
Android
Quick APIs Reference

Onur Cinar

A
n

d
ro

id

In
clu

d
e
s

Android 5.0 Release

•

•

•
•
•
•

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a

Glance

About the Author ... xv

About the Technical Reviewer ... xvii

Preface ... xix

Chapter 1: Android Platform ■ ... 1

Chapter 2: Development Environment ■ .. 15

Chapter 3: Application Components ■ ... 31

Chapter 4: Application Resources ■ .. 69

Chapter 5: Layouts and Views ■ .. 95

Chapter 6: User Interface ■ ... 139

Chapter 7: Storing Data ■ .. 171

Chapter 8: Sensors and Location ■ .. 199

Chapter 9: Media and Camera ■ .. 217

Index .. 249

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Android Platform

Android is a platform that is carefully crafted for mobile devices including
smartphones, and tablets. It is a combination of an operating system,
companion native libraries, application runtime, and an application
framework. This chapter provides a brief introduction to the Android platform
by emphasizing these key components and their roles in the overall system
architecture. This book targets the 5.0 (Lollipop) version of the Android
platform, which is the latest official version at the time of this writing.

Platform Architecture
Android relies on various open source technologies to provide a solid mobile
platform that can satisfy mobile needs. The platform architecture can be
best described as a series of five main layers that handle different core
operations. Figure 1-1 shows the high-level architecture of the Android
platform with these five main layers and their subcomponents.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Platform2

This section will go through these five key layers starting from the bottom
and moving upward.

Figure 1-1. Android platform architecture diagram

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Platform

3

Linux Kernel
The bottom layer of the Android platform is the Linux kernel. Android
relies on the well-proven Linux kernel to provide its operating system
functionality. Linux is a UNIX-like and Portable Operating System Interface
(POSIX)-compliant operating system that is developed under a free open
source software development model.

Android Inclusions

In order to satisfy the needs of mobile devices, Android’s Linux kernel went
through further architectural changes. This section briefly goes through the
most notable inclusions in the Linux kernel.

Binder

The Android platform architecture makes heavy use of inter-process
communication (IPC). Applications communicate with the system, phone,
services, and each other by using IPC. As the IPC mechanism provided by
the Linux operating system is not sufficient for mobile devices, the Android
platform relies on its own IPC system, known as Binder. It is the central
communication channel across the entire Android platform. As Binder is
implemented as a low-level service in Android’s Linux kernel, application
developers are not expected to directly interact with it. The majority of
the Android framework application programming interfaces (APIs) rely
on Binder to interact with the platform in a way that is transparent to the
application developer.

In order to use Binder to interact with other applications on the system, the
Android Software Development Kit (SDK) provides the Android Interface
Definition Language (AIDL).1 AIDL allows the application developer to define
the interface that both applications or the application and the service will
use to communicate with each other. AIDL provides the functionality to
decompose the passed objects into primitives that Binder can understand
and use across process boundaries. You will learn more about AIDL in
Chapter 3.

1http://developer.android.com/guide/components/aidl.html.

www.allitebooks.com

http://developer.android.com/guide/components/aidl.html
http://www.allitebooks.org

CHAPTER 1: Android Platform4

Logger

Logging is the most essential mechanism for troubleshooting. As mobile
applications rely heavily on the environment surrounding them, such as
the WiFi networks and the data coming from device sensors, application
logs alone are simply not enough to troubleshoot complex problems. It is
essential to combine logs coming from both the system and the application
in order to draw a full picture.

This becomes even trickier to achieve on mobile platforms, where the
development and the execution of the application happen on two different
machines.

The Android platform provides a system-wide centralized logging service
that can aggregate logs coming from the Android platform itself as well as
the applications that are running on top of it.

The Android SDK also provides the necessary tools to monitor the logs in
real-time with advanced filtering support.

Wake Locks

The Android platform is designed to operate on mobile devices with scarce
resources. Battery power is the most important one. Because of this,
Android devices frequently go into a low-powered mode, also known as
sleep mode. Although this mode allows the system to use the available
power reserve efficiently, it is not preferable for the device to go into sleep
mode while a service or an application is in the middle of an important
operation.

Wake locks were introduced into Android’s Linux kernel in order to enable
applications to prevent the device from going into sleep mode.

Caution Wake locks should be used carefully. Preventing the device

from going into sleep mode will eventually cause it to run out of battery

power. Applications should release the wake lock as soon as the important

operation is complete.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Platform

5

Alarm Timer

As indicated in the “Wake Locks” section, Android devices go into sleep
mode to conserve power. During sleep mode no Android applications can
run; even the operating system is paused. In order to enable applications to
schedule tasks for execution, the alarm timer was introduced into Android’s
Linux kernel. The alarm timer can wake up the device from sleep mode
when a previously scheduled alarm goes off.

Low Memory Killer

Like power, memory is also a scarce resource on mobile devices. Besides the
size of the memory, loading applications into memory is also a very costly
operation. In order to overcome this issue, the Android platform keeps all
started applications in memory even though the user is no longer interacting
with them. This enables the user to quickly switch between applications.

This optimization comes with a cost: the device can quickly run out of
memory as more and more applications get started. The low memory killer,
also known as the Viking Killer, was introduced into Android’s Linux kernel to
manage and reclaim memory before the device runs out of memory.

As the available memory drops under a certain threshold, the low memory
killer removes applications from memory starting with the least important one.

The importance of an application is defined by its visibility to the user.
An application that is currently in the foreground is considered the most
important application. Likewise, a backgrounded application is not
considered important; its current state can be saved and later restored when
the user navigates back to that application.

File System

The Android platform relies on Yet Another Flash File System (YAFFS2) as
its primary file system format, as YAFFS2 is specifically designed to work on
NAND-based flash chips.

The Android file system is also structured in a specific way to make it easier
to upgrade different portions of the Android platform without impacting other
parts. This is achieved by keeping different portions of the Android platform
in different system partitions. This approach also makes the platform much
more secure as the key components of the Android platform are not mutable
during runtime, which prevents viruses and malware from infecting the key
operating system components.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Platform6

The partitions used depend on the device manufacturers. Following
is a list of the most common partitions and their roles in the overall
Android platform:

	/boot: Keeps the boot loader and the Linux kernel.
This partition can only be modified during an upgrade,
and it is not writable otherwise during runtime.

	/system: Keeps all Android system files and also
the applications that are preloaded by the device
manufacturer.

	/recovery: Keeps a recovery image to provide
maintenance functionality in order to recover and
restore the system.

	/data: Keeps the applications that are installed by the
user, including the application data files. This partition
is writable during runtime, but protected through file
system permissions.

	/cache: Keeps frequently accessed and temporary files.
On most Android devices this partition is kept only on
random access memory (RAM) in order to serve the
device quickly. Once the device reboots, the content of
this partition gets lost as RAM is not persistent storage.

Native Libraries
On top of the Linux kernel layer, the Android platform contains a set of
native libraries. The majority of the functionality that is exposed through the
Android runtime layer is backed up by these native libraries. Most notable of
them are

SQLite: Provides an in-memory, relational SQL database 	
to enable Android applications to easily persist and
quickly access their data in a structured way.

WebKit: Provides an HTML/CSS rendering and 	
JavaScript execution engine, enabling Android
applications to incorporate web technologies.

OpenGL ES: Provides high-performance 2D and 3D 	
rendering functionality.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Platform

7

Open Core: Provides a media framework to enable 	
Android applications to record and play back audio and
video content.

OpenSSL: Provides Secure Socket Layer (SSL) and 	
Transport Level Security (TLS) protocols to enable
Android applications to communicate securely with
remote services through the use of cryptography.

Android Runtimes
The Android runtime is the portion that orchestrates the Android platform.
The Android runtime runs the platform services as well as the applications
that are running on top of the platform.

Android Runtime (ART)

The official programming language for Android is Java. Java is a
general-purpose, object-oriented programming language that is specifically
designed for platform-independent application development. Java
achieves this by compiling the application code into an intermediate
platform-independent interpreted language called bytecode. This bytecode
gets executed through the Java Virtual Machine that is running on
the platform.

The Android Runtime (ART) is the new Java Virtual Machine that was
introduced experimentally in Android 4.4, and later with Android 5.0 became
the official runtime for the Android applications. Prior to Android 5.0, Android
applications used to run on the top of the Dalvik Virtual Machine (VM).

Note Although it is now being deprecated, applications that are targeting

older versions of the Android platform should still test the application with

the Dalvik VM to address any incompatibility problems.

Compared to the Dalvik VM’s just-in-time (JIT) approach, ART relies on
ahead-of-time (AOT) compilation to translate the bytecode into machine
code during the installation of the application. This enables the application
code to later be executed directly by the device’s runtime environment.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Android Platform8

Compiled Android Applications

Although ART is now the official runtime for the Android platform starting
from Android 5.0, the majority of the Android devices that are running an
older version of the Android platform rely on the Dalvik VM.

In order to produce application packages and binaries that are compatible
with both ART and the Dalvik VM, Android application packages are still
prepared based on Dalvik specifications. As it was optimized for mobile,
the Dalvik VM understands only a special type of bytecode which is known
as Dalvik Executable (DEX). The Android SDK comes with tools that can
translate standard Java bytecode into DEX bytecode during the packaging
of the Android application. DEX bytecode provides lots of advantages
compared to standard Java bytecode. ART does an automatic conversion
from Dalvik’s DEX format into ART’s OAT format on the fly as soon as an
application is installed on the device.

Application Sandbox

The Android platform is built with security in mind as an important
requirement. It runs every application in a sandbox by isolating application
data and code execution from other applications.

Each application runs on its own dedicated ART VM 	
instance.

Application data is protected through the use of file 	
system permissions. Each application gets assigned
an account at installation, and the operating system
restricts access to the application data for that account.

Applications can only communicate with the system 	
and with other applications through the communication
interfaces that the Android platform provides. These
interfaces are also protected through Android
permissions.

Zygote

Zygote, also known as the “app process,” is the parent of all Android
application processes. It is one of those core processes started when the
system boots. Zygote has two important roles.

Once the system boots, Zygote starts a new ART VM 	
instance and initializes the core Android services:
Power, Telephony, Content, and Package.

CHAPTER 1: Android Platform

9

As noted, on the Android platform, every application 	
runs within a dedicated ART VM instance. It is a very
costly operation to start a new ART VM instance
and load the Android framework components into
memory for every Android application. Zygote solves
this problem through the use of forking. When a user
requests a new application, Zygote simply forks itself.
Upon forking, the existing Zygote process gets cloned
as a new process. Both the Zygote process and the
new process share the pre-loaded Android framework
resources. This allows applications to start very quickly,
and also with a much smaller footprint.

Note In computing, forking is the operation to clone an existing process.

The new process has an exact copy of the forked process, although

both processes execute independently. Forking allows both processes to

share the same memory segment until one of them tries to modify it.

Application Framework
The Application framework runs on the top of the ART VM and provides
an interface to Android applications to interact with the Android platform
and the device. It provides services such as Package Manager, Telephony
Manager, Location Manager, and Notifications Manager.

Applications
The application space contains all user-facing Android applications that
are running on top of the ART VM. Those applications include both
third-party applications that are downloaded from Android markets and
system applications such as Launcher, Contacts, Phone, and Browser. This
book will show you how to use the Android framework APIs to develop
Android applications that will execute within the application space.

CHAPTER 1: Android Platform10

Android Versions
When speaking of Android, you will often hear the same Android version
being referred to in many different ways.

This application requires 	 Jelly Bean and above.

My phone finally got the 	 Android 4.1 update.

The Network Service Discovery Manager is available 	
starting from Android API Level 16.

This section discusses each of these different version schemes and how
they relate to each other. Table 1-1 provides a reference to easily map
between those version schemes.

Platform Version
The Android platform is versioned using the change significance version
scheme. The platform version number consists of two- or three-integer
sequence identifiers that are separated by dots, such as Android 4.0.3.

The first identifier in the platform version number denotes the major version
number and is incremented only for releases with significant functionality
changes. The second and third identifiers are for minor version numbers
and they are incremented for minor changes and bug fixes. Based on that,
an update from Android 3.2 to Android 4.0 indicates a major release, and an
update from Android 4.0 to Android 4.0.1 represents a minor bug fix release.

At the time of this writing, the latest Android platform version is 5.0. The
Android platform has gone through a number of updates and bug fixes since
the first commercial use of Android 1.0 on September 23, 2008.

Platform Codename
As the target audience for the Android platform is not only developers, since
April 2009, each major Android platform version has been released under
a codename based on desserts such as KitKat, Jelly Bean, Ice Cream, and
Lollipop.

API Level
Although the minor bug fix releases are usually transparent from the
application developer’s perspective, the major platform updates usually
mean changes and additions to the Android framework API.

CHAPTER 1: Android Platform

11

In order to make this concept easier to follow, the Android framework API is
versioned separately from the Android platform through an integer identifier
known as the API level. Each Android platform version supports exactly one
API level, and the lower API levels are supported implicitly.

On the Android Developers Portal, API documentation always provide the
API level where the API was introduced, as shown in Table 1-1 in order to
make the developer aware of the API level requirement.

Table 1-1. Android Release Dates, Platform Versions, Codenames, and API Levels

Release Date Platform Version Platform Codename API Level

September 2008 1.0 -- 1

February 2009 1.1 -- 2

April 2009 1.5 Cupcake 3

September 2009 1.6 Donut 4

October 2009 2.0 Éclair 5

December 2009 2.0.1 Éclair 6

January 2010 2.1 Éclair 7

May 2010 2.2–2.2.3 Froyo 8

December 2010 2.3–2.3.2 Gingerbread 9

February 2011 2.3.3–2.3.7 Gingerbread 10

February 2011 3.0 Honeycomb 11

May 2011 3.1 Honeycomb 12

July 2011 3.2–3.2.6 Honeycomb 13

October 2011 4.0–4.0.2 Ice Cream Sandwich 14

December 2011 4.0.3–4.0.4 Ice Cream Sandwich 15

July 2012 4.1–4.1.2 Jelly Bean 16

November 2012 4.2–4.2.2 Jelly Bean 17

July 2013 4.3–4.3.1 Jelly Bean 18

October 2013 4.4–4.4.4 KitKat 19

July 2014 4.4w KitKat with Wearable Extensions 20

November 2014 5.0 Lollipop 21

CHAPTER 1: Android Platform12

You can use Table 1-1 as a reference to map between these three different
version schemes.

The Android platform is very actively being developed. As shown in Table 1-1,
over the course of four years, the Android platform went through a large
number of update and bug fix releases.

Android Platform Fragmentation
By simply glancing through the release dates shown in Table 1-1, you might
think that most of the Android devices out there must be running at least
Android 4.4, as it has been out for a year; however, this is not true. Due to
high fragmentation, the release dates do not provide a clear view of the
Android ecosystem.

Table 1-2 is the latest version distribution chart from Android Platform

Versions Dashboard2 based on the data collected in December 2014.

Table 1-2. Android platform version distribution chart

Platform Version Platform Codename API Level Distribution

2.2–2.2.3 Froyo 8 0.5%

2.3.3–2.3.7 Gingerbread 9 9.1%

4.0.3–4.0.4 Ice Cream Sandwich 15 7.8%

4.1–4.1.2 Jelly Bean 16 21.3%

4.2–4.2.2 Jelly Bean 17 20.4%

4.3–4.3.1 Jelly Bean 18 7.0%

4.4–4.4.4 KitKat 19 33.9%

2https://developer.android.com/about/dashboards/index.html.

At the time of this writing, the latest version of the Android platform to be out
for any length of time, Android 4.4, is only 33.9% of the overall Android user
base. Developing an Android application targeting only API Level 19 will limit
the application’s audience only to that 33.9% portion of the entire Android
user base.

There are 21 API levels that you should consider while developing
your application; make sure to take the version distribution chart in to
consideration. Although higher API levels provide additional functionality,
they also determine the size of your audience.

https://developer.android.com/about/dashboards/index.html

CHAPTER 1: Android Platform

13

Android Support Library
Although targeting a lower API level increases the audience of your application,
it also limits the Android platform features that you can use within your
application. In order to overcome this trade-off, the Android Support Library
has been introduced. The Android Support Library package is a set of code
libraries that provide backward-compatible versions of recent Android APIs.
This means that your application can benefit from an Android API that is
only available in API Level 19 but can still target devices running API Level 4
and up. Including the Android Support Library in your Android application is
considered a best practice for Android application development.

Note The Android Support Library does not cover every new API, as

some of them may require additional operating system features that are

only supported by a specific Android platform release.

Each Android Support Library targets a different base API level and based
on that provides a different set of backward-compatible API features. You
should choose the support library flavor based on the set of features that
you will need. The Support Library Feature Guide3 provides an overview of
support library flavors from which you can choose.

In the next chapters, you will learn how to include the Android Support
Library in your Android application.

Summary
This first chapter of the book covered the fundamentals of the Android
platform. As indicated earlier in this chapter, you will not be directly
interfacing with most of the core components that are presented in the
section “Platform Architecture,” although knowing these components will
make it easier for you to understand the Android framework functions that
will be covered in the next few chapters.

3http://developer.android.com/tools/support-library/features.html.

http://developer.android.com/tools/support-library/features.html

15

Chapter 2
Development

Environment

Android has a complete and advanced development environment that can
run on all major operating systems.

Android Toolchain
The Android Open Source Project (AOSP) provides a comprehensive
development toolchain for application developers.

The AOSP builds the entire development environment by integrating carefully
chosen existing open source development tools, thereby creating this
comprehensive toolchain. This approach enables application developers to
develop mobile applications using the tools with which they are already familiar.

The Android toolchain is formed by four main components. This section
discusses each of the key components.

Android Software Development Kit
The Android Software Development Kit (SDK) is the key component of the
Android toolchain. The Android SDK provides

Platform API Java Libraries	
An Application Packager	
Device Emulators	
A Bytecode Optimizer and Obfuscator	

CHAPTER 2: Development Environment16

An Android Debug Bridge	
Sample Code and Tutorials	
Platform Documentation	

The Android SDK is the only required component for developing Android
applications.

Android Native Development Kit
As indicated in Chapter 1, the Android platform relies on the Linux kernel
to provide its operating system functionality. The combination of the Linux
kernel and the BSD C library provides all the necessary pieces to execute
platform-dependent, non-Java application code.

This makes it possible to develop performance-critical portions of Android
applications using machine code generating programming languages
such as C, C++, and assembly. Besides its performance advantages, this
approach is frequently used for bringing existing legacy or shared code to
the Android platform without rewriting it in Java.

The Android Native Development Kit (NDK) provides a companion tool set
for the Android SDK, designed to enable developers to build and embed
native code seamlessly within Java-based applications.

The Android NDK consists of cross compilers, debuggers, platform header
files, and extensive documentation.

Android Development Tools for Eclipse
The Android Development Tools (ADT) for Eclipse were the first attempt
to provide an integrated development environment (IDE) that is tailored
for Android application development. As with the other components of
the Android toolchain, this was achieved by providing customizations and
additional features on the top of the Eclipse IDE platform.

Android Studio
On May 16, 2013, Google announced ANDROID STUDIO

1, a new IDE for
Android development. Android Studio is also a customized IDE experience
based on INTELLIJ IDEA. Android Studio provides some additional features

1http://developer.android.com/sdk/installing/studio.html.

http://developer.android.com/sdk/installing/studio.html

CHAPTER 2: Development Environment

17

and improvements over ECLIPSE ADT such as support for build variants and
a rich user interface (UI) layout editor. The first stable version of Android
Studio, version 1.0, was released in December 2014.

As Android Studio is the official Android IDE moving forward, this book uses
Android Studio instead of Eclipse ADT.

Setting Up the Development Environment
In this section, you will learn how to successfully install Android Studio on your
machine. Android Studio is available for all major operating systems (OSs),
including Windows, Mac OS X, and Linux. Android Studio comes prepackaged
with the Android SDK, making the environment setup simpler and easier
for developers.

The only prerequisites for Android Studio are the JAVA DEVELOPMENT KIT (JDK)
and the JAVA RUNTIME EDITION (JRE). The Android development toolchain
supports multiple JDK and JRE flavors, such as Open JDK, IBM JDK, and
Oracle JDK (formerly known as Sun JDK). In order to keep the chapters of
this book platform agnostic, it is assumed that the Oracle JDK will be used.

Although both Java versions 6 and 7 are supported by the Android
toolchain, I recommend that you install Java 7 in order to be ready for
upcoming Android platforms.

Caution As the Android platform evolves very rapidly, the requirements

and the versions of the Android development toolchain components

may have changed since this book was published. You should check the

Android Studio home page for the latest information and requirements.

As the requirements and installation instructions vary, this section covers
each OS separately.

Microsoft Windows
On Microsoft Windows, both Android Studio and the Java platform come
with installation packages. The installation wizards will guide you through
the process of installing both applications easily.

CHAPTER 2: Development Environment18

Downloading and Installing JDK on Windows

1. Using your web browser, navigate to Oracle’s
Java download web page at www.oracle.com/
technetwork/java/javase/downloads/index.html.
This page presents you with a list of download
options.

2. Scroll down to the Java 7 section.

3. Click the JDK button to download the Java 7 installer
application. At the time of this writing, the latest
version of Java 7 is Update 71.

4. The Java 7 installation wizard will install both the
JDK and the JRE. Throughout this process, you can
proceed with the default values.

The installation wizard will automatically perform the necessary system
changes to make both the JDK and JRE available to Windows applications,
including Android Studio.

Downloading and Installing Android Studio on Windows

1. Using your web browser, navigate to the Android
Studio download page at http://developer.
android.com/sdk/installing/studio.html.

2. The web site will detect your OS, and it will show you
the Android Studio download button for your OS.

3. Click the download button to download the Android
Studio installer. At the time of this writing, the latest
version of Android Studio is 1.0.1.

4. The Android Studio installation wizard will guide
you through the process. You can continue with the
default values throughout the installation process.

Android Studio is now ready to use. In the next section, you will be building
a small Android application to validate your installation.

www.allitebooks.com

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/installing/studio.html
http://developer.android.com/sdk/installing/studio.html
http://www.allitebooks.org

CHAPTER 2: Development Environment

19

Apple Mac OS X
On Mac OS X, both Android Studio and the Java platform come with
installer applications.

Downloading and Installing JDK on Mac OS X

1. Using your web browser, navigate to Oracle’s
Java download web page at www.oracle.com/
technetwork/java/javase/downloads/index.html.
This page presents you with a list of download
options.

2. Scroll down to the Java 7 section.

3. Click the JDK button to download the Java 7 disk
image. At the time of this writing, the latest version of
Java 7 is Update 71.

4. Once the download is complete, double click the
Java 7 disk image to mount it. The disk image
contains the Java 7 installation application.

5. The Java 7 installation wizard will install both the
JDK and the JRE. Throughout this process, you can
proceed with the default values.

The installation wizard will automatically perform the necessary system
changes to make both the JDK and JRE available to Windows applications,
including Android Studio.

Downloading and Installing Android Studio on Mac OS X

1. Using your web browser, navigate to the Android
Studio download page at http://developer.
android.com/sdk/installing/studio.html.

2. The web site will detect your OS, and it will show you
the Android Studio download button for your OS.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/installing/studio.html
http://developer.android.com/sdk/installing/studio.html

CHAPTER 2: Development Environment20

3. Click the download button to download the Android
Studio disk image. At the time of this writing, the
latest version of Android Studio is 1.0.1.

4. Once the download is complete, double click the
Android Studio disk image.

5. Drag and drop the Android Studio icon onto the
Applications icon to install Android Studio.

Android Studio is now ready to use. In the next section, you will be building
a small Android application to validate your installation.

Ubuntu Linux
Compared to Microsoft Windows and Mac OS X, neither Android Studio nor
the Java platform comes with an installation application. Both applications
are available for Linux as compressed TAR archive files. This section goes
through the steps that are necessary to successfully install Android Studio
on Linux.

1. In order to make it easier to set up the environment,
this section assumes that all Android toolchain
components, including the Java 7 platform, will be
installed in a new subdirectory, android, under the
user’s home directory. Open a Terminal window,
and issue mkdir ~/android to create the new
subdirectory.

2. Change the current directory to the new android
directory by issuing cd ~/android on the command
prompt.

Downloading and Installing JDK on Linux

1. Using your web browser, navigate to Oracle’s Java
download web page at www.oracle.com/technetwork/
java/javase/downloads/index.html. This page
presents you with a list of download options.

2. Scroll down to the Java 7 section.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

CHAPTER 2: Development Environment

21

3. Click the JDK button to download the Java 7
compressed TAR archive file. At the time of this
writing, the latest version of Java 7 is Update 71.

4. Once the download is completed, extract the
Java 7 platform archive file under the ~/android
subdirectory by issuing tar zxf ~/Downloads/jdk-
7u71-linux-i586.tar.gz. Substitute the file name
based on the name of the Java 7 archive file that you
have downloaded.

Downloading and Installing Android Studio on Linux

1. Using your web browser, navigate to the Android
Studio download page at http://developer.
android.com/sdk/installing/studio.html.

2. The web site will detect your OS, and it will show you
the Android Studio download button for your OS.

3. Click the download button to download the Android
Studio compressed TAR archive. At the time of this
writing, the latest version of Android Studio is 1.01.

4. Once the download is completed, extract the
Android Studio archive file under the ~/android
subdirectory by issuing tar xvf ~/Downloads/
android-studio-bundle-135.1641136-linux.tgz.

5. You can now start Android Studio by issuing
~/android/android-studio/studio.sh on the
command prompt.

http://developer.android.com/sdk/installing/studio.html
http://developer.android.com/sdk/installing/studio.html

CHAPTER 2: Development Environment22

Hello Android Application
Android Studio is now ready. In this section you will be building a Hello
Android application to verify the Android toolchain installation.

Creating a New Android Application Project
To create a new project, complete the following steps:

1. When you start Android Studio for the first time,
Quick Start dialog will be displayed as shown in
Figure 2-1.

Figure 2-1. Android Studio Quick Start

2. Click the New Project menu item to proceed.

3. The new Android application project dialog will be
displayed as shown in Figure 2-2.

CHAPTER 2: Development Environment

23

Figure 2-2. New Android application dialog

4. Set APPLICATION NAME to Hello Android.

5. Set COMPANY DOMAIN to apress.com.

6. Click the Next button to proceed.

7. As shown in Figure 2-3, on the next screen Android
Studio will ask you to choose the target application
programming interface (API) level for the new
Android application project. Choose API Level 21 for
Android 5.0 Lollipop.

http://apress.com/

CHAPTER 2: Development Environment24

8. As shown in Figure 2-4, select Blank Activity on the
next screen, and click the Next button to proceed.

Figure 2-3. Target Android API level

Figure 2-4. Android project activity type

CHAPTER 2: Development Environment

25

9. As shown in Figure 2-5, continue with the default
values for the new activity.

Figure 2-5. Activity name

10. Click the Finish button to complete the New Android
Project Wizard.

11. Android Studio will open the new project in edit
mode as shown in Figure 2-6.

CHAPTER 2: Development Environment26

Building the Android Application
The new Android application project can be built by choosing Build ➤ Make
Project from the top menu bar of the Android Studio.

Running the Android Application
Once the Android application project is built, it can run on both the actual
Android devices and the Android emulator that comes as part of the Android
toolchain.

The Android application can run on any Android device, as long as the
attached Android device runs a version of the Android platform that is
greater than or equal to the minimum target API level that is specified for the
application.

Figure 2-6. The new Android project editor

CHAPTER 2: Development Environment

27

Enabling USB Debug Mode on the Android Device

For Android Studio to see and communicate with the attached Android
device, the USB Debug mode should first be enabled on the device itself.
Different versions of the Android platform allow the developers to do this in
different ways.

Using your Android device, running Android 4.2 or greater, take the following
steps to enable the USB Debug mode:

1. Before you start, make sure that the Android device
is not yet connected to the developer machine
through the USB cable.

2. Using the Android device, go to the SETTINGS screen.

3. Scroll down to the ABOUT menu item.

Note On Samsung Galaxy devices, first choose MORE/GENERAL, then

choose ABOUT.

4. On the ABOUT screen, scroll down to BUILD NUMBER.

5. Tap on BUILD NUMBER exactly seven times.

6. If the previous step is successful, you will see a toast
message saying “DEVELOPER MODE HAS BEEN ENABLED.”

7. Now go back to the Settings screen.

8. Scroll down and you should now see a new menu
item, DEVELOPER OPTIONS. Choose that menu item.

9. On the DEVELOPER OPTIONS screen, check USB

DEBUGGING.

10. Now plug the Android device into the developer
machine through the USB cable.

11. Once the Android device connects to the developer
machine, the device will show dialog asking your
permission to allow the USB debug connection.

12. Accept that request to proceed.

CHAPTER 2: Development Environment28

Now the Android device is configured to allow Android Studio to execute
Android applications.

Figure 2-7. Android devices that are attached

Note As these steps may be different on your Android device, please

check www.droidviews.com/how-to-enable-developer-

optionsusb-debugging-mode-on-devices-with-android-4-2-

jelly-bean/ for more recipes on how to enable the USB Debug mode

on some other Android devices.

Running the Application on the Android Device

From the top menu bar, choose Run ➤ Run ‘app’ to launch the Choose
Device dialog.

As shown in Figure 2-7, the Choose Device dialog will be launched to
display the list of attached Android devices on which you can run the
Android application.

Select the Android device you want to use and click the OK button to start
the application on the selected Android device.

For the Android device to show up on this list, the USB Debug mode should
be enabled on that device through the Developer Options settings page.

www.allitebooks.com

http://www.droidviews.com/how-to-enable-developer-optionsusb-debugging-mode-on-devices-with-android-4-2-jelly-bean/
http://www.droidviews.com/how-to-enable-developer-optionsusb-debugging-mode-on-devices-with-android-4-2-jelly-bean/
http://www.droidviews.com/how-to-enable-developer-optionsusb-debugging-mode-on-devices-with-android-4-2-jelly-bean/
http://www.allitebooks.org

CHAPTER 2: Development Environment

29

Note In addition to the actual Android devices, Android Studio also

can run Android applications on an Android emulator that is running on

the same development machine. To run the application on the Android

emulator, simply select the Launch Emulator option in the Choose Device

dialog and then choose an Android virtual device from the dropdown

menu. Other Android emulator flavors also can be created using the AVD

Manager button on the toolbar.

Summary
The Android platform provides a comprehensive development toolchain for
application developers. In this chapter, you have learned how to successfully
set up the Android development environment, including creating, building,
and running an Android application on both the attached Android device
and the Android emulator instance. The next chapter will go through the
anatomy of an Android application.

31

Chapter 3
Application Components

The Android framework provides a set of components to enable the
development of consistent and interoperable mobile applications. In this chapter
you will learn about these fundamental components and what they provide.

Activity
“Activity” is the name given to a single application window with which the
user can interact at any given time. As Android applications run full screen
on a limited display space, the name “activity” is given to an application
window to reflect that it can only deliver a single and focused experience to
the end user.

On the Android platform, this approach of limiting the scope of every
screen also makes it possible for applications to deliver a functionality by
blending activities from other applications. Imagine your e-mail client on
your Android device seamlessly blending the contact list activity into the
flow for sending an e-mail. This makes it possible to code less and maintain
unity of the entire platform by promoting reuse. You will learn more about
communicating between applications in the section “Intents.”

Almost all activities require interaction with the user, and for that reason, the
activity takes care of creating the window and laying out the user interface
(UI) components. You will learn more about the various UI components
available for your application in Chapter 4.

CHAPTER 3: Application Components32

Creating an Activity
You can create a new activity simply by deriving a new class from the
android.app.Activity1 class as shown in Listing 3-1.

Listing 3-1. Creating a New Android Activity

package com.apress.helloworld;

import android.app.Activity;

public class MyActivity extends Activity {

}

Declaring an Activity
Deriving an Activity class does not make the new activity available
automatically. As activities can take different roles in an application, the
Android platform requires some meta information about the new activity.
This meta information needs to be provided as part of the Android manifest
file through the <activity>2 XML tag, as shown in Listing 3-2.

Listing 3-2. Declaring the New Activity in the AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.helloworld" >

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MyActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />
 <category android:name=

1http://developer.android.com/reference/android/app/Activity.html.
2http://developer.android.com/guide/topics/manifest/activity-element.html.

http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/topics/manifest/activity-element.html

CHAPTER 3: Application Components

33

 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

As shown in Listing 3-2, the <activity> XML tag declares the new activity by
providing its class name, its title, and how it should be exposed to the user.

Activity Life Cycle
The life cycle of an activity is the group of states that an activity goes
through from the time it is first created until it is destroyed.

Caution The life cycle of the Android platform is much more complicated

than the life cycle of ordinary desktop applications. The life cycle of desktop

applications is directly under the user’s control. On Android, the platform

manages the life cycle of Android components in order to effectively use

scarce system resources.

An activity goes through seven life cycle states. The activity becomes
informed about life cycle state changes through a set of life cycle hooks
defined in the Activity class. Application developers can override those
hooks to do appropriate work when the activity changes its state. Listing 3-3
shows these methods.

Listing 3-3. Activity Life Cycle Hooks That Can Be Overridden

public class MyActivity extends Activity {
 protected void onCreate(Bundle savedInstanceState);
 protected void onStart();
 protected void onRestart();
 protected void onResume();
 protected void onPause();
 protected void onStop();
 protected void onDestroy();
}

Figure 3-1 illustrates the order in which these hooks will get called by the
Android platform as the activity goes through life cycle states.

CHAPTER 3: Application Components34

Caution When overriding these life cycle hooks, make sure to invoke

the super class’s implementation first. Not doing that may cause random

faulty behavior during application runtime.

Figure 3-1. Activity life cycle state machines

CHAPTER 3: Application Components

35

Note A bundle is used to carry data between activities, services, and

even applications on Android. It is an Android construct that holds plain

data as a map of key/value pairs. The stored data is serialized into a byte

stream by the platform and later is deserialized into proper objects when

restored. This type of data is known as a Parcel4 on the Android platform.

	onCreate is called when the activity gets created. All
activities implement this method in order to initialize the
activity and its UI. This method also takes an android.
os.Bundle3 object that may contain the frozen state from
the previous run of this activity. At this stage the activity
is not yet visible to the user.

	onStart is called when the activity becomes visible to
the user. Although the activity is now visible, the user still
cannot interact with it until the application is foregrounded.

	onResume is called when the activity is foregrounded.
At this state, the user can interact with the application.

	onPause is called when the activity is no longer in the
foreground. As the user may not come back, the activity
is expected to save its current state into a bundle.

	onStop is called when the activity is no longer visible to
the user.

	onRestart is called if the activity becomes visible again.
The onStart method gets called next.

	onDestroy is called when the platform is destroying the
activity.

3http://developer.android.com/reference/android/os/Bundle.html.
4http://developer.android.com/reference/android/os/Parcel.html.

Caution After the onStop or onDestroy methods return, the platform

may decide to kill the application process at any time. Activities are

expected to save their current state during the call to the onPause method.

http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/os/Parcel.html

CHAPTER 3: Application Components36

Intent
As mentioned earlier in the Activity section, the Android platform is designed
to be highly modular, promoting collaboration among the applications that
are present on the device. Applications can blend activities from each other
to provide a certain functionality to the user. This is achieved through a
late runtime binding facility, known as android.content.Intent,5 which the
Android framework provides.

The intent holds a passive data structure that holds an abstract description of
an action to be performed. The primary pieces of information in an intent are

	action, which is the general action to be performed,
such as ACTION_VIEW, ACTION_EDIT.

	data, which is a URI (uniform resource identifier)
object that refers to the data to be acted on, such as
content://contacts/people/1, tel:6501231234.

The optional information pieces in an intent are

	type, which is the MIME type for the data.

	component, which explicitly names the component, such
as a specific activity, that should handle the action.

	extras, which are a bundle that carries additional
information for the action as a key/value pair.

The most significant use of an intent is to launch activities and services.
Listing 3-4 demonstrates how you can launch the contact list activity to
enable the user to browse through the contacts.

Listing 3-4. Code to Launch the Contact List Through an Intent

Intent intent = new Intent();
intent.setAction(Intent.ACTION_VIEW);
intent.setData(Uri.parse("content://contacts/people/"));

startActivity(intent);

5http://developer.android.com/reference/android/content/Intent.html.

http://developer.android.com/reference/android/content/Intent.html

CHAPTER 3: Application Components

37

Intent Resolution
Once the intent is created and dispatched through the Android framework, the
Android platform resolves the intent to find candidates that can provide the
requested action. There are two main groups of intents that define how they
get resolved and dispatched.

	Explicit intents are intents with an explicitly specified
component, as shown in Listing 3-5. These intents
automatically get dispatched to the specified
component.

Listing 3-5. Intent with an Explicitly Specified Component

Intent intent = new Intent();
intent.setAction(Intent.ACTION_VIEW);
intent.setComponent(new ComponentName(
 "com.apress",
 "com.apress.MyActivity"));

startActivity(intent);

	Implicit intents are intents that do not specify a
component. Based on the information provided in the
intent, the Android platform goes through all of the
installed application's intent filters to come up with the
best matches that can fulfill the requested action.

Intent Filters
Intent filters allow the application to declare the list of intents that it can
fulfill. It is declared in the application’s manifest file, AndroidManifest.xml.
Going back to Listing 3-2, you will recall that MyActivity declared the
following intent filter:

<activity
 android:name=".MyActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

CHAPTER 3: Application Components38

This intent filter instructs the Android platform that this activity should be
included in the resolution of Launcher activities. This way, the icon of the
new application gets shown on the Launcher screen for the user to be able
to start it.

Multiple intent filters can be declared for a single activity as well. For
example, if this activity can fulfill a request to play a video file, it can declare
an intent filter similar to the following:

<activity
 android:name=".MyActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>

 <intent-filter>
 <action android:name=
 "android.intent.action.VIEW" />
 <category android:name=
 "android.intent.category.DEFAULT" />
 <data android:mimeType="video/*" />
 </intent-filter>
</activity>

As indicated earlier, intents are not only used to launch activities. In this
chapter you will learn how to use intents to interact with services and
broadcast messages. Intent filters can also be created through code using
the android.content.IntentFilter6 class; you will see an example in the
section “Broadcast Messages.”

Getting and Extracting the Intent
Once the intent is properly dispatched and the activity gets started, the
newly started activity gets hold of the intent by using the getIntent()
method of the Activity class, as shown in Listing 3-6.

6http://developer.android.com/reference/android/content/IntentFilter.html.

http://developer.android.com/reference/android/content/IntentFilter

CHAPTER 3: Application Components

39

Listing 3-6. Accessing the Intent That Started the Activity

Intent intent = getIntent();

Uri data = intent.getData();

if (intent.getAction().equals(Intent.ACTION_VIEW)) {
 // view action
} else if (intent.getAction().equals(Intent.ACTION_EDIT)) {
 // edit action
}

Pending Intent
Although intents are mostly used to start an operation, they are also used for
registering callbacks.

Note A “callback” in computer programming refers to a reference to a

function that is passed as an argument to another code, which is expected

to call back the originating code by executing the referenced code at some

time in the future. It is mostly used to sign up to be notified for events.

An application can provide an intent to another application for it to call the
application back when a certain condition is met, or a requested operation
is completed. For example, when an application places a notification on the
notification bar, it also provides an intent to the notification bar to call the
application back when the user clicks that notification.

Ordinary intents cannot be used directly for this purpose, as they are executed
based on the calling application’s permissions. The Android framework
provides a special intent type called android.app.PendingIntent.7 This special
intent type is executed based on the creating application’s permissions
instead of on the executing application’s permissions. This makes it possible
for applications to use pending intents as callback intents.

7http://developer.android.com/reference/android/app/PendingIntent.html.

www.allitebooks.com

http://developer.android.com/reference/android/app/PendingIntent.html
http://www.allitebooks.org

CHAPTER 3: Application Components40

Creating a Pending Intent

The PendingIntent class provides four static methods to create pending
intents.

	getActivity is used for creating a pending intent to
start an activity.

	getBroadcast is used for creating a pending intent to
send a broadcast message.

	getService is used for creating a pending intent to start
a service.

	getActivities is used for creating a pending intent to
start multiple activities.

Note The getActivities method becomes very handy when starting

the application from the notification bar, as it allows you to also rebuild the

activity “back stack” and take the user to the detail activity.

You can use these methods to create a pending intent, as shown in Listing 3-7.

Listing 3-7. Creating an Intent to Launch the Contacts List

Intent intent = new Intent();
intent.setAction(Intent.ACTION_VIEW);
intent.setData(Uri.parse("content://contacts/people"));

PendingIntent pendingIntent = PendingIntent.getActivity(this, 0, intent, 0);

Once the pending intent is provided to the other application, the pending
intent can be executed any time using its send() method, as shown in
Listing 3-8.

Listing 3-8. Sending a Pending Intent

try {
 pendingIntent.send();
} catch (PendingIntent.CanceledException e) {
 e.printStackTrace();
}

CHAPTER 3: Application Components

41

Service
For longer-running operations, the lifespan of an activity may not be long
enough for the task to complete. For example, if your application has to
download a big video file from the Internet, you cannot expect the user to
remain with that activity for the duration of the download operation. But as
soon as the user walks away, the platform will terminate the activity without
waiting for the operation to complete.

The Android framework provides an application component, known as
android.app.Service,8 to enable applications to perform longer-running
operations in the background.

Services can be used both within the same application and also by other
applications on the device if the service is exported.

Creating a Service
You can create a new service simply by deriving a new class from the
android.app.Service class as shown in Listing 3-9.

Listing 3-9. Creating a New Android Service

package com.apress.helloworld;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class MyService extends Service {
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
}

As the onBind method is declared abstract in the Service class, you need to
provide an implementation for it. For now you can safely ignore this detail,
as you will learn more about it in the section “Binding to a Service.”

8http://developer.android.com/reference/android/app/Service.html.

http://developer.android.com/reference/android/app/Service.html

CHAPTER 3: Application Components42

Declaring a Service
Creating a new service class does not automatically make the service
available on the Android platform. The Android platform requires more meta
information in order to make the service available. This meta information
needs to be provided again as part of the Android manifest file through the
<service>9 XML tag, as shown in Listing 3-10.

Listing 3-10. Declaring the New Service in the AndroidManifest.xml File

<service
 android:name=".MyService"
 android:enabled="true"
 android:exported="false" >
</service>

Similar to the <activity> element, the <service> element can also contain
<intent-filter> elements in its body to specify the actions that it can fulfill.
If no intent filters are provided, the service can only be reached by explicitly
specifying it as a component of the intent.

9http://developer.android.com/guide/topics/manifest/service-element.html.

Caution The most important attribute of the <service> element is

android:exported. It specifies whether the service can be accessed by

other applications that are running on the device. By default, it is set to true

for any services that specify any intent filters, meaning that it is available

to other applications. To ensure the maximum security of your application,

mark all internal services as not exported.

Restricting Access to a Service
If you prefer to export your services for other applications to use, the Android
platform enables you to enforce access permissions for the service. By doing
so, other applications will need to ask for that specific permission in their
manifest file for the user to see and approve during the installation phase.

http://developer.android.com/guide/topics/manifest/service-element.html

CHAPTER 3: Application Components

43

As shown in Listing 3-11, in order to enforce a permission on a service, you
need to

Declare the permission using the 	 <permission> tag in the
manifest file of the application that will provide the service.

Later mark the service to request this new permission 	
by specifying it using the android:permission attribute
of the <service> tag.

Listing 3-11. Declaring and Enforcing a Permission in the AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.helloworld" >

 <permission
 android:name="com.apress.permission.MY_SERVICE"
 android:protectionLevel="dangerous" />

 <application>

 ...

 <service
 android:name=".MyService"
 android:enabled="true"
 android:exported="true"
 android:permission=
 "com.apress.permission.MY_SERVICE">
 </service>
 </application>

</manifest>

Now that the service is exported by enforcing a permission, applications that
would like to use this service must declare the permission in their manifest
file, as shown in Listing 3-12.

Listing 3-12. Requesting the Permission in the AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.helloworld" >

 <uses-permission android:name=
 "com.apress.permission.MY_SERVICE" />

</manifest>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 3: Application Components44

Service Life Cycle
As the user never directly interacts with the service, which is running in the
background, its life cycle is slightly different than the activity life cycle. As
visibility is not a concern for a service, the Service class provides fewer life
cycle hooks. Figure 3-2 illustrates the flow between these life cycle states.

Figure 3-2. Service life cycle states

	onCreate is called when the service is first created.

	onStartCommand is called every time the service is
explicitly started through an intent. While the service is
running, this method can be called multiple times by the
system to queue more work for the service.

	onDestroy is called when the service is no longer in use.
The service should clean up any resources it holds.

CHAPTER 3: Application Components

45

Service Restart Strategy
As frequently indicated in this book, the Android platform will do whatever
it takes to use system resources efficiently in order to provide a smooth
user experience. For that reason, any application the user is not seeing or
interacting with is treated as less important than the one in the foreground.
When more resources are needed, the Android platform may decide to
terminate the applications in memory by starting with the least important
ones. A service that is running in the background is not considered as
important, and it may be terminated by the platform at any given time.

The service start strategy can be adjusted through the return value of
the onStartCommand method. The method can return one of the following
constant values:

	START_FLAG_NOT_STICKY is returned if the service should
be restarted after it has been killed by the platform
unless an explicit start command is sent.

	START_FLAG_STICKY is returned if the service would like
to be restarted after it has been killed by the platform.
The original intent is not preserved.

	START_FLAG_REDELIVERY is returned if the service would
like to be restarted and also needs the original intent to
be redelivered.

Starting a Service
Depending on the use case, either the service can be started through an
intent or the calling code can directly bind to the service.

Starting a Service with an Intent
The easiest way to start a service is through an intent. Application code
can use the startService10 method to start a service with a given intent, as
shown in Listing 3-13.

Listing 3-13. Starting a Service with an Intent

Intent intent = new Intent(this, MyService.class);
startService(intent);

10http://developer.android.com/reference/android/content/Context.html#
startService(android.content.Intent).

http://developer.android.com/reference/android/content/Context.html%23%0astartService(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html%23%0astartService(android.content.Intent)

CHAPTER 3: Application Components46

Intent Service

In order to facilitate this process, the Android framework provides the
android.app.IntentService11 class. A new class can be derived from the
IntentService to handle the requested intents, as shown in Listing 3-14.

Listing 3-14. Intent Service to Process Requested Intents from a Queue

package com.apress.helloworld;

import android.app.IntentService;
import android.content.Intent;

public class MyService extends IntentService {
 public MyService() {
 super(MyService.class.getName());
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 // handle intent
 }
}

Although this is the easiest way to start a service, the service and the calling
code do not have any connection during the lifespan of the service.

Binding to a Service
If the calling code and the service will need to communicate throughout
the lifespan of the service, then the service can be bounded, as shown in
Listing 3-15.

Listing 3-15. Binding to a Service

package com.apress.helloworld;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;

11http://developer.android.com/reference/android/app/IntentService.html.

http://developer.android.com/reference/android/app/IntentService.html

CHAPTER 3: Application Components

47

public class MyActivity extends Activity {
 private IBinder service;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...

 bindService(new Intent(this, MyService.class),
 new ServiceConnection() {
 @Override
 public void onServiceConnected(
 ComponentName componentName, IBinder iBinder) {
 // service connected
 service = iBinder;
 }

 @Override
 public void onServiceDisconnected(
 ComponentName componentName) {
 // service disconnected
 }
 },
 Context.BIND_AUTO_CREATE);
 }
}

As mentioned earlier in the “Declaring a Service” section, services can be either
local to the current application or used remotely from another application that is
exporting the service. The communication channel between the calling code
and the service heavily depends on this. According to service type, the onBind
method of the service should return the proper binder service channel.

Local Service

In the case of a local service, the communication channel can easily be
provided by deriving a new class from the android.os.Binder12 class and
returning the service instance directly as shown in Listing 3-16.

12http://developer.android.com/reference/android/os/Binder.html.

http://developer.android.com/reference/android/os/Binder.html

CHAPTER 3: Application Components48

Listing 3-16. Local Binder Implementation for Locally Used Services

package com.apress.helloworld;

import android.app.Service;
import android.content.Intent;
import android.os.Binder;
import android.os.IBinder;

public class MyService extends Service {
 public class LocalBinder extends Binder {
 MyService getService() {
 return MyService.this;
 }
 }

 private final LocalBinder localBinder = new LocalBinder();

 @Override
 public IBinder onBind(Intent intent) {
 return localBinder;
 }
}

The calling code can extract the service instance from the binder and use it
directly as shown in Listing 3-17.

Listing 3-17. Getting the Service Instance from the Binder

@Override
public void onServiceConnected(ComponentName componentName,
 IBinder iBinder) {
 // service connected
 MyService.LocalBinder localBinder =
 (MyService.LocalBinder) iBinder;

 MyService service = localBinder.getService();
}

Remote Service

In the case of remotely used services, as the calling application and the
service reside in two different processes, the communication gets carried
through the binder via IPC (inter-process communication). Depending on
the purpose of the service, either a service interface can be defined using
Android Interface Definition Language (AIDL) or a simple message queue
can be used to carry primitive data types between the two processes.

CHAPTER 3: Application Components

49

Communicating Using AIDL

Using AIDL, an interface for the service must be defined, as shown in
Listing 3-18.

Listing 3-18. IMyServiceInterface.aidl Interface File

package com.apress.helloworld;

interface IMyServiceInterface {
 int add(int a, int b);
}

During the compilation phase, a set of class files will be automatically
generated from this AIDL interface file. Both the service and the calling code
will need these class files to communicate through the binder channel.

The service needs to implement the generated stub class in order to provide
the implementation for the interface methods, as showing in Listing 3-19.

Listing 3-19. MyService Implementing the Stub Interface

package com.apress.helloworld;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.RemoteException;

public class MyService extends Service {
 private final IMyServiceInterface.Stub serviceBinder =
 new IMyServiceInterface.Stub() {
 @Override
 public int add(int a, int b) throws RemoteException {
 return a + b;
 }
 };

 @Override
 public IBinder onBind(Intent intent) {
 return serviceBinder;
 }
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Application Components50

In the same way, the calling code should also use the generated interface
class to communicate with the service, as shown in Listing 3-20.

Listing 3-20. Calling Code Using the Interface to Communicate with the Service

package com.apress.helloworld;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.RemoteException;

public class MyActivity extends Activity {
 private IMyServiceInterface myServiceInterface;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);

 Intent intent = new Intent();
 intent.setComponent(new ComponentName(
 "com.apress.helloworld",
 "com.apress.helloworld.MyService"));

 bindService(intent, new ServiceConnection() {
 @Override
 public void onServiceConnected(
 ComponentName componentName, IBinder iBinder) {
 // service connected
 myServiceInterface =
 IMyServiceInterface.Stub.asInterface(iBinder);

 try {
 int total = myServiceInterface.add(10, 20);

 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }

CHAPTER 3: Application Components

51

 @Override
 public void onServiceDisconnected(
 ComponentName componentName) {
 // service disconnected
 myServiceInterface = null;
 }
 },
 Context.BIND_AUTO_CREATE);
 }
}

Although it requires more work, using AIDL enables you to define a clear
interface between the service and the code that will interact with the
interface remotely.

Communication Using Message Queue

In certain situations, the communication requirement between the service
and the calling code could be very minimal. In such cases, using AIDL could
be seen as overkill. The Android framework provides the android.os.
Messenger13 class to furnish a simple message queue between the service
and the calling code. The message queue carries primitive data types, and it
does not require any custom interfaces.

In order to use the Messenger, the service needs to implement a message
queue, as shown in Listing 3-21.

Listing 3-21. Service to Process Request Received Through Messages

package com.apress.helloworld;

import android.app.Service;
import android.content.Intent;
import android.os.Handler;
import android.os.IBinder;
import android.os.Message;
import android.os.Messenger;

public class MyService extends Service {
 public static final int MESSAGE_DOWNLOAD = 1;

13http://developer.android.com/reference/android/os/Messenger.html.

http://developer.android.com/reference/android/os/Messenger.html

CHAPTER 3: Application Components52

 private class RequestHandler extends Handler {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MESSAGE_DOWNLOAD:
 // start downloading
 break;

 default:
 super.handleMessage(msg);
 }
 }
 }

 private final Messenger messenger =
 new Messenger(new RequestHandler());

 @Override
 public IBinder onBind(Intent intent) {
 return messenger.getBinder();
 }
}

This message queue receives android.os.Message14 instances and
processes them as they come in. In order to send these messages, the
calling code also relies on a Messenger instance, as shown in Listing 3-22.

Listing 3-22. Activity Communicating with the Service by Sending Messages

package com.apress.helloworld;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.Message;
import android.os.Messenger;
import android.os.RemoteException;

14http://developer.android.com/reference/android/os/Message.html.

http://developer.android.com/reference/android/os/Message.html

CHAPTER 3: Application Components

53

public class MyActivity extends Activity {
 public static final int MESSAGE_DOWNLOAD = 1;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);

 Intent intent = new Intent();
 intent.setComponent(new ComponentName(
 "com.apress.helloworld",
 "com.apress.helloworld.MyService"));

 bindService(intent, new ServiceConnection() {
 @Override
 public void onServiceConnected(
 ComponentName componentName, IBinder iBinder) {
 Messenger service = new Messenger(iBinder);

 Message downloadMessage = Message.obtain(
 null, MESSAGE_DOWNLOAD);

 try {
 service.send(downloadMessage);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onServiceDisconnected(
 ComponentName componentName) {

 }
 }, Context.BIND_AUTO_CREATE);
 }
}

System Services
The Android platform itself also exposes various device and platform
features as services. Compared to the services that applications provide,
the Android framework makes it much easier to consume these services by
providing classes as part of its application programming interfaces (APIs).
Applications can interact with these services using these existing interfaces
without dealing with intents, AIDL, and binding.

CHAPTER 3: Application Components54

The platform service interfaces can be obtained through the getSystemService15
method of the current context by simply passing the name of the service
using one of the defined constant values in the context class, as shown in
Listing 3-23.

Listing 3-23. Getting the Power Service Interface from the Current Context

PowerManager powerManager =
 (PowerManager) getSystemService(POWER_SERVICE);

Following is list of notable services that are exposed by the Android
platform:

	android.app.ActivityManager16 enables you to interact
with global activity state of the system, such as getting
the recent activity with which the user was interacting.

	android.os.PowerManager17 enables you to control the
device’s power configuration (e.g., preventing the device
from going into sleep mode).

	android.app.AlarmManager18 allows the application to
schedule a pending intent for execution at a later time,
even when the requesting application is not running.

	android.app.NotificationManager19 allows the
application to inform the user regarding background
events by displaying notifications on the notification bar.

	android.location.LocationManager20 allows the
application to receive location information from the
device’s location sources (e.g., the GPS).

	android.app.DownloadManager21 allows the application
to request long-running HTTP downloads. The
download service handles the download in the
background and informs the system when the download
is terminated.

15http://developer.android.com/reference/android/content/Context.html#
getSystemService(java.lang.String).
16http://developer.android.com/reference/android/app/Activity Manager.html.
17http://developer.android.com/reference/android/os/PowerManager.html.
18http://developer.android.com/reference/android/app/AlarmManager.html.
19http://developer.android.com/reference/android/app/NotificationManager.html.
20http://developer.android.com/reference/android/location/LocationManager.html.
21http://developer.android.com/reference/android/app/DownloadManager.html.

http://developer.android.com/reference/android/content/Context.html%23getSystemService(java.lang.String)
http://developer.android.com/reference/android/content/Context.html%23getSystemService(java.lang.String)
http://developer.android.com/reference/android/app/Activity%20Manager.html
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/app/AlarmManager.html
http://developer.android.com/reference/android/app/Notification
http://developer.android.com/reference/android/location/Location
http://developer.android.com/reference/android/app/DownloadManager.html

CHAPTER 3: Application Components

55

	android.net.ConnectivityManager22 allows the
application to query the connectivity state of the device
(e.g., cellular or WiFi connectivity).

	android.net.wifi.WifiManager23 allows the application
to interact with the WiFi network (e.g., searching for WiFi
networks and adding new WiFi network configurations).

	android.app.UiModeManager24 allows the application to
query and manipulate the device’s UI mode
(e.g., switching between car mode and normal mode).

	android.view.inputmethod.InputMethodManager25
allows the application to control the input methods
(e.g., displaying and hiding the soft input window).

	android.app.KeyguardManager26 allows the application
to lock and unlock the key guard screen.

	android.app.SearchManager27 provides access to
platform search functionality.

	android.view.WindowManager28 provides access to
a top-level window manager to enable you to place
custom windows.

	android.view.LayoutInflater29 allows you to inflate
layout resources from a given resource in the context.

	android.os.Vibrator30 allows the application to control
the vibrator on the device to notify the user in silent
mode.

22http://developer.android.com/reference/android/net/ConnectivityManager.html.
23http://developer.android.com/reference/android/net/wifi/WifiManager.html.
24http://developer.android.com/reference/android/app/UiModeManager.html.
25http://developer.android.com/reference/android/view/inputmethod/
InputMethodManager.html.
26http://developer.android.com/reference/android/app/KeyguardManager.html.
27http://developer.android.com/reference/android/app/SearchManager.html.
28http://developer.android.com/reference/android/view/WindowManager.html.
29http://developer.android.com/reference/android/view/LayoutInflater.html.
30http://developer.android.com/reference/android/os/Vibrator.html.

http://developer.android.com/reference/android/net/Connectivity
http://developer.android.com/reference/android/net/wifi/WifiManager
http://developer.android.com/reference/android/app/UiModeManager.html
http://developer.android.com/reference/android/view/inputmethod/Input
http://developer.android.com/reference/android/view/inputmethod/Input
http://developer.android.com/reference/android/app/KeyguardManager
http://developer.android.com/reference/android/app/SearchManager.html
http://developer.android.com/reference/android/view/Window
http://developer.android.com/reference/android/view/LayoutInflater
http://developer.android.com/reference/android/os/Vibrator.html

CHAPTER 3: Application Components56

Caution Most of these services require the calling application to have

certain permissions. Before using any of these platform services, make

sure to have these permissions listed in your application’s manifest.

Content Provider
As mentioned earlier in the “Service” section, both activities and services
can be exported so that other applications that are running on the same
device can blend them into their work flows. Although accessing parts of
other applications are very useful, in certain cases, you would simply need
access to the application’s data rather than its activities and services.

The Android platform provides an application component, known as the
content provider, that manages access to a structured set of data. It is a
standard interface that connects the data of one application with the code
running on another application. The content provider achieves this by providing
proper data encapsulation and also security. The content provider and the data
it contains are referred through content URIs, such as the following:

content://com.apress.booksprovider/books/1.

Creating a Content Provider
A new content provider can be created simply by deriving a new class from
the android.content.ContentProvider31 class. As shown in Listing 3-24, the
abstract ContentProvider class has six abstract methods that need to be
implemented.

	query method is called to query the provider for data.

	insert method is called to insert new content into the
provider.

	update method is called to update the content in the
provider with new content.

	delete method is called to delete content from the provider.

31http://developer.android.com/reference/android/content/ContentProvider.html.

http://developer.android.com/reference/android/content/Content

CHAPTER 3: Application Components

57

	getType method is called to get the MIME type for
content that will be returned for the given URI.

	onCreate method is called by the platform when the
content provider gets instantiated. This method gets
called before any other method.

Caution All of these methods, except the onCreate method, can

be called multiple times from different threads. For that reason, their

implementation should be thread safe.

Listing 3-24. Book Content Provider Implementation

package com.apress.bookprovider;

import android.content.ContentProvider;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.MatrixCursor;
import android.net.Uri;

public class BookProvider extends ContentProvider {
 private static final int QUERY_ALL_BOOKS = 1;
 private static final int QUERY_BY_BOOK_ID = 2;

 private static final UriMatcher URI_MATCHER =
 new UriMatcher(UriMatcher.NO_MATCH);

 static {
 URI_MATCHER.addURI(BookContract.AUTHORITY,
 BookContract.CONTENT_PATH, QUERY_ALL_BOOKS);

 URI_MATCHER.addURI(BookContract.AUTHORITY,
 BookContract.CONTENT_PATH + "/#", QUERY_BY_BOOK_ID);
 }

 @Override
 public boolean onCreate() {
 return false;
 }

CHAPTER 3: Application Components58

 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs,
 String sortOrder) {

 MatrixCursor matrixCursor = new MatrixCursor(new String[]{
 BookContract.BookColumns._ID,
 BookContract.BookColumns.BOOK_NAME,
 BookContract.BookColumns.BOOK_ISBN
 });

 matrixCursor.addRow(new Object[]{
 1,
 "Android Apps",
 "978-1430244349"
 });

 return matrixCursor;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 return null;
 }

 @Override
 public int update(Uri uri, ContentValues values,
 String selection, String[] selectionArgs) {
 return 0;
 }

 @Override
 public int delete(Uri uri, String selection,
 String[] selectionArgs) {
 return 0;
 }

 @Override
 public String getType(Uri uri) {
 switch (URI_MATCHER.match(uri)) {
 case QUERY_ALL_BOOKS:
 return BookContract.CONTENT_TYPE;

 case QUERY_BY_BOOK_ID:
 return BookContract.CONTENT_ITEM_TYPE;

 default:
 return null;
 }
 }
}

CHAPTER 3: Application Components

59

Content Provider Contract
The content provider contract class defines constants that help applications
to work with the content URIs, column names, and other features of a content
provider. Contract classes are not automatically generated. The application
developer is expected to generate them as a best practice, as shown in
Listing 3-25.

Listing 3-25. Book Content Provider Contract

package com.apress.bookprovider;

import android.net.Uri;
import android.provider.BaseColumns;

public interface BookContract {
 String AUTHORITY = "com.apress.bookprovider";

 Uri AUTHORITY_URI = Uri.parse("content://" + AUTHORITY);

 String CONTENT_PATH = "books";

 Uri CONTENT_URI = Uri.withAppendedPath(
 AUTHORITY_URI, CONTENT_PATH);

 String CONTENT_TYPE =
 "vnd.android.cursor.dir/vnd.com.apress.bookprovider.book";

 String CONTENT_ITEM_TYPE =
 "vnd.android.cursor.item/vnd.com.apress.bookprovider.book";

 interface BookColumns extends BaseColumns {
 String BOOK_NAME = "book_name";
 String BOOK_ISBN = "book_isbn";
 }
}

Declaring a Content Provider
Like the activities and the services, content providers are not exposed until
they get properly declared in the application’s manifest file. The <provider>32
XML tag is used to declare a content provider as shown in Listing 3-26.

32http://developer.android.com/guide/topics/manifest/provider-element.html.

www.allitebooks.com

http://developer.android.com/guide/topics/manifest/provider-element.html
http://www.allitebooks.org

CHAPTER 3: Application Components60

Listing 3-26. Declaring Book Content Provider in the AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.bookprovider">

 <application>
 ...

 <provider
 android:name=".BookProvider"
 android:authorities="com.apress.bookprovider"
 android:enabled="true"
 android:exported="true"></provider>
 </application>
</manifest>

The most important attribute of the <provider> tag is the
android:authorities attribute. It defines the unique name of this content
provider. By convention, content providers should be named by having the
application package as the prefix, such as com.apress.bookprovider. The
Android platform stores a reference to the content provider according to this
authority name. This authority name is also used as part of the URI by other
applications to access the content provider.

content://<authority>/<path>/<id>
content://com.apress.bookprovider/book/1

Content Provider Security
Content providers can also declare two separate permissions for both
reading and writing. The read permission is specified through the
android:readPermission attribute; only applications with the proper
permission can call the query method of this content provider. Likewise,
the write permission is specified through the android:writePermission
attribute, and only applications with the proper permission can call the
insert, update, and delete methods. If two separate permissions are not
needed, the android:permission attribute can be used to specify only one
permission to access the content provider—the same as for other Android
components.

http://schemas.android.com/apk/res/android

CHAPTER 3: Application Components

61

Accessing a Content Provider
Content providers can be accessed through the android.content.
ContentResolver33 class. An instance of ContentResolver class can be
obtained by calling the getContentResolver method of the current context,
as shown in Listing 3-27.

Listing 3-27. Getting Data from Content Provider Through Content Resolver

Cursor cursor = getContentResolver().query(
 BookContract.CONTENT_URI,
 null,
 null,
 null,
 null);

if (cursor != null) {
 try {
 if (cursor.moveToFirst()) {
 int bookNameColumn = cursor.getColumnIndexOrThrow(
 BookContract.BookColumns.BOOK_NAME);

 int bookIsbnColumn = cursor.getColumnIndexOrThrow(
 BookContract.BookColumns.BOOK_ISBN);

 do {
 String bookName = cursor.getString(bookNameColumn);
 String bookIsbn = cursor.getString(bookIsbnColumn);

 } while (cursor.moveToNext());
 }
 } finally {
 cursor.close();
 }
}

33http://developer.android.com/reference/android/content/ContentResolver.html.

http://developer.android.com/reference/android/content/Content

CHAPTER 3: Application Components62

System Content Providers
Just as system services do, the Android platform also provides a set of
content providers to enable the application to access the user’s information.
Following is a list of the most notable content providers that the platform
provides:

	Alarm Clock Provider34 provides access to the user’s
alarms and also enables the application to manipulate
its existing alarms.

	Browser Provider35 allows access to the user’s
bookmarks and history.

	Calendar Provider36 allows access to the user’s
calendar, and enables the application to manipulate it.

	Contacts Provider37 allows access to the user’s contact list.

	Call Log Provider38 provides access to the received
and placed calls.

	Document Provider39 provides a generic interface
to access the user’s documents across all document
storage providers, such as documents kept at cloud
storage services.

	Media Store Provider40 provides access to meta data
for all media files that are available on the device, such
as music, video, and photos.

	Settings Provider41 provides access to global system-
level device preferences.

	Telephony Provider42 provides access to telephony
data, such as SMS (Short Message Service) and MMS
(Multimedia Messaging Service) messages and the APN
(Access Point Name) list.

34http://developer.android.com/reference/android/provider/AlarmClock.html.
35http://developer.android.com/reference/android/provider/Browser.html.
36http://developer.android.com/guide/topics/providers/calendar-provider.html.
37http://developer.android.com/guide/topics/providers/contacts-provider.html.
38http://developer.android.com/reference/android/provider/CallLog.html.
39http://developer.android.com/guide/topics/providers/document-provider.html.
40http://developer.android.com/reference/android/provider/MediaStore.html.
41http://developer.android.com/reference/android/provider/Settings.html.
42http://developer.android.com/reference/android/provider/Telephony.html.

http://developer.android.com/reference/android/provider/AlarmClock.html
http://developer.android.com/reference/android/provider/Browser.html
http://developer.android.com/guide/topics/providers/calendar-provider.html
http://developer.android.com/guide/topics/providers/contacts-provider.html
http://developer.android.com/reference/android/provider/CallLog.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/reference/android/provider/MediaStore
http://developer.android.com/reference/android/provider/Settings.html
http://developer.android.com/reference/android/provider/Telephony.html

CHAPTER 3: Application Components

63

	User Dictionary Provider43 provides access to user-defined
words for input methods to use for predictive text input.

	Voicemail Provider44 provides access to the user’s
voicemails.

Broadcast Messages
The Android platform provides a system-wide message bus facility called
broadcast messages. This facility enables applications and the system to
propagate events and state change information to the interested parties by
broadcasting an intent as a message.

Sending a Broadcast Message
A broadcast message can be sent through the sendBroadcast45 method of
the current context.

As shown in Listing 3-28, the sendBroadcast method takes an intent as the
message.

Listing 3-28. Sending Broadcast Messages

Intent intent = new Intent();
intent.setAction("com.apress.bookreceiver.action.BOOK_NEW");
intent.addCategory(Intent.CATEGORY_DEFAULT);
intent.setData(Uri.parse(
 "http://www.apress.com/9781430248279"));

sendBroadcast(intent);

43http://developer.android.com/reference/android/provider/CallLog.html.
44http://developer.android.com/reference/android/provider/
VoicemailContract.html.
45http://developer.android.com/reference/android/content/Context.
html#sendBroadcast.
46http://developer.android.com/reference/android/support/v4/content/
LocalBroadcastManager.html .

Tip If you are only sending the broadcast messages to the

internal components of your application, you should use the

LocalBroadcastManager’s46 sendBroadcast() method instead in order

to optimize the delivery and to ensure the security of your messages.

http://www.apress.com/9781430248279
http://developer.android.com/reference/android/provider/CallLog.html
http://developer.android.com/reference/android/provider/Voicemail
http://developer.android.com/reference/android/provider/Voicemail
http://developer.android.com/reference/android/content/Context.%20html%23sendBroadcast
http://developer.android.com/reference/android/content/Context.%20html%23sendBroadcast
http://developer.android.com/reference/android/support/v4/content/%20LocalBroadcastManager.html
http://developer.android.com/reference/android/support/v4/content/%20LocalBroadcastManager.html

CHAPTER 3: Application Components64

Receiving the Broadcast Message
In order to receive the broadcast message, the application should derive a
new class from the android.content.BroadcastReceiver47 class, as shown
in Listing 3-29.

Listing 3-29. Broadcast Receiver Class Implementation

package com.apress.bookreceiver;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class BookBroadcastReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 }
}

Simply deriving the class is not sufficient to receive the broadcast messages.
The application can inform the Android platform regarding its interest in
receiving broadcast messages by registering either through the manifest file
or dynamically through the code.

Registering for Broadcast Messages Through the Manifest

The <receiver>48 XML tag is used to register the broadcast receiver in the
application’s manifest, as shown in Listing 3-30.

Listing 3-30. Registering the Broadcast Receiver Through the AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.bookreceiver">

 <receiver
 android:name=".BookBroadcastReceiver"

47http://developer.android.com/reference/android/content/Broadcast Receiver.html.
48http://developer.android.com/guide/topics/manifest/receiver-element.html.

http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/content/Broadcast%20Receiver.html
http://developer.android.com/guide/topics/manifest/receiver-element.html

CHAPTER 3: Application Components

65

 android:enabled="true"
 android:exported="true">
 <intent-filter>
 <action android:name=
 "com.apress.bookreceiver.action.BOOK_NEW" />
 <category android:name=
 "android.intent.category.DEFAULT" />
 </intent-filter>
 </receiver>
 </application>

</manifest>

Registering for Broadcast Messages Through the Code

The broadcast receiver can also be dynamically registered through the
registerReceiver49 method of the current context, as shown in Listing 3-31.

Listing 3-31. Registering the Broadcast Receiver Through the Code

BookBroadcastReceiver bookBroadcastReceiver = new BookBroadcastReceiver();

IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction(
 "com.apress.bookreceiver.action.BOOK_NEW");
intentFilter.addCategory(Intent.CATEGORY_DEFAULT);

registerReceiver(bookBroadcastReceiver, intentFilter);

Broadcast Receiver Life Cycle
The application running the broadcast receiver is only alive during the
duration of onReceive method of the broadcast receiver. Once the onReceive
method returns, the platform considers the application finished. If the
processing of the message requires a longer time, the broadcast receiver
should start a service to process the message in the background.

49http://developer.android.com/reference/android/content/Context.html#
registerReceiver(android.content.BroadcastReceiver,android.content.IntentFilter).

http://developer.android.com/reference/android/content/Context.html%23registerReceiver(android.content.BroadcastReceiver%2candroid.content.IntentFilter)
http://developer.android.com/reference/android/content/Context.html%23registerReceiver(android.content.BroadcastReceiver%2candroid.content.IntentFilter)

CHAPTER 3: Application Components66

Broadcast Receiver Security
Using the same security components that are used to secure the activity
and the services, applications can enforce permissions on both the
broadcasted messages and the broadcast receiver.

Context
The context is an Android component that provides an interface to the
global information about the application environment. Both Activity and
Service classes are derived from the android.content.Context50 class,
and they can act as the context for other parts of the application. The
context provides an interface to access the application resources, including
the features such as start activities and services. The startActivity and
startService methods that you have learned about in this section are
actually part of the Context class. The lifespan of a context is defined by
the type of class that is acting as the context. For example, if the context is
provided through an instance of the Activity class, its lifespan is the same
as the activity’s lifespan. Once the activity is destroyed, the instance can no
longer provide context-specific features.

Application
As both the activity and service lifespans are limited, they are not good
candidates for keeping the global state of an application. The Android
framework provides the android.app.Application51 class for that purpose.
The lifespan of the Application class lasts from the time the application is
started until the time the application is terminated by the platform.

The Application class itself does not provide any mechanism to store
additional information; however, a new class can be derived from the
Application class to provide that functionality, as shown in Listing 3-32.

Listing 3-32. New Application Class to Hold Global Values

package com.apress.helloworld;

import android.app.Application;

50http://developer.android.com/reference/android/content/Context.html.
51http://developer.android.com/reference/android/app/Application.html.

http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/android/app/Application.html

CHAPTER 3: Application Components

67

public class MyApplication extends Application {
 private String globalValue;

 public String getGlobalValue() {
 return globalValue;
 }

 public void setGlobalValue(String globalValue) {
 this.globalValue = globalValue;
 }
}

For the application to use this new Application class, it needs to be
declared in the application manifest through the <application>52 XML tag
with the android:name attribute, as shown in Listing 3-33.

Listing 3-33. Declaring the New Application in the AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.helloworld">

 <application
 android:name=".MyApplication"
 ...
 >

 </application>
</manifest>

This instance can be accessed through the getApplication() method, as
shown in Listing 3-34.

Listing 3-34. Getting the Application Instance

MyApplication myApplication = (MyApplication) getApplication();
myApplication.setGlobalValue("1234");

52http://developer.android.com/guide/topics/manifest/application-element.html.

http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/manifest/application-element.html

CHAPTER 3: Application Components68

Just as the Activity class does, the Application class also provides hooks
to the application life cycle changes. The platform calls the onCreate method
of the Application class when the application is first initialized, and later it
calls the onDestroy method when the application is being terminated. The
application can override these hooks to properly initialize itself and also to
release any resources that it holds while the application is terminating.

Summary
In this section you have learned about the fundamental components that
the Android framework provides, such as activities, services, and content
providers. Knowing how to use these components properly is the key for
developing successful Android applications. In the next chapter, you will be
learning about the UI components that the Android framework provides.

69

Chapter 4
Application Resources

Resources are one of the most important components of an application.
It is always good practice to externalize resources in order to maintain
consistency and to prevent resource duplication, as resources can be
referenced from multiple places within the application. Decoupling the code
and the resources also has other advantages.

	Localization of the Application: The application
can carry an alternative set of resources for various
languages, and it can switch between them based on
the user’s locale during runtime. This makes it possible
to support multiple languages and locales with a single
application binary.

	Device Specific Look and Feel: As the Android
platform is highly fragmented, there is no magic user
interface (UI) configuration that will look and feel the
same on all Android devices. The screen layouts and
also the images mostly need to be customized based
on screen size and screen density. Externalization of
resources enables the application to use the proper
resource set based on the device’s specifications.

The Android framework provides a comprehensive set of application
programming interfaces (APIs) and a structure to organize resources in order
to seamlessly pick the proper resources on behalf of the application based
on the characteristics of the runtime environment.

In the following section, I detail how to structure your resources, and how to
access them from within your application through the APIs.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4: Application Resources70

Structure of Resources
The Android Software Development Kit (SDK) requires the application
resources to be placed in a specific subdirectory of the src/main/res
directory. As shown in Listing 4-1, the example application has an image
resource called icon.png, which is placed in the drawable subdirectory, a
screen layout called main.xml in the layout subdirectory, and some string
resources in the values subdirectory as a strings.xml file.

Listing 4-1. Structure of Application Resources

Hello Android
 |
 `- src
 `- main
 `- res
 |- drawable
 | `- icon.png
 |
 |- layout
 | `- main.xml
 |
 `- values
 `- strings.xml

 The names of the resource subdirectories are important. The Android
framework cannot find the resources if they are not properly placed.

Android Studio does not automatically create all possible resource
subdirectories. You can create the missing ones as you need them at
any time, by right-clicking the res directory and choosing New ➤ Android
Resource Directory from the context menu to launch the New Resource

Directory dialog as shown in Figure 4-1.

Figure 4-1. New resource directory dialog

CHAPTER 4: Application Resources

71

Resource Groups
Android groups the resources under nine main categories based on their
type. Each of these nine resources groups has its individual subdirectories
within the src/res resource directory. Once you compile and build
the application, the Android toolchain autogenerates a Java class file
<application package name>.R (i.e., com.apress.R), to provide access
to these resources from the application code. Table 4-1 lists these nine
resource groups, their corresponding resource subdirectories, and their
groups within the R constants class.

Table 4-1. Resource Groups, Their Subdirectories, Their R Constants, and XML Prefixes

Resource Group Subdirectory Reference in Code Reference in XML

Property Animations animator R.animator @animator/<file>

Tween Animations anim R.anim @anim/<file>

Color State List color R.color @color/<file>

Drawables drawable R.drawable @drawable/<file>

Layouts layout R.layout @layout/<file>

Menu menu R.menu @menu/<file>

Raw raw R.raw

Simple Values values R.arrays

R.bool

R.color

R.dimen

R.integer

R.string

R.style

@bool/<id>

@color/<id>

@dimen/<id>

@integer/<id>

@string/<id>

@style/<id>

XML xml R.xml

CHAPTER 4: Application Resources72

Caution If you are unable to find your resources in the R class, please

make sure that the correct R class is imported in your source file. Android

framework resources are also provided through the android.R class, and

this may have been unintentionally imported by the Android Studio IDE.

Property Animation Resources
The property animation1 resource describes the steps to animate any object
on the screen by changing its properties at certain intervals during a defined
time window. As shown in Listing 4-2, these resources are provided as XML
files. Android expects them to be placed in the src/res/animator directory.

Listing 4-2. src/res/animator/example.xml Property Animation Resource File

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android=
 "http://schemas.android.com/apk/res/android">
 <objectAnimator android:propertyName="x"
 android:duration="1000"
 android:valueFrom="10"
 android:valueTo="100"
 android:valueType="intType" />
</set>

Once they are declared, the animation resources can be accessed through
the R.animator.<resource file name>, as shown in Listing 4-3. The name of
the resource file is used as the resource ID.

Listing 4-3. Using the Animation Resource from the Code

AnimatorSet animatorSet = (AnimatorSet) AnimatorInflater.loadAnimator(
 this, R.animator.example);

1http://developer.android.com/guide/topics/graphics/prop-animation.html.

http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/graphics/prop-animation.html

CHAPTER 4: Application Resources

73

Tween Animation Resources
The tween animation2 resource describes the steps to animate an object on the
screen by applying a series of simple transformations to its content. As shown
in Listing 4-4, the src/res/anim directory also provides these resources as
XML files. The name of the resource file is used as the resource ID.

Listing 4-4. src/res/anim/twin.xml Tween Animation Resource File

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android=
 "http://schemas.android.com/apk/res/android">
 <scale android:fromXScale="1.0"
 android:toXScale="2.0"
 android:duration="1000" />
 <rotate android:fromDegrees="0"
 android:toDegrees="180"
 android:duration="1000" />
</set>

The tween animation resource can later be accessed through the
R.anim.<resource file name>, as shown in Listing 4-5.

Listing 4-5. Using the Tween Animation Resource from the Code

TextView textView = (TextView) findViewById(R.id.hello_world);
Animation animation = AnimationUtils.loadAnimation(
 this, R.anim.tween);
textView.startAnimation(animation);

Color State List Resources
The color state list3 resource describes the colors for different states of a
view. For example, a different set of colors could be applied for each state
of a button. As shown in Listing 4-6, the src/res/color directory provides
these resources as XML files. The name of the resource file is used as the
resource ID.

2http://developer.android.com/guide/topics/graphics/view-animation.
html#tween-animation.
3http://developer.android.com/guide/topics/resources/color-list-resource.html.

http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/graphics/view-animation.html#tween-animation
http://developer.android.com/guide/topics/graphics/view-animation.html#tween-animation
http://developer.android.com/guide/topics/resources/color-list-resource.html

CHAPTER 4: Application Resources74

Listing 4-6. src/res/color/button.xml Color State List Resource File

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:color="#ffff0000"
 android:state_pressed="true" />
 <item android:color="#ff00ff00"
 android:state_focused="true" />
 <item android:color="#ff0000ff" />
</selector>

The color state list resource can then be accessed within the code through
the R.color.<resource file name> as shown in Listing 4-7. In the next
chapter, I will show you how to reference to the color state list resource
directly from the layouts.

Listing 4-7. Using the Color State List Resource from the Code

ColorStateList colorStateList =
 getResources().getColorStateList(R.color.button);

Drawable Resources
The drawable resources are graphics that can be drawn to the screen. You
can reference the drawable resources from the application code using the
Resources.getDrawable method and by providing their unique resource
ID through the R.drawable.<resource name> constants.Android supports
several types of drawables.

Bitmap File

A bitmap file is an image file in PNG, JPEG, or GIF format. You can obtain
a drawable resource from these image files by simply placing them into the
src/res/drawable directory. The name of the image file acts as the unique
resource ID for the drawable resource.

XML Bitmap File

You can apply additional attributes to an existing bitmap file by using an
XML bitmap file. It is an XML file that points to an existing bitmap file and
declares the additional attributes such as anti-aliasing and dithering using
the <bitmap>4 XML tag, as shown in Listing 4-8.

4http://developer.android.com/guide/topics/resources/drawable-resource.
html#bitmap-element.

http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/resources/drawable-resource.html#bitmap-element
http://developer.android.com/guide/topics/resources/drawable-resource.html#bitmap-element

CHAPTER 4: Application Resources

75

Listing 4-8. src/res/drawable/antialias.xml XML Bitmap File Drawable Resource File

<?xml version="1.0" encoding="utf-8"?>
<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/ic_launcher"
 android:antialias="true" />

Nine-Patch File

The nine-patch file is a stretchable bitmap file that Android will automatically
scale to accommodate the size of the view in which the drawable is placed
as the background. Nine-patch files are also expected to be placed in the
src/res/drawable directory. For Android to be able to distinguish between
the ordinary bitmap files and the nine-patch files, the files are expected
to have .9 extension between the file name and the extension, such as
button.9.png.

Nine-patch files do not scale entirely as do the ordinary bitmap files. They
carry additional information about the stretchable areas, as shown in Figure 4-2.

Figure 4-2. Border marks of a nine-patch file

The left and top border lines define which pixels of the 	
bitmap are allowed to stretch.

The right and bottom border lines define the boundary 	
of the area in which the contents are allowed to lie.

In order to make it easier to generate nine-patch files from the existing
bitmap files, the Android SDK comes with a tool called Draw 9 Patch. It
can be found in the <Android SDK>/tools directory as draw9patch.bat or
draw9patch.sh, depending on the operating system.

http://schemas.android.com/apk/res/android

CHAPTER 4: Application Resources76

XML Nine-Patch File

As does the XML bitmap file, the XML nine-patch file simply refers to an
existing nine-patch and provides additional parameters, such as dithering,
using the <nine-patch>5 XML tag as shown in Listing 4-9.

Listing 4-9. XML Nine-Patch File Applying Dithering to the Existing Nine-Patch

<?xml version="1.0" encoding="utf-8"?>
<nine-patch
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:src="@drawable/button"
 android:dither="true" />

Shape Drawable

Shape drawable is a generic shape that is defined in XML format using the
<shape>6 XML tag. The shape drawable supports all basic shapes—such
as rectangle, oval, line, and ring. You can also apply corners, gradients,
and colors to the shape objects through the XML resource file using the
appropriate tags, as shown in Listing 4-10.

Listing 4-10. src/res/drawable/shape.xml Shape Resource File

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:shape="rectangle">

 <corners android:radius="4dp" />

 <gradient
 android:startColor="#FF00"
 android:endColor="#F0F0"
 android:angle="20"/>

 <padding android:left="4dp"
 android:top="4dp"
 android:right="4dp"
 android:bottom="4dp" />
</shape>

5http://developer.android.com/guide/topics/resources/drawable-resource.
html#ninepatch-element.
6http://developer.android.com/guide/topics/resources/drawable-resource.
html#shape-element.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/resources/drawable-resource.html#ninepatch-element
http://developer.android.com/guide/topics/resources/drawable-resource.html#ninepatch-element
http://developer.android.com/guide/topics/resources/drawable-resource.html#shape-element
http://developer.android.com/guide/topics/resources/drawable-resource.html#shape-element

CHAPTER 4: Application Resources

77

You can then reference and apply the shape object as any other ordinary
drawable resource.

State List

The state list drawable is a group of several images that are mapped to
different states of an object. Based on the current state of the object,
Android uses the correct image from the provided list. For example, using
the state list drawable, you can provide different images for each state of
a button. You can define the state list drawable in XML format using the
<selector> XML tag with nested <item> XML tags representing each image,
as shown in Listing 4-11.

Listing 4-11. State List Drawable for Different States of a Button

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/button_pressed "
 android:state_pressed="true" />

 <item android:drawable="@drawable/button_focused "
 android:state_focused="true" />
</selector>

Layout Resources
The layout resource file defines the architecture of the UI. It consists of the
list of view components and attributes defining how they should be placed
on the screen. As shown in Listing 4-8, the src/res/layout directory also
provides these resources as XML files. The name of the layout resource file
is used as the resource ID.

Listing 4-12. src/res/layout/activity_my.xml Layout Resource File

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/hello_world"
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

CHAPTER 4: Application Resources78

 <Button
 android:id="@+id/button"
 android:text="@string/button_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</RelativeLayout>

You can apply the layout resource to an activity as shown in Listing 4-13.

Listing 4-13. Applying the Layout Resource to Current Activity

setContentView(R.layout.activity_my);

Menu Resources
The Menu7 resources define the structure of application menus such as the
options menu, context menu, or submenus. Listing 4-14 defines the menu
resources in XML format.

Listing 4-14. src/res/menu/my.xml Menu Resource File

<menu xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context=".MyActivity" >
 <item android:id="@+id/action_settings"
 android:title="@string/action_settings"
 android:orderInCategory="100"
 android:showAsAction="never" />
</menu>

Listing 4-15 demonstrates how to reference the menu resource through the
R.menu.<resource file name>.

Listing 4-15. Using the Menu Resource in the Code

getMenuInflater().inflate(R.menu.my, menu);

7http://developer.android.com/guide/topics/resources/menu-resource.html.

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://developer.android.com/guide/topics/resources/menu-resource.html

CHAPTER 4: Application Resources

79

Raw Resources
The raw resources are resources that do not belong to any of these resource
groups. Android expects them to be in the src/res/raw directory. The raw
resources do not have to be XML files like the other resource types; they can
be in any format. You can reference them in the code as R.raw.<resource
file name> without the file extension. As shown in Listing 4-16, you can use
the Resources.openRawResource8 method to open a data stream for reading
the raw resource, src/res/raw/attributions.txt, in the code.

Listing 4-16. Using the Raw Resource in the Code

InputStream inputStream =
 getResources().openRawResource(R.raw.attributions);

Value Resources
The value resources are simple values, such as strings, integers, Booleans,
and colors. Android expects the value resource files to be placed in the
src/res/values directory. Values resource files are provided in XML format.
A single value resource file can contain multiple value resources.

As each resource is identified with its own ID, Android gives the developer
the flexibility to organize the value in whatever way makes sense. For
example, you can place all color resources in colors.xml, or you can have
individual resource files per activity for clarity. An example resource file looks
as shown in Listing 4-17.

Listing 4-17. src/res/values/strings.xml Value Resources File

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Hello Android</string>

 <bool name="registered">false</bool>

 <color name="title_background">#ffff0000</color>

 <dimen name="activity_horizontal_margin">16dp</dimen>

 <integer name="count">10</integer>

8http://developer.android.com/reference/android/content/res/Resources.
html#openRawResource(int).

http://developer.android.com/reference/android/content/res/Resources.html%23openRawResource(int).

CHAPTER 4: Application Resources80

 <integer-array name="numbers">
 <item>1</item>
 <item>2</item>
 </integer-array>
</resources>

String Resources

String resources are simple text strings. We define a simple string resource
through the <string>9 XML tag, as shown in Listing 4-18.

Listing 4-18. Defining a String Resource

<string name="app_name">Hello Android</string>

You can then reference the string resource from the application code using
the getString10 method and referencing to it through R.string.<resource
name>, as shown in Listing 4-19.

Listing 4-19. Using the String Resource in the Code

String appName = getString(R.string.app_name);

Note For localization of string resources, please refer to the section

“Default and Alternative Resources,” in this chapter.

String Arrays

You can also define string arrays in the value resources using the
<string-array>11 XML tag, as shown in Listing 4-20.

Listing 4-20. Defining a String Array Resource in the Value Resources File

<string-array name="android_versions">
 <item>KitKat</item>
 <item>Lollipop</item>
</string-array>

9http://developer.android.com/guide/topics/resources/string-resource.
html#String.
10http://developer.android.com/reference/android/content/Context.html#
getString(int).
11http://developer.android.com/guide/topics/resources/string-resource.
html#StringArray.

http://developer.android.com/guide/topics/resources/string-resource.html#String
http://developer.android.com/guide/topics/resources/string-resource.html#String
http://developer.android.com/reference/android/content/Context.html%23%20getString(int)
http://developer.android.com/reference/android/content/Context.html%23%20getString(int)
http://developer.android.com/guide/topics/resources/string-resource.html#StringArray
http://developer.android.com/guide/topics/resources/string-resource.html#StringArray

CHAPTER 4: Application Resources

81

After defining the string array resource in the resource file, you can use it in
the code through the getStringArray12 method by providing its resource ID
as R.array.<resource name>, as shown in Listing 4-21.

Listing 4-21. Using the String Array Resource in the Application Code

String[] androidVersions =
 getResources().getStringArray(R.array.android_versions);

Quantity Strings

Languages have different grammatical rules for plurals. Android provides a
special resource type to define quantity strings in value resources. We define
these resources using the <plurals> XML tag as shown in Listing 4-22.

Listing 4-22. Defining Plural Value Resources

<plurals name="books_found">
 <item quantity="zero">No books found.</item>
 <item quantity="one">One book found.</item>
 <item quantity="few">Few books found.</item>
 <item quantity="many">So many books found.</item>
 <item quantity="other">%d books found.</item>
</plurals>

The <plural> XML tag contains one or more <item> tags for plurals that
require special treatment. The quantity attribute of the <item> tag indicates
the plural case for which the string should be used. Table 4-2 provides a list
of all plural cases that are supported.

Table 4-2. List of Plural Quantities That Can Have Special Treatment

Quantity Description

zero Special treatment for number 0.

one Special treatment for number 1.

two Special treatment for number 2.

few Special treatment for small numbers.

many Special treatment for large numbers.

other For any other given number. (The %d
can be used number substitution).

12http://developer.android.com/reference/android/content/res/Resources.
html#getStringArray(int).

http://developer.android.com/reference/android/content/res/Resources.html%23getStringArray(int)
http://developer.android.com/reference/android/content/res/Resources.html%23getStringArray(int)

CHAPTER 4: Application Resources82

You can obtain the plural string resources through the getQuantityString
method by providing their unique resource ID through the
R.plurals.<resource name> as shown in Listing 4-23.

Listing 4-23. Using the Plural String Resources from the Application Code

String zeroBooksFound = getResources().getQuantityString(
 R.plurals.books_found, 0, 0);

String eightBooksFound = getResources().getQuantityString(
 R.plurals.books_found, 8, 8);

Note You need to pass the quantity twice if your plural strings include

string formatting with a number, such as %d books found. The first

parameter is used to select the proper string, and the second parameter is

passed to the string formatter for %d substitution.

Boolean Resources

You can define Boolean value resources using the <bool>13 XML tag as
shown in Listing 4-24.

Listing 4-24. Defining a Boolean Value Resource

<bool name="registered">false</bool>

The Booleans can then be referenced from the application code using the
Resources.getBoolean14 method and by providing the unique resource ID
through R.bool.<resource name> constant as shown in Listing 4-25.

Listing 4-25. Using the Boolean Value Resource from the Application Code

boolean registered = getResources().getBoolean(
 R.bool.registered);

13http://developer.android.com/guide/topics/resources/more-resources.
html#Bool.
14http://developer.android.com/reference/android/content/res/
Resources.html#getBoolean(int).

http://developer.android.com/guide/topics/resources/more-resources.html#Bool
http://developer.android.com/guide/topics/resources/more-resources.html#Bool
http://developer.android.com/reference/android/content/res/Resources.html%23getBoolean(int)
http://developer.android.com/reference/android/content/res/Resources.html%23getBoolean(int)

CHAPTER 4: Application Resources

83

Color Resources

You can define the color value resources using the <color>15 XML tag as
shown in Listing 4-26.

Listing 4-26. Defining a Color Value Resource

<color name="title_background">#ffff0000</color>

The color values are specified using the RGB color model16 where the red,
green, and blue (RGB) lights are added together to produce the color. In
addition to the color components, you can also provide an Alpha value to
specify the transparency. The RGB color components can be specified
using any of the following formats as shown in Table 4-3 where the values
are in hex.

15http://developer.android.com/guide/topics/resources/more-resources.html#Color.
16http://en.wikipedia.org/wiki/RGB_color_model.

Table 4-3. Formats That Can Be Used to Specify the Color Resource

Format Description Example

#RGB Red-Green-Blue with single hex digit
precision (0 to F).

#F00 (red)

#ARGB Alpha-Red-Green-Blue with single hex
digit precision (0 to F).

#60F0
(green with transparency)

#RRGGBB Red-Green-Blue with double hex digit
precision (0 to FF).

#FF0000 (red)

#AARRGGBB Alpha-Red-Green-Blue with double hex
digit precision (0 to FF).

#6200FF00
(green with transparency)

You can reference the color resources in the application code using the
Resources.getColor method and by providing the unique resource ID
through the R.color.<resource name> constant as shown in Listing 4-27.

Listing 4-27. Using the Color Resource in the Application Code

int backgroundColor = getResources().getColor(
 R.color.title_background);

http://developer.android.com/guide/topics/resources/more-resources.html#Color
http://en.wikipedia.org/wiki/RGB_color_model

CHAPTER 4: Application Resources84

Dimension Resources

You can also specify the dimensions of UI components as part of the value
resources using the <dimension>17 XML tag as shown in Listing 4-28.

Listing 4-28. Defining the Dimension Resource

<dimen name="activity_horizontal_margin">16dp</dimen>

We specify the dimension value with a quantity followed by a unit of
measure such as pixels, inches, and so on. Android supports the following
units of measurement when defining dimension resources:

	dp: Density independent pixels are relative to
160 dpi screens on which 1dp is roughly equal to 1px.
Depending on the screen density of the device, these
numbers get scaled accordingly.

	sp: Scale independent pixels are the same as density
independent pixels, but they also get scaled based on
the user’s font size preference. I recommend using this
measurement unit when specifying the dimensions of
text components.

	pt: Points are 1/72 of an inch based on the screen size.

	px: Pixels corresponds to the actual pixels on the screen.

	mm: Millimeters based on the physical size of the screen.

	in: Inches based on the physical size of the screen.

You can use the dimension resources in the application code with the
Resources.getDimension18 method and by providing the unique resource ID
through the R.dimen.<resource name> constants as shown in Listing 4-29.

Listing 4-29. Using the Dimension Resource in the Application Code

float activityHorizontalMargin = getResources().getDimension(
 R.dimen.activity_horizontal_margin);

17http://developer.android.com/guide/topics/resources/more-resources.
html#Dimension.
18http://developer.android.com/reference/android/content/res/Resources.
html#getDimension(int).

http://developer.android.com/guide/topics/resources/more-resources.html#Dimension
http://developer.android.com/guide/topics/resources/more-resources.html#Dimension
http://developer.android.com/reference/android/content/res/Resourceshtml%23getDimension(int)
http://developer.android.com/reference/android/content/res/Resourceshtml%23getDimension(int)

CHAPTER 4: Application Resources

85

The returned value, activityHorizontalMargin, is the resource dimension
value multiplied with the appropriate metric. If you prefer the value in pixels,
you can use the Resources.getDimensionPixelSize19 method instead.

Integer Resources

You can also define simple integer numbers in the value resources using the
<integer>20 XML tag as shown in Listing 4-30.

Listing 4-30. Defining an Integer Value Resource

<integer name="count">10</integer>

We reference the integer resources in the application code using the
Resources.getInteger21 method and providing their unique resource ID
through the R.integer.<resource name> constant as shown in Listing 4-31.

Listing 4-31. Using the Integer Resource in the Application Code

int count = getResources().getInteger(R.integer.count);

Integer Arrays

Just like the string arrays, integer arrays are also supported as value
resources. You can define integer arrays in the value resource file using the
<integer-array>22 XML element as shown in Listing 4-32.

Listing 4-32. Defining an Integer Array Resource

<integer-array name="numbers">
 <item>1</item>
 <item>2</item>
</integer-array>

19http://developer.android.com/reference/android/content/res/Resources.
html#getDimensionPixelSize(int).
20http://developer.android.com/guide/topics/resources/more-resources.
html#Integer.
21http://developer.android.com/reference/android/content/res/Resources.
html#getInteger(int).
22http://developer.android.com/guide/topics/resources/more-resources.
html#IntegerArray.

http://developer.android.com/reference/android/content/res/Resources.html%23getDimensionPixelSize(int)
http://developer.android.com/reference/android/content/res/Resources.html%23getDimensionPixelSize(int)
http://developer.android.com/guide/topics/resources/more-resources.html#Integer
http://developer.android.com/guide/topics/resources/more-resources.html#Integer
http://developer.android.com/reference/android/content/res/Resources.html%23getInteger(int)
http://developer.android.com/reference/android/content/res/Resources.html%23getInteger(int)
http://developer.android.com/guide/topics/resources/more-resources.html#IntegerArray
http://developer.android.com/guide/topics/resources/more-resources.html#IntegerArray

CHAPTER 4: Application Resources86

You can reference the integer array resource in the application code by using
the Resources.getIntArray23 method and by providing the unique resource
ID using the R.array.<resource name> constant as shown in Listing 4-33.

Listing 4-33. Using the Integer Array Resource in the Application Code

int[] numbers = getResources().getIntArray(R.array.numbers);

Typed Array Resources

The array support in resources is not limited by the string and integer
arrays only. You can also define arrays of other resources (e.g., an array of
drawables) as a typed array resource using the <array>24 XML tag, as shown
in Listing 4-34.

Listing 4-34. Defining a Typed Array Resource

<array name="colors">
 <item>#FFF</item>
 <item>#000</item>
</array>

Note The typed arrays do not have to be homegeneous; Android also

supports arrays of mixed resource types.

23http://developer.android.com/reference/android/content/res/Resources.
html#getIntArray(int).
24http://developer.android.com/guide/topics/resources/more-resources.
html#TypedArray.
25http://developer.android.com/reference/android/content/res/Resources.
html#obtainTypedArray(int).
26http://developer.android.com/reference/android/content/res/TypedArray.html.

You can reference the types of array resources in the application code using
the Resources.obtainTypedArray25 method and by providing the unique
resource ID through R.array.<resource name> constant. You can then obtain
the elements of the array through the appropriate method of content.res.
TypeArray26 class for the underlying resource type, as shown in Listing 4-35.

http://developer.android.com/reference/android/content/res/Resources.html%23getIntArray(int)
http://developer.android.com/reference/android/content/res/Resources.html%23getIntArray(int)
http://developer.android.com/guide/topics/resources/more-resources.html#TypedArray
http://developer.android.com/guide/topics/resources/more-resources.html#TypedArray
http://developer.android.com/reference/android/content/res/Resources.html%23obtainTypedArray(int)
http://developer.android.com/reference/android/content/res/Resources.html%23obtainTypedArray(int)
http://developer.android.com/reference/android/content/res/TypedArray.html

CHAPTER 4: Application Resources

87

Listing 4-35. Using the Typed Array Resource from the Application Code

TypedArray colors = getResources().obtainTypedArray(
 R.array.colors);

int background = colors.getColor(0, Color.BLACK);
int foreground = colors.getColor(1, Color.WHITE);

XML Resources
The XML resources are arbitrary XML formatted resource files. Compared
to the raw resources, the Android toolchain does some pre-parsing of the
XML resources at build time. This makes the XML resources much quicker
to use during the runtime. Android expects them to be in the src/res/xml
directory. You can access the XML resources by calling the Resources.
getXml27 method and providing a reference to the resource through the
R.xml.<resource file name> as shown in Listing 4-36.

Listing 4-36. Reading the XML Resource Using the XML Pull Parser

XmlResourceParser xmlResourceParser =
 getResources().getXml(R.xml.configuration);

try {
 for (int eventType = xmlResourceParser.getEventType();
 eventType != XmlPullParser.END_DOCUMENT;
 eventType = xmlResourceParser.next()) {

 switch (eventType) {
 case XmlPullParser.START_TAG:
 String tagName = xmlResourceParser.getName();
 break;

 case XmlPullParser.TEXT:
 String text = xmlResourceParser.getText();
 break;

 case XmlPullParser.END_TAG:
 String tagName = xmlResourceParser.getName();
 break;
 }
 }
} catch (XmlPullParserException e) {

27http://developer.android.com/reference/android/content/res/Resources.
html#getXml(int).

http://developer.android.com/reference/android/content/res/Resources.html%23getXml(int)
http://developer.android.com/reference/android/content/res/Resources.html%23getXml(int)

CHAPTER 4: Application Resources88

 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
}

The getXml method returns a content.res.XmlResourceParser28 instance
that can be used to parse the XML resource using an XML pull parser.

Default and Alternative Resources
Besides the default set of resources, Android applications can also contain
alternative resources for different device configurations, such as alternative
string resources to address different languages and alternative drawable
resources to cover different screen densities. At runtime, Android picks the
right set of resources based on the current device configuration.

Defining Alternative Resources
We place alternative resources in a separate resource directory which is
named as <resource directory>-<configuration qualifier>, such as
values-tr for value resources in the Turkish language.

Caution The alternative resource files should have the same name as

the default resource files, as the names are used as the unique resource

ID when referring to them in the application code.

Supported Configuration Qualifiers
You can also specify more than one configuration qualifier by simply adding
them to the directory name separated by a dash, such as values-tr-car for
value resources in the Turkish language when the device is displaying on a
car dock. When you use multiple configuration qualifiers, they must be in the
order in which they are listed in Table 4-4.

28http://developer.android.com/reference/android/content/res/XmlResource
Parser.html.

http://developer.android.com/reference/android/content/res/XmlResourceParser.html
http://developer.android.com/reference/android/content/res/XmlResourceParser.html

CHAPTER 4: Application Resources

89

Table 4-4. Supported Configuration Qualifier Names

Configuration Description Example

MCC/MNC Mobile Country Code (MCC)29 and
Mobile Network Operator (MNC).

mcc310

mcc310-mnc004

Language and Region Language is defined either by
two-letter ISO 639-130 language
code or by ISO 3166-1-alpha-231
region code.

en

tr-rTR

Layout Direction Left-to-right (default) or right-to-left
(i.e., Arabic language).

ldltr (left to right)
ldrtl (right to left)

Smallest Width Shortest dimension of available
screen size. This won’t change
based on device’s orientation.

sw480dp (handset)
sw600dp (tablet)

Available Width Available screen width in dp unit.
This can change when the device
orientation changes.

w720dp

Available Height Available screen height in dp unit.
This can change when the device
orientation changes.

h720dp

Screen Size Screen size similar to a low-density
QVGA screen with minimum size of
320x426 dp is represented as small.

Screen size similar to a medium-
density HVGA screen with minimum
size of 320x470 dp is represented as
medium.

Screen size similar to a medium-
density VGA screen with minimum
size of 480x640 dp is represented as
large.

Screen size similar to a medium-
density HVGA with minimum size
of 720x960 dp is represented as
xlarge.

small

normal

large

xlarge

(continued)

29http://en.wikipedia.org/wiki/Mobile_country_code.
30http://www.loc.gov/standards/iso639-2/php/code_list.php.
31http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-
lists/list-en1.html.

http://en.wikipedia.org/wiki/Mobile_country_code
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

CHAPTER 4: Application Resources90

Configuration Description Example

Screen Aspect Based on the aspect ratio, a wide
screen is represented as long, such
as WQVGA, WVGA, and FWVGA. And
as notlong such as QVGA, HVGA,
and VGA.

long

notlong

Screen Orientation The orientation of the screen, port
for portrait, and land for landscape.
This can change when the device
orientation changes.

port

land

UI Mode Device is in a car dock. Device is in
a desk dock. Device is displaying on
a television. Device is serving as an
appliance. Device is worn as a watch.

car

desk

television

watch

Night Mode Night time is night, and day time is
notnight.

night

notnight

Screen Density Low density is ldpi ~ 120 dpi

Medium density is mdpi ~ 160 dpi

High density is hdpi ~ 240 dpi

Extra high density is xhdpi ~ 320 dpi

Extra-extra high density is xxhdpi ~ 480
dpi

Extra-extra-extra high density is
xxxhdpi ~ 640 dpi

The nodpi is used for resources that
should not scale.

Televisions are tvdpi ~ 213 dpi

ldpi

mdpi

hdpi

xhdpi

xxhdpi

xxxhdpi

nodpi

tvdpi

Touchscreen Device with no touchscreen is
represented as notouch; with
touchscreen represented as finger.

notouch

finger

Keyboard Keyboard is exposed is represented
as keysexposed.

The device has a hidden hardware
keyboard and the software
keyboard is disabled represented as
keyshidden.

Device with software keyboard
available is represented as keyssoft.

keysexposed

keyshidden

keyssoft

Table 4-4. (continued)

(continued)

CHAPTER 4: Application Resources

91

Note To use a resource in more than one configuration, you can create

an alias resource for the XML counterpart, such as XML bitmap for image

resources.

Handling Runtime Changes
The Android framework restarts the activities when it detects a change
in device configuration, such as a device orientation change or the user
changing the device’s language. When the Android framework restarts the
activity, the proper resources based on the new device configuration load
seamlessly.

If the application prefers to handle the configuration change without the
activity being restarted, it should declare the list of configuration changes
that are handled by the application in the application manifest, as shown in
Listing 4-37.

Configuration Description Example

Primary Input Device with no keys for input is
represented as nokeys.

Device with hardware qwerty
keyboard is represented as qwerty.

Device with a hardware 12-key
keyboard is 12key.

nokeys

qwerty

12key

Navigation Key Navigation keys available is
represented as navexposed;
otherwise navhidden.

navexposed

navhidden

Primary Non-Touch
Navigation Method

Device with no navigation other than
touchscreen is represented as nonav.

Device with a directional pad is
represented as dpad.

Device with a trackball is represented
as trackball.

Device with directional wheel(s) is
represented as wheel.

nonav

dpad

trackball

wheel

Platform Version The API level supported by the
device.

v3

v4

Table 4-4. (continued)

CHAPTER 4: Application Resources92

Listing 4-37. Configuration Changes That Are Handled by the Application

<activity
 android:name=".MyActivity"
 android:label="@string/app_name"
 android:configChanges="orientation">

Once the Android framework detects the device configuration change, instead
of restarting the activity, it simply calls the Activity.onConfigurationChanged32
method of the activity. The application is expected to override this method to
handle the device configuration change.

Assets
Another way of bundling artifacts with the applications is the assets.
Android expects the assets to be present in the src/main/assets directory.
Compared to the resources, the assets do not get processed by the Android
toolchain and they maintain their original final names and their directory
structure. There are no unique resource IDs for the artifacts in the assets
directory, as they can be accessed through their original file names. The
application can use the content of the assets directory through the methods
of the content.res.AssetManager33 class. You can obtain an instance of
AssetManager through the getAssets34 method of the current context, as
shown in Listing 4-38.

Listing 4-38. Using the Artifacts in the Assets Directory in the Application Code

try {
 InputStream inputStream = getAssets().open("file.dat");
 try {

 } finally {
 inputStream.close();
 }
} catch (IOException e) {
 e.printStackTrace();
}

32http://developer.android.com/reference/android/app/Activity.html#on
ConfigurationChanged(android.content.res.Configuration).
33http://developer.android.com/reference/android/content/res/Asset
Manager.html.
34http://developer.android.com/reference/android/content/Context.html
#getAssets().

http://developer.android.com/reference/android/app/Activity.html%23onConfigurationChanged(android.content.res.Configuration)
http://developer.android.com/reference/android/app/Activity.html%23onConfigurationChanged(android.content.res.Configuration)
http://developer.android.com/reference/android/content/res/AssetManager.html
http://developer.android.com/reference/android/content/res/AssetManager.html
http://developer.android.com/reference/android/content/Context.html%23getAssets()
http://developer.android.com/reference/android/content/Context.html%23getAssets()

CHAPTER 4: Application Resources

93

Using Assets in Web View
Assets become very handy when bundling web pages with the application,
such as HTML, CSS, JS, and image files. You can place these files into the
assets directory keeping their original names and structure. The Android
android.webkit.WebView35 instance can then easily load them through a
specific file URL (uniform resource locator), file:///android_asset/<file
name>, as shown in Listing 4-39.

Listing 4-39. Web View Loading the Web Page from the Assets Directory

WebView webView = (WebView) findViewById(R.id.web_view);
webView.loadUrl("file:///android_assets/index.html");

APK Expansion Files
The Google Play application store currently requires the application
packages not to exceed 50MB. Although this is lots of space for most
applications, some applications, such as games, may require code and
assets. In order to overcome this issue, Google Play allows attaching up to
two APK expansion files,36 each up to 2GB, to the application package. We
refer to the first one as the main expansion file, and the latter as the patch
expansion file. As indicated by its name, the second one is assumed to be
updating the main expansion file.

Note Although the second expansion file is for patching the main

expansion file, if 2GB is not enough to bundle all required resources for

the application, you can use the second expansion file as the additional

resource file, which will make it possible to have 4GB of extra resources

accompanying the application package.

35http://developer.android.com/reference/android/webkit/WebView.html.
36http://developer.android.com/google/play/expansion-files.html.

http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/google/play/expansion-files.html

CHAPTER 4: Application Resources94

These expansion files automatically download when you install the application
on the device, and they are placed into the external storage under the
<external storage>/Android/obb/<application package> directory. Google
Play does not require any specific format for the expansion files.

Summary
In this section I described how to attach various resources to your Android
application. Through the list of configuration qualifiers provided in this
chapter, you can obtain an alternative set of resources within the same
application to cover more device configurations. Android provides a
comprehensive resource management framework that can automatically find
the best resource for a device configuration and also update it in real time
when it detects a device configuration change. In the next chapters, you will
learn how to use the attached resources with the UI components.

95

Chapter 5
Layouts and Views

The Android platform provides a comprehensive UI framework for mobile
applications to provide easy-to-use and consistent user interfaces. This
chapter covers the supported static and dynamic layouts, user interface
components for both input and output, and the Fragment API (application
programming interface) to develop modular and reusable user interface parts.

Layouts
On the Android platform, the visual structure of the application’s user interface
is defined through the layouts. Each layout type is a subclass of the ViewGroup
class. The layout can contain individual View and also other ViewGroup
elements. As a ViewGroup flavor, the layout is responsible for providing the
necessary logic to position and draw its elements on the screen.

Declaring Layouts
The Android framework supports two approaches to declare the layout and
its elements.

	Using the XML resources: The layout and its elements
can be defined in XML-formatted resource files using
a straightforward XML vocabulary. This enables the
application to separate the presentation and the business
logic. As Android supports different screen sizes and
densities, the application can simply provide different
XML layout resources per each target display size.

CHAPTER 5: Layouts and Views96

Tip The Android Studio IDE (integrated development environment)

provides the necessary tools to visually manipulate the layout files during

development.

	Programmatically using the API: The Android
framework provides the necessary user interface
classes and methods to declare and manipulate the
layout and its elements programmatically from within
the application.

In order to make it easier to use, the XML vocabulary for declaring the layout
and its elements closely follows the naming and structure of the actual API.

Although there are two supported approaches, we recommend that you use
the XML layout resource files to define the Android user interfaces, unless
they are not applicable due to the unique requirements of the application.

Layout Requirements
For layouts to function properly, they need to know the size of all of their
child elements, including the nested View and ViewGroup elements. For that
reason, the following two attributes are required to be set by all View and
ViewGroup elements:

	android:layout_width: The width of the element.

	android:layout_height: The height of the element.

Both of those width and height attributes can either take a numeric size
value or simply a constant based on the expected size behavior. The
supported constant values are:

	matchParent: View wants to be as big as its parent.

	wrapContent: View wants to be just big enough to
enclose its content.

Common Layouts
The Android framework provides a set of common layouts to address most
frequent use cases. Through these common layouts, you can define all kinds
of static user interfaces.

CHAPTER 5: Layouts and Views

97

Linear Layout

The LinearLayout1 organizes its elements in a linear fashion either as a
horizontal or a vertical row, as shown in Figure 5-1.

Figure 5-1. LinearLayout with elements organized in horizontal and vertical rows

1http://developer.android.com/reference/android/widget/LinearLayout.html.
2http://developer.android.com/reference/android/widget/LinearLayout
.html#attr_android:orientation.

Linear Layout Orientation

The android:orientation2 attribute of the LinearLayout XML element
specifies the orientation of the LinearLayout, as shown in Listing 5-1.

Listing 5-1. LinearLayout with Orientation Set to Vertical

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 ...

</LinearLayout>

http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html%23attr_android:orientation
http://developer.android.com/reference/android/widget/LinearLayout.html%23attr_android:orientation
http://schemas.android.com/apk/res/android

CHAPTER 5: Layouts and Views98

The android:orientation attribute can take the following values:

	horizontal: Organized as a horizontal row.

	vertical: Organized as a vertical row.

If the android:orientation attribute is not provided, the default orientation
for the LinearLayout is horizontal.

Linear Layout Weight

The LinearLayout, based on the available screen real estate and its
orientation, adjusts the size of its child elements to fill the available space.
This enables the user interface to adapt to various screen sizes automatically.

By default, the space distribution is done equally for each child element;
however, as shown in Listing 5-2, through the android:layout_weight3
attribute different weights can be assigned to each child element.

Listing 5-2. LinearLayout with the First Element Taking a Larger Weight

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">

 <Button
 android:id="@+id/button_1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/button_1"/>

 <Button
 android:id="@+id/button_2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_2"/>

</LinearLayout>

3http://developer.android.com/reference/android/widget/LinearLayout.
LayoutParams.html#attr_android:layout_weight.

http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/widget/LinearLayout.%20LayoutParams.html%23attr_android:layout_weight
http://developer.android.com/reference/android/widget/LinearLayout.%20LayoutParams.html%23attr_android:layout_weight

CHAPTER 5: Layouts and Views

99

As shown in Figure 5-2, a larger weight allows the child element to
expand and fill a larger space on the screen than other child elements
with a lower weight.

Figure 5-2. LinearLayout with a first child element taking a larger screen space

If the android:layout_weight attribute is not specified, the default
weight is zero.

Linear Layout Gravity

By default, the LinearLayout positions its elements aligned with the top
edge. The android:layout_gravity4 attribute can be used to change this
default behavior. The android:layout_gravity attribute can take one or more
values to specify how the View element should be positioned on the screen.

Supported Values in Horizontal Orientation

The following values are supported in horizontal orientation mode:

top: Position the View at the top of its container.

center_vertical: Position the View in the vertical center of
its container.

bottom: Position the View to the bottom of its container.

Supported Values in Vertical Orientation

The following values are supported in vertical orientation mode:

left: Position the View to the left of its container.

center_horizontal: Position the View in the horizontal
center of its container.

right: Position the View to the right of its container.

4http://developer.android.com/reference/android/widget/LinearLayout
.LayoutParams.html#attr_android:layout_gravity.

http://developer.android.com/reference/android/widget/LinearLayout.%20LayoutParams.html%23attr_android:layout_gravity
http://developer.android.com/reference/android/widget/LinearLayout.%20LayoutParams.html%23attr_android:layout_gravity

CHAPTER 5: Layouts and Views100

Relative Layout

Almost all kinds of user interfaces can be designed by simply nesting
multiple LinearLayouts; however, this will also result in a very complex
layout file that is hard to maintain and manipulate. The Android framework
provides the RelativeLayout5 to design complex user interfaces, as shown
in Figure 5-3, without any nesting of layouts.

Figure 5-3. RelativeLayout with child elements positioned relative to each other

The RelativeLayout organizes its elements relative to each other. The
position of each child element can be specified as relative to its siblings or
its parent. Each child element of a RelativeLayout takes one or more layout-
specific attributes to provide hints about how they should be positioned on
the screen, as shown in Listing 5-3.

Listing 5-3. RelativeLayout with Child Elements Providing Hints for Their Position

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="20dp">

 <EditText
 android:id="@+id/edit_username"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentEnd="true"
 android:layout_toEndOf="@+id/label_username" />

5http://developer.android.com/reference/android/widget/RelativeLayout.html.

http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/widget/RelativeLayout.html

CHAPTER 5: Layouts and Views

101

 <TextView
 android:id="@+id/label_username"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@id/edit_username"
 android:text="Username:" />

 <Button
 android:id="@+id/button_login"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/edit_username"
 android:layout_alignLeft="@id/edit_username"
 android:text="Login" />

 <CheckBox
 android:id="@+id/checkbox_remember_username"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/edit_username"
 android:layout_alignParentRight="true"
 android:layout_alignBottom="@id/button_login"
 android:text="Remember username?" />

k</RelativeLayout>

Positioning Relative to an Anchor View

The following RelativeLayout attributes position the View relative to a
specified anchor View:6

	android:layout_above: Position the bottom edge above
the specified anchor.

	android:layout_alignBaseline: Position the baseline
on the baseline of the specified anchor view.

	android:layout_alignBottom: Position the bottom edge
to match that of the specified anchor view.

	android:layout_alignEnd: Position the end edge to
match that of the specified anchor view.

	android:layout_alignLeft: Position the left edge to
match that of the specified anchor view.

	android:layout_alignRight: Position the right edge to
match that of the specified anchor view.

6http://developer.android.com/reference/android/widget/RelativeLayout
.LayoutParams.html.

http://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html
http://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html

CHAPTER 5: Layouts and Views102

	android:layout_alignStart: Position the start edge to
match that of the specified anchor view.

	android:layout_alignTop: Position the top edge to
match that of the specified anchor view.

	android:layout_below: Position the top edge below that
of the specified anchor view.

	android:layout_toEndOf: Position the start edge to
match the end edge of the specified anchor view.

	android:layout_toLeftOf: Position the right edge to
match the left edge of the specified anchor view.

	android:layout_toRightOf: Position the left edge to
match the right edge of the specified anchor view.

	android:layout_toStartOf: Position the end edge to
match the start edge of the specified anchor view.

Positioning Relative to Parent View

The following RelativeLayout attributes position the View relative to its
parent View:

	android:layout_alignParentBottom: Position the
bottom edge to match that of the parent view.

	android:layout_alignParentEnd: Position the end edge
to match that of the parent view.

	android:layout_alignParentLeft: Position the left edge
to match that of the parent view.

	android:layout_alignParentRight: Position the right
edge to match that of the parent view.

	android:layout_alignParentStart: Position the start
edge to match that of the parent view.

	android:layout_alignParentTop: Position the top edge
to match that of the parent view.

	android:layout_centerHorizontal: If true, centers this
view horizontally within its parent.

	android:layout_centerInParent: If true, centers this
view both horizontally and vertically within its parent.

	android:layout_centerVertical: If true, centers this
view vertically within its parent.

CHAPTER 5: Layouts and Views

103

Tip In case the anchor view is not visible, the android:layout_

alignWithParentIfMissing attribute can be set to true so that the

parent will be used as the anchor when the specified anchor view cannot

be found.

Dynamic Layouts
The common layouts that are provided by the Android framework are
more suitable for static user interfaces, where the elements of the user
interface are predetermined. When the content of a user interface is not
predetermined, the Android framework provides the AdapterView7 layout
to support the development of dynamic user interfaces. The AdapterView
layout populates the user interface at runtime by relying on a provided
Adapter8 instance as its gateway to dynamic content.

Adapter

The Adapter behaves as a bridge between the data source and the
AdapterView layout. It retrieves the data and converts each entity into a
View that can be added into the AdapterView layout. The Android framework
provides several subclasses of Adapter to facilitate the retrieval of data from
most common data sources, such as arrays and databases.

Array Adapter

The ArrayAdapter9 is a subclass of the Adapter class. As shown in
Listing 5-4, it takes the current context, an array instance holding the data,
and a layout resource to create View instances for each data element.

Listing 5-4. ArrayAdapter Instance Based on a Given String Array

ArrayAdapter<String> arrayAdapter = new ArrayAdapter<String>(
 this,
 android.R.layout.simple_list_item_1,
 new String[] {
 "Item 1",
 "Item 2",

7http://developer.android.com/reference/android/widget/AdapterView.html.
8http://developer.android.com/reference/android/widget/Adapter.html.
9http://developer.android.com/reference/android/widget/ArrayAdapter.html.

http://developer.android.com/reference/android/widget/AdapterView.html
http://developer.android.com/reference/android/widget/Adapter.html
http://developer.android.com/reference/android/widget/ArrayAdapter.html

CHAPTER 5: Layouts and Views104

 "Item 3",
 "Item 4"
 }
);

Note The android.R.layout.simple_list_item_1 refers to the

simple list item layout resource that the Android framework itself provides.

Other layout resources that the Android framework provides can be found

in the android.R.layout10 class.

The provided layout resource must contain a TextView that will be populated
by the ArrayAdapter, as shown in Listing 5-5. The toString method of
each array element will be called to translate the object into text in order to
populate the TextView.

Listing 5-5. Layout Resource Formed by a Single TextView to Display Each Item

<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center_vertical"
 android:paddingLeft="6dip" />

Note The ArrayAdapter assumes that the given layout resource for a

single data item is only a TextView. If the layout resource is a composite

of multiple other View elements, then the View ID of the TextView can

be supplied to ArrayAdapter through its constructor.11

10http://developer.android.com/reference/android/R.layout.html.
11http://developer.android.com/reference/android/widget/ArrayAdapter
.html#ArrayAdapter(android.content.Context, int, int, T[]).

http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/R.layout.html
http://developer.android.com/reference/android/widget/ArrayAdapter%0a.html%23ArrayAdapter(android.content.Context%2c%20int%2c%20int%2c%20T%5b%5d)
http://developer.android.com/reference/android/widget/ArrayAdapter%0a.html%23ArrayAdapter(android.content.Context%2c%20int%2c%20int%2c%20T%5b%5d)

CHAPTER 5: Layouts and Views

105

Simple Cursor Adapter

The ArrayAdapter assumes that the data is entirely loaded into memory at
the time the Adapter instance is initiated. In most cases, the data exists on
a database, and loading the entire data set into memory is not a preferred
approach. The Android framework provides the SimpleCursorAdapter12 to
allow applications to populate AdapterView layouts with data coming from a
database.

As shown in Listing 5-6, the SimpleCursorAdapter takes a layout resource
for the data items, a Cursor instance to pull the data from, and two arrays to
map between the data columns and the corresponding View elements in the
given layout resource.

Listing 5-6. SimpleCursorAdapter Retrieving Data from a Given Cursor Instance

SimpleCursorAdapter cursorAdapter = new SimpleCursorAdapter(
 this,
 R.layout.list_item,
 cursor,
 new String[] {
 "name",
 "email"
 },
 new int[] {
 R.id.name,
 R.id.email
 }
);

Note Chapter 7 discusses the Cursor class and usage of databases in

Android applications.

Custom Adapter

The ArrayAdapter and the SimpleCursorAdapter are not the only Adapter
types available. If neither one of them is suitable for the unique requirements
of the application, a custom Adapter can be subclassed from the
BaseAdapter.13 As the BaseAdapter is an abstract class, the subclass is
expected to provide implementations of certain Adapter methods.

12http://developer.android.com/reference/android/widget/SimpleCursor
Adapter.html.
13http://developer.android.com/reference/android/widget/BaseAdapter.html.

http://developer.android.com/reference/android/widget/SimpleCursor%20Adapter.html
http://developer.android.com/reference/android/widget/SimpleCursor%20Adapter.html
http://developer.android.com/reference/android/widget/BaseAdapter.html

CHAPTER 5: Layouts and Views106

The getCount Method

The getCount14 method is expected to return the number of items in the data
set, as shown in Listing 5-7.

Listing 5-7. Overriding the getCount Method of the Adapter Class

@Override
public int getCount() {
 // Return the number of items in the data set
 return 4;
}

The getItem Method

The getItem15 method is expected to return the item object at the given
position, as shown in Listing 5-8.

Listing 5-8. Overriding the getItem Method of the Adapter Class

@Override
public Object getItem(int position) {
 // Return the object at given position
 return "Item " + position;
}

The getItemId Method

The getItemId16 method is expected to return the row ID for a given
position. If there is no separate ID to return, the application can simply
return the given position as the ID, as shown in Listing 5-9.

Listing 5-9. Overriding the getItemId Method of the Adapter Class

@Override
public long getItemId(int position) {
 // Return the ID of the object at given position
 return position;
}

14http://developer.android.com/reference/android/widget/Adapter.html#
getCount().
15http://developer.android.com/reference/android/widget/Adapter.html#
getItem(int).
16http://developer.android.com/reference/android/widget/Adapter.html#
getItemId(int).

http://developer.android.com/reference/android/widget/Adapter.html%23%20getCount()
http://developer.android.com/reference/android/widget/Adapter.html%23%20getCount()
http://developer.android.com/reference/android/widget/Adapter.html%23%20getItem(int)
http://developer.android.com/reference/android/widget/Adapter.html%23%20getItem(int)
http://developer.android.com/reference/android/widget/Adapter.html%23%20getItemId(int)
http://developer.android.com/reference/android/widget/Adapter.html%23%20getItemId(int)

CHAPTER 5: Layouts and Views

107

The getView Method

The getView17 method is expected to return a fully populated View object
that can be added to the AdapterView layout to display the data item. The
application can either create a new View programmatically or simply inflate a
layout resource. The getView method, as its second parameter, receives an
old View instance to reuse, if possible, as shown in Listing 5-10.

Listing 5-10. Overriding the getView Method of the Adapter Class

@Override
public View getView(int position,
 View convertView,
 ViewGroup parent) {
 // Return a fully populated View instance

 TextView textView;

 if (convertView == null) {
 // Inflate the view resource
 LayoutInflater layoutInflater =
 (LayoutInflater) context.getSystemService(
 Context.LAYOUT_INFLATER_SERVICE);

 textView = (TextView) layoutInflater.inflate(
 android.R.layout.simple_list_item_1,
 parent, false);
 } else {
 // Reuse the existing view
 textView = (TextView) convertView;
 }

 Object item = getItem(position);

 textView.setText(item.toString());

 return textView;
}

The application should check the type of old View to make sure that it is not
null and also that it is in appropriate type to display the data item. As its
last parameter, the getView method takes the parent View instance that the
View will eventually be attached to.

17http://developer.android.com/reference/android/widget/Adapter.html#
getView(int, android.view.View, android.view.ViewGroup).

http://developer.android.com/reference/android/widget/Adapter.html%23%20getView(int%2c%20android.view.View%2c%20android.view.ViewGroup)
http://developer.android.com/reference/android/widget/Adapter.html%23%20getView(int%2c%20android.view.View%2c%20android.view.ViewGroup)

CHAPTER 5: Layouts and Views108

Notifying the Data Set Changes

After the AdapterView is populated, the data set may change at any given
time. The AdapterView will not get refreshed automatically as it has no
knowledge of the actual data source. The application is expected to call the
notifyDataSetChanged18 method to inform data set observers, including the
AdapterView, as shown in Listing 5-11.

Listing 5-11. Notify That the Data Set Has Changed and Needs to Be Refreshed

cursorAdapter.notifyDataSetChanged();

The ArrayAdapter provides helper methods to manipulate the data set, such
as add and remove methods. If the application enabled the automatic data
set to change notifications through the setNotifyOnChange19 method, as
shown in Listing 5-12, the ArrayAdapter will notify observers when the data
set gets modified through these methods.

Listing 5-12. Enable Automatic Change Notifications for ArrayAdapter Methods

arrayAdapter.setNotifyOnChange(true);

arrayAdapter.add("Item 5");
arrayAdapter.remove("Item 4");

Adapter View Layout

The Android framework provide various flavors of the AdapterView layout
for different use cases. All of these AdapterView subclasses take an Adapter
instance to retrieve the actual data in the form of View instances to populate
the content of the AdapterView on the screen. This section briefly touches on
the most commonly used ones.

List View

The ListView20 is an AdapterView layout that displays a list of scrollable
items, as shown in Figure 5-4.

18http://developer.android.com/reference/android/widget/BaseAdapter.html
#notifyDataSetChanged().
19http://developer.android.com/reference/android/widget/ArrayAdapter.
html #setNotifyOnChange(boolean).
20http://developer.android.com/reference/android/widget/ListView.html.

http://developer.android.com/reference/android/widget/BaseAdapter.html%23notifyDataSetChanged()
http://developer.android.com/reference/android/widget/BaseAdapter.html%23notifyDataSetChanged()
http://developer.android.com/reference/android/widget/ArrayAdapter.html%20%23setNotifyOnChange(boolean)
http://developer.android.com/reference/android/widget/ArrayAdapter.html%20%23setNotifyOnChange(boolean)
http://developer.android.com/reference/android/widget/ListView.html

CHAPTER 5: Layouts and Views

109

It can be declared in a layout resource file using the ListView XML tag, as
shown in Listing 5-13.

Listing 5-13. Adding the ListView to a Layout Resource

<ListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

The ListView takes the ListAdapter21 instance through its setAdapter22
method, as shown in Listing 5-14.

Listing 5-14. Providing the ListAdapter to the ListView

ListView listView = (ListView) findViewById(R.id.list);
listView.setAdapter(arrayAdapter);

Figure 5-4. ListView displaying four items

21http://developer.android.com/reference/android/widget/ListAdapter.html.
22http://developer.android.com/reference/android/widget/ListView.html#
setAdapter(android.widget.ListAdapter).

http://developer.android.com/reference/android/widget/ListAdapter.html
http://developer.android.com/reference/android/widget/ListView.html%23%20setAdapter(android.widget.ListAdapter)
http://developer.android.com/reference/android/widget/ListView.html%23%20setAdapter(android.widget.ListAdapter)

CHAPTER 5: Layouts and Views110

The ListAdapter is simply a subclass of the Adapter class, and it
simply introduces two additional methods to it. Those methods are
areAllItemsEnabled23 and isEnabled. These methods become very useful
when displaying certain rows as headers on the ListView. The Adapter’s
isEnabled24 method can simply return false for these header rows to make
them non-selectable.

Grid View

The GridView25 is an AdapterView layout that displays items in a two-dimensional,
scrollable grid, as shown in Figure 5-5.

Figure 5-5. GridView displaying the items as four columns

It can be declared in a layout resource file using the GridView XML tag, as
shown in Listing 5-15.

Listing 5-15. Adding the GridView to a Layout Resource

<GridView
 android:id="@+id/grid"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchMode="columnWidth"
 android:numColumns="4" />

23http://developer.android.com/reference/android/widget/ListAdapter
.html#areAllItemsEnabled().
24http://developer.android.com/reference/android/widget/ListAdapter
.html# isEnabled(int).
25http://developer.android.com/reference/android/widget/GridView.html.

http://developer.android.com/reference/android/widget/ListAdapter%0a.html%23areAllItemsEnabled()
http://developer.android.com/reference/android/widget/ListAdapter%0a.html%23areAllItemsEnabled()
http://developer.android.com/reference/android/widget/ListAdapter%0a.html%23%20isEnabled(int)
http://developer.android.com/reference/android/widget/ListAdapter%0a.html%23%20isEnabled(int)
http://developer.android.com/reference/android/widget/GridView.html

CHAPTER 5: Layouts and Views

111

The GridView XML tag also provides a set of attributes to allow the
application to define characteristics of the GridView. The most notable of
these attributes are

	android:columnWidth: Width of each column.

	android:gravity: Gravity of cell content.

	android:horizontalSpacing: Horizontal spacing
between columns.

	android:numColumns: Number of columns to show.

	android:stretchMode: How columns should stretch to
fill the empty space. It can take the following:

	 none: Stretching is disabled.

	 spacingWidth: Spacing between each column is stretched.

	 columnWidth: Each column is stretched.

	 spacingWidthUniform: Spacing between each column is
uniformly stretched.

	android:verticalSpacing: Vertical spacing between rows.

All of these attributes can also be manipulated through the methods of
the GridView class. Similar to the ListView, the GridView also takes a
ListAdapter to populate its content through its setAdapter26 method.

Spinner

The Spinner27 is a subclass of the AdapterView layout. As shown in Figure 5-6,
the Spinner provides an easy and quick way to present a dialog or a
drop-down menu to allow the user to choose a single item from given list
of items.

26http://developer.android.com/reference/android/widget/GridView.html#
setAdapter(android.widget.ListAdapter).
27https://developer.android.com/reference/android/widget/Spinner.html.

http://developer.android.com/reference/android/widget/GridView.html%23%20setAdapter(android.widget.ListAdapter)
http://developer.android.com/reference/android/widget/GridView.html%23%20setAdapter(android.widget.ListAdapter)
https://developer.android.com/reference/android/widget/Spinner.html

CHAPTER 5: Layouts and Views112

It can be added to a layout resource using the Spinner XML tag, as shown in
Listing 5-16.

Listing 5-16. Adding the Spinner to a Layout Resource

<Spinner
 android:id="@+id/spinner"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

The Spinner XML tag also provides a set of attributes to manipulate the
characteristics of the Spinner instance. The most notable attributes are

	android:spinnerMode: Display mode for the Spinner.
The supported modes are

	 dialog: The Spinner will be shown as a dialog window.

	 dropdown: The Spinner will be shown as an inline
drop-down anchored to the spinner widget.

	android:dropDownHorizontalOffset: Number of pixels
by which the drop-down should offset horizontally.

	android:dropDownVerticalOffset: Number of pixels by
which the drop-down should offset vertically.

	android:gravity: Gravity for the content.

Supported Attributes in Drop-Down Spinner Mode

	android:dropDownSelector: Selector may be a reference
to a resource or a color value.

Figure 5-6. Spinner displaying the items as an inline drop-down menu

CHAPTER 5: Layouts and Views

113

	android:dropDownWidth: Width of the drop-down.

	android:popupBackground: Background drawable to use
for the drop-down.

Supported Attributes in Dialog Spinner Mode

	android:prompt: Prompt to display when the spinner
dialog is shown.

Similar to the other AdapterView subclasses, the Spinner takes a
SpinnerAdapter28 to populate its content through its setAdapter29 method.

Handling the Item Selection Events

The click events on an AdapterView get delivered to the application through
the OnItemSelectedListener30 interface. The application can register
an OnItemSelectedListener instance with the AdapterView through the
setOnItemSelectedListener31 method, as shown in Listing 5-17.

Listing 5-17. Registering an OnItemSelectedListener Instance

spinner.setOnItemSelectedListener(
 new AdapterView.OnItemSelectedListener() {
 @Override
 public void onItemSelected(AdapterView<?> parent,
 View view,
 int position,
 long id) {
 // Item selected
 }

 @Override
 public void onNothingSelected(AdapterView<?> parent) {
 // Nothing selected
 }
});

28http://developer.android.com/reference/android/widget/SpinnerAdapter.html.
29http://developer.android.com/reference/android/widget/Spinner.html#set
Adapter(android.widget.SpinnerAdapter).
30http://developer.android.com/reference/android/widget/AdapterView
.OnItemSelectedListener.html.
31http://developer.android.com/reference/android/widget/AdapterView
.html# setOnItemSelectedListener(android.widget.AdapterView
.OnItemSelected Listener).

http://developer.android.com/reference/android/widget/SpinnerAdapter.html
http://developer.android.com/reference/android/widget/Spinner.html%23set%20Adapter(android.widget.SpinnerAdapter)
http://developer.android.com/reference/android/widget/Spinner.html%23set%20Adapter(android.widget.SpinnerAdapter)
http://developer.android.com/reference/android/widget/AdapterView%0a.OnItemSelectedListener.html
http://developer.android.com/reference/android/widget/AdapterView%0a.OnItemSelectedListener.html
http://developer.android.com/reference/android/widget/AdapterView%0a.html%23%20setOnItemSelectedListener(android.widget.AdapterView%0a.OnItemSelected%20Listener.OnItemSelected%20Listener)
http://developer.android.com/reference/android/widget/AdapterView%0a.html%23%20setOnItemSelectedListener(android.widget.AdapterView%0a.OnItemSelected%20Listener.OnItemSelected%20Listener)
http://developer.android.com/reference/android/widget/AdapterView%0a.html%23%20setOnItemSelectedListener(android.widget.AdapterView%0a.OnItemSelected%20Listener.OnItemSelected%20Listener)

CHAPTER 5: Layouts and Views114

The onItemSelected32 method gets called when an item has been selected.
The onNothingSelected33 method gets called when the selection disappears.

Loading the XML Layout Resource
The XML-formatted layout resource files are placed in the src/res/layout
subdirectory. The layout resource gets assigned a unique resource ID.
Similar to other resources, a constant with the same name as the layout file
gets generated in the R.layout class for this resource ID.

The setContentView method of the Activity class takes the layout resource
ID to display the user interface, as shown in Listing 5-18.

Listing 5-18. Displaying the User Interface Using the Layout Resource

public class MainActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

Accessing Individual Views in a Layout
Once the corresponding user interface elements get created based on the
given XML layout resource file, these elements can be individually accessed
from the application code using their unique ID.

Assigning a Unique ID to a View Element

Besides the attributes that are specific to the type of the View itself, a set
of common attributes are applicable to all types of View objects. The most
frequently used one of these is the ID attribute. The ID attribute assigns a
unique identifier to the View instance to make it possible for the application
to refer to it at any given time. As shown in Listing 5-19, the XML attribute
android:id is used to assign an ID to a View within a XML layout resource file.

32http://developer.android.com/reference/android/widget/AdapterView.
OnItem SelectedListener.html#onItemSelected(android.widget.
AdapterView<?>, android.view.View, int, long).
33http://developer.android.com/reference/android/widget/AdapterView.
OnItemSelectedListener.html#onNothingSelected(android.widget.
AdapterView<?>).

http://developer.android.com/reference/android/widget/AdapterView.OnItem%20SelectedListener.html%23onItemSelected(android.widget.AdapterView%3c?%3e%2c%20android.view.View%2c%20int%2c%20long)
http://developer.android.com/reference/android/widget/AdapterView.OnItem%20SelectedListener.html%23onItemSelected(android.widget.AdapterView%3c?%3e%2c%20android.view.View%2c%20int%2c%20long)
http://developer.android.com/reference/android/widget/AdapterView.OnItem%20SelectedListener.html%23onItemSelected(android.widget.AdapterView%3c?%3e%2c%20android.view.View%2c%20int%2c%20long)
http://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html%23onNothingSelected(android.widget.AdapterView%3c?%3e)
http://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html%23onNothingSelected(android.widget.AdapterView%3c?%3e)
http://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html%23onNothingSelected(android.widget.AdapterView%3c?%3e)

CHAPTER 5: Layouts and Views

115

Listing 5-19. Assigning a Unique ID to a View

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_1"/>

Although a name is used as the unique ID in Listing 5-19, a resource ID
in Android is an integer value. During compile time, the Android toolchain
generates integer values for the ID names, as well as the R class in the
application package with a list of constants that are mapping the ID names
to the corresponding resource ID integer values. The + symbol in @+id/
button indicates that a new resource ID value should be generated by the
Android toolchain, and it should be mapped to the name button.

Finding a View by Its Unique ID

As shown in Listing 5-20, the application can then refer to this user interface
element by using the findViewById method of the Activity class and
providing the View’s unique ID through the constants provided in the R class.

Listing 5-20. Finding a View by Its Unique ID

Button button = (Button) findViewById(R.id.button);

Views
The View class represents the basic building block for all user interface
components. A View instance occupies a rectangular area on the display,
and it is responsible for drawing itself and handling events. The View
components are used for both displaying information to the user and getting
user input. In this section, we refer to these two View types as output

controls and input controls, respectively.

Output Controls
The output controls are View subclasses used to present information to the
user. Depending on the type of the View object, the displayed information
can either be static, such as a text, or interactive, such as a progress bar.

CHAPTER 5: Layouts and Views116

A TextView can be added to the layout resource using the TextView XML
tag, as shown in Listing 5-21.

Listing 5-21. Adding the TextView to a Layout Resource

<TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:autoLink="all"
 android:ellipsize="end"
 android:singleLine="true"
 android:textSize="14sp"
 android:textStyle="normal"
 android:typeface="sans"
 android:textColor="#ff0000"
 android:text="Lorem ipsum dolor info@apress.com amet,
 consectetur adipiscing elit." />

Through the attributes of the XML tag, you can tune the features of the
TextView instance. The TextView supports a long list of attributes.35 The
most notable ones are

Figure 5-7. The TextView displaying a text with an e-mail as a link

34http://developer.android.com/reference/android/widget/TextView.html.
35http://developer.android.com/reference/android/R.styleable.
html#TextView.

TextView

The TextView34 class allows displaying text to the user, as shown in Figure 5-7.

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/R.styleable.html#TextView
http://developer.android.com/reference/android/R.styleable.html#TextView

CHAPTER 5: Layouts and Views

117

	android:autoLink: If set, automatically converts links
such as URLs (uniform resource locators) and e-mail
addresses in the text to clickable links.

	android:ellipsize: If set, words that are longer than the
available width get ellipsized instead of broken in the
middle—such as start, middle, end.

	android:gravity: Text gravity, such as right|bottom.

	android:singleLine: If set, the text won’t span to
multiple lines.

	android:text: Text to display.

	android:textColor: Text color, such as #ff0000.

	android:textSize: Size of the text, such as 12sp.

	android:textStyle: Text style, such as bold, italic.

	android:typeface: Text typeface, such as normal, sans.

ImageView

The ImageView36 class allows displaying an image to the user, such as an
icon. The ImageView handles the scaling and tinting of the image in order to
display it properly on the screen, as shown in Figure 5-8.

Figure 5-8. ImageView displaying the Apress logo

36http://developer.android.com/reference/android/widget/ImageView.html.

http://developer.android.com/reference/android/widget/ImageView.html

CHAPTER 5: Layouts and Views118

An ImageView can be added to the layout resource using the ImageView XML
tag, as shown in Listing 5-22.

Listing 5-22. Adding the ImageView to a Layout Resource

<ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:adjustViewBounds="true"
 android:cropToPadding="true"
 android:scaleType="matrix"
 android:src="@drawable/apress" />

The ImageView can also be customized through the XML attributes. The
most notable attributes are

	android:adjustViewBounds: If set, adjusts its bounds to
preserve the aspect ratio.

	android:cropToPadding: If set, crops the image to fit
within its padding.

	android:scaleType: Controls how the image should be
scaled, such as matrix, fitXY, fitStart, fitCenter,
fitEnd, etc.

	android:src: Image source as a resource ID or a color.

	android:tint: Tinting color for the image.

	android:tintMode: Blending mode to apply image tint,
such as multiply, add.

ProgressBar

The ProgressBar37 allows the application to inform the user about the
progress of an operation using a visual indicator. The ProgressBar displays
a bar to indicate how far the operation has progressed, as shown in
Figure 5-9. When the length of an operation is not known, the ProgressBar
can be made indeterministic in order to simply show a cyclic animation,
indicating a running operation.

37http://developer.android.com/reference/android/widget/ProgressBar.html.

http://developer.android.com/reference/android/widget/ProgressBar.html

CHAPTER 5: Layouts and Views

119

A ProgressBar can be added to a layout resource using the ProgressBar
XML tag, as shown in Listing 5-23.

Listing 5-23. Adding the ProgressBar to a Layout Resource

<ProgressBar
 android:id="@+id/progress"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 style="@android:style/Widget.ProgressBar.Horizontal"
 android:max="100"
 android:progress="20" />

Various features of the ProgressBar can be configured through the XML
attributes38 of the ProgressBar XML tag. The most notable ones are

	android:indeterminate: If set, enables the
indeterminate mode.

	android:max: Maximum value the progress can take.

	android:progress: Progress value.

	style: The style for the ProgressBar; some of the styles
that are provided by the Android platform are

	 @android:style/Widget.ProgressBar.Horizontal:
Horizontal progress bar.

	 @android:style/Widget.ProgressBar.Small: Small spinner
icon for indeterminate progress bar.

Figure 5-9. ProgressBar in both horizontal and indeterminate modes

38http://developer.android.com/reference/android/R.styleable.html
#ProgressBar.

http://developer.android.com/reference/android/R.styleable.html%20%23ProgressBar
http://developer.android.com/reference/android/R.styleable.html%20%23ProgressBar

CHAPTER 5: Layouts and Views120

	 @android:style/Widget.ProgressBar.Large: Large spinner
icon for indeterminate progress bar.

	 @android:style/Widget.ProgressBar.Inverse: Reverse
spinning icon for indeterminate progress bar.

Updating the Progress

During the runtime, the application can change the progress at any time,
using the setProgress39 method, as shown in Listing 5-24.

Listing 5-24. Updating the Progress Value of the ProgressBar Object

progressBar.setProgress(40);

Tip In order to provide a responsive user interface, Android applications

should not occupy the UI thread for a long period of time. The

AsyncTask40 class can be used to process long-lasting operations on a

separate thread, meanwhile updating the user interface asynchronously

by overriding its onProgressUpdate and onPostExecute methods.

If the progress simply increments by a certain number, the ProgressBar also
provides the incrementProgressBy41 method to enable the application to
simply increment the progress by a given value.

Space

The Space42 is a lightweight View object that can be used to insert gaps
between other components in both directions. A Space can be added to
a layout resource using the Space XML tag. The Space XML tag does not
take any additional attributes other than the mandatory View attributes,
android:layout_width and android:layout_height. As shown in
Listing 5-25, simply using these two attributes, any amount of gap can be
inserted between other components.

39http://developer.android.com/reference/android/widget/ProgressBar.html
#setProgress(int).
40http://developer.android.com/reference/android/os/AsyncTask.html.
41http://developer.android.com/reference/android/widget/ProgressBar.html
#incrementProgressBy(int).
42http://developer.android.com/reference/android/widget/Space.html.

http://developer.android.com/reference/android/widget/ProgressBar.html%20%23setProgress(int)
http://developer.android.com/reference/android/widget/ProgressBar.html%20%23setProgress(int)
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/widget/ProgressBar.html%20%23incrementProgressBy(int)
http://developer.android.com/reference/android/widget/ProgressBar.html%20%23incrementProgressBy(int)
http://developer.android.com/reference/android/widget/Space.html

CHAPTER 5: Layouts and Views

121

Listing 5-25. Adding the Space into a Layout Resource

<Space
 android:layout_width="wrap_content"
 android:layout_height="20dp" />

Input Controls
Input controls are interactive View components that can enable the user
to interact with the application by providing input, such as a button.
The Android platform provides a variety of input controls that can be
used in applications.

EditText

The EditText43 input control is a subclass of the TextView class. In addition
to the features of a TextView, the EditText also enables the user to edit the
content. An EditText can be added to a layout resource using the EditText
XML tag, as shown in Listing 5-26.

Listing 5-26. Adding the EditText into a Layout Resource

<EditText
 android:id="@+id/edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:autoText="true" />

The EditText XML tag also takes a set of attributes that can modify certain
characteristics of the EditText instance; the most notable ones are

	android:autoText: If set, automatically corrects some of
the common spelling errors.

	android:capitalize: If set, automatically capitalizes
what the user types.

	android:cursorVisible: If set, makes the cursor visible.

	android:digit: If set, only accepts the numeric input.

	android:enabled: Specifies whether the control is
enabled.

43http://developer.android.com/reference/android/widget/EditText.html.

http://developer.android.com/reference/android/widget/EditText.html

CHAPTER 5: Layouts and Views122

	android:password: If set, displays the characters as
password dots instead of themselves.

	android:phoneNumber: If set, enables the phone number
input method.

Getting the Content of an EditText

The content of the EditText control can be retrieved through the getText44
method, as shown in Listing 5-27.

Listing 5-27. Getting the Content of an EditText

String text = editText.getText().toString();

The getText method returns an Editable45 object. It provides methods to
append46 to, replace,47 and delete48 ranges from the content of the EditText.

Button

The Button control provides a push button that can be clicked by the user,
as shown in Figure 5-10.

Figure 5-10. The play button with a text and a play icon

44http://developer.android.com/reference/android/widget/EditText.html#
getText().
45http://developer.android.com/reference/android/text/Editable.html.
46http://developer.android.com/reference/android/text/Editable.
html#append (java.lang.CharSequence).
47http://developer.android.com/reference/android/text/Editable.
html#replace (int, int, java.lang.CharSequence, int, int).
48http://developer.android.com/reference/android/text/Editable.
html#delete (int, int).

http://developer.android.com/reference/android/widget/EditText.html%23%20getText()
http://developer.android.com/reference/android/widget/EditText.html%23%20getText()
http://developer.android.com/reference/android/text/Editable.html
http://developer.android.com/reference/android/text/Editable.html%23append%20(java.lang.CharSequence)
http://developer.android.com/reference/android/text/Editable.html%23append%20(java.lang.CharSequence)
http://developer.android.com/reference/android/text/Editable.html%23replace%20(int%2c%20int%2c%20java.lang.CharSequence%2c%20int%2c%20int)
http://developer.android.com/reference/android/text/Editable.html%23replace%20(int%2c%20int%2c%20java.lang.CharSequence%2c%20int%2c%20int)
http://developer.android.com/reference/android/text/Editable.html%23delete%20(int%2c%20int)
http://developer.android.com/reference/android/text/Editable.html%23delete%20(int%2c%20int)

CHAPTER 5: Layouts and Views

123

A Button can be added into a layout resource using the Button XML tag, as
shown in Listing 5-28. The Button is a subclass of the TextView class. All
relevant XML attributes of a TextView also apply to a Button.

Listing 5-28. Adding the Button into a Layout Resource

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:drawableLeft="@android:drawable/ic_media_play"
 android:text="Play" />

Handling Button Click Events

The Button click events get delivered to the application through the
OnClickListener49 interface. An instance of OnClickListener can be
registered with the Button instance through the setOnClickListener50
method, as shown in Listing 5-29.

Listing 5-29. Handling the Button Click Event

Button button = (Button) findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Button clicked
 }
});

ImageButton

There are different flavors of a Button control. The ImageButton51 is a Button
control with an image instead of a text. It can be added to a layout resource
through the ImageButton XML tag. It takes the drawable image through its
android:src52 XML attribute, as shown in Listing 5-30.

49http://developer.android.com/reference/android/view/View
.OnClickListener.html.
50http://developer.android.com/reference/android/view/View
.html#setOnClick Listener(android.view.View.OnClickListener).
51http://developer.android.com/reference/android/widget/ImageButton.html.
52http://developer.android.com/reference/android/widget/ImageView.html
#attr_android:src.

http://developer.android.com/reference/android/view/View%0a.OnClickListener.html
http://developer.android.com/reference/android/view/View%0a.OnClickListener.html
http://developer.android.com/reference/android/view/View%0a.html%23setOnClick%20Listener(android.view.View.OnClickListener)
http://developer.android.com/reference/android/view/View%0a.html%23setOnClick%20Listener(android.view.View.OnClickListener)
http://developer.android.com/reference/android/widget/ImageButton.html
http://developer.android.com/reference/android/widget/ImageView.html%20%23attr_android:src
http://developer.android.com/reference/android/widget/ImageView.html%20%23attr_android:src

CHAPTER 5: Layouts and Views124

Listing 5-30. Adding the ImageButton to a Layout Resource

<ImageButton
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@android:drawable/ic_media_play" />

Surprisingly, the ImageButton is not a subclass of the Button class as you
would expect. It is instead a subclass of the ImageView class. All XML
attributes supported by the ImageView also apply to the ImageButton, such
as the scaling and tinting.

Although they are not a subclass of the Button class, the click events on an
ImageButton are still received through the OnClickListener interface that is
registered through the setOnClickListener53 method of the ImageButton class.

ToggleButton, Switch, and CheckBox

The ToggleButton,54 Switch,55 and CheckBox56 allow the user to change
a setting between two states, such as “on” and “off.” Although all of
these controls fundamentally do the same thing, they provide different
visual interfaces to suit different use cases. As shown in Figure 5-11, the
ToggleButton has a button-like look and feel, the Switch is a slider-based
control, and the CheckBox has simply a check mark next to the text.

Figure 5-11. ToggleButton, Switch, and CheckBox controls in both states

53http://developer.android.com/reference/android/view/View.
html#setOnClick Listener(android.view.View.OnClickListener).
54http://developer.android.com/reference/android/widget/ToggleButton.html.
55http://developer.android.com/reference/android/widget/Switch.html.
56http://developer.android.com/reference/android/widget/CheckBox.html.

http://developer.android.com/reference/android/view/View.html%23setOnClickListener(android.view.View.OnClickListener)
http://developer.android.com/reference/android/view/View.html%23setOnClickListener(android.view.View.OnClickListener)
http://developer.android.com/reference/android/widget/ToggleButton.html
http://developer.android.com/reference/android/widget/Switch.html
http://developer.android.com/reference/android/widget/CheckBox.html

CHAPTER 5: Layouts and Views

125

ToggleButton

A ToggleButton can be added into a layout resource through the
ToggleButton XML tag, as shown in Listing 5-31.

Listing 5-31. Adding the ToggleButton into a Layout Resource

<ToggleButton
 android:id="@+id/toggle1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOff="Off"
 android:textOn="On"
 android:checked="true" />

Besides the XML attributes that are supported by the Button XML tag, the
ToggleButton also supports the following attributes:

	android:disabledAlpha: The alpha to apply to the
indicator when disabled.

	android:textOff: Text to show when not checked.

	android:textOn: Text to show when checked.

	android:checked: Toggled or not.

Switch

A Switch can be added into a layout resource through the Switch XML tag,
as shown in Listing 5-32.

Listing 5-32. Adding the Switch into a Layout Resource

<Switch
 android:id="@+id/toggle3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOff="Off"
 android:textOn="On"
 android:checked="true"
 android:showText="true" />

Besides the XML attributes that are supported by the Button XML tag, the
Switch also supports additional attributes; the frequently used ones are

	android:showText: Show the text or not.

	android:textOff: Text to show when not checked.

	android:textOn: Text to show when checked.

CHAPTER 5: Layouts and Views126

	android:checked: Switched or not.

	android:thumb: Drawable to use as the thumb.

	android:track: Drawable to use as the track.

CheckBox

A CheckBox can be added into a layout resource through the CheckBox XML
tag, as shown in Listing 5-33.

Listing 5-33. Adding the CheckBox into a Layout Resource

<CheckBox
 android:id="@+id/toggle5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="On"
 android:checked="true" />

As the CheckBox is a subclass of the Button class, it supports all the XML
attributes supported by the Button class, as well as the following attribute:

	android:checked: Checked or not.

Getting the Checked State

The current state of each of those controls can be queried through the
isChecked57 method, as shown in Listing 5-34.

Listing 5-34. Checking If the Control Is in Checked State

if (checkBox.isChecked()) {
 // On state
} else {
 // Off state
}

57http://developer.android.com/reference/android/widget/Checkable.html#
isChecked().

http://developer.android.com/reference/android/widget/Checkable.html%23isChecked()
http://developer.android.com/reference/android/widget/Checkable.html%23isChecked()

CHAPTER 5: Layouts and Views

127

Getting Notified on Checked State Change

The application can register an instance of the OnCheckedChangeListener58
interface through the setOnCheckedChangeListener59 method to receive a
notification when the checked state of the control changes as a result of a
user event, as shown in Listing 5-35.

Listing 5-35. Getting Notified on Checked State Change

checkBox.setOnCheckedChangeListener(
 new CompoundButton.OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(
 CompoundButton buttonView,
 boolean isChecked) {
 if (isChecked) {
 // On state
 } else {
 // Off state
 }
 }
});

Radio Button

In certain cases, having only two states is not enough to provide a full set
of options. The Android framework provides the RadioButton60 for that
purpose. When RadioButtons are combined through a RadioGroup,61 they
can allow the user to select one option from a set of options, as shown in
Figure 5-12.

58http://developer.android.com/reference/android/widget/CompoundButton.
OnCheckedChangeListener.html.
59http://developer.android.com/reference/android/widget/CompoundButton.
html#setOnCheckedChangeListener(android.widget.CompoundButton.
OnCheckedChange Listener).
60http://developer.android.com/reference/android/widget/RadioButton.html.
61http://developer.android.com/reference/android/widget/RadioGroup.html.

http://developer.android.com/reference/android/widget/CompoundButton.OnCheckedChangeListener.html
http://developer.android.com/reference/android/widget/CompoundButton.OnCheckedChangeListener.html
http://developer.android.com/reference/android/widget/CompoundButton.html%20%23setOnCheckedChangeListener(android.widget.CompoundButton.OnCheckedChange%20Listener)
http://developer.android.com/reference/android/widget/CompoundButton.html%20%23setOnCheckedChangeListener(android.widget.CompoundButton.OnCheckedChange%20Listener)
http://developer.android.com/reference/android/widget/CompoundButton.html%20%23setOnCheckedChangeListener(android.widget.CompoundButton.OnCheckedChange%20Listener)
http://developer.android.com/reference/android/widget/RadioButton.html
http://developer.android.com/reference/android/widget/RadioGroup.html

CHAPTER 5: Layouts and Views128

Note Another way to prompt the user to select one option from a set of

options is to use the Spinner, which is covered in the section “Adapter

View Layout.”

Figure 5-12. RadioButtons in a RadioGroup presenting four selections

The RadioButton, and the RadioGroup can be added into a layout resource
using the corresponding XML tags, as shown in Listing 5-36.

Listing 5-36. Adding the RadioGroup and the RadioButtons into a Layout Resource

<RadioGroup
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <RadioButton
 android:id="@+id/email"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="E-Mail"
 android:checked="true" />

 <RadioButton
 android:id="@+id/phone"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Phone"/>

 <RadioButton
 android:id="@+id/both"
 android:layout_width="wrap_content"

CHAPTER 5: Layouts and Views

129

 android:layout_height="wrap_content"
 android:text="Both"/>

 <RadioButton
 android:id="@+id/none"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="None"/>

</RadioGroup>

As the RadioButton is a subclass of the Button class, it accepts all of the
XML attributes of the Button class, with the addition of the android:checked
attribute defining whether the RadioButton should be in a checked state by
default.

Getting Notified on RadioButton Checked Change

The change events get delivered to the application through the
OnCheckedChangeListener62 interface. An application can register
an instance of the OnCheckedChangeListener interface through the
setOnCheckedChangeListener63 method of the RadioGroup, as shown in
Listing 5-37.

Listing 5-37. Getting Notified on RadioButton Checked Change

radioGroup.setOnCheckedChangeListener(
 new RadioGroup.OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(
 RadioGroup group,
 int checkedId) {
 switch (checkedId) {
 case R.id.email:
 break;

 case R.id.phone:
 break;

62http://developer.android.com/reference/android/widget/RadioGroup.
OnChecked ChangeListener.html.
63http://developer.android.com/reference/android/widget/RadioGroup.
html#setOnCheckedChangeListener(android.widget.RadioGroup.
OnCheckedChangeListener).

http://developer.android.com/reference/android/widget/RadioGroup.OnChecked%20ChangeListener.html
http://developer.android.com/reference/android/widget/RadioGroup.OnChecked%20ChangeListener.html
http://developer.android.com/reference/android/widget/RadioGroup.html%23setOnCheckedChangeListener(android.widget.RadioGroup.OnCheckedChangeListener)
http://developer.android.com/reference/android/widget/RadioGroup.html%23setOnCheckedChangeListener(android.widget.RadioGroup.OnCheckedChangeListener)
http://developer.android.com/reference/android/widget/RadioGroup.html%23setOnCheckedChangeListener(android.widget.RadioGroup.OnCheckedChangeListener)

CHAPTER 5: Layouts and Views130

 case R.id.both:
 break;

 case R.id.none:
 break;
 }
 }
});

Fragments
On the Android platform, portions of the user interface can be grouped
as modular sections, which have their own life cycle and event handling.
These sections are known as fragments, and they are embodied with the
Fragment64 class in Android applications.

Fragments promote reuse of the user interface and also application
behavior. Multiple fragments can be combined within a single activity. With
the arrival of tablet devices, Android introduced fragments in API Level 11,
primarily to support dynamic UI designs. Applications can divide the user
interface into modular and reusable components through fragments, and
based on screen size and device orientation, the application can structure
those accordingly using a proper layout. This enables the same application
code to support various screen sizes and orientations.

Creating a Fragment
You can create a fragment by simply extending the Fragment class, as
shown in Listing 5-38.

Listing 5-38. Creating a New Fragment by Extending the Fragment Class

import android.app.Fragment;

public class ExampleFragment extends Fragment {

}

64http://developer.android.com/reference/android/app/Fragment.html.

http://developer.android.com/reference/android/app/Fragment.html

CHAPTER 5: Layouts and Views

131

Similar to other Android components like the activity, a fragment has its own
life cycle. Fragment life-cycle events get delivered to the application through
a set of callback methods that can be overridden by the application code to
do the appropriate handling.

	onAttach:65 Called when a fragment is first attached to
its activity.

	onCreate:66 Called after onAttach for the fragment to do
initial creation. At this time the activity may not be fully
created.

	onCreateView:67 Called for the fragment to instantiate
and return its user interface as a View instance.
Fragments without a user interface can simply return
null here.

	onActivityCreated:68 Called when the activity hosting
the fragment is fully created and its view hierarchy is
instantiated.

	onStart:69 Called when the fragment is visible to the user.

	onResume:70 Called when the fragment is visible and
actively running.

	onPause:71 Called when the fragment is no longer visible
and active.

65http://developer.android.com/reference/android/app/Fragment.
html#onAttach(android.app.Activity).
66http://developer.android.com/reference/android/app/Fragment.
html#onCreate(android.os.Bundle).
67http://developer.android.com/reference/android/app/Fragment.html#
onCreateView(android.view.LayoutInflater,android.view.ViewGroup,
android.os.Bundle).
68http://developer.android.com/reference/android/app/Fragment.html#
onActivityCreated(android.os.Bundle).
69http://developer.android.com/reference/android/app/Fragment.html#
onStart().
70http://developer.android.com/reference/android/app/Fragment.html#
onResume().
71http://developer.android.com/reference/android/app/Fragment.html#
onPause().

http://developer.android.com/reference/android/app/Fragment.html%23onAttach(android.app.Activity)
http://developer.android.com/reference/android/app/Fragment.html%23onAttach(android.app.Activity)
http://developer.android.com/reference/android/app/Fragment.html%23onCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.html%23onCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.html%23%20onCreateView(android.view.LayoutInflater%2candroid.view.ViewGroup%2c%20android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.html%23%20onCreateView(android.view.LayoutInflater%2candroid.view.ViewGroup%2c%20android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.html%23%20onCreateView(android.view.LayoutInflater%2candroid.view.ViewGroup%2c%20android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.html%23onActivityCreated(android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.html%23onActivityCreated(android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.html%23onStart()
http://developer.android.com/reference/android/app/Fragment.html%23onStart()
http://developer.android.com/reference/android/app/Fragment.html%23onResume()
http://developer.android.com/reference/android/app/Fragment.html%23onResume()
http://developer.android.com/reference/android/app/Fragment.html%23onPause()
http://developer.android.com/reference/android/app/Fragment.html%23onPause()

CHAPTER 5: Layouts and Views132

	onDestroyView:72 Called when the fragment’s view is
now being detached from the fragment and currently
getting destroyed.

	onDestroy:73 Called when the fragment is no longer in
use, and getting destroyed.

	onDetach:74 Called when the fragment is no longer
attached to the activity.

Most Android applications are expected to override at least the onCreate,
onCreateView, and onPause methods. During the onPause method, the
fragment can persist its state, as it may never become visible after this call.

Adding a Fragment to an Activity
The application can add a fragment either through the layout file or
programmatically through the provided API.

Adding a Fragment to an Activity Through the Layout

The <fragment> XML tag is supported in the layout files for adding fragments
directly as part of the layout file. The name attribute of the <fragment> XML
tag must be set to the fully qualified name of the fragment class, as shown
in Listing 5-39.

Listing 5-39. Adding a Fragment Through the Layout

<fragment
 android:id="@+id/example_fragment"
 android:name="com.apress.chapter5.ExampleFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

72http://developer.android.com/reference/android/app/Fragment.
html#onDestroyView().
73http://developer.android.com/reference/android/app/Fragment.
html#onDestroy().
74http://developer.android.com/reference/android/app/Fragment.
html#onDetach().

http://developer.android.com/reference/android/app/Fragment.html%23onDestroyView()
http://developer.android.com/reference/android/app/Fragment.html%23onDestroyView()
http://developer.android.com/reference/android/app/Fragment.html%23onDestroy()
http://developer.android.com/reference/android/app/Fragment.html%23onDestroy()
http://developer.android.com/reference/android/app/Fragment.html%23onDetach()
http://developer.android.com/reference/android/app/Fragment.html%23onDetach()

CHAPTER 5: Layouts and Views

133

Adding a Fragment to an Activity Programmatically

During the runtime, the application can add a fragment programmatically
through the API provided by the FragmentManager75 class, by simply
specifying a view group in which to place the fragment.

Adding a Placeholder into the Layout for the Fragment

As shown in Listing 5-40, the FrameLayout can be used inside the layout file
as a placeholder view group for a fragment.

Listing 5-40. The FrameLayout Used as a Placeholder for the Fragment Inside the Layout File

<FrameLayout
 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Getting the FragmentManager Instance

The singleton instance of the FragmentManager class can be obtained from the
Activity through its getFragmentManager76 method, as shown in Listing 5-41.

Listing 5-41. Getting the FragmentManager Singleton Instance from the Activity

FragmentManager fragmentManager = getFragmentManager();

Creating a Fragment Transaction

Fragment-related operations are handled through the API provided by the
FragmentTransaction77 class. A new fragment transaction can be started
using the beginTransaction78 method of the FragmentManager as shown in
Listing 5-42.

75http://developer.android.com/reference/android/app/FragmentManager.html.
76http://developer.android.com/reference/android/app/Activity.html#get
FragmentManager().
77http://developer.android.com/reference/android/app/
FragmentTransaction.html.
78http://developer.android.com/reference/android/app/FragmentManager.
html# beginTransaction().

http://developer.android.com/reference/android/app/FragmentManager.html
http://developer.android.com/reference/android/app/Activity.html%23getFragmentManager()
http://developer.android.com/reference/android/app/Activity.html%23getFragmentManager()
http://developer.android.com/reference/android/app/FragmentTransaction.html
http://developer.android.com/reference/android/app/FragmentTransaction.html
http://developer.android.com/reference/android/app/FragmentManager.html%23%20beginTransaction()
http://developer.android.com/reference/android/app/FragmentManager.html%23%20beginTransaction()

CHAPTER 5: Layouts and Views134

Listing 5-42. Creating a Fragment Transaction

FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();

Adding the Fragment into the Placeholder

The FragmentTransaction class provides a set of APIs to do various
fragment-related operations. The add79 method allows adding a fragment
into the specified view group. Multiple transaction operations can occur
within a single fragment transaction. The application should call the commit80
method of the FragmantTransaction object in order to execute the specified
the operations, as shown in Listing 5-43.

Listing 5-43. Adding the Fragment into the Given Placeholder View Group

fragmentTransaction.add(R.id.fragment_container,
 exampleFragment);

fragmentTransaction.commit();

Replacing a Fragment
The FragmentTransaction class also provides methods to manipulate the
fragments while the application is running. The replace81 method allows the
application to replace an existing Fragment in a container with a new one, as
shown in Listing 5-44.

Listing 5-44. Replacing the existing Fragment with the given Fragment.

fragmentTransaction.replace(R.id.fragment_container,
 exampleFragment);

Managing the Fragment Back Stack

As the application can add and replace fragments anytime, a single
Activity can provide multiple user interfaces by simply shuffling the
fragments. As the user cannot be aware of the internals of the application,
the expectation is that the Back key on the device should take the user back
to the previous screen, which can either be an Activity or a Fragment.

79http://developer.android.com/reference/android/app/
FragmentTransaction.html#add(int,android.app.Fragment).
80http://developer.android.com/reference/android/app/
FragmentTransaction.html#commit().
81http://developer.android.com/reference/android/app/
FragmentTransaction.html#replace(int, android.app.Fragment).

http://developer.android.com/reference/android/app/FragmentTransaction.html%23add(int%2candroid.app.Fragment)
http://developer.android.com/reference/android/app/FragmentTransaction.html%23add(int%2candroid.app.Fragment)
http://developer.android.com/reference/android/app/FragmentTransaction.html%23commit()
http://developer.android.com/reference/android/app/FragmentTransaction.html%23commit()
http://developer.android.com/reference/android/app/FragmentTransaction.html%23replace(int%2c%20android.app.Fragment)
http://developer.android.com/reference/android/app/FragmentTransaction.html%23replace(int%2c%20android.app.Fragment)

CHAPTER 5: Layouts and Views

135

Adding a Fragment Transaction to the Back Stack

The FragmentManager provides a fragment back stack for this purpose.
As shown in Listing 5-45, using the addToBackStack82 method of the
FragmentTransaction class, the application can inform the FragmentManager
that the transaction should be added to the fragment back stack.

Listing 5-45. Adding a FragmentTransaction to the Back Stack

fragmentTransaction.addToBackStack(null);

Going Backward Using the Back Stack

The popBackStack83 method of the FragmentManager class can be used to
pop the top state off the back stack, as shown in Listing 5-46.

Note The popBackStack method puts the previous

FragmentTransaction in the queue and returns immediately. It does

not perform the actual operation. The application should not assume that

the previous Fragment is visible.

Listing 5-46. Going Backward Using the Fragment Back Stack

fragmentManager.popBackStack();

Adding a User Interface to a Fragment
By overriding the onCreateView method, the fragment can return a View
instance in order to provide a user interface. As shown in Listing 5-47, the
fragment can utilize the provided LayoutInflater instance to inflate its user
interface layout.

82http://developer.android.com/reference/android/app/
FragmentTransaction.html#addToBackStack(java.lang.String).
83http://developer.android.com/reference/android/app/FragmentManager.
html#popBackStack().

http://developer.android.com/reference/android/app/FragmentTransaction.html%23addToBackStack(java.lang.String)
http://developer.android.com/reference/android/app/FragmentTransaction.html%23addToBackStack(java.lang.String)
http://developer.android.com/reference/android/app/FragmentManager.html%23popBackStack()
http://developer.android.com/reference/android/app/FragmentManager.html%23popBackStack()

CHAPTER 5: Layouts and Views136

Listing 5-47. Inflating the User Interface Layout of a Fragment

@Override
public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_example,
 container, false);
}

Passing Arguments to a Fragment
As fragments are reusable components, they can be utilized in various
places within an application. For a fragment to provide the proper
functionality based on the current context, the application may need to
provide certain arguments to the fragment. This is achieved through the
setArguments84 method of the Fragment class. As shown in Listing 5-48, the
setArguments method takes a Bundle instance containing the arguments as
key and value pairs.

Note We recommend using the setArguments method, instead of

directly manipulating a Fragment instance. The Android framework

provides the same arguments to the fragment, if the fragment was

destroyed and recreated by the framework.

Listing 5-48. Passing Arguments to a Fragment

Bundle arguments = new Bundle();
arguments.putString("name", "Onur Cinar");
arguments.putBoolean("showLink", false);

ExampleFragment exampleFragment = new ExampleFragment();
exampleFragment.setArguments(arguments);

84http://developer.android.com/reference/android/app/Fragment.html#set
Arguments(android.os.Bundle).

http://developer.android.com/reference/android/app/Fragment.html%23set%0aArguments(android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.html%23set%0aArguments(android.os.Bundle)

CHAPTER 5: Layouts and Views

137

Using the Arguments in a Fragment

The fragment can access the passed fragments using the getArguments85
method of the Fragment class, as shown in Listing 5-49.

Listing 5-49. Accessing the Passed Arguments in a Fragment

public class ExampleFragment extends Fragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Bundle arguments = getArguments();
 if (arguments != null) {
 String name = arguments.getString(
 "name", "Default Name");

 boolean showLink = arguments.getBoolean(
 "showLink", false);
 }
 }
}

Communication Between the Activity and the
Fragment
Both the Fragment and the Activity can access each other and exchange
information while the application is running. This makes it possible to group
portions of the user interface as modular and reusable components but still
deliver a smooth user interface.

Accessing the Activity from the Fragment

The Fragment can access the hosting Activity instance using the
getActivity86 method of the Fragment class, as shown in Listing 5-50.

85http://developer.android.com/reference/android/app/Fragment.html#get
Arguments().
86http://developer.android.com/reference/android/app/Fragment.html#get
Activity().

http://developer.android.com/reference/android/app/Fragment.html%23getArguments()
http://developer.android.com/reference/android/app/Fragment.html%23getArguments()
http://developer.android.com/reference/android/app/Fragment.html%23getActivity()
http://developer.android.com/reference/android/app/Fragment.html%23getActivity()

CHAPTER 5: Layouts and Views138

Listing 5-50. Getting the Activity Instance from the Fragment

MainActivity mainActivity = (MainActivity) getActivity();

Accessing the Fragment from the Activity

Once the Fragment instance is added to the Activity, it can be accessed
through the findFragmentById87 method of the FragmentManager class, as
shown in Listing 5-51.

Listing 5-51. Getting the Fragment Instance from the Activity

ExampleFragment exampleFragment =
 (ExampleFragment) fragmentManager.findFragmentById(
 R.id.example_fragment);

Summary
This chapter provided a brief overview of the APIs provided by the Android
framework for developing extensive user interfaces on the Android platform.
As the Android ecosystem is highly fragmented due to various display
sizes and densities, the chapter started by exploring the various layout
types that are provided by the Android framework in order to provide a
fluid user interface that can adapt to any display size. The chapter also
gave an overview of the input and output controls provided by the Android
framework. The Fragment API was introduced at last, to allow the parts of a
user interface to be broken down into modular and reusable pieces that can
be used in different parts of the application.

87http://developer.android.com/reference/android/app/FragmentManager.
html#findFragmentById(int).

http://developer.android.com/reference/android/app/FragmentManager.html%23findFragmentById(int)
http://developer.android.com/reference/android/app/FragmentManager.html%23findFragmentById(int)

139

Chapter 6
User Interface

Although every Android application runs as a full-screen application, the
Android platform still provides a certain amount of window features, such
as the action bar, toasts, dialogs, and notifications. This chapter provides
a brief overview of these fundamental window features. Although not every
Android application benefits from toasts and dialogs, the action bar and
notifications are frequently used by almost every Android application to
provide a smooth and consistent user experience.

Action Bar
Through the action bar,1 the Android platform provides window features to
help the user to easily identify the running application, his location within the
application, important application actions, and navigation options.

Note The three vertical dots icon on the right-hand side of the action bar is

known as the overflow menu. Once it gets a click event, it shows a drop-down

menu with a list of actions that are not displayed directly on the action bar.

1http://developer.android.com/reference/android/app/ActionBar.html.

http://developer.android.com/reference/android/app/ActionBar.html

CHAPTER 6: User Interface140

As shown in Figure 6-1, the action bar consists of

The application’s icon and title.	
Icons and labels of important application actions, and 	
an overflow menu if the entire list of actions cannot
be displayed on the action bar due to the amount of
available space.

Navigation support within the application through the 	
back button, tabs, and drop-down menus.

Figure 6-1. The action bar and its components

Adding the Action Bar
The action bar application programming interface (API) was first introduced
in API Level 11, but it is also available for earlier API levels through the
Android Support Library. Starting with API Level 11, the ActionBar is
included in all activities using the default Theme.Holo theme. The application
can access the ActionBar instance anytime through the getActionBar2
method of the Activity class, as shown in Listing 6-1.

Listing 6-1. Getting the ActionBar Instance from the Activity

ActionBar actionBar = getActionBar();

2http://developer.android.com/reference/android/app/Activity.html
#getActionBar().

http://developer.android.com/reference/android/app/Activity.html%23getActionBar()
http://developer.android.com/reference/android/app/Activity.html%23getActionBar()

CHAPTER 6: User Interface

141

Removing the Action Bar
As the ActionBar instance is included by default starting from API Level 11
and beyond, the application can simply remote it using its hide3 method if it
is not needed, as shown in Listing 6-2.

Listing 6-2. Removing the Action Bar

@Override
protected void onCreate(Bundle savedInstanceState) {
 ActionBar actionBar = getActionBar();
 actionBar.hide();
}

Adding Actions to the Action Bar
The action bar provides a prominent place to show important application
actions related to the current context. These actions are displayed on the
action bar with an icon and sometimes with both an icon and text based on
how it gets declared.

Defining the Actions for the Action Bar

The actions are defined as a menu resource in the res/menu resource
directory, as shown in Listing 6-3.

Listing 6-3. The Content of res/menu/menu_actions.xml File

<menu xmlns:android=
 "http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/action_search"
 android:title="@string/action_search"
 android:icon="@drawable/ic_action_search" />

 <item
 android:id="@+id/action_save"
 android:title="@string/action_save"
 android:icon="@drawable/ic_action_save" />

3http://developer.android.com/reference/android/app/ActionBar.
html#hide().

http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/app/ActionBar.html%23hide()
http://developer.android.com/reference/android/app/ActionBar.html%23hide()

CHAPTER 6: User Interface142

 <item android:id="@+id/action_share"
 android:title="@string/action_share"
 android:icon="@drawable/ic_action_share" />

 <item android:id="@+id/action_settings"
 android:title="@string/action_settings"
 android:icon="@drawable/ic_action_settings"
 android:showAsAction="never" />

 <item android:id="@+id/action_about"
 android:title="@string/action_about"
 android:icon="@drawable/ic_action_about"
 android:showAsAction="never" />
</menu>

Each action gets defined through the <item>4 XML tag, with an ID, an icon,
and a title. The <item> tag can also take additional parameters that will
define how the action should be displayed on the action bar.

Controlling the Appearance of Action Items

As the screen space is a scarce resource on mobile devices, if the actions
cannot all fit into the action bar, they get placed in an overflow menu
(see Figure 6-1). As shown in Listing 6-4, through the showAsAction
parameter of the <item> tag, the application can provide a hint to the
Android framework on how the action should be displayed.

	ifRoom: Only place this action in the action bar if there is
enough room; otherwise, place it in the overflow menu.

	never: Never place this action in the action bar, always
place it in the overflow menu.

	withText: Include text title for the action item.

	always: Always place this action in the action bar.

	collapseActionView: Collapse the action item if
supported.

4http://developer.android.com/guide/topics/resources/menu-resource.
html#item-element.

http://developer.android.com/guide/topics/resources/menu-resource.html#item-element
http://developer.android.com/guide/topics/resources/menu-resource.html#item-element

CHAPTER 6: User Interface

143

Listing 6-4. Controlling the Appearance of Action Items Using showAsAction Parameter

<item
 android:id="@+id/action_search"
 android:title="@string/action_search"
 android:icon="@drawable/ic_action_search"
 android:showAsAction="ifRoom|collapseActionView"/>

Displaying the Actions in the Action Bar

For the defined action bar items to be displayed in the action bar, they need
to be inflated as a Menu5 instance. This should be done by overriding the
onCreateOptionsMenu6 method of the Activity class, as shown in Listing 6-5.
The Android framework will call this method when the action bar is getting
displayed.

Listing 6-5. Inflating the Actions to the Action Bar

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.menu_actions, menu);
 return true;
}

Handling Clicks on Actions

The click events from the action bar get delivered to the application through
the onOptionsItemSelected7 method of the Activity class. As shown
in Listing 6-6, the onOptionsItemSelected method gets called with the

Caution It is recommended to use ifRoom instead of always. Android device

form factors are highly fragmented, and it is better to let the Android platform

make the proper judgment about how many actions should be placed in the

action bar.

5http://developer.android.com/reference/android/view/Menu.html.
6http://developer.android.com/reference/android/app/Activity.html
#onCreateOptionsMenu(android.view.Menu).
7http://developer.android.com/reference/android/app/Activity.html
#onOptionsItemSelected(android.view.MenuItem).

http://developer.android.com/reference/android/view/Menu.html
http://developer.android.com/reference/android/app/Activity.html%23onCreateOptionsMenu(android.view.Menu)
http://developer.android.com/reference/android/app/Activity.html%23onCreateOptionsMenu(android.view.Menu)
http://developer.android.com/reference/android/app/Activity.html%23onOptionsItemSelected(android.view.MenuItem)
http://developer.android.com/reference/android/app/Activity.html%23onOptionsItemSelected(android.view.MenuItem)

CHAPTER 6: User Interface144

MenuItem8 instance for the selected action. The application can then extract
the item ID through the getItemId method to identify which action gets
selected. If the click event got processed, the application is expected to
return true to inform the Android platform.

Listing 6-6. Handling the Action Selection

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 boolean consumed = true;

 switch (item.getItemId()) {
 case R.id.action_save:
 break;

 case R.id.action_share:
 break;

 default:
 consumed = super.onOptionsItemSelected(item);
 }

 return consumed;
}

In addition to the onOptionsItemSelected, the application can also use the
android:onClick attribute of the item XML tag in the menu resource to
specify a callback method to handle click events for individual actions, as
shown in Listing 6-7.

Listing 6-7. Declaring a Callback Method to Handle the Click Event

<item
 android:id="@+id/action_save"
 android:title="@string/action_save"
 android:icon="@drawable/ic_action_save"
 android:showAsAction="ifRoom"
 android:onClick="save"/>

Once the action is clicked, the save method of the Activity instance will be
invoked to handle the event, as shown in Listing 6-8.

8http://developer.android.com/reference/android/view/MenuItem.html.

http://developer.android.com/reference/android/view/MenuItem.html

CHAPTER 6: User Interface

145

Listing 6-8. The Callback Method in the Activity Class

public void save(MenuItem item) {
 // Handle action click event
}

Action Views
Regular actions get displayed as an icon on the action bar, and the
application is expected to present access to the actual action as a result
of the user clicking on the action icon. In order to provide faster access
to the actions, Android provides action views. Action views are widgets
that appear on the action bar as a substitute for action icons. Action view
widgets give direct access to actions without the extra step. As shown in
Figure 6-2, the SearchView9 instance is a good example of the action view.

Figure 6-2. SearchView on the action bar

SearchView allows the user to start the search action immediately from the
action bar.

Adding Action Views to the Action Bar

Action views are also declared through the actionViewClass attribute of the
<item> tag, as shown in Listing 6-9.

Listing 6-9. Declaring an Action with an Action View

<item
 android:id="@+id/action_search"
 android:title="@string/action_search"
 android:icon="@drawable/ic_action_search"
 android:showAsAction="ifRoom "
 android:actionViewClass="android.widget.SearchView"/>

9http://developer.android.com/reference/android/widget/SearchView.html.

http://developer.android.com/reference/android/widget/SearchView.html

CHAPTER 6: User Interface146

Action views can be a View, or they can be a view layout. The actionLayout
attribute can be used instead of the actionViewClass attribute if a layout will
be used for the action view.

Accessing the Action View Instance

The application can access the instance of the action view within the
onCreateOptionsMenu method after inflating the menu resource, as shown in
Listing 6-10.

Listing 6-10. Accessing the Action View Instance

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.menu_main, menu);

 MenuItem searchMenuItem =
 menu.findItem(R.id.action_search);
 SearchView searchView =
 (SearchView) searchMenuItem.getActionView();

 return true;
}

Collapsing Action Views to Preserve Space

As shown in Figure 6-2, action views, by their nature, can take up a large
portion of the action bar. As shown in Listing 6-11, the application can use
the collapseActionView in the showAsAction attribute to provide a hint to
the Android platform that the action view should be collapsed into an action
button.

Listing 6-11. Collapsing an Action View

<item
 android:id="@+id/action_search"
 android:title="@string/action_search"
 android:icon="@drawable/ic_action_search"
 android:showAsAction="ifRoom|collapseActionView"
 android:actionViewClass="android.widget.SearchView"/>

As shown in Figure 6-3, the Android platform is handling the collapse
operation; the application does not have handle the click event for the
action. It will automatically get expanded to show the action view.

CHAPTER 6: User Interface

147

Action Providers
Although action views allow replacing action buttons with rich widgets,
they do not automatically handle the actual action that the widget should
perform. The Android framework delivers action providers to fill this gap.
Action providers, besides replacing the action button with a custom layout,
also take full control of all the action’s behaviors.

The ShareActionProvider is a good example of action providers. As shown
in Figure 6-4, the ShareActionProvider replaces the action button with a
drop-down menu listing all possible ways that the content can be shared.

Figure 6-3. Collapsed action view shown as a button

Figure 6-4. ShareActionProvider with a drop-down menu

Besides rendering the list, it also handles the internals of sharing the content
per the user’s selection.

Adding the Action Provider to the Action Bar

Action views are also declared through the actionProviderClass attribute of
the <item> tag, as shown in Listing 6-12.

CHAPTER 6: User Interface148

Listing 6-12. Adding the Share Action Provider to the Action Bar

<item android:id="@+id/action_share"
 android:title="@string/action_share"
 android:showAsAction="ifRoom"
 android:actionProviderClass=
 "android.widget.ShareActionProvider"/>

Initializing the Action Provider

As the action provider needs to perform a certain operation, it may require
some additional information from the application. As shown in Listing 6-13,
the application can initialize action providers within the onCreateOptionsMenu
method of the Activity class.

Listing 6-13. Initializing the Action Provider

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.menu_toast, menu);

 MenuItem menuItem = menu.findItem(R.id.action_share);
 ShareActionProvider shareActionProvider =
 (ShareActionProvider) menuItem.getActionProvider();

 Intent intent = new Intent(Intent.ACTION_SEND);
 intent.setType("image/*");

 shareActionProvider.setShareIntent(intent);
 return true;
}

Toasts
Toast is a small pop-up window that provides feedback to the user about
an application operation. Toast provides feedback as the Toast10 class
in the Android framework. Toasts are displayed for a short period of time
and disappear. Toasts are information-only pop-up windows; they cannot
interact with the user, as shown in Figure 6-5.

10http://developer.android.com/reference/android/widget/Toast.html.

http://developer.android.com/reference/android/widget/Toast.html

CHAPTER 6: User Interface

149

The application can show a toast message anytime by creating the toast
using the makeText11 method of the Toast class and then calling its show12
method, as shown in Listing 6-14.

Listing 6-14. Displaying a Toast Message

Toast toast = Toast.makeText(this,
 "Message Sent",
 Toast.LENGTH_SHORT);

toast.show();

The makeText method takes the current context, the message to display,
and the toast duration. The message can be supplied as a simple string or a
string resource ID. The Toast class provides two constants for the supported
toast durations.

	LENGTH_SHORT: Toast message for a short period of time.

	LENGTH_LONG: Toast message for a long period of time.

Figure 6-5. Toast message

Note As a best practice, toasts should only be used when the application is

in the foreground. When the application is backgrounded, any feedback from

the application should be delivered to the user through notifications rather than

toasts.

11http://developer.android.com/reference/android/widget/Toast.
html#makeText(android.content.Context, int, int).
12http://developer.android.com/reference/android/widget/Toast.
html#show().

http://developer.android.com/reference/android/widget/Toast.html%23makeText(android.content.Context%2c%20int%2c%20int)
http://developer.android.com/reference/android/widget/Toast.html%23makeText(android.content.Context%2c%20int%2c%20int)
http://developer.android.com/reference/android/widget/Toast.html%23show()
http://developer.android.com/reference/android/widget/Toast.html%23show()

CHAPTER 6: User Interface150

Dialogs
Toast messages are informational only; they cannot receive the user’s
input. If the application needs to prompt for the user’s input, the Android
framework provides dialog messages. Similar to toasts, dialogs are also
small pop-up windows that do not fill the screen. Dialogs can contain variety
of input controls to interact with the user. On the Android platform, dialogs
are implemented on top of the Dialog13 base class.

Dialog Flavors
In order to facilitate the usage of dialog messages, the Android platform
also provides dialog flavors for most common use cases, such as the alert
dialog, the date picker dialog, the progress dialog, the time picker dialog,
the character picker dialog, the media route chooser dialer, and the media
route controller dialog. Applications can easily customize these dialogs to fit
unique application needs.

Caution We recommend that developers customize these dialog flavors

instead of directly building a new dialog on top of the Dialog base class.

Alert Dialog

Alert dialogs are provided through the AlertDialog14 class. This is the most
generic dialog flavor provided by the Android framework. All variety of
dialogs can be built on top of the alert dialogs. As shown in Figure 6-6, an
alert dialog consists of three parts.

	Title: An optional dialog title.

	Content: A message, a list, or other custom layout.

	Buttons: Up to three action buttons for the dialog.

13http://developer.android.com/reference/android/app/Dialog.html.
14http://developer.android.com/reference/android/app/AlertDialog.html.

http://developer.android.com/reference/android/app/Dialog.html
http://developer.android.com/reference/android/app/AlertDialog.html

CHAPTER 6: User Interface

151

Figure 6-6. Alert dialog

Creating an Alert Dialog

An alert dialog can be created using the AlertDialog.Builder15 builder
class, as shown in Listing 6-15.

Listing 6-15. Creating an Alert Dialog Using the Alert Dialog Builder

AlertDialog alertDialog = new AlertDialog.Builder(this)
 .setTitle("Dialog Title")
 .setMessage("Do you want to save?")
 .create();

The setMessage16 method of AlertDialog.Builder populates the content
area of the alert dialog with the given message text. Both the setTitle17
method and the setMessage method accept the text as a string, or as
a string resource. Calling the create18 method creates an AlertDialog
instance.

15http://developer.android.com/reference/android/app/AlertDialog.
Builder.html.
16http://developer.android.com/reference/android/app/AlertDialog.
Builder.html#setMessage(java.lang.CharSequence).
17http://developer.android.com/reference/android/app/AlertDialog.
Builder.html#setTitle(java.lang.CharSequence).
18http://developer.android.com/reference/android/app/AlertDialog.
Builder.html#create().

http://developer.android.com/reference/android/app/AlertDialog.Builder.html
http://developer.android.com/reference/android/app/AlertDialog.Builder.html
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setMessage(java.lang.CharSequence)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setMessage(java.lang.CharSequence)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setTitle(java.lang.CharSequence)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setTitle(java.lang.CharSequence)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23create().
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23create().

CHAPTER 6: User Interface152

Adding Buttons to an Alert Dialog

The alert dialog supports up to three buttons: the positive button, the
negative button, and the neutral button.

(1) Adding the Positive Button

The positive button is used to for the accept action, such as the “OK”
button. The setPositiveButton19 method of the AlertDialog.Builder is
used to define the positive button, as shown in Listing 6-16.

Listing 6-16. Adding the Positive Button to the Alert Dialog

AlertDialog alertDialog = new AlertDialog.Builder(this)
 .setTitle("Dialog Title")
 .setMessage("Do you want to save your changes?")
 .setPositiveButton("Save",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(
 DialogInterface dialogInterface,
 int which) {
 // Save the user's changes.

 }

 })

 .create();
 }

The setPositiveButton method takes the button’s label and a
DialogInterface.OnClickListener20 interface implementation to handle the
click action.

19http://developer.android.com/reference/android/app/AlertDialog.
Builder.html#setPositiveButton(int,android.content.DialogInterface.
OnClickListener).
20http://developer.android.com/reference/android/content/
DialogInterface.OnClickListener.html.

http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setPositiveButton(int%2candroid.content.DialogInterface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setPositiveButton(int%2candroid.content.DialogInterface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setPositiveButton(int%2candroid.content.DialogInterface.OnClickListener)
http://developer.android.com/reference/android/content/DialogInterface.OnClickListener.html
http://developer.android.com/reference/android/content/DialogInterface.OnClickListener.html

CHAPTER 6: User Interface

153

(2) Adding the Negative Button

The negative button is used for the cancel action. Similar to the positive
button, the setNegativeButton22 method of the AlertDialog.Builder class is
used to add the negative button.

(3) Adding the Neutral Button

The neutral button allows the user to skip making a decision, such as
clicking the “Remind me later” button. Similar to both positive and negative
buttons, the neutral button is also added to the alert dialog through the
setNeutralButton23 method of the AlertDialog.Builder class.

Using a List on an Alert Dialog

Besides these three support button types, the alert dialog can also contain
complex input controls, such as a list of items to choose from, as shown
in Figure 6-7.

Tip The DialogInterface.OnClickListener’s onClick21 callback

method takes the button type as its last parameter. Instead of providing multiple

implementations of this interface, the application may choose to provide a

single implementation, and use the button-type parameter to detect which

button the user clicks.

21http://developer.android.com/reference/android/content/
DialogInterface.OnClickListener.html#onClick(android.content.
DialogInterface, int).
22http://developer.android.com/reference/android/app/AlertDialog.
Builder.html#setNegativeButton(java.lang.CharSequence,android.content.
Dialog Interface.OnClickListener).
23http://developer.android.com/reference/android/app/AlertDialog.
Builder.html#setNeutralButton(java.lang.CharSequence,android.content.
Dialog Interface.OnClickListener).

http://developer.android.com/reference/android/content/DialogInterface.OnClickListener.html%23onClick(android.content.DialogInterface%2c%20int)
http://developer.android.com/reference/android/content/DialogInterface.OnClickListener.html%23onClick(android.content.DialogInterface%2c%20int)
http://developer.android.com/reference/android/content/DialogInterface.OnClickListener.html%23onClick(android.content.DialogInterface%2c%20int)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setNegativeButton(java.lang.CharSequence%2candroid.content.Dialog%20Interface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setNegativeButton(java.lang.CharSequence%2candroid.content.Dialog%20Interface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setNegativeButton(java.lang.CharSequence%2candroid.content.Dialog%20Interface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setNeutralButton(java.lang.CharSequence%2candroid.content.Dialog%20Interface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setNeutralButton(java.lang.CharSequence%2candroid.content.Dialog%20Interface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setNeutralButton(java.lang.CharSequence%2candroid.content.Dialog%20Interface.OnClickListener)

CHAPTER 6: User Interface154

Figure 6-7. Using a list in the alert dialog

The setItems24 method of the AlertDialog.Builder class is used to set the
content of such list. The AlertDialog.Builder class provides two flavors of
setItems method. The method can either take the list of items from a string
array, as shown in Listing 6-15, or, instead, take a string array resource ID.

Listing 6-17. Using a List in the Alert Dialog

final String[] items = {
 "One", "Two", "Three", "Four"
};

AlertDialog alertDialog = new AlertDialog.Builder(this)
 .setTitle("Dialog Title")
 .setItems(items,new DialogInterface.OnClickListener() {
 @Override
 public void onClick(
 DialogInterface dialogInterface,
 int what) {
 String item = items[what];

 }

 })

 .create();

24http://developer.android.com/reference/android/app/AlertDialog.
Builder.html.#setItems(java.lang.CharSequence[],android.content.
DialogInterface.OnClickListener).

http://developer.android.com/reference/android/app/AlertDialog.Builder.html.%23setItems(java.lang.CharSequence%5b%5d%2candroid.content.DialogInterface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html.%23setItems(java.lang.CharSequence%5b%5d%2candroid.content.DialogInterface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html.%23setItems(java.lang.CharSequence%5b%5d%2candroid.content.DialogInterface.OnClickListener)

CHAPTER 6: User Interface

155

The alert dialog notifies the application about the selected item through the
provided DialogInterface.OnClickListener instance. The which parameter
of the onClick callback method takes the index position of the selected
item.

(4) Using a Multi-Choice List in the Alert Dialog

Alert dialogs can also be configured to show either a multi-choice or a
single-choice list, as shown in Figure 6-8.

Figure 6-8. Using a multi-choice list in the alert dialog

The AlertDialog.Builder class provides the setMutiChoiceItems25 method
to configure the alert dialog to render a multi-choice list, as shown in
Listing 6-18.

Listing 6-18. Rendering a Multi-choice List in the Alert Dialog Using the setMultiChoiceItems

Method

final String[] items = {
 "One", "Two", "Three", "Four"
};

final boolean[] checked = {
 false, true, false, false
};

25http://developer.android.com/reference/android/app/AlertDialog.
Builder.html#setMultiChoiceItems(java.lang.CharSequence[], boolean[],
android.content.DialogInterface.OnMultiChoiceClickListener).

http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setMultiChoiceItems(java.lang.CharSequence%5b%5d%2c%20boolean%5b%5d%2c%20android.content.DialogInterface.OnMultiChoiceClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setMultiChoiceItems(java.lang.CharSequence%5b%5d%2c%20boolean%5b%5d%2c%20android.content.DialogInterface.OnMultiChoiceClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setMultiChoiceItems(java.lang.CharSequence%5b%5d%2c%20boolean%5b%5d%2c%20android.content.DialogInterface.OnMultiChoiceClickListener)

CHAPTER 6: User Interface156

AlertDialog alertDialog = new AlertDialog.Builder(ToastActivity.this)
 .setTitle("Dialog Title")
 .setMultiChoiceItems(
 items,
 checked,
 new DialogInterface.OnMultiChoiceClickListener() {
 @Override
 public void onClick(
 DialogInterface dialogInterface,
 int what,
 boolean isChecked) {

 }

 }

)

 .create();

The setMultiChoiceItems method takes a string array of list items, an
optional Boolean array indicating which items must be checked by
default. The list change events get delivered to the application through the
DialogInterface.OnMultiChoiceClickListener26 interface.

(5) Using a Single-Choice List in the Alert Dialog

The setSingleChoiceItems27 method can be used the same way to render a
single-choice list within the alert dialog, as shown in Figure 6-9.

Figure 6-9. Using a single-choice list in the alert dialog

26http://developer.android.com/reference/android/content/
DialogInterface.OnMultiChoiceClickListener.html.
27http://developer.android.com/reference/android/app/AlertDialog.
Builder.html#setSingleChoiceItems(java.lang.CharSequence[], int,
android.content.DialogInterface.OnClickListener).

http://developer.android.com/reference/android/content/DialogInterface.OnMultiChoiceClickListener.html
http://developer.android.com/reference/android/content/DialogInterface.OnMultiChoiceClickListener.html
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setSingleChoiceItems(java.lang.CharSequence%5b%5d%2c%20int%2c%20android.content.DialogInterface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setSingleChoiceItems(java.lang.CharSequence%5b%5d%2c%20int%2c%20android.content.DialogInterface.OnClickListener)
http://developer.android.com/reference/android/app/AlertDialog.Builder.html%23setSingleChoiceItems(java.lang.CharSequence%5b%5d%2c%20int%2c%20android.content.DialogInterface.OnClickListener)

CHAPTER 6: User Interface

157

Note Both the setSingleChoiceItems and the setItems provide a

single-choice list to the user. The advantage of using the single-choice list is

that it persists the user’s choice, so that subsequent access to the same dialog

will start with the user’s previous selection as the default.

The setSingleChoiceItems method takes a string array for the list options
and an optional index value for the default selection. The selection
change gets delivered to the application through the DialogInterface.
OnClickListener, as shown in Listing 6-19.

Listing 6-19. Rendering a Single-Choice List in the Alert Dialog Using the setSingleChoiceItems

Method

AlertDialog alertDialog = new AlertDialog.Builder(ToastActivity.this)
 .setTitle("Dialog Title")
 .setSingleChoiceItems(
 items,
 1,
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(
 DialogInterface dialogInterface,
 int what) {

 }

 }

)

 .create();

Using a Custom Layout in an Alert Dialog

Besides the provided alert dialog types, through the setView method of the
AlertDialog.Builder class, the application can also provide its own custom
layout as the content of the alert dialog, as shown in Figure 6-10.

CHAPTER 6: User Interface158

The setView method takes a custom view instance to fill the alert dialog’s
content area. The custom view can be defined in a regular layout XML file
and then inflated as a view, as shown in Listing 6-20.

Listing 6-20. Rendering a Custom Layout in an Alert Dialog

LayoutInflater layoutInflater = getLayoutInflater();
View customDialog = layoutInflater.inflate(
 R.layout.custom_dialog, null);

final RatingBar ratingBar = (RatingBar)
customDialog.findViewById(R.id.ratingBar);

final AlertDialog alertDialog = new AlertDialog.Builder(ToastActivity.this)
 .setTitle("Dialog Title")
 .setView(customDialog)
 .setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(
 DialogInterface dialogInterface, int i) {
 int numberOfStars = ratingBar.getNumStars();
 }
 })
 .create();

Date Picker Dialog

The DatePickerDialog28 is a simple predefined alert dialog with a
DatePicker29 widget as its content, as shown in Figure 6-11.

Figure 6-10. Using a custom layout on alert dialog

28http://developer.android.com/reference/android/app/DatePickerDialog.html.
29http://developer.android.com/reference/android/widget/DatePicker.html.

http://developer.android.com/reference/android/app/DatePickerDialog.html
http://developer.android.com/reference/android/widget/DatePicker.html

CHAPTER 6: User Interface

159

Figure 6-11. DatePickerDialog prompting the user for a date

It can easily be used by applications to prompt the user for a date selection.
As shown in Listing 6-21, the DatePickerDialog, takes the current activity
context, a DatePickerDialog.OnDateSetListener30 implementation, and the
default values for year, month, and day.

Listing 6-21. DatePickerDialog Initialization

DatePickerDialog datePickerDialog = new DatePickerDialog(
 getActivity(),
 new DatePickerDialog.OnDateSetListener() {
 @Override
 public void onDateSet(DatePicker datePicker,
 int year,
 int monthOfYear,
 int dayOfMonth) {

 }
 },

30http://developer.android.com/reference/android/app/DatePickerDialog.
OnDateSetListener.html.

http://developer.android.com/reference/android/app/DatePickerDialog.%20OnDateSetListener.html
http://developer.android.com/reference/android/app/DatePickerDialog.%20OnDateSetListener.html

CHAPTER 6: User Interface160

 calendar.get(Calendar.YEAR),
 calendar.get(Calendar.MONTH),
 calendar.get(Calendar.DAY_OF_MONTH)
);

Time Picker Dialog

In the same way, the TimePickerDialog31 prompts the user to select a time
using the TimePicker32 widget, as shown in Figure 6-12.

Figure 6-12. TimePickerDialog prompting user for time

31http://developer.android.com/reference/android/app/TimePickerDialog.html.
32http://developer.android.com/reference/android/widget/TimePicker.html.
33http://developer.android.com/reference/android/app/TimePickerDialog.
OnTimeSetListener.html.

The TimePickerDialog takes the current activity context, a
TimePickerDialog.OnSetTimeListener33 instance, the default hour and
minute, and whether to use a 24-hour view, as shown in Listing 6-22.

http://developer.android.com/reference/android/app/TimePickerDialog.html
http://developer.android.com/reference/android/widget/TimePicker.html
http://developer.android.com/reference/android/app/TimePickerDialog.OnTimeSetListener.html
http://developer.android.com/reference/android/app/TimePickerDialog.OnTimeSetListener.html

CHAPTER 6: User Interface

161

Listing 6-22. TimePickerDialog Initialization

TimePickerDialog timePickerDialog = new TimePickerDialog(
 getActivity(),
 new TimePickerDialog.OnTimeSetListener() {
 @Override
 public void onTimeSet(
 TimePicker timePicker,
 int hour,
 int minute) {

 }
 },
 calendar.get(Calendar.HOUR),
 calendar.get(Calendar.MINUTE),
 true
);

Progress Dialog

The ProgressDialog34 provides an alert dialog with a ProgressBar35 widget.
In addition to the progress indicator, it can show a message, as shown in
Figure 6-13.

Figure 6-13. ProgressDialog showing the current progress percentage

34http://developer.android.com/reference/android/app/ProgressDialog.html.
35http://developer.android.com/reference/android/widget/ProgressBar.html.

The ProgressDialog provides methods to configure the ProgressBar.
As shown in Listing 6-23, through these methods, the ProgressBar style,
maximum value, and current progress can be changed.

http://developer.android.com/reference/android/app/ProgressDialog.html
http://developer.android.com/reference/android/widget/ProgressBar.html

CHAPTER 6: User Interface162

Listing 6-23. Initializing the ProgressDialog Instance

ProgressDialog progressDialog = new ProgressDialog(getActivity());
progressDialog.setProgressStyle(
 ProgressDialog.STYLE_HORIZONTAL);
progressDialog.setTitle("Loading...");
progressDialog.setMessage("http://www.apress.com/file.dat");
progressDialog.setMax(100);
progressDialog.incrementProgressBy(60);

Showing a Dialog
Although the Dialog class provides a show method to display the dialog,
this method does not handle the necessary life-cycle events directly.
Android recommends wrapping the dialogs within a DialogFragment36 before
showing them. The DialogFragment handles the life-cycle events such as
the user clicking the back button. As shown in Listing 6-24, the actual dialog
needs to be initialized and returned by overriding the onCreateDialog37
method of DialogFragment.

Listing 6-24. DialogFragment Wrapping an AlertDialog Instance

DialogFragment dialogFragment = new DialogFragment() {
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 AlertDialog alertDialog =
 new AlertDialog.Builder(getActivity())
 .setTitle("Dialog Title")
 .setMessage("Do you want to save?")
 .create();

 return alertDialog;
 }
};

The DialogFragment provides methods to control the dialog and manage
its appearance. The dialog can be displayed through the show38 method, as
shown in Listing 6-25.

36http://developer.android.com/reference/android/app/DialogFragment.html.
37http://developer.android.com/reference/android/app/DialogFragment.
html#onCreateDialog(android.os.Bundle).
38http://developer.android.com/reference/android/app/DialogFragment.
html#show(android.app.FragmentManager, java.lang.String).

http://www.apress.com/file.dat
http://developer.android.com/reference/android/app/DialogFragment.html
http://developer.android.com/reference/android/app/DialogFragment.html%23onCreateDialog(android.os.Bundle)
http://developer.android.com/reference/android/app/DialogFragment.html%23onCreateDialog(android.os.Bundle)
http://developer.android.com/reference/android/app/DialogFragment.html%23onCreateDialog(android.os.Bundle)%23show(android.app.FragmentManager%2c%20java.lang.String)
http://developer.android.com/reference/android/app/DialogFragment.html%23onCreateDialog(android.os.Bundle)%23show(android.app.FragmentManager%2c%20java.lang.String)

CHAPTER 6: User Interface

163

Figure 6-14. Notification icon displayed in the notification area

Listing 6-25. Showing an AlertDialog Using the DialogFragment

dialogFragment.show(
 getFragmentManager(),
 "dialog");

Notifications
Through the toasts and the dialogs, the application can easily notify the user
and prompt for information while the application is in the foreground. When
the application is backgrounded, it can communicate with the user through
the notifications. Once posted, the notifications appear as an icon in the
notification area, as shown in Figure 6-14.

Figure 6-15. Notification expanded in the notification drawer

In order to see the details of the notification, as shown in Figure 6-15, the
user can simply expand the notification drawer.

CHAPTER 6: User Interface164

Accessing the Notification Service
The NotificationManager39 class provides the Notification API. As
shown in Listing 6-26, the application can access the instance of the
NotificationManager by requesting the system service through the
getSystemService method of the current context and providing the constant
NOTIFICATION_SERVICE40 as the name. The Android platform does not require
special permission for applications to access the notification service.

Listing 6-26. Getting the Notification Manager Instance

NotificationManager notificationManager =
 (NotificationManager) getSystemService(
 Context.NOTIFICATION_SERVICE);

Posting a Notification
Each individual notification is represented through the Notification41 class.
In order to display a notification, Android requires the notification object to
contain at least a title, a detail text, and a small icon.

The Notification.Builder42 class is provided by the Android framework as
a convenient way to set various characteristics of a Notification object. As
shown in Listing 6-27, after setting the necessary fields, the application can
invoke the build43 method of the Notification.Builder object to build a
Notification class instance.

Listing 6-27. Building a Notification Object Through the Notification Builder

Notification notification = new Notification.Builder(this)
 .setContentTitle("New Message")
 .setContentText("onur.cinar@gmail.com")
 .setSmallIcon(R.drawable.ic_apress)
 .build();

39http://developer.android.com/reference/android/app/
NotificationManager.html.
40http://developer.android.com/reference/android/content/Context.html#
NOTIFICATION_SERVICE.
41http://developer.android.com/reference/android/app/Notification.html.
42http://developer.android.com/reference/android/app/Notification.
Builder.html.
43http://developer.android.com/reference/android/app/Notification.
Builder.html#build().

http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/content/Context.html%23%20NOTIFICATION_SERVICE
http://developer.android.com/reference/android/content/Context.html%23%20NOTIFICATION_SERVICE
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/Notification.Builder.html
http://developer.android.com/reference/android/app/Notification.Builder.html
http://developer.android.com/reference/android/app/Notification.Builder.html%23build()
http://developer.android.com/reference/android/app/Notification.Builder.html%23build()

CHAPTER 6: User Interface

165

The notification can then be posted through the notify44 method of the
NotificationManager class, as shown in Listing 6-28. The notify method
takes a unique identifier for this notification within the application and a
Notification object.

Listing 6-28. Posting a Notification to Be Shown in the Notification Area

notificationManager.notify(1, notification);

Adding Actions to a Notification
Notifications are expected to provide at least a single action to take the
user back to the application once the user clicks the notification. The
setContentIntent45 of the Notification.Builder can be used to set a
PendingIntent to be started once the user clicks the notification, as shown
in Listing 6-29.

Listing 6-29. Adding a Default Action to a Notification

Intent intent = new Intent(this, MessageActivity.class);

PendingIntent pendingIntent = PendingIntent.getActivity(
 this, 0, intent, 0);

Notification notification = new Notification.Builder(this)
 .setContentTitle("New Message")
 .setContentText("onur.cinar@gmail.com")
 .setSmallIcon(R.drawable.ic_apress)
 .setContentIntent(pendingIntent)
 .build();

Back Stack

Consistent navigation is essential for a smooth user experience. The Android
platform provides a back button to make it easier for the user to navigate
backward through the history of screens that he previously visited. The
Android platform achieves this by keeping a back stack of all started activities.
Although this is automatically handled by the platform most of the time, there
are certain exceptions, and notifications are one of them.

44http://developer.android.com/reference/android/app/
NotificationManager.html#notify(int, android.app.Notification).
45http://developer.android.com/reference/android/app/Notification.
Builder.html#setContentIntent(android.app.PendingIntent).

http://developer.android.com/reference/android/app/NotificationManager.html%23notify(int%2c%20android.app.Notification)
http://developer.android.com/reference/android/app/NotificationManager.html%23notify(int%2c%20android.app.Notification)
http://developer.android.com/reference/android/app/Notification.Builder.html%23setContentIntent(android.app.PendingIntent)
http://developer.android.com/reference/android/app/Notification.Builder.html%23setContentIntent(android.app.PendingIntent)

CHAPTER 6: User Interface166

Notifications allow the user to enter a deep-level activity directly by clicking
the notification. At this time, the deep-level activity starts without a back
stack. For example, an e-mail application would normally have an inbox
activity with a list of all messages and a message activity to display the
content of each message. In case of a new message notification, the user
will enter directly into the message activity without going through the inbox
activity. In such cases, the application is expected to synthesize a new
back stack.

Building the Back Stack

The Android framework provides the TaskStackBuilder46 class to allow
anapplication to build the back stack, as shown in Listing 6-30.

Listing 6-30. Building the Back Stack Using the TaskStackBuilder

Intent intent = new Intent(this, ToastActivity.class);

TaskStackBuilder taskStackBuilder =
 TaskStackBuilder.create(this);

taskStackBuilder.addParentStack(MessageActivity.class);
taskStackBuilder.addNextIntent(intent);

PendingIntent pendingIntent =
 taskStackBuilder.getPendingIntent(
 0, PendingIntent.FLAG_UPDATE_CURRENT);

The addParentStack47 method of TaskStackBuilder tries to automatically
build the back stack based on the parent hierarchy of the given activity.
The parent hierarchy of an activity is declared in the manifest file. The
parentActivityName48 attribute of the <activity> XML tag specifies the
parent activity, as shown in Listing 6-31.

46http://developer.android.com/reference/android/app/TaskStackBuilder.html.
47http://developer.android.com/reference/android/app/TaskStackBuilder.
html #addParentStack(android.app.Activity).
48http://developer.android.com/guide/topics/manifest/activity-element.
html#parent.

http://developer.android.com/reference/android/app/TaskStackBuilder.html
http://developer.android.com/reference/android/app/TaskStackBuilder.html%23addParentStack(android.app.Activity)
http://developer.android.com/reference/android/app/TaskStackBuilder.html%23addParentStack(android.app.Activity)
http://developer.android.com/guide/topics/manifest/activity-element.html#parent
http://developer.android.com/guide/topics/manifest/activity-element.html#parent

CHAPTER 6: User Interface

167

Listing 6-31. Declaring the Parent Hierarchy of an Activity

<activity android:name=".InboxActivity">
</activity>

<activity android:name=".MessageActivity"
 android:parentActivityName=".InboxActivity">

</activity>

Adding Action Buttons to a Notification
The Notification API also enables an application to incorporate up to three
buttons in the notification for additional actions, as shown in Figure 6-16.

Figure 6-16. Notification with two action buttons

By default, when the notification is collapsed, these action buttons are not
visible, and the application is still expected to provide a default action for
this case. The addAction49 method of the Notification.Builder class is
used to add action buttons to a notification as shown in Listing 6-32.

49http://developer.android.com/reference/android/app/Notification.
Builder.html#addAction(int, java.lang.CharSequence, android.app.
PendingIntent).

http://developer.android.com/reference/android/app/Notification.Builder.html%23addAction(int%2c%20java.lang.CharSequence%2c%20android.app.PendingIntent)
http://developer.android.com/reference/android/app/Notification.Builder.html%23addAction(int%2c%20java.lang.CharSequence%2c%20android.app.PendingIntent)
http://developer.android.com/reference/android/app/Notification.Builder.html%23addAction(int%2c%20java.lang.CharSequence%2c%20android.app.PendingIntent)

CHAPTER 6: User Interface168

Listing 6-32. Adding Action Buttons to a Notification

Notification notification = new Notification.Builder(this)
 .setContentTitle("New Message")
 .setContentText("onur.cinar@gmail.com")
 .setSmallIcon(R.drawable.ic_apress)
 .setContentIntent(pendingIntent)
 .addAction(R.drawable.ic_action_reply,
 "Reply", replyPendingIntent)
 .addAction(R.drawable.ic_action_discard,
 "Discard", discardPendingIntent)
 .build();

Updating a Notification
Once the notification gets displayed, the application can still update it.
Using the same unique notification identifier, the application can post a
new notification that will replace the previous one. For example, in case of
a messaging application, the Notification.InboxStyle50 can be used to
combine the notifications under a single notification, as shown in Figure 6-17.

Figure 6-17. Combined notifications using the inbox style

The Android platform can display notifications in an expanded view when
a layout is specified through the setStyle51 method. This makes it easier to
update the notifications by combining multiple notifications under a single
expandable notification, as shown in Listing 6-33.

50http://developer.android.com/reference/android/app/Notification.
InboxStyle.html.
51http://developer.android.com/reference/android/app/Notification.
Builder.html#setStyle(android.app.Notification.Style).

http://developer.android.com/reference/android/app/Notification.InboxStyle.html
http://developer.android.com/reference/android/app/Notification.InboxStyle.html
http://developer.android.com/reference/android/app/Notification.Builder.html%23setStyle(android.app.Notification.Style)
http://developer.android.com/reference/android/app/Notification.Builder.html%23setStyle(android.app.Notification.Style)

CHAPTER 6: User Interface

169

Listing 6-33. Combining Notifications Under a Single Notification Using the Inbox Style

Notification.InboxStyle inboxStyle =
 new Notification.InboxStyle();
inboxStyle.addLine("Fw: Information you have requested");
inboxStyle.addLine("New books on sale at Apress.com");
inboxStyle.setSummaryText("+2 more");

notification = new Notification.Builder(this)
 .setContentTitle("You have 4 New Messages")
 .setContentText("onur.cinar@gmail.com")
 .setSmallIcon(R.drawable.ic_apress)
 .setContentIntent(pendingIntent)
 .setStyle(inboxStyle)
 .build();

notificationManager.notify(1, notification);

Canceling a Notification
If the notification is no longer needed, the application can use the cancel52
method of the NotificationManager to cancel an existing notification by
providing its unique notification identifier, as shown in Listing 6-34.

Listing 6-34. Canceling a Notification Using the Unique Notification ID

notificationManager.cancel(1);

The application can also cancel all of its notifications through the cancelAll53
method of the NotificationManager class, as shown in Listing 6-35.

Listing 6-35. Canceling All Application Notifications

notificationManager.cancelAll();

52http://developer.android.com/reference/android/app/
NotificationManager.html#cancel(int).
53http://developer.android.com/reference/android/app/
NotificationManager.html#cancelAll().

http://developer.android.com/reference/android/app/NotificationManager.html%23cancel(int)
http://developer.android.com/reference/android/app/NotificationManager.html%23cancel(int)
http://developer.android.com/reference/android/app/NotificationManager.html%23cancelAll()
http://developer.android.com/reference/android/app/NotificationManager.html%23cancelAll()

CHAPTER 6: User Interface170

Summary
This chapter provided a brief overview of the APIs that are employed by
the Android framework to benefit from base window features, such as the
action bar, toasts, dialogs, and notifications. The action bar is part of every
Android application starting from API Level 11. It delivers a consistent way
to provide identification about the application and a prominent place to list
import application actions. Toasts and dialogs provide a way to launch a
pop-up window to deliver notification to the user, and also to prompt the
user for information while the application is still in the foreground. In a similar
way, notifications allow applications to notify the user while the application
is backgrounded. Once the notification gets posted for displaying in the
notification area, the Android platform also propagates the notification to
connected devices, such as smart watches. Proper use of these window
features improves the user experience and provides a consistent way for
users to interact with Android applications.

171

Chapter 7
Storing Data

The Android framework provides several options to store application
data. There is no single best storage option, as the options depend on the
application and the use cases. This chapter briefly goes through each of
the storage options offered by the Android framework, such as simple files,
shared preferences, and the relational databases. Later in this chapter,
we will explore Android Backup Services as a mechanism to back up and
restore application data to the cloud in order make it persist between device
upgrades and device resets.

Simple Files
As with all platforms, the easiest way to persist data on the Android platform
is by saving the data in files on the device’s storage. You can achieve this
with file I/O APIs (input/output application programming interfaces) provided
by the Java programming language. The Android platform provides two
storage types, internal storage (nonremovable) and external storage (such as
a removable SD card).

Using Internal Storage
By default, the data saved on the internal storage is private to the
application itself. Once the application gets uninstalled, Android removes
these files along the application. A new file can be created on the internal
storage by using the Context.openFileOutput1 method through the current
context, such as the current activity. The method will return a
java.io.OutputStream for writing to the file, as shown in Listing 7-1.

1http://developer.android.com/reference/android/content/Context.html#
openFileOutput(java.lang.String,int).

http://developer.android.com/reference/android/content/Context.html%23%20openFileOutput(java.lang.String%2cint)
http://developer.android.com/reference/android/content/Context.html%23%20openFileOutput(java.lang.String%2cint)

CHAPTER 7: Storing Data172

Listing 7-1. Opening a File on Internal Storage for Appending

try {
 FileOutputStream output =
 openFileOutput("file.dat", MODE_APPEND);
 try {
 // write to output stream
 } finally {
 output.close();
 }
} catch (IOException e) {
 e.printStackTrace();
}

The getFileOutput method takes a file name to open or create for output
and a file mode to use. The file mode is a list of flags that can be specified
to control how the file should be opened by the API. The file mode can be a
combination of the following:

	MODE_PRIVATE is the default file mode if no mode gets
specified. The created file can only be accessed by the
calling application.

	MODE_APPEND instructs Android to open the file in append
mode, instead of erasing it, if the file already exists.

Caution The Android platform also supported other modes such as

MODE_WORLD_READABLE and MODE_WORLD_WRITABLE, but they are now

deprecated due to security concerns. To share data with other applications

on the device, you should use more formal mechanisms, such as

Content Providers, instead.

You can then open the same file for reading using the Context.
openFileInput2 method and by providing the file name, as shown in
Listing 7-2.

Listing 7-2. Opening a File on Internal Storage for Reading

File input = openFileInput("file.dat");

2http://developer.android.com/reference/android/content/Context.html#
openFileInput(java.lang.String).

http://developer.android.com/reference/android/content/Context.html%23%20openFileInput(java.lang.String)
http://developer.android.com/reference/android/content/Context.html%23%20openFileInput(java.lang.String)

CHAPTER 7: Storing Data

173

Using External Storage
For larger files, I recommend using external storage as internal storage is
a scarce resource on most Android devices. The files saved on external
storage are readable and writable by anyone when the user enables USB
mass storage to mount external storage to an attached computer for
transferring files.

Caution When external storage gets mounted as USB mass storage on

a computer, it will become unavailable to the applications that are running

on the device.

Getting Access to External Storage

Using external storage for reading and writing does require a certain
permission. The application must request this permission through the
manifest file, as shown in Listing 7-3, during the install time.

Listing 7-3. Requesting Write Access to External Storage in the Manifest File

<uses-permission android:name=
 "android.permission.WRITE_EXTERNAL_STORAGE" />

Access to external storage is controlled by two permissions:

	READ_EXTERNAL_STORAGE for reading from external
storage.

	WRITE_EXTERNAL_STORAGE for both reading and writing to
external storage.

Checking If External Storage Is Available

As mentioned earlier in this section, external storage is removable, and
it may not be always available for the applications. Before trying to use
external storage, the application should always check its availability by

CHAPTER 7: Storing Data174

using the Environment.getExternalStorageState3 method. This method can
return any of the following constant strings to indicate the current state of
the external storage:

	MEDIA_UNKNOWN: Unknown storage state. External
storage is not usable.

	MEDIA_REMOVED: External storage is not currently
attached to the device.

	MEDIA_UNMOUNTED: External storage is attached to the
device, but the file system is not mounted yet. External
storage cannot be used at this state.

	MEDIA_CHECKING: External storage is attached but going
through a disk check.

	MEDIA_NOFS: External storage is attached, but it does
not have a known file system on it. It cannot be used at
this state.

	MEDIA_MOUNTED: External storage is attached and
mounted. It can be used by the applications.

	MEDIA_READ_ONLY: External storage is attached and
mounted in read-only mode. Applications can read the
files on the external storage, but they cannot write to
them.

	MEDIA_SHARED: External storage is currently shared
through the USB mass storage with an attached
computer.

	MEDIA_BAD_REMOVAL: External storage was previously
removed improperly. It will require checking.

	MEDIA_UNMOUNTABLE: External storage is attached to the
device but the file system cannot be mounted. This may
indicate that the media is corrupted.

The getExternalStorageState method can be used as shown in Listing 7-4
to check the availability of external storage before trying to access to it.

3http://developer.android.com/reference/android/os/Environment.html#get
ExternalStorageState().

http://developer.android.com/reference/android/os/Environment.html%23getExternalStorageState()
http://developer.android.com/reference/android/os/Environment.html%23getExternalStorageState()

CHAPTER 7: Storing Data

175

Listing 7-4. Checking the External Storage State Before Reading or Writing to It

String state = Environment.getExternalStorageState();

boolean canWrite = Environment.MEDIA_MOUNTED.equals(state);
if (canWrite) {
 // write to external storage
}

boolean canRead =
 Environment.MEDIA_MOUNTED_READ_ONLY.equals(state)
 || Environment.MEDIA_MOUNTED.equals(state);

if (canRead) {
 // read from external stroage
}

Getting the Path to External Storage

You can obtain the path to the external storage top-level directory through
the Enviroment.getExternalStorageDirectory4 method, as shown in
Listing 7-5.

Listing 7-5. Getting the External Storage Directory

File externalStorage =
 Environment.getExternalStorageDirectory();

It is recommended that the applications should not use this top-level
directory in order to prevent polluting the user’s external storage. Depending
on different file types and use cases, Android provides APIs to obtain the
proper directory.

Storing Application Internal Files on External Storage

You can use the Context.getExternalFilesDir5 method of the current
context to obtain the external storage directory that the application should
use to store its internal files. As with internal storage, the files that are stored
in this directory will be removed when the application gets uninstalled.
Android does not enforce any security on that directory, as any application
with access to the external storage can read and manipulate these files.

4http://developer.android.com/reference/android/os/Environment.html#get
ExternalStorageDirectory().
5http://developer.android.com/reference/android/content/Context.html#
getExternalFilesDir(java.lang.String).

http://developer.android.com/reference/android/os/Environment.html%23getExternalStorageDirectory()
http://developer.android.com/reference/android/os/Environment.html%23getExternalStorageDirectory()
http://developer.android.com/reference/android/content/Context.html%23%20getExternalFilesDir(java.lang.String)
http://developer.android.com/reference/android/content/Context.html%23%20getExternalFilesDir(java.lang.String)

CHAPTER 7: Storing Data176

The getExternalFilesDir6 method also takes a type parameter to return
a special subdirectory for the given file type as shown in Listing 7-6. If this
parameter is set to null, the top-level directory will be returned. The following
types are supported as constants on the android.os.Environment class:

	DIRECTORY_ALARMS: Directory to store alarm sound files.

	DIRECTORY_DCIM: Traditional directory for pictures and
video when mounting the device as a camera.

	DIRECTORY_DOCUMENTS: Directory to store document files.

	DIRECTORY_DOWNLOADS: Directory to store files that are
downloaded.

	DIRECTORY_MOVIES: Directory to store videos.

	DIRECTORY_MUSIC: Directory to store audio and music
files.

	DIRECTORY_NOTIFICATIONS: Directory to store notification
sound files.

	DIRECTORY_PICTURES: Directory to store pictures.

	DIRECTORY_PODCASTS: Directory to store podcasts.

	DIRECTORY_RINGTONES: Directory to store ringtones.

Listing 7-6. Getting the External Application Internal Pictures Directory

File externalPictures =
 getExternalFilesDir(Environment.DIRECTORY_PICTURES);

Storing Public Files on External Storage

An application can also store public files on external storage. As it is
recommended not to store them on the top-level directory, the application
should use the Environment.getExternalStoragePublicDirectory7 method
with the directory type based on the file to store, as shown in Listing 7-7.
The directory types are the same ones that were listed previously.

6http://developer.android.com/reference/android/content/Context.html#
getExternalFilesDir(java.lang.String).
7http://developer.android.com/reference/android/os/Environment.html# get
ExternalStoragePublicDirectory(java.lang.String).

http://developer.android.com/reference/android/content/Context.html%23%20getExternalFilesDir(java.lang.String)
http://developer.android.com/reference/android/content/Context.html%23%20getExternalFilesDir(java.lang.String)
http://developer.android.com/reference/android/os/Environment.html%23%20getExternalStoragePublicDirectory(java.lang.String)
http://developer.android.com/reference/android/os/Environment.html%23%20getExternalStoragePublicDirectory(java.lang.String)

CHAPTER 7: Storing Data

177

Listing 7-7. Getting the External Public Music Storage Directory

File publicMusic =
 Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MUSIC);

Caching Data Using Storage
Cache is a temporary storage to provide faster access to data that can
otherwise be retrieved through another mechanism. For example, a big
data file that is downloaded from the network could be placed into the
cache directory in order to make it faster for the application to reach it the
next time. If the device runs low on storage, Android deletes these files to
free space. At that stage, the file simply needs to be retrieved again by the
application.

In order to simply cache data, the following two methods can be used:

	Context.getCacheDir:8 to get the application’s cache
directory on the internal storage.

	Context.getExternalCacheDir:9 to get the application’s
cache directory on the external storage.

As the cache directory is application specific, it gets deleted when the
application gets uninstalled.

Structuring Data Through JSON
Using plain files to store data has challenges as managing the records
on a file can easily become a cumbersome task based on the complexity
of the data itself. The JavaScript Object Notation (JSON) format is a
human-readable text format to store data as attribute-value pairs. The
Android framework provides APIs to read and write data in JSON format.
Applications can rely on JSON format to persist data easily on both internal
and external storage.

8http://developer.android.com/reference/android/content/Context.html#
getCacheDir().
9http://developer.android.com/reference/android/content/Context.html#
getExternalCacheDir().

http://developer.android.com/reference/android/content/Context.html%23%20getCacheDir()
http://developer.android.com/reference/android/content/Context.html%23%20getCacheDir()
http://developer.android.com/reference/android/content/Context.html%23%20getExternalCacheDir()
http://developer.android.com/reference/android/content/Context.html%23%20getExternalCacheDir()

CHAPTER 7: Storing Data178

Writing Data Using JSON Format

The android.util.JsonWriter10 class can be used to write a JSON stream
on an output stream, as shown in Listing 7-8.

Listing 7-8. Writing Data to Internal Storage in JSON Format

try {
 JsonWriter jsonWriter = new JsonWriter(
 new OutputStreamWriter(
 openFileOutput(
 "data.json", MODE_PRIVATE)));
 try {
 // Use indention to make file human-readable
 jsonWriter.setIndent(" ");

 jsonWriter.beginObject();

 jsonWriter.name("name");
 jsonWriter.value("Onur Cinar");

 jsonWriter.name("email");
 jsonWriter.value("onur.cinar@gmail.com");

 jsonWriter.endObject();
 } finally {
 jsonWriter.close();
 }
} catch (IOException e) {
 e.printStackTrace();
}

Listing 7-9 also shows the JSON file that is generated.

Listing 7-9. The JSON Formatted Data File on Internal Storage

{
 "name": "Onur Cinar",
 "email": "onur.cinar@gmail.com"
}

10http://developer.android.com/reference/android/util/JsonWriter.html.

http://developer.android.com/reference/android/util/JsonWriter.html

CHAPTER 7: Storing Data

179

Reading Data Using JSON Format

The data file that is created in the previous example can easily be read by
using the android.util.JsonReader11 class as shown in Listing 7-10.

Listing 7-10. Reading Data from Internal Storage in JSON Format

try {
 JsonReader jsonReader = new JsonReader(
 new InputStreamReader(
 openFileInput("data.json")));
 try {
 jsonReader.beginObject();

 while (jsonReader.hasNext()) {
 String name = jsonReader.nextName();

 if ("name".equals(name)) {
 String firstName = jsonReader.nextString();
 } else if ("email".equals(name)) {
 String email = jsonReader.nextString();
 } else {
 // Unknown attribute skip value
 jsonReader.skipValue();
 }
 }

 jsonReader.endObject();
 } finally {
 jsonReader.close();
 }
} catch (IOException e) {
 e.printStackTrace();
}

Tip The JSON library that is provided as part of the Android framework is

a very low-level library requiring decent amount of code to operate. Gson

(https://code.google.com/p/google-gson/) is a more advanced

and easier to use JSON library alternative.

11http://developer.android.com/reference/android/util/JsonReader.html.

https://code.google.com/p/google-gson/
http://developer.android.com/reference/android/util/JsonReader.html

CHAPTER 7: Storing Data180

Shared Preferences
Android provides a comprehensive framework for easily persisting data as
key-value pairs through the android.content.SharedPreferences12 class.
For any particular set of preferences, Android only keeps a single instance of
this class in order to keep the integrity of the data. Shared preferences are
stored within internal storage, and they are removed when the application
gets uninstalled.

Opening Shared Preferences
Although fundamentally they are the same, the Android framework provides
two types of shared preferences: the activity shared preferences and the
generic shared preferences.

Opening the Activity Shared Preferences

The Acitivty.getPreferences13 method can be used from an activity
context to get a shared preference that is private to the current activity, as
shown in Listing 7-11.

Listing 7-11. Getting the Activity Private Shared Preferences

SharedPreferences sharedPreferences =
 getPreferences(MODE_PRIVATE);

Opening the Default Shared Preferences

The PreferenceManager.getDefaultSharedPreferences method can be
used to obtain the shared preferences instance for the context, as shown in
Listing 7-12. I recommend using the default shared preferences in order to
use the Preference Screen, discussed later in this section.

Listing 7-12. Getting the Default Shared Preferences for the Application

SharedPreferences sharedPreferences =
 PreferenceManager.getDefaultSharedPreferences(this);

12http://developer.android.com/reference/android/content/Shared
Preferences.html.
13http://developer.android.com/reference/android/app/Activity.html#get
Preferences(int).

http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/reference/android/app/Activity.html%23get%20Preferences(int)
http://developer.android.com/reference/android/app/Activity.html%23get%20Preferences(int)

CHAPTER 7: Storing Data

181

Opening the Generic Shared Preferences

Generic shared preferences files can also be created and used by employing
the Context.getSharedPreferences14 method and by providing a file name,
as shown in Listing 7-13. The getSharedPreferences method also takes a
file permission mode similar to the Context.openOutputFile method.

Listing 7-13. Opening a Shared Preferences File

SharedPreferences sharedPreferences =
 getShredPreferences("application", MODE_PRIVATE);

Adding and Editing Shared Preferences
New shared preferences can be added, and the existing ones can be edited
by getting a SharedPreferences.Editor15 class instance from the shared
preferences object by calling the SharedPreferences.edit16 method. The
Editor class provides various methods to store preference values in all
fundamental data types. The modifications can then be saved to the shared
preferences by calling the Editor.commit17 method as shown in Listing 7-14.

Listing 7-14. Editing the Shared Preferences

SharedPreferences.Editor editor = sharedPreferences.edit();

editor.putString("name", "Onur Cinar");
editor.putBoolean("registered", true);

editor.commit();

Reading the Shared Preferences
The key-value pairs in the shared preferences can be ready anytime by
using the getter methods on the SharedPreferences class, as shown in
Listing 7-15.

14http://developer.android.com/reference/android/content/ContextWrapper
.html#getSharedPreferences(java.lang.String, int).
15http://developer.android.com/reference/android/content/Shared
Preferences.Editor.html.
16http://developer.android.com/reference/android/content/Shared
Preferences.html#edit().
17http://developer.android.com/reference/android/content/Shared
Preferences.Editor.html#commit().

http://developer.android.com/reference/android/content/ContextWrapper.html%23getSharedPreferences(java.lang.String%2c%20int)
http://developer.android.com/reference/android/content/ContextWrapper.html%23getSharedPreferences(java.lang.String%2c%20int)
http://developer.android.com/reference/android/content/Shared%20Preferences.Editor.html
http://developer.android.com/reference/android/content/Shared%20Preferences.Editor.html
http://developer.android.com/reference/android/content/Shared%20Preferences.html%23edit()
http://developer.android.com/reference/android/content/Shared%20Preferences.html%23edit()
http://developer.android.com/reference/android/content/Shared%20Preferences.Editor.html%23commit()
http://developer.android.com/reference/android/content/Shared%20Preferences.Editor.html%23commit()

CHAPTER 7: Storing Data182

Listing 7-15. Reading from the Shared Preferences

String name =
 sharedPreferences.getString("name", null);

boolean registered =
 sharedPreferences.getBoolean("registered", false);

The last parameter of the getter method is the default value that should
be returned if you do not find the requested preferences key in the shared
preferences. The application can also check if a preference exists by using
the SharedPreferences.contains18 method.

Listening for Shared Preferences Changes
Application components can also register to be notified on
shared preferences changes using the SharedPreferences.
registerOnSharedPreferenceChangeListener19 method, as shown in
Listing 7-16.

Listing 7-16. Registering for Shared Preferences Change Events

SharedPreferences.OnSharedPreferenceChangeListener listener =
 new SharedPreferences.OnSharedPreferenceChangeListener() {
 @Override
 public void onSharedPreferenceChanged(
 SharedPreferences sharedPreferences, String key) {
 if (!sharedPreferences.contains(key)) {
 // shared preference is removed
 } else {
 // get the new value
 }
 }
};

sharedPreferences.registerOnSharedPreferenceChangeListener(
 listener);

18http://developer.android.com/reference/android/content/Shared
Preferences.html#contains(java.lang.String).
19http://developer.android.com/reference/android/content/Shared
Preferences.html#registerOnSharedPreferenceChangeListener
(android.content.SharedPreferences.OnSharedPreferenceChangeListener).

http://developer.android.com/reference/android/content/Shared%20Preferences.html%23contains(java.lang.String)
http://developer.android.com/reference/android/content/Shared%20Preferences.html%23contains(java.lang.String)
http://developer.android.com/reference/android/content/Shared%20Preferences.html%23registerOnSharedPreferenceChangeListener%0a(android.content.SharedPreferences.OnSharedPreferenceChangeListener)
http://developer.android.com/reference/android/content/Shared%20Preferences.html%23registerOnSharedPreferenceChangeListener%0a(android.content.SharedPreferences.OnSharedPreferenceChangeListener)
http://developer.android.com/reference/android/content/Shared%20Preferences.html%23registerOnSharedPreferenceChangeListener%0a(android.content.SharedPreferences.OnSharedPreferenceChangeListener)

CHAPTER 7: Storing Data

183

The application component can unregister from receiving
these notifications anytime by calling the SharedPreferences.
unregisterOnSharedPreferenceChangeListener method, as shown in
Listing 7-17.

Listing 7-17. Unregistering to Receive Shared Preferences Change Events

sharedPreferences.unregisterOnSharedPreferenceChangeListener(
 listener);

Preferences Screen
The Android framework also provides a fragment class, android.
preference.PreferenceFragment,20 which can automatically generate a
user interface (UI) screen to let the user manipulate the default shared
preferences through the UI components. This makes it easier to quickly
create settings screens in a consistent manner.

Configuring the Preferences Screen

The PreferenceFragment gets configured in an XML resource file through
the <PreferenceScreen>21 XML tag. This configuration file defines
which preferences should be edited through UI, and through which UI
components, as shown in Listing 7-18.

Listing 7-18. Preferences Screen Configuration Resource

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">

 <PreferenceCategory android:title=
 "@string/preferences_category_title_basic_preferences">

 <EditTextPreference
 android:key="name"
 android:title="@string/preferences_title_name"
 android:summary="@string/preferences_summary_name" />
 </PreferenceCategory>
</PreferenceScreen>

20http://developer.android.com/reference/android/preference/Preference
Fragment.html.
21http://developer.android.com/reference/android/preference/Preference
Screen.html.

http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/preference/Preference%20Fragment.html
http://developer.android.com/reference/android/preference/Preference%20Fragment.html
http://developer.android.com/reference/android/preference/Preference%20Screen.html
http://developer.android.com/reference/android/preference/Preference%20Screen.html

CHAPTER 7: Storing Data184

The configuration specifies that the shared preference named “name” should
be available for modifications through UI, and it will be modified through the
text editor UI component. The following editors are also supported:

	<CheckBoxPreference>:22 Provides a check box to edit a
Boolean preference.

	<ListPreference>:23 Provides a dialog with list of
options to edit a preference.

	<EditTextPreference>:24 Provides a dialog with a text
input to edit a preference.

Displaying the Preference Screen

The preference screen can be displayed by inheriting a new fragment
class from the android.preference.PreferenceFragment and setting the
preference configuration to use, as shown in Listing 7-19.

Listing 7-19. Inheriting a New Fragment Class from the Preference Fragment

public class BasicPreferenceFragment extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.basic_preferences);
 }
}

The new fragment can then be displayed as an ordinary fragment. The
preferences screen looks as shown in Figure 7-1.

22http://developer.android.com/reference/android/preference/CheckBox
Preference.html.
23http://developer.android.com/reference/android/preference/List
Preference.html.
24http://developer.android.com/reference/android/preference/EditText
Preference.html.

http://developer.android.com/reference/android/preference/CheckBox%20Preference.html
http://developer.android.com/reference/android/preference/CheckBox%20Preference.html
http://developer.android.com/reference/android/preference/List%20Preference.html
http://developer.android.com/reference/android/preference/List%20Preference.html
http://developer.android.com/reference/android/preference/EditText%20Preference.html
http://developer.android.com/reference/android/preference/EditText%20Preference.html

CHAPTER 7: Storing Data

185

SQLite Relational Database
The Android framework comes with support for storing the data in a
relational database. Android relies on the well-known SQLite embedded
database to power this feature. The Android framework provides wrapper
classes and helper methods to interact with the native SQLite library
functions from the application space.

Creating and Opening the Database
A new SQLite database can be created simply by extending the android.
database.sqlite.SQLiteOpenHelper25 abstract class and providing the
implementations for both the onCreate and the onUpgrade methods. As
shown in Listing 7-20, the constructor for SQLiteOpenHelper expects the
database name and the database version number, besides the current
context and an optional cursor factory.

Figure 7-1. Preferences screen

25http://developer.android.com/reference/android/database/sqlite/SQLite
OpenHelper.html.

http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html
http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html

CHAPTER 7: Storing Data186

Listing 7-20. Opening an SQLite Database

public class DataStore extends SQLiteOpenHelper {
 /** Database name. */
 private static final String DB_NAME = "datastore";

 /** Database version. */
 private static final int DB_VERSION = 2;

 public DataStore(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase sqLiteDatabase) {

 }

 @Override
 public void onUpgrade(SQLiteDatabase sqLiteDatabase,
 int oldVersion, int newVersion) {

 }
}

Caution Database operations require disk I/O and may take a longer

time to complete. An application should not invoke any database operation

within the main thread (UI thread) in order to prevent possible UI freezes

and ANR (application not responding) dialog.

During runtime, if the database does not exist, the onCreate26 method gets
called to let the application prepare the database by creating the database
tables. If the database exists but the database version number is lower than
the one provided to the constructor, the onUpgrade27 method gets called to
allow the application to do the necessary steps to upgrade the database
schema.

26http://developer.android.com/reference/android/database/sqlite/SQLite
OpenHelper.html#onCreate(android.database.sqlite.SQLiteDatabase).
27http://developer.android.com/reference/android/database/sqlite/
SQLite OpenHelper.html#onUpgrade(android.database.sqlite.SQLiteDatabase,
int, int).

http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23onCreate(android.database.sqlite.SQLiteDatabase)
http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23onCreate(android.database.sqlite.SQLiteDatabase)
http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23onUpgrade(android.database.sqlite.SQLiteDatabase%2c%20int%2c%20int)
http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23onUpgrade(android.database.sqlite.SQLiteDatabase%2c%20int%2c%20int)
http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23onUpgrade(android.database.sqlite.SQLiteDatabase%2c%20int%2c%20int)

CHAPTER 7: Storing Data

187

Creating Tables
You can create database tables in the onCreate method by issuing one or
more CREATE TABLE28 SQL queries, as shown in Listing 7-21. Android simply
provides a wrapper around SQLite; all SQL commands and data types that
are supported by SQLite can be used from the Java space.

Listing 7-21. Creating the Database Tables

@Override
public void onCreate(SQLiteDatabase sqLiteDatabase) {
 sqLiteDatabase.execSQL(
 "CREATE TABLE address_book ("
 + "name TEXT PRIMARY KEY"
 + ", email TEXT NOT NULL"
 + ")"
);
}

The foregoing example code creates a table named address_book with
two columns, name and email, both using TEXT data type. The PRIMARY KEY
column constraint on the name column indicates that the name will be the
unique identifier for the data rows, so that it cannot contain any duplicates.

Upgrading the Existing Database
During runtime, if an existing database is found with a lower database version
number, the onUpgrade method gets called with both the new and old database
version numbers. Depending on the version of the existing database, the
application can issue a set of SQL queries to upgrade the database schema
and the data to the newer version. As shown in Listing 7-22, the ALTER TABLE29
SQL query can be used to manipulate the database tables.

Note In case of a downgrade, the onDowngrade method can be

overridden to provide the steps to downgrade a database schema. By

default, the SQLiteOpenHelper throws an exception if the database

version is higher than the one provided to the constructor.

28www.sqlite.org/lang_createtable.html.
29www.sqlite.org/lang_altertable.html.

http://www.sqlite.org/lang_createtable.html
http://www.sqlite.org/lang_altertable.html

CHAPTER 7: Storing Data188

Listing 7-22. Upgrading an Existing Database by Altering Database Tables

@Override
public void onUpgrade(SQLiteDatabase sqLiteDatabase,
 int oldVersion, int newVersion) {
 if (oldVersion == 1) {
 sqLiteDatabase.execSQL(
 "ALTER TABLE address_book"
 + " ADD COLUMN email TEXT NOT NULL");
 }
}

Writing to the Database
In order to write to the database, you can obtain a writable database
object using the getWritableDatabase30 method of the class extending the
SQLiteOpenHelper, as shown in Listing 7-23.

Listing 7-23. Getting a Writable Database Instance

SQLiteDatabase sqLiteDatabase =
 dataStore.getWritableDatabase();

Inserting Data into the Database

You can insert data rows into the writable table by using the INSERT31
SQL query. The Android SQLite wrapper provides a helper method called
SQLiteDatabase.insert32 for this operation. The insert method takes the
name of the table, an android.content.ContentValues bundle holding the
data as key-value pairs, as shown in Listing 7-24.

Note As mentioned earlier in this section, you are not limited only by the

helper methods provided by the Android SQLite wrapper objects. You can

issue any valid SQLite command through the execSQL method to make

database manipulations, including adding new data to the database.

30http://developer.android.com/reference/android/database/sqlite/SQLite
OpenHelper.html#getWritableDatabase().
31www.sqlite.org/lang_insert.html.
32http://developer.android.com/reference/android/database/sqlite/
SQLite Database.html#insert(java.lang.String, java.lang.String, android.
content.ContentValues).

http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23getWritableDatabase()
http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23getWritableDatabase()
http://www.sqlite.org/lang_insert.html
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23insert(java.lang.String%2c%20java.lang.String%2c%20android.%20content.ContentValues)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23insert(java.lang.String%2c%20java.lang.String%2c%20android.%20content.ContentValues)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23insert(java.lang.String%2c%20java.lang.String%2c%20android.%20content.ContentValues)

CHAPTER 7: Storing Data

189

Listing 7-24. Inserting a New Data Row in the Database

public void add(String name, String email) {
 ContentValues contentValues = new ContentValues();
 contentValues.put("name", name);
 contentValues.put("email", email);

 SQLiteDatabase sqLiteDatabase = getWritableDatabase();
 sqLiteDatabase.insert("address_book", null, contentValues);
}

Tip Persisting data from an object structure may become cumbersome

work. Although the Android framework does not directly provide them,

there are various Object Relational Mapping libraries supporting the

Android platform, such as the OrmLite

(http://ormlite.com/sqlite_java_android_orm.shtml).

Updating Existing Data in the Database

Data that is already in the database can be manipulated through the UPDATE33
SQL query. The SQLiteDatabase.update34 helper method is provided for
this operation. As shown in Listing 7-25, the method takes the table name,
values to update, and an SQL WHERE35 clause indicating which data rows
should be updated.

Tip Value substitution is supported in the SQL WHERE clause by using

the question mark (?) as a placeholder for values. These placeholders get

replaced with the values provided in the next parameter as a string array.

33www.sqlite.org/lang_update.html.
34http://developer.android.com/reference/android/database/sqlite/SQLite
Database.html#update(java.lang.String, android.content.ContentValues,
java.lang.String, java.lang.String[]).
35www.sqlite.org/lang_select.html#whereclause.

http://ormlite.com/sqlite_java_android_orm.shtml
http://www.sqlite.org/lang_update.html
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23update(java.lang.String%2c%20android.content.ContentValues%2c%20java.lang.String%2c%20java.lang.String%5b%5d)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23update(java.lang.String%2c%20android.content.ContentValues%2c%20java.lang.String%2c%20java.lang.String%5b%5d)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23update(java.lang.String%2c%20android.content.ContentValues%2c%20java.lang.String%2c%20java.lang.String%5b%5d)
http://www.sqlite.org/lang_select.html#whereclause

CHAPTER 7: Storing Data190

Listing 7-25. Updating the Existing Data in the Database

public void edit(String name, String email) {
 ContentValues contentValues = new ContentValues();
 contentValues.put("email", email);

 SQLiteDatabase sqLiteDatabase = getWritableDatabase();
 sqLiteDatabase.update("address_book", contentValues,
 "name=?", new String[] { name });
}

In the foregoing example code, the value of the email column on the
address_book table gets updated only for the data rows with the name
column matching the provided name.

Reading from the Database
In order to read data from the database, you can obtain a read-only
database instance by calling the getReadableDatabase36 of the class
extending the SQLiteOpenHelper class, as shown in Listing 7-26.

Listing 7-26. Getting a Readable Database Instance

SQLiteDatabase sqLiteDatabase =
 dataStore.getReadableDatabase();

Reading Data Rows from the Database

The SQLiteDatabase.query37 method enables you to run SQLite database
queries that can return one or more rows of data. The data is returned by
the query method as an android.database.Cursor38 instance. As shown in
Listing 7-27, the application code then can iterate through this cursor to
extract the returned data set one row each time.

36http://developer.android.com/reference/android/database/sqlite/SQLite
OpenHelper.html#getReadableDatabase().
37http://developer.android.com/reference/android/database/sqlite/SQLite
Database.html#query(java.lang.String, java.lang.String[], java.lang.
String, java.lang.String[], java.lang.String, java.lang.String, java.lang.
String, java.lang.String).
38http://developer.android.com/reference/android/database/Cursor.html.

http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23getReadableDatabase()
http://developer.android.com/reference/android/database/sqlite/SQLite%20OpenHelper.html%23getReadableDatabase()
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23query(java.lang.String%2c%20java.lang.String%5b%5d%2c%20java.lang.%20String%2c%20java.lang.String%5b%5d%2c%20java.lang.String%2c%20java.lang.String%2c%20java.lang.String%2c%20java.lang.String)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23query(java.lang.String%2c%20java.lang.String%5b%5d%2c%20java.lang.%20String%2c%20java.lang.String%5b%5d%2c%20java.lang.String%2c%20java.lang.String%2c%20java.lang.String%2c%20java.lang.String)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23query(java.lang.String%2c%20java.lang.String%5b%5d%2c%20java.lang.%20String%2c%20java.lang.String%5b%5d%2c%20java.lang.String%2c%20java.lang.String%2c%20java.lang.String%2c%20java.lang.String)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23query(java.lang.String%2c%20java.lang.String%5b%5d%2c%20java.lang.%20String%2c%20java.lang.String%5b%5d%2c%20java.lang.String%2c%20java.lang.String%2c%20java.lang.String%2c%20java.lang.String)
http://developer.android.com/reference/android/database/Cursor.html

CHAPTER 7: Storing Data

191

Listing 7-27. Reading Data Rows from the Database

public List<String> getAllEmails() {
 SQLiteDatabase sqLiteDatabase = getReadableDatabase();

 Cursor cursor = sqLiteDatabase.query(
 "address_book", new String[]{"email"},
 null, null, null, null,
 "ORDER BY email");

 LinkedList<String> emails = new LinkedList<String>();
 if (cursor.moveToFirst()) {
 do {
 emails.add(cursor.getString(0));
 } while(cursor.moveToNext());
 }

 return emails;
}

The query method takes the following parameters:

	table: Table name.

	columns: String array consisting of column names to
retrieve.

	selection: An optional SQL WHERE clause to select
which data rows to return, passing null returns all data
rows.

	selectionArgs: An optional list of parameter (?’s) values
to be substituted in selection.

	groupBy: Optional filter on how the rows should be
grouped using the GROUP BY39 clause.

	having: Optional filter on which row groups to be
returned using the HAVING clause.

	orderBy: Optional filter on how the rows should be
ordered using the ORDER BY40 clause.

	limit: Optional limit on maximum number of rows to
return using the LIMIT41 clause.

39www.sqlite.org/lang_select.html#resultset.
40www.sqlite.org/lang_select.html#orderby.
41www.sqlite.org/lang_select.html#limitoffset.

http://www.sqlite.org/lang_select.html#resultset
http://www.sqlite.org/lang_select.html#orderby
http://www.sqlite.org/lang_select.html#limitoffset

CHAPTER 7: Storing Data192

Deleting Data from the Database
Data in the database can be deleted by using the DELETE SQL query. The
Android SQLite wrapper provides the SQLiteDatabase.delete42 helper
method for this operation. As shown in Listing 7-28, the delete method
takes the table name and an SQL WHERE clause to filter the data rows to be
deleted.

Listing 7-28. Deleting Data from the Database

public void delete(String name) {
 SQLiteDatabase sqLiteDatabase = getWritableDatabase();
 sqLiteDatabase.delete("address_book",
 "name=?", new String[] {name});
}

Deleting the Entire Database
You can also delete the entire database by calling the Context.
deleteDatabase43 method and providing the database name, as shown in
Listing 7-29.

Listing 7-29. Deleting the Entire Database

public static void deleteDatabase(Context context) {
 context.deleteDatabase(DB_NAME);
}

Android Backup Service
Due to the speed of technological enhancement in the mobile field, the
average lifespan of a mobile device is around two years. Mobile phone users
upgrade their devices to a newer model almost every two years. Android
helps to smooth this process by continuously backing up the list of the
user’s downloaded applications and system settings to the cloud. Once
the user upgrades to a new mobile device, Android seamlessly restores the
applications and system settings.

42http://developer.android.com/reference/android/database/sqlite/SQLite
Database.html#delete(java.lang.String, java.lang.String, java.lang.
String[]).
43http://developer.android.com/reference/android/content/Context.html#
deleteDatabase(java.lang.String).

http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23delete(java.lang.String%2c%20java.lang.String%2c%20java.lang.%20String%5b%5d)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23delete(java.lang.String%2c%20java.lang.String%2c%20java.lang.%20String%5b%5d)
http://developer.android.com/reference/android/database/sqlite/SQLite%20Database.html%23delete(java.lang.String%2c%20java.lang.String%2c%20java.lang.%20String%5b%5d)
http://developer.android.com/reference/android/content/Context.html%23%20deleteDatabase(java.lang.String)
http://developer.android.com/reference/android/content/Context.html%23%20deleteDatabase(java.lang.String)

CHAPTER 7: Storing Data

193

Although this makes it possible for the applications to follow the user
as the user upgrades to new mobile devices, the application data is not
carried with this process by default. Application developers are expected to
explicitly sign up for the Android Backup Service,44 and to provide a custom
implementation of android.app.backup.BackupAgent45 in their application to
interact with the Android Backup Service.

Signing Up for Android Backup Service
Applications that support data backup should register for the Android
Backup Service through the signup page at https://developer.android.com/
google/backup/signup.html. As shown in Figure 7-2, you must first accept
the terms of service and provide the application package name.

Figure 7-2. Android Backup Service signup page

44http://developer.android.com/guide/topics/data/backup.html.
45http://developer.android.com/reference/android/app/backup/
BackupAgent.html.

Adding the Backup Service Key to the Manifest
Upon signing up for the Android Backup Service, you will receive a unique
API key. This key needs to be incorporated into the application manifest file,
AndroidManifest.xml, through a <meta-data> tag inside the <application>
tag, as shown in Listing 7-30. You can simply copy and paste the
<meta-data> line from the signup page into the application manifest file.

Listing 7-30. Adding the API Key into the Application Manifest

<application ...>
 <meta-data
 android:name="com.google.android.backup.api_key"
 android:value="AEd2zEfV3XzHSHqKxoIJAyYVZ6ZWnz4W_AmA" />
 ...
</application>

https://developer.android.com/google/backup/signup.html
https://developer.android.com/google/backup/signup.html
http://developer.android.com/guide/topics/data/backup.html
http://developer.android.com/reference/android/app/backup/BackupAgent.html
http://developer.android.com/reference/android/app/backup/BackupAgent.html

CHAPTER 7: Storing Data194

Providing the Backup Agent Implementation
The Android Backup Service does not automatically back up and restore
the application data directory. It requires the application to provide a backup
agent implementation to handle the application-specific backup and restore
operations. The easiest way to provide a backup agent is by extending
the android.app.backup.BackupAgentHelper46 class. Upon extending the
BackupAgentHelper, simply override the onCreate method and specify the list
of things to be backed up by using the following helper classes:

	FileBackupHelper:47 Manages backup and restore of a
given list of files in the application’s data directory.

	SharedPreferenceBackupHelper:48 Manages backup and
restore of shared preferences files.

Note The Android Backup Service key that is provided here is simply a

placeholder. You must register for a unique API key in order to experiment

with the example code.

Note To handle other data types that are not covered by the backup

agent helper classes, you should extend the BackupAgent class and

provide implementation for the backup and restore operations.

Each of these backup agent helpers can handle more than one entity, as
shown in Listing 7-31.

Listing 7-31. BackupAgentHelper Implementation

package com.apress.helloandroid;

import android.app.backup.BackupAgentHelper;
import android.app.backup.FileBackupHelper;
import android.app.backup.SharedPreferencesBackupHelper;

46http://developer.android.com/reference/android/app/backup/BackupAgent
Helper.html.
47http://developer.android.com/reference/android/app/backup/FileBackup
Helper.html.
48http://developer.android.com/reference/android/app/backup/Shared
PreferencesBackupHelper.html.

http://developer.android.com/reference/android/app/backup/BackupAgent%20Helper.html
http://developer.android.com/reference/android/app/backup/BackupAgent%20Helper.html
http://developer.android.com/reference/android/app/backup/FileBackup%20Helper.html
http://developer.android.com/reference/android/app/backup/FileBackup%20Helper.html
http://developer.android.com/reference/android/app/backup/Shared%20PreferencesBackupHelper.html
http://developer.android.com/reference/android/app/backup/Shared%20PreferencesBackupHelper.html

CHAPTER 7: Storing Data

195

public class CloudBackupAgent extends BackupAgentHelper {
 @Override
 public void onCreate() {
 super.onCreate();

 addHelper("preferences",
 new SharedPreferencesBackupHelper(this,
 getPackageName() + "_preferences",
 "user"));

 addHelper("files",
 new FileBackupHelper(this,
 "records.db"));
 }
}

The example code uses the SharedPreferenceBackupHelper to manage
the backup and restore of two shared preferences, the default shared
preferences and a generic shared preference called user.

Note The name for the default shared preferences is

<package_name>_preferences. This name can be used with the

SharedPreferenceBackupHelper to manage the backup and

restore for it.

The code then uses the FileBackupHelper to manage the backup and
restore of records.db file.

Caution Any access to a file that is declared to be backed up must

be synchronized as both the application and the backup service can

manipulate the file at the same time, which may cause data corruption.

CHAPTER 7: Storing Data196

Declaring the Backup Agent in the Manifest
The backup agent implementation should then be declared in the application
manifest file for the Android Backup Service to discover it. This is achieved
by using the android:backupAgent49 attribute of the <application> XML tag,
as shown in Listing 7-32.

Listing 7-32. Declaring the Backup Agent in the Application Manifest

<application
 android:backupAgent=".CloudBackupAgent"
 >

Requesting Backup
In order to make sure that all application data is properly backed up on
any modification, the application can request the Android Backup Service
to do a backup by calling the BackupManager.dataChanged50 method. The
backup request gets scheduled and later executed by calling the methods
of application’s backup agent implementation.

Testing the Backup Agent Implementation
The backup agent implementation can be validated through the bmgr51
command line tool that is part of the Android operating system.

Note Open Backup & Reset through the settings application that is on

the device to make sure that Backup my data and Automatic restore are

both enabled.

49http://developer.android.com/guide/topics/manifest/application-element.
html#agent.
50http://developer.android.com/reference/android/app/backup/Backup
Manager.html#dataChanged().
51http://developer.android.com/tools/help/bmgr.html.

http://developer.android.com/guide/topics/manifest/application-element.html#agent
http://developer.android.com/guide/topics/manifest/application-element.html#agent
http://developer.android.com/reference/android/app/backup/Backup%20Manager.html%23dataChanged()
http://developer.android.com/reference/android/app/backup/Backup%20Manager.html%23dataChanged()
http://developer.android.com/tools/help/bmgr.html

CHAPTER 7: Storing Data

197

Follow these steps to validate the backup agent implementation:

Using the ADB (Android Debug Bridge) shell, manually 	
trigger a backup request:

adb shell bmgr backup com.apress.helloandroid

Force the Android Backup Manager to do the backup:	

adb shell bmgr run

Uninstall your application to make sure that all local 	
data is erased:

adb uninstall com.apress.helloandroid

Install your application again and through the code 	
validate that the data is properly restored.

Summary
This chapter explored the different storage options that are provided by
the Android framework. As explained in this chapter, using simple files for
storing data is the most generic storage option, although it does require a
substantial amount of coding to handle both serializing and deserializing
the data as plain files. Shared preferences is an Android-specific storage
option for data that can be stored as key-value pairs. This storage
option is the suggested format to store preferences data. The Android
framework provides UI components to enable application developers to
quickly produce settings screens on top of shared preferences. Finally,
we explore SQLite database, the most advanced solution as a storage
option for relational data. Compared to the other two storage options,
the SQLite database allows the application to specify the format in which
the data should be stored using database schemas. Later the application
can manipulate and retrieve data from the relational database by simply
executing SQL queries. The lifespan of the data stored on the device is
tied to the lifespan of the device and operating system lifespans. The
application data is not automatically restored when the user does a device
reset, or simply upgrades to a new device. We explore Android Backup
Service in the final section as a cloud-based solution to back up and
restore application data.

199

Chapter 8
Sensors and Location

The Android platform provides built-in sensors for measuring location,
motion, orientation, and the characteristics of the surrounding environment.
These sensors enable the development of location and environment-aware
applications on the Android platform. This chapter explores the various
sensors and location devices supported by the Android platform and the
Android framework application programming interfaces (APIs) provided in
order to interact with these sensors and location devices.

Sensor
Through the provided sensor APIs, Android applications can monitor the
device’s sensors in order to provide a highly interactive and compelling
user experience. For example, most game applications extensively use the
device’s sensors as a way to obtain the user’s input in a natural way. This
section explores the APIs provided by the Android framework in order to
interact with these sensors.

Sensor Manager
The Android framework provides access to the device’s sensors through the
Sensor Service. The application can access the Sensor Service through the
SensorManager1 APIs. The SensorManager instance can be retrieved through
the getSystemService method, as shown in Listing 8-1.

1http://developer.android.com/reference/android/hardware/SensorManager.
html.

http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html

CHAPTER 8: Sensors and Location200

Listing 8-1. Getting the SensorManager Instance

SensorManager sensorManager = (SensorManager)
 getSystemService(Context.SENSOR_SERVICE);

Sensor Types

Android supports various kinds of sensors. Some of those sensors are
actual hardware sensors, part of the device, and some others are software-
based sensors making their measurements by relying on a combination of
other sensors. The Sensor2 class provides a set of constants for each of
these sensor types.

	TYPE_ACCELEROMETER: Accelerometer sensor—measures
the acceleration force in m/s.2

	TYPE_AMBIENT_TEMPERATURE: Ambient temperature
sensor—measures the ambient room temperature in
Celsius.

	TYPE_GAME_ROTATION_VECTOR: Uncalibrated rotation
vector sensor.

	TYPE_GEOMAGNETIC_ROTATION_VECTOR: Geomagnetic
rotation vector sensor.

	TYPE_GRAVITY: Gravity sensor.

	TYPE_GYROSCOPE: Gyroscope sensor.

	TYPE_GYROSCOPE_UNCALIBRATED: Uncalibrated gyroscope
sensor.

	TYPE_HEART_RATE: Heart rate sensor.

	TYPE_LIGHT: Light sensor.

	TYPE_LINEAR_ACCELERATION: Linear acceleration sensor.

	TYPE_MAGNETIC_FIELD: Magnetic field sensor.

	TYPE_MAGNETIC_FIELD_UNCALIBRATED: Uncalibrated
magnetic field sensor.

	TYPE_PRESSURE: Pressure sensor.

	TYPE_PROXIMITY: Proximity sensor.

	TYPE_RELATIVE_HUMIDITY: Relative humidity sensor.

2http://developer.android.com/reference/android/hardware/Sensor.html.

http://developer.android.com/reference/android/hardware/Sensor.html

CHAPTER 8: Sensors and Location

201

	TYPE_ROTATION_VECTOR: Rotation vector sensor.

	TYPE_SIGNIFICANT_MOTION: Significant motion trigger
sensor.

	TYPE_STEP_DETECTOR: Step detector sensor.

Getting the Default Sensor for a Given Type

Using the sensor-type constants provided in the previous list, the
getDefaultSensor3 method of SensorManager can be used to retrieve the
default sensor for the given type, as shown in Listing 8-2.

Caution Although most sensors do not require a special permission, the

newly introduced body sensors, such as the heart rate sensor, require the

calling application to have the android.permission.BODY_SENSORS

permission.

Listing 8-2. Getting the Default Sensor for a Given Sensor Type

Sensor sensor = sensorManager.getDefaultSensor(
 Sensor.TYPE_ACCELEROMETER);
if (sensor == null) {
 // Unable to get the sensor
} else {
 // Sensor can be used
}

Getting the List of All Sensors for a Given Type

The getDefaultSensor method only returns the default sensor for a given
type. If the device is equipped with more than one sensor for any given
sensor type, the application use getSensorList4 method instead. The
getSensorList method takes a sensor type and returns a list of sensors
matching the given type. The application can go through the returned list
and choose a sensor based on its characteristics, such as the sensor’s
resolution, as shown in Listing 8-3.

3http://developer.android.com/reference/android/hardware/SensorManager.
html#getDefaultSensor(int).
4http://developer.android.com/reference/android/hardware/SensorManager.
html#getSensorList(int).

http://developer.android.com/reference/android/hardware/SensorManager.html#getDefaultSensor(int)
http://developer.android.com/reference/android/hardware/SensorManager.html#getDefaultSensor(int)
http://developer.android.com/reference/android/hardware/SensorManager.html#getSensorList(int)
http://developer.android.com/reference/android/hardware/SensorManager.html#getSensorList(int)

CHAPTER 8: Sensors and Location202

Listing 8-3. Choosing a Sensor Based on Its Resolution

List<Sensor> sensors = sensorManager.getSensorList(
 Sensor.TYPE_ACCELEROMETER);

Sensor choosen = null;

if (sensors != null) {
 for (Sensor sensor : sensors) {
 if (choosen == null
 || choosen.getResolution() > sensor.getResolution()) {
 choosen = sensor;
 }
 }
}

Receiving Sensor Events
Once the sensor is obtained, the application can start listening for sensor
events. Each sensor may report events in a different way. Before starting to
listen for the sensor, the application should first check the sensor’s reporting
mode and choose the appropriate listening strategy.

Getting the Sensor’s Reporting Mode

Each sensor can have only one reporting mode. The sensor’s reporting
mode can be retrieved through the getReportingMode method, as shown in
Listing 8-4.

Listing 8-4. Getting the Sensor’s Reporting Mode

int reportingMode = sensor.getReportingMode();

The Sensor class provides constants for each of the following supported
reporting modes:

	REPORTING_MODE_CONTINUOUS: Events are reported at a
constant rate which is set by the application.

	REPORTING_MODE_ON_CHANGE: Events are reported only
when the measurement changes.

	REPORTING_MODE_ONE_SHOT: Events are reported in one-
shot mode. Upon detection of an event, the sensor
deactivates itself.

	REPORTING_MODE_SPECIAL_TRIGGER: Events are reported
as described in the description of the sensor.

CHAPTER 8: Sensors and Location

203

Receiving Sensor Events in Continuous and

On-Change Modes

In both continuous reporting mode and on-change reporting mode, the
application can simply register to receive the sensor events as they become
available. The sensor events are delivered to the calling applications through
a set of callback function calls.

Sensor Event Listener

The SensorEventListener5 interface declares the callback functions. In order
to receive sensor events, the application should provide an implementation
of this interface, as shown in Listing 8-5.

Listing 8-5. Sensor Event Listener Implementation

public class SensorActivity extends Activity
 implements SensorEventListener {

 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 // Sensor has new measurement
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int i) {
 // Sensor's accuracy has changed
 }
}

The SensorEventListener interface contains the following two callback
functions:

	onAccuracyChanged: Called when the accuracy of sensor
has changed.

	onSensorChanged: Called when sensor has new
measurement values.

5http://developer.android.com/reference/android/hardware/
SensorEventListener.html.

http://developer.android.com/reference/android/hardware/SensorEventListener.html
http://developer.android.com/reference/android/hardware/SensorEventListener.html

CHAPTER 8: Sensors and Location204

Registering for Sensor Events

The application can then register itself to receive the sensor events through
the registerListener6 method of SensorManager. The registerListener
method takes the SensorEventListener instance, the sensor instance, and
the rate that the application expects to receive sensor events, as shown in
Listing 8-6.

Listing 8-6. Registering to Receive Sensor Events

sensorManager.registerListener(this,
 sensor,
 SensorManager.SENSOR_DELAY_NORMAL);

The rate parameter is only a hint to the system, and it does not guarantee
the delivery of sensor events at the given rate. Starting from API Level
9 onward, the rate can be provided in milliseconds. For the application
developer’s convenience, the Android framework also provides the following
rate constants:

	SENSOR_DELAY_NORMAL: Default rate.

	SENSOR_DELAY_UI: Rate suitable for display purposes.

	SENSOR_DELAY_GAME: Rate suitable for games.

	SENSOR_DELAY_FASTEST: Fastest rate.

Unregistering from Sensor Events

When the application no longer needs to listen for sensor events, it can
unregister itself using the unregisterListener method of SensorManager.
Keeping the sensors active at all times will have significant battery-draining
impact. As a best practice, the application should unregister in the onPause
method before the application goes into the background, and register again
in the onResume method when the application gets brought back to the
foreground, as shown in Listing 8-7.

6http://developer.android.com/reference/android/hardware/SensorManager.
html#registerListener(android.hardware.SensorEventListener,android.
hardware.Sensor, int).

http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener(android.hardware.SensorEventListener,android.hardware.Sensor,%20int)
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener(android.hardware.SensorEventListener,android.hardware.Sensor,%20int)
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener(android.hardware.SensorEventListener,android.hardware.Sensor,%20int)

CHAPTER 8: Sensors and Location

205

Listing 8-7. Unregistering from Sensor Events When Backgrounded

@Override
protected void onResume() {
 super.onResume();

 sensorManager.registerListener(this, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
}

@Override
protected void onPause() {
 super.onPause();

 sensorManager.unregisterListener(this);
}

Receiving One-Shot Trigger Sensor Events

Due to their purpose and their design, not all sensors support the
provision of sensor readings at requested intervals. Such sensors usually
get triggered by a certain event and then report a sensor reading to the
application. The significant motion sensor is an example of such a sensor. It
reports a sensor reading back to the application when a significant motion
is detected. The trigger sensors automatically disable themselves after
reporting the first one-shot event.

Trigger Event Listener

As only one event would get reported by the server, the Android framework
provides a different listener, TriggerEventListener,7 for listening to such
events, as shown in Listing 8-8.

Listing 8-8. TriggerEventListener Implementation

public class OneShotListener extends TriggerEventListener {
 @Override
 public void onTrigger(TriggerEvent triggerEvent) {

 }
}

7http://developer.android.com/reference/android/hardware/
TriggerEventListener.html.

http://developer.android.com/reference/android/hardware/TriggerEventListener.html
http://developer.android.com/reference/android/hardware/TriggerEventListener.html

CHAPTER 8: Sensors and Location206

Requesting a One-Shot Sensor Event

As the trigger sensor does not run all the time, the application must explicitly
request a measurement from the sensor as needed. This is achieved through
the requestTriggerSensor8 method of the SensorManager, as shown in
Listing 8-9.

Listing 8-9. Requesting a Measurement from a Trigger Sensor

sensorManager.requestTriggerSensor(oneShotListener, sensor);

The requestTriggerSensor method takes the TriggerEventListener
instance and the Sensor instance.

Canceling a Pending Measurement Request

As the trigger sensor simply waits for a certain condition to happen, the
measurement result is not guaranteed to come immediately. The sensor
runs until there is an event to report. As shown in Listing 8-10, if the
application state changes and the measurement is no longer needed,
the application can explicitly cancel the previous measurement request,
through the cancelTriggerSensor method of SensorManager, in order to turn
the sensor off.

Listing 8-10. Canceling a Pending Request from a Trigger Sensor

sensorManager.cancelTriggerSensor(oneShotListener, sensor);

Interpreting Sensor Events
As explained in the section “Sensor Event Listener,” the sensor events are
delivered to the application through the onSensorChanged callback method.
The method takes a single parameter, the SensorEvent9 object which is
carrying the sensor event. The SensorEvent contains the following public
members:

	accuracy: The accuracy of this sensor event.

	sensor: The source sensor of this event.

8http://developer.android.com/reference/android/hardware/SensorManager.h
tml#requestTriggerSensor(android.hardware.TriggerEventListener,android.
hardware.Sensor).
9http://developer.android.com/reference/android/hardware/SensorEvent.
html.

http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor(android.hardware.TriggerEventListener,android.hardware.Sensor)
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor(android.hardware.TriggerEventListener,android.hardware.Sensor)
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor(android.hardware.TriggerEventListener,android.hardware.Sensor)
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html

CHAPTER 8: Sensors and Location

207

Table 8-1. Sensor Event Values Based on Sensor Type

Sensor Type Event Values Description

TYPE_ACCELEROMETER values[0]

values[1]

values[2]

Acceleration force along the x, y, z
axes (m/s2).

TYPE_AMBIENT_TEMPERATURE values[0] Ambient temperature (°C).

TYPE_GAME_ROTATION_VECTOR values[0]

values[1]

values[2]

Rotation vector component along
x, y, z axes.

TYPE_GEOMAGNETIC_

ROTATION_VECTOR

values[0]

values[1]

values[2]

Rotation vector component along
x, y, z axes.

TYPE_GRAVITY values[0]

values[1]

values[2]

Force of gravity along the x, y, z
axes (m/s2).

TYPE_GYROSCOPE values[0]

values[1]

values[2]

Rate of rotation around the x, y, z
axes (rad/s).

(continued)

	timestamp: The time in nanoseconds at which the event
happened.

	values: Sensor-dependent measurement values.

Sensor Event Values Based on Sensor Type

The structure of the values array that is provided in the SensorEvent object
depends on the type of sensor that the event is originating from. Table 8-1
provides a list of sensor types and how their sensor event values
are structured.

CHAPTER 8: Sensors and Location208

Sensor Type Event Values Description

TYPE_GYROSCOPE_

UNCALIBRATED

values[0]

values[1]

values[2]

Rate of rotation without drift
compensation around the x, y, z
axes (rad/s).

TYPE_HEART_RATE values[0] Heart rate in beats per minute.

TYPE_LIGHT values[0] Illuminance (lx).

TYPE_LINEAR_ACCELERATION values[0]

values[1]

values[2]

Acceleration force along x, y, z axes
(m/s2) excluding gravity.

TYPE_MAGNETIC_FIELD values[0]

values[1]

values[2]

Geomagnetic field strength along x,
y, z axes (mT).

TYPE_MAGNETIC_FIELD_

UNCALIBRATED

values[0]

values[1]

values[2]

Geomagnetic field strength without
hard iron calibration along x, y, z
axes (mT).

TYPE_PRESSURE values[0] Ambient air pressure (hPa or mbar).

TYPE_PROXIMITY values[0] Distance from object (cm).

TYPE_RELATIVE_HUMIDITY values[0] Ambient relative humidity (%).

TYPE_ROTATION_VECTOR values[0]

values[1]

values[2]

Rotation vector component along
the x, y, z axes.

values[3] Scalar component of the rotation
vector.

TYPE_SIGNIFICANT_MOTION N/A N/A

TYPE_STEP_DETECTOR values[0] Number of steps taken by the user
since the last reboot while the
sensor was activated.

Table 8-1. (continued)

CHAPTER 8: Sensors and Location

209

Location
Getting access to the user’s current location allows certain applications to
deliver relevant and better content to the user. For example, a restaurant
search application can order the search results based on the user’s distance
to each restaurant to help the user to easily find the information needed.
This section explores the location APIs provided by the Android framework.

Location Permissions
As tracking the user’s current location raises privacy concerns, the location
APIs are protected by a set of permissions. Only an application with the
proper permissions is allowed to access the user’s current location. The
Android platform provides two location permissions.

	android.permission.ACCESS_COARSE_LOCATION: Allows
the application to access the approximate location
of the user. The location information is derived from
network location sources such as cell towers and WiFi.

	android.permission.ACCESS_FINE_LOCATION: Allows the
application to access the precise location of the user.
The location information is based on a combination of
GPS, network location sources, and WiFi.

Location Manager
The Android framework provides access to the device’s sensors through the
location service. The application can access the location service through
the LocationManager10 APIs. The LocationManager instance can be retrieved
through the getSystemService method, as shown in Listing 8-11.

Listing 8-11. Getting the LocationManager Instance

LocationManager locationManager =
 (LocationManager) getSystemService(
 Context.LOCATION_SERVICE);

10http://developer.android.com/reference/android/location/
LocationManager.html.

http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/reference/android/location/LocationManager.html

CHAPTER 8: Sensors and Location210

Location Providers
The location service relies on the location providers to access the current
location of the user. The LocationManager class provides constants for each
of the supported location providers. The Android platform supports the
following location providers:

	GPS_PROVIDER: It determines the location using the GPS
satellites. Depending on environmental conditions, the
provider may take a while to return a location fix. It
requires ACCESS_FINE_LOCATION permission.

	NETWORK_PROVIDER: It determines the location using the
availability of cell tower and WiFi access points.

	PASSIVE_PROVIDER: It determines the location without
actually requesting a location fix. It relies on location
requests that are requested by other applications. It
requires ACCESS_FINE_LOCATION permission.

Checking If Location Provider Is Available

Not all location providers are available all the time. The Android platform
allows the user to turn the location providers on and off through the settings
application. Meanwhile, location providers may become unavailable if their
information source, such as WiFi, are disabled. The LocationManager class
provides the isProviderEnabled11 method to allow applications to query the
status of location providers, as shown in Listing 8-12.

Listing 8-12. Checking If the Location Provider Is Enabled

if (locationManager.isProviderEnabled(
 LocationManager.GPS_PROVIDER)) {
 // Use the GPS provider
} else {
 // Use an other provider
}

Listening for Location Provider State Changes

The Android platform allows the user to turn the location providers on and
off through the settings application. The change in location providers gets
broadcasted with the android.location.PROVIDERS_CHANGED action. As

11http://developer.android.com/reference/android/location/
LocationManager.html#isProviderEnabled(java.lang.String).

http://developer.android.com/reference/android/location/LocationManager.html#isProviderEnabled(java.lang.String)
http://developer.android.com/reference/android/location/LocationManager.html#isProviderEnabled(java.lang.String)

CHAPTER 8: Sensors and Location

211

shown in Listing 8-13, applications can receive these broadcast messages
to react according to location provider state changes, such as switching to
the GPS location provider when it is enabled.

Listing 8-13. Registering for Provider-Changed Broadcast Messages

private final BroadcastReceiver providerChangedListener =
 new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 LocationManager locationManager =
 (LocationManager) context.getSystemService(
 Context.LOCATION_SERVICE);

 if (locationManager.isProviderEnabled(
 LocationManager.GPS_PROVIDER)) {
 // Use the GPS provider
 } else {
 // Use an other provider
 }
 }
};

...

registerReceiver(providerChangedListener, new IntentFilter(
 LocationManager.PROVIDERS_CHANGED_ACTION));

Location Updates
The location provider allows an application to receive location updates in
two ways. The application can either register to receive the location updates
as the user’s location changes or choose to register to receive a proximity
alert only when the user enters the proximity of a given geographical
location.

Continuous Location Updates

The application can register to receive continuous location updates by
registering a location listener with the LocationManager.

CHAPTER 8: Sensors and Location212

Location Listener

Location updates get delivered to the application through a callback function
that is declared in LocationListener12 interface, as shown in Listing 8-14.
The LocationListener interface, besides the location updates, also delivers
updates regarding the status of the location provider in use, such as when
the location provider gets enabled or disabled.

Listing 8-14. LocationListener Implementation

private final LocationListener locationListener =
 new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 // Location update
 }

 @Override
 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // Provider status has changed
 }

 @Override
 public void onProviderEnabled(String provider) {
 // Provider enabled
 }

 @Override
 public void onProviderDisabled(String provider) {
 // Provider disabled
 }
};

Registering for Location Updates

The LocationListener instance can then be registered with the
LocationManager using the requestLocationUpdates13 method, as shown in
Listing 8-15.

12http://developer.android.com/reference/android/location/
LocationListener.html.
13http://developer.android.com/reference/android/location/
LocationManager.html#requestLocationUpdates(java.lang.String, long,
float, android.location.LocationListener).

http://developer.android.com/reference/android/location/LocationListener.html
http://developer.android.com/reference/android/location/LocationListener.html
http://developer.android.com/reference/android/location/LocationManager.html#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener)
http://developer.android.com/reference/android/location/LocationManager.html#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener)
http://developer.android.com/reference/android/location/LocationManager.html#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener)

CHAPTER 8: Sensors and Location

213

Listing 8-15. Registering for Location Updates

locationManager.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 1000, // minimum 1 sec updates
 1, // minimum 1m changes
 locationListener);

The requestLocationUpdates method takes the name of the location
provider to use, the minimum time interval between location updates, the
minimum distance between location updates, and the LocationListener
instance. The LocationManager provides various requstLocationUpdate
methods for different use cases.

Unregistering from Location Updates

Similar to sensors, location devices also degrade the battery very rapidly.
Applications are expected to unregister from location updates when they
are not needed anymore. The LocationManager provides the removeUpdates
method, as shown in Listing 8-16.

Listing 8-16. Unregistering from Location Updates

locationManager.removeUpdates(locationListener);

Requesting a Single Location Update

The application can also request a single location update using the
requestSingleUpdate14 method of LocationManager, as shown in Listing 8-17.
The location device delivers a single location update and turns off.

Listing 8-17. Requesting a Single Location Update

locationManager.requestSingleUpdate(
 LocationManager.GPS_PROVIDER,
 locationListener,
 Looper.myLooper()
);

The LocationManager also supports registering for a single location update
using a pending intent.

14http://developer.android.com/reference/android/location/
LocationManager.html#requestSingleUpdate(java.lang.String, android.
location.LocationListener, android.os.Looper).

http://developer.android.com/reference/android/location/LocationManager.html#requestSingleUpdate(java.lang.String,%20android.location.LocationListener,%20android.os.Looper)
http://developer.android.com/reference/android/location/LocationManager.html#requestSingleUpdate(java.lang.String,%20android.location.LocationListener,%20android.os.Looper)
http://developer.android.com/reference/android/location/LocationManager.html#requestSingleUpdate(java.lang.String,%20android.location.LocationListener,%20android.os.Looper)

CHAPTER 8: Sensors and Location214

Proximity Alerts

An application can register to be notified when the user enters the proximity
of a given geographical location.

Adding a Proximity Alert

The addProximityAlert15 method of LocationManager is used to register
proximity alerts, as shown in Listing 8-18. The addProximityAlert method
takes the latitude and longitude of the central point of the alert region, the
radius of the central point of the alert in meters, an optional expiration time,
and a pending intent to receive the alert.

Listing 8-18. Adding a Proximity Alert

locationManager.addProximityAlert(
 37.3688, // latitude
 -122.0363, // longitude
 100, // radius
 -1, // expiration
 PendingIntent.getActivity(this, 0, new Intent(this,
 LocationActivity.class), 0) // intent
);

Proximity alerts get delivered through the given pending intent. The intent
contains a Boolean extra, KEY_PROXIMITY_ENTERING,16 indicating whether the
user is entering or exiting the proximity region.

Removing a Proximity Alert

Once it is no longer needed, the application can remove a proximity alert
using the removeProximityAlert method of LocationManager, as shown in
Listing 8-19.

Listing 8-19. Removing a Proximity Alert

locationManager.removeProximityAlert(pendingIntent);

15http://developer.android.com/reference/android/location/
LocationManager.html#addProximityAlert(double, double, float, long,
android.app.PendingIntent).
16http://developer.android.com/reference/android/location/
LocationManager.html#KEY_PROXIMITY_ENTERING.

http://developer.android.com/reference/android/location/LocationManager.html#addProximityAlert(double,%20double,%20float,%20long,%20android.app.PendingIntent)
http://developer.android.com/reference/android/location/LocationManager.html#addProximityAlert(double,%20double,%20float,%20long,%20android.app.PendingIntent)
http://developer.android.com/reference/android/location/LocationManager.html#addProximityAlert(double,%20double,%20float,%20long,%20android.app.PendingIntent)
http://developer.android.com/reference/android/location/LocationManager.html#KEY_PROXIMITY_ENTERING
http://developer.android.com/reference/android/location/LocationManager.html#KEY_PROXIMITY_ENTERING

CHAPTER 8: Sensors and Location

215

Fast Location Fix Using Last Known Location

The time to receive the first location fix may take a long time, especially
when using the GPS location provider. Until a more accurate location update
is available, applications can simply use the getLastKnownLocation17 method
of LocationManager to retrieve the last known location, as shown in
Listing 8-20.

Listing 8-20. Getting the Last Known Location

Location location = locationManager.getLastKnownLocation(
 LocationManager.NETWORK_PROVIDER);

Location Updates

Location updates are delivered to the application through Location18
objects. The Location object contains the following information:

Accuracy: The estimated accuracy of this location in 	
meters.

Altitude: The altitude, if available, in meters above World 	
Geodetic System (WGS) 84 reference.

Bearing: The bearing in degrees.	
Latitude and longitude: The coordinate in degrees.	
Provider: The name of the location provider.	
Time: Coordinated Universal Time (UTC) time of this 	
location fix.

Summary
The Android platform provides environmental and location information to
applications. The SensorManager API is used to interact with built-in sensors
on the Android device. The sensor API provided by the Android framework
is a generic API. Sensor events should be interpreted based on sensor
type. Applications are expected to unregister receiving sensor events when
needed, in order to conserve battery power on the device. Location support
is provided through the LocationManager API. The Android platform supports

17http://developer.android.com/reference/android/location/
LocationManager.html#getLastKnownLocation(java.lang.String).
18http://developer.android.com/reference/android/location/Location.html.

http://developer.android.com/reference/android/location/LocationManager.html#getLastKnownLocation(java.lang.String)
http://developer.android.com/reference/android/location/LocationManager.html#getLastKnownLocation(java.lang.String)
http://developer.android.com/reference/android/location/Location.html

CHAPTER 8: Sensors and Location216

various location providers, such as the GPS provider and the network
provider. Due to privacy concerns, an application is expected to have
certain permissions defined in order to access these location providers. The
application can receive the user’s current location in different ways based
on the use case. The LocationManager also provides the last known location
information to applications in order to compensate the latency of receiving
the first location fix from a location provider.

217

Chapter 9
Media and Camera

Media support and access to a high-resolution camera are the most exciting
features of the Android platform. Both of these features are very extensively
used by Android applications. Dealing with media on a mobile device
has its own unique challenges, and the Android framework provides a
comprehensive application programming interface (API) for multimedia. This
chapter provides a brief summary of those APIs and their usage.

Audio Manager
Android provides access to audio-related controls through the android.
media.AudioManager1 service. It can be accessed from the application code
by requesting the system service instance for Context.AUDIO_SERVICE from
the current context, as shown in Listing 9-1.

Listing 9-1. Getting the AudioManager Instance from the Current Context

AudioManager audioManager = (AudioManager)
 getSystemService(Context.AUDIO_SERVICE);

Audio Devices
Android devices are equipped with built-in audio input and output devices,
such as the speakerphone and the microphone. Bluetooth headsets are
also supported by such Android devices as external audio devices. The
AudioManager class provides methods to check the current state of these
devices, as well as enabling the application to toggle them.

1http://developer.android.com/reference/android/media/AudioManager.html.

http://developer.android.com/reference/android/media/AudioManager.html

CHAPTER 9: Media and Camera218

Microphone

The microphone allows the Android device to receive audio input. When
audio input is not needed, the microphone can be muted. The AudioManager
class provides methods to check the current state of the microphone as well
as enabling the application to mute and unmute the microphone.

Checking If the Microphone Is Muted

Using the isMicrophoneMute2 method of the AudioManager class, the
application can check if the microphone is muted, as shown in Listing 9-2.

Listing 9-2. Checking If Microphone Is Muted

if (audioManager.isMicrophoneMute()) {
 // stop streaming audio input
}

Muting and Unmuting the Microphone

Using the setMicrophoneMute method an application can mute and unmute
the microphone, as shown in Listing 9-3, by passing a Boolean parameter.

Listing 9-3. Muting the Device’s Microphone

audioManager.setMicrophoneMute(true);

Speakerphone

Android devices come with a speakerphone. The speakerphone allows
the audio output to be heard from a short distance without the device
being held to the face. The AudioManager provides methods to check the
current state of the speakerphone, and also to route the audio output to the
speakerphone as needed.

Checking If the Speakerphone Is On

Using the isSpeakerphoneOn3 method of the AudioManager class, an
application can check if the audio is played through the speakerphones, as
shown in Listing 9-4.

2http://developer.android.com/reference/android/media/AudioManager.
html#isMicrophoneMute().
3http://developer.android.com/reference/android/media/AudioManager.
html#isSpeakerphoneOn().

http://developer.android.com/reference/android/media/AudioManager.html#isMicrophoneMute()
http://developer.android.com/reference/android/media/AudioManager.html#isMicrophoneMute()
http://developer.android.com/reference/android/media/AudioManager.html#isSpeakerphoneOn()
http://developer.android.com/reference/android/media/AudioManager.html#isSpeakerphoneOn()

CHAPTER 9: Media and Camera

219

Listing 9-4. Checking If the Speakerphone Is on

if (audioManager.isSpeakerphoneOn()) {
 // disable speakerphone button
}

Toggling the Speakerphone

The setSpeakerphoneOn method is also provided to allow an application to
turn the speakerphone on or off, as shown in Listing 9-5.

Listing 9-5. Turning the Speakerphone on

audioManager.setSpeakerphoneOn(true);

Audio Streams
Android differentiates between audio streams based on their purpose, and it
allows each of these stream groups to be controlled individually. This makes
it possible for users to set different volume levels for different audio types,
such as the alarm clock, the phone ring, and the music playback.

Caution As the Android platform cannot automatically determine the purpose of

the audio played by applications, it is the application developer’s responsibility to

use the correct audio stream type depending on the purpose of the audio stream.

The AudioManager class provides constants for each of the following
supported audio types:

	STREAM_ALARM: The audio stream for alarms.

	STREAM_DTMF: The audio stream for DTMF (dual-tone
multi-frequency) tones.

	STREAM_MUSIC: The audio stream for music playback.

	STREAM_NOTIFICATION: The audio stream for notifications.

	STREAM_RING: The audio stream for phone rings.

	STREAM_SYSTEM: The audio stream for system sounds.

	STREAM_VOICE_CALL: The audio stream for phone calls.

	USE_DEFUALT_STREAM_TYPE: The default audio stream.

CHAPTER 9: Media and Camera220

Adjusting the Audio Stream Volume

The volume of audio streams can be adjusted by the application through the
methods provided by the AudioManager class.

Getting the Current Volume for the Audio Stream

Using the getStreamVolume4 method of the AudioManager class, the
application can query the current volume of a given audio stream, as shown
in Listing 9-6.

Listing 9-6. Getting the Current Volume of the Music Audio Stream

int currentVolume = audioManager.getStreamVolume(
 AudioManager.STREAM_MUSIC);

Note The returned volume is simply an index value. Android allows

each audio stream to have different volume ranges based on the device’s

capabilities. The volume percentage can be calculated by comparing this

index value with the maximum volume index for the audio stream.

Getting the Maximum Volume for the Audio Stream

The getStreamMaxVolume5 method of the AudioManager can be used to query
the maximum volume index for a given stream, as shown in Listing 9-7.

Listing 9-7. Querying the Maximum Volume Index for Music Audio Stream

int maximumVolume = audioManager.getStreamMaxVolume(
 AudioManager.STREAM_MUSIC);

The application can then adjust the stream volume by providing a value
between zero and the returned maximum volume index.

4http://developer.android.com/reference/android/media/AudioManager.
html#getStreamVolume(int).
5http://developer.android.com/reference/android/media/AudioManager.
html#getStreamMaxVolume(int).

http://developer.android.com/reference/android/media/AudioManager.html#getStreamVolume(int)
http://developer.android.com/reference/android/media/AudioManager.html#getStreamVolume(int)
http://developer.android.com/reference/android/media/AudioManager.html#getStreamMaxVolume(int)
http://developer.android.com/reference/android/media/AudioManager.html#getStreamMaxVolume(int)

CHAPTER 9: Media and Camera

221

Setting the Volume of an Audio Stream

The volume of an audio stream can be set using the setStreamVolume6
method of the AudioManager class as shown in Listing 9-8. The same as
other audio stream volume-related methods, the setStreamVolume method
also takes a volume index to adjust the audio stream volume.

Listing 9-8. Setting the Volume of Music Audio Stream

audioManager.setStreamVolume(
 AudioManager.STREAM_MUSIC, 10,
 AudioManager.FLAG_SHOW_UI
 | AudioManager.FLAG_PLAY_SOUND);

As shown in Listing 9-8, the setStreamVolume method also takes a set of
flags as the last parameter.

	FLAG_ALLOW_RINGER_MODES: Whether to include ringer
modes when changing the volume—such as switching
to silent or vibrate mode based on the volume index.

	FLAG_PLAY_SOUND: Whether to play a sound effect while
switching the volume.

	FLAG_REMOVE_SOUND_AND_VIBRATE: Whether to suppress
any sound or vibration that is queued or playing while
changing the volume.

	FLAG_SHOW_UI: Whether to show a toast containing the
current volume.

	FLAG_VIBRATE: Whether to vibrate if going into vibrate mode.

Muting the Audio Stream

Instead of lowering the audio stream volume to zero, the setStreamMute7
method of the AudioManager class can be used to mute the audio stream, as
shown in Listing 9-9.

Listing 9-9. Muting the Notification Audio Stream

audioManager.setStreamMute(
 AudioManager.STREAM_NOTIFICATION, true);

6http://developer.android.com/reference/android/media/AudioManager.
html#setStreamVolume(int, int, int).
7http://developer.android.com/reference/android/media/AudioManager.
html#setStreamMute(int, boolean).

http://developer.android.com/reference/android/media/AudioManager.html#setStreamVolume(int,%20int,%20int)
http://developer.android.com/reference/android/media/AudioManager.html#setStreamVolume(int,%20int,%20int)
http://developer.android.com/reference/android/media/AudioManager.html#setStreamMute(int,%20boolean)
http://developer.android.com/reference/android/media/AudioManager.html#setStreamMute(int,%20boolean)

CHAPTER 9: Media and Camera222

The mute operation for a given stream is cumulative as multiple applications
can request it simultaneously. AudioManager unmutes the stream only
when the same number of unmute requests are received. Applications are
expected to unmute a muted audio stream in their onPause method while
going into background mode, and mute it again in onResume method when
returning to the foreground.

Note The setStreamMute method is protected against process death. If

the process crashes, the operating system automatically unmutes the stream.

Solo the Audio Stream

To play a single audio stream without any interference from other audio
streams, the AudioManager class provides a method called setStreamSolo.8
This method only allows the provided audio stream to play while it
suppresses the other ones, as shown in Listing 9-10.

Listing 9-10. Soloing the Voice Audio Stream

audioManager.setStreamSolo(
 AudioManager.STREAM_VOICE_CALL, true);

The same as the operation to mute an audio stream, the solo operation
for a given stream is cumulative and requires the same amount of un-solo
requests in order to be disabled. Although the solo operation is protected
against application process crashes, for a better user experience, we
recommend that you un-solo the audio stream in onPause and solo the
audio stream again in onResume when the application gets brought to the
foreground.

Checking If Music Is Active

Using the isMusicActive9 method of the AudioManager class, the application
code checks if another application is playing music in the background, as
shown in Listing 9-11.

8http://developer.android.com/reference/android/media/AudioManager.
html#setStreamSolo(int, boolean).
9http://developer.android.com/reference/android/media/AudioManager.
html#isMusicActive().

http://developer.android.com/reference/android/media/AudioManager.html#setStreamSolo(int,%20boolean)
http://developer.android.com/reference/android/media/AudioManager.html#setStreamSolo(int,%20boolean)
http://developer.android.com/reference/android/media/AudioManager.html#isMusicActive()
http://developer.android.com/reference/android/media/AudioManager.html#isMusicActive()

CHAPTER 9: Media and Camera

223

Listing 9-11. Checking If Another Application Is Playing Music

if (!audioManager.isMusicActive()) {
 // play sound effect
}

As in Listing 9-11, the application may decide not to play any sound effects
while another application is playing music in the background.

Playing Audio
Audio playback has various use cases and also unique challenges for each
of those use cases. The Android platform provides a set of audio APIs and
constructs to address most frequent use cases, such as playing sound effects
and playing music. This section briefly covers the most frequently used APIs.

MediaPlayer
The MediaPlayer10 class is the core API provided by the Android framework
for multimedia playback, both audio and video. This section only focuses on
the audio aspect of the MediaPlayer.

Loading an Audio Sample Using the MediaPlayer

The MediaPlayer provides a set of methods to load the media content from
various sources such as from an URL (uniform resource locator) or directly
from a local file. As shown in Listing 9-12, you can use the setDataSource
method to load the media file from a given URL.

Listing 9-12. Loading an Audio Sample into MediaPlayer from a URL

MediaPlayer mediaPlayer = new MediaPlayer();
mediaPlayer.setDataSource("http://www.apress.com/sound.mp3");

Configuring the Audio Stream of the MediaPlayer

As mentioned earlier in this chapter, to improve the overall user experience,
the Android platform categorizes audio streams based on their purpose,
such as music and notification. When using the MediaPlayer, the
audio stream type for the media content can be specified using the
setAudioStreamType11 method as shown in Listing 9-13.

10http://developer.android.com/reference/android/media/MediaPlayer.html.
11http://developer.android.com/reference/android/media/MediaPlayer.
html#setAudioStreamType(int).

http://www.apress.com/sound.mp3
http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/media/MediaPlayer.html#setAudioStreamType(int)
http://developer.android.com/reference/android/media/MediaPlayer.html#setAudioStreamType(int)

CHAPTER 9: Media and Camera224

Listing 9-13. Setting the Audio Stream Type for MediaPlayer

mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);

Preparing the MediaPlayer for Playback

Besides the audio stream type, various aspects of audio playback can be
configured through the MediaPlayer. Once all the configuration is done,
the application is expected to call the prepare12 method, as shown in
Listing 9-14, in order to get the MediaPlayer prepared for the playback.
Once you call the prepare method, you can no longer configure the
MediaPlayer.

Listing 9-14. Preparing the MediaPlayer for Playback

mediaPlayer.prepare();

Caution While preparing the MediaPlayer for playback, the prepare method

also starts the buffering of the media content. As this operation involves an

extensive amount of I/O (input/output), it should not be called from the user

interface (UI) thread. If MediaPlayer does not have its own dedicated thread,

you should use the prepareAsync13 method instead, in order to prepare the

MediaPlayer asynchronously.

Starting the Playback Using the MediaPlayer

Once the MediaPlayer is successfully prepared, the playback can be started
anytime using the start14 method, as shown in Listing 9-15.

Listing 9-15. Starting the Playback Using the MediaPlayer

mediaPlayer.start();

12http://developer.android.com/reference/android/media/MediaPlayer.
html#prepare().
13http://developer.android.com/reference/android/media/MediaPlayer.
html#prepareAsync().
14http://developer.android.com/reference/android/media/MediaPlayer.
html#start().

http://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
http://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
http://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()
http://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()
http://developer.android.com/reference/android/media/MediaPlayer.html#start()
http://developer.android.com/reference/android/media/MediaPlayer.html#start()

CHAPTER 9: Media and Camera

225

Stopping the Playback Using the MediaPlayer

Once it is started, the playback can be stopped at any time, using the stop15
method, as shown in Listing 9-16.

Listing 9-16. Stopping the Playback Using the MediaPlayer

mediaPlayer.stop();

Note Once the MediaPlayer is stopped, it needs to be prepared again before it

can be restarted.

Releasing the MediaPlayer

Once they are no longer needed, you can release the MediaPlayer resources
through the release16 method, as shown in Listing 9-17.

Listing 9-17. Releasing the MediaPlayer

mediaPlayer.release();

AsyncPlayer
Loading media content from the network or from the SD card on the UI
thread can degrade the performance of the application by makings its UI
unresponsive. We recommend using a separate thread to load the content,
but it does require more code. For really simple audio playback use cases,
the Android framework provides the AsyncPlayer. The AsyncPlayer also
relies on the MediaPlayer to do the actual playback. The AsyncPlayer simply
runs the MediaPlayer in a separate thread and acts as a bridge between the
application and the MediaPlayer. As shown in Listing 9-18, playing an audio
sample using the AsyncPlayer is much simpler, and it can be started directly
from the UI thread without any problems.

15http://developer.android.com/reference/android/media/MediaPlayer.
html#stop().
16http://developer.android.com/reference/android/media/MediaPlayer.
html#release().

http://developer.android.com/reference/android/media/MediaPlayer.html#stop()
http://developer.android.com/reference/android/media/MediaPlayer.html#stop()
http://developer.android.com/reference/android/media/MediaPlayer.html#release()
http://developer.android.com/reference/android/media/MediaPlayer.html#release()

CHAPTER 9: Media and Camera226

Listing 9-18. Playing an Audio File Using the AsyncPlayer

AsyncPlayer asyncPlayer = new AsyncPlayer("Audio Player");
asyncPlayer.play(this,
 Uri.parse("http://www.apress.com/sound.mp3"),
 false,
 AudioManager.STREAM_MUSIC
);

When multiple audio samples need to be played frequently and with low
latency, using the AsyncPlayer is not a good solution. The AsyncPlayer
can only handle one audio sample at any given time, and running multiple
AsyncPlayer instances is not an elegant solution. The Android framework
provides the SoundPool just for that purpose.

SoundPool
The Android framework provides SoundPool to manage the audio resources
of an application. SoundPool can load a collection of audio samples into
memory from the application resources. As the audio samples are already
loaded into memory, they can be played anytime with very low latency.
Using SoundPool is the best practice for incorporating sound effects into
Android applications. SoundPool is exposed through the SoundPool17 class.

Creating a SoundPool

The procedure to create a new SoundPool has changed starting with the API
Level 21 (Android Lollipop 5.0) release.

Creating a SoundPool Using API Level 20 and Below

A new SoundPool can be created by supplying the maximum number of
simultaneous audio streams and the stream type to the SoundPool class’s
constructor, as shown in Listing 9-19.

Listing 9-19. Creating a New SoundPool

SoundPool soundPool =
 new SoundPool(2, AudioManager.STREAM_MUSIC, 0);

17http://developer.android.com/reference/android/media/SoundPool.html.

http://www.apress.com/sound.mp3
http://developer.android.com/reference/android/media/SoundPool.html

CHAPTER 9: Media and Camera

227

Note The last argument to the SoundPool class constructor, the

sample-rate converter quality, currently has no effect. Use 0 for

the default.

Creating a SoundPool Using API Level 21 and Above

Starting with API Level 21, the Android framework provides a new builder
class, SoundPool.Builder.18 The builder class facilitates the configuration
of SoundPool by starting with a default configuration and enabling the
application to tune it as necessary. As shown in Listing 9-20, the SoundPool.
Builder also relies on the new AudioAttributes19 class to allow the
application to specify more information about the audio stream, the purpose
of the audio playback, and how it should be played.

Listing 9-20. Creating a New SoundPool Using the Builder

SoundPool soundPool = new SoundPool.Builder()
 .setMaxStreams(2)
 .setAudioAttributes(
 new AudioAttributes.Builder()
 .setContentType(AudioAttributes.CONTENT_TYPE_MOVIE)
 .setUsage(AudioAttributes.USAGE_MEDIA)
 .build()
)
 .build();

Loading Audio Samples into SoundPool

The SoundPool class provides a set of load methods to load audio samples
from various locations, such as the application resources, the application
assets, and a file. These load methods return a unique identifier, the sound
ID, for each audio sample loaded into SoundPool. This sound ID then can
be used to refer to individual audio samples for playback. The play methods
may return zero as the sound ID to indicate a problem while loading the
audio sample into SoundPool.

18http://developer.android.com/reference/android/media/SoundPool.Builder.html.
19http://developer.android.com/reference/android/media/AudioAttributes.html.

http://developer.android.com/reference/android/media/SoundPool.Builder.html
http://developer.android.com/reference/android/media/AudioAttributes.html

CHAPTER 9: Media and Camera228

Loading Audio Samples from Application Resources

Audio samples can be loaded from the application resources using the
load20 method, as shown in Listing 9-21. The audio files can be placed in
raw resources, and references through the R.raw prefix.

Listing 9-21. Loading an Audio Sample from Application Resources

int soundId = soundPool.load(this, R.raw.sound, 1);

Loading Audio Samples from Application Assets

Audio samples can be loaded from the application assets using the load21
method, as shown in Listing 9-22. The audio files can be placed in the
assets directory and accessed through the AssetManager class.

Listing 9-22. Loading an Audio Sample from Application Assets

int soundId = soundPool.load(
 getAssets().openFd("sound.mp3"),
 1);

Loading Audio Samples from Files

Audio samples can also be loaded directly from files by providing the file
path to the load22 method, as shown in Listing 9-23.

Listing 9-23. Loading an Audio Sample from a File

int soundId = soundPool.load("/sdcard/sound.mp3", 1);

Playing Audio Samples from SoundPool

Once the audio samples are loaded into the sound play, they can be played
anytime using the play23 method by simply providing the sound ID for the
audio sample to play, as shown in Listing 9-24. The play method also takes
additional parameters, such as the volume, the stream priority, the loop
mode, and the playback rate.

20http://developer.android.com/reference/android/media/SoundPool.
html#load(android.content.Context, int, int).
21http://developer.android.com/reference/android/media/SoundPool.
html#load(android.content.res.AssetFileDescriptor, int).
22http://developer.android.com/reference/android/media/SoundPool.
html#load(java.lang.String, int).
23http://developer.android.com/reference/android/media/SoundPool.
html#play(int, float, float, int, int, float).

http://developer.android.com/reference/android/media/SoundPool.html#load(android.content.Context,%20int,%20int)
http://developer.android.com/reference/android/media/SoundPool.html#load(android.content.Context,%20int,%20int)
http://developer.android.com/reference/android/media/SoundPool.html#load(android.content.res.AssetFileDescriptor,%20int)
http://developer.android.com/reference/android/media/SoundPool.html#load(android.content.res.AssetFileDescriptor,%20int)
http://developer.android.com/reference/android/media/SoundPool.html#load(java.lang.String,%20int)
http://developer.android.com/reference/android/media/SoundPool.html#load(java.lang.String,%20int)
http://developer.android.com/reference/android/media/SoundPool.html#play(int,%20float,%20float,%20int,%20int,%20float)
http://developer.android.com/reference/android/media/SoundPool.html#play(int,%20float,%20float,%20int,%20int,%20float)

CHAPTER 9: Media and Camera

229

Listing 9-24. Playing an Audio Sample Using SoundPool

soundPool.play(
 soundId, // sound id
 1, // left volume set to max
 1, // right volume set to max
 0, // low priority audio stream
 0, // don't loop
 1 // default rate
);

If the play method is successful, it returns a non-zero stream ID. This stream
ID can be used to tune some of the playback parameters while the audio
is playing. For example, if the loop mode is requested, the application can
terminate the playback by invoking the stop24 method and providing the
stream ID to stop.

Unloading an Audio Sample from SoundPool

As indicated in the section “Loading Audio Samples into SoundPool,”
SoundPool loads the audio samples into memory in order to be able to play
them with a low latency. As memory is a scarce resource on the Android
platform, applications should take the necessary caution to manage memory
appropriately. If an audio sample will no longer be used, the application
can use the unload method, as shown in Listing 9-25, to remove it from
SoundPool in order to free memory.

Listing 9-25. Unloading an Audio Sample from SoundPool

soundPool.unload(soundId);

Releasing SoundPool

If SoundPool is no longer needed, the application code should explicitly
release it using the release method, as shown in Listing 9-26. Application
developers should not entirely rely on garbage collection to do the job.

Listing 9-26. Releasing SoundPool

soundPool.release();

24http://developer.android.com/reference/android/media/SoundPool.
html#stop(int).

http://developer.android.com/reference/android/media/SoundPool.html#stop(int)
http://developer.android.com/reference/android/media/SoundPool.html#stop(int)

CHAPTER 9: Media and Camera230

Recording Audio
Besides the audio playback, the Android framework also provides the
functionality to record audio, using the MediaRecorder25 class.

Requesting Audio Record Permission
For the application to record audio, it is required to have the android.
permission.RECORD_AUDIO26 permission. The application can request this
permission through its AndroidManifest.xml file as shown in Listing 9-27.

Listing 9-27. Requesting Audio Record Permission

<uses-permission android:name="android.permission.RECORD_AUDIO" />

Configuring the Audio Source for Recording
The audio source for recording can be set through the setAudioSource27
method, as shown in Listing 9-28.

Listing 9-28. Using the Microphone as the Audio Source

MediaRecorder mediaRecorder = new MediaRecorder();
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

The MediaRecorder.AudioSource28 class contains the constants for each
supported audio source.

	CAMCORDER: Microphone audio source with same
orientation as camera if supported by the device.

	DEFAULT: Default audio source.

	MIC: Microphone audio source.

	REMOTE_SUBMIX: Audio source for submix of audio
streams.

25http://developer.android.com/reference/android/media/MediaRecorder.html.
26http://developer.android.com/reference/android/Manifest.permission.
html#RECORD_AUDIO.
27http://developer.android.com/reference/android/media/MediaRecorder.
html#setAudioSource(int).
28http://developer.android.com/reference/android/media/MediaRecorder.
AudioSource.html.

http://developer.android.com/reference/android/media/MediaRecorder.html
http://developer.android.com/reference/android/Manifest.permission.html%23RECORD_AUDIO
http://developer.android.com/reference/android/Manifest.permission.html%23RECORD_AUDIO
http://developer.android.com/reference/android/media/MediaRecorder.html#setAudioSource(int)
http://developer.android.com/reference/android/media/MediaRecorder.html#setAudioSource(int)
http://developer.android.com/reference/android/media/MediaRecorder.AudioSource.html
http://developer.android.com/reference/android/media/MediaRecorder.AudioSource.html

CHAPTER 9: Media and Camera

231

	VOICE_CALL: Voice call uplink and downlink audio.

	VOICE_COMMUNICATION: Microphone that is tuned for
voice communications.

	VOICE_DOWNLINK: Voice call downlink audio.

	VOICE_RECOGNITION: Microphone that is tuned for voice
recognition.

	VOICE_UPLINK: Voice call uplink audio.

Configuring the Audio Output for Recording
The recorded audio should be stored in a file using an audio encoder and a
compatible container format. The list of supported audio encoders and the
corresponding container formats can be found in the section “Core Media
Formats29” in the Android developer pages.

Configuring the Audio Encoder for Recording

The recorded audio must be compressed using an audio encoder. The
setAudioEncoder30 method allows the application to choose an audio
encoder to use for recording, as shown in Listing 9-29.

Listing 9-29. Setting the Audio Encoder for Recording

mediaRecorder.setAudioEncoder(
 MediaRecorder.AudioEncoder.AMR_NB);

The MediaRecorder.AudioEncoder31 class contains the constants for each of
the supported audio encoders.

Configuring the Output File Container Format

The encoded audio must be placed into a file. The setOutputFormat32 method
can be used to specify the container format, as shown in Listing 9-30.

29http://developer.android.com/guide/appendix/media-formats.html.
30http://developer.android.com/reference/android/media/MediaRecorder.
html#setAudioEncoder(int).
31http://developer.android.com/reference/android/media/MediaRecorder.
AudioEncoder.html.
32http://developer.android.com/reference/android/media/MediaRecorder.
html#setOutputFormat(int).

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/reference/android/media/MediaRecorder.html#setAudioEncoder(int)
http://developer.android.com/reference/android/media/MediaRecorder.html#setAudioEncoder(int)
http://developer.android.com/reference/android/media/MediaRecorder.AudioEncoder.html
http://developer.android.com/reference/android/media/MediaRecorder.AudioEncoder.html
http://developer.android.com/reference/android/media/MediaRecorder.html#setOutputFormat(int)
http://developer.android.com/reference/android/media/MediaRecorder.html#setOutputFormat(int)

CHAPTER 9: Media and Camera232

Listing 9-30. Configuring the Output File Container Format

mediaRecorder.setOutputFormat(
 MediaRecorder.OutputFormat.THREE_GPP);

The MediaRecorder.OutputFormat33 class provides constants for each of the
supported container types.

Configuring the Output File

The output file can be set through the setOutputFile34 method, as shown
in Listing 9-31. The file extension should match the container format that is
specified.

Listing 9-31. Configuring the Output File

mediaRecorder.setOutputFile("/sdcard/sound.3gp");

Starting the Audio Recording
Once the MediaRecorder is configured, it can be prepared for recording
using the prepare35 method. The audio recording can then be started using
the start36 method as shown in Listing 9-32.

Listing 9-32. Starting the Audio Recording

mediaRecorder.prepare();
mediaRecorder.start();

Stopping the Audio Recording
The audio recording can be stopped anytime using the stop37 method as
shown in Listing 9-33.

33http://developer.android.com/reference/android/media/MediaRecorder.
OutputFormat.html.
34http://developer.android.com/reference/android/media/MediaRecorder.
html#setOutputFile(java.lang.String).
35http://developer.android.com/reference/android/media/MediaRecorder.
html#prepare().
36http://developer.android.com/reference/android/media/MediaRecorder.
html#start().
37http://developer.android.com/reference/android/media/MediaRecorder.
html#stop().

http://developer.android.com/reference/android/media/MediaRecorder.OutputFormat.html
http://developer.android.com/reference/android/media/MediaRecorder.OutputFormat.html
http://developer.android.com/reference/android/media/MediaRecorder.html#setOutputFile(java.lang.String)
http://developer.android.com/reference/android/media/MediaRecorder.html#setOutputFile(java.lang.String)
http://developer.android.com/reference/android/media/MediaRecorder.html#prepare()
http://developer.android.com/reference/android/media/MediaRecorder.html#prepare()
http://developer.android.com/reference/android/media/MediaRecorder.html#start()
http://developer.android.com/reference/android/media/MediaRecorder.html#start()
http://developer.android.com/reference/android/media/MediaRecorder.html#stop()
http://developer.android.com/reference/android/media/MediaRecorder.html#stop()

CHAPTER 9: Media and Camera

233

Listing 9-33. Stopping the Audio Recording

mediaRecorder.stop();

Releasing the MediaRecorder
Once the MediaRecorder is no longer needed, it can be released using the
release38 method as shown in Listing 9-34

Listing 9-34. Releasing the MediaRecorder

mediaRecorder.release();

Playing Video
The MediaPlayer class, covered in the section “Playing Audio,” also provides
video playbook support. As the API provided through the MediaPlayer class
is very generic, the same API call sequence applies to both audio and video
playback. Besides these API calls, the video playback also requires a valid
Surface39 to draw the video frames.

Creating a Surface for Video Playback
Surface support is provided through the UI component SurfaceView.40
SurfaceView can be incorporated into an existing UI layout as shown in
Listing 9-35.

Listing 9-35. Adding a SurfaceView to UI Layout

<SurfaceView
 android:id="@+id/surface"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

38http://developer.android.com/reference/android/media/MediaRecorder.
html#release().
39http://developer.android.com/reference/android/view/Surface.html.
40http://developer.android.com/reference/android/view/SurfaceView.html.

http://developer.android.com/reference/android/media/MediaRecorder.html#release()
http://developer.android.com/reference/android/media/MediaRecorder.html#release()
http://developer.android.com/reference/android/view/Surface.html
http://developer.android.com/reference/android/view/SurfaceView.html

CHAPTER 9: Media and Camera234

SurfaceView is simply a view holder around the actual Surface object.
Compared to the other UI widgets provided by the Android framework, the
initialization of the Surface object is not guaranteed to happen when the
onCreate or onResume method of the activity gets invoked as part of the
Activity life cycle. The application is expected to register, in the Activity’s
onCreate method, to receive the Surface life-cycle events through the
SurfaceView’s SurfaceHolder,41 as shown in Listing 9-36.

Listing 9-36. Registering to Receive for Surface Life-Cycle Events

SurfaceView surfaceView =
 (SurfaceView) findViewById(R.id.surface);

surfaceView.getHolder().addCallback(
 new SurfaceHolder.Callback() {
 @Override
 public void surfaceCreated(SurfaceHolder surfaceHolder) {
 startPlayback(surfaceHolder);
 }

 @Override
 public void surfaceChanged(SurfaceHolder surfaceHolder,
 int i, int i2, int i3) {

 }

 @Override
 public void surfaceDestroyed(SurfaceHolder surfaceHolder) {
 stopPlayback();
 }
});

Starting Video Playback
When Surface becomes available, the application will get informed through
the surfaceCreated42 callback method. Within this callback, the application
can extract the valid Surface object from the provided SurfaceHolder object
through its getSurface43 method, as shown in Listing 9-37.

41http://developer.android.com/reference/android/view/SurfaceHolder.html.
42http://developer.android.com/reference/android/view/SurfaceHolder.
Callback.html#surfaceCreated(android.view.SurfaceHolder).
43http://developer.android.com/reference/android/view/SurfaceHolder.
html#getSurface().

http://developer.android.com/reference/android/view/SurfaceHolder.html
http://developer.android.com/reference/android/view/SurfaceHolder.Callback.html#surfaceCreated(android.view.SurfaceHolder)
http://developer.android.com/reference/android/view/SurfaceHolder.Callback.html#surfaceCreated(android.view.SurfaceHolder)
http://developer.android.com/reference/android/view/SurfaceHolder.html#getSurface()
http://developer.android.com/reference/android/view/SurfaceHolder.html#getSurface()

CHAPTER 9: Media and Camera

235

Listing 9-37. Starting the Video Playback When the Surface Is Available

private void startPlayback(SurfaceHolder surfaceHolder) {
 mediaPlayer = new MediaPlayer();
 mediaPlayer.setSurface(surfaceHolder.getSurface());
 mediaPlayer.setScreenOnWhilePlaying(true);

 try {
 mediaPlayer.setDataSource(
 "http://www.apress.com/movie.mp4");
 } catch (IOException e) {
 e.printStackTrace();
 releasePlayer();
 return;
 }

 mediaPlayer.setOnPreparedListener(
 new MediaPlayer.OnPreparedListener() {
 @Override
 public void onPrepared(MediaPlayer mediaPlayer) {
 mediaPlayer.start();
 }
 });

 mediaPlayer.prepareAsync();
}

Stopping Video Playback
As shown in Listing 9-38, the video playback can be stopped at any time
using the MediaPlayer APIs discussed in the section “Playing Audio.”

Listing 9-38. Stopping the Video Playback and Releasing the MediaPlayer

private void stopPlayback() {
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 releasePlayer();
 }
}

private void releasePlayer() {
 mediaPlayer.release();
 mediaPlayer = null;
}

http://www.apress.com/movie.mp4

CHAPTER 9: Media and Camera236

Video Recording
The same as the audio recording, the video recording is also handled by the
MediaRecorder. The MediaRecorder requires a valid Surface to display the
preview during the video recording.

Creating a Preview Surface for Video Recording
Refer to the section “Creating a Surface for Video Playback” for the steps
that are necessary to create and use the Surface object. The preview
surface can be configured using the setPreviewDisplay44 method, as shown
in Listing 9-39.

Listing 9-39. Setting the Preview Surface for Video Recording

mediaRecorder.setPreviewDisplay(surfaceHolder.getSurface());

Configuring the Video Source for Video Recording
The MediaRecorder can record directly from the device’s camera, or from
another Surface object. The MediaRecorder.VideoSource45 class provides
constants for each of the available video sources. The video source can be
set using the setVideoSource46 method, as shown in Listing 9-40.

Listing 9-40. Setting the Video Source for Video Recording

mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);

44http://developer.android.com/reference/android/media/MediaRecorder.
html#setPreviewDisplay(android.view.Surface).
45http://developer.android.com/reference/android/media/MediaRecorder.
VideoSource.html.
46http://developer.android.com/reference/android/media/MediaRecorder.
html#setVideoSource(int).

http://developer.android.com/reference/android/media/MediaRecorder.html#setPreviewDisplay(android.view.Surface)
http://developer.android.com/reference/android/media/MediaRecorder.html#setPreviewDisplay(android.view.Surface)
http://developer.android.com/reference/android/media/MediaRecorder.VideoSource.html
http://developer.android.com/reference/android/media/MediaRecorder.VideoSource.html
http://developer.android.com/reference/android/media/MediaRecorder.html#setVideoSource(int)
http://developer.android.com/reference/android/media/MediaRecorder.html#setVideoSource(int)

CHAPTER 9: Media and Camera

237

Configuring the Video Encoder for Video Recording
The recorded video should be encoded using a video encoder for proper
compression. The MediaRecorder.VideoEncoder47 class provides constants
for each of the support video encoders on the Android platform. The
setVideoEncoder48 method can be used to set the video encoder as shown
in Listing 9-41.

Listing 9-41. Setting the Video Encoder for Video Recording

mediaRecorder.setVideoEncoder(
 MediaRecorder.VideoEncoder.MPEG_4_SP);

Camera
Android devices are mostly equipped with one or more cameras.
Typical Android phones have both a front and back camera, allowing
the applications to capture pictures and videos. The Android framework
provides a comprehensive set of APIs to interact with these cameras.

Requesting the Camera Access Permission
For the application to be able to interact with the camera, it is required to
have the android.permission.CAMERA49 permission. As shown in Listing 9-42,
this permission can be requested through the uses-permission XML tag in
the AndroidManifest.xml file.

Listing 9-42. Requesting the Camera Access Permission

<uses-permission android:name="android.permission.CAMERA" />

In addition to the android.permission.CAMERA permission, the application
should also declare use of the android.hardware.camera2 feature through
the uses-feature XML tag in the AndroidManifest.xml file as shown in
Listing 9-43.

47http://developer.android.com/reference/android/media/MediaRecorder.
VideoEncoder.html.
48http://developer.android.com/reference/android/media/MediaRecorder.
html#setVideoEncoder(int).
49http://developer.android.com/reference/android/Manifest.permission.
html#CAMERA.

http://developer.android.com/reference/android/media/MediaRecorder.VideoEncoder.html
http://developer.android.com/reference/android/media/MediaRecorder.VideoEncoder.html
http://developer.android.com/reference/android/media/MediaRecorder.html#setVideoEncoder(int)
http://developer.android.com/reference/android/media/MediaRecorder.html#setVideoEncoder(int)
http://developer.android.com/reference/android/Manifest.permission.html%20%23CAMERA
http://developer.android.com/reference/android/Manifest.permission.html%20%23CAMERA

CHAPTER 9: Media and Camera238

Listing 9-43. Declaring the Use of the Camera Feature

<uses-feature android:name="android.hardware.camera2"
 android:required="false" />

If the application can use the camera, but the camera is not required for the
application to function, the android:required attribute of the uses-feature
XML tag can be set to false. Otherwise, Google Play will prevent the
application from being installed on devices without a camera.

CameraManager
Starting with Android 5.0 Lollipop, the CameraManager50 class and supporting
classes in the android.hardware.camera2 package provide the camera API
on the Android platform. You can obtain an instance of the CameraManager
class through the getSystemService method of the current Context, as
shown in Listing 9-44.

Listing 9-44. Getting an Instance of the CameraManager

CameraManager cameraManager =
 (CameraManager) getSystemService(Context.CAMERA_SERVICE);

Getting the Cameras IDs

Since the device can have multiple cameras, the application can use the
getCameraIdList method of the CameraManager class to get a list of IDs for
the available cameras, as shown in Listing 9-45.

Listing 9-45. Getting the IDs of the Available Cameras

try {
 String[] cameraIds = cameraManager.getCameraIdList();
} catch (CameraAccessException e) {
 // Access exception
}

50

CHAPTER 9: Media and Camera

239

Getting the Camera Characteristics

Based on the camera ID, the application can get the camera characteristics
through the getCameraCharacteristics51 method of the CameraManager
class, as shown in Listing 9-46.

Listing 9-46. Getting the Camera Characteristics

String[] cameraIds = cameraManager.getCameraIdList();
for (String cameraId : cameraIds) {
 CameraCharacteristics cameraCharacteristics =
 cameraManager.getCameraCharacteristics(cameraId);

 if (CameraCharacteristics.LENS_FACING_FRONT ==
 cameraCharacteristics.get(CameraCharacteristics.LENS_FACING)) {
 // Found front facing camera
 }
}

It returns a CameraCharacteristics52 instance that contains the camera
information as key and value pairs. The CameraCharacteristics class
provides a set of key constants for the standard camera characteristics that
can be queried through its get53 method. The most notable ones are

	LENS_FACING: Direction of the camera relative to the
device. It can be either LENS_FACING_FRONT for the
front-facing camera or LENS_FACING_BACK for the back
camera.

	SCALER_STREAM_CONFIGURATION_MAP: Available
stream configurations that are supported. Returns
a StreamConfigurationMap54 instance. It contains
supported formats and sizes.

51http://developer.android.com/reference/android/hardware/camera2/
CameraManager.html#getCameraCharacteristics(java.lang.String).
52http://developer.android.com/reference/android/hardware/camera2/
CameraCharacteristics.html.
53http://developer.android.com/reference/android/hardware/
camera2/CameraCharacteristics.html#get(android.hardware.camera2.
CameraCharacteristics.Key<T>).
54http://developer.android.com/reference/android/hardware/camera2/
params/StreamConfigurationMap.html.

http://developer.android.com/reference/android/hardware/camera2/CameraManager.html%23getCameraCharacteristics(java.lang.String)
http://developer.android.com/reference/android/hardware/camera2/CameraManager.html%23getCameraCharacteristics(java.lang.String)
http://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html
http://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html
http://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html%23get(android.hardware.camera2.CameraCharacteristics.Key%3cT%3e)
http://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html%23get(android.hardware.camera2.CameraCharacteristics.Key%3cT%3e)
http://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html%23get(android.hardware.camera2.CameraCharacteristics.Key%3cT%3e)
http://developer.android.com/reference/android/hardware/camera2/params/StreamConfigurationMap.html
http://developer.android.com/reference/android/hardware/camera2/params/StreamConfigurationMap.html

CHAPTER 9: Media and Camera240

Opening the Camera
The application can open the camera through the openCamera55 method of
the CameraManager class. Upon calling this method, the StateCallback56
interface delivers the result to the application. The following callback
methods must be implemented by the application:

	onOpened: Called when the camera has finished opening.

	onError: Called when the camera device encountered
an error:

	 ERROR_CAMERA_DEVICE: Camera device encountered a fatal
error.

	 ERROR_CAMERA_DISABLED: Camera could not be opened due
to device policy.

	 ERROR_CAMERA_IN_USE: Camera is in use already by another
application.

	 ERROR_CAMERA_SERVICE: Camera service encountered a fatal
error.

	 ERROR_MAX_CAMERAS_IN_USE: There are too many open
camera devices.

	onDisconnect: Called when the camera device is no
longer available.

	onClosed: Called when the camera device is closed.

The openCamera method takes the ID of the camera, a StateCallback
instance, and the handler instance to use for invoking the callback interface,
as shown in Listing 9-47.

55http://developer.android.com/reference/android/hardware/camera2/
CameraManager.html#openCamera(java.lang.String,%20android.hardware.
camera2.CameraDevice.StateCallback,%20android.os.Handler).
56http://developer.android.com/reference/android/hardware/camera2/
CameraDevice.StateCallback.html.

http://developer.android.com/reference/android/hardware/camera2/CameraManager.html%23openCamera(java.lang.String%2c%2520android.hardware.camera2.CameraDevice.StateCallback%2c%2520android.os.Handler)
http://developer.android.com/reference/android/hardware/camera2/CameraManager.html%23openCamera(java.lang.String%2c%2520android.hardware.camera2.CameraDevice.StateCallback%2c%2520android.os.Handler)
http://developer.android.com/reference/android/hardware/camera2/CameraManager.html%23openCamera(java.lang.String%2c%2520android.hardware.camera2.CameraDevice.StateCallback%2c%2520android.os.Handler)
http://developer.android.com/reference/android/hardware/camera2/CameraDevice.StateCallback.html
http://developer.android.com/reference/android/hardware/camera2/CameraDevice.StateCallback.html

CHAPTER 9: Media and Camera

241

Listing 9-47. Opening the Camera Device

cameraManager.openCamera(cameraId, new CameraDevice.StateCallback() {
 @Override
 public void onOpened(CameraDevice camera) {
 // Camera opened
 }

 @Override
 public void onDisconnected(CameraDevice camera) {
 // Camera disconnected
 }

 @Override
 public void onError(CameraDevice camera, int error) {
 // Camera error
 }
},
null);

Capturing from the Camera
In order to be able to capture from the camera, a Surface instance is
needed. I explain the steps to obtain a Surface instance in the section
“Playing Video.” Both the Surface instance and the camera should be
configured prior to starting the camera capture.

Note Although the handler is set to null on code examples in this

section for simplicity, we strongly recommend that you use a dedicated

Handler57 instance for processing the asynchronous camera requests.

You can create a dedicated Handler by using the HandlerThread58

class.

57http://developer.android.com/reference/android/os/Handler.html.
58http://developer.android.com/reference/android/os/HandlerThread.html.

http://developer.android.com/reference/android/os/Handler.html
http://developer.android.com/reference/android/os/HandlerThread.html

CHAPTER 9: Media and Camera242

Getting the Supported Camera Output Sizes

You must obtain the required output size of the camera through the
CameraCharacteristics using the SCALER_STREAM_CONFIGURATION_MAP key.
The retrieved value is an instance of StreamConfigurationMap59 class. The
getOutputSizes method returns a list of supported camera output sizes
(see Listing 9-48).

Listing 9-48. Getting the Supported Output Sizes

StreamConfigurationMap streamConfigurationMap = cameraCharacteristics.get(
 CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);

Size[] outputSizes = streamConfigurationMap.getOutputSizes(SurfaceHolder.
class);

Setting the Size of the Camera Preview Surface

The size of the Surface must be set to one of the supported output sizes
through the setFixedSize method of the SurfaceHolder class, as shown in
Listing 9-49.

Listing 9-49. Setting the Size of the Surface to a Supported Output Size

surfaceHolder.setFixedSize(
 outputSizes[0].getWidth(),
 outputSizes[0].getHeight());

Creating a Camera Capture Session

Once the Surface is created and resized properly, the application can
create a camera session through the createCaptureSession60 method of the
CameraDevice instance, as shown in Listing 9-50.

59http://developer.android.com/reference/android/hardware/camera2/
params/StreamConfigurationMap.html#getOutputSizes(java.lang.Class<T>).
60https://developer.android.com/reference/android/hardware/camera2/
CameraDevice.html#createCaptureSession(java.util.List<android.view.
Surface>, android.hardware.camera2.CameraCaptureSession.StateCallback,
android.os.Handler).

http://developer.android.com/reference/android/hardware/camera2/params/StreamConfigurationMap.html#getOutputSizes(java.lang.Class%3CT%3E)
http://developer.android.com/reference/android/hardware/camera2/params/StreamConfigurationMap.html#getOutputSizes(java.lang.Class%3CT%3E)
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html#createCaptureSession(java.util.List<android.view.Surface>, android.hardware.camera2.CameraCaptureSession.StateCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html#createCaptureSession(java.util.List<android.view.Surface>, android.hardware.camera2.CameraCaptureSession.StateCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html#createCaptureSession(java.util.List<android.view.Surface>, android.hardware.camera2.CameraCaptureSession.StateCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html#createCaptureSession(java.util.List<android.view.Surface>, android.hardware.camera2.CameraCaptureSession.StateCallback, android.os.Handler)

CHAPTER 9: Media and Camera

243

Listing 9-50. Creating a Camera Capture Session

Surface surface = surfaceHolder.getSurface();

cameraDevice.createCaptureSession(Arrays.asList(surface),
 new CameraCaptureSession.StateCallback() {
 @Override
 public void onConfigured(CameraCaptureSession session) {

 }

 @Override
 public void onConfigureFailed(CameraCaptureSession session) {

 }
}, null);

The createCaptureSession method takes a list of Surface instances
that will be used during this camera session, a subclass of the
CameraCaptureSession.StateCallback61, and a handler to use. The result
of the method call gets delivered to the application through the methods of
the provided CameraCaptureSession.StateCallback subclass. In order to
subclass it, the application should provide implementations of the following
callback methods:

	onConfigured: Camera capture session is successfully
created, and it can start processing capture requests.

	onConfigurationFailed: Camera capture session could
not be started.

Create a Capture Request

Once you create the camera capture session, it can process multiple camera
capture requests. The createCaptureRequest62 method of the CameraDevice
instance creates the camera capture requests. The createCaptureRequest is
a helper method. For the most frequently used camera capture requests, the
Android framework provides templates to minimize the coding needed.

61https://developer.android.com/reference/android/hardware/camera2/
CameraCaptureSession.StateCallback.html.
62https://developer.android.com/reference/android/hardware/camera2/
CameraDevice.html#createCaptureRequest(int).

https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.StateCallback.html
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.StateCallback.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html#createCaptureRequest(int)
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html#createCaptureRequest(int)

CHAPTER 9: Media and Camera244

	TEMPLATE_MANUAL: Basic template for direct application
control of capture request.

	TEMPLATE_PREVIEW: Request suitable for camera preview.

	TEMPLATE_RECORD: Request suitable for video recording.

	TEMPLATE_STILL_CAPTURE: Request suitable for still
image capture.

	TEMPLATE_VIDEO_SNAPSHOT: Request suitable for still
image capture while recording.

	TEMPLATE_ZERO_SHUTTER_LAG: Request suitable for zero
shutter lag still image capture.

The createCaptureRequest method takes a template type and returns a
CaptureRequest.Builder instance, as shown in Listing 9-51.

Listing 9-51. Creating a Camera Capture Request Builder

CaptureRequest.Builder previewRequestBuilder =
 cameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);

Adding the Target Surface

Every camera capture request requires a target Surface. This target
Surface also must be one of the Surface instances that are provided
earlier when creating the camera capture session. The target Surface for a
camera capture request can be set through the addTarget63 method of the
CaptureRequest.Builder instance, as shown in Listing 9-52.

Listing 9-52. Adding the Target Surface to the Camera Preview Request Builder

previewRequestBuilder.addTarget(surfaceHolder.getSurface());

Additional CameraCaptureRequest Configuration

The application can do further configuration for the capture request using
this builder instance, as shown in Listing 9-53.

Listing 9-53. Setting the Auto-Focus Mode to Continuous Video for the Camera Capture Request

previewRequestBuilder.set(CaptureRequest.CONTROL_AF_MODE,
 CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_VIDEO);

63https://developer.android.com/reference/android/hardware/camera2/
CaptureRequest.Builder.html#addTarget(android.view.Surface).

https://developer.android.com/reference/android/hardware/camera2/CaptureRequest.Builder.html#addTarget(android.view.Surface)
https://developer.android.com/reference/android/hardware/camera2/CaptureRequest.Builder.html#addTarget(android.view.Surface)

CHAPTER 9: Media and Camera

245

The list of supported capture request keys varies. The list of
supported ones by the device can be obtained through the
getAvailableCaptureRequestKeys64 method of the CameraCharacteristics
class. Constant values are provided in the CaptureRequest65 class for the
most standard ones. Some of those are

	COLOR_CORRECTION_MODE: How the image data is
converted from the camera sensor’s native colorspace
into linear sRGB colorspace.

	CONTROL_AE_MODE: Desired mode for auto-exposure.

	CONTROL_AF_MODE: Desired mode for auto-focus.

	CONTROL_AWB_MODE: Desired mode for auto-white-
balance.

	CONTROL_EFFECT_MODE: Special color effects to apply.

	FLASH_MODE: Desired mode for camera flash.

	JPEG_QUALITY: Compression quality for the JPEG image
for still image capture.

	SCALER_CROP_REGION: Desired portion of the image to
read out of this capture.

	SENSOR_SENSITIVITY: Amount of gain to apply to sensor
data before processing.

Building the CameraCaptureRequest

Once the capture request is fully configured, the application can invoke the
build method of the CaptureRequest.Builder instance to create the actual
camera capture request, as shown in Listing 9-54.

Listing 9-54. Building the Camera Capture Request

CaptureRequest previewRequest = previewRequestBuilder.build();

64https://developer.android.com/reference/android/hardware/camera2/
CameraCharacteristics.html#getAvailableCaptureRequestKeys().
65https://developer.android.com/reference/android/hardware/camera2/
CaptureRequest.html.

https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#getAvailableCaptureRequestKeys()
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#getAvailableCaptureRequestKeys()
https://developer.android.com/reference/android/hardware/camera2/CaptureRequest.html
https://developer.android.com/reference/android/hardware/camera2/CaptureRequest.html

CHAPTER 9: Media and Camera246

Submitting the CameraCaptureRequest

The CameraCaptureSession class provides a set of methods to allow
submitting the CameraCaptureRequest instances for processing.

	capture66: Submit the request for a single image to be
captured from the camera.

	captureBurst67: Submit the given list of requests to be
captured in sequence as a burst.

	setRepeatingRequest68: Submit the request for endless
repeating capture of images (e.g., for the camera
preview).

	setRepeatingBurst69: Submit the given list of requests
to be endlessly captured in sequence as a burst.

These methods also take a CameraCaptureSession.CaptureCallback70
instance to inform the application regarding the status of the request, as
shown in Listing 9-55.

Listing 9-55. Submit the Camera Preview Request as a Repeating Request

session.setRepeatingRequest(previewRequest,
 new CameraCaptureSession.CaptureCallback() {
 @Override
 public void onCaptureCompleted(

66https://developer.android.com/reference/android/hardware/camera2/
CameraCaptureSession.html#capture(android.hardware.camera2.
CaptureRequest, android.hardware.camera2.CameraCaptureSession.
CaptureCallback, android.os.Handler).
67https://developer.android.com/reference/android/hardware/camera2/
CameraCaptureSession.html#captureBurst(java.util.List<android.hardware.
camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.
CaptureCallback, android.os.Handler).
68https://developer.android.com/reference/android/hardware/camera2/
CameraCaptureSession.html#setRepeatingRequest(android.hardware.
camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.
CaptureCallback, android.os.Handler).
69https://developer.android.com/reference/android/hardware/camera2/
CameraCaptureSession.html#setRepeatingBurst(java.util.List<android.
hardware.camera2.CaptureRequest>, android.hardware.camera2.
CameraCaptureSession.CaptureCallback, android.os.Handler).
70https://developer.android.com/reference/android/hardware/camera2/
CameraCaptureSession.CaptureCallback.html.

https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#capture(android.hardware.camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#capture(android.hardware.camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#capture(android.hardware.camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#capture(android.hardware.camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#captureBurst(java.util.List<android.hardware.camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#captureBurst(java.util.List<android.hardware.camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#captureBurst(java.util.List<android.hardware.camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#captureBurst(java.util.List<android.hardware.camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#setRepeatingRequest(android.hardware.camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#setRepeatingRequest(android.hardware.camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#setRepeatingRequest(android.hardware.camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#setRepeatingRequest(android.hardware.camera2.CaptureRequest, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#setRepeatingBurst(java.util.List<android.hardware.camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#setRepeatingBurst(java.util.List<android.hardware.camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#setRepeatingBurst(java.util.List<android.hardware.camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#setRepeatingBurst(java.util.List<android.hardware.camera2.CaptureRequest>, android.hardware.camera2.CameraCaptureSession.CaptureCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.CaptureCallback.html
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.CaptureCallback.html

CHAPTER 9: Media and Camera

247

 CameraCaptureSession session,
 CaptureRequest request,
 TotalCaptureResult result) {
 super.onCaptureCompleted(session, request, result);
 // Capture completed
 }
}, null);

The repeating capture requests can be terminated at any given time through
the stopRepeating71 method of the CameraCaptureSession instance.

Summary
This section briefly explored the multimedia support provided by the
Android platform. Android differentiates between audio streams based
on their purpose and allows each of these stream groups to be controlled
individually for a superior user experience. AudioManager provides APIs to
tune different aspects of each of these audio streams, as well as the audio
input and output components of the device. Audio playback has various use
cases and also unique challenges. The Android platform provides various
APIs to address the most frequent use cases. The MediaPlayer API allows
the application to play media streams with fine control. Meanwhile, the
SoundPool API allows the application to pre-load the small and frequently
used audio samples into memory for low-latency playback. The Android
framework also provides the MediaRecorder API for recording both audio
and video stream from various sources. At last, the chapter also provides a
brief overview of the new Camera API that is provided with the Android 5.0
Lollipop version (API Level 21).

71https://developer.android.com/reference/android/hardware/camera2/
CameraCaptureSession.html#stopRepeating().

https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#stopRepeating()
https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession.html#stopRepeating()

249

A ■
Action bar

action providers, 147
action view

accessing, 146
collapsing, 146
declaration, 145
SearchView, 145

callback method, 144
components, 140
default Theme.Holo theme, 140
getActionBar method, 140
onCreateOptionsMenu

method, 143
onOptionsItemSelected

method, 143
removing, 141
res/menu resource directory, 141
showAsAction parameter, 142

Activity
creation, 32
declaring activity, 32
life cycle

onCreate, 35
onDestroy, 35
onPause, 35
onRestart, 35
onResume, 35
onStart, 35
onStop, 35
state machines, 33–34

Acitivty.getPreferences method, 180
Adapter

array, 103
custom

getCount method, 106

getItemId method, 106
getItem method, 106
getView method, 107

notifyDataSetChanged
method, 108

simple cursor adapter, 105
view layout

grid view, 110
item selection events, 113
list view, 108
spinner, 111

addAction method, 167
addParentStack method, 166
addProximityAlert method, 214
addToBackStack method, 135
ALTER TABLE SQL query, 187
Android Backup Service

API key, 193
backup agent implementation,

194, 196–197
BackupManager.dataChanged

method, 196
manifest file, 196
signup, 193

Android Development Tools
(ADT), 16

Android framework
activity (see Activity)
application, 66
broadcast messages

application’s manifest, 64
implementation, 64
life cycle, 65
registerReceiver method, 65
security components, 66
sendBroadcast method, 63

content provider

Index

Index250

alarm clock provider, 62
android:authorities

attribute, 60
browser provider, 62
calendar provider, 62
call log provider, 62
contacts provider, 62
contract class, 59
delete method, 56
document provider, 62
getContentResolver

method, 61
getType method, 57
implementation, 57
insert method, 56
media store provider, 62
onCreate method, 57
query method, 56
read permission, 60
settings provider, 62
telephony provider, 62
update method, 56
user dictionary provider, 63
voicemail provider, 63
write permission, 60

context, 66
intent

explicit intents, 37
filters, 37
getIntent() method, 38
implicit intents, 37
launch activities and

services, 36
optional information

pieces, 36
pending intent class, 39
primary information

pieces, 36
service

AndroidManifest.xml file, 42
binder (see Binding service)
intent/calling code, 45
life cycle, 44
onBind method, 41

onStartCommand
method, 45

restricting access, 42
startService

method, 45
Android Interface Definition

Language (AIDL), 3, 49
Android Native Development Kit

(Android NDK), 16
Android platform

applications, 9
architecture, 2
ART

applications, 8
Dalvik VM, 7
DEX, 8
Java Virtual Machine, 7
zygote, 8

Linux kernel
AIDL, 3
alarm timer, 5
IPC, 3
logger, 4
low memory killer, 5
wake locks, 4
YAFFS2, 5

Location Manager, 9
native libraries, 6
Notifications Manager, 9
Package Manager, 9
Telephony Manager, 9
version

API level, 10
codename, 10
fragmentation, 12
number, 10
support library, 13

Android runtime (ART)
applications, 8
Dalvik VM, 7
DEX, 8
Java Virtual Machine, 7
zygote, 8

Android Software Development Kit
(Android SDK), 15, 70

Android framework (cont.)

Index

251

B ■
BackupManager.dataChanged

method, 196
Binding service

communication channel, 46–47
connectivity state, 55
device’s power configuration, 54
displaying notifications, 54
getSystemService method, 54
global activity state, 54
HTTP downloads, 54
input methods, 55
layout resources, 55
local service, 47
location information, 54
lock and unlock key guard

screen, 55
remote service

AIDL, 49
message queue, 51

UI mode, 55
vibrator, 55
WiFi network, 55
window manager, 55

C ■
Camera

access permission, 237
addTarget method, 244
build method, 245
CameraCaptureSession

class, 246
createCaptureRequest

method, 243–244
createCaptureSession

method, 242–243
getAvailableCapture

RequestKeys method, 245
getCameraCharacteristics

method, 239
getCameraIdList method, 238
getOutputSizes method, 242
openCamera method, 240

setFixedSize method, 242
stopRepeating method, 247

cancelAll method, 169
cancel method, 169
Context.getSharedPreferences

method, 181
Context.openOutputFile

method, 181
createCaptureRequest method, 243
createCaptureSession method, 242
create method, 151

D ■
Dalvik Executable (DEX), 8
Development environment

Android toolchain
ADT, 16
Android Studio, 16
NDK, 16
SDK, 15

Hello Android application
(see Hello Android
application)

JDK, 17
LINUX, 20
Mac OS X, 19
Microsoft Windows, 17

Dialogs
alert dialog

adding buttons, 152
creation, 151
custom layout, 157
multi-choice list, 155
parts, 150
setItems method, 154
setSingleChoiceItems

method, 156
DatePickerDialog, 158
DialogFragment, 162
ProgressDialog, 161
TimePickerDialog, 160

E ■
Editor.commit method, 181

Index252

F ■
findFragmentById method, 138
Fragments

add method
FragmentManager

instance, 133
FragmentTransaction

class, 133–134
frameLayout, 133
layout file, 132

findFragmentById
method, 138

getActivity method, 137
onActivityCreated

method, 131
onAttach method, 131
onCreate method, 131
onCreateView method, 131
onDestroy method, 132
onDestroyView method, 132
onDetach method, 132
onPause method, 131
onResume method, 131
onStart method, 131
passing arguments, 136
replace method

addToBackStack
method, 135

getArguments method, 137
popBackStack method, 135

user interface, 135

G ■
Generic shared preferences, 181
getActionBar method, 140
getActivities method, 40
getActivity method, 40, 137
getApplication() method, 67
getArguments method, 137
getAvailableCaptureRequestKeys

method, 245
getBroadcast method, 40
getCameraCharacteristics

method, 239

getCameraIdList method, 238
getContentResolver method, 61
getDefaultSensor method, 201
getExternalStorageState

method, 174
getIntent() method, 38
getLastKnownLocation method, 215
getOutputSizes method, 242
getReportingMode method, 202
getSensorList method, 201
getService method, 40
getStreamMaxVolume method, 220
getStreamVolume method, 220
getWritableDatabase method, 188

H ■
Hello Android application

Android device
Device dialog, 28
USB Debug mode, 27

project building, 26
project creation

activity name, 25
Android application

dialog, 23
Android project editor, 26
Android Studio setup, 22
project activity, 24
target Android API level, 24

hide method, 141

I ■
Integrated development

environment (IDE), 16
Intent

explicit intents, 37
filters, 37
getIntent() method, 38
implicit intents, 37
launch activities and

services, 36
optional information pieces, 36
pending intent class, 39
primary information pieces, 36

Index

253

Inter-process communication
(IPC), 3

isMicrophoneMute method, 218
isMusicActive method, 222
isSpeakerphoneOn method, 218

J, K ■
Java Development Kit (JDK), 17
Java Runtime Edition (JRE), 17

L ■
Layouts

API, 96
dynamic layout (see Adapter)
findViewById method, 115
ID attribute, 114
linear layout

gravity, 99
orientation, 97
weight, 98

relative layout
anchor View, 101
designing complex user

interfaces, 100
element organization, 100
parent View, 102

requirements, 96
XML resources, 95, 114

Location
GPS_PROVIDER, 210
isProviderEnabled method, 210
LocationManager instance, 209
NETWORK_PROVIDER, 210
objects, 215
PASSIVE_PROVIDER, 210
permissions, 209
providerChangedListener, 210
update method

addProximityAlert
method, 214

getLastKnownLocation
method, 215

LocationListener interface, 212

removeProximityAlert
method, 214

removeUpdates method, 213
requestLocationUpdates

method, 212
requestSingleUpdate

method, 213

M ■
makeText method, 149
Media

audio devices
microphone, 218
speakerphone, 218

audio record
microphone, 230
output, 231
prepare method, 232
release method, 233
requesting audio record

permission, 230
setAudioEncoder

method, 231
setOutputFile method, 232
setOutputFormat method, 231
start method, 232
stop method, 232

audio streams
getStreamMaxVolume

method, 220
getStreamVolume

method, 220
isMusicActive method, 222
setStreamMute method, 221
setStreamSolo, 222
setStreamVolume

method, 221
types, 219

playing audio
AsyncPlayer, 225
prepare method, 224
release method, 225
setAudioStreamType

method, 223

Index254

setDataSource method, 223
SoundPool (see SoundPool)
start method, 224

playing video
startPlayback method, 234
stopPlayback(), 235
SurfaceView, 233

video recording
setPreviewDisplay

method, 236
setVideoEncoder

method, 237
setVideoSource method, 236

N ■
notify method, 165

O ■
onBind method, 41
onCreateDialog method, 162
onCreateOptionsMenu

method, 143, 146, 148
onCreateView method, 135
onOptionsItemSelected

method, 143
onStartCommand method, 45
openCamera method, 240

P, Q ■
popBackStack method, 135
PreferenceManager.getDefault

SharedPreferences
method, 180

R ■
registerReceiver method, 65
removeProximityAlert method, 214
requestLocationUpdates

method, 212
requestSingleUpdate method, 213
Resources

advantages, 69

alternative resources, 88
APK expansion files, 93–94
assets

getAssets method, 92
web view, 93

color state list resources, 73–74
configuration qualifier, 88–91
drawable resources

bitmap file, 74
nine-patch file, 75
shape drawable, 76–77
state list drawable, 77
XML bitmap file, 74–75
XML nine-patch file, 76

groups, 71
layout resources, 77–78
menu resources, 78
property animation, 72
raw resources, 79
runtime configuration, 91–92
structures, 70
tween animation, 73
value resources

Boolean values, 82
color resources, 79–80
color value resources, 83
dimensions, 84–85
integer arrays, 85
quantity strings, 81–82
string arrays, 80–81
string resources, 80
typed arrays, 86

XML resources, 87–88

S, T ■
sendBroadcast method, 63
send() method, 40
Sensor

getDefaultSensor method, 201
getSensorList method, 201
receiving sensor events

cancelTriggerSensor
method, 206

interpretation, 206
registerListener method, 204

Media (cont.)

Index

255

reporting mode, 202
requestTriggerSensor

method, 206
SensorEventListener

interface, 203
TriggerEventListener, 205
unregisterListener

method, 204
types, 200

setArguments method, 136
setFixedSize method, 242
setItems method, 154
setMessage method, 151
setMicrophoneMute method, 218
setMutiChoiceItems method, 155
setNegativeButton method, 153
setNeutralButton method, 153
setOutputFormat method, 231
setPositiveButton method, 152
setProgress method, 120
setSingleChoiceItems method, 156
setSpeakerphoneOn method, 219
setStreamMute method, 221
setStreamSolo method, 222
setStreamVolume method, 221
setStyle method, 168
setTitle method, 151
setView method, 157–158
SharedPreferences.register

OnSharedPreference
ChangeListener
method, 182

SharedPreferences.unregister
OnSharedPreference
ChangeListener
method, 183

show method, 149, 162
SoundPool

creation, 226
loading audio samples, 227
play method, 228
release method, 229
unloading audio sample, 229

SQLite relational database
creating tables, 187

database name and version
number, 185

deleting data, 192
getWritableDatabase method

inserting data, 188–189
updating data, 189

onCreate method, 186
onUpgrade method, 186–187
reading data, 190–191

startActivity method, 66
START_FLAG_NOT_STICKY

method, 45
START_FLAG_REDELIVERY

method, 45
START_FLAG_STICKY method, 45
startService method, 45, 66
Storing data

Android Backup Service
API key, 193
backup agent

implementation, 194,
196–197

BackupManager.data
Changed method, 196

manifest
file, 196

signup, 193
external storage

cache data, 177
constant strings, 174
Context.getExternalFilesDir

method, 175
directory, 175
Environment.getExternal

StoragePublicDirectory
method, 176

getExternalStorageState
method, 174

reading and writing data, 173
generic shared preferences, 181
internal storage, 171
shared preferences

activity, 180
adding preferences, 181
default, 180

Index256

Editor.commit method, 181
fragment class, 184
getter methods, 181
listening method, 182
preferences screen

configuration resource, 183
SQLite relational database (see

SQLite relational database)
structuring data

reading data, 179
writing data, 178

U ■
User interface

action bar (see Action bar)
dialogs (see Dialogs)
notifications

action buttons, 167
back stack, 165
canceling, 169
notification drawer, 163
NotificationManager

class, 164
PendingIntent, 165
posting, 164
updating, 168

toasts, 148

V, W, X ■
Views

input controls
CheckBox, 126
EditText, 121
ImageButton, 123
isChecked

method, 126
OnClickListener

interface, 123
play button, 122
RadioButton, 127
setOnCheckedChange

Listener method, 127
Switch, 125
ToggleButton, 125

output controls
ImageView, 117
ProgressBar, 118
space, 120
TextView, 116

Viking Killer, 5
Virtual Machine (VM), 7

Y, Z ■
Yet Another Flash File System

(YAFFS2), 5

Storing data (cont.)

Android Quick APIs

Reference

Onur Cinar

Android Quick APIs Reference

Copyright © 2015 by Onur Cinar

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied speciically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0524-2

ISBN-13 (electronic): 978-1-4842-0523-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the beneit of the trademark owner, with no intention of
infringement of the trademark.

he images of the Android Robot (01/Android Robot) are reproduced from work created and shared by
Google and used according to terms described in the Creative Commons 3.0 Attribution License. An-
droid and all Android and Google-based marks are trademarks or registered trademarks of Google Inc.
in the United States and other countries. Apress Media LLC is not ailiated with Google Inc., and this
book was written without endorsement from Google Inc.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identiied as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. he publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Michael homas
Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,

Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jef Olson,
Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Spe-
cial Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available
to readers at www.apress.com/9781484205242. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484205242
www.apress.com/source-code/

Dedicated to my son Deren, my wife Sema, and my parents,

Zekiye and Dogan, for their love and their continued support.

—Onur Cinar

vii

Contents

About the Author ... xv

About the Technical Reviewer ... xvii

Preface ... xix

Chapter 1: Android Platform ■ ... 1

Platform Architecture .. 1

Linux Kernel .. 3

Native Libraries .. 6

Android Runtimes ... 7

Application Framework ... 9

Applications .. 9

Android Versions ... 10

Platform Version .. 10

Platform Codename .. 10

API Level ... 10

Android Platform Fragmentation .. 12

Android Support Library ... 13

Summary ... 13

Contentsviii

Chapter 2: Development Environment ■ .. 15

Android Toolchain .. 15

Android Software Development Kit ... 15

Android Native Development Kit ... 16

Android Development Tools for Eclipse .. 16

Android Studio .. 16

Setting Up the Development Environment .. 17

Microsoft Windows ... 17

Apple Mac OS X .. 19

Ubuntu Linux ... 20

Hello Android Application .. 22

Creating a New Android Application Project ... 22

Building the Android Application ... 26

Running the Android Application .. 26

Summary ... 29

Chapter 3: Application Components ■ ... 31

Activity... 31

Creating an Activity ... 32

Declaring an Activity ... 32

Activity Life Cycle ... 33

Intent ... 36

Intent Resolution ... 37

Intent Filters ... 37

Getting and Extracting the Intent .. 38

Pending Intent .. 39

Contents

ix

Service .. 41

Creating a Service .. 41

Declaring a Service .. 42

Restricting Access to a Service .. 42

Service Life Cycle ... 44

Service Restart Strategy ... 45

Starting a Service ... 45

Starting a Service with an Intent .. 45

Binding to a Service ... 46

System Services ... 53

Content Provider .. 56

Creating a Content Provider .. 56

Content Provider Contract .. 59

Declaring a Content Provider .. 59

Content Provider Security ... 60

Accessing a Content Provider ... 61

System Content Providers .. 62

Broadcast Messages ... 63

Sending a Broadcast Message ... 63

Receiving the Broadcast Message ... 64

Broadcast Receiver Life Cycle .. 65

Broadcast Receiver Security .. 66

Context .. 66

Application .. 66

Summary ... 68

Contentsx

Chapter 4: Application Resources ■ .. 69

Structure of Resources .. 70

Resource Groups ... 71

Property Animation Resources ... 72

Tween Animation Resources... 73

Color State List Resources.. 73

Drawable Resources ... 74

Layout Resources ... 77

Menu Resources ... 78

Raw Resources ... 79

Value Resources ... 79

XML Resources ... 87

Default and Alternative Resources .. 88

Defining Alternative Resources .. 88

Supported Configuration Qualifiers .. 88

Handling Runtime Changes ... 91

Assets .. 92

Using Assets in Web View ... 93

APK Expansion Files .. 93

Summary ... 94

Chapter 5: Layouts and Views ■ .. 95

Layouts .. 95

Declaring Layouts ... 95

Layout Requirements .. 96

Common Layouts .. 96

Dynamic Layouts .. 103

Loading the XML Layout Resource ... 114

Accessing Individual Views in a Layout .. 114

Contents

xi

Views ... 115

Output Controls ... 115

Input Controls ... 121

Fragments ... 130

Creating a Fragment ... 130

Adding a Fragment to an Activity .. 132

Replacing a Fragment .. 134

Adding a User Interface to a Fragment ... 135

Passing Arguments to a Fragment ... 136

Communication Between the Activity and the Fragment 137

Summary ... 138

Chapter 6: User Interface ■ ... 139

Action Bar .. 139

Adding the Action Bar ... 140

Removing the Action Bar .. 141

Adding Actions to the Action Bar .. 141

Action Views ... 145

Action Providers ... 147

Toasts .. 148

Dialogs .. 150

Dialog Flavors ... 150

Showing a Dialog .. 162

Notifications .. 163

Accessing the Notification Service ... 164

Posting a Notification ... 164

Adding Actions to a Notification ... 165

Adding Action Buttons to a Notification .. 167

Updating a Notification ... 168

Canceling a Notification .. 169

Summary ... 170

Contentsxii

Chapter 7: Storing Data ■ .. 171

Simple Files ... 171

Using Internal Storage .. 171

Using External Storage ... 173

Caching Data Using Storage ... 177

Structuring Data Through JSON .. 177

Shared Preferences ... 180

Opening Shared Preferences .. 180

Adding and Editing Shared Preferences ... 181

Reading the Shared Preferences .. 181

Listening for Shared Preferences Changes .. 182

Preferences Screen .. 183

SQLite Relational Database ... 185

Creating and Opening the Database ... 185

Creating Tables ... 187

Upgrading the Existing Database ... 187

Writing to the Database .. 188

Reading from the Database .. 190

Deleting Data from the Database ... 192

Deleting the Entire Database .. 192

Android Backup Service .. 192

Signing Up for Android Backup Service .. 193

Adding the Backup Service Key to the Manifest... 193

Providing the Backup Agent Implementation ... 194

Declaring the Backup Agent in the Manifest .. 196

Requesting Backup ... 196

Testing the Backup Agent Implementation ... 196

Summary ... 197

Contents

xiii

Chapter 8: Sensors and Location ■ .. 199

Sensor ... 199

Sensor Manager ... 199

Receiving Sensor Events .. 202

Interpreting Sensor Events ... 206

Location ... 209

Location Permissions ... 209

Location Manager ... 209

Location Providers .. 210

Location Updates .. 211

Summary ... 215

Chapter 9: Media and Camera ■ .. 217

Audio Manager .. 217

Audio Devices ... 217

Audio Streams .. 219

Playing Audio ... 223

MediaPlayer .. 223

AsyncPlayer .. 225

SoundPool ... 226

Recording Audio .. 230

Requesting Audio Record Permission ... 230

Configuring the Audio Source for Recording .. 230

Configuring the Audio Output for Recording ... 231

Starting the Audio Recording .. 232

Stopping the Audio Recording .. 232

Releasing the MediaRecorder... 233

Contentsxiv

Playing Video ... 233

Creating a Surface for Video Playback ... 233

Starting Video Playback .. 234

Stopping Video Playback .. 235

Video Recording .. 236

Creating a Preview Surface for Video Recording .. 236

Configuring the Video Source for Video Recording ... 236

Configuring the Video Encoder for Video Recording ... 237

Camera .. 237

Requesting the Camera Access Permission ... 237

CameraManager ... 238

Opening the Camera ... 240

Capturing from the Camera .. 241

Summary ... 247

Index .. 249

xv

About the Author

Onur Cinar is the author of Android Apps

with Eclipse and Pro Android C++ with the

NDK, and the co-author of Android Best

Practices. He has over 19 years of experience
in the design, development, and management
of large-scale complex software projects,
primarily in mobile and telecommunication
space. His expertise spans VoIP, video
communication, mobile applications, grid
computing, and networking technologies on

diverse platforms. He has been actively working with the Android platform
since its beginning. He has a B.S. degree in Computer Science from Drexel
University in Philadelphia, PA. He is currently working at the Skype division
of Microsoft as the Principal Development Manager responsible for the
Skype Qik, GroupMe, Skype for Android, and Lync for Android products.

xvii

About the Technical

Reviewer

Michael Thomas has worked in software
development for more than 20 years as an
individual contributor, team lead, program
manager, and Vice President of Engineering.
Michael has over 10 years’ experience working
with mobile devices. His current focus is
in the medical sector using mobile devices
to accelerate information transfer between
patients and health care providers.

xix

Preface

Android is no longer just an operating system for mobile devices. It powers
all sorts of connected devices, like TVs, and wearables. With its vast set of
APIs (application programming interfaces), the Android platform enables
endless opportunities for developers.

The Android Quick APIs Reference is a condensed code and API reference
to the Android platform, including the new APIs that are introduced in
Android Lollipop 5.0. It presents the essential Android APIs in a
well-organized format that can be used as a handy reference.

The book extensively uses URLs to the official Android API Reference
pages to enable you to dive into things as needed. The book is packed
with useful information and is a must-have for any mobile or Android app
developer or programmer.

What you’ll learn

Short introduction to the Android platform and its 	
development environment.

Essential parts of Android applications, such as the 	
user interface components, the notifications, and the
resources.

Storing and accessing data using Android APIs.	
Accessing the location, and using device sensors.	
Recording and playing back video and audio content, 	
and accessing the camera.

Preface xx

Who this book is for
This book is a quick, handy syntax reference for experienced Android
programmers and a concise, easily digested introduction for other
programmers new to Android.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	Index

