines
three mandatory properties (html tag, name, and type) for this class and has no
assistive property.

2. We can change the set of Mandatory Properties by clicking on the Add/Remove
button below the list. The following dialog will open:

We can then mark or unmark any of the listed properties. The properties we choose
must have a solid logic behind them: one that will enhance the ability to identify TOs
of the particular class correctly. For instance, if an ID is used instead of a name, then
we may wish to use only the ID as the identifying property, as it should be unique for
each web element.

3. The same procedure can be used for the Assistive Properties list by clicking on
its Add/Remove button. Please note that mandatory and assistive properties are
mutually exclusive.

4. Though it is a rarely used feature, it is possible to add custom properties to the
default list of properties by using the New button, which opens the following dialog:

You must ensure that the property is added by the developer to the objects of this class in the
application code.

Object Identification

126

How it works...
Let us review how object identification is accomplished by UFT and define the basic concepts
that underlie in this recipe.

By default, each TO class has two sets of properties defined, namely, mandatory and assistive.
UFT mechanism for object identification works as follows:

When you add a TO to OR (for example, by recording a script or by using add object/define
new object from the OR menu), the set of mandatory properties is used in full to identify the
object, and these will appear in the Description properties section on the right-hand pane
of the OR. If, however, more than one TO matches the same description as these mandatory
properties, UFT will attempt to distinguish between them using the assistive properties. If
none are defined for that particular class, then an ordinal identifier, Location or Index, is
used. The location identifier refers to the relative position on the client screen, beginning
from top to bottom and moving left to right. The index identifier refers to the order in which
objects appear in the underlying code. For browser objects, UFT uses creationtime as the
ordinal identifier, which is a zero-based index for browser objects, where the first browser gets
value zero, the second one gets the value one, and so on.

Finally, if all the attempts fail, UFT will strive to use an identification mechanism called Smart
Identification (SI). This algorithm will try to find the best match for the given description, but it
is highly recommended to disable this feature in the project settings and make every possible
effort to ensure that all TOs are unequivocally identified. It is possible to disable the use of SI
for each run session from the Run tab in the Test Settings dialog (select this by navigating to
File | Settings).

There are two reasons for this recommendation. First, the SI mechanism is used as a last
resort, so it will start only after UFT fails to identify the object based on the description.
Therefore, it might affect the performance of the test. Second, there is no guarantee that the
match found by SI is the one you intended to use, and this may lead to unexpected results.

Using Descriptive Programming inline
Apart from storing TOs in OR, UFT supports using Inline Descriptions (ID), a technique also
generally known as Descriptive Programming (DP). As these descriptions are strings, the
technique allows for parameterization, and runtime and dynamic identification of objects
using data that was predefined or retrieved from AUT during the run session.

Getting ready
Please ensure that the Internet Explorer application is open on Google.

Chapter 5

127

How to do it...
Suppose that we need to identify an object like one of the links on the Google search engine,
such as YouTube, then click on it, and navigate back to Google.

Proceed with the following steps:

1. If we know the values for identification properties (which we can obtain using the
UFT Spy), then we can easily write code to accomplish this as follows:
with Browser("micclass:=Browser",
 "title:=Google").Page("title:=Google").Link("html
 tag:=A","innertext:=YouTube")
 If .exist(0) Then
 .highlight
 .click
 End If
 Browser("title:=YouTube").Back
End with

2. We may be required to parameterize the innertext variable of the Link function
so that we can run the same test on several links. To achieve this, we will replace
the first line with the following:
with Browser("micclass:=Browser",
 "title:=Google").Page("title:=Google").Link("html
 tag:=A","innertext:="&DataTable("LinkText",
 dtLocalSheet))

Also, replace the last line with the following:

Browser("title:=.*"&DataTable("LinkText",
 dtLocalSheet)&".*").Back

3. We execute this code with a DataTable parameter called LinkText (refer to the
Creating a DataTable parameter recipe in Chapter 1, Data-driven Tests) with three
rows with the values YouTube™, News, and Maps. To set the Action to run on all
rows, go to the Test Flow pane (from the menu navigate to View | Test Flow),
and then right-click on Action and select Action Call Properties..., or navigate
to File | Settings, select Run tab, and then select the Run on all rows option.

Note that in the last case, we concatenated an asterisk (*) before and after the LinkText
parameter to match the Browser title, which adds Google before News and Maps. The
inline description is treated by UFT as a regular expression by default.

Object Identification

128

How it works...
Instead of storing the TOs in OR, we use the Browser, Page, and Link objects and provide
them either with a parameter string or a series of strings separated by commas, as shown in
the previous section. These strings are used to build the description with which the objects
are identified. First, the top level parent object (Browser), then Page, and finally, Link are
identified. Take note of the syntax for the comma-separated property-value pairs in some of
the descriptions.

Instead of hardcoded strings, such as YouTube for innertext, we concatenated a value
taken from an external data source, namely DataTable, ran the test for several iterations
(one link per DataTable row), and hence, tested that each link leads to the correct target.
In our example, we check that our definition actually works by asking if it exists, and only
then performing the Highlight and Click operations.

Using the Description object
The Description object is one of UFT's reserved objects, like the Environment and
Reporter object. Basically, the Description object resembles a dictionary object with key-
value pairs, which defines the properties and values by which the target TO or objects (see the
Using child objects recipe), should be identified. Similar to the OR feature, the Description
object also allows for regular expressions as property values. The following table shows
regular expression samples of character property values:

User To match character
\w This represents a word character
\W This represents a nonword character
\d This represents a decimal digit
\D This represents a nondecimal digit
\s This represents a whitespace character
\S This represents a nonwhitespace character

The Description object comes in handy in situations where the runtime object is
dynamically built by the application, or when more complex criteria need to be applied to
ascertain the identity of a TO among a collection of otherwise identical objects (for example,
refer to the Identifying elements based on anchors recipe in Chapter 2, Testing Web Pages).
Another application of the Description object is to get such a collection of objects and
perform checkpoints to verify the values of specific properties.

Chapter 5

129

Getting ready
Please ensure that the Internet Explorer application is open on Google.

How to do it...
We will identify the input query WebEdit object using a Description object. In Action,
we will put the following code:

Set desc=Description.Create
desc("html tag").value="INPUT|input"
desc("html tag").RegularExpression = true
desc("name").value="q"

set oQuery=Browser("title:=Google").Page("title:=Google")
 .WebEdit(desc)

With oQuery
 If .exist(0) Then
 .highlight
 End If
End With
Set oQuery=nothing
Set desc=nothing

How it works...
We address the WebEdit parent objects using inline descriptions (refer to the Using
Descriptive Programming inline recipe), and then target WebEdit using the desc
Description object, which is used to identify the object using the property-value pairs.
UFT returns a valid reference to the runtime object, exactly as it would if we used a TO stored
in OR. Next, we check if the object reference exists and use the undocumented highlight
method, which flashes a rectangle for a brief time around the target TO.

Object Identification

130

Using child objects
In the previous recipe, you have learned about using the Description object. This recipe
will show you how to get a collection of runtime objects and perform checkpoints to verify the
values of specific properties. In our example, we will describe how to retrieve images from a
web page, and then perform a check operation using a Checkpoint object that we would
store beforehand in OR.

How to do it...
Proceed with the following steps:

1. We will create a Description object and then define the appropriate property-value
pairs for identification, as follows:
Dim oDesc, i, oImgCollection

Set oDesc=Description.Create
oDesc("html tag").value="IMG|img"
oDesc("html tag").RegularExpression = true

2. The following statement will retrieve a collection of images from the Google page:
set oImgCollection=Browser("title:=Google")
 .Page("title:=Google").ChildObjects(oDesc)

3. With this collection, we can now implement a loop that uses our Checkpoint object
to validate the required properties:

For i = 0 To oImgCollection.count-1
 oImgCollection(i).Check(Checkpoint("Image"))
Next

How it works...
The Description object, oDesc, was created to cover objects having the HTML tag img.
The page's ChildObjects method uses the Description object property's set definition to
find a match with actual application (runtime) objects and returns a collection (array) of such
objects. The items in this collection can be accessed using a zero-based index, as shown in
the For loop (in the previous section), and different operations, such as GetROProperty
and WaitProperty, can be applied to them. It is important to stress that these are runtime
objects, and hence, trying to apply the methods GetTOProperty, SetTOProperty, and
GetTOProperties is useless. This technique is useful when we need to perform a standard
set of checks on different objects, as it optimizes our code syntax and allows for re-use of
Checkpoint objects. Moreover, it accommodates future changes in the application, as the
procedure operates on dynamically retrieved objects.

Chapter 5

131

Using native properties for object
identification

With UFT, it is very straightforward to access identification properties using GetROProperty
and CheckProperty. However, this limits the scope of what can be checked, as TOs bring
many properties that may be required. Fortunately, at least in web applications, we can also
use native properties for object identification. In this recipe, we will demonstrate this feature
using adapted examples from the previous recipes.

Getting ready
Please ensure that the Internet Explorer application is open on Google.

How to do it...
We will identify the input query WebEdit object using a Description object. In Action,
we will put the following code:

Set desc=Description.Create
desc("attribute/nodeName").value="INPUT|input"
desc("attribute/nodeName").RegularExpression = true
desc("attribute/name").value="q"

set oQuery=Browser("title:=Google").Page("title:=Google")
 .WebEdit(desc)

With oQuery
 If .exist(0) Then
 .highlight
 End If
End With
Set oQuery=nothing
Set desc=nothing

How it works...
Basically, this code works exactly as detailed in the Using the Description object recipe. The
difference is in the way we defined the properties in the Description object; while in the
previous example we used identification properties, here we use native or runtime properties.
The attribute (or prefix) variable indicates that it is a runtime property. Recall that the
standard windows Test Objects lack runtime properties and object capabilities. The name
of the property must be valid.

Object Identification

132

There's more...
The reader may ask, when would using native properties be useful? There are several cases in
which it would be useful, as follows:

 f First, there are cases where none of the TO properties provided by UFT yield robust,
consistent object identification. In other cases, these properties are not reliable due
to possible glitches. In such a case, the Description object identifier might be the
last resort and the only possibility to achieve unique object identification.

 f Second, it enables us to get the value of a native property without the need to use
the Object property. For example:
ImgProtocol=Browser("App Perform").Page("Application
 Performance").Image("Precise").
 GetROProperty("attribute/protocol")

 f There are cases where we would need to refer to the UniqueID native attribute,
which is not even available through the UFT Spy. This property is similar to hWnd we
know from Windows applications, and it can be useful when the default properties of
an object change during the automation run session, making identification through
parameterized properties very demanding. We would then identify the target object
once, get UniqueID, and then use it across the runtime session. For example:

'Get the UniqueID for an identified Web element
ImgID=Browser("Browser").Page("Page").Image("Image").
 GetROProperty("attribute/UniqueID")

'Use the UniqueID with an inline description
Browser("Browser").Page("Page").Image("attribute/UniqueID:=
 ”&ImgID).Click

See also
Refer to an article by Meir Bar-Tal at http://www.advancedqtp.com/using-runtime-
attributes-to-describe-qtp-web-objects/.

http://www.advancedqtp.com/using-runtime-attributes-to-describe-qtp-web-objects/
http://www.advancedqtp.com/using-runtime-attributes-to-describe-qtp-web-objects/
http://www.advancedqtp.com/using-runtime-attributes-to-describe-qtp-web-objects/
http://www.advancedqtp.com/using-runtime-attributes-to-describe-qtp-web-objects/

Chapter 5

133

Identifying an object based on its parent
In some cases, a TO may appear repeatedly on a window or page. A common example is
images that are used as buttons in web applications. If a function is called to perform an
action on such a TO, we may need to ensure that the correct object was passed. A powerful
technique to achieve this is already outlined in the Identifying elements based on anchors
recipe in Chapter 2, Testing Web Pages. In this recipe, we will see how to do it according to the
object's parent (such as a Frame or WebTable, but can also be any WebElement), which is
the container that holds our target TO.

How to do it...
Suppose that we have a reference to an OR TO and need to perform an operation or
checkpoint using it and that we know the description of its container object. We can then write
the following function that will indicate whether the target TO is the one we were looking for,
based on its parent:

Function IsObjectByParent(ByVal obj, ByVal oDicProps)
 Dim bParent, oParent, prop

 Set oParent = obj.GetTOProperty("parent")
 bParent = true
 For each prop in oDicProps.keys
 If oDicProps(prop) <> oParent.GetTOProperty(prop) Then
 bParent = false
 Exit for
 End If
 Next

 IsObjectByParent=bParent
End Function

How it works...
Our function accepts two arguments, the target TO and a Dictionary object, with key-value
pairs representing the properties and their respective expected values for the parent object.
Using the GetTOProperty method, we dynamically retrieve the actual parent object of our
referenced TO. Finally, we loop through the Dictionary keys and compare the expected
value associated with each key to the corresponding TO property. We set the bParent flag
variable as true (optimistic initialization), and in case any of its properties do not match the
expected set, then it will fail and exit the For loop. The function returns true only if all parent
properties match the expected set.

6
Event and Exception

Handling

In this chapter, we will cover the following recipes:

 f Catching errors inside a function or subroutine

 f Creating and using a recovery scenario

 f Using a global dictionary for recovery

Introduction
The topic of exception handling is extremely important, because the robustness of an
automation suite affects its reliability. An automated test may fail due to unhandled and
unexpected events, such as the appearance of a pop-up dialog or window, an application
crash, or a runtime error (for example, due to poor quality code or an object description that
is outdated). If you do not consider such possibilities while designing your scripts, then it will
reflect on your ability to rely on the suite and accordingly reduce the return on investment/
effort of automation. For instance, a fragile, unstable automation suite may require attended
run sessions, thus making one of the most prominent promises of automation (to free the
manual tester for other tasks) void. This chapter will describe various techniques to handle
events and exceptions.

Event and Exception Handling

136

Catching errors inside a function or
subroutine

In this recipe, we will learn how to implement an error trap inside a function or subroutine.

Getting ready
From the File menu, navigate to New | Function Library... or use the Alt + Shift + N shortcut.
Name the new function library ErrHandling_Func.vbs. You can use any other name, or
reuse an existing function library. Do not forget to ensure that the library is attached to the
test through Resources (File | Settings | Resources).

How to do it...
The technique is very simple. First, within your function, identify the line or lines of code that
carry the potential of raising an exception (for example, an unhandled error). For instance,
we write the following simple function to perform a division operation:

Function DblDivideXByY(x, y)
 'Return the result of the division as a Double
 DivideXByY=CDbl(x/y)
End function

The problem with the preceding code is that it assumes a priori that the parameters passed
to the function are valid. However, there are at least two cases in which the function would
fail to execute due to a runtime error:

 f y=0

 f x or y are not numeric

While it is possible to check for the possible sources of error (in the preceding code, by using
the isnumeric function and checking if y is not equal to zero), it is in general an impractical
approach. Unlike syntax errors, which can be found easily (by navigating to Design | Check
Syntax from the UFT home page), runtime errors in VBScript pose a challenging threat to the
robustness of our scripts. For example, suppose a function A calls another function B. If the
interface of function B changes, say, an additional argument is added; then during runtime,
the call would result in an error number of 450 (the wrong number of arguments or invalid
property assignments). However, we will not be able to know this until function A is called.

Chapter 6

137

Unlike other programming languages (such as C, C++, C#, and Java), VBScript is an untyped,
late-bound language. Untyped means that variables are of a generic type called variant,
and they assume a specific type only through assignment. By late-bound, we mean that the
correctness of a statement is checked only during runtime. Windows Script Host (WSH)
parses our script code line-by-line, and throws an error only at this stage. For our test script,
this would be too late. However, we can use a feature of VBScript that allows us to disable the
error checking mechanism during runtime, in order to handle the exceptions in a custom way
that better suits our needs. This way, we set a trap to capture the error in a specific block of
code, which we expect to be troublesome.

For those knowledgeable in other programming languages, this resembles the try-catch
structure used to handle potential exceptions:

Function DblDivideXByY(x, y)
 const C_FUNC_NAME="DblDivideXByY"
 'Disable automatic runtime error-handling
 On error resume next
 'Return the result of the division as a Double
 DivideXByY=CDbl(x/y)
 'Check if an error was thrown
 If err.number <> 0 Then
 reporter.ReportEvent micFail, C_FUNC_NAME, err.description
 'TODO: Your handler
 'Example for general handling - Halt the run session
 ExitTest
 End If
 'Enable automatic runtime error-handling
 '(not a must since it's restored upon exiting the function)
 On error goto 0
End Function

We then call the DblDivideXByY function with the following lines of code:

'This is OK
print DblDivideXByY(5, 5)
'This will throw error number 11 (Divide by zero)
print DblDivideXByY(5, 0)
'This will throw error number 13 (Type mismatch)
print DblDivideXByY(5, "wrong")

Event and Exception Handling

138

How it works...
The custom method we implemented takes two arguments, x and y. The first is the dividend
and the latter is the divisor. First, to obtain full control over the flow, we disable VBScript's
native runtimeerror-handling mechanism with On error resume next. Then, we attempt
to actually perform the division operation. If an error of any kind occurs, it will be caught by
the clause If err.number <> 0 Then, and our customexception-handling code will be
executed. In our example, we report a failure and stop the test when an error occurs, but
the specific implementation one chooses depends on the requirements. For instance, the
error may occur under controlled conditions (negative test), and hence, our implementation
should be more complex to cover such situations. In any case, it is recommended to leave
the function as simple as possible.

See also
Refer to the Adding a new method to a class recipe of Chapter 4, Method Overriding.

Creating and using a recovery scenario
UFT also enables us to define a specific behavior to handle a wide array of situations in
advance. For example, instead of having to check our code for the existence of an unhandled
pop-up dialog that may interfere with the normal flow of our test, we can use a recovery
scenario to instruct UFT what to do if such is found. For example, we may tell UFT to close the
dialog and try to rerun the step that failed due to the existence of the dialog. Another option,
would be to tell UFT to exit the current Action or test iteration (in such cases, we must ensure
that the test or Action begins in the proper context, that is, with the initial set of conditions).
A simple case of a pop-up dialog is that of Notepad's warning when we try to close the
application without having saved the document:

We can use a recovery scenario to handle the pop-up dialog, and this way, we will not have to
refer to it in our code. The recovery scenario mechanism is a trap for the events we define as
interfering with our test, which we call exceptions.

Chapter 6

139

How to do it...
Proceed with the following steps:

1. From the home page of UFT, navigate to Resources | Recovery Scenario Manager.
A dialog with the same title will open. Here, in the scenario frame, click on the New
scenario button on the left-hand side of the toolbar:

Event and Exception Handling

140

The Recovery Scenario Wizard window will then open up:

As it explicitly states, this wizard will guide you through the process of defining a
recovery scenario for an unexpected event that needs to be handled, as it impedes
your test from proceeding as planned. The wizard goes through four main stages.

2. First, we define the trigger event that interrupts the test run, which can be the
appearance of an unexpected pop-up dialog, an object state, an unhandled test
run error, or an application crash, as shown in the following screenshot:

Chapter 6

141

3. Next, we specify the recovery operations required to continue, which can be a
keyboard or a mouse operation, by closing an application process, calling a custom
function, or even restarting windows:

4. For the sake of this example, we selected Keyboard or mouse operation,
and pressed the Enter key. The operation is added to the list, as shown in
the following screenshot:

Event and Exception Handling

142

Please note that leaving the Add another recovery operation checkbox marked
allows for repetition of this step. If you need only a single recovery operation, then
uncheck the checkbox:

5. Next, is a post-recovery test run operation, which is related to UFT's built-in runtime
mechanism and tells the tool what to do after the recovery operations are executed.
It is imperative to analyze the requirement thoroughly for each particular case,
because the options UFT offers would easily fail unless proper care is taken to
ensure that test preconditions are kept. For example, there is no point in proceeding
to the next test or Action iteration if the required application context is not guaranteed
to show up at the start of the iteration. The following screenshot shows various
post-recovery test run options:

Chapter 6

143

The Post-Recovery Test Run Options are:

 � Repeat current step and continue: Actually, it is a retry mechanism, which
raises the question of what would happen in the case of a recurring error. As
no exit condition is provided, an infinite loop of error-recovery-retry-error is
a real risk. The same procedure can be rewritten as a loop that repeats the
error-causing statement (or block of code) until the error is eliminated. The
code is as follows:
On Error Resume Next
'Statement that raises error
Do While Err.Number <> 0
'Statement that handles error
'Statement that raises error
Loop

 � Proceed to next step: This test will attempt to execute after the step that
gave rise to the error. The code equivalent of this option is the error-handling
structure:
On Error Resume Next
'Statement that raises error
If Err.Number <> 0 Then
'Statement that handles error
End If
'The next statement

Our test will still fail if the recovery operation does not succeed, or if
it does, but for some reason the exact application context fit for the
next step is not reached (for example, we handled a pop-up dialog
by closing it, but the application opened another one or reopened
the same pop-up as it reflected a real problem in the application,
such as a script exception as is common on the Web).

 � Proceed to next action or component iteration: This option allows you to
run the next action or component iteration. As previously mentioned, we
must ensure that the problem is specific to the case we have run, and that
our recovery procedure, together with the iteration initialization, produces
the initial conditions required for the next iteration to run.

 � Proceed to next test iteration: This option allows you to run the next
iteration and ensures that the recovery scenario (for example, closing the
application or terminating its process) and the test iteration initialization
always produce the conditions for the test to begin running from the first
step (for example, opening the application, logging in, and so on).

Event and Exception Handling

144

 � Restart current test run: This option allows you to restart the current test
run. Some isolated glitches might cause a nonconsequential exception,
which can be resolved by rerunning the test. However, if it is due to a real
bug or some substantial infrastructure problem (for example, the server
going down), then this will be to no avail.

 � Stop the test run: This option allows you to stop the test run, but it enables
analysis of the problem without having to review the effects of the exception
on the next steps, hence allowing us to focus.

6. Next, we enter descriptive information about the scenario. Name the scenario
and save it for future use as shown:

Chapter 6

145

So far, we have used the step names exactly as they appear on screen:

Define the trigger event that interrupts the test run

Specify the recovery operations required to continue

Choose a post-recovery test run operation

7. Next, clicking on the Next button will lead to the following finish screen, in which
we will check the option Add scenario to current test:

8. Now, click on Finish, which will return to the Recovery Scenario Manager dialog box:

Event and Exception Handling

146

9. We will then save the scenario to a file by clicking on Save. The resulting QRS file will
then be available to all relevant tests.

How it works...
The recovery scenario that we define will be loaded in memory and activated, unless we
choose to deactivate it by unloading the attached ORS file or by using the following code:

Recovery.Enabled = False

We can set a recovery scenario to be activated on every step or on the occurrence of an
error. A warning must be given here, as the first option may carry high costs regarding the
performance of the test.

The test will run normally, while in parallel, the recovery mechanism will monitor to check
whether the trigger event or events defined in our recovery scenarios actually occur. If they
do, then the associated recovery procedure will be called into Action, and after its execution,
the post-recovery operation, such as skipping to the next step, restarting the test run, or any
of the other options detailed in the previous section, will be carried out.

Using a global dictionary for recovery
A powerful technique to implement the direct invocation of a recovery procedure makes
an ingenious use of a global (public) Dictionary object. The method involves the use of
command wrappers, function pointers, and callback functions. If you are not familiar with
such object-oriented design patterns and concepts, then it is recommended that you first read
Chapter 7, Using Classes, where some basic concepts are outlined.

The idea of using a dictionary to implement function pointers was first raised in an article
published on www.advancedqtp.com/ back in 2007. A Dictionary object is capable of
storing data of any type, including objects and even other Dictionary objects, thus serving
as a tree-like structure. It occurred to us that we might exploit this idea to store executable
objects, which would run their code upon accessing their associated (hashed) keys. An
executable object in VBScript can be built using the command wrapper design pattern, which
encapsulates a process (function or subroutine) using a class. Another less elegant, yet
effective way of building this feature is by means of storing references to functions using the
GetRef method. So, in the event of an unexpected error, we may take advantage of such a
data structure by means of mapping handling procedures to error numbers. The result is a
hash table that stores the instructions of what to do in every case. It is also possible to store
by the same method, procedures associated with unexpected events, which are not errors,
such as the detection of a pop-up dialog. The advantages of this solution are obvious:

www.advancedqtp.com/

Chapter 6

147

 f It reduces the amount of code dedicated to reroute the test flow in case an error or
any other unexpected event occurs.

 f It provides a highly maintainable and clear way of handling exceptions and flow
branching.

 f It provides direct access to the event handler, instead of having to recur to ordinary
function calls. All you have to do is retrieve the value associated with a key (the error
or event), and the code is automatically executed.

The performance of such a mechanism outplays the ordinary recovery scenario procedures,
as it is invoked Just-in-Time (JIT) without putting any burden on the machine's resources.

Getting ready
From the File menu, navigate to New | Function Library…, or use the Alt + Shift + N shortcut.
Name the new function library GlobalDic_Func.vbs.

How to do it...
Proceed with the following steps:

1. In the function library, we will write the following code to implement the
EventHandlerManager class, which will be loaded at the start of a run session:
Dim oEventHandlerManager

Function createEventHandlerManager()
 'Singleton
 If not lcase(typename(oEventHandlerManager)) =
 "eventHandlerManager" Then
 Set oEventHandlerManager=new EventHandlerManager
 End If
End Function

Function disposeEventHandlerManager()
 Set oEventHandlerManager=nothing
End Function

Class EventHandlerManager
 Public m_DicEvents

 Function Run(sEvent)
 Events.item(cstr(sEvent))(sEvent)
 End Function

Event and Exception Handling

148

 Function mapHandlerToEvent(sEvent, sHandler)
 Events.Add sEvent, getHandler(sHandler)
 End Function

 Function getHandler(sHandler)
 Dim oHandler
 On error resume next
 Execute "set oHandler=new " & sHandler
 If err.number <> 0 Then
 Set oHandler=nothing
 reporter.ReportEvent micFail, typename(me) &
 ".getHandler", "Failed to load handler " &
 sHandler
 End If

 Set getHandler=oHandler
 End Function

 Property get Events()
 set Events=m_DicEvents
 End Property

 Property let Events(oHandlerManager)
 Set m_DicEvents=oHandlerManager
 End Property

 Sub class_initialize
 Events=createobject("Scripting.Dictionary")
 End Sub
 Sub class_terminate
 Events=nothing
 End Sub
End Class

2. Now, add the following code (it can be in the same function library or a separate one)
to implement a specific event handler:
Class MyHandler
 Public default Function Exec(sEvent)
 reporter.ReportEvent micDone, typename(me),
 "Handling event " & sEvent
 err.clear
 reporter.ReportEvent micDone, typename(me),
 "Handled event " & sEvent
 End Function
End Class

Chapter 6

149

The event handler MyHandler reports the results and clears the error. For each
specific error or event, we will implement such a class and map it using the
oEventHandlerManager global object.

3. Now, we will see how to map our event handler to an event. As an example, we will
use error number 9, which is division by zero:

createEventHandlerManager()

call oEventHandlerManager.mapHandlerToEvent("9",
 "MyHandler")

On error resume next

err.raise 9

oEventHandlerManager.Run(err.number)

disposeEventHandlerManager()

How it works...
We first create a global instance of EventHandlerManager in the global variable
oEventHandlerManager. We then use the mapHandlerToEvent method to indicate that
we wish to execute the code encapsulated in the Exec method of the MyHandler class. Then
we raise an error, and finally, call the Run method of EventHandlerManager with the error
number as an argument. Please notice that no if-then-else structure is used, so it actually
can work as a kind of implicit try-catch mechanism. You are invited to try it with different
errors and EventHandler implementations. For example, such a handler may halt the entire
run session, or skip to the next Action iteration or test iteration. At last, we dispose off our
EventHandlerManager class (this will be done only at the end of the test run).

The EventHandlerManager class is actually a wrapper to the dictionary. The member field
m_DicEvents holds a reference to the dictionary, which stores key-value pairs (in this case,
the keys being the error codes or other user-defined events), with the values being references
to instances of the corresponding EventHandler classes.

As the Exec method of EventHandler (MyHandler in our example) is defined as the
default, we do not need to write Events.item(cstr(sEvent)).Exec(sEvent) in the
Run method of EventHandlerManager. It is sufficient to access the key by means of
Events.item(cstr(sEvent))(sEvent), and this triggers the default method. In this
sense, it works like a function pointer, as mentioned earlier in this chapter.

It is, of course, important to note that in order to make this mechanism work infallibly, all
EventHandler classes must follow the same basic structure as exemplified in the previous
code with MyHandler. This means, any such class must contain a public default function
named Exec.

7
Using Classes

In this chapter, we will cover the following recipes:

 f Implementing a class

 f Implementing a simple search class

 f Implementing a generic Login class

 f Implementing function pointers

 f Implementing a generic Iterator

Introduction
This chapter describes how to use classes in VBScript, along with some very useful and
illustrative implementation examples. Classes are a fundamental feature of object-oriented
programming languages such as C++, C#, and Java. Classes enable us to encapsulate data
fields with the methods and properties that process them, in contrast to global variables
and functions scattered in function libraries. UFT already uses classes, such as with
reserved objects (refer to Chapter 8, Utility and Reserved Objects), and Test Objects are also
instances of classes. Although elementary object-oriented features such as inheritance and
polymorphism are not supported by VBScript, using classes can be an excellent choice to
make your code more structured, better organized, and more efficient and reusable.

Using Classes

152

Implementing a class
In this recipe, you will learn the following:

 f The basic concepts and the syntax required by VBScript to implement a class

 f The different components of a class and interoperation

 f How to implement a type of generic constructor function for VBScript classes

 f How to use a class during runtime

Getting ready
From the File menu, navigate to New | Function Library…, or use the Alt + Shift + N shortcut.
Name the new function library cls.MyFirstClass.vbs and associate it with your test.

How to do it...
We will build our MyFirstClass class from the ground up. There are several steps one must
follow to implement a class; they are follows:

1. Define the class as follows:
Class MyFirstClass

2. Next, we define the class fields. Fields are like regular variables, but encapsulated
within the namespace defined by the class. The fields can be private or public. A
private field can be accessed only by class members. A public field can be accessed
from any block of code. The code is as follows:
Class MyFirstClass
 Private m_sMyPrivateString
 Private m_oMyPrivateObject
 Public m_iMyPublicInteger
End Class

It is a matter of convention to use the prefix m_ for class member fields;
and str for string, int for integer, obj for Object, flt for
Float, bln for Boolean, chr for Character, lng for Long, and
dbl for Double, to distinguish between fields of different data types.
For examples of other prefixes to represent additional data types,
please refer to sites such as https://en.wikipedia.org/wiki/
Hungarian_notation.

https://en.wikipedia.org/wiki/Hungarian_notation
https://en.wikipedia.org/wiki/Hungarian_notation

Chapter 7

153

Hence, the private fields' m_sMyPrivateString and m_oMyPrivateObject will
be accessible only from within the class methods, properties, and subroutines. The
public field m_iMyPublicInteger will be accessible from any part of the code that
will have a reference to an instance of the MyFirstClass class; and it can also
allow partial or full access to private fields, by implementing public properties.

By default, within a script file, VBScript treats as public identifiers such as
function and subroutines and any constant or variable defined with Const
and Dim respectively, even if not explicitly defined. When associating
function libraries to UFT, one can limit access to specific globally defined
identifiers, by preceding them with the keyword Private.
The same applies to members of a class, function, sub, and property. Class
fields must be preceded either by Public or Private; the public scope
is not assumed by VBScript, and failing to precede a field identifier with
its access scope will result in a syntax error. Remember that, by default,
VBScript creates a new variable if the explicit option is used at the script
level to force explicit declaration of all variables in that script level.

3. Next, we define the class properties. A property is a code structure used to selectively
provide access to a class' private member fields. Hence, a property is often referred
to as a getter (to allow for data retrieval) or setter (to allow for data change).

A property is a special case in VBScript; it is the only code structure that allows for a
duplicate identifier. That is, one can have a Property Get and a Property Let
procedure (or Property Set, to be used when the member field actually is meant
to store a reference to an instance of another class) with the same identifier.
Note that Property Let and Property Set accept a mandatory argument.
For example:
Class MyFirstClass
 Private m_sMyPrivateString
 Private m_oMyPrivateObject
 Public m_iMyPublicInteger

 Property Get MyPrivateString()
 MyPrivateString = m_sMyPrivateString
 End Property

 Property Let MyPrivateString(ByVal str)
 m_sMyPrivateString = str
 End Property

 Property Get MyPrivateObject()
 Set MyPrivateObject = m_oMyPrivateObject
 End Property

Using Classes

154

 Private Property Set MyPrivateObject(ByRef obj)
 Set m_oMyPrivateObject = obj
 End Property
End Class

The public field m_iMyPublicInteger can be accessed from any code block, so
defining a getter and setter (as properties are often referred to) for such a field is
optional. However, it is a good practice to define fields as private and explicitly provide
access through public properties. For fields that are for exclusive use of the class
members, one can define the properties as private. In such a case, usually, the setter
(Property Let or Property Set) would be defined as private, while the getter
(Property Get) would be defined as public. This way, one can prevent other code
components from making changes to the internal fields of the class to ensure data
integrity and validity.

4. Define the class methods and subroutines. A method is a function, which is a
member of a class. Like fields and properties, methods (as well as subroutines)
can be Private or Public. For example:
Class MyFirstClass
 '… Continued
 Private Function MyPrivateFunction(ByVal str)
 MsgBox TypeName(me) & " – Private Func: " & str
 MyPrivateFunction = 0
 End Function

 Function MyPublicFunction(ByVal str)
 MsgBox TypeName(me) & " – Public Func: " & str
 MyPublicFunction = 0
 End Function

 Sub MyPublicSub(ByVal str)
 MsgBox TypeName(me) & " – Public Sub: " & str
 End Sub
End Class

Keep in mind that subroutines do not return a value. Functions by design
should not return a value, but they can be implemented as a subroutine.
A better way is to, in any case, have a function return a value that tells the
caller if it executed properly or not (usually zero (0) for no errors and one (1)
for any fault). Recall that a function that is not explicitly assigned a value
function and is not explicitly assigned a value, will return empty, which may
cause problems if the caller attempts to evaluate the returned value.

Chapter 7

155

5. Now, we define how to initialize the class when a VBScript object is instantiated:
Set obj = New MyFirstClass

The Initialize event takes place at the time the object is created. It is possible
to add code that we wish to execute every time an object is created. So, now define
the standard private subroutine Class_Initialize, sometimes referred to
(albeit only by analogy) as the constructor of the class. If implemented, the code will
automatically be executed during the Initialize event. For example, if we add the
following code to our class:
Private Sub Class_Initialize
 MsgBox TypeName(me) & " started"
End Sub

Now, every time the Set obj = New MyFirstClass statement is executed,
the following message will be displayed:

6. Define how to finalize the class. We finalize a class when a VBScript object is
disposed of (as follows), or when the script exits the current scope (such as when
a local object is disposed when a function returns control to the caller), or a global
object is disposed (when UFT ends its run session):
Set obj = Nothing

The Finalize event takes place at the time when the object is removed from
memory. It is possible to add code that we wish to execute, every time an object is
disposed of. If so, then define the standard private subroutine Class_Terminate,
sometimes referred to (albeit only by analogy) as the destructor of the class. If
implemented, the code will automatically be executed during the Finalize event.
For example, if we add the following code to our class:
Private Sub Class_Terminate
 MsgBox TypeName(me) & " ended"
End Sub

Using Classes

156

Now, every time the Set obj = Nothing statement is executed, the following
message will be displayed:

7. Invoking (calling) a class method or property is done as follows:
'Declare variables
Dim obj, var

'Calling MyPublicFunction
obj.MyPublicFunction("Hello")

'Retrieving the value of m_sMyPrivateString
var = obj.MyPrivateString

'Setting the value of m_sMyPrivateString
obj.MyPrivateString = "My String"

Note that the usage of the public members is done by using the syntax
obj.<method or property name>, where obj is the variable holding the
reference to the object of class. The dot operator (.) after the variable identifier
provides access to the public members of the class. Private members can be
called only by other members of the class, and this is done like any other regular
function call.

8. VBScript supports classes with a default behavior. To utilize this feature, we need to
define a single default method or property that will be invoked every time an object
of the class is referred to, without specifying which method or property to call. For
example, if we define the public method MyPublicFunction as default:
Public Default Function MyPublicFunction(ByVal str)
 MsgBox TypeName(me) & " – Public Func: " & str
 MyPublicFunction = 0
End Function

Chapter 7

157

Now, the following statements would invoke the MyPublicFunction method
implicitly:
Set obj = New MyFirstClass

obj("Hello")

This is exactly the same as if we called the MyPublicFunction method explicitly:

Set obj = New MyFirstClass

obj.MyPublicFunction("Hello")

Contrary to the usual standard for such functions, a default method or
property must be explicitly defined as public.

9. Now, we will see how to add a constructor-like function. When using classes stored
in function libraries, UFT (know as QTP in previous versions), cannot create an object
using the New operator inside a test Action.

In general, the reason is linked to the fact that UFT uses a wrapper on top of WSH,
which actually executes the VBScript (VBS 5.6) code. Therefore, in order to create
instances of such a custom class, we need to use a kind of constructor function
that will perform the New operation from the proper memory namespace. Add the
following generic constructor to your function library:
Function Constructor(ByVal sClass)
 Dim obj

 On Error Resume Next

 'Get instance of sClass
 Execute "Set obj = New [" & sClass & "]"
 If Err.Number <> 0 Then
 Set obj = Nothing
 Reporter.ReportEvent micFail, "Constructor", "Failed
 to create an instance of class '" & sClass & "'."
 End If

 Set Constructor = obj
End Function

We will then instantiate the object from the UFT Action, as follows:
Set obj = Constructor("MyFirstClass")

Using Classes

158

Consequently, use the object reference in the same fashion as seen in the previous
line of code:

obj.MyPublicFunction("Hello")

How it works...
As mentioned earlier, using the internal public fields, methods, subroutines, and properties
is done using a variable followed by the dot operator and the relevant identifier (for example,
the function name).

As to the constructor, it accepts a string with the name of a class as an argument, and
attempts to create an instance of the given class. By using the Execute command (which
performs any string containing valid VBScript syntax), it tries to set the variable obj with a
new reference to an instance of sClass. Hence, we can handle any custom class with this
function. If the class cannot be instantiated (for instance, because the string passed to the
function is faulty, the function library is not associated to the test, or there is a syntax error
in the function library), then an error would arise, which is gracefully handled by using the
error-handling mechanism (as described in Chapter 6, Event and Exception Handling),
leading to the function returning nothing. Otherwise, the function will return a valid
reference to the newly created object.

See also
The following articles at www.advancedqtp.com are part of a wider collection, which also
discuss classes and code design in depth:

 f An article by Yaron Assa at http://www.advancedqtp.com/introduction-to-
classes

 f An article by Yaron Assa at http://www.advancedqtp.com/introduction-to-
code-design

 f An article by Yaron Assa at http://www.advancedqtp.com/introduction-to-
design-patterns

www.advancedqtp.com
http://www.advancedqtp.com/introduction-to-classes
http://www.advancedqtp.com/introduction-to-classes
http://www.advancedqtp.com/introduction-to-code-design
http://www.advancedqtp.com/introduction-to-code-design
http://www.advancedqtp.com/introduction-to-design-patterns
http://www.advancedqtp.com/introduction-to-design-patterns

Chapter 7

159

Implementing a simple search class
In this recipe, we will see how to create a class that can be used to execute a search
on Google.

Getting ready
From the File menu, navigate to New | Test, and name the new test SimpleSearch. Then,
create a new function library by navigating to New | Function Library, or use the Alt + Shift +
N shortcut. Name the new function library cls.Google.vbs and associate it with your test.

How to do it...
Proceed with the following steps:

1. Define an environment variable as OPEN_URL.

2. Insert the following code in the new library:
Class GoogleSearch
 Public Function DoSearch(ByVal sQuery)
 With me.Page_
 .WebEdit("name:=q").Set sQuery
 .WebButton("html id:=gbqfba").Click
 End With
 me.Browser_.Sync

 If me.Results.WaitProperty("visible", 1, 10000) Then
 DoSearch = GetNumResults()
 Else
 DoSearch = 0
 Reporter.ReportEvent micFail, TypeName(Me),
 "Search did not retrieve results until timeout"
 End If
 End Function

Using Classes

160

 Public Function GetNumResults()
 Dim tmpStr

 tmpStr = me.Results.GetROProperty("innertext")
 tmpStr = Split(tmpStr, " ")
 GetNumResults = CLng(tmpStr(1)) 'Assumes the number
 is always in the second entry
 End Function

 Public Property Get Browser_()
 Set Browser_ = Browser(me.Title)
 End Property
 Public Property Get Page_()
 Set Page_ = me.Browser_.Page(me.Title)
 End Property
 Public Property Get Results()
 Set Results = me.Page_.WebElement(me.ResultsId)
 End Property
 Public Property Get ResultsId()
 ResultsId = "html id:=resultStats"
 End Property
 Public Property Get Title()
 Title = "title:=.*Google.*"
 End Property

 Private Sub Class_Initialize
 If Not me.Browser_.Exist(0) Then
 SystemUtil.Run "iexplore.exe",
 Environment("OPEN_URL")
 Reporter.Filter = rfEnableErrorsOnly
 While Not Browser_.Exist(0)
 Wait 0, 50
 Wend
 Reporter.Filter = rfEnableAll
 Reporter.ReportEvent micDone, TypeName(Me),
 "Opened browser"
 Else
 Reporter.ReportEvent micDone, TypeName(Me),
 "Browser was already open"
 End If
 End Sub

Chapter 7

161

 Private Sub Class_Terminate
 If me.Browser_.Exist(0) Then
 me.Browser_.Close
 Reporter.Filter = rfEnableErrorsOnly
 While me.Browser_.Exist(0)
 wait 0, 50
 Wend
 Reporter.Filter = rfEnableAll
 Reporter.ReportEvent micDone, TypeName(Me),
 "Closed browser"
 End If
 End Sub
End Class

3. In Action, write the following code:
Dim oGoogleSearch
Dim oListResults
Dim oDicSearches
Dim iNumResults
Dim sMaxResults
Dim iMaxResults

'--- Create these objects only in the first iteration
If Not LCase(TypeName(oListResults)) = "arraylist" Then
 Set oListResults =
 CreateObject("System.Collections.ArrayList")
End If

If Not LCase(TypeName(oDicSearches)) = "Dictionary" Then
 Set oDicSearches = CreateObject("Scripting.Dictionary")
End If

'--- Get a fresh instance of GoogleSearch
Set oGoogleSearch = GetGoogleSearch()

'--- Get search term from the DataTable for each action
 iteration
sToSearch = DataTable("Query", dtLocalSheet)
iNumResults = oGoogleSearch.DoSearch(sToSearch)

'--- Store the results of the current iteration
'--- Store the number of results

Using Classes

162

oListResults.Add iNumResults
'--- Store the search term attached to the number of
 results as key (if not exists)
If Not oDicSearches.Exists(iNumResults) Then
 oDicSearches.Add iNumResults, sToSearch
End If
'Last iteration (assuming we always run on all rows), so
 perform the comparison between the different searches

If CInt(Environment("ActionIteration")) =
 DataTable.LocalSheet.GetRowCount Then
 'Sort the results ascending
 oListResults.Sort
 'Get the last item which is the largest
 iMaxResults = oListResults.item(oListResults.Count-1)
 'Print to the Output pane for debugging
 Print iMaxResults
 'Get the search text which got the most results
 sMaxResults = oDicSearches(iMaxResults)
 'Report result
 Reporter.ReportEvent micDone, "Max search", sMaxResults
 & " got " & iMaxResults
 'Dispose of the objects used
 Set oListResults = Nothing
 Set oDicSearches = Nothing
 Set oGoogleSearch = Nothing
End If

4. In the local datasheet, create a parameter named Query and enter several values
to be used in the test as search terms.

5. Next, from the UFT home page navigate to View | Test Flow, and then right-click with
the mouse on the Action component in the graphic display, then select Action Call
Properties and set the Action to run on all rows.

How it works...
The Action takes care to preserve the data collected through the iterations in the array list
oListResults and the dictionary oDicSearches. It checks if it reaches the last iteration
after each search is done. Upon reaching the last iteration, it analyzes the data to decide
which term yielded the most results. A more detailed description of the workings of the code
can be seen as follows.

Chapter 7

163

First, we create an instance of the GoogleSearch class, and the Class_Initialize
subroutine automatically checks if the browser is not already open. If not open, Class_
Initialize opens it with the SystemUtil.Run command and waits until it is open at
the web address defined in Environment("OPEN_URL").

The Title property always returns the value of the Descriptive Programming (DP) value
required to identify the Google browser and page.

The Browser_, Page_, and Results properties always return a reference to the Google
browser, page, and WebElement respectively, which hold the text with the search results.

After the browser is open, we retrieve the search term from the local DataTable parameter
Query and call the GoogleSearch DoSearch method with the search term string as
parameter. The DoSearch method returns a value with the number of results, which are
given by the internal method GetNumResults.

In the Action, we store the number itself and add to the dictionary, an entry with this number
as the key and the search term as the value.

When the last iteration is reached, an analysis of the results is automatically done by invoking
the Sort method of oListResults ArrayList, getting the last item (the greatest), and
then retrieving the search term associated with this number from the dictionary; it reports
the result.

At last, we dispose off all the objects used, and then the Class_Terminate subroutine
automatically checks if the browser is open. If open, then the Class_Terminate subroutine
closes the browser.

Implementing a generic Login class
In this recipe, we will see how to implement a generic Login class. The class captures both,
the GUI structure and the processes that are common to all applications with regard to their
user access module. It is agnostic to the particular object classes, their technologies, and
other identification properties. The class shown here implements the command wrapper
design pattern, as it encapsulates a process (Login) with the main default method (Run).

Getting ready
You can use the same function library cls.Google.vbs as in the previous recipe
Implementing a simple search class, or create a new one (for instance, cls.Login.vbs)
and associate it with your test.

Using Classes

164

How to do it...
1. In the function library, we will write the following code to define the class Login:

Class Login
 Private m_wndContainer 'Such as a Browser, Window,
 SwfWindow
 Private m_wndLoginForm 'Such as a Page, Dialog,
 SwfWindow
 Private m_txtUsername 'Such as a WebEdit, WinEdit,
 SwfEdit
 Private m_txtIdField 'Such as a WebEdit, WinEdit,
 SwfEdit
 Private m_txtPassword 'Such as a WebEdit, WinEdit,
 SwfEdit
 Private m_chkRemember 'Such as a WebCheckbox,
 WinCheckbox, SwfCheckbox
 Private m_btnLogin 'Such as a WebEdit, WinEdit,
 SwfEdit
End Class

These fields define the test objects, which are required for any Login class, and the
following fields are used to keep runtime data for the report:
 Public Status 'As Integer
 Public Info 'As String

The Run function is defined as a Default method that accepts a Dictionary
as argument. This way, we can pass a set of named arguments, some of which are
optional, such as timeout.
Public Default Function Run(ByVal ArgsDic)
 'Check if the timeout parameter was passed, if not
 assign it 10 seconds
 If Not ArgsDic.Exists("timeout") Then ArgsDic.Add
 "timeout", 10
 'Check if the client window exists
 If Not me.Container.Exist(ArgsDic("timeout")) Then
 me.Status = micFail
 me.Info = "Failed to detect login
 browser/dialog/window."
 Exit Function
 End If
 'Set the Username
 me.Username.Set ArgsDic("Username")
 'If the login form has an additional mandatory field

Chapter 7

165

 If me.IdField.Exist(ArgsDic("timeout")) And
 ArgsDic.Exists("IdField") Then
 me.IdField.Set ArgsDic("IdField")
 End If
 'Set the password
 me.Password.SetSecure ArgsDic("Password")
 'It is a common practice that Login forms have a
 checkbox to keep the user logged-in if set ON
 If me.Remember.Exist(ArgsDic("timeout")) And
 ArgsDic.Exists("Remember") Then
 me.Remember.Set ArgsDic("Remember")
 End If
 me.LoginButton.Click
 End Function

The Run method actually performs the login procedure, setting the username and
password, as well as checking or unchecking the Remember Me or Keep me Logged
In checkbox according to the argument passed with the ArgsDic dictionary.

The Initialize method accepts Dictionary just like the Run method. However,
in this case, we pass the actual TOs with which we wish to perform the login
procedure. This way, we can actually utilize the class for any Login form, whatever
the technology used to develop it. We can say that the class is technology agnostic.
The parent client dialog/browser/window of the objects is retrieved using the
GetTOProperty("parent") statement:
Function Initialize(ByVal ArgsDic)
 Set m_txtUsername = ArgsDic("Username")
 Set m_txtIdField = ArgsDic("IdField")
 Set m_txtPassword = ArgsDic("Password")
 Set m_btnLogin = ArgsDic("LoginButton")
 Set m_chkRemember = ArgsDic("Remember")
 'Get Parents
 Set m_wndLoginForm =
 me.Username.GetTOProperty("parent")
 Set m_wndContainer =
 me.LoginForm.GetTOProperty("parent")
 End Function

In addition, here you can see the following properties used in the class for better
readability:
Property Get Container()
 Set Container = m_wndContainer
 End Property
 Property Get LoginForm()

Using Classes

166

 Set LoginForm = m_wndLoginForm
 End Property
 Property Get Username()
 Set Username = m_txtUsername
 End Property
 Property Get IdField()
 Set IdField = m_txtIdField
 End Property
 Property Get Password()
 Set Password = m_txtPassword
 End Property
 Property Get Remember()
 Set Remember = m_chkRemember
 End Property
 Property Get LoginButton()
 Set LoginButton = m_btnLogin
 End Property

 Private Sub Class_Initialize()
 'TODO: Additional initialization code here
 End Sub
 Private Sub Class_Terminate()
 'TODO: Additional finalization code here
 End Sub

We will also add a custom function to override the WinEdit and WinEditor Type
methods:
Function WinEditSet(ByRef obj, ByVal str)
 obj.Type str
End Function

This way, no matter which technology the textbox belongs to, the Set method will
work seamlessly.

2. To actually test the Login class, write the following code in the Test Action (this
time we assume that the Login form was already opened by another procedure):

Dim ArgsDic, oLogin

'Register the set method for the WinEdit and WinEditor
RegisterUserFunc "WinEdit", "WinEditSet", "Set"
RegisterUserFunc "WinEditor", "WinEditSet", "Set"

Chapter 7

167

'Create a Dictionary object
Set ArgsDic = CreateObject("Scripting.Dictionary")
'Create a Login object
Set oLogin = New Login

'Add the test objects to the Dictionary
With ArgsDic
 .Add "Username",
 Browser("Gmail").Page("Gmail").WebEdit("txtUsername")
 .Add "Password",
 Browser("Gmail").Page("Gmail").WebEdit("txtPassword")
 .Add "Remember",
 Browser("Gmail").Page("Gmail")
 .WebCheckbox("chkRemember")
 .Add "LoginButton",
 Browser("Gmail").Page("Gmail").WebButton("btnLogin")
End With

'Initialize the Login class
oLogin.Initialize(ArgsDic)

'Initialize the dictionary to pass the arguments to the
 login
ArgsDic.RemoveAll
With ArgsDic
 .Add "Username", "myuser"
 .Add "Password", "myencriptedpassword"
 .Add "Remember", "OFF"
End With

'Login
oLogin.Run(ArgsDic) 'or: oLogin(ArgsDic)

'Report result
Reporter.ReportEvent oLogin.Status, "Login", "Ended with "
 & GetStatusText(oLogin.Status) & "." & vbNewLine &
 oStatus.Info

'Dispose of the objects
Set oLogin = Nothing
Set ArgsDic = Nothing

Using Classes

168

How it works...
Here, we will not delve into the parts of the code already explained in the Implementing
a simple search class recipe. Let's see what we did in this recipe:

 f We registered the custom function WinEditSet to the WinEdit and WinEditor
TO classes using RegisterUserFunc. As discussed previously, this will make every
call to the method set to be rerouted to our custom function, resulting in applying the
correct method to the Standard Windows text fields.

 f Next, we created the objects we need, a Dictionary object and a Login object.

 f Then, we added the required test objects to Dictionary, and then invoked its
Initialize method, passing the Dictionary as the argument.

 f We cleared Dictionary and then added to it the values needed for actually
executing the login (Username, Password, and the whether to remember the
user or keep logged in checkboxes usually used in Login forms).

 f We called the Run method for the Login class with the newly populated
Dictionary.

 f Later, we reported the result by taking the Status and Info public fields from the
oLogin object.

 f At the end of the script, we unregistered the custom function from all classes in the
environment (StdWin in this case).

Implementing function pointers
What is a function pointer? A function pointer is a variable that stores the memory address of
a block of code that is programmed to fulfill a specific function. Function pointers are useful
to avoid complex switch case structures. Instead, they support direct access in runtime to
previously loaded functions or class methods. This enables the construction of callback
functions. A callback is, in essence, an executable code that is passed as an argument to a
function. This enables more generic coding, by having lower-level modules calling higher-level
functions or subroutines.

This recipe will describe how to implement function pointers in VBScript, a scripting language
that does not natively support the usage of pointers.

Getting ready
Create a new function library (for instance, cls.FunctionPointers.vbs) and associate
it with your test.

Chapter 7

169

How to do it...
1. Write the following code in the function library:

Class WebEditSet
 Public Default Function Run(ByRef obj, ByVal sText)
 On Error Resume Next
 Run = 1 'micFail (pessimistic initialization)
 Select Case True
 Case obj.Exist(0) And _
 obj.GetROProperty("visible") And _
 obj.GetROProperty("enabled")
 'Perform the set operation
 obj.Set(sText)
 Case Else
 Reporter.ReportEvent micWarning,
 TypeName(me), "Object not available."
 Exit Function
 End Select

 If Err.Number = 0 Then
 Run = 0 'micPass
 End If
 End Function
 End Class

2. Write the following code in Action:

Dim pFunctiontion
Set pFunctiontion = New WebEditSet
Reporter.ReportEvent
 pFunctiontion(Browser("Google").Page("Google")
 .WebEdit("q"), "UFT"), "Set the Google Search WebEdit",
 "Done"

How it works...
The WebEditSet class actually implements the command wrapper design pattern
(refer also to the Implementing a generic Login class recipe). This recipe also demonstrates
an alternative way of overriding any native UFT TO method without recurring to the
RegisterUserFunc method.

Using Classes

170

First, we create an instance of the WebEditSet class and set the reference to our
pFunctiontion variable. Note that the Run method of WebEditSet is declared as a default
function, so we can invoke its execution by merely referring to the object reference, as is done
with the statement pFunctiontion in the last line of code in the How to do it… section. This
way, pFunctiontion actually functions as if it were a function pointer. Let us take a close
look at the following line of code, beginning with Reporter.ReportEvent:

Reporter.ReportEvent
 pFunc(Browser("Google").Page("Google").WebEdit("q"), "UFT"),
 "Set the Google Search WebEdit", "Done"

We call the ReportEvent method of Reporter, and as its first parameter, instead of a
status constant such as micPass or micFail, we pass pFunctiontion and the arguments
accepted by the Run method (the target TO and its parameter, a string). This way of using
the function pointer actually implements a kind of callback. The value returned by the Run
method of WebEditSet will determine whether UFT will report a success or failure in regard
to the Set operation. It will return through the call invoked by accessing the function pointer.

See also
The following articles are part of a wider collection at www.advancedqtp.com, which also
discusses function pointers in depth:

 f An article by Meir Bar-Tal at http://www.advancedqtp.com/ function-
pointers-in-vb-script-revised

 f An article by Meir Bar-Tal at http://www.advancedqtp.com/using-to-
custom-property-as-function-pointer

Implementing a generic Iterator
This recipe will describe how to implement a mechanism that is able to execute any operation
for objects of any class repeatedly, until a condition is met or until the whole queue of objects
is processed. The condition can be any expression that results in a Boolean value.

Getting ready
Create a new function library (for instance, cls.Iterator.vbs), and associate it with
your test. In this recipe, we shall use the code from the previous recipe, Implementing
function pointers.

www.advancedqtp.com
http://www.advancedqtp.com/ function-pointers-in-vb-script-revised
http://www.advancedqtp.com/ function-pointers-in-vb-script-revised
http://www.advancedqtp.com/using-to-custom-property-as-function-pointer
http://www.advancedqtp.com/using-to-custom-property-as-function-pointer

Chapter 7

171

How to do it...
Proceed with the following steps:

1. In the function library, write the following code:
Class Iterator
 Public Default Function Run(ByRef oCollection, _
 ByRef ptrFunction, _
 ByVal dicArgs, _
 ByVal sExitCondition)

 Dim count, items, ix, str, dicResults

 'Create a Dictionary to store the results for each
 iteration
 Set dicResults =
 CreateObject("Scripting.Dictionary")

 'Get the collection count
 count = oCollection.Count

 'Get the object collection items
 items = oCollection.Items

 'Get the object collection keys
 keys = oCollection.Keys

 ix = 0
 Do While ix < count
 'Check if the exit condition holds true
 If Eval(sExitCondition) Then
 dicResults(keys(ix)) = "Iteration " & ix+1
 & " not performed on object " & keys(ix)
 & "." & _
 vbNewLine & "Exit condition '" &
 sExitCondition & "' holds true.
 Exiting iterator."
 Exit Do
 End If

 'This statement performs the process/operation
 on the current item
 dicResults(keys(ix)) = ptrFunction(items(ix),
 dicArgs(keys(ix)))

Using Classes

172

 'Increment the counter
 ix = ix + 1
 Loop

 'Return Dictionary with the results
 Set Run = dicResults
 End Function
 End Class

2. In Action, write the following code:

Dim dicObjects
Dim dicArgs
Dim pFunc
Dim iter
Dim sExitCond
Dim key, keys

'Set the instances of the required objects
Set iter = New Iterator
Set dicObjects = CreateObject("Scripting.Dictionary")
Set dicArgs = CreateObject("Scripting.Dictionary")
Set pFunc = New WebEditSet

'Assign the string with the end condition
sExitCond = "Err.Number <> 0"

'Add the Test Objects to Dictionary dicObjects
dicObjects.Add "MyFirstObject", _
 Browser("MyBrowser").Page("MyPage").WebEdit("Edit1")
dicObjects.Add "MySecondObject", _
 Browser("MyBrowser").Page("MyPage").WebEdit("Edit2")
dicObjects.Add "MyThirdObject", _
 Browser("MyBrowser").Page("MyPage").WebEdit("Edit3")

'Add the strings to be passed as arguments to Dictionary
 dicArgs
dicArgs.Add "MyFirstObject", "One"
dicArgs.Add "MySecondObject", "Two"
dicArgs.Add "MyThirdObject", "Three"

Chapter 7

173

'Call the iterator default function (as a function pointer)
 with its arguments
Call iter(dicObjects, pFunc, dicArgs, sExitCond)

'Dispose of the objects
Set dicArgs = Nothing
Set dicObjects = Nothing
Set pFunc = Nothing
Set iter = Nothing

In our example, we do not store the value returned by the Run method
(a dictionary) of Iterator. However, this can be done by assigning it
to a variable using Set.

How it works...
The Iterator class has a default Run method, similar to what we have seen in the
previous recipes. This method implements a loop that performs the operation defined by
pFunctiontion for all objects in the collection defined by dicObjects, or until the exit
condition defined by sExitCondition is reached. For each function call, it passes the
corresponding argument, as defined in dicArguments (To handle functions accepting
multiple arguments, one may simply send an array of values, instead of a single one as done
here, and handle them within the target Run method of our custom command wrapper.).

The command wrapper WebEditSet (refer to the previous recipe) accepts as arguments
a reference to the Test Object for which we wish to invoke the Set method and a string to
be entered to the WebEdit object. So, what is actually going on here? The Iterator class
passes to the Run method of WebEditSet the arguments it needs to perform the Set
operation. The Iterator class is agnostic of the internals of the called method, except
that it expects a return value. In this sense, it is absolutely generic.

8
Utility and Reserved

Objects

In this chapter, we will cover the following recipes:

 f Using global variables (Environment)

 f Customizing mouse operations (DeviceReplay)

 f Managing processes (SystemUtil)

 f Measuring time (MercuryTimers)

 f Resolving file locations (PathFinder)

 f Loading shared object repositories (RepositoriesCollection)

 f Loading and creating XML documents (XMLUtil)

 f Drawing a rectangle on the screen with Win32 API methods (Extern)

 f Verifying binary file contents (FileCompare)

 f Implementing a custom reserved object

 f Using remote objects

 f Utility statements

Utility and Reserved Objects

176

Introduction
This chapter describes how to use the utility and reserved objects included in UFT replace
with out-of-the-box. These objects are loaded automatically on launching UFT, so that their
methods and properties are accessible immediately. There is a wide array of reserved objects,
which offer services to utilize mouse and keyboard, system processes, files of different types,
object repositories, time, APIs, and so on.

In addition, UFT supports custom-reserved objects, thus enabling the development of
extensions to the basic out-of-the-box functionality. We will also give a step-by-step account
of how this can be accomplished.

Using global variables (Environment)
The Environment object can be best described as a kind of Dictionary that holds pairs of
keys and values. Unlike the native Dictionary, it has extended capacities such as the following:

 f UFT features that contain built-in variables, which can return useful values during
runtime, such as ActionName, ActionIteration, TestName, TestIteration,
TestDir, and OS

 f Defining test internal variables (that is, persistent) or external variables (see the
following point)

 f Loading a set of variables from an external XML file, preset, or dynamically used
during runtime

 f Automation Object Model (AOM) support, which enables the addition of internal
variables dynamically before launching a test's run session

 f The scope of the object is global and is loaded automatically when UFT opens,
as is true for all reserved objects

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut.

Chapter 8

177

How to do it…
Proceed with the following steps:

1. For built-in variables:

1. Navigate to File | Settings. The Test Settings dialog will open, as shown in
the following screenshot. The Environment item (tab) is circled in red:

Utility and Reserved Objects

178

2. Select Environment, as shown in the previous screenshot, and the dialog
will display the built-in variables list. Scroll to explore the variables. Take
note that the list here is a field labelled Current value, which will show the
variable's value only if it is not a runtime determined value. Examples for
the latter are ActionIteration and ActionName, while the variables
OS, TestName, and TestDir are examples for such values that UFT can
retrieve, independent of its running state:

Retrieving the values of built-in variables during runtime is done using code such
as the following:
Print Environment("ActionIteration")

This prints the value of the current Action iteration (when runs with input data
from the local DataSheet). It is possible, of course, to use such variables to control
the flow, as is shown in the Importing an Excel file to a test recipe in Chapter 1,
Data-driven Tests.

Built-in variables are read-only.

Chapter 8

179

2. For user-defined variables:

1. You can define your own Environment variables according to the
requirements or needs. It is important to keep in mind that, being an
object having global scope, the Environment object is very useful to store
configuration data that is used across tests (for example, website URL, super
username and encrypted password, and so on). Though technically feasible,
it is not really recommended to use this object as a means to store runtime
data that needs to be shared across actions. For that purpose, using a
globally defined Dictionary would be much more suitable.

2. From the Variable type list, select User-defined. The following screen will be
displayed. The main buttons used to edit the variables list (Add, Delete and
Edit) are labeled in the following screenshot:

Utility and Reserved Objects

180

To add, click on the + icon. The Add New Environment Parameter dialog will pop up.
Enter a variable name and value in the appropriate fields, and click on the OK button:

Add two variables, myvar and Myvar. The next screenshot shows that variable
names are case sensitive:

Chapter 8

181

As you can see, the third column labeled Type indicates that the variables are
Internal. This means that the variables are specific to the current test.

To delete, select the second variable and click on the x icon. The following dialog
will appear:

To edit, in order to change the value of a variable, select it and click on the edit icon.
The Edit Environment Parameter dialog will appear:

Edit the value as per your will and click on OK to approve. Your changes will be kept
and seen on the variables list in the Test Settings dialog.

Though the Name field appears to be enabled, it is actually a read-only
field. This means that one can only change the value of an Environment
variable, not its name. This is important to avoid problems related to
existing code, which already refer to previously defined Environment
variables. Still, if one wishes to make such a name change, the option of
adding a new variable and deleting the old one is always open. Just keep
in mind that you may need to make changes to your code.

Utility and Reserved Objects

182

3. To export:

1. The Environment object can be stored as an XML file. This is useful in order
to make general configuration settings available across tests and even test
environments or platforms. Click on the Export button, select where you
want to store the file from the Save Environment Variable File dialog that
opens, and click on the Save button.

4. To import:

1. As mentioned earlier, it is possible to reuse values previously exported to
an XML file. Just mark the checkbox labeled with load variables and values
from an external file, and click on the Browse… button on the right. Then,
select the file from the Open Environment Variable File dialog and click on
the Open button. Please note that for all variables that were loaded from the
file, the Type column now has the value of External. Consistent with the
logic of reusability, these variables cannot be changed from within the Test
Settings dialog. They are read-only. You can check this by clicking on the edit
icon or instead, by using the Edit Environment Parameter dialog, you get the
View Environment Parameter dialog. The fields are both read-only:

It is also possible to import an XML file during runtime. The syntax is as follows:

Dim sFilePathname = "C:\Automation\Config\Env_1.xml"

Environment.LoadFromFile sFilePathname

Also, if you load it before the test starts to run (using the AOM with an external
VBS file, for instance), then the optional Boolean argument, KeepLoaded,
is also required:
Environment.LoadFromFile sFilePathname, True

Otherwise, the variables and values will be lost later.

Chapter 8

183

5. Runtime creation and update:

1. Though not recommended (as I said, it is better to use a global Dictionary
for runtime data sharing), it is technically possible to create user-defined
variables during runtime. It is even possible to update their values. These
would, of course, disappear from memory when the run is over. The code
is—not surprisingly—similar to that of a Dictionary:

Environment("MyVarName") = "MyVarValue"

Do not attempt to change values of built-in or external Environment
variables. Attempting to do so will result in an error, as shown in the
following screenshot:

6. Retrieving values during runtime:

This can be easily done with code as follows:
Print Environment("MyVarName")

If the variable does not exist, an error, as shown in the following screenshot,
will pop up:

Utility and Reserved Objects

184

How it works…
The previous section was quite thorough in describing the workings of the Environment
object, so here we will summarize.

We have seen the main uses of the Environment object as a way to define variables that are
required during the run session. We have described how to add new persistent variables and
delete/edit existing ones using the test settings during design time. We have also explained
how, during runtime, one can create new variables and change their values, as well as how to
retrieve the values of any Environment variable (be it Internal, External, or runtime).

Finally, we discussed the features of Export and Import, stressing that this is how we attain
reusability of required configuration variables across tests.

See also
 f Assa, Y. (2008) Reserved Objects as an Env Object Replacement, at http://www.

advancedqtp.com/reserved-objects-as-an-env-object-replacement

 f Vainstein, D. (2008) Viewing and Editing Environment Complex Parameter Values,
at http://www.advancedqtp.com/viewing-and-editing-environment-
complex-parameter-values/

Customizing mouse operations
(DeviceReplay)

The DeviceReplay object enables us to perform mouse and keyboard operations using
code, for instance MouseMove, MouseClick, PressKey, SendString, and DragAndDrop.
Though in past years it was not so well documented in HP's materials, now, thanks to the work
of some very dedicated people from the QTP (UFT) community, light has been shed upon the
workings of this object.

The DeviceReplay object is very important for automation, one reason being that the
common Test Object methods that UFT provides, such as Click, do not always perform well.
For example, quite often, one can encounter objects that do not respond to an onclick event
unless the mouse is actually moved to a location within its bounding rectangle. In such a
case, we may revert to the DeviceReplay object to override the Click method and perform
the MouseMove operation before sending a MouseClick event.

This recipe describes how to use the DeviceReplay object to override the Click method
and perform the MouseMove operation before sending a MouseClick event.

http://www.advancedqtp.com/reserved-objects-as-an-env-object-replacement
http://www.advancedqtp.com/reserved-objects-as-an-env-object-replacement
http://www.advancedqtp.com/viewing-and-editing-environment-complex-parameter-values/
http://www.advancedqtp.com/viewing-and-editing-environment-complex-parameter-values/

Chapter 8

185

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut, or open an existing
function library.

How to do it…
In the function library, write the following code:

Public Function MouseClick_(ByRef obj)
 Dim dr
 Dim X, Y, W, H

 If Not obj.GetROProperty("visible") Then
 MouseClick_ = 1
 Reporter.ReportEvent micWarning, "MouseClick_", _
 "Object is not visible."
 Exit Function
 End If

 With obj
 H = .GetROProperty("height")
 W = .GetROProperty("width")
 X = .GetROProperty("abs_x")
 Y = .GetROProperty("abs_y")
 End With

 If X < 0 Or Y < 0 Then
 MouseClick_ = 1
 Else
 X = X+W\2
 Y = Y+H\2
 Set dr = CreateObject("Mercury.DeviceReplay")
 dr.MouseMove X, Y
 Wait 0, 50
 dr.MouseClick X, Y, 0
 Set dr = Nothing
 MouseClick_ = 0
 End If
 End Function

Utility and Reserved Objects

186

Register the function to the relevant Test Object classes, as shown in the Registering
a method to all classes recipe (RegisterUserFunc) in Chapter 4, Method Overriding. For
example, we could register the function to the Click method of the Image class (Web)
as follows:

RegisterUserFunc "Image", "Click", "MouseClick_"

This is done so that, every time we invoke a click event for a Web image, it will first move
the mouse to trigger the onmouseenter event.

How it works…
The function is generic as it takes an object as an argument. It first checks if the object is
visible, which is obligatory to perform a MouseMove operation. Then it gets its position and
dimensions, to check that it is not positioned out of the screen boundaries (this can happen
sometimes with the top-left coordinates being less than zero). If these two checks are passed,
then it calculates the middle point of the object, instantiates the DeviceReplay object, and
moves the mouse to its center. A short delay is added, to ensure that the object reacts to the
presence of the mouse within its boundaries, and only then, the MouseClick is performed.

Managing processes (SystemUtil)
The SystemUtil object is a wrapper that provides a few methods to launch and terminate
processes, and to block and unblock user input. In the following sections, we will describe
these methods and explain how they work.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut.

How to do it…
Proceed with the following steps:

1. Run: It invokes an application with parameters. There is an option to define the work
directory, operation, and mode at the opening (maximized and so on). The syntax is
as follows:
SystemUtil.Run file, [params], [dir], [op], [mode]

For example:
SystemUtil.Run "iexplore.exe", "google.com",,, 3 'Show maximized

Chapter 8

187

By operation [op], it means which action is to be performed with the file supplied
as a string argument with the possible values of open, edit, explore, find, or print.
If omitted, the open action is performed. Sending edit with the pathname to a text
file will open the default text editor (by default, Notepad.exe); explore will open
Windows Explorer at the given path; find will open Windows Explorer in search for the
files that match the pattern; and finally, print will send the file to the default printer.
Of course, correspondingly, if the file is not editable or printable, the statement fails.
Using open with a nonexecutable file will open it in its default associated application.

2. CloseDescendentProcesses: This closes all processes that were launched
by UFT during the run session. It returns the number of processes terminated:
SystemUtil.CloseDescendentProcesses()

3. CloseProcessByName: This closes all processes with the name passed as an
argument. It returns the number of processes terminated. The syntax is as follows:
SystemUtil.CloseProcessByName process_name

For example, to close all IE browsers, we may use the following code:

i = SystemUtil.CloseProcessByName("iexplore.exe")

4. CloseProcessByWndTitle: This closes all processes that launched windows
with the title passed as an argument. It returns the number of processes terminated.
The syntax is:
SystemUtil.CloseProcessByWndTitle window_title

For example, to close a Notepad window with an open file named MyFile.txt,
we will use the following:
i = SystemUtil.CloseProcessByWndTitle("MyFile.txt")

To close all notepad windows with MyFile_ as a prefix in the title and with the
additional variable text that follows, we will use a regular expression and indicate
that this is the case by sending True as a second argument:

i = SystemUtil.CloseProcessByWndTitle("MyFile.+\.txt",
 True)

5. CloseProcessByHwnd: It closes a process that launched a window with the handle
(hwnd) passed as argument. It returns true if found and closed, or false otherwise.
The syntax is as follows:
SystemUtil.CloseProcessByHwnd window_handle

Utility and Reserved Objects

188

For example, to close a window for which we know its handle, we will use code similar
to the following:

SystemUtil.Run "notepad.exe"
hwnd = Window("regexpwndtitle:=.*Notepad").GetROProperty("hwnd")
print hwnd
SystemUtil.CloseProcessByHwnd(hwnd)

6. CloseProcessById: This closes a process with a specific ID. It returns true if
found and terminated, or false otherwise. The syntax is:
SystemUtil.CloseProcessById process_id

We can retrieve the process ID for a given window and then terminate its associated
process as follows:

SystemUtil.Run "notepad.exe"
pid = Window("regexpwndtitle:=.*Notepad").GetROProperty("process
id")
print pid
SystemUtil.CloseProcessById(pid)

7. BlockInput: This disables the keyboard and mouse for user input during the run
session, in order to avoid an accidental interruption by a user. Input is resumed
when the run session ends or is paused (for example, runtime error and breakpoint);
the Alt + Ctrl + Del combination is pressed or else a critical system error will occur.
The syntax is as follows:
SystemUtil.BlockInput()

8. UnblockInput: This re-enables the keyboard and mouse for user input during the
run session. The syntax is as follows:

SystemUtil.UnblockInput()

Measuring time (MercuryTimers)
The MercuryTimers object enables measurement of time between any two operations.
Unlike the native VBScript Timer function, the MercuryTimers object supports the
utilization of multiple timer_name time measurement transactions in parallel. In essence,
the Timers object is a kind of Dictionary that can store different Timer objects, each with
a unique key. This can be useful to measure the time elapsed at different levels of the run
session, and hence, identify possible bottlenecks caused by specific blocks of code.

Chapter 8

189

The MercuryTimers object provides the following methods to use with a Timer object:

 f Start: This starts measuring time in milliseconds

 f Stop: This stops measuring time

 f Continue: This continues to measure time from the moment the timer stopped

 f Reset: This resets the timer to zero.

It also provides the ElapsedTime property, which can be used to report, as well as
synchronization.

Getting ready
From the File menu, navigate to New | Test or use the Ctrl + N shortcut.

How to do it…
Suppose we wish to measure the time taken to perform a complex task, such as a call to a
function that validates the data in a Web table. The syntax to instantiate a Timer object with
the MercuryTimers collection is as follows:

Set timer_var = MercuryTimers.Timer("timer_name")

However, it is possible to instantiate the Timer object by simply invoking its Start method:

MercuryTimers.Timer("timer_name").Start

All methods listed previously are used with this syntax.

In the following example, we have added time measurements to the previously discussed
procedure to close a process by its ID:

MercuryTimers.Timer("Notepad").Start

SystemUtil.Run "notepad.exe"
pID_Notepad = Window("regexpwndtitle:=Notepad").GetROProperty("process
id")

Print MercuryTimers.Timer("Notepad").ElapsedTime

Print pID_Notepad
Print SystemUtil.CloseProcessByid(pID_Notepad)
Print MercuryTimers.Timer("Notepad").ElapsedTime

MercuryTimers.Timer("Notepad").Stop

Utility and Reserved Objects

190

How it works…
As mentioned previously, the MercuryTimers object is actually a collection of zero or
more Timer objects, which we can instantiate during runtime. Each object named Timer
contributes to the clarity of the code (as opposed to variables using the native VBScript
Timer function) and work in parallel to the script (asynchronous mode). This means, once
we instantiate a Timer object and invoke its Start method, it works in the background, and
the script can continue to run. Using the ElapsedTime property, we can check or report
the state of affairs. The Continue, Reset, and Stop methods are self-evident and do not
require further explanation with regard to their function. However, it is important to note when
we might use them. Suppose that we wish to isolate the net time of a function A that calls
another auxiliary, function B. We might then wish to start a timer in function A, and stop it just
before calling function B (which would have its own timer), then resume the timer in function
A after returning from function B.

Resolving file locations (PathFinder)
The PathFinder object is useful to find a file or folder in the folders listed in the UFT search
list. The method Locate returns a string with the path found. Other methods, which are
rather undocumented, can be used to manage the list of search folders using code, but they
are beyond the scope of this book.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut. In the Tools menu,
select Options. In the dialog that opens, navigate to GUI Testing | Folders and add one folder
or more to the search list.

How to do it…
To get the path of a file, use the following syntax:

sFilePathname = PathFinder.Locate("MyFile.txt")

How it works…
The PathFinder.Locate method will search through the folders listed in the search list
according to their order and, if found, return the full pathname. It will return the first instance
found. This means, if more than one file with the searched name exists in the several folders,
the method will proceed based on the priority of the folders.

Chapter 8

191

Loading shared object repositories
(RepositoriesCollection)

The RepositoriesCollection object provides methods to manage the Shared Object
Repositories (SOR) associated with the actions of the test. The following screenshot shows
the methods and properties of the RepositoriesCollection object:

As you might suspect, we can see a recurrent pattern again; the object is very similar to a
Dictionary with methods such as Add, Remove, RemoveAll, and the properties Count and
Item. All methods and properties operate in the context of the current action accordingly:

 f The Add and Remove methods actually add and remove an SOR to and from the
RepositoriesCollection object, respectively

 f The RemoveAll method removes all SORs associated with the current action

 f The MoveToPos method changes the priority order of an SOR (that is, its index
in the collection)

 f The Find method returns the index of a repository within the collection

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut. Open the Notepad
application and add objects to an SOR (not the local OR) by using the Object Repository
Manager. Save the SOR in a folder of your choice.

Utility and Reserved Objects

192

How to do it…
In the Action object of the test, write the following code (replace the path with your own):

RepositoriesCollection.Add "C:\Temp\Repository1.tsr"

ExitTest

Before running the test, the solution explorer will look like the following screenshot, showing
only the Local OR in the repositories collection:

Insert a breakpoint on the line with the ExitTest statement (select it and press F9) and
then run the test. The run session will pause on that line. Now, watch the Solution Explorer
window. It should look similar to this:

Notice the lead node with Repository.tsr and also the SOR we wanted to load.

Now, press F10 or F5, and watch the Solution Explorer window as the test ends. It is restored
back to its initial state without the dynamically loaded SOR.

Chapter 8

193

How it works...
The RepositoriesCollection object is a kind of Dictionary that can load SORs dynamically
and thus, associate them with the current action. The important point to make here refers to
when such a feature would be useful, as opposed to the static association of SORs, which is
a more common practice. The answer to this question is simple. If the requirements from the
automation team/developer include supporting multiple versions of an application, then the
RepositoriesCollection object would be very useful. For example, we may use an SOR for
each version and load it dynamically at the start of the test according to the application version
(which can be taken from an Environment variable or another source).

Loading and creating XML documents
(XMLUtil)

The XMLUtil object is a utility that provides methods to do the following:

 f Create an XML wrapper

 f Load an existing XML file to an XML wrapper

Similar to other wrapper classes provided by UFT (such as those for Test Objects), it is
convenient to simplify the usage of XML data via code. It provides an array of methods
that cover the most frequently used functions of XMLDOM. Of course, if one needs specific
functions not provided by the wrapper, it is always possible to recur to the XMLDOM or LINQ
object model (which is not covered in this book).

For example, to get a specific node by ID, we shall use the native method GetElementByID.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut.

How to do it...
In the Action object of the test, write the following code:

Set xml = XMLUtil.CreateXML()

The xml variable is set to a new instance of the MicXmlData class (see a more detailed
description in the following screenshot). The instance will be empty with regard to data.
To create an instance with data from an XML file, use code such as the following:

Set xml = XMLUtil.CreateXMLFromFile(XMLFilePathname)

Utility and Reserved Objects

194

Where XMLFilePathname is a variable containing the full path to an XML file.

The following screenshot shows a partial list of the methods of the MicXmlData object that
can be used to load and manipulate XML documents:

For example, it is possible to use a MicXmlData object to create an XML document. During
runtime, add data on the go, as it is retrieved from the AUT, and later, load an XML file storing
the expected results data and perform a comparison. It is true that in general, an Excel file
serving as a DataTable would just do. However, if the data needs to be structured in a more
complex fashion, then an XML document is more suitable.

Drawing a rectangle on the screen with
Win32 API methods (Extern)

In this recipe, you will also see an example of how to use the Extern reserved object
to define references to methods in external DLLs such as those of the Win32 API. These
methods can then be loaded and executed during runtime. We have already seen an example
of this in the Reading values from an INI file recipe in Chapter 1, Data-driven Tests. Here, we
will learn how to implement a function that draws a rectangle on the screen with the color of
your choice. This is useful to mark areas on the screen that are of interest (especially when
the test fails) and hence, makes the report analysis task more efficient.

Chapter 8

195

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut.

To complete this recipe, we need the global Extern object, which, with proper use, provides
UFT with access to the methods of an external Dynamic Link Library (DLL). We will define a
variable and assign it a reference to the global Extern object (this is done to avoid persistence,
as Extern is a reserved object that is not released from memory until UFT closes):

Dim oExternObj

Set oExternObj = Extern

Then, we will declare the methods required to accomplish our task; in this case, to draw a
rectangle on the screen:

With oExternObj
 .Declare micHwnd, "GetDesktopWindow", "User32.DLL",
 "GetDesktopWindow"
 .Declare micULong, "GetWindowDC", "User32.DLL", "GetWindowDC",
 micHwnd
 .Declare micInteger, "ReleaseDC", "User32.DLL", "ReleaseDC",
 micHwnd, micULong
 .Declare micULong, "CreatePen", "Gdi32.DLL", "CreatePen",
 micInteger, micInteger, micDword
 .Declare micInteger, "SetROP2", "Gdi32.DLL", "SetROP2",
 micULong, micInteger
 .Declare micULong, "SelectObject", "Gdi32.DLL",
 "SelectObject", micULong, micULong
 .Declare micULong, "DeleteObject", "Gdi32.DLL",
 "DeleteObject", micULong
 .Declare micULong, "GetStockObject", "Gdi32.DLL",
 "GetStockObject", micInteger
 .Declare micULong, "Rectangle", "Gdi32.DLL", "Rectangle",
 micULong, micInteger, micInteger, micInteger, micInteger
End With

How to do it…
After we define the connection to the DLL with its returned value and arguments, we will write
a function that accepts the following arguments, namely, TestObject and a reference to the
Extern object named oExternLocal:

Function DrawRect(ByRef TestObject, ByVal oExternLocal)
 Dim YTop, XLeft, YBottom, XRight
 Dim hDC, hPen

Utility and Reserved Objects

196

 'Get object coordinates
 With TestObject
 XLeft = .GetROProperty("abs_x")
 YTop = .GetROProperty("abs_y")
 YBottom = YTop+.GetROProperty("height")-1
 XRight = XLeft+.GetROProperty("width")-1
 End With

 With oExternLocal
 ' Get the Desktop DC
 hDC = .GetWindowDC(.GetDesktopWindow)
 ' Create a five pixels wide Pen
 hPen = .CreatePen(6, 5, RGB(0, 0, 0)) ' PS_INSIDEFRAME, 3
 , RGB(0, 0, 0)
 .SetROP2 hDC, 6 ' hDC, R2_NOT
 .SelectObject hDC, hPen
 ' Use an empty fill
 .SelectObject hDC, .GetStockObject (5) ' NULL_BRUSH

 ' Draw the rectangle
 .Rectangle hDC, XLeft, YTop, XRight, YBottom

 ' CleanUp
 .ReleaseDC .GetDesktopWindow, hDC
 .DeleteObject hPen
 End With

 Set oExtern = Nothing
End Function

To utilize the function, use the following code:

DrawRect Window("Notepad").WinEditor("Edit"), oExternObj

Chapter 8

197

As a result of running the test, the Notepad window would look similar to the following
screenshot for a brief time (it is possible to extend it by adding a Wait command before
releasing the drawing context and pen objects):

How it works…
First, we use the variable oExternObj as a reference (shallow copy) to the Extern reserved
object to avoid persistence, that is, to ensure that the declared external methods do not remain
in memory. Otherwise, we will need to close and reopen UFT to reset the Extern object.

Second, we call the function DrawRect and pass TestObject to be highlighted (in this case,
the Notepad WinEditor) and the oExternObj variable.

Third, the function DrawRect calculates the boundaries of the given TestObject, and
calls the relevant methods from the external Win32 API via the oExternLocal object to set
the required resources (Pen, Drawing Context, and so on). It then uses the Rectangle
method to actually draw a five-pixel-wide rectangle around TestObject. Finally, it releases
the resources.

Utility and Reserved Objects

198

Verifying binary file contents (FileCompare)
UFT offers a file-comparison utility that can be used as a COM object; exactly like the
DeviceReplay, as we have seen earlier in this chapter. This utility is extremely useful to
compare pictures and other files storing binary data, by means of calling its IsEqualBin
method, the syntax being as follows:

obj.IsEqualBin FilePathname1, FilePathname2, plErrorCode As
tagCompError, [pFlags As Long]

Where obj is an instance of Mercury.FileCompare, and plErrorCode with value 0
(FC_NO_ERROR) indicates an in file compare class showing no error, and pFlags is an
optional argument, which, with value 1 (FC_DIFF_SIZE), indicates an in file compare
class showing difference of size.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut.

How to do it...
Write the following code in Action of your test:

Dim FileComparisonUtil

Set FileComparisonUtil = CreateObject("Mercury.FileCompare")

'Compare two binary files (e.g., pictures)
Print FileComparisonUtil.IsEqualBin(ExpectedFile, ActualFile, 0, 1)

How it works...
We simply pass to the function the paths of the files to be compared, and the utility does the
work for us, returning True if they are equal and False otherwise.

Implementing a custom reserved object
UFT can be extended with additional custom reserved objects. This is a feature that can
be exploited to develop objects that are instantiated at the UFT's launch time, making the
developer's work much more efficient and the code more concise. In this section, we will
describe how to implement GlobalDictionary , which is to be used for data sharing among
different Actions.

Chapter 8

199

How to do it…
Proceed with the following steps:

1. In Windows, navigate to Start | Run. Type regedit.exe and press Enter.

2. In Registry Editor, search for the folder ReservedObjects. It should appear
at HKEY_CURRENT_USER\Software\Mercury Interactive\QuickTest
Professional\MicTest\ReservedObjects\.

3. Add a new key and name it GlobalDictionary.

4. Add the following values to the key:

 � ProgID of type REG_SZ (string value). Assign it the value of Scripting.
Dictionary.

 � UIName of type REG_SZ (string value). Assign it the value of GlobalDic.

 � VisibleMode of type REG_DWORD (32-bit value). Assign it the value of 2
(Hexadecimal: 0x00000002).

5. The Registry Editor window should look as follows:

6. Open UFT, and from the File menu, navigate to New | Test, or use the
Ctrl + N shortcut.

Utility and Reserved Objects

200

7. In Action, type GlobalDic.:

As you can see, UFT now recognizes GlobalDic in the same fashion as other reserved
objects (for example, SystemUtil). The GlobalDictionary parameter (GlobalDic is
the UIName we defined in the registry) is already loaded and available, and we also have
autocomplete for the syntax of the object methods and properties.

How it works…
UFT takes the definitions of the reserved objects to be loaded from the Windows registry at
the ReservedObjects key (as mentioned previously). We defined the progID (the unique
identifier for the COM object) as Scripting.Dictionary, which is the UIName to be
recognized in the UFT editor, and assigned 2 to VisibleMode (meaning that it should be
visible). When UFT is launched, it loads our custom object, together with the other default
objects, and it stays in memory until UFT is closed.

Using remote objects
Working with function libraries can become quite tedious, as each test must have them
associated. Deployment issues may arise when tests are copied to other machines. For
instance, resources may be missing due to misconfiguration (for example, undefined
search paths).

Chapter 8

201

If we could store the code on a server, so that associating function libraries would not
be necessary, we would gain three main benefits:

 f Code maintenance and deployment would be simplified and hence become
more efficient

 f The dependency of tests on the association of function libraries would vanish

 f Tests would run on any machine that has Internet connectivity and thus reach
the code server

In this recipe, we will examine a clever way to accomplish this.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut. Create a new file
named CROWrapper.wsc (C stands for class and RO for remote object).

A Windows Script Component (WSC) file is actually a special XML file that
can store components and packages written in various languages that are
supported by the Windows Script Host (WSH).

How to do it…
Write the following code in the component (wsc) file:

<?xml version="1.0"?>
-<component id="CROWrapper">
<?component error="true" debug="true"?>
 <registration classid="{D11841E9-B794-4627-AEE6-CA552DFF11C8}"
 version="1" progid="CTOWrapper" description="Wraps methods"/> -
 <public> -<method name="PrintMe"> <parameter
 description="text" name="str"/> </method> </public> -
 <script language="VBScript">
<![CDATA[Function PrintMe(str) msgbox "In WSC file!!! - " & str
 End Function]]>
 </script> </component>

Store the file on a remote machine (upload to a server). For the purpose of this demonstration,
the file can be found at:

http://www.advancedqtp.com/COM/CROWrapper.wsc

http://www.advancedqtp.com/COM/CROWrapper.wsc

Utility and Reserved Objects

202

Now, write the following code in your test:

Const rootURL = "script:http://www.advancedqtp.com/COM/"

Dim oROWrapper

Set oROWrapper = GetObject(rootURL&"CROWrapper.wsc")

Call oROWrapper.PrintMe("Hello")

Set oROWrapper = Nothing

Run the test. A message box like the following should appear:

How it works…
Basically, a component defined in a wsc file is equivalent to a class. The statement
Set oROWrapper = GetObject(rootURL&""CROWrapper.wsc"") actually instantiates
the component, so we now have an object of type CROWrapper. As such, we can call its
public methods, as we would with any object. Note that, as mentioned previously, this means
that we can actually use code stored in a server without having to associate it with the test.

Utility statements
UFT uses VBScript as its programming language, but it also has a wide array of commands
that are very useful for various purposes, such as flow control. In this section, we shall provide
a list of commonly used commands and some others, which the authors think are useful,
accompanied by examples and explanations.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut.

Chapter 8

203

How to do it…
Proceed with the following steps:

1. DescribeResult: This returns a text description of the specified error code.
For example, to print the description of the last runtime error, use:
Print DescribeResult(GetLastError())

2. ExecuteFile: This is used to execute the VBScript code in a file (function library)
during runtime. This means, instead of associating a function library to your test
during design time via the UFT GUI (via File | Settings | Resources), you can call
it directly using the following syntax:
ExecuteFile FilePathname

3. After the statement is executed, all the definitions (variables, constants, functions,
subroutines, and classes) in the file are available from the global scope of the action's
script. It is, however, one of the very few statements that are highly recommended
as not to be used. The risk is obvious; loading code in such a fashion might cause
runtime errors (in the best case) or data overriding (in the worst case). For example,
if an identifier (variable, constant, function, and so on) has already been loaded, then
an error would arise, as duplicate definitions are not allowed in the same namespace.
A worse scenario is if a global variable is reinitialized (assigned with a new value),
thus exposing the test to unreliable results.

4. ExitAction: This is used to abort the execution of the current action. If the action
is set to run for multiple iterations, the consequent iterations will not be executed.
Control returns to the calling Action (for nested Actions) or to the next Action. If
Action is the last to be run, then the test will stop.

5. ExitActionIteration: This is used to abort the execution of the current iteration
of an action. When an Action is set to run for multiple iterations, control returns
to the next iteration (the beginning of the Action script). If the iteration is the last,
control returns to the calling Action (for nested actions) or to the next Action. If
the Action is the last to be run, then the test will stop.

6. ExitTest: This is used to abort the execution of the current test. If the test (or the
current Action) is set to run for multiple iterations, the consequent iterations will not
be executed.

7. ExitTestIteration: This is used to abort the execution of the current test
iteration. When a test is set to run for multiple iterations, control returns to the next
iteration (the beginning of the first Action script of the test). If the iteration is the
last, then the test will stop.

8. GetLastError: This is used to retrieve the last VBScript runtime error code (Long
Integer). See the previous example with DescribeResult.

Utility and Reserved Objects

204

9. InvokeApplication: This is obsolete; it is used to invoke an executable file. Use
instead, the SystemUtil.Run method (see the previous sections in this chapter).
The syntax is as follows:
InvokeApplication "iexplore.exe"

10. LoadAndRunAction: This is used to execute a reusable Action during runtime,
without previously inserting a call and hence, associating it with the test. The syntax
is similar to the RunAction statement, with one difference—one must supply the
path of the test in which Action is stored:
LoadAndRunAction TestPath, ActionName, [iterations], [parameters]

11. The only advantage of this statement is that it enables a more flexible test flow. For
example, one can envision that a mechanism within the name of the next action is
determined based on the current context, namely, the result of a process and so
on. Again, it is one of the very few statements that is highly recommended as not to
be used. The risk is obvious, as was with the ExecuteFile statement; loading an
Action in such a fashion exposes the run session to the risks of missing resources,
such as an SOR, function library, or DataSheet.

12. OptionalStep: This is used to define a statement, which does not reflect in the
results if it fails to execute. It is only to be used together with Test Objects, as shown
in the following example:
OptionalStep.Dialog("Confirm Save
 As").WinButton("Yes").Click

This will try to click on the Yes button of Dialog Confirm Save As, but if the object
does not exist, the test will continue to run, and no error message will be displayed.

13. Print: This is used to print messages, such as values of variables and so on, to the
output pane. The syntax is as follows:
Print "MyString"

Print StringVariable

Chapter 8

205

14. RegisterUserFunc: This is used to override Test Object methods. See the
Overriding a Test Object method recipe (RegisterUserFunc) in Chapter 4, Method
Overriding.

15. RunAction: This is used to launch the execution of an Action, whether internal
or external to the test. If external, it must have association with the test beforehand
using the add Call to Action via the UFT GUI. To launch the execution of unlinked
reusable actions, see LoadAndRunAction. The syntax is as follows:
RunAction "Action2", "1-4", [param1, param2, …, param3]
SetLastError 9 'Assigns 9 to the runtime Err.Number

16. UnregisterUserFunc: This is used to remove the override from Test Object
methods. See the Overriding a Test Object method recipe (RegisterUserFunc)
in Chapter 4, Method Overriding.

17. Wait: This is used to slow down the script execution. It is recommended to use
synchronization points with WaitProperty and Exist, because the wait time is
not specific, and the script would still face the risk of failure. The syntax is as follows:

Wait seconds, milliseconds

9
Windows Script Host

In this chapter, we will cover the following recipes:

 f Reading a key from the Windows® system registry

 f Writing a key to the Windows® system registry

 f Deleting a key from the Windows® system registry

 f Running a process using the Windows® system shell

Introduction
Windows Script Host (WSH), as the name suggests, is the underlying infrastructure offered
by Microsoft Windows® to execute scripts written in a variety of programming (scripting)
languages such as VBScript and JavaScript. This infrastructure can be used for a variety of
important tasks, such as accessing networks and remote machines, manipulating the registry,
and running remote scripts.

This chapter describes a few basic practical uses of WSH that are relevant to test automation.
It is not intended to be an exhaustive tutorial or a replacement for Microsoft documentation
on the topic.

Windows Script Host

208

Reading a key from the Windows® system
registry

Reading registry keys and values is an important task. For example, it can assist us in testing
the correctness of an application installation process, or in reading specific settings of
applications or even operating system environment variables. In this recipe, we will see how
to read the value of a key from the registry, specifically the Java Options environment variable.

Getting ready
From the File menu, navigate to New | Test or use the Ctrl + N shortcut.

How to do it...
The syntax to retrieve the value of a registry key is as follows:

Registry_ReadKey

Here, object is an instance of the Wscript.Shell class and sKeyPath, a valid key.

An example of how to retrieve the value of the _JAVA_OPTIONS environment variable is as
shown in the following code snippet:

Dim oWshShell, sKeyVal, sKeyPath, sKeyExpected

sKeyPath = "HKEY_CURRENT_USER\Environment_JAVA_OPTIONS"
Set oWshShell = CreateObject("Wscript.Shell")
sKeyVal = oWshShell.RegRead(sKeyPath)

Print sKeyVal

Set oWshShell = Nothing

We can verify the correctness of the retrieved value using a simple conditional structure
(assuming that the expected value appears in the action's local datasheet):

sKeyExpected = DataTable("Expected_Key", dtLocalSheet)

If sKeyVal <> sKeyExpected Then
Reporter.ReportEvent micFail, "Registry Verification", _
"Actual Key: " & sKeyVal &" differs from Expected Key: "& _
sKeyExpected
End If

Chapter 9

209

The Windows OS stores the names and values of its environment
variables (not to be confused with UFT's environment variables)
under the registry key HKEY_CURRENT_USER\Environment.

How it works...
We simply create an instance of the WScript.Shell class, and use the RegRead method
to retrieve the value of a valid registry key.

Writing a key to the Windows® system
registry

The purpose of writing registry keys and values is so that they can be used within automated
tests. The reason is that, in general, automation should refrain from making changes to the
operating system, and this includes the registry. This is necessary to keep our automated tests
as less invasive as possible. However, it is important to know how this can be accomplished.

To write a value to a custom registry key that passes UFT data gathered by a process running
in parallel to the automated test, UFT uses the RegRead method at the appropriate time
to retrieve the data. This allows, in parallel, the asynchronous usage of the testing tool and
external executables.

In this recipe, we will see how to write a custom key to the registry.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut. You can use the
same test as in the previous recipe.

How to do it...
The syntax to write the value of a registry key is as follows:

object.RegWrite sKeyPath, sKeyVal, sKeyType

Here, object is an instance of the Wscript.Shell class, and sKeyPath a valid key.

Windows Script Host

210

An example of how to write a new custom string (REG_SZ) type key is shown using the
following code snippet:

Dim oWshShell, sKeyPath, sKeyVal, sKeyType

sKeyPath = "HKEY_CURRENT_USER\MyCustomKey\MyCustomData\MyValue"
sKeyVal = "This is a UFT made registry key"
sKeyType = "REG_SZ"

Set oWshShell = CreateObject("Wscript.Shell")
oWshShell.RegWrite sKeyPath, sKeyVal, sKeyType

sKeyVal = oWshShell.RegRead(sKeyPath)

Print sKeyVal

Set oWshShell = Nothing

How it works...
We simply create an instance of the WScript.Shell class and use the RegWrite method
to write the value of our custom registry key. We then use RegRead to print the value to the
output pane.

Deleting a key from the Windows® system
registry

Automated tests rarely delete registry keys and values. However, in some cases (such as in
the case described in the previous recipe), deleting the custom key would be a reasonable
cleaning procedure. In this recipe, we will see how to do it.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut. You can use the
same test as in the previous recipe.

How to do it...
The syntax to delete the value of a registry key is as follows:

object.RegDelete sKeyPath

Here, object is an instance of the Wscript.Shell class and sKeyPath a valid key.

Chapter 9

211

For example, to delete the new custom string (REG_SZ) type key we created in the previous
recipe, use the following code snippet:

Dim oWshShell, sKeyPath, sKeyName, sKeyVal, sKeyType

sKeyPath = "HKEY_CURRENT_USER\MyCustomKey\MyCustomData\MyValue"

Set oWshShell = CreateObject("Wscript.Shell")
oWshShell.RegDelete sKeyPath

Set oWshShell = Nothing

How it works...
We simply create a WScript.Shell object and use the RegDelete method to delete the
value of our custom registry key.

Running a process using the Windows®
system shell

In Chapter 8, Utility and Reserved Objects, we described the SystemUtil object and learned
how to open an application using the Run method. In this recipe, we will describe how to
accomplish the same by using the Wscript.Shell object.

Getting ready
From the File menu, navigate to New | Test, or use the Ctrl + N shortcut. You can use the
same test as in the previous recipe.

How to do it...
The syntax to run an application (or an external script) is as follows:

object.Run sApplicationPath, [intWindowStyle], [bWaitOnReturn]

Here, object is an instance of the Wscript.Shell class, and sApplicationPath
is a valid application path. The intWindowStyle (refer to the following table) and
bWaitOnReturn variables (True/False) are optional. By default, the script does
not wait until the external application finishes and returns 0.

Windows Script Host

212

The following table enumerates the possible values of intWindowStyle (this is sourced
from the Help file on the Microsoft Windows Scripting Technologies website):

Value Description
0 This hides the current window and activates another window.

1
This value activates and displays a window. If the window is minimized or
maximized, the system restores it to its original size and position. An application
should specify this flag when displaying the window for the first time.

2 This value activates the window and displays it as a minimized window.
3 This value activates the window and displays it as a maximized window.

4
This value displays a window in its most recent size and position. The active
window remains active.

5 This value activates the window and displays it in its current size and position.

6
This value minimizes the specified window and activates the next top-level
window in the Z order.

7
This value displays the window as a minimized window. The active window
remains active.

8
This value displays the window in its current state. The active window remains
active.

9
This value activates and displays the window. If the window is minimized or
maximized, the system restores it to its original size and position. An application
should specify this flag when restoring a minimized window.

10
This value sets the show state based on the state of the program that started
the application.

For example, to open the Notepad application, use the following code snippet:

Dim oWshShell, sApp

sApp = "notepad.exe"
Set oWshShell = CreateObject("Wscript.Shell")

oWshShell.Run sApp

Set oWshShell = Nothing

ExitTest

How it works...
We simply create an instance of the WScript.Shell class and use the Run method to
invoke an application of our choice (in this case, Notepad).

10
Frameworks

In this chapter, we will cover:

 f Introduction to test automation frameworks

 f Designing a test automation framework

 f Building a test controller

 f Building a reusable component (action)

 f Building an event handler

 f Building a test reporter

Introduction to test automation frameworks
This section intends to cover:

 f Definition of a test automation framework

 f Advantages of using a test automation framework

 f Types of test automation frameworks (modular-driven, data-driven,
keyword-driven, model-driven, and hybrid)

 f Designing a test automation framework

Frameworks

214

Definition of a test automation framework
Test automation framework (often referred to in the testing industry as testware automation
frameworks) is an integrated software solution that defines the rules for the development,
maintenance, and execution of automated test assets. Typically, such a solution also defines
how test results are reported, how runtime errors are handled, and how test data is managed.
A test automation framework comprises function libraries, data sources (for example, Excel
or XML files and DB), object models (such as stored in an object repository), and it may
also include additional reusable external modules (for example, DLL files, COM objects,
configuration scripts, and so on).

Advantages of using a test automation framework
A well-designed test automation framework typically contributes towards lower reduce
development and maintenance costs of automated test assets. This means that, ideally,
a framework should use generic and agnostic design patterns to provide a solution that is
relevant, effective, maintainable, efficient, manageable, portable, reliable, and diagnosable.

The preceding list is not meant to be exhaustive, but provides the main features that are
expected from a robust automation framework.

Another aspect of test automation that is quite often neglected, but one that can make a
great contribution to design patterns, is the command wrapper (used when implementing
test procedures and functions). This will also be explained later in this section.

Types of test automation frameworks
There are several generic types of test automation frameworks' design patterns:

 f Modular-driven framework

 f Data-driven framework

 f Keyword-driven framework

 f Model-driven framework (for example, Action Based Testing (ABT) or as
termed in UFT, Business Process Testing (BPT))

 f Hybrid approach framework

Hybrid approach is a term used by the authors that refers to test
automation frameworks that are a combination of the other design
patterns, usually such that, they implement a blend of all, or part
of, the design feature of the other patterns.

Chapter 10

215

Selecting a framework type
As far as which framework type to select is concerned, it depends on the requirements we
have to meet and the level of automation maturity required. No single pattern type is a silver
bullet, and a more complex framework should not be used if the additional complexity is
not expected to yield significant added value. We shall now define and explain the different
patterns mentioned earlier.

Modular-driven framework
A modular-driven pattern uses classes and objects to encapsulate all the entities involved in
the automation project. Basically, a modular-driven pattern can be considered a particular
case of the hybrid approach. This is because the utilization of classes and objects is typically
also accompanied by the usage of the features of the keyword-driven pattern (in more
complex implementations) and the data-driven pattern.

Using classes (as described in detail in the previous chapters) allows for a better organized
code base, typically resulting in a more concise, clearer, as well as more flexible, extensible,
and, maintainable code. This also enables us to use object-oriented design patterns to
maximize reusability and enhance the performance of our test suites. For example, a typical
modular-driven pattern has a well-defined structure (or template) to implement runnable
processes using the command wrapper pattern (refer to Chapter 7, Using Classes). This, in
turn, simplifies the way data is loaded, saved, and shared; the way events are reported to the
log file; how the flow is controlled; and finally, the way exceptions are handled.

Data-driven frameworks
A data-driven pattern supports test iterations and flow branching according to external input
data. UFT can, by default, offer such a framework out-of-the-box; all we have to do is define
the parameters in the DataTable, retrieve the values of these in our code where appropriate,
and set the test or Action iterations (datasheet rows range) we wish to execute (refer to
Chapter 1, Data-driven Tests).

Keyword-driven frameworks
A keyword-driven pattern is also a data-driven pattern, but with another level of abstraction;
commands are encapsulated as data entities (keywords) and mapped to actual functions
implemented in code.

These keywords are listed in their planned order of execution in some kind of data source
(for instance, Excel worksheet, XML file, or DB). Typically, this data source would also include
the corresponding parameter values for each operation. A central mechanism, often referred
to as a controller or parser, reads the sequence of keywords and invokes the procedures
associated with them.

Frameworks

216

Central to a keyword-driven pattern is the desire to provide nontechnical test engineers, who
do not possess coding skills, with the ability to implement automated test scenarios (also
referred to as test scripts) using a high-level structured language composed with words that
represent underlying coded processes of varying complexity.

This pattern is very popular, and its main advantages are:

 f Automation test scenarios are represented by steps composed of basic building
blocks (procedures) and parameters.

 f Apart from more complex cases, which are difficult to capture with a simple
step-by-step representation, coding is essentially not required to automate the tests.

 f Different levels of granularity are supported. For example, a keyword may represent
a single test object method (for instance, PressOK) or a procedure (for example,
Login). The latter is basically ABT or BPT, as the functionality offered by UFT
requires connectivity with HP ALM/QC.

A keyword-driven pattern also has some challenges that require our attention. For instance, it
typically carries the additional cost of developing a User Interface (UI) to manage, build, and
validate the data entered by the designer of the tests while defining automated test scenarios.

Hybrid frameworks
A hybrid pattern is one that combines some or all the features of the mentioned framework
types. It is typically implemented with a strong emphasis on design patterns, to provide a
solution that yields high scores in (source Hybrid (keyword/data-driven) frameworks, ANZTB
Conference, 2010 by Jonathon Wright):

 f Maintainability: significantly reduces the test maintenance effort

 f Reusability: due to modularity of test cases and library functions

 f Manageability: effective test design, execution, and traceability

 f Accessibility: to design, develop & modify tests whilst executing

 f Availability: scheduled execution can run unattended on a 24/7 basis

 f Reliability: to advanced error handling and scenario recovery

 f Flexibility: framework independent of system or environment under test

 f Measurability: customizable reporting of test results ensure quality

Chapter 10

217

Designing a test automation framework
Before we start coding, it is important to think carefully about the underlining structure
(architecture) of the target framework. This will minimize the costs of framework development
and maintenance of the automated test assets, so that they can easily be extended to cover
new requirements.

Key design activities for a framework
The key activities we need to perform in order to design a robust test automation framework
may include:

 f Defining a standard project (or solution) folder hierarchy.

 f Defining a standard configuration and launcher script. This is typically not required
when using HP ALM/QC together with UFT, thanks to their interoperability.

 f Designing a standard format for the automation components.

 f Designing reusable modules to reduce development and maintenance costs.

 f Designing a layered architecture of reusable modules.

 f Designing a standard flow control module.

 f Designing a standard data storage, loading, and sharing mechanism.

 f Designing a standard reporting mechanism.

 f Designing a standard error/exception handling mechanism.

Components of a framework
The components of a test automation framework comprise an array of modules that manage
different requirements for automation. The main modules include a flow controller, a reporter/
logger, and an exception handler. For simplicity, data loading is implemented here using the
UFT native DataTable, but of course, other options, such as XML files or a DB, can be used.

We also use a command wrapper design pattern to implement reusable runnable
components, which are direct replacements for the reusable UFT actions.

We will now list out the component design patterns.

Frameworks

218

Controller
The controller supports the following requirements:

 f Loading the list of reusable components (actions)

 f Importing the datasheet for each action

 f Running each action for the number of iterations indicated

 f Invoking the event handler to check if an error was thrown and handle it as predefined

Reusable components (actions)
A reusable component supports the following requirements:

 f Implementing the runnable interface (requires a Run method to be implemented),
which will execute the actual code

 f Implementing the data loading of its parameters from the DataTable, as required
for each iteration

 f Reporting the results of the Action, using the generic reporting mechanism

Event handler
The event handler supports the following requirements:

 f Enabling the mapping of a procedure to a key (basically, an error number)

 f Invoking the corresponding procedure when a key (error number) is passed

 f Ensuring that the error handling procedures should be implemented as actions

Reporter
The custom reporter supports the following requirements:

 f Retrieving the data for the report from the sending Action

 f Invoking the UFT and passing it to the appropriate parameters

To conclude this recipe, the basic design outlined here covers the basic needs of a test
automation framework, namely, flow control, reporting, data loading and sharing, and event/
exception handling. This design pattern also supports keyword-/data-driven flow control, and
encourages the use of highly effective object-oriented design patterns. The next sections will
describe in detail how to build each of these components.

Chapter 10

219

Building a test controller
In this recipe, we will see how to build a controller for our test automation framework. As
outlined in the previous recipe, the controller will load the list of actions, and for each Action,
it will import the corresponding datasheet. For each data-driven iteration, it will initialize the
Action and invoke its Run method.

Most often, a controller is implemented as a function. Here, we will implement it as a class.
The reason is that, this way, we can instantiate a controller during runtime to support dynamic
branching of the test flow.

Getting ready
Create a folder structure, as follows:

 f C:\Automation

 f C:\Automation\Data

 f C:\Automation\Lib

 f C:\Automation\Tests

 f C:\Automation\Config

 f C:\Automation\Results

 f C:\Automation\Solutions

Create a new test and save it as Framework_MasterDriver under the subfolder
C:\Automation\Tests. You can also save the solution under the Solutions subfolder.
Under the Data subfolder, create a subfolder named Framework_MasterDriver and
create an Excel file named TestScenario.xls.

Create a new function library. From the File menu, navigate to New | Function Library…,
or use the Alt + Shift + N shortcut. Save the file as cls.Controller.vbs.

An Excel file named TestScenario.xls with a datasheet named Steps is required
to be able to use the controller, as shown in the following example:

STEP_ID ACTION_NAME RUN DATASHEET ITERATIONS ON_FAILURE

10 OpenApp TRUE N/A ExitTest

20 Login TRUE ExitTest

30 Search TRUE ExitAction

40 AddToCart TRUE 1-3 ExitAction

Frameworks

220

STEP_ID ACTION_NAME RUN DATASHEET ITERATIONS ON_FAILURE

50 Checkout TRUE ExitAction

60 Logout TRUE N/A ExitAction

70 CloseApp TRUE N/A ExitTest

For each step that is data driven, the Excel file should include a specific datasheet named by
the Action name (the name of the class that implements the action. Refer to the Building a
reusable component (action) recipe). If the ITERATIONS parameter is left empty, then the
controller will run only one iteration.

For example, for the AddToCart action, a datasheet named AddToCart is required, and we
wish to run it three times as shown in the following datasheet example:

PRODUCT_NAME
My Book 1
My Book 2
My Book 3

It is possible to share datasheets with different actions, by specifying a DATASHEET value that
is different from the Action name. If the Action is not data driven, then N/A should be entered.

How to do it...
Proceed with the following steps:

1. Add the following Environment variables to the test (of course, it would be most
efficient to export these to an XML file to allow for reusability for all the tests):

 � DATA_FOLDER with the root path value of the folder in which the automation
input data is stored. In our case it will be C:\Automation\Data\.

 � ON_FAILURE with the value of the action to be taken if a problem is found.
It is used by the ASSERT_RESULT function. It's possible that the values are
ExitTest and ExitAction.

2. In the controller function library, cls.Controller.vbs, write the following code:
Const C_STR_TEST_SCENARIO_XLS = "TestScenario.xls"

Const C_OBJ_OF_CLASS_MSG = "--- Object of Class "

Const C_OBJ_LOADED_MSG = " was loaded ---"

Const C_OBJ_UNLOADED_MSG = " was unloaded ---"

Chapter 10

221

These constants are auxiliary, and they are used to log/report:
Class Controller
 Public Status
 Public Details

 Function Run(ByVal strTestSetsPathName)
 ' ---
 ' Function : Run
 ' Purpose : Runs the steps (procedures
 implemented as Command Wrappers)
 ' Args : ByVal strTestSetsPathName
 ' Returns : 0 on success; 1 on failure
 ' ---
 ' Usage : Run("C:\Automation\Test_Sets\")
 ' Notes : 1) Uses a Local DataSheet to
 control the steps flow
 ' 2) Uses GetClassInstance
 ' 3) Uses CNum
 ' 4) Uses ASSERT_RESULT
 ' 5) Uses GetIterations
 ' 6) Uses PrintReportInfo
 ' 7) Uses GetNormalizedStatus
 ' 8) Uses Timestamp
 ' ---
 Const C_STEPS_DATASHEET = "Steps"
 Dim iTestStatus, iStepStatus, iIterationStatus
 'Statuses at all levels of flow control

 Dim dt, rowcount 'Datasheet with the steps list
 Dim bExitAction, bExitTest, bRun, iStep, iter,
 oAction, sActionName 'For the steps and
 iterations flow control
 Dim arrIterations 'To support iterations
 Dim sFolder, sDatasheet 'For datasheet import
 ' --

 ' ---
 '--- Get the name of the folder from which to
 import datasheets (same as test)
 sFolder = Environment("TestName")
 '--- Add sheet
 DataTable.AddSheet(C_STEPS_DATASHEET)
 '--- Import steps datasheet

Frameworks

222

 Call DataTable.ImportSheet(strTestSetsPathName &
 "\" & sFolder &"\" & C_STR_TEST_DATA_XLS,
 C_STEPS_DATASHEET, C_STEPS_DATASHEET)

 Set iTestStatus = [As Num](0)
 Set dt =
 DataTable.GetSheet(C_STEPS_DATASHEET)
 rowcount = dt.GetRowCount
 bExitTest = False

 PrintReportInfo "Test " & Environment("TestName"),
 "Started at " & Timestamp()

Until this point we had some initialization commands. Now, comes the main For loop
that manages the run session:
'--- Loop on all steps defined in the datasheet
 For iStep = 1 To rowcount
 bExitAction = False
 dt.SetCurrentRow(iStep)
 sActionName =
 dt.GetParameter("ACTION_NAME").Value
 bRun = dt.GetParameter("RUN").Value

Within the loop, we initialize the flag bExitAction, set the row in the Steps
datasheet, and retrieve the name of the current action. We also get the value of the
RUN parameter, which is used to check if the current Action is planned for execution.
'--- Check if the step is planned to be executed
 If CStr(bRun) = "TRUE" Then
 '--- Get an instance of the sActionName class
 ASSERT_RESULT(GetClassInstance(oAction, "["
 & sActionName & "]"))
 '--- Reset Step status
 Set iStepStatus = [As Num](0)
 '--- Assign Step id
 oAction.StepNum =
 dt.GetParameter("STEP_ID").Value
 '--- Get datasheet name to import (for
 data-driven actions)
 sDatasheet =
 dt.GetParameter("DATASHEET").Value
 If Trim(sDatasheet) = "" Then
 sDatasheet = sActionName
 End If

Chapter 10

223

 '--- Check if the Action is data-driven
 If sDatasheet <> "N/A" Then
 '--- Import datasheet to local
 Call
 DataTable.ImportSheet
 (strTestSetsPathName
 & "\" & sFolder &"\" &
 C_STR_TEST_DATA_XLS
 , sDatasheet,
 Environment("ActionName"))
 '--- Assign the new sheet to the step
 Set oAction.dt = DataTable.LocalSheet
 End If

This code uses the ASSERT_RESULT function to ensure that the requested
Action is valid (that is, the returned object by GetClassInstance is not equal to
Nothing). The iStepStatus variable is initialized as a CNum object (a custom class
that enables object-oriented operations such as ++, and --), using the [As Num]
method, which acts as the CNum constructor. We then assign the current Action its
number (or ID) from the STEP_NUM parameter, and if it is a data-driven action, we
assign the Action its corresponding datasheet as well.
'--- Get list of iterations (e.g., "1-3,7,13-17") as
 System.Collections.ArrayList and sort
 Set arrIterations =
 GetIterations(dt.GetParameter
 ("ITERATIONS").Value)
 arrIterations.Sort()
 '--- Reset iterations status
 Set iIterationStatus = [As Num](0)
 '--- Send start Step to the log
 PrintReportInfo "Step " & oAction.StepNum &
 " - Action '" & sActionName & "'"
 , "Started at " & Timestamp()

We then get the list of rows from which the Action will retrieve its input data. The
number of items in the list determines the number of iterations in the Action. Take
note that the list of rows can include a mix of single rows and ranges separated
by commas. Next, we reach the inner For loop that controls the iterations flow for
each action.

This will check if the Action is data driven, and if so, it sets the datasheet row for the
current iteration and the Action's Iteration field. Then, it simply invokes the Run
method of the Action and gets the status of the iteration.

Frameworks

224

Note that we use the On Error Resume Next directive just before invoking
the action's Run method, in order to catch any exception and redirect it to
ErrorHandler (refer to the Building an event handler recipe):
'--- Loop for each iteration
 For Each iter In arrIterations
 PrintReportInfo "Step " &
 oAction.StepNum & " – Action '" &
 sActionName & "’", "Started iteration
 " & iter & " at " & Timestamp()
 '--- Check if the Action is data-driven
 If sDatasheet <> "N/A" Then
 '--- Set the row that corresponds
 to the current iteration
 oAction.dt.SetCurrentRow(iter)
 End If
 '--- Set the Iteration field of the
 Action
 oAction.Iteration = iter
 ' -------------------------------------
 '--- Execute the Action
 ' -------------------------------------
 On Error Resume Next '--- Try
 oAction.Run
 ' -------------------------------------
 If Err.Number <> 0 Then 'Catch
 me.ErrorHandler.RunMappedProcedure(Err.
 Number)
 End If
 On Error Goto 0
 ' -------------------------------------
 '--- Get the Action status
 iIterationStatus.[+=]oAction.Status

Next, we send the result to the log. The GetNormalizedStatus function accepts an
integer and checks if it represents success or failure. It is possible to customize such
a function, depending on the requirements of the test automation framework. If the
status is a failure, then we check with the Eval statement as to what we should do,
as defined in the ON_FAILURE parameter.

Chapter 10

225

For example, if ExitAction was set, then the next iteration of the Action will not
be run, and the controller will attempt to execute the next Action (of course, one
must ensure beforehand that the actions are independent). If the test flow cannot
be continued, we can set the value of the ON_FAILURE parameter in the datasheet
to ExitTest.
 '--- Send iteration result to the log
 PrintReportInfo "Step " &
 oAction.StepNum & " - Action '" &
 sActionName & "'", "Ended iteration "
 & iter & " at " & Timestamp() & "
 with status " &
 GetNormalizedStatus(iIterationStatus)
 '--- Check the status of the iteration
 If
 GetNormalizedStatus(iIterationStatus)
 > 0 Then
 '--- Evaluate if a failure condition occurred
 Eval("b" &
 dt.GetParameter("ON_FAILURE") &
 "=TRUE")
 '--- Check the Exit flags
 If bExitAction Then Exit For
 If bExitTest Then Exit For
 End If
 Next '--- Iteration

 '--- Update the Step status with the iteration
 status
 iStepStatus.[+=]iIterationStatus
 '--- Send Action result (end) to the log
 PrintReportInfo "Step " & oAction.StepNum &
 " - Action '" & sActionName & "'", "Ended
 at " & Timestamp() & " with status " &
 GetNormalizedStatus(iStepStatus)
 '--- Dispose of the oAction object
 Set oAction = Nothing

Frameworks

226

If the Action is not planned to be executed, it is reported to the results so that the
person analyzing them will be aware of this fact. If the Action RUN parameter is
empty, then the controller will report that it was undefined.
 ElseIf CStr(bRun) = "FALSE" Then
 '--- Send skip Step to the log
 PrintReportInfo "Step " &
 dt.GetParameter("STEP_ID").Value & "
 - Action '" & sActionName & "'", "Not
 planned to run"
 Else
 '--- Send no directive for Step to the log
 PrintReportInfo "Step " &
 dt.GetParameter("STEP_ID").Value & " -
 Action '" & sActionName & "'",
 "Undefined"
 End If

Next, the iTestStatus variable will be updated with the status of the step (Action),
which, as previously indicated, stores the accrued status of its iterations.

The ExitTest flag is checked, and if set, then the main For loop is terminated.
The result is sent to the log again and returned by the Run function.

'--- Update the Test status with the iteration status
 iTestStatus.[+=]GetNormalizedStatus(iStepStatus)
 '--- Check the Exit flag
 If bExitTest Then Exit For
 Next '--- Step (Action)
 '--- Send Test result (end) to the log
 PrintReportInfo "Test " & Environment("TestName"),
 "Ended at " & Timestamp() & " with status " &
 GetNormalizedStatus(iTestStatus)
 '--- Return status
 Run = GetNormalizedStatus(iTestStatus)
 End Function
 ' ---
 ' End: Run
 ' ---
End Class

Chapter 10

227

3. To use the controller, add the following function in the same library:
Function RunTest()
 Dim oTestRunner

 ASSERT_RESULT(GetClassInstance(oTestRunner,
 "Controller"))

 RunTest = oController.Run(Environment("DATA_FOLDER"))
End Function

4. The RunTest function uses the GetClassInstance function to get an instance
of the controller. To use it, just write the following line of code in your test (Action):

ExitTest(RunTest())

When the RunTest function is invoked, the controller will roll the Actions as
described, and its Run method will return the status of the test. Finally, the test
will exit and the status will be returned.

How it works...
It is quite evident that a test automation framework implementing such a design for the
controller module covers most of the requirements for flow control, error handling, reporting,
and data loading.

Building a reusable component (action)
The controller was designed to load, configure, and execute Action Based Testing (ABT)
or Business Process Testing (BPT), which are classes built as command wrappers with a
common Run method in which the main flow of the Action is implemented. In this section,
we will see how to implement such an action.

Getting ready
From the File menu, navigate to New | Function Library…, or use the Alt + Shift + N shortcut.
Save the file as cls.Actions.vbs in the C:\Automation\Lib folder.

Frameworks

228

How to do it...
As mentioned before, a reusable component (action) is a class that implements the command
wrapper design pattern. The following code shows the sample class Login as a typical
example for an Action within this framework:

Class [Login]
 ' ---
 ' Reusable Action: Login
 ' Description: Login to the application
 ' ---
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0
 '---
 me.Status.[+=]EnterUsername()
 me.Status.[+=]EnterPassword()
 me.Status.[+=]ClickOnLoginButton()

 '--- Report
 Call ReportActionStatus(me)
 End Function

 Function EnterUsername()
 EnterUsername =
 me.Parent.WebEdit("txtUsername").Set(dt.
 GetParameter("USERNAME"))
 End Function

 Function EnterPassword()
 EnterPassword =
 me.Parent.WebEdit("txtPassword").Set(dt.
 GetParameter("PASSWORD"))
 End Function

Chapter 10

229

 Function ClickOnLoginButton()
 ClickOnLoginButton = me.Parent.WebButton("btnLogin").Click
 End Function

 Property Get Parent()
 Set Parent = Browser("MyStore").Page("Main")
 End Property

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

The Test Objects referred to in the internal methods of the class are
for illustration purposes only.

How it works...
The controller creates an instance of the Login class when it finds its name in the Steps
datasheet and is planned to run (the RUN parameter equals TRUE).

It then invokes the object's Run method, in which the main flow of the Action is coded. Note
that additional fields, functions, subroutines, and properties can be added to extend the basic
pattern of an action; thus making it a very powerful and flexible tool to encapsulate basic
blocks of code, which are usually business-oriented functions. The Run method finally invokes
the ReportActionStatus function, which takes care to send the information accumulated
during the process to the UFT reporter.

Note how data is referred to in the internal functions:

dt.GetParameter("USERNAME")

Through the dt field of the Action, which was set by the controller with a reference to the
LocalSheet DataTable, we can retrieve the values of any of the required parameters.

Frameworks

230

Building an event handler
One risk we must handle during run sessions is exceptions, as they can have a fatal impact on
the robustness of our automated tests. UFT provides the recovery scenario as a built-in solution
(refer to Chapter 6, Event and Exception Handling), but it is quite complex to implement and may
hinder the performance of the test.

In this recipe, we will see how to implement a simple recovery mechanism that is integrated
with the controller (described previously) and that utilizes the same design pattern used for
the regular actions to implement recovery procedures.

Getting ready
Add an Environment variable to the test. Name it ERR_DEFAULT and set its value to
StopRunSession. Add another Environment variable named ERR_9 and set its value to
ClearError. Create a function library named cls.EventHandler.vbs in the Lib folder,
as already described in the previous recipe.

How to do it...
The following code shows a sample procedure implemented as an Action. The
StopRunSession class is used in our framework to handle an exception by stopping the run
session, and it is used as default. Write the following code in the cls.EventHandler.vbs
function library:

Class StopRunSession
 ' --
 ' Reusable Action: StopRunSession
 ' Description: Stops the run in case of an unhandled
 error/exception
 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]Reporter.RunStatus

 '--- Report
 Call ReportActionStatus(me)

Chapter 10

231

 '--- Stops the run session
 ExitTest(Reporter.RunStatus)
 End Function

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

The procedure was built based on the same command wrapper pattern as the regular
reusable Actions. The procedure will be invoked any time by the RunMappedProcedure
method (shown in the following code snippet) of the EventHandler class, which will not
find a matching procedure for a given error code.

Note that in this sample implementation, the value of the procedure associated with the
error number is taken from the environment, but more elaborate design patterns could
have been mapped into an XML file or DB:

Class EventHandler
 Function RunMappedProcedure(ByVal strError)
 Dim oProcedure

'--- Try to execute the procedure associated with the error (if
 exists)
 If GetClassInstance(oProcedure, Environment("ERR_" &
 CStr(Abs(strError)))) = 0 Then
 RunMappedProcedure = oProcedure.Run
 Exit Function
 End If
'--- Try to execute the default procedure to handle errors (if
 exists)
 If GetClassInstance(oProcedure,
 Environment("DEFAULT_ERROR_HANDLER")) Then
 RunMappedProcedure = oProcedure.Run
 Exit Function
 End If
 End Function
End Class

Frameworks

232

The following code shows another sample procedure implemented as an Action. It is used in
our test automation framework to handle a specific exception by clearing the error, and the
procedure is mapped to error code number 9 (Subscript out of range). This can be
written in the cls.EventHandler.vbs function library file, as follows:

Class ClearError
 ' --
 ' Reusable Action: ClearError
 ' Description: Clears the error in case of an unhandled
 error/exception
 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0

 '--- Report
 Call ReportActionStatus(me)

 '--- Clears the error
 Err.Clear
 End Function

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

Chapter 10

233

How it works...
When the controller tries to execute the Action, it sets a kind of try-catch mechanism with
On Error Resume Next, as shown here:

' -------------------------------------
'--- Execute the Action
' -------------------------------------
On Error Resume Next
'--- Try
oAction.Run
' -------------------------------------
If Err.Number <> 0 Then 'Catch
 me.ErrorHandler.RunMappedProcedure(Err.Number)
End If
On Error Goto 0

So if an error occurs, it will be passed to ErrorHandler via the RunMappedProcedure
method, and it will use either the specifically defined procedure for the error or the default
procedure. This ensures that no exceptions will be left unhandled.

Building a test reporter
We have seen in the previous recipe that Action can accumulate data by adding information
to its Details field. The Status field of Action is set from within the code, generally the
Run method. Our reporting mechanism leverages the fact that the Actions are objects,
and that they will use the native UFT reporter as their target output.

Getting ready
From the File menu, navigate to New | Function Library, or use the Alt + Shift + N shortcut.
Save the file as C:\Automation\Lib\lib.Reporter.vbs.

How to do it...
Write the following code in the function library you created:

Function ReportActionStatus(ByRef p)
 ' --
 ' Function : ReportActionStatus
 ' Purpose : Reports an event to the UFT reporter with
 the data of the referenced Action
 ' Args : ByRef p
 ' Returns : N/A

Frameworks

234

 ' --
 Reporter.ReportEvent GetNormalizedStatus(p.Status.Value),
 TypeName(p), p.Details & GetStatusText(p.Status.Value)
End Function

Function GetStatusText(ByVal iStatus)
 ' --
 ' Function : GetStatusText
 ' Purpose : Returns the text associated with a status
 ' Args : ByVal iStatus
 ' Returns : "success", "failure"
 ' --
 Dim sStatus

 Select Case CInt(iStatus)
 Case 0, 2, 4 'micPass, micDone, micInfo
 sStatus = "success"
 Case Else 'micFail, micWarning
 sStatus = "failure"
 End Select

 GetStatusText = sStatus
End Function

Function GetNormalizedStatus(ByVal iStatus)
 ' --
 ' Function : GetNormalizedStatus
 ' Purpose : Returns the status as 0 or 1
 ' Args : ByVal iStatus
 ' Returns : 0 or 1
 ' --
 GetNormalizedStatus = micPass
 If CLng(iStatus) <> CLng(micPass) Then
 GetNormalizedStatus = micFail
 End If
End Function

The main function here is ReportActionStatus, which accepts the reference to an
object that is built with the action design pattern and has both Status and Details
as public fields.

Chapter 10

235

The GetStatusText function is used to standardize the report message according to the
status. The GetNormalizedStatus function limits the status to 0 (success) and 1 (failure),
and it is used to standardize the accumulated statuses that can be sent from an Action or
other function.

Finally, the PrintReportInfo function is just used to log messages to the UFT Reporter
without affecting the results, as shown:

Function PrintReportInfo(ByVal sSender, ByVal sMessage)
 ' --
 ' Function : PrintReportInfo
 ' Purpose : Reports an info event to the UFT reporter
 and log
 ' Args : ByVal sSender
 ' ByVal sMessage
 ' Returns : N/A
 ' --
 Print sSender & ": " & sMessage
 Reporter.ReportEvent micInfo, sSender, sMessage
End Function

How it works...
The ReportActionStatus function accepts the reference to an Action type object,
which implements the design pattern as defined. With this reference, it has access to the
public fields of Action, and so it retrieves and formats the data before sending it to the
UFT reporter. This way, we make the reporting easier, as Action can just accumulate
what it finds and the actual reporting in a single step.

Design Patterns

In this appendix, we will cover additional design patterns:

 f Auxiliary classes and functions

 f Action patterns

 f Runtime data patterns

Auxiliary classes and functions
The following are auxiliary classes and functions' design patterns that provide additional
functionality (not included within the main chapters):

 f AssertResult: This design pattern checks whether the result triggers a predefined
action:
Function ASSERT_RESULT(ByVal iResult)
 ' ---

 ' Function : ASSERT_RESULT
 ' Purpose : Checks if the result triggers a
 predefined action
 ' Args : ByVal iResult
 ' Returns : The value of iResult (unless the run
 session is
 ' terminated)
 ' ---

 ASSERT_RESULT = CLng(iResult)

Design Patterns

238

 If CLng(iResult) <> CLng(micPass) Then
 Reporter.ReportEvent micWarning, "ASSERT_RESULT",
 "The action stopped by ASSERT_RESULT"
 Execute(Environment("ON_FAILURE") & "(" &
 CStr(CLng(iResult)) & ")")
 End If
End Function

 f InfoClassInstance: This design pattern prints a log message relating to the
instance of an object:
Function InfoClassInstance(ByVal p, ByVal msg)
 '--

 'Description: Prints a log message relating to an
 object
 'Arguments :
 ' p - a reference to the instance
 ' msg - a string
 'Usage : For example, in a Sub
 Class_Initialize within a Class
 ' InfoClassInstance(me, "Loaded
 successfully")
 'Changes Log:
 '--

 Print C_OBJ_OF_CLASS_MSG & typename(p) & msg & " at " &
 Timestamp()
End Function

 f GetClassInstance: The following design pattern returns an instance of a specific
class:
Function GetClassInstance(oInst, ByVal sClass)
 ' ---

 ' Function : GetClassInstance
 ' Purpose : Returns an instance of the specified
 Class
 ' Args : byRef oInst (output variable to
 return the instance)
 ' ByVal sClass (name of requested Class)
 ' Returns : 0 (success), 1 (failure)
 ' ---

 GetClassInstance = 0
 On Error Resume Next
 Execute "Set oInst = new " & sClass

Appendix

239

 If Err.Number <> 0 Then
 Set oInst = Nothing
 GetClassInstance = 1
 reporter.ReportEvent micFail, "GetClassInstance",
 "Failed to create an instance of '" & sClass &
 "'"
 End If
End Function

 f GetIterations: This design pattern returns with a list of iterations for an array:
Function GetIterations(ByVal sIterations)
 ' ---

 ' Function : GetIterations
 ' Purpose : Get array with list of iterations
 ' Args : ByVal sIterations - A comma and
 hyphen separated
 ' string list with numbers of
 iterations to be run
 ' Returns : A System.Collections.ArrayList
 ' ---

 ' Usage : Set DotNetArray =
 GetIterations("1,3,7-9,15-22")
 ' Print DotNetArray.Count
 ' For each item in DotNetArray
 ' Print item
 ' Next
 ' ---

 Dim arrRange, min, max, i, j
 Dim arrIterations : Set arrIterations =
 CreateObject("System.Collections.ArrayList")
 Dim arrTmp : arrTmp = Split(sIterations,
 ",")

 'Parse array with iterations
 For i = 0 To Ubound(arrTmp)
 arrRange = Split(arrTmp(i), "-")

 If UBound(arrRange) = 1 Then '--- If is a Range
 min = arrRange(0)
 max = arrRange(1)
 If min > max Then
 Call SwapArgs(min, max)

Design Patterns

240

 End If

 For j = min To max
 arrIterations.Add j
 Next
 Else '--- A single numeric value
 arrIterations.Add arrTmp(i)
 End If
 '--- Dispose of temporary range array
 Erase arrRange
 Next
 '--- Dispose of temporary array
 Erase arrTmp
 '--- Return DotNet array
 Set GetIterations = arrIterations
End Function
' --

 f PadNumber: This design pattern pads a number string with zeros:
Function PadNumber(iNum, ByVal iMax)
 ' ---

 ' Function : PadNumber
 ' Purpose : Pad a number with zeroes
 ' Args : ByRef iNum (the number to be padded)
 ' ByVal iMax (the max value of the
 range)
 ' Usage : PadNumber(3, 100) will return the
 string "003"
 ' Returns : String
 ' ---

 'Validates the arguments - If invalid Then it returns
 the value as is
 If (Not IsNumeric(iNum) or Not IsNumeric(iMax)) Then
 PadNumber = iNum
 Exit Function
 End If
 If (Abs(iNum) >= Abs(iMax)) Then
 PadNumber = iNum
 Exit Function
 End If

 PadNumber = String(Len(CStr(Abs(iMax)))-
 Len(CStr(Abs(iNum))), "0") & CStr(Abs(iNum))
End Function

Appendix

241

 f Timestamp: This design pattern returns a time stamped string:
Function Timestamp()
 ' ---

 ' Function : Timestamp
 ' Purpose : Build a timestamp string
 ' Args : N/A
 ' Returns : String
 ' ---

 dim sDate, sTime
 sDate=Date()
 sTime=Time()
 Timestamp = Year(sDate) & _
 PadNumber(Month(sDate), 12) & _
 PadNumber(Day(sDate), 31) & "_" & _
 PadNumber(Hour(sTime),24) & _
 PadNumber(Minute(sTime), 60) & _
 PadNumber(Second(sTime), 60)
End Function

 f CNum: This design pattern returns values based on coalescing operators:
Class CNum
 Private m_value

 Public Function [=](n)
 value = n
 End Function
 Public Function [++]()
 value = value+1
 [++] = value
 End Function

 Public Function [--]()
 value = value-1
 [--] = value
 End Function
 Public Function [+=](n)
 value = value+n
 [+=] = value
 End Function
 Public Function [-=](n)
 value = value-n
 [-=] = value

Design Patterns

242

 End Function
 Public Function [*=](n)
 value = value*n
 [*=] = value
 End Function
 Public Function [/=](n)
 value = value/n
 [/=] = value
 End Function
 Public Function [\=](n)
 value = value\n
 [\=] = value
 End Function
 public default Property Get Value()
 Value = m_value
 End Property
 public Property Let Value(n)
 m_value = n
 End Property
 sub class_initialize()
 value = 0
 End sub
End Class

 f [As Num]: This design pattern returns a string as a number:
Function [As Num](n)
 Set [As Num] = new CNum
 If isnumeric(n) Then [As Num].Value = n
End Function

 f [++]: This design pattern returns an incremented string number value:
Function [++](n)
 Dim i
 Set i = [As Num](n)
 i.value = n
 i.[++]
 [++] = i
End Function

Appendix

243

 f [--]: This design pattern returns a decremented string number value:

Function[--](n)
 Dim i
 Set i = [As Num](n)
 i.value = n
 i.[--]
 [--] = i
End Function

Action patterns
The following action patterns provide sample Actions that can be executed within UFT:

 f DoSomething: This design pattern calls the TimeStamp() function and prints
the returned value:
Function DoSomething()
 Print "Doing something at " & Timestamp()
 DoSomething = 0
End Function

 f [OpenApp]: This design pattern calls the preceding DoSomething() function
combined with auxiliary classes and functions taken from the previous section
to provide a reusable Action to provide a basic open AUT functionality:
Class [OpenApp]
 ' --
 ' Reusable Action: OpenApp
 ' Description:
 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0
 '--- TODO: The code
 me.Status.[+=]DoSomething()

Design Patterns

244

 '--- Report
 Call ReportActionStatus(me)
 End Function

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

 f [Login]: This design pattern provides a reusable Action for the target AUT in order
to provide a basic login/logon functionality:
Class [Login]
 ' --
 ' Reusable Action: Login
 ' Description: Login to the application
 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0
 '---
 me.Status.[+=]EnterUsername()
 me.Status.[+=]EnterPassword()
 me.Status.[+=]ClickOnLoginButton()

 '--- Report
 Call ReportActionStatus(me)
 End Function

 Function EnterUsername()
' EnterUsername = me.Parent.WebEdit("txtUsername").
 Set(dt.GetParameter("USERNAME"))
 End Function

Appendix

245

 Function EnterPassword()
' EnterPassword = me.Parent.WebEdit("txtPassword")
 .Set(dt.GetParameter("PASSWORD"))
 End Function

 Function ClickOnLoginButton()
' ClickOnLoginButton =
 me.Parent.WebButton("btnLogin").Click
 End Function

 Property Get Parent()
 Set Parent = Browser("MyStore").Page("Main")
 End Property

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

 f [Search]: This design pattern provides a reusable Action for the target AUT in order
to provide a basic search functionality:
Class [Search]
 ' --
 ' Reusable Action: Search
 ' Description:
 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0
 '--- TODO: The code
 me.Status.[+=]DoSomething()

 '--- Report

Design Patterns

246

 Call ReportActionStatus(me)
 End Function

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

 f [AddToCart]: This design pattern provides a reusable Action in order to provide a
basic add to cart functionality for the target AUT:
Class [AddToCart]
 ' --
 ' Reusable Action: AddToCart
 ' Description:
 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0
 '--- TODO: The code
 me.Status.[+=]DoSomething()

 PrintReportInfo TypeName(me), "Added to cart: '" &
 dt.GetParameter("PRODUCT_NAME") & "'"

 '--- Report
 Call ReportActionStatus(me)
 End Function

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate

Appendix

247

 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

 f [Checkout]: This design pattern provides a reusable Action in order to provide a
basic checkout functionality for the target AUT:
Class [Checkout]
 ' --
 ' Reusable Action: Checkout
 ' Description:
 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0
 '--- TODO: The code
 me.Status.[+=]DoSomething()

 '--- Report
 Call ReportActionStatus(me)
 End Function

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

 f [Logout]: This design pattern provides a reusable Action in order to provide a basic
logout functionality for the target AUT:
Class [Logout]
 ' --
 ' Reusable Action: Logout
 ' Description:

Design Patterns

248

 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0
 '--- TODO: The code
 me.Status.[+=]DoSomething()

 '--- Raise an error on purpose to show the Error
 Handler in action
 On Error Resume Next
 Err.Raise 9

 '--- Report
 Call ReportActionStatus(me)
 End Function

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

 f [CloseApp]: This design pattern provides a reusable Action in order to provide a
basic close functionality to the target AUT:

Class CloseApp
 ' --
 ' Reusable Action: CloseApp
 ' Description:
 ' --
 Public Status
 Public Iteration
 Public StepNum
 Public dt
 Public Details

Appendix

249

 Public Function Run()
 me.Details = "Ended with "
 me.Status.[=]0
 '--- TODO: The code
 me.Status.[+=]DoSomething()

 '--- Report
 Call ReportActionStatus(me)
 End Function

 Private Sub Class_Initialize
 Call InfoClassInstance(me, C_OBJ_LOADED_MSG)
 Set me.Status = [As Num](0)
 End Sub
 Private Sub Class_Terminate
 Call InfoClassInstance(me, C_OBJ_UNLOADED_MSG)
 Set me.Status = Nothing
 End Sub
End Class

Runtime data patterns
The following runtime data patterns provide sample datasheets to be consumed within UFT:

 f Steps: This runtime data pattern provides the sample datasheet required for
execution of the Action patterns, described in the previous section as the master
driver file:

STEP_ID ACTION_NAME RUN DATASHEET ITERATIONS ON_FAILURE

10 OpenApp TRUE N/A ExitTest

20 Login TRUE ExitTest

30 Search TRUE ExitAction

40 AddToCart TRUE 1 to 3 ExitAction

50 Checkout TRUE ExitAction

60 Logout TRUE N/A ExitAction

70 CloseApp TRUE N/A ExitTest

Design Patterns

250

 f Login: This runtime data pattern provides the sample datasheet required for the
execution of Action [Login], described in the previous section as the master data file:

USERNAME PASSWORD
User1 53d3905671ff1996dc6d1b4399eb

 f Search: This runtime data pattern provides the sample datasheet required for
execution of Action [Search], described in the previous section as the master
data file:

SEARCH_TERM
Book

 f AddToCart: This runtime data pattern provides the sample datasheet required for
execution of Action [AddToCart], described in the previous section as the master
data file:

PRODUCT_NAME
My Book 1
My Book 2
My Book 3

 f Checkout: This runtime data pattern provides the sample datasheet required for
execution of Action [Checkout], described in the previous section as the master
data file:

CREDIT_CARD CCV EXPIRATION_DATE CUSTOMER_ID
999999999999 999 31/12/2017 999999999

Index
Symbols
[AddToCart] design pattern 246
[As Num] design pattern 242
[Checkout] design pattern 247
[CloseApp] design pattern 248
[--] design pattern 243
[++] design pattern 242
[Login] design pattern 244
[Logout] design pattern 247
[OpenApp] design pattern 243
[Search] design pattern 245

A
Action Based Testing (ABT) 214, 227
action patterns

[AddToCart] 246
[Checkout] 247
[CloseApp] 248
DoSomething 243
[Login] 244
[Logout] 247
[OpenApp] 243
[Search] 245

AddToCart runtime data pattern 250
App_GetLastBuild class 58
Application Under Test (AUT) 11, 79, 117
AssertResult design pattern 237
assistive properties

setting, for class 124-126
AutoIt class 58
AutoItX COM object

URL, for downloading 57
automated test assets 214, 217
automated test scenarios 216

Automation Object Model (AOM) 176
auxiliary classes and functions

design patterns
[--] 243
[++] 242
[As Num] 242
AssertResult 237
CNum 241
GetClassInstance 238
GetIterations 239
InfoClassInstance 238
PadNumber 240
Timestamp 241

B
binary file contents

verifying, with FileCompare 198
broken links

checking 44-48
built-in Environment variables

runtime data 31
static data 31

Business Process Testing (BPT) 214, 227

C
Cascading Style Sheet (CSS) 43
character property, values

\d 128
\D 128
\s 128
\S 128
\w 128
\W 128

CheckLink(strHref) function 45
Checkout runtime data pattern 250

252

child objects
using 130

class
about 151
implementing 152-158
reference link, for implementation 158

CNum design pattern 241
command wrapper 214
configuration file

used, for managing test environments 34
controller

about 218
building 219-227

cookies
about 48
deleting 48, 49

custom method
adding, to class 120, 121

custom reserved object
implementing 198-200

D
Database. See DB
data-driven framework 214, 215
data-driven tests 7
DataTable

creating 8, 9
data, retrieving from 9, 10
data, storing 11-14
drawbacks 35
exporting 17, 18
used, for defining test cases 22-28

DataTable.Value property 10
DB 83
DB checkpoint

using 88-98
DB connection

closing 84-86
establishing 84-86

DbTable TO
connectionstring property 97
dbuniqueid property 97
source property 97

Description object
about 128
using 128, 129

Descriptive Programming (DP)
about 21, 126, 163
using 126-128

DeviceReplay object
used, for customizing mouse

operations 184-186
Dictionary object

about 36
using, for recovery 146-149

disposeGlobalDictionary() function 37
DisposeXMLHttp() function 45
Document Object Model (DOM)

about 44, 81
URL 44
web elements, accessing through 81, 82

DoSomething design pattern 243
Dynamic Link Library (DLL) 33, 195

E
Environment global variable

capacities 176
references 184
using 176-183
working 184

Environment object
about 28
data, retrieving form 31, 32
data, storing in 28-31

Environment object, variables
built-in 31
user-defined 31

event and exception handling
errors, catching inside function

or subroutine 136-138
global Dictionary object, using

for recovery 146-149
recovery scenario, creating 138-146
recovery scenario, using 138-146

event handler
about 218
building 230-233

Excel file
importing, to test 14-17

Extensible Markup Language. See XML
External variables 30

253

F
file

downloading, XMLHttp used 57-66
uploading, FTP used 68-75

FileCompare
used, for verifying binary file contents 198

file locations
resolving, with PathFinder object 190

Filter property, mode
0/rfEnableAll 110
1/rfEnableErrorsAndWarnings 110
2/rfEnableErrorsOnly 110
3/rfDisableAll 110

FTP
used, for uploading file 68-74

function pointer
about 168
implementing 168-170
reference link 170

G
generic Iterator

implementing 170-173
generic Login class

implementing 163-168
GetClassInstance design pattern 238
GetInstance(cls) function 40
GetIterations design pattern 239
GetLinks(URL) function 45
GetObjectByAnchor function

objAnchor argument 78
objParent argument 78
objTargetDesc argument 78

GetTOProperty method
using 133

global dictionary
used, for fast shared code access 39-41
used, for fast shared data access 35-38

Globally Unique Identifier (GUID) 97
GoogleSearch class

implementing 159-163

H
HandleDialog() function 57
Http class 57
hybrid framework

about 214, 216
features 216

I
InfoClassInstance design pattern 238
INI file

values, reading from 32, 33
initGlobalDictionary() function 37
InitXMLHttp() function 45
Inline Descriptions (ID). See Descriptive

Programming (DP)
Internal variables 30
Internet Explorer (IE) 49

J
Just-in-Time (JIT) 147

K
keyword-driven framework 214-216

L
Login runtime data pattern 250

M
mandatory properties

setting, for class 124-126
MercuryTimers object

continue method 189
reset method 189
start method 189
stop method 189
used, for measuring time 188-190

method
registering, for all classes 112-116

254

method overriding
about 107
implementing 108-111
RegisterUserFunc, limitations 111
using, for object subtypes 117-119

model-driven framework 214
modular-driven framework 214, 215
mouse operations

customizing, with DeviceReplay
object 184-186

multiple browser windows
managing 50-53

N
native properties

using, for object identification 131, 132

O
object identification

assistive properties, setting 124-126
based on its parent 133
child objects, using 130
Description object, using 128, 129
Descriptive Programming (DP),

using 126-128
mandatory properties, setting 124-126
native properties, using 131, 132

Object Repository (OR) 18
open method, XMLHTTPRequest object

URL, for documentation 48

P
PadNumber design pattern 240
PathFinder.Locate method 190
PathFinder object

used, for resolving file locations 190
pop-up dialogs

handling 53-56
prefixes, data types

reference link 152
processes

managing, with SystemUtil object 186-188

R
recovery scenario

creating 138-146
using 138-146

rectangle
drawing, with Win32 API methods

(Extern) 194-197
RegisterUserFunc, limitations

interoperability 112
number of arguments 111

remote objects
using 200-202

reporter
about 218
building 233-235

RepositoriesCollection object
used, for loading SOR 191-193

reusable component (action)
about 218
building 227-229

Run method 41
runtime data patterns

AddToCart 250
Checkout 250
Login 250
Search 250
Steps 249

S
Search runtime data pattern 250
Shared Object Repositories (SOR)

loading, with RepositoriesCollection
object 191-193

Smart Identification (SI) 126
SQL queries

using 87
StateChangeHandler class 57
Steps runtime data pattern 249
strLocalFile variable 75
strPassword variable 75
strRemotePath variable 75
strSite variable 75
strUsername variable 75
SystemUtil object

used, for managing processes 186-188

255

T
test

synchronizing, with web page loading 79, 80
test automation framework

about 214
advantages 214
designing 217

test automation framework, components
about 217
controller 218
event handler 218
reporter 218
reusable component (action) 218

test automation framework, types
data-driven framework 214, 215
hybrid framework 214, 216
keyword-driven framework 214-216
model-driven framework 214
modular-driven framework 214, 215
selecting 215

test cases
defining, DataTable used 22-28

test environments
managing, configuration file used 34

Test Object (TO) 14, 123
Test Object method

overriding 108-112
Test Object properties

parameterizing 18-21
time

measuring, with MercuryTimers
object 188-190

Timestamp design pattern 241

U
UFT

data-driven tests 7
Uniform Resource Locator (URL) 44
user-defined Environment variables

about 31
creating 31

User Interface (UI) 216

utility statements
about 202
DescribeResult 203
ExecuteFile 203
ExitAction 203
ExitActionIteration 203
ExitTest 203
ExitTestIteration 203
GetLastError 203
InvokeApplication 204
LoadAndRunAction 204
OptionalStep 204
Print 204
RegisterUserFunc 205
RunAction 205
UnregisterUserFunc 205
using 203-205
Wait 205

V
variable, classifications

External variables 30
Internal variables 30

W
WebEditSet class 169
web elements

accessing, through DOM 81, 82
identifying, based on anchors 75-79

web page loading
test, synchronizing with 79, 80

web pages
broken links, checking 44-48
testing 44

website
checking 67

WebUtil object 49
Win32 API methods (Extern)

used, for drawing rectangle on
screen 194-197

Windows Script Component (WSC) 201
Windows Script Host (WSH) 137, 201, 207

256

Windows® system registry
key, deleting 210
key, reading 208
key, writing 209, 210

Windows® system shell
used, for running process 211, 212

X
XML 83
XML checkpoint

using 99-106
XML documents

creating, with XMLUtil object 193, 194
loading, with XMLUtil object 193, 194

XMLHttp
used, for downloading file 57-66

XMLUtil object
used, for creating XML documents 193
used, for loading XML documents 193, 194

Thank you for buying
Advanced UFT 12 for Test Engineers Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused books
on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home to books
published on enterprise software – software created by major vendors, including (but not limited to) IBM,
Microsoft and Oracle, often for use in other corporations. Its titles will offer information relevant to a
range of users of this software, including administrators, developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in touch
with you.

We're not just looking for published authors; if you have strong technical skills but no writing experience,
our experienced editors can help you develop a writing career, or simply get some additional reward for
your expertise.

Designing and Implementing
Test Automation Frameworks
with QTP
ISBN: 978-1-78217-102-7 Paperback: 160 pages

Learn how to design and implement a test automation
framework block by block

1. A simple and easy demonstration of the important
concepts will enable you to translate abstract
ideas into practice.

2. Each chapter begins with an outline and a brief
statement of content to help the reader establish
perspective.

3. An alternative approach to developing generic
components for test automation.

Instant Selenium Testing
Tools Starter
ISBN: 978-1-78216-514-9 Paperback: 52 pages

A short, fast, and focused guide to Selenium Testing
tools that delivers immediate results

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Learn to create web tests using Selenium Tools.

3. Learn to use Page Object Pattern.

4. Run and analyze test results on an easy-to-use
platform.

Please check www.PacktPub.com for information on our titles

Software Testing using
Visual Studio 2012
ISBN: 978-1-84968-954-0 Paperback: 444 pages

Learn different testing techniques and features of
Visual Studio 2012 with detailed explanations and
real-time samples

1. Using Test Manager and managing test cases and
test scenarios.

2. Exploratory testing using Visual Studio 2012.

3. Learn unit testing features and coded user
interface testing.

Selenium Testing Tools
Cookbook
ISBN: 978-1-84951-574-0 Paperback: 326 pages

Over 90 recipes to build, maintain, and improve test
automation with Selenium WebDriver

1. Learn to leverage the power of Selenium
WebDriver with simple examples that illustrate
real-world problems and their workarounds.

2. Each sample demonstrates key concepts allowing
you to advance your knowledge of Selenium
WebDriver in a practical and incremental way.

3. Explains testing of mobile web applications
with Selenium drivers for platforms such as
iOS and Android.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Data-Driven Tests
	Introduction
	Creating a DataTable parameter
	Retrieving data from a DataTable
	Storing data in a DataTable
	Importing an Excel file to a test
	Exporting a DataTable
	Parameterizing Test Object properties
	Defining test cases using a DataTable
	Storing data in the Environment object
	Retrieving data from the Environment object
	Reading values from an INI file
	Using a configuration file to manage test environments
	Using a global dictionary for fast shared data access
	Using a global dictionary for fast shared code access

	Chapter 2: Testing Web Pages
	Introduction
	Checking if page links are broken
	Deleting cookies
	Managing multiple browser windows
	Handling pop-up dialogs
	Downloading a file using XMLHttp
	Checking whether a website is up
	Uploading a file using FTP
	Identifying elements based on anchors
	Synchronizing a test with a web page loading
	Accessing web elements through DOM

	Chapter 3: Testing XML and Database
	Introduction
	Establishing and closing a database connection
	Using SQL queries programmatically
	Using a database checkpoint
	Using an XML checkpoint

	Chapter 4: Method Overriding
	Introduction
	Overriding a Test Object method
	Registering a method to all classes
	Using method overriding to support object subtypes
	Adding a new method to a class

	Chapter 5: Object Identification
	Introduction
	Setting mandatory and assistive properties for a class
	Using Descriptive Programming inline
	Using the Description object
	Using child objects
	Using native properties for object identification
	Identifying an object based on its parent

	Chapter 6: Event and Exception Handling
	Introduction
	Catching errors inside a function or subroutine
	Creating and using a recovery scenario
	Using a global dictionary for recovery

	Chapter 7: Using Classes
	Introduction
	Implementing a class
	Implementing a simple search class
	Implementing a generic Login class
	Implementing function pointers
	Implementing a generic Iterator

	Chapter 8: Utility and Reserved Objects
	Introduction
	Using global variables (Environment)
	Customizing mouse operations (DeviceReplay)
	Managing processes (SystemUtil)
	Measuring time (MercuryTimers)
	Resolving file locations (PathFinder)
	Loading shared object repositories (RepositoriesCollection)
	Loading and creating XML documents (XMLUtil)
	Drawing a rectangle on the screen with Win32 API methods (Extern)
	Verifying binary file contents (FileCompare)
	Implementing a custom reserved object
	Using remote objects
	Utility statements

	Chapter 9: Windows Script Host (WSH)
	Introduction
	Reading a key from the Windows® system registry
	Writing a key to the Windows® system registry
	Deleting a key from the Windows® system registry
	Running a process using the Windows® system shell

	Chapter 10: Frameworks
	Appendix: Design Patterns
	Auxiliary classes and functions
	Action patterns
	Runtime data patterns

	Index

