
M A N N I N G

Christopher W. H. Davis
FOREWORD BY Olivier Gaudin

How to measure and improve team performance

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

Agile Metrics in Action
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ii
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Agile Metrics in Action
How to measure and improve team performance

CHRISTOPHER W. H. DAVIS

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor: Michael Smolyak
PO Box 761 Copyeditor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreader: David Pombal
Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN: 9781617292484
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 MEASURING AGILE TEAMS .. 1

1 ■ Measuring agile performance 3
2 ■ Observing a live project 20

PART 2 COLLECTING AND ANALYZING YOUR TEAM’S DATA 35

3 ■ Trends and data from project-tracking systems 37
4 ■ Trends and data from source control 62
5 ■ Trends and data from CI and deployment servers 84
6 ■ Data from your production systems 107

PART 3 APPLYING METRICS TO YOUR TEAMS, PROCESSES,
 AND SOFTWARE ... 125

7 ■ Working with the data you’re collecting: the sum
of the parts 127

8 ■ Measuring the technical quality of your software 154
9 ■ Publishing metrics 177

10 ■ Measuring your team against the agile principles 201
v

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSvi
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix

PART 1 MEASURING AGILE TEAMS 1

1 Measuring agile performance 3
1.1 Collect, measure, react, repeat—the feedback loop 4

What are metrics? 5

1.2 Why agile teams struggle with measurement 5
Problem: agile definitions of measurement are not
straightforward 6 ■ Problem: agile focuses on a product,
not a project 7 ■ Problem: data is all over the place without a
unified view 8

1.3 What questions can metrics answer, and where do I get the
data to answer them? 9
Project tracking 10 ■ Source control 11 ■ The build
system 11 ■ System monitoring 12

1.4 Analyzing what you have and what to do with the data 13
Figuring out what matters 14 ■ Visualizing your data 14
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
1.5 Applying lessons learned 16

1.6 Taking ownership and measuring your team 16
Getting buy-in 17 ■ Metric naysayers 18

1.7 Summary 19

2 Observing a live project 20
2.1 A typical agile project 20

How Blastamo Music used agile 21

2.2 A problem arises 21

2.3 Determining the right solution 22

2.4 Analyzing and presenting the data 26
Solving the problems 27 ■ Visualizing the final product for
leadership 28

2.5 Building on the system and improving their processes 31
Using data to improve what they do every day 32

2.6 Summary 33

PART 2 COLLECTING AND ANALYZING YOUR
TEAM’S DATA .. 35

3 Trends and data from project-tracking systems 37
3.1 Typical agile measurements using PTS data 39

Burn down 39 ■ Velocity 40 ■ Cumulative flow 41
Lead time 42 ■ Bug counts 42

3.2 Prepare for analysis; generate the richest set of data you
can 44
Tip 1: Make sure everyone uses your PTS 45 ■ Tip 2: Tag tasks
with as much data as possible 46 ■ Tip 3: Estimate how long
you think your tasks will take 47 ■ Tip 4: Clearly define when
tasks are done 49 ■ Tip 5: Clearly define when tasks are
completed in a good way 50

3.3 Key project management metrics; spotting trends in data 52
Task volume 52 ■ Bugs 53 ■ Measuring task movement;
recidivism and workflow 54 ■ Sorting with tags and labels 55

3.4 Case study: identifying tech debt trending with project
tracking data 57

3.5 Summary 60
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
4 Trends and data from source control 62
4.1 What is source control management? 63

4.2 Preparing for analysis: generate the richest set of data
you can 64
Tip 1: Use distributed version control and pull requests 65

4.3 The data you’ll be working with; what you can get
from SCM 68
The data you can get from a DVCS 68 ■ Data you can get from
centralized SCM 71 ■ What you can tell from SCM alone 71

4.4 Key SCM metrics: spotting trends in your data 77
Charting SCM activity 78

4.5 Case study: moving to the pull request workflow and
incorporating quality engineering 79

4.6 Summary 82

5 Trends and data from CI and deployment servers 84
5.1 What is continuous development? 86

Continuous integration 86 ■ Continuous delivery 88
Continuous testing 89

5.2 Preparing for analysis: generate the richest set of data
you can 90
Set up a delivery pipeline 90

5.3 The data you’ll be working with: what you can get from
your CI APIs 91
The data you can get from your CI server 91 ■ What you can tell
from CI alone 96

5.4 Key CI metrics: spotting trends in your data 97
Getting CI data and adding it to your charts 97

5.5 Case study: measuring benefits of process change through
CI data 101

5.6 Summary 105

6 Data from your production systems 107
6.1 Preparing for analysis: generating the richest set of data

you can 109
Adding arbitrary metrics to your development
cycle 110 ■ Utilizing the features of your application
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
performance monitoring system 113 ■ Using logging best
practices 115 ■ Using social network interaction to connect
with your consumers 116

6.2 The data you’ll be working with: what you can get from
your APM systems 118
Server health statistics 118 ■ Consumer usage 120
Semantic logging analysis 120 ■ Tools used to collect
production system data 121

6.3 Case study: a team moves to DevOps and continuous
delivery 122

6.4 Summary 124

PART 3 APPLYING METRICS TO YOUR TEAMS,
PROCESSES, AND SOFTWARE 125

7 Working with the data you’re collecting: the sum of the parts 127
7.1 Combining data points to create metrics 127

7.2 Using your data to define “good” 129
Turning subjectivity into objectivity 130 ■ Working backward
from good releases 132

7.3 How to create metrics 135
Step 1: explore your data 136 ■ Step 2: break it down—
determine what to track 139 ■ Step 3: create formulas around
multiple data points to create metrics 140

7.4 Case study: creating and using a new metric to measure
continuous release quality 144

7.5 Summary 153

8 Measuring the technical quality of your software 154
8.1 Preparing for analysis: setting up to measure your

code 155

8.2 Measuring the NFRs through the code “ilities” 156

8.3 Measuring maintainability 158
MTTR and lead time 158 ■ Adding SCM and build
data 162 ■ Code coverage 164 ■ Adding static code
analysis 165 ■ Adding more PTS data 167

8.4 Measuring usability 168
Reliability and availability 169 ■ Security 171
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
8.5 Case study: finding anomalies in lead time 173

8.6 Summary 176

9 Publishing metrics 177
9.1 The right data for the right audience 178

What to use on your team 180 ■ What managers want to
see 184 ■ What executives care about 188 ■ Using metrics to
prove a point or effect change 189

9.2 Different publishing methods 191
Building dashboards 192 ■ Using email 193

9.3 Case study: driving visibility toward a strategic goal 194

9.4 Summary 199

10 Measuring your team against the agile principles 201
10.1 Breaking the agile principles into measurable

components 202
Aligning the principles with the delivery lifecycle 204

10.2 Three principles for effective software 205
Measuring effective software 206

10.3 Four principles for effective process 207
Measuring effective processes 208

10.4 Four principles for an effective team 210
Measuring an effective development team 210

10.5 One principle for effective requirements 213
Measuring effective requirements 213

10.6 Case study: a new agile team 215

10.7 Summary 219

appendix A DIY analytics using ELK 221
appendix B Collecting data from source systems with Grails 229

index 319
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
Licensed to Mark Watson <nordickan@gmail.com>

foreword
Although it is still fairly young, the software development industry has matured con-
siderably in the last 15 years and gone through several major transformations:

■ Just a short while ago, it seems, the waterfall lifecycle was pretty much the only
option for software development projects. Today, agile methodology is also fre-
quently used.

■ New development engineering practices have entered the game, such as SCM,
issue tracking, build standardization, continuous integration, continuous
inspection, and so on. In most organizations, it is now the norm to have a com-
plete software factory.

■ Although they started out minimalistic, modern IDEs have become a widely
adopted productivity tool for developers.

This is all great news; and what’s more, there is strong traction to continue these
efforts and make the software development world even better. It is amazing how many
development teams are seeking a common Holy Grail: continuous delivery. In other
words, teams want a software development process that is predictable and repeatable,
and that enables a shift to production at any time in a controlled manner.

 Despite all the good things that have happened within the industry in recent years,
there is a general consensus that we are not quite there yet. Software development is
not yet a fully mastered science, and delivery generally still is not reliable. Projects are
often delivered late, with a reduced scope of features, generating frustration at all lev-
els in organizations and justifying their reputation for being both expensive and
unpredictable.
xiii

Licensed to Mark Watson <nordickan@gmail.com>

FOREWORDxiv
 One aspect that is missing from the recent improvements in our industry is mea-
surement: measurement of what we produce, of course, but also measurement of the
impact of the changes we make to improve delivery. We should be able to answer ques-
tions such as, “Did this change improve the process?” and “Are we delivering better
now?” In many cases, these questions are not even asked, because doing so is not part
of the company culture or because we know they are difficult to answer. If we, as an
industry, want to reach the next level of maturity, we need to both ask and answer
these questions. Many companies have realized this and have begun to move into the
measurement area.

 This is the journey that Chris will take you on in this book. It will be your steadfast
companion on your expedition into measurement. Whether you are just starting out
or are already an advanced “measurer,” Agile Metrics in Action will provide you with a
360-degree guide: from theory to practice; from defining what you should be measur-
ing, in which area and at which frequency, to who should be targeted with which indi-
cators; and from how to gather the numbers and which tool to use to consolidate
them, to how to take action on them. The book focuses mostly on agile teams, but
much of it can also be applied in other contexts. All this is done using existing tools,
most of them open source and widely used.

 But that’s not all! For each area of measurement, Chris presents a case study that
makes it concrete and applicable, based on his own experiences. Whatever your cur-
rent maturity level with regard to measuring your development process, you will learn
from this book. Enjoy!

OLIVIER GAUDIN

CEO AND COFOUNDER

SONARSOURCE
Licensed to Mark Watson <nordickan@gmail.com>

preface
 At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

—agilemanifesto.org/principles.html

Development teams adopt agile practices differently based on team members, time
commitments, the type of project being developed, and the software available, to
name only a few factors. As quoted from the Agile Manifesto, teams should have regu-
lar check and adjust periods where they can reflect on how well they’re working and
how they can improve. This book demonstrates how to gather performance data to
measure an agile team, interpret it, and react to it at check and adjust intervals so the
team can reach their full potential.

 After years of working on agile teams, I’ve noticed that many times teams check
and adjust based on gut feelings or the latest blog post someone read. Many times
teams don’t use real data to determine what direction to go in or to rate their team or
their process. You don’t have to go far to find the data with development, tracking,
and monitoring tools used today. Applications have very sophisticated performance-
monitoring systems; tracking systems are used to manage tasks; and build systems are
flexible, simple, and powerful. Combine all of this with modern deployment method-
ologies and teams shipping code to production multiple times a day in an automated
fashion, and you have a wealth of data you can use to measure your team in order to
adjust your process.

 I’ve used the techniques in this book over the years, and it has been a game
changer in how my teams think about their work. Retrospectives that start with
xv

Licensed to Mark Watson <nordickan@gmail.com>

http://agilemanifesto.org/principles.html

PREFACExvi
conversations around data end up being much more productive and bring to light
real issues to work on instead of going off of guesswork or opinion. Being able to set
metrics with a team and using them in Scrums, retrospectives, or anywhere else
throughout the development process helps the team focus on issues and filter out
noise or celebrate parts of the process that are working well.

 Finally, having this data at their fingertips typically makes managers and leadership
teams happy because it gives them real insight into how the teams they’re sponsoring
and responsible for are really performing. They can see how their initiatives affect
their teams and ultimately the bottom line.

 I started using these techniques as a developer who wanted to report to leadership
the true picture of the performance of my team. As I transitioned into management, I
started to look at this data from another angle and encouraged my team to do the
same, adding data they thought was important that reflected their day-to-day work. As
I transitioned into a more senior management position, I’ve been able to look at this
data from yet another perspective to see how strategies, initiatives, and investments
affect cross-team efforts, how to bring operating efficiencies from one team to
another, and how to track success on a larger scale. No matter what your role is on an
agile development team, I’m sure you’ll be able to apply these techniques with success
in your organization.
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
Anyone who writes a book will tell you it’s a lot of work, and they’re right. It’s been a
journey just to get to a point where I could write a book on anything, and writing itself
has been an extremely rewarding experience. You wouldn’t be reading this if it
weren’t for the love and support of many people throughout my life who have encour-
aged me to try new things, picked me up when I’ve stumbled, and given me the confi-
dence to keep innovating.

 To start, there have been my teachers through the years who noticed my love of
writing and encouraged me to keep at it: my fifth-grade teacher, Mr. Rosati, who first
noticed my love of writing; my seventh-grade English teacher and tennis coach, Mr.
Nolan, who gave me the opportunity to continue working on my creative skills; and
my tenth-grade English teacher, Ms. Kirchner, who encouraged me to publish my
work. My college professors Sheila Silver, Christa Erickson, Perry Goldstein, and
Daniel Weymouth all encouraged my creativity and put me on a path that combined
my technical and creative abilities.

 A special thank you goes out to my parents, Ward and Irene Davis, who have always
stood by me and encouraged me to be myself. They gave me the freedom to grow and
encouraged my efforts no matter how crazy they have been.

 I’m grateful also to my lovely wife, Heather, who tolerated my long nights and
weekends of typing and gave me the encouragement to keep going.

 Thanks also to Grandma Davis, who taught me about the long line of inventors
and writers in our family tree, which has always been a source of inspiration.

 Thanks to all of the great people at Manning Publications who have helped along
the way: Dan Maharry for being a great editor and Michael Stephens, Candace
xvii

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTSxviii
Gillhoolley, and Marjan Bace for their suggestions and direction during the writing of
this book. Thanks also to the production team and everyone else at Manning who
worked behind the scenes.

 I’d like to express my gratitude to the MEAP readers and the reviewers who took
time to read my manuscript at various stages during its development and who pro-
vided invaluable feedback, especially Boyd Meier, Chris Heneghan, Enzo Matera, Ezra
Simeloff, Francesco Bianchi, Hamideh Iraj, James Matlock, John Tyler, Ken Fricklas,
Luca Campobasso, Marcelo Lopez, Max Hemingway, Noreen Dertinger, Steven Parr,
and Sune Lomholt.

 Special thanks to my technical proofreader, David Pombal, who checked the code
and read the chapters one last time shortly before the book went into production, and
to Olivier Gaudin for contributing the foreword to my book.

 I’d also like to thank everyone who has driven me crazy by not measuring things
over the years; they ultimately pushed me into exploring and mastering this topic
throughout my career. Conversely, I’d like to thank everyone who has found value in
these techniques or has worked on my teams that have used them, because they have
helped me hone them into useful and practical ways of creating great agile teams.
Licensed to Mark Watson <nordickan@gmail.com>

about this book
In this book I hope to show you how to use the data you're already generating to make
your teams, processes, and products better. The goal of the book is to teach your agile
team which metrics it can use to objectively measure performance. You'll learn what
data really counts, along with where to find it, how to get it, and how to analyze it.
Because meaningful data may be gathered or used by any part of an agile team, you'll
learn how all team members can publish their own metrics through dashboards and
radiators, taking charge of communicating performance and individual accountabil-
ity. Along the way, I hope you'll pick up practical data analysis techniques, including a
few emerging Big Data practices.

Roadmap

This book is broken into three parts: “Measuring agile performance,” “Collecting and
analyzing your team’s data,” and “Applying metrics to your teams, processes, and soft-
ware.”

 The first part introduces the concepts of data-driven agile teams: how to measure your
processes and how to apply it to your team. Chapter 2 is an extended case study that takes
the concepts from the first chapter and shows them in action on a fictional team.

 The second part of this book is made up of four chapters, each focusing on a spe-
cific type of data, how to use it on your team, and what that data tells you by itself. We
start off with project tracking system (PTS) data in chapter 3, move on to source con-
trol management (SCM) data in chapter 4, explore data from continuous integration
(CI) and deployment systems in chapter 5, and finally in chapter 6 look at data you
xix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
can get from application performance monitoring (APM) tools. Each chapter in this
section ends in a case study that shows you how the data and metrics from the chapter
can be applied to your team from the team’s point of view.

 The third part of this book shows you what you can do with the data you’ve learned
about in the first two parts. Chapter 7 shows you how to combine different types of
data to create complex metrics. Chapter 8 shows you how to measure good software
and uses a variety of data and techniques to monitor your code throughout its life-
cycle. Chapter 9 shows you how to report on your metrics, diving into dashboards and
reports and how to use them across your organization. The final chapter in this book
shows you how to measure your team against the agile principles to see how agile your
team really is.

 Throughout the book I use primarily open source tools to demonstrate these prac-
tices. The appendixes walk you through the code for a data-collection system called
measurementor based on Elasticsearch, Kibana, Mongo, and Grails that I’ve used to
collect, aggregate, and display data from multiple systems.

Code conventions and downloads

All the source code in the book, whether in code listings or snippets, is in a fixed-
width font like this, which sets it off from the surrounding text. In some listings,
the code is annotated to point out key concepts, and numbered bullets are sometimes
used in the text to provide additional information about the code. The code is format-
ted so that it fits within the available page space in the book by adding line breaks and
using indentation carefully.

 The code for this book is available for download from the publisher’s website at
www.manning.com/AgileMetricsinAction and is also posted on GitHub at github.com
/cwhd/measurementor.

 Feel free to contribute to the project, fork it, or use the concepts to roll your own
version in your language of choice. I tried to make it as easy as possible to use by
employing open source tools for the bulk of the functionality. There’s a Puppet script
that will install everything you need and a Vagrant file so you can get up and running
in a virtual machine pretty quickly.

 In appendix A, I detail the architecture of the system used throughout the book.

Author Online

Purchase of Agile Metrics in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from the community. To access the
forum and subscribe to it, go to www.manning.com/AgileMetricsinAction. This page
provides information on how to get on the forum once you’re registered, what kind of
help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/AgileMetricsinAction
http://www.manning.com/AgileMetricsinAction
https://github.com/cwhd/measurementor
https://github.com/cwhd/measurementor

ABOUT THIS BOOK xxi
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

Christopher W. H. Davis has been leading and working on development teams since
the latter part of the twentieth century. Working in the travel, finance, healthcare,
telecommunications, and manufacturing industries, he’s led diverse teams in several
different environments around the world.

 An avid runner, Chris enjoys the beautiful and majestic Pacific Northwest in Port-
land, Oregon, with his wife and two children.

About the cover illustration

The figure on the cover of Agile Metrics in Action is captioned “Montagnard du Nord
de l’Ecosse,” which means an inhabitant of the mountainous regions in the north of
Scotland. The mountaineer is shown wearing a long blue robe and a red hat, and is
holding an older version of a traditional Scottish bagpipe.

 The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s
four-volume compendium of regional dress customs published in France. Each illus-
tration is finely drawn and colored by hand. The rich variety of Maréchal’s collection
reminds us vividly of how culturally apart the world’s towns and regions were just 200
years ago. Isolated from each other, people spoke different dialects and languages. In
the streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region and country, so
rich at the time, has faded away. It is now hard to tell apart the inhabitants of different
continents, let alone different towns, regions, or nations. Perhaps we have traded cul-
tural diversity for a more varied personal life—certainly for a more varied and fast-
paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOKxxii

Licensed to Mark Watson <nordickan@gmail.com>

Part 1

Measuring agile teams

A gile development has guidelines instead of hard-and-fast rules. Many
teams that practice agile struggle with measuring their processes and their
teams, despite having all the data they need to do the measurement.

 Chapter 1 navigates through the challenges of agile measurement. You’ll
learn where you can get data to measure your team, how to break down prob-
lems into measureable units, and how to incorporate better agile measurement
on your team.

 Chapter 2 puts what you learned in chapter 1 into action through a case
study where a team uses several open source technologies to incorporate better
agile measurement. They identify key metrics, use the tools to collect and ana-
lyze data, and check and adjust based on what they find.
Licensed to Mark Watson <nordickan@gmail.com>

2 CHAPTER
Licensed to Mark Watson <nordickan@gmail.com>

Measuring agile
performance
There isn’t a silver-bullet metric that will tell you if your agile teams are performing
as well as they can. Performance improvement is made possible by incorporating
what you learn about your team’s performance into how your team operates at reg-
ular intervals. Collecting and analyzing data in the form of metrics is an objective
way to learn more about your team and a way to measure any adjustments you
decide to make to your team’s behavior.

This chapter covers
■ Struggling with agile performance

measurement
■ Finding objective data for measuring agile

performance
■ Answering performance questions with data

you’re generating
■ Adopting agile performance measurement
3

Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Measuring agile performance
1.1 Collect, measure, react, repeat—the feedback loop
Working with metrics in a feedback loop in parallel with your development cycle will
allow you to make smarter adjustments to your team and help improve communica-
tion across your organization. Here are the steps in the feedback loop:

■ Collect—Gather all the data you can about your team and performance. Under-
stand where you are before you change anything.

■ Measure—Analyze your data.
■ Look for trends and relationships between data points.
■ Formulate questions about your team, workflow, or process.
■ Determine how to adjust based on your analysis.

■ React—Apply the adjustments based on your analysis.
■ Repeat—Keep tabs on the data you’ve determined should be affected so you can

continuously analyze and adjust your team.

The feedback loop depicted in figure 1.1 naturally fits into the operations of agile
teams. As you’re developing, you’re generating and collecting data; when you pause
to check and adjust, you’re doing your analysis; and when you start again, you’re
applying lessons learned and generating more data.

Continuous delivery and continuous improvement

The word continuous is everywhere in agile terminology: continuous integration, con-
tinuous delivery, continuous improvement, continuous testing, continuous (choose
your noun). No matter if you’re doing Scrum, Kanban, extreme programming (XP), or
some custom form of agile, keeping your stream of metrics as continuous as your
check-and-adjust period is key.

1 Collect data:
Get as much data
as you can from your
application lifecycle.

2 Measure (analyze):
Ask questions, find
trends, make
hypotheses.

4 Repeat. 3 React (apply):
Adjust your team based
on your findings.

Figure 1.1 The feedback loop: collecting data from your process, asking questions, and
tweaking your process
Licensed to Mark Watson <nordickan@gmail.com>

5Why agile teams struggle with measurement
To begin you need to know where you stand. You’re probably already tracking some-
thing in your development process, like what was accomplished, how much code is
changing, and how your software is performing.

 Your questions will drive the analysis phase by providing a lens with which to view
this data. Through this lens you can identify data points and metrics that help answer
your questions. These data points then become the indicators of progress as you
adjust your process to get to an ideal operating model for your team. Once you have
questions you want to answer, then you can start identifying data points and metrics
that represent them. At that point you can adjust how your team operates and track
the metrics you’ve identified.

1.1.1 What are metrics?

“A method of measuring something, or the results obtained from this.”

—metrics defined by Google

In the scope of this book metrics will represent the data you can get from your appli-
cation lifecycle as it applies to the performance of software development teams. A
metric can come from a single data source or it can be a combination of data from
multiple data sources. Any data point that you track eventually becomes a metric that
you can use to measure your team’s performance. Examples of common metrics are:

■ Velocity—The relative performance of your team over time
■ Changed lines of code (CLOC)—The number of lines of code that were changed

over time

Metrics can be used to measure anything you think is relevant, which can be a power-
ful tool when used to facilitate better communication and collaboration. These met-
rics in effect become key performance indicators (KPIs) that help measure what’s
important to your team and your business.

 Using KPIs and data trends to show how certain data points affect behaviors and
progress, you can tweak the behavior of your team and watch how the changes you
make affect data that’s important to it.

1.2 Why agile teams struggle with measurement
As you drive down the road, the gauges on your dashboard are the same as the gauges
in the cars around you. There are highway signs that tell you how fast you should go
and what you should do. Everyone on the road has gone through the same driving
tests to get a driver’s license and knows the same basic stuff about driving.

 Agile development is nothing like this. The people involved in delivering a soft-
ware product have different roles and different backgrounds. Their idea of what good
means can vary substantially.

■ A developer might think that good means a well-engineered piece of software.
■ A product owner might define good as more features delivered.
■ A project manager may think good means it was done on time and within budget.
Licensed to Mark Watson <nordickan@gmail.com>

6 CHAPTER 1 Measuring agile performance
Even though everyone is doing something different, they’re all headed down the
same road.

 So now picture a bunch of people driving down the same road in different vehicles
with totally different gauges. They all need to get to the same place, yet they’re all
using different information to get there. They can follow each other down the road,
but when they pull over to figure out how the trip is going, each has different ideas of
what the gauges in their vehicle are telling them.

 Agile is a partnership between product owners and product creators. To make the
most out of that partnership you need to smooth out the communication differences
by turning the data you’re already generating in your development process into
agreed-upon metrics that tell you how your team is doing.

 Let’s look at some universal problems that end up getting in the way of a common
understanding of agile metrics:

■ Agile definitions of measurement are not straightforward.
■ Agile deviates from textbook project management.
■ Data is generated throughout the entire development process without a unified

view.

All of these are common problems that deserve exploring.

1.2.1 Problem: agile definitions of measurement are not straightforward

There are a few commonly accepted tenets about measuring agile that tend to be
rather confusing. Let’s start with common agile principles:

■ Working software is the primary measure of progress. That statement is so ambiguous
and open to interpretation that it makes it very hard for teams to pinpoint
exactly how to measure progress. Essentially the point is you are performing
well if you’re delivering products to your consumers. The problem is the subjec-
tive nature of the term working software. Are you delivering something that works
per the original requirements but has massive security holes that put your con-
sumer’s data in jeopardy? Are you delivering something that is so non-perfor-
mant that your consumers stop using it? If you answered yes to either question,
then you’re probably not progressing. There’s a lot more to measuring progress
than delivering working software.

■ Any measurement you’re currently using has to be cheap. So what’s included in the cost
associated with gathering metrics? Are licenses to software included? Are you
looking at the hours spent by the people collecting measures? This statement
belittles the value of measuring performance. When you start measuring some-
thing, the better thing to keep in mind is if the value you get from the improve-
ment associated with the metric outweighs the cost of collecting it. This open
statement is a good tenet, but like our first statement, it’s pretty ambiguous.

■ Measure only what matters. This is a bad tenet. How do you know what matters?
When do you start tracking new things and when do you stop tracking others?
Because these are hard questions, metrics end up getting thrown by the wayside
Licensed to Mark Watson <nordickan@gmail.com>

7Why agile teams struggle with measurement
when they could be providing value. A better wording would be “measure every-
thing and figure out why metrics change unexpectedly.”

1.2.2 Problem: agile focuses on a product, not a project

One of the strengths of agile development methods is the idea that you are delivering
a living product, not completing a project. A project is a defined set of time within which
something is developed and tracked; a product is a living thing that continues to
change to meet the needs of the consumer. This is shown in figure 1.2.

 A good example of a project would be building a bridge. It gets designed, built to
spec, and then it stands likely unchanged for a long time. Before you start the project
you design exactly what you need so you can understand the total cost, and then you
track the progress against the plan to make sure you stay on schedule and budget.
This process is the art of project management.

 A good example of a product is a mobile application geared toward runners that
shows their paths on a map and aggregates their total mileage. It’s a tool; you can run
with it and get lots of data about your workouts. There are several competing apps
that have the same functionality but different bells and whistles. To keep up with the
competition, any app that competes in that space must constantly evolve to stay the
most relevant product its consumers can use. This evolution tends to happen in small
iterations that result in frequent feature releases which are immediately consumed
and tracked for feedback that helps shape the direction of the next feature.

 Frequently, software products are built through the lens of a project, which ends
up mixing project management techniques typically used for large predictive projects

Project mentality

One iteration
is all you need.

Incorporate
feedback

Build and
track

Build and
track Design

Continue to iterate through
the life of the project.

Done!

Done...

Product mentality

Design

Figure 1.2 Project vs. product mentality
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Measuring agile performance
with agile product management used for consistent iterative delivery. This ends up
putting project constraints on agile projects that don’t fit. An example would be using
a Gantt chart on an agile project. Gantt charts are great for tracking long-running
projects but usually cause heartache when used to track something with a definition
that is regularly in flux. An example Gantt chart is shown in figure 1.3.

 From a project-management perspective it would be great to have a clear predic-
tion of the cost of a complex feature that may take several sprints to complete, which
is why these tools end up tracking agile teams.

1.2.3 Problem: data is all over the place without a unified view

Your team is generating a lot of data throughout your entire software development
lifecycle (SDLC). Figure 1.4 shows the components that are typically used by an agile
software delivery team.

 The first problem is there is no standard for any of these boxes. There are several
project-tracking tools, plus different source control and continuous integration (CI)
systems, and your deployment and application-monitoring tools will vary depending
on your technology stack and what you’re delivering to your consumers. Different sys-
tems end up generating different reports that don’t always come together. In addi-
tion, there’s no product or group of products that encompasses all of the pieces of the
software development lifecycle.

Tasks that
you’re tracking
for this project

Duration as
a number, usually

in days

Each task shown from
start date to end date
against the calendar

Figure 1.3 An example Gantt chart

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

Figure 1.4 Groups of systems used to deliver software and what they do
Licensed to Mark Watson <nordickan@gmail.com>

9What questions can metrics answer, and where do I get the data to answer them?
The second issue is that people in different roles on the team will focus on using dif-
ferent tools throughout the SDLC. Scrum masters are likely looking for data around
your tasks in your project system, and developers pay the most attention to data in
your source control and CI systems. Depending on the size and makeup of your team,
you may have a completely different group looking after your application monitoring
and even perhaps your deployment tools. Executives likely don’t care about raw
source control data and developers may not care about the general ledger, but when
presented in the right way, having a unified view of all data is important in under-
standing how well teams are performing. No matter what angle you’re looking from,
having only a piece of the whole picture obviously limits your ability to react to trends
in data in the best possible way.

1.3 What questions can metrics answer, and where do I
get the data to answer them?
In the previous section we noted that all the data you’re collecting in your SDLC is a
barrier to understanding what’s going on. On the flip side there’s a huge opportunity
to use all that data to see really interesting and insightful things about how your team
works. Let’s take the components of figure 1.4 and look at questions they answer in
figure 1.5.

 When you combine these different data points, you can start answering some even
more interesting big-picture questions like the ones shown in figure 1.6.

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Are you
meeting

commitments?

What is your
current pace?

How much
code is getting

built?

How long does
it take you to get

things right?

How fast can you
get changes to your

consumers?

How well
is your system
performing?

How are your
customers using

your system?

How well is the
team working

together?

Figure 1.5 Questions you can answer with data from systems in your SDLC.

Project
tracking

Source
control+

Application
monitoring

Source
control+

Project
tracking

Application
monitoring+

How good are
the team’s

requirements?

Are you
making the

system better?

Are you
delivering the
right things?

Figure 1.6 Adding data together to answer high-level questions
Licensed to Mark Watson <nordickan@gmail.com>

10 CHAPTER 1 Measuring agile performance
Your team is already generating
a ton of data through CI, your
task management system, and
your production-monitoring
tools. These systems are likely
to have simple APIs that you
can use to get real data that’s
better for communication and
for determining KPIs and that
you can incorporate into your
process to help your team
achieve better performance. As
you know, the first step in the
feedback loop is to start collecting data. By putting it into a central database, you’re
adding the systems from figure 1.4 to the feedback loop in figure 1.1 to get figure 1.7.

 There are several ways to do this:

■ Semantic logging and log aggregators
■ Products like Datadog (www.datadoghq.com) or New Relic Insights (newrelic

.com/insights)
■ An open source database like Graphite (graphite.wikidot.com/) to collect and

display data
■ A DIY system to collect and analyze metrics

If you’re interested in building something yourself, check out appendix A, where we
talk through that topic. If you have any of the other tools mentioned here, then by all
means try to use them.

 For now let’s look at where you can get this data and what systems you should put
in place if you don’t already have them.

1.3.1 Project tracking

Tools like JIRA Agile, Axosoft OnTime, LeanKit, TFS, Telerik TeamPulse, Planbox, and
FogBugz can all track your agile team, and all have APIs you can tap into to combine
that data with other sources. All of these have the basics to help you track the common
agile metrics, and although none goes much deeper, you can easily combine their data
with other sources through the APIs. From these systems you can get data such as how
many story points your team is completing, how many tasks you’re accomplishing, and
how many bugs are getting generated. A typical Scrum board is depicted in figure 1.8.

 Here are questions you can answer with project-tracking data alone:

■ How well does your team understand the project?
■ How fast is the team moving?
■ How consistent is the team in completing work?

Project-tracking data is explored in depth in chapter 3.

Central place
to collect data

Continuous
integration

Project
tracking

Source
control

Deployment
tools

Application
monitoring

Figure 1.7 Collecting data from numerous places
Licensed to Mark Watson <nordickan@gmail.com>

http://graphite.wikidot.com/
www.datadoghq.com

11What questions can metrics answer, and where do I get the data to answer them?
1.3.2 Source control

Source control is where the actual work is done and collaboration across development
teams happens. From here you can see which files are changing and by how much.
Some source control systems allow you to get code reviews and comments, but in
other cases you need additional systems to get that type of information. Tools like
Stash, Bitbucket, and GitHub have rich REST-based APIs that can get you a wealth of
information about your codebase. If you’re still using SVN or something even older,
then you can still get data, just not as conveniently as Git- or Mercurial-based systems.
In that case you may need something like FishEye and Crucible to get more data
around code reviews and comments about your code.

 Here are two questions you can answer from source control alone:

■ How much change is happening in your codebase?
■ How well is/are your development team(s) working together?

We dive deep into source control in chapter 4.

1.3.3 The build system

After someone checks something into source control, it typically goes into your build
system, which is where the code from multiple check-ins is integrated, unit tests are
run, your code is packaged into something that can be deployed somewhere, and
reports are generated. All of this is called continuous integration (CI). From here you
can get lots of great information on your code: you can see how well your team’s
changes are coordinated, run your codebase against rule sets to ensure you’re not
making silly mistakes, check your test coverage, and see automated test results.

 CI is an essential part of team software development, and there are several systems
that help you get going quickly, including TeamCity, Jenkins, Hudson, and Bamboo.
Some teams have taken CI past the integration phase and have their system deploy
their code while they’re at it. This is called continuous delivery (CD). Many of the
same systems can be employed to do CD, but there are products that specialize in it,
like ThoughtWorks, Go CD, Electric Cloud, and Nolio.

 Whether you’re doing CI or CD, the main thing you need to care about is the infor-
mation that is generated when your code is getting built, inspected, and tested. The
more mature a CI/CD process your team has, the more data you can get out of it.

Figure 1.8 A typical Scrum board to track tasks in a sprint
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 Measuring agile performance
 Here are questions you can answer from CI alone:

■ How fast are you delivering changes to your consumer?
■ How fast can you deliver changes to your consumer?
■ How consistently does your team do STET work?

More details on the data you can get from this step are found in chapter 5.

1.3.4 System monitoring

Once your code goes into production, you should have some type of system that looks
at it to make sure it’s working and that tells you if something goes wrong, such as
whether a website becomes unresponsive or if your mobile app starts to crash every time
a user opens it. If you’re doing a really great job with your testing, you likely are paying
attention to your system monitoring during your testing phase as well making sure you
don’t see any issues from a support perspective before your code goes into production.

 The problem with system monitoring is that it’s largely reactive, not proactive. Ide-
ally all your data should be as close to the development cycle as possible, in which case
you’ll be able to react to it as a team quickly. By the time you’re looking at system-
monitoring data in a production environment your sprint is done, the code is out, and
if there’s a problem, then you’re usually scrambling to fix it rather than learning and
reacting to it with planned work.

 Let’s look at ways to mitigate this problem. One way is to use system monitoring as
you test your code before it gets to production. There are a number of ways your code
can make it to production. Typically you see something like the flow shown in figure
1.9, where a team works in STET local development environment and pushes changes
to an integration environment, and where multiple change sets are tested together
and a QA environment verifies what the end user or customer will get before you ship
your code to production.

 Because teams typically have multiple environments in the path to production, to
make system monitoring data as proactive as possible you should be able to access it as

Local development Integration QA Production

Test
individual
changes

Test
multiple
changes

Verify what
customer

gets

Ship
to the

customer

Figure 1.9 Typical environment flow in the path to production
Licensed to Mark Watson <nordickan@gmail.com>

13Analyzing what you have and what to do with the data
close to the development environment as possible, ideally in the integration and/or
QA stages.

 A second way to mitigate this problem is to release new code to only a small num-
ber of your consumers and monitor how their activity affects the system. This is usually
referred to as a canary deploy and is becoming more common in agile teams practicing
CD.

 Depending on your deployment platform, different tools are available for system
monitoring. New Relic, AppDynamics, and Dynatrace are all popular tools in this
space. We will go into much more detail about these in chapter 6.

 All of the data we’ve looked at so far can tell you a lot about your team and how
effectively you’re working together. But before you can make this data useful, you
need to figure out what is good and what is bad, especially in an agile world where
your core metrics are relative.

 Here are questions you can answer from your production-monitoring systems:

■ How well is your code functioning?
■ How well are you serving the consumer?

1.4 Analyzing what you have and what to do with the data
The second step in the feedback loop is analysis, or figuring out what to do with all the
data you’ve collected. This is where you ask questions, look for trends, and associate
data points with behaviors in order to understand what is behind your team’s perfor-
mance trends.

 Essentially what you need to do is get all the data you’ve collected and run some
kind of computation on it, as shown in figure 1.10, to determine what the combined
data points can tell you. The best place to start is with the question you’re trying to
answer. When you’re doing this, be careful and ask yourself why you want to know
what you’re asking. Does it really help you answer your question, solve a problem, or
track something that you want to ensure you’re improving? When you’re trying to fig-
ure out what metrics to track, it’s easy to fall into a rabbit hole of “it would be great to

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Figure 1.10 X is what you want to answer; some combination of your data can get you there.
Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 1 Measuring agile performance
have.” Be wary of that. Stick with “just in time” instead of “just in case” when it comes
to thinking about metrics. Then plug X into figure 1.10, where X is the question you
want to answer.

1.4.1 Figuring out what matters

If you’re swimming in a sea of data, it’s hard to figure out what data answers what
question and which metrics you should track. One strategy I find useful when I’m try-
ing to figure out which metrics matter is mind mapping.

 Mind mapping is a brainstorming technique where you start with an idea and then
keep deconstructing it until it’s broken down into small elements. If you’re not famil-
iar with mind mapping, a great tool to start with is XMind (www.xmind.net/), a power-
ful and free (for the basic version) tool that makes mind mapping pretty simple.

 If you take a simple example, “What is our ideal pace?” you can break that down
into smaller questions:

■ What is our current velocity?
■ Are we generating tech debt?
■ What are other teams in the company doing?

From there you could break those questions down into smaller ones, or you can start
identifying places where you can get that data. An example mind map is shown in fig-
ure 1.11.

 Thinking a project through, mapping, and defining your questions give you a
place to start collecting the type of data you need to define your metrics.

1.4.2 Visualizing your data

Having data from all over the place in a single database that you’re applying formulas
to is great. Asking everyone in your company to query that data from a command line
probably isn’t the best approach to communicate effectively. Data is such a part of the
fabric of how business is done today that there is a plethora of frameworks for

Where to get data
to answer them

Breaking down
your questions

What data points
to look at

Figure 1.11
Breaking down
questions with
XMind
Licensed to Mark Watson <nordickan@gmail.com>

www.xmind.net/

15Analyzing what you have and what to do with the data
visualizing it. Ideally you should use a distributed system that allows everyone access
to the charts, graphs, radiators, dashboards, and whatever else you want to show.

 Keep in mind that data can be interpreted numerous ways, and statistics can be
construed to prove different points of view. It’s important to display the data you want
to show in such a way that it, as clearly as possible, answers the questions you’re asking.
Let’s look at one example.

 If you want to see how productive your team is, you can start by finding out how
many tasks are being completed. The problem with measuring the number of tasks is
that a handful of very difficult tasks could be much more work than many menial
ones. To balance that possibility you can add the amount of effort that went into com-
pleting those tasks, measured in figure 1.12 with story points.

 Whoa! Look at those dips around sprints 54 and 56! This obviously points to a
problem, but what is the problem? You know that the development team was working
really hard, but it didn’t seem like they got as much done in those sprints. Now let’s
take a look at what was going on in source control over the same time period, as
shown in figure 1.13.

400 Total tasks
completed

Data from project tracking

Sprint

Many completed
tasks that didn’t impact

story points.
Huge dips in

sprints 54 and 56.

Story points
completed

300

200

100

0
53 5857565554

Figure 1.12 Project
tracking data for a
team for a few sprints

800

Code reviews

Data from source control

Sprint

Pull requests

600

400

200

0
53 5857565554

Pull requests and code
reviews are trending up.

Figure 1.13 Source
control data for a team
over a few sprints
Licensed to Mark Watson <nordickan@gmail.com>

16 CHAPTER 1 Measuring agile performance
If anything, it looks like the development teams were doing more work over time—a
lot more work! So if you’re writing more code, and the number of bugs seems to be
pretty constant relative to the tasks you’re getting done, but you’re not consistent in
the amount of stuff you’re delivering, what’s the real issue? You may not have the
answer yet, but you do have enough data to start asking more questions.

1.5 Applying lessons learned
Applying lessons learned can be the hardest part of the feedback loop because it
implies behavioral changes for your team. In other words, collecting and analyzing
data are technical problems; the final part is a human problem. When you’re develop-
ing a software product, you’re constantly tweaking and evolving code, but it’s not
always easy to tweak your team’s behavior.

 Whenever you’re trying to change something because it’s not good, you can easily
perceive that someone is doing something bad or wrong, and who likes to be told
that? The first key is always keeping an open mind. Remember that we’re all human,
no one is perfect, and we always have the capacity to improve. When things aren’t per-
fect (and are they ever?), then you have an opportunity to make them better.

 When you’re presenting trends that you want to improve on, ensure that you’re
keeping a positive spin on things. Focus on the positive that will come from the
change, not the negative that you’re trying to avoid. Always strive to be better instead
of running away from the bad.

 Always steer away from blame or finger pointing. Data is a great tool when used for
good, but many people fear measurement because it can also be misunderstood. An
easy example of this would be measuring lines of code (LOC) written by your develop-
ment team. LOC doesn’t always point to how much work a developer is getting done.
Something that has a lot of boilerplate code that gets autogenerated by a tool may
have a very high LOC; an extremely complex algorithm that takes a while to tune may
have a very low LOC. Most developers will tell you the lower LOC is much better in this
case (unless you’re talking to the developer who wrote the code generator for the for-
mer). It’s always important to look at trends and understand that all the data you col-
lect is part of a larger picture that most likely the team in the trenches will understand
the best. Providing context and staying flexible when interpreting results is an impor-
tant part of ensuring successful adoption of change. Don’t freak out if your productiv-
ity drops on every Wednesday; maybe there’s some good reason for that. The
important thing is that everyone is aware of what’s happening, what you’re focused on
improving, and how you’re measuring the change you want to see.

1.6 Taking ownership and measuring your team
Development teams should be responsible for tracking themselves through metrics
that are easy to obtain and communicate. Agile frameworks have natural pauses to
allow your team to check and adjust. At this point you should have an idea of the good
and bad of how you approach and do your work. Now, take the bull by the horns and
start measuring!
Licensed to Mark Watson <nordickan@gmail.com>

17Taking ownership and measuring your team
1.6.1 Getting buy-in

You can start collecting data and figuring out metrics on your own, but ideally you want
to work with your team to make sure everyone is on the same page. These metrics are
being used to measure the team as a whole so it’s important that everyone understands
what you’re doing and why and also knows how to contribute to the process.

 You can introduce the concepts we’ve talked about so far to get your team ready to
do better performance tracking at any time, but perhaps the most natural time would
be when your team breaks to see how STET doing. This could be at the end of a sprint,
after a production release, at the end of the week, or even at the end of the day. Wher-
ever that break is on your team is where you can introduce these concepts.

 Let’s look at a team which is using Scrum and can’t seem to maintain a consistent
velocity. Their Scrum master is keeping track of their accomplishments sprint after
sprint and graphing it; as shown in figure 1.14, it’s not looking good.

 After showing that to leadership, everyone agrees that the team needs to be more
consistent. But what’s causing the problem? The development team decides to pull
data from all the developers across all projects to see if there’s someone in particular
who needs help with their work. Lo and behold, they find that Joe Developer, a mem-
ber of Team 1, is off the charts during some of the dips, as shown in figure 1.15. After
digging a bit deeper, it is determined that Joe Developer has specific knowledge of the
product a different team was working on and was actually contributing to multiple

200

Team 1

Sprints

S
to

ry
 p

oi
nt

s 150

100

50

0
53 6258 59 60 6157565554

Figure 1.14 Team 1’s
complete story points
over time

50.0

Joe Developer’s points

Sprints

S
to

ry
 p

oi
nt

s 37.5

25.0

12.5

0.0
53 6458 59 60 61 62 6357565554

Figure 1.15 Joe
Developer’s
contribution is off the
charts, but his team is
not performing well.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

18 CHAPTER 1 Measuring agile performance
teams during that time. He was overworked, yet it looked as if the team were under-
performing.

 In this case it’s pretty easy to show that the commitment to multiple projects hurts
the individual teams, and apparently Joe Developer is way more productive when
working on the other team’s product. People are usually eager to show trends like
this, especially when they indicate that individual performance is great but for some
reason forces outside the team are hurting overall productivity. If you’re being mea-
sured, then you might as well ensure that the entire story is being told. In this case the
data ended up pointing to a problem that the team could take action on: fully dedi-
cate Joe Developer to one team to help avoid missing goals on another team and to
not burn your engineers as you’re delivering product.

 Collecting data is so easy that you shouldn’t need buy-in from product sponsors to
get it started. Remember that collecting metrics needs to be cheap, so cheap that you
shouldn’t have to ask for permission or resources to do it. If you can show the value of
the data you’re collecting by using it to point to problems and corresponding solu-
tions and ultimately improve your code-delivery process, then you will likely make
your product sponsor extremely happy. In this case it’s usually better to start collecting
data that you can share with sponsors to show them you know your stuff rather than
trying to explain what you’re planning to do before you go about doing it.

1.6.2 Metric naysayers

There will likely be people in your group who want nothing to do with measuring
their work. Usually this stems from the fear of the unknown, fear of Big Brother, or a
lack of control. The whole point here is that teams should measure themselves, not
have some external person or system tell them what’s good and bad. And who doesn’t
want to get better? No one is perfect—we all have a lot to learn and we can always
improve. Nevertheless here are some arguments I’ve heard as I’ve implemented these
techniques on various teams:

■ People don’t like to be measured. When we are children, our parents/guardians tell
us we are good or bad at things. In school, we are graded on everything we do.
When we go out to get a job, we’re measured against the competition, and
when we get a job, we’re constantly evaluated. We’re being measured all the
time. The question is, do you want to provide the yardstick or will someone else
provide it?

■ Metrics are an invasion of my privacy. Even independent developers use source
control. The smallest teams use project tracking of some kind, and ideally
you’re using some kind of CI/CD to manage your code pipeline. All of the data
to measure you is already out there; you’re adding to it every day and it’s a
byproduct of good software practice. Adding it all together for feedback on
improvement potential isn’t an invasion of privacy as much as it’s a way to make
sure you’re managing and smoothing out the bumps in the agile development
road.
Licensed to Mark Watson <nordickan@gmail.com>

19Summary
■ Metrics make our process too heavy. If anything, metrics help you identify how to
improve your process. If you choose the right data to look at, then you can find
parts of your process that are too heavy, figure out how to streamline them, and
use metrics to track your progress. If it feels like metrics are making your pro-
cess too heavy because someone is collecting data and creating the metrics
manually, then you have a golden opportunity to improve your process by auto-
mating metrics collection and reporting.

■ Metrics are hard; it will take too much time. Read on, my friend! There are easy ways
to use out-of-the-box technology to obtain metrics very quickly. In appendices A
and B we outline open source tools you can use to get metrics from your exist-
ing systems with little effort. The key is using the data you have and simply mak-
ing metrics the byproduct of your work.

1.7 Summary
This chapter showed you where to find data to measure your team and your process
and an overview of what to do with it. At this point you’ve learned:

■ Measuring agile development is not straightforward.
■ By collecting data from the several systems used in your SDLC, you can answer

simple questions.
■ By combining data from multiple systems in your SDLC, you can answer big-

picture questions.
■ By using mind mapping you can break questions down into small enough

chunks to collect data.
■ By using simple techniques, measuring agile performance isn’t so hard.
■ Showing metrics to your teammates easily demonstrates value and can easily

facilitate buy-in.

Chapter 2 puts this in action through an extended case study where you can see a
team applying these lessons firsthand.
Licensed to Mark Watson <nordickan@gmail.com>

Observing a live project
In chapter 1 we walked through some of the concepts around agile development and
saw how a team is typically measured, looked at problems that crop up, and got an
overview of how to solve those problems. Now let’s look at a team that put these con-
cepts into action, how they did it, and how it all turned out—all through a case study.

2.1 A typical agile project
Software development is flexible and can move very quickly. Every project is differ-
ent, so any one project isn’t going to encapsulate all of the characteristics of every
project.

 Let’s take a look at Blastamo Music, LLC, a company that makes guitar pedals
and uses an e-commerce site written by their development team. As the company

This chapter covers
■ Tracking progress of multiple development

efforts
■ Using Elasticsearch (EC) and Kibana to track

and visualize metrics over time
■ Communicating progress back to leadership
■ Using data to improve day-to-day operations
20

Licensed to Mark Watson <nordickan@gmail.com>

21A problem arises
grew, it built better products by replacing the electronics in the pedals with software
and acquired several smaller companies that had the technology and resources
needed to grow even faster. Among these technologies was an e-commerce system that
had several features the leadership team wanted for their site.

2.1.1 How Blastamo Music used agile

As with many teams, the agile process used by our case study grew along with the orga-
nization, instead of being very textbook. The Blastamo team used Scrum as the cor-
nerstone of their agile process, they used cards for their tasks that were estimated and
worked on, they had a task board on which they moved the tasks along based on the
status, and they had release processes that varied from team to team. The typical flow
of the cards was:

■ In definition—The card is being defined by a product owner.
■ Dev ready—The card is defined and ready to be coded.
■ In dev—A developer is working on it.
■ QA ready—Development is finished and it’s waiting for a member of the QA

team to check it.
■ In QA—A member of the QA team is checking it.
■ Done—The feature is ready for production.

The system groups and technologies the team used are shown in figure 2.1.
 The agile development team used JIRA (https://www.atlassian.com/software/jira)

to manage the cards for their tasks that they estimated and worked on, GitHub
(https://github.com/) to manage their source control, Jenkins (http://jenkins-ci
.org/) for CI and deployments, New Relic (http://newrelic.com/) for application
monitoring, and Elasticsearch/Logstash/Kibana (ELK) (www.elasticsearch.org/
overview/) for production log analysis.

2.2 A problem arises
In one of the acquisitions, the team got a robust piece of e-commerce software that
complemented a lot of their current site’s functionality. Management thought the

JIRA GitHub Jenkins
New Relic
and ELK

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

Figure 2.1 Blastamo’s agile pipeline and the software it uses
Licensed to Mark Watson <nordickan@gmail.com>

http://www.elasticsearch.org/overview/
http://www.elasticsearch.org/overview/
https://www.atlassian.com/software/jira
http://jenkins-ci.org/
http://jenkins-ci.org/
http://newrelic.com/
https://github.com/

22 CHAPTER 2 Observing a live project
new software would provide a huge boost in productivity. The development teams
were excited to use cool cutting-edge technology that they could develop against.

 At first the integration seemed simple. The developers integrated the new system
with their existing system, put the changes through testing, and got it out in produc-
tion. After the launch the operations team noticed a significant uptick in errors in their
production logs. The graph they saw looked something like the one in figure 2.2.

 The operations team alerted the development team, which jumped in and started
triaging the issue. The development team quickly noticed that the integration with
the new system wasn’t as straightforward as they thought. Several scenarios were caus-
ing significant issues with the application in the aftermath of the integration, which
were going to need a heavy refactor of the code base to fix. The development team
proposed to the leadership team that they spend time refactoring the core compo-
nents of the application by creating interfaces around them, rebuilding the faulty
parts, and replacing them to ensure the system was stable and reliable.

 Leadership agreed that the refactor had to be done but didn’t want it to adversely
impact new feature development. Leadership kept a close eye on both efforts, asking
the development team for data, data, and more data so that if additional problems
arose, they could make the best decision possible.

2.3 Determining the right solution
Faced with the task of reflecting their accomplishments and progress with solid data,
the development team started with two questions:

■ How can we show the amount of work the team is doing?
■ How can we show the type of work the team is doing?

Queries for
warnings and errors

in the application logs.

Huge jump in the
number of errors and
warnings is not good.

A small number of
issues is expected

in production.

Figure 2.2 Kibana visualizing log analysis for the case-study project. Error rates have headed off the
charts for the last two days.
Licensed to Mark Watson <nordickan@gmail.com>

23Determining the right solution
The leadership team gave the go-ahead to fix the issues with the new e-commerce
components, but they wanted to get new features out at the same time. To point out
progress on both tracks, the development team wanted to show what they were doing
and how much work they were assigned.

 The development team first needed to figure out where to get the data. If they
could tap into the systems used for delivery, then they could probably get everything
they were looking for. The team decided that the first two places they should focus on
were project tracking and source control, as highlighted in figure 2.3.

 The team decided to start looking at data aggregated weekly. While operating in
two-week sprints, weekly data would show them where they were midsprint so they
could adjust if necessary, and data at the end of the sprint would show them where
they ended up. From their project tracking system they decided to capture the follow-
ing data points:

■ Total done—The total number of cards completed. This should show the volume
of work.

■ Velocity—Calculating the effort the tasks took over time. Before a sprint started,
the team would estimate how long they thought their tasks would take and note
those estimates on the cards that represented their tasks. The velocity of the
team would be calculated every sprint by adding up the estimates that were ulti-
mately completed by the end of the sprint.

■ Bugs—If they were making progress on their refactor, then the number of bugs
in the system should start to decrease.

■ Tags—There were two types of high-level tasks: refactor work and new features.
They used labels to tag each task with the type of work they were doing. This
allowed them to show progress on each effort separately.

■ Recidivism rate—The rate at which cards move backward in the process. If a task
moves to done but it’s not complete or has bugs, it’s moved back, thus causing
the recidivism rate to go up. If you use B to represent the number of times a

Are you
meeting

commitments?

How much
code is getting

built?

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

How long does
it take you to get

things right?

How fast can you
get changes to your

consumers?

How well
is your system
performing?

How are your
customers using

your system?

What is your
current pace?

How well is the
team working

together?

Figure 2.3 The type, amount, and target of work done by a team can be retrieved by querying your
project-tracking and source-control management systems.
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 2 Observing a live project
card moves backward and F to represent the number of times a card moves for-
ward, then recidivism can be calculated with the formula (B / (F + B)) * 100.

NOTE The maximum recidivism rate for complete tasks would be 50%, which
would mean that your cards moved forward as many times as they moved
backward.

Those data points should give a pretty complete picture of the action in the project
tracking system (PTS). The team also decided to get the following data point out of
their SCM.

■ CLOC—The total amount of change in the codebase itself.

The development team was already using ELK for log analysis, and the leadership
team decided to use the same system for graphing their data. To do this they needed a
way to get data from JIRA and GitHub into EC for indexing and searching.1

 JIRA and GitHub have rich APIs that expose data. The development team decided
to take advantage of those APIs with an in-house application that obtained the data
they needed and sent it to EC. The high-level architecture is shown in figure 2.4.

NOTE A setup for EC and Kibana can be found in appendix A, and the code
for the application that can get data from source systems and index it with EC
can be found in appendix B.

Once the development team started collecting the data, they could use the Kibana
dashboards they were familiar with from their log analysis to start digging into it.

1 For more information on EC I recommend Elasticsearch in Action (Manning Publications, 2015), www
.manning.com/hinman/.

1 Custom
app queries
systems
for data.

2 Data is sent to
Elasticsearch
for indexing.

3 Data is
visualized
with Kibana.

4 Data analysis
shows progress
back to the
leadership
team.

Data
collector

Elasticsearch Kibana

Figure 2.4 The component architecture for the system
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/hinman/
www.manning.com/hinman/

25Determining the right solution
They collected data for a sprint in the new operating model and went back a few
sprints to get a baseline for analysis. Using this data they generated the charts shown
in figures 2.5, 2.6, and 2.7.

The points are aggregated
weekly for the graphs.

Bugs and recidivism were trending
down towards the end of a sprint.

Figure 2.5 Showing recidivism and bugs in a single graph because both should
trend in the same direction

Splitting the data by tags allows the
velocity of each effort to be tracked separately.

After the split, velocity
starts to drop just a bit.

Figure 2.6 Breaking velocity out by effort after sorting data with tags

Y-axis is in
thousands

The amount of code changes
has been increasing a lot

Figure 2.7 The chart graph showing how much code the team was changing over
time. The Y-axis is in thousands to make it easier to read.
Licensed to Mark Watson <nordickan@gmail.com>

26 CHAPTER 2 Observing a live project
Now the development team was ready to start digesting the data to give leadership the
objective breakdowns they wanted to see.

2.4 Analyzing and presenting the data
The first thing the development team noticed was that their velocity had dropped.
That was probably to be expected because they had just refocused the team into a new
working model. When they divided the efforts, they had a nice, even split in velocity
between them, which was just what they wanted. If they could keep this up, they would
be in great shape. But after the end of the next sprint they started seeing trends that
weren’t so good, as shown in figures 2.8, 2.9, and 2.10.

 These are the key things the development team noticed:

■ Velocity was going down again. This indicated that they were still being impacted
by the split in work and weren’t able to adjust.

Recidivism is creeping up
and bugs are jumping sharply.

Figure 2.8 After another sprint recidivism has started creeping up and bugs are increasing sharply.

Velocity for both teams is
starting to drop consistently.

Figure 2.9 Velocity for both teams is starting to suffer.
Licensed to Mark Watson <nordickan@gmail.com>

27Analyzing and presenting the data
■ Velocity for new features dropped sharply. This indicated that the work being done by
the refactor was severely hurting the team’s ability to deliver anything new.

■ CLOC was going up. The team was changing a lot more code.
■ Bugs and recidivism were rising. The overall product was suffering for the combi-

nation refactor and feature work.

According to this, the refactor was causing significant churn in the codebase and
apparently leaving a host of new bugs in its wake. New feature development velocity
had hit the floor because that work was being done on top of a shaky foundation.

 The team needed to adjust to these findings. Team members got together and
started reviewing the list of bugs to determine root cause and validate or disprove
their hypotheses. They discovered that as the team dug into the refactor, changes they
made in one part of the codebase were causing other parts to break. They had a gen-
eral lack of unit tests across the integrated product that caused them to find bugs after
the refactored code was delivered. This led to a Whac-A-Mole situation, where fixing
one issue ended up creating at least one more to chase after.

2.4.1 Solving the problems

The team knew they had to make the following changes to get their project back on
track:

■ Ensure that they had enough automated testing across the application to prevent
new bugs from popping up after code was refactored. This should help them find
tangential problems as they come up and avoid the Whac-A-Mole effect.

■ Stop building features for at least a sprint in order to either
■ Completely focus on the refactor to stabilize the foundation enough to build

new features on.
■ Virtualize the back-end services so user-facing features could be developed

against them while the refactor continued underneath it.

Amount of code changed
is increasing rapidly

Figure 2.10 The amount of code changed across both teams is skyrocketing.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 Observing a live project
According to the data they could see the following:

■ Before the refactor the development team was averaging 12 points/developer/
sprint (pds).

■ The refactor team was still averaging 12 pds while changing a lot more code.
■ The new-feature team was down to 4 pds.

These results led them to the following conclusions:

■ Given their productivity was cut to one-third, if they could stop working for two
sprints and get back to their average productivity on the third sprint, they
would get the same amount of work done as if they worked at one-third produc-
tivity for three sprints.

■ Based on their current velocity they could also infer that the refactor was slated
to take another three sprints.

They decided that if they repurposed the entire new-feature team to tighten the
team’s automation for testing and virtualization for two sprints, they could easily get
back to their average productivity and even ultimately become more productive by
proactively finding bugs earlier in the development cycle. Now they had to convince
the leadership team to let them stop working on features for two sprints.

2.4.2 Visualizing the final product for leadership

The development team had a strong argument to change how they were working and
the data to back it up. But the charts that they found valuable would probably confuse
the leadership team without a lengthy explanation on the context. The final step was
to break down this data into metrics that indicated how things were going in an intui-
tive and concise way. To do this they decided to add panels to their dashboard that
focused on the high-level data points the leadership team cared about.

 To highlight their argument they broke their data down into the following points:

■ The velocity of the entire team before the split
■ The average drop in velocity per developer of the feature team during the

refactor
■ The increase in bug count every sprint after the split
■ The difference in bug counts between well-tested code and poorly tested code

Service virtualization

Service virtualization is the practice of recreating the behavior of a system synthetically
for isolated development and testing. Basically, you can emulate a dependency of a
feature you need to build with virtualization, build and test the feature on top of the
virtualized service, and deploy your new feature on top of the real service. This tech-
nique is particularly handy when consumer-facing features that need to iterate quickly
depend on large back-end systems that can’t change as fast.
Licensed to Mark Watson <nordickan@gmail.com>

29Analyzing and presenting the data
Once the development team had presented all of their data, they hit leadership with
their proposal to drop feature development for two sprints in order to get back to
their previous level of productivity. Given the current state of things, they had nothing
to lose.

 The leadership team gave them the go-ahead, and they all lived happily ever after.

The development team was having success with their data visualization, so they
decided to experiment to try to get an idea of the properties of their codebase without
having intimate knowledge of it. As an experiment they also decided to show their
codebase as a CodeFlower (www.redotheweb.com/CodeFlower/).

First, the develop-
ment team generated
a CodeFlower on one
of their newly built,
modular, and well-
tested web service
projects. That gener-
ated the flower shown
in figure 2.11.

Figure 2.11 A CodeFlower of
a clean, well-written codebase

Dashboards for the right audience

We’ll get a lot deeper into creating dashboards and communicating across the orga-
nization in chapter 9 when we explore ways to visualize the same data for different
audiences. In this example the team used static data for their presentation.

CodeFlowers for a new perspective

CodeFlowers are one example of visualizing your codebase in a very different way.
We’ll touch on them here and come back to different data-visualization and commu-
nication possibilities later in chapter 9.

Test data

Application
Tests

More tests

Long lines represent
package structure
Licensed to Mark Watson <nordickan@gmail.com>

www.redotheweb.com/CodeFlower/

30 CHAPTER 2 Observing a live project
 Note a few interesting points from this codebase:

■ The application itself has a clean package structure.
■ There are as many tests as there is functional code.
■ There is plenty of test data, which indicates that there are real tests for many

scenarios.

Then they generated a CodeFlower on their older e-commerce application codebase.
An excerpt is shown in figure 2.12.

 Here are a few notes from this codebase:

■ It is huge! That usually indicates it’s difficult to maintain, deploy, and under-
stand.

■ There is a lot of XML and SQL, both difficult to maintain.
■ There are tests, but not nearly as many tests as functional code.
■ The package structure is complex and not well connected.

Of the two CodeFlower representations, which application would you rather have to
modify and deploy?

 The development team was now using data visualization in different ways to shape
how they operated, and they were able to turn this into real-time data that the leader-
ship team could peek at whenever they wanted.

SQL files

Services

Tests

DAOs

Domain
objects

XML
Message

converters

Figure 2.12
An excerpt from a
CodeFlower generated
from an extremely
complex application
Licensed to Mark Watson <nordickan@gmail.com>

31Building on the system and improving their processes
2.5 Building on the system and improving their processes
After showing how just a few pieces of data can give better insight into the application
lifecycle, the development team decided to start pulling even more data into the sys-
tem, expanding the set of reports it could generate. They were looking at how well
their system was performing through their log analysis, and they were measuring team
performance through their PTS and SCM systems. One of the main outcomes they
wanted to effect by improving their velocity was to improve the time it took to deliver
changes that improved the application to their consumers. To see how their deploy-
ment schedule correlated with their project tracking, they decided to add release data
into the mix. Getting CI and deployment data was the next logical step, as highlighted
in figure 2.13.

 Because they used their CI system to release code, they could pull build informa-
tion from their deploy job and add releases to their analysis. Upon doing that, their
dashboard started to look like the one shown in figure 2.14.

How long does
it take you to get

things right?

How fast can you
get changes to your

consumers?

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Are you
meeting

commitments?

What is your
current pace?

How much
code is getting

built?

How well
is your system
performing?

How are your
customers using

your system?

How well is the
team working

together?

Figure 2.13 By adding data from the build and deployment system, the development team was able to
add release dates to their analysis to track how changes they made to their process affected delivery
time.

The tag icons show releases,
with info on mouse-over.

Figure 2.14 Adding releases to the dashboard. Now the team can see how their process affects the
speed at which they release code.
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 Observing a live project
The release data over time could show the development team how the changes in
their processes affected their releases and, conversely if releases impacted the work
they performed on every sprint. Now that they had a nice dashboard and were aggre-
gating a lot of great data about how their team was performing, they started using it as
a health monitor for the team.

2.5.1 Using data to improve what they do every day

Once they were collecting data and could display all of it, they wanted to ensure that
every member of the development team was paying attention to it. They made sure
everyone had the URL to the dashboard in their favorites, and they projected it on
monitors when they weren’t being used for meetings. They used the dashboards in
their sprint retrospectives and frequently talked about which metrics would be
affected by the proposed changes to the process.

 They made it all the way around the feedback loop we talked about in chapter 1
and as shown in figure 2.15.

 Now that the development team had made the loop once, the next question was
how frequently they should go all the way around it. The data collection was auto-
mated so they had continuous data that they could react to at any time. But they set-
tled on letting their sprints run their course and did their analysis and application
before each new sprint started.

 Before they were collecting and analyzing all of this data, they were only tracking
velocity every sprint to make sure their completion rate stayed consistent. The better
they got at mining their data, the more insight they obtained into how they were oper-
ating as a team and the better they became at making informed decisions on the best
ways to operate. When problems came up, they looked at the data to figure out where

The team built a Grails
app that got the data

they needed.

Using their findings they
convinced leadership to
allow them to change

direction.

They used the ELK stack
to index, search, and
visualize their data.

1 Collect Data:
Get as much data
as you can from your
application lifecycle.

2 Measure (Analyze):
Ask questions, find
trends, make
hypotheses.

4 Repeat 3 React (Apply):
Adjust your team based
on your findings.

Figure 2.15 The feedback loop
as applied by our case-study team
Licensed to Mark Watson <nordickan@gmail.com>

33Summary
the problem really was instead of making snap decisions on where they thought the
problem was. Finally, when they wanted to make recommendations to leadership, they
knew how to communicate their thoughts up the chain in a meaningful way that
could effect change.

 A positive side effect to this was that they felt free to experiment when it came to
their development process. Because they now had a system that allowed them to mea-
sure changes as they made them, they started a new practice in which the team would
adopt any changes a member suggested, as long as they had could measure their
hypotheses.

2.6 Summary
 In this chapter we followed a team through the implementation of an agile perfor-

mance metrics system and demonstrated how they used the system. In this extended
case study the development team used the following techniques that you can also use
to start measuring and improving your team:

■ Start with the data you have.
■ Build on what you have using the frameworks you’re familiar with.
■ Frame data collection around questions you want to answer.
■ When you find negative trends, determine solutions that have measureable out-

comes.
■ Visualize your data for communication at the right levels:
■ The more detail an execution team has, the better equipped they will be to

understand and react to trends.
■ People outside the team (like leadership teams) typically need rollup data or

creative visualizations so they don’t require a history lesson to understand what
they are seeing.

Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 Observing a live project

Licensed to Mark Watson <nordickan@gmail.com>

Part 2

Collecting and analyzing
your team’s data

In part 1 you learned the concepts of creating and using agile metrics, discov-
ered where to get the data, and observed a team that put the metrics into prac-
tice. In part 2 you’ll learn about the details of each data source in the
development lifecycle, what each of these data sources can tell you, and how to
start collecting and visualizing them. In each chapter you’ll learn how to maxi-
mize the use of these systems to provide as much data as possible to gain insight
into your team as well as what metrics you can get from each system alone.

 Chapter 3 starts with the most common place to collect data about your
team, your project tracking system (PTS). We’ll look at different task types, esti-
mations, and workflow metrics.

 Chapter 4 shows you the data you can get from your source control manage-
ment (SCM) system. We’ll look at centralized versus decentralized systems, work-
flows to use to maximize the data you can get from your systems, and key metrics.

 Chapter 5 shows you the data you can get from your continuous integration
(CI) and deployment systems. We’ll look at CI, deployments, and automated test
results to analyze the different data you can get from various stages in your build
cycle.

 Chapter 6 shows you the data you can get from your application perfor-
mance monitoring (APM) system. We’ll look at what your production system can
tell you through different types of data and instrumentation that can give you
better insight into your systems.

 Each chapter ends in a case study so you can see how the techniques from
the chapter can be applied in a real-world scenario.
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER
Licensed to Mark Watson <nordickan@gmail.com>

Trends and data from
project-tracking systems
Perhaps the most obvious place to find data that points to your team’s performance
is your PTS. Common PTSs include JIRA, Trello, Rally, Axosoft On Time Scrum, and
Telerik TeamPulse. This is where tasks are defined and assigned, bugs are entered
and commented on, and time is associated with estimates and real work. Essentially
your project’s PTS is the intersection between time and the human-readable defini-
tion of your work. Figure 3.1 shows where this system lives in the scope of your
application delivery lifecycle.

This chapter covers
■ What information raw data from a project

tracking system conveys
■ How to utilize your PTS to collect the right data

to give insight into your process
■ How to get data from your PTS into your

metrics-collection system
■ Trends you can learn from data in your PTS
■ What you’re missing by relying only on project-

tracking data
37

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

38 CHAPTER 3 Trends and data from project-tracking systems
Trends that can be found in your PTS can go a long way in showing you how your team
is performing. It’s typically the only system that teams will use to track their progress,
so it’s a good place for us to start.

 Because your PTS is tracking time and tasks, you can use it to answer the following
questions:

■ How well does your team understand the project?
■ How fast is the team moving?
■ How consistent is the team in completing work?

But some of these still end up leaving a lot to interpretation and could be clarified
with additional data. Here are a few examples:

■ How hard is the team working? Although you can partially get this information
from your PTS, you should supplement it with source-control data to get a bet-
ter picture.

■ Who are the top performers on the team? Data from your PTS is only a part of the pic-
ture here; you should combine this with source-control and potentially produc-
tion-monitoring data.

■ Is your software built well? The question of quality comes mostly from other
sources of data like test results, monitoring metrics, and source control, but PTS
data does support these questions by showing how efficient a team is at creating
quality products.

To enable you to generate the most meaningful possible analyses from your data, first
I’ll lay out guidelines to help you collect quality data to work with.

A word on estimates

In this chapter and throughout this book you’ll notice that I talk a lot about estimating
work. For the agile team, estimating work goes beyond trying to nail down better pre-
dictability; it also encourages the team to understand the requirements in greater
depth, think harder about what they’re building before they start, and have a greater

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

You are here

Figure 3.1 The first data source in your application lifecycle is your PTS. This is where tasks are
defined and assigned, bugs are managed, and time is associated with tasks.
Licensed to Mark Watson <nordickan@gmail.com>

39Typical agile measurements using PTS data
3.1 Typical agile measurements using PTS data
Burn down and velocity are the two most commonly used metrics to track agile teams
and both are derived from estimations. Burn down is the amount of work done over
time, which can be derived by plotting the total number of incomplete estimates or
tasks over time next to the average number of complete estimates or tasks over time.
With burn down you typically have a time box that everything is supposed to be done
within, and you can see how close you are to completing all the tasks you’ve commit-
ted to. If you simply toe the line and use your PTS out of the box, you’ll get burn down
and velocity as standard agile reports.

3.1.1 Burn down

An example burn down chart is shown in figure 3.2. In the figure the guideline repre-
sents the ideal scenario where your estimates burn down over time; the remaining val-
ues represent the actual number of tasks that are not closed in the current timeline.

investment in what they’re building by committing to a timeframe with their peers.
You’ll notice that estimations are a part of the case studies at the end of several chap-
ters and are used in combination with other data to see a broader picture of your team’s
operation. I encourage all of my development teams to estimate their work for all of
these reasons, and I encourage you to consider estimating work if you’re not doing
it already.

The mathematically perfect
line is just a guideline; it will

never be parallel with actuals.

This team got most of their
work done in the last few

days of their sprint.

120

100

Remaining
values

Time

S
to

ry
 p

oi
nt

s

Guideline

Non-working
days80

60

40

20

0
Jun 19 Jun 20 Jun 23 Jun 24 Jun 25 Jun 26 Jun 27 Jun 30 Jul 1

Figure 3.2 An example burn down chart
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 3 Trends and data from project-tracking systems
Burn down is very popular, but its value is limited due to the empirical nature of agile
development. You will never have a smooth curve, and even though it’s used as a
guideline, its value is overestimated. So much so in fact that many Scrum coaches are
deprecating the use of the burn down chart, and its use on agile teams is starting to
diminish. Although it does provide a guideline to where you are against your commit-
ment for a time period, burn down alone can’t give you the whole story.

3.1.2 Velocity

Velocity is a relative measurement that tracks the consistency of a team’s completed
estimates over time. The idea with velocity is that a team should be able to consistently
complete their work as they define it. An example velocity chart is shown in figure 3.3.

 Velocity can be calculated by graphing the amount you estimated against the
amount you actually got done. Velocity ends up implying a few things about your team:

■ How good your team is at estimating work
■ How consistently your team gets work done
■ How consistently your team can make and meet commitments

Even though velocity is a staple agile metric, its relative nature makes it difficult to pin-
point where problems really are. If velocity is inconsistent, there could be a number of
issues, such as:

■ Your team is not doing a good job at estimating.
■ Your team has commitment issues.

140

120

S
to

ry
 p

oi
nt

s

Commitment

Completed

100

80

60

20

0
Sprint 1

Sample tray
Sprint 2
Growler

Sprint 3
Keg

Sprint 4
Pub crawl

Sprint 5
99 bottles

Sprint 6
The bar

The commitment represents
what the team thought they

could accomplish.

The team strives for
consistent estimation

and completion.

Figure 3.3 Velocity example
Licensed to Mark Watson <nordickan@gmail.com>

41Typical agile measurements using PTS data
■ Scope could be changing in the middle of your development cycle.
■ You may be hitting troublesome tech debt.

The key data point behind velocity that we’ll be working with is the estimates your
team puts on their tasks. We’ll be diving into estimations later in the chapter and
breaking them down against other data points in chapter 7.

3.1.3 Cumulative flow

Cumulative flow shows how much work aggregated by type is allocated to your team
over time. The cumulative flow diagram is typically used for identifying bottlenecks in
the process by visually representing when a type of task is increasing faster than the
others. In figure 3.4 you see an example cumulative flow diagram where a team is
completing hardly any work and suddenly their to-do list jumps off the charts.

 As with other charts, this tells only a part of the picture. It’s possible that tasks were
simply too big and the team started breaking them down into smaller chunks. It’s also
possible that this team is struggling to complete work and they end up getting more
work piled on as an unrealistic task.

 Cumulative flow can be useful when you use the correct task types for your work. If
you have tasks for integration and you see that part of your graph starts to get fat, you
know there’s a bottleneck somewhere in your integration.

1000 To do

N
um

be
r o

f i
ss

ue
s

In progress

Done
900

800

700

600

500

400

300

200

100

0
Jan 16 Jan 24 Feb 1 Feb 8 Feb15 Feb 22

This team isn't
finishing anything.

Suddenly they're getting
asked to do a lot more.

Figure 3.4 An example cumulative flow diagram showing a team getting asked to do a lot more than they
have been able to accomplish historically
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 3 Trends and data from project-tracking systems
3.1.4 Lead time

Lead time is the amount of time between when a task is started and when it is com-
pleted. Teams that practice Kanban focus on throughput, and as a result they usually
put a heavy emphasis on lead time; the faster they can move tasks through the pipes,
the better throughput they can achieve. Some Scrum teams use lead time as well as
velocity because the two metrics tell you different things; velocity tells you how much
your team can get done in relation to what they think they can get done, and lead
time tells you how long it takes to get things done.

 The problem with lead time alone is that often teams don’t pay close attention to
what composes it. Lead time includes creating a task, defining it, working on it, testing
it, and releasing it. If you can’t decompose it, then it’s hard to figure out how to
improve it. We’ll explore decomposing lead time in later chapters.

 For teams that are simply receiving small tickets and pushing them through the sys-
tem, lead time is a good indicator of how efficient the team can be. But if you have a
team that has ownership of the product they’re building and is vested in the design of
that product, you usually don’t have such a simple delivery mechanism. In fact, with
the state of automation you could even argue that if your tasks are so small that you
don’t have to estimate them, then maybe you don’t need a human to do them.

 Lead time becomes a very valuable metric if you’re practicing CD and can measure
all of the parts of your delivery process to find efficiencies. It’s a great high-level effi-
ciency indicator of the overall process your team follows.

3.1.5 Bug counts

Bugs represent inconsistencies in your software. Different teams will have different
definitions of what a bug is, ranging from a variation from your application’s spec to
unexpected behaviors that get noticed after development is complete.

 Bugs will pop up at different times depending on how your team works together.
For example, a team with embedded quality engineers may not generate bugs before
a feature is complete because they’re working side by side with feature engineers and
they work out potential problems before they’re published. A team with an offshore
QA team will end up generating tickets for bugs because testing is staggered with fea-
ture development.

 Figure 3.5 shows two different charts that track bugs over time. Because bugs rep-
resent things you don’t want your software to do, teams strive for low bug counts as an
indicator of good software quality.

 Bugs can also be broken down by severity. A noncritical bug might be that you
don’t have the right font on the footer of a website. A critical or blocker bug may be
that your application crashes when your customers log into your application. You
might be willing to release software that has a high bug count if all the bugs are of a
low severity.

 The inconsistency with bugs is that severity is also a relative term. To a designer the
wrong font in the footer may be a critical bug, but to a developer concerned with
Licensed to Mark Watson <nordickan@gmail.com>

43Typical agile measurements using PTS data
functionality, maybe it shouldn’t even be a bug in the first place. In this case, severity is
in the eye of the beholder.

 The charts and graphs you’ve seen up to this point are all useful in their own right
even though they measure relative data. To go beyond the standard PTS graphs there

Number of bugs that weren’t
found in the development cycle

3

Is
su

es
Completed bugs

Total issues: 11
Period: last 90 days

(grouped weekly)

Open bugs

2

1

0

W
ee

k 3
7,

20
14

W
ee

k 3
8,

20
14

W
ee

k 3
9,

20
14

W
ee

k 4
0,

20
14

W
ee

k 4
1,

20
14

W
ee

k 4
2,

20
14

W
ee

k 4
3,

20
14

W
ee

k 4
4,

20
14

W
ee

k 4
5,

20
14

W
ee

k 4
6,

20
14

W
ee

k 4
7,

20
14

W
ee

k 4
8,

20
14

W
ee

k 4
9,

20
14

W
ee

k 5
0,

20
14

Escaped bugs

Total issues: 1616
Period: last 90 days

(grouped weekly)

Number of bugs that were
found in the development cycle

200

Is
su

es

Completed bugs

Open bugs

150

100

50

0

W
ee

k 3
7,

20
14

W
ee

k 3
8,

20
14

W
ee

k 3
9,

20
14

W
ee

k 4
0,

20
14

W
ee

k 4
1,

20
14

W
ee

k 4
2,

20
14

W
ee

k 4
3,

20
14

W
ee

k 4
4,

20
14

W
ee

k 4
5,

20
14

W
ee

k 4
6,

20
14

W
ee

k 4
7,

20
14

W
ee

k 4
8,

20
14

W
ee

k 4
9,

20
14

W
ee

k 5
0,

20
14

Found bugs

Figure 3.5 Two charts showing bug counts and at what point they were found
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 3 Trends and data from project-tracking systems
are some best practices you can follow to ensure you have data that’s enriched for
analysis and ultimately for combination with other data sources.

3.2 Prepare for analysis; generate the richest set of data you can
As you collect data, keep in mind that your analysis will only be as good as the data you
collect; how your team uses your PTS will translate into what you can glean from the
data in the system. To set yourself and your team up for success by getting the most
meaningful analysis from this data, this section offers tips on working with your PTS to
help ensure you’re generating as much useful data as possible from it.

 Most APIs will give you something like a list of work items based on the query you
make, and each work item will have many pieces of data attached to it. The data you
get back will give you information such as:

■ Who is working on what
■ When things get done in a good way

Those two statements are general and loaded with hidden implications. We break
them down in figure 3.6.

 You should look for the following pieces of data in your tasks so you can index
them, search them, and aggregate them for better analysis:

■ User data.
■ Who worked on the task?
■ Who assigned the task?
■ Who defined the task?
■ Time data.
■ When was the task created?
■ When was it complete?
■ What was the original estimate of the task?

The members on
your team who get

assigned things

Start/end
dates and
estimates

Tasks, bugs,
or anything that

can get assigned
and tracked

End dates
affected by

the definition
of DONE

WHO is working on WHAT

WHEN THINGS get DONE in a GOOD way

The same as
THINGS—anything
that is assignable

The team was
happy with what it
took to get there

Figure 3.6 Parsing the loaded words that tell you how PTS is used
Licensed to Mark Watson <nordickan@gmail.com>

45Prepare for analysis; generate the richest set of data you can
Who, what, and when are the building blocks that we’re going to focus on in this
chapter. Some raw response data is demonstrated in the following listing.

{
 "issues": [
 {
 "key": "AAA-3888",
 "fields": {
 "created": "2012-01-19T14:50:03.000+0000",
 "creator": {
 "name": "jsmit1",
 "emailAddress": "Joseph.Smith@blastamo.com",
 "displayName": "Smith, Joseph",
 },
 "estimate": 8,
 "assignee": {
 "name": "jsmit1",
 "emailAddress": "Joseph.Smith@nike.com",
 "displayName": "Smith, Joseph",
 },
 "issuetype": {
 "name": “Task”,
 "subtask": false
 },
…

3.2.1 Tip 1: Make sure everyone uses your PTS

This first tip may seem obvious if you want to ensure you can get data from your sys-
tem: make your PTS your one source of truth. Even though many teams use web-based
project tracking, you’ll still often see sticky notes on walls, email communication
around issues, spreadsheets for tracking tasks and test cases, and other satellite sys-
tems that help you manage your work. All of these other systems generate noise and
confusion and detract from your ability to get data that you can work with. If you’ve
invested in a PTS, use it as the single source of truth for your development teams if you
really want to mine data around how your team is functioning. Otherwise, the effort
of collecting all the data from disparate sources becomes a tedious, manual, and time-
consuming effort. It’s best to spend your time analyzing data rather than collecting it.

 Using your PTS is especially relevant when you have multiple teams that aren’t
colocated. Agile tends to work best with teams that are working together in the same
place; it makes communication and collaboration much easier and allows everyone to
contribute during planning, estimation, and retrospective meetings. But it’s not
always possible to have teams in the same place, and many companies have develop-
ment teams spread around the world. If this is the case, try to ensure that everyone is
using the same system and using it in the same way.

 To be able to track everything your team is doing, you should have a task for every-
thing. That doesn’t mean you should require cards for bathroom breaks, but you do

Listing 3.1 Excerpts from the raw data in a typical API response

What

Who When

Who

What
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 3 Trends and data from project-tracking systems
need to identify meaningful tasks and ensure you have the ability to create tasks in
your system for them.

 When creating a task, the most important thing to think about is that it should
never take more than a few days to accomplish. If you find your team estimating a task
at more than a few days of work, that typically means they don’t understand it enough
to put real time on it or it’s too big to be considered a single task. I’ve seen that when
teams estimate their work to take more than a few days, those tasks tend to be under-
estimated more than 50% of the time.

 Whatever you’re working on needs to be broken down into small chunks so that
you can track the completion of the work in a meaningful way and so that the develop-
ment team understands what it will take to move tasks over the line.

3.2.2 Tip 2: Tag tasks with as much data as possible

Task types should be pretty simple; you have a task either for new work or for fixing a
bug in something that’s already done. Getting any fancier than that is a great way to
confuse your team, so it’s best to keep it simple. Tagging is a great way to add data that
you may want to use for analysis later on that isn’t part of the default data of a task. By
default every task should have a description, start and end dates, the person to whom
it’s assigned, an estimate and the project to which it belongs. Other potential, useful
data for which you may have no fields, include a campaign with a feature, team name,
product names, and target release. Just as you can create hash tags for anything you
can think of #justfortheheckofit on multiple social media platforms, you can do the
same in your PTS.

 The alternative to adding tags in most systems is creating custom fields. This is the
equivalent of adding columns to a flat database table; the more fields you add, the
more unwieldy it becomes to work with. Teams are forced into using the structure that
exists, which may not translate into how they work. When new people join the team or
when new efforts spin up, it becomes cumbersome to add all the data required in the
system just to create tasks. This is visualized in figure 3.7.

 Adding data in the form of tags allows you to add the data you need when you
need it and allows you to return to tasks once they’re complete to add any kind of data
you want to report on. This is valuable because it helps you figure out what works well

Good
vs.

Refactor

Yolo project Sprint 42

Would you rather fill out
all of these boxes?

Or just add tags indicating
the data that you care about?

Figure 3.7 The difference between organizing flat project data and adding relevant metadata with tags
Licensed to Mark Watson <nordickan@gmail.com>

47Prepare for analysis; generate the richest set of data you can
for your team even if it’s contrary to normal trends. For example, the number of com-
ments on a ticket could mean that your team is communicating well, but it could also
mean that the original requirements were very poor and they were flushed out
through comments on the card. By going back and marking cards as “worked well” or
“train wreck,” for example, you can find trends that may not have been visible before.

 In addition to the other good reasons for using tags, this method of organizing your
tasks allows you to sort, aggregate, or map-reduce your data much easier. Instead of
modifying queries and domain objects to get good analysis, you can simply add more
tags, and you’ll be able to see clear trends in your data, as you’ll see later in this chapter.

 Some PTSs like JIRA support tags or labels and have explicit fields for them. In JIRA
the data comes back in a format that’s nice and easy to work, as shown in the next listing.

labels:
[
 "Cassandra",
 "Couchbase",
 "TDM"
],

Other PTSs may not have this feature, but that doesn’t have to stop you. You can get
into the habit of hashtagging your cards to ensure they can be grouped and analyzed
later on. You may end up getting data like that shown in the following listing.

comments: [
 {
 body: "To figure out the best way to test this mobile app we should

first figure out if we're using calabash or robotium. #automation
#calabash
#poc #notdefined"

 }
]

If this is the data you have, that’s fine. This may not be as simple to parse as the previ-
ous listing, but there are hash tags that you can parse and reduce into meaningful
data that can be used later.

3.2.3 Tip 3: Estimate how long you think your tasks will take

Estimating how long tasks will take can be pretty tricky in an agile world. It can be
tough to figure out how long something can take when definitions are often in flux
and products are constantly changing. Estimates are important from a project man-
agement perspective because they will eventually allow you to predict how much work
you can get done in a certain amount of time. They also show you if your team really
understands the work that they’re doing.

Listing 3.2 Example labels JSON block in a JIRA API response

Listing 3.3 Example comments JSON block from an API call with hashtags in the text

Each element represents
a separate tag

Hashtags used to note
details for later analysis
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

48 CHAPTER 3 Trends and data from project-tracking systems
 One thing that seems to always challenge teams is what estimations mean. Story
points are supposed to relate to effort, yet every team I’ve ever been on ends up trans-
lating those points to time, so in most cases I find it easier for teams to use a time-
based estimation. There are a plethora of blogs, articles, and chapters on the associa-
tion of time and story points, but if there’s one thing I’ve learned it’s this: embrace
whatever comes most naturally to your team. If your team estimates in time, then use
days or half-days as story points. If they like the concept of effort, then go with it. If
you try to fight whatever people understand as estimates, you’ll end up with numbers
whose relativity constantly changes as you try to change their association of time to
estimations. By embracing what comes naturally to your team, you may not end up
with a textbook way of estimating your tasks, but you will end up with more reliable
data over time.

 For teams I’ve managed it normally takes three to four iterations before they can
start to trust their estimations. The best way to see if your estimations are on track is to
look at them over time next to the total number of tasks that you complete over time.

 Even if you get to a point where your estimations and completed work are consis-
tent, using estimations alone can’t tell you if you are under- or overestimating. Overes-
timating work means your team is underachieving for some reason; underestimating
typically leads to team burnout and an unsustainable pace of development. The tricky
thing here is that estimations alone don’t give you that insight into your team; you
have to combine estimations with other data to see how well your team is estimating.
Figure 3.8 may look great to you if you’re trying to hit a consistent goal over time.

 But how do you know if your estimates are any good? All you know is that you’re
getting done what you thought you could get done, not if you did as much as you
could or if you were doing too much.

 Flat-line trends occur when you see the same value over and over so your chart is
just a flat line. Your team might be overestimating if you see a flat-line trend in your
estimates over time, or they might be overestimating if you get done a lot more than

Sprint

Points
completed

115

110
62 66656463

The goal and estimates
are always only a few

points apart.

Sprint goal

Figure 3.8 Estimates are spot on every time!
Licensed to Mark Watson <nordickan@gmail.com>

49Prepare for analysis; generate the richest set of data you can
you commit to over time. At a glance this may not seem so bad; after all, you’re either
being consistent or you’re beating your commitments—project managers of the world
rejoice! But you don’t want your team to get bored, and you want to be as efficient and
productive as possible; overestimating equals underachieving. As I continue, we’ll add
more data to help you spot potential overestimating.

 It’s also possible to see the same flat-line trend if your team is overestimating. If you
have a team that is overestimating and you get the chart shown in figure 3.8, it could
mean that your team is pushing too hard to get their work done, which is typically
unsustainable. Once the trend breaks, it will result in much less work completed or peo-
ple leaving the team in frustration. In this case relying on estimation to tell the whole
picture could mean devastation is looming even though the trends look good.

 As you can see, estimates alone can give you an idea of how your team is perform-
ing, but they can also hide things that you need your attention. Next, we’ll add volume
and bug count to our estimates to show how you can better identify how your team is
doing.

3.2.4 Tip 4: Clearly define when tasks are done

Done means a task is complete. Despite the seemingly simple definition, done can be a
tough thing for the business and the agile team to figure out and agree on. Because
the data in your PTS associates time with tasks, the criteria for which tasks are com-
plete are key because they determine when to put an end time on a task. Often, done
means that the task in question is ready to deploy to your consumers. If you group lots
of changes into deployments and have a separate process for delivering code, then
measuring the time it takes to get ready for a deployment cycle makes sense. If you
move to a model where you’re continuously deploying changes to your consumers, it’s
better to categorize tasks as done after they’ve been deployed. Whatever your deploy-
ment methodologies are, here are some things to consider when defining done for
your team’s tasks:

■ Whatever was originally asked for is working.
■ Automated tests exist for whatever you built.
■ All tests across the system you’re developing against pass.
■ A certain number of consumers are using the change.
■ You are measuring the business value of the change.

Make sure you collaborate with your team and stakeholders on the definition of done
for a task, and keep it simple to ensure that everyone understands it. Without a clear
understanding and agreement, you’re setting yourself up for unhappiness down the
line when people don’t agree when something is complete and you don’t have data
that you can trust.

 Once a task is marked as done it becomes history, and any additional work should
become a new task. It’s often tempting to reopen tasks after they’ve been completed if
the requirements change or a bug is found in a different development cycle. It’s much
better to leave the task as complete and open another task or bug fix. If you have a
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 3 Trends and data from project-tracking systems
good agreement on what it means to be done and a task meets those criteria, there
really is no good reason to make it undone.

 If you don’t have a solid agreement on what it means to complete your tasks and
your team doesn’t mark tasks as done in a consistent way, then you won’t be able to
trust most of your data. This is because a lot of what you want to know from your PTS
centers on how long tasks take to complete versus how long you thought they were
going to take. If you don’t have an accurate way to determine when things are com-
plete, it’s hard to know with any certainty how long tasks actually take.

 You can tell when your completion criterion is not well defined when you start to
see unusual spikes in volume and backward movement, as shown in figure 3.9.

 This happens for either of the following reasons:

■ Tasks that were complete end up back in the work stream.
■ Tasks aren’t validated and are sent back to the development team for further

work.

Another trend you can see from figure 3.9 is that the completions of the team jump
up and down. With unplanned work making its way back to the team, it becomes
tough to complete the original commitment. In this case you can see the sprint goal
start to drop more and more over time as the team tries to get to a consistent velocity.
In reality they need to figure out why things are moving back from QA and why the
number of tasks entering the work stream is spiking every few sprints.

3.2.5 Tip 5: Clearly define when tasks are completed in a good way

Good and bad are the epitome of relative terms. Each team has a different idea of what
they think is good based on their history, the product they’re working on, how they’re

400 Total done

Sprint

Back
from QA

Sprint goal

Points
complete

300

200

100

0
54 605958575655

Huge spikes
in total done and

backward movement
Inconsistent
completions

Figure 3.9 Bad trends that you can see when completion criteria are not well defined
Licensed to Mark Watson <nordickan@gmail.com>

51Prepare for analysis; generate the richest set of data you can
implementing agile, and the opinions of its members. Go through your list of com-
pleted tasks and start tagging your cards as good, bad, or in between. As demonstrated
time and again, different patterns mean different things based on the team; absolute
patterns simply don’t exist in a relative world. By tagging your cards based on how well
you think the process worked in addition to adding other tags that describe the task,
you can identify patterns that are contributing to the performance of the team. As
you’ll see as you start working with your data, tags will become the metadata around
your work; the power of working with data in this way is that you can find trends that
tell you how you’re working now and help you identify what needs to be tweaked in
order to improve.

 This relates directly to section 3.2.2 when we talked about tagging tasks and work-
ing with that data later. If you map tasks as good or bad and track that against volume,
you’ll end up with a pretty good indicator of how happy your team is. In this case good
means that the task worked well, there were no problems around it, and everyone is
happy with how it played out. Bad would mean that the team was not happy with the
task for some reason; examples could be that they weren’t happy with how the require-
ments were written, there was another problem that made this task more difficult to
complete, or the estimation was way off. In other environments a Niko-niko Calendar
may be used for this, where every day team members put an emoticon representing
how happy they are on the wall. Mapping out how satisfied you are with the completion
of individual tasks is a much easier and more subtle way to figure out how the team is
feeling about what they’re working on. It can also help you gain insight into your esti-
mate trends. As we mentioned earlier, flat-line estimates may make project managers
happy, but that doesn’t mean everything is going well on the team. Figure 3.10 is an
example of a team that is flat-lining estimates and completion and is also tagging cards
as “happy” or “sad” based on how well the developer thought it was done.

120

Sprint

90

60

30

0
53 54 58575655

The team is
completing almost exactly
what they’re estimating.

Huge drop in
happiness with the

converse in sadness.

Completed

Estimates

Happy

Sad

Figure 3.10 Estimates and completion mapped with how the developer thought the card was
completed
Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 3 Trends and data from project-tracking systems
I’ve seen the chart shown in figure 3.10 on tight deadline projects where a team
needed to get an almost unrealistic amount of work done. They started off very happy
because they were finishing more than they thought they could and the thrill of it
made them feel good. But this lasted for only a few sprints before the team started to
get tired. Maybe they were still completing their work, but they weren’t as excited
about it, and as a result they were tagging their cards as “sad.” This is a great example
of how additional data can give you real insight into your team outside the normal
measurement metrics.

3.3 Key project management metrics; spotting trends in data
Instead of focusing on the typical agile metrics, we’ll look at what some key PTS data
means when combined. The four metrics we’re going to combine to help you get a
broader picture of the performance of the team are:

■ Estimates—The perceived amount of effort that a team gives to a task before
they work on it

■ Volume—The number of tasks that are completed
■ Bugs—The number of defects that are created and worked by a team
■ Recidivism—Tasks that someone said were good enough to move forward in the

process but ended up getting moved back

As we take a more in-depth look at interpreting this data, you’ll see the inconsistencies
and ambiguity that result from looking at small bits of all the data you generate in
your software development lifecycle.

3.3.1 Task volume

The data we’ve charted in this chapter so far is the amount of estimated effort com-
pleted over time. Measuring estimates is a good place to start because it’s already typi-
cal practice on agile teams and provides a familiar starting place.

 Volume is the number of work items your team is getting done. This is a bit differ-
ent than measuring estimates, where you’re evaluating the amount of estimated effort
regardless of the number of tasks you complete. Tracking volume adds a bit more
depth to the estimates and bugs because it helps you determine a few key items:

■ How big are your tasks?
■ What is the ratio of new work to fixing things and revisiting old work?
■ Are tasks coming in from outside the intake process?

The delta between estimation and actual time is a valuable metric because it shows
you a few potential things:

■ How well your team understands the product they’re working on
■ How well the team understands the requirements
■ How well your requirements are written
■ How technically mature your team is
Licensed to Mark Watson <nordickan@gmail.com>

53Key project management metrics; spotting trends in data
Adding velocity to your estimates will show you how many tasks are getting completed
versus how much estimated effort you put into tasks. There should be a significant
delta between the two because each task would have an estimate greater than 1 point.
If your team takes on 10 tasks each with an estimate of 3 points, then your volume will
be 10 and your velocity target will be 30 (10 tasks * 3 estimate points).

 When you notice the delta between volume and estimation shrinking, that’s usu-
ally an indication that something is wrong. Usually that means you’re doing a lot of
work you didn’t plan for. If your task volume is 30 and your target estimate is 30, then
you either have 30 tasks all estimated at 1 point or you have tasks creeping into your
work stream that you never estimated. To figure out where that is coming from you’ll
have to dig into your data a bit more.

3.3.2 Bugs

The previous data will help you dig into your estimates to figure out how accurate they
are, but there’s still more data you can add to further hone your understanding. Add-
ing bugs to the picture will give you an idea of what kind of tasks your team is working
on. This is an especially important metric for teams that don’t estimate bugs, because
that work would have been only partially visible to you so far.

 A bug represents a defect in your software, which can mean different things to dif-
ferent people. If a feature makes its way to done, all the necessary parties sign off on
completion, and it turns out that there’s a defect that causes negative effects to your
consumers, you have a bug. Bugs are important to track because they point to the
quality of the software your team is producing. You should pay attention to two bug
trends bug creation rate and bug completion rate.

 Bug creation rate can be calculated by getting the count of all of the tasks of type
“bug” or “defect” by create date. Bug completion rate is calculated by the count of all
tasks of type “bug” or “defect” by completion date.

 Usually you want to see the exact opposite from bug creation and bug completion;
it’s good when bugs are getting squashed—that means bug completion is high. It’s
bad when you’re generating a lot of bugs—that means bug creation is high. Let’s take
a look at bug completion in the scope of the big picture. Figure 3.11 is an aggregate of
bugs, volume, and story points, the data that we’ve collected and put together so far.

 Figure 3.11 shows that this team doesn’t output many bugs, and estimates and vol-
ume seem to be fairly closely aligned, which at a glance is pretty good. But there are
some instances where volume shows that work is being completed, but no points are
associated with those tasks and no bugs are completed at the same time. This shows
that the team is picking up unplanned work, which is bad because:

■ It’s not budgeted for.
■ It impacts in a negative way the deliverables the team committed to.

Notice how around 09-11 even though volume shows work is getting completed, no
story points are completed. This is a great example of how unplanned work can hurt
the deliverables that a team commits to. After seeing this trend, this team needs to
Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 3 Trends and data from project-tracking systems
find the root of the unplanned work and get rid of it. If they must complete it, then
they should estimate it and plan for it like everything else in the work stream.

3.3.3 Measuring task movement; recidivism and workflow

The final piece of data to add to this chart is the movement of tasks through your
team’s workflow. This data gives you great insight into the health of your team by
checking how tasks move through the workflow.

 For this we’ll look at recidivism, which is the measurement of tasks as they move
backward in the predefined workflow. If a task moves from development to QA, fails
validation, and moves back to development, this would increase the recidivism rate.

 Spikes in this data point can indicate potential problems:

■ There’s a communication gap somewhere on the team.
■ Completion criteria (a.k.a. done) are not defined clearly to everyone on the

team.
■ Tasks are being rushed, usually due to pressure to hit a release date.

If the number of tasks that move backward isn’t spiking but is consistently high, then
you have an unhealthy amount of churn happening on your team that should be
addressed.

 Figure 3.12 adds this data point to the charts you’ve been looking at so far in this
chapter.

 At a glance this may be too much data to digest all at once. If you look at only the
tasks that came back from QA, which is measuring cards that moved backward, you
can see that spikes end up around bad things, such as huge spikes in tasks complete or
huge dips in productivity. The large spikes in backward tasks along with the large
spikes in total tasks complete and a flat-line sprint goal representing estimations tell

28

Bugs
21

14

7

0
08-29 09-02 09-04 09-06 09-08

Sprint

09-10 09-12 09-14 09-1608-31 09-18
08-30 09-03 09-05 09-07 09-09 09-11 09-13 09-15 09-1709-01

No story
points done

Volume indicates tasks were completed,
yet no bugs were completed.

Default widget

Volume

Story points

Figure 3.11 Bugs, volume, and estimates tracked together
Licensed to Mark Watson <nordickan@gmail.com>

55Key project management metrics; spotting trends in data
you that your team must be opening up tasks that were previously marked as complete
and putting them back into the work stream for some reason. That behavior results in
a lot of unplanned work, and your team should discuss this trend to figure out why
they’re doing this and how to fix the problem.

3.3.4 Sorting with tags and labels

Tags and labels help you associate different tasks by putting an objective label on
them. This helps you see associations between properties of tasks that you may not
have thought of slicing up before. Figure 3.13 shows a simple aggregation of tags for a
specific project. In this example all you can see is what the most common tags are and
the count of the different tags.

Total done

Sprint

Bugs

Points

Back from QA

Sprint goal

400

300

200

100

0
53 60595857565554

Figure 3.12 An example of all the data we have so far

By labeling or tagging your data you can find
trends in other data that relate to it.

Figure 3.13 A breakdown of tags for a specific project
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Trends and data from project-tracking systems
In figure 3.14 we add another metric into the mix, development time.
 Now you can sort the two charts by filtering the data behind these charts by your

labels. The Kibana dashboard allows you to click any chart to filter the rest of the
charts on a dashboard by that data. You can begin by clicking tasks labeled “integra-
tion” in the Labels panel from figure 3.15.

 In this case you can see that tasks labeled “integration” take a particularly long
time: 17, 13, or 5 full days. Conversely, you can also sort on development time to see
which labels take a long time, as shown in figure 3.16.

Adding another metric against labels
will allow you to see correlations between

tags and that metric—here, development time.

Figure 3.14 Viewing development time side by side with tags

If you sort by tasks labeled
“integration” you see the
other associated tags.

Development time seems to
take a long time when you sort
by tasks labeled “integration.”

Figure 3.15 Sorting data by labels and seeing the effect on development time
Licensed to Mark Watson <nordickan@gmail.com>

57Case study: identifying tech debt trending with project tracking data
In chapter 7 we take a closer look at exploring data and the relationship between data
points.

3.4 Case study: identifying tech debt trending with project
tracking data
Now that we’ve talked about this data and have it populating our graphs, I’ll share a
real-world scenario where this data alone helped a team come to terms with a prob-
lem, make adjustments, and get to a better place.

 Our team was using Scrum and had a two-week sprint cadence. We were working
on a release that had a rather large and interrelated set of features with many stake-
holders. As with most teams, we started with tracking velocity to ensure that we were
consistently estimating and completing our work every sprint. We did this so we could
trust our estimates enough to be able to deliver more predictably over time and so
stakeholders could get an idea of approximately when the whole set of features they
wanted would be delivered.

 In this case we couldn’t hit a consistent number of story points at the end of every
sprint. To complicate things we didn’t have a typical colocated small agile team; we
had two small teams in different time zones that were working toward the same large
product launch.

 In summary the current state of the team was:

■ Geographically distributed team working toward the same goal
■ Agile development of a large interrelated feature set

We were asking these questions:

■ Why are we not normalizing on a consistent velocity?
■ What can we do to become more predictable for our stakeholders?

Sorting by development time you
can see all labels that take

a long time to complete.

Figure 3.16 Sorting labels by development time
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 3 Trends and data from project-tracking systems
The goal was to maintain a consistent velocity so we could communicate more effec-
tively to our stakeholders what they could expect to test by the end of every sprint.
The velocity of the team is shown in figure 3.17.

 In this case we were tracking data over sprints and using it in our retrospectives to
discuss where improvements could be made. From sprints 53–57 we were seeing sig-
nificant inconsistency in the estimates we were completing. To get a handle on why
our estimates were not consistently lining up, we decided to also start tracking volume
to compare what we thought we could get done against the number of tasks we were
completing. In theory, estimates should be higher than volume but roughly com-
pleted in parallel; that got us the graph shown in figure 3.18.

 Whoa! That doesn’t look right at all! Volume and estimates are mostly parallel, but
according to this we’re getting the same amount of tasks completed as points. Because

200 Points

Sprint

150

100

50

0
53 57565554

Large variances in estimated points completed;
ideally this line should be close to flat.

Figure 3.17 Story points are jumping all over the place.

200 Points

Sprint

150

100

50

0
53 57565554

Total complete tasks are almost parallel to points
complete; ideally total tasks should be much lower.

Total done

Figure 3.18 Adding volume to the picture
Licensed to Mark Watson <nordickan@gmail.com>

59Case study: identifying tech debt trending with project tracking data
each task should have an estimate attached to it, points should be much higher than
tasks. After a closer look at the data we noticed that a lot of bugs were also getting
completed, so we added that to our chart (figure 3.19).

 At this point we were much closer to the full picture. The huge volume of bugs that
we had to power through every sprint was causing volume to go way up, and because
the team wasn’t estimating bugs we weren’t getting the number of estimated features
done that we thought we could. We all discussed the problem, and in this case the
development team pointed to the huge amount of tech debt that had been piling up
over time. Most of the things we completed ended up having edge cases and race con-
ditions that caused problems with the functionality of the product. To show the
amount of work that was moving backward in sprint, we also started mapping that out,
as shown in figure 3.20.

200 Points

Sprint

150

100

50

0
53 57565554

Most of the total tasks that are
complete are bugs; ideally bugs are a small

percentage of the total completed tasks.

Total done

Bugs

Figure 3.19 Adding bugs

200 Points

Sprint

150

100

50

0
53 57565554

Total done

Bugs

Backward
tasks

A high number of tasks that moves backward is
normally an indicator of significant problems.

Figure 3.20 Adding tasks that move backward to the chart
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 Trends and data from project-tracking systems
Most of the tech debt stemmed from decisions that we made in earlier sprints to hit an
important release date. To combat the issue we decided to have a cleanup sprint
where we would refactor the problem code and clean up the backlog of bugs. Once
we did that, the number of bugs in sprint was drastically reduced and the number of
bug tasks that moved backward also went way down. After using this data to point to a
problem, come up with a solution, try it, and watch the data change, we started watch-
ing these charts sprint over sprint. Eventually tech debt started to build again, which
was clearly visible in our metrics collection system and shown in figure 3.21, starting in
sprint 62.

 We saw the same trend starting to happen again, so we took the same approach; we
had a cleanup sprint in 65 and managed to get the team stable and back in control
with a much smaller hit than back in sprint 58.

 Even though this data paints a pretty good picture of a problem and the effects of
a change on a team, it’s still only the tip of the iceberg. In the next chapter we’ll start
looking at even more data that you can add to your system and what it can tell you.

3.5 Summary
The project tracking system is the first place most people look for data to measure
their teams. These systems are designed to track tasks, estimates, and bugs in your
development lifecycle and alone they can give you a lot of insight into how your team
is performing. In this chapter you learned:

■ Your PTS contains a few main pieces of raw data: what, when, and who.
■ The richer the raw data in the system, the more comprehensive the analysis. To

enable this your team should follow these guidelines:
■ Always use the PTS.

280

Sprint

210

140

70

0
53 6656 57 58 59 60 61 62 63 64 655554

Where the check and
adjust happened

Team starts
to normalize

Indication of
repeating pattern;

time to adjust again

Points

Total done

Bugs

Backward
tasks

Team Jira stats over time

Figure 3.21 The complete data over time
Licensed to Mark Watson <nordickan@gmail.com>

61Summary
■ Tag tasks with as much data as possible.
■ Estimate your work.
■ Clearly define the criteria for completion (done).
■ Retroactively tag tasks with how happy you were about them.

■ Tagging tasks in your PTS allows you to analyze your data in novel ways.
■ Adding a narrative gives context to changes over time.
■ Velocity and burn down are a good starting point for analysis, but adding more

data gives you a clearer picture of the trends you notice in those metrics.
■ Pulling key data out of your PTS into a time-data series makes it easier to see

how your team is performing.
■ Just about anything can be distilled into a chart in your analytics system.
Licensed to Mark Watson <nordickan@gmail.com>

Trends and data
from source control
Project tracking is a great place to start when you’re looking for data that can give
you insight into the performance of your team. The next data mine that you want
to tap into is your source control management (SCM) system. In the scope of our
application lifecycle, this is highlighted in figure 4.1.

 SCM is where the action is; that’s where developers are checking in code, adding
reviews, and collaborating on solutions. I’ve often been on teams where it was like
pulling teeth to get developers to move cards or add comments in the project track-
ing system, which ends up leading to a huge blind spot for anyone outside the
development team interested in the progress of a project. You can eliminate that
blind spot by looking at the data generated by the use of your SCM.

This chapter covers
■ Learning from your SCM system’s data alone
■ Utilizing your SCM to get the richest data

possible
■ Getting data from your SCM systems into your

metrics collection system
■ Learning trends from your SCM systems
62

Licensed to Mark Watson <nordickan@gmail.com>

63What is source control management?
If we revise the questions we asked
in chapter 3, we get the types of
who, what, and how through data
from SCM, as shown in figure 4.2.

 Here are two questions you can
answer from your SCM systems:

■ How much change is hap-
pening in your codebase?

■ How well is/are your devel-
opment team(s) working
together?

If you combine SCM data with your
PTS data from chapter 3, you can get really interesting insights into these issues:

■ Are your tasks appropriately sized?
■ Are your estimates accurate?
■ How much is your team really getting done?

We take a much closer look at these questions in chapter 7 when we dive into combin-
ing different data sources. Our system is ready to go, but before we start taking a look
at our data, let’s make sure you’re clear on the basic concepts of SCM.

4.1 What is source control management?
If you’re working on a software production, you should already know what SCM is. But
because one of my golden rules is never to assume anything, I’ll take this opportunity
to tell you just in case.

 The software product that you’re working on ends up getting compiled and
deployed at some point. Before that happens, your team is working on the source, or
the code that comprises the functionality you want to ship to your consumers. Because

The members on
your team who get

assigned things

What code changes
need to be done to

complete tasks

WHO is working on WHAT

WHO is helping WHOM

HOW MUCH effort the work is taking

Specific code changes
to your software

products
How your team is
collaborating on
their changes

Figure 4.2 The who, what, and how from SCM

Manage
tasks and

bugs

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

You are herePrevious
chapter

Figure 4.1 You are here: SCM in the scope of the application lifecycle.
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 4 Trends and data from source control
you likely have more than one person working on this source, you need to manage it
somewhere to ensure that changes aren’t getting overwritten, good collaboration is
happening, and developers aren’t stepping on each other’s toes. The place where this
is managed and the history and evolution of your code are stored is your SCM system.

 Popular SCM systems today include Subversion (SVN), Git, Mercurial, and CVS. SCM
systems have evolved significantly over time, but switching from one type of SCM to
another isn’t always easy. This is because if all of your code and history are in one SCM
system, moving all of it and asking your development team to start using a new system
usually takes quite a bit of effort. There are tools to help you migrate from one system
to another, and following those tools leads you down the path of the evolution of source
control. For example, a tool called cvs2svn will help you migrate from CVS to the newer
and more popular SVN. Google “migrating SVN to CVS”; most of the links will point you
in the other direction. There are also tools that help you migrate from SVN to the newer
Git or Mercurial, but going in the opposite direction isn’t so common.

 If you’re not using SCM for your project, I strongly recommend you start using it.
Even teams of one developer benefit from saving the history of their codebase over
time; if you make a mistake or need to restore some functionality that you took out, SCM
makes it easy to go back in time and bring old code that you got rid of back to life.

4.2 Preparing for analysis: generate the richest set of data you can
The most obvious data you can get from these systems is how much code is changing
in CLOC and how much individuals on the team are changing it. As long as you’re
using source control, you have that data. But if you want to answer more interesting
questions like the ones I posed at the beginning of the chapter:

■ How well is your team working together?
■ Are your estimations accurate?
■ Are your tasks appropriately sized?
■ How much is your team really getting done?

then you should use the following tips to ensure you’re generating the richest set of
data you can.

Changing SCM in the enterprise

As I talk about generating rich data in the next few sections, I’ll be talking through
potential changes to how your team operates that might not seem realistic. If you’re
working at a nimble startup or are about to start a new project, then choosing or chang-
ing the type of SCM you use may not be a big deal. If you’re from a large enterprise
company that has used CVS forever and refuses to hear anything about these new-
fangled SCM systems, a good data point to use to justify changing systems is the
amount of data you can get out of them and how they can improve collaboration on
your team. If you find yourself in that situation, keep that in mind as you read through
the following sections.
Licensed to Mark Watson <nordickan@gmail.com>

65Preparing for analysis: generate the richest set of data you can
4.2.1 Tip 1: Use distributed version control and pull requests

There are plenty of options
when it comes to choosing a
version control system to use.
When you do choose a system,
think about the type of data
that you can get out of it as part
of its overall value. The first
choice to make when choosing
an SCM system is whether to go
with a distributed or a central-
ized system. A centralized sys-
tem is based on a central server
that’s the source of truth for all
code. To make changes and save the history of them, you must be connected to the
central repository. A centralized SCM system is shown in figure 4.3.

 In a centralized SCM model the type of metadata that’s stored along with the com-
mit is usually just a comment. That’s better than nothing, but it isn’t much.

 With a distributed system everyone who checks out the project then has a complete
repository on their local development machine. Distributed version control systems
(DVCSs) typically have individuals or groups who make significant changes to the
codebase and try to merge it later. Allowing everyone to have their own history and to
collaborate outside of the master repo gives a team a lot more flexibility and opportu-
nity for distributed collaboration. A DVCS is illustrated in figure 4.4.

Figure 4.3 Centralized SCM system: there is one place
everyone must get to.

Version
control

Local
repo

Local
repo

Local
repo

Local
repo

Central
repo

Ultimately changes
come back to the central

repo to get deployed.

Developers can
collaborate outside
of the central repo.

Figure 4.4 Distributed version control system (DVCS): everyone has a repo.
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 4 Trends and data from source control
Note in figure 4.4 that there’s still a central repo where the master history is stored
and the final product is deployed from.

 SCM systems have two primary focal points:

■ Saving the history of everything that happens to the code
■ Fostering great collaboration

Centralized SCM systems have all the history in one place: the central repo. DVCSs save
the history of changes no matter where they happen and as a result have a much
richer set of data available around code changes. In addition, DVCSs typically have
RESTful APIs, which make getting that data and reporting on it with familiar con-
structs plug and play at this point.

 From the perspective of someone who wants to get as much data about your team’s
process as possible, it’s much better to use a DVCS because you can tell a lot more
about how the team is working, how much collaboration is happening, and where in
your source code changes are happening.

 A common practice in teams that use DVCSs is the idea of a pull request. When a
developer has a change or a set of changes that they want to merge with the master
codebase, they submit their changes in a pull request. The pull request includes a
list of other developers who should review the request. The developers have the
opportunity to comment before giving their approve/deny verdict. This is illustrated
in figure 4.5.

DVCS workflows

The most popular DVCS workflows are the feature-branch workflow and gitflow.

The feature-branch workflow is the simpler one. The overall concept is that all new
development gets its own branch, and when development is done, developers submit
a pull request to get their feature incorporated into the master.

Developer
creates a branch and

changes the code.

Changed code
is submitted for
peer review via
a pull request.

Peers review
and comment. Approved pull

requests are merged
to master.

Figure 4.5 The pull request workflow for source control usage
Licensed to Mark Watson <nordickan@gmail.com>

67Preparing for analysis: generate the richest set of data you can

Fol
for
on

Li
 the

L

This collaboration among developers is then saved as metadata along with the change.
GitHub is an example system that has a rich API with all of this data that will help you
get better insight into your team’s performance. The following listing shows an
abridged example of data you can get from the GitHub API about a pull request.

{
 "state": "open",
 "title": "new-feature",
 "body": "Please pull these awesome changes",
 "created_at": "2011-01-26T19:01:12Z",
 "updated_at": "2011-01-26T19:01:12Z",
 "closed_at": "2011-01-26T19:01:12Z",
 "merged_at": "2011-01-26T19:01:12Z",
 "_links": {
 "self": {
 "href": "https://api.github.com/repos/octocat/Hello-World/pulls/1"
 },
 "html": {
 "href": https://github.com/octocat/Hello-World/pull/1
 },
 "issue": {
 "href": "https://api.github.com/repos/octocat/Hello-World/issues/1"

 },
 "comments": {
 "href": https://api.github.com/repos/octocat/Hello-World/issues/1

 ➥ /comments
 },
 "review_comments": {
 "href": "https://api.github.com/repos/octocat/Hello-World/pulls/1

 ➥ /comments"
 "merge_commit_sha": "e5bd3914e2e596debea16f433f57875b5b90bcd6",
 "merged": true,
 "mergeable": true,
 "merged_by": {
 "login": "octocat",
 "id": 1,

Gitflow also focuses on using pull requests and feature branches but puts some for-
mality around the branching structure that your team uses. A separate branch, used
to aggregate features, is usually called develop or next. But before merging a feature
into the develop branch, there’s typically another pull request. Then, after all features
are developed and merged, they are merged into the master branch to be deployed
to the consumer.

For information about Git and using workflows, check out Git in Practice by Mike
McQuaid (Manning, 2014), which goes into great detail about these workflows and
how to apply them.

Listing 4.1 Abridged example response from the GitHub API

General information
about the pull requests

Dates are great
for charting

low the link
 details
 this node

nks to all of
 comments

inks to the
comments

 for reviews

The ID of the
parent commit

If this has already
been merged

If this can
be merged

Who merged the
pull request
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 4 Trends and data from source control
 },
 "comments": 10,
 "commits": 3,
 "additions": 100,
 "deletions": 3,
 "changed_files": 5
 }

As you can see, there’s a lot of great data that you can start working with from this
request. The key difference between the data you can get from DVCS over centralized
VCS is data around collaboration; you can not only see how much code everyone on
your team is changing, but you can also see how much they’re participating in each
other’s work by looking at pull request activity.

Let’s look at the metrics you can pull out of this data and how to combine it with the
metrics you already have from our PTS in chapter 4.

4.3 The data you’ll be working with; what you can get from SCM
If you use the system that we built in appendix A, you can create a service that plugs in
and gets data from your DVCS. Because the data that you can get from a DVCS is so
much richer than that from centralized SCM systems and because they have great APIs
to work with, this section will focus on getting data from DVCSs. We’ll also explore get-
ting data from a centralized SCM at a high level.

4.3.1 The data you can get from a DVCS

The simplest structure you can get from a DVCS is a commit, as shown in figure 4.6.
 Figure 4.6 contains a message, an ID that’s usually in the form of an SHA (secure

hash algorithm), parent URLs that link to the previous history of the commit, and the
name of the person who created the code that was committed. Keep in mind that who
wrote the code can be someone different than who commits it to the repo. If you’re
following good gitflow or feature-branch workflows, you’ll see this often; a developer
will submit a pull request and typically the last reviewer or the owner repo will accept
and usually commit the change.

Linking in RESTFUL APIs

As shown in listing 4.1, GitHub uses a technique called linking in its API. In the case
of listing 4.1, you’ll notice that several sections of the response are HTTP URLs. The
idea with linking is that the API itself should give you all the information you need to
get more. In this case, if you want to get all of the data about the different comments,
follow the link in the comments block. Listing 4.1 is an abridged example to show you
generally what type of data you can get back from the API, but in a full response there
will be many links that point to the details inside each node. RESTful APIs often use
linking this way to make pagination, discovery of data, and decoupling different types
of data generally easier.

Key stats; very
useful for charting
Licensed to Mark Watson <nordickan@gmail.com>

69The data you’ll be working with; what you can get from SCM
Speaking of pull requests, the typical structure for them is shown in figure 4.7.
 In figure 4.7 you have the author of the pull request and a link to all the reviewers

who took part in the pull request workflow. You can also get all the comments for that
pull request and the history of where it came from and where it was submitted.

 Commits tell you all the code that’s making it into the repo. Pull requests tell you
about all the code that tried to make it into the repo. Pull requests are essentially a

id
message
url

Commit

name
date

(User)Committer

11 1

1

Basic info about
the commit.

url
id

Parents

*

name
date

(User)Author

Whoever authored the
change; it's possible that this
is someone who submitted

a pull request.

Whoever committed the
change; If someone else

submitted a pull request, this
will be different than

the author.

Object representing the history
of this commit—where

it came from.

1

Figure 4.6 The object structure of a commit in a typical DVCS

id
title
createdDate
updatedDate

PullRequest

comment
id

Comments

111 1

Basic info about
the pull request.

name
email
displayName

name
email
displayName

(User)Author

* *

name
project
id

(Repository)fromRef

A list of comments
associated with this

pull request.

Object representing
the user who made

the pull request.

(User)Reviewer

Object representing
the user(s) who reviewed

the pull request.

1 1

The repo this request
came from; when using

distributed VCS this helps
outline the history.

Figure 4.7 The data structures you can get from a pull request in DVCS
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 4 Trends and data from source control
request to put code into the repo, and by their nature they’re much richer in data
than commits. When a user submits a pull request, they ask their peers for comments,
reviews, and approval. The data that is generated from the pull request process can
tell you not only who is working on what and how much code they’re writing but also
who is helping them and how much cooperation is going on across the team.

 Now that you see what kind of data you get back, you can start mapping that data
back to the questions you want answered, as shown in figure 4.8.

 Here’s what you know so far:

■ Who is doing what from the User objects that you get back for reviewers and
authors

■ Who is collaborating through the User objects representing reviewers
■ How much collaboration is going on through the comments

All of this is great if you’re looking for data about your team. In addition, you can parse
the information from the code changes to find out which files are changing and by how
much. With this information you can answer additional questions like the following:

■ Where are the most changes happening (change hot spots in your code)?
■ Who spends the most time in which modules (hot spots by user)?
■ Who is changing the most code?

Hot spots in your code point to where the most change is happening. This could
mean that your team is developing a new feature and they’re iterating on something
new or changing something—this is what you’d expect to see. Things you might not
expect are spots that you have to iterate every time you change something else—these
are usually indications of code that’s too tightly coupled or poorly designed. Spots like

id
title
createdDate
updatedDate

comment
id

Comments

name
email
displayName

name
email
displayName

(User)Author

PullRequest

(User)Reviewer

sha
diff

Commit

WHO is helping WHOM

WHO is working on WHAT

HOW MUCH effort

WHAT was done

Figure 4.8 Mapping your questions back to the objects you can get from the DVCS API
Licensed to Mark Watson <nordickan@gmail.com>

71The data you’ll be working with; what you can get from SCM
this are time-consuming, often simply because of tech debt that needs to be cleaned
up. Showing the amount of time spent on problem spots is good evidence that you
should fix them for the sake of saving time once the change is made.

4.3.2 Data you can get from centralized SCM

Even though I keep trash-talking SVN and CVS, both are common SCM systems in use by
many developers today. This goes back to the fact that changing your SCM system is
going to be a disruption to your team at some level. To move from SVN to Git, for exam-
ple, your team will have to learn Git, stop working while the code gets migrated, migrate
the code, and then get used to working in a different workflow. You can definitely
expect this to slow your team down temporarily, but the benefits you’ll get out of the
data alone are worth it. This data will give you such greater insight that it gives you the
potential to find problems and shift direction much faster than the data you can get
from centralized SCM. The move to DVCS also encourages and fosters better collabora-
tion through pull requests and, in my opinion as a developer, is nicer and easier to use.

 If I haven’t convinced you
yet, you can still get some
data out of your centralized
SCM system. Basically, you can
get who made the change
and what the change was, as
demonstrated in figure 4.9.

 This data alone is often
misleading. You can tell how
many lines of code were
changed and by whom, but that doesn’t give you an idea of effort or productivity. A
junior programmer can make many commits and write a lot of bad code, whereas a
senior developer can find a much more concise way to do the same work, so looking at
volume doesn’t indicate productivity. Additionally, some people like to start hacking
away at a problem and hone it as they go; others like to think about it to make sure
they get it right the first time. Both methods are perfectly viable ways to work, but the
data you’ll get from them in this context is totally different.

 The data from centralized SCM can be useful when combined with other informa-
tion, such as how many tasks are getting done from your PTS or whether tasks are
moving in the wrong direction. Using those as your indicators of good and bad will
help you determine what your SCM data means.

4.3.3 What you can tell from SCM alone

The minimum set of data you can get from SCM is the amount of code everyone on
your team is changing. With no other data you can get answers to questions like these:

■ Who is changing the code?—Who is working on what parts of the product? Who is
contributing the most change?

(User)Author Commit1 *

WHO is working on WHAT

Figure 4.9 The data you can get out of centralized SCM
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 4 Trends and data from source control
■ How much change is happening in your codebase?—What parts of your product are
undergoing the most change?

At its core SCM tracks changes to the codebase of your product, which is measured in
CLOC. Just as velocity is a relative metric whose number means something different to
every team that tracks it, CLOC and LOC are the epitome of relative metrics. LOC var-
ies based on the language your code is written in and the coding style of the develop-
ers on the team. A Java program will typically have a much higher LOC than a Rails,
Grails, or Python program because it’s a much wordier language, but it’s even difficult
to compare two Java programs without getting into discussions on whose style is better.
An example is the following listing.

if(this == that) {
doSomething(this);
else {
doSomethingElse(that);
}

(this == that) ? doSomething(this) : doSomethingElse(that);

In this simple case two statements do the same thing, yet their LOC is very different.
Both perform the same and produce the same result. The reason to choose one over
the other is personal preference, so which is better? Examples like this show that LOC
is a metric that can’t tell you if changing code is good or bad without taking into
account the trends over time.

 There are a number of standard charts for SCM data for trending change. If you
look at any GitHub project, you’ll find standard charts that you can get to through the
Pulse and Graph sections. FishEye produces the same charts for SVN-based projects.
As an example in anticipation of our next chapter, we’ll look at the GoCD repo in
GitHub, which is the source for a CI and pipeline management server.

 Figure 4.10 shows the GitHub Pulse tab, which gives you an overview of the current
state of the project. The most valuable section here is the pull request overview on the
left side of the page.

 The Pulse tab is pretty cool, but just like checking your own pulse, it only tells you
if the project you’re looking at is alive or not. In the context of GitHub, where open
source projects tend to live, it’s important to know if a project is alive or dead so
potential consumers can decide if they want to use it. To get data that’s more relevant
for your purposes, check out the Graphs section. It has the typical breakdowns of
CLOC and LOC that you’d expect to see from your source control project. Let’s start
with contribution over time, shown in figure 4.11.

 The first chart shows you total contribution in CLOC. Below that you can see the
developers who have contributed to the codebase and how much they’ve contributed.
This is interesting because you can see who is adding, deleting, and committing the

Listing 4.2 Two identical conditional statements

Statement 1 = 5 LOC

Statement
2 = 1 LOC
Licensed to Mark Watson <nordickan@gmail.com>

73The data you’ll be working with; what you can get from SCM
most to your codebase. At a glance this may seem like a good way to measure devel-
oper productivity, but it’s only a piece of the puzzle. I’ve seen bad developers commit-
ting and changing more code than good developers, and I’ve seen great developers at
the top of the commit graph in others.

Current state of pull
requests for this project.

Overview of change set
that has happened recently.

Click here for
the Pulse tab.

Figure 4.10 The Pulse page on GitHub gives you info on pull requests, issues, and amount of change. This is from
the GoCD repo (github.com/gocd/gocd/pulse/weekly).

Total commit data; the quantity
of change, nothing about quality.

Click here for
the Graphs tab.

Figure 4.11 The graph of contributors over time. From GoCD
(github.com/gocd/gocd/graphs/contributors).
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 4 Trends and data from source control
Next up are the commits over time, as shown in figure 4.12. This shows you how many
code changes there are and when they happen.

 Figure 4.12 shows the number of commits. To get to CLOC, click the next tab:
Code Frequency.

 In figure 4.13 you can see the huge addition, which was the birth of this project in
GitHub. After bit of intense CLOC, it normalizes somewhat.

 The last standard chart in GitHub is the punch card, shown in figure 4.14.
 This is valuable in showing you when the most code change occurs in your project.

In figure 4.14 you can see that between 10 a.m. and 5 p.m. the most change occurs,
with a bit of extra work bleeding early or later than that—pretty much what you’d
expect if your team is putting in a normal workweek. If you start to see the bubbles
getting bigger on Fridays or at the end of sprints, that’s typically a sign that your team
is waiting until the last minute to get their code in, which is usually not good. Another
bad sign is seeing days your team should have off (typically Saturday and Sunday)
starting to grow. These trends may not point to the problem, but they at least indicate
that there is a problem.

A trend of highs and lows is appearing;
it would be cool to add PTS data.

Commits
aggregated by week.

Commits by day based
on selected week.

The team seems to be most
productive on Wednesdays.

Figure 4.12 Total commits to this repository over time show the amount of code changed from week to week
and day to day. From GoCD (github.com/gocd/gocd/graphs/commit-activity).
Licensed to Mark Watson <nordickan@gmail.com>

75The data you’ll be working with; what you can get from SCM

Huge addition and deletion
when project starts its life.

Balanced deletes and
additions point to refactors
rather than new features.

Upward spikes above zero line
are LOC added. Downward

spikes are LOC deleted.

Figure 4.13 The Code Frequency tab shows how much code is changing over time in CLOC. From GoCD
(github.com/gocd/gocd/graphs/code-frequency).

Most work done from 9 am to 5 pm, Monday
through Friday. That’s pretty normal.

Figure 4.14 The SCM punch card chart shows the days when the most change in your code occurs.
Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 4 Trends and data from source control
If you’re using SVN, then you’ll have to use a third-party tool that gets the data from
your VCS and displays it for you. Figure 4.15 shows the previous data as visualized by
FishEye (www.atlassian.com/software/fisheye).

Commits by different
frequencies; still only

counting LOC

Figure 4.15 SCM
data rendered
through FishEye
Licensed to Mark Watson <nordickan@gmail.com>

http://atlassian.com/software/fisheye

77Key SCM metrics: spotting trends in your data
If you want to get this data from the API to show your own graphs, check out the
Repository Statistics API: GET /repos/:owner/:repo/stats/contributors.1 This will
return data in the structure shown in figure 4.16.

 If you’re starting with the basics, this is a pretty convenient API to work with.

4.4 Key SCM metrics: spotting trends in your data
Instead of focusing on LOC, we’re going to look at some of the richer data you can get
if your team is submitting pull requests and using CI to build and deploy code. We’re
going to combine that with the data we’re already looking at from chapter 3.

 We’ll look at the following data from our SCM:

■ Pull requests
■ Denied pull requests
■ Merged pull requests
■ Commits
■ Reviews

A note about FishEye

If you’re using centralized SCM, specifically SVN, then FishEye is the standard com-
mercial tool used to depict SCM data. There are also open source tools that you can
get to run these stats locally, but FishEye is a standard commercial off-the-shelf (COTS)
product that teams use to get this data into pretty charts on web pages that everyone
can see.

1 “Get contributors list with additions, deletions, and commit counts,” developer.github.com/v3/repos/
statistics/#contributors.

name
project
id

(User)Author

totalCommits

Statistics

startOfWeek
additions
deletions
commits

Weeks

1 1

**

The authors who are
participating in a repo The amount of change

broken out by week

Figure 4.16 GitHub Repository Statistics data structure
Licensed to Mark Watson <nordickan@gmail.com>

developer.github.com/v3/repos/statistics/#contributors
developer.github.com/v3/repos/statistics/#contributors

78 CHAPTER 4 Trends and data from source control
■ Comments
■ CLOC (helps calculate risk)

4.4.1 Charting SCM activity

If you’re using standard SCM systems, then you probably already have the basic LOC
stats that we discussed earlier. To get some information that can really help you, we’ll
start off by looking at pull request data to see what that tells you.

 If you start off with something simple like the number of pull requests, you simply
have to count the requests.

 As shown in figure 4.17, if all is well you should have a lot more comments than
pull requests. This delta is dependent on how you do pull requests on your team. If
you have a team with four to six developers, you may open the pull request to the
entire team. In this case you’ll probably see something like two to three members of
the team commenting on pull requests. If you have a bigger team, then opening the
pull request to the entire team may be a bit heavy-handed, so a developer may open it
to just four to six people with the intention of getting feedback from two or three
peers. However you do it, you should see comments parallel pull requests, and you
should see comments and reviews be at least double the value of the number of pull
requests, as you saw in figure 4.17.

 One thing to note is that figure 4.17 is aggregating data every sprint. That means
you’re seeing the total pull requests and the total comments after the sprint period
(usually two to three weeks) is complete. If you’re practicing Kanban and/or tracking
these stats with greater granularity, then another trend you might want to look for is
the difference between when pull requests are open, when comments are added, and
when commits are finalized. Ideally you want pull requests to be committed soon after
they’re submitted. If for some reason you see the trend shown in figure 4.18, you may
have an issue.

100

Team stats

80

60

40

20
1 5432

Team SCM stats over time

Pull requests and comments
are mostly parallel.

Comments

Pull
requests

Figure 4.17 Pull requests charted with pull request comments
Licensed to Mark Watson <nordickan@gmail.com>

79Case study: moving to the pull request workflow and incorporating quality engineering
For some reason your team isn’t doing code reviews when they’re submitted. This incre-
ases the time it takes to complete issues. The biggest danger in leaving code reviews
open is that after a while they lose context or developers will be pressured to close the
issues and move them along. Ideally you want that gap to be as short as possible.

 Depending on the SCM system, you can also see some pull requests denied. This is
an interesting data point as a check to your pull request quality. Typically even the best
team should have pull requests denied due to mistakes of some kind—everyone
makes mistakes. You can add denied pull requests to your chart and expect to see a
small percentage of them as a sign of a healthy process. If your denied pull requests
are high, that’s likely a sign that either the team isn’t working well together or you
have a bunch of developers trying to check in bad code. If you don’t have any denied
pull requests, that’s usually a sign that code reviewers aren’t doing their jobs and are
approving pull requests to push them through the process.

4.5 Case study: moving to the pull request workflow and
incorporating quality engineering
We’ve been through how to collect and analyze SCM data, so it’s time to show it in
action. In the case study that follows, we demonstrate how to move to the pull request
workflow and integrate quality engineers on the team for better software quality. This
real-world scenario shows you to apply this to your process.

 The team in question was generating a lot of bugs. Many of them were small issues
that should have been caught much earlier in the development process. Regardless,
every time the team cut a release they would deploy their code, turn it over to the
quality management (QM) team, and wait for the bugs to come in. They decided to
make a change to improve quality.

20

Date

15

10

5

0
10-1 10-510-410-310-2

Team SCM stats over time

Comments are lagging
behind pull requests.

Code reviews and
commits happen all at

once and pull requests stop.

Commits

Comments

Pull
requests

Figure 4.18 Commits and comments lagging behind pull requests is usually a bad pattern.
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 4 Trends and data from source control
After discussing the issue, the team decided to try out the pull request workflow. They
were already using Git, but the developers were committing their code to a branch
and merging it all into the master before cutting a release. They decided to start track-
ing commits, pull requests, and bugs to see if using pull requests decreased their bug
count. After a few sprints they produced the graph shown in figure 4.19.

 To make trends a bit easier to see, we divided the pull requests and commits by
two so there wasn’t such a discrepancy between the metrics. The result is shown in
figure 4.20.

60 Pull
requests

Sprint

50

40

30

20
15 19181716

Commits

Bugs

Bugs aren’t
trending down.

SCM stats against bugs

Commits and pull requests
are pretty much parallel.

Figure 4.19 Bugs aren’t trending down as the team starts doing pull requests.

28

Sprint

26

24

22

20
15 19181716

SCM stats against bugs

Dividing pull requests
and commits in half to
enhance bug trending

Pull
requests

Commits

Bugs

Figure 4.20 The same data with variance decreases between bugs and other data
Licensed to Mark Watson <nordickan@gmail.com>

81Case study: moving to the pull request workflow and incorporating quality engineering
That makes it a lot easier to see the variance. As you can tell from figure 4.20, there
wasn’t much change. Even though there’s a big dip in bugs from sprint 18 to 19, bugs
weren’t decreasing over time; there was just a big jump in bugs in sprint 18. After dis-
cussing the situation, the team decided to add more data points to the mix. To see
how much collaboration was happening in the pull requests, they began adding com-
ments to their graphs. That resulted in the chart shown in figure 4.21. To keep things
consistent, we divided comments by two.

 Figure 4.21 shows that there weren’t many comments along with the pull requests,
which implies there wasn’t much collaboration going on. Because the bug trend
wasn’t changing, it looked like the changes to their process weren’t having any effect
yet. The workflow itself wasn’t producing the change the development team wanted;
they needed to make a bigger impact on their process. To do this they decided that
developers should act like the QM team when they were put on a pull request. The
perspective they needed wasn’t just “is this code going to solve the problem?” but “is
this code well built and what can go wrong with it?” There was some concern about
developers accomplishing less if they had to spend a lot of time commenting on other
developers’ code and acting like the QM team. They moved one of their QM members
over to the development team as a coach, and the team agreed that if this would result
in fewer bugs then the effort spent up front was time well spent. They started taking
the time to comment on each other’s code and ended up iterating quite a bit more on
tasks before checking them in. A few sprints of this process resulted in the graph
shown in figure 4.22.

 Figure 4.22 shows that as collaboration between development and quality
increased—in this case shown through comments in pull requests—the number of
bugs went down. This was great news for the team, so they decided to take the process

30

Sprint

23

16

9

2
15 16 191817

Pull
requests

Commits

Comments

Bugs

SCM stats against bugs

Not much commenting is
happening on this team.

Figure 4.21 Adding comments to the graph and finding an ugly trend
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 4 Trends and data from source control
one step further. The development managers brought in another member of the QM
team to work with the developers on code reviews and quality checks to avoid throw-
ing code over the wall to the whole QM team.

Over time, commits and pull requests started increasing as well. As the development
team started thinking with a quality mindset, they started writing better code and pro-
ducing fewer bugs. The combined QM and development teams found and fixed many
issues before deploying their code to the test environment.

4.6 Summary
Source control is where your code is being written and reviewed and is a great source
to complement PTS data for better insight into how your team is operating. Using the
pull request workflow and distributed version control can give you a lot more data

Test engineers

For a long time the role of the quality department in software engineering has involved
checking to make sure features were implemented to spec. That’s not an engineering
discipline, and as a result many people in the QA/QM space were not engineers. To
truly have an autonomous team, quality engineering has to be a significant part of
the team. The role of the quality engineer, a.k.a. QE, a.k.a. SDET, a.k.a. test engineer,
has started to become more and more popular. But as quality moves from one state
to another in the world of software engineering, this role isn’t clearly defined, and often
you have either someone with an old quality background who recently learned to write
code or you have an expert in testing technology. Neither of these works; you need a
senior engineer with a quality mindset. This topic could fill another book, so we’ll leave
it at that.

30

Sprint

23

16

9

2
15 16 2118 19 2017

Pull
requests

Commits

Comments

Bugs

SCM stats against bugs

Everything is trending
in the right direction. Yay!

Figure 4.22 Everything is trending in the right direction!
Licensed to Mark Watson <nordickan@gmail.com>

83Summary
than non-distributed SCMs. Often web-based DVCS systems, like GitHub, will have
built-in charts and graphs you can use to get a picture of how your team is using them.

■ Teams use source control management to manage their codebase.
■ Here are some things you can learn from SCM data alone:

■ Who is changing the code?
■ How much change is happening in the codebase?

■ Here are some questions you can answer with just SCM data:
■ Who is working on what?
■ Who is helping whom?
■ How much effort is going into the work?

■ Use pull requests with DVCS to obtain the richest data out of your SCM.
■ Look for these key trends from SCM:

■ Relationship between pull requests, commits, and comments.
■ Denied pull requests versus merged pull requests.
■ CLOC over time.
■ SCM data against PTS data to see how they affect each other.

■ DVCSs are superior to centralized ones for a variety of reasons:
■ They provide much richer data than centralized SCM systems.
■ They can improve the development process by using recommended flows.
■ They tend to have RESTful APIs for easier data collecting.

■ Pull requests combined with comments and code reviews add another dimen-
sion to the team’s collaborative process.

■ GitHub with its Pulse and Graph tabs contains a lot of useful information about
the health of the project.

■ Visualization techniques are available for centralized VCS through commercial
products.
Licensed to Mark Watson <nordickan@gmail.com>

Trends and data from CI
and deployment servers
Now that we’ve been through project tracking and source control, we’re moving to
the next step, which is your CI system. In the scope of our application lifecycle, CI is
highlighted in figure 5.1.

 Your CI server is where you build your code, run tests, and stage your final arti-
facts, and, in some cases, even deploy them. Where there are common workflows
when it comes to task management and source control, CI tends to vary greatly
from team to team. Depending on what you’re building, how you’re building it is
the biggest variable at play here.

 Before we dive into collecting data, we’ll talk about the elements of continuous
development so you know what to look for and what you can utilize from your

This chapter covers
■ What can you learn from your CI systems, CT,

and CD data alone
■ How to utilize your CI to get the richest data

possible
■ How the addition of data from CI and

deployment servers enhances and fills gaps in
PTS and SCM data
84

Licensed to Mark Watson <nordickan@gmail.com>

85
development process. If we revise the questions we asked in chapters 3 and 4 a bit, we
get the types of who, what, and when shown in figure 5.2 through data from CI.

 Here are questions you can answer from your CI systems:

■ How fast are you delivering changes to your consumer?
■ How fast can you deliver changes to your consumer?
■ How consistently does your team do their work?
■ Are you producing good code?

If you combine CI data with your PTS data from chapter 3 and SCM data from chapter
4, you can get some really interesting insights with these questions:

■ Are your tasks appropriately sized?
■ Are your estimates accurate?
■ How much is your team actually getting done?

We’re going to take a much closer look at combining data in chapter 7. For now, we’ll
make sure you’re clear on what continuous (fill in the blank) means.

Manage
tasks and

bugs

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

Project
tracking

Source
control

Deployment
tools

Application
monitoring

Continuous
development

You are herePrevious chapters

Figure 5.1 You are here: continuous integration in the application lifecycle.

Build stats from CI show
you how well your team
can follow the process.

How DISCIPLINED the team is

How CONSISTENTLY you are delivering

How GOOD your code is

You can also break
this down by team

member.

Maybe the most
important metric you

can track.Thorough test results
can point to overall

code quality.
Figure 5.2 The hows from CI: the basic
questions you can answer
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 5 Trends and data from CI and deployment servers
5.1 What is continuous development?
In today’s digital world consumers expect the software they interact with every day to
continuously improve. Mobile devices and web interfaces are ubiquitous and are evolv-
ing so rapidly that the average consumer of data expects interfaces to continually be
updated and improved. To be able to provide your consumers the most competitive
products, the development world has adapted by designing deployment systems that
continuously integrate, test, and deploy changes. When used to their full potential, con-
tinuous practices allow development teams to hone their consumer’s experience mul-
tiple times a day.

5.1.1 Continuous integration

Continuous development starts with CI, the practice of continuously building and test-
ing your code as multiple team members update it. The simplest possible CI pipeline
is shown in figure 5.3.

 In theory, CI allows teams to collaborate on the same codebase without stepping
on each other’s toes. SCM provides the source of truth for your codebase; multiple
developers can work on the same software product at the same time and be aware of
each other’s changes. The CI system takes one or more of the changes that are made
in SCM and runs a build script that at its simplest will ensure that the code you’re
working on compiles. But CI systems are basically servers that are designed to run mul-
tiple jobs as defined in the build script for an application and therefore are capable of
extremely flexible and potentially complex flows. Typical CI jobs include running
tests, packaging multiple modules, and copying artifacts.

 Common CI systems include Jenkins (jenkins-ci.org/), Hudson (hudson-ci.org/),
Bamboo (atlassian.com/software/bamboo), TeamCity (www.jetbrains.com/teamcity/),
and Travis CI (travis-ci.org/). Although each has slightly different features, they all do
the same thing, which is take a change set from your SCM system, run any build scripts
you have in your codebase, and output the result somewhere.

Version control
system (SCM) CI system

Build artifact

Developer checks
a change into SCM.

Output is a
deployable artifact.

CI system runs tests and
various other build tasks.

The CI system detects
changes to source control

and kicks off builds.

Figure 5.3 The simplest possible CI pipeline. When developers check in changes, the CI system
builds an artifact.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.jetbrains.com/teamcity/
http://jenkins-ci.org/
http://hudson-ci.org/
http://atlassian.com/software/bamboo
http://travis-ci.org/

87What is continuous development?
Build scripts are the brain of your CI process. A build script is code that tells your CI
system how to compile your software, put it together, and package it. Your build script
is essentially the instructions that your CI system should follow when it integrates code.
Common build frameworks are Ant, Nant, Ivy, Maven, and Gradle. Build scripts are
powerful tools that manage dependencies, determine when to run tests and what tests
to run, and check for certain conditions in a build to determine whether it should
continue or stop and return an error. Figure 5.4 shows graphically what a typical build
script will control.

 Think of your build script as a set of instructions that describes how to build and
package your code into something you can deploy.

A bit about Jenkins

Jenkins, formerly called Hudson, is an open source CI system that is very popular,
has a plethora of plugins for additional functionality, is extremely easy to set up and
administrate, and has a very active community. When Hudson became commercial
software, the open source version continued to evolve as Jenkins. Because Jenkins
is by far the most popular build system, we’ll be using it for our examples in this book.
If you’re not familiar with it and want more information, check out the Jenkins home
page: jenkins-ci.org/. Note that everything we do with Jenkins in this book could easily
be applied to other CI systems.

CI server

Build script controls
the build process and
runs on the CI server.

Get dependencies

The output from
any step can influence

subsequent ones.

Package app

Run tests

Create reports

SCM system

Static analysis

Make sure you have
everything needed to

build your app.

Check code coverage,
run unit tests, run

security scans, etc.

Package your app so
it's ready for deploy.

Once your app is
ready, run any integration

tests you have.

Generate any reports
that haven’t already

been generated.

Deploy

Build steps can be
run in sequence

or in parallel.

The CI system detects
changes to SCM and
calls the build script. 1

2

3

4

5

6

Figure 5.4 A build script running on a CI server controlling a multistep build process
Licensed to Mark Watson <nordickan@gmail.com>

http://jenkins-ci.org/

88 CHAPTER 5 Trends and data from CI and deployment servers
5.1.2 Continuous delivery

Interestingly enough, the very first principle in the Agile Manifesto calls out “continu-
ous delivery.”

“Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.”1

 —Principles behind the Agile Manifesto

The term continuous delivery was thoroughly explored by Jez Humble and David Farley
in Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Auto-
mation (Addison-Wesley, 2010). CD builds on CI by taking the step of orchestrating
multiple builds, coordinating different levels of automated testing, and in advanced
cases moving the code your CI system built into a production environment for your
consumers. Although you can do CD with CI systems, there are specialized CI systems
that make CD a bit easier. The idea is built on a few facts:

■ Consumers demand and expect constant improvement to their products.
■ It’s easier to support a bunch of small changes over time than large change sets

all at once.
■ It’s easier to track the value of change when it’s small and targeted.

Examples of CD systems are Go (www.go.cd), Electric Cloud (electric-cloud.com),
Ansible (www.ansible.com/continuous-delivery), and Octopus (octopusdeploy.com).
Some of these systems can be used for CI as well but have additional capabilities to
coordinate multiple parts of a build chain. This becomes particularly useful when you
have complex build chains such as the one in figure 5.5.

1 “We follow these principles,” agilemanifesto.org/principles.html.

Build
deployable
package

Run unit
tests

Deploy
somewhereBuild AMI

Run
integration

tests

Run more
integration

tests
Tests
pass?

Notify
someone

Stop
build

Roll
back

deploy

No No

Yes

Monitor traffic
and health

Route
consumers
to new build

Tests
pass?

No

Yes

All
good?

Tests
pass?

No

Yes

Figure 5.5 An example of a complex build chain
Licensed to Mark Watson <nordickan@gmail.com>

http://electric-cloud.com
https://octopusdeploy.com
www.go.cd
www.ansible.com/continuous-delivery
http://agilemanifesto.org/principles.html

89What is continuous development?
In figure 5.5 getting code all the way to production is completely automated and relies
heavily on testing at every stage of the deployment. It starts off with unit tests, builds
the machine image that will get deployed, handles the deployment, and makes sure
nothing breaks when it finally makes it to the consumer. Complexity and orchestra-
tion like this are what make the difference in using a tool for CI or CD.

5.1.3 Continuous testing

Continuous testing (CT) is also a part of CI; it’s the practice of having tests continuously
running on your codebase as you make changes to it. Teams that take the time to auto-
mate their testing process, write tests while they’re writing their code, and run those tests
constantly throughout the build process and on their local development environments
end up with another rich set of data to use in the continuous improvement process.

 To clarify where this testing happens and what this testing is, we take another look
at figure 5.5 but highlight the testing in figure 5.6.

Moving to continuous delivery

Although most software projects have CI, getting your team to CD is first a cultural
shift. Having your entire team understand and accept that small changes will be
deployed to your consumer automatically and frequently can be a bit scary for teams
that release even as frequently as every few weeks. Once you come to grips with the
fact that you can change your consumer’s experience multiple times a day, you’re likely
going to have to make significant changes to your build systems to accommodate the
types of automation you’ll need. You’ll also likely need to make big changes in how
you think about testing, because all testing in a CD world should rely on trustworthy
automation rather than manual button pushing. What should be obvious (but rarely
is) is to get the most out of CD you should have a good sense of why you’re doing it
and how you’re monitoring the success of your changes. Fortunately, if you’re imple-
menting what you’re learning in this book, monitoring should be the easy part.

Build
deployable
packagepackage

Run unit
tests

Deploy
somewhereBuild AMI

Run
integration

tests

Run more
integration

tests

Tests
pass?

Notify
someone

Stop
build

Roll
back

deploy

No No

Yes

Monitor traffic
and health

Route
consumers
to new build

Tests
pass?

No

Yes
All

good?
Tests
pass?

No

Yes

Tests run at
every stage

and determine
if code should
move or not

Figure 5.6 Continuous testing in the scope of CI/CD
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 5 Trends and data from CI and deployment servers
Figure 5.6 highlights the fact that every stage in the CD pipeline relies on automated
tests (CT) to inform the decision on moving to the next stage in the deployment. If
this data is rich enough to inform a decision on moving through the automated
deployment process, it can also provide good insight into how your team is operating.
A couple of things that this can help point to, especially when paired with VCS, are:

■ Specific trouble spots in your code that are slowing you down—By identifying sections
of your codebase that have significant technical debt, you can anticipate updat-
ing those sections to take longer than expected. You can use this information to
adjust estimates or set expectations with stakeholders.

■ Your team’s commitment to automation—Having great automation is key to allowing
your team to move faster and get changes out to consumers. Gauging this helps
determine the potential delivery speed of your team.

Getting data from CT is as easy as tapping into the test results that are published in
your CI system because the CI/CD system publishes and parses these results.

5.2 Preparing for analysis: generate the richest set of data you can
The current health of your build and the build history are default data points your CI
system provides. You can also get results from test runs or whatever build steps you
define. But if you want to answer more interesting questions like the ones I posed at
the beginning of the chapter like

■ How fast can you deliver code to the consumer?
■ Are your estimations accurate?
■ Are you getting tasks done right the first time?
■ How much is your team actually getting done?

then you should use the following tips to ensure you’re generating the richest set of
data you can.

5.2.1 Set up a delivery pipeline

A delivery pipeline goes beyond your build scripts. Once your product is tested, built,
and staged, other coordination typically has to happen. You may need to kick off tests
for dependent systems, deploy code with environment-specific parameters based on
test results, or combine parallel builds of different parts of your larger system for a com-
plete deployment. Automating more complex build and deploy scenarios can be tricky
and is exactly what your pipeline specializes in. By automating your complex build pro-
cess, you can get data out of your pipeline that tells you how fast you’re delivering prod-
ucts to your consumers. When you break down that data point, you can also find where
you can make the most improvement to deliver products faster and more efficiently.

 If you have a CI system in place, that’s great; everything you did in the last section
should just plug in and start generating reports for you. If you don’t, we recommend
taking a look at Jenkins or GoCD (www.go.cd/) for your pipeline. GoCD is a CI system
like Jenkins or TeamCity, and all of them are capable of building your code, running
Licensed to Mark Watson <nordickan@gmail.com>

www.go.cd/

91The data you’ll be working with: what you can get from your CI APIs
your tests, and generating reports that you can bring into your metrics collection sys-
tem. The cool thing about GoCD is the idea of a pipeline as a first-class citizen, so break-
ing your build/deploy into steps that are easy to visualize is completely standard and
normal. Jenkins is extremely popular and can do pipeline management using plugins.

 Once your pipeline is set up you should consider the following:

■ Using SonarQube (www.sonarqube.org) for static analysis gives you a very rich
data point on the quality of your code.

■ If you can’t use SonarQube, tools you can build into your build process include
Cobertura (cobertura.github.io/cobertura/), JaCoCo (www.eclemma.org/
jacoco), or NCover (www.ncover.com/).

■ A standard test framework that gives you reports that are easily digestible is
TestNG (testng.org/doc/index.html), which uses ReportNG (reportng
.uncommons.org) for generating useful reports in your build system that are
available through an API.

Using these technologies in your pipeline will give you better insight into the quality
of your code and help you find potential problems before they affect your consumers.
This insight into quality will also give you insight into your development process.

5.3 The data you’ll be working with: what you can get from
your CI APIs
Because CI server data is so flexible, the data you can get out of it depends greatly on
how you set up your system. For simple builds it’s possible to get very little data, and
for more complex builds it’s possible to get a wealth of data on quality, build time, and
release information. If you set up your CI system with data collection in mind, you can
get great insight into your development cycle.

5.3.1 The data you can get from your CI server

Your build scripts define how your project is being built and what happens through-
out your build process. In your build scripts you can create reports that are published
through your CI system that give you details on every step you report on. The most
common build servers have great APIs, which should be no surprise because they’re at
the heart of automation. If you use Jenkins, you can communicate completely
through REST simply by putting /api/json?pretty=true at the end of any URL that you
can access. The following listing shows some of the data you’d get back from the main
Jenkins dashboard by examining Apache’s build server. For the entire response you
can look at Apache’s site: builds.apache.org/api/json?pretty=true.

{
"assignedLabels" : [
{
}

Listing 5.1 Partial response from the Jenkins dashboard for Apache’s build server
Licensed to Mark Watson <nordickan@gmail.com>

http://cobertura.github.io/cobertura/
www.eclemma.org/jacoco
www.eclemma.org/jacoco
www.ncover.com/
http://testng.org/doc/index.html
http://reportng.uncommons.org
http://reportng.uncommons.org
https://builds.apache.org/api/json?pretty=true
http://www.sonarqube.org

92 CHAPTER 5 Trends and data from CI and deployment servers

G
 inform

abou
build

Lists jo
 throu
],
"mode" : "EXCLUSIVE",
"nodeDescription" : "the master Jenkins node",
"nodeName" : "",
"numExecutors" : 0,
"description" : "<img

src=\"https://www.apache.org/images/asf_logo_wide.gif\">\r\n<p>\r\
nThis is a public build and test server for projects of the\r\nApache Software Foundation.
All times on this server are UTC.\r\n</p>\r\n<p>\r\nSee the Jenkins wiki page for
more information\r\nabout this service.\r\n</p>",

"jobs" : [
{
"name" : "Abdera-trunk",
"url" : "https://builds.apache.org/job/Abdera-trunk/",
"color" : "blue"
},
{
"name" : "Abdera2-trunk",
"url" : "https://builds.apache.org/job/Abdera2-trunk/",
"color" : "blue"
}
…
 "mode": "EXCLUSIVE",
 "nodeDescription": "the master Jenkins node",
 "nodeName": "",
 "numExecutors": 0,
 "description": "This is a public build and test server for projects of

the Apache Software Foundation”,
 "jobs": [
 {
 "name": "Abdera-trunk",
 "url": "https://builds.apache.org/job/Abdera-trunk/",
 "color": "blue"
 },
 {
 "name": "Abdera2-trunk",
 "url": "https://builds.apache.org/job/Abdera2-trunk/",
 "color": "blue"
 },
…

One key piece of data is missing from here that we’ve been depending on from every
other data source we’ve looked at so far; did you notice it? Dates are missing! That
may seem to put a kink in things if you’re talking about collecting data and mapping it
over time, but don’t worry; if you dig deeply enough you’ll find them. Jenkins assumes
that when you hit a URL you know the current date and time. If you’re going to take
this data and save it somewhere, you can simply schedule the data collection at the fre-
quency at which you want to collect data and add the dates to the database yourself.
Additionally, if you look for something that references a specific time, you can get the

eneral
ation

t your
server

bs available
gh this URL
Licensed to Mark Watson <nordickan@gmail.com>

93The data you’ll be working with: what you can get from your CI APIs
data from that if you want. The next listing shows data from a specific build that has a
date/time in the response.

{
 "actions": [
 {},
 {
 "causes": [
 {
 "shortDescription": "[URLTrigger] A change within the

 response URL invocation (<a href=\"triggerCauseAction\
 ">log)"

 }
]
 },
 {},
 {
 "buildsByBranchName": {
 "origin/master": {
 "buildNumber": 1974,
 "buildResult": null,
 "marked": {
 "SHA1": "54ad73e1adb22fd84fdd1dfb5c28175f743d1960",
 "branch": [
 {
 "SHA1":

"54ad73e1adb22fd84fdd1dfb5c28175f743d1960",
 "name": "origin/master"
 }
]
 },
 "revision": {
 "SHA1": "54ad73e1adb22fd84fdd1dfb5c28175f743d1960",
 "branch": [
 {
 "SHA1":

"54ad73e1adb22fd84fdd1dfb5c28175f743d1960",
 "name": "origin/master"
 }
]
 }
 }
 },
 "lastBuiltRevision": {
 "SHA1": "54ad73e1adb22fd84fdd1dfb5c28175f743d1960",
 "branch": [
 {
 "SHA1": "54ad73e1adb22fd84fdd1dfb5c28175f743d1960",
 "name": "origin/master"
 }
]
 },

Listing 5.2 Jenkins response from a specific build

An array of actions
from this build

Details about what
code is getting built
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 5 Trends and data from CI and deployment servers

Ho
thi

Did
pa
 "remoteUrls": [
 "https://git-wip-us.apache.org/repos/asf/mesos.git"
],
 "scmName": ""
 },
 {},
 {},
 {}
],
 "artifacts": [],
 "building": false,
 "description": null,
 "duration": 3056125,
 "estimatedDuration": 2568862,
 "executor": null,
 "fullDisplayName": "mesos-reviewbot #1974",
 "id": "2014-10-12_03-11-40",
 "keepLog": false,
 "number": 1974,
 "result": "SUCCESS",
 "timestamp": 1413083500974,
 "url": "https://builds.apache.org/job/mesos-reviewbot/1974/",
 "builtOn": "ubuntu-5",
 "changeSet": {
 "items": [],
 "kind": "git"
 },
 "culprits": []
}

Ah, there’s that date! If you’re collecting data moving forward, then it’s not a big deal,
but if you want to find trends from the past, you’ll have to do a bit more querying to
get what you want.

 What you want from CI is the frequency at which your builds are good or bad. This
data will give you a pretty good indication of the overall health of your project. If
builds are failing most of the time, then a whole host of things can be going wrong,
but suffice it to say that something is going wrong. If your builds are always good,
that’s usually a good sign, but it doesn’t mean that everything is working perfectly.
This metric is interesting by itself but really adds value to data you collect from the rest
of your application lifecycle.

 The other interesting data you can get from CI is the data you generate yourself.
Because you control the build system, you can publish pretty much anything you want
during the build process and bring that data down to your analytics. These reports can
answer the question “Are you writing good code?” Here are some examples of tools
and frameworks you can use to generate reports:

■ TestNG—Use it to run many test types; ReportNG is its sister reporting format.
■ SonarQube—Run it to get reports including code coverage, dependency analy-

sis, and code rule analysis.
■ Gatling—Has rich reporting capabilities for performance benchmarking.
■ Cucumber—Use it for BDD-style tests.

Links back to
the Git code
repository

Lists generated artifacts

Is this building now?

w long did
s build take?

How long should a build take?

Generated build number

 the build
ss or fail?

When did this build complete?
Licensed to Mark Watson <nordickan@gmail.com>

95The data you’ll be working with: what you can get from your CI APIs
Let’s take a closer look at some of these test frameworks and the data that they
provide.

TESTNG/REPORTNG

TestNG is a popular test framework that can be used to run unit or integration tests.
ReportNG formats TestNG results as reports that are easy to read and easy to interface
with through XML or JSON. These reports give you the number of tests run, passed,
and failed and the time it takes for all of your tests. You can also dig into each test run
to find out what’s causing it to fail.

SONARQUBE AND STATIC ANALYSIS

SonarQube is a powerful tool that can give you a lot of data on your codebase, includ-
ing how well it’s written and how well it’s covered by tests. There are books written on
SonarQube, so we’ll just say you should use it. A good source is SonarQube in Action by
G. Ann Campbell and Patroklos P. Papapetrou (Manning, 2013; www.manning.com/
papapetrou/). We’ll talk a lot more about SonarQube in chapter 8 when we’re mea-
suring what makes good software.

GATLING

Gatling is a framework used for doing stress testing and benchmarking. You can use it
to define user scenarios with a domain-specific language (DSL), change the number of
users over the test period, and see how your application performs. This type of testing
adds another dimension to the question “Is your software built well?” Static analysis
and unit tests can tell you if your code is written correctly, but stress testing tells you
how your consumers will experience your product. Using Gatling you can see the
response times of your pages under stress, what your error rate looks like, and latency.

BDD-STYLE TESTS

Behavior-driven development (BDD) is a practice in which tests in the form of behav-
iors are written with a DSL. This makes understanding the impact of failing tests much
easier because you can see what scenario your consumer expects that won’t work.

 At the end of the day the output of your BDD tests will be some form of test results
or deployment results, so the reports you add to your build process can answer the fol-
lowing questions:

■ How well does your code work against how you think it should work?
■ How good are your tests?
■ How consistent is your deploy process?

All of these questions point to how mature your development process is. Teams with
great development processes will have rock-solid, consistent tests with complete test
coverage and frequent deploys that consistently add value to the consumers of their
software.

 If you want to read all about BDD, I recommend BDD In Action: Behavior-Driven
Development for the whole software lifecycle, by John Ferguson Smart (Manning, 2014;
www.manning.com/smart/).
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/papapetrou/
www.manning.com/papapetrou/
www.manning.com/smart/

96 CHAPTER 5 Trends and data from CI and deployment servers
5.3.2 What you can tell from CI alone

Your CI system is where code is integrated, tests are run (CT happens), and potentially
things are deployed across environments (CD). For our purposes we’ll show some
things from Jenkins, by far the most popular CI environment.

 The first report we’re going to talk about is the Jenkins dashboard weather report.
Because CI runs jobs for you, the first thing you see when you log in is the list of jobs
it’s responsible for and how healthy they are. On the weather report you’ll see that the
healthier the build, the sunnier the weather, as shown in figure 5.7.

 The weather report tells you how frequently your build is broken or passing. By
itself this data is interesting because you ultimately want passing builds so you can get
your code into production and in front of your consumers. But it’s not so bad to break
builds from time to time because that could indicate that your team is taking risks—
and calculated risks are good a lot of the time. You definitely don’t want unhealthy or
stormy builds because that could indicate a host of problems. As with CLOC from SCM,
you should combine this with the other data you’ve collected so far to help get to the
root of problems and understand why you’re seeing the trends that you are.

 You can get a lot more data from your CI system if you’re generating reports from
the different parts of your build process and publishing results. Earlier we talked
about generating reports from your build script; this is where those reports become
accessible and useful in the context of CI.

The weather report for a
build shows how healthy it

is: sunshine is good, clouds
and rain are bad.

Each row represents
a defined build. Within each

build there are multiple
jobs over time.

Figure 5.7 The weather report from Jenkins
Licensed to Mark Watson <nordickan@gmail.com>

97Key CI metrics: spotting trends in your data
5.4 Key CI metrics: spotting trends in your data
The most basic information you can get from CI is successful and failed builds. Even
though these seem like straightforward metrics, there’s some ambiguity in interpret-
ing them.

 The most obvious problem is if your build fails all or most of the time; if that hap-
pens there’s obviously a big problem. Conversely, if your build passes all the time, that
might mean you have an awesome team, but it could also mean any of the following:

■ Your team isn’t doing any meaningful work.
■ You don’t have any tests that are running.
■ Quality checks are disabled for your build.

When you run up against this issue, it’s not a bad idea to pull a bit more data to sanity-
check your build history. In this case you can take a look at the details from your CI
builds to explore some of the following:

■ Test reports
■ Total number of tests
■ Percentage of passing and failing tests
■ Static analysis
■ Test coverage percentage
■ Code violations

If you’re using your CI system to also handle your deployments, you can get build fre-
quency out of there too, which is really the key metric that everything else should
affect: how fast are you getting changes to your consumers?

 We’ll look at some of the data you can get from your CI system so you can track
these metrics along with the rest of the data you’re already collecting.

5.4.1 Getting CI data and adding it to your charts

The easiest thing to get out of your CI system is build success frequency. The data
you’ll look at for this will be

■ Successful versus failed builds
■ How well is your code review process working?
■ How good is your local development environment?
■ Is your team thinking about quality software?
■ Deploy frequency
■ How frequently do you get updates in front of your consumers?

What you can get greatly depends on how you’re using your CI system. In our exam-
ples we’ll look at what you can get if you have a job for integrating code and a job for
deploying code.

 Starting off with the job that integrates code, we’ll look at the difference between
successful and failed builds, as shown in figure 5.8.
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 5 Trends and data from CI and deployment servers
In figure 5.8 you can see some failed builds; that’s okay, especially on complex proj-
ects. You can start getting worried when your failed builds start to become a high per-
centage of your total builds, as shown in figure 5.9; that’s usually a signal that
something is pretty wrong and you need to dig in.

 If figure 5.9 is bad, then you might think something like figure 5.10 is good.
 But as we mentioned earlier in the chapter, that may not always be the case. If you

pull more data into the picture like test coverage or test runs, as shown in figure 5.11,

28

Sprint

21

14

7

0
15 2018 191716

Most builds
are passing.

It’s OK to have
some failed builds.

Good and bad builds

Failed
builds

Good
builds

Figure 5.8 A healthy-looking project based on good and bad builds

28

Sprint

21

14

7

0
15 2018 191716

This differential between good
builds and failed builds is not good.

Good and bad builds

Failed
builds

Good
builds

Figure 5.9 A worrisome trend: lots of bad builds
Licensed to Mark Watson <nordickan@gmail.com>

99Key CI metrics: spotting trends in your data
you can get a sanity check on whether your builds are worthwhile and doing some-
thing of value, or if they’re just adding one code delta to the next without checking
anything.

 Figure 5.11 shows a team that’s generating good builds but not testing anything. In
this case what appeared to be a good trend is actually meaningless. If you’re not test-
ing anything, then your builds need only compile to pass. You want to see something
more like figure 5.12.

28

Sprint

21

14

7

0
15 2018 191716

When no builds are failing,
that is usually a red flag.

Good and bad builds

Failed
builds

Good
builds

18
Failed builds: 0

Figure 5.10 It appears that everything is great: no builds are failing.

28

Sprint

21

14

7

0
15 2018 191716

Good and bad builds

Failed
builds

Good
builds

Tests run

Test
coverage

Of course, builds
will always pass when

you don't test.

Test coverage
is low and not

improving.
Tests aren’t

even running.

Figure 5.11 This is really bad. Builds always pass but there are no tests running and barely any
coverage.
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 5 Trends and data from CI and deployment servers
Another way to visualize your build data is to look at releases over time. If you’re
releasing at the end of every sprint or every few sprints, it might be more useful to
show release numbers as points on your other graphs, like in figure 5.13.

 But if you have an awesome team practicing CD and putting out multiple releases a
day, putting each release on the graph would be tough to interpret. Instead, show the
number of good releases and bad releases (releases that caused problems or had to be

80

Sprint

60

40

20

0
15 2018 191716

Good and bad builds

Failed
builds

Good
builds

Test
coverage

Tests run

Test coverage is improving
and more tests are being

written and run.
Builds are consistent

with more tests.

Figure 5.12 There are no failing builds, code coverage is going up, and more tests are running
every time. It looks like this team has it together.

80

Sprint

60

40

20

0
15 2018 191716

Good and bad builds per sprint with releases

Failed
builds

Good
builds

Test
coverage

Tests run

Release numbers
tracked along
with sprints

3.6 3.7 3.8
3.4

Figure 5.13 Releases charted with other data
Licensed to Mark Watson <nordickan@gmail.com>

101Case study: measuring benefits of process change through CI data
rolled back) along with your other build data. In this case, if your automation is really
good you’ll see a percentage of builds failing before releases and a much smaller per-
centage failing that actually release code. An example of this is shown in figure 5.14.

 The team depicted in figure 5.14 is building 31 times a week and releasing software
6 times a week. Of their releases 33% fail, and of total builds 38.7% fail. Despite hav-
ing a high failure rate for releases, the team still has four successful deployments a
week, which is pretty good. Now imagine a team that releases software twice a month
with a 33% failure rate; that would mean the team would sometimes go for an entire
month without releasing anything to their customers. For teams that release daily, the
tolerance for failure ends up being much higher due to the higher release frequency.
Teams that release every two weeks usually are expected to have a successful deploy-
ment rate of close to 100%, a much harder target to hit.

5.5 Case study: measuring benefits of process change
through CI data
We ended chapter 4 with a happy team that made some measurements, reacted to
them, and had great results. They moved to the pull request workflow on their devel-
opment team and moved quality into the development process. They were able to
measure some key metrics that were being generated from their development process
to track progress and use those metrics to prove that the changes they were making

The percentage of failed builds that
release software is better but still really high.

A fairly high percentage of failed builds
indicates automation is catching problems.

This represents all
builds in a week.

Here we filter by builds
that triggered a deployment.

Figure 5.14 Showing all build pass/fail percentages for a team deploying code multiple times a day and
the percentage filtered by builds that trigger a release. By hovering over the charts in Kibana, you can
see the percentage associated with the pie slices.
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 5 Trends and data from CI and deployment servers
were paying dividends. As a reminder, they were looking at the chart in figure 5.15
and feeling pretty good about themselves.

 The team was so excited that they brought their findings to their leadership to
show them the great work they were doing. There they were confronted with these
questions:

■ Are you releasing faster now?
■ Are you getting more done?

If we compare those to the questions we asked at the beginning of the chapter, they
line up pretty well:

■ How fast are you delivering or can you deliver changes to your consumer? = Are
you releasing faster?

■ How consistently does your team do their work? = Are you getting more done?

The team decided to add more data to their graphs. The first question was “Are you
releasing faster?” Their deployments were controlled from their CI system; if they
could pull data from there, they could map their releases along with the rest of their
data.

 The second question was “Are you delivering more consistently?” In chapter 3 we
talked about the fairly standard measure of agile consistency: velocity. Another data
point that can be used to track consistency is good builds versus failed builds from the
CI system. They added that to their charts as well, which output the graph shown in
figure 5.16.

 Based on the data shown here, there’s some bad news:

■ Velocity isn’t consistent.
■ Releases are far apart.

30

Sprint

23

16

9

2
15 16 2118 19 2017

Pull
requests

Commits

Comments

Bugs

SCM stats against bugs

Everything is trending
in the right direction. Yay!

Figure 5.15 The graph the team ended with in the last chapter. Everything is looking good.
Licensed to Mark Watson <nordickan@gmail.com>

103Case study: measuring benefits of process change through CI data
But there is good news too; the delta between good and failed builds is improving.
The total number of builds is decreasing, which would be expected because the team
is committing less code and doing more code reviews. Of the total builds, the percent-
age of failed builds has gone down significantly. This is an indicator of better consis-
tency in delivering working code and also an indicator of higher code quality.

 So if their CI system was indicating that they were delivering quality code more
consistently, why were they not hitting a consistent velocity? At a closer look they real-
ized that even though their
SCM data was fairly consistent,
their velocity was not. Based
on that, the team hypothe-
sized that perhaps something
was wrong with their estima-
tions. To try to dig deeper
into that, they decided to look
at the distribution of estima-
tions for a sprint. They used
base 2 estimating with the
maximum estimation being a
16, so the possible estimation
values for a task were 1, 2, 4,
8, and 16. The typical distri-
bution across sprints looked
something like figure 5.17.

28

Sprint

21

14

7

0
15 16 2218 19 2017

Good
builds

CI, SCM, PTS, and
release data

Failed
builds

SCM
commits…

SCM
comments

PTS sprint
points Co…

Points completed
are not consistent.

Releases
are still very

far apart.

Delta between
good builds and failed

builds is improving.

2.3.1
2.3.2

Figure 5.16 Adding velocity and releases to our case study

4

1

2

3

0
16

Pushed

Done

There are more tasks estimated at
16 than at any other value. Most tasks

estimated at 16 aren't completed.

8 4 2 1

Figure 5.17 The distribution of estimates for a sprint: how
many are completed and how many get pushed to the next
sprint?
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 5 Trends and data from CI and deployment servers
As shown in their analysis, most of their tasks were pretty big and the bigger tasks
tended to not always get done. These big features were also pushing releases farther
apart because the team was missing their sprint goals and had to postpone a release
until the tasks they wanted to release were done. If they could get their tasks back to
an appropriate size, then perhaps they could get their velocity on track and have more
frequent, smaller releases.

 The team started to break their stories down further; anything that was estimated
as a 16 was broken down into smaller, more manageable chunks of work. After a few
sprints they noticed that their velocity started to increase, as shown in figure 5.18.

 In addition, their task-
point distribution has
changed dramatically for the
better, as shown in figure
5.19.

 They were getting more
done and bad builds were
decreasing, but their stake-
holders still wanted a lot of
features out of each release.
They made a team decision
to start getting their smaller
pieces of work out to produc-
tion more frequently. In the
previous chapter, the intro-
duction of the pull request

28

Sprint

21

14

7

0
15 16 2418 19 20 232217

Good
builds

CI, SCM, PTS, and release data

Failed
builds

SCM
commits…

SCM
comments

PTS sprint
points Co…

Delta between good
builds and failed builds
continues to improve.

Velocity is
starting to trend
the right way.

2.3.1 2.3.2

Figure 5.18 Velocity isn’t dipping anymore and the good/bad build trend is continuing to improve.

8

2

4

6

0
16

Pushed

Done

Tasks are broken down into
smaller bits. They’re not getting

pushed out anymore.

8 4 2 1

Figure 5.19 A much better distribution of estimates for a
sprint
Licensed to Mark Watson <nordickan@gmail.com>

105Summary
workflow and quality engineering into their process gave them a much higher degree
of confidence in the quality of their work. As a result of those process improvements,
they could see their build success rate improving. Their confidence level of getting
more frequent releases was at an all-time high, so they started getting their
changes out to their consumers at the end of every sprint; the result is shown in
figure 5.20.

 The team finally got to a point where their releases were happening a lot more fre-
quently because of their commitment to quality. Their confidence was at an all-time
high because of their ability to make informed decisions and measure success. Now
they had a complete picture to show their leadership team that demonstrated the
improvements they were making as a team.

5.6 Summary
The large amount of data you can get from your CI system through CD/CI practices
can tell you a lot about your team and your processes. In this chapter we covered the
following topics:

■ Continuous integration (CI) is the practice of integrating multiple change sets
in code frequently.

■ Continuous delivery (CD) is an agile practice of delivering change sets to your
consumer shortly after small code changes are complete.

■ Continuous testing (CT) makes CD possible and is usually run by your CI system.
■ Continuous development generates lots of data that can help you keep track of

your team.

40

Sprint

30

20

10

0
15 16 2724 25 2618 19 20 232217

Good
builds

CI, SCM, PTS, and release data

Failed
builds

SCM
commits…

SCM
comments

PTS sprint
points Co…

Productivity is
consistent.

Releases are
more frequent.

2.3.1 2.3.2

2.3.4

2.3.5 2.3.6

Figure 5.20 Adding releases to our graph to see frequency showed trends continuing to improve over time.
Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 5 Trends and data from CI and deployment servers
■ CI/CD/CT data can tell you the following:
■ How disciplined your team is
■ How consistently you’re delivering
■ How good your code is

■ Setting up a delivery pipeline will enable you to get better data in your applica-
tion lifecycle.

■ You can learn a lot from the following CI data points:
■ Successful and failed builds
■ Tests reports
■ Code coverage

■ You can use multiple data points from your CI system to check the true meaning
of your build trends.

■ Combining CI, PTS, and SCM data gives you powerful analysis capabilities.
Licensed to Mark Watson <nordickan@gmail.com>

Data from your
production systems
Figure 6.1 shows where the data covered in this chapter can be found in the soft-
ware delivery lifecycle.

 Once your application is in production, there are a couple more types of data
that you can look at to help determine how well your team is performing: applica-
tion performance monitoring (APM) data and business intelligence (BI) data.

■ APM data shows you how well your application is performing from a techni-
cal point of view.

■ BI data shows you how well your application is serving your consumer.

Data from your production systems mainly produces reactive metrics. Your release
cycle is behind you; you thought your code was good enough for the consumer and

This chapter covers
■ How the tasks you’re working on provide value

back to the consumer
■ Adding production monitoring data to your

feedback loop
■ Best practices to get the most out of your

application monitoring systems
107

Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 6 Data from your production systems
you put it out there. Now you have to watch to make sure you understand how it’s
working and if the changes you made are good—or not. Your sponsor will also likely
care how well the features you’re delivering are serving the consumer.

 Up to this point we’ve looked only at data that you can gather in your development
cycle, most of which is typically used on agile teams. APM and BI data is also common,
but not something that the development team typically works with. In many cases APM
data is owned and watched by operations teams to make sure the systems are all work-
ing well and that nothing is going to blow up for your consumers. Once the applica-
tion is up and running, a separate BI team mines the consumer data to ensure your
product is meeting the business need for which it was built. This responsibility is
shown in figure 6.2.

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

You are herePrevious chapters

Figure 6.1 You are here: application monitoring’s place in the application lifecycle

Project
tracking

Source
control

Development Operations

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

The development team
cares a lot about building

and releasing code.

SysOps teams typically pay
attention to the production
system while developers
work on new features.

BI analysts look at the
data being generated from the
application to determine how
well it’s serving the consumer.

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

Data
analysis

Ensure application
meets the

business need

BI analyst

Figure 6.2 The data from the application lifecycle and the division of development and operations teams
Licensed to Mark Watson <nordickan@gmail.com>

109Preparing for analysis: generating the richest set of data you can
Realistically, the data that you can get from your consumer-facing production system is
the most valuable that you can collect and track because it tells you how well your sys-
tem is working and if your consumers are happy. This is broken down in figure 6.3.

 If you tie this back to the rest of the data you’ve been collecting, you now have a
complete picture of the product you’re building and enhancing from conception to
consumption. We’ll look more deeply into combining data from the entire lifecycle in
chapter 7. For now we’ll focus on the data you can get out of your APM systems.

 There are plenty of tools that can do production monitoring for you, but if you
don’t think about how your system should report data when you’re building it, you’re
not going to get much help from them. Let’s start off talking about best practices and
things you can do to ensure you’re collecting the richest set of data you can to get the
whole picture on monitoring your system and using that data to improve your devel-
opment process.

6.1 Preparing for analysis: generating the richest set of
data you can
The nature of production monitoring systems is to do real-time analysis on data for
quick feedback on software systems so you don’t have to do much to get data from
them. Even with the most low-touch system, there are techniques you can apply to

A bit about DevOps

On a team that’s practicing DevOps, there isn’t much separation between who writes
the code (Dev) and who supports the systems the code runs on (Ops). That’s the whole
point; if the developers write the code, they should also know better than anyone else
how to support it and how to deploy it. DevOps is heavily associated with CD, which
we talked about in chapter 5. DevOps teams tend to have more control over their pro-
duction monitoring systems because the same team owns the code and supports it
in production.

Data from
performance monitoring

and log analysis.

Performance of your
application translates
into level of service.

HOW well is your system working?

HOW well are you serving your consumers?
User tracking

and conversion
rates can indicate

customer satisfaction.

Figure 6.3 Questions that you can answer from production monitoring alone
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 6 Data from your production systems
collect better data that provides insight into its performance and how it’s being used
by your consumers.

 A lot of the advice that you’re about to read crosses the line into BI. Understanding
how your consumer is using your site is key to ensuring you’re building the right prod-
uct and adding the right features at the right time. I’ve been on several teams where
BI was a separate organizational function that didn’t always communicate directly with
the development team, and that feedback certainly didn’t come back to the team
directly after they released updates to the consumer. If possible, BI should be inte-
grated tightly with the development team; the closer the two functions are to one
another, the better the tactics described in the next subsections will work.

6.1.1 Adding arbitrary metrics to your development cycle

It is not uncommon that a team will get caught up in building, and even testing, a fea-
ture and then leave any possible instrumentation or tagging for production monitor-
ing up to another team—if it’s done at all. As you’re building your features you should
be thinking about your consumer, how they’re using your product, and what you need
to know to improve their experience. This mindset will help you do the right type of
work to get good data that can help you determine if you’re hitting your true goal: giv-
ing your consumer what they want.

 Two example frameworks that help with this concept are StatsD (github.com/etsy/
statsd/) and Atlas (github.com/Netflix/atlas/wiki). The concept behind them fits
precisely with what we’ve been discussing so far and a mentality that shouldn’t be
much of a stretch: “measure anything, measure everything.” StatsD and Atlas allow
developers to easily add arbitrary metrics and telemetry in their code. These libraries
are embedded into your code with the intention of pushing the ownership of arbitrary
monitoring onto the development team.

 These systems work by installing an agent into your application container or a dae-
mon on your server that listens for metrics as they’re being sent from your applica-
tion. That component then sends the metrics back to a central time-data series server
for indexing. This process is illustrated in figure 6.4.

 The most popular example for this is StatsD. The StatsD daemon runs on a node.js
server, but there are clients you can use to send data to that daemon in many different

The difference between BI and business success metrics

Even though I’m advocating keeping the BI effort closely tied to your development
effort, it makes sense to have BI as a separate function from application development.
BI teams exist to crunch the data your application generates, looking for trends and
figuring out how different things affect each other. BI teams generate reports that show
trends and relationships that reflect how the data being generated affects the success
of the business. Success metrics reflect how your application is being used and are
the indicators of consumer behavior that are unique to your application.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/etsy/statsd/
https://github.com/etsy/statsd/
https://github.com/Netflix/atlas/wiki
https://www.crittercism.com/

111Preparing for analysis: generating the richest set of data you can

Incr
a co

Set
gau
languages. Once you have a time-series data store set up and get the daemon running,
using StatsD is as simple as the code shown in the following listing.

private static final StatsDClient statsd = new
NonBlockingStatsDClient("ord.cwhd", "statsd-host", 8125);

statsd.incrementCounter("continuosity");
statsd.recordGaugeValue("improve-o-meter", 1000);
statsd.recordExecutionTime("bag", 25);
statsd.recordSetEvent("qux", "one");

As shown in the listing, using this library is a piece of cake. Create the client object
and set the metrics as you see fit in your code. The four different types of data give you
lots of flexibility to record metrics as you see fit. On my teams I like to make this type
of telemetry a part of quality checks that are enforced by static analysis or peer review.
If you’re building code, ensure that you have the proper measurement in place to
show the consumer value of the feature you’re working on.

 Let’s say you have a site that sells some kind of merchandise and you want to track
how many users utilize a new feature in your code during the checkout process. You
could use the database of orders to sort through your data, but there is usually per-
sonal data as well as financial data in that database, which requires special permissions
and security procedures to access. By using an arbitrary metric library, you can collect

Listing 6.1 Using StatsD

Server

Application

Multiple servers send
data to the collector.

Multiple applications
can live on a server.

Applications
send data to
the daemon.

Daemons send data
to the time-series store.

Single cluster of
time-series data

Application

Collection
agent/daemon

Server

Application Application

Collection
agent/daemon

Figure 6.4 An example architecture to collect arbitrary metrics

Creates the
static client

ements
unter

s a
ge value

Records
a timer

Saves an event
with a timestamp
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 6 Data from your production systems
any statistics you want on your consumer’s usage separately from the rest of the appli-
cation. Because the data pertains to how your collective consumers use the site rather
than individual transactions with customer details, the security around it doesn’t have
to be as stringent, which opens up the possibility of collecting and analyzing this data
in real time.

 Another use case is as an indicator of quality—is your application doing what it’s
supposed to do? If it is, then you should see your arbitrary metrics behaving as you’d
expect. If you start to see those metrics displaying unusual patterns, that may indicate
that something isn’t working correctly.

 StatsD is designed to write to a server called Graphite (graphite.wikidot.com/faq),
a time-data series database with a front end that shows arbitrary charts rather simply.
That looks something like figure 6.5.

 In figure 6.5 you can see metrics that the team made up and are tracking to see
how their consumers are using the site.

Product specific
dashboards

Events timeline

Figure 6.5 A screenshot of Grafana, the web front end for the Graphite time-series database. Note
that the metrics displayed are arbitrary metrics defined in the code of the application.
Licensed to Mark Watson <nordickan@gmail.com>

http://graphite.wikidot.com/faq

113Preparing for analysis: generating the richest set of data you can
6.1.2 Utilizing the features of your application performance
monitoring system

The data you can get from your application performance monitoring system helps
you troubleshoot issues that you can trace back to your code changes. This connection
allows you to tie your application performance to your development cycle. By utilizing
the features of your APM system, you’ll be able to make the connection between your
product’s performance and your development cycle much easier.

 The tools we’ve looked at for analyzing arbitrary data can also be used for APM, but
they require a lot of setup and maintenance. There are some production-ready tools
that specialize in monitoring the performance of your application with minimal setup
and a host of features. Two popular systems that fall into this category are New Relic
(newrelic.com/) and Datadog (www.datadoghq.com).

 Typical monitoring systems don’t care about what your consumers are doing or
examples like the previous one, but they do look at an awful lot of things relating to
the health of the system. These allow you to monitor things like the following:

■ Network connections
■ CPU
■ Memory usage
■ Transactions
■ Database connections
■ Disk space
■ Garbage collection
■ Thread counts

New Relic is a hosted service that you can use for free if you don’t mind losing your
data every 24 hours. It has a great API so it’s not so tough to pull out data you need to
store and use the rest of it for alerting and real-time monitoring. New Relic also gives
you the ability to instrument your code with custom tracing so you can track specific
parts of your code that you want to ensure are performing appropriately. An example
of a trace annotation is:

@Trace(dispatcher=true)

Using Graphite

Graphite is a time-data series databasea that different frameworks can write into. The
web-based front end in our example is Grafana, which charts anything users can define.
Throughout this book we frequently use Kibana as our front end for charting and metrics
aggregation; Grafana is actually a fork of Kibana, so the two look very similar.

 a A time series database is a software system optimized for handling time series data, arrays of
numbers indexed by time (a datetime or a datetime range), en.wikipedia.org/wiki/Time_
series_database.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Time_series_database
http://en.wikipedia.org/wiki/Time_series_database
http://newrelic.com/
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Time_series
https://www.datadoghq.com

114 CHAPTER 6 Data from your production systems
It’s a good idea to put a trace annotation on anything that you want to get monitoring
data about. Just about anything is a good candidate, but here are particular parts of
the code where you should definitely monitor:

■ Connections to other systems
■ Anything that you communicate with through an API
■ Working with databases
■ Document parsing
■ Anything that runs concurrently

Using annotations in New Relic can give you a lot more data to be able to dig into and
understand how your code is functioning. You should at a minimum set up traces on
critical business logic and any external interfaces. From the list just shown, if you’re
going to annotate anything, ensure you measure the following:

■ Database connections
■ Connections to other APIs or web services

Another example of tying your data back to the development cycle is including
releases in your APM data. In New Relic you have to set up deployment recording,1

which varies based on what type of application you’re running. Figure 6.6 demon-
strates how New Relic shows this data.

1 “Setting up deployment notifications,” docs.newrelic.com/docs/apm/new-relic-apm/maintenance/setting-
deployment-notifications.

Deployment of a new version
of a web-based application

After a deployment, response
time drops significantly.

Before the deploy, throughput visibly
affected performance; afterward, more

throughput doesn't affect it much.

Requests per
minute (rpm)

Figure 6.6 New Relic charting data over time with a clear delineation of a code release
Licensed to Mark Watson <nordickan@gmail.com>

https://docs.newrelic.com/docs/apm/new-relic-apm/maintenance/setting-deployment-notifications
https://docs.newrelic.com/docs/apm/new-relic-apm/maintenance/setting-deployment-notifications

115Preparing for analysis: generating the richest set of data you can
As shown in figure 6.6 it’s very clear how the deployment affected the application’s
performance. In this case average response time went way down, which at a glance
looks pretty good. It would be interesting to map that back to the iteration that pro-
duced that code to see if anything related to how the team operated affected this per-
formance improvement.

6.1.3 Using logging best practices

Your app should be writing something out to logs; at a minimum it’s likely writing out
errors when they happen. Another way to collect arbitrary metrics would be to write
them in your logs and use something like Splunk (www.splunk.com) or the ELK (EC
[www.elasticsearch.org], Logstash [logstash.net], and Kibana [www.elasticsearch.org/
guide/en/kibana/current/]) stack to aggregate logs, index them for quick searching,
and turn your searches into nice graphs that you can use for monitoring. If you’re
looking at your logs from that perspective, log as much as possible, particularly any-
thing that would be of value when aggregated, charted, or further analyzed. Regard-
less of your favorite way to collect data, you should use some best practices when you
do logging to ensure that the data you’re saving is something you can work with. After
all, if you’re not doing that, what’s the point of writing logs in the first place?

USE TIMESTAMPS, SPECIFICALLY IN ISO 8601

Anything you log should have a timestamp. Most logging frameworks take care of this
for you, but to help make your logs even more searchable and readable use the stan-
dard date format ISO 8601 (en.wikipedia.org/wiki/ISO_8601). ISO 8601 is a date/time
format that’s human readable, includes time zone information, and best of all is a
standard that’s supported in most development languages. The following code shows
the difference between an ISO 8601 date and a UNIX epoch timestamp, which unfortu-
nately many people still use.

2014-10-24T19:17:30+00:00
1414277900

Which would you rather read? The most annoying thing about the UNIX format is that
if you are at all concerned with time zones you need an additional offset to figure out
when the date happened relative to UTC time.

USE UNIQUE IDS IN YOUR LOGS, BUT BE CAREFUL OF CONSUMER DATA

If you want to be able to track down specific events in your logs, you should create IDs
that you can index and search on to track transactions through complex systems. But
if you do this, make sure you’re not using any kind of sensitive data that could enable
hackers to find out more about consumers, like their Social Security number or other
personal information.

A date in ISO 8601 format

The same date as a
UNIX epoch timestamp
Licensed to Mark Watson <nordickan@gmail.com>

http://logstash.net
www.elasticsearch.org
www.elasticsearch.org/guide/en/kibana/current/
www.elasticsearch.org/guide/en/kibana/current/
http://en.wikipedia.org/wiki/ISO_8601
http://www.splunk.com

116 CHAPTER 6 Data from your production systems
USE STANDARD LOG CATEGORIES AND FRAMEWORKS

Log4J and other Log4 frameworks make adding logging to your application a breeze.
Instead of trying to reinvent the wheel, use these common frameworks. In addition,
use the standard log levels of INFO, WARN, ERROR, and DEBUG so you can set your
logs to output the data you need when you need it.

■ INFO—Use this when you want to send information back to your logs.
■ WARN—Use this when something isn’t going well but isn’t blowing up yet.
■ ERROR—Something broke; always pay attention to these.
■ DEBUG—Typically you don’t look at DEBUG logs in a production environment

unless you’re trying to find a problem you can’t figure out from the rest of your
logs. Of course, this is great to have in nonproduction environments.

PAY ATTENTION TO WHAT YOUR LOGS ARE TELLING YOU PROACTIVELY

Although this may sound obvious, I’ve seen teams completely ignore their logs until
the consumer was reporting something they couldn’t reproduce. By that time it was
too late; there were so many errors in the logs that trying to find the root of the prob-
lem became like searching for a needle in a haystack. Be a good developer and write
data to your logs; then be a good developer and pay attention to what your logs tell
you.

USE FORMATS THAT ARE EASY TO WORK WITH

To be able to analyze the data in your logs, you’ll want to make sure you’re writing
them in a format that’s easy to parse, search, and aggregate. The following guidelines
give details on how to do this:

■ Log events in text instead of binary format. If you log things in binary, they’re going
to require decoding before you can do anything with them.

■ Make the logs easy for humans to read. Your logs are essentially auditing everything
your system does. If you want to make sense of that later, you had better be able
to read what your logs are telling you.

■ Use JSON, not XML. JSON is easy for developers to work with, easier to index, and
a more human-readable format. You can use standard libraries to write JSON
out into your logs through your logger.

■ Clearly mark key-value pairs in your logs. Tools like Splunk and ELK will have an
easier time parsing data that looks like key=value, which will make it easier for
you to search for later.

6.1.4 Using social network interaction to connect with your consumers

One easy way to stay in touch with your consumers is to have a solid social network pres-
ence. Depending on what your team is building, perhaps it doesn’t make sense to use
Twitter, but even an internal social network like Yammer, Convo, or Jive can take advan-
tage of that in the same way. If you can create hashtags that your consumers use to talk
about you, it’s very easy to get that data out of Twitter, Yammer, or other social networks
to find out how well changes you make to your software affect your consumers.
Licensed to Mark Watson <nordickan@gmail.com>

117Preparing for analysis: generating the richest set of data you can
A simple example would be to promote a new feature by creating a hashtag that allows
your consumers to talk about it on their social network of choice. If you’re using Twit-
ter, this becomes really easy to do. When I was working on the Nike+ Running app, we
even built hashtags into the social posting feature when someone finished a run; then
we knew exactly how people were using the app and what they thought. Figure 6.7
shows searching Twitter for the tags we implemented in our app.

 The Nike+ Running app was fun to work on because it has a strong fan base whose
members are very vocal about how they use it. Building in social interaction and then
following what your users are doing gives you tremendous insight into how well your
applications are serving your consumers. Because we appended the hashtag #nikeplus
on every Twitter post, it was really easy for us to see exactly how our consumers were
using the app and what they were thinking when they used it. This kind of data helped
us shape new features and modify how the app worked to enhance the consumer
experience even further.

Our app posted this
custom hashtag when

users tweeted their runs.

Figure 6.7 Results for #nikeplus from the Nike+ Running app
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 6 Data from your production systems
NOTE Twitter has a great API that allows you to get this data into your data
analysis system, but the API isn’t public; you have to register an app to use it.
In addition, there are rate limits to it, so if you use it be careful to stay within
allowable request limitations.

6.2 The data you’ll be working with: what you can get from
your APM systems
Now that I’ve given you myriad tips on how to maximize your data, let’s look at getting
the data out and how you can use it to hone your team’s performance. There are two
big categories of data that you can get from production:

■ Application monitoring—The data your application is generating regardless of
what your application does:
■ Server and application health
■ General logging

■ BI data—Application-specific data that tells you how your consumers are inter-
acting with your application:
■ Captured as arbitrary metrics that you can make up as you go along
■ Semantic logging, using strongly typed events for better log analysis

6.2.1 Server health statistics

Your server health statistics are the indicators of how well your system is built. Looking at
crash rates, stack traces, and server health shows you if your code is running well or if it’s
eating resources and generating poor experiences. Typical things you can look at are:

■ CPU usage
■ Heap size
■ Error rates
■ Response times

The first important bit of data you can learn from New Relic dashboards is shown in fig-
ure 6.8, which shows how long web responses take and where the response time is spent.

 Because New Relic is looking at how much time consumers are spending on your
site, it can also tell you what the most popular pages are, as shown in figure 6.9.

 These metrics are interesting because they help inform you about the experience
your consumers are having with your applications. It’s important to set service-level
agreements (SLAs) for your applications to help you define what you think is a good
experience. When you do this, don’t look at how your application performs now;
think of what your consumers expect. Are they okay with a web page that loads in four
seconds or should the SLA be under one second? Do they expect to get results from
entering data of some kind immediately, or do they just expect to dump some data in
and see results later?

 Watching how your performance trends toward your SLAs becomes interesting as
you compare it to the data we’ve already looked at from project tracking, source
control, and CI. Are you improving team performance, at the expense of application
Licensed to Mark Watson <nordickan@gmail.com>

119The data you’ll be working with: what you can get from your APM systems
performance, or is application performance a first-class citizen in your development
cycle? When development teams are completely focused on new features and don’t
pay attention to how their product is performing in the wild, it’s easy to lose sight of
application performance.

REACTING TO APPLICATION HEALTH

Keeping your application healthy is an important factor in consumer satisfaction. Ide-
ally you want to have great response times and an app that can scale up to whatever

The breakdown of
the response time

Figure 6.8 New Relic dashboard overview showing the performance of the different layers of a web
application

The top pages broken
down by percentage

The amount of time consumers
spend on your website

Figure 6.9 The New Relic transactions view showing the pages on your website where consumers spend
the most time
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 6 Data from your production systems
your potential consumer base is. A good APM system will tell you when performance is
getting bad and will also usually tell you where your problems are. When you see per-
formance problems, you should take the time in your current development cycle to
fix or mitigate them.

6.2.2 Consumer usage

Another production monitoring strategy is to watch how your consumers are using
your site. There are a number of ways to track page hits and site usage; two examples
of off-the-shelf products are Google Analytics (www.google.com/analytics/) and Crit-
tercism (www.crittercism.com/). These solutions not only track the number of people
who are using your products, but also how long they spent on certain pages and how
they flowed through the app, as well as something called conversion rate.

 Conversion rate is determined by dividing whatever you decide is success criteria
for using your application by total users. Success may be selling something, clicking
on an advertisement, or making a connection with another user. Conversion tells you
how successful you are at turning users into consumers.

REACTING TO CONSUMER USAGE

Trends in consumer usage help you determine how your application needs to evolve to
better serve your consumer. If you have features that your consumers don’t use, then
why are they even in your product? Hone the most popular features in your application
to ensure your consumers are getting the best possible experience you can offer.

 Try to move your team to a model where you can do small, frequent releases. In
each release be sure to measure the impact of the change you just deployed to help
determine what feature to work on next.

6.2.3 Semantic logging analysis

How your consumers are using your system is key to continuously improving it. If
you’re collecting arbitrary metrics and page tracking, then there’s no limit to what you
can learn about your consumers and how they use your system.

 If you’re practicing semantic logging and logging custom metrics, then you can get
just about any kind of data you want. Perhaps you have search functionality on your
site and you want to know what people are searching for so you can better tune your
content of products based on what consumers are looking for. You could save every
search to the database and then do some kind of data-mining exercise on it every so
often, or you could log a strongly typed event with every search.

 Using the frameworks or logging that we talked about earlier in the chapter to view
this data in real time makes tracking metrics that you define as success criteria for
your features much easier. Let’s say that you have a gardening app where users enter
the plants in their garden and search for advice on how to make them as healthy as
possible. If your business model is based on creating the most valuable content for
your users, then the searches people plug into your app are invaluable information
because it tells you what your user base wants to read.
Licensed to Mark Watson <nordickan@gmail.com>

https://www.crittercism.com/
www.google.com/analytics/

121The data you’ll be working with: what you can get from your APM systems
 The key to semantic logging analysis is that it tells you what you set your system up
to tell you. If you’re logging metrics that are valuable to your business and watching
them as you update your software products, they become some of the most valuable
metrics you can collect.

REACTING TO DATA IN YOUR LOGS

You should strive for zero errors in your logs. For those of you laughing right now, at
least try to clean up your errors with every release. If you’re seeing large numbers of
errors or warnings in your log analysis, then you have a strong data point you can use
to lobby for time to clean up tech debt.

6.2.4 Tools used to collect production system data

Table 6.1 is summary of the tools we’ve talked about and used in this chapter. Keep in
mind that open source systems typically have a lot of setup you have to do your-
self (DIY).

Table 6.1 APM and BI tools used in this chapter and the data they provide

Product Type of system Data It provides Cost model

Splunk Cloud-based with
agents installed on
your servers for
data collection

APM and log aggregation and analy-
sis. Splunk allows you to search
through anything you send to it.

Pay for the amount of
data you store in it.

EC, Logstash,
and Kibana
(ELK)

DIY APM and log aggregation and analy-
sis. The ELK stack allows you to
search through anything you send to
it. This is commonly referred to as
“open source Splunk.”

Labor costs for setup and
maintenance along with
the cost of infrastructure
and storage.

New Relic Cloud-based with
agents stored on
your servers for
data collection

Using instrumentation, New Relic
gives you lots of performance data
ranging from CPU and memory anal-
ysis to site usage statistics and a
detailed breakdown of where your
code spends the most of its time.

Free if you don’t store
data for longer than a
day; then you pay based
on the amount of data
you store.

Graphite and
Grafana

DIY This is the epitome of a DIY system.
Graphite and Grafana, like the ELK
stack, show nice charts on any type
of time-data series you send to it.

Labor costs for setup and
maintenance along with
the cost of infrastructure
and storage.

Open Web
Analytics

DIY Collects data on how consumers
navigate through your site along with
page hit counts.

Labor costs for setup and
maintenance along with
the cost of infrastructure
and storage.

Google
Analytics

Cloud-based The standard for collecting usage
statistics for web applications. It
tracks how consumers navigate your
site, counts page hits, and helps
track conversion rate.

Free for most cases; the
premium version has a
flat fee.
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 6 Data from your production systems
6.3 Case study: a team moves to DevOps and continuous delivery
Our case study team has a lot of the pieces in place to start utilizing the data from
their production environment. They’ve been working to transition to a DevOps
model, and the development team has started paying close attention to their produc-
tion systems. They have log analysis, are using New Relic to monitor the health of their
systems, and are looking at key metrics in their development cycle to ensure their pro-
cess is working well. They’ve even improved their CI system so much that they were
able to start deploying small changes to production every day. They thought they had
achieved continuous delivery and were pretty excited about it; now their consumers
were getting added value every day! Or so they thought.

 After a few weeks of operating like this, they got their biweekly report from the BI
team showing how consumers were using the system, and it hadn’t changed much at
all. The BI team was tracking the conversion rate of consumers on the site, total visits
for the different pages across the site, and how long unique visitors stay on the site.
The data they were getting back looked like the dashboard in figure 6.10.

Data Dog Cloud-based Aggregates data from all over the
place.

Free for small installa-
tions; you pay for how
long you want to retain
your data and the size of
your installation.

Crittercism Mobile library with
cloud-based data
collectors

You can get crash rates and usage
statistics that help you figure out
what your consumers are seeing
and how to fix their issues.

License fees

Table 6.1 APM and BI tools used in this chapter and the data they provide (continued)

Product Type of system Data It provides Cost model

Conversion rate; how many consumers
do what you want them to

New visitors
to your site

How many people
come to your site and

leave right away

April 7, 2015

April 16, 2015 April 23, 2015April 2, 2015 April 9, 2015

Search sent 7,262 total visits via 5,121 keywords

7,262
of Site Total:
38.2%

1.73
Site Avg: 1.85
(-5.03)

00:02:11
Site Avg: 00:02.89
(-15.32%)

79.44%
Site Avg: 60.76%
(17.55%)

74.17%
Site Avg: 67.90%
(11.46)

Figure 6.10 The dashboard
the BI team paid the closest
attention to
Licensed to Mark Watson <nordickan@gmail.com>

123Case study: a team moves to DevOps and continuous delivery
The delivery team took a look at the BI report and realized that there was no direct
link between the work they were doing and the metrics being used to determine if fea-
tures were successful. Because they were delivering features, the team needed to fig-
ure out how those features improved conversion and stickiness on their site. The
delivery team decided to start by bringing the BI team into their sprint planning to
help them close the gap.

 For every new feature they were going to implement they asked, “What is the value
to the consumer of this change, how do we measure it, and how does it affect conver-
sion?” The next tweak the development team made was to add a More Info button
that had a Buy Now button on it. The feature was designed with the following theories
in mind:

■ They wanted to show many products on the page to a consumer at once, so they
would save space by showing info in a pop-up instead of inline.

■ They thought that with that info consumers would be more likely to buy a prod-
uct and therefore should click the Buy Now button from that pop-up.

To figure out how this affected conversion, they added a few custom metrics:

■ Buy Now button clicks
■ More Info clicks

If their theories were correct, they should see a significant number of clicks on the
More Info link and a high percentage of clicks on Buy Now after clicks on More Info,
and conversion should go up.

 The team was already using ELK for their logging, so they simply added strongly
typed messages to their logs for the events they wanted to track. These started showing
up in their dashboard, as shown in figure 6.11.

Events logged plotted over time

Events stores as JSON documents.

Figure 6.11 The Kibana dashboard the team generated to track their statistics
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 6 Data from your production systems
Now the team was completing the picture. They could see how they were developing,
what they were developing, and how it affected their consumers when they deployed
changes to the consumer. Now they could use that data to shape what features they
should work on next and how they could tweak their development process to ensure
they were delivering things the right way.

6.4 Summary
The final piece of the data picture is the data your application generates as your con-
sumers interact with it. In this chapter you learned:

■ Application performance monitoring and business intelligence typically aren’t
measured by development teams.

■ APM gives you insight into how well your application is built, and BI tells you
how your consumers use it:
■ Server health statistics show you how well your application is performing.
■ Arbitrary stats and semantic logging give you measureable stats on how your

application is being used.
■ Teams using a DevOps model are more likely to have access to APM data.

■ Add arbitrary metrics collection to your code to collect application specific
data. Netflix Servo and StatsD are popular open source libraries to help with
this.

■ Use logging best practices to get as much data as you can from your log analysis:
■ Use ISO8601-based timestamps.
■ Use unique IDs in your logs, but be careful of consumer data.
■ Use standard log categories and frameworks.
■ Pay attention to what your logs are telling you proactively.
■ Use formats that are easy to work with.

■ Using social networks allows you to better connect with your consumers.
■ Use arbitrary monitoring or semantic logging to provide feedback to the devel-

opment team based on BI data to let them gauge effectiveness of new features.
■ A variety of open source and commercial tools are available for application

monitoring and collecting BI.
Licensed to Mark Watson <nordickan@gmail.com>

Part 3

Applying metrics to your
teams, processes, and software

Using the concepts from part 1 and the rich set of data from part 2, you’re
ready to take your metrics collection, analysis, and reporting to the next level. In
part 3 you’ll learn how to combine the data you’ve been collecting into complex
metrics, get the full picture on the quality of your software, and report the data
throughout your organization.

 Chapter 7 shows you how to combine data across several data sources to cre-
ate metrics that fit into your processes and your team. You’ll learn how to
explore your data, determine what to track, and create formulas that output
your own custom metrics.

 Chapter 8 shows you how to combine your data to determine how good your
software products really are. You’ll learn how to measure your software from two
key perspectives: usability and maintainability.

 Chapter 9 shows you how to publish metrics effectively across your organiza-
tion. You’ll learn how to build effective dashboards and reports that communi-
cate the right level of information to the right people. We’ll also look at some
pitfalls that can cause your reports to fail and how to avoid them.

 Chapter 10 breaks down the agile principles and shows you how to measure
your team against them.

 As in part 2, each chapter ends in a case study so you can see the techniques
you learned in the chapter applied in a real-world scenario.

Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER
Licensed to Mark Watson <nordickan@gmail.com>

Working with the
data you’re collecting:

the sum of the parts
Metrics are measurements or properties that help in making decisions. In agile pro-
cesses metrics can be created from the data your team is generating to help deter-
mine where you need to take action to improve.

7.1 Combining data points to create metrics
To create a metric you only need two things:

■ Data to generate the metric from
■ A function to calculate the metric

In previous chapters we’ve been focusing on the data you can collect from the dif-
ferent systems in your application lifecycle and what you can learn from it alone or

This chapter covers
■ Identifying when to use custom metrics
■ Figuring out what you need to create a metric
■ Combining data points to create metrics
■ Building key metrics to track how well your

team is working
127

Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
combined with other data. Now you can start combining data points to create your
own metrics using the following steps.

■ Explore your data. Ensure that you know what you have.
■ Break down your data to determine what to track. Using the knowledge you have

about your data, pick out the most useful and telling data points to build met-
rics with.

■ Build your functions around data points. Adding together multiple data points that
are related to a behavior will give you metrics that tell you a lot with a simple
measurement.

Figure 7.1 shows these steps in the context of the big picture.
 In the analysis phase you want to spend enough time understanding what data you

have and how it’s connected so that you can define actionable metrics that become
useful in your development cycle.

 As you’ve seen throughout this book, there’s so much data generated throughout
the application lifecycle that no one or even two data points can give you a clear indi-
cator of performance for your team. To get the best picture in previous chapters, we
looked at data points from different systems alone or next to one another. An alterna-
tive to that technique is to combine these elements into metrics that shed light on
larger questions that can’t be answered by a single data point.

 An example of a calculated metric that we’ve already looked at is recidivism. Recid-
ivism tells you how frequently your team is moving the wrong way in your workflow.
It’s calculated purely with PTS data with the following formula:

Recidivism = bN / (fN + bN)

■ N = number of tasks
■ f = moving forward in the workflow
■ b = moving backward in the workflow

In many cases you can do some interesting calculations on data from a single system to
get new insight into recidivism. An example using only SCM data is the Comment To

Collect
data

Apply

Analyze

Make sure you
understand what you have

and what it can tell you.

Use the data you
have to define actionable

metrics you can use.

Figure 7.1 Building metrics in the context of collecting, analyzing, and applying metrics
Licensed to Mark Watson <nordickan@gmail.com>

129Using your data to define “good”
Commit Ratio. If a team is using a workflow that includes code reviews, sometimes
developers, usually the leads, will end up spending most of their time reviewing other
people’s code rather than writing any code themselves. We call this PR Paralysis. This
is usually a bad sign that there isn’t enough senior technical leadership on the team or
pull requests aren’t being distributed across enough of your team. You can calculate
Comment To Commit Ratio with the following formula:

Comment To Commit Ratio = r / (m + c)

■ m = merged pull requests
■ c = commits
■ r = reviews

In chapter 8 we’ll look at the elements of good software, and one of the measures
we’ll talk about is Mean Time To Repair (MTTR). This is another important metric
that can be calculated simply with data from your APM if you just want it at a high
level. The most simplistic view of MTTR would be

MTTR = f – s

■ s = start date time when an anomaly is identified
■ f = date time when the anomaly is fixed

Later in this chapter we’ll be looking at estimate health, or how accurate your team’s
estimations are. The algorithm for estimate health is outlined in listing 7.1. In a few
words it compares the amount of time a task took to complete against the estimated
effort, and gives a rating of 0 when estimates line up, a rating of greater than 0 when
tasks are taking longer than estimated (underestimating), and a rating of less than 0
when tasks take less time than estimated (overestimating).

 A rather complex metric that we’ll dive into in our case study is release health.
This is a combination of PTS, SCM, and release data to find out how healthy releases
are for a team practicing continuous deployment and releasing software multiple
times a day.

7.2 Using your data to define “good”
There are three “goods” that we’ll be looking at for the remainder of the book.

■ Good software—This is covered in the next chapter. Is what you’re building
doing what it’s supposed to do and is it built well?

■ A good team—Good teams usually build good software. Because different teams
operate differently and use their data-collection tools differently, the metrics to
measure how good a team is are often relative to that team. Thus, you need to
have the next “good” to measure accurately.

■ Good metrics—You must have good indicators for your team and software that
provide trustworthy and consistent data. These are used to measure your team
and your software.
Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
While exploring data in earlier chapters you probably started drilling into data that
seemed either good or bad based on how you perceived your team’s behaviors. While
querying for data points that you know represent good behavior, it may be surprising
to find how other data points relate. These relationships are important to hone in on
and discuss across the team to understand why the relationships behave the way they
do. Through this exploration and discussion you take action on metrics you know are
important and observe related metrics until patterns emerge that you want to affect.

 While measuring your teams and processes it’s important to always keep an open
mind about the results you get back. Don’t try to jam data into an explanation because
it’s what you want to see. Assessing what you’re seeing openly and honestly is key to
getting your team to their highest possible level of efficiency and productivity.

7.2.1 Turning subjectivity into objectivity

In chapter 3 we looked at tagging the tasks in your PTS system to subjectively indicate
whether or not they went well. If you did this, you can now turn that subjective data
into objective data.

 Agile development is all about the team. You want to be able to create a happy and
efficient team that has some ownership of the product they’re working on. Asking the
team to mark their tasks with how well they think they went is as good an indicator as
any to tell you how well your team is doing. A happy team will more likely be a consis-
tently high-performing team. Sad teams may perform well for a time until burnout
and attrition destroy them.

 In this example a team repeatedly brought up in retrospectives that they thought
different roles on the team weren’t working together closely enough and it was impact-
ing delivery. They wanted to see more information sharing and collaboration between
teams to be able to deliver their products more efficiently and consistently. They
decided that they would have more face-to-face conversations and warm hand-off of
tasks instead of just assigning tickets to someone else when they thought a task was
complete. To track their success they started labeling tasks in their PTS and SCM with
the tag “sharing” if they thought that everyone was working together well through the
development and delivery cycle. To them sharing meant that people were sharing their
time and information and generally working together well. In this case they knew
development time and recidivism should be low but they didn’t have a good idea of
how much they should expect their team to comment on their pull requests in source
control; they called this “code comment count.” Labels, code comment count, recidi-
vism—or the percentage of time tasks move backward in the workflow—and average
development time for tasks labeled “sharing” are shown in figure 7.2.

 In this case recidivism and development time looked great. Looking at the same
data for tasks where the team didn’t think information sharing worked well, they pro-
duced the graphs shown in figure 7.3.

 In figure 7.3 you see that recidivism and average development time went up signif-
icantly. The really interesting thing is the comment counts; they also went way up.
Building on this trend, the team checked to see what happened when comment counts
Licensed to Mark Watson <nordickan@gmail.com>

131Using your data to define “good”

When sharing information was

working well between teams they
used the “sharing” label.

Overall code comments
seemed pretty low.

Average development time
and recidivism looked good.

These tasks moved
backward once.

0 means tasks never
moved backward.

Average development time
was measured in days.

Figure 7.2 Labels, code
comment counts, recidivism,
and development time for
tasks labeled “sharing” over
the course of a single sprint

This graph tracks all the tags
that aren’t marked for sharing.

Code comments
are going up too.

Recidivism goes up.
Development
time goes up.

Figure 7.3 Labels for tasks
not marked with “sharing” over
the course of a sprint
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
were high in general. That is reflected in figure 7.4. Note that estimates were added
into this dashboard as well to show the correlation between how much work the team
thinks something will take and the amount of time it actually takes.

 If the estimates were high, then maybe it would make sense to see the huge jump
in development time, but in this case the team noticed the opposite: estimates were
very low.

 For this team, having a lot of code comments seemed to point to poor information
sharing, tasks taking a lot longer than estimated, and an increase in recidivism. In this
case the team was able to turn something that was very subjective—whether they
thought that sharing was working well—into an objective data relationship they could
use as an indicator to see if tasks were going off the rails.

7.2.2 Working backward from good releases

You want a happy team and you want a team that can deliver. Another way to find out
what good thresholds are for your team is to focus on what went into good software
releases to figure out how to tune your process to replicate that success. In this case
you can filter your data by anything that went into a release that worked well to find
the key data points. As we did with tags in the previous examples, you can then look at
the resulting watermarks to see what behavior went into a particular release.

These tasks were estimated
to take very little time.

Recidivism goes up.
Development time skyrockets

when comments go up.

Figure 7.4 The relationship
among recidivism,
development time, code
comments, and estimates
Licensed to Mark Watson <nordickan@gmail.com>

133Using your data to define “good”
In the next example we’ll look at the tale of two releases: a pretty good release and a
painful release. First, we’ll look at the painful release.

 The painful release looked great during the development cycle. The team was
focusing on development time and trying to keep it to a minimum. They had a huge
push to get the release out the door, and when they did the bugs started rolling in.
Nagging issues caused a long support tail of nearly two months of fixing problems.
The resulting charts are shown in figure 7.5.

 Here are a few notable characteristics of figure 7.5:

■ Average development time of one day looks awesome. If we were to look at only
that, it would seem that this team was really good at breaking down their tasks.

■ Even though the team managed to complete over 100 tasks in a three-week
period to hit the release, there were nagging issues that made up the long tail of
support after the release, which kept the team from completely focusing on the
next release.

■ Tasks were moving backward in the workflow around 70% of the time; those are
all the tasks with recidivism of greater than zero. 20% of tasks got moved back-
ward more than once.

A lot was done in a short time
to get this out the door.

It took over a month to fix all
the issues with this release; the
completion graph has a long tail.

Development time
looks great; on average tasks
only took 1 day to complete.

Most tasks moved backward
0 times or 1 time, which isn't bad.

Figure 7.5 Stats around a painful release. Even though development time looked great, there were nagging bugs
that caused hot fixes over a long period.
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
Given these observations, maybe an average development time of one day isn’t good
after all. None of the related metrics around it seem very good, so perhaps this team
should start focusing on different metrics to make sure their project is healthy.

 In this example, average development time was not enough to help the team get a
good release out the door. They paid for shorter development times later with lots of
bug fixes and additional releases.

 As a comparison, in a completely different and much better release the team’s
average development time was four full days, much higher than the first example. But
recidivism was down and the support tail for the release was much shorter and deliber-
ately phased, as shown in figure 7.6.

 In figure 7.6, notice:

■ Tasks were not moving backward in the workflow as frequently. Here they never
moved backward 60% of the time, and less than 10% of tasks moved backward
more than once.

■ Compared to figure 7.5 the releases in this chart were smaller, between 15 and
25 tasks instead of the 60 in figure 7.5. Along with the smaller releases came less
support and more consistency.

■ Average development time of tasks went up a lot, from one to four days.

Development time and recidivism
look reasonable but could be better.

The spikes indicate releases and show the
team is able to consistently get things out the
door with only a week of downtime between.

Figure 7.6 A very different release with
a better support tail, lower recidivism,
and longer development time
Licensed to Mark Watson <nordickan@gmail.com>

135How to create metrics
If the team is looking for consistency in their release cycle, certainly the pattern in fig-
ure 7.6 is the pattern they want to replicate. If that’s the case, then a longer develop-
ment time isn’t a bad thing and perhaps the team should consider extremely low
average development times a red flag.

7.3 How to create metrics
“A model is a formal representation of a theory.”

 -–Kenneth A. Bollen

The end goal is to get our team members to perform as well as they can. To get there
we want to be able to track what matters most in the context of our team and combine
that data into a form that’s easy to track and communicate. In chapter 1 I talked about
how to find what matters most for your team by asking questions and mind mapping.
Now that we’ve gone through all the data that you can use, we’re going to start putting
it together to answer questions that lead to better team performance.

 Before we start creating metrics, we should lay ground rules for what makes a good
metric. The following guidelines are a good place to start:

■ Metrics should create actionable insight:
■ Do track metrics that you can respond to should they identify a problem.
■ Don’t track metrics you can’t do anything about or haven’t taken the time to

understand the meaning of.
■ Metrics should align with core business and team tenets:

■ Do pick data to track what’s relevant to your end goal. Perhaps security is
your number-one goal; for others, feature delivery is more important. Teams
should prioritize the most important indicators of their process as it relates
to what they’re delivering.

■ Don’t track metrics that you can’t somehow track back to something your
team thinks is important.

■ Metrics should be able to stand alone:
■ Do create metrics that will give you a clear indication of the health of some

part of your process or team by itself.
■ Don’t create a metric that forces you to look at more data to determine if it’s

good or bad.

With these points in mind let’s look at how to figure out how well your team is estimat-
ing work. You’ll start by breaking the problem down into pieces and identifying all the
data points that you can use to track the pieces. You’ll do that by exploring your data
to make sure you understand what you have and defining metrics that help you see it
clearly. Once you have good actionable metrics, you can incorporate them into your
development cycle.

 We’ve already looked at what you can do with your data when you save it in a cen-
tral place, index it, and create dashboards out of it. As you spend quality time with the
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
data your team is generating, you’ll start to think up questions, and more data will
lead to more questions. Eventually you’ll get to a point where you start to see pieces of
the larger puzzle and how they affect each other.

 An aspect worth measuring is how well your team decomposes tasks. You can get
more done for your customers if you’re frequently delivering lots of small tasks
instead of delivering large swaths of functionality at a time. Smaller changes are also
easier to deliver with tests, to test in general, and to troubleshoot. To measure this let’s
start with the question “Is your team breaking their tasks into small enough chunks?”
If they are, then you’d expect to see:

■ Distribution of estimates leaning toward smaller numbers and a fairly low average
estimate—If your tasks are defined well with the intention of delivering small pieces
of functionality, this should also be reflected in the team’s estimates of the work.

■ Decreased lead time—Delivery of individual tasks measured by lead time should
be short.

That will lead you to:

■ How long do these tasks really take?
■ Are your estimates accurate?

7.3.1 Step 1: explore your data

To figure out if your estimates are accurate, you can start by tracking the size of esti-
mates with estimated distribution and average estimate by the amount of time it takes
to get a task all the way through the development process with lead time. You’d expect
that tasks that are well defined and broken down into small pieces will be well under-
stood by the development team and as a result should be able to make it through the
development process expediently, thus resulting in fast lead times. Using the tools
we’ve been using so far produced the data shown in figure 7.7.

Most estimates are 3 or 5; apparently
the team is breaking tasks down well.

A mean of 3 shows the
team is breaking tasks

into small chunks.

Figure 7.7 The historical estimate distribution and average estimate dashboards for a team
Licensed to Mark Watson <nordickan@gmail.com>

137How to create metrics
This team is using the Fibonacci series of estimation with a minimum estimate of 1
and a maximum estimate of 13 in a two-week, or 10-working-day, sprint. The potential
values in the Fibonacci series are 1, 2, 3, 5, 8, and 13, so an average estimate of 3 is
fairly low in the spectrum, which is good. Lower estimates show that tasks have been
broken down to a workable level.

 Overall estimation data looks pretty good; the team seems to be breaking their
tasks into small, manageable chunks. With that in mind, the next questions that arise
are these:

■ How long do these tasks really take?
■ Are our estimations accurate?

In this case, based on the estimation system used by the team, tasks estimated at 3
points should take around 2–3 days to complete. The next thing we can pull in is the
average amount of time tasks actually take. That is shown in figure 7.8.

 According to our data our average estimate is 3, but on average tasks take 5 days to
complete. In this case a sprint is two weeks or 10 working days and the maximum esti-
mate is 13. That would mean that our average estimate should be closer to 8 than 3.
The next question that comes to mind is

■ Why are tasks taking longer than we think they should?

Estimating with effort vs. time

Story points are often used to estimate tasks in project tracking systems, but they
don’t always have a 1:1 translation to time. For example, 16 story points could mean
9 days of development on one team and it could mean 14 days on another team. No
matter how you estimate, you’ll have to translate them to time to figure out if they’re
accurate.

That doesn’t add up; it seems as if tasks
are taking much longer than estimated.

Figure 7.8 Adding average time a task takes to get to done. This doesn’t look right; an
average estimate of 3 should be 2–3 days.
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
Because this question is a bit more open-ended we can start by querying for the data
that we think doesn’t look right to see what properties it has. To do that we can search
for all data that has an estimate of 3 and a development time greater than 3 and data
that has an estimate of 5 and a development time greater than 5. The query in
EC/Lucene looks like this:

((devTime:[3 TO *] AND storyPoints:3) OR (devTime:[5 TO *] AND storyPoints:5))

As mentioned earlier, if you’re tagging or labeling your tasks with as much data as pos-
sible, then at this point you can see what tags come back from your search. In this
case, a few things jump out at us.

 Figure 7.9 shows us that coreteamzero and coreteam1 seem to have this happen
more than other teams and that estimates tend to be low when tasks move backward
in the workflow.

 This data will probably lead to even more questions, but by now you should get the
idea. Rarely do you start off with all the questions that lead you to where you want to
go, but spending time exploring your data to see how things are related will help you
determine what to track.

This seems to happen more frequently
on coreteamzero and coreteam1.

Tasks move backward
in the workflow when

completion estimates are
3 or 5; maybe those are the

developer’s equivalent
of “I don’t know.”

Figure 7.9 Labels show what has been tagged in the cards where estimations are off, and recidivism
shows that tasks tend to move backward in the workflow more frequently when estimates are 3 or 5.
Licensed to Mark Watson <nordickan@gmail.com>

139How to create metrics
7.3.2 Step 2: break it down—determine what to track

Having a big data mine is great, but sometimes it’s tough to figure out what data
points to watch. After exploring your data (a habit that can be very addictive), you
should start to get an idea of what data points speak most to how your team works. If
you have a small team, whose members sit next to each other, having a high number
of comments on PTS tickets probably indicates a communication problem, but if you
have teams in multiple geographic locations, it could indicate great cross-team com-
munication. If your team doesn’t comment on tickets because they sit next to each
other and discuss issues, then that data point may never move and therefore will be of
no use to you. If yours is a globally distributed team that uses comments to push things
forward, then that data point will be extremely important to you.

 A productive way to get to the bottom of what you want to track is to build a mind
map that helps you identify the questions you’re trying to answer. Follow these steps:

1 Ask the question.
2 Think of all the dimensions of the answer.
3 Note where you can obtain data to get your answer.

Using the scenario in section 7.2.1, the team would have created the mind map shown
in figure 7.10. Another example of breaking down a big question into smaller, mea-
sureable chunks is shown in figures 7.11 and 7.12, which illustrate how to check if
your team is estimating accurately.

Breaking the question down
into measurable pieces

The original question

Metrics we can use to
get the full picture

Is teamwork good?

Are we getting things done?
Dev time

Is communication good?

Recidivism

Estimates

–

Code comments
–

Figure 7.10 Breaking down how to measure teamwork with a mind map

Start with your question: what
are you trying to measure?

How do we check estimates?

Make sure they have an expected distribution.

Check for correlations between real time and estimates.

Break your question down
into how you can figure this out.

Figure 7.11 Breaking down a problem with a mind map; starting with your question and then breaking
it down one level
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
Once you have all the data points that you can use to answer the questions, you’re
ready to start using those data points to build out your metric by adding them
together.

7.3.3 Step 3: create formulas around multiple data points
to create metrics

Once you have the relevant data points, you can always stop there and track the indi-
vidual data. This might work for some people, but it’s useful to have a single data
point that allows you to keep a bird’s-eye view on groups of data without having to
micromanage every data point. This will also lead to much cleaner, more succinct
dashboards that can be shared outside the team and make more sense at a glance.

 Now it’s time to do a bit of math. If we stick with the examples shown in figures
7.11 and 7.12, we have several data points that we can roll up to give us an indication
on how good our team’s estimates are. We want to know at a glance if the team is over-
or underestimating and by how much. If we visualize the association of estimates to
time, we’ll see something like figure 7.13.

Estimates from PTS

Estimate of task

–

Task end time PTS
–

PTS

–

Task start time –

PTS–

PTSAmount of work that went into the task –

Make sure they have an expected distribution.

Check for correlations between real time and estimates.

Now you can figure out where
you can get your data from.

Figure 7.12 Using the mind map to break it down another level and then figuring out where to get data from

T

3 5 8 13

W T F M T W T F

Work days in the week
over a two-week period

The estimation scale
of the Fibonacci series

Figure 7.13 A visual representation of a series of estimates next to time using the
Fibonacci series of estimates over a two-week period
Licensed to Mark Watson <nordickan@gmail.com>

141How to create metrics
First, we’ll name our metric to track estimation accuracy. Let’s call this one estimate
health. Estimate health is some combination of the following data points:

■ Estimates
■ Task start time
■ Task end time
■ Amount of work

Breaking these data points down further, we really care about the amount of time a
task took, so we can start by combining start time and end time into elapsed time by
subtracting one from the other:

Elapsed time (tactual) = task end time - task start time

Because estimates don’t equal days, the second thing we’ll have to do is correlate time
to estimates.

 Two weeks equals 10 working days, but 1 day in a sprint is used for retrospectives
and planning, which gives us a total of 9 working days. To deduce time from estimates,
first we’ll take the highest possible estimate and equate it to the highest possible
amount of time, in this case the highest possible estimate of 13 for this team equals 9
working days. Using that as our maximum, we can break down the rest of the possible
estimations. To figure out the exact correlation, use the following formula:

max(estimateactual) = (estimateworkdays/max(estimateworkdays))*max(tactual)

Once you have the maximum amount of time, you can figure out the rest of the esti-
mate sweet spots with the following formula:

correlation-value = max(tactual)*(max(estimateactual)/estimateworkdays)

When you know the correlation between your estimates and time, you can plug in the
data you have to find out if your estimates are high or low.

 Some example estimation-time mappings using these formulas are shown in table
7.1. If you’re using the system outlined in appendix A, which uses EC and Lucene, I’ve
added the queries you can use to hone in on specific data. These will become more
useful when you see them in action in listing 7.1.

 Note that in table 7.1 I’ve put the Fibonacci series of estimates along with the series
of power of 2 estimates, another common estimation series. In the power of 2 series,
each possible estimate is double the previous estimate.

Table 7.1 Mapping estimates to time ranges and validating with Lucene

Estimate Exact time Time range Query

Power of 2 estimations with two-week sprints

16 points 9 days 7–9 days devTime:[7 TO 9] AND storyPoints:16

8 points 4.5 days 4–7 days devTime:[4 TO 7] AND storyPoints:8
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
This is helpful, but it would be better to have a scale that told you if your estimations
are high or low and how off they are. For example, a 0 means that estimations meet
the time equivalents, a number greater than 0 means your team is underestimating,
and a value less than 0 means your team is overestimating. Using a scale like this has
benefits:

■ It’s actionable.
■ If you see your estimate health go under 0, you can start adding more time to

your estimates to get them back to a level of accuracy.
■ If you see your estimate health go over 0, you can start cutting your estimates a

bit to get back to a better level of accuracy.
■ It’s easy to communicate.
■ You can easily share this outside your team without a long explanation.
■ It allows you to digest several data points at a glance.
■ You can put this on your dashboards to keep everyone aware of the latest data.

To create a rating number you’ll need to write an algorithm that figures out the time-
estimate ratio of the estimate in question and checks it against the other estimates in
your estimation scale to see if the amount of time a task took matches the correspond-
ing time window for the estimate.

 To map estimates to time you’ll need a function that can find the time bounds
you’re estimating within, the time scale, and the estimate scale. Figure 7.14, shows
how this can work as a function.

4 points 2.25 days 2–4 days devTime:[2 TO 4] AND storyPoints:4

2 points 1.125 days 1–2 days devTime:[1 TO 2] AND storyPoints:2

1 point .56 days less than 1 day devTime:[0 TO 1] AND storyPoints:1

Fibonacci series estimations with two-week sprints

13 points 9 6–9 days

8 points 5.53 4–6 days

5 points 3.46 3–4 days

3 points 2.07 2–3 days

2 points 1.38 1–2 days

1 points .69 less than a day

Table 7.1 Mapping estimates to time ranges and validating with Lucene (continued)

Estimate Exact time Time range Query

Power of 2 estimations with two-week sprints
Licensed to Mark Watson <nordickan@gmail.com>

143How to create metrics

t

t

An algorithm to do this is outlined in the following listing.

static def estimateHealth(estimate, actualTime, maxEstimate, maxTime,
estimationValues) {

 def result
 def timeEstimateRatio = maxTime / maxEstimate
 def estimateTime = estimate * timeEstimateRatio
 def upperTimeBound = maxTime
 def lowerTimeBound = 0

 def currentEstimateIndex = estimationValues.findIndexOf { it ==
 ➥ estimate}

 if(currentEstimateIndex == 0) {
 lowerTimeBound = 0
 } else {
 lowerTimeBound = estimateTime - ((estimateTime –

➥ (estimationValues[estimationValues.findIndexOf { it == estimate} - 1]
 ➥ * timeEstimateRatio)) / 2)
 }

 if (currentEstimateIndex == estimationValues.size() -1) {
 upperTimeBound = maxTime
 } else {
 upperTimeBound = estimateTime +
 ➥ (((estimationValues[estimationValues.findIndexOf { it == estimate} + 1]
 ➥ * timeEstimateRatio) - estimateTime) / 2)
 }

 //Calculate the result
 if(upperTimeBound < actualTime) {
 def diff = actualTime – upperTimeBound
 result = 0 + diff

Listing 7.1 Algorithm for checking estimate health

T

3 5 8 13

W T F M T W T F

2 Return the associated
time period for the estimate

1 Get the time bounds
of the estimate 3 Return difference of actual time

with estimate association

Figure 7.14 A visual representation of the algorithm to determine estimate health

Initializes the variables

Finds the input’s
index in the array

Lower bound of 0 for
the lowest estimate

Calculates
the lower

ime bound

The highest estimate
uses the upper bound

Calculates
 the upper
ime bound

Underestimated; it will
be greater than 0
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
 } else if(lowerTimeBound > actualTime) {
 def diff = lowerTimeBound – actualTime
 result = 0 – diff
 } else {
 result = 0
 }

 return [raw:result, result:result.toInteger()]
}

This is a simple example of adding together a few data points to create an actionable
and easy-to-understand metric that has real value to your team. Estimate health is
shown alongside lead time, average estimate, and estimate distribution in figure 7.15.

 Using this algorithm you can hone your estimations and thus get to a more pre-
dictable cadence of delivery. Using these techniques you can generate a host of useful
and easy-to-use metrics. Some of the more useful are the ones that help evaluate how
good your development team is doing.

7.4 Case study: creating and using a new metric to
measure continuous release quality
Our case study for this chapter concerns a team that practices CD and is deploying
code to production multiple times a day. Before they made this change they were

Overestimated; it will
be less than 0

Returns 0 within a
day of the bounds

Raw result for
in-depth analysis

Based on the distribution,
estimates are in good shape.

Estimates are low; this team
is breaking tasks down.

Overall tasks take 7 days
from definition to completion.

This team is good at estimating
in general; on average they

slightly underestimate.

Figure 7.15 Adding estimate health to our other metrics for predictability
Licensed to Mark Watson <nordickan@gmail.com>

145Case study: creating and using a new metric to measure continuous release quality
releasing every few weeks and were able to put a rating on a release based on a few
factors:

■ How many bugs they found in the production environment that they didn’t
find in the test environment.

■ How big the feature they released was, or how many tasks went into the release.
■ How long the release took measured in hours. Good releases would typically

take a few hours to complete, but if there were issues during the deployment,
releases could take 8–12 hours.

In moving to a CD model these metrics didn’t mean much anymore. Deployments
were always a single task, they took minutes instead of days, and the team didn’t run a
full regression test suite after each release. The before-and-after release process is
shown in figures 7.16 and 7.17.

 Figure 7.16 shows how things were done before CD. The team was agile, but even
in two-week increments a lot of change went into a release. They modified their pro-
cess to the representation shown in figure 7.17.

The team got as many tasks
as they could get done in
two weeks into a release.

Development
complete

Two weeks of
development

Manual and
automated testing

Release process
of a few days

Big release Production
verification

Once development
was complete there was a
multiday regression test.

All of the code was released
at the same time during

a release event.

Everything was verified in
the production environment
after the release was done.

Figure 7.16 A representation of the release process before the team moved to CD

Development is
on a single task.

Development Automated
testing

Automated
release

Production
verification

Testing is 100%
automated.

Release is automated
based on test results.

Production verification
is continuous.

Figure 7.17 A representation of the new process they used to deploy code continuously
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
Now that a release was a single task, they had to change their point of view from the
efficiency of a team to get a group of tasks out to the consumer to the aggregation of
the individual health of tasks as they were being worked and deployed. Because they
were releasing multiple times a day, they needed a simple indicator that could tell
them if their delivery process was working well.

 They started off with a mind map to get to the bottom of what they had and what they
wanted to track. In the context of their new delivery model, they needed to determine
what made up a good release. They started with the elements shown in figure 7.18.

 The two most important things the team could think of were these:

■ The release was smooth. Using CD if a release didn’t work well, it slowed down the
whole development cycle. A smooth release indicated the team was on track.

■ The consumer’s experience improved. Instead of asking if a release broke anything,
they changed to the consumer’s perspective: whether or not the product was
improving.

Then they broke it down further, as shown in figure 7.19.

The most important
aspects of a good release

The original question

What is a good release?

Smooth delivery

Improves the consumer’s experience

Figure 7.18 Part 1 of the mind-mapping exercise

Breaking aspects
down further

Smooth delivery

Improves the consumer’s experience –

–
CLOC

–

Getting to the
data points

Meet commitments

Recidivism
–

Estimate health
–

Keep it small

Escaped defects
–

Keep tasks moving forward

No bugs after a release

Figure 7.19 Getting to the individual data points for this metric
Licensed to Mark Watson <nordickan@gmail.com>

147Case study: creating and using a new metric to measure continuous release quality
 For each release they believed the following indicators would tell them if things
were good or bad:

■ They could make and meet their commitments. Even though we’re talking about a
delivery time in days, the team still needs to be able to trust their estimates so
they can have some level of predictability.
■ Measured by estimate health.

■ Tasks continued to move forward. Anything that goes backward in the workflow
could be linked to a number of problems, some of which are not understanding
requirements, poor quality of work, or lack of tests. It was important that overall
tasks were progressing and not regressing in the workflow.
■ Measured by recidivism.

■ Work items were kept intentionally small. To mitigate the risk of integration issues the
team had a goal of keeping changes to the codebase minimal in each release.
■ Measured by CLOC.

■ Releases don’t introduce bugs. The release process was very fast and relied heavily
on automated testing. As a result, any defects that escaped into the production
environment needed to be triaged so the team could figure out how to harden
their testing cycle.
■ Measured by escaped defects.

They decided to come up with a formula that combined all of these data points into a
single metric that would indicate the overall health of releases across their develop-
ment teams, a code health determination (CHD). If this metric started to trend in the
wrong direction, they could put the brakes on and dig into the problem. If the metric
stayed in a good place, then teams could continue developing and deploying at will.

 In their metric each of the four elements would make up 25% of the total value,
and each metric would have equal weight in the total calculation. If F represents a for-
mula that normalized each metric, a high level of the formula would be represented
like this:

F1(CLOC) + F2(Estimate Health) + F3(Recidivism) + F4(Escaped Defects)

They decided to create a final number that was a score between 0 and 100 where 0
meant everything was going to pieces and 100 meant everything was perfect. To create
this number they had to do some math to normalize the inputs and the outputs.

NORMALIZING CHANGED LINES OF CODE

After exploring their data the team concluded that each small change they made was
around 50 CLOC. To come to their indicator they decided to divide CLOC by 50, chop
off the decimal, and then multiply it to magnify the effect. Because 25 would be the
best possible value, they subtracted the result from 25. To handle the potential of a
negative number, they took the maximum between the result and 0 to ensure they
would stay within the bounds of 0–25. This gave them the following function:

MAX((25 - ABS((int)(cloc/50)-1)*5), 0)
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
With that formula, example inputs and outputs are shown in table 7.2.

NORMALIZING ESTIMATE HEALTH

As you saw earlier, estimate health was a 0 if everything was good, and as the value
became larger or smaller than 0, it was getting worse. To normalize this, the team had
to get the absolute value, compare the result to 0, and determine what the maximum
tolerance was for over- or underestimating. If the absolute value was greater than 0, it
should count against the total maximum value of 25. The team decided that if they
were over- or underestimating by more than three days, then there was a big problem.
They made the multiplier 7, which would bring the value really close to 0 if they were
over or under by three days. For anything more than that, they made the value 0, as
shown in this formula:

MAX((25 – (ABS(Estimate Health)* 7)), 0)

Example inputs and outputs are shown in table 7.3.

NORMALIZING RECIDIVISM

Recidivism results in a percentage or a decimal. The team was striving to keep tasks
moving forward in their workflow so they wanted to have a low recidivism rate.
Remember that tasks that are completed can have a maximum recidivism of 50% or
.5, because they would have moved backward as many times as they moved forward. To
take the output of the recidivism formula and equate that to a number between 0 and
25 where 0 is the worst and 25 is the best, they normalized the result by multiplying

Table 7.2 Example inputs and outputs after normalizing the ideal number of CLOC

Input Output Result

50 25 Perfect.

135 20 Over the sweet spot range of 0–100 CLOC results in a lower score.

18 25 Under 50 CLOC but by getting the absolute value it still yields 25.

450 0 An input of 450 results in -15, which is then normalized to 0.

Table 7.3 Example inputs and outputs for normalizing estimate health data

Input Output Result

0 25 Perfect score; estimates are right on track.

1 18 Even a day will have a significant effect on the total.

-1 18 Because we take the absolute value, -1 and 1 have the same result.

3 4 At this point it’s guaranteed the total rating will be under 80.

4 0 Anything greater than 3 results in 0.
Licensed to Mark Watson <nordickan@gmail.com>

149Case study: creating and using a new metric to measure continuous release quality
recidivism by 50 (25 * 2). Using that formula the highest possible rate of recidivism of
completed tasks would be 0, and the lowest possible result would be 25.

 As a reminder, we used the following formula earlier for recidivism:

Recidivism = Backwards Tasks / (Forward Tasks + Backwards Tasks)

Or

Recidivism = 25 – ((bN / (fN + bN)) *50)

With that formula some example inputs and outputs are shown in table 7.4..

NORMALIZING ESCAPED DEFECTS

An escaped defect was a bug that wasn’t caught in the release process; it was found
after the release was considered a success. Finding any escaped defects should make
the team stop and find out what happened so they could continue to improve their
automated test and release. Because of this even a single escaped defect should count
against the total. The formula for escaped defects was pretty simple: multiply them
and subtract from 25. As with estimate health, we take the larger of 0 or the result to
accommodate for potentially negative numbers.

MAX((25 – (Escaped Defects * 10)), 0)

Using this formula, even a single escaped defect would have a big impact on the over-
all rating. Some example inputs and outputs are shown in table 7.5.

ADDING THE ELEMENTS TOGETHER

To get a number from 0 to 100 with four equally important elements, the calculation
should be simply adding the four numbers together. But one final part of the calcula-
tion is to create a minimum and maximum for each element. The min and max of

Table 7.4 Example inputs and outputs for a normalized recidivism

Input Output Result

bN = 5, fN = 100 22.62 Not bad

bN = 100, fN = 100 0 The worst possible output

bN = 0, fN = 125 25 Perfect score

Table 7.5 Example inputs and outputs from the formula used to normalize escaped defects

Input Output Result

0 25 Perfect.

1 15 A significant impact on the total rating.

2 5 This is the highest tolerance before the number goes below 0.

3 -5 Negative numbers have a huge impact on the total rating.
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 7 Working with the data you’re collecting: the sum of the parts

Mult
by 10
an in

Esca
defe
mult
each number should represent the absolute limits of when the team needs to take cor-
rective action. If there are two or more escaped defects each release, the team needs
to stop and figure out where the problem is. Everything running smoothly would rep-
resent the minimum measurement of each input.

 To calculate the min and max, the team decided to use a scale of 0–5 for each
input. This would give more weight to each input if they started to trend in the wrong
direction. The final metric was calculated with the algorithm shown in the next listing.

static int calculateCHD(cloc, estimateHealth, recidivism, escapedDefects) {
 def chd = 0

 def nCloc = ((int)(cloc/50) - 1) * 5
 def nEstimateHealth = Math.abs(estimateHealth)
 def nRecidivism = recidivism * 50
 def nEscapedDefects = escapedDefects * 10

 chd = (minMax(nCloc) + minMax(nEstimateHealth) +
 ➥ (minMax(nRecidivism) + minMax(nEscapedDefects)) * 5

 return chd
}

private static int minMax(val){
 def mm = { v ->
 if (v >= 5) {
 return 5
 } else if (v <= 0) {
 return 0
 } else {
 return v
 }
 }
 return 5 - mm(val)
}

Using this algorithm the team successfully created a metric that gave them an indica-
tion of how releases were faring. If they noticed CHD going below 80, they knew they
had to check in to see what was not working as expected. If they were above 80, then
they could let teams continue to release at will.

 Some example inputs and outputs from this formula are shown in table 7.6.

Listing 7.2 The algorithm as Groovy code

Table 7.6 Example inputs and outputs from the CHD formula with the corresponding ratings
 in parentheses

Estimate Health CLOC Recidivism Escaped Defects CHD

0 (25) 49 (25) 0 (25) 0 (25) 100

0 (25) 100 (20) 0 (25) 0 (25) 95

Normalizes CLOC

Gets the absolute value

iplies it
 to get
teger

ped
cts gets
iplied Returns a number

between 0 and 100

Normalizes the outputs of the
individual inputs by making
the maximum 5 and the
minimum 0. Because the ideal
of all the inputs is 0, you
subtract the result from 5.
Licensed to Mark Watson <nordickan@gmail.com>

151Case study: creating and using a new metric to measure continuous release quality
When the CHD rating dipped below 80 in the span of a 48-hour window, the team
would immediately stop releasing code and work to get to the root of the problem.

 The final step was to put the data into a dashboard to easily display it to the team.
They decided to use Dashing, an open source dashboarding framework, to aggregate
and display their data easily. The end result is shown in figure 7.20.

1 (18) 65 (25) 10% (20) 0 (25) 88

0 (25) 33 (25) 20% (15) 1 (15) 80

-2 (11) 150 (15) 0 (25) 0 (25) 76

3 (4) 350 (0) 50% (0) 0 (25) 29

-1 (18) 45 (25) 50% (0) 2 (0) 43

Table 7.6 Example inputs and outputs from the CHD formula with the corresponding ratings
 in parentheses

Estimate Health CLOC Recidivism Escaped Defects CHD

The key metric is
displayed at the top

of the page.

MTTR over time is also shown; if there
is a problem, leadership wants to know

how long it would take to react.

Each building block metric is broken out below
to easily identify the source of a problem.

Figure 7.20 Using Dashing to create an easy-to-read dashboard for the larger team
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 7 Working with the data you’re collecting: the sum of the parts
Leaders and managers could focus on the top-line metrics, and teams could focus on
the next level down to make sure they were focusing on the right parts of their life-
cycle. In figure 7.20 their estimate health is lower than the other components, so the
team could work on their estimation accuracy sprint over sprint.

 After this team started publishing their dashboard, other teams wanted to do the
same. Another team that wanted to adopt this rating used lead time instead of esti-
mates to track the predictability of their work. They decided to use this rating mostly
as is; they just swapped out the estimate health rating with the lead time rating. They
had an ideal lead time of seven working days, so they crafted their lead time rating to
fit into the formula:

Lead Time Rating = 25 – ((Lead Time – 7) * 2.5)

Because 7 was the ideal lead time, they subtracted that from the current lead time to
get the difference. When lead time started to go over by a few days, there was usually a
problem, so they used a multiplier of 2.5 to enhance the effect of longer lead time rel-
ative to the maximum of 25. Their dashboard is shown in figure 7.21.

Note that the rating has gone up by 13%; that indicates that
they dipped under 80 but were able to check and adjust.

The only difference in the dashboard is the
rating used to measure consistency.

Figure 7.21 A second team decided to use the same rating system but tweak the composition of the
metric to fit their process.
Licensed to Mark Watson <nordickan@gmail.com>

153Summary
In this case they were able to take a customized metric, tweak it to meet their needs,
but use the same terminology and high-level metrics that other teams in the company
were using. This metric was a combination of several data points and was a call to
action. Using these same techniques you can create metrics of your own based on how
your team works and values that have been determined good to keep a pulse on the
progress and consistency of your development team.

7.5 Summary
Using the data collected through earlier chapters, we crafted custom metrics and used
them to give big-picture indicators of complex interactions. In this chapter you
learned the following:

■ You can create simple metrics from single data points, or you can use formulas
and algorithms to combine data for more complex and insightful metrics.

■ Some example metrics used in this chapter:
■ Recidivism—Backward Tasks / (Forward Tasks + Backward Tasks)
■ Comment To Commit Ratio—code reviews / (merged pull requests + commits)
■ MTTR—Problem Fixed Time – Problem Identification Time
■ Continuous Release Quality Rating (CHD)—(25 - ABS((int)(cloc/50)-1) * 5) +

(25-ABS(Estimate Health) * 7) + (Recidivism = 25 – ((bN / (fN + bN)) *50))
+ (25 – (Escaped Defects * 10))

■ Start off by taking time to explore your data to understand how it represents
your team and how they work.
■ Use the data you have already to define what in your development cycle is

good and worth repeating.
■ Once you have a good understanding of your data, start combining data points

to create metrics to track what matters most to your development cycle.
■ Mind mapping is great way to get to the root of what to measure.
■ Using the result of your mind map, create the formula to generate custom

metrics.
■ Adding live data into your formula gives you metrics that you can track in your

development cycle.
■ When changing your process, looking for new ways to measure your team is a

key to success.
■ Different teams within the same company can use similar ratings made up of

different components as long as they’re measuring the same conceptual things.
Licensed to Mark Watson <nordickan@gmail.com>

Measuring the technical
quality of your software
In previous chapters we’ve looked at a lot of data that you can collect throughout
your development cycle to gain insight into how your team is performing. In this
chapter we’ll transition from measuring the process to measuring the product by
using that data to determine how good your software products are.

 The question we’re asking in this chapter is, “Is your software good?” Before you
can answer, you must ask yourself, “What is good software?” Once you know that,
you can compare what you have to the ideal picture to determine where your soft-
ware products stand.

 At a high level there are only two dimensions to good software:

■ If it does what it’s supposed to do—These are the functional requirements.
■ If it’s built well—These are the non-functional requirements.

Functional requirements are what differentiate one software product from another.
These all relate to what you’re building and how your consumers are interacting

This chapter covers
■ Measuring software quality
■ Using non-functional requirements, also known

as the code “ilities,” to measure code quality
154

Licensed to Mark Watson <nordickan@gmail.com>

155Preparing for analysis: setting up to measure your code
with what you’re producing. In chapter 6 we talked about how to track metrics that
are product-specific. Metrics around your functional requirements tell you if your soft-
ware is working and satisfying the consumer.

 Non-functional requirements relate to how well your application is built. A well-
built application will be easier to update and deploy predictably, which brings us back
to early and continuous delivery through good architectures, designs, and technical
excellence.

 The previous chapters give you the tools you need to measure functional and non-
functional requirements. This chapter uses the tools and data we’ve explored up to
this point to measure the technical quality of your software products.

 If you drill into the agile principles from the Agile Manifesto, you’ll see a strong
focus on delivering frequently in the face of change:

■ Your highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

■ Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

■ Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference for the shorter timescale.

All of these are telling you to change things quickly and frequently. Then there are a
few that go even deeper:

■ Continuous attention to technical excellence and good design enhances agility.
■ The best architectures, requirements, and designs emerge from self-organizing

teams.
■ Working software is the primary measure of progress.

Anyone with an IDE and access to the internet can create working software; the really
important thing to dig into is how to create a software product that you can iterate on
quickly and is stable enough to handle your consumer’s expectations. At a glance,
measuring a codebase across these principles looks a bit nebulous, so to do that we’ll
dive into non-functional requirements, or the code “ilities.”

8.1 Preparing for analysis: setting up to measure your code
In earlier chapters we looked into the tools and practices you should be following to get
the data you need. In chapter 5 we talked about using static analysis in your CI systems,

Measuring your team against all the agile tenets

If you’d like to know how to measure all of the agile tenets, head over to chapter 10
where I’ve broken them down into what you should measure and how to do it.
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 8 Measuring the technical quality of your software
and in chapter 6 we walked through using APM tools to gather data on how well your
application is functioning and if it’s doing what it’s supposed to do. The data generated
from components in your CI and your APM systems will get you what you need.

 As a reference, here’s a list of the tools we’ve used in previous chapters and that
we’ll be referencing in this chapter.

8.2 Measuring the NFRs through the code “ilities”
The code “ilities,” or non-functional requirements1 (NFRs), are a set of properties that
describe how well software is built. These aren’t anything new; any software engineer
should be familiar with them and how they indicate the quality of software. Here are
some examples of non-functional requirements that indicate how well-built software is:

■ Maintainability/extensibility—How easy is it to add features or fix issues and
deploy your product?

■ Reliability/availability—Can your consumers get what they need from your appli-
cation consistently?

■ Security—Is your consumer’s information safe when they use your application?
■ Usability—Is your application intuitive and easy to use?

Figure 8.1 shows the code “ilities” and where they fall in the development lifecycle.

Tool Measures Metrics

New Relic Application monitoring Page response time, uptime, response time, error rate

HyperSpin Availability Uptime, response time

Splunk Reliability Error rate, mean time between failures

OWASP ZAP Security Dynamic analysis issues

SonarQube Maintainability CLOC, code coverage, issues, complexity

Checkmarx Security Static analysis issues

1 For much more detail, see en.wikipedia.org/wiki/Non-functional_requirement.

Update the
code

Build the
product

Deploy the
product

Consumers
use it

• Extensibility
• Maintainability

• Maintainability • Maintainability • Usability
• Security
• Scalability
• Reliability

Figure 8.1 The code “ilities” illustrated through the life of a software product
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Non-functional_requirement

157Measuring the NFRs through the code “ilities”
If you look at this through the lens of the systems you’re using to measure the product
and the process, you’ll see the chart shown in figure 8.2.

 Maintainability encompasses getting changes out to the consumer and all the
pieces of the build lifecycle that contribute to that.

 Usability tells you if the consumer gets what they need out of the system with the
least amount of friction possible. Wrapped up in that is whether the consumer has a
secure, reliable experience that can scale to meet demand.

 If you wrap extensibility with maintainability and you group security, scalability,
and reliability under usability, you can redraw figure 8.2 as figure 8.3.

 With these in mind we’ll focus on the two biggest code “ilities” as we look into how
to measure good software:

■ Maintainability to represent how easily you can get changes out to the con-
sumer

■ Usability to represent customer satisfaction

Manage
tasks and

bugs

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Update the
code

Build the
product

Deploy the
product

Consumers
use it

• Extensibility
• Maintainability

• Maintainability • Maintainability • Usability
• Security
• Scalability
• Reliability

Figure 8.2 The code “ilities” in relation to the components of the build lifecycle and the tools used
to measure them

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Update the
code

Build the
product

Deploy the
product

Consumers
use it

Maintainability Usability

Figure 8.3 Grouping systems used in the development lifecycle together by the two parent code
“ilities”
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 8 Measuring the technical quality of your software
8.3 Measuring maintainability
In an agile and CD context, maintainability means more than updating code; it also
means everything that goes into delivering changes to your consumers. As you saw in
figure 8.3, that includes your build and deploy systems. When you’re looking at main-
tainability you need to look at all of the properties of your codebase that contribute to
easier code updates and faster deploy times.

 Maintainability encompasses your entire development cycle and as a result is best
measured as the aggregate of data from several different systems. The main compo-
nents of maintainability are outlined here:

■ Mean time to repair (MTTR)—The measure of time from when you realize some-
thing is wrong in production, the issue is triaged, and a fix is determined and
deployed.

■ Lead time—The measure of time between the definition of a new feature and
when it gets to the consumer.

■ Code coverage—The amount of code measured in LOC that is covered by a unit
test.

■ Coding standard rules—How well your code adheres to standards of the language
you’re using.

■ How much code must be changed for features or bug fixes—The CLOC associated with
tasks that go all the way through the development cycle.

■ Bug rates—The number of bugs that are generated as new features are being
delivered.

If maintainability is measured by the ability to make frequent changes, then the two
most important metrics in this list are MTTR and lead time because they both measure
the amount of time it takes to get changes to your consumers.

8.3.1 MTTR and lead time

As we dig into MTTR and lead time, you’ll see other important metrics that affect
them. In figure 8.4 you start to see those other metrics emerging.

Maintainability and extensibility

In the context of agile delivery, the ability to easily change and deploy your code is
paramount. Often maintainability and extensibility are treated as separate entities.
Maintainability refers to the effort needed to keep your software alive and running.
Extensibility refers to the level of effort required to add new features or extend an appli-
cation. In today’s agile world where continuous methods are becoming more common,
there’s no longer a clear line between maintenance and extension. For that reason I
like to combine these two properties in the context of agile projects and certainly in
the context of projects that practice CD.
Licensed to Mark Watson <nordickan@gmail.com>

159Measuring maintainability
The two key metrics to measure how fast you’re getting changes to consumers are:

■ MTTR—How long it takes to get a small code change out to the consumer
■ Lead time—How long it takes to get a new feature out to the consumer

In figure 8.4 we started breaking out the individual steps of these two metrics. For
another point of view, figure 8.5 mind maps what goes into them both.

 As illustrated in figure 8.5, the key difference between the two is that MTTR mea-
sures triage of the existing system; lead time measures the addition of new pieces to

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Update the
code

Build the
product

Deploy the
product

Consumers
use it

Maintainability Usability

2 How much
code changed
for the fix

MTTR

3 How long it
takes to build
and deploy
changes

4 End time, fix
is in front of
the consumer

1 Start time—
something
needs to be fixed

Lead
time

1 Start time—
a task is defined

2 3 4 End time—
update is in front
of the consumer

How much code
changed for
the update

How long it takes
to build and deploy
changes

Figure 8.4 Components of lead time and MTTR as they move through the delivery process

How well do you
understand your system?

How good is your
automated testing?

How good is your
deploy system?

Deploy

Run your tests

Update the code

Triage the problem

Monitor the change

Maintainability

MTTR

Lead time

–

Deploy

Run your tests

Update the code

Prioritize the work

Get clear requirements

Monitor the change

–

Figure 8.5 A mind map breakdown of what you need to measure maintainability
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 8 Measuring the technical quality of your software
the system. Even though the systems measure similar things, finding these values
comes from different places. Lead time can be found from your project tracking sys-
tem (PTS) alone, because that measures the time between when something was
defined and when something was completed, all of which is tracked with tickets in
your PTS. You can get lead time with the following formula:

Lead Time = PTS: Task Complete – PTS: Task Start

The start time in MTTR is when a problem arises for your consumers. These problems
are detected in your APM systems, the code changes are made in your SCM system, and
the update makes it through your build system and gets deployed. To keep it really
simple you can calculate MTTR with the following:

MTTR = APM: Anomaly End - APM: Anomaly Start

This formula is great for giving you the big picture, but it glosses over a lot of the
details that go into these time ranges. If you end up with an MTTR of 16 hours, the
next question will inevitably be, “How can we get faster at fixing our code?” You can
start by breaking down the phases of your delivery into the phases of your delivery
cycle. If you go back to the steps defined in the mind map in figure 8.5, you can start
visualizing where you need to focus to continually improve your delivery times.

NOTE MTTR and lead time are measured so similarly that for the rest of this
section I’ll focus on MTTR. In the case study at the end of this chapter you’ll
find an example of breaking down lead time.

Let’s start with an MTTR of 35 hours over four releases. If you break that out to see the
amount of time it takes for each release, you may end up with something like figure 8.6.

H
ot

 fi
xe

s

Hours

2.3.2

2.3.1

2.2.2

2.2.1

0 20 3010 40

Time to repair

Triage takes
a long time.

Development time
is inconsistent.

The mean of all hot fix
deploys = MTTR of 35.

Testing is the biggest
target for time savings.

Deploy time
is consistent.

Build time
is consistent.

Development

Triage

Build

Test

Deploy

Figure 8.6 An example breakdown of MTTR over four releases; testing takes much more time than
anything else in the fix cycle.
Licensed to Mark Watson <nordickan@gmail.com>

161Measuring maintainability
In this example the MTTR is over 30 hours, most of which is testing. It also takes a con-
sistently long time to triage problems, and developing fixes doesn’t seem predictable.
The best parts of the process to address are the ones that are usually long; that way you
can get a consistently measurable benefit from addressing them.

 The example in figure 8.6 is a good example of code with poor maintainability:

■ The system appears to be so complex it takes a very long time to triage. In my
experience if a problem takes longer than an hour to triage, your system is way
too complex.

■ Development time of fixes is unpredictable. Release 2.3.2 took a much longer
time to fix than the other releases; it would be worth drilling in to find out the
cause.

■ Test cycles that rely heavily on manual testing or a focus on complete regression
for small changes are a symptom of a lack of understanding of production
behavior.

In figure 8.6 it’s hard to tell where to start. If you want to get fixes out faster, it looks
like you should:

■ Try to improve the test cycle.
■ Figure out why it takes so long in triage to understand what’s wrong when the

system breaks.

Figure 8.7 shows a very different scenario that depicts predictability through a break-
down of MTTR.

H
ot

 fi
xe

s

Hours

2.3.2

2.3.1

2.2.2

2.2.1

0 10 155 20

Time to repair

Development time
seems reasonable.

This looks like a
very complex build.

Testing and
deploying are

really fast.

The team
can get to the
cause quickly.

Development

Triage

Build

Test

Deploy

The mean MTTR
dropped to 14.5.

Figure 8.7 Another example breaking down MTTR over four releases: with testing fully automated, MTTR
goes way down. The next focus for improvement should be the build process.
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 8 Measuring the technical quality of your software
In figure 8.7 the team can get to the root of problems and update the code quickly,
indicating the codebase is much more maintainable than that shown in figure 8.6. But
the build takes a really long time, so reducing build time is an actionable item the
team can take away from these measurements. In this case it may also be a good idea
to cross-reference the shorter test cycle with metrics to ensure that your team has ade-
quate test coverage and they’re not just skipping tests for the sake of speed.

 For the teams on the ground adding features and fixing problems, you can break
into even finer details like how much code has to change in these time ranges and
what’s taking time inside the build process. For this detail you need to add more data.

8.3.2 Adding SCM and build data

What gets built and how often is the next key indicator of a maintainable codebase.
Commits with a high CLOC (changed lines of code) are a sign that it takes a lot of
work to change things. If you start to break down the elements of a change to your
software products, the number of lines of code it takes to fix things or deliver new fea-
tures is one of the primary indicators of maintainability. A good target to have is a low
CLOC, a high number of releases, and a low number of fixes. This ultimately shows that your
code is maintainable enough to easily make small tweaks and get in front of the con-
sumer quickly.

 Let’s look at an example. A team is practicing CD and releasing updates to their
consumers three times a day. They keep track of their CLOC for each release, as shown
in figure 8.8, which includes a month’s worth of hot-fix release data. Based on their
target, is their code base maintainable?

 Figure 8.8 shows the following statistics over the course of a month with 60 releases
made by the CD system:

■ Ten commits were made and different hotfixes were deployed.
■ Of those ten commits, on average only six lines of code were added and four

were removed.
■ Therefore 16% (10 in 60) of the total releases were hot fixes.

If you assume that the CD system makes 3 releases in an 8-hour day with about 3 hours
between releases, then the following are true:

On average fixes
are very small.

10 total commits

Figure 8.8 The amount of
code that changes for all hot
fixes in a month
Licensed to Mark Watson <nordickan@gmail.com>

163Measuring maintainability
■ For the 10 releases that needed to be fixed, for about 30 hours in the month (out
of 730 total hours in a month) the code was in a state that needed to be fixed.

■ That’s just 4% of the entire month when the released version of the product
had a problem.

Pretty good.
 As a counter example, let’s take a team that releases their software every two weeks

with 1 day of regression testing and a 4-hour release at the end of their development
cycle. To complete 10 releases would take 10 full days of regression testing and an
additional 5 days of release activity, and that’s not even measuring the time it would
take to find problems and fix code. That would mean that over half of their time was
used fixing bugs no matter what the CLOC was on the fixes.

 Realistically there are potential outcomes in these scenarios:

■ Teams don’t fix bugs because they know they won’t be able to complete any
more features if they spend all of their time testing and releasing code.

■ Teams jam as many fixes as possible into a release, and thus you’ll see a very
high CLOC on hot fixes. This results in longer test cycles and bigger releases,
both of which are indicators of code with poor maintainability.

To make sure CLOC and number of fixes are relevant, ensure that you’re also count-
ing total deployments so you can get a percentage of fix to release (FRP). To summa-
rize, the formula for that is

Fix Release Percentage (FRP) = Total fixes / releases

You want your fix release percentage to be as low as possible. A 0 is perfect and any-
thing over .5 is usually pretty bad. By combining MTTR and FRP you can calculate a
maintainable release rating with this formula:

Maintainable Release = MTTR(in minutes) * (Total Fixes / Releases)

In this case the closer to 0 you are the better. Continuing the initial example, if you have
60 releases and 10 fixes, you have a 16% FRP. If the same team has a 4-hour MTTR, that
team then has a maintainable release rating of 40. To compare this to a bad number, if
you have a team that has a hot fix with every release and an MTTR of 12 hours, that
would give you a maintainability release rating of 720. Due to the broad range of poten-
tial values, this metric becomes a good benchmark that your team can focus on improv-
ing over time rather than targeting a specific value out of the gate. Table 8.1 shows
example inputs and outputs for the maintainable release rating (MRR).

Table 8.1 Example inputs and outputs for a maintainable release rating

Inputs MRR Notes

MTTR = 240 minutes
Total fixes = 3
Total releases = 30

24 Given a 4-hour release time, this team needs to fix only
1 in every 3 releases, so the rating isn’t bad.
Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 8 Measuring the technical quality of your software
8.3.3 Code coverage

Code coverage is the percentage of your codebase that’s covered by automated tests. You
can measure code coverage during the build process with a number of tools that run
during the build. Some examples are Cobertura, JaCoCo, Clover, NCover, and Gcov.
I’ll take advantage of the comprehensive dashboards in SonarQube to show you how
to turn code coverage reports into actionable data. An example coverage report is
shown in figure 8.9.

 In theory, if you have great test coverage, then your project is more maintainable
because developers can find out if their changes affected the rest of the system by simply
running their unit tests. The tricky thing about code coverage is that it tells you how

MTTR = 240 minutes
Total fixes = 10
Total releases = 5

480 Even though this team has a 4-hour release time, they
have 2 fixes per release on average, which is really bad.

MTTR = 480 minutes
Total fixes = 1
Total releases = 100

4.8 This team has a higher MTTR, but they rarely have to fix
things (once in 100 releases), so they’re doing great.

Table 8.1 Example inputs and outputs for a maintainable release rating (continued)

Inputs MRR Notes

Total coverage
Clicking a file
loads details

below.

Coverage of
each package in

the project

Coverage of
each class in

the project

This panel will show the detailed
breakdown of coverage for a specific class.

Created by cwhd7 on 10/2/14.

Figure 8.9 An example breakdown of code coverage in SonarQube
Licensed to Mark Watson <nordickan@gmail.com>

165Measuring maintainability
much of your codebase is exercised by tests, not how good your tests are. If you write a
test that runs a method but doesn’t assert anything to see if the result is the expected
one, then that method is considered covered, even though the test doesn’t check any-
thing. There are two things you can do to your code coverage metric to add more value:

■ Mutation testing—Comparing test results with test results after the underlying
code has changed or mutated

■ Adding data points to show the value of coverage—Using data from PTS, SCM, and CI

Mutation testing is an automated test for your tests. Essentially it messes with your
code before your unit tests run. This way, if your tests pass after inserting blatant
errors, you know that even though a test is executing your code, it’s not really testing
your code. A great tool for this is Pitest (pitest.org/). An example screenshot of a
Pitest analysis is shown in figure 8.10.

 Another strategy for vetting your code coverage numbers is to track it alongside
other metrics. When your codebase has a great suite of automated tests, that usually
translates into a fix release percentage and a maintainable release rating. If you have
great coverage but your releases aren’t going well, that’s a good sign that either you’re
not testing the right things or your tests are bad.

 Often code coverage gets lumped in with static code analysis because the two
reports are typically generated at the same time. The two are complementary but dif-
ferent measurements of a maintainable codebase.

8.3.4 Adding static code analysis

Static code analysis can check your code for best practices against common rule sets
for whatever language you’re using. A number of tools can do this for you. SonarQube
is a great option.

 As I mentioned in chapter 5, SonarQube in Action, published by Manning, is a great
book with a lot of details, but I’ll give you a quick rundown of maintainability high-
lights that you can start using today.

 The easiest things to look at are these:

■ Lines of code—A large codebase is usually more complicated to build and deploy.
This usually also indicates that your codebase does a lot of things, which usually

This is covered and
survived mutation.

This code has line coverage
but wasn’t mutated.
This code failed
mutation tests.

This code has no
coverage at all.

Figure 8.10 An example mutation test report using Pitest
Licensed to Mark Watson <nordickan@gmail.com>

http://pitest.org/

166 CHAPTER 8 Measuring the technical quality of your software
sets your team up for conflicting changes when different developers or teams
are working on different features. For better maintainability it’s good to keep
your modules small and focused.

■ Duplications—The classic problem with duplicate code is that if you change it in
one place and not another, you end up with a bug where you didn’t change the
code. Duplications also directly conflict with coding practices of modularity and
reusability (a few more “ilities” that fit under maintainability). Ideally you
shouldn’t have duplicate code.

■ Issues—These will measure your code against the coding standards for whatever
language you’re using. The better developers are at writing code aligned with
standards, the easier it is to make changes and the easier it is for new developers
or other teams to jump in and make changes. Static analysis tools all have classi-
fications of issues from really important to not so important; at a minimum you
should ensure that the really important issues are kept at zero.

■ Complexity—Also known as cyclomatic complexity or the amount of nested code
you have. If you have an if statement nested inside a loop and two other if
statements, you’ll have a high cyclomatic complexity. This code is hard to read,
debug, and test. Ideally you want to keep complexity as low as possible.

Figure 8.11 shows a screenshot of SonarQube and some default key statistics to be
aware of.

 All of the metrics are really easy to read, and you can see how they change over
time. Figure 8.11 has an interesting anomaly; over the last 30 days no code has

How big is this codebase;
smaller is easier to maintain.

Following code standards
is an indicator of good

maintainability.

Lower complexity equates
to higher maintainability.

High duplications make the
code less maintainable.

Figure 8.11 Key metrics from static analysis that indicate maintainability
Licensed to Mark Watson <nordickan@gmail.com>

167Measuring maintainability
changed but the number of issues and estimated tech debt have decreased. That’s
probably because this team ran their analysis and then changed the rule set by which
the issues were measured. Updating code standards is a great task for any develop-
ment team because it forces the team to look at the rules, discuss them, and decide
what makes the most sense for the way they write code.

 A metric that I’m not diving into is estimated technical debt. SonarQube has built-
in algorithms that will calculate how long it should take your team to fix all the issues
identified by static analysis. Even though this is a really cool feature of SonarQube, it
doesn’t take into account bigger pictures like potential problems with your build sys-
tem or architectural issues related to integration between code modules.

Static analysis is awesome and every development team should use it. But like every-
thing else, static code analysis alone can’t give you the complete picture. Some prob-
lems with using static code analysis alone are these:

■ Even if the code is easy to update and has great tests, that doesn’t make it easy
to deploy.

■ There could be integration issues with the larger systems that you can’t see from
static analysis.

■ This doesn’t check the behavior of the application.

As with the rest of your maintainability metrics, static code analysis is a great tool to
use to give you actionable insight into your codebase but doesn’t stand alone as the
de facto measurement for maintainability.

 What static analysis alone doesn’t give you is the correlation between the textbook
quality of your code and its actual performance, or how it relates to the productivity of
your team.

8.3.5 Adding more PTS data

Adding PTS data will help round out the picture to show how all of these metrics affect
how your team is delivering. We covered how to collect these metrics and their impor-

Balancing tech debt and delivery

In chapter 3 our case study addressed identifying tech debt trends using PTS data.
It’s important to use this data to find when poor maintainability is starting to creep
into your software products because it’s easy to tie to the bottom line. If you’re tracking
how the speed of delivery slows down as a result of tech debt, it’s usually not that
tough to get buy-in from project sponsors to clean it up to ensure you can keep deliv-
ering at your best rate instead of constantly slowing down. You can add the data-track-
ing maintainability into your tech debt impact analysis to break it down into small
enough chunks for your development team to take action on, and you can use the
PTS data as an indicator to show your sponsors how it affects their project. You’ll see
more on this in chapter 9.
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 8 Measuring the technical quality of your software
tance in previous chapters, so here I’ll highlight how they tie back into indicating how
maintainable your codebase is:

■ Bug rates—If you see lots of bugs being generated as you’re delivering good
code, that’s an indication your code isn’t maintainable. You’ll usually see bug
rates parallel poor code coverage, high issues from static analysis, and high
MTTR and lead times.

■ Recidivism—Recidivism directly impacts MTTR and lead time because as things
go backward in the workflow, you’re effectively doing the same things more
than once. If a developer says something is done but it ends up getting rejected
by QA, that development work needs to be done again, impacting your delivery
times. High recidivism typically parallels high bug rates and can be affected by
all the other metrics we’ve discussed relating to maintainability.

■ Velocity—All of the metrics discussed in this chapter potentially affect velocity.
It’s possible to have a steady cadence of delivery on a terrible codebase. In that
case you’ll have a team that’s not reaching their potential output. If you see a
consistent velocity with terrible maintainability metrics, then you should think
about how you can make your codebase more maintainable to get more done.

If your application is very maintainable, you should be able to deliver to your consum-
ers consistently and with high quality. Delivery is the first half of the equation; now
you have to make sure that what you’re delivering is what your consumers want and
something they can use.

8.4 Measuring usability
There are several different “ilities” that demonstrate how usable your application is or
how good an experience you’re giving to your consumers. The big ones we’ll focus on
are outlined in figure 8.12.

 Most of these metrics measure how well your application is performing. Perfor-
mance metrics are important because they give you real data on how healthy your

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Update the
code

Build the
product

Deploy the
product

Consumers
use it

Maintainability Usability

• Security
• Customer interaction
• Scalability
• Reliability

Figure 8.12 Once something has been delivered, you need to measure it to make sure it’s good.
Licensed to Mark Watson <nordickan@gmail.com>

169Measuring usability
application is, and combined with business success metrics and customer satisfaction
they show you where you can improve your product to make your consumers happy.

 To show how to break maintainability into measureable and actionable items, I
started with the high-level indicators—MTTR and lead time—and then dove into the
elements that affect those metrics. For usability the parent indicators of success are
the business success metrics as defined for your application and how consumers inter-
act with your site, as shown in figure 8.13.

 In chapter 6 I talked about using arbitrary metrics in your logs or from instru-
mented code to measure the value your consumers are getting from your application.
These metrics reflect your functional requirements, or the specific data points that
tell you if your application is providing value to your consumers. Because an entire
chapter is devoted to high-level metrics to track, I’ll jump right into the elements that
affect consumer satisfaction and business success criteria and where to get them.

8.4.1 Reliability and availability

Reliability and availability are often grouped together when the code “ilities” are dis-
cussed. I used to think they were the same thing, but when I measure them they defi-
nitely point to different but closely related factors.

 Availability is the measure of how much time your application is functioning rela-
tive to how frequently your consumers want to use it. If you have a web application for
a global user base, then your availability needs to be as close to 100% as possible
because people from different time zones will be logging in and using it as the globe
spins. In addition, you may have contracts with partners that specify service level
agreements (SLAs) that bind you to supporting availability times of 99.999%, or about
4 hours a month. Conversely, if your application is used in a retail location that is
open from 7 a.m. to 9 p.m. seven days a week, it probably doesn’t matter if it’s not
available from 9:01 p.m. to 6:59 a.m. every day. Availability can be measured by the fol-
lowing metrics:

■ Uptime—What percentage of the time your application is functioning.
■ Page response time—If your application is so slow that pages aren’t loading in the

time your consumer expects, you can consider it unavailable.

Does the
application
work well?

Does it do what
it’s supposed to?

Consumer interaction

Reliability

Scalability

Security

Usability

Application monitoring

Business success metrics

–

Consumer interaction
–

Figure 8.13 Mind mapping the parent-child relationships of usability and data
Licensed to Mark Watson <nordickan@gmail.com>

170 CHAPTER 8 Measuring the technical quality of your software
Reliability means how consistently your application does what it’s supposed to do. If
you have intermittent issues with your application, it’s not reliable. For example, if you
have an e-commerce application where you can’t add items to the shopping cart when
the site is under heavy load, it’s not very reliable. You can measure reliability with the
following metrics:

■ Mean time between failures—How frequently your application breaks for your con-
sumers.

■ Response time—If your response time isn’t consistent, then your application isn’t
reliable.

■ Error rate—By monitoring your logs, you can see how many errors you have over
time.

You could have an application that is up all the time (highly available) but doesn’t
function correctly 50% of the time (low reliability). You could also have an application
that does what it’s supposed to do all the time (highly reliable) but is down for mainte-
nance for an hour a day (low availability).

 Even though the two are different, there’s overlap in how they’re measured. Two
products that help measure uptime are Hyperspin (www.hyperspin.com/en/) and
New Relic (www.newrelic.com/). Example reports from Hyperspin in figure 8.14 show
the data you need to measure availability.

 As you can see, you have uptime, downtime, and the number of outages, and you
can click into the report to get details on outage history.

 New Relic has a similar feature that creates an availability report. The New Relic
version is shown in figure 8.15.

 As you can see, availability is straightforward to measure and there are plenty of
tools that can monitor it for you. Figure 8.15 also shows that New Relic can give you
error rates for your application.

 Another way to get error rate and mean time between failures is through log analy-
sis. Figure 8.16 shows a simple query in Splunk (www.splunk.com/) that can get the
error rate as output by the logs.

Figure 8.14 Example basic report from Hyperspin
Licensed to Mark Watson <nordickan@gmail.com>

www.hyperspin.com/en/
www.newrelic.com/
http://www.splunk.com/

171Measuring usability
Splunk and New Relic have rich APIs that offer reliability and availability data to visual-
ize along with the rest of your data. Regardless of which tools you use, measuring the
health of your application by availability and reliability produces core metrics that tell
you how well you software is working for your consumer.

8.4.2 Security

Your consumers expect to be in a secure place where their personal information isn’t
in jeopardy of being stolen. I list security under usability because if you don’t have a
secure site, then no one will want to use it. Keeping your customers secure and their

The throughput line represents
traffic; this spike could represent

a launch or campaign.

This report also includes
errors and throughput.

There aren’t many errors
in this application.

The background
represents uptime.

Figure 8.15 New Relic’s version of visualizing and reporting availability

You can see the error
rate over time.

Search for whatever
you want.

Figure 8.16 Visualizing error rate using Splunk
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 8 Measuring the technical quality of your software
data safe is one of the most critical things to keep in mind if you’re in the business of
building consumer-facing software products.

 “Hack yourself first” is a good mantra to ensure you’re testing your site for security
holes. The following tools are popular options for ensuring your site is secure:

■ Static code analysis—SonarQube has some rules on ensuring your application is
secure, but there are other static analysis tools that specialize in this. A few pop-
ular ones are Checkmarx (www.checkmarkx.com/), Coverity (www.coverity
.com/), and Fortify.2

■ Dynamic code analysis—Examples are Veracode3 and WhiteHat (www.whitehatsec
.com/). A great open source option is OWASP Zed Attack Proxy4 (ZAP).

Security is a big enough topic for a completely separate book, but if you’re not sure
where to start, here are some tips.

 Memorize the Open Web Application Security Project (OWASP) top 10.5 Note that
the details on this page sometimes gets out of date but the list remains valid. There’s a
list for mobile applications as well as one for web applications. These lists give you the
10 most important things to keep in mind as you’re designing a secure software product.

 OWASP ZAP is a great way get started doing security scanning on your application.
ZAP will use a spider to crawl through your site and use common hacking techniques to
attack it and report back on vulnerabilities. An example of ZAP is shown in figure 8.17.

2 Fortify static code analyzer, www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html?.
3 Executing data in real time, www.veracode.com/products/dynamic-analysis-dast/dynamic-analysis.
4 Integrated penetration testing tool for finding vulnerabilities in web applications, www.owasp.org/index

.php/OWASP_Zed_Attack_Proxy_Project.
5 Tips for designing secure software, www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet.

List of requests
made by ZAP

Details on a specific
request and response

Security holes are
flagged as they’re found

Figure 8.17 An example screenshot of OWASP ZAP
Licensed to Mark Watson <nordickan@gmail.com>

www.checkmarkx.com/
www.coverity.com/
www.coverity.com/
www.whitehatsec.com/
www.whitehatsec.com/
www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
www.veracode.com/products/dynamic-analysis-dast/dynamic-analysis
www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html?
www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

173Case study: finding anomalies in lead time
If your site fails security analysis, you should stop whatever you’re doing and fix the
problems. Suffice it to say that a site with poor security has very low usability.

8.5 Case study: finding anomalies in lead time
In this case study we’ll look at a team that’s practicing Kanban for their task manage-
ment. They had a steady stream of work, and they paid close attention to lead time to
make sure that everything was flowing through their development cycle as consistently
as possible. They started tagging their tasks so they could see not only overall lead
time but also lead time per tagged group of tasks. Once they started tracking tagged
groups of tasks, they started to realize that lead time for everything tagged “cam” was
much higher than everything else and was skewing their average. Figure 8.18 shows
what they saw when they filtered by the “cam” tag.

 Once the team began digging, they also noticed that everything tagged “cam” also
had a much higher CLOC. They broke out their lead time to see where in the process
the extra time was coming in. As shown in figure 8.19, they could see that the build and
deploy process was fine, but development was taking longer than usual on these tasks.

Of the offending tasks
most are labeled “cam.”

There are 63 total
tasks with a 19-day

lead time.

ALOC = added
lines of code

query

Filtering into all
tasks that have a

high lead time

Compared to other
labels this is a very

high CLOC.

Figure 8.18 The result of breaking down lead time by tags
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 8 Measuring the technical quality of your software
They decided to refactor this part of the code base, abstracting the inputs and outputs
with interfaces and then writing new code that handled requests, as shown in figure 8.20.

 This allowed them to write new code with good test coverage in smaller modules
and eventually stop calling the problem code in favor of the new code.

Refactoring patterns

There are a number of patterns you can use to refactor your codebase; using the right
one will depend on the context of your changes. I’ve seen the pattern illustrated in
figure 8.20, called “surround and starve,” work well for moving from large monolithic

R
el

ea
se

s

Hours

Lead time by feature release

Development time is
the obvious culprit.

aut.r.2.5

aut.r.2.4

aut.r.2.3

cam.r.5.4

cam.r.5.3

cam.r.5.2

0 12 186 24

Development

Define

Build

Test

Deploy

Figure 8.19 Breaking down lead time for tagged tasks to find where the time sink is happening

Code with low
maintainability.

Abstract inputs
and outputs

with interfaces.

As you add
new functionality,
build it out with

new code.

No longer called,
the old code will

“starve.”

Problem code Problem code Problem code

New code

New code

Figure 8.20 The surround and starve refactoring pattern
Licensed to Mark Watson <nordickan@gmail.com>

175Case study: finding anomalies in lead time
After breaking down their development plan, the team realized that they could refac-
tor as they went along without adding much additional time to their current updates.
By focusing on new code that was decoupled from the problematic code, they could
ensure that they had good code coverage and clean code from the start. They created
a new project in SonarQube so they could monitor their new projects and ensure they
had good code coverage and were following standards.

 Every time they got a new task that would be tagged “cam,” they started developing
with their new approach. At first, development time for new tasks went up by a few
days, but after only five releases they started to see the benefits of this approach, as
shown in figure 8.21.

codebases to smaller, more modular, and easier-to-maintain codebases, as alluded
to in this case study. There are entire books dedicated to refactoring. Two good ones
are Refactoring: Improving the Design of Existing Code by Martin Fowler (Addison-Wesley
Professional, 1999) and Refactoring to Patterns by Joshua Kerievsky (Addison-Wesley
Professional, 2004).

R
el

ea
se

s

Hours

Lead time by feature release

Code with the new
pattern was versioned 6.x.

By the fifth version 6
release, development time
was drastically reduced.

cam.r.6.8

cam.r.6.7

cam.r.6.6

cam.r.6.5

cam.r.6.4

cam.r.6.3

cam.r.6.2

cam.r.6.1

cam.r.5.4

cam.r.6.0

cam.r.5.3

cam.r.5.2

0 14 217 28

Development

Define

Build

Test

Deploy

Figure 8.21 After five releases development time was reduced by over 60%.
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 8 Measuring the technical quality of your software
Without question, this strategy helped this team improve their delivery and their soft-
ware products by making them more maintainable.

8.6 Summary
Good software is measured across several dimensions. Using the code “ilities” and sev-
eral freely available tools, you can measure these dimensions to understand the qual-
ity of your code. In this chapter you learned the following:

■ To measure good software in an agile context you can go back to some agile
principles that recommend the following:
■ Continuous and frequent delivery
■ Technical excellence
■ Good architectures
■ Working software

■ Use the code “ilities” or non-functional requirements to measure how well your
software is built.

■ Maintainability and usability are top-level measures.
■ Maintainability tells you how fast you can iterate, and it can be measured with

these metrics:
■ MTTR tells you how fast you can fix issues for your consumers.
■ Lead time tells you how fast you can get new features in your products.
■ CLOC ensures code can be changed without huge efforts.
■ Code coverage shows that your code is well covered by automated tests.

■ Usability tells you how well your application works for your consumers and is
measured with these metrics:
■ Availability tells you how often your consumers can use your application.
■ Reliability tells you how consistently your application works for your consum-

ers.
■ Security tells you that your application is safe for your consumers.

■ The following tools will help you get better insight into measures of maintain-
ability:
■ Sonar is a great tool to visually analyze code coverage and rules compliance.
■ Other code coverage analysis tools include Cobertura, JaCoCo, Clover,

NCover, and Gcov.
■ Pitest is used for mutation testing, which helps test your tests.

■ The following tools will help give you better insight into measures of usability:
■ New Relic for availability and reliability
■ Splunk for reliability
■ Coverity, Checkmarx, Fortify, or OWASP Zed Attack Proxy (ZAP) for security

scanning
■ You can measure how maintainable your releases are by combining key metrics:

■ MTTR(in minutes) * (Total Fixes / Total Releases)
Licensed to Mark Watson <nordickan@gmail.com>

Publishing metrics
As you’ve learned about the different metrics you can build and use throughout
this book, you’ve been publishing them along the way. If you create a gigantic dash-
board with everything we’ve talked about, you’ll end up with lots of pretty charts
and graphs that are impossible for anyone except you to understand. Organizing
this data for the right audiences is an important way to convey the metrics about
your team effectively.

 My cardinal rule of designing metrics is to keep them actionable, and the same
thing applies to publishing metrics. Publish the data to people who can affect the
outcome of your metrics in a positive way. Giving people metrics they can’t improve
will lead to either unnecessary stress or a disregard of the data you’re showing
them.

This chapter covers
■ How to successfully publish metrics across the

organization
■ Different methods of publishing metrics and

dashboards
■ What types of metrics are important to which

parts of your organization
177

Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 9 Publishing metrics
9.1 The right data for the right audience
People at different levels of your organizations will need different types of input in
order to answer the questions pertaining to their roles. Figure 9.1 shows examples of
such questions.

 Data should be distributed across the organization in such a way that everyone can
get the data they care about at a glance. Here are a few traps that teams fall into when
they start publishing metrics:

■ Sending all the data to all stakeholders—When you’re collecting a lot of great met-
rics, it can be easy to forget that not everyone cares about everything. You may
be really excited that your CLOC per hot fix is down to 10, but that may not
make sense to your product owners. You don’t want to hide information, but
you also don’t want to overreport data.

■ Emailing reports that don’t make sense out of context—Some people spend their
entire day on a single project; others spend a small amount of their time across
several projects. If a stakeholder receives an email with information about two
days of progress toward goals from your last retrospective, they may not under-
stand what you’re talking about or how it affects the bottom line. If you really
feel like you need to send certain data out to the entire company, ensure that
you tie it back to metrics or information your audience can relate to.

■ Creating web-based dashboards that have too much data for the intended audience—
Along the same lines of sending all the data to every stakeholder, creating a
dashboard that doesn’t have data a viewer can make sense of and potentially
take action on immediately will confuse and frustrate people. We’ll talk about
designing dashboards at length later in this chapter.

Are we hitting
our strategic

goals? Are our
projects

on track?

Are our
systems

working well?

How much
are we

spending? Are our
processes

working well?

Are we
hitting our

commitments?

Are
pull requests

good?

Executives

Developers

Technical
managers

Program
managers

Are our
customers

happy?

Figure 9.1 Different levels/roles in the organization and the questions they ask
Licensed to Mark Watson <nordickan@gmail.com>

179The right data for the right audience
■ Updating published data without letting anyone know—You may update your data
once a sprint, once a day, or once a minute. The interval at which you’re pub-
lishing data is important for your audience to know and is ideally visualized on
your dashboard. If you’re publishing data every sprint, you may note the sprint
number on your dashboard; if you’re publishing data every minute, you may
have a running histogram showing the data changing over time.

All of these bullets point to the same problem: giving people the wrong information
or too much of it.

 To ensure that you provide data to people who can affect the processes reflected by
it, start off by looking at what groups or individuals inside your organization can affect
directly. An example of this is shown in figure 9.2.

 By giving people data they can act on, you’re helping keep everyone focused
within the boundaries of their responsibilities.

 If you take figure 9.2 and align the questions with the data we’ve been collecting
throughout this book, you’ll start to see that another way to visualize the right type of
data for the right audience would be to put everything on a grid, as shown in figure 9.3.

Have the most power to
affect tactical execution

Have the most power to affect
component-level metrics

Have the most power to
affect organizational issues

Have the most power to
affect budgets and strategy

Audience

Executives

Vice presidents

Directors

Developers

Agile coach

Figure 9.2 A mind map showing the
different levels of the organization
and what they can affect

How well are we
managing code?

Leadership

Managers

Development
team

Project
tracking system

Source
control

Continuous
integration

Application
performance monitoring

How is our
code quality?

Is our software
working well?

Are our
customers happy?

How much are
we spending?

How frequently
are we delivering?

Are we hitting our
commitments?

Figure 9.3 The intersection of the levels of a typical organization, the questions they ask, and the
data sources where you can find the answers
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 9 Publishing metrics
Even though everyone on the team cares about all of these things, the questions are
visually aligned with what each role across the organization can immediately affect.

9.1.1 What to use on your team

The team on the ground delivering changes to your software is generating the build-
ing blocks of your metrics and will care about the details because they reflect the day-
to-day work. Realistically, it’s tough to focus on all the data you’re generating all the
time. I like to pick key metrics from
each system we’re pulling data from
and publish those as defaults so we’re
getting a good picture of the entire
software lifecycle at a glance. A good
strategy for your team is to publish all
your data but organize your reporting
so your team is paying attention to the
metrics you agree on in your planning
sessions.

 Let’s take this scenario as an exam-
ple: A team found that they had a high
percentage of failed builds from their
CI system. They were tracking the
ratio of good/bad builds, as shown in
figure 9.4.

 When they started to investigate
the problem, they found that many of
the issues were small mistakes that
could have been caught if there were another pair of eyes on the code changes. The
team had recently moved from using SVN as their SCM system to Git and was simply
committing code to the master branch, as shown in figure 9.5.

Just over half of
total builds pass.

The team regularly has around 80-90
builds during a development cycle.

Figure 9.4 A team’s ratio of good and bad builds.
They regularly had approximately half of their
builds pass.

SCM CI system

Developer checks
a change into SCM.

CI system runs tests and
various other build tasks.

There is a high number of
build errors due to mistakes
that could be caught by peer

code review.

The CI system detects
changes to source control

and kicks off builds.

Figure 9.5 How the team put code into their SCM.
Licensed to Mark Watson <nordickan@gmail.com>

181The right data for the right audience
They decided to implement the pull request (PR) workflow to add peer code reviews
into their development cycle to help improve the quality of their code. When a devel-
oper was ready to commit code, instead of checking it directly into the master branch,
they would open a pull request and ask their peers for feedback, as shown in figure 9.6.

 In their next retrospective they
noticed that their build ratio had
improved significantly, as shown in
figure 9.7.

 When they looked into their build
results they found that they had a lot
fewer builds, the success percentage
was much higher, but their total num-
ber of builds had gone down.

 As they discussed the new process in
their retrospective, PRs came up as a
problem repeatedly. Upon further dis-
cussion and analysis, they realized that
developers were using a PR as a way to
get feedback instead of as a quality
check.

 A good PR should include code
complete with tests and should be
ready to ship to consumers. The pur-
pose of the PR would be for peer developers who had deep understanding of the soft-
ware to ensure that the changes being made were appropriate for the end goal and
that they didn’t conflict with anything else under change. A good PR would have few
or no comments and should get merged fairly quickly.

SCM CI system

Developer checks
a change into SCM.

CI system runs tests and
various other build tasks.

By ensuring all commits ask
for feedback in a pull request
(PR), developers should have

more accountability for
their changes.

Peers review
and comment.

Figure 9.6 The proposed updated workflow: moving to pull requests to reduce the number of build
failures

Almost 75% of builds are passing;
that looks like a huge improvement.

The total number of builds has
gone down by close to 60%.

Figure 9.7 Good/bad build ratio had improved
significantly, but total number of builds had gone
down significantly.
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 9 Publishing metrics
 Instead, developers were checking in half-baked code to start design discussions
through a PR. This was causing the team members to get distracted from their own
changes and have lengthy discussions in the comments of the PRs. Developers would
commit multiple times to the same PR, which would stay open for days while they
exchanged comments.

 Collaborating through pull requests was apparently ensuring that few small mis-
takes were being made, but by implementing the PR workflow they ended up getting
side effects they didn’t expect. If they could go back to the practice of submitting com-
plete code and get the benefit of finding problems before they went into the build
pipeline, they might be able to get better quality and much more frequent delivery.
They decided to track the metrics that pointed to negative side effects:

■ High number of comments—They saw that if a PR had more than six comments it
was an indication that it was getting tossed around too much. If they saw com-
ments going up, they should investigate to find out why a solution was so con-
troversial.

■ PR duration—If a PR was good, it should get merged within the day. If it needed
a slight tweak, then maybe it would get fixed and merged the day after it was
originally submitted. PRs open for multiple days indicated there was a problem
somewhere; either the team didn’t agree on the technical implementation and
they were spinning on the best solution or for some reason no one was review-
ing, approving, or merging the PRs.

■ Number of commits per PR—A PR starts off as a few commits. If there are com-
ments that need to be addressed or the PR gets rejected, then the original devel-
oper will add more code through commits to address the issues. The more
commits on a PR, the worse the original PR was, so this number should be low.

High numbers of PR comments and commits along with long PR durations were con-
tributing to longer lead times and longer development times. In their effort to
improve they put those three metrics at the top of their operations dashboard, which
the team members looked at and reviewed every day. PR duration and number of com-
mits per PR should stay low. The goal was to keep PRs open for less than a day; by
tracking that in hours they wanted to make sure it didn’t creep higher than 24. Com-
mits per PR should also stay low; the team noticed that by exploring their data when
commits for a PR started to go over 6, there was usually a problem.

 The dashboard they configured is shown in figure 9.8.
 Note this is a focused list of metrics that the team decided to concentrate on. They

can still pay attention to the other metrics on their dashboard such as lead time and
development time, but this targeted list of metrics will help them improve their pro-
cess where they’ve already identified a problem.

 Just as in the previous example, during your team’s retrospective you should iden-
tify things that could be done better and metrics that measure those items. Update
your dashboard each development period to reflect what the team agreed to be
Licensed to Mark Watson <nordickan@gmail.com>

183The right data for the right audience
immediately aware of, but keep the old metrics on it to get a truly holistic picture of
how things are working.

 If you’re just getting started and aren’t sure what to focus on, the following metrics
are a good starting point for your team. They will inevitably raise questions that cause
you to drill down farther and create and pay attention to a set of measurements you
use every day.

■ Tags and labels—These will show you what’s trending day to day. The trends you
see should reflect the goals and the immediate tasks the team is working on. If
you start to see something that doesn’t feel right, you can address it and react
quickly.

■ Pull requests and commits—These show that code is changing and the team is
working together. I like to set goals for the team to have at least one pull request
submitted and one pull request merged per developer per day. If your team can
manage that goal, it usually means that tasks are small enough to make steady

The top row of their
dashboard had the key stats
for monitoring pull requests.

By showing the distribution of
PR commit counts they could find
anomalies quickly and investigate.

A PR with a commit
count higher than 6 usually

indicated a problem.

The main metrics they wanted
to affect were lead time and

development (dev) time.

Figure 9.8 An example operational dashboard focusing on metrics the team identified as
measures of their process that need work: (clockwise from top left) comment count per PR, PR
hours open, PR commits, lead time, and development time. Based on the team’s history, low
PR comments, commits, and hours open also led to faster lead and development times.
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 9 Publishing metrics
progress and your team is pushing changes through the pipeline at a fairly con-
sistent rate.

■ Task flow and recidivism—As with pull requests and commits, I like to see cards
consistently moving, preferably forward. This also shows that your team has a
clear understanding of their tasks and is moving them through the process.
Because recidivism points to churn in your workflow, it’s a good metric to look
at every day. If you start to see that number increase, it’s best to dig into the
problematic tasks and get to the bottom of the issue.

■ Good/bad build ratio—Knowing that your team is moving through the workflow
is important, but you want to make sure they’re moving good code through the
workflow. Looking at the good/bad build ratio is a good indicator that your
team is publishing changes within the boundaries of your automated test crite-
ria and your code quality rule sets. I firmly believe that when a build breaks,
everyone should stop what they’re doing and figure out how to fix it. The build
rules are set up to make sure everything you’ve determined necessary is work-
ing. If for some reason it’s not working, it should be the team’s priority to figure
out why and fix the problem. If you’re following this methodology, then this
number becomes a very important indicator of your team’s ability to develop
within the rules you’ve defined.

■ Consumer-facing quality rating—I’ve seen many teams that separate their produc-
tion support from their development teams. When this happens, oftentimes
developers don’t really know how their work is impacting the consumer. That’s
bad, especially if your team is trying to achieve a continuous delivery workflow.
In this context it’s great to have an aggregated metric of quality that combines
your most important statistics from your consumer-facing system to show the
team how well things are working.

An example dashboard with all of these metrics is shown in figure 9.9.
 This base set of metrics is a great way to keep a daily pulse on the consistent perfor-

mance of your team. By combining this base data with specific metrics that your team
has committed to improve during retrospectives, you have the basics along with spe-
cific hot metrics that you need to focus on to bring about positive change.

9.1.2 What managers want to see

Managers can affect how a team interfaces with the rest of the organization, how it oper-
ates, and who plays what role on the team. Managers are usually also the conduit
between the development team and the senior leadership team, so they not only need
to understand the details of how the team is performing, but they also need to know how
to roll it up in a way that they can show off to the next level of the organizational chart.

 Managers should care about the team’s daily breakdown of metrics. If you have a
strong team that has true ownership over their products, then managers should be
able to let the team handle their day-to-day metrics on their own. Instead of micro-
managing the details, managers should look at the data over time to see how the team
Licensed to Mark Watson <nordickan@gmail.com>

185The right data for the right audience
is improving. Managers should also be able to compare data across teams to be able to
find similar trends and determine when something is working well for one team and if
they should consider trying to implement a similar thing on another.

 To be able to accomplish these things managers must have a different view into the
data of the organization. Typical elements that I’ve found work well from a manage-
ment perspective are:

■ Lead time—The time between defining and completing a task gives you the
high-level health of how well you can get work through your team.

■ Velocity/volume—Velocity is great to show you how consistently your team is
working; volume tells you how many tasks are getting done. Because velocity
shows your estimates over time and volume shows your total tasks over time, the
two together can give you a good idea of the real amount of work your team
gets done.

Tags show you what is currently
trending in the dev cycle.

Recidivism shows you
how your workflow is going.

You can see the volume of work by
showing PR and commit data over time.

Figure 9.9 A good example default dashboard to get you started with using metrics in your
development cycle
Licensed to Mark Watson <nordickan@gmail.com>

186 CHAPTER 9 Publishing metrics
■ Estimate health—Your team’s ability to estimate accurately tells you how well they
understand their work and how predictable they are.

■ Committers and pull requestors—Managers are usually also concerned about the
careers of their team members. They’re going to care who the top performers
on the team are and who is doing what work. Understanding who is committing
code and who is reviewing code can show you trends in contribution across the
team that can be used to help coach developers if you see things that shouldn’t
be happening.

■ Tags and labels—These help managers slice and dice their reports by what the
team is working on and how they identify their work. By giving teams the free-
dom to label as they see fit, managers can get deep insight into how their team
thinks, works, and feels.

■ Pull requests and commits over time—As with the development dashboard, manag-
ers should want to keep a pulse on the productivity of the team.

■ Consumer-facing quality rating over time—This is also an important statistic for
managers to care about over time because the trends they see here indicate the
success of the team and in what direction it’s trending. If a team’s consumer
quality is going up over a long period of time, then the manager should dig in
to find what’s good and how to replicate that success across other teams.

One thing to note is that it’s great not only to show stats but also to show terms so you
can click into the data that isn’t ideal. Figure 9.10 shows the distribution of lead time
and estimate health along with the statistical overview of them side by side.

 In this case an estimate health of 6 means that tasks are taking on average 6 days
longer than developers think they will; that’s bad. By showing the distribution you can
look at the data in more detail to see how big this problem is. In this case the data is
skewed by a few tasks that took a lot longer than estimated; specifically there are 4 val-
ues of 197, 124, 91, and 57 days that are skewing the mean. For this team let’s say that
anything in the queue for longer than a month is a task that was deprioritized and for-
gotten. With that in mind you can remove all tickets that have an estimate health of
greater than 30, thus removing the outliers. After this query modification you’ll see a
much different picture, as shown in figure 9.11.

 As you can see, those values were skewing lead time and estimate health signifi-
cantly. By digging into the details and honing their queries to remove anomalies when
it makes sense, they could see the true picture and dive into the problem tasks to find
out why they sat incomplete for two to four months. The potential next step for this
team would be to repeat this exercise for lead time to make sure the statistics repre-
sent the true work of the team.

 Using this technique with the data shown, managers can get a good idea of the big
picture and drill into trends when they become apparent. Managers care about
individuals as well as data across teams. Ultimately managers also care about how their
team’s performance affects strategic goals because that’s what they’re responsible for
showing to the higher levels of leadership in their organization.
Licensed to Mark Watson <nordickan@gmail.com>

187The right data for the right audience

By showing the distribution (“distro”)
as terms, you can click into areas

you want to investigate.

Showing the stats for these
gives you a high level idea
of the health of the statistic.

The very large max is
probably skewing the mean,

so it's important to look at
the distribution also.

An estimate health of 6 means the team
is taking on average 6 days longer than

estimated to finish tasks—that's bad.

Even though the mean lead
time is 17 almost 50% of tasks

are done within 3 days. Looking
at the distribution shows us the

outliers are killing the mean.

0 means estimates are spot on. Negative numbers
indicate overestimating. Positive numbers indicate
underestimating. By checking the distribution we

can see almost 75% of estimates are correct
within a few days despite the mean of 6.

Figure 9.10 Mean lead time and estimate health don’t properly represent the team because they’re skewed by
high maximum values. By breaking out the distribution next to the statistical overviews, you can get a better
picture of the outliers and a better representation of the data.

By removing the biggest anomaly
mean estimate health is perfect.

After removing the highest outliers from estimate health,
lead time has also improved. This query could still be

tweaked to remove the maximum lead time value.

The distributions are largely unchanged
since we only removed a few values

from our data source query.

Figure 9.11 After removing the four largest outliers from the estimate health and lead time, the statistics
look much closer to the team’s targets. The query to get data for lead time could be tweaked even further.
Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 9 Publishing metrics
9.1.3 What executives care about

The next few levels up the organization chart can change team composition or organi-
zation structure, budgets, and strategies. Leadership teams care how things are work-
ing currently, but they’re usually more interested in the big picture and how that
affects the well-being of the company as a whole. If teams are hitting their goals and
the organization is successful, you may not even have to worry about rolling reports up
to this level. When I have to address senior leadership, I make sure that I can demon-
strate the information they need as quickly and efficiently as possible. Interestingly
enough, communication to leadership often happens through presentations instead
of through dashboards and ad hoc metrics. The size of your organization and how
hands-on your leadership team is will determine the best way to communicate data to
them. Normally they’ll be most interested in data around strategic objectives. If your
leadership team sets a strategic direction to better engage customers by releasing code
more frequently through a DevOps model, you should publish the release frequency
over time so they can see the progress you’re making on the strategy.

 The business metrics we talked about in chapter 6 are great candidates for data
that executives would care about. If you created a metric that determined business
success criteria of a product, then that metric over time is definitely going to be some-
thing the people sponsoring your team will care about. If there are several develop-
ment teams in your organization and each has its own set of business success criteria
metrics, the aggregation of all these metrics would produce a great example of a dash-
board or report that leadership would care about.

 If you’re not sure where to start but want to put an executive dashboard together,
here are some metrics that I’ve found leadership teams typically care about regardless
of strategy:

■ Number of releases/features per release—The frequency and volume with which you
get changes out that your consumers respond well to show how engaged you
are with them through your software products.

■ Consumer-facing quality rating over time—This is the one metric that everyone in
the organization should care about. From an executive level this tells you if
everything is moving in the right direction.

■ Development cost—Knowing how much you’re spending on development is some-
thing anyone who controls a budget cares about. When you couple this with
consumer engagement and satisfaction, it can help everyone understand the
value they’re getting from their investment.

Let’s take an example of a native mobile app. The consumer-facing quality rating
comes from the app store—iTunes for iOS apps and Google Play for Android apps.
The rating is pretty simple; consumers give the app zero to five stars based on how
much they like it, and the rating is published through the store. A quality check on
this number could be the crash percentage for the version of the app released.
Licensed to Mark Watson <nordickan@gmail.com>

189The right data for the right audience
The development cost is most easily calculated by adding up the hours of the team
that worked on the project. Devices, equipment, and support are usually included in
overhead costs.

 For mobile apps it’s usually easiest to focus on a single feature at a time. In our exam-
ple each release is tied to a single headline feature that’s published with the metrics.

 For the executive team it’s best to get all the data in a single place so they can see
the whole picture at a glance. In the example graph shown in figure 9.12 we use a bub-
ble series chart to show all of these metrics at once. There’s a bubble for each release
on an axis, sized by the cost in total hours for the release. The x-axis represents crash
rate and the y-axis represents the star rating.

 As you can see in figure 9.12, there’s a clear correlation between crash rate and star
rating. When the crash rate is low, releases tend to get better ratings. You can also see
that the minor releases (4.2, 4.3, 4.4) cost a lot less than the major release (5.0). From
an executive point of view it looks like the team is more efficient releasing minor
pieces to the app than full-fledged features.

 If your team isn’t doing so well, then more frequent reports to leadership are usu-
ally in order. In those updates you should use the key data points you’re tracking to
get your team back on track to show that you know the problem, know how to fix it,
and are making progress. Demonstrating how changes you’re making affect your met-
rics and that you show progress as they’re improving are exactly what leadership wants
to see; if there’s a problem, at least you understand it, are correcting it, and are track-
ing it effectively.

9.1.4 Using metrics to prove a point or effect change

Because you’ve made it this far through this book, you know that metrics are awesome,
but you can’t get a clear picture without several of them that show different facets of

5.0

Crash rate

S
ta

r r
at

in
g 4.6

4.2

3.8

3.4
0

Correlation of crash rate, star rating, and cost per release

1 2 3 4

Style updates

Location tab

Mostly fixes

Activity sharing

4.4

4.2

5.0

Each release is labeled with the
headline feature for that release.

The size of each bubble represents the
cost of the release in resource hours.

Each release is represented as a
correlation between key metrics.

4.3
Crash rate: 1.3
Star rating: 4
Feature: Style updates
Cost: 650000

Figure 9.12 An example executive dashboard showing releases sized by cost and measured against
crash rate and star rating. Minor releases are much less expensive and tend to be of higher quality.
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 9 Publishing metrics
what you’re trying to measure. Sometimes someone will want to make a point and will
pull a specific combination of data to prove their perspective. The problem that can
stem from pulling only part of the whole data set is that they’ll pull only the data they
need to prove a point, which can lead to uninformed and usually poor decisions.

 If you want to use data to effect change, you should find a metric that matters to
the people you’re trying to convince, but always keep an open mind; your assump-
tions may be incorrect. Data can be misleading when used in a superficial fashion;
that is, a single metric doesn’t tell the whole story. When you’re working to prove or
disprove a hypothesis, be sure to have different data points that check each other.

 Take, for example, a team that’s developing features for a mobile app that has a
two-month development cycle for each feature, the second half of which is purely ded-
icated to hardening the codebase and cleaning up tech debt. If you look at some data
for this team, you could see trends like those shown in figure 9.13.

 At a glance it seemed horrible that there was a one-month hardening period.
Some of the developers on the project wanted to move to a more continuous delivery
type model where they didn’t build up any tech debt as they went along to potentially
shave time off the release cycle.

 The team was able to use the data from their release cycle to convince the stake-
holders to change how the team was delivering code with the promise of more fre-
quent releases. After a release they started seeing the benefits. They finished tasks at a
slower pace, but they were able to work out the kinks and get the release out the door
on time. The updated release cycle is shown in figure 9.14.

Day

10

5

15

0
604020

Bugs

Tasks

Bug vs Tasks 2.5 release cycle
Data captured per day

Huge jump in bugs midway
through development cycle

Whatever gets done in the beginning
seems to generate lots of bugs.

Figure 9.13 The trends for a team that spent one month on development and one
month on hardening
Licensed to Mark Watson <nordickan@gmail.com>

191Different publishing methods
At first everyone was really excited that they were able to deliver faster. Counterintui-
tively, when the release went out they noticed their star ratings on the app store
started to decline. They dug into the results and noticed consumers nitpicking the
new features they had released. After meeting and discussing how this could have hap-
pened, they pointed back to the shortened development cycle, which included a
much-abridged beta. It turned out that in their previous way of developing software
they were able to get a buggy version into their beta users’ hands very quickly. This led
to an extended hardening period not only for code but also for the features them-
selves. By focusing on just the data from their project management system and ignor-
ing the data they were collecting from their beta and how it affected the project, they
ended up hurting their consumer when all they wanted was to deliver more efficiently.

 In this example the team narrowed their focus to where they thought the problem
was instead of looking at the big picture. They ignored the beta feedback as a data
point in their lifecycle and looked only at data from their immediate team. To avoid
this problem the team could have acknowledged that the beta cycle was a critical part
of delivery and figured out how to measure its value before cutting it.

 As you dig into the data, make sure you do your analysis with an open mind instead
of manipulating the data to fit your hypothesis.

9.2 Different publishing methods
Every organization has different quirks around their methods of communication.
Wherever you work there are probably different emails, dashboards, and reports that
different people rely on for information. The best way to communicate across an orga-
nization is to communicate within the boundaries of that organization. If everyone

Day

4

2

6

0
604020

Bugs

Tasks

Bugs vs. Tasks 2.6 release cycle
Data captured per day

Bugs and tasks are more consistent
day to day throughout the cycle.

The maximum on
the x-axis has been
cut nearly by 66%.

There is only a slight
tech debt spike at the

end of this cycle.

Figure 9.14 The updated velocity and volume for the team after they changed their development
practices
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 9 Publishing metrics
expects to see a status report every Tuesday, then maybe piggy-backing on that report
is a great idea. If everyone sends those emails straight to their deleted folder, then
maybe using a dashboard where people can pull data when they need it will work bet-
ter. Following are some tips on using dashboards, emails, and reports; you know what
works best in your organization so you should take what works best and apply it.

9.2.1 Building dashboards

We’ve been using dashboards throughout this book. Web-based dashboards are a
great way to publish results so anyone in your company can check out the data when
they want. The following sections provide some dashboarding tips.

DON’T RESTRICT ACCESS INSIDE THE COMPANY, BUT KEEP IT INTERNAL

Sometimes people like to hide data to protect themselves or others. This is usually a
bad idea within your own company or across your own team. If data is used in a collab-
orative and open way across your company, then you should allow anyone to access
the data. If you work in an environment where culture encourages the use of data in a
negative way (for political gain, for example), then it may be best to just keep the data
accessible inside your team to avoid distraction from outside.

 On the flip side, dashboards contain a lot of information about how you work and
in some cases what you’re working on. It’s always best to think about keeping your
websites and data as secure as possible at all times. Even though you should keep it
open inside the office, you should keep it from prying eyes outside your walls.

MAKE IT CUSTOMIZABLE

Managers, developers, executives, and coaches will all want to see data differently. You
should give them the flexibility to see metrics the way they want and when they want.
If you’re using the tools we’ve been using throughout this book, you can use Kibana’s
great UI to create your own dashboard and save it. An example of the elements used
to save dashboards and update widgets is shown in figure 9.15.

Name the dashboard
whatever you want.

Each component has
customizable settings.

You can save different dashboard
configurations in Elasticsearch.

Figure 9.15 The Kibana header and some of its customizable elements
Licensed to Mark Watson <nordickan@gmail.com>

193Different publishing methods
One of the worst things you can do is give someone a dashboard where the data they
need isn’t right where they expect it to be. When this happens, people will be less
likely to look at it.

ENSURE PEOPLE KNOW THAT DATA IS THERE AS A TOOL, NOT A WEAPON

The biggest fear people have around metrics is that someone will use them to prove
they’re not good or not good enough. Never use metrics as a weapon. Always commu-
nicate that the data is there to help everyone understand how the team is working and
to help track improvements to their process.

 Look for opportunities inside your environment to evangelize these techniques in
a positive way. I’ve found that starting off retrospectives with data ends up leading to
honest and open conversations that help everyone understand how their work affects
metrics and why they’re important to track.

 Ensure that the people generating the data have a say in which metrics they think
are most important. For example, if you think you should be measuring CLOC, ask
your development team what they think of the idea. If they don’t like that metric, ask
why; this will usually lead to them helping you determine which metrics they actually
care about. Inclusion in the conversation and collaboration from the team will lead to
better success and broader buy-in.

USE PAGE TRACKING TO UNDERSTAND HOW YOUR DASHBOARDS ARE USED

Your dashboard is a product for a consumer, so treat it that way. I’ve found that often
internal tools aren’t tracked the same way consumer-facing tools are, which ends up
leading to things people don’t use or aren’t happy with. By using page tracking on your
dashboards, you’ll see what people click on the most, what they’re drilling in on, and
how frequently they use them. You can then use this information to continue to hone
which metrics mean the most to your team and your company. Go back to chapter 6 and
apply the same techniques you would to track success on your metrics dashboards.
Some metrics that I’ve found useful in this context are page hits and metric clicks:

■ Page hits—How many people are using your dashboard, which views are they
frequenting, and how long are they spending on those pages?

■ Metric clicks—What metrics are people clicking on? This shows you what every-
one cares about the most and will help you optimize default dashboards.

9.2.2 Using email

Email can be a great tool but it can also be a curse. When this book was written, Kleiner
Perkins Caufield & Byers (KPBC)1 Internet Trends,2 a standard in reporting consumer
technology trends, estimated that Americans spend nearly an hour a day checking
email or messaging on their phones or tablets, and of total email traffic more than 70%
of it is spam. If you combine these two facts you’ll see proof of something you probably
already know; people spend a lot of time deleting emails. If you spend that much time

1 Kleiner Perkins Caufield & Byers is a venture capital firm in Menlo Park in Silicon Valley, en.wikipedia.org/
wiki/Kleiner_Perkins_Caufield_%26_Byers.

2 A briefing on the Internet Trends 2014—Code Conference, www.kpcb.com/internet-trends.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Kleiner_Perkins_Caufield_%26_Byers
http://en.wikipedia.org/wiki/Kleiner_Perkins_Caufield_%26_Byers
http://www.kpcb.com/internet-trends

194 CHAPTER 9 Publishing metrics
filtering junk you don’t care about, you should definitely make sure that you get infor-
mation out that your audience cares about when they’re ready for it.

 Following are a few email tips.

ALLOW PEOPLE TO OPT IN TO YOUR EMAIL REPORTS

Most people are pretty email savvy, and when they start getting something they don’t
care about, they’ll send it to their spam folder. Even worse, if they’re using a spam fil-
ter, your nice reports could get caught up in it. If you can give your audience the abil-
ity to opt in to an email from your dashboard, then they’ve shown they care enough
about the data that they want to have updates periodically.

 On the flip side, you should allow people to opt out as well. Make sure to pay atten-
tion to how many people are receiving your report as a success metric of whether the
email communicates what people need.

GIVE THE LEAST AMOUNT OF DATA NEEDED AND REFERENCE A DYNAMIC DASHBOARD

When you send someone an email, it should contain just the information they need
now. Going back to the principle of showing people only what they can affect, keep
your emails to a few key metrics that recipients can take direct action on if they choose
to. At the same time, perhaps they’d like to dig deeper or see more data. In this case,
instead of continually adding more data to email reports, add it to the dashboard and
reference the dashboard in your email.

ESTABLISH THE RIGHT CADENCE

Don’t send emails so frequently that your coworkers get annoyed or, even worse, cre-
ate an email rule that sends your reports into an abyss. Developers and Scrum masters
might want daily reports in their inbox, but higher-level managers may need them
only weekly or biweekly. If you have good page-tracking setup in your dashboard, then
you should be able to correlate the user activity with your email schedules to see how
effective your emails are at driving people to the data you’re publishing.

9.3 Case study: driving visibility toward a strategic goal
In this case study we’ll look at a company that has brick-and-mortar retail and has
recently established an e-commerce site to increase sales. Once the site was up and run-
ning, they started looking at differences in buying trends between their e-commerce
site and their physical stores. One significant trend they noticed was that when consum-
ers purchased items off their site they typically bought one item. Customers in their
retail locations would typically buy three to four items at a time. Their retail strategy had
been to group related items together so as consumers were shopping for what they
came in for, they also found related items.

 As the leadership team discussed this trend, they decided they wanted to sponsor a
development initiative to increase sales of related items on their e-commerce site.
According to their calculations, if they could achieve a similar trend on their e-com-
merce site as they were seeing in their retail locations, e-commerce revenue would
increase by over 70%. The goal they set for their development team was to increase
related product sales by 100% by the end of their fiscal year.
Licensed to Mark Watson <nordickan@gmail.com>

195Case study: driving visibility toward a strategic goal
The program managers broke this goal down into why consumers weren’t buying
related products. Following the same model as the retail locations, they decided that
they needed some way to show related items to consumers as they were shopping. The
feature they decided on was a product recommendation system that would tell a con-
sumer what would complement the products the consumer was looking at. They also
realized that in an e-commerce site they could continually improve their site recom-
mendations as they analyzed the patterns of what people bought together.

 The delivery team came up with the technical designs and worked with program
management to flesh out the delivery plan. From the start they decided to create dash-
boards for everyone involved in the project so all levels of the organization could see
the progress as they moved forward. There were a few different delivery teams that
had to coordinate efforts to move this feature forward; they’re shown in figure 9.16.

 They started with the business success metrics they wanted to get out of the feature
they were delivering. In this case the business success metrics they came up with were
as follows:

■ Items sold—They were already tracking this as a success metric of the site in
general.

■ Number of items per order—If this feature was successful, they would see this num-
ber going up. This was the key metric that related to the strategic goal laid out
by the leadership team.

■ Recommended items per order—This was the key metric that showed the develop-
ment team how effective their feature was. If this number was going up, then
the product recommender was a success. If they noticed this number increasing
at the same rate as the number of items per order, then they would know that
this was the driving feature for the executive goal.

Like the team in chapter 6, they used StatsD to instrument their code and send these
metrics back to their monitoring system, as shown in the following listing.

Executives

Data processing team

Technical
managers

Web services team Front end team

Program
managers

Figure 9.16 An overview of the organization and responsibilities in delivering the feature
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 9 Publishing metrics

Incr
the
for t
orde

How
this
reco

private static final StatsDClient statsd = new
NonBlockingStatsDClient("the.prefix", "statsd-host", 8125);

…
 statsd.incrementCounter("orders");
 statsd.recordGaugeValue("itemsPerOrder", x);
 statsd.recordGaugeValue("recommendedItems", y);

Different teams had different release metrics. The web services team was working on
improving their pull request workflow, so they focused on PR comments and pull
requests/commits to make sure that was healthy. This is shown in figure 9.17.

 The team building a data processor for recommendations knew they had to iterate
quickly, so they focused on estimate health, lead time, and deploy frequency to ensure
they could react to changes predictably. That is shown in figure 9.18.

 The program management across the entire project wanted to keep tabs on all of
the teams. They wanted to ensure that the workflow was predictable and consistent, so
they cared most about velocity, recidivism (how tasks moved through the workflow),
lead time, and estimate health. They wanted to see stats across all projects but also to
be able to drill into individual projects. Their dashboard is shown in figure 9.19.

Listing 9.1 Using StatsD to add business-specific metrics to the code

Setting up the
StatsD client

ementing
counter
otal
rs

Setting item count per
order for this order

 many items in
order were from
mmendations

They used development time and recidivism
as primary metrics, so they kept these up

top along with their focus metrics.

PR-specific metrics helped
the team keep tabs on their

immediate concerns.

They watched PRs and commits over time to ensure
code was being updated consistently.

Figure 9.17 The web services team’s dashboard. Development time, PR comments, and PR hours
open are right on target. The pulse at the bottom shows that SCM activity over time is healthy.
Licensed to Mark Watson <nordickan@gmail.com>

197Case study: driving visibility toward a strategic goal

They want to ensure they understand the work,
so they track that by checking their estimate health.

Because this team is practicing CD
they want to deploy multiple times a day.

To ensure the mean doesn't give them a false
sense of security they break out the distribution

of lead time and estimate health.

This team strives for a short lead
time to check the relationship between

requirements and task completion.

Figure 9.18 The dashboard for the development team working on the data processing

The clickable list of projects allows the
viewer to sort this data by project.

Recidivism shows how healthy
the workflows are across teams.

Lead time and estimate health tell the viewer
how predictable these teams can be.

Velocity over bugs shows how much the team is getting
done along with how many issues they're creating.

Figure 9.19 The dashboard used by the program and project management team
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 9 Publishing metrics
The leadership team trusted their managers to run the factory and wanted data that
showed them the bottom line. They wanted to know how sales were going, how proj-
ects were progressing, and if their strategies were improving their online business.
Their standard metrics were the monthly rolling revenue, customer feedback, and
rolling monthly orders. For this specific project they added a widget to their dash-
board to track average items per order. In addition, they added one widget per project
to represent the health of the project; if a project was off track it would change to a
shade of red, and if it was on track it would be green. Their dashboard is shown in fig-
ure 9.20.

 By showing the key measurement of the current initiative, the leadership team
could track the success to potentially check and adjust the approach of the teams if
necessary. They didn’t care to get involved in the daily activity of the teams, so they
didn’t need the detail on pull requests, estimates, and completed tasks. They did care
if a project was not healthy, and so to track that they used the code health determina-
tion (CHD) rating introduced in chapter 7, which is a combination of workflow, code
quality, and continuous delivery release efficiency.

 As consumers started using the feature, the team watched the business metrics
start to be affected as well. Now they had all the data in place that they needed; the

Top line info for the leadership team included total monthly
rolling revenue and orders and the latest customer tweets.

This team is using the CHD rating
introduced in chapter 7. When it dips
below 80 the team health shows red.

These projects (code named
by the teams themselves) are on
track based on the CHD rating.

The current initiative was
supposed to increase items

per order, so that got top
billing on the dashboard.

Figure 9.20 The dashboard used by the leadership team to show the success of the initiative and the
overall health of the contributing projects. Leadership is always paying attention to the consumer voice
through their Twitter hashtags and the total revenue. They’ve added the average items per order to
track the success of the latest development initiative and show overall ratings for each development
team on the project.
Licensed to Mark Watson <nordickan@gmail.com>

199Summary
development teams were tracking the details they cared about, the management layer
was tracking cross-team data, and they were able to collect data to show the strategic
objectives were being met for the leadership team. Figure 9.21 shows the different
members of the teams and the data they were using.

 Everyone was happy, Yay!

9.4 Summary
Different levels of the organization need different information from your develop-
ment teams. Publishing the right information to the relevant audience is a key factor
in implementing successful metrics reporting across the organization. In this chapter
you learned the following:

■ Publish metrics to audiences that can act on them.
■ Metrics at the team level are the detailed metrics that show you how consistently

your team is working. Key things to track on your team are these:
■ Tags and labels

Development
team

Technical and
program managers

Leadership team

Aggregate data across teams
for cross-project visibility

Source control + project tracking + build and release

Source control + project tracking + build & release for multiple teams

Combined & business-specific metrics

Generate combined data metrics for high-level
visibility and call out business success metrics

Figure 9.21 A review of the organization and the data being used for each team
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 9 Publishing metrics
■ Pull requests and commits
■ Task flow and recidivism
■ Good/bad build ratio
■ Consumer-facing quality rating

■ When identifying improvement areas during retrospectives and reflection peri-
ods, be sure to also identify corresponding metrics to ensure you’re making
daily progress.

■ Metrics at the manager level should show how teams are doing over time and
how individuals are doing on a team. Key managerial metrics to focus on
include the following:
■ Lead time
■ Velocity/volume
■ Estimate health
■ Committers and pull requestors
■ Tags and labels
■ Pull requests and commits over time
■ Consumer-facing quality rating over time

■ Metrics at the executive level should show how the progress of the team affects
strategic goals. A few default metrics executives should see are these:
■ Number of releases/features per release
■ Consumer-facing quality rating over time
■ Development cost

■ Dashboards are a great way to communicate metrics across the organization.
Effective dashboards have these characteristics:
■ They don’t restrict access inside the company but keep it internal.
■ They make it customizable.
■ They ensure people know that data is there as a tool, not a weapon.
■ They use page tracking to show how your dashboards are used.

■ Emails are a good communication method under the following conditions:
■ They allow people to opt into your email reports.
■ They give the least amount of data needed and reference a dynamic dash-

board.
■ They establish the right cadence.

■ Showing distributions as well as stats allows you identify anomalies at a glance
and remove them when appropriate.
Licensed to Mark Watson <nordickan@gmail.com>

Measuring your team
against the agile principles
If you ask the CIOs of most Fortune 500 companies if their teams are practicing agile
development, they’ll probably all say yes. If you sit on any of the development teams
in those companies, you’ll notice that they operate differently to varying degrees.
That’s okay; in fact, one of the great things about agile development frameworks is
that they allow development teams to move quickly in their own context.

 Often as teams evolve their agile development processes they’ll start to question
their agility. One way to combat this is to measure your team against the agile prin-
ciples themselves.

 Because we’re talking about continuous improvement in the scope of agile soft-
ware projects, it seems fitting to complete this book by talking about measuring

This chapter covers
■ Breaking down the agile principles into

measurable pieces
■ Applying the techniques in this book to the

agile principles
■ Associating metrics with the agile principles
■ Measuring your team’s adherence to the agile

principles
201

Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 10 Measuring your team against the agile principles
your project and team against the agile principles. Using the concepts we’ve talked
about in this book, we’ll break down the agile principles and show you what to use to
measure your team against each one.

10.1 Breaking the agile principles into measurable
components
As a reference point for this chapter let’s start off by reviewing the agile principles as
they’re written in the Agile Manifesto.1 Just in case you don’t remember them off the
top of your head, here they are in order.

■ Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

■ Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

■ Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

■ Business people and developers must work together daily throughout the
project.

■ Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

■ The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

■ Working software is the primary measure of progress.
■ Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.
■ Continuous attention to technical excellence and good design enhances agility.
■ Simplicity—the art of maximizing the amount of work not done—is essential.
■ The best architectures, requirements, and designs emerge from self-organizing

teams.
■ At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

To get started, let’s have a bit of fun with the agile principles. If you put them into a
word cloud, as shown in figure 10.1, you can get a different perspective on what the
agile principles are talking about by seeing which words are used the most.

 It’s not surprising that the two most frequent words are development and software
because these principles are about developing software. A few other interesting quali-
ties of this viewpoint stand out:

■ The only adjective used more than once is effective.
■ Requirements, developers, work, team, and process are all focal points.

1 “Principles behind the Agile Manifesto,” agilemanifesto.org/principles.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://agilemanifesto.org/principles.html

203Breaking the agile principles into measurable components
If you start to think about how to measure agile teams, you should definitely think about
how you’re measuring the main focal points. If you start breaking these down into ques-
tions you can apply measurements to, you’ll get something like the following:

■ Are your development teams effective?
■ Are your processes effective?
■ Are your requirements effective?
■ Is your software effective?

The end goal is great software. You can put these into a simple equation like the one
shown in figure 10.2.

“Effective” is the
only big adjective.

Other things that
are apparently
very important. We are talking

about developing
software.

Figure 10.1 The agile principles as a word cloud

WHO is doing
the work

Teams + Processes + Requirements = Software

WHAT you’re
building

HOW you’re
doing work

Figure 10.2 The core elements of the agile principles
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 10 Measuring your team against the agile principles
The next step is to use the data you’ve been collecting throughout the book to answer
your questions. Using the high-level questions fleshed out previously, you can start
breaking the principles into categories in order to measure them. If you look at each
agile principle in detail, you’ll start to see that of the twelve principles three imply
measuring software, four implicate teamwork, four represent process, and one
references requirements. Let’s start off with aligning the principles with the delivery
lifecycle.

10.1.1 Aligning the principles with the delivery lifecycle

If you take keywords from each of the principles and transpose them over the delivery
lifecycle that you’ve been looking at in previous chapters, you can see where to get the
data you need to measure them, as shown in figure 10.3.

 Another way to look at these associations is to put all of the key measurements in a
matrix against the systems you can get data from, as shown in table 10.1.

Table 10.1 Highlights of the agile principles and where to get data to measure them

Project tracking
systems

Source control
management

CI and
deployment tools

Application
monitoring

Good designs X X X

Good architectures X X X

Technical excellence X X X

Changing requirements X X X

Working together X

Project
tracking

Source
control

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

Manage
code and

collaboration

Generate
builds and
run tests

Move code
across

environments

Ensure
everything
is working

• Good designs
• Architecture
• Technical excellence
• Simplicity
• Changing
 requirements
• Working together
• Motivated individuals
• Face to face
 conversation

• Good designs
• Architecture
• Technical excellence
• Continuous delivery
• Become more
 effective

• Good designs
• Architecture
• Technical excellence
• Deliver frequently
• Continuous delivery
• Become more
 effective

• Good designs
• Architecture
• Technical excellence
• Deliver frequently
• Continuous delivery
• Become more
 effective

• Good designs
• Architecture
• Technical excellence
• Working software
• Satisfy the customer

Figure 10.3 More agile tenets on the delivery lifecycle
Licensed to Mark Watson <nordickan@gmail.com>

205Three principles for effective software
With the agile principles mapped across the delivery lifecycle and broken down across
four key questions, you can start using metrics from previous chapters to start getting
specific on mapping metrics to agility.

10.2 Three principles for effective software
The following three principles all have keywords that make you ask, “Is our software
effective?” The keywords are italicized in the following list of principles:

■ Working software is the primary measure of progress.
■ Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.
■ Continuous attention to technical excellence and good design enhances agility.

Working software is perhaps the most obvious of the software-related measures but
many times the hardest to measure. Chapter 9 is dedicated to measuring how well
your software is working.

 Satisfying the customer is measured using techniques from chapter 6: using telem-
etry and business-specific metrics to measure how well your software does what it’s
supposed to do.

 Early and continuous delivery is covered in chapter 4 in our discussion of CI and
deployment systems. This is enabled by build systems that output digestible reports
and automate enough of your build and deployment cycle to get comprehensive data
around build and deployment times. You can also measure this through your PTSs cov-
ered in chapter 3 by tracking lead time or development time.

 You can argue that technical excellence and good design are measured by how fast
you can iterate on your code or how maintainable it is, and how well it satisfies the
consumer or how usable it is. Both of these are detailed in chapter 9.

Motivated individuals X

Face-to-face
communication

X

Continuous delivery X X

Becoming more effective X X X

Delivering frequently X X

Working software X

Satisfied customers X

Simplicity X X

Table 10.1 Highlights of the agile principles and where to get data to measure them

Project tracking
systems

Source control
management

CI and
deployment tools

Application
monitoring
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 10 Measuring your team against the agile principles
10.2.1 Measuring effective software

Let’s start with a mind map to align the principles with the big question you’re trying
to answer, as shown in figure 10.4.

 If you single out just these questions over the delivery lifecycle, you’ll see that these
questions end up spanning most of it, as shown in figure 10.5.

 We talked about measuring CD in chapter 5, and there are concrete metrics you
can use to ensure that it is working well like the following:

■ Successful versus failed builds:
■ How well is your code review process working?
■ How good is your local development environment?

■ Is your team thinking about quality software?
■ How frequently do you get updates in front of your consumers?

Ensuring that your software products are working well and your customers are satisfied
are the topics we covered in chapter 6 when we talked about production monitoring
and arbitrary metrics. Here are some metrics that can help you keep an eye on these:

■ Business/application-specific metrics—These are defined based on your application
and tell you how consumers are using your site.

Is your software effective?

Is it designed well?Is it working?

Is the customer happy?Is it built well?

Is it delivered continuously?

Figure 10.4 Mind mapping the big question “Is your software effective?” into smaller bits
that represent the principles

Manage
tasks and

bugs

Manage
code and

collaboration

Project
tracking

Source
control

Generate
builds and
run tests

Is our software effective?

Move code
across

environments

Ensure
everything
is working

Continuous
integration

Deployment
tools

Application
monitoring

• Good designs
• Architecture
• Technical
 excellence
• Continuous
 delivery

• Continuous
 delivery

• Continuous
 delivery

• Working software
• Satisfy the customer

Figure 10.5 The systems you can get metrics out of to see if your software is effective
Licensed to Mark Watson <nordickan@gmail.com>

207Four principles for effective process
■ Common site health statistics—These tell you how your application is performing
and how healthy it is. Some key stats to keep an eye on for this would be:
■ Error count
■ CPU/memory utilization
■ Response times
■ Transactions
■ Disk space
■ Garbage collection
■ Thread counts

■ Semantic logging—This can also help you monitor application-specific metrics.

We also covered some of these metrics in chapter 8 when discussing what makes
usable software with the following metrics:

■ Usability
■ Uptime
■ MTTF

You can use the metrics we covered in chapter 8 to look at what makes well-built soft-
ware:

■ Maintainability
■ MTTR—How fast can you get fixes out to consumers?
■ Lead time—How fast can you get features out to consumers?

Using this comprehensive list of metrics you can get a clear picture of how effective
your software is, measured across the agile principles. Building software is what you’re
doing; your process is how you do it. The following four principles give you an outline
on how to measure your process.

10.3 Four principles for effective process
The next group of four principles answers the question “Is your process effective?”

■ Simplicity—The art of maximizing the amount of work not done is essential.
■ Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.
■ Face-to-face conversation—The most efficient and effective method of conveying

information to and within a development team.
■ Maintain a constant pace indefinitely—Agile processes promote sustainable

development. The sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

As a software engineer, my initial reaction to simplicity was that it related to software
measurement. After all, you should use simple designs and standard patterns to maxi-
mize efficiency on your development team and increase the maintainability of your
software. Although maximizing the amount of work done relates to maintainable
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 10 Measuring your team against the agile principles
code, simplicity is most easily measured by looking at data from your PTS, such as task
volume or the number of tasks completed. Maximizing the amount of work done
implies an effective process: understanding the minimum of what needs to get done
in order to improve your consumer’s experience.

 Delivering working software frequently is easily measured by the amount of time it
takes to get tasks through the lifecycle and out to consumers. One caution for measur-
ing the delivery of working software is to measure the time it takes to get working soft-
ware to the consumer, not to the end of a development cycle if that doesn’t include
deployments. I’ve seen teams celebrate the fact that their development time was very
short, even though they did gigantic monthly releases to their consumers. Be honest
with your delivery time.

 Face-to-face conversation is great, but I’ve been in plenty of meetings or planning
sessions where what is said ends up getting interpreted differently by different people
in the room. The real key to this principle is ensuring that the team is directly commu-
nicating with each other for the highest possible clarity and understanding of what
you’re all working on.

 Maintaining a constant pace is most commonly measured by that old agile stead-
fast metric, velocity. Your ability to maintain a constant pace is affected by a host of fac-
tors including these:

■ Maintainability of your code—If you have code that’s easy or at least predictable to
change and deploy, you should be able to keep a constant pace.

■ The consistency of your estimates—By showing that you understand changes and
your team is breaking tasks down into manageable chunks, you avoid hiccups in
your pace.

10.3.1 Measuring effective processes

Figure 10.6 shows a mind map that helps you take a closer look at measuring your
process.

 Again we’ll map the highlights across the delivery lifecycle to see what kind of data
you should care the most about in the context of your process. See figure 10.7.

 Starting with simplicity, there are a few different metrics you can look at:

■ Use CLOC from your SCM system to see how much code is changing.
■ Estimates and volume from your PTSs show you the amount of effort and num-

ber of tasks completed.

Is your process effective?

Are you delivering frequently?

Do you work things out face to face?

Are you delivering consistently?

Figure 10.6 Mind mapping “Is your process effective?”
Licensed to Mark Watson <nordickan@gmail.com>

209Four principles for effective process
■ Use estimate health and estimates together to check how predictable your esti-
mates really are.

■ Lead time, development time, and volume give you the high-level picture of
how fast you can deliver and at what frequency.

Frequent delivery is measured not only by how often you ship code but also the pace
at which you move. You can measure both frequency and pace with the following met-
rics from chapters 3 and 5:

■ The old agile metric of velocity is great at tracking consistency.
■ Use the number of successful deployments from your build and/or deploy

systems.
■ Lead time will tell you how long it takes to get a task all the way through the life-

cycle from concept to delivery.
■ MTTR tells you how quickly you can react and tweak your system when necessary.
■ Bug counts are a good way to check whether you’re delivering value or you’re

churning on issues due to poor code quality.
■ As a check to bug count you can add code coverage and static analysis to the

mix to make sure you’re delivering maintainable code.

Face-to-face conversation isn’t so easy to directly measure with agile tools used today.
But you can measure the amount of communication through comments captured in
your systems at various points in the delivery flow and cross-reference those with arbi-
trary tags and labels in your PTS to figure out what level of measureable communica-
tion works best for your team:

■ PTS and SCM comment counts, as noted previously, imply how well collabora-
tion is going.

■ Cross-reference these comment counts with labels and tags on tasks that your
team uses to indicate if they think communication is working well.

Manage
code and

collaboration

Source
control

Generate
builds and
run tests

Are your processes effective?

Move code
across

environments

Ensure
everything
is working

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

Project
tracking

• Deliver
 frequently

• Constant pace
• Simplicity
• Face-to-face
 conversation

• Constant pace
• Simplicity
• Face-to-face
 conversation

• Deliver
 frequently

Figure 10.7 Are your processes effective?
Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 10 Measuring your team against the agile principles
Your team is building the software through agile processes; measuring how well your
team works together is the next set of agile principles we’ll take a look at.

10.4 Four principles for an effective team
The next group of four answers the question “Is your development team effective?”

■ The best architectures, requirements, and designs emerge from self-organizing
teams.

■ Business people and developers must work together daily throughout the
project.

■ Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

■ At regular intervals, the team reflects on how to become more effective and
then tunes and adjusts its behavior accordingly.

These principles are all people issues: how well your team works together, how moti-
vated they are, your level of autonomy, and how well you can check and adjust. How
well your team is working together affects many of your other metrics. How quickly
tasks go through your workflow, how much code is written per task, how many bugs
turn up, and how tasks move through your workflow are all indicators of how well your
team is working together.

 The first principle in this list ties team autonomy, or self-organization, directly back
to the quality of the software.

 You could argue that the fourth item in this list, reflecting at regular intervals, is a
process question because checking and adjusting are part of the agile development
process. But I’ve seen dysfunctional teams take the time to reflect, only to chase the
wrong goals because they can’t be honest with each other or they don’t engage in the
improvement process. It’s better to measure the ability to check and adjust as part of
measuring the effectiveness of your team because it shows your team’s ability to face
up to their weaknesses and take action to improve them.

 The key indicators of good teamwork will be how well things move through your
workflow and how your team feels about their work.

10.4.1 Measuring an effective development team

We’ll start off again by creating a mind map for these questions, as shown in figure
10.8.

Is the team effective?

Are we working together?

Are we improving?

Is everybody motivated?

Figure 10.8 Mind mapping “Is the team effective?”
Licensed to Mark Watson <nordickan@gmail.com>

211Four principles for an effective team
Transposing this over the delivery lifecycle, you’ll see that these questions end up
spanning the entire lifecycle, as shown in figure 10.9.

 In chapters 3 and 4 we went through the PTS and looked at data that helps analyze
how your team is working together and how motivated they are through the following
points:

■ By tagging or labeling tasks in your PTS with how well developers think the task
was executed, you can measure how motivated individuals are. We covered this
in section 3.2.5 with the use of happy and unhappy tags and used the same tech-
nique as a mutiny indicator inside the front cover.

■ Teamwork can be measured by comment counts in PTS and SCM data. Keep in
mind that what is good or bad will vary from team to team, so it’s important to
calibrate the numbers based on how well your team is working.

■ Recidivism will also give you a good idea of how well your team is working
together. If tasks are moving through your workflow, that’s usually a good indi-
cator that the team is working well together. You can check this by adding in
consumer-facing defects; low recidivism and a high number of consumer-facing
defects mean that your team is passing tasks through without properly vetting
them—that’s bad. Conversely, high recidivism with low consumer defects means
that your team is churning, but at least it’s turning out code of good quality.

In chapter 2 we talked through how you can use tags and labels as a potential replace-
ment of the Nico-nico calendar, an agile way to measure the motivation of your team.
If you encourage your team to label tasks with how they’re feeling as they finish tasks,
then you’ll start to build up data around the motivation of your team. What’s better is
that you’ll have tasks that relate to the happiness of your team.

 If you look at measuring improvement of effectiveness of your development team
in this context, you can look at frequency of delivery. You can measure that with the
following metrics:

■ Lead time—The amount of time it takes from inception to delivery of tasks

Manage
code and

collaboration

Source
control

Generate
builds and
run tests

Is the development team effective?

Move code
across

environments

Ensure
everything
is working

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

Project
tracking

• Become more
 effective

• Work together
• Motivated
 individuals

• Become more
 effective

• Become more
 effective

• Become more
 effective

Figure 10.9 Transposing the principles regarding the development team over the development lifecycle
Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 10 Measuring your team against the agile principles
■ Development time—The time from when a task enters the development flow to its
completion

■ Deploy frequency—How often you get changes out to consumers
■ Good/failed builds—How frequently you’re delivering working software

Measuring autonomy with the data you have isn’t very straightforward. I’ve had suc-
cess with this by checking the counts of people entering and commenting tasks in the
system before they enter the work stream along with the counts of people who are
assigned the tasks. In very autonomous teams you’ll see that assignees have enough
ownership to collaborate toward the definition of a task before it gets assigned to the
team. In teams that simply receive marching orders, you typically see members outside
the immediate team doing the bulk of the creation and definition of tasks. Another
pattern to look out for is nonteam members moving tasks through the workflow. A
pictorial representation is shown in figure 10.10.

 Of the three different ratios, you should stay away from either extreme (the exam-
ples on the left and right in figure 10.10). In the first example, a small intersection
between assignees and creators typically can lead to members of the team who special-
ize in creating requirements and filling out tasks and other team members who just
work the specs they’re given. You’ll see symptoms of this when you start to hear people
complaining about requirements or blaming requirements for poor or incorrect
implementations.

 In the example on the right in figure 10.10, on teams where developers are respon-
sible for creating their own tasks, you can start to see people entering the bare mini-
mum in the system to indicate they have a task to work on. This extreme also tends to
lead to poor and incomplete requirements, and this becomes a problem when people
forget what their minimal cards meant and try to estimate them, or if work ends up
getting divided among other team members.

 The second example (the one in the middle) is usually a good mix of members
inside the team and outside stakeholders entering tasks into the work stream. This
mix typically gives the development team enough investment in their work but also
has enough outside influence to keep requirements complete.

 An effective team creates effective software using effective processes. The final ele-
ment is the requirements these teams use to build their software. The last agile

A small intersection
shows that team members
aren’t invested in defining
their own tasks.

21 A large intersection shows
a development team
heavily invested in the
definition of their work.

3 A complete overlap
shows that the team
defines their own
work completely.

Creators Assignees Creators Assignees Assignees
Creators

Figure 10.10 A pictorial representation of the overlap between task assignees and creators and how it
relates to the level of team autonomy
Licensed to Mark Watson <nordickan@gmail.com>

213One principle for effective requirements
principle belongs in a category by itself; although it’s only a single line, it speaks to
how your team defines what they’re doing before they do it and can be measured
from a few dimensions.

10.5 One principle for effective requirements
The final question you need to answer is “Are your requirements effective?”

■ Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

Changing requirements is one of the most frustrating things that a team needs to take
in stride. I’ve been in many sprint retrospectives where teams complain about missing
goals due to changing requirements, I’ve seen products make it out the door with a
fraction of intended functionality because of indecision around requirements
throughout the development of the product, and I’ve been a part of several develop-
ment cycles where our work was scrapped because architectures, features, or experi-
ences changed after we started.

 When it comes to figuring out how well your team can handle changing require-
ments, you need to keep two things in perspective:

■ How do you know if requirements are changing?
■ Can your team maintain a consistent pace when requirements change?

For this you’d have to know your current metrics for consistency (for example, lead
time, recidivism, and velocity) and you’d need to know when requirements are chang-
ing. With both of those in hand you can measure how consistently your team performs
in the face of change.

10.5.1 Measuring effective requirements

I’ve mind mapped the final principle in figure 10.11.
 The interesting thing here is that you need to compare your consistency when

requirements are static against when they change. To do that you need to measure
your team’s consistency and you need to track when requirements are in flux.

 Velocity alone is a terrible metric to measure how well a team can handle change
and as a result is often a bone of contention when requirements are changing. If a
team makes a commitment and starts a sprint, and then midway through the process
the end goal moves, the team is set up to miss their commitment. You can reestimate
or refactor your sprint goal, but in the grand scheme of things it will look like your
team went through a patch of low productivity when perhaps they were more produc-
tive than ever.

Are you consistent?
When requirements change?

When requirements don’t change? Figure 10.11 Mapping
out “Are you consistent?”
Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 10 Measuring your team against the agile principles
Better metrics to use to track consistency through changing requirements are task vol-
ume and average estimates. The number of tasks that your team is able to accomplish
in the face of change tempered by average estimates will give you a good picture of
how consistently your team is completing its work. If your estimates consistently corre-
late to a few days of work and your task volume stays constant, you should be in good
shape. If you see these trends along with an inconsistent velocity, it shows you that
your team is doing great in the face of change.

 Other metrics that help check team consistency while velocity is in flux are recidi-
vism and lead time. Stable lead time and recidivism trends during periods of inconsis-
tent velocity show that through changing commitments the time it takes to get tasks
out the door and the health of your workflow remain solid. This is demonstrated in
figure 10.12.

 Effective requirements can most easily be measured at the beginning and the end
of the development cycle, as shown in figure 10.13.

S
pr

in
t p

oi
nt

s

To
ta

l t
as

ks40

20

60

0

40

20

60

0
Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Sprint 7 Sprint 8

Task
volume

Velocity

Velocity vs. task volume

Velocity is inconsistent;
when viewed alone

this looks bad.

Completed tasks are increasing,
which shows the team is

consistently completing work.

Figure 10.12 Velocity for this team is inconsistent, but total completed tasks are actually increasing.
This is a typical indicator that the team completes tasks consistently despite changing commitments
and/or requirements.

Manage
code and

collaboration

Source
control

Generate
builds and
run tests

Are the requirements effective?

Move code
across

environments

Ensure
everything
is working

Continuous
integration

Deployment
tools

Application
monitoring

Manage
tasks and

bugs

Project
tracking

 • Changing
 requirements

Figure 10.13 Where to find data to measure effective requirements
Licensed to Mark Watson <nordickan@gmail.com>

215Case study: a new agile team
I’ve identified only a single agile principle that directly addresses requirements, but
you can also argue that some of the principles I’ve categorized under an effective
team also apply here because requirements are often a contract between the business,
developer, and quality roles on the team. You can look at requirements from a few
angles. First, does your development team understand them and can they work with
them? Second, do your customers actually get what they want? You can measure those
with the following metrics:

■ Recidivism—When recidivism is high, that means someone in the workflow
didn’t have the same standard as someone downstream. This is usually an indi-
cator of incomplete or inconsistent requirements.

■ Lead time, velocity, and development time—These all measure how long it takes for
your team to get tasks across the finish line.

Your team translates requirements into software using agile processes. The agile principles
from the Agile Manifesto can be broken down into these four measurable elements that
you can track to see how well your team is aligning to the agile principles. Now let’s take
a look at a team in our case study that puts these measurements into practice.

10.6 Case study: a new agile team
Many companies move their development practices to be more agile but don’t get all
the way there. Sometimes legacy systems can’t be turned off; mainframes or large
financial reconciliation systems simply can’t be rebuilt or refactored in a reasonable
amount of time and can’t be deployed even as frequently as every few weeks.

 This case study takes us to a team that has moved many of their web and mobile
development teams to agile practices but has a large financial mainframe that gets
updated once a quarter. After seeing the speed at which the agile teams are delivering
code, the leadership team sponsors an effort to implement a new system that will take
on the functionality of the mainframe one piece at a time. During this transition
they’ll move developers from the mainframe maintenance teams over to the new agile
teams, train them to work differently, and expect them to start practicing CD.

 Technical problems are the easy ones; teaching people new processes when they’ve
been doing the same thing for several years is much harder. To help transition the
team, the leaders started by agreeing on target metrics to track so the team could see
the progress. The strategy was to start at the top, ensure that everyone understood
what the high-level goals were, and when they established a baseline, then start adding
more detailed metrics to continually improve the process.

 Each sprint they created headlines; each headline correlated to a demonstrable
piece of functionality that they committed to finishing by the end of the sprint. The
headlines were what was determined would satisfy the customer. They used the headlines
as their indicators of working software and made sure that they were breaking their tasks
down into small enough chunks that they could deliver pieces early and continuously
through their sprint. As they broke tasks down, they used labels to associate headlines
with tasks so they could track individual metrics for tasks grouped by headlines. To
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 10 Measuring your team against the agile principles
track success in moving to this new process they decided to measure lead time, esti-
mate health, and estimate distribution. The estimate distribution and estimate health
would show them how well they were breaking down tasks, and lead time would show
how long it actually took to deliver tasks end to end. The dashboard they started using
is shown in figure 10.14.

 As they were developing, they wanted to ensure they were paying continuous atten-
tion to the technical excellence of their software. Before they started developing, the
team put all the build and monitoring systems in place to enable easier delivery and
better quality. They were able to adopt tools from other teams in the organization that
were already practicing agile and CD such as Sonar, their internal delivery pipeline for
CI, and APM tools for production monitoring. By using these tools, they would be able

Each headline that represented major
features is tracked with a label.

In Kibana you can click on a term to
filter all metrics by your selection.

The key metric, lead
time, shows the team how
long it takes to get tasks
all the way through the

development cycle.

The distribution of estimates
shows the percentage of tasks

grouped by their estimates.
This team decided that the
bulk of estimates should

be low numbers.

Estimate health shows the
team how close their estimates

are to actual time. A value of
4 means on average tasks
take four days longer then

the original estimate.

Figure 10.14 The team’s dashboard with labels, estimate distribution, estimate health, and lead
time. These metrics helped the team stay aware of how well they were estimating and delivering.
Licensed to Mark Watson <nordickan@gmail.com>

217Case study: a new agile team
to better understand the quality of their products as they were developing them
instead of through long QA cycles after weeks of development. Because this was a new
concept for the development team, they needed some time to become familiar with
the tools and get used to using them in their development process. But once they
were up and running, they knew from the success of other teams in the company that
they could become a more effective team.

 To track their success with CI they tracked unit test and mutant coverage to make
sure the team was writing decent tests and tracked good versus bad build ratio to make
sure they were iterating on a working product. The dashboard they used for this is
shown in figure 10.15.

 An effective team produces great software, but an effective team is made up of
motivated individuals who work together across functions and reflect at regular inter-
vals to become more effective. To measure this, the team tried a few different tactics
that other teams across the organization were already doing.

 Because they were following Scrum, they had a built-in mechanism to reflect every
two weeks in their retrospective. To ensure this turned into an effective and produc-
tive session, they drove the sessions with data. When they discussed what they could
improve, they also discussed what metrics they could use to track their improvement.
The key metric they used to measure everything was lead time. The thinking was that
by making the whole team pay attention to the time it took to deliver a feature end-to-
end, they would bring the business and development teams together toward the com-
mon goal of delivery. After tracking their lead time until they delivered something,
they could then all sit down and reflect on what they could do to improve. Of course,
along the way they collected all the data they needed to look into the details of the
team when they were ready to do so.

Code coverage shows how well the team is writing
tests. Mutant coverage shows how good the tests are.

In this case a slight discrepancy in the two isn’t
bad but still worth investigating.

Figure 10.15 The next set of charts used by the development team included good versus bad
builds, unit test coverage, and mutant coverage.
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 10 Measuring your team against the agile principles
 After a single sprint the team had delivered a partially functional web service. After
another sprint they were able to get a functional UI on top of it that met the criteria
for their first set of features. They were operating in two-week sprints and at the end
had a lead time of 28 days.

 In their retrospective they started breaking down lead time to find efficiencies in
their process. They found that there was still a lot of back and forth between the stake-
holders, developers, and QA. They correlated that to a lack of good face-to-face con-
versations and realized that in their case to track improvement they could use
recidivism to find the overall churn between the different roles on the team and use
the number of bugs to track how well the development and QA teams were communi-
cating, as shown in the dashboard in figure 10.16.

36% of all tasks move backward in the
workflow at least once. Of those that move
backward nearly 25% move backward more

than once. Clearly there is room for
improvement with recidivism.

By tracking bugs completed along with tasks
completed it’s apparent that many of the completed

tasks are bugs, and it looks like the percentage
of bugs is increasing over time.

Figure 10.16 The dashboard tracking recidivism and bugs versus total tasks to help the team track
how well they’re working together across disciplines.
Licensed to Mark Watson <nordickan@gmail.com>

219Summary
 After another sprint of analyzing data from their PTS, they started to get the hang
of finding problems in retrospectives, using data to track corrections, and coming up
with strategies to improve. The development team was not only new to agile, it was
also new to working so quickly, and they had a lot to learn about the best way to man-
age source control and deployments in this new paradigm. They started paying atten-
tion to pull requests versus commits and to build and deploy times from their CI

systems and added those metrics to their dashboards.
 After several sprints the team was using several metrics based on the agile princi-

ples to continually improve their development and delivery processes. They felt
empowered to deliver changes frequently, and their morale was high after successfully
moving toward agile methodologies.

10.7 Summary
At this point you should have a plethora of tools at your disposal to start measuring
your team, incorporating metrics into your development cycle, and communicating
them across your team and up the chain.

 In this chapter you learned the following:

■ To measure a team against the agile principles you need to answer four big
questions:

■ Are the requirements effective?
■ Is the development team effective?
■ Are your processes effective?
■ Is your software effective?

■ You can measure requirements with metrics covered in previous chapters:

■ Recidivism
■ Lead time
■ Development time
■ Velocity

■ You can measure the development team with metrics covered in previous
chapters:

■ Lead time
■ Development time
■ Deploy frequency
■ Good/failed builds

■ You can measure your process with metrics covered in previous chapters:

■ Velocity
■ PTS and SCM comments
■ Successful deployments
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 10 Measuring your team against the agile principles
■ You can measure your software with metrics covered in chapter 8:

■ Successful versus failed builds
■ Business metrics
■ Performance health data
Licensed to Mark Watson <nordickan@gmail.com>

appendix A
DIY analytics using ELK

In this appendix I’ll walk you through setting up a powerful analytics system using
the ELK stack (EC, Logstash, and Kibana). You can download the basic stack from
the EC website. You can also get the setup I’ve used for this book on GitHub at
github.com/cwhd/measurementor.

 Let’s start by looking at the high-level component diagram in figure A.1 to get an
idea of the pieces you need to build. You’ll need to write some scripts to collect data,
set up a database to store it, and put together an indexing, search, and visualization
engine. Once you have all of these components, you’ll be ready to start building out
connectors to external applications used on the development lifecycle to get data
and analyze it. You’ll use the following technologies for these components:

■ Data collection—Grails (grails.org/)
■ Database—MongoDB (www.mongodb.org/)
■ Data indexing and search—EC (www.elasticsearch.org/)
■ Data visualization—Kibana (www.elasticsearch.org/overview/kibana/)

This appendix covers
■ Reviewing the overall architecture of an agile

metrics collection and analytics system
■ Setting up an ELK server
■ Building a data-collection application using

Grails
■ Installing the data collector on the ELK server
221

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/cwhd/measurementor
https://grails.org/
www.mongodb.org/
www.elasticsearch.org/overview/kibana/
www.elasticsearch.org/

222 APPENDIX A DIY analytics using ELK
Figure A.2 shows how data flows through the system.

The systems
you use in your

application lifecycle.

Scripts query external
systems for data.

Applications and
interesting data

Data visualized in the form
of charts and graphs.

Data saved in
the database.

Indexing engine makes
traversing data easy and fast.

What we're
building in

this appendix.

Data collection
and conversion

Database

Data
visualization

Data indexing
for search

D t i d i

Figure A.1 The high-level component diagram of the analytics system

Applications and
interesting data

Systems used to manage
work in the application

lifecycle

1 Do work

2 Get data to store
for analysis

3 Store the
data

4 Index data for
easier searching

5 Analyze and
visualize trends

6 Measure the
work and tweak
your process

Data
fetcher

Data
indexing

Data flow

Database

a

Data
visualization

Figure A.2 A closer look at the flow of data through the analytics system
Licensed to Mark Watson <nordickan@gmail.com>

223
Figure A.2 illustrates the data flowing through the analytics system during the applica-
tion lifecycle. Combining this with the diagram in figure A.1 shows that you’re going
to do the following:

■ Get MongoDB up and running as your database.
■ Get EC and Kibana up and running for data indexing, search, and analysis.
■ Create the application that gets data and saves it to the database.
■ Generate charts and graphic visualization.

I already have this running for you, so go to GitHub, get the latest version, and run the
Puppet scripts to set it all up.

 If you want to use something other than Grails, it’s okay. I have working code, but
if you follow along with the examples in appendix B where I go into more detail on
the data-gathering application, you can easily translate the system into another
language.

Before you start building the system, let’s take a more in-depth look at its design and
specification.

Using the examples with Puppet and Vagrant

As you build the system in this appendix you’ll be installing tools and a database,
and I’m going to assume you have Java installed on your development machine. But
wouldn’t it be cool if you didn’t have to worry about any of that? You could open the
system and start developing it without having to worry about installing anything, the
version of tools that may already be installed on your computer, or differences between
OSs. Versioning environments as you version code have become popular along with
the recent rise of DevOps (en.wikipedia.org/wiki/DevOps), the concept of combining
development and operations to be able to release software faster and more efficiently.
Puppet (puppetlabs.com/) is a technology that allows you to write code that automates
the installation and versioning of the software on your environment. Automating the
installation and versioning of software is great, but it’s even better if you can switch
between development environments if you’re working on different projects or experi-
menting with different tools and technologies. Using virtual machines (VMs) allows
you to keep multiple environments at your fingertips for just that, switching between
OSs or environment configurations to work across projects with different dependen-
cies. Vagrant (www.vagrantup.com) is a development tool that abstracts the details
of VMs away from the developer and integrates seamlessly with Puppet so that you
can automate the installation of software and jump into your development environment
with a simple command from your terminal of choice.

As you implement this system, you’ll do it in a way that can be run on your local machine,
but the code examples from the website will be set up using Vagrant and Puppet.
Vagrant makes developing locally easier by wrapping everything in a VM. Puppet will
configure the Vagrant box for you; that way you don’t have to worry about whatever chang-
es you’re making locally and it’s easier to install the solution on different systems.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/DevOps
http://puppetlabs.com/
www.vagrantup.com

224 APPENDIX A DIY analytics using ELK
A.1 Setting up your system
Now that we’ve looked at the high-level design, let’s set up the system. Because the sys-
tem depends on open source components instead of finding, downloading, and
installing every component, I’ve boiled all the pieces into a Puppet script, which you’ll
use to install everything you need in a VM using Vagrant. Using Puppet you can set up
this system anywhere you can create a VM. For the purposes of this book I’ll focus on
getting you up and running on your localhost.

 The interaction of Vagrant, Puppet, and VirtualBox on a local development
machine is shown in figure A.3.

 First, get the latest version of Vagrant from www.vagrantup.com/downloads.html.
If you’re using Windows, you’ll also need to install Cygwin with the openssh package
so you can connect to your Vagrant machine when it boots up.

 Second, download the code for this book from github.com/cwhd/
measurementor. The codebase contains the Vagrant and Puppet configuration to
install all the components you need. The Vagrant file contains a line of code that sets
up a shared directory between your local machine and the Vagrant box to make
tweaking the system easier. In the Vagrant file around line 49, change PATH_TO
_DOWNLOADED_PROJECT_HERE to the path where you downloaded the code. For exam-
ple, if you downloaded the code to /Users/cwhd/Development/measurementor,
replace PATH_TO_DOWNLOADED_PROJECT_HERE with /Users/cwhd/Development/
measurementor. For Windows users, be sure to escape slashes. For example, if you
download the code to C:\Agile Metrics\measurementor on a Windows machine,
change PATH_TO_DOWNLOADED_PROJECT_HERE to C:\\Agile Metrics\\measurementor.

NOTE As the versions of these components update, measurementor will
evolve on GitHub after this book is printed. For the latest setup instructions
please check the readme file for the project.

Finally, navigate to the directory where you downloaded the code and run the follow-
ing commands.

The local development
machine acts as a host to

the development VM.

Vagrant manages
how to set up the
virtual machine.

Puppet installs
what you need and
configures your VM.

When complete a
new VM is configured

and ready to use.

Figure A.3 How Vagrant, Puppet, and VirtualBox interact with your development environment
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/cwhd/measurementor
https://github.com/cwhd/measurementor
https://www.vagrantup.com/downloads.html

225Setting up your system

V
out

it
u

 lo

You
to g

$> vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Checking if box 'hashicorp/precise64' is up to date...
==> default: Resuming suspended VM...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Connection refused. Retrying...
==> default: Machine booted and ready!
$> vagrant ssh
Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic x86_64)

 * Documentation: https://help.ubuntu.com/
New release '14.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Welcome to your Vagrant-built virtual machine.
Last login: Mon Nov 24 21:24:23 2014 from 10.0.2.2
vagrant@precise64:~$

Now you have a local VM with all the components you need installed on it. In the
Vagrant file I’ve set up ports to share with your localhost, so you can check on EC and
Kibana from your web browser at the following URLs:

■ EC: http://localhost:9200
■ Kibana: http://localhost:5601

If those URLs come up, then you’ve successfully gotten your local environment up and
running.

Listing A.1 Running Vagrant

A few more useful Vagrant commands

Vagrant makes it very convenient to develop in a sandbox. It’s so easy to set up a
new system that often during development you may want to tear the system down
and start again. To completely wipe away your environment use the vagrant destroy
command, you can always create a new one using vagrant up again.

One drawback to using a VM for development is that it will use up a lot of your system’s
resources, making other programs slow while your VM is booted and running. If you
want to halt development and go back to other work, you can pause your Vagrant box
using the vagrant suspend command. That will effectively pause the state of your
VM and return the memory and CPU to your other applications. To resume using it,
simply use vagrant up again.

For a complete reference visit the Vagrant website.

Runs your
vagrant file

agrant
put as
 boots
p your
cal VM

Command to tunnel
into the VM

Vagrant output
as you log in.

’re ready
o!
Licensed to Mark Watson <nordickan@gmail.com>

https://help.ubuntu.com/
http://localhost:9200
http://localhost:5601

226 APPENDIX A DIY analytics using ELK

St
M
co

In
the jir

coll
A.1.1 Checking the database

The previous Puppet script installed Mongo for you. If you want to check directly
from the database, you can do so from the command line in your Vagrant host with
the commands in the following listing.

vagrant@precise64:~$ mongo
MongoDB shell version: 2.6.5
connecting to: test#B
> show collections
jiraData
jiraData.next_id
jobHistory
jobHistory.next_id
> db.jiraData.find()
{ "_id" : NumberLong(8805), "assignees" : [], "created" : ISODate("2014-

11-21T19:19:05Z"), "createdBy" : "james.lee3_nike.com", "dataType" : "PTS",
"issuetype" : "Bug", "key" : "ACOE-885", "leadTime" : NumberLong(0),
"movedBackward" : 0, "movedForward" : 0, "storyPoints" : 0, "tags" : [],
"version" : 0 }

> db.jiraData.remove({})
> exit

Note that if you haven’t yet run the data collector, you won’t see any data in your
database.

 For complete documentation on MongoDB, visit www.mongodb.org/.

A.1.2 Configuring your data collector

The application that does everything between the database and the web display (a.k.a.
the middle tier) is written with Grails and Groovy. If you want to go in a different
direction and write something yourself, you can achieve the same results using other
languages. The key is to use whatever you’re most comfortable with, because that will
make the process as painless and seamless as possible. I personally like Groovy because
it’s a popular language, easy to use, highly supported, gets better with every release,
does a lot of the programming tedium for you, and can run on the Java VM (JVM),
which makes it highly portable and scalable. In short, it’s a Swiss army knife that lets
you build stuff fast. If there are examples in certain languages you really want to see,
feel free to request help on the Author Online forum,1 and I can help post examples
in whatever language you’d like to use.

 In appendix B I’ll give more information about the details of the Grails app if you
want to tweak it. But it should work out of the box with a few configuration tweaks if
you don’t want to get under the hood.

 I’ve included a shell script with the code that will walk you through the configura-
tion of the system. It will ask you for the URLs and credentials for all the supported sys-

Listing A.2 Checking data In MongoDB

1 www.manning-sandbox.com/forum.jspa?forumID=924&start=0

arts the
ongo
nsole

General informational
outputs

Shows all the
collections in
the database

spects
aData
ection

Deletes the entire
collectionExits MongoDB
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=924&start=0
www.mongodb.org/

227Setting up your system

R

tems you want to connect to, so you should have those ready. You have to enter
credentials as base64-encoded strings that can be used for HTTP basic auth. For exam-
ple, if your username is UserOne and your password is h0lm3s, then your basic auth
string would be UserOne:h0lm3s. You can use a local utility to base64 encode your
strings, or you can go to a site like www.base64encode.org/.

 The shell script will copy the file measurementor.properties to a new file called
application.properties. Then it will take the parameters you pass into the shell script
and update the settings for the application. If you don’t run the shell script or want to
change anything, you can do the steps manually by copying measurementor.properties
to a new file called application.properties and adding the URLs to the systems you want
to connect to. An example for JIRA connectivity should look like the following listing.

jira.credentials=dXNlcjpwYXNzd29yZA==
jira.url= https\://jira.whatever.com

Because you’re focusing on getting this running locally, you can now run the Grails
application from inside your Vagrant box. It will do the following:

■ Reach out to the systems you’ve specified.
■ Get data out of them.
■ Write the data into MongoDB.
■ Index the data in EC.

SSH into your box and run the app with the commands in this listing.

>$ vagrant up
vagrant@precise64:~$ cd /measurementor
vagrant@precise64:~$ grails run-app

Now everything is good to go! The app is configured to run once a day to get data out
of your systems and index it.

Listing A.3 Setting up your config file

Listing A.4 Running the Grails app

Be careful if you’ve hosted JIRA

If you’re using the hosted version of JIRA, be careful how frequently and at what times
you run your data collection. I’ve worked on a fairly large team with a lot of data and
I’ve noticed that under load JIRA completely dies. If you have a small team, then you
should be okay, but if you have a good-size team, you should limit your data collection
to times when normal usage is low.

The base64 encoded
basic auth

URLs to the root
of the systems

Logs into your
Vagrant box

Navigates to the directory
where the app lives

uns it
Licensed to Mark Watson <nordickan@gmail.com>

www.base64encode.org/

228 APPENDIX A DIY analytics using ELK
A.2 Creating the dashboard
The front end is the open source graphing system Kibana. Once you have data in EC,
Kibana is already wired up for you to start creating nice charts and graphs. Figure A.4
shows a few ways to create graphs with Kibana.

 At the time this book was published Kibana 4 had just been released. Thus, many of
the figures have charts from Kibana 3, though the system has been upgraded to use
Kibana 4. For the latest information on how to set up a Kibana dashboard check out my
blog at www.cwhd.org/, or read through the Kibana documentation on the EC website.

A.3 Summary
The ELK stack is a popular open source set of tools that you can easily use for analyz-
ing your team. Using the code for this book, you should be able to get it running in no
time. In this appendix you learned the following:

■ Where to get an open source system to do the measurement we talked about in
the book

■ About the architecture and operation of an analytics system
■ How to set up an analytics system that you can use to collect and analyze data
■ How to create a dashboard interface for displaying data

Pay attention to your source system logs

Another lesson learned from doing large-scale data collection is to be wary of the log
level of your source systems. I’ve seen some systems run out of disk space and crash
because no one was paying attention to how the system was logging.

Or…

Mouse over the side
bar to add a panel.

Clicking on the data indexed shows you
the breakdown of data; you can click

to create a new graph from here.

Figure A.4 A few simple ways to create new graphs in Kibana
Licensed to Mark Watson <nordickan@gmail.com>

www.cwhd.org/

appendix B
Collecting data from

source systems with Grails

This appendix goes into the architecture and code of the Grails data collector in
the measurementor project. This will be a good chapter to read if you want to fork,
contribute to, extend, or customize the project to better fit into your environment.

 This appendix picks up where appendix A left off. In appendix A we talked
about using Elasticsearch (EC) to index your data and Kibana to generate graphs
and do ad hoc analysis of your data. Combined, these platforms are very powerful
and provide a lot of out-of-the-box functionality. But there are two things missing
from EC and Kibana alone:

■ You need to get data to index. You could set up Logstash for that, but it would be
a lot of work and you’d need access to all of your source system’s installa-
tions.

■ EC is for searching data. If you want to calculate metrics based on combina-
tions of data, you’ll have to do that somewhere else.

This appendix covers
■ The architecture of the Grails component in

measurementor
■ Structure of the domain objects
■ Using Quartz as a job scheduler
229

Licensed to Mark Watson <nordickan@gmail.com>

230 APPENDIX B Collecting data from source systems with Grails
To accommodate for the shortcomings there’s a small Grails-based component to
measurementor that reaches out to various systems via their REST-based APIs, gets the
data we’ve been talking about in this book, and sends it to EC for indexing. This is cus-
tom code, so you can tweak it do whatever you want, including setting up additional
dashboards with metrics you calculate yourself.

Throughout this appendix we’ll be using the JIRA API in our examples.

B.1 Architectural overview
First, let’s look at the high-level architecture outlined in appendix A to highlight the
area of focus in this appendix; see figure B.1.

 Note that we’ve added a couple of specific technologies to the diagram: Grails and
MongoDB. You’ll use Grails and MongoDB for their ease of use and flexibility. The
data collection and conversion component in figure B.1 breaks out into figure B.2.

 Overall the architecture is pretty simple. You’ll use jobs to schedule the collection
of data, services to parse individual data sources, and domain objects to represent
each type of data you want to index. Grails has the following out-of-the-box capabili-
ties to help you set up these components:

■ Create jobs with just a few lines of code.
■ Create simple objects usually called plain old Groovy objects (POGOs) that use

Grails Object Relational Mapping (GORM) to handle interaction with the data-
base.

■ Create services that you can autowire into other classes with a single line of
code.

The measurementor project

I’ve open sourced the measurementor project and it’s freely available on GitHub:
github.com/cwhd/measurementor. Keep in mind that because it’s a living project,
some of the code examples from the print version of this book may be out of date,
but the concepts all hold true.

Using JIRA in the examples

This app has custom code to get data from each source system it needs to connect
to. To walk through the architecture I’ll use the code that gets data from JIRA, which
is a very common and popular agile tracking system. The concepts and the structure
of the code we’ll be looking at can be used with any system that has a REST-based
API; if you crack open the code, you’ll see connectors to other systems. By following
the examples in this appendix, you can create your own connectors if you want to get
data from other sources.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/cwhd/measurementor

231Architectural overview

Because the Grails framework takes care of the tedious plumbing that would go into
making the previous things work in other languages, you’re free to focus on getting
the data you want from the source systems without having to focus on only making
things work.

The systems
you use in your

application lifecycle.

Scripts query
external systems

for data.

Applications and
interesting data

Data visualized in
the form of charts

and graphs.

Data saved in
the database.

Indexing engine
makes traversing data

easy and fast.

The focus of
this appendix.

Data collection
and conversion

Database

Data
visualization

Data indexing
for search

D t i d i

Figure B.1 The focus of this appendix, the Grails portion of measurementor

Data is indexed
from here into
Elasticsearch.

Source
API

Jobs:
Scheduled jobs

fetch data

Web service
query

Raw data
response

Get data - Grails system

Services:
Source-specific

services map the
data to the
database.

Domain objects:
Domain objects

transfer data
between the source

and indexer.

Database
{
 data: [...]
}

Figure B.2 A closer look into the Grails/Mongo-based data collection system
Licensed to Mark Watson <nordickan@gmail.com>

232 APPENDIX B Collecting data from source systems with Grails
If you check out the project and
open it in your favorite IDE, you
can navigate to all the interesting
parts, as shown in figure B.3.

 Feel free to poke around the
rest of the app, but most of the
interesting stuff is in the three
sections noted in figure B.3. We’ll
look at each of these sections so
you’ll get an idea of what’s going
on and how to extend the app
further.

B.1.1 Domain objects

The APIs from our source systems
are so rich that indexing all the
fields that come back will make
searching for patterns and trends
very difficult. It’s much easier to get started by focusing on the fields you know
you’ll need.

 The nature of this application is to get data from multiple systems and save it in a
central place for indexing. The domain objects will be your contract between the
source system and your indexer. The domain objects make it easier to transfer data
because they allow you to take advantage of the database plugins and object relational
mapping (ORM) provided by the Grails framework. There’s a domain object for each
system you’re getting data from. You can look at one of our domain objects in the fol-
lowing listing to see how simple they are.

package org.cwhd.measure

class JiraData {
 static mapWith = "mongo"

A note on using other languages and frameworks

Over the last several years I’ve built a few different versions of this application. The
first rendition used Python instead of Grails. I ended up switching to Grails because
I prefer working in it. It runs on the JVM, which made it easy to get up and running on
the infrastructure I had available at the time, and it was easier to get something running
from scratch. If you hate Grails and can’t imagine why I’m using it, then feel free to
use the patterns outlined in this appendix to write something in your framework and
language of choice. If you do, let me know; I’d love to plug your work on my blog!

Listing B.1 The JIRA domain object

All of our domain objects
to define the data

we'll be working with

Scheduled tasks that call
services that get data and

save it for indexing

Services that specialize
in parsing data from a
source and saving it

Figure B.3 Where to find the three main components of
the app: domain objects, services, and jobs

Maps this object to
MongoDB via ORM.
Licensed to Mark Watson <nordickan@gmail.com>

233Architectural overview
 static searchable = true

 String key
 Date created
 String createdBy
 String issuetype
 int movedForward
 int movedBackward
 int storyPoints
 String[] assignees
 String[] tags
 String dataType
 Date finished
 long leadTime
 long devTime
 int commentCount
 String jiraProject
 int estimateHealth
 long rawEstimateHealth

 static constraints = {
 finished nullable: true
 created nullable: true
 createdBy nullable: true
 issuetype nullable: true
 storyPoints nullable: true
 assignees nullable: true
 tags nullable: true
 leadTime nullable: true
 devTime nullable: true
 commentCount nullable: true
 jiraProject nullable: true
 estimateHealth nullable: true
 rawEstimateHealth nullable: true
 }
}

As you can see, it’s very simple; the domain objects define the data that you’re going
to move from the source systems to the indexer. The services you’re using for data col-
lection are where most of the work of the application is done, but first let’s look at the
data you need to parse.

B.1.2 The data you’re working with

Look at the data you can get back from JIRA’s API in the next listing. In earlier chap-
ters we talked about the who, what, and when you can get from source systems. They’re
noted in figure B.2.

{
 "expand": "names,schema",
 "startAt": 0,
 "maxResults": 50,

Listing B.2 Excerpts from the raw data in a typical API response

Indexes this object
once it’s been saved.

Properties that you’ll
pull out of JIRA’s API.

Nullable properties
are easier to manage.
Licensed to Mark Watson <nordickan@gmail.com>

234 APPENDIX B Collecting data from source systems with Grails

T

 "total": 1,
 "issues": [
 {
 "expand": "editmeta,renderedFields,transitions,changelog,operations",
 "id": "58496",
 "self": "https://jira.blastamo.com/rest/api/2/issue/58496",
 "key": "MSP-3888",
 "fields": {
 "customfield_17140": "55728000",
 "created": "2012-01-19T14:50:03.000+0000",
 "project": {
 "key": "MOP",
 "name": "Multi-Operational Platform",
 }
 creator:
 {
 name: "jsmit1",
 emailAddress: "Joseph.Smith@blastamo.com",
 displayName: "Smith, Joseph",
 },
 aggregatetimeoriginalestimate: null,
 assignee: {
 name: "jsmit1",
 emailAddress: "Joseph.Smith@nike.com",
 displayName: "Smith, Joseph",
 },
 issuetype: {
 name: “Task”,
 subtask: false
 },
 status: {
 name: "Done",
 statusCategory: {
 key: "done",
 name: "Complete"
 }
 },
},

To make it easier to visualize, we turned this JSON response into a group of domain
objects in figure B.4.

 Figure B.4 paints a rather complex picture of the domain structure that gets sent
back. The Fields object in the response represents all the data in a task that has a value.
Fields can be as simple as a name-value pair in most cases, but a field can also be an
object that has its own set of name-value pairs. The best example is the User object used
to show the creator and the current assignee of the task; each user has a name, email,
display name, and other data associated with it. The ChangeLog is another aggregation
of objects that represent the history of how the issue has changed over time.

 To get data from the source systems, you have a service for each source system that
maps the data from the source API back to your domain model. That brings us to the
services you’ll use to parse the data.

The when

he what

The who
Licensed to Mark Watson <nordickan@gmail.com>

235Architectural overview

pa

ices.
B.1.3 Data collection services

The data collection services will get data from the specific data schemas in your source
systems and map them to your domain objects. In some cases this is a simple mapping,
but others will include functions that combine or calculate data into fields that aren’t
in the source system. Sticking with JIRA as an example, the next listing shows excerpts
of the data collection service for JIRA.

def getData(startAt, maxResults, project, fromDate) {
 def url = grailsApplication.config.jira.url
 def path = "/rest/api/2/search"
 def jiraQuery = "project=$project$fromDate"
 def query = [jql: jiraQuery, expand:"changelog",startAt: startAt,
 ➥ maxResults: maxResults, fields:"*all"]

 def json = httpRequestService.callRestfulUrl(url, path, query, true)

Listing B.3 Collecting data from JIRA

id
key
fields
changelog

Issue

1 1

maxResult
total
histories

ChangeLog

**

maxResult
total
histories
reporter
creator
assignee

Fields

1 1

name
email
displayName

(User)Assignee

**

1

1

id
author
created
items

History

id
author
histories

HistoryItem

*

*

name
email
displayName

(User)Creator

Figure B.4 Representing the response as a grouping of domain objects

Configures URL in
application.properties.

Key
rameters.

The HTTPRequest calls other serv
Licensed to Mark Watson <nordickan@gmail.com>

236 APPENDIX B Collecting data from source systems with Grails
 def keepGoing = false

 if(json.issues.size() > 0) {
 keepGoing = true
 }

 //NOTE we need to set the map so we know what direction things are
 ➥ moving in; this relates to the moveForward & moveBackward stuff

 def taskStatusMap = ["In Definition": 1, "Dev Ready":2, "Dev":3,
 ➥ "QA Ready":4, "QA":5, "Deploy Ready":6, "Done":7]

 for(def i : json.issues) {
 def moveForward = 0
 def moveBackward = 0
 def assignees = []
 def tags = []
 def movedToDev
 def commentCount = 0
 def movedToDevList = []

 if (i.changelog) {
 for (def h : i.changelog.histories) {
 for (def t : h.items) {
 if(t.field == "status") {
 if(taskStatusMap[t.fromString] > taskStatusMap[t.toString]){
 moveBackward++
 } else {
 moveForward++
 movedToDevList.add(UtilitiesService.cleanJiraDate
 ➥ (h.created))
 }
 } else if(t.field == "assignee"){
 if(t.toString) {
 assignees.add(UtilitiesService.makeNonTokenFriendly
 ➥ (t.toString))
 }
 }
 }
 }
 movedToDev = movedToDevList.min()
 } else {
 logger.debug("changelog is null!")
 }

 commentCount = i.fields.comment?.total

 tags = i.fields.labels

 def storyPoints = 0
 if(i.fields.customfield_10013)
 storyPoints = i.fields.customfield_10013.toInteger()
 }

 def createdDate = UtilitiesService.cleanJiraDate(i.fields.created)
 def fin = UtilitiesService.cleanJiraDate(i.fields.resolutiondate)

Handles paged
requests.

This map helps set
recidivism rate.

Key variables.

See changelog for
historical information.

Checks movement
 history to calculate

recidivism.

All users assigned
to this ticket.

storyPoints are
a custom field.
Licensed to Mark Watson <nordickan@gmail.com>

237Architectural overview

 bet

Es
ca
U

 def leadTime = 0
 def devTime = 0
 if(createdDate && fin) {
 long duration = fin.getTime() - createdDate.getTime()
 leadTime = TimeUnit.MILLISECONDS.toDays(duration)
 }

 if(movedToDev && fin) {
 long duration = fin.getTime() - movedToDev.getTime()
 devTime = TimeUnit.MILLISECONDS.toDays(duration)
 }
 else if(movedToDev && !fin) {
 long duration = new Date().getTime() - movedToDev.getTime()
 devTime = TimeUnit.MILLISECONDS.toDays(duration)
 }

 def estimateHealth = UtilitiesService.estimateHealth
 ➥ (storyPoints, devTime, 13, 9, [1, 2, 3, 5, 8, 13])

 def jiraData = JiraData.findByKey(i.key)
 if(jiraData) {
 …
 } else {
 jiraData = new JiraData(…)
 }

 jiraData.save(flush: true, failOnError: true)
 }

 if(keepGoing) {
 getData(startAt + maxResults, maxResults, project, fromDate)
 }
}

One thing you may notice is multiple calls to the UtilitiesService, which does things
like clean fields to make them easier to index, convert dates from one system to
another, and carry out shared complex functionality. I won’t go into the specifics of the
UtilitiesService in this appendix, so if you want you can check it out on GitHub.1

 The patterns that you see in this service can be applied to a service that gets data
from any other system. Coupled with a domain object that handles persistence and
indexing, you have the pieces you need to get data from the source and analyze it in
Kibana. The final piece is a set of jobs that update the data on a schedule.

B.1.4 Scheduling jobs for data collection

Normally I’m a big proponent of event-driven systems rather than timer-based systems.
But because you’re getting data from several source systems, each of which you may not
have control over, it’s easier for you to use timers to update and index the data.

 The technology you’ll use to schedule calling the data-collection services is Quartz.
Quartz allows you to schedule jobs to run at any frequency you define. The Quartz

1 If you use this link, github.com/cwhd/measurementor/blob/master/grails-app/services/org/cwhd/
measure/UtilitiesService.groovy, you can get directly to the UtilitiesService class.

Time difference
 between created
and completed.

Time difference
ween dev start

and completed.

timate health
lculation is in

tilitiesService.
Cut for brevity;
save everything.

Recursive call
for paging.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/cwhd/measurementor/blob/master/grails-app/services/org/cwhd/measure/UtilitiesService.groovy
https://github.com/cwhd/measurementor/blob/master/grails-app/services/org/cwhd/measure/UtilitiesService.groovy

238 APPENDIX B Collecting data from source systems with Grails

.

.

plugin for Grails is flexible and allows you to define intervals using Cron
(en.wikipedia.org/wiki/Cron), which is a standard UNIX convention, or use simple
declarations in which you define the repeat interval in milliseconds.

The next listing shows an excerpt from my code that defines a Quartz job that calls
one of our services. Take a look at grails-app/jobs/org/cwhd/measure/Populator-
Job.groovy2 for the full code.

class DataFetchingJob {

def jiraDataService
static triggers = {
 simple name: 'jobTrig', startDelay: 60000, repeatInterval: 100000
}

def execute() {
 def result = "unknown"
 try {
 def startDateTime = new Date()
 jiraDataService.getData(0, 100, "ACOE")
 stashDataService.getAll()
 def doneDateTime = new Date()
 def difference = doneDateTime.getTime()-startDateTime.getTime()
 def minutesDiff = TimeUnit.MILLISECONDS.toMinutes(difference)
 result = "success in $difference ms"
 println "---"
 println "ALL DONE IN ~$minutesDiff minutes"
 println "---"
 } catch (Exception ex) {
 result = "FAIL: $ex.message"
 }
 JobHistory history=new JobHistory(jobDate:new Date(),jobResult:result)
 history.save(failOnError: true)
}

About Quartz

Quartz is a flexible, lightweight, fault-tolerant job scheduler written in Java that’s com-
monly used in applications that need scheduling capabilities. The code for Quartz is
open source, so you can compile it on your own if you like, but it’s more commonly
used in its packaged form. Quartz is very popular and has been around for a long time,
so the code is hardened and works well for a variety of scenarios. For more in-depth
information check out the documentation on the Quartz website (quartz-scheduler.org/
documentation/).

Listing B.4 Basic job to run our services

2 github.com/cwhd/measurementor/blob/master/grails-app/jobs/org/cwhd/measure/PopulatorJob.groovy

Declares the service
to call from the job.

Sets up the
trigger to run

The method called when the job is
run; calls the service from here.

Times the
method.

Saves the
job history

for reference
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/cwhd/measurementor/blob/master/grails-app/jobs/org/cwhd/measure/PopulatorJob.groovy
http://quartz-scheduler.org/documentation/
http://quartz-scheduler.org/documentation/
http://en.wikipedia.org/wiki/Cron

239Summary
This class could be only a few lines of code because we only need to define the timer and
call the services that get the data. The rest of the code times how long it takes to exe-
cute, handles errors, and saves the details of the job into the JobHistory domain class.

 The JobHistory class is used to remember when jobs were executed and the
result. If for some reason they failed, then the next time the job runs it can try the
same query. If it was successful, then we don’t have to get the data a second time.

B.2 Summary
Groovy, Grails, and MongoDB are simple and fun to work with. Using the open APIs
available through source systems, getting data into a single place for more complex
analysis is a piece of cake (or pie). In this appendix you learned the following:

■ You can take advantage of the built-in power of Grails to do the following:
■ Manage persistence
■ Request data from RESTful APIs
■ Interface with Elasticsearch
■ Set up jobs to update data

■ The measurementor architecture is simple and extendable.
■ If you don’t like Grails, you can use these patterns to build the same application

in your language of choice.
■ Quartz is a flexible and lightweight technology used for scheduling jobs.

Licensed to Mark Watson <nordickan@gmail.com>

240 APPENDIX B Collecting data from source systems with Grails

Licensed to Mark Watson <nordickan@gmail.com>

index
A

actionable insight 135
agile principles

aligning with delivery lifecycle 204–205
measuring effectiveness

process 207–210
requirements 213–215
software 205–207
team 210–213

overview 202–204
analysis

in Blastamo Music LLC example 26–27
CI data

BDD 95
CI server data 91–95
Gatling 95
overview 96
ReportNG framework 95
SonarQube 95
TestNG framework 95

determining metrics to track 14
overview 13–14
preparing for

defining completion for tasks 50–52
defining done for tasks 49–50
estimating task duration 47–49
overview 44–45
tagging tasks 46–47
usage of PTS by entire team 45–46

preparing SCM data 64–65
visualizing data 14–16

Ansible 88
APM (application performance monitoring) 107,

113–115, 156, 160
AppDynamics 13

application performance monitoring. See APM
arbitrary metrics 113
Atlas framework 110
audience, for publishing metrics

executives 188–189
making point using metrics 189–191
managers 184–186
overview 178–191
team 180–184

availability 156, 169–171
Axosoft OnTime Scrum 10, 37

B

Bamboo 86
BDD (behavior-driven development) 95
BI (business intelligence) 107, 110
Bitbucket 11
Blastamo Music LLC example

agile pipeline for 20–21
analyzing data 26–27
data collection 22–26
feedback loop 32
identifying problems 21
improving processes 31–32
solving problems 27–28
visualization 28–30

bugs
count measurement 42–44
fixes for 158, 168
PTS metrics 53–54

build system 11–12
burn down 39–40
business intelligence. See BI
241

Licensed to Mark Watson <nordickan@gmail.com>

INDEX242
C

CD (continuous development) 86
analysis

BDD 95
CI data 96
CI server data 91–95
Gatling 95
ReportNG framework 95
SonarQube 95
TestNG framework 95

continuous delivery 88–89
continuous integration 86–87
continuous testing 89–90
delivery pipeline 90–91
measuring improvements through CI data 101
metrics from 97–101
overview 84–86

centralized SCM
data received from 71
DCVS vs. 65–68

changed lines of code. See CLOC
CHD (code health determination) 147, 198
Checkmarx 156, 172
CI (continuous integration) 155, 205

analysis
BDD 95
CI data 96
CI server data 91–95
Gatling 95
ReportNG framework 95
SonarQube 95
TestNG framework 95

defined 11
delivery pipeline 90–91
overview 86–87

CLOC (changed lines of code) 5, 24, 147,
162–163, 208

Clover 164
Cobertura 91, 164
code coverage 164–165
code health determination. See CHD
CodeFlowers 29
comments, PR 182
commercial off-the-shelf. See COTS
communication, face-to-face 207, 218
complexity 166
consumer usage 120
consumer-facing quality rating 188
continuous delivery 11, 88–89, 109, 155
continuous integration. See CI
continuous release quality case study

adding elements together 149
normalizing changed lines of code 147–148

normalizing escaped defects 149
normalizing estimate health 148
normalizing recidivism 148–149
overview 144–147

continuous testing. See CT
conversion rate 120
cost, metric 6
COTS (commercial off-the-shelf) 77
Coverity 172
Crittercism 120, 122
Crucible 11
CT (continuous testing) 84
cumulative flow 41
CVS 64, 71
cyclomatic complexity 166

D

dashboards 29
creating using ELK 228
publishing metrics using 192

data collection services 235–237
data points 127–129
Datadog 10, 113, 122
DCVS (distributed version control system) 65–68
DEBUG log level 116
delivery lifecycle 204–205
delivery pipeline 90–91
DevOps 109, 122
distributed version control system. See DCVS
domain objects 232–233
DSL (domain-specific language) 95
duplicate code 166
Dynatrace 13

E

EC (Elasticsearch) 24, 221, 229
Electric Cloud 88
ELK (Elasticsearch/Logstash/Kibana) 21, 115,

121
checking database 226
configuring data collector 226–227
creating dashboard 228
overview 221–224
setting up system 224–226

email 193–194
ERROR log level 116
estimations 47–49, 137
executives 188–189
extensibility 156, 158
extreme programming. See XP
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 243
F

feedback loop
analysis

determining metrics to track 14
overview 13–14
visualizing data 14–16

in Blastamo Music LLC example 32
overview 3–5
putting changes into practice 16

Fibonacci series 137
FishEye 11, 76–77
fix to release percentage. See FRP
FogBugz 10
Fortify 172
FRP (fix to release percentage) 163
functional requirements 154

G

Gantt charts 8
Gatling 95
Gcov 164
Git 64, 71
GitHub 11, 68
Go 88
GoCD 90
Google Analytics 120–121
GORM (Grails Object Relational Mapping) 230
Grafana 113, 121
Grails 221, 226

architectural overview 230–232
data collection services 235–237
domain objects 232–233
raw data for 233–234
scheduling jobs for data collection 237–239

Grails Object Relational Mapping. See GORM
Graphite 10, 113, 121
Groovy 226

H

Hudson 86–87
HyperSpin 156, 170

I

INFO log level 116
ISO 8601 115

J

JaCoCo 91, 164
Jenkins 21, 86–87, 90

JIRA 10, 37, 227, 230
jobs, Grails 237–239
JSON (JavaScript Object Notation) 116
JVM (Java Virtual Machine) 226, 232

K

Kanban 4
Kibana 113, 221, 228
KPBC (Kleiner Perkins Caufield & Byers) 193
KPIs (key performance indicators)

defined 5
determining through CI 10

L

labels 55
lead time 42

finding anomalies in 173–176
MTTR and 158–162
overview 42, 215

LeanKit 10
LOC (lines of code) 16, 72, 158
logging

running out of disk space from 228
using formats easy to work with 116
using proactively 116
using standard categories 116
using timestamps 115
using unique IDs 115

M

maintainability 156, 208
CLOC 162–163
code coverage 164–165
defined 158
lead time 158–162, 173–176
MTTR 158–162
overview 158
PTS data 167–168
static code analysis 165–167

maintainable release rating. See MRR
managers 184–186
mean time between failures. See MTBF
mean time to repair. See MTTR
measurementor project 230
measurements

bug counts 42–44
burn down 39–40
cumulative flow 41
lead time 42
velocity 40–41

Mercurial 64
Licensed to Mark Watson <nordickan@gmail.com>

INDEX244
metrics
answering questions using

build system and 11–12
overview 9–10
project tracking and 10
source control and 11
system monitoring and 12–13

from CI 97–101
combining data points to create 127–129
creating

creating formulas around multiple data
points 140–144

determining what to track 139–140
exploring data 136–138
overview 135–136

defining 129–135
determining which to track 14
measuring continuous release quality case study

adding elements together 149
normalizing changed lines of code 147–148
normalizing escaped defects 149
normalizing estimate health 148
normalizing recidivism 148–149
overview 144–147

overview 5
from PTS

bugs 53–54
sorting with tags and labels 55
task volume 52–53
task workflow 54–55

from SCM 77–78
team difficulties

definitions of measurements 6–7
lack of unified view 8–9
overview 5–6
product focus vs. project focus 7–8

mind mapping 14
MongoDB 221, 230
monitoring 12–13
motivation 217
MRR (maintainable release rating) 163
MTBF (mean time between failures) 170, 207
MTTR (mean time to repair) 129, 158–163, 207,

209

N

NCover 91, 164
New Relic 13, 113, 118, 121, 156, 170
NFRs (non-functional requirements) 156–157

O

objective data 132
Octopus 88

Open Web Analytics 121
ORM (object relational mapping) 232
OWASP (Open Web Application Security

Project) 172
OWASP ZAP 156, 172
ownership

getting support 17–18
team members against metrics 18–19

P

pds (points/developer/sprint) 28
performance, team member 38
Planbox 10
POGOs (plain old Groovy objects) 230
PR (pull request) 181
privacy 18
product focus vs. project focus 7
production systems

adding arbitrary metrics to development
cycle 113

consumer usage 120
logging best practices

using formats easy to work with 116
using proactively 116
using standard categories 116
using timestamps 115
using unique IDs 115

moving team to DevOps case study 122
overview 107–109
semantic logging analysis 120–121
server health statistics 118–120
social network interaction 116–118
tools used for collecting data 121–122
using features of application performance moni-

toring system 113–115
project tracking 10
PTS (project tracking system) 24, 160, 205, 211

agile measurements using
bug counts 42–44
burn down 39–40
cumulative flow 41
lead time 42
velocity 40–41

data from 167–168
metrics from

bugs 53–54
sorting with tags and labels 55
task volume 52–53
task workflow 54–55

overview 37–39
preparing for analysis

defining completion for tasks 50–52
defining done for tasks 49–50
estimating task duration 47–49
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 245
overview 44–45
tagging tasks 46–47
usage of PTS by entire team 45–46

tech debt trending example 57
publishing metrics

audience considerations
executives 188–189
making point using metrics 189–191
managers 184–186
overview 178–191
team 180–184

dashboards 192
driving goal visibility case study 194–200
email 193–194

pull request workflow 79
pull request. See PR
Puppet 223–224
Python 232

Q

QA (quality assurance) 82
QM (quality management) 79
Quartz 238

R

Rally 37
recidivism 23, 52, 128, 148, 184, 196, 215
refactoring patterns 174
relative terms 50
reliability 156, 169–171
ReportNG framework 95

S

scheduling jobs 237–239
SCM (source control management)

charting activity from 78–79
data received

from centralized SCM 71
from DCVS 68
from SCMs 71–77

defined 64
distributed system vs. centralized system 65–68
general discussion 62
metrics from 77–78
preparing for analysis 64–65
pull request workflow 79
quality management 79

Scrum 4
SDLC (software development lifecycle) 8
security 156, 171–173
self-organizing teams 210

semantic logging analysis 120–121
server health statistics 118–120
service virtualization 28
SLAs (service-level agreements) 118, 169
social network interaction 116–118
software development lifecycle. See SDLC
SonarQube 91, 95, 156, 172, 175
source control management. See SCM
Splunk 115, 121, 156
stakeholders 178
Stash 11
static code analysis 165–167
statsd framework 110
story points 137
subjective data 130–132
SVN (Subversion) 64, 71

T

tags 55
tasks

defining completion 50–52
defining done 49–50
estimating duration 47–49
tagging 46–47
volume metric 52–53
workflow for 54–55

teams
case study 215
difficulties with measurement in

definitions of measurements 6–7
lack of unified view 8–9
overview 5–6
product focus vs. project focus 7–8

getting support 17–18
measuring effectiveness 210–213
member performance 38
members against metrics 18–19
publishing metrics for 180–184

tech debt 57, 167
technical quality analysis

availability 169–171
general discussion 154–155
maintainability

CLOC 162–163
code coverage 164–165
lead time 158–162, 173–176
MTTR 158–162
overview 158
PTS data 167–168
static code analysis 165–167

NFRs, measuring 156–157
reliability 169–171
security 171–173
tools for 155–156
usability 168–173
Licensed to Mark Watson <nordickan@gmail.com>

INDEX246
Telerik TeamPulse 10, 37
test engineers 82
TestNG framework 95
TFS 10
timestamps 115
Travis CI 86
Twitter 116, 118

U

usability 156, 168–173

V

Vagrant 223–225
velocity 168, 196, 215

in Blastamo Music LLC example 26
as measurement 40–41

Veracode 172
visualization 14–16, 28–30
VMs (virtual machines) 223

W

WARN log level 116
WhiteHat 172
working software 6

X

XMind 14
XP (extreme programming) 4

Y

Yammer 116
Licensed to Mark Watson <nordickan@gmail.com>

Christopher W. H. Davis

T
he iterative nature of agile development is perfect for
experience-based, continuous improvement. Tracking
systems, test and build tools, source control, continuous

integration, and other built-in parts of a project lifecycle
throw off a wealth of data you can use to improve your
products, processes, and teams. The question is, how to do it?

Agile Metrics in Action teaches you how. This practical book is
a rich resource for an agile team that aims to use metrics to
objectively measure performance. You’ll learn how to gather
the data that really count, along with how to effectively
analyze and act upon the results. Along the way, you’ll
discover techniques all team members can use for better
individual accountability and team performance.

What’s Inside
● Use the data you generate every day from CI and Scrum
● Improve communication, productivity, transparency,
 and morale
● Objectively measure performance
● Make metrics a natural byproduct of your development
 process

Practices in this book will work with any development process
or tool stack. For code-based examples, this book uses Groovy,
Grails, and MongoDB.

Christopher Davis has been a software engineer and team leader
for over 15 years. He has led numerous teams to successful
delivery using agile methodologies.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/AgileMetricsinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

Agile Metrics IN ACTION

AGILE DEVELOPMENT

M A N N I N G

“A steadfast companion
on your expedition

 into measurement.”—From the Foreword by
Olivier Gaudin, SonarSource

“The perfect starting point
 for your agile journey.”—Sune Lomholt, Nordea Bank

“You’ll be coming up with
metrics tailored to your

 own needs in no time.”
—Chris Heneghan, SunGard

“Comprehensive and
 easy to follow.”
—Noreen Dertinger

Dertinger Informatics, Inc.

SEE INSERT

	Agile Metrics in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the author
	About the cover illustration

	Part 1 Measuring agile teams
	1 Measuring agile performance
	1.1 Collect, measure, react, repeat—the feedback loop
	1.1.1 What are metrics?

	1.2 Why agile teams struggle with measurement
	1.2.1 Problem: agile definitions of measurement are not straightforward
	1.2.2 Problem: agile focuses on a product, not a project
	1.2.3 Problem: data is all over the place without a unified view

	1.3 What questions can metrics answer, and where do I get the data to answer them?
	1.3.1 Project tracking
	1.3.2 Source control
	1.3.3 The build system
	1.3.4 System monitoring

	1.4 Analyzing what you have and what to do with the data
	1.4.1 Figuring out what matters
	1.4.2 Visualizing your data

	1.5 Applying lessons learned
	1.6 Taking ownership and measuring your team
	1.6.1 Getting buy-in
	1.6.2 Metric naysayers

	1.7 Summary

	2 Observing a live project
	2.1 A typical agile project
	2.1.1 How Blastamo Music used agile

	2.2 A problem arises
	2.3 Determining the right solution
	2.4 Analyzing and presenting the data
	2.4.1 Solving the problems
	2.4.2 Visualizing the final product for leadership

	2.5 Building on the system and improving their processes
	2.5.1 Using data to improve what they do every day

	2.6 Summary

	Part 2 Collecting and analyzing your team’s data
	3 Trends and data from project-tracking systems
	3.1 Typical agile measurements using PTS data
	3.1.1 Burn down
	3.1.2 Velocity
	3.1.3 Cumulative flow
	3.1.4 Lead time
	3.1.5 Bug counts

	3.2 Prepare for analysis; generate the richest set of data you can
	3.2.1 Tip 1: Make sure everyone uses your PTS
	3.2.2 Tip 2: Tag tasks with as much data as possible
	3.2.3 Tip 3: Estimate how long you think your tasks will take
	3.2.4 Tip 4: Clearly define when tasks are done
	3.2.5 Tip 5: Clearly define when tasks are completed in a good way

	3.3 Key project management metrics; spotting trends in data
	3.3.1 Task volume
	3.3.2 Bugs
	3.3.3 Measuring task movement; recidivism and workflow
	3.3.4 Sorting with tags and labels

	3.4 Case study: identifying tech debt trending with project tracking data
	3.5 Summary

	4 Trends and data from source control
	4.1 What is source control management?
	4.2 Preparing for analysis: generate the richest set of data you can
	4.2.1 Tip 1: Use distributed version control and pull requests

	4.3 The data you’ll be working with; what you can get from SCM
	4.3.1 The data you can get from a DVCS
	4.3.2 Data you can get from centralized SCM
	4.3.3 What you can tell from SCM alone

	4.4 Key SCM metrics: spotting trends in your data
	4.4.1 Charting SCM activity

	4.5 Case study: moving to the pull request workflow and incorporating quality engineering
	4.6 Summary

	5 Trends and data from CI and deployment servers
	5.1 What is continuous development?
	5.1.1 Continuous integration
	5.1.2 Continuous delivery
	5.1.3 Continuous testing

	5.2 Preparing for analysis: generate the richest set of data you can
	5.2.1 Set up a delivery pipeline

	5.3 The data you’ll be working with: what you can get from your CI APIs
	5.3.1 The data you can get from your CI server
	5.3.2 What you can tell from CI alone

	5.4 Key CI metrics: spotting trends in your data
	5.4.1 Getting CI data and adding it to your charts

	5.5 Case study: measuring benefits of process change through CI data
	5.6 Summary

	6 Data from your production systems
	6.1 Preparing for analysis: generating the richest set of data you can
	6.1.1 Adding arbitrary metrics to your development cycle
	6.1.2 Utilizing the features of your application performance monitoring system
	6.1.3 Using logging best practices
	6.1.4 Using social network interaction to connect with your consumers

	6.2 The data you’ll be working with: what you can get from your APM systems
	6.2.1 Server health statistics
	6.2.2 Consumer usage
	6.2.3 Semantic logging analysis
	6.2.4 Tools used to collect production system data

	6.3 Case study: a team moves to DevOps and continuous delivery
	6.4 Summary

	Part 3 Applying metrics to your teams, processes, and software
	7 Working with the data you’re collecting: the sum of the parts
	7.1 Combining data points to create metrics
	7.2 Using your data to define “good”
	7.2.1 Turning subjectivity into objectivity
	7.2.2 Working backward from good releases

	7.3 How to create metrics
	7.3.1 Step 1: explore your data
	7.3.2 Step 2: break it down—determine what to track
	7.3.3 Step 3: create formulas around multiple data points to create metrics

	7.4 Case study: creating and using a new metric to measure continuous release quality
	7.5 Summary

	8 Measuring the technical quality of your software
	8.1 Preparing for analysis: setting up to measure your code
	8.2 Measuring the NFRs through the code “ilities”
	8.3 Measuring maintainability
	8.3.1 MTTR and lead time
	8.3.2 Adding SCM and build data
	8.3.3 Code coverage
	8.3.4 Adding static code analysis
	8.3.5 Adding more PTS data

	8.4 Measuring usability
	8.4.1 Reliability and availability
	8.4.2 Security

	8.5 Case study: finding anomalies in lead time
	8.6 Summary

	9 Publishing metrics
	9.1 The right data for the right audience
	9.1.1 What to use on your team
	9.1.2 What managers want to see
	9.1.3 What executives care about
	9.1.4 Using metrics to prove a point or effect change

	9.2 Different publishing methods
	9.2.1 Building dashboards
	9.2.2 Using email

	9.3 Case study: driving visibility toward a strategic goal
	9.4 Summary

	10 Measuring your team against the agile principles
	10.1 Breaking the agile principles into measurable components
	10.1.1 Aligning the principles with the delivery lifecycle

	10.2 Three principles for effective software
	10.2.1 Measuring effective software

	10.3 Four principles for effective process
	10.3.1 Measuring effective processes

	10.4 Four principles for an effective team
	10.4.1 Measuring an effective development team

	10.5 One principle for effective requirements
	10.5.1 Measuring effective requirements

	10.6 Case study: a new agile team
	10.7 Summary

	appendix A DIY analytics using ELK
	A.1 Setting up your system
	A.1.1 Checking the database
	A.1.2 Configuring your data collector

	A.2 Creating the dashboard
	A.3 Summary

	appendix B Collecting data from source systems with Grails
	B.1 Architectural overview
	B.1.1 Domain objects
	B.1.2 The data you’re working with
	B.1.3 Data collection services
	B.1.4 Scheduling jobs for data collection

	B.2 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Agile Metrics back

